Help us improve your experience.

Let us know what you think.

Do you have time for a two-minute survey?

 
 

第 3 层 VPN 上的组播

您可以通过运行符合 RFC 4364 第 3 层 VPN 的网络配置组播路由。本主题提供组播概述,并介绍配置设备以支持第 3 层 VPN 中的组播流量。

了解 MVPN 概念和协议

第 3 层 VPN 组播概述

在 3 层 VPN 的单播环境中,所有 VPN 状态信息均包含在 PE 路由器内。但是,对于第 3 层 VPN 的组播,协议无关组播 (PIM) 邻接以以下方式之一建立:

  • 您可通过层级的 VRF 实例 [edit routing-instances instance-name protocols pim] 设置 CE 路由器与 PE 路由器之间的 PIM 邻接。您必须包括提供商隧道的 group-address 语句,指定组播组。VRF 实例中列出的汇聚点 (RP) 是 VPN 客户 RP (C-RP)。

  • 您也可通过在 [edit protocols pim] 层次结构级别配置语句来设置主 PIM 实例和 PE 的 IGP 邻接方。您必须将 VRF 实例中指定的组播组添加至主 PIM 实例。在整个服务提供商网络中,一组主要 PIM 邻接组成了转发路径,成为根植于服务提供商 RP (SP-RP) 的 RP 树。因此,提供商核心中的 P 路由器必须维护 VPN 的组播状态信息。

为此,您需要为每个 VPN 使用两种类型的 RP 路由器:

  • C-RP — 位于 VPN 内某处的 RP 路由器(可是服务提供商路由器或客户路由器)。

  • SP-RP — 位于服务提供商网络内的 RP 路由器。

    注意:

    PE 路由器可用作 SP-RP 和 C-RP。将这些组播配置任务移至服务提供商路由器有助于简化客户的组播第 3 层 VPN 配置流程。但是,不支持在同一 PE 路由器上配置 SP-RP 和 VPN C-RP。

要在第 3 层 VPN 上配置组播,必须在以下设备上安装通道服务 物理接口卡 (PIC):

  • 作为 RP 的 P 路由器

  • 配置为运行组播路由的 PE 路由器

  • 作为指定路由器或 VPN-RP 的 CE 路由器

有关在 3 层 VPN 上运行组播的详细信息,请参阅以下文档:

下面介绍组播 VPN 操作的部分。 图 1 展示了所使用的网络拓扑。

图 1:组播拓扑概述 Multicast Topology Overview

向 PE 路由器发送 PIM Hello 消息

初始化第 3 层 VPN 组播的第一步是将 PIM Hello 消息从 PE 路由器(本节中称为 PE3)分发到配置 PIM 的所有其他 PE 路由器。

您可在 PE3 路由器的第 3 层 VPN 路由实例上配置 PIM。如果在路由平台中安装了通道服务 PIC,则会创建一个组播接口。此接口用于在 VRF 路由实例中的 PIM 实例与主 PIM 实例之间进行通信。

如果将 PIM Hello 消息发送至 PE 路由器,将发生以下情况:

  1. 通过组播接口从 VRF 路由实例发送 PIM Hello 消息。通用路由封装 (GRE) 标头前置到 PIM Hello 消息。标头消息包括 VPN 组地址和 PE3 路由器的环路地址。

  2. 当数据包通过 PIM 封装接口循环时,PIM 注册标头会前置到 Hello 消息。此标头包含 SP-RP 的目标地址和 PE3 路由器的环路地址。

  3. 数据包发送至 SP-RP。

  4. SP-RP 从数据包中卸下顶部标头,并将剩余的 GRE 封装的 Hello 消息发送至所有 PE 路由器。

  5. 每个 PE 路由器上的主 PIM 实例处理 GRE 封装的数据包。由于 VPN 组地址包含在数据包中,因此主实例会从数据包中卸下 GRE 标头,然后通过组播接口发送 Hello 消息,该消息在 VRF 路由实例中包含适当的 VPN 组地址。

向 PE 路由器发送 PIM 加入消息

要从组播网络接收组播广播,CE 路由器必须向 C-RP 发送 PIM 加入消息。本部分中介绍的过程指的是 图 1

CE5 路由器需要从组播源 224.1.1.1.1 接收组播广播。要接收广播,它将向 C-RP(PE3 路由器)发送 PIM 加入消息:

  1. PIM Join 消息通过组播接口发送,并将 GRE 报头前置到消息中。GRE 标头包含 VPN 组 ID 和 PE3 路由器的环路地址。

  2. 随后,PIM Join 消息将通过 PIM 封装接口发送,并将注册头前置到数据包中。注册表标头包含 SP-RP 的 IP 地址和 PE3 路由器的环路地址。

  3. PIM 加入消息通过单播路由方式发送至 SP-RP。

  4. 在 SP-RP 上,寄存器标头将被剥离(GRE 标头仍然存在),并将数据包发送至所有 PE 路由器。

  5. PE2 路由器接收数据包,由于与 C-RP 的链路通过 PE2 路由器,因此通过组播接口发送数据包以卸下 GRE 标头。

  6. 最后,PIM 加入消息将发送至 C-RP。

接收组播传输

遵循的步骤概述了组播传输如何在整个网络中传播:

  1. 连接到 CE1 路由器的组播源将数据包发送至组 224.1.1.1(VPN 组地址)。该数据包封装在 PIM 寄存器中。

  2. 由于此数据包已包含 PIM 标头,因此通过单播路由在第 3 层 VPN 上转发至 C-RP。

  3. C-RP 会卸下数据包并将其发送至下游接口(包括将接口发送回 CE3 路由器)。CE3 路由器还会将此转发至 PE3 路由器。

  4. 数据包通过 PE2 路由器上的组播接口发送;在此过程中,GRE 标头会前置到数据包中。

  5. 接下来,数据包将通过 PIM 封装接口发送,其中寄存器标头前置到数据包中。

  6. 然后,数据包会转发至 SP-RP,SP-RP 会卸下注册标头,使 GRE 标头保持完好,然后将数据包发送至 PE 路由器。

  7. PE 路由器卸下 GRE 标头,然后将数据包转发至请求组播广播的 CE 路由器,方法是发送 PIM 加入消息。

    注意:

    尚未从其连接的 CE 路由器收到组播广播请求的 PE 路由器仍然会收到广播数据包。这些 PE 路由器会在收到数据包时丢弃这些数据包。

支持的组播 VPN 标准

Junos OS 实质上支持以下 RFC 和互联网草案,这些 RFC 定义组播虚拟专用网络 (VPN) 的标准。

  • RFC 6513, MPLS/BGP IP VPN 中的组播

  • RFC 6514, MPLS/BGP IP VPN 中组播的 BGP 编码和过程

  • RFC 6515,组播 VPN 的 BGP 更新中的 IPv4 和 IPv6 基础架构地址

  • RFC 6625, 组播 VPN 自动发现路由中的通配符

  • 互联网草案 draft-morin-l3vpn-mvpn-fast-failover-06.txt, 组播 VPN 快速上游故障切换

  • 互联网草案 draft-raggarwa-l3vpn-bgp-mvpn-extranet-08.txt, BGP 组播 VPN 中的 Extranet (MVPN)

  • RFC 7900, BGP/IP MPLS VPN 中的外部网组播(部分支持)

  • RFC 8534, 在组播 VPN 中使用通配符路由进行显式跟踪(部分支持)

  • RFC 9081, 组播虚拟专用网络 (MVPN) 与组播源目录协议 (MSDP) 源活动路由之间的互操作

配置组播第 3 层 VPN

您可以使用 Junos OS 配置两种类型的组播第 3 层 VPN:

  • 草稿 Rosen 组播 VPN — Draft Rosen 组播 VPN 在 RFC 4364、 BGP/MPLS IP 虚拟专用网络 (VPN) 中介绍,并基于 IETF Internet 草案 draft-rosen-vpn-mcast-06.txt 和 MPLS/BGP VPN 中的组播 (2004 年 4 月到期)。

  • 下一代组播 VPN — 互联网草案 draft-ietf-l3vpn-2547bis-mcast-bgp-03.txt 介绍下一代组播 VPN, MPLS/BGP IP VPN 和 draft-ietf-l3vpn-2547bis-mcast-02.txt 中的组 播 BGP 编码,MPLS/BGP IP VPN 组播

本节介绍如何配置 Rosen 组播 VPN 草稿。如果您已在网络上配置了双 PIM 组播 VPN,将向您提供此信息。有关 BGP MPLS 组播 VPN(也称为新一代组播 VPN)的信息,请参阅 MBGP 组播 VPN 站点

注意:

尽管配置语句可以在逻辑系统层次结构下配置,但逻辑系统环境中不支持 Draft-rosen 组播 VPN。

您可以使用协议无关组播 (PIM) 路由协议配置第 3 层 VPN 以支持组播信息流。要支持组播,您需要在 VPN 内和服务提供商网络内的路由器上配置 PIM。

配置为在第 3 层 VPN 上运行组播的每个 PE 路由器都必须有一个隧道服务 PIC。作为汇聚点 (RP) 的 P 路由器上还需要通道服务 PIC。作为指定路由器(第一跃点/最后一跳路由器)或作为 RP 的所有 CE 路由器,就像在非 VPN PIM 环境中一样,也需要通道服务 PIC。

在 CE 和 PE 路由器的 [edit protocols pim] 层次结构级别配置主 PIM 实例。PE 路由器上的此主 PIM 实例配置应与服务提供商核心路由器上的配置匹配。

您还需要为 PE 路由器的层次结构级别的第 3 层 VPN [edit routing-instances routing-instance-name protocols pim] 配置 PIM 实例。这会为指示的路由实例创建 PIM 实例。PE 路由器上的 PIM 实例配置应与 PE 路由器连接到的 CE 路由器上配置的 PIM 实例匹配。

有关如何配置 PIM 的信息,请参阅 组播协议用户指南

vpn-apply-export包括语句以配置服务提供商网络中为 VPN 指定的组地址。此地址必须为每个 VPN 唯一,并在连接到同一 VPN 的所有 PE 路由器的 VRF 路由实例上配置。它确保组播信息流仅传输到指定的 VPN。

包括语 vpn-apply-export 句:

有关可配置此语句的层次结构级别列表,请参阅此语句的语句摘要部分。

您可以在以下层次结构级别中包含此语句:

  • [edit routing-instances routing-instance-name protocols pim]

  • [edit logical-systems logical-system-name routing-instances routing-instance-name protocols pim]

组播的第 3 层 VPN 配置其余部分是传统配置,本手册的其他部分介绍。在 VPN 环境中激活组播所需的大多数特定配置任务都涉及 PIM。

示例:在 Draft-Rosen 组播 VPN 上配置 PIM 加入负载平衡

此示例说明如何为外部和内部虚拟专用网络 (VPN) 路由配置具有不平等内部网关协议 (IGP) 指标的多路径路由,以及协议无关组播 (PIM) 在运行 Draft-Rosen 组播 VPN (MVPN) 的提供商边缘 (PE) 路由器上加入负载平衡。此功能允许客户 PIM (C-PIM) 加入消息,当 PE 路由器具有朝源或汇聚点 (RP) 的外部 BGP (EBGP) 和内部 BGP (IBGP) 路径时,跨外部和内部 BGP (EIBGP) 上游路径进行负载均衡。

要求

此示例需要以下硬件和软件组件:

  • 三个路由器,可以是 M 系列多服务边缘路由器、MX 系列 5G 通用路由平台或 T 系列核心路由器的组合。

  • 所有设备上运行的 Junos OS 版本 12.1 或更高版本。

开始之前:

  1. 配置设备接口。

  2. 在所有 PE 路由器上配置以下路由协议:

    • OSPF

    • MPLS

    • 自民党

    • PIM

    • BGP

  3. 配置组播 VPN。

概述和拓扑

Junos OS 版本 12.1 和更高版本支持多路径配置以及 PIM 加入负载平衡。如果 PE 路由器具有面向源(或 RP) 的 EBGP 和 IBGP 路径,则 C-PIM 加入消息可跨不平等的 EIBGP 路由实现负载平衡。在之前的版本中,仅使用活动 EBGP 路径来发送加入消息。此功能适用于 IPv4 C-PIM 加入消息。

在负载平衡期间,如果 PE 路由器将一个或多个 EBGP 路径丢失至源(或 RP),以前使用 EBGP 路径的 C-PIM 加入消息将移动到组播隧道接口,组播隧道接口上的反向路径转发 (RPF) 邻接方将根据散列机制进行选择。

在发现第一个面向源(或 RP) 的 EBGP 路径时,只有新的加入消息才能跨 EIBGP 路径实现负载平衡,而组播隧道接口上的现有加入消息不会受到影响。

尽管多路径 PIM 加入负载平衡的主要目标是为组播流量使用不平等的 EIBGP 路径,但如果 PE 路由器仅选择 EBGP 路径,而远程 PE 路由器的不同组有一个或多个加入消息,则可以避免潜在的加入环路。如果远程 PE 路由器的加入消息到达 PE 路由器已选择 IBGP 作为上游路径之后,则可能会将选定的上游路径更改为 EBGP,从而中断潜在环路。

注意:

在平滑路由引擎切换 (GRES) 期间,C-PIM 加入消息的 EIBGP 路径选择可能有所不同,因为上游接口选择会根据从 CE 和 PE 邻接方接收的加入消息为新的路由引擎再次执行。这可能导致组播流量中断,具体取决于收到的加入消息的数量以及平稳重新启动时网络上的负载。但是,不支持不间断活动路由功能,并且对 Draft-Rosen MVPN 场景中的组播流量没有影响。

在此示例中,PE1 和 PE2 是为其配置多路径 PIM 加入负载平衡功能的上游 PE 路由器。路由器 PE1 和 PE2 有一个 EBGP 路径和一个朝源方向的 IBGP 路径。连接到客户边缘 (CE) 路由器的源和接收器是免费 BSD 主机。

在具有面向源(或 RP)(如 PE1 和 PE2)的 EIBGP 路径的 PE 路由器上,PIM 加入负载平衡执行如下:

  1. 执行现有基于加入计数的负载平衡,以便算法首先选择负载最少的 C-PIM 接口。如果所有 C-PIM 接口上负载均相同或无负载,则加入消息可在可用上游接口上平均分配。

    图 2 中,如果 PE1 路由器接收来自 CE2 路由器的 PIM 加入消息,并且 EBGP 和 IBGP 路径上朝着源的负载相等或没有负载,则加入消息在 EIBGP 路径上得到负载平衡。

  2. 如果选择的负载最少的接口是组播隧道接口,则如果客户加入 (C-join) 消息的下游列表已包含组播隧道接口,则可能会有一个连接环路。在这种情况下,EBGP 路径之间负载最小的接口被选为 C-join 消息的上游接口。

    假设 IBGP 路径的加载最少,PE1 路由器会使用 IBGP 路径将加入消息发送至 PE2。如果 PE3 路由器上的 PIM 加入消息到达 PE1,则 PE3 的 C 加入消息的下游列表已经包含组播隧道接口,这可能导致潜在的加入环路,因为上游和下游接口都是组播隧道接口。在这种情况下,PE1 仅使用 EBGP 路径来发送加入消息。

  3. 如果所选最少加载的接口是组播隧道接口,且 C-Join 消息的下游列表中不存在组播通道接口,则不需要环路防御机制。如果任何 PE 路由器已通告数据组播分配树 (MDT) 类型、长度和值 (TLV),则该 PE 路由器将被选为上游邻接方。

    当 PE1 路由器使用负载最小的 IBGP 路径将加入消息发送至 PE2 时,如果 PE3 将其加入消息发送至 PE2,则不会创建加入环路。

  4. 如果没有数据 MDT TLV 对应于 C-Join 消息,组播隧道接口上加载最少的邻接方将被选为上游接口。

在只有 IBGP 路径朝源(或 RP)(如 PE3)的 PE 路由器上,PIM 加入负载平衡执行如下:

  1. PE 路由器仅将组播隧道接口查找为 RPF 接口,并且在组播隧道接口上的 C-PIM 邻接方上进行负载平衡。

    路由器 PE3 负载平衡 PIM 加入从 CE4 路由器通过 IBGP 路径接收到 PE1 和 PE2 路由器的消息。

  2. 如果任何 PE 路由器已通告与 C 加入消息对应的数据 MDT TLV,则该 PE 路由器将被选为 RPF 邻接方。

对于特定 C 组播流,至少有一个具有面向源(或 RP) 的 EIBGP 路径的 PE 路由器必须仅使用 EBGP 路径来避免或中断加入环路。由于环路避免机制,当下游列表中已存在组播隧道接口时,PE 路由器受限于在 EIBGP 路径之间进行选择。

图 2 中,假设 CE2 主机有兴趣接收来自源的信息流,CE2 会为不同的组发起多个 PIM 加入消息(组 1(组地址为 203.0.113.1,组 2 组地址为 203.0.113.2),则两组的加入消息均会到达 PE1 路由器上。

然后,路由器 PE1 可向源的 EIBGP 路径之间平均分配加入消息。假设第 1 组加入消息使用 EBGP 路径直接发送至 CE1 路由器,而第 2 组加入消息将使用 IBGP 路径发送至 PE2 路由器,PE1 和 PE2 分别成为第 1 组和第 2 组加入消息的 RPF 邻接方。

当 CE3 路由器发起第 1 组和第 2 组 PIM 加入消息时,两组的加入消息都将到达 PE2 路由器。然后,路由器 PE2 可向源的 EIBGP 路径之间平均分配加入消息。由于 PE2 是组 2 加入消息的 RPF 邻接方,因此会使用 EBGP 路径将组 2 直接发送至 CE1 路由器。第 1 组加入消息将使用 IBGP 路径发送至 PE1 路由器。

但是,如果 CE4 路由器发起多个组 1 和组 2 PIM 加入消息,则无法控制 PE3 路由器上接收到的这些加入消息如何通过分布式方式到达源。PE3 选择 RPF 邻接方会影响 EIBGP 路径上的 PIM 加入负载平衡。

  • 如果 PE3 将第 1 组加入消息发送至 PE1,而第 2 组将加入消息发送至 PE2,则 RPF 邻接方不会更改。因此,不会创建加入环路。

  • 如果 PE3 向 PE2 发送组 1 加入消息,并将第 2 组加入消息发送至 PE1,则不同组的 RPF 邻接方将发生更改,从而创建加入环路。为避免潜在的加入环路,PE1 和 PE2 不考虑通过 IBGP 路径发送从 PE3 路由器收到的加入消息。相反,加入消息仅使用 EBGP 路径直接发送至 CE1 路由器。

Draft-Rosen MVPN 中的环路避免机制具有以下限制:

  • 由于远程 PE 路由器上加入消息的到达时间决定了加入消息的分发,因此在加入计数方面,分配可能是次优的。

  • 由于无法避免加入环路,并且由于加入消息的时机而可能发生,因此后续 RPF 接口更改会导致组播信息流丢失。可通过实施 PIM“先决断前”功能来避免这种情况。

    PIM“先决断”功能是一种检测和打破 C-PIM 在 Draft-Rosen MVPN 中加入环路的方法。建立 PIM 邻接关系之后,C-PIM 加入消息会发送至新的 RPF 邻接方,但在更新相关组播转发条目之前。尽管上游 RPF 邻接方会更新其组播转发条目并开始向下游发送组播信息流,但下游路由器不会转发组播信息流(因为 RPF 检查失败),直到组播转发条目与新的 RPF 邻接方一起更新。这有助于确保组播信息流在新路径上可用,然后再切换组播转发条目的 RPF 接口。

图 2:Draft-Rosen MVPN 上的 PIM 加入负载平衡 PIM Join Load Balancing on Draft-Rosen MVPN

配置

CLI 快速配置

要快速配置此示例,请复制以下命令,将其粘贴到文本文件中,移除任何换行符,更改与网络配置匹配所需的任何详细信息,然后将命令复制粘贴到 [edit] 层次结构级别的 CLI 中。

PE1

PE2

程序

逐步过程

以下示例要求您在配置层次结构中导航各个级别。有关导航 CLI 的信息,请参阅 在配置模式下使用 CLI 编辑器。要配置 PE1 路由器:

注意:

修改每个路由器的相应接口名称、地址和任何其他参数之后,对 MVPN 域中的每台瞻博网络路由器重复此过程。

  1. 配置 VPN 路由和转发 (VRF) 实例。

  2. 为 VRF 实例启用与协议无关的负载平衡。

  3. 配置 BGP 组和邻接方以启用 PE 到 CE 路由。

  4. 配置 PIM 以启用 PE 到 CE 组播路由。

  5. 在所有网络接口上启用 PIM。

  6. 为 VRF 实例启用 PIM 加入负载平衡。

结果

在配置模式下,输入 show routing-instances 命令以确认您的配置。如果输出未显示预期的配置,请重复此示例中的说明以更正配置。

如果完成设备配置,请在配置模式下输入 提交

验证

确认配置工作正常。

验证不同组加入消息的 PIM 加入负载平衡

目的

验证 PE1 路由器上收到的不同组加入消息的 PIM 加入负载平衡。

行动

在操作模式下,运行 show pim join Instance extensive 命令。

意义

输出显示 PE1 路由器如何为四个不同的组平衡 C-PIM 加入消息。

  • 对于第 1 组(组地址:203.0.113.1)和第 3 组(组地址:203.0.113.3)加入消息,PE1 路由器已选择面向 CE1 路由器的 EBGP 路径来发送加入消息。

  • 对于第 2 组(组地址:203.0.113.2)和第 4 组(组地址:203.0.113.4)加入消息,PE1 路由器已选择面向 PE2 路由器的 IBGP 路径来发送加入消息。

MBGP 组播 VPN 站点

MBGP MVPN 的主要特征是:

  • 他们扩展了第 3 层 VPN 服务 (RFC 4364),以支持第 3 层 VPN 服务提供商的 IP 组播。

  • 它们遵循 RFC 4364 为单播 VPN 指定的相同架构。具体而言,BGP 用作组播 VPN 的提供商边缘 (PE) 路由器到 PE 路由器控制平面。

  • 它们消除了对组播 VPN 的虚拟路由器 (VR) 模型的要求(如 Internet draft draft-rosen-vpn-mcast、 MPLS 中的组播/BGP VPN 中指定)和单播 VPN 的 RFC 4364 型号中所指定。

  • 他们依靠基于 RFC 4364 的单播,并扩展 AS 内部和 AS 间通信。

MBGP MVPN 定义两种类型的站点集、一个发送站点集和一个接收方站点集。这些站点具有以下属性:

  • 发送方站点集内的主机可以为接收方站点集中的接收器发起组播信息流。

  • 接收方站点集外的接收器不应接收此信息流。

  • 接收方站点集内的主机可以接收由发送方站点集中任何主机发起的组播信息流。

  • 接收方站点集内的主机不应接收由不在发送方站点集中的任何主机发起的组播信息流。

发送方站点集和接收方站点集均可安装一个站点,因此此类站点内的主机可以发起并接收组播信息流。例如,发送方站点集可能与接收方站点集相同,在这种情况下,所有站点都可以相互发起和接收组播信息流。

给定 MBGP MVPN 内的站点可能位于同一组织或不同组织中,这意味着 MBGP MVPN 可以是内部网或外部网。给定站点可以包含一个以上的 MBGP MVPN,因此 MBGP MVPN 可能会重叠。并非所有给定的 MBGP MVPN 站点都必须连接到同一服务提供商,这意味着 MBGP MVPN 可以跨越多个服务提供商。

Junos OS 版本 11.1R2、11.2R2 和 11.4 支持 Junos Trio 芯片组上的 MVPN 外部网功能或重叠 MVPN 功能奇偶校验。

另一种看待 MBGP MVPN 的方法是说 MBGP MVPN 是由一组管理策略定义的。这些策略可确定发送方站点集和接收方站点集。这些策略由 MBGP MVPN 客户建立,但由服务提供商使用现有 BGP 和 MPLS VPN 基础架构实施。

示例:配置 MBGP 组播 VPN

此示例提供跨多协议 BGP (MBGP) 第 3 层虚拟专用网络配置组播服务的逐步过程。(又称为下一代第 3 层组播 VPN)

要求

此示例使用以下硬件和软件组件:

  • Junos OS 版本 9.2 或更高版本

  • 五个 M 系列、T 系列、TX 系列或 MX 系列瞻博网络路由器

  • 一个主机系统,能够发送组播信息流并支持互联网组管理协议 (IGMP)

  • 一个主机系统,能够接收组播信息流和支持 IGMP

根据您所使用设备,可能需要将静态路由配置为:

  • 组播发送方

  • 发送方在组播接收器上连接到的快速以太网接口

  • 组播接收器

  • 接收器在组播发送器上连接到的快速以太网接口

概述和拓扑

此示例说明如何配置以下技术:

  • IPv4

  • BGP

  • OSPF

  • RSVP

  • MPLS

  • PIM 稀疏模式

  • 静态 RP

拓扑

网络拓扑如 图 3 所示。

图 3:第 3 层 VPN 组播示例拓扑 Multicast Over Layer 3 VPN Example Topology

配置

注意:

在任何配置会话中,定期验证是否可以使用 commit check 命令提交配置都是一个很好的做法。

在此示例中,将使用以下命令提示识别正在配置的路由器:

  • CE1 标识客户边缘 1 (CE1) 路由器

  • PE1 标识提供商边缘 1 (PE1) 路由器

  • P 标识提供商核心 (P) 路由器

  • CE2 标识客户边缘 2 (CE2) 路由器

  • PE2 标识提供商边缘 2 (PE2) 路由器

要为 图 3 中显示的网络配置 MBGP 组播 VPN,请执行以下步骤:

配置接口

逐步过程

以下示例要求您在配置层次结构中导航各个级别。有关导航 CLI 的信息,请参阅 CLI 用户指南中的配置模式下使用 CLI 编辑器

  1. 在每个路由器上,在回传逻辑接口 0 (lo0.0) 上配置 IP 地址。

    show interfaces terse使用 命令验证回传逻辑接口上的 IP 地址是否正确。

  2. 在 PE 和 CE 路由器上,在快速以太网接口上配置 IP 地址和协议家族。 inet 指定协议家族类型。

    使用 命令 show interfaces terse 验证快速以太网接口上的 IP 地址是否正确。

  3. 在 PE 和 P 路由器上,配置 ATM 接口的 VPI 和最大虚拟电路。如果直接连接的 ATM 接口上的默认 PIC 类型不同,请将 PIC 类型配置为相同。配置逻辑接口 VCI、协议家族、本地 IP 地址和目标 IP 地址。

    使用 命令 show configuration interfaces 验证 ATM 接口的 VPI 和最大 VC 是否正确,以及逻辑接口 VCI、协议家族、本地 IP 地址和目标 IP 地址是否正确。

配置 OSPF

逐步过程
  1. 在 P 和 PE 路由器上,配置 OSPF 的提供商实例。 lo0.0 指定面向 ATM 核心的逻辑接口。PE 路由器上的 OSPF 提供商实例与其他 PE 路由器和路由器 P 上的 OSPF 邻接方形成邻接关系。

    使用 命令 show ospf interfaces 验证是否 lo0.0 为 OSPF 配置了面向 ATM 核心的逻辑接口。

  2. 在 CE 路由器上,配置 OSPF 的客户实例。指定回传和快速以太网逻辑接口。CE 路由器上的 OSPF 客户实例与 PE 路由器上 OSPF 的 VPN 路由实例中的邻接方形成邻接关系。

    使用 命令 show ospf interfaces 验证是否已将正确的环路和快速以太网逻辑接口添加到 OSPF 协议中。

  3. 在 P 和 PE 路由器上,为 OSPF 的提供商实例配置 OSPF 流量工程支持。

    shortcuts 语句允许 OSPF 的主实例将标签交换路径用作下一跳跃。

    show ospf overview使用 或 show configuration protocols ospf 命令验证是否启用了信息流工程支持。

配置 BGP

逐步过程
  1. 在路由器 P 上,为 VPN 配置 BGP。本地地址为本地 lo0.0 地址。邻接方地址是 PE 路由器的 lo0.0 地址。

    unicast 语句允许路由器使用 BGP 通告网络层可访问性信息 (NLRI)。该 signaling 语句允许路由器将 BGP 用作 VPN 的信号协议。

    使用 命令 show configuration protocols bgp 验证路由器是否已配置为使用 BGP 通告 NLRI。

  2. 在 PE 和 P 路由器上,配置 BGP 本地自治系统编号。

    show configuration routing-options使用 命令验证 BGP 本地自治系统编号是否正确。

  3. 在 PE 路由器上,为 VPN 配置 BGP。将本地地址配置为本地 lo0.0 地址。邻接方地址是 lo0.0 路由器 P 和其他 PE 路由器 PE2 的地址。

    show bgp group使用 命令验证 BGP 配置是否正确。

  4. 在 PE 路由器上配置策略以将 BGP 路由导出到 OSPF 中。

    show policy bgp-to-ospf使用 命令验证策略是否正确。

配置 RSVP

逐步过程
  1. 在 PE 路由器上,在参与 LSP 的接口上启用 RSVP。配置快速以太网和 ATM 逻辑接口。

  2. 在路由器 P 上,在参与 LSP 的接口上启用 RSVP。配置 ATM 逻辑接口。

    show configuration protocols rsvp使用 命令验证 RSVP 配置是否正确。

配置 MPLS

逐步过程
  1. 在 PE 路由器上,将 MPLS LSP 配置到作为 LSP 出口点的 PE 路由器。指定 LSP 另一 lo0.0 端路由器上的接口的 IP 地址。在 ATM、快速以太网和 lo0.0 接口上配置 MPLS。

    要在排除故障时帮助识别每个 LSP,请在每个 PE 路由器上配置不同的 LSP 名称。在此示例中,我们将名称 to-pe2 用作在 PE1 上配置的 LSP 的名称,并 to-pe1 用作在 PE2 上配置的 LSP 的名称。

    show configuration protocols mpls使用 和 show route label-switched-path to-pe1 命令验证 MPLS 和 LSP 配置是否正确。

    提交配置后,使用 show mpls lsp name to-pe1show mpls lsp name to-pe2 命令验证 LSP 是否正常运行。

  2. 在路由器 P 上启用 MPLS。指定连接到 PE 路由器的 ATM 接口。

    show mpls interface使用 命令验证 ATM 接口上是否启用了 MPLS。

  3. 在 PE 和 P 路由器上,在与 LSP 关联的 ATM 接口上配置协议家族。 mpls 指定协议家族类型。

    show mpls interface使用 命令验证 MPLS 协议系列是否在与 LSP 关联的 ATM 接口上启用。

配置 VRF 路由实例

逐步过程
  1. 在 PE 路由器上,为 VPN 配置路由实例并指定 vrf 实例类型。添加快速以太网和 lo0.1 面向客户的接口。配置 OSPF 的 VPN 实例并包括 BGP 到 OSPF 的导出策略。

    show configuration routing-instances vpn-a使用 命令验证路由实例配置是否正确。

  2. 在 PE 路由器上,为路由实例配置路由区分符。路由识别器允许路由器区分用作 VPN 路由的两个相同的 IP 前缀。在每个 PE 路由器上配置不同的路由区分符。此示例使用 PE1 上的 65010:1 和 PE2 上的 65010:2。

    show configuration routing-instances vpn-a使用 命令验证路由识别符正确。

  3. 在 PE 路由器上,配置默认 VRF 导入和导出策略。基于此配置,BGP 会自动生成对应于 VRF 导入策略中引用的路由目标的本地路由。此示例将 2:1 用作路由目标。

    注意:

    对于给定的 VPN 路由实例,您必须在每个 PE 路由器上配置相同的路由目标。

    show configuration routing-instances vpn-a使用 命令验证路由目标是否正确。

  4. 在 PE 路由器上,配置 VPN 路由实例以获取组播支持。

    show configuration routing-instance vpn-a使用 命令验证 VPN 路由实例是否已配置为组播支持。

  5. 在 PE 路由器上,在客户路由实例 VPN 中使用的环路逻辑接口 1 (lo0.1) 上配置 IP 地址。

    show interfaces terse使用 命令验证环路接口上的 IP 地址是否正确。

配置 PIM

逐步过程
  1. 在 PE 路由器上启用 PIM。配置 lo0.1 面向客户的快速以太网接口。指定模式为 sparse 和版本为 2

    使用 命令 show pim interfaces instance vpn-a 验证接口和面向客户的快速以太网接口是否 lo0.1 启用了 PIM 稀疏模式。

  2. 在 CE 路由器上启用 PIM。在此示例中,我们配置了所有接口。指定模式为 sparse 和版本为 2

    show pim interfaces使用 命令验证所有接口上是否启用了 PIM 稀疏模式。

配置提供商隧道

逐步过程
  1. 在路由器 PE1 上,配置提供商隧道。指定要使用的组播地址。

    provider-tunnel 语句指示路由器通过隧道发送组播信息流。

    show configuration routing-instance vpn-a使用 命令验证提供商隧道是否配置为使用默认 LSP 模板。

  2. 在路由器 PE2 上,配置提供商隧道。指定要使用的组播地址。

    show configuration routing-instance vpn-a使用 命令验证提供商隧道是否配置为使用默认 LSP 模板。

配置汇聚点

逐步过程
  1. 将路由器 PE1 配置为汇聚点。 lo0.1 指定路由器 PE1 的地址。指定要使用的组播地址。

    使用 命令 show pim rps instance vpn-a 验证是否为 RP 配置了正确的本地 IP 地址。

  2. 在路由器 PE2 上,配置静态汇聚点。 lo0.1 指定路由器 PE1 的地址。

    使用 命令 show pim rps instance vpn-a 验证是否为 RP 配置了正确的静态 IP 地址。

  3. 在 CE 路由器上,配置静态汇聚点。 lo0.1 指定路由器 PE1 的地址。

    使用 命令 show pim rps 验证是否为 RP 配置了正确的静态 IP 地址。

  4. commit check使用 命令验证配置是否成功提交。如果配置通过检查,则提交配置。

  5. 启动连接到 CE1 的组播发送器设备。

  6. 启动连接到 CE2 的组播接收器设备。

  7. 验证接收器是否正在接收组播流。

  8. 使用 show 命令验证路由、VPN 和组播操作。

结果

此示例的配置和验证部分已完成。以下部分供您参考。

路由器 CE1 的相关样本配置如下。

路由器 CE1

路由器 PE1 的相关样本配置如下。

路由器 PE1

路由器 P 的相关样本配置如下。

路由器 P

路由器 PE2 的相关样本配置如下。

路由器 PE2

路由器 CE2 的相关样本配置如下。

路由器 CE2

为 MBGP MVPN 配置点对多点 LSP

Junos OS 支持 MBGP MVPN 的点对多点标签交换系列 (LSP)。组播 VPN 的点对多点 LSP 受自治系统 (AS) 内(AS 内)环境支持,但不支持 AS 间环境(自治系统之间)。点对多点 LSP 是具有单个来源和多个目标的 RSVP 信号 LSP。

您可以为 MBGP MVPN 配置点对多点 LSP,如下所示:

  • 静态点对多点 LSP — 使用层次结构级别中指定 [edit protocols mpls] 的标准 MPLS LSP 语句配置静态点对多点 LSP。您可为点对多点 LSP 手动配置每个叶节点。

  • 使用默认模板的动态点对多点 LSP — 使用 default-template 选项配置动态点对多点 LSP 可自动发现叶节点。叶节点通过 BGP AS 内部自动发现发现。该 default-template 选项允许您将所需的配置量降至最低。但是,它不允许您配置任何标准 MPLS 选项。

  • 使用用户配置的模板的动态点对多点 LSP — 使用用户配置的模板配置动态点对多点 LSP 也会自动发现叶节点。通过为点对多点 LSP 创建自己的模板,即可配置所有标准 MPLS 功能(如带宽分配和流量工程)。

请注意为组播 VPN 配置的点对多点 LSP 中的出口 PE 路由器的以下属性:

  • 倒数第二跳弹出不会被点对多点 LSP 用于组播 VPN。仅使用终极跳跃弹出。

  • 您必须在出口 PE 路由器上配置 vrf-table-label 语句或虚拟回传隧道接口。

  • 如果在出口 PE 路由器上配置 vrf-table-label 语句,而出口 PE 路由器也是点对多点 LSP 的中转路由器,则倒数第二跳跃路由器会通过与出口 PE 路由器的链路发送每个数据包的两个副本。

  • 如果在出口 PE 路由器上配置 vrf-table-label 语句,而出口 PE 路由器不是点对多点 LSP 的中转路由器,则倒数第二跳跃路由器只需通过与出口 PE 路由器的链路发送每个数据包的一个副本。

  • 如果在出口 PE 路由器上配置虚拟回传隧道接口,而出口 PE 路由器也是点对多点 LSP 的中转路由器,则倒数第二跳路由器仅通过链接发送至出口 PE 路由器的每个数据包一个副本。虚拟回传隧道接口可以在传入数据包上执行两次查找,一个用于组播 MPLS 查找,一个用于 IP 查找。

注意:

Junos OS 版本 11.2 及更高版本不支持在 MX80 路由器上使用下一代组播 VPN 的点对多点 LSP。

以下部分介绍如何为 MBGP MVPN 配置点对多点 LSP:

为 MBGP MVPN 配置 RSVP 信号包容性点对多点 LSP

您可以为 MBGP MVPN 配置 LDP 信号或 RSVP 信号的包容性点对多点 LSP。不支持聚合,因此您需要为每个组播 VPN 路由实例中的每个发送方 PE 路由器配置一个包容性的点对多点 LSP。发送方 PE 路由器在 MBGP MVPN 的发送方站点集中。

要配置静态 RSVP 信号包容性点对多点 LSP,请包括以下 static-lsp 语句:

您可以在以下层次结构级别中包含此语句:

  • [edit routing-instances routing-instance-name provider-tunnel rsvp-te]

  • [edit logical-systems logical-system-name routing-instances routing-instance-name provider-tunnel rsvp-te]

要配置动态包容性点到多点 LSP,请包括以下 label-switched-path-template 语句:

您可以在以下层次结构级别中包含此语句:

  • [edit routing-instances routing-instance-name provider-tunnel rsvp-te]

  • [edit logical-systems logical-system-name routing-instances routing-instance-name provider-tunnel rsvp-te]

您可以配置 default-template 选项或手动配置点对多点 LSP 模板并指定模板名称。

为 MBGP MVPN 配置选择性提供商隧道

您可以为 MBGP MVPN 配置 LDP 信号或 RSVP 信号选择性点对多点 LSP(也称为选择性提供商隧道)。选择性点对多点 LSP 仅将流量发送至为组播 VPN 配置的接收器,从而帮助最大程度地减少服务提供商网络中的泛洪。

与包容性点到多点 LSP 一样,您可以为组播 VPN 配置动态和静态选择性隧道。

要配置选择性点对多点提供商隧道,请包括以下 selective 语句:

您可以在以下层次结构级别中包含以下语句:

  • [edit routing-instances routing-instance-name provider-tunnel]

  • [edit logical-systems logical-system-name routing-instances routing-instance-name provider-tunnel]

以下部分介绍如何为 MBGP MVPN 配置选择性点对多点 LSP:

为 MBGP MVPN 配置组播组地址

要为 MBGP MVPN 配置点对多点 LSP,需要指定组播组地址,方法是包括 group 语句:

您可以在以下层次结构级别中包含以下语句:

  • [edit routing-instances routing-instance-name provider-tunnel selective]

  • [edit logical-systems logical-system-name routing-instances routing-instance-name provider-tunnel selective]

该地址必须是有效的组播组地址。组播使用 D 类 IP 地址范围(224.0.0.0239.255.255.255)。

为 MBGP MVPN 配置组播源地址

要为 MBGP MVPN 配置点对多点 LSP,请指定组播源地址,方法是包括 source 语句:

您可以在以下层次结构级别中包含此语句:

  • [edit routing-instances routing-instance-name provider-tunnel selective group address]

  • [edit logical-systems logical-system-name routing-instances routing-instance-name provider-tunnel selective group address]

为 MBGP MVPN 配置静态选择性点对多点 LSP

您可以为 MBGP MVPN 配置静态选择性点对多点 LSP。您需要使用层次结构级别的标准 MPLS LSP 语句 [edit protocols mpls] 来配置静态 LSP。然后,通过使用 static-lsp 语句,在选择性点对多点 LSP 配置中包含静态 LSP。在源 PE 路由器上启用此功能后,将根据您的配置创建静态点对多点 LSP。

要配置静态选择性点对多点 LSP,请包括 rsvp-te 和语 static-lsp 句:

您可以在以下层次结构级别中包含以下语句:

  • [edit routing-instances routing-instance-name provider-tunnel selective group address source source-address]

  • [edit logical-systems logical-system-name routing-instances routing-instance-name provider-tunnel selective group address source source-address]

为 MBGP MVPN 配置动态选择性点对多点 LSP

您可以为 MBGP MVPN 配置动态选择性点对多点 LSP。可以使用叶自动发现路由自动发现动态点对多点 LSP 的叶节点。还支持选择性提供商组播服务接口 (S-PMSI) 自动发现路由。

要配置动态选择性点对多点提供商隧道,请包括 rsvp-te 以下和 label-switched-path-template 语句:

您可以在以下层次结构级别中包含以下语句:

  • [edit routing-instances routing-instance-name provider-tunnel selective group address source source-address]

  • [edit logical-systems logical-system-name routing-instances routing-instance-name provider-tunnel selective group address source source-address]

label-switched-path-template 语句包含以下选项:

  • default-template—指定根据默认模板动态生成点对多点 LSP。LSP 无需用户配置。但是,自动生成的 LSP 不包含带宽分配和流量工程等常见 LSP 功能。

  • lsp-template-name—指定要用于点对多点 LSP 的 LSP 模板的名称。您需要将 LSP 模板配置为点对多点 LSP 的基础。您可以为此模板配置任何通用 LSP 功能。

为 MBGP MVPN 配置动态选择性点对多点 LSP 的阈值

要动态配置选择性点对多点 LSP,您需要使用 threshold-rate 语句创建新隧道之前指定所需的数据阈值(以千位/秒为单位):

您可以在以下层次结构级别中包含此语句:

  • [edit routing-instances routing-instance-name provider-tunnel selective group address source source-address]

  • [edit logical-systems logical-system-name routing-instances routing-instance-name provider-tunnel selective group address source source-address]

为 MBGP MVPN 配置动态选择性点对多点 LSP 的隧道限制

要配置可为动态点到多点 LSP 生成的隧道数量限制,请包括以下 tunnel-limit 语句:

您可以在以下层次结构级别中包含此语句:

  • [edit routing-instances routing-instance-name provider-tunnel selective]

  • [edit logical-systems logical-system-name routing-instances routing-instance-name provider-tunnel selective]

分段区域间点到多点标签交换系列概述

Junos OS 支持 BGP MVPN 的点对多点 (P2MP) 标签交换系列 (LSP)。BGP MVPN 支持非分段自治系统 (AS) 和分段自治系统 (AS)。

为了连接位于不同区域但处于相同 AS 且需要 P2MP 连接的 PE 路由器,Junos OS 允许您按 Internet draft draft-ietf-mpls-无缝-mcast-14.txt 中所述的方式将 P2MP LSP 分段到区域边界。您可以将非分段 LSP 用于低速组播流,使用分段 LSP 来实现高速速流。AS 内的分段 P2MP LSP 由以下分段构成:

  • 入口区域分段 — 入口区域分段植根于 PE 路由器或自治系统边界路由器 (ASBR)。此分段的叶子为 PES、ASBR 或区域边界路由器 (ABR)。

  • 中枢区域段 — 主干区域分段植根于连接到入口区域/入口 ABR 的 ABR。

  • 出口区域分段 — 出口区域分段植根于出口区域或出口 ABR 中的 ABR。

注意:

这些区域可以是 IGP 区域或基于 BGP 对等组的区域,其中 ABR 可以是区域边界路由器 (RBR)。在任一情况下,应在 BGP 路由反射器 (RR) 上配置中转 ABR/RB。

每个区域内分段均可通过提供商隧道进行承载,例如 P2MP RSVP-TE LSP、P2MP mLDP LSP 或入口复制。

通告 S-PMSI 自动发现 (AD) 路由时,将进行区域间 P2MP LSP 分段。这触发了包含新的 BGP 扩展社区或区域间 P2MP 分段下一跃点扩展社区。分段区域间 P2MP LSP 可分为以下三个不同的角色:

  • 入口 PE 或 ASBR — 入口 PE 路由器源自 S-PMSI A-D 路由。如果需要区域间分段,则 PE 路由器将生成承载区域间 P2MP 分段下一跃点路由器 (S-NH) 社区的 S-PMSI A-D 路由。可以为任何选择性隧道添加区域间分段。分段可以基于阈值或扇出属性进行。如果为选择性隧道配置了阈值,那么 MVPN 将开始将流量迁移到分段 S-PMSI,以达到阈值。阈值属性适用于 RSVP、LDP 和 IR 隧道。您可以根据风扇出属性(即叶数)触发分段。一旦叶 A-D 路由数超过风扇出值,信息流就会移动到分段 S-PMSI。LDP 隧道的风扇出属性不适用于入口 PE 路由器。 如果具有入口复制的 S-PMSI 仅配置了阈值,则该阈值用于触发到分段 LSP 的迁移。如果还设置了风扇出,则当叶 A-D 路由数量成倍增加的信息流速率超过阈值时,将触发迁移。根据现有数据阈值检查间隔(默认情况下为每 60 秒)检查分段阈值和风扇出值。这样可以防止流量频繁迁移。

  • 传输 ABR — 当传输 ABR(入口 ABR 或出口 ABR)接收具有区域间分段配置的 S-PMSI A-D 路由时,ABR 会检查 S-PMSI 是否承载着 S-NH 扩展社区属性。如果传入的 S-PMSI 中存在 S-NH 属性,则 ABR 检查要由 S-PMSI 承载的隧道类型。然后,ABR 会在主干区域或出口区域生成隧道类型。

    注意:

    ABR 可以设置一个模板,以定义每个区域或 BGP 组中的提供商隧道类型。每个区域的通道类型可以是传入、入口复制、LDP-P2MP 或 RSVP-TE。

    如果通道类型传入,则表示整个 ABR 的隧道类型保持不变。如果整个 ABR 上的隧道类型不同,则传输 ABR 会将 S-PMSI 隧道属性和 S-NH 属性修改为其路由器 ID,并将路由重新播发至其 BGP 对等方。如果 ABR 上未配置模板,则 ABR 只需反射传入的 S-PMSI 路由,而不会将任何属性更改为其 BGP 对等方。

  • 出口 PE 或 ASBR — 出口 PE 路由器或 ASBR 从接收的 S-PMSI A-D 路由中承载的分段下一跃点扩展社区学习上游节点,并响应路由目标扩展社区 (EC) 中承载上游节点 IP 地址的叶 A-D 路由。

您可以配置 BGP 策略以接受或拒绝承载区域间 P2MP 分段下一跳跃公共组的 S-PMSI A-D 路由。

配置分段区域间 P2MP LSP

为了连接位于不同区域但处于相同 AS 且需要 P2MP 连接的 PE 路由器,Junos OS 允许您按照 Internet draft draft-ietf-mpls-无缝-mcast-14.txt 中所述的方式,在区域边界对 P2MP LSP 进行分段。

要在入口区域段、中枢区域段和出口区域段配置分段区域间 P2MP LSP,必须执行以下操作:

  1. 为选择性隧道的组、通配符组、通配符组 inet 或通配符组 inet6 配置区域间分段。
    • 为属于组的组播源或通配符源配置区域间分段风扇出和阈值。

      • 指定组播源的风扇出值和阈值。

      • 指定通配符源的扇出值和阈值。

    • 配置属于组的通配符组的区域间分段风扇出值。

    • 为属于组的通配符组 inet6 配置区域间分段风扇出值。

  2. 配置传输 ABR 上的区域间模板,指定要用于特定区域或所有区域的隧道类型。
    • 配置区域间模板以指定特定区域的通道类型,例如入口复制、ldp-p2mp 和 rsvp-te。

      • 为特定区域的通道类型入口复制指定创建-new-ucast-tunnel 或标签交换系列。

      • 为特定区域指定通道类型 ldp-p2mp。

      • 为属于特定区域的隧道类型 rsvp-te 指定标签交换系列模板的静态 lsp 或模板。

    • 配置区域间模板以指定所有区域的通道类型,例如入口复制、ldp-p2mp 和 rsvp-te。

      • 为所有区域的隧道类型入口复制指定创建-new-ucast-tunnel 或标签交换系列。

      • 指定所有区域的通道类型 ldp-p2mp。

      • 为属于所有区域的隧道类型 rsvp-te 的标签交换路径模板指定静态 lsp 或模板。

  3. 指定要用于传输 ABR 区域间分段的模板(表示隧道类型)。
  4. 如果您不希望 ABR 参与区域间分段,请指定无区域间分段。

示例:配置分段区域间 P2MP LSP

此示例说明如何按互联网 草案 draft-ietf-mpls-无缝-mcast-14.txt 中所述的区域边界对 P2MP LSP 进行分段。您可以在分段下一跃点扩展社区 (S-NH EC) 上配置策略,以便具有 S-NH EC 的 S-PMSI A-D 路由由 ABR 反射,而所有其他路由则由其他路由反射器反射。

要求

此示例使用以下硬件和软件组件:

  • 14 个 MX 系列 5G 通用路由平台

  • 所有路由器上运行的 Junos OS 版本 15.1 或更高版本

开始之前:

  1. 配置设备接口。

  2. 配置 OSPF。

概述

从 Junos OS 15.1 版开始,P2MP LSP 可在区域边界进行分段。分段 P2MP LSP 由入口区域段(入口 PE 路由器或 ASBR)、中枢区域段(传输 ABR)和出口区域段(出口 PE 路由器或 ASBR)组成。每个区域内分段均可通过提供商隧道进行承载,例如 P2MP RSVP-TE LSP、P2MP mLDP LSP 或入口复制。当播发 S-PMSI 自动发现 (AD) 路由时,将发生区域间 P2MP LSP 分段,这触发了在入口 PE 路由器或 ASBR、中转 ABR 和出口 PE 路由器或 ASBR 中包含新的 BGP 扩展社区或区域间 P2MP 分段下一跳跃扩展社区。

要在入口 PE 路由器上配置区域间分段,请在[edit routing-instances instance-name provider-tunnel]层次结构级别配置inter-region-segmented语句。要在中转 ABR 上配置区域间模板,请在[edit protocols mvpn]层级配置inter-region-template template-name语句。要在传输 ABR 上配置区域间分段,请在[edit routing-instance instance-name provider-tunnel]层级配置inter-region语句。

拓扑

图 4 中显示的拓扑中,分段隧道组合如下:

  • 入口区域通道 — 将 IR 作为通道的 PE1 到 ABR1。

  • 骨干区域通道 — 以 RSVP-TE 为隧道的 ABR1、ABR2 和 ABR3。

  • 出口区域通道 — ABR2 到 PE2 和 PE4、ABR3 到 PE3(以 RSVP-TE 为通道)。

图 4:区间 P2MP LSP Example Segmented Inter-Area P2MP LSP 分段示例

配置

CLI 快速配置

要快速配置此示例,请复制以下命令,将其粘贴到文本文件中,移除任何换行符,更改与网络配置匹配所需的任何详细信息,将命令复制并粘贴到层级的 CLI 中 [edit] ,然后从配置模式进入 commit

PE1

CE1

P1

ABR1

ABR2

P2

ABR3

PE3

CE4

CE5

PE2

CE2

PE4

CE3

配置 PE1

逐步过程

以下示例要求您在配置层次结构中导航各个级别。有关导航 CLI 的信息,请参阅 CLI 用户指南中的配置模式下使用 CLI 编辑器

要配置设备 PE1:

  1. 配置接口。

  2. 配置自治系统编号。

  3. 禁用管理接口上的 RSVP 并在接口上启用 RSVP。

  4. 启用 IPv6 隧道。

  5. 禁用管理接口上的 MPLS 并在接口上启用 MPLS。

  6. 配置 BGP 协议。

  7. 配置 OSPF 信息流工程属性并在接口上启用 OSPF。

  8. 在所有接口上启用 LDP,并将 P2MP 功能通告至对等方。

  9. 在接口上配置 PIM。

  10. 配置路由策略。

  11. 配置路由实例类型、接口和路由实例的路由区分器。

  12. 为路由实例配置提供商通道属性。

  13. 配置 VRF 目标公共组并为 VRF 中的所有路由通告单个 VPN 标签。

  14. 为路由实例启用 OSPF。

  15. 为路由实例启用 OSPF3。

  16. 为路由实例启用 PIM 属性。

结果

在配置模式下,输入 show interfacesshow policy-optionsshow protocolsshow routing-instancesshow routing-options 命令,以确认您的配置。如果输出未显示预期的配置,请重复此示例中的说明以更正配置。

配置 ABR1

逐步过程

以下示例要求您在配置层次结构中导航各个级别。有关导航 CLI 的信息,请参阅 CLI 用户指南中的配置模式下使用 CLI 编辑器

要配置设备 ABR1:

  1. 配置接口。

  2. 配置自治系统编号。

  3. 禁用管理接口上的 RSVP 并在接口上启用 RSVP。

  4. 配置 MPLS IPv6 隧道。

  5. 在接口上配置 MPLS。

  6. 配置 BGP 协议。

  7. 配置 OSPF 信息流工程属性并在接口上启用 OSPF。

  8. 在所有接口上启用 LDP,并将 P2MP 功能通告至对等方。

  9. 在接口上配置 PIM。

  10. 配置特定区域或所有区域的区域间模板隧道。

  11. 配置路由实例类型、路由区分符、提供商隧道的区域间模板和 VRF 目标社区,并为路由实例播发 VRF 中所有路由的单个 VPN 标签。

结果

在配置模式下,输入 show interfacesshow protocolsshow routing-instancesshow routing-options 命令以确认您的配置。如果输出未显示预期的配置,请重复此示例中的说明以更正配置。

配置 ABR2

逐步过程

以下示例要求您在配置层次结构中导航各个级别。有关导航 CLI 的信息,请参阅 CLI 用户指南中的配置模式下使用 CLI 编辑器

要配置设备 ABR2:

  1. 配置接口。

  2. 配置自治系统编号。

  3. 禁用管理接口上的 RSVP 并在接口上启用 RSVP。

  4. 启用 MPLS IPv6 隧道。

  5. 禁用管理接口上的 MPLS 并在接口上启用 RSVP。

  6. 配置 BGP 协议。

  7. 配置 OSPF 信息流工程属性,并在管理接口上禁用 OSPF 并在接口上启用 OSPF。

  8. 在所有接口上启用 LDP,并将 P2MP 功能通告至对等方。

  9. 在接口上配置 PIM。

  10. 配置特定区域或所有区域的区域间模板隧道。

  11. 配置路由实例类型、路由区分符、提供商隧道的区域间模板和 VRF 目标社区,并为路由实例播发 VRF 中所有路由的单个 VPN 标签。

结果

配置 ABR3

逐步过程

以下示例要求您在配置层次结构中导航各个级别。有关导航 CLI 的信息,请参阅 CLI 用户指南中的配置模式下使用 CLI 编辑器

要配置设备 ABR3:

  1. 配置接口。

  2. 配置自治系统编号。

  3. 在所有接口(不包括管理接口)上配置 RSVP。

  4. 配置 MPLS IPv6 隧道,配置标签交换系列,并在所有接口(不包括管理接口)上启用 MPLS。

  5. 配置 BGP 协议。

  6. 配置 OSPF 信息流工程属性、禁用管理接口上的 OSPF 并在接口上启用 OSPF。

  7. 在所有接口上启用 LDP,并将 P2MP 功能通告至对等方。

  8. 在接口上配置 PIM。

  9. 配置特定区域或所有区域的区域间模板隧道。

  10. 配置路由实例类型、路由区分符、提供商隧道的区域间模板和 VRF 目标社区,并为路由实例播发 VRF 中所有路由的单个 VPN 标签。

结果

在配置模式下,输入 show interfacesshow policy-optionsshow protocolsshow routing-instancesshow routing-options 命令,以确认您的配置。如果输出未显示预期的配置,请重复此示例中的说明以更正配置。

验证

确认配置工作正常。

验证入口 PE 路由器的流入
目的

验证给定路由实例中流入入口 PE 路由器的信息流。

行动

在操作模式下 show multicast route extensive instance vpn1 ,运行设备 PE1 命令。

意义

输出显示流入入口设备 PE1 的信息流。

验证从设备 ABR1 到 PE1 路由器生成的分段类型 3 流量的路由表
目的

验证从设备 ABR1 生成的分段类型 3 信息流的路由表。

行动

在操作模式下 show route table vpn1.mvpn.0 match-prefix 3:* detail ,运行 命令。

意义

输出表示从 ABR1 生成的分段类型 3 信息流的路由表。

验证从设备 ABR1 到 PE1 路由器接收的分段 4 类信息流的路由表
目的

验证从设备 ABR1 接收的分段 4 类信息流的路由表。

行动

在操作模式下 show route table vpn1.mvpn.0 match-prefix 4:* detail ,运行 命令。

意义

输出显示从设备 ABR1 接收的分段类型 4 信息流的路由表。

验证 LDP 流量统计信息
目的

验证设备 PE1 的 LDP 流量统计信息。

行动

在操作模式下 show ldp traffic-statistics ,运行 命令。

意义

输出显示 LDP 流量统计信息。

验证

确认配置工作正常。

验证从 ABR1 上的 PE1 路由器接收的带隧道类型为 IR 的分段 3 类信息流
目的

显示从 ABR1 上的 PE1 路由器接收的分段类型 3 信息流,其中隧道类型为 IR。

行动

在操作模式下 show route table vpn1.mvpn.0 match-prefix 3:* detail ,运行 命令。

意义

输出显示从 PE1 接收的分段类型 3 流量,通道类型为 IR。

验证

确认配置工作正常。

验证从 ABR2 接收的分段类型 3
目的

显示从 ABR2 接收的分段类型 3,其中隧道类型为 RSVP-TE。

行动

在操作模式下,输入 show route table vpn1.mvpn match-prefix 3:* detail 命令。

意义

输出显示从 ABR2 接收的分段类型 3 流量,其中通道类型为 RSVP-TE。

验证从出口 PE2 和 PE4 接收的类型 4 以及针对入口 ABR2 的本地触发的 4 类
目的

显示从出口 PE2 和 PE4 接收的类型 4 以及针对入口 ABR2 的本地触发的 4 类。

行动

在操作模式下,输入 show route table vpn1.mvpn match-prefix 4:* detail 命令。

意义

输出显示 ABR2 上配置的隧道类型为 RSVP-TE。从 ABR1 的 RSVP 隧道以 ABR2 作为出口 LSP 结束,而新的 LSP 触发至出口 PE2 和 PE4。

验证 MPLS LSP 的统计信息
目的

显示 MPLS LSP 的统计信息。

行动

在操作模式下 show mpls lsp statistics ,运行设备 ABR2 的命令。

验证

确认配置工作正常。

验证从 ABR3 上的 ABR1 接收的分段类型 3

目的

显示从 ABR3 上的 ABR1 接收的分段类型 3,其中通道类型为 RSVP-TE。

行动

在操作模式下 show route table vpn1.mvpn match-prefix 3:* detail ,运行设备 ABR3 的命令。

意义

输出显示从 ABR1 接收的分段类型 3 流量,其中通道类型为 RSVP-TE。

发布历史记录表
释放
描述
11.1R2
Junos OS 版本 11.1R2、11.2R2 和 11.4 支持 Junos Trio 芯片组上的 MVPN 外部网功能或重叠 MVPN 功能奇偶校验。