MPLS-Enabled Applications: Emerging Developments and New Technologies, 3rd Edition

Part of the Distinguished Network Engineering Suite from Wiley & Juniper

Authors: Ina Minei and Julian Lucek, with a foreword by Yakov Rekhter
Paperback: 628 pages
Publisher: John Wiley & Sons, Ltd, UK
ISBN: 978-0-47-066545-9
Price: $65 US / €51 Euro / £42.50 UK

View Excerpts; Buy the eBook from the PublisherPurchase the book from Amazon USPurchase the book from Amazon UK

The authoritative guide to MPLS, now in its Third edition, fully updated with brand new material!

Advanced Praise(s)

“Here at last is a single, all encompassing resource where the myriad applications sharpen into a comprehensible text that first explains the whys and whats of each application before going on to the technical detail of the hows.”

Kireeti Kompella, CTO Junos, Juniper Networks

“Essential new material for those trying to understand the next steps in MPLS.”

Adrian Farrel, IETF Routing Area Director

“MPLS-Enabled Applications takes a unique and creative approach in explaining MPLS concepts and how they are applied in practice to meet the needs of Enterprise and Service Provider networks. I consistently recommend this book to colleagues in the engineering, education and business community.”

Dave Cooper, Chief IP Technologist, Global Crossing Ltd.

About this Book

MPLS is now considered the networking technology for carrying all types of network traffic, including voice telephony, real-time video, and data traffic. In MPLS-Enabled Applications, Third Edition, the authors methodically show how MPLS holds the key to network convergence by allowing operators to offer more services over a single physical infrastructure. The Third Edition contains more than 170 illustrations, new chapters, and more coverage, guiding the reader from the basics of the technology, though all its major VPN applications.

MPLS-Enabled Applications contains up-to-date coverage of:

  • The current status and future potential of all major MPLS applications, including L2VPN, L3VPN, pseudowires and VPLS.
  • A new chapter with up to date coverage of the MPLS transport profile, MPLS-TP.
  • MPLS in access networks and Seamless MPLS, the new architecture for extending MPLS into the access, discussed in depth for both the unicast and the multicast case.
  • Extensive coverage of multicast support in L3VPNs (mVPNs), explaining and comparing both the PIM/GRE and the next generation BGP/MPLS solutions, and including a new chapter on advanced topics in next generation multicast VPNs.
  • A new chapter on advanced protection techniques, including detailed discussion of 50 ms end-to-end service restoration.
  • Comprehensive coverage of the base technology, as well as the latest IETF drafts, including topics such as pseudowire redundancy, VPLS multihoming, IRB and P2MP pseudowires.

MPLS-Enabled Applications will provide those involved in the design and deployment of MPLS systems, as well as those researching the area of MPLS networks, with a thoroughly modern view of how MPLS is transforming the networking world.

About the Author(s)

Ina Minei joined Juniper Networks in 2000 and is currently Director of IP and MPLS technologies. During this time she worked on the implementation of LDP and RSVP-TE, helped define new protocol extensions, and worked with numerous customers on network design. Her focus has been on next-generation network technologies, in particular MPLS protocols and applications. She previously worked at Cisco for two years in various software development projects for routers and switches. Ms Minei is an active participant in industry forums and conferences and holds several patents in the area of IP and MPLS. She earned a Master’s degree in computer science from the Technion, Israel.

Julian Lucek joined Juniper Networks in 1999 and is currently a Distinguished Systems Engineer in the Europe, Middle East and Africa region, where he has been working with many service providers on the design and evolution of their networks. He previously worked at BT for several years, at first in the Photonics Research Department and later in the data transport and routing area. During this time, he gained a PhD in ultrahigh speed data transmission and processing from Cambridge University. He is the holder of several patents in the area of communications technology. He has a Master’s degree in Physics from Cambridge University and holds Juniper Networks Certified Internet Expert (JNCIE) #21.