The generator matrix
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 0 X X 0 0 0 1 2 X X 1 1 2 0 X X 1
0 X 0 0 0 0 0 0 0 0 2 X X X+2 0 X+2 X+2 0 X 2 X+2 2 X X X+2 X 2 X+2 0 X+2 2 2 X X+2 0 0 2 X+2 0 2 0 X+2 X 0 X X X X X+2 0 2 X+2 X X X 2 2 2 2
0 0 X 0 0 0 0 0 0 0 X+2 2 X X X X 0 X 0 X X+2 2 0 X+2 X 2 X+2 2 2 0 X+2 0 X+2 0 X+2 2 X+2 X X+2 X+2 X+2 X+2 2 X X 0 X+2 2 X+2 X X X 2 2 0 X 2 X+2 X
0 0 0 X 0 0 0 X X+2 X X X+2 0 X 2 0 X+2 X+2 X+2 2 X+2 X 0 2 X+2 2 X+2 0 2 X 2 X X 2 2 2 2 0 2 X X X+2 X+2 2 X+2 0 0 X X+2 2 0 X X 2 0 X+2 0 X X
0 0 0 0 X 0 X X X 2 X X X 2 2 X+2 X+2 2 2 X+2 X+2 X X+2 2 X X X+2 2 X 0 0 X+2 0 0 X+2 X+2 X 0 2 X+2 0 X+2 X+2 X X 2 X 2 2 2 0 2 X X 2 0 2 X 0
0 0 0 0 0 X X 2 X+2 X+2 X X X+2 0 X 2 2 2 X+2 X 0 2 2 0 X+2 X 0 2 X+2 2 2 X X X 0 X X X+2 0 X 0 X 0 2 0 0 0 X X X+2 2 0 X+2 0 0 X X X+2 X
0 0 0 0 0 0 2 2 2 2 2 2 2 0 2 0 0 0 2 2 0 0 0 0 0 0 2 2 0 2 2 0 0 0 0 2 0 0 2 2 2 0 0 2 2 0 2 2 2 0 0 2 2 2 2 0 0 2 0
generates a code of length 59 over Z4[X]/(X^2+2,2X) who´s minimum homogenous weight is 48.
Homogenous weight enumerator: w(x)=1x^0+91x^48+152x^49+212x^50+244x^51+393x^52+530x^53+665x^54+846x^55+1098x^56+1420x^57+1674x^58+1796x^59+1630x^60+1468x^61+1090x^62+824x^63+650x^64+520x^65+358x^66+232x^67+201x^68+130x^69+85x^70+26x^71+32x^72+4x^73+11x^74+1x^90
The gray image is a code over GF(2) with n=236, k=14 and d=96.
This code was found by Heurico 1.16 in 17.4 seconds.