QFX10000トランシーバとケーブルの仕様
QFX10000光トランシーバとケーブルのサポート
QFX10000シリーズカードは、アップリンク、ダウンリンク、またはアクセスポートとして、光トランシーバー、ダイレクトアタッチ銅線(DAC)ケーブル、およびDACブレイクアウト(DACBO)ケーブルをサポートします。QFX10000 コントロールボードは、SFP(Small Form-factor Pluggable)トランシーバを使用した SFP 管理(MGMT)ポートの接続もサポートしています。
ハードウェア互換性ツールを使用して、お使いのジュニパーデバイスでサポートされている光トランシーバに関する情報を見つけることができます。トランシーバと接続タイプに加えて、光特性とケーブル特性(該当する場合)もトランシーバごとに文書化されています。ハードウェア互換性ツールを使用すると、製品で検索し、そのデバイスまたはカテゴリでサポートされているすべてのトランシーバをインターフェイス速度またはタイプで表示できます。QFX10008 ラインカードでサポートされているトランシーバのリストは https://pathfinder.juniper.net/hct/product/#prd=QFX10008 にあり、QFX10016 ラインカードは https://pathfinder.juniper.net/hct/product/#prd=QFX10016 にあります。
ジュニパーネットワークス技術支援センター(JTAC)は、ジュニパーが提供する光モジュールとケーブルを完全にサポートします。ただし、JTACでは、ジュニパーネットワークスが認定または供給していないサードパーティ製の光モジュールおよびケーブルについてはサポートを提供しません。サードパーティー製の光モジュールまたはケーブルを使用しているジュニパー製デバイスの動作で問題が発生した場合、JTACがホスト関連の問題の診断をお手伝いする場合があります。JTACでは、その問題がサードパーティー製の光モジュールまたはケーブルの使用に関連していないとJTACが判断します。JTACエンジニアは、サードパーティー製の光モジュールまたはケーブルを確認し、必要に応じて同等のジュニパー認定コンポーネントと交換するよう要求するでしょう。
消費電力の高いサードパーティ製の光モジュール(コヒーレントZRやZR+など)を使用すると、ホスト機器に熱損傷を与えたり、寿命を縮めたりする可能性があります。サードパーティの光モジュールまたはケーブルの使用によるホスト機器の損傷は、ユーザーの責任です。ジュニパーネットワークスは、そのような使用により生じたいかなる損害についても責任を負いません。
QSFP+、QSFP28、QSFP-DD トランシーバーのケーブル仕様
QFXシリーズ スイッチで使用される 40 ギガビット イーサネット QSFP+、100 ギガビット イーサネット QSFP28、および 400G(QDD-400G-DR4 および QDD-400G-SR4P2)トランシーバは、ソケット MPO-12(UPC/APC)コネクタ付きの 12 リボン マルチモード ファイバー クロスオーバー ケーブルを使用します。ファイバーは OM3 または OM4 のいずれかです。これらのケーブルはジュニパーネットワークスでは販売しておりません。
機関の承認を維持するため、適切に構成されたシールドケーブルのみを使用してください。
正しい極性のケーブルを注文してください。ベンダーは、これらのクロスオーバーケーブルを、 キーアップからキーアップ、 ラッチアップからラッチアップ、 タイプB、または 方式Bと呼んでいます。2 つの QSFP+ または QSFP28 トランシーバ間でパッチパネルを使用する場合は、ケーブル設備全体で適切な極性が維持されていることを確認してください。
表 1 に、各ファイバー上の信号を示します。 表2 は、適切な極性のためのピン間接続を示しています。
繊維 |
信号 |
---|---|
1 |
Tx0(送信) |
2 |
Tx1(送信) |
3 |
Tx2(送信) |
4 |
Tx3(送信) |
5 |
未使用 |
6 |
未使用 |
7 |
未使用 |
8 |
未使用 |
9 |
Rx3(受信) |
10 |
Rx2(受信) |
11 |
Rx1(受信) |
12 |
Rx0(受信) |
ピン |
ピン |
---|---|
1 |
12 |
2 |
11 |
3 |
10 |
4 |
9 |
5 |
8 |
6 |
7 |
7 |
6 |
8 |
5 |
9 |
4 |
10 |
3 |
11 |
2 |
12 |
1 |
QFXシリーズ光ファイバー ケーブルの信号損失、減衰、分散について
光ファイバー接続に必要な電力バジェットと電力マージンを決定するには、信号損失、減衰、分散が伝送にどのように影響するかを理解する必要があります。QFXシリーズでは、マルチモードおよびシングルモード光ファイバーケーブルなど、さまざまなタイプのネットワークケーブルを使用します。
マルチモードおよびシングルモード光ファイバー ケーブルの信号損失
マルチモード光ファイバーは、直径が十分に大きいため、光線が内部で反射します(ファイバーの壁に当たって跳ね返る)。一般的に、マルチモード光ファイバーのインターフェイスには、光源として LED が使用されています。ただし、LEDはコヒーレントな光源ではありません。さまざまな波長の光をマルチモード光ファイバーに送り込むため、光はさまざまな角度で反射します。光はマルチモード光ファイバー内をジグザグに進み、それが信号分散の原因となります。ファイバーコア内を進む光がファイバークラッド(高屈折率のコア材料と密着する低屈折率材料の層)に放射されると、高次モード損失が発生します。これらの要因が相まって、マルチモード光ファイバーの伝送距離はシングルモード光ファイバーの伝送距離よりも短くなります。
シングルモード光ファイバーは直径が小さく、光線は 1 つのレイヤーを通してのみ内部反射します。シングルモード光ファイバーのインターフェイスには、光源としてレーザーが使用されています。レーザーが生成する光の波長は単一であり、光はシングルモード光ファイバー内を直線状に進みます。シングルモード光ファイバーは、マルチモード光ファイバーよりも帯域幅が広く、信号の伝搬距離が長くなります。その結果、より高価になります。
QFXシリーズに接続されたシングルモードおよびマルチモード光ファイバーケーブルのタイプの最大伝送距離とサポートされている波長範囲については、 ハードウェア互換性ツールを参照してください。最大伝送距離を超えると、著しい信号損失が発生する場合があり、伝送の信頼性が低下します。
光ファイバー ケーブル内の減衰と分散
受信機に到達する変調光に、正しく復調するのに十分な強度があれば、光データリンクは正しく機能します。 減衰 は、伝送中の光信号の強度の低下です。ケーブル、ケーブル スプライス、コネクターなどのパッシブ メディア コンポーネントは、減衰を引き起こします。光ファイバーは他のメディアよりも減衰が著しく低下しますが、それでもマルチモードおよびシングルモード両方の伝送で減衰が発生します。効率的な光データ リンクを実現するには、減衰を克服するのに十分な光を伝送する必要があります。
Dispersion は、時間の経過に伴う信号の拡散です。次の 2 種類の分散が、光データ リンクを介した信号伝送に影響を与える可能性があります。
色分散は、光線の速度の違いによって引き起こされる時間の経過に伴う信号の拡散です。
モード分散は、ファイバーの伝搬モードが異なることで生じる、時間の経過に伴う信号の拡散です。
マルチモード伝送の場合、通常、色分散や減衰ではなく、モード分散が最大ビット レートとリンクの長さを制限します。シングルモード伝送の場合、モード分散は要因となりません。ただし、ビット レートが高くなり、距離が長くなると、色分散によって最大リンク長が制限されます。
効率的な光データ リンクを実現するには、受信機が仕様通りに動作する上で最低限必要とする強度を超えた光が必要です。さらに、総分散は、Telcordia Technologies ドキュメント GR-253-CORE(Section 4.3)および ITU(International Telecommunications Union)ドキュメント G.957 でリンク タイプに指定されている制限内に収まっている必要があります。
色分散が許容限度に達した場合、その影響はパワー バジェット内のパワー ペナルティーと見なすことができます。光パワー バジェットでは、コンポーネント減衰、パワー ペナルティー(分散によるペナルティーを含む)、予期しない損失に対する安全マージンの合計を考慮する必要があります。
光ファイバー ケーブルのパワー バジェットとパワー マージンを計算する
このトピックの情報とご使用の光インターフェイスの仕様を使用して、光ファイバー ケーブルのパワー バジェットとパワー マージンを計算します。
ハードウェア互換性ツールを使用して、お使いのジュニパーネットワークスのデバイスでサポートされているプラガブルトランシーバに関する情報を検索できます。
電力バジェットと電力マージンを計算するには、以下のタスクを実行します。
光ファイバー ケーブルのパワー バジェットの計算
光ファイバー接続が正しく動作するのに十分な電力を確保するには、リンクが送信できる最大電力量であるリンクの電力予算(PB)を計算する必要があります。電力バジェットを計算するときは、実際のシステムのすべての部分がワーストケースのレベルで動作するわけではない場合でも、ワーストケース分析を使用して許容誤差を提供します。PBのワーストケースの推定値を計算するには、最小送信電力(PT)と最小受信感度(PR)を仮定します。
PB = PT – PR
次の架空の電力バジェット式では、デシベル(dB)で測定された値と、1ミリワット(dBm)を基準とするデシベル値を使用します。
PB = PT – PR
PB = -15 dBm – (-28 dBm)
PB = 13 dB
光ファイバー ケーブルの電力マージンを計算する方法
リンクのPBを計算した後、PBから減衰またはリンク損失(LL)を差し引いた後の利用可能な電力量を表すパワーマージン(PM)を計算できます。PMのワーストケースの推定値は、最大LLを仮定しています。
PM = PB – LL
PM が 0 より大きい場合は、電力バジェットが受信機を動作させるのに十分であることを示します。
リンク損失を引き起こす要因としては、高次モード損失、モード分散と色分散、コネクター、スプライス、ファイバー減衰などがあります。 表 3 は、次のサンプル計算で使用される係数の推定損失量を示しています。機器やその他の要因によって実際に発生する信号損失の量については、ベンダーのドキュメントを参照してください。
リンク損失係数 |
推定リンク損失値 |
---|---|
高次モード損失 |
単一モード - なし マルチモード—0.5 dB |
モード分散と色分散 |
単一モード - なし マルチモード:帯域幅と距離の積が 500 MHz-km 未満の場合はなし |
コネクタの不良 |
0.5デシベル |
スプライス |
0.5デシベル |
ファイバーの減衰 |
シングル・モード:0.5dB/km マルチモード:1 dB/km |
PB が 13 dB の 2 km 長のマルチモード リンクの次の計算例では、 表 3 の推定値を使用しています。この例では、5 つのコネクター (コネクターあたり 0.5 dB、または 2.5 dB) と 2 つのスプライス (スプライスあたり 0.5 dB、または 1 dB)、および高次モード損失 (0.5 dB) のファイバー減衰量 (2 km @ 1 dB/km、または 2 dB) と損失の合計として LL を計算します。PM は次のように計算されます。
PM = PB – LL
PM= 13 dB – 2 km(1 dB / km)– 5(0.5 dB)– 2(0.5 dB)– 0.5 dB
PM= 13 dB – 2 dB – 2.5 dB – 1 dB – 0.5 dB
PM = 7 dB
PBが13dBの8km長のシングルモードリンクの次の計算例では、表3の推定値を使用しています。この例では、LL をファイバーの減衰量(8 km @ 0.5 dB/km、つまり 4 dB)と 7 つのコネクターの損失(コネクターあたり 0.5 dB、つまり 3.5 dB)の合計として計算します。pPMは次のように計算されます。
PM = PB – LL
PM= 13 dB – 8 km(0.5 dB / km)– 7(0.5 dB)
PM= 13 dB – 4 dB – 3.5 dB
PM = 5.5 dB
どちらの例でも、計算されたPM はゼロより大きく、リンクが送信に十分な電力を有し、最大受信電力を超えていないことを示す。