Présentation du protocole Spanning Tree
Fonctionnement des protocoles Spanning Tree
Les réseaux Ethernet sont sensibles aux tempêtes de diffusion si des boucles sont introduites. Cependant, un réseau Ethernet doit inclure des boucles, car elles fournissent des chemins redondants en cas de défaillance d’une liaison. Les protocoles Spanning-Tree résolvent ces deux problèmes, car ils fournissent une redondance de liaison tout en empêchant les boucles indésirables.
Les équipements Juniper Networks offrent une prévention des boucles de couche 2 via le protocole STP (Spanning Tree Protocol), le protocole RSTP (Rapid Spanning Tree Protocol), le protocole MSTP (Multiple Spanning Tree Protocol) et le protocole VSTP (VLAN Spanning Tree Protocol). RSTP est le protocole Spanning Tree par défaut pour empêcher les boucles sur les réseaux Ethernet.
Cette rubrique décrit :
- Avantages de l’utilisation des protocoles Spanning Tree
- Les protocoles Spanning Tree aident à prévenir les tempêtes de diffusion
- Comprendre la priorité du pont pour l’élection du pont racine et du pont désigné
- Les rôles de port déterminent la participation au Spanning Tree
- Les états des ports déterminent la façon dont un port traite une trame
- Les ports de périphérie se connectent à des périphériques qui ne peuvent pas faire partie d’un Spanning Tree
- Les BPDU assurent la maintenance de l’arborescence
- En cas de défaillance d’un pont racine
- Les équipements doivent réapprendre les adresses MAC après une défaillance de liaison
Avantages de l’utilisation des protocoles Spanning Tree
Les protocoles Spanning Tree présentent les avantages suivants :
Assurer la redondance des liaisons tout en évitant les boucles indésirables
Prévenir les tempêtes de diffusion
Se connecte aux périphériques qui ne sont pas compatibles STP, tels que les PC, les serveurs, les routeurs ou les concentrateurs qui ne sont pas connectés à d’autres commutateurs, à l’aide de ports de périphérie
Les protocoles Spanning Tree aident à prévenir les tempêtes de diffusion
Les protocoles Spanning-Tree évitent intelligemment les boucles dans un réseau en créant une topologie arborescente (Spanning Tree) de l’ensemble du réseau ponté avec un seul chemin disponible entre la racine de l’arbre et une branche. Tous les autres chemins sont mis en veille. La racine de l’arbre est un commutateur au sein du réseau choisi par l’algorithme STA (spanning-tree) à utiliser pour calculer le meilleur chemin entre les ponts du réseau et le pont racine. Les trames voyagent à travers le réseau jusqu’à leur destination (une branche telle qu’un PC d’utilisateur final) le long des branches. Une branche d’arbre est un segment de réseau, ou lien, entre des ponts. Les commutateurs qui transfèrent des trames via un Spanning Tree STP sont appelés ponts désignés.
Si vous utilisez Junos OS pour les commutateurs EX Series et QFX Series avec prise en charge du style de configuration ELS (Enhanced Layer 2 Software), vous pouvez forcer l’exécution de la version d’origine du protocole IEEE 802.1D Spanning Tree Protocol (STP) à la place de RSTP ou VSTP en définissant force-version.
Comprendre la priorité du pont pour l’élection du pont racine et du pont désigné
Utilisez la priorité du pont pour contrôler quel pont est élu comme pont racine et également pour contrôler quel pont est élu pont racine en cas d’échec du pont racine initial.
Le pont racine de chaque instance de protocole spanning-tree est déterminé par l’ID du pont. L’ID de pont se compose d’une priorité de pont configurable et de l’adresse MAC du pont. Le pont dont l’ID de pont est le plus bas est choisi comme pont racine. Si les priorités du pont sont égales ou si la priorité du pont n’est pas configurée, le pont avec l’adresse MAC la plus basse est élu pont racine.
La priorité du pont peut également être utilisée pour déterminer quel pont devient le pont désigné pour un segment LAN. Si deux ponts ont le même coût de chemin vers le pont racine, le pont dont l’ID de pont est le plus faible devient le pont désigné.
La priorité du pont ne peut être définie que par incréments de 4096.
Les rôles de port déterminent la participation au Spanning Tree
Chaque port a à la fois un rôle et un état. Le rôle d’un port détermine la façon dont il participe au Spanning Tree. Les cinq rôles de port utilisés dans RSTP sont les suivants :
Port racine : port le plus proche du pont racine (a le coût de chemin le plus bas à partir d’un pont). Il s’agit du seul port qui reçoit des trames du pont racine et les transfère.
Port désigné : port qui transfère le trafic du pont racine vers une branche. Un pont désigné a un port désigné pour chaque connexion de liaison qu’il dessert. Un pont racine transfère les trames à partir de tous ses ports, qui servent de ports désignés.
Port alternatif : port qui fournit un chemin alternatif vers le pont racine si le port racine tombe en panne et est placé à l’état d’abandon. Ce port ne fait pas partie du Spanning Tree actif, mais en cas de défaillance du port racine, l’autre port prend immédiatement le relais.
Port de secours : port qui fournit un chemin de secours vers les branches du Spanning Tree en cas de défaillance d’un port désigné et de mise à l’abandon. Un port de secours ne peut exister que lorsque deux ports de pont ou plus se connectent au même réseau local pour lequel le pont sert de pont désigné. En cas de défaillance du port, un port de secours pour un port désigné prend immédiatement le relais.
Disabled port (Port désactivé) : le port ne fait pas partie du Spanning Tree actif.
Les états des ports déterminent la façon dont un port traite une trame
Chaque port a à la fois un état et un rôle. L’état d’un port détermine la façon dont il traite une trame. RSTP place chaque port d’un pont désigné dans l’un des trois états suivants :
Discarding (Rejet) : le port ignore toutes les BPDU. Un port dans cet état ignore toutes les trames qu’il reçoit et n’apprend pas les adresses MAC.
Apprentissage : le port se prépare à transférer le trafic en examinant les trames reçues à la recherche d’informations d’emplacement afin de construire sa table d’adresses MAC.
Forwarding (Transfert) : le port filtre et transfère les trames. Un port à l’état de transfert fait partie du Spanning Tree actif.
Les ports de périphérie se connectent à des périphériques qui ne peuvent pas faire partie d’un Spanning Tree
Spanning Tree définit également le concept de port de périphérie, qui est un port désigné qui se connecte aux périphériques qui ne sont pas compatibles STP, tels que les PC, les serveurs, les routeurs ou les concentrateurs qui ne sont pas connectés à d’autres commutateurs. Comme les ports périphériques se connectent directement aux stations d’extrémité, ils ne peuvent pas créer de boucles réseau et peuvent passer immédiatement à l’état de transfert. Vous pouvez configurer manuellement les ports de périphérie, et un commutateur peut également détecter les ports de périphérie en notant l’absence de communication depuis les stations d’extrémité.
Les ports périphériques eux-mêmes envoient des BPDU (Bridge Protocol Data Units) au Spanning Tree. Si vous avez une bonne compréhension des implications sur votre réseau, vous pouvez modifier RSTP sur l’interface du port de périphérie.
Les BPDU assurent la maintenance de l’arborescence
Les protocoles Spanning-Tree utilisent des trames appelées unités de données de protocole de pont (BPDU) pour créer et maintenir le Spanning Tree. Une trame BPDU est un message envoyé d’un commutateur à un autre pour communiquer des informations sur lui-même, telles que son ID de pont, les coûts du chemin racine et les adresses MAC des ports. L’échange initial de BPDU entre les commutateurs détermine le pont racine. Simultanément, les BPDU sont utilisées pour communiquer le coût de chaque liaison entre les équipements de filiale, en fonction de la vitesse du port ou de la configuration de l’utilisateur. RSTP utilise ce coût de chemin pour déterminer l’itinéraire idéal pour que les trames de données se déplacent d’une branche à une autre branche, puis bloque toutes les autres routes. Si un port périphérique reçoit une BPDU, il passe automatiquement à un port RSTP standard.
Lorsque le réseau est stable, le Spanning Tree converge lorsque l’algorithme STA (Spanning-Tree) identifie à la fois le pont racine et le pont désigné, et que tous les ports sont dans un état de transfert ou de blocage. Pour maintenir l’arborescence, le pont racine continue d’envoyer des BPDU à un intervalle de temps hello (2 secondes par défaut). Ces BPDU continuent de communiquer la topologie actuelle de l’arborescence. Lorsqu’un port reçoit un BPDU hello, il compare les informations à celles déjà stockées pour le port de réception. L’une des trois actions suivantes a lieu lorsqu’un commutateur reçoit une BPDU :
Si les données BPDU correspondent à l’entrée existante dans la table d’adresses MAC, le port réinitialise un minuteur appelé max age à zéro, puis transmet une nouvelle BPDU avec les informations de topologie active actuelles au port suivant dans le Spanning Tree.
Si la topologie de la BPDU a été modifiée, les informations sont mises à jour dans la table des adresses MAC, l’âge maximal est à nouveau défini sur zéro et une nouvelle BPDU est transférée avec les informations de topologie active actuelle vers le port suivant dans le Spanning Tree.
Lorsqu’un port ne reçoit pas trois fois de BPDU hello et que le port est le port racine, une refonte complète du Spanning Tree se produit (voir Défaillance d’un pont racine). D’autre part, s’il s’agit d’un pont non racine, RSTP détecte que l’équipement connecté ne peut pas envoyer de BPDU et convertit ce port en port de périphérie.
En cas de défaillance d’un pont racine
Lorsqu’une liaison vers le port racine tombe en panne, un indicateur appelé notification de changement de topologie (TCN) est ajouté au BPDU. Lorsque cette BPDU atteint le port suivant du VLAN, la table d’adresses MAC est vidée et la BPDU est envoyée au pont suivant. Finalement, tous les ports du VLAN ont vidé leurs tables d’adresses MAC. Ensuite, RSTP configure un nouveau port racine.En cas de défaillance d’un port racine ou d’un port désigné, le port alternatif ou de secours prend le relais après un échange de BPDU appelé établissement de liaison proposition-accord. RSTP propage cette négociation sur des liaisons point à point, qui sont des liaisons dédiées entre deux nœuds de réseau, ou commutateurs, qui connectent un port à un autre. Si un port local devient un nouveau port racine ou désigné, il négocie une transition rapide avec le port de réception sur le commutateur voisin le plus proche en utilisant l’établissement de liaison proposition-accord pour garantir une topologie sans boucle.
Les équipements doivent réapprendre les adresses MAC après une défaillance de liaison
Étant donné qu’une défaillance de liaison entraîne le vidage de la table d’adresses MAC de tous les ports associés, le réseau peut être plus lent à réapprendre les adresses MAC. Il existe un moyen d’accélérer ce processus de réapprentissage. Lors de la propagation TCN, la table de transfert des commutateurs de couche 2 est vidée, ce qui entraîne un flot de paquets de données. La fonctionnalité ARP (Address Resolution Protocol) permet au commutateur d’envoyer de manière proactive des requêtes ARP pour les adresses IP dans le cache ARP (présent en raison de l’interface VLAN de couche 3). Lorsque ARP sur STP est activé, au fur et à mesure que la réponse arrive, les commutateurs créent la table de transfert de couche 2, limitant ainsi le flooding ultérieur. L’activation d’ARP sur STP est particulièrement utile pour éviter une inondation excessive dans les grands réseaux de couche 2 utilisant des RVI.
La fonctionnalité ARP n’est pas disponible sur Junos OS pour les commutateurs EX Series prenant en charge le style de configuration ELS (Enhanced Layer 2 Software).
Voir aussi
Choisir un protocole Spanning Tree
Lors de la sélection d’un protocole spanning-tree, tenez compte de deux questions de base :
De quelles fonctionnalités STP ai-je besoin ?
Quel commutateur ou routeur sera utilisé ?
- Comparaison des fonctionnalités de Spanning Tree
- Prise en charge et limitations des commutateurs et routeurs Spanning Tree
Comparaison des fonctionnalités de Spanning Tree
Le Tableau 1 décrit les différences entre les protocoles Spanning-Tree STP, RSTP, MSTP et VSTP.
Avantages | et inconvénients du | protocole |
---|---|---|
Le protocole RSTP |
|
|
Pourboire:
Utilisez l’instruction .
Pourboire:
Si RSTP a été forcé de s’exécuter en tant que version STP d’origine, vous pouvez revenir à RSTP en revenant à RSTP ou VSTP à partir de STP IEEE 802.1D forcé. |
||
STP (en anglais seulement) |
|
|
Pourboire:
Utilisez l’instruction pour configurer les |
||
MSTP (en anglais seulement) |
|
|
Pourboire:
Utilisez l’instruction |
||
VSTP (en anglais seulement) |
|
|
Pourboire:
Lorsque vous utilisez VSTP, nous vous recommandons d’activer VSTP sur tous les VLAN pouvant recevoir des unités de données de protocole de pont VSTP (BPDU).
Pourboire:
Lorsque vous configurez VSTP à l’aide de la
Pourboire:
Le nombre maximal de VLAN pris en charge par VSTP sur un commutateur varie selon que vous utilisez Junos OS pour les commutateurs EX Series et QFX Series avec prise en charge du style de configuration ELS (Enhanced L2 Software) ou Junos OS qui ne prend pas en charge ELS. Vous pouvez utiliser les commutateurs Juniper Networks avec VSTP et les commutateurs Cisco avec PVST+ et Rapid-PVST+ dans le même réseau. Cisco prend en charge un protocole propriétaire Per-VLAN Spanning Tree (PVST), qui maintient une instance Spanning Tree distincte pour chaque VLAN. Un Spanning Tree par VLAN permet un équilibrage de charge granulaire, mais nécessite un traitement CPU BPDU plus important à mesure que le nombre de VLAN augmente. PVST fonctionne sur les liaisons ISL propriétaires de Cisco, qui ne sont pas prises en charge par Juniper. Les commutateurs Juniper n’interagissent qu’avec les protocoles PVST+ et Rapid-PVST+. |
Les protocoles Spanning-Tree génèrent tous leurs propres BPDU. Les applications de pont utilisateur exécutées sur un PC peuvent également générer des BPDU. Si ces BPDU sont détectées par les applications STP exécutées sur le commutateur, elles peuvent déclencher des erreurs de calcul STP, qui peuvent entraîner des pannes de réseau. Reportez-vous à la section Configuration de la protection BPDU sur les interfaces Spanning Tree.
Si vous configurez une interface pour un protocole Spanning Tree (STP, MSTP, RSTP et VSTP), les interface all
options , vlan all
et vlan-group
ne sont pas disponibles lorsque vous configurez une interface avec l’option flexible-vlan-tagging
family.
Prise en charge et limitations des commutateurs et routeurs Spanning Tree
Tous les commutateurs et routeurs ne prennent pas en charge les mêmes fonctionnalités et configurations. Les différences connues sont énumérées dans le tableau 2.
Routeur ou commutateur |
Considérations |
---|---|
Routeurs MX Series |
Seuls les routeurs MX Series peuvent utiliser le type d’instance de routage de commutateur virtuel pour isoler un segment LAN avec son instance spanning-tree et pour séparer son espace d’ID VLAN. Reportez-vous à la section Configuration d’une instance de routage de commutateur virtuel sur des routeurs MX Series Le traçage et le suivi global sont disponibles sur les routeurs ACX et MX à l’aide de l’instruction global traceoptions (voir Présentation des options de suivi du protocole Spanning-Tree). À partir de la version 14.1R1, les améliorations suivantes concernant les journaux STP sont prises en charge sur les routeurs MX Series :
Sur les routeurs MX et ACX, vous pouvez configurer les interfaces d’instance RSTP, MSTP et VSTP en tant que ports de périphérie pour une convergence plus rapide que la version STP d’origine. Les ports de périphérie passent directement à l’état de transfert, de sorte que le protocole n’a pas besoin d’attendre que les BPDU soient reçues sur les ports de périphérie. Sur un routeur MX Series exécutant RSTP ou MSTP dans un réseau de fournisseur, vous pouvez activer la participation du pont fournisseur dans l’instance RSTP ou MSTP (voir Présentation de la participation du pont fournisseur dans les instances RSTP ou MSTP). |
Pourboire:
Pour les réseaux de pont fournisseur 802.1ad (VLAN empilés) sur les routeurs MX Series et M Series, les ports d’accès à balise unique et les ports trunk à double balise peuvent coexister dans un seul contexte Spanning Tree. Dans ce mode, le VSTP (VLAN Spanning Tree Protocol) peut envoyer et recevoir des unités de données de protocole de pont (BPDU) non étiquetées du protocole RSTP (Rapid Spanning Tree Protocol) sur des interfaces Gigabit Ethernet (ge), 10-Gigabit Ethernet (xe) et Ethernet agrégé (ae). Les BPDU RSTP non étiquetées interagissent avec les BPDU VSTP étiquetées envoyées sur les ports trunk à double balise. Le double balisage peut s’avérer utile pour les fournisseurs d’accès à Internet, car il leur permet d’utiliser les VLAN en interne tout en mélangeant le trafic provenant de clients déjà balisés VLAN. |
|
Routeurs ACX Series |
Sur les routeurs MX et ACX, vous pouvez configurer les interfaces d’instance RSTP, MSTP et VSTP en tant que ports de périphérie pour une convergence plus rapide que la version STP d’origine. Les ports de périphérie passent directement à l’état de transfert, de sorte que le protocole n’a pas besoin d’attendre que les BPDU soient reçues sur les ports de périphérie. Le traçage et le suivi global sont disponibles sur les routeurs ACX et MX à l’aide de l’instruction global traceoptions (voir Présentation des options de suivi du protocole Spanning-Tree). |
Commutateurs QFX Series |
Reportez-vous à la section Configuration de STP. Si votre réseau inclut des ponts IEEE 802.1D 1998, supprimez RSTP et configurez explicitement STP (voir Forcer RSTP ou VSTP à s’exécuter en tant que STP IEEE 802.1D (procédure CLI)). Lorsque vous configurez explicitement STP, les produits QFX Series utilisent la spécification IEEE 802.1D 2004, force la version 0. Cette configuration exécute une version de RSTP compatible avec le STP classique de base. Si vous utilisez des réseaux locaux virtuels (VLAN), vous pouvez activer VSTP sur votre réseau. La prise en charge STP fournie pour le QFX Series comprend :
Utilisez le protocole RSTP (Rapid Spanning Tree Protocol) côté réseau de la gamme QFX Series afin d’accélérer la convergence par rapport au protocole STP (Spanning Tree Protocol) de base. RSTP identifie certains liens comme étant point à point. Lorsqu’une liaison point à point tombe en panne, la liaison alternative peut passer à l’état de transfert, ce qui accélère la convergence. Une interface peut être configurée pour la protection racine ou la protection des boucles, mais pas pour les deux. Sur les commutateurs EX Series (sauf EX9200) et QFX Series exécutant Junos OS qui prend en charge ELS, VSTP peut prendre en charge jusqu’à 510 VLAN. Si votre commutateur EX Series ou QFX Series interagit avec un périphérique Cisco exécutant Rapid per VLAN Spanning Tree (Rapid PVST+), nous vous recommandons d’activer VSTP et RSTP sur l’interface EX Series ou QFX Series. |
Commutateurs EX Series |
|
Pourboire:
Les commutateurs EX Series peuvent avoir un maximum de 253 VLAN sur VSTP. Par conséquent, pour avoir autant de VLAN de protocole Spanning-Tree que possible, utilisez à la fois VSTP et RSTP. Le protocole RSTP sera ensuite appliqué aux VLAN qui dépassent la limite de VSTP. Étant donné que RSTP est activé par défaut, il vous suffit d’activer VSTP en plus. |
|
QFabric |
Bien qu’il ne soit pas nécessaire d’exécuter STP dans un système QFabric, vous pouvez connecter un système QFabric à un autre équipement de couche 2 et utiliser STP. Le trafic STP ne peut être traité que sur les groupes de nœuds du réseau. Les autres groupes de nœuds, tels que les groupes de nœuds serveur redondants et les groupes de nœuds serveur, ignorent le trafic BPDU (STP Bridge Protocol Data Units) et désactivent automatiquement l’interface. Les groupes de nœuds de serveur traitent uniquement les protocoles orientés hôte, tandis que les groupes de nœuds de réseau traitent tous les protocoles pris en charge. |
Pare-feu SRX Series |
|