

Network Configuration Example

Network Configuration Example: EX
Series Switches Driven by Mist AI

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc. in the United States and other countries. All other trademarks, service marks, registered marks, or registered service marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change, modify, transfer, or otherwise revise this publication without notice.

Network Configuration Example Network Configuration Example: EX Series Switches Driven by Mist AI
Copyright © 2021 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License Agreement ("EULA") posted at <https://support.juniper.net/support/eula/>. By downloading, installing or using such software, you agree to the terms and conditions of that EULA.

Table of Contents

[About This Guide](#) | v

1

Using Juniper EX Series Switches with the Juniper Mist Cloud

[Overview of EX Series Switches and the Juniper Mist Cloud](#) | 2

[Day 0: Add an EX Series Switch to the Juniper Mist Cloud](#) | 5

[Requirements](#) | 5

[Overview of the ZTP Process](#) | 6

[How to Activate a Greenfield Switch](#) | 7

[Activate a Brownfield Switch](#) | 9

[Add the Switch to the Juniper Mist Cloud Architecture and View Details](#) | 12

[Troubleshooting](#) | 14

[Day 1: Use a Template-Based Configuration with Device and Port Profile](#) | 15

[Configuration Templates](#) | 15

[Case 1: Organization-Level Switch Settings](#) | 18

[Case 2: Network-Level Settings](#) | 19

[Case 3: Individual Switch Administration](#) | 19

[Dynamic Port Profiles](#) | 20

[Configure Network Access](#) | 21

[Add a Port Profile](#) | 22

[Configure a Dynamic Port](#) | 25

[Associate Ports](#) | 27

[Virtual Chassis](#) | 28

[Design Considerations for Virtual Chassis](#) | 30

[Forming A Virtual Chassis \(EX2300 Series Switches\)](#) | 31

[Adding A Switch To The Virtual Chassis](#) | 35

Removing A Switch From The Virtual Chassis | 37

Virtual Chassis on EX3400 and EX4300 | 38

Day 2: Wired User Service Level Expectations, Switch Events, and Marvis Actions | 41

Manual EX Series Switch Configurations | 41

Requirements | 42

Overview | 42

Set Up the EX Series Switch | 43

Configure the Guest and Employee Networks | 44

Enable PoE+ on the Interfaces | 47

Enable Junos OS Link Layer Discovery Protocol | 50

Enable the Switch to Receive DHCP or BOOTP Requests | 52

Enable 802.1x Authentication on the Switch Ports | 57

Manage Logs in EX Series Switches | 59

(Optional) Automate Switch Port Provisioning | 60

About This Guide

Juniper Mist Wired Assurance gives you centralized management through the Juniper Mist Cloud Architecture, and with it, full visibility into the devices that comprise your access layer network topology. You can monitor, measure, and alert on key compliance metrics for the wired network including switch version compliance, power over Ethernet (PoE) compliance, and VLANs insights. The combination of Juniper switches and access points (APs) driven by Mist AI supports dense, heavily utilized networks hosting a large number of mobile devices, and provides end-user security and reliable performance.

Use the examples in this Network Configuration Example (NCE) to connect your switch to the Juniper Mist cloud and configure it for ongoing operations with managed APs.

The examples assume that you are already familiar with Junos OS CLI commands and syntax, and that you have some experience with the Juniper Mist cloud Architecture. It is written for solution implementers, including network architects, administrators, and engineers responsible for setting up the service integration. They are organized into three groups,

- **Day 0** represents zero-touch and single-click activation for adopting new and existing switches into the Juniper Mist cloud.
- **Day 1** represents template-based configuration for scaling switches across the organization, site, or individual switches.
- **Day 2** represents ongoing switch insights and intelligence, leveraging the Marvis Virtual Network Assistant driven by Mist AI.

1

CHAPTER

Using Juniper EX Series Switches with the Juniper Mist Cloud

[Overview of EX Series Switches and the Juniper Mist Cloud | 2](#)

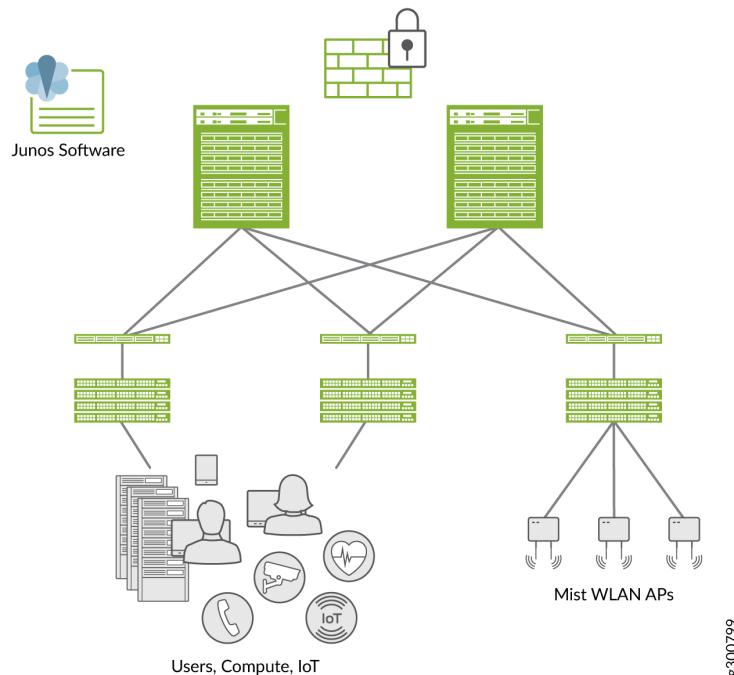
[Day 0: Add an EX Series Switch to the Juniper Mist Cloud | 5](#)

[Day 1: Use a Template-Based Configuration with Device and Port Profile | 15](#)

[Day 2: Wired User Service Level Expectations, Switch Events, and Marvis Actions | 41](#)

[Manual EX Series Switch Configurations | 41](#)

Overview of EX Series Switches and the Juniper Mist Cloud


IN THIS SECTION

- [QFX Switches That Can Be Managed Through The Juniper Mist Portal | 4](#)

This example uses Junos OS Release 18.4R2.7 running on a Juniper Networks EX3400 switch with connections from Juniper access points. See [JTAC switch recommendations](#) for a current list of hardware and software that you can use to evaluate the features.

We recommend Juniper EX Series switches for interoperability with Juniper access points driven by Mist AI. These devices support Juniper's Virtual Chassis, which we discuss later in this NCE, and provide Power over Ethernet (PoE) network interfaces and supply 8, 24, or 48 multigigabit ports that comply with IEEE 802.3af standards (such as delivering a regulated 15.4 watts of power).

Figure 1: Physical Connections Between Juniper EX Series Switches and Access Points in a NOC

EX Series switches also support PoE+, which extends normal operation to comply with IEEE 802.3at standards. PoE ports are typically used to connect VoIP telephones, wireless access points, video cameras, point-of-sale devices, and other such devices because they safely deliver power from the interface connection over a copper Ethernet LAN cable, and provide the necessary scale.

We recommend using any of the EX Series switches shown in the following table. They meet both the PoE and speed requirements needed for access point deployments, and they support Juniper's Virtual Chassis.

Table 1: Recommended EX Series Switches for Use with Juniper Access Points

Switch	PoE	Speed	Juniper Access Points
EX2300	PoE+ (IEEE 802.3at)	1GbE	AP21, AP41, AP61, AP43 (no)
EX2300-C	PoE+ (IEEE 802.3at)	1GbE	AP21, AP41, AP61, AP43 (no)
EX2300 MP	PoE+ (IEEE 802.3st)	1GbE/2.5GbE	AP21, AP41, AP61, AP43
EX3400	PoE+ (IEEE 802.3at)	1GbE	AP21, AP41, AP61, AP43 (no)
EX4300-P	PoE+ (IEEE 802.3st)	1GbE	AP21, AP41, AP61, AP43 (no)
EX4300 MP	PoE+ (IEEE 802.3st) PoE (IEEE 802.3br)	1GbE/2.5GbE/5GbE/ 10GbE	AP21, AP41, AP61, AP43
EX4400	PoE++ (IEEE 802.3bt) PoE+ (IEEE 802.3at)	1GbE/2.5GbE/5GbE/ 10GbE	AP21, AP41, AP61, AP43

Cloud-ready, or “greenfield,” switches can be automatically added to the Juniper Mist cloud services using the zero-touch provisioning (ZTP) option, and then adopted in the Juniper Mist portal.

“Brownfield” switches, that is, existing switches that may have been used in a previous deployment, can also be added to the Juniper Mist cloud.

In either case, the switch needs to connect to a Domain Name System (DNS) server – a Network Time Protocol (NTP) server is also recommended – and it needs to be able to connect to the Juniper Mist cloud over the Internet. If there is a firewall between the cloud and the switch, you need to allow outbound access on TCP port 2200 to the management port of the switch.

We recommend that all switches added to the Juniper Mist cloud be managed exclusively through the Juniper Mist portal, and not from the device's CLI. The Juniper Mist portal provides the user interface, and includes AI-driven cloud services and architecture. You can access these through your [Juniper Mist account](#).

The Juniper website provides extensive documentation on both the Junos operating system and the EX Series hardware used in this NCE. Likewise, you can find documentation on Juniper Mist Premium Analytics including configuration details for Juniper access points on [mist.com](#).

QFX Switches That Can Be Managed Through The Juniper Mist Portal

For QFX Series switches, we recommend the switches shown in the following table. The Juniper Mist feature, zero-touch provisioning (ZTP), is not currently supported for the QFX platform.

Table 2: QFX Series Switches for Use with Juniper Mist

Switch	Model
QFX5110	
	QFX5110-32Q
	QFX5110-48S
QFX5120	
	QFX5120-32C
	QFX5120-48YM
	QFX5120-48T
	QFX5120-48Y

RELATED DOCUMENTATION

[Junos documentation](#)

[EX2300](#)

[EX3400](#)

[EX4300](#)

[EX4400](#)

[Juniper Mist Wireless LAN Documentation](#)

[Juniper Mist documentation](#)

Day 0: Add an EX Series Switch to the Juniper Mist Cloud

IN THIS SECTION

- [Requirements | 5](#)
- [Overview of the ZTP Process | 6](#)
- [How to Activate a Greenfield Switch | 7](#)
- [Activate a Brownfield Switch | 9](#)
- [Add the Switch to the Juniper Mist Cloud Architecture and View Details | 12](#)
- [Troubleshooting | 14](#)

Requirements

We recommend that all switches in an organization be managed exclusively through the Juniper Mist cloud, and not from the device's CLI.

The switch needs to connect to a DNS server (an NTP server is also recommended), and it needs to be able to connect to the Juniper Mist cloud architecture over the Internet. If there is a firewall between the cloud and the switch, you need to allow outbound access on TCP port 2200 to the management port of the switch. In addition, you need the following items:

- A Juniper Mist Wired Assurance Subscription, and logon credentials for the Juniper Mist portal
- Physical access to the switch to connect the cables
- A supported Juniper EX Series switch

- A user account on the switch to make CLI configurations (brownfield option)

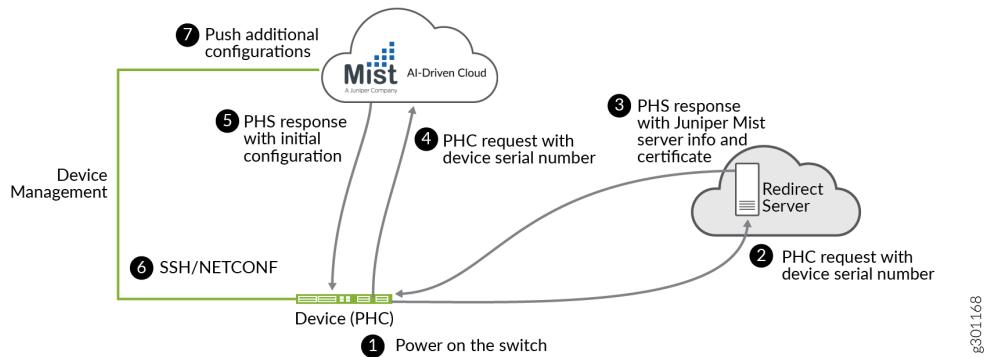
This example shows how to connect an EX Series switch to the Juniper Mist cloud architecture, and how to bring it onboard to your organization in the Juniper Mist portal. Cloud-ready, or “greenfield” switches can be automatically added to the Juniper Mist cloud using the ZTP option, or they can be added manually by entering an activation code for the switch in the Juniper Mist portal.

Figure 2: Cloud-Ready Switches

g301171

“Brownfield” switches, that is, switches being brought into the Juniper Mist cloud architecture from a previous deployment, can also be added to the Juniper Mist cloud. Both procedures are described in this example.

Overview of the ZTP Process


IN THIS SECTION

- [Topology | 7](#)

Once a cloud-ready switch is connected to the Internet and powered on for the first time, it triggers an onboard phone-home client (PHC) to get configuration updates from the phone-home server (PHS) as shown in [Figure 3 on page 7](#). The default behavior is for the PHC to connect to a redirect server, which then redirects it to a phone home server where the switch can get the configuration or software image. This enables the switch to securely and automatically obtain the most recent Junos OS configuration or software image, with no intervention other than physically connecting the switch to the network. Alternatively, you can configure the switch to use a Dynamic Host Configuration Protocol (DHCP) server configured with the necessary ZTP options to complete the ZTP process. To revert to the ZTP default, you need to boot from the factory-default state (or you can issue the Junos OS request `system zeroize` command to reset the configuration).

Topology

Figure 3: ZTP Process for EX Series Switches

g301168

How to Activate a Greenfield Switch

IN THIS SECTION

- Manually Add a Cloud-Ready Switch to the Juniper Mist Cloud: | 7

To adopt a cloud-ready switch manually, you need an activation code for the switch. Activation codes are sent through e-mail to the address on record at the time of purchase, or they can be obtained by contacting the Juniper Mist Customer Engagement team. Using the activation code adopts the switch and any Juniper access points that are part of the purchase order, as well as claims any subscriptions that are included in your purchase.

Manually Add a Cloud-Ready Switch to the Juniper Mist Cloud:

Step-by-Step Procedure

1. Start by unboxing your switch, connecting the management port to the Internet, and powering it on. As part of the ZTP process, the switch automatically accesses the PHC server (or the DHCP server if you have set this up instead) and then connects to the Juniper Mist cloud for configuration updates.

2. Using a Web browser, log in to your Juniper Mist account. The Monitor page appears, showing an overview of the Juniper Mist cloud and any Juniper access points and clients that are already connected. In the menu on the left, click **Organization > Inventory** to open that page.

Figure 4: The Juniper Mist Inventory Page

Status	Name	MAC Address	Model	Site	Serial Number
Disconnected	ex4300-2_skynet_svr_room	30:b6:4f:52:1e:40	EX4300-48P	Live Demo	
Connected	ex4300-LD	f4:b5:2f:4c:72:40	EX4300-48T	Live Demo	PE3714100634
Connected	ex-2300c-hal	3c:8c:93:94:74:dc	EX2300-C-12P	Live Demo	HV3619190181
Disconnected	ex-2300c-kr-desk	f0:7c:cd:7d:86:2b	EX2300-C-12P	Live Demo	HV3620090248
Unassigned	fc:33:42:e9:3cef	fc:33:42:e9:3cef	EX2300-C-12P		HV3619090777

3. Select **Switches** at the top of the Inventory page, and then click the **Claim Switches** button and enter the activation code for the switch.

Figure 5: The Claim Switches Page

Claim Switches and Activate Subscriptions

Enter Switch claim codes or Activation codes
12345-12345-12345

Site Assignment
 Assign claimed Switches to site

Name Generation
 Generate names for Switches, with format:
Format includes arbitrary text and any/none of these options
[site] site name
[site.4] last (1-9) characters of site name
[mac] MAC address
[mac.3] last (2-3) bytes of MAC address
[ctr] incrementing counter
[ctr.3] counter with (2-6) fixed digits

Manage Configuration
 Manage configuration with Mist
Root Password

4. Fill out the other fields on the page as you like. Select **Manage configuration with Juniper Mist** and then enter a root password for the switch. Note that this choice puts the switch under the management of the Juniper Mist portal, and as such, we recommend that local configuration using the CLI be restricted to prevent conflicts (for example, you might want to create a system login message on the switch to warn against making configuration changes locally, from the CLI).

Once the ZTP process resolves, the switch automatically appears in the Inventory page. If the switch doesn't appear after a few minutes, despite refreshing the web page, log out and then log back in.

Activate a Brownfield Switch

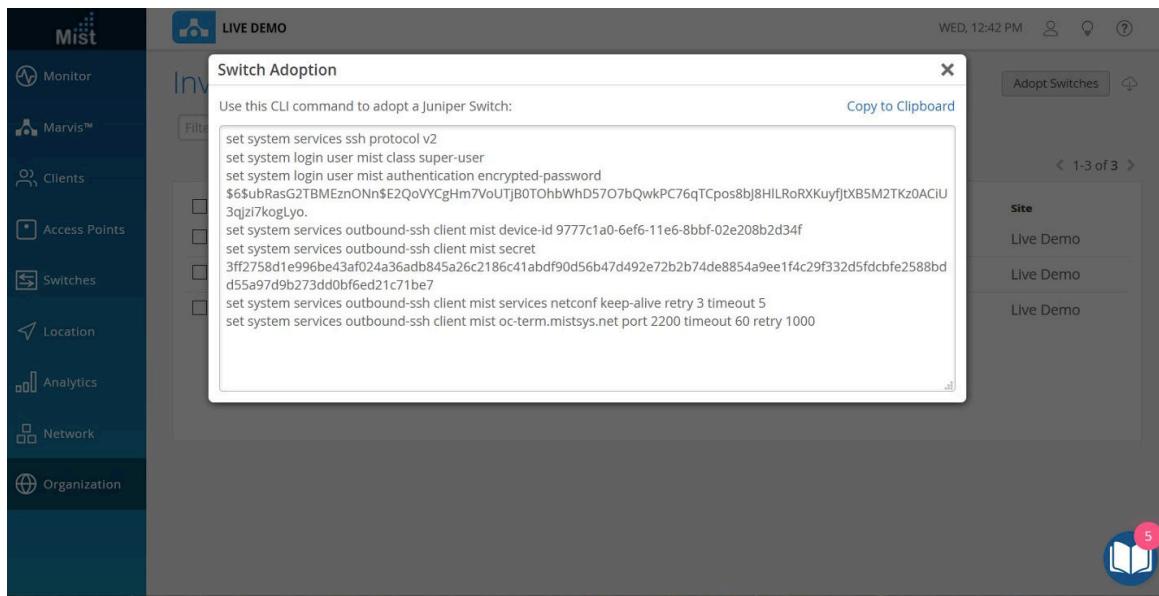
IN THIS SECTION

- [How to Add a Brownfield Switch to the Juniper Mist Cloud | 9](#)

It is important to back up your existing Junos OS configuration on the switch before activating a brownfield switch because when the switch is adopted for management from the Juniper Mist cloud, the old configuration is replaced. Back up your existing Junos OS configuration by running the `request system software configuration-backup (path)` command, which saves the currently active configuration and any installation-specific parameters.

Likewise, To prevent users from using the Junos CLI to configure the switch after it has been adopted into the Juniper Mist cloud, you may want to create a system login message on the switch to warn against making configuration changes, or to restrict their management access altogether by changing the password or placing restrictions on the Junos CLI user accounts.

How to Add a Brownfield Switch to the Juniper Mist Cloud


Step-by-Step Procedure

This procedure describes how to set up a secure connection between a supported EX Series switch running a [supported version of Junos OS](#). In it, you will make a few configuration changes to the Juniper Mist portal, and some to the switch using the Junos OS CLI. Be sure you can log in to both systems.

1. Log in to your organization on the [Juniper Mist cloud](#) and then click **Organization > Inventory** in the menu.
2. Select **Switches** at the top of the page that appears, and then click the **Adopt Switch** button in the upper-right corner to generate the Junos OS CLI commands needed for the interoperability. The commands create a Juniper Mist user account, and a SSH connection to the Juniper Mist cloud over

TCP port 2200 (the switch connection is from a management interface and is used for configuration settings and sending telemetry data).

Figure 6: The Switch Adoption Page

3. In the page that appears, click **Copy to Clipboard** to get the commands from the Juniper Mist cloud.
4. In the Junos OS CLI, type `edit` to start configuration mode, and then paste the commands you just copied (type `top` if you are not already at the base level of the hierarchy).
5. If you want to add a system message, use the following command:

```
user@host# set system login message message text here
```

6. You can confirm your updates on the switch by running `show` commands at the `[system services]` level of the hierarchy, and again at the `[system login user juniper-mist]` level of the hierarchy.

```
show system services
```

```
ssh {  
    protocol-version v2;  
}  
netconf {
```

```
    ssh;
}

outbound-ssh {
    client juniper-mist {
        device-id 550604ec-12df-446c-b9b0-eada61808414;
        secret "trimmed"; ## SECRET-DATA
        keep-alive {
            retry 3;
            timeout 5;
        }
        services netconf;
        oc-term.mistsys.net {
            port 2200;
            retry 1000;
            timeout 60;
        }
    }
}

dhcp-local-server {
    group guest {
        interface irb.188;
    }
    group employee {
        interface irb.189;
    }
    group management {
        interface irb.180;
    }
}
```

```
show system login user juniper-mist
```

```
user@Switch-1# show system login user juniper-mist
class super-user;
authentication {
    encrypted-password "$trimmed ## SECRET-DATA
}
```

7. Run the `commit` command to save the configuration.

8. Back in the Juniper Mist portal, click **Organization > Inventory > Switches** and select the switch you just added.
9. Click the **More** drop-down list at the top of the page, and then click the **Assign to Site** button.
10. In the page that appears, choose which site you want to assign the switch to, and then select **Manage configuration with Mist**.

Add the Switch to the Juniper Mist Cloud Architecture and View Details

IN THIS SECTION

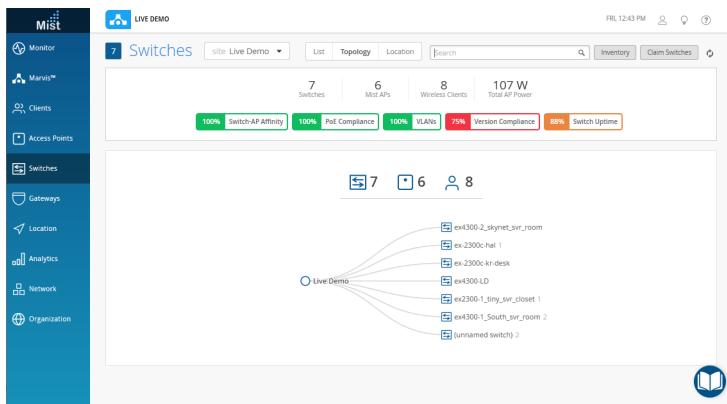
- [Procedure | 13](#)

Now that the switch is able to register with the Juniper Mist portal, the next steps are to add the switch to the appropriate site and assign access points.

Figure 7: The Juniper Access Points Page

Status	Name	MAC Address	IP Address	No. Clients	Uptime	Total Bytes	Capabilities
Connected	04:20:b0:80:ee:d9	d4:20:b0:80:ee:d9		0	0 B	0 B	Wi-Fi
Connected	LD_Deckard	5c:5b:35:2f:59:7d	10.2.10.148	0	0 B	0 B	Wi-Fi
Connected	LD_KF-Desk	5c:5b:35:2f:5c:5c	10.2.10.139	3	3d 23h 24m	996 MB	Wi-Fi
Connected	LD_Kitchen	5c:5b:35:0e:06:92	10.2.10.230	0	1d 3h 39m	1.4 MB	Wi-Fi
Connected	LD_KR-Desk	d4:20:b0:92:ef:f0	10.2.13.209	2	3d 18h 15m	3.9 GB	Wi-Fi
Connected	LD_Marvis	5c:5b:35:0e:45:92	10.2.16.171	2	1d 0h 12m	1.1 GB	Wi-Fi
Connected	LD_PLM_Server_Room	5c:5b:35:0e:2c:2d	10.2.19.183	1	3d 22h 50m	615.1 MB	Wi-Fi
No ethernet link	LD_Relay-Desk-A	5c:5b:35:2f:57:89	10.2.14.175	0	0 B	0 B	Wi-Fi
Connected	LD_Sales_Area	5c:5b:35:50:03:cf	10.2.20.46	1	1d 3h 29m	131.3 MB	Wi-Fi
Disconnected	LD_Test-Disconnected	5c:5b:35:1e:bf:9f	10.2.12.210	0	0 B	0 B	Wi-Fi
Connected	LD_Testbed-MB	5c:5b:35:8e:6f:ea	10.2.17.180	0	3d 23h 24m	327.8 MB	Wi-Fi

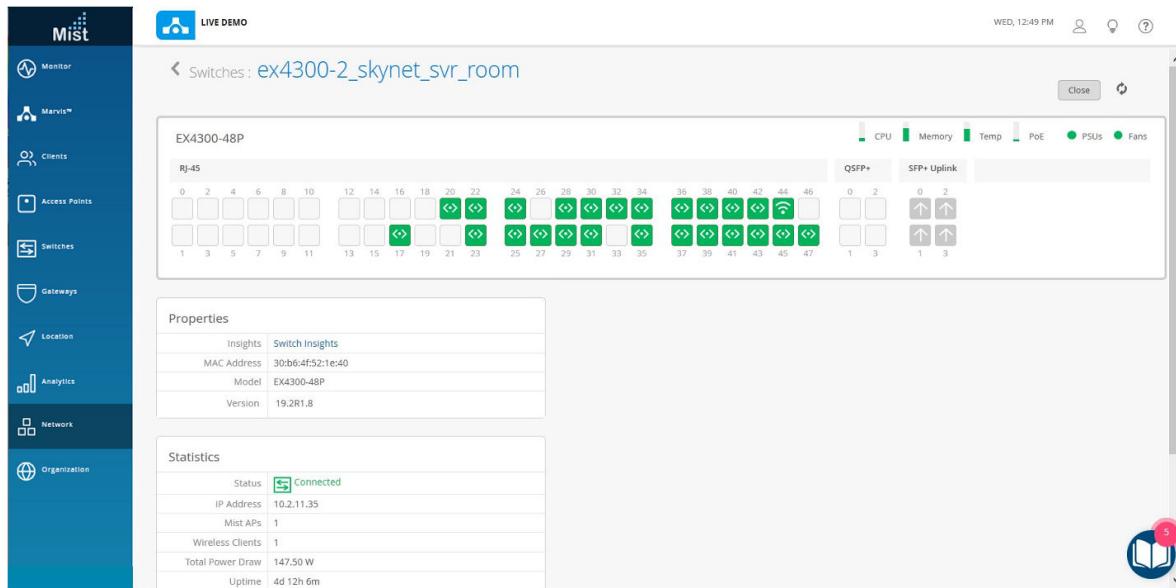
1 Unassigned APs


Name	MAC Address	Site	Capabilities	Model	Serial Number
5c:5b:35:3e:4f:01	5c:5b:35:3e:4f:01	Unassigned	Wi-Fi	AP41	100041802044E

Procedure

Step-by-Step Procedure

1. To add the switch to a site, click **Organization > Inventory** in the Juniper Mist menu and then the **Switches** tab at the top of the page that appears.
2. Select the switch you just added, and then click the **More** button. Click **Assign to Site**, and then choose a site from the drop-down list that appears in the **Assign Switches** page. Click the **Assign to Site** button to complete the action.


Figure 8: The Switches Page Shows the EX Series Switch

3. Next, select **Switches** from the menu on the left and click a switch name to display the access points connected to that switch.
 - Hover your mouse cursor over a switch in the list to see summary details of the switch, or click it to expose attached devices.

- Click the name of the switch (which appears above the list) to open a page where you can dig in to switch details, including various metrics and properties. Scroll down to see the Junos configuration for that specific switch.

Figure 9: Switch Details in The Switches Page

Troubleshooting

Confirm your connection from the switch to the Juniper Mist cloud by running the Junos OS command below.

```
user@host> show system connections | grep 2200
```

The command output shows the switch connection to the Juniper Mist cloud. It includes the IP address of the management interface on the switch, the destination IP address of the Juniper Mist cloud, and the connection result.

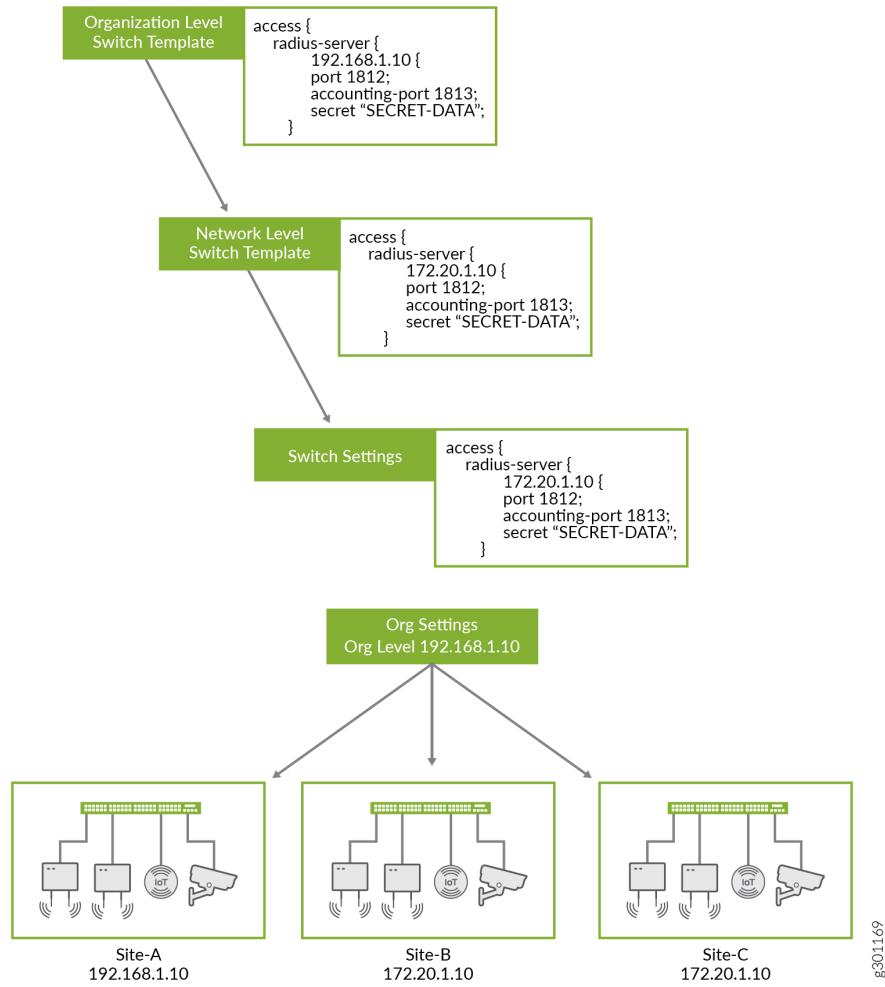
```
tcp4 0 0 10.10.70.89.63208 <ip-address>.2200 ESTABLISHED
```

If there is no ACK of the SYN packet, chances are that outbound packets over TCP port 2200 are being blocked by the firewall, and this issue needs to be resolved before the switch can appear in the Juniper Mist portal under **Organization > Inventory > Switches**.

Day 1: Use a Template-Based Configuration with Device and Port Profile

IN THIS SECTION

- Configuration Templates | [15](#)
- Case 1: Organization-Level Switch Settings | [18](#)
- Case 2: Network-Level Settings | [19](#)
- Case 3: Individual Switch Administration | [19](#)
- Dynamic Port Profiles | [20](#)
- Configure Network Access | [21](#)
- Add a Port Profile | [22](#)
- Configure a Dynamic Port | [25](#)
- Associate Ports | [27](#)
- Virtual Chassis | [28](#)
- Design Considerations for Virtual Chassis | [30](#)
- Forming A Virtual Chassis (EX2300 Series Switches) | [31](#)
- Adding A Switch To The Virtual Chassis | [35](#)
- Removing A Switch From The Virtual Chassis | [37](#)
- Virtual Chassis on EX3400 and EX4300 | [38](#)


Configuration Templates

A key feature of switch management through the Juniper Mist cloud architecture is the ability to use configuration templates and a hierarchical model to group the switches and make bulk updates. Templates provide uniformity and convenience, while the hierarchy (organization, network, and switch) provides both scale and granularity.

You can create a template configuration and then apply those settings to all the devices in a given group. When a conflict occurs, for example when there are settings at both the network and organizational

levels that apply to the same device, the more narrow settings (in this case, network) override the broader settings defined at the organization level.

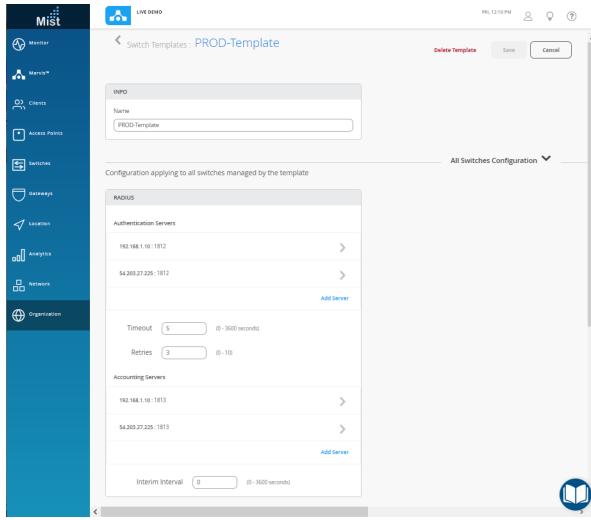
Figure 10: The Claim Switches Page

Individual switches, at the bottom of the hierarchy, can inherit all or part of the configuration defined at the organization level, and again at the network level. Of course, individual switches can also have their own unique configurations.

You can include individual CLI commands at any level of the hierarchy. These commands are then appended to all the switches in that group on an AND basis – that is, individual CLI settings are appended to the existing configuration (existing setting are not replaced).

Table 3: Hierarchical Templates

Organization Level	Network Level	Switch Level
• Networks (VLANs)	• Overrides settings defined at the organization level	• Includes settings such as device hostname, IP address, and role
• Port profiles and configuration rules	• Can include network-specific RADIUS or NTP server settings (or both)	• Overrides settings defined in a switch template at the organization or network level, such as an NTP server or a RADIUS server
• Switch matching rules	• Additional CLI commands	• Additional CLI commands
• RADIUS server configuration	-	-
• NTP server configuration	-	-
• Additional CLI commands	-	-

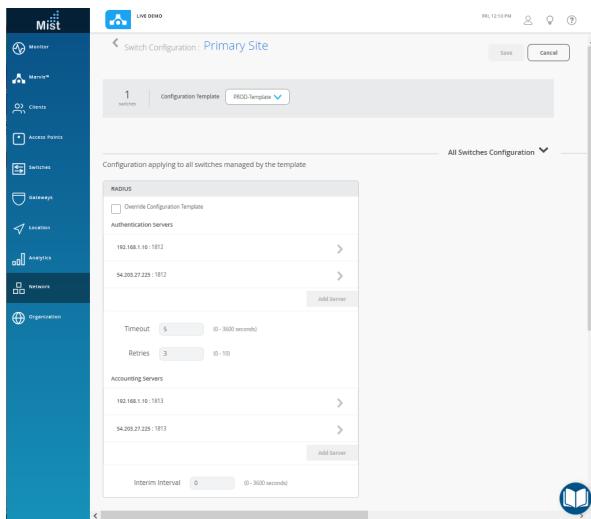

There is a lot of flexibility in how you can design templates and use them at different levels of the hierarchy. To illustrate this, we'll look at four use cases to show the interplay between configuration settings made at different levels of the hierarchy.

For each of the use cases below, start by clicking **Organization > Switch Templates** in the main Juniper Mist menu. If you don't see that option, you need a network administrator account before you can proceed.

Case 1: Organization-Level Switch Settings

Enterprise A has multiple sites, all of which use the same VLANs and ports. However, at the switch level, different switch models are deployed, and the switches don't all have the same exact port configurations or the same number of ports.

Figure 11: Organization-Level Switch Template


Template Solution

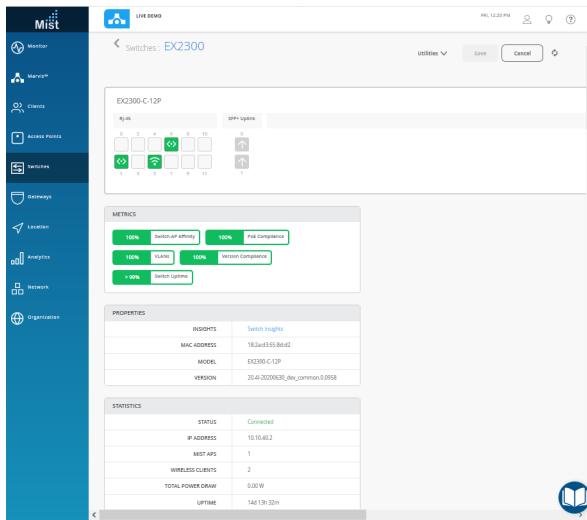
- Start with an organizational-level switch template.
- Configure the VLANs and ports, which will then be applied uniformly to all switches in each network that is included in the organization.
- Use the Port Configuration Rules feature in the organization template to create different port configuration rules for each of the different switch models found in the organization.
- Assign the organization template to all sites. Any switches, now or in the future, that are added to one of the sites will inherit the VLAN settings, and the port rules, according to the switch model.

Case 2: Network-Level Settings

Enterprise B has multiple sites, all of which use the same VLANs, ports, and port configurations. However, one network has a RADIUS server that uses 802.1X authentication (and so is different from what is configured at the organization level).

Figure 12: Network-Level Template

Template Solution


- Start with a network-level switch template.
- Because this network uses a unique RADIUS server (that is, one that is different than the one defined at the organization level), we will override that configuration with the setting specified here.

Case 3: Individual Switch Administration

Enterprise C has multiple sites, each of which is managed by a local IT team. In other words, each team wants to be able to configure the switches under their control, without inheriting any setting from the

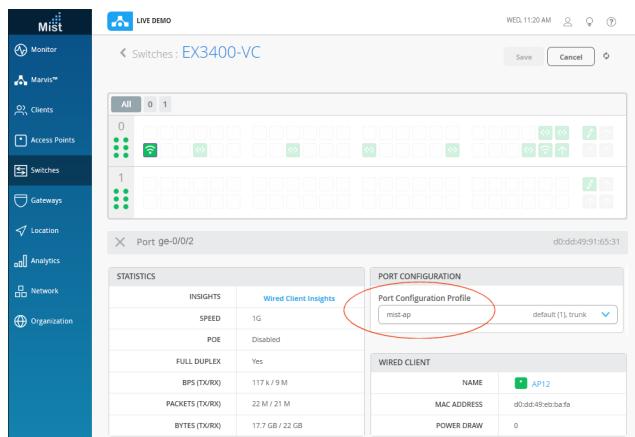
network or organization level hierarchies. As such, if a given switch has a specific VLAN or RADIUS server (such as 10.10.10.10) they can add it here.

Figure 13: Switch-Level Template

Dynamic Port Profiles

When you connect a device to a Juniper switch interface, the port can be automatically provisioned with device-appropriate port properties and network access. For example, if you connect a Juniper access point to a switch, the port will be automatically set as a trunk interface and added to selected VLANs. Likewise, if you connect a remote camera to the switch, that port can be automatically configured as an access interface and assigned a different VLAN.

This feature is called dynamic ports, and it works by leveraging the client device's Link Layer Discovery Protocol (LLDP) properties to automatically associate pre-configured port and network settings, and applying those settings to the interface. LLDP data is assigned by the device manufacturer and is typically hard coded in the device. The following LLDP properties are supported for use with dynamic port profiles:

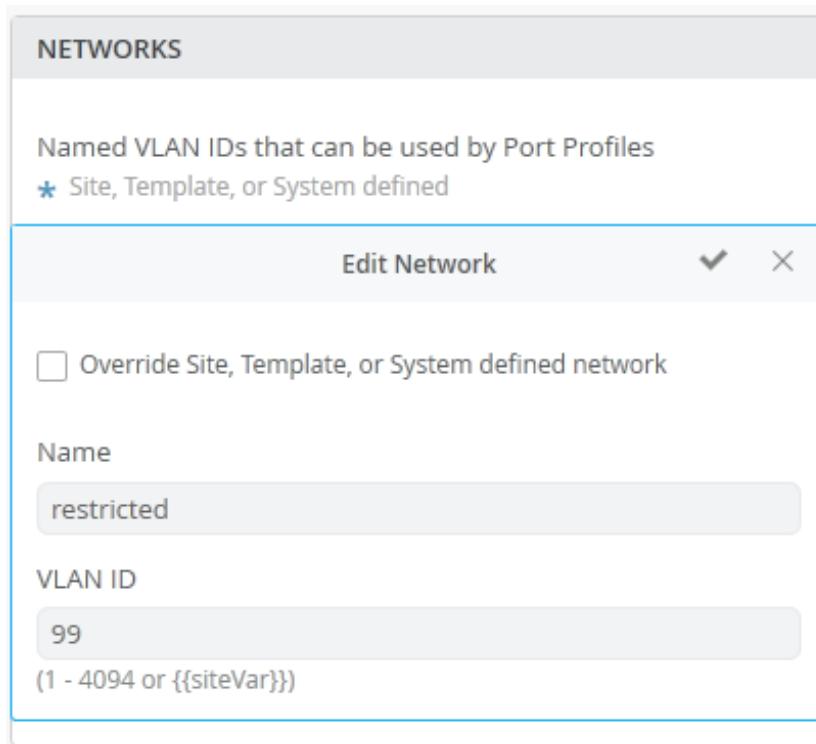

- System name
- LLDP chassis ID
- RADIUS user name

In the procedures that follow, you'll set up a dynamic port profile for interface ge-0/0/2. To do so, you'll create one or more network objects (these are used to define network access on the basis of VLAN IDs

that are already in use on the network), and you'll create at least one port profile (these include properties such as trunk or access port, untagged or native VLAN, and VoIP). Then you'll associate the port profile with a network object, and, in the dynamic port profile, associate the device LLDP with one of the port/network profiles.

After connecting a Juniper access point, the port configuration will change from the previous default, **restricted_device**, to the dynamically assigned **mist-ap** profile. [Figure 14 on page 21](#) shows what this looks like in the Juniper Mist dashboard (the Switches page).

Figure 14: Dynamically Assigned Port Profile


Note that to set up dynamic ports, the switch needs to be managed through the Juniper Mist portal. You will also need to know the LLDP properties of one or more client devices to make these configurations on your switch.

Configure Network Access

To protect against unknown or rogue devices being added to the network, Juniper recommends that you create a **restricted** network, with limited access, that can be applied by default to unknown devices. We'll do that in the steps below, but at the same time we recommend that you create a few other

network objects based on different VLAN IDs from your network so you have a selection to choose from when later creating the port profiles.

Figure 15: Restricted Network

To add a network to the configuration:

1. In the Juniper Mist portal, click **Switches** in the menu on the left and then click a switch name to open the properties dashboard for that device (if you are looking at the **Topology** view, you may need to drill down to find the switch).
2. Scroll down the page that appears to find the **Networks** configuration box, and then click **Add Network**.
3. Give the Network a name, which will be used to identify it in the list when creating the port profile.
4. Specify a VLAN ID that includes (or excludes) the network access you want for this object.
5. When you're done, click the check mark to add it to your Network list.

Add a Port Profile

Port Profiles is where you configure the settings that will be automatically applied to devices that match the LLDP information when they are connected an interface.

Figure 16 on page 24 shows two port completed profile configurations. The one on the left shows the default settings that are applied to unknown devices. The one on the right shows a typical configuration

of Juniper access points. Each port profile provides different levels of network access, as determined by which network(s) you attach.

Figure 16: Port Profiles

PORT PROFILES

Port configuration for a set of related ports
* Site, Template, or System defined

Edit Port Profile

Override Site, Template, or System defined profile

Name
restricted_device

Port Enabled
 Enabled Disabled

Mode
 Trunk Access

Port Network (Untagged/Native VLAN)
restricted 99

VoIP Network
None

Use dot1x authentication

Speed
Auto

Duplex
Auto

Mac Limit
0 (0 - 16383, 0 => unlimited)

PoE
 Enabled Disabled

STP Edge
 Yes No

PORT PROFILES

Port configuration for a set of related ports
* Site, Template, or System defined

Edit Port Profile

Override Site, Template, or System defined profile

Name
mist-ap

Port Enabled
 Enabled Disabled

Mode
 Trunk Access

Port Network (Untagged/Native VLAN)
default 1

VoIP Network
None

Trunk Networks

All networks

camera_network (30) | | corp_network (40) | | default (1) |
iot_network (20) | |

Speed
Auto

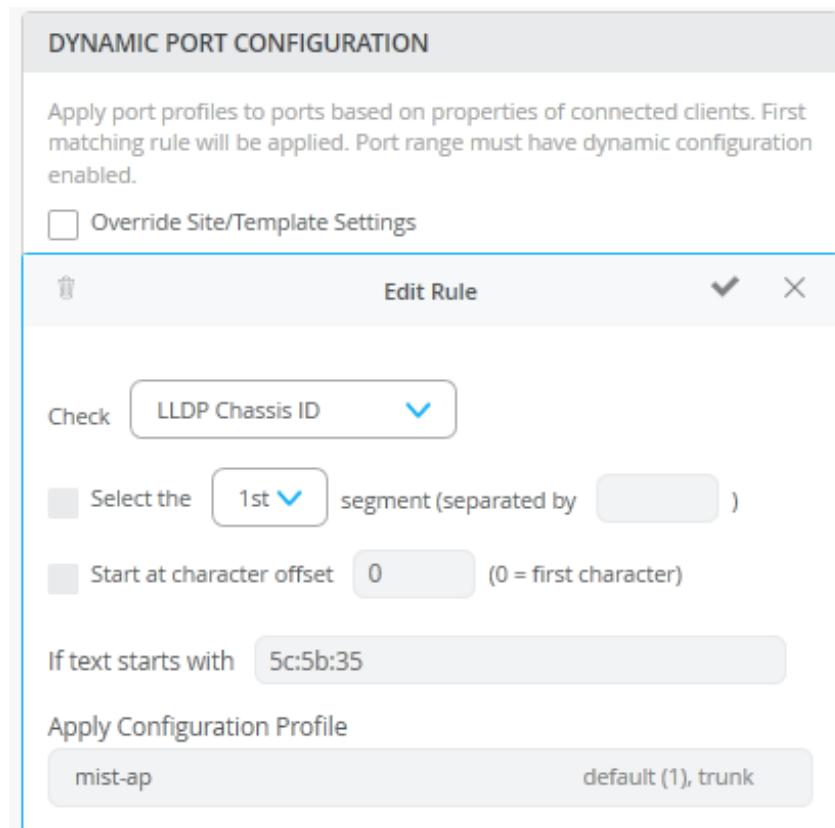
Duplex
Auto

Mac Limit
0 (0 - 16383, 0 => unlimited)

PoE
 Enabled Disabled

STP Edge
 Yes No

To add a port profile to the configuration:


1. Under Port Profiles, click Add Profile.
2. Give the Profile a name, which will be used to identify it in the list when defining the dynamic port configuration.
3. Fill out the rest of the fields to create a template of the properties you want. In particular, choose whether the interface should be [Trunk or Access](#). For Juniper access points, use Trunk.
4. Assign a network to the profile.
5. When you're done click the check mark to add this network object to the list of port profiles.

Configure a Dynamic Port

To configure a dynamic port, you define a LLDP string and match rules in the dynamic port profile. These rules are evaluated so that the first match to occur is applied. Wild cards are supported. To get the level of differentiation you may need to identify a given device, you can specify an offset for the evaluation start point, or specify a particular LLDP segment to use for the match.

Figure 17 on page 26 shows an example of the configurations. Whenever a Juniper access point is connected to a specified port on the switch, the port is automatically provisioned as a trunk port, and the device granted default network access.

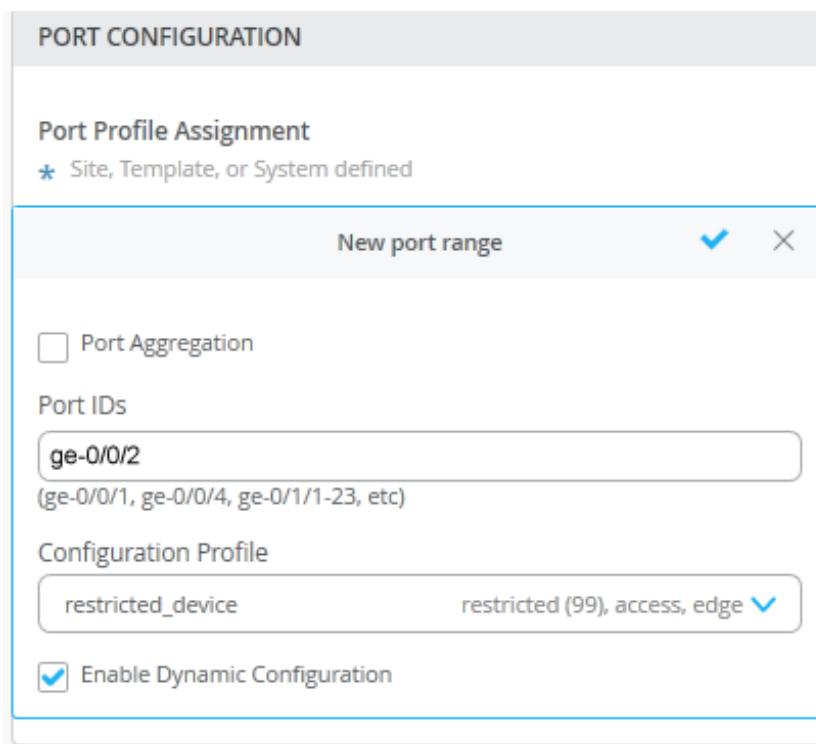
Figure 17: Dynamic Port

The following steps use the Chassis ID for a Juniper access point, such as can be found by running the `show lldp neighbors` command from the Junos OS CLI:

```
user@device> show lldp neighbors
Local Interface  Parent Interface  Chassis Id          Port info      System Name
ge-0/0/2          -              00:00:5E:00:53:e1  ETH0          AP43-2
ge-1/0/4          -              00:00:5E:00:53:da  ETH0          AP-41-EX-switch
```

1. On the same page in the Juniper Mist portal that we have been working, scroll to Dynamic Port Configuration.
2. Click Add Rule to open the configuration (a name will be automatically given to the new rule when you click the check mark to save it).
3. Select LLDP Chassis ID from the drop down.

4. In the **If text starts with** field, type the first three octets of the Chassis ID:


00:00:5E

5. From the **Apply Configuration Profile** drop-down list, choose the configuration profile that you want to automatically associate with devices that match this profile.
6. When you're done click the check mark to add this profile dynamic port configurations.

Associate Ports

The last thing to do is to associate the profile you just created with one or more ports on the switch so that only if a recognized device is connected to an appropriate port is the profile be applied.

Figure 18: Port Configuration

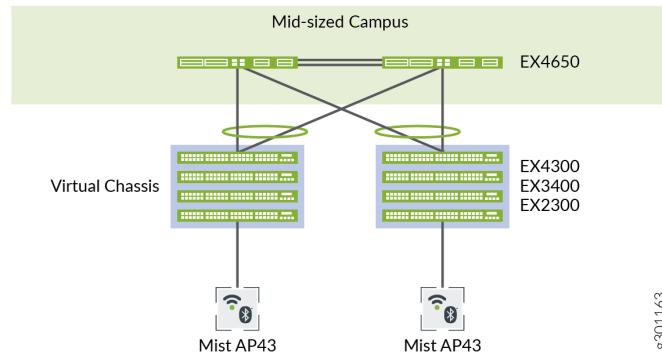
To add a port configuration:

1. Under Port Configuration, click Add Port Range. These ports can be listed individually, or given as a range.

2. Use the interface name to specify the port, or range of ports, that you want this rule to cover (the format for individual, sequence, and a range are shown here):

```
ge-0/0/2
ge-0/0/1,ge-0/0/3,ge-0/0/5,ge-0/0/7,ge-0/0/9
ge-0/0/1-12
```

3. From the **Apply Configuration Profile** drop-down list, choose the configuration profile that you want to associate with this port range.
4. When you're done click the check mark to add the port definition to the list of port ranges.
5. To see the port profile status after the dynamic profile is assigned, click **Switches** the in the dashboard menu and then the switch name that you just configured.
6. Click the port you configured (ge-0/0/2 in our example), to view the port Statistics and Port Configuration. An example is shown in [Figure 14 on page 21](#).
7. (Optional) Click **Monitor > Service Levels** the in the dashboard menu and then scroll down the list of **Switch Events**, to see the **Dynamic Port Profile Assigned** event for the changes you just made.


With the procedures above completed, whenever a new device is connected to a port on the switch that is covered by one of the dynamic port profiles, the profile will read the device's LLDP, and if it finds a match, automatically apply the associated port properties and network access to the port.

Virtual Chassis

We recommend using Virtual Chassis (VC). With VC, you can combine multiple EX Series Switches so they act as a single logical device with in the Juniper Mist cloud (a Wired Assurance subscription is required for each physical EX Series Switch in your VC deployment). Using VC eliminates the risk of loops, the need for legacy redundancy protocols such as spanning tree and VRRP, and the time required for individual device management. In core/distribution deployments, you can connect to the Virtual

Chassis using link aggregation group (LAG) uplinks, which then has the additional benefit of the member switches providing device-level redundancy for the link in case of device failure.

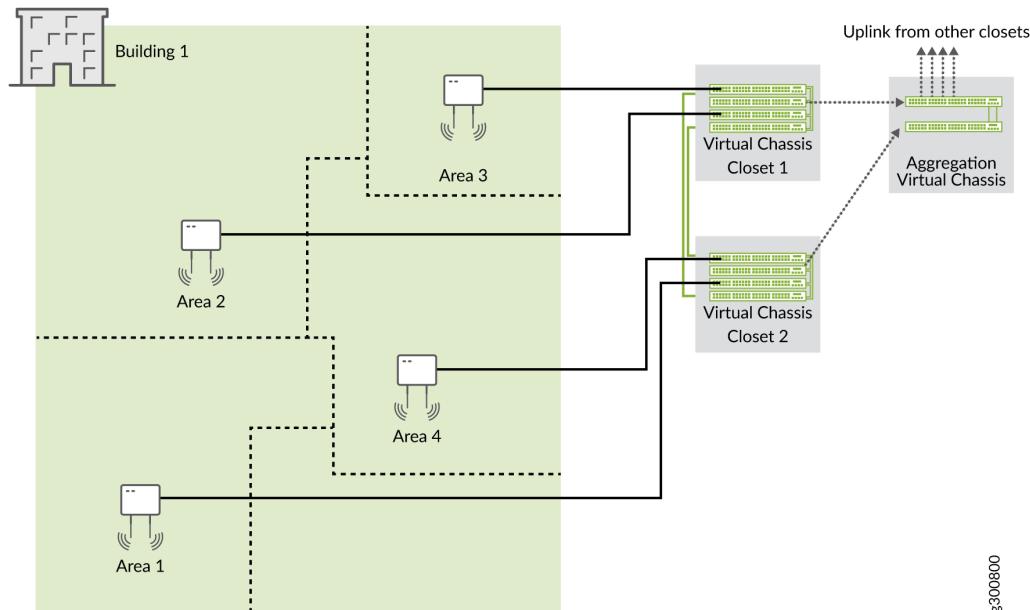
Figure 19: A Typical Virtual Chassis Setup

A Virtual Chassis can include from two to ten switches, with each member switch having however many ports. Such a physical configuration can provide better resilience in case one member switch goes down; there are simply more surviving switches available to take up the redistributed load. The trade-off, though, is that those switches require both space and power.

Virtual Chassis for the Juniper Mist cloud is supported for the switches shown in [Table 4 on page 29](#). The switch model is accompanied by the maximum number of members allowed in the Virtual Chassis.

Table 4: Cloud-Ready EX Series Switches

Switch	Maximum Members
EX2300	4
EX3400	10
EX4300	10
EX4400	10
EX4600	10


Table 4: Cloud-Ready EX Series Switches (*Continued*)

Switch	Maximum Members
EX4650	2

Design Considerations for Virtual Chassis

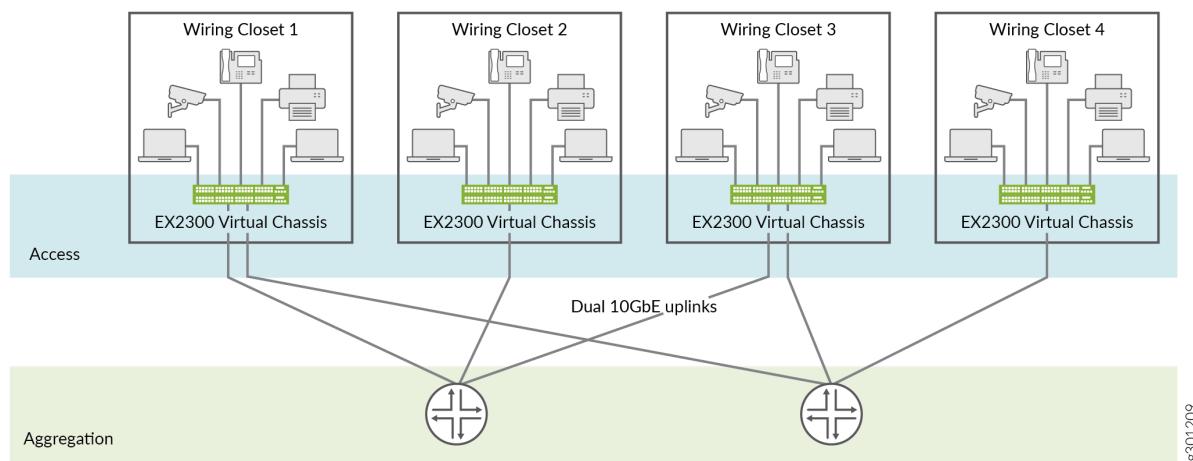
We recommend that you physically distribute your Juniper access points across a floor in the network operations center (NOC) so that they connect to multiple switches in a virtual stack. Doing so provides better redundancy and is a more robust design for handling power-supply-related hardware failure.

Figure 20: Virtual Chassis Setup in a NOC

For example, let's say you want to deploy a solution that includes 96 ports. The two main options for doing so are:

- Use two EX4300-48P switches, with one switch serving as the primary and one as backup. The advantages here are a compact footprint and cost effectiveness. The main disadvantage is that the loss of one switch can impact 50 percent of your users.

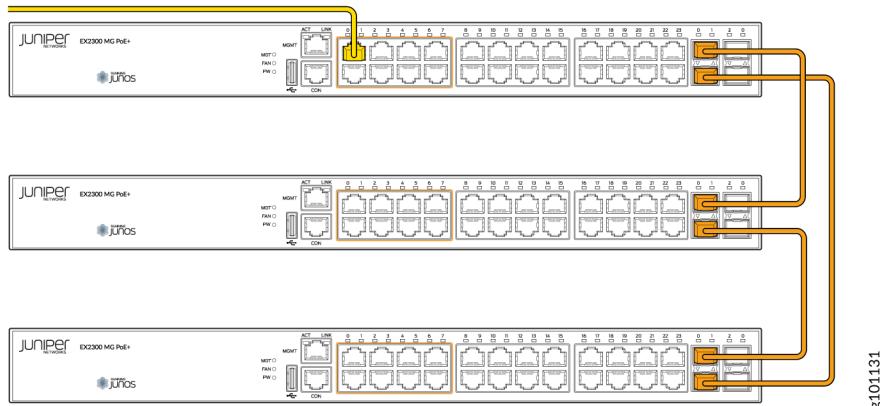
- Use four EX4300-24P switches, with one switch serving as the primary, one as backup, and two switches serving as line cards. The advantages here are higher availability (the loss of one switch only affects 25 percent of users), and the fact that uplinks are not affected by a switch failure (provided that the failed switch did not include any uplinks). The main disadvantage is that you need more space, power, and cost to support the equipment.


Regardless of the options you go with, if you do plan to leverage one or more Virtual Chassis in your deployment, we recommend that you configure the primary and backup switches in the Virtual Chassis so that they are in different physical locations in the NOC. The member devices of the Virtual Chassis should be likewise distributed so that no more than half are dependent on the same power supply or other single point of failure, and they should be evenly spaced by a member hop in the Virtual Chassis.

Forming A Virtual Chassis (EX2300 Series Switches)

To form a Virtual Chassis, all member switches need to be the same model and running the same version of Junos OS. You'll need management access to the Juniper Mist portal, and physical access to the switches for cabling.

A Wired Assurance subscription is required for each physical EX Series switch in your VC deployment.


Figure 21: Virtual Chassis for EX2300

g301209

In this procedure, you use the Juniper Mist portal to select the switches you want to form a VC, configure those switches (by setting the role and interface ID), and then making the physical connections. Once you've connected the cables, it takes about 10 to 15 minutes for the VC to form.

Figure 22: Virtual Chassis Connections for EX2300

1. For any switches that have been previously deployed, you need to clear any old configuration by running and then committing the following command: `request system zeroize`.
2. If needed, power on the EX Series switch, and connect it to the Internet using a revenue port (don't connect the Virtual Chassis cables yet; you'll do this in step 7). The switch will automatically receive ZTP updates from the cloud, including the DNS settings it needs.
3. Adopt the switch in the Juniper Mist portal as described here: ["How to Activate a Greenfield Switch" on page 7](#).

4. Select the switches you want to include in the Virtual Chassis. When you do, a **More** button appears in the top right corner.

Figure 23: Adding Switches to a Virtual Chassis

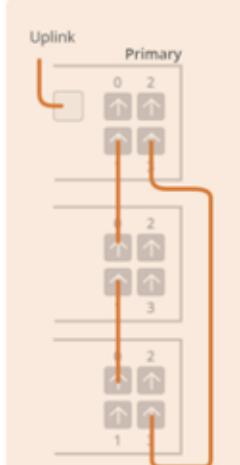
Status	Name	IP Address	Mist APs	Wired Clients	Wireless Clients	Model
Connected	ex4300-LD-TEST1	10.2.15.173	0	2	0	EX4300-48T
Unknown	ICX7450-48P Switch	10.2.2.15	1	--	0	--
Disconnected	ld-cup-idf-a-sw1	--	0	--	0	EX2300-C-12P
Connected	ld-cup-idf-a-sw2	192.168.9.140	2	7	0	EX3400-48P
Connected	ld-cup-idf-b-sw1	192.168.200.16	1	8	0	EX3400-48P
Connected	ld-cup-idf-c-sw1	10.2.12.242	2	6	0	EX3400-48P
Connected	ld-cup-idf-d-desktop	192.168.2.203	0	4	0	EX2300-C-12P
Connected	ld-cup-idf-d-sw1_1	192.168.2.61	2, 0	11	0	EX2300-48P
Connected	ld-cup-idf-d-sw4400	192.168.2.133	0	--	0	EX4400-48T

5. Click **Form Virtual Chassis** from the drop-down menu to open the **Form Virtual Chassis** window, where you can choose which switch will be the primary and which the backup.

Form Virtual Chassis BETA X

1. Please connect uplink port to the master switch.
 2. Select the Virtual Chassis ports you used below.
 3. Select which switch is the Master and which is the Backup.

Switch


Mist-ex2300-01

Port IDs

xe-0/1/0
(xe-0/1/0, xe-0/1/1, xe-0/1/0-4, etc)

Tip for the Master Switch: Please ensure you have uplink connectivity from the master switch.

Uplink

Visual Example

Switch

Mist-ex2300-02

Port IDs

xe-0/1/0
(xe-0/1/0, xe-0/1/1, xe-0/1/0-4, etc)

Add Switch

Primary

Mist-ex2300-01

Backup (Optional)

Mist-ex2300-02

Form Virtual Chassis Cancel

6. For both the primary and backup switch, specify the Port ID of the Virtual Chassis interface used on each switch. When done, click **Form Virtual Chassis**.

7. After you've configured the VC setting and clicked the **Form Virtual Chassis** button, you can physically connect the VC cables. The interface LED should light up to confirm the physical connection.

As noted, it takes about 10 to 15 minutes for the VC to form after connecting the cables. You'll be notified in the portal once the VC has been formed. Before that, if you select a member switch in the portal, you'll see a message that the VC is forming.

Adding A Switch To The Virtual Chassis

Adding a member switch to a VC follows essentially the same procedure as described in the previous section. You can have the new switch be the primary, the backup, or just another switch in the VC.

The switches must all be the same model and running the same Junos OS version, and you need to make the physical connections after you do the VC settings in the portal. When done, the new VC will finish forming in about three to five minutes.

1. In the Switches window of the Juniper Mist portal, select the existing VC. The **More** button appears, this time with an option to **Edit Virtual Chassis**.
2. Click **Edit Virtual Chassis** in the drop-down menu.

3. In the window that opens, click the **Add Switch** button and specify the Port ID of the new member.

Figure 24: Adding A Switch To The VC

Edit Virtual Chassis BETA

1. Please connect uplink port to the master switch.
 2. Select the Virtual Chassis ports you used below.
 3. Select which switch is the Master and which is the Backup.

Switch

Current Port IDs: **xe-0/1/0**

Port IDs

(xe-0/1/0, xe-0/1/1, xe-0/1/0-4, etc)

Switch

Current Port IDs: **xe-1/1/0**

Port IDs

(xe-0/1/0, xe-0/1/1, xe-0/1/0-4, etc)

Switch

Port IDs

(xe-0/1/0, xe-0/1/1, xe-0/1/0-4, etc)

Tip for the Master Switch: Please ensure you have uplink connectivity from the master switch.

Visual Example

Add Switch

Primary

Backup (Optional)

Update **Cancel**

4. Click the **Update** button to apply your changes.
5. You can confirm your changes by clicking the switch name to display the VC member switches and properties.

Figure 25: VC Member Switches

VC Member	Mac Address	IP Address	Model	Version	Uptime	Status
0 (Primary)	f4:bf:a8:06:96:b3	192.168.1.9	EX2300-C-12P	20.3R1-S1.1	2h 44m	Connected
1 (Backup)	c8:fe:6a:f6:28:fc	192.168.1.9	EX2300-C-12P	--	2h 17m	Connected
2 (Linecard)	e8:a2:45:3e:64:fe	192.168.1.9	EX2300-C-12P	--	3h 5m	Connected

Removing A Switch From The Virtual Chassis

There is no **Delete** button that will directly remove a member switch from its VC. Instead, the way to remove a switch from its VC is to disconnect the VC cable from each switch. The Juniper Mist portal will then report the status for that switch as "not present" in the VC.

You can then open the **Edit Virtual Chassis** window, and click the "trash" icon that appears next to the broken link representing the newly disconnected member VC.

Virtual Chassis on EX3400 and EX4300

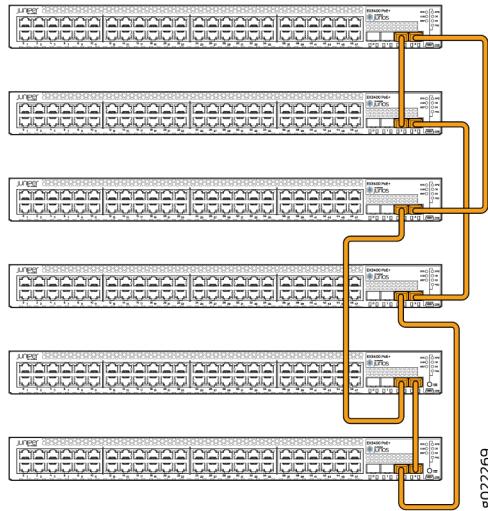
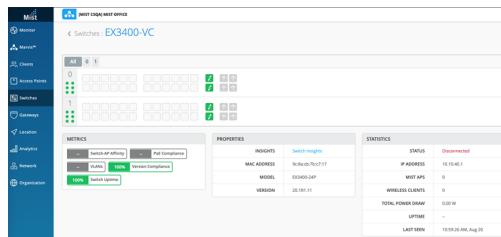

Switches in a Virtual Chassis must all be Juniper Mist cloud ready. You will need physical access to the switches for cabling, and management access to both the Junos OS CLI and Juniper Mist portal.

Figure 26: Virtual Chassis for EX4300

Note that the second switch in the Virtual Chassis is automatically assigned the backup role, and its LED will blink when connected. All remaining switches automatically assume line-card roles, and their MST LEDs will remain dark.

Figure 27: Virtual Chassis for EX3400

In the process described below, you start with a switch that is available from the Juniper Mist portal. Then you log in to the switch using the Juniper Mist portal and configure its Virtual Chassis interfaces. From there, you make the physical connection from that switch to the next one in the Virtual Chassis group, propagate the relevant settings, and repeat until all the Virtual Chassis members are connected.


1. Power on each EX Switch, but do not connect any Ethernet or Virtual Chassis cables yet. Wait until you see the **MST** LED is lit and not blinking on any of the switches.
2. Physically connect the switch to the Internet using either a management or revenue port. The switch will automatically receive ZTP updates from the cloud, including the Virtual Chassis configuration. In the Juniper Mist portal, the switch should be visible, and with a green status.
3. Access the switch from the Juniper Mist portal using the CLI shell, and run the following commands to verify that the Virtual Chassis ports were successfully configured (all the switches in the Virtual Chassis should be listed in the results).

```
show virtual-chassis
```

4. Back at the switches, connect a Virtual Chassis cable from to the next switch and confirm that the LED on the Virtual Chassis ports are active.

5. Repeat Step 2 through step 4 until all switches have been added to Virtual Chassis and then connect the Virtual Chassis port redundancy cable.

Figure 28: Virtual Chassis for EX4300

When you are finished, the Virtual Chassis will be provisioned for the Juniper Mist cloud and the details of the EX Series switch cluster will be visible in the Juniper Mist portal.

```
root@EX3400-VC> show virtual-chassis
Virtual Chassis ID: c3d2.5525.cd30
Virtual Chassis Mode: Enabled
Mstr          Mixed Route Neighbor List
Member ID  Status  Serial No    Model      prio  Role    Mode  Mode  ID
Interface
0 (FPC 0)  Prsnt  NW3619450867  ex3400-24p  128   Master*  N    VC   1
vcp-255/1/0
                                         1
vcp-255/1/1
1 (FPC 1)  Prsnt  NW3619451026  ex3400-24p  128   Backup   N    VC   0
vcp-255/1/0
                                         0
vcp-255/1/1
Member ID for next new member: 2 (FPC 2)
```

RELATED DOCUMENTATION

[Juniper Virtual Chassis Best Practices Guide](#)

Day 2: Wired User Service Level Expectations, Switch Events, and Marvis Actions

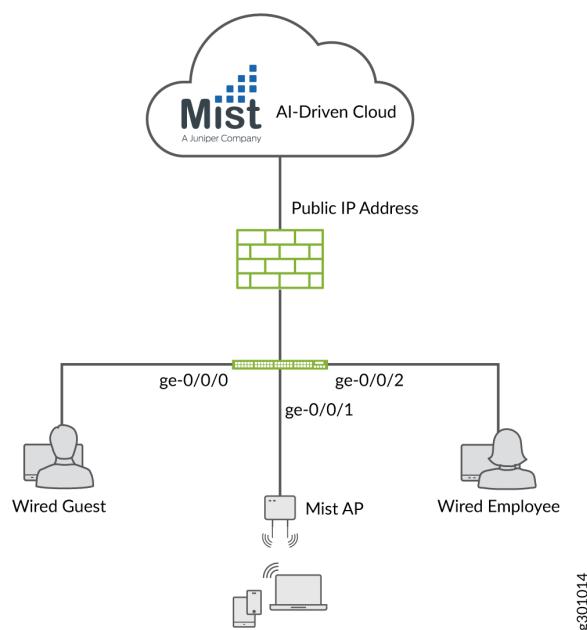
The Juniper AI-driven network includes **Wired Assurance Service**, which provides automated operations and service levels to Juniper enterprise access switching using the Juniper Mist cloud; **Health Statistics for Wired Switches**, which provides visibility into EX Series switch details and allows you to find missing VLANs, identify outages, and get alerts on critical metrics; and **Marvis Actions**, which is a framework for self-driving networks that converts AI-driven insight into actionable tasks.

Use Marvis to list wired clients connected to the network and troubleshoot any corresponding issues that it identifies, such as speed mismatches, missing VLANs, switch health, and anomaly detection. Marvis helps identify the root cause of issues across various IT domains (WLAN, LAN, WAN, and security), and automatically resolve issues within its purview.

Manual EX Series Switch Configurations

IN THIS SECTION

- Requirements | [42](#)
- Overview | [42](#)
- Set Up the EX Series Switch | [43](#)
- Configure the Guest and Employee Networks | [44](#)
- Enable PoE+ on the Interfaces | [47](#)
- Enable Junos OS Link Layer Discovery Protocol | [50](#)
- Enable the Switch to Receive DHCP or BOOTP Requests | [52](#)
- Enable 802.1x Authentication on the Switch Ports | [57](#)
- Manage Logs in EX Series Switches | [59](#)
- (Optional) Automate Switch Port Provisioning | [60](#)


Requirements

All the features you need to set up interoperability between Juniper access points with EX Series switches are available in Junos OS Release 18.4R2.7 and later. The procedures are the same for any Juniper EX2300, EX3400 or EX4300 Ethernet Switch, and any Juniper access points (AP43, AP41, AP 21, and AP61).

Overview

To manually connect Juniper access points to an EX Series switch, start by configuring the switch and then move to the Juniper Mist portal on the cloud to finish the connection details. Once connected, you can also SSH back to the switch from the Juniper Mist portal to make any additional configuration settings you might have.

Figure 29: Switch Connections

Set Up the EX Series Switch

IN THIS SECTION

- [Before You Begin | 43](#)
- [Configure a Hostname and Password on the EX Series Switch | 43](#)

Before You Begin

Configure a Hostname and Password on the EX Series Switch

Step-by-Step Procedure

The first task is to configure some system settings on the EX Series switch, including a hostname and password.

1. Log in to the device CLI and type `configure` to start configuration mode, which allows you to edit the configuration.
2. In the CLI, enter the following commands (note that you are prompted to create a password as part of the second command).

```
set system host-name Switch-1
set system root-authentication plain-text-password
```

3. Next, add a DNS server so the switch can resolve the IP addresses obtained from the Juniper Mist portal.

```
set system name-server ip-address
```

4. Configure your time zone and add an NTP server to the switch.

```
set system time-zone UTC
set system ntp server ip-address
```

5. For any EX Series switches that are acting as a DHCP client, disallow automatic software downloads.

```
delete chassis auto-image-upgrade
```

6. To allow remote administration of the EX switch from the Juniper Mist portal, you need to enable root login over SSH.

```
set system services ssh root-login allow
```

Configure the Guest and Employee Networks

IN THIS SECTION

- [Procedure | 45](#)

On EX Series switches, you can configure a port interface as either a Layer 2 access port, a Layer 2 trunk port, or a Layer 3 interface port. A Layer 2 trunk port is typically used when there is traffic from multiple VLANs connecting to it. To differentiate the separate VLAN flows, packets entering the port are tagged with a VLAN identifier (as defined in IEEE 802.1Q) of your choice.

You can connect the Juniper access points to a tagged port or untagged port configured for native VLAN. This NCE uses untagged (also known as *native*), because Juniper access points boot on untagged VLANs by default.

To protect the LAN against broadcast storms, we'll also enable [storm control](#) on the interfaces (briefly, storm control is a feature that prevents broadcast storms by automatically dropping packets when traffic-levels exceed a set limit).

Procedure

Step-by-Step Procedure

1. Configure the VLAN IDs for the management, guest, and employee networks using the following VLAN IDs: VLAN 180, VLAN 188, and VLAN 189, respectively.

```
set vlans management vlan-id 180
set vlans guest vlan-id 188
set vlans employee vlan-id 189
```

2. To locally route between VLANs or subnets on the local switch, you need integrated routing and bridging (IRB) interfaces. We create these here, and also assign each IRB an IP address for connecting to the Juniper Mist portal.

```
set interfaces irb unit 180 family inet address 192.168.180.1/24
set interfaces irb unit 188 family inet address 192.168.188.1/24
set interfaces irb unit 189 family inet address 192.168.189.1/24
```

3. Next you need to attach each of the IRBs that you just created to its respective VLAN.

```
set vlans management 13-interface irb.180
set vlans guest 13-interface irb.188
set vlans employee 13-interface irb.189
```

4. Associate the physical interfaces with their respective VLANs, and apply storm control. For the guest network, this example uses ge-0/0/0 configured as an **access** interface. The employee network uses ge-0/0/2, also as an **access** interface.

The interface that the Juniper access points will connect to is ge-0/0/1, which is configured as a **trunk** interface. Set the management VLAN as a native (untagged) interface because an access point boots on an untagged VLAN by default.

```
set interfaces ge-0/0/0 unit 0 family ethernet-switching interface-mode access
set interfaces ge-0/0/0 unit 0 family ethernet-switching vlan members guest
set interfaces ge-0/0/0 unit 0 family ethernet-switching storm-control default
set interfaces ge-0/0/1 native-vlan-id 180
set interfaces ge-0/0/1 unit 0 family ethernet-switching interface-mode trunk
set interfaces ge-0/0/1 unit 0 family ethernet-switching vlan members employee
```

```
set interfaces ge-0/0/1 unit 0 family ethernet-switching vlan members guest
set interfaces ge-0/0/1 unit 0 family ethernet-switching vlan members management
set interfaces ge-0/0/1 unit 0 family ethernet-switching storm-control default
set interfaces ge-0/0/2 unit 0 family ethernet-switching interface-mode access
set interfaces ge-0/0/2 unit 0 family ethernet-switching vlan members employee
set interfaces ge-0/0/2 unit 0 family ethernet-switching storm-control default
```

5. Create a default storm control profile to support the storm-control settings in the previous step.

```
set forwarding-options storm-control-profiles default all
set forwarding-options storm-control-profiles default action-shutdown
```

6. Add a default gateway to the switch. Use the IP address of your next-hop router.

```
set routing-options static route 0.0.0.0/0 next-hop gateway-ip
```

7. To show your wired clients in the Juniper Mist portal, you need to enable dhcp-security on the IRB interfaces.

```
set vlans employee forwarding-options dhcp-security group trusted-group overrides trusted
set vlans employee forwarding-options dhcp-security group untrusted-group overrides untrusted
set vlans guest forwarding-options dhcp-security group trusted-group overrides trusted
set vlans guest forwarding-options dhcp-security group untrusted-group overrides untrusted
set vlans management forwarding-options dhcp-security group trusted-group overrides trusted
set vlans management forwarding-options dhcp-security group untrusted-group overrides untrusted
```

8. Check your settings for validity by running the Junos OS `commit check` command, or run the following `show` commands to display the configuration as entered (the vlan information included below appears only after the configuration has been committed).

```
show interfaces ge-0/0/1
```

```
user@Switch-1# show interfaces ge-0/0/1
native-vlan-id 180;
unit 0 {
    family ethernet-switching {
```

```
interface-mode trunk;
vlan {
    members [ employee guest management ];
}
storm-control default;
```

```
run show vlans
```

```
user@Switch-1# run show vlans
```

Routing instance	VLAN name	Tag	Interfaces
default-switch	employee	189	ge-0/0/1.0 ge-0/0/2.0
default-switch	guest	188	ge-0/0/0.0 ge-0/0/1.0
default-switch	management	180	ge-0/0/1.0
default-switch	management	NA	

Enable PoE+ on the Interfaces

IN THIS SECTION

- [Procedure | 48](#)

Procedure

Step-by-Step Procedure

The next task is to enable PoE+ on the interfaces. Start by checking what version of the controller software the switch is running. (A more recent version might be on the device as part of a Junos OS upgrade, and if so, you should upgrade the controller software.) You can find instructions for doing the upgrade in this document: [Upgrading the PoE Controller Software](#).

1. Find what version of the controller software the switch is running.

```
run show poe controller
```

```
user@Switch-1#run show poe controller
Controller Maximum Power Guard Management Status Lldp
index power consumption band
0** 146W 0.00W 0W Class AT_MODE Priority
**New PoE software upgrade available.
Use 'request system firmware upgrade poe fpc-slot <slot>
This procedure will take around 10 minutes (recommended to be performed during maintenance)
```

To stay well within the capacity of the power supply (single or dual) provisioned on most EX Series switches, we recommend that you budget 75 percent or less of the switch ports for (physically) connecting 802.11at PoE capable Juniper access points.

2. Enable PoE+ on the switch interfaces intended for Juniper access point connections.

```
set poe interface all
set poe interface ge-0/0/1 priority high
set poe interface all telemetries
```

3. Verify your configuration settings (the details below appear only after the configuration has been committed).

```
run show poe interface ge-0/0/1
```

```
user@Switch-1#run show poe interface ge-0/0/1
PoE interface status:
```

```

PoE interface : ge-0/0/1
Administrative status : Enabled
Operational status : ON
Operational status detail : IEEE PD Detected
FourPair status : Disabled
Power limit on the interface : 19.5W (L)
Priority : Low
Power consumed : 7.8W
Class of power device : 4
PoE Mode : 802.3at
(L) LLDP-negotiated value on the port.

```

4. Enable PoE power monitoring on the switch to view real-time statistics including power consumption, and to support port-level telemetry. Do this for all switch ports, or at least for those connecting to a Juniper access point.

```
set poe interface all telemetries interval 10
```

5. Run the following commands to view PoE statistics (the details shown below appear only after the configuration has been committed).

```
run show poe interface
```

```

user@Switch-1#run show poe interface

```

Interface	Admin status	Oper status	Pair/Mode	Max power	Priority	Power consumption	Class
ge-0/0/0	Enabled	OFF	2P/AT	15.4W	Low	0.0W	not-applicable
ge-0/0/1	Enabled	OFF	2P/AT	15.4W	Low	0.0W	not-applicable
ge-0/0/2	Enabled	ON	2P/AT	19.5W(L)	High	11.2W	4
ge-0/0/3	Enabled	ON	2P/AT	25.5W(L)	High	11.0W	4
ge-0/0/4	Enabled	OFF	2P/AT	15.4W	Low	0.0W	not-applicable
ge-0/0/5	Enabled	OFF	2P/AT	15.4W	High	0.0W	not-applicable
ge-0/0/6	Enabled	OFF	2P/AT	15.4W	Low	0.0W	not-applicable
ge-0/0/7	Enabled	OFF	2P/AT	15.4W	Low	0.0W	not-

```

applicable
  ge-0/0/8  Enabled   OFF    2P/AT   15.4W   Low    0.0W   not-
applicable
  ge-0/0/9  Enabled   OFF    2P/AT   15.4W   Low    0.0W   not-
applicable
  ge-0/0/10  Enabled  OFF    2P/AT   15.4W   Low    0.0W   not-
applicable
  ge-0/0/11  Enabled  OFF    2P/AT   15.4W   Low    0.0W   not-
applicable
  (L) LLDP-negotiated value on the port.

```

Enable Junos OS Link Layer Discovery Protocol

IN THIS SECTION

- [Procedure | 50](#)

Procedure

Step-by-Step Procedure

Have the switch send Junos OS Link Layer Discovery Protocol (LLDP) information to the Juniper Mist cloud. Although LLDP is enabled by default on all interfaces on the switch, you need to configure it as shown here so it works with the Juniper Mist portal. (LLDP, as described in the IEEE 802.1AB specification, is a standards-based method of exchanging device capabilities.)

1. Enter the following commands to configure LLDP (using an IP address appropriate for your network).

```

set protocols lldp interface all
set protocols lldp-med interface all
set protocols lldp port-id-subtype interface-name
set protocols lldp management-address 192.168.180.1

```

2. View the LLDP statistics (the details shown below appear only after the configuration has been committed).

```
run show lldp neighbors
```

```
user@Switch-1# run show lldp neighbors
Local Interface    Parent Interface    Chassis Id          Port info      System Name
ge-0/0/2           -                  00:00:5E:00:53:00  ETH0
```

3. Query the Junos OS switching table to see if the Juniper access points show up in the MAC table. In the example output, the management VLAN appears, which confirms that they do.

```
run show ethernet-switching table
```

```
user@Switch-1# run show ethernet-switching table

MAC flags (S - static MAC, D - dynamic MAC, L - locally learned, P - Persistent static, C - Control MAC
          SE - statistics enabled, NM - non configured MAC, R - remote PE MAC, O - ovsdb MAC)

Ethernet switching table : 1 entries, 1 learned
Routing instance : default-switch
      Vlan          MAC          MAC      Age  Logical
      NH          RTR
      name        address      flags      interface
Index     I
      management  00:00:5E:00:53:00  D        -      ge-0/0/1.0
      0          0
```

Enable the Switch to Receive DHCP or BOOTP Requests

IN THIS SECTION

- [Procedure | 52](#)
- [Verify | 54](#)

Procedure

Step-by-Step Procedure

You enable the switch to receive DHCP or BOOTP requests so it can receive broadcast messages, sent from clients and associated to the Juniper access points, and then relay these requests to a DHCP or BOOTP server. This is especially important for wireless clients so they can reach a given remote DHCP or BOOTP server even though neither the access point nor clients have Layer 2 adjacency with the DHCP server.

1. Enable BOOTP requests on the switch, by entering the following command.

```
set forwarding-options helpers bootp server IP-address
```

(You must explicitly type “bootp” for the command to appear, that is, you can’t just use the tab or space key.)

2. You can also configure the switch to act as a DHCP server. Doing so is useful for sandbox deployments, but in a production environment, we recommend that you use an external DHCP server (that is, not DHCP on the switch). The following commands create DHCP pools for the guest, employee, and management VLANs, and also for any Juniper access points and associated clients.

```
set access address-assignment pool employee family inet network 192.168.188.0/24
set access address-assignment pool employee family inet range range1 low 192.168.188.10
set access address-assignment pool employee family inet range range1 high 192.168.188.50
set access address-assignment pool employee family inet dhcp-attributes name-server 8.8.8.8
set access address-assignment pool employee family inet dhcp-attributes router 192.168.188.1
set access address-assignment pool guest family inet network 192.168.189.0/24
set access address-assignment pool guest family inet range range1 low 192.168.189.10
set access address-assignment pool guest family inet range range1 high 192.168.189.50
```

```

set access address-assignment pool guest family inet dhcp-attributes name-server 8.8.8.8
set access address-assignment pool guest family inet dhcp-attributes router 192.168.189.1
set access address-assignment pool management family inet network 192.168.180.0/24
set access address-assignment pool management family inet range range1 low 192.168.180.10
set access address-assignment pool management family inet range range1 high 192.168.180.50
set access address-assignment pool management family inet dhcp-attributes name-server 8.8.8.8
set access address-assignment pool management family inet dhcp-attributes router 192.168.180.1
set system services dhcp-local-server group guest interface irb.188
set system services dhcp-local-server group employee interface irb.189
set system services dhcp-local-server group management interface irb.180

```

3. (Optional) Configure a proxy URL using DHCP option 43. This step is provided to support the case where you have Juniper access points that need to connect to the EX Series switch using a proxy server. The first set of commands shows how to add the IP address of the proxy in plain text for the guest, employee, and management VLANs. The second does the same for hex addresses (you only need to run one). See [Proxy URL Configuration via DHCP Option 43 with Microsoft Windows Server](#) for more information.

```

edit access address-assignment pool employee
set family inet network 192.168.188.0/24 dhcp-attributes option 43 string
ip:20.0.0.10,20.0.0.11

edit access address-assignment pool guest
set family inet network 192.168.189.0/24 dhcp-attributes option 43 string
ip:20.0.0.10,20.0.0.11

edit access address-assignment pool management
set family inet network 192.168.180.0/24 dhcp-attributes option 43 string
ip:20.0.0.10,20.0.0.11

```

or

```

edit access address-assignment pool employee
set family inet network 192.168.188.0/24 dhcp-attributes option 43 hex-string
69703A32302E302E302E31302C32302E302E302E3131

edit access address-assignment pool guest
set family inet network 192.168.189.0/24 dhcp-attributes option 43 hex-string
69703A32302E302E302E31302C32302E302E302E3131

edit access address-assignment pool management

```

```
set family inet network 192.168.180.0/24 dhcp-attributes option 43 hex-string  
69703A32302E302E302E31302C32302E302E302E3131
```

Verify

Step-by-Step Procedure

Confirm your settings by running show commands at the different levels of the hierarchy to display the configuration as entered. Confirm the validity by running the Junos OS `commit check` command (you need to actually commit the configuration to see the actual dhcp server binding).

1. View the configurations you entered.

```
show access address-assignment
```

```
user@Switch-1# show access address-assignment  
pool employee {  
    family inet {  
        network 192.168.188.0/24;  
        range range1 {  
            low 192.168.188.10;  
            high 192.168.188.50;  
        }  
        dhcp-attributes {  
            name-server {  
                8.8.8.8;  
            }  
            router {  
                192.168.188.1;  
            }  
        }  
    }  
}  
pool guest {  
    family inet {  
        network 192.168.189.0/24;  
        range range1 {  
            low 192.168.189.10;  
            high 192.168.189.50;  
        }  
    }  
}
```

```
dhcp-attributes {
    name-server {
        8.8.8.8;
    }
    router {
        192.168.189.1;
    }
}
}

pool management {
    family inet {
        network 192.168.180.0/24;
        range range1 {
            low 192.168.180.10;
            high 192.168.180.50;
        }
        dhcp-attributes {
            name-server {
                8.8.8.8;
            }
            router {
                192.168.180.1;
            }
        }
    }
}
}
```

```
show system services dhcp-local-server
```

```
user@Switch-1#show system services dhcp-local-server
group guest {
    interface irb.188;
}
group employee {
    interface irb.189;
}
group management {
```

```
    interface irb.180;
}
```

2. Run the `show dhcp server binding` and `show dhcp server statistics` commands to verify DHCP message statistics between server and the clients. The sample output shown here shows that the DHCP pools for guest, employee, and management VLANs are bound, and that the client is receiving DHCP messages.

```
run show dhcp server binding
```

```
user@Switch-1# run show dhcp server binding
IP address      Session Id  Hardware address  Expires      State       Interface
192.168.189.11  5           00:00:5E:00:53:00  80430       BOUND      irb.189
192.168.180.11  6           00:00:5E:00:53:00  80633       BOUND      irb.180
192.168.180.12  7           00:00:5E:00:53:20  83378       BOUND      irb.180
```

```
run show dhcp server statistics
```

```
user@Switch-1# run show dhcp server statistics
```

Packets dropped:

Total	0
-------	---

Offer Delay:

DELAYED	0
INPROGRESS	0
TOTAL	0

Messages received:

BOOTREQUEST	257
DHCPDECLINE	0
DHCPDISCOVER	40
DHCPIINFORM	198
DHCPRELEASE	0
DHCPREQUEST	19
DHCLEASEQUERY	0
DCHPBULKLEASEQUERY	0

Messages sent:

BOOTREPLY	58
DHCPOFFER	39
DHCPACK	16
DHCPNAK	3
DHCPFORCERENEW	0
DHC PLEASEUNASSIGNED	0
DHC PLEASEUNKNOWN	0
DHC PLEASEACTIVE	0
DHC PLEASEQUERYDONE	0

Enable 802.1x Authentication on the Switch Ports

IN THIS SECTION

- [Procedure | 58](#)

We recommend that you enable 802.1x port-based network access control (PNAC) authentication on the switches to authenticate the Juniper access points. There are three ways you can do this:

- Authenticate the first end device (supplicant) on an authenticator port, and allow all other connecting end devices to also have access to the LAN
- Authenticate a single end device on an authenticator port at one time
- Authenticate multiple end devices on an authenticator port (this is typically used in VoIP configurations)

Procedure

Step-by-Step Procedure

1. Configure the management interface to authenticate multiple end devices. For the 802.1x authentication, this example uses protocol dot1x, which is supported on interfaces that are members of private VLANs. Replace **ge-0/0/0.0** with the correct interface for your switch.

```
set protocols dot1x authenticator interface ge-0/0/0.0
set protocols dot1x authenticator interface ge-0/0/0.0 supplicant multiple
set protocols dot1x authenticator interface ge-0/0/0.0 reauthentication 120
set protocols dot1x authenticator interface ge-0/0/0.0 server-timeout 5
set protocols dot1x authenticator interface ge-0/0/0.0 transmit-period 60
set protocols dot1x authenticator interface ge-0/0/0.0 maximum-requests 5
```

2. Confirm your settings by running show protocols dot1x commands to display the configuration as entered. Run commit check to confirm the validity of the configuration, or commit if you're done.

```
show protocols dot1x
```

```
user@Switch-1# show protocols dot1x
authenticator {
    interface {
        ge-0/0/0.0 {
            supplicant multiple;
            transmit-period 60;
            reauthentication 120;
            server-timeout 5;
            maximum-requests 5;
        }
    }
}
```

Manage Logs in EX Series Switches

IN THIS SECTION

- [Procedure | 59](#)

Junos OS writes log messages to a file, that, when it reaches a specified size, is compressed and archived and a new log file is started. We recommend that you enable this feature. **View** access to these log files is restricted to the root user and users who have Junos OS maintenance permission.

Procedure

Step-by-Step Procedure

1. Set the syslog file size to 1 MB, after which the log is archived and a new one is started. After 10 log files are archived, the oldest one is replaced with the newest.

```
set system syslog file messages archive size 1m
set system syslog file messages archive files 10
set system syslog file interactive-commands archive size 1m
set system syslog file interactive-commands archive files 10
```

2. You can confirm your settings by running the `show system syslog` command to display the configuration as entered. Run the `commit` command to save the configuration. System logs are written to the `/var/log` directory.

```
user@device# show system syslog
file abc {
    any any;
}
file messages {
    archive size 1m files 10;
}
file interactive-commands {
    archive size 1m files 10;
}
```

(Optional) Automate Switch Port Provisioning

IN THIS SECTION

- [Procedure | 60](#)

Junos OS can run scripts based on system events. You can use event scripts to automatically provision switch ports for the Juniper access points, and you can have them monitor LLDP events to identify when a Juniper access point has been connected to a switch port, or to trigger an action in response to link up and link down events. You can get the sample script used here by contacting your Juniper technical representative.

Once a Juniper access point has been identified, the script searches the Junos OS configuration for a matching VLAN, and, when found, updates the Junos OS configuration to make that VLAN the native VLAN for ports connected to Juniper access points.

Use the **Juniper Mist** account you just created to copy the Python script onto the switch so that when the script runs, it runs using those access privileges.

Procedure

Step-by-Step Procedure

1. Create a **juniper-mist** user for the event scripts to run under.

```
set system login user juniper-mist full-name juniper-mist
set system login user juniper-mist uid 2003
set system login user juniper-mist class super-user
set system login user juniper-mist authentication encrypted-password password
```

2. Configure the switch to run unsigned Python scripts.

```
set system scripts language python
```

3. Commit the configuration by running the `commit` command.

4. Switch to the **juniper-mist** account by typing `exit` in the CLI command window to end that session, and then log back in using the **juniper-mist** account.

```
[edit]
user@switch-1# exit
Exiting configuration mode

user@switch-1> exit

% exit

juniper-mist@switch-1>
```

5. **Copy** the `wlan-config-interface.py` script you received from your Juniper technical representative from its location to the Junos event script file location on the switch (use `run file copy` if you are in configure mode).

```
file copy file-location /var/db/scripts/event
```

6. Confirm your settings by running `show` commands at the `system login user juniper-mist` level of the hierarchy to display the configuration as entered. You can confirm the validity by running the Junos OS `commit check` command.

```
run show system login user juniper-mist
```

```
[edit system login user juniper-mist]
user@Switch-1# show
full-name juniper-mist;
uid 2003;
class super-user;
authentication {
    encrypted-password <password>; ## SECRET-DATA
}
```

7. Type `configure` to return to configuration mode and then enter the following commands to create event policies on the switch to run the script whenever the monitored links go down or up.

```
set event-options policy SNMP_LINK_DOWN then event-script wlan_config_interface.py arguments
interface {$$.interface-name}
set event-options policy SNMP_LINK_DOWN then event-script wlan_config_interface.py arguments
interface {$$.interface-name}
set event-options policy SNMP_LINK_DOWN then event-script wlan_config_interface.py arguments
state down
set event-options policy SNMP_LINK_DOWN events SNMP_TRAP_DOWN
set event-options policy SNMP_LINK_UP then event-script wlan_config_interface.py arguments
interface {$$.interface-name}
set event-options policy SNMP_LINK_UP then event-script wlan_config_interface.py arguments
state up
set event-options policy SNMP_LINK_UP events SNMP_LINK_UP
set event-options event-script file wlan_config_interface.py python-script-user juniper-mist
```

8. Run the following `show` commands at the event-options level of the hierarchy to see the commands you entered. Run `commit` to save the configuration.

```
run show event-options
```

```
[edit event-options]
user@Switch-1#  show
policy SNMP_LINK_DOWN {
    events SNMP_TRAP_DOWN;
    then {
        event-script wlan_config_interface.py {
            arguments {
                interface "{$$.interface-name}";
                state down;
            }
        }
    }
}
policy SNMP_LINK_UP {
    events SNMP_LINK_UP;
    then {
        event-script wlan_config_interface.py {
            arguments {
```

```
        interface "{$$.interface-name}";
        state up;
    }
}
}

event-script {
    file wlan_config_interface.py {
        python-script-user mist;
    }
}
```

9. Leave the CLI connection open when you're done. After logging on to the Juniper Mist portal, you need to get some additional configuration setting from the Juniper Mist portal for additional updates that you still need to make on the switch.