Engineering
Simplicity

Designing Data Centers for Al Clusters

Authors: Aninda Chatterjee, Vivek V

About this Document

This document is a generic design document for building network infrastructure for high-performance Al clusters.

Documentation Feedback

We encourage you to provide feedback so that we can improve our documentation.

Send your comments to design-center-comments@juniper.net. Include the document or topic name, URL or page

number, and software version (if applicable).

Table of Contents

Introduction
Al/ML Workloads and Architecture
Al/ML Cluster Scale
Cluster Infrastructure
Al/ML Cluster Components
High-Level Design
Rail-Optimized Stripes
High-Level Front-end Network Design
High-Level Back-End Network Design

NV 0O N A WwW

10
11

Compute-Design 1: A Rail-Optimized GPU Stripe with QFX5230-64CDs as the Spines and QFX5230-

64CDs as the Leafs

11

Compute-Design 2: A Rail-Optimized GPU Stripe with PTX10008 as the Spines and QFX5230-64CDs

as the Leafs
High-level Storage Network Design
Design and Implementation
Introduction
Leveraging an IP Fabric Design
Benefits
IP Services Deployed in an IP Fabric for Al Clusters
Dynamic Load Balancing
Data Center Quantized Congestion Notification (DCQCN)
Building Data Centers for an Al Cluster with Juniper Apstra
Juniper Apstra Overview
Back-End Network
Front-end Network
Storage Network

Summary

12
13
14
14
16
16
16
17
18
19
19
19
30
33
34

mailto:design-center-comments@juniper.net

Artificial Intelligence (Al) has rapidly evolved over the past decade, and the demand for Al clusters to support
research, development, and deployment has grown alongside it. Al clusters can be built in various sizes, tailored
to specific needs and workloads. In this document, we explore the network infrastructure requirements of Al
clusters delving into their workload paradigms and the Juniper Networks Data Center design approach for Al
clusters.

Al/ML Workloads and Architecture

Al/ML workloads encompass a wide range of tasks and applications that leverage Al and Machine Learning (ML)
techniques to analyze, understand, and make predictions from data. These workloads are at the heart of many
modern technological advancements and applications, and are typically network, storage, and compute-intensive.
Some of the more common workload types are:

Supervised Learning—In supervised learning, models are trained using labeled datasets, where each
input data point is associated with a known target or label.

Unsupervised Learning—Unsupervised learning involves working with unlabeled data, where the
model learns patterns and structures in the data without explicit guidance.

Reinforcement Learning—Reinforcement learning involves training agents to make a sequence of
decisions in an environment to maximize a reward signal.

Deep Learning—Deep learning is a subset of ML that focuses on neural networks with many layers
(deep neural networks).

Natural Language Processing (NLP)—NLP workloads involve processing and understanding human
language, enabling machines to interact with text or speech data.

Computer Vision—Computer vision workloads deal with understanding and interpreting visual data,
such as images and videos, to recognize objects, patterns, and scenes.

Time Series Analysis—Time series analysis focuses on data that varies over time. It involves modeling
and predicting future values based on historical data.

Recommendation Systems—Recommendation systems use Al/ML to suggest items or content to
users based on their preferences, behavior, or historical data.

Generative Models—Generative models aim to generate new data that resembles existing data.

Anomaly Detection—Anomaly detection workloads focus on identifying rare or unusual patterns in
data that deviate from expected behavior.

The architecture of an Al/ML cluster network is counter-intuitive when compared to the conventional network
architecture.

While Figure 1 shows the entire cluster as one contiguous network segment, these are three separate network
segments, each of which services only that aspect of the cluster. Figure 1 represents the Al/ML data flow. Each
GPU communicates with the back-end network through a GPU network port. The server hosting the GPUs has a
dedicated storage network port that connects to external storage arrays over the storage network. Thus, the
GPU/Compute nodes communicate with the storage nodes via the storage specific interfaces on the GPU server
itself rather than hopping between networks. Figure 1 shows further description of these segments in the
respective sections.

Figure 1: High-Level Flow of GPU Training and Inference Process

GPU Cluster GPU Cluster
e) =) —
=== - =, | | SIS
[| | | ; =il T1 1
=== ===
EEER | |]

| |
[Storage Array]
Process Collate and

L]
L]
L]
L]
L]
L]
L]
L]
L]
L]
L]
.
L]
L]
L]
O the data $ store the data
> o >
L]
L]
L]
L]
O
L]
L]
L]
L]
L]
L]
L]
L]
L]
L]
L]
L]
o

Tensor Data

Input Output

01001001
10011010
10110110
10010010
10110010

01001001
10011010
10110110
10010010
10110010

Inference ?_’
7

¥

Iterate

0
i
i

=== 00| E= === | ===
=N | EEE R | EEEE=E=R
=====0) == === === =1=0

Al/ML Cluster Scale

The size of an Al/ML cluster varies significantly depending on the specific requirements of the workload and the
scale that is necessary to meet these requirements. The number of nodes in an Al/ML cluster is influenced by
factors such as the complexity of the machine learning models, the size of the datasets, the desired training
speed, and the available budget. The number varies from a small cluster to a data center-wide cluster comprising
of 1000s of compute, storage, and networking nodes. The scope of this document is limited to a scaled down
version of an Al cluster.

The cluster size depends on the number of endpoint nodes that are present in the infrastructure. This document
covers different design considerations and infrastructure elements to cater to different cluster sizes. Figure 2
shows a large-scale cluster.

Figure 2: Al/ML Cluster Scale

Juniper Apstra”

High-radix chassis spines allow

32 PTX10016 spines massive 3-stage Clos (2-tiers)
and progressive expansion
8 QFX5230 ’

e s f ﬁ'
leafs per stripe i
(rail-optimized design) | EEEEE%@E@
\\§\\\V
NG

GPUs:
18432 H100s

Cluster Infrastructure

This section outlines the nodes (network, compute, and storage) used in this design guide. The design guide is
based on Juniper QFX5220-32CD, QFX5230-64CD and PTX devices for the network infrastructure, with
NVIDIA A100 and H100 GPUs for compute, and Weka storage nodes. Table 1 provides a high-level overview of
these nodes.

Table 1: Infrastructure Nodes Used by Juniper for the Cluster Design

Ports: 32 x 400GbE, 64 x 200GbE, 128 x 100GbE, 32 x 40GbE,
QFX5220-32CD 128 x 25GbE, 128 x 10 GbE

Operating system: Junos OS Evolved

Dimension: 1U rackmount, 17.26 x 1.72 x 21.1 in. (43.8 x 4.3 x
IP fabric switch: leaf or spine scaling up to 12.8 Tbps. 53.59cm)WxHxD

Ports: Up to 64 x 400GbE, 128 x 200GbE, 256 x 100GbE, 64 x
QFX5230-64CD 40GbE, 256 x 25GbE, 256 x 10GbE ports

: Operating system: Junos OS Evolved

| al el atal wla)) e aa

I]

Dimensions: 2U rackmount, 17.4 x 3.43 x 25.6 in. (44.2 x 57.76 x
IP fabric switch: leaf or spine scaling up to 25.6 Tbps 81.28cm)W xHxD

PTX10008

IP fabric switch: spine scaling up to 115.2 Tbps.

Ports: Up to 288 x 400GbE, 1152 x 100GbE, 288 x 40GbE, 1152 x
25GbE, and 1152 x 10GbE

Operating system: Junos OS Evolved

Dimensions: 13U rackmount, 17.4 x 22.55 x 32 in. (44.2 x 57.76 x
81.28cm)WxHxD

Lambda Hyperplane8 HGX-A100

Standard networking: 1x NVIDIA ConnectX-6 Dx adapter
card, 100GbE, dual-port QSFP28, AIOM PCle 4.0 x16

Storage Networking: 1x 200 Gbps NVIDIA ConnectX-6 VPI
NIC: Dual-port QSFP56, HDR InfiniBand/Ethernet

GPU Direct RDMA Networking: 8x NVIDIA ConnectX-7
Adapter Card 200Gb/s NDR20O IB Single-port QSFP PCle
4.0x16

Operating system: Ubuntu 22.04: Includes Lambda Stack for
managing TensorFlow, PyTorch, CUDA, cuDNN, etc.

Processor: 2x AMD EPYC 7763: 64 cores, 2.45~3.5GHz, 256MB
cache, PCle 4.0

GPUs: 8x NVIDIA A100 (80GB) SXM4: HGX platform with NVLink
and NVSwitch fabric

OS drives: 2x 1.92 TB M.2 NVMe: Data center SSD, 1 DWPD,
PCle 4.0

Data drives: 6x 3.84 TB U.2 NVMe: Data center SSD, 1 DWPD,
PCle 4.0

Dimensions: 4U rackmount, 6.9 x 17.6 x 35.4 in (174 x 446 x 900
mm) HXWxD

NVIDIA DGX H100

Networking (GPUs): 4x OSFP ports serving 8x single-port
NVIDIA ConnectX-7 VPI: 400 Gb/s InfiniBand/Ethernet

Networking (Storage): 2x dual-port NVIDIA ConnectX-7
VPI: 1x 400 Gb/s InfiniBand/Ethernet

DGX H100 System: DGX H100 System, 80GB, 10 NIC, Standard
Support, 3 Years

GPUs: 8x NVIDIA H100 80GB Tensor Core GPUs with NVLink
and NVSwitch Fabric

Processor: Dual Intel Xeon Platinum 8480C Processors: 112 Cores
total, 2.00 GHz (Base), 3.80 GHz (Max Boost) Memory: 2TB DDR5

OS Storage: 2x 1.92TB M.2 NVMe drives
Internal storage: 8x 3.84TB U.2 NVMe drives

Dimensions: 8U rackmount, 14 x 19.0 x 35.3 in (174 x 446 x 900
mm) HxWxD

Weka Storage node Operating system: 1x Ubuntu | 22.04

Processor: 1x AMD EPYC 9454P (48-core, 2.75~3.8GHz, 256MB
cache, 290W)

OS drives: 2x 1.92 TB M.2 NVMe: Data center SSD, 1 DWPD,
PCle 4.0

Data drives: 7x 7.68 TB U.2 NVMe: Data center SSD, 1 DWPD,
PCle 4.0

Networking (front-end): 1x NVIDIA ConnectX-6 Dx adapter ~ Software: 3-year Weka Flash tier license w/ Snapshot and high
card, 100GbE, dual-port QSFP28, PCle 4.0 x16 perf protocol services - POSIX + NFS-W + S3 + SMB-W

Networking (storage): 2x NVIDIA ConnectX-6 VPI adapter
card, HDR IB (200Gb/s) and 200GbE, dual-port QSFP56,
OCP 3.0

The components shown in Table 1 are part of the overall Al/ML cluster anatomy, as shown in Figure 3, wherein a
front-end network connects to external users and data, and a back-end network supports the Al model training
functions of the training clusters.

Al/ML Cluster Components

Figure 3: Al/ML Cluster Anatomy

Shared

WAN/DCl/Internet Storage

Pools

Frontend Network

All Ethernet

Training Inference Dedicated
Clusters Clusters Storage

Backend Network

InfiniBand or Ethernet

Cluster Components:

Training Cluster

Inference Cluster

Shared Storage Pools
Dedicated Cluster Storage

Cluster Networks:

Frontend:

= Inference clusters use this network
= Shared storage pools

= Management network for training
Backend:

= GPU Compute Fabric

= Dedicated Storage Fabric (may be converged with compute)

NOTE: A separate Intelligent Platform Management Interface (IPMI)/Out-of-Band (OOB) management
network exists for the overall Al/ML cluster.

High-Level Design
The following sections lay out considerations of the Al Cluster design, focused on training clusters (and not
inference clusters, whose overall design may vary in terms of GPU and storage nodes).

Rail-Optimized Stripes

Figure 4: Rail-Optimized Stripes

GPUO GPU O
GPU1 GPU 1
GPU 2 GPU 2
GPU 3 GPU 3
GPU 4 GPU 4
GPU 5 GPU 5
GPU 6 GPU 6
GPU7 GPU 7
Server-1 Server-X

In designing the network infrastructure for an Al cluster, the key objectives are to provide maximum throughput,
minimal latency, and minimal network interference for Al traffic flows. A Rail-Optimized Stripe, proposed by
NVIDIA, is a design that extends from the compute nodes to the Top of Rack leafs, which takes the network
requirements that are necessary for Al clusters into consideration.

From the perspective of the network infrastructure, this design is similar to a Layer 3 Clos fabric, that is common
across most modern data center deployments. For example, for the DGX H100 compute servers (which has 8
GPUs and 8 NICs in the server), any-to-any GPU communication within the server is achieved via high
throughput NVLink channels attached to a NVSwitch. In addition to this, each NIC in the server connects to a
unique Top of Rack leaf (NIC1 to leaf1, NIC2 to leaf2, and so on), and the same methodology is followed on all
servers, achieving a ‘rail’ design. NVIDIA documentation provides more information on such designs.

With such a design, along with optimizations such as PXN (PCle x NVLink), network interference is minimized by
moving data to a GPU on the same rail as the destination, and thus sending data to the destination without
crossing rails, which minimizes the number of network hops required. This GPU/NIC connectivity for rail-
optimized stripes is explored in more detail in the design and implementation section.

The high-level design for the back-end network uses a rail-optimized stripe as a basic building block and
replicates the same design to scale up an Al cluster size.

https://developer.nvidia.com/blog/doubling-all2all-performance-with-nvidia-collective-communication-library-2-12/#:%7E:text=Rail%2Doptimized%20network%20topology%20helps,having%20lighter%20connections%20between%20rails

High-Level Front-end Network Design

The front-end network for the Al Cluster provides the connections external to the cluster for users and data.

Headend Server

Figure 5: Frontend Network Architecture

Headend Server

Headend Server //

1 x 200G Uplinks from
8 x H100 nodes <> 1 x QFX 5220 Leaf

NVIDIA DGX H100

1 x 100G Uplinks from

2 x (2 x 400G) Uplinks from
2 x QFX5220-32C Leafs <> QFX5220-32 Spines

\

16 xAlOO nodes<>1 X QFX 5220 Leaf

---IEE E'-:

N

===

1 x 100G Uplinks from
15 x Storage nodes<> QFX 5220 Leaf

A VANAN

N\

AN

== 1=Lr—

= 1=1=L—

MYV

A

===

===

1)\

ANEEAN

EEEEE] = EEEE-
[EEEEE] [EEEEE]
==——1— E=E==——=—H

===

===

AR EE ===

V)

ANEAN

Weka Storage nodes

U= 1=1=MT

mIEEE

\

\

wmlBEBEE e

! EBEEE =

Lambda Hyperplane A100

Some of the design considerations for the front-end network are:

o The front-end network deals with elements such as orchestration of the training and possibly
servicing inference if any GPUs are dedicated to inference, handling Application Programming
Interface (API) calls from end users to deliver the inference from the model, telemetry, and so on.

Thus, the front-end network is not expected to receive the same amount of network traffic and data
flows as the back-end, which deals with the training methods and storage. Therefore, in the front-
end network design, we chose to use the QFX5220-32CD devices as both the leafs and spines with
the port mapping described below.

To have an oversubscription ratio that is equal to 1, in this design, there are 16 x 100G links from the
A100 servers and 8 x 200G links from the H100 servers, which at full capacity is a network load of
3200Gbps. The uplinks from the QFX5220-32CD leafs to the QFX5220-32CD spines at 2 x 2*400G
uplinks per spine that brings the total upward bandwidth to 3200 Gbps, thus maintaining the
oversubscription ratio at 1.

e The storage nodes in use (Weka storage nodes) have 1 x 100G links per node going to the leaf. For
the purposes of parity in the design, the uplink from the storage leaf to the spine is also set at 3200
Gbps. Based on the requirements, this can either be brought down to 1600 Gbps by removing
uplinks or provisioned for an additional 15 storage nodes maintaining the oversubscription ratio at 1.

High-Level Back-End Network Design

The design of the back-end network of the Al cluster as shown in Figure 3, can be divided into two segments:

e Compute or GPU network.

e Storage network.

This document covers three variants of example topologies for the compute and storage networks that are
differentiated by the devices used in various roles and the port density and capacity of the devices in use, that is,
cluster size. These designs follow customer use cases and GPU vendor recommendations of 1:1 oversubscription.
We work closely with our customers in understanding the specific network needs for their training workloads,
including cluster size and possible oversubscription efficiencies.

Compute-Design 1: A Rail-Optimized GPU Stripe with QFX5230-64CDs as the Spines and
QFX5230-64CDs as the Leafs

Figure 6: Rail-Optimized and Network Optimized Design with QFX5230-64CDs in Spine and Leaf Roles

[512 x 200G GPU Direct uplinks - A100] or [256 x 400G GPU Direct uplinks - H100] <> 8 QFX 5230-32CD Leafs

wEEENSE| [EEE = /
HEEENE EEEE

1

=== wEHEE ==
NN EEEE

Lambda Hyperplane A100 NVIDIA DGX H100

While device capacity and ability to handle large traffic is an important design consideration, another important
aspect is the cost of implementation. For smaller cluster sizes, high port density spines are not necessary. The
design specifications of the above design are:

e In Figure 6, each stripe has 64 x A100 GPUs OR 32 x H100 GPUs connected to a leaf. It provides a
view of two different types of GPU clusters (A100-based cluster and H100-based cluster), enabling a
more informed decision-making process, when choosing one type of cluster over the other.

e A100 GPU network port has a capacity of 200 Gbps, and the H100s have a GPU network port
capacity of 400 Gbps.

https://www.weka.io/

e Therefore, each leaf receives an ingress of 12.8 Tbps at maximum load. Hence, the leaf has 32x400
Gbps links going to each of the four spines resulting in an egress capacity of 12.8 Tbps, which
maintains the oversubscription ratio at 1.

The scale calculation in this design is as follows:

e Each QFX5230-64CD spine has 64 x 400G ports.

e 64 ports on the leaf are split into 32 x 400G uplinks x 8 leafs = 256 uplinks divided among four
spines and 32 x 400G downstream ports, which are further split into 64 x 200G ports supporting 64
A100 nodes each or 32 H100s each, or a mix of both.

e Thus, the cluster size is 64 A100 GPUs x 8 leafs = 512 A100 GPUs or 256 H100s GPUs per stripe.

Compute-Design 2: A Rail-Optimized GPU Stripe with PTX10008 as the Spines and
QFX5230-64CDs as the Leafs

Figure 7: Rail-Optimized and Network Optimized Design with QFX5220-32CDs as Leafs and PTX10008s as Spines

[512 x 200G GPU Direct uplinks - A100] or [256 x 400G GPU Direct uplinks - H100] <> 8 QFX 5230-64CD Leafs

=== ===
EEEE EEEER
=== ===
EEEE EEEER

Lambda Hyperplane A100 NVIDIA DGX H100

The scale calculation in this design is as follows:

e In this case, a PTX10008 spine includes 8 slots with 36 x 400G line cards, which means the device
has a total of 288 x 400G ports per spine.

e The leafs include 32 x 400G uplinks x 8 Leafs = 256 ports split among two spines, that is, 128 ports
per spine.

e Based on the above calculation, the spines include 160 free ports. Since the PTX is a modular chassis,
the number of slots are chosen to accommodate the appropriate number of stripes.

Since the leafs are QFX5230-64CDs, the GPU nodes per stripe are 64 A100 nodes x 8 leafs = 512
A100 GPUs or 256 H100 GPUs per stripe.

It is important to note that a modular spine allows for easier progressive growth by simply investing
in additional line cards and new cabling as more stripes are added to the overall cluster. There is no
re-cabling that is necessary.

High-level Storage Network Design

Figure 8: Back-end Storage Design with QFX5220-32CDs as Leafs and Spines

4 x (2*400G) Uplinks from 4 x QFX5220-32C Leafs <> 4 x QFX5220-32C Storage Spines

1 x 200G Uplinks from 32 x A100 server nodes <> 2 x QFX 5220 Leafs

i

i

===

===

U—=1=1—=

===

HEEN
[

HEEN
Y\

HEEE
[

HEEEN
1A

===

===

===

= 1=1="

HEEN
[

HEEN
\

HEEE
/

HEEN
\

===

ml EEE %o

U=—=1=1=

U= 1=]=

===

===[=1=0d

2 x 200G Uplinks from

15 x Storage nodes <> QFX 5220 Leafs

===

===

E=T===0|

E=_T===0|

===

===

===

===

Lambda Hyperplane A100 Weka Storage nodes

Figure 8 shows the storage network design comprising of two main segments:

e GPU storage node segment (Hyperplane8-A100 in the above example).
e Dedicated storage node segment (Weka AMD storage nodes in the above example).

Though there is no concept of rail-optimization in a storage cluster, it is recommended that the rail-optimized and
network optimized stripe design is followed because there is a direct relationship between the number of
minimum storage nodes required for a certain number of GPUs as shown in the Table 2. For more information
regarding the storage nodes, see AMD documentation.

Table 2: GPU Count to Storage Node Requirement Matrix (Source: AMD)

GPU Count Required Aggregate Required Aggregate = Throughput per Storage Storage Nodes
Throughput (GBytes/s) Throughput (Gbits/s) Node (GBytes/s) Required
128 256 2048 36 8
256 512 4096 36 15
512 1024 8192 36 29

https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/reference-architectures/solution-brief_wekaI-o_aplus_epyc-7003.pdf

GPU Count Required Aggregate Required Aggregate = Throughput per Storage Storage Nodes

Throughput (GBytes/s) Throughput (Gbits/s) Node (GBytes/s) Required
1024 2048 16,384 36 57
2048 4096 32,768 36 114

Since there are 32 A100 servers, that is, 256 GPUs in 1 stripe of our GPU cluster, the storage design includes 15
dedicated storage nodes. The specifications and design considerations are listed below:

The corresponding GPU network design associated with this storage network are as shown in Figure
6 and Figure 7.

Other designs that include more GPUs per stripe require a modification to the number of
corresponding dedicated storage nodes.

The storage network design, as shown in Figure 10 has the following characteristics:

The Compute-Storage segment has 32 A100s each with a 200G link to the leaf nodes resulting in north
bound traffic at a maximum capacity of 6.4T split amongst 2 x QFX5220-32CD leaf nodes (3.2T per leaf).

The dedicated storage segment has 15 x Weka storage nodes sending 2 x 200G links north-bound to the
QFX5220-32CD leaf nodes (for the purpose of this design), which results in an overall load of 2 x 200 x
15 = 6000 Gbps or 6T, again split amongst 2 x QFX5220-32CD leaf nodes.

All four QFX5220-32CD leaf nodes in this design have 8 x 400G northbound links (two per spine)
bringing the overall egress capacity to 6.4T, thus maintaining an over-subscription ratio of 1:1.

In the dedicated storage segment, the leaf to spine configuration remains the same. Since the number of
storage nodes is 15, the ingress to egress traffic capacity on the leaf nodes is 6Tbps: 6.4Tbps, making it
slightly undersubscribed.

The QFX5220-32CD spines have 32 x 400G ports, and in this design, only eight of those 32 ports are in

use. This is done with redundancy and expansion in mind, and these spines at full capacity support four
times the scale shown in Figure 8 and hence four times the number of end nodes as well.

Another variant of this design is with two spines instead of four, which still provides the same link level
redundancy because it utilizes only 16 of the 32 ports but the node level redundancy changes, and it
limits the expansion to two times the design instead of four.

Introduction

In this section, an example design demonstrates how a network infrastructure is orchestrated with Juniper

Apstra.

From the perspective of physical connectivity, the three networks (back-end, front-end, and storage) are each
cabled to build a Layer 3 Clos fabric individually. This implies that every leaf connects to every spine via point-to-
point Layer 3 links. The rail-optimized stripe design is followed, with the same NIC of every GPU cluster
connecting to the same leaf in the back-end network.

Figure 9 shows a snippet of the back-end network, considering a port density of 32 x 400G per leaf. The focus is
on one Hyperplane8-A100 server, which includes a total of 8 x A100 GPUs and 8 x 200G NICs. Each NIC
connects to a unique leaf, following the rail-optimized design.

Figure 9: Hyperplane8-A100 Connectivity to Back-End Network

Spine 1 Spine 2

PN 4ANN

8x400G uplinks per leaf for a full stripe of 32xA100 servers

< 200G per NIC >
| L
Hyperplane8-A100
—— NIC3 NIC4 —
NIC2 NIC5
NIC1 NIC6
NICO NIC7

Each leaf receives 200G from one A100 server as only one 200G NIC maps to one GPU and connects to one leaf
per server. Expanding this to a full stripe of 32 Hyperplane8-A100s, this implies that one leaf receives 32 x 200G.
Since the oversubscription ratio must be 1, the uplinks must also match the same bandwidth. With two spines,
each leaf must have 8 x 400G uplinks per spine to meet this requirement.

Thus, for our design and implementation, Figure 10 shows the back-end network topology that demonstrates
how Juniper Apstra builds such a fabric.

Figure 10: Example Topology for Implementation of Back-End Network

Spine 1 Spine 2

W

8x400G uplinks per leaf for a full stripe of 32xA100 servers

200G per NIC

H4||||||_

A

————— A

Al100_ 1 eececccceccccccccccccccccccccscccccccccee A100 32

For the leafs, QFX5220-32CDs are used, and for the spines, PTX10008s are used with 36x400G line cards,
allowing for large scope of expansion.

Leveraging an IP Fabric Design

An IP fabric is a routed infrastructure, designed using a fat-tree, Clos type architecture. Such a design provides
uniform capacity at each layer, eliminating the need for traditional Layer 2 technologies such as Spanning Tree
Protocol (STP) by using Layer 3 links only. Instead, a routing protocol is used for injecting prefix information into
the fabric. An IP fabric forms the underlay in modern data center designs and scales to large data center fabrics.

An IP fabric typically extends to the hosts, fully eliminating any Layer 2 links in the network and relying on Layer
3 routing protocols for convergence. As shown in Figure 11, with routing protocols enabled over the Layer 3
point-to-point links between the leafs and the spines, each leaf has equal cost paths up to the spines, leveraging
ECMP hashes to distribute packets across multiple links. A routing protocol or static routing is used between the
leafs and the hosts.

Benefits
Better utilization of all available paths through ECMP.

Faster convergence.
Elimination of Layer 2 links and the need for traditional Layer 2 protocols such as STP.

Figure 11: End to End L3 Clos Fabric Design

Spine 1 Spine 2

Layer 3 p2p link

h1 h2 h3 h4

Y L nEEEE T R =

IP Services Deployed in an IP Fabric for Al Clusters

Typical data center fabrics do not require fine tuning of the fabric for traffic flows; however, Al clusters are
unique in the kind of requirements that they need from the network infrastructure. The traffic pattern is high
density, low entropy traffic which implies that the network infrastructure commonly sees elephant flows, with
little variation in the flows themselves.

Due to these traffic characteristics, despite having equal cost paths from leafs to spines, the links might not get
properly utilized since the default hash uses a combination of Layer 3 header information. As the variation in
flows is not enough, it is possible that one link might be highly utilized, leading to these elephant flows causing
drops of mice flows (low bandwidth flows) and possible flow collisions. For these reasons, Dynamic Load
Balancing (DLB) is recommended to be configured on the leafs of an IP Fabric for Al clusters.

In addition, Al cluster generated traffic requires a lossless network. In this case, since the traffic on the back-end
GPU network is RDMA over Converged Ethernet (RoCEv2), there is a need to configure congestion control
methods. DCQCN (Data Center Quantized Congestion Notification) is used in this case.

Dynamic Load Balancing

Static load balancing uses packet headers only (such as information from the Layer 3 header) to determine the
egress interface for a packet when multiple equal cost paths are available. This design causes a per-flow hash,
where the packets from the same flow are always sent over the same interface amongst available equal cost
paths. However, this can cause poor utilization of interfaces when dealing with traffic from Al clusters, which are
high density, elephant flows with little variation in terms of the flows themselves, since static load balancing does
not consider the usage of individual equal cost links.

While it might be common to consider per-packet splitting of traffic across equal paths, such a design has large
implications and causes packet reordering. This is where DLB helps. DLB can be initiated per flowlet, where
flowlets burst of the same flow, separated by a period of inactivity. DLB works on the principle that if the
transmission latency between equal cost paths is lower than the period between flowlets (called the inactivity
interval), then the next packet in the flow is sent over an underutilized link, with the assurance that the packets
for the overall flow arrive in the correct order, despite being sent over different links.

On a QFX5220-32CD, DLB is implemented using the following configuration:
snip
forwarding-options {
enhanced-hash-key {
ecmp-dlb {
flowlet {
inactivity-interval 16;
}
ether-type {
ipv4;
}

}
}
policy-options {
policy-statement DLB {
then {
load-balance per-packet;
}
}
}
routing-options {
forwarding-table {
export DLB;
}
}

RISTENOR

In this case, consider multiple packets from the same flow arrive at leafl of a data center network and need to be
sent over four possible equal cost paths towards spinel.

Figure 12: DLB Packet Flow

Packet transmission

-------------------- > 1]
[4] 3] Spine 1

h1

*-—-—=F-

Inactivity interval

Packets 1 through 4 are part of the same flow, however, there is a delay period (in microseconds) between
packets 2 and 3. In this case, DLB treats packets 1 and 2 as part of the same flowlet, and packets 3 and 4 as part
of another flowlet, based on the configured inactivity interval.

DLB, typically implemented as an engine in the Broadcom ASIC, is constantly fed information about the link
usage of the equal cost paths, and each link is assigned a quality band. This is a dynamic assignment that
constantly changes as the link utilization changes. DLB determines if the time taken to transmit packet 2 is lower
than the inactivity interval between packet 2 and 3, then even if packet 3 is sent over a different link, it will arrive
only after packet 2 has arrived. This eliminates any packet reordering issues, despite sending packets of the same
overall flow over different links.

Data Center Quantized Congestion Notification (DCQCN)

Modern data centers for high performance computing (HPC) or Al clusters have requirements of high throughput
at low latency. These requirements are not easily met by standard TCP/IP stacks as it causes a lot of CPU
overhead and instead, leverages RoCEv2 (RDMA over Converged Ethernet v2). Unlike Infiniband, RoCEv2 can be
easily integrated into existing Ethernet-based data centers, lowering infrastructure costs, and providing more
flexibility.

RoCEv2 provides lossless network infrastructure that is needed for HPC and Al clusters, with the configuration
of some additional features such as Priority Flow Control (PFC) and Explicit Congestion Notification (ECN).
DCQCN is a combination of both PFC and ECN.

PFC works on receive buffers of an interface, by sending back Pause Frames when the receive buffer crosses a
specific threshold. These Pause Frames indicate to the recipient to stop sending packets for a specific interval of
time, avoiding buffer overflow by pausing data transmission. However, there are downsides to using PFC in the
network - sustained Pause Frames cause ingress port congestion and dropped packets. Thus, PFC often leads to
poor overall application and network performance due to head of line blocking (creating victim flows) and
unfairness (also known as the parking lot problem). Additionally, PFC operates at interface level (queue level,
specifically) and cannot distinguish between flows.

ECN, on the other hand, is an end-to-end congestion notification method between an ECN-enabled sender and
an ECN-enabled receiver. The general methodology followed by DCQCN is to allow ECN to kick-in earlier than
PFC, enabling flow control for ECN marked traffic by decreasing the transmission rate of the sender when it
receives a notification to do so.

The correct operation of DCQCN requires balancing two conflicting requirements:

Ensuring PFC is not triggered too early before giving ECN a chance to send congestion feedback to
slow the flow.

Ensuring PFC is not triggered too late, thereby causing packet loss due to buffer overflow.

Building Data Centers for an Al Cluster with Juniper Apstra

Juniper Apstra Overview

Juniper Apstra is a multivendor Intent Based Network System (IBNS), orchestrating data center deployments, and
managing small to large scale data centers through Day-0 to Day-2 operations. It is an ideal tool to build data
centers for Al clusters, providing invaluable Day-2 insights through monitoring and telemetry services.

Deploying a data center fabric through Juniper Apstra is a modular function, leveraging various building blocks to
instantiate a fabric. These basic building blocks are as follows:

Logical Device is a logical representation of the port density, speed, and possible breakout
combinations of a switch. Since this is a logical representation, any hardware specifics are abstracted.

Device Profiles provide hardware specifications of a switch that describe the hardware (such as
CPU, RAM, type of ASIC and so on) and port organization. Juniper Apstra has several pre-defined
Device Profiles that exist for common Data Center switches from different vendors.

Interface Map binds together a Logical Device and a Device Profile, generating a port schema that is
applied to the specific hardware and network operating system, which is represented by the Device
Profile. By default, Juniper Apstra provides several pre-defined Interface Maps with the ability to
create user-defined Interface Maps as needed.

Rack Types define logical racks in Juniper Apstra, the same way a physical rack in a data center is
constructed. However, in Juniper Apstra, this is an abstracted view of it, with links to Logical Devices
that are used as leafs, the kind and number of systems connected to each leaf, any redundancy
requirements (such as MLAG or ESI LAG) and how many links, per spine, for each leaf.

Template takes one or more Rack Types as inputs and defines the overall schema/design of the
fabric, with a choice between a 3-stage Clos fabric, a 5-stage Clos fabric or a collapsed spine design,
and whether to build an IP fabric (with static VXLAN endpoints, if needed) or a BGP EVPN based
fabric (with BGP EVPN as the control-plane).

Blueprint is the instantiation of the fabric, taking a Template as its only input. A Blueprint requires
additional user input to bring the fabric to life - this includes resources such as IP pools, ASN pools,
Interface Maps. Additional virtual configuration is done, such as defining new virtual networks
(VLANs/VNIs), building new VRFs, defining connectivity to systems such as hosts or WAN devices,
and so on.

Back-End Network

The Back-end network is built using PTX10008 spines, with two PTX10K_LC1201_36CD line cards, providing 72
x 400G ports in total. For the purposes of this implementation, a single stripe of 32 x A100 servers are used,
connected to 8 x QFX5220-32CD leafs.

PTX spines are created as modular Device Profiles in Juniper Apstra, as shown below. This includes two 36 x
400G line cards, giving the spine a total of 72 x 400G interfaces for leaf connectivity.

Figure 13: Juniper Apstra Device Profile

L] Y7 @ » Devices

Device Profiles »+ PTX10008_72x400

Juniper Apstra™

Ports
B
>
Blueprints

Slot #0

Panel #1

NTERFACES CAPACIT

144 x 100 Gbps 72 x 200 Gbps 288 x 50 Gbps 36 x 40 Gbps
-
External Systems 0 2 £ &) 8 107 1124 (28 64 2B 207 224 2A¢ L2684 | 281 (801 |32 35

g Sl Sl el vl (8o (6l 4 W Bt B0 o S0 s 7 (04 56l B G-
Platform
P d Slot #1
Favorites

Panel #1

F 5
144 x 100 Gbps 72 x 200 Gbps 288 x 50 Gbps 36 x 40 Gbps

Ol
a8 o] 29 WAy e (Pa) (S0 A s e Bt ot e R o [Nl (el
User: admin e S o B (B0 B0 SR A (S04 W04 SE0A 2 RO [0 8204 Dol Beiel Baad Wb

The Logical Device is created as shown in Figure 14.
Figure 14: Juniper Apstra Logical Device
% @ » Design

Logical Devices » Al-Spine 72x400

Updating the logical device ports may not be allowed because it is referenced by PTX10008_72x400G____Al-Spine 72x400 interface map.

Name
Al-Spine 72x400
PANEL #1
i)
= 36 ports
Resources Superspine Spine » Leaf ¢ Unused
» Generic
External Systems
PANEL #2

Favorites

36 ports
Superspine » Spine » Leaf » Unused
» Generic

8

User: admin

Group by Slot + Panel ~

144 x 10 Gbps

144 x 10 Gbps

Finally, an Interface Map is created, which ties the Logical Device and the Device Profile together.

Connected to~

Connected to~

Figure 15: Juniper Apstra Interface Maps

LA ¥r @ » Design » Interface Maps » PTX10008_72x400G____Al-Spine 72x400
Juniper Apstra™
e Name PTX10008_72x400G____Al-Spine 72x400
=
Blueprints Logical device Al-Spine 72x400 ¢
= Device profile PTX10008_72x400 ¢
(=]
@ Interface map preview 2 =
Design
@ SUMMARY Connected to
Resources
72 x 400 Gbps
L) Superspine e Spine e Leaf » Unused e Generic
o
External Systems
INTERFACES

2

Platform

¢

Favorites

MAPPING

Logical Device Device Profile

a

User: admin

For the leafs, QFX5220-32CDs are used, with 16 x 400G and with the remaining 16 ports split into 2 x 200G per
port, giving 32 x 200G in total. A new Logical Device and Interface Map is created as shown in Figure 16 and
Figure 17.

Figure 16: Logical Device for QFX5220-32CD Leaf with 16 x 400G and 32 x 200G Ports

L 7r @ » Design » Logical Devices » Al-Leaf 16x400 and 32x200

Juniper Apstra™

B8 .
<o) + back to list = -

Blueprints L]
Updating the logical device ports may not be allowed because it is referenced by Juniper_QFX5220-32CD____Al-Leaf 16x400 and 32x200 interface map.
Name
Al-Leaf 16x400 and 32x200

Resources PANEL #1

iy TOTAL PORT GROUPS Connected to -

&b

External Systems 48 ports 32 x 200 Gbps
Superspine e Spine e Leaf ® Access « Superspine e Spine e Leaf ® Access ¢
Peer » Unused = Generic Peer » Unused » Generic

og
Favorites

8

User: admin

Figure 17: Interface Map for QFX5220-32CD with 16 x 400G and 32 x 200G Ports

LA ¥r @ » Design » Interface Maps » Juniper_QFX5220-32CD____Al-Leaf 16x400 and 32x200
Juniper Apstra™
o Name Juniper_QFX5220-32CD____Al-Leaf 16x400 and 32x200
<]
Blueprints Logical device Al-Leaf 16x400 and 32x200 ¢*

g Device profile

Devices

@ Interface map preview
Design
= SUMMARY

Resources

16 x 400 Gbps

E Superspine ® Spine & Leaf ® Access ® Peer » Unused e Generic

o
External Systems

8

Platform

5 2o lelolole].]

Favorites * Unused interfaces (2)

] 0]
o[o] o]

Logical Device

[[l Tl e el vl el el vl vl el)
a LA LA v Ll e]

User: admin

Juniper_QFX5220-32CD ¢

32 x 200 Gbps

Device Profile

Superspine ® Spine » Leaf Access e Peer & Unused « Generic

Connected to =

To build the back-end network, first a Rack Type is created with the above Logical Devices as leafs. This includes
8 leafs, and 32 generic systems (32 Hyperplane8-A100s) connected to these leafs following the rail-optimized
stripe design. Each leaf has 8 x 400G links to each spine. This Rack Type is used as an input into a Template for
the back-end network. The Template is configured as a 3-stage Clos design, with static VXLAN (which essentially

builds an IP fabric if no static VXLAN endpoints are defined by the user).

Figure 18 shows the template with the spines defined with the Logical Device that was created for the

PTX10008 Device Profile.

Figure 18: Juniper Apstra Template for Backend Network

v @ » Design» Templ. Al_Backend_’

Juniper Apstra™

=]
>

[

E%:]

Resources

¥

PN
Extemal Systems

2

Platform

v

Favorites

Structure

=)

User: admin

Leaf2 1 Leaf4_1 Leafé_1 Leaf8_1
oooooooD opooooobD DDU&DUDU 0poDDoOOO
A100_GPUs_1 A100_GPUs_9 A100_GPUs_17 A100_GPUs_25
ogoooono opooooo .DEIUUUQUE opooooeo
A100_GPUs_2 A100_GPUs_10 A100_GPUs_18 A100_GPUs_26

cooeooo cccosaan coooogs coooooea
A100_GPUs_3 A100_GPUs_11 A100_GPUs_19 A100_GPUs_27
0QoooooD 00000000 000DO0OD 00000000
A100_GPUs_4 A100_GPUs_12 A100_GPUs_20 A100_GPUs_28
f=N=1-1-F-1-1-1-] opoobooo oooooooo oopooooo
A100_GPUs_5 A100_GPUs_13 A100_GPUs_21 A100_GPUs_29
oooooooo opoooooD 0oooooo0 00000000
A100_GPUs_6 A100_GPUs_14 A100_GPUs_22 A100_GPUs_30
coooeese cgoooaan coooooan cooooos
A100_GPUs_7 A100_GPUs_15 A100_GPUs_23 A100_GPUs_31
Dooooooo opoooooo 00000000 0pDoooo0o
A100_GPUs_8 A100_GPUs_16 A100_GPUs_24 A100_GPUs_32

2 of Al-Spine 72x400

Finally, a Blueprint is instantiated with this Template.

Figure 19: Juniper Apstra Blueprint for Backend Network

vt # » Blueprints » Al_Backend » Staged » Physical » Build » Resources > o o

(@ Dashboard |~ Analytics [&) staged 84 Uncommitted (®) Active D Time Voyager

[©] [©] O] 2 [©]
Physical . Virtual @ Policies [E Catalog = Tasks 3, Connectivity Templates <& Fabric Settings
[©]
de s: All Selection Build
[©]
i Py

Topology Nodes Links Interfaces Racks Pods Layer Uncommitted Changes x = g at

02 3 Has Uncommitted Changes

m ASNs - Spines

Selected Rack Selected Node Topology Label
m ASNs - Leafs

- - Name -
m Loopback IPs - Spines
D exvand Nedes? ‘Show Links?

m Loopback IPs - Leafs

m Link IPs - Spines<>Leafs

QRN s oo

Favorites

a

User: admin

4 Active Tasks: 0

There are several resources added into the Blueprint to start building the fabric - this includes the ASN pool for
the leafs and spines, the spine and leaf loopbacks, and the point-to-point addresses between the leafs and the

spines.
A common ASN pool and IP pool is defined for the ASNs and the loopbacks, as shown in Figure 20 and Figure
21.

Figure 20: Juniper Apstra ASN pool

(] 7 4 » Resources » ASN Pools » asn_pool

Juniper Apstra™

He)
5 ~ back to list
F &

Blueprints

Name asn_pool

stte EEEITEES

Total Usage m

Range Usage [aax] 64512 - 64999

Favorites

a

User: admin

Figure 21: Juniper Apstra IP Pool for Loopbacks

us ¢ @ » Resources ' IP Pools » loopback

Juniper Apstra™

8 « backtolist ooy

Blueprints

Name loopback
Total Usage :5.5 1% |

Per Subnet Usage 192.0.2.0/24

Favorites

a

User: admin

Since there are eight leafs, and each leaf has eight links to each spine, there is a requirement of 256 addresses for
the point-to-point links between the leafs and the spines. For this, a separate group of pools are defined for the
back-end network, as shown in Figure 22.

Figure 22: Juniper Apstra IP pool for point-to-point links between leafs and spines

L] vr @ » Resources » IPPools » backend_p2p

L]
Juniper Apstra™
o] t
= + back to list
Blueprints

Name backend_p2p
-
Total Usage
T 172161000724
Per Subnet Usage [ox 172.16.101.0/24
Eusermil Systame [ox] 172.16.102.0/24

Favorites

8

User: admin

To start generating device specific configuration in Juniper Apstra, the Interface Maps must be mapped to each
device in the fabric. For the spines, the Interface Map corresponding to the 72 x 400G PTX10008 device is used.

Figure 23: Interface Map to Device Mapping for spines

Update interface map for Al-Spine 72x400

Page Size:

Name % Interface Map = Device Profile +
0 selected

spinel PTX10008_72x400G____Al-Spine 72x400 PTX10008_72x400

spine2 PTX10008_72x400G____Al-Spine 72x400 PTX10008_72x400

Update Assignments

For the leafs, the 16 x 400G + 32 x 200G Interface Map corresponding to the QFX5220-32CD is used as shown
in Figure 24,

Figure 24: Interface Map to Device Mapping for Leafs

Update interface map for Al-Leaf 16x400 and 32x200

backend_gfx5220_001_leaf1

Juniper QFX5220-32CD___Al-Leaf 16x400and 32 X jyniper QFX5220-32CD

backend_qfx5220_001_leaf2 i.égiger,qrﬁzzo-s2CD,,,,A|rLeaf16:(400 and 32 %

Juniper_QFX5220-32CD

backend_qfx5220_001_leaf3 Juniper QFX5220-32CD__Al-Leaf 16x400and 32X jiniper QFX5220-32CD

backend_qfx5220_001_leaf4 i‘égigef—qFX522°'32CD—-—-"‘"'-‘*"' 16x400and 32 X), e QFXS220-32€D

backend_qfx5220_001_leaf5

iglalger__QFXSZ?O-32CD____,AI-Leal 16x400 and 32 x Juniper QFX5220-32CD

backend_qfx5220_001 leafé Juniper QFX5220-32CD___Al-Leaf 16x400 and 32 x

Juniper_QFX5220-32CD

backend_qfx5220_001_leaf7 Junper QRG220-32C0.... Al-leaf 16x400 and 32 % | Junper QFX5220-32CD

With these mapped to the respective devices, Juniper Apstra generates configuration that is used to build the IP
fabric. To view rendered information specific to a device in the fabric, click Rendered under Config available on
the right-side when in a device specific view of the topology.

For example, to confirm, we can see that the rendered configuration includes point-to-point /31 addresses on
the interfaces to connect to each of the leafs, as shown in Figure 25.

Figure 25: Juniper Apstra Rendered Configuration for Spinel

spinel Rendered Config Preview

interfaces {
replace: et-0/8/@ {
description "facing_backend-qfx5220-001-leaf1:et-8/8/0";
mtu 9216;
unit @ {
family inet {
mtu 917@;
address 172.16.100.8/31;
}
¥
}
replace: et-0/0/1 {
description "facing_backend-qfx5220-801-leafl:et-8/0/1";
mtu 9216;
unit @ {
family inet {
mtu 9170;
address 172.16.100.2/31;
}
}
e
replace: et-0/0/2 {
description "facing_backend-qfx5220-801-leaf1:et-8/0/2";
mtu 9216;
unit @ {

For the back-end network, the connectivity down to the GPU is also Layer 3. To do this, a Connectivity Template
in Juniper Apstra is used, and this is attached to all the links on the leafs that connect to the Generic Systems
(which logically represent the Hyperplane8-A100 servers). Thus, the application point is the interface itself.

This Connectivity Template is an IP Link primitive, using the default routing zone and a numbered IPv4
addressing type.

Figure 26: Juniper Apstra Connectivity Template for IP Link to GPUs

Edit Connectivity Template

Parameters Primitives. User-defined Pre-defined 5] ﬁ‘p“p‘!i_caticn Point
~ Summary
Title *

L3_to_GPUs

Description

L3 link to GPUs for IP connectivity in IP Fabric

»
Type: IP Link

Revert Changes |

Figure 27: Configuration of Juniper Apstra Connectivity Template for IP Link to GPUs

Edit Connectivity Template

Routing Zone *

Default routing zone

Interface Type "®
Tagged
© Untagged

VLAN ID @

IPv4 Addressing Type "
None

© Numbered

IPv6 Addressing Type *

© None

Link local

Revert Changes ‘ m

This Connectivity Template is then attached to all the GPU facing interfaces on all leafs. A snippet is shown in
Figure 28.

Figure 28: Attaching Connectivity Template to interfaces

Assign L3_to_GPUs

Fabric L3_to_GPUs
¥ pod1 (Pod)
~ backend_qgfx5220_001 (Rack)
v backend_qfx5220_001_leaf1 (Leaf)
et-0/0/16:0 -> backend_qfx5220_001_sys002 (Interface)
et-0/0/16:1 -> backend_qfx5220_001_sys001 (Interface)

qfx5220_a100_gpu
qfx5220_100_gpu
et-0/0/17:0 -> backend_qfx5220_001_sys003 (Interface) qfx5220_a100_gpu
et-0/0/17:1 -> backend_qfx5220_001_sys004 (Interface)
et-0/0/18:0 -> backend_qfx5220_001_sys005 (Interface)

et-0/0/18:1 -> backend_qfx5220_001_sys006 (Interface)

afx5220_a100_gpu
qfx5220_a100_gpu
qfx5220 100 _gpu
et-0/0/19:0 -> backend_qfx5220_001_sys007 (Interface)
et-0/0/19:1 -> backend_qgfx5220_001_sys008 (Interface)
et-0/0/20:0 -> backend_qfx5220_001_sys010 (Interface)
et-0/0/20:1 -> backend_qfx5220_001_sys009 (Interface)

afx5220_100_gpu
qfx5220_a100_gpu
afx5220_a100_gpu
qfx5220_a100_gpu
€t-0/0/21:0 -> backend_qfx5220_001_sys011 (Interface) fx5220_2100_gpu
et-0/0/21:1 -> backend_qfx5220_001_sys012 (Interface)
et-0/0/22:0 -> backend_qfx5220_001_sys013 (Interface)

qfx5220_a100_gpu

L
L]
L
L]
L J
>
L]
L
L3
®
L]
°
L]

afx5220_a100_gpu

000000000000
I soo

Once this is attached to the interfaces, Juniper Apstra has an additional requirement of IP pools for these new
point-to-point links. Since a single stripe has 32 x Hyperplane8-A100s and implies that there are 32 x 8 links to
GPUs per leaf, there is a requirement of 512 addresses.

A dedicated group of IP pools are created and used as shown in Figure 29.

Figure 29: Juniper Apstra IP Pool Created for IP Link Connectivity to GPUs

s ¢ 4@ » Resources » IPPools » 13_to_gpu
Juniper Apstra™
+ back to list
Devices Name 13_to_gpu
= s T
Design
e T
=
Resources
. Per Subnet Usage m 172.16.11.0/24
i
Extemal Systems [ox] 172.16.12.0/24

S

Platform

w

Favorites

&

User: admin

This pool is attached to the resource requirement in Juniper Apstra.

Figure 30: Juniper Apstra L3 Fabric IP Pool Assignment

¥r @ » Blueprints » Al_Backend » Staged » Physical » Build » Resources

m

€D Dashboard Iﬁ Analytics @ Staged =ﬁ Uncommitted (®) Active
Topology Nodes Links Interfaces Racks Pods Layer Uncommitted Changes
[+ D] 3D
Selected Rack Selected Node

Name

D Bxwand Nodes? () Show Links?

spinel

Favorites

6WEE

backend. qfx522 b:ckend qt‘uEfEt el

\J.n!fuu;mclﬁ’ 2 %n% «’\ﬁﬁ\%’%‘ﬁ;m&:: % {\nuu!\l
backend. qfl522. { backend_qfx522... backend_gfx522... ?5 ba:kend |_qgfx522...

= 23]‘«sﬁﬁubﬁm <>‘< E\Jﬁuumljl
s } hadcznd qf522 badcend r-nszzu.

D Time Voyager

x

Has Uncommitted Changes

Topology Label

z & ¥
> W g
0O D
g 8 &

ASNs - Spines

ASNGs - Leafs

Loopback IPs - Spines

(BB Loopback IPs - Leafs

R

Link IPs - Spines<>Leafs

Link IPs - To Generic

1]

o]
1-10f1
Pool Name:
13_to_gpu

Juniper Apstra now generates configuration for these point-to-point GPU facing interfaces per leaf and
redistributes these addresses into the IP fabric through BGP for reachability between all GPU servers.

Once the main fabric is configured, the two IP services (DLB and DCQCN) must be added using Configlets in

Juniper Apstra.

First, a Configlet is created for DLB as shown in Figure 31.

" vr 4 » Design» Configlets » DLB

Juniper Apstra™
= back to list

B
=

Blueprints

e
External Systems

=

Platform

w

Favorites

Figure 31: Configlet for DLB

Expanded View Compact View

Configlet Parameters

Name DLB
Junos: SYSTEM

1 forwarding-options {
2 enhanced-hash-key {
3 ecmp-dlb {
4 flowlet {
5 inactivity-interval 16;
6 }
7 ether-type {
8 A
9 }
10 }
1 }

Template Te L B

femplate Text 13 policy-options {
14 policy-statement DLB {
15 then {
16 load-balance per-packet;
17 }
18 }
19)}
28 routing-options {
21 forwarding-table {
22 export DLB;
23 }
2)

|
&
L]
[1

To use a Configlet in a Blueprint, it must be imported into the Blueprint Catalog. Specific conditions are used for
its assignment to determine which devices receive this additional configuration as defined in the Configlet. For
the purposes of DLB, we need all leafs to have this configuration, so the condition matches on the ‘leaf’ role.

Figure 32: Condition Match for DLB Configlet

.-. v @ » Blueprints » Al_Backend » Staged » Catalog » Configlets
Juniper Apstra™
(D Dashboard ~ Analytics Staged 85 Uncommitted (@) Active
a

e Q

Devices
[©] [© |

@ £ Physical 3. Virtual @ Policies [Catalog = Tasks 8, Connectivity Templates

i
[~ Logical Devices Interface Maps

=

L3

=
External Systems

S

Platform

w

Favorites

Name &

DLB

a8

User: admin

Property Sets

Configlets AAA Servers Tags

Node Condition

role in ["leaf"]

D Time Voyager

5 2 Find by tags

<I@ Fabric Settings

© Import Configlet

1-10f1

Page Size: 25 b4

Actions

Once this is added to the Blueprint, we can confirm that the leafs now have an incremental configuration added
through this Configlet. An example for leafl is shown in Figure 33.

Figure 33: Incremental Configuration Added to a Leaf When DLB Configlet is Successfully Imported

backend_qfx5220_001_leafl Incremental Config Preview

forwarding-options {
enhanced-hash-key {
ecmp—dlb {
flowlet {
inactivity-interval 16;
}
ether-type {
ipva;
}
¥
¥
}
policy-options {
policy-statement DLB {
then {
load-balance per-packet;
¥
}
}
routing-options {
forwarding-table {
export DLB;
}
}

In the same way, relevant configuration for DCQCN is also added as a Configlet. Since the DCQCN configuration
can get complicated, automating this via a tool like Terraform can provide reliability and the flexibility needed to
accurately apply this on all necessary interfaces.

Front-end Network

The Front-end network uses QFX5220-32CD for both the spines and the leafs. The network requirement for this
is not as strict as the back-end network in terms of the oversubscription ratio. To keep things consistent, the
oversubscription ratio is still maintained as close to 1 as possible.

The standard networking port of the Hyperplane8-A100s are used to connect to the front-end network. Each
server has only one of these ports, which means that 32 x 100G front-end interfaces need to be connected to
this network. All the GPU server ports are connected to leafl, while the storage front-end interfaces are
connected to leaf2.

Figure 34 shows a topology with a high-level overview of the front-end network for Juniper Apstra
implementation.

Figure 34: Topology for Implementation of Front-End Network in Juniper Apstra

Spine 1 Spine 2
4 x 400G per spine
Headend_Server_1
WAN
Headend Server 2 — 3 FFial @ BRI/ ------—-—----
R 32 x 100G 15 x 100G
A100_1...A100_32 Weka_1 ... Weka_15

In Juniper Apstra, this Rack Type is added in a Template, as shown below. The Template is similar to the
Template used for the back-end network. The front-end specific Rack Types are used instead.

Figure 35: Juniper Apstra Template for the Front-End Network

vy @ » Design » Templates » Al_Frontend_Template

€D ExpandNodes? () Show Links?

frontend
o o o o o o o o o o o o o a o
Leafl 1 Leaf2 1
o o o o 0 o @ o
o o o]
A100_Fi d_1 A100_| die A100_| [Headend_Server...
o a o =]
A100_Frontend_2 A100_Frontend._... A100_Frontend_... Headend_Server...
o a o a
A100_Frontend_3 A100_Frontend._... A100_Frontend_... Headend_Server...
o a o a
A100_Frontend_4 A100_Frontend_... A100_Frontend._... Weka_Storage_F...
o o] o
A100_ d_5 A100_ ... A100_ .. Weka_Storage F...
-] o]]
A100_ 6 A100_ .. A100_ Iz Weka_Storage._F...
Favorites
-] o o a
A100_Fr B A100_F fe A100 | 5 Weka_Storage F...
o o o o
A100_Frontend_8 A100_Frontend._... A100_Frontend_... Weka_Storage_F...
o a o a
A100_Frontend_9 A100_Frontend_... A100_Frontend._... Weka_Storage_F...
poy o o o o
A100_Frontend._... A100_Frontend_... A100_Frontend._... Weka_Storage_F...
User: admin
o o o
A100_Frontend._.., A100_Frontend_... Weka_Storage_F...

You can use this Template to instantiate a Blueprint specific to the Front-end network.

Figure 36: Juniper Apstra Blueprint for Front-End Network

"-. ¢ @ Blueprints » Al_Frontend » Staged » Physical » Build » Resources b 3 i‘
Juniper Apstra™ |
@D Dashboard |ﬁ Analytics @ Staged Ea Uncommitted ((ﬁ)) Active D Time Voyager
© [& | Q2
2 Physical . Virtual @ Policies [E] Catalog = Tasks 3, Connectivity Templates < Fabric Settings
Devices
@ » Nodes: All ¥ Links: All Selection Build
(o]
Topology Nodes Links Interfaces Racks Pods Layer Uncommitted Changes x % gT
Rl O 2p 3D Has Uncommitted Changes
m ASNs - Spines
External ;;m,m Selected Rack Selected Node Topology Label

m Loopback IPs - Spines
Expand Nodes? Show Links?
m Loopback IPs - Leafs

|| Link IPs - Spines<>Leafs

frontend_001

o o o o a o o a a o o (=] o
frontend_001_leafl frontend_001_leaf2
iy 2 D o =} o o o o
My Al o o I o
frontend_001 s... | | frontend_001 s... frontend_001_s... frontend_001_s...
8 \\ \\“H“ \\“A) \ + .
Yo \ o o =]
User: admin frontend_001_s... \ frontend_001 _s... frontend_001_s... | frontend_001 s...

Like any other fabric, the Blueprint includes resources such as ASN and IP pools, and Interface Maps for each of
the devices in the fabric. For the front-end network, there is no requirement for Layer 3 point-to-point links to
the servers, and general Layer 2 connectivity is used with untagged or tagged interfaces. This Connectivity
Template is then assigned to all A100 server facing interfaces on leaf1.

Figure 37: Connectivity Template Attached to Interfaces of Leaf for Front-End Network

Assign Tagged VLAN 'a100_vn' on leaf 'frontend_001_leaf1'
Table view

Al bulk actions (£¢) will be applied only to the loaded connectivity templates.

Fabric Tagged VLAN 'a100_vn' on leaf 'frontend_001_leaf1'
~ pod1 (Pod) -]
~ frontend_001 (Rack) -3
~ frontend_001_leaf1 {Leaf) o
et-0/0/16:0 -> frontend_001_sys004 (Interface) frontend_a100
et-0/0/16:1 -> frontend_001_sys003 (Interface) frontend_a100

€t-0/0/16:2 -> frontend_001_sys002 (Interface) frontend_a100

et-0/0/16:3 -> frontend_001_sys001 (Interface) frontend_a100

et-0/0/17:0 -> frontend_001_sys005 (Interface) frontend_a100
et-0/0/17:1 -> frontend_001_sys006 (Interface) frontend_a100
et-0/0/17:2 -> frontend_001_sys007 (Interface) frontend_a100
et-0/0/17:3 -» frontend_001_sys008 (Interface) frontend_a100

(<M <N <M< M<M<N<N<N<

et-0/0/18:0 -> frontend_001_sys009 (Interface) frontend_a100

In the same way, another Layer 2 Connectivity Template is used for the Headend Servers, and a Layer 3
Connectivity Template for the WAN facing interface, allowing a default route to be received from the WAN
edge.

Storage Network

The storage network facilitates the connection of storage ports of the Hyperplane8-A100 servers, along with a
dedicated storage cluster which includes Weka storage nodes. Two Rack Types are built for this, with each rack
having 2 x QFX5220-32CD leafs. One Rack Type connects to the GPU storage ports and the other Rack Type
connects to the dedicated storage nodes.

Each GPU server connects to a leaf through a dedicated 200G storage port. Since we have 32 servers, the cluster
is divided into two, with 16 servers connecting to leafl and 16 servers connecting to leaf2. Thus, for the GPU
storage rack, each leaf receives 16 x 200G inbound, implying that it must have 8 x 400G per leaf.

These Rack Types are added in the storage-specific Template in Juniper Apstra.

Figure 38: Juniper Apstra Template for Storage Network

vy @ » Design » Templates » Al_Storage_Template

Topology Preview

Selected Rack

£ Expand Nodes? Show Links?

Resources
weka_storage gPu_storage

b4 a =] =] o =] a a a o o a
°Or Leafl_1 Leaf2_1 Leaf2_1 Leafl_1
o ooobd oaoo oo 0oo0odo0o0o0 o o o o o o o
External Systems.
a o a o a o a o o o o a
Weka_Stora... Weka_Stora... Weka_Stora... Weka_Stora... A100_Stora... A100_Stora... A100_Stora... A100_Stora...
a o o o a o o o o o o o
‘Weka_Stora... Weka_Stora... Weka_Stora... Weka_Stora... A100_Stora... A100_Stora... A100_Stora... A100_Stora...

Structure

Spines 2 of AOS-32x400-2

Tags

8
User: admin Rack Types

1 of weka_storage (8 generic systems)

1 of gpu_storage (8 generic systems)

You can use this Template to instantiate a Blueprint for the storage network, and various resources are tied to
this Blueprint again. For the storage network, we recommended that Layer 3 links are used for the servers and
the storage nodes. For this, a Layer 3 Connectivity Template is used, and it is attached to all the links to these
nodes, similar to the back-end network.

At this stage, all three networks (back-end, front-end, and storage) are completely built with Juniper Apstra, with
all necessary configuration ready to be pushed to the network devices of the fabric.

Summary

This document illustrates the various kinds of Al/ML cluster designs using Juniper Network devices and the
corresponding implementation with Juniper Apstra. The design considerations maintained in the document are
from the network perspective, and the performance of the GPU cluster and models are subject to change based
on many external factors relative to the GPU hardware, NICs, congestion control mechanisms, algorithms in use

and the workloads themselves as examples. Contact Juniper Networks representative for consultation on specific
implementation.

Corporate and Sales Headquarters APAC and EMEA Headquarters
Juniper Networks, Inc. Juniper Networks International B.V.
1133 Innovation Way Boeing Avenue 240

Sunnyvale, CA 24089 USA 1119 PZ Schiphol-Rijk

Phone: 888.JUNIPER (888.586.4737) Amsterdam, The Netherlands

or +1.408.745.2000 Phone: +31.207.125.700

Fax: +1.408.745.2100 Fax: +31.207.125.701

www.juniper.net

Copyright 2023 Juniper Networks, Inc. All rights reserved. Juniper Networks, the Juniper Netwaorks logo, Juniper, Junos, and other trademarks are registered trademarks of
Juniper Networks, Inc. and/or its affiliates in the United States and other countries. Other names may be trademarks of their respective owners. Juniper Networks assumes no
responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change, modify, transfer, or otherwise revise this publication without notice.

Send feedback to: design-center-comments@juniper.net V1.0/231110/ai-clusters-data-center-design

	About this Document
	Documentation Feedback

	Introduction
	AI/ML Workloads and Architecture
	AI/ML Cluster Scale
	Figure 2: Al/ML Cluster Scale

	Cluster Infrastructure
	AI/ML Cluster Components
	Figure 3: Al/ML Cluster Anatomy

	High-Level Design
	Rail-Optimized Stripes
	Figure 4: Rail-Optimized Stripes

	High-Level Front-end Network Design
	Figure 5: Frontend Network Architecture

	High-Level Back-End Network Design
	Compute-Design 1: A Rail-Optimized GPU Stripe with QFX5230-64CDs as the Spines and QFX5230-64CDs as the Leafs
	Figure 6: Rail-Optimized and Network Optimized Design with QFX5230-64CDs in Spine and Leaf Roles

	Compute-Design 2: A Rail-Optimized GPU Stripe with PTX10008 as the Spines and QFX5230-64CDs as the Leafs
	Figure 7: Rail-Optimized and Network Optimized Design with QFX5220-32CDs as Leafs and PTX10008s as Spines

	High-level Storage Network Design
	Figure 8: Back-end Storage Design with QFX5220-32CDs as Leafs and Spines

	Design and Implementation
	Introduction
	Figure 9: Hyperplane8-A100 Connectivity to Back-End Network
	Figure 10: Example Topology for Implementation of Back-End Network

	Leveraging an IP Fabric Design
	Benefits
	Figure 11: End to End L3 Clos Fabric Design

	IP Services Deployed in an IP Fabric for AI Clusters
	Dynamic Load Balancing
	Figure 12: DLB Packet Flow

	Data Center Quantized Congestion Notification (DCQCN)

	Building Data Centers for an AI Cluster with Juniper Apstra
	Juniper Apstra Overview
	Back-End Network
	Figure 13: Juniper Apstra Device Profile
	Figure 14: Juniper Apstra Logical Device
	Figure 15: Juniper Apstra Interface Maps
	Figure 16: Logical Device for QFX5220-32CD Leaf with 16 x 400G and 32 x 200G Ports
	Figure 17: Interface Map for QFX5220-32CD with 16 x 400G and 32 x 200G Ports
	Figure 18: Juniper Apstra Template for Backend Network
	Figure 19: Juniper Apstra Blueprint for Backend Network
	Figure 20: Juniper Apstra ASN pool
	Figure 21: Juniper Apstra IP Pool for Loopbacks
	Figure 22: Juniper Apstra IP pool for point-to-point links between leafs and spines
	Figure 23: Interface Map to Device Mapping for spines
	Figure 24: Interface Map to Device Mapping for Leafs
	Figure 25: Juniper Apstra Rendered Configuration for Spine1
	Figure 26: Juniper Apstra Connectivity Template for IP Link to GPUs
	Figure 27: Configuration of Juniper Apstra Connectivity Template for IP Link to GPUs
	Figure 28: Attaching Connectivity Template to interfaces
	Figure 29: Juniper Apstra IP Pool Created for IP Link Connectivity to GPUs
	Figure 30: Juniper Apstra L3 Fabric IP Pool Assignment
	Figure 31: Configlet for DLB
	Figure 32: Condition Match for DLB Configlet
	Figure 33: Incremental Configuration Added to a Leaf When DLB Configlet is Successfully Imported

	Front-end Network
	Figure 34: Topology for Implementation of Front-End Network in Juniper Apstra
	Figure 35: Juniper Apstra Template for the Front-End Network
	Figure 36: Juniper Apstra Blueprint for Front-End Network
	Figure 37: Connectivity Template Attached to Interfaces of Leaf for Front-End Network

	Storage Network
	Figure 38: Juniper Apstra Template for Storage Network

	Summary

