

Designing Data Centers for AI Clusters

Authors: Aninda Chatterjee, Vivek V

About this Document
This document is a generic design document for building network infrastructure for high-performance AI clusters.

Documentation Feedback
We encourage you to provide feedback so that we can improve our documentation.
Send your comments to design-center-comments@juniper.net. Include the document or topic name, URL or page
number, and software version (if applicable).

Table of Contents
Introduction 3

AI/ML Workloads and Architecture 3
AI/ML Cluster Scale 4
Cluster Infrastructure 5
AI/ML Cluster Components 7

High-Level Design 9
Rail-Optimized Stripes 9

High-Level Front-end Network Design 10

High-Level Back-End Network Design 11

Compute-Design 1: A Rail-Optimized GPU Stripe with QFX5230-64CDs as the Spines and QFX5230-

64CDs as the Leafs 11

Compute-Design 2: A Rail-Optimized GPU Stripe with PTX10008 as the Spines and QFX5230-64CDs

as the Leafs 12
High-level Storage Network Design 13

Design and Implementation 14
Introduction 14
Leveraging an IP Fabric Design 16

Benefits 16
IP Services Deployed in an IP Fabric for AI Clusters 16

Dynamic Load Balancing 17

Data Center Quantized Congestion Notification (DCQCN) 18

Building Data Centers for an AI Cluster with Juniper Apstra 19

Juniper Apstra Overview 19

Back-End Network 19

Front-end Network 30

Storage Network 33

Summary 34

mailto:design-center-comments@juniper.net

Introduction
Artificial Intelligence (AI) has rapidly evolved over the past decade, and the demand for AI clusters to support
research, development, and deployment has grown alongside it. AI clusters can be built in various sizes, tailored
to specific needs and workloads. In this document, we explore the network infrastructure requirements of AI
clusters delving into their workload paradigms and the Juniper Networks Data Center design approach for AI
clusters.

AI/ML Workloads and Architecture
AI/ML workloads encompass a wide range of tasks and applications that leverage AI and Machine Learning (ML)
techniques to analyze, understand, and make predictions from data. These workloads are at the heart of many
modern technological advancements and applications, and are typically network, storage, and compute-intensive.
Some of the more common workload types are:

• Supervised Learning—In supervised learning, models are trained using labeled datasets, where each
input data point is associated with a known target or label.

• Unsupervised Learning—Unsupervised learning involves working with unlabeled data, where the
model learns patterns and structures in the data without explicit guidance.

• Reinforcement Learning—Reinforcement learning involves training agents to make a sequence of
decisions in an environment to maximize a reward signal.

• Deep Learning—Deep learning is a subset of ML that focuses on neural networks with many layers
(deep neural networks).

• Natural Language Processing (NLP)—NLP workloads involve processing and understanding human
language, enabling machines to interact with text or speech data.

• Computer Vision—Computer vision workloads deal with understanding and interpreting visual data,
such as images and videos, to recognize objects, patterns, and scenes.

• Time Series Analysis—Time series analysis focuses on data that varies over time. It involves modeling
and predicting future values based on historical data.

• Recommendation Systems—Recommendation systems use AI/ML to suggest items or content to
users based on their preferences, behavior, or historical data.

• Generative Models—Generative models aim to generate new data that resembles existing data.

• Anomaly Detection—Anomaly detection workloads focus on identifying rare or unusual patterns in
data that deviate from expected behavior.

The architecture of an AI/ML cluster network is counter-intuitive when compared to the conventional network
architecture.

While Figure 1 shows the entire cluster as one contiguous network segment, these are three separate network
segments, each of which services only that aspect of the cluster. Figure 1 represents the AI/ML data flow. Each
GPU communicates with the back-end network through a GPU network port. The server hosting the GPUs has a
dedicated storage network port that connects to external storage arrays over the storage network. Thus, the
GPU/Compute nodes communicate with the storage nodes via the storage specific interfaces on the GPU server
itself rather than hopping between networks. Figure 1 shows further description of these segments in the
respective sections.

Figure 1: High-Level Flow of GPU Training and Inference Process

AI/ML Cluster Scale
The size of an AI/ML cluster varies significantly depending on the specific requirements of the workload and the
scale that is necessary to meet these requirements. The number of nodes in an AI/ML cluster is influenced by
factors such as the complexity of the machine learning models, the size of the datasets, the desired training
speed, and the available budget. The number varies from a small cluster to a data center-wide cluster comprising
of 1000s of compute, storage, and networking nodes. The scope of this document is limited to a scaled down
version of an AI cluster.

The cluster size depends on the number of endpoint nodes that are present in the infrastructure. This document
covers different design considerations and infrastructure elements to cater to different cluster sizes. Figure 2
shows a large-scale cluster.

Figure 2: Al/ML Cluster Scale

Cluster Infrastructure
This section outlines the nodes (network, compute, and storage) used in this design guide. The design guide is
based on Juniper QFX5220-32CD, QFX5230-64CD and PTX devices for the network infrastructure, with
NVIDIA A100 and H100 GPUs for compute, and Weka storage nodes. Table 1 provides a high-level overview of
these nodes.

Table 1: Infrastructure Nodes Used by Juniper for the Cluster Design

QFX5220-32CD

IP fabric switch: leaf or spine scaling up to 12.8 Tbps.

Ports: 32 x 400GbE, 64 x 200GbE, 128 x 100GbE, 32 x 40GbE,
128 x 25GbE, 128 x 10 GbE

Operating system: Junos OS Evolved

Dimension: 1U rackmount, 17.26 x 1.72 x 21.1 in. (43.8 x 4.3 x
53.59 cm) W x H x D

QFX5230-64CD

IP fabric switch: leaf or spine scaling up to 25.6 Tbps

Ports: Up to 64 × 400GbE, 128 × 200GbE, 256 × 100GbE, 64 ×
40GbE, 256 × 25GbE, 256 × 10GbE ports

Operating system: Junos OS Evolved

Dimensions: 2U rackmount, 17.4 x 3.43 x 25.6 in. (44.2 x 57.76 x
81.28 cm) W x H x D

PTX10008

IP fabric switch: spine scaling up to 115.2 Tbps.

Ports: Up to 288 x 400GbE, 1152 x 100GbE, 288 x 40GbE, 1152 x
25GbE, and 1152 x 10GbE

Operating system: Junos OS Evolved

Dimensions: 13U rackmount, 17.4 x 22.55 x 32 in. (44.2 x 57.76 x
81.28 cm) W x H x D

Lambda Hyperplane8 HGX-A100

Standard networking: 1x NVIDIA ConnectX-6 Dx adapter
card, 100GbE, dual-port QSFP28, AIOM PCIe 4.0 x16

Storage Networking: 1x 200 Gbps NVIDIA ConnectX-6 VPI
NIC: Dual-port QSFP56, HDR InfiniBand/Ethernet

GPU Direct RDMA Networking: 8x NVIDIA ConnectX-7
Adapter Card 200Gb/s NDR200 IB Single-port QSFP PCIe
4.0 x16

Operating system: Ubuntu 22.04: Includes Lambda Stack for
managing TensorFlow, PyTorch, CUDA, cuDNN, etc.

Processor: 2x AMD EPYC 7763: 64 cores, 2.45~3.5GHz, 256MB
cache, PCIe 4.0

GPUs: 8x NVIDIA A100 (80GB) SXM4: HGX platform with NVLink
and NVSwitch fabric

OS drives: 2x 1.92 TB M.2 NVMe: Data center SSD, 1 DWPD,
PCIe 4.0

Data drives: 6x 3.84 TB U.2 NVMe: Data center SSD, 1 DWPD,
PCIe 4.0

Dimensions: 4U rackmount, 6.9 x 17.6 x 35.4 in (174 x 446 x 900
mm) HxWxD

NVIDIA DGX H100

Networking (GPUs): 4x OSFP ports serving 8x single-port
NVIDIA ConnectX-7 VPI: 400 Gb/s InfiniBand/Ethernet

Networking (Storage): 2x dual-port NVIDIA ConnectX-7
VPI: 1x 400 Gb/s InfiniBand/Ethernet

DGX H100 System: DGX H100 System, 80GB, 10 NIC, Standard
Support, 3 Years

GPUs: 8x NVIDIA H100 80GB Tensor Core GPUs with NVLink
and NVSwitch Fabric

Processor: Dual Intel Xeon Platinum 8480C Processors: 112 Cores
total, 2.00 GHz (Base), 3.80 GHz (Max Boost) Memory: 2TB DDR5

OS Storage: 2x 1.92TB M.2 NVMe drives

Internal storage: 8x 3.84TB U.2 NVMe drives

Dimensions: 8U rackmount, 14 x 19.0 x 35.3 in (174 x 446 x 900
mm) HxWxD

Weka Storage node

Networking (front-end): 1x NVIDIA ConnectX-6 Dx adapter
card, 100GbE, dual-port QSFP28, PCIe 4.0 x16

Networking (storage): 2x NVIDIA ConnectX-6 VPI adapter
card, HDR IB (200Gb/s) and 200GbE, dual-port QSFP56,
OCP 3.0

Operating system: 1x Ubuntu | 22.04

Processor: 1x AMD EPYC 9454P (48-core, 2.75~3.8GHz, 256MB
cache, 290W)

OS drives: 2x 1.92 TB M.2 NVMe: Data center SSD, 1 DWPD,
PCIe 4.0

Data drives: 7x 7.68 TB U.2 NVMe: Data center SSD, 1 DWPD,
PCIe 4.0

Software: 3-year Weka Flash tier license w/ Snapshot and high
perf protocol services - POSIX + NFS-W + S3 + SMB-W

The components shown in Table 1 are part of the overall AI/ML cluster anatomy, as shown in Figure 3, wherein a
front-end network connects to external users and data, and a back-end network supports the AI model training
functions of the training clusters.

AI/ML Cluster Components
Figure 3: Al/ML Cluster Anatomy

Cluster Components:

• Training Cluster

• Inference Cluster

• Shared Storage Pools

• Dedicated Cluster Storage

Cluster Networks:

• Frontend:

 Inference clusters use this network

 Shared storage pools

 Management network for training

• Backend:
 GPU Compute Fabric

 Dedicated Storage Fabric (may be converged with compute)

NOTE: A separate Intelligent Platform Management Interface (IPMI)/Out-of-Band (OOB) management
network exists for the overall AI/ML cluster.

High-Level Design
The following sections lay out considerations of the AI Cluster design, focused on training clusters (and not
inference clusters, whose overall design may vary in terms of GPU and storage nodes).

Rail-Optimized Stripes
Figure 4: Rail-Optimized Stripes

In designing the network infrastructure for an AI cluster, the key objectives are to provide maximum throughput,
minimal latency, and minimal network interference for AI traffic flows. A Rail-Optimized Stripe, proposed by
NVIDIA, is a design that extends from the compute nodes to the Top of Rack leafs, which takes the network
requirements that are necessary for AI clusters into consideration.

From the perspective of the network infrastructure, this design is similar to a Layer 3 Clos fabric, that is common
across most modern data center deployments. For example, for the DGX H100 compute servers (which has 8
GPUs and 8 NICs in the server), any-to-any GPU communication within the server is achieved via high
throughput NVLink channels attached to a NVSwitch. In addition to this, each NIC in the server connects to a
unique Top of Rack leaf (NIC1 to leaf1, NIC2 to leaf2, and so on), and the same methodology is followed on all
servers, achieving a ‘rail’ design. NVIDIA documentation provides more information on such designs.

With such a design, along with optimizations such as PXN (PCIe x NVLink), network interference is minimized by
moving data to a GPU on the same rail as the destination, and thus sending data to the destination without
crossing rails, which minimizes the number of network hops required. This GPU/NIC connectivity for rail-
optimized stripes is explored in more detail in the design and implementation section.

The high-level design for the back-end network uses a rail-optimized stripe as a basic building block and
replicates the same design to scale up an AI cluster size.

https://developer.nvidia.com/blog/doubling-all2all-performance-with-nvidia-collective-communication-library-2-12/#:%7E:text=Rail%2Doptimized%20network%20topology%20helps,having%20lighter%20connections%20between%20rails

High-Level Front-end Network Design
The front-end network for the AI Cluster provides the connections external to the cluster for users and data.

Figure 5: Frontend Network Architecture

Some of the design considerations for the front-end network are:

• The front-end network deals with elements such as orchestration of the training and possibly
servicing inference if any GPUs are dedicated to inference, handling Application Programming
Interface (API) calls from end users to deliver the inference from the model, telemetry, and so on.

• Thus, the front-end network is not expected to receive the same amount of network traffic and data
flows as the back-end, which deals with the training methods and storage. Therefore, in the front-
end network design, we chose to use the QFX5220-32CD devices as both the leafs and spines with
the port mapping described below.

• To have an oversubscription ratio that is equal to 1, in this design, there are 16 x 100G links from the
A100 servers and 8 x 200G links from the H100 servers, which at full capacity is a network load of
3200Gbps. The uplinks from the QFX5220-32CD leafs to the QFX5220-32CD spines at 2 x 2*400G
uplinks per spine that brings the total upward bandwidth to 3200 Gbps, thus maintaining the
oversubscription ratio at 1.

• The storage nodes in use (Weka storage nodes) have 1 x 100G links per node going to the leaf. For
the purposes of parity in the design, the uplink from the storage leaf to the spine is also set at 3200
Gbps. Based on the requirements, this can either be brought down to 1600 Gbps by removing
uplinks or provisioned for an additional 15 storage nodes maintaining the oversubscription ratio at 1.

High-Level Back-End Network Design
The design of the back-end network of the AI cluster as shown in Figure 3, can be divided into two segments:

• Compute or GPU network.

• Storage network.

This document covers three variants of example topologies for the compute and storage networks that are
differentiated by the devices used in various roles and the port density and capacity of the devices in use, that is,
cluster size. These designs follow customer use cases and GPU vendor recommendations of 1:1 oversubscription.
We work closely with our customers in understanding the specific network needs for their training workloads,
including cluster size and possible oversubscription efficiencies.

Compute-Design 1: A Rail-Optimized GPU Stripe with QFX5230-64CDs as the Spines and
QFX5230-64CDs as the Leafs

Figure 6: Rail-Optimized and Network Optimized Design with QFX5230-64CDs in Spine and Leaf Roles

While device capacity and ability to handle large traffic is an important design consideration, another important
aspect is the cost of implementation. For smaller cluster sizes, high port density spines are not necessary. The
design specifications of the above design are:

• In Figure 6, each stripe has 64 x A100 GPUs OR 32 x H100 GPUs connected to a leaf. It provides a
view of two different types of GPU clusters (A100-based cluster and H100-based cluster), enabling a
more informed decision-making process, when choosing one type of cluster over the other.

• A100 GPU network port has a capacity of 200 Gbps, and the H100s have a GPU network port
capacity of 400 Gbps.

https://www.weka.io/

• Therefore, each leaf receives an ingress of 12.8 Tbps at maximum load. Hence, the leaf has 32x400
Gbps links going to each of the four spines resulting in an egress capacity of 12.8 Tbps, which
maintains the oversubscription ratio at 1.

The scale calculation in this design is as follows:

• Each QFX5230-64CD spine has 64 x 400G ports.

• 64 ports on the leaf are split into 32 x 400G uplinks x 8 leafs = 256 uplinks divided among four
spines and 32 x 400G downstream ports, which are further split into 64 x 200G ports supporting 64
A100 nodes each or 32 H100s each, or a mix of both.

• Thus, the cluster size is 64 A100 GPUs x 8 leafs = 512 A100 GPUs or 256 H100s GPUs per stripe.

Compute-Design 2: A Rail-Optimized GPU Stripe with PTX10008 as the Spines and
QFX5230-64CDs as the Leafs

Figure 7: Rail-Optimized and Network Optimized Design with QFX5220-32CDs as Leafs and PTX10008s as Spines

The scale calculation in this design is as follows:

• In this case, a PTX10008 spine includes 8 slots with 36 x 400G line cards, which means the device
has a total of 288 x 400G ports per spine.

• The leafs include 32 x 400G uplinks x 8 Leafs = 256 ports split among two spines, that is, 128 ports
per spine.

• Based on the above calculation, the spines include 160 free ports. Since the PTX is a modular chassis,
the number of slots are chosen to accommodate the appropriate number of stripes.

• Since the leafs are QFX5230-64CDs, the GPU nodes per stripe are 64 A100 nodes x 8 leafs = 512
A100 GPUs or 256 H100 GPUs per stripe.

• It is important to note that a modular spine allows for easier progressive growth by simply investing
in additional line cards and new cabling as more stripes are added to the overall cluster. There is no
re-cabling that is necessary.

High-level Storage Network Design
Figure 8: Back-end Storage Design with QFX5220-32CDs as Leafs and Spines

Figure 8 shows the storage network design comprising of two main segments:

• GPU storage node segment (Hyperplane8-A100 in the above example).

• Dedicated storage node segment (Weka AMD storage nodes in the above example).

Though there is no concept of rail-optimization in a storage cluster, it is recommended that the rail-optimized and
network optimized stripe design is followed because there is a direct relationship between the number of
minimum storage nodes required for a certain number of GPUs as shown in the Table 2. For more information
regarding the storage nodes, see AMD documentation.

Table 2: GPU Count to Storage Node Requirement Matrix (Source: AMD)

GPU Count Required Aggregate
Throughput (GBytes/s)

Required Aggregate
Throughput (Gbits/s)

Throughput per Storage
Node (GBytes/s)

Storage Nodes
Required

128 256 2048 36 8

256 512 4096 36 15

512 1024 8192 36 29

https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/reference-architectures/solution-brief_wekaI-o_aplus_epyc-7003.pdf

GPU Count Required Aggregate
Throughput (GBytes/s)

Required Aggregate
Throughput (Gbits/s)

Throughput per Storage
Node (GBytes/s)

Storage Nodes
Required

1024 2048 16,384 36 57

2048 4096 32,768 36 114

Since there are 32 A100 servers, that is, 256 GPUs in 1 stripe of our GPU cluster, the storage design includes 15
dedicated storage nodes. The specifications and design considerations are listed below:

• The corresponding GPU network design associated with this storage network are as shown in Figure
6 and Figure 7.

• Other designs that include more GPUs per stripe require a modification to the number of
corresponding dedicated storage nodes.

• The storage network design, as shown in Figure 10 has the following characteristics:

 The Compute-Storage segment has 32 A100s each with a 200G link to the leaf nodes resulting in north
bound traffic at a maximum capacity of 6.4T split amongst 2 x QFX5220-32CD leaf nodes (3.2T per leaf).

 The dedicated storage segment has 15 x Weka storage nodes sending 2 x 200G links north-bound to the
QFX5220-32CD leaf nodes (for the purpose of this design), which results in an overall load of 2 x 200 x
15 = 6000 Gbps or 6T, again split amongst 2 x QFX5220-32CD leaf nodes.

 All four QFX5220-32CD leaf nodes in this design have 8 x 400G northbound links (two per spine)
bringing the overall egress capacity to 6.4T, thus maintaining an over-subscription ratio of 1:1.

 In the dedicated storage segment, the leaf to spine configuration remains the same. Since the number of
storage nodes is 15, the ingress to egress traffic capacity on the leaf nodes is 6Tbps: 6.4Tbps, making it
slightly undersubscribed.

 The QFX5220-32CD spines have 32 x 400G ports, and in this design, only eight of those 32 ports are in
use. This is done with redundancy and expansion in mind, and these spines at full capacity support four
times the scale shown in Figure 8 and hence four times the number of end nodes as well.

 Another variant of this design is with two spines instead of four, which still provides the same link level
redundancy because it utilizes only 16 of the 32 ports but the node level redundancy changes, and it
limits the expansion to two times the design instead of four.

Design and Implementation

Introduction
In this section, an example design demonstrates how a network infrastructure is orchestrated with Juniper
Apstra.

From the perspective of physical connectivity, the three networks (back-end, front-end, and storage) are each
cabled to build a Layer 3 Clos fabric individually. This implies that every leaf connects to every spine via point-to-
point Layer 3 links. The rail-optimized stripe design is followed, with the same NIC of every GPU cluster
connecting to the same leaf in the back-end network.

Figure 9 shows a snippet of the back-end network, considering a port density of 32 x 400G per leaf. The focus is
on one Hyperplane8-A100 server, which includes a total of 8 x A100 GPUs and 8 x 200G NICs. Each NIC
connects to a unique leaf, following the rail-optimized design.

Figure 9: Hyperplane8-A100 Connectivity to Back-End Network

Each leaf receives 200G from one A100 server as only one 200G NIC maps to one GPU and connects to one leaf
per server. Expanding this to a full stripe of 32 Hyperplane8-A100s, this implies that one leaf receives 32 x 200G.
Since the oversubscription ratio must be 1, the uplinks must also match the same bandwidth. With two spines,
each leaf must have 8 x 400G uplinks per spine to meet this requirement.

Thus, for our design and implementation, Figure 10 shows the back-end network topology that demonstrates
how Juniper Apstra builds such a fabric.

Figure 10: Example Topology for Implementation of Back-End Network

For the leafs, QFX5220-32CDs are used, and for the spines, PTX10008s are used with 36x400G line cards,
allowing for large scope of expansion.

Leveraging an IP Fabric Design
An IP fabric is a routed infrastructure, designed using a fat-tree, Clos type architecture. Such a design provides
uniform capacity at each layer, eliminating the need for traditional Layer 2 technologies such as Spanning Tree
Protocol (STP) by using Layer 3 links only. Instead, a routing protocol is used for injecting prefix information into
the fabric. An IP fabric forms the underlay in modern data center designs and scales to large data center fabrics.

An IP fabric typically extends to the hosts, fully eliminating any Layer 2 links in the network and relying on Layer
3 routing protocols for convergence. As shown in Figure 11, with routing protocols enabled over the Layer 3
point-to-point links between the leafs and the spines, each leaf has equal cost paths up to the spines, leveraging
ECMP hashes to distribute packets across multiple links. A routing protocol or static routing is used between the
leafs and the hosts.

Benefits
• Better utilization of all available paths through ECMP.

• Faster convergence.

• Elimination of Layer 2 links and the need for traditional Layer 2 protocols such as STP.

Figure 11: End to End L3 Clos Fabric Design

IP Services Deployed in an IP Fabric for AI Clusters
Typical data center fabrics do not require fine tuning of the fabric for traffic flows; however, AI clusters are
unique in the kind of requirements that they need from the network infrastructure. The traffic pattern is high
density, low entropy traffic which implies that the network infrastructure commonly sees elephant flows, with
little variation in the flows themselves.

Due to these traffic characteristics, despite having equal cost paths from leafs to spines, the links might not get
properly utilized since the default hash uses a combination of Layer 3 header information. As the variation in
flows is not enough, it is possible that one link might be highly utilized, leading to these elephant flows causing
drops of mice flows (low bandwidth flows) and possible flow collisions. For these reasons, Dynamic Load
Balancing (DLB) is recommended to be configured on the leafs of an IP Fabric for AI clusters.

In addition, AI cluster generated traffic requires a lossless network. In this case, since the traffic on the back-end
GPU network is RDMA over Converged Ethernet (RoCEv2), there is a need to configure congestion control
methods. DCQCN (Data Center Quantized Congestion Notification) is used in this case.

Dynamic Load Balancing

Static load balancing uses packet headers only (such as information from the Layer 3 header) to determine the
egress interface for a packet when multiple equal cost paths are available. This design causes a per-flow hash,
where the packets from the same flow are always sent over the same interface amongst available equal cost
paths. However, this can cause poor utilization of interfaces when dealing with traffic from AI clusters, which are
high density, elephant flows with little variation in terms of the flows themselves, since static load balancing does
not consider the usage of individual equal cost links.

While it might be common to consider per-packet splitting of traffic across equal paths, such a design has large
implications and causes packet reordering. This is where DLB helps. DLB can be initiated per flowlet, where
flowlets burst of the same flow, separated by a period of inactivity. DLB works on the principle that if the
transmission latency between equal cost paths is lower than the period between flowlets (called the inactivity
interval), then the next packet in the flow is sent over an underutilized link, with the assurance that the packets
for the overall flow arrive in the correct order, despite being sent over different links.

On a QFX5220-32CD, DLB is implemented using the following configuration:
snip
forwarding-options {
 enhanced-hash-key {
 ecmp-dlb {
 flowlet {
 inactivity-interval 16;
 }
 ether-type {
 ipv4;
 }
 }
 }
}
policy-options {
 policy-statement DLB {
 then {
 load-balance per-packet;
 }
 }
}
routing-options {
 forwarding-table {
 export DLB;
 }
}
snip

In this case, consider multiple packets from the same flow arrive at leaf1 of a data center network and need to be
sent over four possible equal cost paths towards spine1.

Figure 12: DLB Packet Flow

Packets 1 through 4 are part of the same flow, however, there is a delay period (in microseconds) between
packets 2 and 3. In this case, DLB treats packets 1 and 2 as part of the same flowlet, and packets 3 and 4 as part
of another flowlet, based on the configured inactivity interval.

DLB, typically implemented as an engine in the Broadcom ASIC, is constantly fed information about the link
usage of the equal cost paths, and each link is assigned a quality band. This is a dynamic assignment that
constantly changes as the link utilization changes. DLB determines if the time taken to transmit packet 2 is lower
than the inactivity interval between packet 2 and 3, then even if packet 3 is sent over a different link, it will arrive
only after packet 2 has arrived. This eliminates any packet reordering issues, despite sending packets of the same
overall flow over different links.

Data Center Quantized Congestion Notification (DCQCN)
Modern data centers for high performance computing (HPC) or AI clusters have requirements of high throughput
at low latency. These requirements are not easily met by standard TCP/IP stacks as it causes a lot of CPU
overhead and instead, leverages RoCEv2 (RDMA over Converged Ethernet v2). Unlike Infiniband, RoCEv2 can be
easily integrated into existing Ethernet-based data centers, lowering infrastructure costs, and providing more
flexibility.

RoCEv2 provides lossless network infrastructure that is needed for HPC and AI clusters, with the configuration
of some additional features such as Priority Flow Control (PFC) and Explicit Congestion Notification (ECN).
DCQCN is a combination of both PFC and ECN.

PFC works on receive buffers of an interface, by sending back Pause Frames when the receive buffer crosses a
specific threshold. These Pause Frames indicate to the recipient to stop sending packets for a specific interval of
time, avoiding buffer overflow by pausing data transmission. However, there are downsides to using PFC in the
network – sustained Pause Frames cause ingress port congestion and dropped packets. Thus, PFC often leads to
poor overall application and network performance due to head of line blocking (creating victim flows) and
unfairness (also known as the parking lot problem). Additionally, PFC operates at interface level (queue level,
specifically) and cannot distinguish between flows.

ECN, on the other hand, is an end-to-end congestion notification method between an ECN-enabled sender and
an ECN-enabled receiver. The general methodology followed by DCQCN is to allow ECN to kick-in earlier than
PFC, enabling flow control for ECN marked traffic by decreasing the transmission rate of the sender when it
receives a notification to do so.

The correct operation of DCQCN requires balancing two conflicting requirements:

• Ensuring PFC is not triggered too early before giving ECN a chance to send congestion feedback to
slow the flow.

• Ensuring PFC is not triggered too late, thereby causing packet loss due to buffer overflow.

Building Data Centers for an AI Cluster with Juniper Apstra

Juniper Apstra Overview
Juniper Apstra is a multivendor Intent Based Network System (IBNS), orchestrating data center deployments, and
managing small to large scale data centers through Day-0 to Day-2 operations. It is an ideal tool to build data
centers for AI clusters, providing invaluable Day-2 insights through monitoring and telemetry services.

Deploying a data center fabric through Juniper Apstra is a modular function, leveraging various building blocks to
instantiate a fabric. These basic building blocks are as follows:

• Logical Device is a logical representation of the port density, speed, and possible breakout
combinations of a switch. Since this is a logical representation, any hardware specifics are abstracted.

• Device Profiles provide hardware specifications of a switch that describe the hardware (such as
CPU, RAM, type of ASIC and so on) and port organization. Juniper Apstra has several pre-defined
Device Profiles that exist for common Data Center switches from different vendors.

• Interface Map binds together a Logical Device and a Device Profile, generating a port schema that is
applied to the specific hardware and network operating system, which is represented by the Device
Profile. By default, Juniper Apstra provides several pre-defined Interface Maps with the ability to
create user-defined Interface Maps as needed.

• Rack Types define logical racks in Juniper Apstra, the same way a physical rack in a data center is
constructed. However, in Juniper Apstra, this is an abstracted view of it, with links to Logical Devices
that are used as leafs, the kind and number of systems connected to each leaf, any redundancy
requirements (such as MLAG or ESI LAG) and how many links, per spine, for each leaf.

• Template takes one or more Rack Types as inputs and defines the overall schema/design of the
fabric, with a choice between a 3-stage Clos fabric, a 5-stage Clos fabric or a collapsed spine design,
and whether to build an IP fabric (with static VXLAN endpoints, if needed) or a BGP EVPN based
fabric (with BGP EVPN as the control-plane).

• Blueprint is the instantiation of the fabric, taking a Template as its only input. A Blueprint requires
additional user input to bring the fabric to life – this includes resources such as IP pools, ASN pools,
Interface Maps. Additional virtual configuration is done, such as defining new virtual networks
(VLANs/VNIs), building new VRFs, defining connectivity to systems such as hosts or WAN devices,
and so on.

Back-End Network
The Back-end network is built using PTX10008 spines, with two PTX10K_LC1201_36CD line cards, providing 72
x 400G ports in total. For the purposes of this implementation, a single stripe of 32 x A100 servers are used,
connected to 8 x QFX5220-32CD leafs.

PTX spines are created as modular Device Profiles in Juniper Apstra, as shown below. This includes two 36 x
400G line cards, giving the spine a total of 72 x 400G interfaces for leaf connectivity.

Figure 13: Juniper Apstra Device Profile

The Logical Device is created as shown in Figure 14.

Figure 14: Juniper Apstra Logical Device

Finally, an Interface Map is created, which ties the Logical Device and the Device Profile together.

Figure 15: Juniper Apstra Interface Maps

For the leafs, QFX5220-32CDs are used, with 16 x 400G and with the remaining 16 ports split into 2 x 200G per
port, giving 32 x 200G in total. A new Logical Device and Interface Map is created as shown in Figure 16 and
Figure 17.

Figure 16: Logical Device for QFX5220-32CD Leaf with 16 x 400G and 32 x 200G Ports

Figure 17: Interface Map for QFX5220-32CD with 16 x 400G and 32 x 200G Ports

To build the back-end network, first a Rack Type is created with the above Logical Devices as leafs. This includes
8 leafs, and 32 generic systems (32 Hyperplane8-A100s) connected to these leafs following the rail-optimized
stripe design. Each leaf has 8 x 400G links to each spine. This Rack Type is used as an input into a Template for
the back-end network. The Template is configured as a 3-stage Clos design, with static VXLAN (which essentially
builds an IP fabric if no static VXLAN endpoints are defined by the user).

Figure 18 shows the template with the spines defined with the Logical Device that was created for the
PTX10008 Device Profile.

Figure 18: Juniper Apstra Template for Backend Network

Finally, a Blueprint is instantiated with this Template.

Figure 19: Juniper Apstra Blueprint for Backend Network

There are several resources added into the Blueprint to start building the fabric – this includes the ASN pool for
the leafs and spines, the spine and leaf loopbacks, and the point-to-point addresses between the leafs and the
spines.

A common ASN pool and IP pool is defined for the ASNs and the loopbacks, as shown in Figure 20 and Figure
21.

Figure 20: Juniper Apstra ASN pool

Figure 21: Juniper Apstra IP Pool for Loopbacks

Since there are eight leafs, and each leaf has eight links to each spine, there is a requirement of 256 addresses for
the point-to-point links between the leafs and the spines. For this, a separate group of pools are defined for the
back-end network, as shown in Figure 22.

Figure 22: Juniper Apstra IP pool for point-to-point links between leafs and spines

To start generating device specific configuration in Juniper Apstra, the Interface Maps must be mapped to each
device in the fabric. For the spines, the Interface Map corresponding to the 72 x 400G PTX10008 device is used.

Figure 23: Interface Map to Device Mapping for spines

For the leafs, the 16 x 400G + 32 x 200G Interface Map corresponding to the QFX5220-32CD is used as shown
in Figure 24.

Figure 24: Interface Map to Device Mapping for Leafs

With these mapped to the respective devices, Juniper Apstra generates configuration that is used to build the IP
fabric. To view rendered information specific to a device in the fabric, click Rendered under Config available on
the right-side when in a device specific view of the topology.

For example, to confirm, we can see that the rendered configuration includes point-to-point /31 addresses on
the interfaces to connect to each of the leafs, as shown in Figure 25.

Figure 25: Juniper Apstra Rendered Configuration for Spine1

For the back-end network, the connectivity down to the GPU is also Layer 3. To do this, a Connectivity Template
in Juniper Apstra is used, and this is attached to all the links on the leafs that connect to the Generic Systems
(which logically represent the Hyperplane8-A100 servers). Thus, the application point is the interface itself.

This Connectivity Template is an IP Link primitive, using the default routing zone and a numbered IPv4
addressing type.

Figure 26: Juniper Apstra Connectivity Template for IP Link to GPUs

Figure 27: Configuration of Juniper Apstra Connectivity Template for IP Link to GPUs

This Connectivity Template is then attached to all the GPU facing interfaces on all leafs. A snippet is shown in
Figure 28.

Figure 28: Attaching Connectivity Template to interfaces

Once this is attached to the interfaces, Juniper Apstra has an additional requirement of IP pools for these new
point-to-point links. Since a single stripe has 32 x Hyperplane8-A100s and implies that there are 32 x 8 links to
GPUs per leaf, there is a requirement of 512 addresses.

A dedicated group of IP pools are created and used as shown in Figure 29.

Figure 29: Juniper Apstra IP Pool Created for IP Link Connectivity to GPUs

This pool is attached to the resource requirement in Juniper Apstra.

Figure 30: Juniper Apstra L3 Fabric IP Pool Assignment

Juniper Apstra now generates configuration for these point-to-point GPU facing interfaces per leaf and
redistributes these addresses into the IP fabric through BGP for reachability between all GPU servers.

Once the main fabric is configured, the two IP services (DLB and DCQCN) must be added using Configlets in
Juniper Apstra.

First, a Configlet is created for DLB as shown in Figure 31.

Figure 31: Configlet for DLB

To use a Configlet in a Blueprint, it must be imported into the Blueprint Catalog. Specific conditions are used for
its assignment to determine which devices receive this additional configuration as defined in the Configlet. For
the purposes of DLB, we need all leafs to have this configuration, so the condition matches on the ‘leaf’ role.

Figure 32: Condition Match for DLB Configlet

Once this is added to the Blueprint, we can confirm that the leafs now have an incremental configuration added
through this Configlet. An example for leaf1 is shown in Figure 33.

Figure 33: Incremental Configuration Added to a Leaf When DLB Configlet is Successfully Imported

In the same way, relevant configuration for DCQCN is also added as a Configlet. Since the DCQCN configuration
can get complicated, automating this via a tool like Terraform can provide reliability and the flexibility needed to
accurately apply this on all necessary interfaces.

Front-end Network
The Front-end network uses QFX5220-32CD for both the spines and the leafs. The network requirement for this
is not as strict as the back-end network in terms of the oversubscription ratio. To keep things consistent, the
oversubscription ratio is still maintained as close to 1 as possible.

The standard networking port of the Hyperplane8-A100s are used to connect to the front-end network. Each
server has only one of these ports, which means that 32 x 100G front-end interfaces need to be connected to
this network. All the GPU server ports are connected to leaf1, while the storage front-end interfaces are
connected to leaf2.

Figure 34 shows a topology with a high-level overview of the front-end network for Juniper Apstra
implementation.

Figure 34: Topology for Implementation of Front-End Network in Juniper Apstra

In Juniper Apstra, this Rack Type is added in a Template, as shown below. The Template is similar to the
Template used for the back-end network. The front-end specific Rack Types are used instead.

Figure 35: Juniper Apstra Template for the Front-End Network

You can use this Template to instantiate a Blueprint specific to the Front-end network.

Figure 36: Juniper Apstra Blueprint for Front-End Network

Like any other fabric, the Blueprint includes resources such as ASN and IP pools, and Interface Maps for each of
the devices in the fabric. For the front-end network, there is no requirement for Layer 3 point-to-point links to
the servers, and general Layer 2 connectivity is used with untagged or tagged interfaces. This Connectivity
Template is then assigned to all A100 server facing interfaces on leaf1.

Figure 37: Connectivity Template Attached to Interfaces of Leaf for Front-End Network

In the same way, another Layer 2 Connectivity Template is used for the Headend Servers, and a Layer 3
Connectivity Template for the WAN facing interface, allowing a default route to be received from the WAN
edge.

Storage Network
The storage network facilitates the connection of storage ports of the Hyperplane8-A100 servers, along with a
dedicated storage cluster which includes Weka storage nodes. Two Rack Types are built for this, with each rack
having 2 x QFX5220-32CD leafs. One Rack Type connects to the GPU storage ports and the other Rack Type
connects to the dedicated storage nodes.

Each GPU server connects to a leaf through a dedicated 200G storage port. Since we have 32 servers, the cluster
is divided into two, with 16 servers connecting to leaf1 and 16 servers connecting to leaf2. Thus, for the GPU
storage rack, each leaf receives 16 x 200G inbound, implying that it must have 8 x 400G per leaf.

These Rack Types are added in the storage-specific Template in Juniper Apstra.

Figure 38: Juniper Apstra Template for Storage Network

You can use this Template to instantiate a Blueprint for the storage network, and various resources are tied to
this Blueprint again. For the storage network, we recommended that Layer 3 links are used for the servers and
the storage nodes. For this, a Layer 3 Connectivity Template is used, and it is attached to all the links to these
nodes, similar to the back-end network.

At this stage, all three networks (back-end, front-end, and storage) are completely built with Juniper Apstra, with
all necessary configuration ready to be pushed to the network devices of the fabric.

Summary
This document illustrates the various kinds of AI/ML cluster designs using Juniper Network devices and the
corresponding implementation with Juniper Apstra. The design considerations maintained in the document are
from the network perspective, and the performance of the GPU cluster and models are subject to change based
on many external factors relative to the GPU hardware, NICs, congestion control mechanisms, algorithms in use
and the workloads themselves as examples. Contact Juniper Networks representative for consultation on specific
implementation.

Send feedback to: design-center-comments@juniper.net V1.0/231110/ai-clusters-data-center-design

	About this Document
	Documentation Feedback

	Introduction
	AI/ML Workloads and Architecture
	AI/ML Cluster Scale
	Figure 2: Al/ML Cluster Scale

	Cluster Infrastructure
	AI/ML Cluster Components
	Figure 3: Al/ML Cluster Anatomy

	High-Level Design
	Rail-Optimized Stripes
	Figure 4: Rail-Optimized Stripes

	High-Level Front-end Network Design
	Figure 5: Frontend Network Architecture

	High-Level Back-End Network Design
	Compute-Design 1: A Rail-Optimized GPU Stripe with QFX5230-64CDs as the Spines and QFX5230-64CDs as the Leafs
	Figure 6: Rail-Optimized and Network Optimized Design with QFX5230-64CDs in Spine and Leaf Roles

	Compute-Design 2: A Rail-Optimized GPU Stripe with PTX10008 as the Spines and QFX5230-64CDs as the Leafs
	Figure 7: Rail-Optimized and Network Optimized Design with QFX5220-32CDs as Leafs and PTX10008s as Spines

	High-level Storage Network Design
	Figure 8: Back-end Storage Design with QFX5220-32CDs as Leafs and Spines

	Design and Implementation
	Introduction
	Figure 9: Hyperplane8-A100 Connectivity to Back-End Network
	Figure 10: Example Topology for Implementation of Back-End Network

	Leveraging an IP Fabric Design
	Benefits
	Figure 11: End to End L3 Clos Fabric Design

	IP Services Deployed in an IP Fabric for AI Clusters
	Dynamic Load Balancing
	Figure 12: DLB Packet Flow

	Data Center Quantized Congestion Notification (DCQCN)

	Building Data Centers for an AI Cluster with Juniper Apstra
	Juniper Apstra Overview
	Back-End Network
	Figure 13: Juniper Apstra Device Profile
	Figure 14: Juniper Apstra Logical Device
	Figure 15: Juniper Apstra Interface Maps
	Figure 16: Logical Device for QFX5220-32CD Leaf with 16 x 400G and 32 x 200G Ports
	Figure 17: Interface Map for QFX5220-32CD with 16 x 400G and 32 x 200G Ports
	Figure 18: Juniper Apstra Template for Backend Network
	Figure 19: Juniper Apstra Blueprint for Backend Network
	Figure 20: Juniper Apstra ASN pool
	Figure 21: Juniper Apstra IP Pool for Loopbacks
	Figure 22: Juniper Apstra IP pool for point-to-point links between leafs and spines
	Figure 23: Interface Map to Device Mapping for spines
	Figure 24: Interface Map to Device Mapping for Leafs
	Figure 25: Juniper Apstra Rendered Configuration for Spine1
	Figure 26: Juniper Apstra Connectivity Template for IP Link to GPUs
	Figure 27: Configuration of Juniper Apstra Connectivity Template for IP Link to GPUs
	Figure 28: Attaching Connectivity Template to interfaces
	Figure 29: Juniper Apstra IP Pool Created for IP Link Connectivity to GPUs
	Figure 30: Juniper Apstra L3 Fabric IP Pool Assignment
	Figure 31: Configlet for DLB
	Figure 32: Condition Match for DLB Configlet
	Figure 33: Incremental Configuration Added to a Leaf When DLB Configlet is Successfully Imported

	Front-end Network
	Figure 34: Topology for Implementation of Front-End Network in Juniper Apstra
	Figure 35: Juniper Apstra Template for the Front-End Network
	Figure 36: Juniper Apstra Blueprint for Front-End Network
	Figure 37: Connectivity Template Attached to Interfaces of Leaf for Front-End Network

	Storage Network
	Figure 38: Juniper Apstra Template for Storage Network

	Summary

