_JUﬂ | per | Engineering

Simplicity

NETWORKS

Published
2025-10-29

Table of Contents

About this Document | 1

Solution Benefits | 1

Al Use Case and Reference Design | 3

Solution Architecture | 7

Solution Implementation | 11

EVPN/VXLAN GPU Backend Fabric - GPU Multitenancy | 12

EVPN/VXLAN GPU Backend Fabric for Multitenancy - Implementation Options | 39

EVPN/VXLAN GPU Backend Fabric for Multitenancy - Type 5 EVPN/VXLAN
Implementation | 47

Type 5 EVPN/VXLAN GPU Backend Fabric Implementation - Control Plane | 52

Control Plane Implementation with IPvé Link-Local IPv6 Underlay and IPv6 Overlay
Example | 60

Type 5 EVPN/VXLAN GPU Backend Implementation - Forwarding Plane | 62

Type 5 EVPN/VXLAN GPU Backend Fabric, SLAAC IPv6 Overlay over IPvé6 Link-Local
Underlay - Configuration | 66

Type 5 EVPN/VXLAN GPU Backend Fabric, SLAAC IPv6 Overlay over IPvé6 Link-Local
Underlay - IP Services | 131

Servers and Storage Configuration | 149

Fabric Devices Configuration | 150

Telemetry and Monitoring | 160

JVD Hardware and Software Components | 184
JVD Validation Framework | 185

JVD Validation Goals and Scope | 186

JVD Validation Test Results Summary and Analysis | 191

Recommendations Summary | 191

Revision History | 192

Appendix A - IPv4 Overlay Over IPv6 Underlay Fabric Implementation | 192
Appendix B - IPv4 Overlay over IPv4 Underlay Fabric Implementation | 217

Appendix C - IPv6 Overlay with Static Addresses Over IPv6 Underlay Fabric
Implementation | 243

Appendix D - How to Run NCCL Tests Using Autoconfigured IPvé Address | 270

Al Data Center Multitenancy with EVPN/VXLAN—
Juniper Validated Design (JVD)

Juniper Networks Validated Designs provide a comprehensive, end-to-end blueprint for deploying
Juniper solutions in your network. These designs are created by Juniper's expert engineers and tested to
ensure they meet your requirements. Using a validated design, you can reduce the risk of costly
mistakes, save time and money, and ensure that your network is optimized for maximum performance.

About this Document

This document describes the design requirements and implementation of an Al cluster infrastructure
that includes support for GPU multitenancy in the GPU backend fabric, using EVPN/VXLAN. This fabric
is built based on Al-optimized Juniper Data Center QFX5240 series switches. The cluster includes
Nvidia H100 DGX as well as AMD MI300X GPU servers, and Vast Storage systems.

All validation tests were conducted in Juniper’s Al Innovation Lab in Sunnyvale, CA, USA. In this open
lab, Juniper collaborates closely with customers and technology partners to develop Al solutions and
test deployments for a range of Al applications and models.

The Al Innovation Lab allows customers to see Al training and inference in action. Juniper performs
these tests running both customer-specific models as well as those from MLCommons for MLPerf
performance benchmarking and comparisons.

Solution Benefits

IN THIS SECTION

Juniper Validated Design Benefits | 2

Juniper Networks has excelled in building and supporting Al networks following a scalable, robust, and
automated approach suitable for a range of cluster sizes. Unlike proprietary solutions that lock in

https://mlcommons.org/

enterprises and can stifle Al innovation, Juniper’s standards-based solution assures the fastest
innovation, maximizes design flexibility, and prevents vendor lock-in on the Frontend, GPU Backend, and
Storage Backend Al fabric networks.

The Juniper Validated Design (JVD) for Al describes a structured approach for deploying high-
performance Al training and inference networks that minimize job completion time and maximize GPU
performance. Additionally, it incorporates industry’s best practices, and leverages Juniper’s extensive
expertise in building high-performance data center networks.

The design employs a 3-stage Clos IP fabric architecture, utilizing Juniper QFX-series switches as leaf
and spine nodes and multi-vendor GPU servers and storage devices.

The solution has been extensively tested and thoroughly documented by Juniper subject matter experts,
resulting in a validated design that is easy to follow, guarantees successful implementation, and
simplified management and troubleshooting tasks. This document provides comprehensive guidance on
how to deploy this solution, with clear descriptions of its components and step by step instructions to
connect and configure them.

Juniper Validated Design Benefits

JVDs are prescriptive blueprints for building data center fabrics using repeatable, validated, predictable,
and well documented network architecture solutions with guidelines for a successful deployment. Each
solution has been designed, fully tested, and documented by Juniper Networks experts with all the
necessary implementation details, including hardware components, software versions, connectivity, and
configuration steps.

To become a validated solution (JVD) and be approved for release, a solution must pass rigorous testing
with real-world workloads and applications. All features must satisfy operational and performance
criteria in real-world scenarios. Testing not only includes validating the design topology and
configuration steps, but also that all products in the JVD work together as expected, thereby mitigating
potential risks while deploying the solution.

The core benefits of JVDs solutions can be summarized as:

¢ Qualified Deployments—Qualified network design blueprints for data center fabrics, that follow best
practices and meet the requirements of each specific use case, and make the solution deployment
quicker, simpler, and more reliable.

e Scalable—Solutions that can scale beyond the initial design and support the adoption of different
hardware platforms based on customer requirements, and customers’ feedback can meet the needs
of most Juniper's data center customers.

e Risk Mitigation— Prescriptive implementation guidelines guarantee that you have the right products,
the right software versions, optimal architecture, and comprehensive deployment steps.

o Systematically Verified—Tested solutions using a suite of automated testing tools validate the
performance and reliability of all the components.

e Predictability— Detailed testing and careful documentation of the solution, including the capabilities
and limitations of its components, guarantees that the solution will operate as expected when
implemented according to the JVD guidelines.

e Repeatability— Unlocked value with repeatable network designs due to the prescriptive nature of
JVD designs as well as their applicability to common use cases in the data center environment. All
JVD customers benefit from lessons learned through lab testing and real-world deployments.

o Reliability— Tested with real traffic, JVD solutions are qualified to operate as designed after
deployment and with real-world traffic.

e Accelerated Deployment— Ease installation with step-by-step guidance automation, and prebuilt
integrations simplifies and accelerates deployment, while reducing risks.

o Accelerated Decision-Making— Predefined combination of products, software, and architecture
removes the need to spend time comparing products, and deciding how the network should be built,
allowing to bridge business and technology requirements faster and reducing risks.

e Best Practice Networks— Better outcomes for a better experience. Juniper Validated Designs have
known characteristics and performance profiles to help you make informed decisions about your
network.

Al Use Case and Reference Design

IN THIS SECTION

Frontend Overview | 4
GPU Backend Overview | 6

Storage Backend Overview | 6

The Al JVD Reference Design covers a complete end-to-end ethernet-based Al infrastructure, which
includes the Frontend fabric, GPU Backend fabric and Storage Backend fabric. These three fabrics have
a symbiotic relationship, while each provides unique functions to support Al training and inference tasks.
The use of Ethernet Networking in Al Fabrics enables our customers to build high-capacity, easy-to-

operate network fabrics that deliver the fastest job completion times, maximize GPU utilization, and use
limited IT resources.

The Al JVD reference design shown in Figure 1 on page 4 includes:

¢ Frontend Fabric: This fabric is the gateway network to the GPU nodes and storage nodes from the Al
tools residing in the headend servers. The Frontend GPU fabric allows users to interact with the GPU
and storage nodes to initiate training or inference workloads and to visualize their progress and
results, and provides an out-of-band path both NVIDIA Collective Communications Library (NCCL)
and RCCL (ROCm Communication Collectives Library).

e GPU Backend Fabric: This fabric connects the GPU nodes (which perform the computations tasks for
Al workflows). The GPU Backend fabric transfers high-speed information between GPUs during
training jobs, in a lossless matter. Traffic generated by the GPUs is transferred using RoCEv2 (RDMA
over Ethernet v2).

e Storage Backend Fabric: This fabric connects the high-availability storage systems (which hold the
large model training data) and the GPUs (which consume this data during training or inference jobs).
The Storage Backend fabric transfers high volumes of data in a seamless and reliable matter.

Figure 1: Al JVD Reference Design

HEADEND-SVR-O (# = 1 - 3):
GPU and Weka management + shared storage + Al tools

|

[rronTEND
FABRIC

22 / JUNIPER QFX5130
LEAF/SPINE NODES

t
int
3-stage Clos
S | EVPN/VXLAN
s
i

BACKEND GPU
FABRIC

WEKA STORAGE
SERVERS
Dedicated Highspeed
storage

—
m [=E=] JUNIPER QFX5240
f=—— LEAF/SPINE NODES

VAST STORAGE
O SERVERS
Dedicated High speed
starage

BACKEND
| : ‘ STORAGE

FABRIC

JUNIPER QFX5220
LEAF/SPINE NODES

Frontend Overview

The Al Frontend for Al encompasses the interface, tools, and methods that enable users to interact with
the Al systems, and the infrastructure that allows these interactions. The Frontend gives users the ability
to initiate training or inference tasks, and to visualize the results, while hiding the underlying technical
complexities.

https://developer.nvidia.com/nccl
https://github.com/rocm/rccl

The key components of the Frontend systems include:

¢ Model Scheduling: Tools and methods for managing scripted Al model jobs and commonly based on
SLURM (Simple Linux Utility for Resource Management) Workload Manager. These tools enable
users to send instructions, commands, and queries, either through a shell CLI or through a graphical
web-based interface to orchestrate learning and inference jobs running on the GPUs. Users can
configure model parameters, input data, and interpret results as well as initiate or terminate jobs
interactively. In the Al JVD, these tools are hosted on the Headend Servers connected to the Al
Frontend fabric.

¢ Management of Al Systems: Tools for managing (configuring, monitoring and performing
maintenance tasks) the Al storage and processing components. These tools facilitate building,
running, training, and utilizing Al models efficiently. Examples include SLURM, TensorFlow, PyTorch,
and Scikit-learn.

¢ Management of Fabric Components: Mechanisms and workflows designed to help users effortlessly
deploy and manage fabric devices according to their requirements and goals. It includes tasks such as
device onboarding, configuration management, and fabric deployment orchestration.

¢ Performance Monitoring and Error Analysis: Telemetry systems tracking key performance metrics
related to Al models, such as accuracy, precision, recall, and computational resource utilization (e.g.
CPU, GPU usage) which are essential for evaluating model effectiveness during training and inference
jobs. These systems also provide insights into error rates and failure patterns during training and
inference operations, and help identify issues such as model drift, data quality problems, or
algorithmic errors that may affect Al performance.

e Data Visualization: Applications and tools that allow users to visually comprehend insights generated
by Al models and workloads. They provide effective visualization that enhances understanding and
decision-making based on Al outputs. The same telemetry systems used to monitor and measure
System and Network level performance usually provide this visualization as well.

e User Interface: Routing and switching infrastructure that allows communication between the user
interface applications and tools and the Al systems executing the jobs, including GPUs and storage
devices. This infrastructure ensures seamless interaction between users and the computational
resources needed to leverage Al capabilities effectively.

e GPU-to-GPU control: Communication establishment, information exchange including, QP GIDs
(Global IDs), Local and remote buffer addresses, and RDMA keys (RKEYs for memory access
permissions).

GPU Backend Overview

The GPU Backend for Al encompasses the devices that execute learning and inference jobs or
computational tasks, that is the GPU servers where the data processing occurs, and the infrastructure
that allows the GPUs to communicate with each other to complete the jobs.

The key components of the GPU Backend systems include:

e Al Systems: Specialized hardware such as GPUs (Graphics Processing Units) and TPUs (Tensor
Processing Units) that can execute numerous calculations concurrently. GPUs are particularly adept
at handling Al workloads, including complex matrix multiplications and convolutions required to
complete learning and inference tasks. The selection and number of GPU systems significantly
impact the speed and efficiency of these tasks.

o Al Software: Operating systems, libraries, and frameworks essential for developing and executing Al
models. These tools provide the environment necessary for coding, training, and deploying Al
algorithms effectively. The functions of these tools include:

o Data Management: Preprocessing, and transformation of data utilized in training and executing Al
models. This encompasses tasks such as cleaning, normalization, and feature extraction. Given the
volume and complexity of Al datasets, efficient data management strategies like parallel
processing and distributed computing are crucial.

¢ Model Management: Tasks related to the Al models themselves, including evaluation (e.g., cross-
validation), selection (choosing the optimal model based on performance metrics), and
deployment (making the model accessible for real-world applications).

e GPU Backend Fabric: Routing and switching infrastructure that allows GPU-to-GPU communication
for workload distribution, memory sharing, synchronization of model parameters, exchange of
results, etc. The design of this fabric can significantly impact the speed and efficiency of Al/ML
model training and inference jobs and in most cases shall provide lossless connectivity for GPU-to-
GPU traffic.

Storage Backend Overview

The Al storage backend for Al encompasses the hardware and software components for storing,
retrieving, and managing the vast amounts of data involved in Al workloads, and the infrastructure that
allows the GPUs to communicate with these storage components.

The key aspects of the storage backend include:

¢ High-Performance Storage Devices: Optimized for high I/O throughput, which is essential for
handling the intensive data processing requirements of the Al tasks such as deep learning. This

includes high-performance storage devices designed to facilitate fast access to data during model
training and to accommodate the storage needs of large datasets. These storage devices must
provide:

o Data Management Capabilities: Supports efficient data querying, indexing, and retrieval which are
crucial for minimizing preprocessing and feature extraction times in Al workflows, as well as for
facilitating quick data access during inference.

e Scalability: Accommodates growing data volumes and efficiently manages and stores massive
amounts of data over time, to support Al workloads often involving large-scale datasets.

e Storage Backend Fabric: Routing and switching infrastructure that provides the connectivity between
the GPU and the storage devices. This integration ensures that data can be efficiently transferred
between storage and computational resources, optimizing overall Al workflow performance. The
performance of the storage backend significantly impacts the efficiency and JCT of Al/ML
workflows. A storage backend that provides quick access to data can significantly reduce the amount
of time for training Al/ML models.

Solution Architecture

IN THIS SECTION

Frontend Fabric | 8
Storage Backend Fabric | 8
GPU Backend Fabric | 9

The three fabrics described in the previous section (Frontend, GPU Backend, and Storage Backend), are
interconnected together in the overall Al JVD solution architecture as shown in Figure 2.

Figure 2: Al JVD Solution Architecture

|55555555 GPU SERVERS X 8 (CLUSTER 1) /)
GPU SERVERS X 8 (CLUSTER 2) BACKEND GPU FABRIC (GPU CLUSTERS1-2) :
[S===77) STORAGE SERVERS X 16 !
(Dedicated Storage)
B SPINENODES:
- JUNIPER QFX5130 (Frontend)

JUNIPER QFX5220 (Storage Backend)

JUNIPER QFX5230 OR

JUNIPER PTX10008 (GPU Backend Cluster1) ! g \

JUNIPER QFX5240 (GPU Backend Cluster 2) - N S H
IE=E=EEEET LEAF NODES: - - S R

JUNIPER QFX5130 (Frontend) ~ g

JUNIPER QFX5220 (Storage Backend)

JUNIPER QFX5230 (Backend Cluster 1 Stripe1]

JUNIPER QFX5220 (Backend Cluster 1 Stripe2)

JUNIPER QFX5240 (GPU Backend Cluster 2)

backend = gpu-backend
£p -leaf7 = -leafs

apstia
OOB MGT.

i FRONTEND FABRIC

frontend-leafl
frontend-spinel ; y 400GE EEEEEEEER

i ::/ ;
| ==y —— |

\

1

1

1

1

|

|

1

-spi < storage- storage- :

nn2 /\\ f3 backend.leafd back Jg. - back F. fe |

2z |

i === \ frontend-leaf2 i EEEEEN ECEEEEEEN EEEEEEEEN EEEEEEEEN |
FEEEEEEERS » 7

. \ % S :

; o : R 7 <& :

e A / B 1

\ 7 Sy !

Storagel_1 !

LE=" storager2=s - // ;

; Storagel_3 [E== = A 1

Headend-SVR-0# [# = 0 3] ged_ - x A |l = ;

GPU and storage management + 5“"38_91_4 === _ 2 |

shared storage + Al tools H ! =T e H

Storagel_8 ===t === E===1 BACKEND STORAGE

torage-spinel storage-spine2 FABRIC !

|

Storag.ez_8 EEEE(GH

I Frontend Fabric

For details about connecting Nvidia A100 and H100 GPU servers, as well as Weka Storage devices, to
the Frontend Fabric, see Frontend Fabric section of the Al Data Center Network with Juniper Apstra,
NVIDIA GPUs, and Weka Storage—Juniper Validated Design (JVD).

For details about connecting AMD MI300x GPU servers to the Frontend Fabric, see Frontend Fabric
section of the Al Data Center Network with Juniper Apstra, AMD GPUs, and Vast Storage—Juniper
Validated Design (JVD).

Storage Backend Fabric

In small clusters, it may be sufficient to use the local storage on each GPU server, or to aggregate this
storage together using open-source or commercial software. In larger clusters with heavier workloads,

https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/solution_architecture.html#Toc171952249__FRONTEND_FABRIC
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/solution_architecture.html#Toc171952249__FRONTEND_FABRIC
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-amd/solution_architecture.html#Toc171952249__Toc191368789
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-amd/solution_architecture.html#Toc171952249__Toc191368789
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-amd/solution_architecture.html#Toc171952249__Toc191368789

an external dedicated storage system is required to provide dataset staging for ingest, and for cluster
checkpointing during training.

Two leading platforms, WEKA and Vast Storage, provide cutting-edge solutions for shared storage in
GPU environments, and have been tested in Al lab.

For details about connecting Weka storage devices to the Storage Backend Fabric, refer to the Storage
fabric section of the Al Data Center Network with Juniper Apstra, NVIDIA GPUs, and WEKA Storage—
Juniper Validated Design (JVD) as well as the WEKA Storage Solution section in the same document.

For details about connecting Vast storage devices to the Storage Backend Fabric, refer to the Storage
fabric section of the Al Data Center Network with Juniper Apstra, AMD GPUs, and Vast Storage—
Juniper Validated Design (JVD) as well as the VAST Storage Configuration section in the same
document.

GPU Backend Fabric

The GPU Backend fabric provides the infrastructure for GPUs to communicate with each other within a
cluster, using RDMA over Converged Ethernet (RoCEv2). RoCEv2 enhances data center efficiency,
reduces complexity, and optimizes data delivery across high-speed Ethernet networks.

Packet loss can significantly impact job completion times and therefore should be avoided. Therefore,
when designing the compute network infrastructure to support RoCEv2 for an Al cluster, one of the key
objectives is to provide a near lossless fabric, while also achieving maximum throughput, minimal
latency, and minimal network interference for the Al traffic flows. ROCEv2 is more efficient over lossless
networks, resulting in optimum job completion times.

The GPU Backend fabric in this JVD was designed with these goals in mind.

We have built two different Clusters, as shown in Figure 3, which share the " Frontend fabric " on page 9
and Storage Backend fabric but have separate " GPU Backend fabrics " on page 8. Each cluster is made
of two stripes following the Rail Optimized Stripe Architecture , but include different switch models as
Leaf and Spine nodes, as well as different GPU server models.

https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/solution_architecture.html#Toc171952249__Storage_backend_Fabric
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/solution_architecture.html#Toc171952249__Storage_backend_Fabric
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/solution_architecture.html#Toc171952249__Storage_backend_Fabric
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/weka_storage_solution.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-amd/solution_architecture.html#Toc171952249__Toc171522655
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-amd/solution_architecture.html#Toc171952249__Toc171522655
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-amd/solution_architecture.html#Toc171952249__Toc171522655
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-amd/vast_storage_configuration.html

Figure 3: Al JVD Lab Clusters

CLUSTER 1 CLUSTER 2
QFX5230/PTX10008 | | QFX5230/PTX10008 QFX5240 QFX5240 QFX5240 QFX5240
GPU BACKEND GPU BACKEND GPU BACKEND GPU BACKEND GPU BACKEND GPU BACKEND
SPINE 1 SPINE 2 SPINE 1 SPINE 2 SPINE 3 SPINE 4
=

2 x 400G links 2x 400G links = =

per leaf node / per leaf node =

e ‘:"""""'gi}g;gi" [T ! STRIPE 2 [1 STRIPEL} | - | STRIPE 2

8 x QFX5230s | 8 x QFX5220s ! & x QFX5240s | i 8 x QFX5240s |

BACKEND GPU 8 x 200G

FABRIC LEAFs finks

BACKEND GPU { 16x 100G

FABRIC LEAFs finks
links

lnn,g_llgg\ |gnnlnng%]

SR I |

-1
'
1
'
'
'
'
'
1

;
, |
| ‘

BACKEND GPU | 8x 1006 ; | BACKEND GPU
‘
‘
|

FABRIC LEAFs ’}"“S

4

FABRIC LEAFs lﬁ""‘s

1 x 200G link per GPU server (AMD servers)
1 % 200G link per GPU server (Nvidia A100)

1x 100G links per 1 x 400G link per GPU server (Nvidia H100 servers)

GPU server

Ax10Glinks | . H [6xQFX5220s
x10G links |
por headend sorver | “peoro ! BACKEND |
Lee—er——=— irc | STORAGE |
\ | FABRIC)
Headend-SVR-0 [#= 03] RS 4 .__ FABRIC
Weka management servers 1 x 1006 links 2x 100G links -
per weka server per weka server

[====g VAST-1
==== 1 VAST-2
[(E=== 7 VAST-3 1 x 100G links

== n VAST-4 per vast server

E===73 VAST-8

The GPU Backend in Cluster 1 consists of Juniper QFX5220 and QFX5230 switches as leaf nodes, and
either QFX5230 switches or PTX10008 routers as spine nodes, along with NVIDIA A100 GPU servers.
QFX5230 and PTX10008 devices have been validated independently as spine nodes while maintaining
the same leaf configuration. The GPU backend fabric in this cluster follows a 3-stage Clos IP fabric
architecture. Further details are available in the Al Data Center Network with Juniper Apstra, NVIDIA
GPUs, and WEKA Storage—Juniper Validated Design (JVD).

The GPU Backend in Cluster 2 consists of Juniper QFX5240 switches acting as both leaf and spine
nodes, along with AMD MI300X and NVIDIA H100 GPU servers. This cluster supports either a 3-stage
IP fabric architecture or a 3-stage EVPN/VXLAN fabric architecture. Further details about the IP Fabric
implementation are available in the Al Data Center Network with Juniper Apstra, AMD GPUs, and Vast
Storage—Juniper Validated Design (JVD).

The EVPN/VXLAN-based implementation is the focus of this document.

10

https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-amd/
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-amd/

Solution Implementation

IN THIS SECTION

Frontend Fabric | 11
Storage Backend Fabric | 11
GPU Backend Fabric | 11

Frontend Fabric

For details about how to connect and deploy the Frontend Fabric, refer to the Vast Storage
Configuration section of the Al Data Center Network with Juniper Apstra, AMD GPUs, and Vast
Storage: Frontend Fabric—Juniper Validated Design (JVD).

Storage Backend Fabric

For details about how to connect and deploy the Storage Fabric, refer to the Vast Storage Configuration
section of the Al Data Center Network with Juniper Apstra, AMD GPUs, and Vast Storage: Storage
Backend Fabric—Juniper Validated Design (JVD).

Note that the Frontend and Storage Backend fabrics are not covered in detail here, as they remain
unchanged and are fully documented in the JVDs referenced above.

GPU Backend Fabric

The remainder of this document will focus on the GPU Backend fabric implementation using the EVPN/
VXLAN architecture.

https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-amd/solution_architecture.html#Toc171952249__Toc191368789
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-amd/solution_architecture.html#Toc171952249__Toc191368789
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-amd/solution_architecture.html#Toc171952249__Toc191368789
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-amd/solution_architecture.html#Toc171952249__Toc171522655
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-amd/solution_architecture.html#Toc171952249__Toc171522655
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-amd/solution_architecture.html#Toc171952249__Toc171522655

EVPN/VXLAN GPU Backend Fabric - GPU
Multitenancy

IN THIS SECTION

GPU Multitenancy (GPU as a Service - GPUaaS) | 12
Types of GPU multitenancy | 13

GPU Backend Fabric for Multitenancy Architecture | 14
Backend GPU Rail Optimized Stripe Architecture | 18

Rail Alignment and Local Optimization Considerations with GPU multitenancy | 27

GPU Multitenancy (GPU as a Service - GPUaa$)

GPU as a Service (GPUaaS) is a model where GPU compute resources are provided on demand to users
or applications, similar to other utility-style computing services. Rather than dedicating entire servers or
clusters to a single team or purpose, GPUaaS allows resources to be dynamically allocated based on
current workload requirements. Tenants can request specific numbers of GPUs, often across multiple
servers, and use them for tasks such as Al training, data analytics, or visualization. The service abstracts
the underlying infrastructure, providing users with a seamless and scalable experience while maintaining
secure and efficient resource isolation. By combining flexibility with centralized management, GPUaaS
enables better resource utilization and simplifies operations in environments where multiple teams or
projects share the same data center.

GPU multitenancy is a resource management approach that allows multiple tenants to use GPU
resources independently within a shared infrastructure. Instead of assigning all the GPUs in a server to a
single tenant, GPU multitenancy enables more flexible allocation, where one or more GPUs on a server
can be reserved for different tenants. This model improves efficiency by allowing organizations to match
GPU resources to the specific needs of each workload, rather than over-provisioning entire servers.
Each tenant operates in a logically isolated environment, with clear separation of compute resources,
network paths, and associated configurations. This isolation ensures that tenants can run their
applications without interference, while administrators maintain centralized control over GPU
distribution and access.

GPU multitenancy and GPU as a Service (GPUaaS) are closely related concepts that, when combined,
enable efficient and scalable use of GPU infrastructure in multi-tenant environments. GPU multitenancy

provides the foundation by allowing GPU resources to be flexibly assigned to different tenants at a
granular level, whether one GPU, several GPUs, or specific GPUs across different servers. This approach
ensures that each tenant operates in a logically isolated environment, maintaining security and
performance consistency even when physical infrastructure is shared.

Building on this, GPUaaS abstracts these capabilities into an on-demand service model. Instead of
requiring users to manage physical servers or hardware configurations, GPUaaS delivers GPU resources
dynamically as needed. It leverages the underlying multitenancy framework to allocate GPUs based on
user requests, enforce isolation, and optimize usage across a diverse set of workloads. This allows data
centers to support a wide range of teams or applications concurrently, without dedicating entire servers
to each one.

Together, GPU multitenancy and GPUaa$S enable high efficiency, better resource utilization, and
operational simplicity. While multitenancy handles the secure and flexible slicing of GPU resources,
GPUaaS delivers these slices as consumable services, scaling compute capacity up or down as needed,
and making GPU-powered computing more accessible and cost-effective for varied use cases.

Types of GPU multitenancy

SERVER ISOLATION:

In a server isolation model, each tenant is allocated one or more entire servers. All GPUs within those
servers are exclusively dedicated to a single tenant, ensuring full physical and logical separation from
other tenants. This model simplifies resource allocation and minimizes the risk of cross-tenant
interference, making it well suited for workloads that require predictable performance and strict
isolation. (Figure 4).

Figure 4: GPU as a Service - Server Isolation

TENANTA TENANTB - GPU TENANT B - GPU TENANT B - GPU TENANTA
GPUSERVER 1 SERVER 1 SERVER 2 SERVER 3 GPUSERVER 2
(GPUS 1-8) (GPUS 1-8) (GPUS 1-8) (GPUS 1-8) (GPUS 1-8)

SERVER 1

SERVER 3
GPU servers

SERVER 2 l

gasdtags

GPU ISOLATION:

In a GPU isolation model, individual GPUs within a server are assigned to different tenants. This allows
multiple tenants to securely share the same physical server, with each tenant accessing only the GPUs
allocated to them. The underlying fabric provides logical separation and guarantees isolation at the GPU
level, enabling greater flexibility and higher utilization of resources without compromising security or
performance. (Figure 5).

Figure 5: GPU as a Service - GPU Isolation

TENANTA TENANTB TENANTB TENANTA TENANTB TENANTA TENANTB TENANTB
GPU1 GPU1 GPU2 GPU2 GPU3 GPU3 GPU4 GPUS

SERVER 1

SERVER 2

EEEEEE

SERVER 3 SERVER 4

FIEEEE]

SERVER 5

) s rr o

GPU servers : £

I GPU Backend Fabric for Multitenancy Architecture

The design of the GPU Backend Fabric for Multitenancy follows a 3-stage Clos, rail-optimized stripe
architecture using EVPN/VXLAN. This approach enables high-performance communication between
GPUs assigned to the same tenant while ensuring traffic isolation between tenants, for both Server
Isolation and GPU Isolation. For more information on server isolation and GPU isolation, see "Rail
Alignment and Local Optimization Considerations with GPU multitenancy" on page 27.

Figure 6: GPU Backend Fabric Architecture

SERVER 1 i
EDzwE

NVIDIA H100
EEEREE | AMD MI300X

Juniper QFX5240-640D

SPINE 1 SPINE 2 SPINE 3

15

Figure 7: GPU Backend Fabric EVPN/VXLAN connectivity - Server Isolation

TENANTA TENANTB - TENANTA - TENANTB -
SERVER 1 SERVER1 SERVER 2 SERVER2
(GPUS 1-8) (GPUS 1-8) (GPUS 9-16) (GPUS 9-16)

SERVER 1 SERVER 2 SERVER 3 SERVER 4

gpul gpu2 gpu3 gpud gpuS gpué gpu? gpus]

GEaEsaHE B

gpul gpu2 gpu3 gpud gpuS gpué gpu7 gpu1

STRIPE1
LEAFs 1-8

RT5_IPVRF-A (VNI 1) ‘\,

RT5_IPVRF-A (VNI 1) ‘\/

RT5_IPVRF-B (VNI 2) RT5_IPVRF-B (VNI 2)

SPINE1 SPINE2 SPINE3 SPINE4

QFX5240s

Figure 8: GPU Backend Fabric EVPN/VXLAN Connectivity - GPU Isolation

TENANTA TENANTB TENANTA TENANTB TENANTA TENANTB TENANTA TENANTB
GPU1 GPU1 GPU2 GPU2 (c1VK} GPU3 GPU4 GPU4

SERVER 1 i

SERVER 2 i i SERVER 3 i i SERVER 4 i

ul gpu2 gpud gpu4 gpus gpus gou7 gpus| [gpul gpu2 gpul gpud gpus gpus gpu7 goug ul gpu2 gpu3 gpu4 gouS gpub gpu7 gpu
E LR
3, \
[; % \'&rf\
.4 9)' \’3"\"\b[>l
o
STRIPE1 STRIPE2
LEAFs 1-8 LEAFs 1-8
e o
RT5_IPVRF-A (VNI 1) 7 RT5_IPVRF-A (VNI 1) |
S 7 e :
RT5_IPVRF-B (VNI 2) S ~o = < ~_ _-" Z RT5_IPVRF-B (VNI 2)

SPINE1 SPINE2 SPINE3 SPINE4

QFX5240s

NVIDIAH100s |@i@lglEeslE sl

The devices that are part of the GPU Backend fabric in the Al Lab, and the connections between them,
are summarized in Table 1 and Table 2:

Table 1: GPU Backend devices per Stripe

Stripe

GPU Servers GPU Backend Leaf GPU Backend Spine
nodes switch model nodes switch model

MI300X x 2 QFX5240-640D x 8 QFX5240-640D x 4

(MI300X-01 & (gpu-backend-001_leaf#; (gpu-backend-spine#;

MI300X-02) #=1-8) #=1-4)

H100 x 2

(H100-01 & H100-02)

MI300X x 2 QFX5240-640D x 8
(MI300X-03 & (gpu-backend-002_leaf#;
MI300X-04) #=1-8)

H100 x 2

(H100-01 & H100-02)

All the Nvidia H100 and AMD MI300X GPU servers are connected to the GPU backend fabric using

400GE interfaces.

Table 2: GPU Backend connections between servers, leaf nodes and spine nodes.

Stripe

GPU Servers <=>
GPU Backend Leaf Nodes

Total number of 400GE links
between servers and leaf nodes =
8 (number of GPUs per server) X

1 (number of 400GE server to leaf
links) x

4 (number of servers) = 32

GPU Backend Leaf Nodes <=>
GPU Backend Spine Nodes
Total number of 400GE links

between GPU backend leaf nodes and
spine nodes =

8 (number of leaf nodes) x

2 (number of 400GE links per leaf to spine
connection) x

4 (number of spine nodes) = 64

(Continued)

Stripe GPU Servers <=> GPU Backend Leaf Nodes <=>
GPU Backend Leaf Nodes GPU Backend Spine Nodes
2 Total number of 400GE links Total number of 400GE links
between servers and leaf nodes = between GPU backend leaf nodes and
spine nodes =

8 (number of GPUs per server) x

8 (number of leaf nodes) x

1 (humber of 400GE server to leaf

links) x 2 (number of 400GE links per leaf to spine

connection) X

4 (number of servers) = 32

4 (number of spine nodes) = 64

The speed and number of links between the GPU servers and leaf nodes, and between the leaf and
spine nodes determines the oversubscription factor. As an example, consider the number of GPU
servers available in the lab, and how they are connected to the GPU backend fabric as described above.

The bandwidth between the servers and the leaf nodes is 25.6 Tbhps (Table 3), while the bandwidth
available between the leaf and spine nodes is also 51.2 Tbps (Table 4). This means that the fabric has
enough capacity to process all traffic between the GPUs even when this traffic is 100% inter-stripe and
has extra capacity to accommodate 4 more servers. With 4 additional servers the subscription factor

would be 1:1 (no oversubscription).

Table 3: Per stripe Server to Leaf Bandwidth

Server to Leaf Bandwidth per Stripe

Stripe Number of | Number of 400 GE Server <=> Leaf
servers
server 6 leaf links Link Bandwidth
per Stripe
per server [Gbps]

(Same as number of leaf
nodes &

number of GPUs per server)

1 4 8 400 Gbps

2 4 8 400 Gbps

Total Servers <=> Leaf Links
Bandwidth per stripe

[Tbps]

4 x 8 x 400 Gbps = 12.8 Tbps

4 x 8 x 400 Gbps = 12.8 Tbps

(Continued)

Server to Leaf Bandwidth per Stripe

Table 4: Per stripe Leaf to Spine Bandwidth

Leaf nodes to spine nodes bandwidth per Stripe

Stripe | Number Number
of of spine
nodes
leaf nodes
1 8 4
2 8 4

Number of 800
GE

leaf 6 spine links

per leaf node

Total

Server <=> Leaf
Bandwidth

Server <=> Leaf
Link Bandwidth

[Gbps]

800 Gbps

800 Gbps

Total

Leaf <=> Spine
Bandwidth

25.6 Tbps

Bandwidth Leaf <=> Spine
Per Stripe

[Tbps]

8 x4 x 1 x800 Gbps =25.6

Tbps

8 x4 x1x400 Gbps = 25.6
Tbps

51.2 Tbps

GPU to leaf nodes connectivity follows the Rail-optimized architecture as described in Backend GPU
Rail Optimized Stripe Architecture.

Backend GPU Rail Optimized Stripe Architecture

A Rail Optimized Stripe Architecture provides efficient data transfer between GPUs, especially during
computationally intensive tasks such as Al Large Language Models (LLM) training workloads, where
seamless data transfer is necessary to complete the tasks within a reasonable timeframe. A Rail

19

Optimized topology aims to maximize performance by providing minimal bandwidth contention, minimal
latency, and minimal network interference, to provide this efficient data transfer.

In a Rail Optimized Stripe Architecture there are two important concepts: rail and stripe.

The GPUs on a server are numbered 1-8, where the number represents the GPU’s position in the server,
as shown in Figure 9.

A rail connects GPUs of the same order across one of the leaf nodes in the fabric; that is, rail N connects
GPUs in position N in all the servers to leaf node N.

Figure 9: Rails in a Rail Optimized Architecture

Ty gy
9988995803
53555835
R EEEEEE LEAF LEAF LEAF LEAF LEAF LEAF LEAF LEAF
. NODE1 NODE2 NODE3 NODE4 NODE5 NODE6 NODE7 NODES
é a a ﬂ ﬁ G ﬂ ﬂ (RALT) (RAIL2) (RAIL3) (RAIL4) (RAL5) (RAIL6) (RAL7) (RAILS)
EEER0EEE

Nth GPU on each
server connected to
the Nth leaf switch
(Nth rail)

GPU Server 1 GPU Server 2 GPU Server N

A stripe refers to a design module or building block consisting of a group of Leaf nodes and GPU servers,
as shown in Figure 10. This module can be replicated to scale up the Al cluster.

Figure 10: Stripes in a Rail Optimized Architecture

LEAF LEAF LEAF LEAF LEAF LEAF LEAF LEAF
NODE1 NODE2 NODE3 NODE4 NODE5 NODE6 NODE7 NODES
(RAILT) (RAIL2) (RAIL3) (RAIL4) (RAIL5) (RAIL6) (RAIL7) (RAILS)

8 Leaf nodes per stripe —

8 GPUs per server

N1 servers per stripe PEEEEEEE
(8 xNq GPUs per GPU Server 1 GPU Server 2 GPU Server Ny
! STRIPE

The number of leaf nodes in a single stripe, and thus the number of rails in a single stripe, is always
defined by the number of GPUs per server. Each GPU server typically includes 8 GPUs. Therefore, a
single stripe typically includes 8 leaf nodes (8 rails).

In a rail optimized architecture, the maximum number of servers supported in a single stripe (N1 in
Figure 7) is limited by the number and the speed of the interfaces supported by the Leaf node switch
model. This is because the total bandwidth between the GPU servers and leaf nodes must match the
total bandwidth between leaf and spine nodes to maintain a 1:1 subscription ratio, which is ideal.

Assuming all the interfaces on the leaf node operate at the same speed, half of the interfaces will be
used to connect to the GPU servers, and the other half to connect to the spines. Thus, the maximum
number of servers in a stripe is calculated as half the total interfaces on each leaf node. Some examples

are included in Table 5.

Table 5: Maximum number of GPUs supported per stripe

Leaf Node
QFX switch
Model

QFX5220-32CD

QFX5230-64CD

QFX5240-640D

Maximum number
of 400 GE
interfaces
per switch

32

64

128

Maximum number of
servers supported per
stripe (1:1
Subscription)

32+2=16

64 +2=32

128 +2 =64

GPUs
per
server

Maximum number of GPUs
supported per stripe

16 servers x 8 GPUs/server =
128 GPUs

32 servers x 8 GPUs/server =
256 GPUs

64 servers x 8 GPUs/server =
512 GPUs

e QFX5220-32CD switches provide 32 x 400 GE ports (16 will be used to connect to the servers and
16 will be used to connect to the spine nodes)

e QFX5230-64CD switches provide up to 64 x 400 GE ports (32 will be used to connect to the servers

and 32 will be used to connect to the spine nodes).

e QFX5240-640D switches provide up to 128 x 400 GE ports (64 will be used to connect to the
servers and 64 will be used to connect to the spine nodes). See Figure 11.

NOTE: QFX5240-640D switches come with 64 x 800GE ports which can break out into
2x400GE ports, for a maximum of 128 400GE interfaces was shown in table 5.

Figure 11: Maximum number of Servers per Stripes in a Rail Optimized Architecture.

Connections to | | | | | | | |
Spine switches

LEAF LEAF LEAF LEAF LEAF LEAF LEAF LEAF
QFX5220-32CD (RAILY) (RAIL2) (RAIL3) (RAIL4) (RAIL5) (RAIL6) (RAL7) (RAILLS)

QFX5230-64CD

QFX5240-640D
(128 x 400GE)

8 GPUs per server
N1 servers per stripe

=> N1 =16, 32, or 64

PEEEEEEE
GPU Server 1

GPU Server 2 GPU Server Nq

STRIPE

As an example of how to calculate the number of servers supported, and to reinforce the concepts of rail
and stripe, consider a hypothetical switch with only 8 ports of the same speed, and GPU servers with 8
GPUs each, as shown in Figure 12.

Figure 12. Number of Servers Supported by 8-Port Switches as Leaf Nodes Example.

TO SPINE NODES TO SPINE NODES TO SPINE NODES
4 ports up“nk ' ‘ ' ' Por‘fs ‘ ' ' \ ’ ‘ ‘ '
=> up to 4 spine nodes connecting
to Spi
T meEeq{ | o2e® D2EW
LEAF 1 LEAF 2 LEAF 8
8-port Switch irb Ports irb e irb
P T connecting I I
to Servers
\ 80680 0080 0080 | 5 we
|
4 ports downlink
=>up to 4 GPU servers
TO LEAF TO LEAF TO LEAF TO LEAF
NODES 3-7 NODES 3-7 NODES 3-7 NODES 3-7
- A Pttt Pttt Pttt
~o—~80080U0| (BN0080U0| (BBB000U0| (BBO0B0DO
PEENDEED| |(CEPDEEPEE| |(PEEDDEED| |(EEDEEEHE
GPU SERVER 1 GPU SERVER 2 GPU SERVER 3 GPU SERVER 4
8 GPUs x Server
=> 8 rails

Because the GPU servers have 8 GPUs, the number of Leaf nodes will be 8. On each leaf node, 4 ports
will be used to connect to the Spine Nodes (for scaling purposes as described in the next section), and 4
ports will be used to connect to the GPU servers. All the GPU numbered 1, will be connected to Leaf
node 1, all the GPUs numbered 2 will be connected to Leaf node 2, and so on, with each group
representing a RAIL (8 RAILS total), and the group of all 4 servers, and 8 switches together represent a
STRIPE (with a total of 32 GPUs), as shown in Figure 13.

Figure 13. Stripe and Rails with 8 leaf (8-port switch) Nodes Example

22

TO SPINE NODES TO SPINE NODES TO SPINE NODES
12E)E WE@E)E] 1W2BE)E)
LEAF 1 LEAF 2 LEAF 8
Iir‘b Iir‘b e Iir‘b
7 7 7
RAIL1 aaea a0aa RAIL2 ?B.ﬂ RAIL8
< < < <
N N g N
-]] <
S S S S
o o o o
Q NODES 3.7] NODES 3.7] NODES 3.7] NODES 3.7
o o o o
HEREREE HEREREE MEEEEEE MEEEEEE
00000000 $(A0O0D0O00 (8000000 (BoDoo0oD
I I I ED EHEIEEIE) I EIEI EE) HEIEEIEYEIEN)
GPU SERVER 1 GPU SERVER 2 GPU SERVER3 GPU SERVER 4
L STRIPE

To achieve larger scales, multiple stripes can be implemented. The stripes are connected using Spine
switches which provide inter-stripe connectivity, as shown in Figure 14.

Figure 14: Multiple Stripes Connected via Spine Nodes

All leaf switches

SPINE 1
connected to both = e

SPINE 2

spine switches ____

2 x 400GE links

) STRIPE1 |
| Stripe Stripe 1 Stripe 1
Leaf 1 Leaf 2 Leaf 3
H Rail 1 Rail 2] (Rail 3)
| :

Stripe 1
Leaf 4
(Rail 4)

Stripe 1 i Stripe
Leaf 5 Leaf7
(Rail 5 (Rail 7)

== o == 1 - o =

==

I
Stripe 1 |
Leaf 8 '
I
I

N, stripes

8 GPUs per server
N1 servers per ———»
stripe

4
BEREEEEEE =)
GPU Server 1 GPU s

For example, assume that the desired number of GPUs is 16,000 and the fabric is using either
QFX5230-64CD or QFX5240-640D as leaf nodes:

e The QFX5240-640D leaf nodes support up to 128 x 400Gbps ports

e The Maximum Number of Servers Per Stripe (N4) is calculated by dividing the number of ports
supported by the leaf node.

N1 =128+2 =64

e The Maximum Number of GPUs supported per stripe is calculated by multiplying the maximum
number of servers per stripe (N4) by the numbers of GPUs on each server:

N1 x8=64x8=512

e The Required Number of Stripes (N is calculated by dividing the required number of GPUs by the
maximum number of GPUs supported per stripe:

N, = 16000/512 = 31.25 stripes (rounded up to 32)

NOTE: With N, = 64 stripes & N4 servers = 32, the cluster can provide 16,384 GPUs.If N5 is
increased to 72 & N4 servers = 32, the cluster can provide 18432 GPUs.

The stripes in the Al JVD setup consist of wither 8 Juniper QFX5220-32CD, QFX5230-64CD or
QFX5240-640D switches depending on the cluster and stripe, as summarized in Table 6.

Table 6. Maximum number of GPUs supported per cluster in the JVD lab

Cluster = Stripe Leaf Node QFX model Maximum number of GPUs supported per stripe
1 1 QFX5230-64CD 32 servers x 8 GPUs/server = 256 GPUs
1 2 QFX5220-32CD 16 servers x 8 GPUs/server = 128 GPUs

Total number of GPUs supported by the cluster = 384 GPUs

2 1 QFX5240-640D 64 servers x 8 GPUs/server = 512 GPUs

2 2 QFX5240-640D 64 servers x 8 GPUs/server = 512 GPUs

Total number of GPUs supported by the cluster = 1024 GPUs

Local Optimization

Optimization in rail-optimized topologies refers to how GPU communication is managed to minimize
congestion and latency while maximizing throughput. A key part of this optimization strategy is keeping
traffic local whenever possible. By ensuring that GPU communication remains within the same rail or

stripe or even within the same server when possible, the need to traverse spines or external links is
reduced. This lowers latency, minimizes congestion, and enhances overall efficiency.

While localizing traffic is prioritized, inter-stripe communication will be necessary in larger GPU clusters.
Inter-stripe communication is optimized by means of proper routing and balancing techniques over the
available links to avoid bottlenecks and packet loss. The essence of optimization lies in leveraging the
topology to direct traffic along the shortest and least-congested paths, ensuring consistent performance
even as the network scales.

Traffic between GPUs on the same servers can be forwarded locally across the internal Server fabric
(server architecture dependent). Traffic between GPUs in different servers happens across the GPU
backend infrastructure, either within the same rail (intra-rail), or in different rails (inter-rail/inter-stripe).

Intra-rail traffic is processed at the local leaf node. Following this design, data between GPUs on
different servers (but in the same stripe) is always moved on the same rail and across one single switch,
while data between GPUs on different rails needs to be forwarded across the spines.

Using the example for calculating the number of servers per stripe provided in the previous section, we
can see how:

e Communication between GPU 1 and GPU 2 in server 1 happens across the server’s internal fabric (1),

e Communication between GPU 1 in servers 1- 4, and between GPU 8 in servers 1- 4 happens across
Leaf 1 and Leaf 8 respectively (2), and

e Communication between GPU 1 and GPU 8 (in servers 1- 4) happens across leaf1, the spine nodes,
and leaf8 (3)

This is illustrated in Figure 15.

Figure 15: Inter-Rail vs. Intra-Rail GPU-GPU Communication

i Internal GPU — GPU communication
<—y Intra-rail GPU — GPU communication
<——— |Inter-rail/inter-stripe GPU — GPU communication

(3)

TO SPINE NODES TO SPINE NODES
-~
3
w2)3)4@ @{2)3)4@
LEAF 1 LEAF 8

RAIL irb.110.200.0.254/24 RAIL 1 irb.3 10.200.0.254/24

I : I l [: 1|

| | —aaen,

(6666
@ T, ST @

< < < < < < < <

o~ o~ o~ o~ o~ o~ o~ o~

3 sl S5 s1ls S

5} o0 1=} o0 o o0 o o0

[=] [=] [=] [=] [=] o [=] [=]

o o o o o o o o

N S N S S N S S

o o o o o o o o

(=] - (=] - - i - -

6aa (=] o a o (1] (=]
=36 e = =
(1) GPU SERVER 2 GPU SERVER 3 GPU SERVER 4
|
7/ GPUSERVER1 STRIPE

J

Most vendors implement local optimization to minimize latency for GPU-to-GPU traffic. Traffic between
GPUs of the same number remains intra-rail. Figure 16 shows an example where GPU1 in Server 1
communicates with GPU1 in Server 2. The traffic is forwarded by Leaf Node 1 and remains within Rail 1.

Additionally, a NCCL feature known as PXN can be enabled to leverage internal fabric connectivity
between GPUs within a server, where data is first moved to a GPU on the same rail as the destination,
then send it to the destination without crossing rails. For example, if GPU4 in Server 1 wants to
communicate with GPU5 in Server 2, and GPU5 in Server 1 is available across the internal fabric, the
traffic naturally prefers this path to optimize performance and keep GPU-to-GPU communication intra-
rail.

Figure 16: GPU to GPU Inter-Rail Communication Between Two Servers with PXN.

communication
between GPU 1 in
one server and GPU 1
in another server

across backend fabric . Leaf node 1 Leaf node 2 Leaf node 3 Leaf node 4 Leafnode 5 Leafnode6 Leaf node 7 Leaf node 8
~s. (Rail 1) (Rail2) Rail 3 Rail 4 Rail 5 Rail & Rail 7 Rail8

lead nodes (intra-rail) o
~‘<—T T—>
- |—>

CEEC Ey
2 2

communication A [: —-— - |—
between GPU 4in __{--7~ °Pu)
one server and GPU 5
in another server M
across Infinity internal opu 7] oPu7]
fabric and the

backend fabric leaf
nodes (intra-rail)

GPU Server 2

(9]
)
c
o
©
°
<
@
@
[N

If this path is not feasible because of workload or service constraints, or because PXN is disabled the
traffic will use RDMA (off-node NIC-based communication). In such case, GPU4 in Server 1
communicates with GPU5 in Server 2 by sending data directly over the NIC using RDMA, which is then
forwarded across the fabric, as shown in Figure 17.

Figure 17: GPU to GPU Inter-Rail Communication Between Two Servers without PXN.

L Spine nodes
communication

between GPU 1 in ™ -
one server and GPU 1
in another server
across backend fabric >~ Leaf node 1 Leaf node 2 Leafnode3 Leaf node 4 Leafnode5 Leafnode6 Leafnode7 Leafnode8
N (Rail 1) (Rail 2) Rail 3 Rail 4 Rail 5 Rail6 Rail 7 Rail8

lead nodes (intra-rail) ..

S | ‘ e

communication
between GPU 4in __L--="""
one server and GPU 5
in another server
across the backend
fabric leaf and spines
nodes (inter-rail)

g 3 S e i)
i 3 H]
HE G - <

|
f
|
i i,

GPU Server 1 GPU Server 2

While PXN is a NCCL (NVIDIA Collective Communication Library) it is also supported by AMDs ROCm
Communication Collectives Library. To enable or disable PXN use the variable NCCL_PXN_DISABLE

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html

Rail Alignment and Local Optimization Considerations with GPU
multitenancy

When implementing multitenancy in GPU fabrics, additional considerations apply regarding how GPUs
are assigned and how communication between GPUs is handled.

Server Isolation model

In the server-isolation model, all GPUs in a server are dedicated to a single tenant. In this model, direct
communication between GPUs within the same server is both appropriate and desirable. Placing the
network interfaces connecting servers assigned to different tenants into different VRFs on the leaf
nodes is sufficient to keep tenants separated across the network, but GPU-to-GPU communication also
needs to be consider. Local optimization ensures that GPU-to-GPU communication follows the most
optimal internal path:

e o GPUs within the same server communicate using the server's internal mechanisms.
e GPUs in different servers but connected to the same stripe can communicate across leaf nodes.

o GPUs located in servers that connect to different stripes communicate through the spine layer,
where traffic is encapsulated in VXLAN and routed across the EVPN/VXLAN fabric.

NOTE: The examples in this section show possible paths for data between GPUs. The actual path
depends on collectives (All-Gather, All-Reduce, All-To-All, etc) and topology algorithm (ring, tree,
etc.) selected. Also, when a job runs there might be multiple topologies at the same time (e.g.
multiple rings) following different path, built to increase efficiency. The actual path can be found
in the slurm logs as shown in the example:

° jnpr@headend-svr-1:/mnt/nfsshare/logs/nccl/H100-RAILS-ALL/06102025_19_35_46$ cat
slurm-25432.out | egrep Channel

H100-01:3179628:3180857 [@0] NCCL INFO Channel 00/16 : e 1 2 3 4 5 6 71 8
9 10 11 12 13 14 15

H100-01:3179628:3180857 [@] NCCL INFO Channel 01/16 : e 3 2 9 15 14 13 12 8
1M 1 1 7 6 5 4

H100-01:3179628:3180857 [@] NCCL INFO Channel 02/16 : 6 3 10 15 14 13 12 9 8
M 2 7 6 5 4 1

H100-01:3179628:3180857 [0] NCCL INFO Channel 03/16 : 0 11 15 14 13 12 10 9 8
3 7 6 5 4 2 1

H100-01:3179628:3180857 [@] NCCL INFO Channel 04/16 : 6 7 6 5 12 1
15 14 13 4 3 2 1

H100-01:3179628:3180857 [@] NCCL INFO Channel 05/16 : 6 4 7 6 13 11
12 15 14 5 3 2 1

H100-01:3179628:3180857 [@] NCCL INFO Channel 06/16 : 6 5 4 7 14 N
13 12 15 6 3 2 1

H100-01:3179628:3180857 [@] NCCL INFO Channel 07/16 : 6 6 5 4 15 1
14 13 12 7 3 2 1

H100-01:3179628:3180857 [@] NCCL INFO Channel 08/16 : e 1 2 3 4 5
9 10 11 12 13 14 15

H100-01:3179628:3180857 [@0] NCCL INFO Channel 09/16 : 6 3 2 9 15 14
1 1 1 7 6 5 4

H100-01:3179628:3180857 [@] NCCL INFO Channel 10/16 : 06 3 10 15 14 13
m 2 7 6 5 4 1

H100-01:3179628:3180857 [@] NCCL INFO Channel 11/16 : 0 11 15 14 13 12
3 7 6 5 4 2 1

H100-01:3179628:3180857 [@] NCCL INFO Channel 12/16 : 6 7 6 5 12 1
15 14 13 4 3 2 1

H100-01:3179628:3180857 [@] NCCL INFO Channel 13/16 : 6 4 7 6 13 11
12 15 14 5 3 2 1

H100-01:3179628:3180857 [@] NCCL INFO Channel 14/16 : 6 5 4 7 14 N
13 12 15 6 3 2 1

H100-01:3179628:3180857 [@] NCCL INFO Channel 15/16 : 6 6 5 4 15 1
14 13 12 7 3 2 1

10

10

10

10

13

12

10

10

10

10

10

12

H100-02:2723777:2725118 [2] NCCL INFO Channel 00/0 : 10[2] -> 11[3] via P2P/IPC

H100-02:2723779:2725122 [4] NCCL INFO Channel 00/0 : 12[4] -> 13[5] via P2P/IPC

H100-02:2723778:2725124 [3] NCCL INFO Channel 00/0 : 11[3] -> 12[4] via P2P/IPC

H100-02:2723780:

H100-02:2723781:

H100-02:2723776:

H100-02:2723777:

H100-02:2723775:
GDRDMA

H100-02:2723779:

H100-02:2723780:

H100-02:2723782:
GDRDMA

H100-02:2723775:
GDRDMA

H100-02:2723775:

--more---

where:

XIY]-> A[B]:

2725121

2725125

2725123

2725118

2725119

2725122

2725121

2725120

2725119

2725119

[5]

(6]

(1]

[2]

[o]

[4]

[5]

[7]

[o]

(o]

o X Source GPU global index.

NCCL

NCCL

NCCL

NCCL

NCCL

NCCL

NCCL

NCCL

NCCL

NCCL

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

INFO

e Y Local GPU index (within the node).

e A Destination GPU global index.

B Local GPU index.

Channel

Channel

Channel

Channel

Channel

Channel

Channel

Channel

Channel

Channel

00/0 :

00/0 :

00/0 :

08/0 :

00/0 :

08/0

08/0

00/0 :

08/0 :

00/0 :

13[5] -> 14[6] via P2P/IPC

14[6] -> 15[7] via P2P/IPC

9[1] -> 10[2] via P2P/IPC

10[2] -> 11[3] via P2P/IPC

7071 -> 8[0] [receive] via NET/IBext/0/

12[4] -> 13[5] via P2P/IPC

13[5] -> 14[6] via P2P/IPC

15[7] -> 0[0] [send] via NET/IBext/0(8)/

7071 -> 8[0] [receive] via NET/IBext/0/

8[0] -> 9[1] via P2P/IPC

[send] / [receive]: Direction from the perspective of the process writing the log.

NET/IBext/N or NET/IBext/N(P):

N=InfiniBand interface index (N)

P (in parentheses) = NIC port or peer rank.

GDRDMA: GPUDirect RDMA, which means data goes directly between GPUs' memory over RDMA-
capable NICs without CPU involvement. This is optimal for latency and bandwidth. Enables direct data
exchange between the GPU and a third-party peer device using standard features of PCI Express. It is
based on a kernel module called nv_peer_mem, which allows Mellanox and other RDMA-enabled NICs
to directly read and write CUDA memory using NIC RDMA paths. NCCL provides routines optimized for
high bandwidth and low latency over PCle, NVLink, and NVIDIA Mellanox Network.

P2P/IPC: Point-to-Point (P2P) transport in the NVIDIA Collective Communications Library (NCCL). It
enables GPUs to communicate directly with each other without going through the host CPU or network.
NCCL provides inter-GPU communication primitives that are topology-aware and can be easily
integrated into applications.

Example 1

Consider the example depicted in Figure 18, where Tenant A has been assigned SERVERS 4 and SERVER
5, in the same stripe and Tenant B has been assigned SERVER 1, SERVER 2, and SERVER 3, also in the
same stripe.

Figure 18: Server-isolation model GPU to GPU communication example 1

SERVER 1 SERVER 2 SERVER 3 SERVER 4 SERVER 5

TENANT NANTB ‘s
SERVER1 GPUS 1-8 SERVER 2GPUS 9-15 SERVER3 GPU516 23 SERVERIGPUS 1-8 SERVERZGPUS? 16
% L ,
\

S Bﬁﬁﬁﬁ@%@@ b b

F T K aen
AR (st

smeveer S e A = e e e e

sees 4 [=] (][] [Z]

For Tenant A:

e GPUs 1-8 in SERVER 4, and GPUs 1-8 in SERVER 5 communicate internally within their respective
servers, as explained in the section of "Local Optimization" on page 23.

e GPUs 1 and 8 in SERVER 4 communicate with GPUs 1 and 8 in SERVER 5 across the leaf and spine
nodes - Intra-rail (traffic stays at the leaf node level).

Figure 19: Server-isolation model GPU to GPU communication example 1 - Tenant A

31

SERVER 4 SERVER 5

TENANTA’s TENANTA's
SERVER 1GPUS 1-8 SERVER 2 GPUS9-16

GPU
SERVERS

g RS

e o You can see how a ring logical topology is established interconnecting the 16 GPUs assigned to
Tenant A, without any traffic crossing the Spine nodes.
Figure 20: Server-isolation model GPU to GPU communication example 1 - Tenant A Ring topology

SERVER 4 SERVER 5 SERVER 4 SERVER 5

TENANTA’s TENANTA's TENANTA's TENANTA's
SERVER 1GPUS 1-8 SERVER 2 GPUS 9-16 SERVER 1GPUS 1-8 SERVER2GPUS9-16

NCCL RING

For Tenant B:

e GPUs 1-8 SERVER 1, GPUs 1-8 in SERVER 2, and GPUs 1-8 in SERVER3, communicate internally
within their respective servers, as explained in the section of "Local Optimization" on page 23.

e GPUs 1in SERVER 1 communicate GPUs 1 in SERVER 3 communicate with each other across the
leaf nodes - Intra-rail (traffic stays at the leaf node level).

e GPUs 8 in SERVER 1 communicate GPUs 8 in SERVER 3 communicate with each other across the
leaf nodes - Intra-rail (traffic stays at the leaf node level).

e GPUs 8in SERVER 1 and GPUs 1 in SERVER 2 communicate across the leaf and spine nodes - Inter-
rail. This is needed to complete the ring.

Figure 21: Server-isolation model GPU to GPU communication example 1 - Tenant B

SERVER 1 SERVER 2 SERVER 3

TENANTB's TENANTB ‘s TENANTB's
SERVER 1 GPUS 1-8 SERVER 2 GPUS9-15 SERVER 3 GPUS 16-23
T — A TN

GPU
SERVERS

STRIPE1
LEAFs 1-8

Figure 22: Server-isolation model GPU to GPU communication example 1 - Tenant B Ring topology

SERVER 1 SERVER 2 SERVER 3
TENANTB's TENANTB ‘s TENANTB's
GPU 1 TITIT 1 T j

SERVERS |31

STRIPEL
LEAFs 1-8

V

SERVER 1 SERVER 2 SERVER 3

TENANTB's TENANTB ‘s TENANTB's

SERVER1 GPUS1-8 SERVER 2 GPUS9-15 SERVER3GPUS16-23
A APy i S R S M N

\ N, i A N

GPU Fedeie N E ; !
SERVERS FEEEE B [H =k =8 1= {=E =0 3
NCCL RING
Example 2

Now consider the example depicted in Figure 23, where Tenant A has been assigned Servers 1 and
Server 5 in two different stripes, and Tenant B has been assigned Server 2, and Server 3, in the same

stripe, and Server 4 in a different stripe.

Figure 23: Server-isolation model GPU to GPU communication example 2

33

SERVER 1 SERVER 2 SERVER 3 SERVER 4 SERVER 5

TENANT TENANTB's TENAN TENANTA
SERVER1 GPUSl 8 SERVER 1GPUS1-8 SERVERZGPUS9 15 sERVER3(3pus %624 SERVER2GPUS9-16
S
GPU >

SERVERS ﬁ] hgﬁlm mnn

dddahuy [Hddes e ﬁrﬁrﬁrﬁ@%ﬂfﬁﬂj rﬁrﬁrm@ﬁ;ﬂ 44

“!“E

smever S e A = e e e e

seves 4 [=] (=] [Z] [Z]

For Tenant A:

e GPUs 1-8 in SERVER 1, and GPUs 1-8 in SERVER 5 communicate internally within their respective
servers.

e GPUs 1in SERVER 1 and GPUs 1 in SERVER 5 communicate across the leaf and spine nodes - Inter-
stripe traffic.

e GPUs 8 in SERVER 1 and GPUs 8 in SERVER 5 communicate across the leaf and spine nodes - Inter-
stripe traffic. This is needed to complete the ring.

Figure 24: Server-isolation model GPU to GPU communication example 2 - Tenant A

SERVER 1 SERVER 5

TENANTA's TENANTA's
SERVER 1 GPUS 1-8 SERVER 2GPUS9-16
3

GPU

SERVERS i?

STRIPE1
LEAFs 1-8

STRIPE2
LEAFs 1-8

Figure 25: Server-isolation model GPU to GPU communication example 2 - Tenant A Ring topology

SERVER 5
TENANTA's TENANTA's
SERVER 1 GPUS 1-8 SERVER 2GPUS 9-16
GPU [i T

SERVERS (i{& &y 5

LSE,T'; F;'l:fis L:f] STRIPE2 [::j

LEAFs 1-8

SERVER 1
SERVER 1 SERVER 5
SERVER1 GPUS1-8 SERVER 2GPUS9-16
GPU T 1 Nal T
SERVERS |21 £ € 7.

For Tenant B:

e GPUs 1-8 SERVER 2, GPUs 1-8 in SERVER 3, and GPUs 1-8 in SERVER4, communicate internally
within their respective servers.

e GPUs 1in SERVER 2 and GPUs 1 in SERVER 4 communicate across the leaf and spine nodes - Inter-
stripe traffic.

e GPUs 8 in SERVER 4 and GPUs 8 in SERVER 3 communicate across the leaf and spine nodes - Inter-
stripe traffic.

e GPUs 1in SERVER 3 and GPUs 8 in SERVER 2 communicate across the leaf and spine nodes - Inter-
rail. This is needed to complete the ring.

Figure 26: Server-isolation model GPU to GPU communication example 2 - Tenant B

35

SERVER 2 SERVER 3 SERVER 4

TENANTB ‘s TENANTB s
SERVER1GPUS1-8 SERVER2GPUS9-15
T Tk LR P R R

=

TENANTB's
SERVER 3 GPUS 16-24

GPU
SERVERS

STRIPE1
LEAFs 1-8

sPe2 - [E[====E=E=E=
LEAFs 1-8

Figure 27: Server-isolation model GPU to GPU communication example 2 - Tenant B Ring topology

SERVER 2 SERVER 3 SERVER 4
TENANTB's TENANTB's TENANTB's
SERVER 1GPUS 1-8 SERVER 2 GPUS9-15 SERVER 3 GPUS 16-24
i B R T ——, G s
AR) [FLAFLETETET.) 1ny

B D H2 f i e B3| H = B El&

STRIPE2 =l=l=l=l=l=l=]l=

LEAFs 1-8 g—————"——%

STRIPE1
LEAFs 1-8

@ SPINES 1-4

SERVER 2 SERVER 3 SERVER 4

TENANTB's
SERVER 3 GPUS 16-24
PR ERRE

GPU
SERVERS

NCCL RING

Comparing the data flow in Examples 1 and 2, shows how the assignment of the Servers to a tenant
could influence the performance of the jobs.

Figure 28: Server-isolation with servers in same stripe vs servers in different stripes

36

2 SERVERS 2 STRIPES 2 SERVERS 1 STRIPE

SERVER 1 SERVER 5 SERVER 4 SERVER 5

ENANT & TENANTA' ENANT A
SERVER GPUS 1.8 SERVERICPUS P15 SERVER1GPUS 1.8 SERVER 26905916

GPU
SERVERS |28

STRIPE2
LEAFs 1-8

SPINES 1-4 | =

3 SERVERS 2 STRIPES 3 SERVERS 1 STRIPE
SERVER 2 SERVER 3 SERVER 4 SERVER 1 SERVER 2 SERVER 3
vs [—'Tr?ﬁﬂ?%r Ln%%’%"%“» RIEEEEEEDE
\\-\\

P e e e e e e SRR [E S ==
LEAFs 1.8 =1 |=]: (EAFs 1.8 EEEE:

=] sTRPEL [ST=T=T
LEAFs 1-8

SPINES 1-4 [=

GPU Isolation model

In the GPU-isolation model, different GPUs in the same server can be assigned to different tenants. Also,
a tenant might be assigned GPUs in multiple servers across multiple stripes. As for the server isolation
model, where the assigned GPUs are located will affect the path and potentially the performance.

Example 1

Consider the example depicted in Figure 29, where Tenant A has been assigned GPU1 on SERVERs 1-4,
and Tenant B has been assigned GPU8 on SERVERs 1-5.

Figure 29: GPU-isolation model GPU to GPU communication example 1

SERVER 1 SERVER 2 SERVER 3 SERVER 4 SERVER 5
GPU1 GPU1 GPU 2 GPU2 GPU 3 GPU3 GPU 4 GPU4 GPU 5
GPU

SERVERS DDDDDD DDDDDD EEEEEEEL: gggggg.‘ ggggggf

STRIPE1 [=]=][=]=]=I=]=]= STRIPE2 [=[==]=I=I=I=]=

i e EEEIEEEEE Smee (SEEEEEEE

SPINES 1-4
For Tenant A:

e Tenant A’s GPUs 1, 2, and 3 communicate with each other across the leaf node where they are
connected. (Intra-rail)

e Tenant A's GPUs 1, 2, and 3 communicate with GPU 4 communicate across the leaf and spine nodes.

Figure 30: GPU-isolation model GPU to GPU communication example 1 - Tenant A

SERVER 1 SERVER 2 SERVER 3 SERVER 4 SERVER 5

GPU1 GPU2 GPU 3 GPU 4
GPU [T
SERVERS [L[n. l

S EEEEE e, EEEEEEEE]

SPINES 1-4 | —
Figure 31: GPU-isolation model GPU to GPU communication example 1 - Tenant A ring topology

SERVER 1 SERVER 2 SERVER 3 SERVER 4
GPU1 GPU 2 GPU3 GPU 4
GPU -

servees g eoimaEas

Boaoosas)

Sossogos Bossuags

STRIPEL ™| =2 STRIPE2 =
LEAFs 1-8 ij LEAFs 1-8 I;

~

SERVER 1 SERVER 2 SERVER 3 SERVER 4

TENANTA TENANTA TENANTA TENANTA
GPU1 GPU 2 GPU 3 GPU 4
7 7 7 7

SPINES 1-4

GPU

s oS oEes
|

e ———
H Fl

Boonosos
f

For Tenant B, a similar communication path is established.
Example 2

Now Consider the example depicted in Figure 32, where Tenant C has been assigned GPUs 8 on
SERVER 1, GPUs 5 & 8 on SERVER 2, and GPU 4 on SERVER 3 (corresponding to Tenant C's GPUs 1-4
in the diagram).

Figure 32: GPU-isolation model GPU to GPU communication example 2

37

38

SERVER 1 SERVER 2 SERVER 3 SERVER 4
GPU 2 GPU 2-3
GPU

SERVERS r{ nggggﬁ

[@g@@g@@

r\

[ﬂgggﬁggrﬁ

=)

CHEN

D

=)

=)

=l

D

=)

=

&

=)

=)

=)

STRIPE1 [:’:::’:::’:’ STRIPE2 l:’:::’:’:::’

sravet (S sreeer SIS

seves 4 [=] (=] [=] [Z]

For Tenant C:

e Tenant C's GPUs 2 and 3 (on the same server), communicate internally within their server.

e Tenant C's GPU 3 (SERVER 2) and GPU 4 (SERVER 3) communicate across the leaf and spine nodes.
e Tenant C's GPU 4 (SERVER 3) and GPU 1 (SERVER 1) communicate across the leaf and spine nodes.
e Tenant C's GPU 1 (SERVER 1) and GPU 2 (SERVER 2) communicate across the leaf and spine nodes.

Figure 33: GPU-isolation model GPU to GPU communication example 2 - Tenant C

SERVER 1 SERVER 2 SERVER 3 SERVER 4

TENANTC TENANT C TENANTB
GPU1 GPU2-3 GPU4

GPU
SERVERS

e H‘ EEEIEE]

\
\ LEAFs 1-8 S i 2=

EEE

When comparing examples 1 and 2, it becomes clear how rail alignment and proper server or GPU
assignment strategies are critical to achieving optimal GPU-to-GPU communication efficiency on a scale.

Tenant A in Example 1, has been assigned GPUO on Servers 1-4, thus communication mostly stays at the
leaf level. Tenant C in Example 2 has been assigned GPUs 8 on SERVER 1, GPUs 5 & 8 on SERVER 2,
and GPU 4 on SERVER 3, so communication must go across the spines, introduces additional latency
and potential congestion Both Tenant A and Tenant C have been assigned the same number of GPUs,
but communication between their GPUs follows different paths, which could result in varying
performance levels.

Figure 34: GPU-isolation with servers in same stripe vs servers in different stripes

SERVER 1 SERVER 2 SERVER 3 SERVER 4 SERVER 1 SERVER 2 SERVER 3 SERVER 4
A TenANTC TenanTE

[
SERVERS (i@

EVPN/VXLAN GPU Backend Fabric for
Multitenancy - Implementation Options

IN THIS SECTION

Pure RT5 EVPN/VXLAN - Server-Level Isolation (Per-Server Multitenancy) | 42
Pure RT5 EVPN/VXLAN - GPU-Level Isolation (Per-GPU Multitenancy) | 43
VLAN-Aware EVPN/VXLAN -Server-Level Isolation (Per-Server Multitenancy) | 44
VLAN-Aware EVPN/VXLAN - GPU-Level Isolation (Per-GPU Multitenancy) | 45

Selecting the Best Approach | 46

Implementing GPU multitenancy in a data center requires a network architecture that ensures strong
isolation, high throughput, and low latency across the shared infrastructure. This involves architectural
considerations not only for the GPU backend fabric, which provides connectivity between GPUs
belonging to each tenant, but also for the frontend fabric, where user access, job submission,
orchestration, and authentication are handled, and the storage backend, which is responsible for
delivering datasets, model checkpoints, and results to and from the GPU infrastructure. These
components each require their own design strategies to ensure end-to-end performance, security, and
multitenancy across the entire Al platform stack.

This JVD focuses specifically on the GPU backend fabric, which handles east-west traffic between GPUs
across servers and is subject to the strictest performance and isolation requirements. EVPN/VXLAN is
commonly used as the foundation for scalable multitenant environments, supporting two main design
approaches: pure Type 5 services with IP-VRFs only, and VLAN-aware services with MAC-VRFs and
symmetric IRB.

The pure Type 5 model follows the BGP EVPN IP Prefix Route specifications described in RFC 9136 (IP
Prefix Advertisement in Ethernet VPN - EVPN). Traffic forwarding across the fabric relies entirely on
Layer 3 routing, avoiding MAC learning and simplifying both the control plane and IP address
management. In contrast, the VLAN-aware model uses Layer 2 overlays to extend bridging and VLAN
segmentation across the fabric. Both approaches use routed underlay designs with VXLAN
encapsulation, enabling flexible resource allocation and tenant isolation across multiple physical servers.

These two approaches are summarized in table 7 for both GPU Isolation and Server Isolation.

Table 7. EVPN/VXLAN models comparison

FEATURES Pure RT5 EVPN/VXLAN VLAN-Aware EVPN/VXLAN

(Recommended) service with MAC-VRF
Multi-tenancy = GPU-Isolation Server Isolation GPU-Isolation Server Isolation
Type

(Per GPU (Per-server (Per GPU (Per-server

multitenancy)

multitenancy)

multitenancy)

multitenancy)

GPU One or more GPU All GPUs (8) per One or more GPU All GPUs (8) per
Assignment server assigned to a server assigned to a
(Tenant (but not all) per single Tenant (but not all) per single Tenant
Resource server assigned to server assigned to
Allocation) multiple Tenants multiple Tenants
Tenant GPU A tenant can have A tenant can have A tenant can have A tenant can have
Distribution one or more (but not one or more (but not

all) GPUs on one or all the GPUs all) GPUs on one or all the GPUs

more servers. on ONe Or more more servers. on one or more

servers. servers.

VLANSs per No VLANSs No VLANs Each linkisina Each linkisina

servero Leaf

different VLAN and is

different VLAN and is

node Links assigned a different assigned a different
VNI. VNI.

Interface Access-mode Access-mode Access-mode Access-mode

configuration interfaces, server interfaces, server interfaces, server interfaces, server

Mode and links in different links in different links in different links in different

VLAN RT5_IP-VRF RT5_IP-VRF MAC-VRF MAC-VRF

Mapping

(Continued)

FEATURES

IP addressing
per serverd
Leaf node
Links

VRF and
Routing
Instances per
tenant

VNI Allocation

per Tenant

Anycast
Gateway
Configuration

EVPN Service
Type

ERB Design

Pure RT5 EVPN/VXLAN

(Recommended)

Server links
configured with:

e /311Pv4,

e /127 IPv6
addresses or

o /64 |Pvé6
addresses with
SLAAC

8 x IP routed links

One RT5_IP-VRF
only

No MAC-VRF

(on each leaf node
where the GPUs
assigned to tenant
are connected)

Single VNI per tenant

No Anycast Gateway

(no IRB interfaces)

Pure/Pure RT5
EVPN/VXLAN design

No ERB

Server links
configured with:

e /311Pv4,

e /127 IPv6
addresses or

o /64 |Pvé6
addresses with
SLAAC

8 x IP routed links

One RT5_IP-VRF
only

No MAC-VRF

(on each leaf node
where the GPUs
assigned to tenant
are connected)

Single VNI per tenant

No Anycast Gateway

(no IRB interfaces)

Pure/Pure RT5
EVPN/VXLAN

No ERB

VLAN-Aware EVPN/VXLAN

service with MAC-VRF

Server links
configured with:

o /24 |Pv4 or

o /64 IPv6
addresses

One RT5_IP-VRF &
One MAC-VRF

(on each leaf node
where the GPUs
assigned to tenant
are connected)

8 x VNIs per tenant

8 x Anycast IP
Gateways (8 x IRB
interfaces)

VLAN-Aware EVPN/
VXLAN service (with
MAC-VRF)

ERB design without
ESI_LAG

Server links
configured with:

o /24 |Pv4 or

o /64 1Pv6
addresses

One RT5_IP-VRF &
One MAC-VRF

(on each leaf node
where the GPUs
assigned to tenant
are connected)

8 x VNIs per tenant

8 x Anycast IP
Gateways (8 x IRB
interfaces)

VLAN-Aware EVPN/
VXLAN service (with
MAC-VRF)

ERB design without
ESI_LAG

(Continued)

VLAN-Aware EVPN/VXLAN
service with MAC-VRF

Pure RT5 EVPN/VXLAN
(Recommended)

FEATURES

Underlay BGP
Configuration

IRB and
Routing
Strategy

Congestion
Control

(DCQCN Type)

Underlay IPv6 BGP
Unnumbered

Pure RT5 EVPN
routing - no IRB
interfaces

Pure Type 5 DCQCN;
VXLAN DCQCN

Underlay IPv6 BGP
Unnumbered

Pure RT5 EVPN
routing - no IRB
interfaces

Pure Type 5 DCQCN;
VXLAN DCQCN

Underlay IPv6 BGP
Unnumbered

Symmetric IRB -
Type 5

Type 2 & 5 DCQCN;
VXLAN DCQCN

Underlay IPvé6 BGP
Unnumbered

Symmetric IRB -
Type 5

Type 2 & 5 DCQCN;
VXLAN DCQCN

Pure RT5 EVPN/VXLAN - Server-Level Isolation (Per-Server
Multitenancy)

In this design model, each physical server is dedicated entirely to a single tenant, meaning all GPUs
(typically 8 per server) are assigned to one tenant only. This model simplifies resource allocation and
isolation since there’s no sharing of GPU resources between tenants on a single server. A tenant can

span across multiple servers, each of which fully belongs to that tenant.

Server-to-leaf links are configured as L3 links, in access mode (no VLAN tagging), and are assigned
unique IP addresses (/31 IPv4, /127 or /64 IPvé6). The recommended solution in this document
prescribes automatically assigning /64 IPvé6 addresses using SLAAC (Stateless Address

Autoconfiguration). This approach enables servers to self-configure their addresses without requiring
manual edits to each server’s netplan configuration. Configuration options for IPv4 are covered in the
Appendix

Each server-facing link is associated with the same Tenant’s RT5_IP-VRF routing instance across the leaf
nodes within a stripe, according to Tenant’s assignments, as shown in Figure 36.

Figure 35: Pure RT5 EVPN/VXLAN - Server-Level Isolation (Per-Server Multitenancy)

TENANT A TENANTB - TENANTA - TENANTB -
SERVER 1 SERVER 1 SERVER 2 SERVER 2
(GPUS 1-8) (GPUS 1-8) (GPUS 9-16) (GPUS 9-16)

SERVER 1 SERVER 2 SERVER 3 SERVER 4

QFxs240 [

SPINE1 SPINE2 SPINE3 SPINE 4

The fabric is configured as a pure EVPN/VXLAN Type 5 with no MAC-VRFs, IRBs, or anycast gateways
involved.

BGP underlay sessions are established using IPvé link-local addresses with automatic neighbor
discovery, while overlay sessions are established between the IPv6 unicast addresses assigned to the
loopback interfaces and advertised via the underlay. Congestion control is implemented using VXLAN-
aware DCQCN, ensuring fairness and traffic stability.

NOTE: If the overlay is using IPv4 addresses, the underlay needs to be configured using RFC
5549 to advertise IPv4 routes with IPv6 next-hops. See "Appendix A - IPv4 Overlay Over IPvé
Underlay Fabric Implementation" on page 192 for more details.

Pure RT5 EVPN/VXLAN - GPU-Level Isolation (Per-GPU Multitenancy)

This model introduces finer-grained resource sharing by allowing GPUs within the same server to be
allocated to different tenants. A tenant may receive one or more GPUs across one or multiple servers,
but not all GPUs on any given server unless explicitly assigned. This GPU-level partitioning allows for
more efficient use of server resources and is well-suited for environments with dynamic or fractional
GPU demands. Despite the increased resource-sharing granularity, the server to leaf node connectivity
remains the same.

Server-to-leaf links are still configured as L3 links, in access mode (no VLAN tagging), and are assigned
unique IP addresses (/31 IPv4, /127 or /64 IPv6). The recommended solution in this document
prescribes automatically assigning /64 IPvé6 addresses using SLAAC (Stateless Address
Autoconfiguration). This approach allows servers to automatically configure their addresses, eliminating

the need to manually edit each server’s netplan configuration. Configuration options for IPv4 are
covered in the Appendix.

Each link in a server is mapped to a different Tenant’s RT5_IP-VRF routing instances across the leaf
nodes within a stripe, according to Tenant’s assignments, as shown in Figure 36.

Figure 36: Pure RT5 EVPN/VXLAN - GPU Level Isolation (Per-GPU Multitenancy)

TENANT A TENANTB TENANTA TENANTB TENANTA TENANTB TENANTA TENANTB
GPU1 GPU1 GPU2 GPU2 GPU3 GPU3 GPU4 GPU4

\' SERVER 1 |] SERVER 2 \ SERVER 3 \' \' SERVER 4 |

\
L \j \J

STRIPE1 == ==
QFX5240 LEAFs1-8 HEEEEE

RT5_IPVRF-A (VNI 1)

~
RT5_IPVRF-B (VNI 2) ~

QFxs240 [

SPINE1 SPINE2 SPINE3 SPINE4

The fabric is still configured as a pure EVPN/VXLAN Type 5 with no MAC-VREFs, IRBs, or anycast
gateways involved.

BGP underlay sessions are established using IPvé link-local addresses with automatic neighbor
discovery, while overlay sessions are established between the IPvé unicast addresses assigned to the
loopback interfaces and advertised via the underlay. Congestion control is implemented using VXLAN-
aware DCQCN, ensuring fairness and traffic stability.

NOTE: If the overlay is using IPv4 addresses, the underlay needs to be configured using RFC
5549 to advertise IPv4 routes with IPv6 next-hops. See "Appendix A - IPv4 Overlay Over IPvé
Underlay Fabric Implementation" on page 192 for more details.

VLAN-Aware EVPN/VXLAN -Server-Level Isolation (Per-Server
Multitenancy)

In this design model, each physical server is fully dedicated to a single tenant, meaning all GPUs
(typically 8 per server) are assigned exclusively to that tenant. This approach simplifies resource

allocation and ensures strong isolation, as there is no GPU resource sharing across tenants on the same
server. A tenant may span multiple servers, each entirely allocated to that tenant.

Server-to-leaf links are configured as Layer 3 interfaces; each associated with a unique VLAN and VNI.
The recommended solution in this document uses /64 IPvé6 addresses automatically assigned via SLAAC
(Stateless Address Autoconfiguration), eliminating the need for manual configuration of each server’s
netplan file. IP addressing is allocated from larger pools (e.g., /24 for IPv4 and /64 for IPvé6), with each
link receiving its own anycast gateway (IRB) interface, resulting in 8 IRB interfaces per server. Each
server-facing link is associated with the tenant's MAC-VRF and IP-VRF routing instances across the leaf
nodes within a stripe, according to the tenant’s assignment, as shown in Figure 37.

Figure 37: VLAN-aware EVPN/VXLAN - Server Level Isolation (Per-Server Multitenancy)

TENANTA TENANTB - TENANTA- TENANTB -
SERVER 1 SERVER 1 SERVER 2 SERVER 2
(GPUS 1-8) (GPUS 1-8) (GPUS 9-16) (GPUS9-16)

SERVER 1 SERVER 2 SERVER 3 SERVER 4

ooovusus popoouDy

i
O

STRIPE1 STRIPE2
QFX5240 | Farss-g LEAFs1-8 9
#
| NN
RT5_IPVRF-A(WNI 1)+ | e
MACVRF-A(IRB.1) | RN
RT5_IPVRF-B (VNI 2) + Rl e oTae

e m———

MACVRF-B (IRB2)
QFx5240 [=

SPINE1 SPINE2 SPINE3 SPINE4

From a network design perspective, this use case relies on a VLAN-Aware EVPN/VXLAN service, with
per-tenant separation using both MAC-VRFs and IP-VRFs. Each leaf switch hosting a tenant's servers
maintains a pair of VRFs: a MAC-VRF for bridging and an RT5_IP-VRF for routing. The design follows a
symmetric IRB model, supporting both EVPN Type 2 and Type 5 routes, and implements VXLAN-aware
DCQCN for congestion management.

VLAN-Aware EVPN/VXLAN - GPU-Level Isolation (Per-GPU
Multitenancy)

This design model enables finer-grained resource sharing by assigning individual GPUs within a server to
different tenants. A single server can be shared across multiple tenants, each with access to a subset of
GPUs rather than the entire server. This approach increases overall compute resource utilization while
maintaining strong isolation between tenants.

Server-to-leaf links are configured as Layer 3 interfaces, each associated with a unique VLAN and VNI.
IPv6 addresses are automatically assigned via SLAAC (/64 per interface), allowing the server to self-

configure without requiring manual edits to its netplan file. IP addressing is allocated from larger pools
(e.g., /24 for IPv4 and /64 for IPv6), with each GPU-facing link receiving its own anycast gateway (IRB)
interface, resulting in 8 IRB interfaces per server. Each interface is associated with the tenant's MAC-
VRF and IP-VRF routing instances across the leaf nodes, according to the tenant’s assignment.

Figure 38: VLAN-aware EVPN/VXLAN - GPU-Level Isolation (Per-GPU Multitenancy)

TENANTA TENANTB TENANTA TENANTB TENANTA TENANTB TENANTA TENANTB
GPU1 GPU1 GPU2 GPU2 GPU3 GPU3 GPU4 GPU4

| SERVER 1 |] SERVER 2 |] SERVER 3 |] SERVER 4 \
\J \l \J \l \J \ \J \

/JJ

O
STRIPE1 XS X STRIPE? 091900
arxs240 e [BIE)EEIEIEE (EAFe1.8 == EHEEE
~ s ’
N 27 il
RT5_IPVRF-A (VNI 1) + = = e
MACVRF-A (IRB.1) 3 ~<” -7
-~ - -~ -

RT5_IPVRF-B(VNI 2) + B NN = S—e__--"

—— -

MACVRF-B (IRB2)
QFxs240 =)

SPINE1 SPINE2 SPINE3 SPINE4

From a network design perspective, this use case also relies on a VLAN-Aware EVPN/VXLAN service,
with per-tenant separation using both MAC-VRFs and IP-VRFs. Each leaf switch hosting the server’s
GPU-assigned interfaces maintains a pair of VRFs: a MAC-VREF for bridging and an RT5_IP-VRF for
routing. The design follows a symmetric IRB model, supports both EVPN Type 2 and Type 5 routes, and
implements VXLAN-aware DCQCN to ensure fair and stable congestion control across the shared
infrastructure.

Selecting the Best Approach

In the context of Al workloads such as training, inference, and GPU-as-a-Service (GPUaaS), the choice
between a pure Type 5 and a VLAN-aware EVPN/VXLAN design can significantly impact operational
efficiency. The pure Type 5 model is often better suited for large-scale Al training environments, where
GPU resources are allocated in bulk, either per server or per tenant, and workloads are typically long
running and tightly coupled. Its streamlined IP-based routing, stable addressing, and minimal control-
plane overhead enable predictable performance and simplified automation across hundreds or
thousands of servers. In contrast, the VLAN-aware model may be more appropriate for GPUaa$S
platforms, inference workloads, or multi-purpose environments where tenants run shorter, independent
jobs and require granular isolation, dynamic L2 connectivity, or per-interface policy enforcement. The
use of MAC-VRFs and anycast gateways provides flexibility for tenant-specific services, especially in use
cases involving legacy applications, bare-metal workloads, or environments that need tenant-specific IP

gateways. Ultimately, both models support GPU multitenancy, but the pure Type 5 design favors scale
and simplicity, while the VLAN-aware design offers flexibility and fine-grained control.

NOTE: This JVD focuses on the Pure RT5 EVPN/VXLAN implementation. Thus, the rest of the
document will cover all the details for the Pure RT5 EVPN/VXLAN - Server-Level Isolation (Per-
Server Multitenancy) and Pure RT5 EVPN/VXLAN - GPU-Level Isolation (Per-GPU Multitenancy)
options.

EVPN/VXLAN GPU Backend Fabric for
Multitenancy - Type 5 EVPN/VXLAN
Implementation

IN THIS SECTION

Tenant Separation | 47
Fabric Tenant Separation | 48

Internal Server Separation | 49

Tenant Separation

Preserving tenant separation requires careful design at two levels:
e Fabric Tenant Separation - isolation of traffic across the fabric

¢ Internal Server Separation - isolation of GPU access within each server

Fabric Tenant Separation

Across the fabric, separation is achieved by implementing EVPN/VXLAN pure Type 5, where the
interfaces connecting the GPUs assigned to tenants are mapped to distinct IP-VRF routing instances on
the leaf nodes. Fabric Tenant Separation is implemented slightly differently for the Server Isolation, and
GPU Isolation models.

For Server Isolation:

When a new tenant is onboarded and assigned one or more servers, a dedicated IP-VRF routing instance
is created for that tenant on each leaf node within a stripe. The interfaces of the assigned servers are
then added to this VRF. Because GPU servers are connected in a rail-optimized topology, at least one
interface on each leaf node is typically part of the new VRF, as illustrated in Figure 39.

In the example, Tenant A is assigned Servers 1 and 4, a VRF is instantiated on Leaf nodes 1 through 8.
All the interfaces on these two servers are associated with the VRF based on the rail-aligned
connectivity model, resulting in two interfaces per leaf node. Tenants B and C, are assigned to Servers 2
and 3 respectively, and each receive their own VRF, with one interface per leaf node.

Figure 39: Server Isolation Tenant Assignments

B

TENANT-A IPVRF

i

[Ef TENANT-AGPUs

TENANT-BIPVRF

(]

)
E@ TENANT-B GPUs

Il

NEW TENANT IPVRF

. NEW TENANT GPUs

LEAF 4 LEAF 5 LEAF 6 LEAF 7 LEAF 8

For GPU lIsolation:

When a new tenant is onboarded and assigned one or more GPU, a dedicated IP-VRF routing instance is
created for that tenant BUT on/y on the leaf nodes with physical connections to the GPUs assigned to
that tenant, as shown in Figure 40

In the example, Tenant A is assigned GPU O on Servers 1 and 2, its VRF is created only on Leaf 1. No
other leaf nodes are affected. Tenant B is assigned GPU 6 on Server 1, its VRF is created only on Leaf 6.
Tenant C is assigned GPUs 7 and 8 on Servers 2 and 3, its VRF is created on Leaf 7 and Leaf 8

This selective placement of IP-VRFs ensures that only the required leaf nodes participate in each
tenant's network, minimizing configuration overhead while maintaining strict isolation at the GPU level.

Figure 40: GPU Isolation Tenant Assignments

SERVER 1 SERVER 2 SERVER 3 D TENANT-AIPVRE

12345678 12345678|... |
CEEEEE ElEE e
— Al \\\ \\ \// .y ‘,’ i \‘.‘ N\ TENANT-BIPVRF

dBE TENANT-BGPUs

1 A _
N\ “ /. » /
\ o S ~/ NEW TENANT IPVRF
% X 0 /™ =]
\ / \/ N J \ NEW TENANT GPUs
/ 7/ P . \ N -
\, / S e ~\ \
\ / / / —~ N\ AN
A A T
/ “ / // N\ ~ b ’ ™ o X
N A L3 I~ . o\
/ s /
P \ / =

—
——
—

(]
N 1%

ll[l'.m

pr— —
— —
—_— —_— —_—

LEAF 1 LEAF 2 LEAF 3 LEAF 4 LEAF 5 LEAF 6 LEAF 7 LEAF 8

Internal Server Separation

Placing interfaces into different VRFs on the switch side is not sufficient for complete isolation. It is also
necessary to isolate the GPUs within the servers. Although disabling local optimization or PXN may
appear to prevent cross-GPU traffic, in reality it only prevents a GPU from using another GPU within the
same server as a proxy to reach a GPU on a different rail in a different server, as described in the Local
Optimization section. Additional mechanisms are therefore required to ensure true separation, including
Kubernetes implementation, and Isolation using NCCL variables.

Kubernetes-Based Isolation:

Many organizations adopt Kubernetes for GPU multitenancy because of its ability to manage shared
resources efficiently while isolating workloads across users or teams. Features such as namespaces,
cgroups, and role-based access control (RBAC) provide secure, Tenant-1 ware environments that keep
workloads isolated within a shared infrastructure. Kubernetes also integrates with vendor-supported
GPU operators from NVIDIA and AMD, streamlining the deployment of drivers, device plugins, and
monitoring components. This simplifies administration and enables accurate tracking of GPU usage per
tenant.

While Kubernetes provides a robust framework for GPU multitenancy in production environments, it is
not always practical or necessary for testing and validation.

Isolation with NCCL variables:

In lab setups or early development stages, multitenancy can be implemented without deploying a full
Kubernetes stack by manually controlling resource visibility through environment variables. This
lightweight approach allows administrators to isolate GPU and network resources per tenant using
variables such as:

e CUDA_VISIBLE_DEVICES (for NVIDIA servers),
e ROCR_VISIBLE_DEVICES (for AMD servers),

o UCX_NET_DEVICES, and

e NCCL_IB_HCA.

By setting CUDA_VISIBLE_DEVICES (on NVIDIA servers) and ROCR_VISIBLE_DEVICES (on AMD
servers) environment variables, administrators can restrict each tenant’s applications to having visibility
and access to only their assigned GPUs.

When set, they mask all other GPUs from the application’s perspective, creating the appearance that
only the assigned GPU(s) are available, preventing unwanted GPU-to-GPU communication. The exposed
GPUs are then re-indexed starting from 0. Thus, for each tenant, the GPUs will be indexed starting at O,
regardless of the actual GPU number (rank).

For example, when running a NCCL test on an NVIDIA server:

o |If atenant is assigned GPU1, setting:
export CUDA_VISIBLE_DEVICES=1

ensures that only GPU1 is visible to the application. Internally, this GPU will appear to the application
as cuda:0.

e Similarly, if a tenant is assigned GPU4, setting:
export CUDA_VISIBLE_DEVICES=4

ensures that only GPU4 is visible to the application. The GPU wiill also appear as cuda:0 to the
application.

Understanding the remapping behavior of GPU visibility is essential for administrators managing
multitenant environments. Because environment variables like CUDA_VISIBLE_DEVICES and
ROCR_VISIBLE_DEVICES reindex visible GPUs starting from 0, administrators must track the logical-to-
physical GPU mapping to ensure accurate monitoring, troubleshooting, and tenant-level usage
accounting.

While CUDA_VISIBLE_DEVICES (for NVIDIA) and ROCR_VISIBLE_DEVICES (for AMD) effectively
restrict GPU access within the local server, they do not control which network interface is used for inter-
node communication. To maintain strict tenant isolation and avoid traffic leakage, additional
environment variables must be set to control NIC selection. These include:

e UCX_NET_DEVICES
e NCCL_SOCKET_IFNAME
e NCCL_IB_HCA

These variables define the network interface(s) to be used by UCX and NCCL, ensuring that traffic
remains within the tenant’s routing instance and only uses the correct NICs.

The example shown in Figure 41 illustrates a multitenant configuration on a GPU server labeled
H100-01, which contains eight GPUs (GPUO-GPU7) and eight corresponding NICs (NICO-NIC7).

A Tenant-1 NCCL job is shown running on GPUQ, isolated using the environment variable
CUDA_VISIBLE_DEVICES= GPUOQ, ensuring the job only sees and accesses GPUO.

Because GPUs 0 and 1 share NUMA locality with NIC6 and NIC8, GPUO can use either NIC6 or NIC8 to
communicate with GPUs assigned to the same tenant on other servers. Without explicit control, it may
select a NIC associated with a different tenant, violating traffic isolation. To prevent this, the job must
also be restricted to NIC6 (gpuO_eth) by setting: UCX_NET_DEVICES=gpu0_eth.

Failing to specify the correct NIC can result in communication failures or cross-tenant traffic leakage. In
this example, NICé6 is connected to Tenant-1 VRF on the leaf node, while NIC NIC8 is connected to
Tenant B’s VRF.

The left side of Figure 41 shows a case where the correct NIC is selected, and therefore the traffic
correctly exits on the interface connected to Tenant 1's routing instance.

The right side shows a case where the incorrect NIC is selected, and the traffic incorrectly exits on the

interface connected to Tenant 2's routing instance.

Figure 41: GPU and NIC Isolation for Tenant-1 NCCL Job

Correct NIC
selected

to (assigned to
Tenant-B)

GPUL

=6

P et
{ UCX_NET_DEVICES gpu?_eth |

Tenant-ANCCLIOB

INICo)

et-0/0/0:0
I

£ 8

t
gpuS _eth
(NIc3)

€1-0/0/0:0
I

H100-01

GPuU3

GPUA

GPUS

et-0/0/0:0
L

!
gpul _eth
(Nice)

T
gpu3 _eth

(Nics)

et-0/0/0:0 et-0/0/0:0
L L

et
(NiC10)

et-0/0/0:0
L

T
h gpu0_eth
(Nic11)

et-0/0/0:0
I

&

STRIPEL
LEAF1

TENANT-B
VRF

STRIPEL
LEAF2

STRIPEL
LEAF3

STRIPE
LEAF4

STRIPE1
LEAFS

STRIPEL
LEAF6

STRIPE1
LEAF7

STRIPEL
LEAF8

H100-01

GPU3

(2073

GPUS

|

!

=@
1
gpu7_cth

(NICO)

1-0/0/0:0
|

=6

t
gpus _cth
(nic3)

t-0/0/0:0
I

ELc]

b
gpud eth gpy

(Nica)

€t-0/0/0:0
L

t-0/0/0:0
1

(Nice)

€t-0/0/0:0
I

€t-0/0/0:0
L

b
Bpu2 _eth
(nicio)

et-0/0/0:0 et-0/0/0:0
I 1

¥
gpu0_eth
(Nic11)

=

STRIPEL
LEAF1

TENANT-B
VRF

STRIPE1
LEAF2

STRIPE1

LEAF3

STRIPEL
LEAF4

STRIPEL
LEAF5

STRIPEL
LEAF6

STRIPEL
LEAF7

STRIPE1
LEAF8

For more details on NCCL and RCCL environment variables refer to the latest NVIDIA and AMD
documentation. The latest at the time of this document's publication can be found here:

e Environment Variables — NCCL 2.27.5 documentation

e RCCL environment variables — RCCL 2.26.6 Documentation

Type 5 EVPN/VXLAN GPU Backend Fabric
Implementation - Control Plane

IN THIS SECTION

Fabric Underlay Control Plane Implementation Options | 53
Control Plane Implementation with IPvé Link-Local Underlay | 55
Fabric Overlay Control Plane Implementation Options | 56

Control Plane Implementation with IPvé Overlay | 57

The underlay serves as the IP transport between VXLAN Tunnel Endpoints (VTEPs), located at the leaf
nodes, and provides IP reachability using EBGP sessions. These sessions are established between
directly connected leaf and spine nodes and exchange unicast routes advertising the leaf nodes’
loopback interfaces.

The overlay provides IP reachability between gpu-facing ethernet segments using multihop EBGP
sessions. These sessions are established between the leaf and spine nodes using their loopback
addresses and include the information required to encapsulate and forward tenant traffic across the
fabric while maintaining traffic separation between customers.

EBGP is preferred in the overlay because it enforces loop-free, hop-by-hop forwarding without requiring
route reflectors. By using unique ASNs per device, it aligns with Valley-Free Routing principles, ensuring
traffic flows leaf to spine to leaf, avoiding loop and maintaining symmetry.

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html
https://rocm.docs.amd.com/projects/rccl/en/develop/api-reference/env-variables.html

Fabric Underlay Control Plane Implementation Options

There are different options to implement the underlay in an EVPN/VXLAN fabric, depending on design
goals, operational preferences, and hardware capabilities.

e |Pv4 addresses (/31 subnet masks) numbered interfaces

e |Pvé6 addresses (/127 subnet masks) numbered interfaces

e |Pv6 link-local addresses (unnumbered interfaces), with BGP neighbour auto-discovery based on
IPV6 neighbour discovery (RFC 4861) and IPv4 route advertisement via IPvé next-hops (RFC 5549)
for IPv4 overlays.

Table 8. Comparison of Underlay Control Plane Implementation Options in EVPN/VXLAN Fabrics

Implementatio
n Options

Leaf to Spine
Interface
Addressing

BGP Peer
Configuration

Benefits

Drawbacks

IPv4 /31

Statically configured /31
IPv4 addresses

Explicit neighbor config per
interface using IPv4
addresses of directly
connected interface.

Simple
Widely supported

Low config overhead

No IPvé6 ready

IPvé6 /127

Statically configured
routable (non-link
local) /127 IPvé addresses

Explicit neighbor config per
interface using routable IPv6
addresses of directly
connected interface.

Avoids IPv4 exhaustion
IPv6-native underlay

Aligns with modern fabrics

Needs dual-stack address
planning

IPv6 Link-Local (RFC 4861)
RECOMMENDED

Automatically assigned Link-
local IPvé (no global addressing
needed)

No explicit neighbor config
required

Uses interface-scoped link-local
discovery

Link-local IPvé + interface-
scoped BGP config
(fe80::1%et-0/0/0)

Zero P allocation needed
Ideal for massive fabrics

Minimal IPAM

Traceroute visibility reduced

(Continued)

Implementatio
n Options

Use cases /
Industry Trend

IPv4 /31

IPv4 /31 remains the most
widely used in enterprise
and service provider fabrics.

For most enterprise and
traditional data center
fabrics, IPv4 /31 remains the
recommended and most
straightforward underlay
option.

IPv6 /127

IPv6 /127 is gaining traction
in dual-stack environments
and in organizations
preparing for IPvé
transitions.

It conserves IPv4 space and
offers a clean separation
between infrastructure and
tenant traffic.

IPvé6 Link-Local (RFC 4861)
RECOMMENDED

IPv6 Link-Local / BGP auto-
discovery is trending in
hyperscaler, telco, and modern
leaf-spine fabrics, especially
where address scale or IPAM
simplicity is critical.

Many cloud providers (Azure,
AWS internal fabrics, Meta,
etc.) use unnumbered
underlays.

This option is becoming the
preferred option for hyper
scaling, IP-scarce, or
automation-heavy fabrics with
experienced ops teams, where
managing IPs is a burden.

NOTE: This JVD focuses on the IPvé link-local underlay, which is the preferred design choice. For
details on implementing the underlay using statically configured /31 IPv4 addresses or statically
configured routable (non-link-local) /127 IPvé addresses, refer to "Appendix B - IPv4 Overlay

over IPv4 Underlay Fabric Implementation" on page 217 and "Appendix C - IPvé Overlay with

Static Addresses Over IPv6 Underlay Fabric Implementation" on page 243, respectively.

In all three options, EBGP sessions are established between the leaf and spine nodes using the
addresses assigned to the interfaces connecting the nodes (e.g. et-0/0/0.0). These sessions advertise
the addresses assigned to the loopback interfaces, which will be used in the overlay.

Configuring IPvé with link-local addressing in the underlay simplifies network design and reduces
operational complexity, especially in large-scale fabrics where scalability and automation are key. By
removing the need to assign and manage global IP addresses on leaf-to-spine links, this approach

eliminates a major source of administrative overhead and prevents IPv4 address exhaustion. Each link

automatically generates unique addresses, streamlining both deployment and ongoing maintenance. This

is a significant advantage in environments with thousands of interfaces, where traditional IP
management becomes a scaling bottleneck.

From a design and operational perspective, unnumbered underlays align perfectly with modern data
center and Al fabric principles. They reduce configuration touch points, lower the chance of human
error, and support dynamic, automation-friendly environments. For customers prioritizing agility,
scalability, and simplified management, such as hyperscalers, telcos, and Al-driven infrastructures, IPvé
link-local fabrics not only meet today’s technical requirements but also provide a future-proof
foundation that supports growth without requiring continuous IP planning.

Control Plane Implementation with IPvé Link-Local Underlay

The underlay EBGP sessions are set up using unnumbered links, also referred to as BGP auto-discovery
or BGP auto-peering, which allows devices to dynamically discover directly connected neighbors and
form BGP sessions using IPvé link-local addresses. This design leverages Junos OS support for:

e RFC 4861: Neighbour Discovery for IP version 6 (IPv6)
e RFC 2462: IPv6 Stateless Address Autoconfiguration

Traditionally, BGP requires explicit configuration of neighbors, Autonomous System (AS) numbers, and
routing policies to control route exchanges. With BGP unnumbered peering, neighbors are discovered
dynamically, and BGP sessions are established automatically, eliminating the need for manual
configuration and enabling faster, more scalable underlay deployments in EVPN/VXLAN data center
fabrics.

The interfaces between leaf and spine nodes do not require explicitly configured IP addresses. It is
sufficient to enable IPvé6 (e.g. family inet6). Enabling IPv6 on an interface automatically assigns a link-
local IPv6 address, which is then advertised through standard router advertisements as part of the IPvé
Neighbor Discovery process. This simplifies configuration and eliminates the need for manual IP
addressing on leaf-spine links. All leaf and spine nodes are also configured with IPvé. addresses on the
loopback interface (100.0).

Neighbor discovery uses standard IPv6 mechanisms to learn the link-local addresses of directly
connected neighbors. These addresses are then used to automatically establish EBGP sessions.

The EBGP configuration for this model includes the local Autonomous System (AS) number, a list of
accepted remote Autonomous System (AS) numbers, the list of interfaces where dynamic BGP neighbors
with be accepted, and the export policy that allows the advertisement of routes to reach all the leaf and
spine nodes in the fabric. These routes are standard IPvé unicast advertising the IPv6 addresses
assigned to the loopback interface (100.0). Peer-auto-discovery using IPvé-nd must also be enabled for
the BGP group.

Although this approach requires some changes in the traditional way of configuring BGP, it offers
significant operational advantages in highly scalable environments. By eliminating the need to assign and

manage IP addresses on point-to-point links, this model simplifies IP planning and is ideal for large-scale,
automated EVPN/VXLAN deployments.

Fabric Overlay Control Plane Implementation Options

Like the underlay, the overlay in an EVPN/VXLAN fabric can be implemented using either IPv4 or IPv6
addresses, depending on design goals, operational preferences, and hardware capabilities as summarized
in table 9. Both options can be implemented over the recommended IPvé link-local addressing with BGP
auto-discovery in the underlay.

Table 9. Comparison of Overlay Control Plane Implementation Options in EVPN/VXLAN Fabrics

Implementation @ IPv4 IPv6

Options (RFC5549 with IPv6 underlay) RECOMMENDED

VTEP Tunnel Statically configured /32 IPv4 addresses Statically configured routable (non-link
Endpoint local) /128 IPvé addresses

Addresses (leaf
node loopback

interface
addresses)
Server to Leaf /31 prefixes /127 prefixes
Nodes link
prefix
Server Statically configured /31 IPv4 addresses Statically configured /127 IPv6 addresses
addresses
Autoconfigured /64 IPvé addresses using
SLAAC (RECOMMENDED)
Header Size Lower overhead (UDP+IPv4 = ~28B) Higher overhead (UDP+IPvé6 = ~48B)
(VXLAN + IP)
BGP Peer Explicit neighbor config per interface using = Explicit neighbor config per interface using
Configuration IPv4 addresses of directly connected routable IPv6 addresses of directly connected

interface. Requires interface.

(Continued)

Implementation = IPv4 IPv6
Options (RFC5549 with IPv6 underlay) RECOMMENDED
Benefits Simple Avoids IPv4 exhaustion
Widely supported Scalability and future-proofing, especially
pertinent to the demands of Al/ML data
centers.

NOTE: This JVD focuses on the IPvé6 overly, which is the preferred design choice.

Configuring IPvé6 in the overlay ensures alignment with the IPvé-based underlay and avoids the
operational complexity of running BGP sessions over mixed-protocol paths. When overlay loopbacks
and EVPN sessions are IPv6-based, the routing model remains consistent across all layers, and control
plane reachability does not require translation between IPvé routes and IPv4 transport sessions.
Choosing an IPvé6 overlay also eliminates the need for dual-stack configurations, resulting in a cleaner
deployment model and providing a foundation for extending IPv6-based services, such as SLAAC and
per-tenant prefix assignment, across the fabric.

Using IPv4 in the overlay with IPv6 underlay requires the implementation of RFC5549 (Advertising IPv4
Network Layer Reachability Information with an IPvé Next Hop) which adds a layer of complexity of the
solution. However, if IPv4 between the servers and leaf nodes is required, the details for this are
covered in "Appendix B - IPv4 Overlay over IPv4 Underlay Fabric Implementation" on page 217.

Control Plane Implementation with IPvé Overlay

EBGP sessions between leaf and spine nodes are established using the loopback IPvé addresses
advertised by the underlay, with BGP multihop enabled. These overlay sessions carry the IPvé prefixes
corresponding to the point-to-point links between GPU servers and leaf nodes.

On each leaf node, the interfaces connecting to the GPU servers are placed in tenant-specific IP VRFs.
The associated IPvé6 prefixes are then advertised as EVPN Type-5 routes, each containing a tenant-
specific VNI. These routes provide Layer 3 reachability between GPUs assigned to the same tenant,
even when distributed across multiple servers and racks, and are installed in the appropriate VRF routing
tables.

EVPN Type 5 routes are used to advertise Layer 3 prefixes across the EVPN/VXLAN fabric without
requiring destination MAC learning or IRB interfaces. These routes follow the BGP EVPN IP Prefix Route

specifications described in RFC92136, and include the IPvé prefix, route target, route distinguisher, and
the VTEP next-hop information, enabling routed connectivity across the fabric. By decoupling routing
from MAC learning, Type 5 routes simplify control plane operations and maintain clean tenant
separation through BGP extended communities. Each route includes the information summarized in

Table 10.

Table 10. EVPN Type 5 Route Fields Description

Field

Route Type

Route Distinguisher (RD)

Ethernet Tag ID

IP Prefix

Prefix Length

Label

Next hop

Extended Community

Other BGP Attributes

Control Plane Summary

Description

IP Prefix Route (Type 5)

RD of advertising PE (e.g., based on loopback IP) to make the route unique across
the fabric

0 (because it's not associated with a specific VLAN or MAC-VRF)

The advertised IP prefix being advertised (e.g., FC00:1:1:1::/64)

The length of the IP prefix (e.g. 64)

VXLAN VNI (e.g., 1) identifying the virtual routing domain

Loopback address of the advertising leaf node

Route-target to identify the associated tenant VRF (e.g., target:65000:1)

Router-mac to identify the MAC address of the advertising VTEP,

BGP attributes like origin, AS-path, local-preference, etc.

Table 11. Connections Summary

Option

IPv4 underlay and IPv4
overlay

GPU server to leaf node Leaf to spine node links Leaf and spine nodes
links loopback interface
addresses

Statically configured IPv4 | Statically configured IPv4 | Statically configured IPv4
address addresses addresses

https://www.rfc-editor.org/rfc/rfc9136.pdf

(Continued)

Option

IPv6 underlay and IPvé
overlay

IPvé6 Link-Local underlay
and IPv4 overlay (RFC
5549)

RECOMMENDED

IPv6 Link-Local underlay
and IPvé overlay

GPU server to leaf node
links

Statically configured IPvé
address

Statically configured IPv4
address.

Dynamically assigned
IPv6 address using
SLAAC (Stateless Address
Autoconfiguration)

Table 12. EVPN/VXLAN options summary

Leaf to spine node links

Statically configured IPvé
addresses

Automatically assigned
IPv6 link local addresses

Automatically assigned
IPvé6 link local addresses

Leaf and spine nodes
loopback interface
addresses

Statically configured IPvé
addresses

Statically configured IPv4
addresses

Statically configured IPvé
address

Option

IPv4 underlay
and IPv4
overlay

IPv6 underlay
and IPvé
overlay

IPvé6 Link-Local
underlay and
IPv4 overlay

GPU server to
leaf node links

Statically
configured IPv4
address

Statically
configured IPvé6
address

Statically
configured IPv4
address.

Leaf to spine
node links

Statically
configured IPv4
addresses

Statically
configured IPvé
addresses

Automatically
assigned IPvé
link local
addresses

Leaf and spine
nodes loopback
interface
addresses

Statically
configured IPv4
addresses

Statically
configured IPvé6
addresses

Statically
configured IPv4
addresses

Underlay BGP
sessions

Statically
configured IPv4
neighbors

Statically
configured IPvé
neighbors

Automatically
discovered IPvé
neighbors

Overlay BGP
sessions

Statically
configured IPv4
neighbors using
loopback
interfaces.

Statically
configured IPvé
neighbors using
loopback
interfaces.

Statically
configured IPv4
neighbors using
loopback
interfaces.

(Continued)

Option GPU server to Leaf to spine Leaf and spine Underlay BGP Overlay BGP
leaf node links node links nodes loopback = sessions sessions
interface
addresses
RECOMMENDE | Dynamically Automatically Statically Automatically Statically
D assigned IPvé assigned IPvé configured IPvé6 = discovered IPvé = configured IPv6
address using link local address neighbors using = neighbors using
IPv6 Link-Local SLAAC addresses link local loopback
underlay and (Stateless addresses. interfaces.
IPv6 overlay Address
Autoconfigurati
on)

Control Plane Implementation with IPvé Link-Local
IPv6 Underlay and IPvé6 Overlay Example

Consider the example depicted in Figure 42.

For the underlay, STRIPE1 LEAF 1 in AS 201 automatically establishes an EBGP session with SPINE 1 in
AS 101, over the directly connected link FE80::1 <=> FE80::2. Similarly, STRIPE2 LEAF 1 in AS 209
establishes an EBGP session with SPINE 1 over the link FE80::1 <=> FE8BO0::2. These addresses are the
link local addresses automatically assigned to the interfaces based on their MAC address, (shown here as
FE80::1 and FE80::2 for simplicity), and are auto discovered by the BGP peers using standard IPvé
neighbor discover mechanisms.

Figure 42: IPvé Link-Local Underlay and IPv6 Overlay Example

SERVER 1 SERVER 2 SERVER 3 SERVER 4

RT5-IPVRF_ RT5-IPVRF_5
TENANT-A TENANT-A

(S STRIPE 2

Z, 3 STRIPE 1
LEAFs 1-8 < LEAFs 1-8
STRIPE1 LEAF 1 (VTEP1) @ @ = = =
AS201
; STRIPE2 LEAF 1 (VTEP2,
FC00:10:1:1/128 3,5 25209 ()
L » FC00:10:1:9/128
\‘\ -
" - = = =
As101 * SPINE 2 SPINE 3 SPINE 4
FC00:10::1/128 100.0 l00.0 l00.0
FC00:10::2/128 FC00:10::3/128 FC00:10::4/128

SPINE 1

The underlay BGP sessions are configured to exchange IPvé6 unicast routes and to advertise the
addresses of the loopback interfaces (100.0) of STRIPE1 LEAF 1 (FC00:10::1:1), STRIPE2 LEAF 1
(FC00:10::1:9) and SPINE 1 (FC00:10::1). As a result, the leaf and the spine nodes have reachability to
establish the EBGP overlay sessions. Once the overlay sessions are establish the leaf nodes, acting as
VTEP, advertise the links facing the GPU servers as EVPN type 5 routes.

NOTE: Although it is not shown in the diagram, STRIPE1 LEAF 1 and STRIPE2 LEAF 1 will also
establish EBGP sessions with SPINE 2, SPINE 3, and SPINE 4 to ensure multiple paths are
available for traffic.

STRIPE1 LEAF 1 advertises the links connecting SERVER 1 GPU1 and SERVER 2 GPU1 (FC00:1:1:1::/64
and FC00:1:1:2::/64 respectively) to the spine nodes, which then advertise the routes to STRIPE2 LEAF
1. Similarly, STRIPE2 LEAF 1 advertises the links connecting SERVER 3 GPU1 and SERVER 4 GPU1
(FC00:1:1:3::/64 and FCO00:1:1:4/64 respectively).

The spines are configured to maintain the next hop when advertising the routes received from the leaf
nodes to other leaf nodes (no-nexthop-change). This allows VXLAN tunnels to be established between
the leaf nodes, and not between the leaf and spine nodes.

Figure 43. Spine Route Readvertisements
SERVER 1 SERVER 2 SERVER 3 SERVER 4 SERVER 1 SERVER 2 SERVER 3 SERVER 4
Ir“(?lifi:;::/sn] [F'] [F] If £ ir"c::‘:;f.tzz::/sn | i?/ i & I [;

FC00:1:1:4::/68 FCOO0:1:1:4::/64
Next-hop = FC00:10::1 Next-hop = FC00:10:1::9

STRIPE 2
LEAFs 148

HEEEEEBE

STRIPEZ LEAF 1 (VTEP2)
09

STRIPE 2 " STRIE 3
LEAFs 1-8 \ LEAFs 1-8

STRIPE 1
LEAFs 1-8

\ 9 %
smeereaezeey @ B B B B B B E ®EEBEEEEE swawmave ® E EE B E E B
ASs201 rizs
igl;gsz LEAF 1 (VTEP2) FC00:10:1::1/128
FC00:10:1::9/128 %,

FC00:10:1::1/128
FC00:10:1::9/128

z"’
FC00:1:1:3::/64 - FC00:1:1:3::/64

FC00:1:1:4::/64 FC00:1:1:4::/64 '\ <
Next-hop = FC00:10::1 = -4 FCo0:1:1:3::/64 = Next-hop = FC00:10:1::9 “ = _.-""| FC00:1:1:3::/64 =
AS101 A" oo FCO0:1:1:4::/64 SPINE 4 AS101 -~ FC00:1:1:4::/64 SPINE 4
. 100 Next-hop = FC00:10:1:: . z -hop = FC00:10:1: Ly
DEFAULTBEHAVIOR ~ Feltoss/azs i} Next-hop = FEO00:8 | 5 700, NO-NEXTHOP-CHANGE F00i0ii/izs Nexthop = EIGIOHS | 35000

Because all four GPUs in the example belong to the same tenant, their associated interfaces are mapped
to the same VRF, RT5-IP-VRF_TENANT-1 which is configured on both STRIPE1 LEAF 1 and STRIPE2
LEAF 1 with the same VXLAN Network Identifier (VNI) and route targets.

STRIPE1 LEAF 1 advertises the prefixes FC00:1:1:1::/64 and FC00:1:12::/64 to SPINE 1 as EVPN Route
Type 5, with its own loopback (FC00:10:1::1) as the next-hop VTEP. STRIPE2 LEAF 1 advertises
FC00:1:1:3::/64 and FC00:1:1:4::/64 with its own loopback (FC00:10:1::9) as the next-hop.

When SERVER 1 GPU1 sends traffic to SERVER 3 GPU1, the destination addresses match the route
FC00:1:1:4::/64 found in the VRF routing table on STRIPE1 LEAF 1 (Tenant-1 .inet.6). The route points
to STRIPE2 LEAF 1 (VTEP FC00:10:1::9) as the protocol next-hop (which is resolved to the link local
addresses of the spine nodes). The route also specifies VNI 1 as the VXLAN encapsulation ID. The
packet is encapsulated with the VXLAN header and tunneled across the fabric to its destination.

Type 5 EVPN/VXLAN GPU Backend Implementation
- Forwarding Plane

IN THIS SECTION

RoCEv2 traffic encapsulation | 63

RoCEv2 Traffic Flows Across the Fabric | 64

Each VTEP (VXLAN Tunnel Endpoint) is responsible for encapsulating and de-encapsulating traffic as it
enters and exits the VXLAN fabric. In the context of a GPU multitenancy design, these VTEPs are
located at the leaf nodes of the network, where tenant workloads (including GPU-accelerated compute
instances) are hosted. Each VTEP maps tenant-specific traffic into the appropriate VXLAN segment,
maintaining isolation and enabling east-west communication across the fabric.

The VTEPs are responsible for encapsulating and de-encapsulating traffic as it enters and exits the
VXLAN fabric.

In the context of a GPU multitenancy design, these VTEPs are located at the leaf nodes of the network.

RoCEv2 traffic encapsulation

RoCEv2 (RDMA over Converged Ethernet version 2) traffic can be transported across an Ethernet-based
IP network using VXLAN encapsulation, which allows RDMA workloads to operate across Layer 3
boundaries while preserving performance and scalability. In this model, the original RDMA payload is
encapsulated inside a VXLAN packet, which is further wrapped in standard UDP and IP headers,

enabling transport across IP-based fabrics.

The encapsulation begins with the original RoCEv2 payload, which consists of InfiniBand headers and
data. This is encapsulated in a VXLAN header, where the VXLAN Network Identifier (VNI) uniquely
identifies the Layer 2 segment associated with the RDMA flow. The VXLAN header is prepended by a
UDP header (with a destination port typically set to 4789), allowing the packet to traverse standard IP

networks without requiring special handling.

The outer IP header carries the source and destination IP addresses of the VTEPs (VXLAN Tunnel
Endpoints), and the outer MAC header ensures correct delivery across the Ethernet fabric. Importantly,
the outer and inner IP headers are independent; each can be either IPv4 or IPvé6, and they do not need
to match. For example, it is entirely valid to encapsulate an IPv6-based RoCEv2 flow within an IPv4
VXLAN tunnel, or vice versa, depending on the underlay and overlay configurations. All testing related
to this JVD was completed using RoCEv2 over IPvé.

Figure 43: RDMA Encapsulation over IPv4/IPv6

OUTER QUTER OUTER VXLAN INNER
MAC P UDP HEADER MAC RoCEv2 FCS
HEADER HEADER HEADER HEADER
or IPV6 HEADER
its| DESTMAC . IP HDR . SOURCE . FLAGS
48 bits Tzbits| L Tr 16 bits PORT 8bits| LooriRRR
48 bits| SRC MAC _ PROT = 2o | DSTPORT= | 54 pise | RESERVED
v 8bits | LoD 16 bits | |1 AN PORT its
.| (opt. . -
32 bits| TypelTag | 16bits| CKSUM 16 bits LEU'\:);TH 24 bits VNI
ETH TYPE | 32 bits | SRCIP= 8 bits| RESF[:VED
16 bits| ~0. 0800 " | SRC VTEP | 16 bits
0x0000
32bits | DESTIP =
"> |DEST VTEP)
P UDP 1B 1B
HEADER | HEADER ||TRANSPORT| PAYLOAD

VXLAN Port = 4789]

[VXLAN Network Identifier | [zer][seuee
FROT= DST PORT =
uop ROMA [

SKEM e L-{ VXLAN Port = 4791

SRCIP= e
GPU1

DEST P = £x0000

GPU2

or IPV6 HEADER

As described in the example in the previous section, the server-facing interfaces on the leaf nodes are
configured as Layer 3 routed interfaces and are mapped into a tenant-specific IP-VRF. Tenant A has been
assigned the first GPU on servers 1 through 4 (namely, GPU1 to GPU4). The interfaces connecting these
GPUs are associated with an IP-VRF named Tenant A.

GPU1 and GPU2 (on servers 1 and 2) are connected to the same leaf node (Stripe 1, Leaf 1) and are
mapped to the Tenant A VRF. Likewise, GPU3 and GPU4 (on servers 3 and 4) are connected to a

different leaf node (Stripe 2, Leaf 1) and are also mapped to the same VRF. Communication between
GPUs connected to the same leaf node occurs locally, while traffic between GPUs on different leaf
nodes is routed across the fabric using the outer IP header added during VXLAN encapsulation, as
described earlier.

RoCEv2 Traffic Flows Across the Fabric

Consider the example in Figure 44 which shows RoCEv2 traffic flows between 4 GPU,s on 4 different
servers, that are assigned to Tenant-1

Figure 44: RoCEv2 Traffic Flow Across the Fabric

| H100-01 | H100-02 | H100-03 | H100-04
v \ A
S99 0dy B0 s Bagdgady
FC00:1:1:1:...5066/64 FC00:1:1:2:...c6ca/64

\J
EQQQQQQJ

RTS5_IPVRF
TENANT-A

INNER ENN INNER
ETHERNET HD INNER IP/UDP HD RDMA 0/0 . ETHERNET HD INNER IP/UDP HD RDMA

SA/DA= SA/DA=
MAC_server1 GPUO FC00:1:1:1:...5066/FC00:1:1:2:..36e0
/MAC stripe1-Leaf1_ge-0/0/120] UDPSP/DP = 4791

RDMAWRITE/
RDMA READ

RDMAWRITE/
RDMAREAD

SA/DA= SA/DA=
MAC stripel-Leaf_ge-0/0/130 || FC00:1:1:1:..5066/FC00:1:1:2:..36¢0
/MAC_server2_GPUO UDPSP/DP=4791

Traffic between Server H100-01 GPUO (Tenant’s GPU1) and Server H100-02 GPUO (Tenant's GPU2) is
Switched Locally at the Leaf Node

1. Traffic Origination:
GPU 0 on Server 1 initiates a RoCEv2 RDMA WRITE targeting GPU O on Server 2.

RoCEv2 packets are encapsulated in UDP over IP as any other IP traffic.

The source and destination IP addresses are the autoconfigured IPvé6 addresses associated with each
GPU (FC00:1:1:1:a288:c2ff:fe3b:55d6 and FC00:1:1:2:5aa2:e1ff:fe46:c6ca), while the source and
destination MAC addresses correspond to the MAC address of the NICs associated with GPUO
Server 1 and the MAC address of interface et-0/0/12.0 on Stripel-leafl.

2. Leaf Forwarding/Delivery to Tenant’s GPU 2:
The leaf node simply strips off the L2 Header, performs a route lookup in the tenants specific routing
table (TENANT-1 _VRF), and re-encapsulates the packet with a new L2 header with source and
destination MAC addresses corresponding to the Leaf's MAC addresses on interfaces et-0/0/13.0,
and the MAC address of the NIC associated with GPU O on Server 2.

NOTE: Traffic between Server 1 and Server 4 (same tenant, same leaf) is handled in the same
way.

Traffic Between Server H100-01 GPUO (Tenant’s GPU1) and Server H100-03 GPUO (Tenant's GPU3) has
to be Encapsulated in VXLAN and Forwarded Across the Fabric

1. Traffic Origination:
GPU 0 on Server 1 initiates a RoCEv2 RDMA WRITE targeting GPU O on Server 2.

RoCEv2 packets are encapsulated in UDP over IP as any other IP traffic.

The source and destination IP addresses are the autoconfigured IPvé6 addresses associated with each
GPU (FC00:1:1:1:2288:c2ff:fe3b:55d6 and FC00:1:1:3:966d:aeff:fef5:9c5c), while the source and
destination MAC addresses correspond to the MAC address of the NICs associated with GPUO
Server 1 and the MAC address of interface et-0/0/12.0 on Stripel-leafl.

2. Source Leaf Forwarding:
Stripel-Leaf 1 strips off the L2 Header, performs a route lookup in the tenants specific routing table
(TENANT-1 _VREF). The route to the destination in this case, which was installed in this VRF via EVPN
Type 5 route advertisement, points to loopback interface of Stripe2 leaf 1, and indicates the traffic
needs to be encapsulated using VXLAN.

The leaf re-encapsulates the packet in VXLAN, using a tenant-specific VNI, and the remote VTEP
MAC address that was received with the EVPN type 5 route. An additional IP and UDP header (outer
header) and a new L2 header are added to the packet. with the MAC addresses of Stripe 1 Leaf 1 and
Spinel as source and destination addresses.

The source and destination IP addresses will be the loopback interface addresses of Stripe 1 Leaf 1
and Stripe 2 Leaf 1. The source and destination MAC addresses will be the MAC addresses of Stripe
1 Leaf 1 and Spine 1.

NOTE: Spine 1 is used here as an example. Traffic will be load-balanced across all leaf-spine
links in the fabric as will be reviewed later.

3. Spine (Intermediate) Forwarding:

Spine 1 is not aware of VXLAN encapsulation and simply route the packets based on the outer IP
header, in this case towards stripe 2 leaf 1. The outer header source and destination IP addresses are
not modified.

4. Destination Leaf Forwarding/Delivery to Tenant's GPU 3:

Stripe2-Leaf 1 receives the VXLAN packet and decapsulates the packet. It extracts the VNI number
from the VXLAN header to determine the proper routing table for the arriving packet. Since VNI =1

is mapped to TENANT-1 _VREF, the leaf performs a router lookup in the corresponding table, which
indicates that the destination is directly connected on interface et-0/0/12.0

The leaf node applies a new L2 header with source and destination MAC addresses corresponding to
the Leaf and the NIC connected to the tenants GPU, and forwards the packet to the destination
GPU.

NOTE: The forwarding process works the same way when servers NICs are configured with
IPv4 addresses.

Type 5 EVPN/VXLAN GPU Backend Fabric, SLAAC
IPv6 Overlay over IPvé6 Link-Local Underlay -

Configuration

IN THIS SECTION

IPvé6 GPU Server NICs to Leaf Nodes Connections Using SLAAC | 68

IPvé Leaf Nodes to Spine Nodes Connections Using Link Local Addresses | 94
IPv6 GPU Backend Fabric Underlay, using BGP Neighbor Discovery | 100
IPvé6 GPU Backend Fabric Overlay | 107

Tenants IP-VRF Routing Instances | 118

This section outlines the configuration and verification steps to implement an EVPN/VXLAN fabric with:

IPv6 GPU server NICs to Leaf Nodes connections using SLAAC

IPv6 Leaf Nodes to Spine Nodes connections using link local addresses
IPv6 GPU Backend Fabric underlay using BGP neighbor discovery

IPv6 GPU Backend Fabric overlay

Per Tenant IP-VRF Routing Instance

https://www.juniper.net/documentation/us/en/software/junos/ai-ml-evo/topics/concept/bgp-auto-discovery-underlay.html

NOTE: Details on how to implement IPvé underlay/IPv4 overlay fabric (RFC5549), IPv4
underlay/1Pv4 overlay fabric, and IPvé underlay without SLAAC/IPvé6 overlay fabric, have been
included in " Appendix A " on page 217, " Appendix B " on page 243, and " Appendix C " on page
243 respectively.

Consider the following scenario of a GPU-isolation implementation where:

TENANT SERVER ASSIGNED GPUS

Tenant-1 SERVER 1, SERVER 2, SERVER 3 GPUO

SERVER 9, SERVER 10, SERVER 11

Tenant-2 SERVER 1, SERVER 2, SERVER 3 GPU1

SERVER 9, SERVER 10, SERVER 11

Figure 45: Server-lsolation Example with Servers Across Multiple Stripes - Stripe 1

SERVER 3

GPU2
GPU3
GPU4
GPUS
GPU6
GPU7

ﬁ GPUD

TENANT-1

5 TENANT-2

FC00:200:1:1::<EUI-64>/64

FC00:200:1:1::1/64
et-0/0/0:0

‘ — — —

LEAF 3 LEAF 4 LEAF 5 LEAF 6 LEAF 7

STRIPE1

Figure 46: Server-lIsolation Example with Servers Across Multiple Stripes - Stripe 2

SERVER 9 SERVER 10 SERVER 11

GPU2
GPU3
GPU4
GPU5
GPU6
GPU7

: TENANT-1

g TENANT-2

FC00:200:1:9::<EUI-64>/ 64

FC00:200:1:9:1/64
£t-0/0/0:0

‘ .1 o
LEAF 5 LEAF 6 LEAF 7

STRIPE 2

I IPv6 GPU Server NICs to Leaf Nodes Connections Using SLAAC

This section describes the operation of SLAAC in the context of this solution, and then will the
configuration and verification steps on both the servers and the Leaf nodes.

The GPU servers are connected to the leaf nodes following a rail-aligned architecture as described in the
Backend GPU Rail Optimized Stripe Architecture section, where GPU 0 is connected to the first Leaf
node, GPU 1 is connected to the second leaf node and so on. This is shown in Figure 47.

Figure 47. GPU Servers Rail-Aligned Connectivity

68

__E::E:J:]EGPUU

|1

"\
i

STRIPE1"

N
FC(‘)O:200:1:1/5:1/64 \ ’/\ \\\ \\ \\\ \

— -— — — — — —
—_— — —_— —_ —_ —_— —_—
— — — — — — —
—_— —_— —_— —_—

— —

LEAF 1 LEAF 2 LEAF 3 LEAF 4 LEAF 5 LEAF 6 LEAF 7 LEAF 8 7

Each server to leaf node link is configured as an untagged L3 link and a statically configured /64 IPvé
address, while the server interface is autoconfigured using SLAAC to support scalable and automated
IPvé6 address assignment.

Each Tenant is assigned a /56 address, which will be used to derive /64 for each server to leaf node
connection corresponding to the tenant. Tables 13 and 14 show the address assignment.

Table 13. Tenants /56 Prefixes Example

TENANT /56 IPv6 Prefix

Tenant-1 FC00:200:1::/56
Tenant-2 FC00:200:2::/56
Tenant-3 FC00:200:3::/56
Tenant-4 FC00:200:4::/56
Tenant-5 FC00:200:5::/56
Tenant-6 FC00:200:6::/56

Tenant-7 FC00:200:7::/56

(Continued)

TENANT

Tenant-8

/56 IPvé6 Prefix

FC00:200:8::/56

Table 14. Tenants /64 Prefixes Example

TENANT-1

Server to leaf Link

SERVER 1 gpuO_eth ¢ Stripe 1
Leaf 1

SERVER 2 gpuO_eth 6 Stripe 1
Leaf 1

SERVER 3 gpuO_eth 6 Stripe 1
Leaf 1

SERVER 9 gpuO_eth 6 Stripe 2
Leaf 1

SERVER 10 gpuO_eth 6 Stripe
2 Leaf 1

SERVER 11 gpuO_eth 6 Stripe
2 Lleaf 1

/64 Prefix

FC00:200:1:1
/64

FC00:200:1:2
/64

FC00:200:1:3
/64

FC00:200:1:9
/64

FC00:200:1:1
0::/64

FC00:200:1:1
1::/64

TENANT-2

Server to leaf Link

SERVER 1 gpuO_eth ¢ Stripe
1Leaf1

SERVER 2 gpuO_eth 6 Stripe
1 Leaf 1

SERVER 3 gpuO_eth 6 Stripe
1Leaf1

SERVER 9 gpuO_eth 6 Stripe
2 Leaf 1

SERVER 10 gpuO_eth 6
Stripe 2 Leaf 1

SERVER 11 gpuO_eth 6
Stripe 2 Leaf 1

/64 Prefix

FC00:200:2:1
/64

FC00:200:2:2
/64

FC00:200:2:3
/64

FC00:200:2:9
/64

FC00:200:2:1
0::/64

FC00:200:2:1
1::/64

(Continued)

TENANT-1 TENANT-2

Each leaf node advertises a /64 IPvé6 prefix, which is accepted by the server interface and used to
automatically derive the interface’s IPv6 address through its EUI-64 identifier (based on the interface’s

MAC address), as shown in Figure 48. This approach eliminates the need for DHCPv6 or manual

configuration on the servers.

Figure 48: SLAAC - Stateless Address Autoconfiguration Operation Example - Tenant 1.

H100-01

STRIPE1 LEAF 1

—_—
—
—

—

MAC address: [GPUO_eth
94:6d:ae:f5:9¢:5¢ [(NIC6)

PUI——

GPUOQ_eth autoconfigured address =
FC00:200:1:1:966d:aeff:fef5:9c5c

| |
eui-64

The leaf node must also advertise the tenant’s /56 prefix using the Route Information Option (RIO) in

< |

ROUTER ADVERTISEMENT:

SA = fe80::9e5a:80ff:fec1:ae60
DA = ff02::1

prefix = FC00:200:1:1::/64
router lifetime = 1800 sec

valid time = 2592000 sec
preferred time = 604800 sec

IPvé6 router advertisement messages as shown in figure 48. This provides the routing information

required for a given GPU interface to communicate with remote GPU interfaces assigned to the same

tenant.

FC00:200:1:1::1/64

Figure 49: SLAAC - Stateless Address Autoconfiguration with RIO-Prefix Operation Example - Tenant 1

H100-01

STRIPE1 LEAF 1

peje e s e ze

MAC address: [GPUO_eth
94:6d:ae:f5:9c:5¢ [(NIC6)

FC00:200:1:1::1/64
|

PUI——

GPUOQ_eth autoconfigured address =
FC00:200:1:1:966d:aeff:fef5:9c5c

| |
eui-64

ip -6 route
fc00:200:1:1::/64 dev gpuO_eth ...
fc00:200:1::/56 via fe80::9e5a:80ff:fec1:ae60 dev gpuO_eth ...

< |
<

ROUTER ADVERTISEMENT:

SA = fe80::9e5a:80ff:fec1:ae60
DA = ff02::1

prefix = FC00:200:1:1::/64
router lifetime = 1800 sec

valid time = 2592000 sec

preferred time = 604800 sec

rio-prefix = FC00:200:1::/56

Lifetime=60000 sec

Without this option the server installs a default route pointing to the leaf node link local interface, for

each RA received.

In the example shown in Figure 49, H100-01 and H100-02 provide GPU isolation for eight different

tenants, with the following /56 prefix assignments:

Table 15. Tenants /56 Prefixes per Tenant Example

TENANT /56 Prefix

TENANT-1 FC00:200:1::/56
TENANT-2 FC00:200:2::/56
TENANT-3 FC00:200:3::/56
TENANT-4 FC00:200:4::/56
TENANT-5 FC00:200:5::/56
TENANT-6 FC00:200:6::/56
TENANT-7 FC00:200:7::/56

TENANT-8 FC00:200:8::/56

(Continued)

TENANT /56 Prefix

All interfaces associated with Tenant-1 will have IPv6 addresses derived from FC00:200:1::/56, all

interfaces associated with Tenant-2 will have IPv6 addresses from FC00:200:2::/56, and so on, as shown

in Figure 50.

Figure 50. Multitenancy GPU-Isolation Example

H100-01

TEEELLD

gpuO_eth gpul_eth gpu2_eth gpu3_eth gpu4_eth gpu5_eth gpub_eth gpu7_eth

H100-02

T EITLLL

gpuO_eth gpul_eth gpu2_eth gpu3_eth gpu4_eth gpu5_eth gpub_eth gpu7_eth

fc00:200:2:2:5aa2:e1ff:fe46:c6ce => fc00:200:2:1:a288:c2ff:fe3b:506a

] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
< o o < < < < o & & & N & & & &
o N @ *] ° ~ @ o N @ ‘.‘C v ° ~ @
o o o o o o (=] o o o o (=] o o o o
5 5 & & & 5 & & 5 5 & & & 5 & &
8 8 8 8 3 8 8 8 8 8 8 8 8 8 8 8
2 frd 2 e 2 b e 2 g brd 2 2 2 brd 2 2
STRIPE 1 LEAF 1-8 STRIPE 2 LEAF 1-8 i

o TENANT-2

£c00:200:1:2:52a2:¢1ff-fed6:c6ca => fc00:200:1:1:a288:C2ff-fe3b:5066 ---- TENANT-3

_______ —A = TENANT-4

Initially, the leaf nodes are configured to advertise only the /64 prefixes. For example, Stripe 1 Leaf 1
advertises FC00:200:1:1::/64 to gpuO_eth server H100-01, while Stripe 2 Leaf 1 advertises

FC00:200:1:2::/64 to gpuO_eth server H100-02. The two prefixes are derived from the FC00:200:1::/56

assigned to Tenant-1.

The servers automatically configure their IPvé addresses from these advertised prefixes, as shown

below:

jnpr@H100-01:~$ ifconfig | egrep "gpu|fcoQ"

gpud_eth: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 9000

inet6 fc00:200:1:1:a288:c2ff:fe3b:5066 prefixlen 64 scopeid 0x0<global>

73

gpul_eth: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 9000

inet6 fc00:200:2:1:a288:c2ff:fe3b:506a prefixlen 64 scopeid
gpu2_eth: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 9000

inet6 fc00:200:3:1:a288:c2ff:fe3b:506e prefixlen 64 scopeid
gpu3_eth: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 9000

inet6 fc00:200:4:1:a288:c2ff:fe3b:5072 prefixlen 64 scopeid
gpud_eth: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 9000

inet6 fc00:200:5:1:a288:c2ff:fe@a:7948 prefixlen 64 scopeid
gpu5_eth: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 9000

inet6 fc00:200:6:1:a288:c2ff:feba:794c prefixlen 64 scopeid
gpu6_eth: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 9000

inet6 fc00:200:6:1:a288:c2ff:fe@a:7940 prefixlen 64 scopeid
gpu7_eth: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 9000

inet6 fc00:200:6:1:a288:c2ff:fe@a:7944 prefixlen 64 scopeid
jnpr@H100-02:~$ ifconfig | egrep "gpud|gpul|fcoQ"
gpud_eth: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 9000

inet6 fc00:200:1:2:5aa2:e1ff:fed6:c6ca prefixlen 64 scopeid
gpul_eth: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 9000

inet6 fc00:200:2:2:5aa2:e1ff:fed6:cb6ce prefixlen 64 scopeid
gpu2_eth: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 9000

0x0<global>

0x0<global>

0x0<global>

0x0<global>

0x0<global>

0x0<global>

0x0<global>

0x0<global>

0x0<global>

inet6 fc00:200:1:2:5aa2:e1ff:fed6:c6d2 prefixlen 64 scopeid 0x0<global>

gpu3_eth: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 9000

inet6 fc00:200:2:2:5aa2:e1ff:fed6:c6d6 prefixlen 64 scopeid 0x0<global>

gpu4_eth: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 9000

inet6 fc00:200:1:2:5aa2:e1ff:fed6:c372 prefixlen 64 scopeid 0x0<global>

gpub_eth: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 9000

inet6 fc00:200:2:2:5aa2:e1ff:fe46:c376 prefixlen 64 scopeid
gpub_eth: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 9000

inet6 fc00:200:1:2:5aa2:e1ff:fed6:c36a prefixlen 64 scopeid
gpu7_eth: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 9000

inet6 fc00:200:2:2:5aa2:e1ff:fed6:c36e prefixlen 64 scopeid

At this time, the routing tables on both servers include default routes pointing to the link local addresses
learned from the router advertisements.

0x0<global>

0x0<global>

0x0<global>

H100-01

gpu0_eth gpul_eth gpu2_eth gpu3_eth gpu4_eth gpu5_eth gpub_eth gpu7_eth

)

:

default proto ra

fc00:200:1:2::/64 dev gpuO_eth protora
fc00:200:2:2::/64 dev gpul_eth protora
fc00:200:3:2::/64 dev gpu2_eth proto ra
fc00:200:4:2::/64 dev gpu3_eth protora
fc00:200:5:2::/64 dev gpu4_eth protora
fc00:200:6:2::/64 dev gpu5_eth protora
fc00:200:7:2::/64 dev gpué_eth protora
fc00:200:8:2::/64 dev gpu7_eth protora

T T T T t nexthop via fe80:: ~db35 dev gpu0_eth
nexthop via fe80:: ~ db36 dev gpul_eth
§ Sé E.E § f-{ § § § nexthop via fe80:: ~db3d dev gpu2_eth
4 L 4 i 4 3 & & nexthop via fe80:: ~ db3e dev gpu3_eth
o o 3 < [h! 8 ~ 3] nexthop via fe80:: ~ db45 dev gpu4_eth
8 8 S 8 8 8 8 8 nexthop via fe80:: ~db46 dev gpu5_eth
E-,'- g g S g g g g nexthop via fe80:: ~db4d dev gpué_eth
§ § guo) § § § hcj § nexthop via fe80:: ~ dbde dev gpu7_eth
1| - - | I (|
C 2 8 3 8 3 8
¢ < & g 8 g & 3
& s & s s & i s
STRIPE 1 LEAF 1-8
jnpr@H100-01:~$ ip -6 route
::1 dev lo proto kernel metric 256 pref medium
fc00:200:1:1::/64 dev gpud_eth proto ra metric 1024 expires 2591984sec pref medium
fc00:200:2:1::/64 dev gpul_eth proto ra metric 1024 expires 2591984sec pref medium
fc00:200:3:1::/64 dev gpu2_eth proto ra metric 1024 expires 2591984sec pref medium
fc00:200:4:1::/64 dev gpu3_eth proto ra metric 1024 expires 2591984sec pref medium
fc00:200:5:1::/64 dev gpud_eth proto ra metric 1024 expires 2591984sec pref medium
fc00:200:6:1::/64 dev gpu5_eth proto ra metric 1024 expires 2591984sec pref medium
fc00:200:7:1::/64 dev gpub_eth proto ra metric 1024 expires 2591984sec pref medium
fc00:200:8:1::/64 dev gpu7_eth proto ra metric 1024 expires 2591984sec pref medium
fe80::/64 dev stor@_eth proto kernel metric 256 pref medium
fe80::/64 dev mgmt_eth proto kernel metric 256 pref medium
fe80::/64 dev eno3 proto kernel metric 256 pref medium
fe80::/64 dev gpud_eth proto kernel metric 256 pref medium
fe80::/64 dev gpul_eth proto kernel metric 256 pref medium
fe80::/64 dev gpu2_eth proto kernel metric 256 pref medium
fe80::/64 dev gpu3_eth proto kernel metric 256 pref medium
fe80::/64 dev gpud_eth proto kernel metric 256 pref medium
fe80::/64 dev gpuS_eth proto kernel metric 256 pref medium
fe80::/64 dev gpu6_eth proto kernel metric 256 pref medium
fe80::/64 dev gpu7_eth proto kernel metric 256 pref medium
default proto ra metric 1024 expires 1749sec pref medium
nexthop via fe80::9e5a:80ff:fecl:ae60 dev gpud_eth weight 1
nexthop via fe80::9e5a:80ff:fecl:ae61 dev gpul_eth weight 1
nexthop via fe80::9e5a:80ff:fecl:ae68 dev gpu2_eth weight 1
nexthop via fe80::9e5a:80ff:fecl:ae69 dev gpu3_eth weight 1
nexthop via fe80::9e5a:80ff:fecl:ae70 dev gpud_eth weight 1

nexthop via fe80::9e5a:80ff:fecl:ae71 dev gpu5_eth weight 1
nexthop via fe80::9e5a:80ff:fecl:ae78 dev gpub_eth weight 1
nexthop via fe80::9e5a:80ff:fec1:ae88 dev gpu7_eth weight 1

jnpr@H100-02:~$ ip -6 route

::1 dev lo proto kernel metric 256 pref medium

fc00:200:1:2::/64 dev gpud_eth proto ra metric 1024 expires 2591885sec pref medium
fc00:200:2:2::/64 dev gpul_eth proto ra metric 1024 expires 2591885sec pref medium
fc00:200:3:2::/64 dev gpu2_eth proto ra metric 1024 expires 2591885sec pref medium
fc00:200:4:2::/64 dev gpu3_eth proto ra metric 1024 expires 2591885sec pref medium
fc00:200:5:2::/64 dev gpud_eth proto ra metric 1024 expires 2591885sec pref medium
fc00:200:6:2::/64 dev gpu5_eth proto ra metric 1024 expires 2591885sec pref medium
fc00:200:7:2::/64 dev gpub_eth proto ra metric 1024 expires 2591885sec pref medium
fc00:200:8:2::/64 dev gpu7_eth proto ra metric 1024 expires 2591885sec pref medium

fe80::/64 dev mgmt_eth proto kernel metric 256 pref medium
fe80::/64 dev eno3 proto kernel metric 256 pref medium
fe80::/64 dev stor@_eth proto kernel metric 256 pref medium
fe80::/64 dev gpud_eth proto kernel metric 256 pref medium
fe80::/64 dev gpul_eth proto kernel metric 256 pref medium
fe80::/64 dev gpu2_eth proto kernel metric 256 pref medium
fe80::/64 dev gpu3_eth proto kernel metric 256 pref medium
fe80::/64 dev gpud_eth proto kernel metric 256 pref medium
fe80::/64 dev gpu5_eth proto kernel metric 256 pref medium
fe80::/64 dev gpub_eth proto kernel metric 256 pref medium
fe80::/64 dev gpu7_eth proto kernel metric 256 pref medium
default proto ra metric 1024 expires 1685sec pref medium
nexthop via fe80::5884:70ff:fe79:db35 dev gpud_eth weight
nexthop via fe80::5884:70ff:fe79:db36 dev gpul_eth weight 1
nexthop via fe80::5884:70ff:fe79:db3d dev gpu2_eth weight 1
nexthop via fe80::5884:70ff:fe79:db3e dev gpu3_eth weight 1
nexthop via fe80::5884:70ff:fe79:db45 dev gpud_eth weight 1
nexthop via fe80::5884:70ff:fe79:db46 dev gpu5_eth weight 1
nexthop via fe80::5884:70ff:fe79:db4d dev gpu6_eth weight 1
nexthop via fe80::5884:70ff:fe79:db4e dev gpu7_eth weight 1

—_

Traffic originating from gpuQ_eth on H100-01 can successfully reach gpuO_eth on H100-02. However,
traffic from gpul_eth on H100-01 to gpul_eth on H100-02 cannot. This is because, in both cases, the
server selects the same default route, via gpuO_eth.

jnpreH100-01:~$
ping fc00:200:1:2:5aa2:e1ff:fed46:c6ca -1 fc00:200:1:1:a288:c2ff:fe3b:5066 -c 5
PING fc@0:200:1:2:5aa2:e1ff:fe46:c6ca(fc00:200:1:2:5aa2:e1ff:fed6:c6ca) from

fc00:200:1:1:a288:c2ff:fe3b:5066 : 56 data bytes

64 bytes from fc00:200:1:2:5aa2:e1ff:fe46:cbca: icmp_seq=1 ttl=63 time=0.231 ms
64 bytes from fc00:200:1:2:5aa2:e1ff:fed6:cbca: icmp_seq=2 ttl=63 time=0.310 ms
64 bytes from fc00:200:1:2:5aa2:e1ff:fe46:cbca: icmp_seq=3 ttl=63 time=0.322 ms
64 bytes from fc00:200:1:2:5aa2:e1ff:fed6:cbca: icmp_seq=4 ttl=63 time=0.344 ms
64 bytes from fc00:200:1:2:5aa2:e1ff:fe46:cbca: icmp_seq=5 ttl=63 time=0.275 ms
--- fc00:200:1:2:5aa2:e1ff:fed46:c6ca ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 4102ms

rtt min/avg/max/mdev = 0.231/0.296/0.344/0.039 ms

jnpreH100-01:~$

ping fc00:200:2:2:5aa2:e1ff:fed6:c6ce -1 fc00:200:2:1:2288:c2ff:fe3b:506a -c 5
PING fc00:200:2:2:5aa2:e1ff:fe46:c6ce(fc00:200:2:2:5aa2:e1ff:fe46:c6ce) from
fc00:200:2:1:a288:c2ff:fe3b:506a : 56 data bytes

--- fc00:200:2:2:5aa2:e1ff:fed46:cbce ping statistics ---

5 packets transmitted, 0 received, 100% packet loss, time 4090ms

After enabling RIO-prefix advertisements, the leaf nodes not only advertise the /64 prefixes that the
servers will use to autoconfigure their addresses, but also the /56 prefix assigned to the tenant. As a
result, the servers install the /56 prefixes in their routing tables, pointing to the correct interfaces, and
use these routes instead of the default route to reach any destination within the /56 prefix.

In the example, Stripe-1 Leaf-1 and Stripe-2 Leaf-1 advertise FC00:200:1:1::/64 and FC00:200:1:2::/64
to gpuO_eth on H100-01 and H100-02, respectively, and advertise the FC00:200:1::/56 prefix.

In the same way, Stripe-1 Leaf-1 and Stripe-2 Leaf-1 advertise FC00:200:2:1::/64 and
FC00:200:2:2::/64 to gpul_eth on H100-01 and H100-02, respectively, and advertise the
FC00:200:2::/56 prefix.

As a result, the servers also install /56 routes in their routing tables, pointing to the correct interface.
The servers then use these routes instead of the default route to reach any destination corresponding to
Tenant-1 (FC00:200:1::/56) via gpuO_eth, and any destination corresponding to Tenant-2
(FC00:200:2::/56) via gpul_eth.

H100-01

gpu0_eth gpul_eth gpu2_eth gpu3_eth gpu4_eth gpu5_eth gpub_eth gpu7_eth

t { { I

fc00:200:1:2::/64 dev gpu0_eth protora
fc00:200:1::/56 dev gpuO_eth proto ra
fc00:200:2:2::/64 dev gpul_eth protora
fc00:200:2::/56 dev gpuO_eth proto ra
fc00:200:3:2::/64 dev gpu2_eth proto ra
fc00:200:3::/56 dev gpuO_eth proto ra
fc00:200:4:2::/64 dev gpu3_eth protora
fc00:200:4::/56 dev gpuO_eth proto ra
fc00:200:5:2::/64 dev gpud_eth protora
fc00:200:5::/56 dev gpuO_eth proto ra
fc00:200:6:2::/64 dev gpu5_eth protora

t

§ Sé \E § \E § § § fc00:200:6::/56 dev gpuO_eth proto ra

E 3 i 3 h i it - fc00:200:7:2::/64 dev gpué_eth protora

g g 8 g g g = g fc00:200:7::/56 dev gpuO_eth proto ra

S S =1 S S =1 S S fc00:200:8:2::/64 dev gpu7_eth protora

& ~ I ~ I & I I3

S S S S S S S S fc00:200:8::/56 dev gpuO_eth proto ra

S S S S S S S S default proto ra

w = v = w = u w nexthop via fe80: ~ db35 dev gpu0_eth
ﬁ § % § g § g g nexthop via fe80:: ~ db36 dev gpul_eth
o Ia) A o o a) a a) nexthop via fe80:: ~ db3d dev gpu2_eth
cl>=é>=] D‘= ol= ol= }:=é‘§ nexthop via fe80:: . db3e dev gpu3_eth
@ & % 2 2 2 % 2 nexthop via fe80:: ~ db45 dev gpu4_eth
[[o [[[o [nexthop via fe80:: ~ db46 dev gpu5_eth

STRIPE 1 LEAF 1-8 nexthop via fe80:: ~ db4d dev gpué_eth

jnpr@H100-01:~$ ip -6 route
::1 dev lo proto kernel metric

fcoo

fcoo:

pref

fcoo:
fc0o:

pref

fc0o:
fcoo:

pref

fcoo:
fc0o:

pref
fcoo

fcoo:

pref

fcoo:
fc0o:

pref
fcoo

fcoo:

pref

fcoo:
fc0o:

pref
fe80

:200:1:1::/64 dev gpu@_eth
200:1::/56 via fe80::9e5a:
medium
200:2:1::/64 dev gpul_eth
200:2::/56 via fe80::9eba:
medium
200:3:1::/64 dev gpu2_eth
200:3::/56 via fe80::9e5a:
medium
200:4:1::/64 dev gpu3_eth
200:4::/56 via fe80::9eba:
medium
:200:5:1::/64 dev gpud_eth
200:5::/56 via fe80::9e5a:
medium
200:6:1::/64 dev gpu5_eth
200:6::/56 via fe80::9eba:
medium
:200:7:1::/64 dev gpu6_eth
200:7::/56 via fe80::9e5a:
medium
200:8:1::/64 dev gpu7_eth
200:8::/56 via fe80::9eba:
medium

nexthop via fe80:: ~ dbde dev gpu7_eth

256 pref medium
proto ra metric 1024 expires 2591984sec pref medium
80ff:fecl:a2e60 dev gpu@_eth proto ra metric 100 expires

proto ra metric 1024 expires 2591984sec pref medium
80ff:fecl:ae61 dev gpul_eth proto ra metric 100 expires

proto ra metric 1024 expires 2591984sec pref medium
80ff:fecl:ae68 dev gpu2_eth proto ra metric 100 expires

proto ra metric 1024 expires 2591984sec pref medium
80ff:fecl:ae69 dev gpu3_eth proto ra metric 100 expires

proto ra metric 1024 expires 2591984sec pref medium
80ff:fecl:a2e70 dev gpu4_eth proto ra metric 100 expires

proto ra metric 1024 expires 2591984sec pref medium
80ff:fecl:ae71 dev gpu5_eth proto ra metric 100 expires

proto ra metric 1024 expires 2591984sec pref medium
80ff:fecl:ae78 dev gpu6_eth proto ra metric 100 expires

proto ra metric 1024 expires 2591984sec pref medium
80ff:fecl:a2e88 dev gpu7_eth proto ra metric 100 expires

::/64 dev stor@_eth proto kernel metric 256 pref medium

59841sec

59841sec

59841sec

59841sec

59841sec

59841sec

59841sec

59841sec

fe80:
fe80:
fe80:
fe80:
fe80:
fe80:
fe80:
fe80:
fe80:
fe80:

default proto

:/64 dev
:/64 dev
:/64 dev
:/64 dev
:/64 dev
:/64 dev
:/64 dev
:/64 dev
:/64 dev
:/64 dev

gpu@_eth proto

gpul_eth proto
gpu2_eth proto
gpu3_eth proto
gpud_eth proto
gpu5_eth proto
gpub_eth proto
gpu7_eth proto
ra metric 1024
fe80::9eba:
fe80: :9e5a:
fe80::9eba:
fe80: :9e5a:
fe80::9eba:
fe80: :9e5a:
fe80::9eba:

fe80::9e5a:

nexthop via
nexthop via
nexthop via
nexthop via
nexthop via
nexthop via
nexthop via

nexthop via

jnpr@H100-02:~$ ip -6 route

::1 dev lo proto kernel metric

fcoo:
fcoo:
pref
fcoo:
fcoo:
pref
fcoo:
fcoo:
pref
fcoo:
fcoo:
pref
fcoo:
fcoo:
pref
fcoo:
fcoo:
pref
fcoo:
fcoo:
pref

200:1:2::/64 dev gpu@_eth
200:1::/56 via fe80::5884:
medium

200:2:2::/64 dev gpul_eth
200:2::/56 via fe80::5884:
medium

200:3:2::/64 dev gpu2_eth
200:3::/56 via fe80::5884:
medium

200:4:2::/64 dev gpu3_eth
200:4::/56 via fe80::5884:
medium

200:5:2::/64 dev gpud_eth
200:5::/56 via fe80::5884:
medium

200:6:2::/64 dev gpu5_eth
200:6::/56 via fe80::5884:
medium

200:7:2::/64 dev gpu6_eth
200:7::/56 via fe80::5884:

medium

mgmt_eth proto kernel metric
eno3 proto kernel metric 256
kernel metric
kernel
kernel
kernel
kernel
kernel
kernel
kernel metric

256 pref medium
pref medium

256
256
256
256
256
256
256
256

pref medium

metric pref medium

metric pref medium

metric pref medium

metric pref medium

metric pref medium

metric pref medium

pref medium

expires 1749sec pref medium

80ff:
80ff:
80ff:
80ff:
80ff:
80ff:
80ff:
80ff:

ae60 dev
:ae61
:ae68
:ae69
:ae’o
:ae7l
:ae78
:ae88

fecl:
fecl
fecl
fecl
fecl
fecl
fecl
fecl

gpud_eth weight 1

dev gpul_eth weight 1

dev gpu2_eth weight 1

dev gpu3_eth weight 1

dev gpu4_eth weight 1

dev gpu5_eth weight 1

dev gpu6_eth weight 1

dev gpu7_eth weight 1

256 pref medium
proto ra metric 1024 expires 2591885sec pref medium
70ff:fe79:db35 dev gpu@_eth proto ra metric 100 expires

proto ra metric 1024 expires 2591885sec pref medium
70ff:fe79:db36 dev gpud_eth proto ra metric 100 expires

proto ra metric 1024 expires 2591885sec pref medium
70ff:fe79:db3d dev gpu@_eth proto ra metric 100 expires

proto ra metric 1024 expires 2591885sec pref medium

70ff:fe79:db3e dev gpud_eth proto ra metric 100 expires

proto ra metric 1024 expires 2591885sec pref medium
70ff:fe79:db45 dev gpu@_eth proto ra metric 100 expires

proto ra metric 1024 expires 2591885sec pref medium
70ff:fe79:db46 dev gpu@_eth proto ra metric 100 expires

proto ra metric 1024 expires 2591885sec pref medium
70ff:fe79:db4d dev gpu@_eth proto ra metric 100 expires

59841sec

59841sec

59841sec

59841sec

59841sec

59841sec

59841sec

fc00:200:8:2::/64 dev gpu7_eth proto ra metric 1024 expires 2591885sec pref medium
fc00:200:8::/56 via fe80::5884:70ff:fe79:dbde dev gpud_eth proto ra metric 100 expires 59841sec
pref medium
fe80::/64 dev mgmt_eth proto kernel metric 256 pref medium
fe80::/64 dev eno3 proto kernel metric 256 pref medium
fe80::/64 dev stor@_eth proto kernel metric 256 pref medium
fe80::/64 dev gpuld_eth proto kernel metric 256 pref medium
fe80::/64 dev gpul_eth proto kernel metric 256 pref medium
fe80::/64 dev gpu2_eth proto kernel metric 256 pref medium
fe80::/64 dev gpu3_eth proto kernel metric 256 pref medium
fe80::/64 dev gpud_eth proto kernel metric 256 pref medium
fe80::/64 dev gpu5_eth proto kernel metric 256 pref medium
fe80::/64 dev gpub_eth proto kernel metric 256 pref medium
fe80::/64 dev gpu7_eth proto kernel metric 256 pref medium
default proto ra metric 1024 expires 1685sec pref medium
nexthop via fe80::5884:70ff:fe79:db35 dev gpud_eth weight
nexthop via fe80::5884:70ff:fe79:db36 dev gpul_eth weight 1
nexthop via fe80::5884:70ff:fe79:db3d dev gpu2_eth weight 1
nexthop via fe80::5884:70ff:fe79:db3e dev gpu3_eth weight 1
nexthop via fe80::5884:70ff:fe79:db45 dev gpud_eth weight 1
nexthop via fe80::5884:70ff:fe79:db46 dev gpu5_eth weight 1
nexthop via fe80::5884:70ff:fe79:db4d dev gpu6_eth weight 1
nexthop via fe80::5884:70ff:fe79:db4e dev gpu7_eth weight 1

—_

When sending traffic from fc00:200:1:1:a288:c2ff:fe3b:5066 to fc00:200:1:2:5aa2:e1ff:fe46:cbca,
H100-01 selects the fc00:200:1::/56 route via fe80::9e5a:80ff:fec1:ae60 dev gpuO_eth instead of the
default route. Similarly, when sending traffic from fc00:200:2:1:a288:c2ff.fe3b:5066 to
fc00:200:2:2:5aa2:e1ff:fe46:c6ca, H100-01 selects the fc00:200:2::/56 route via
fe80::9e5a:80ff:fec1:ae81 dev gpul_eth. In both cases, the correct next-hop and interface is selected,
and the traffic is forwarded successfully.

jnpr@H100-01:~$ ping fc00:200:1:2:5aa2:e1ff:fed46:cbca -I fc00:200:1:1:a288:c2ff:fe3b:5066 -c 5
PING fc00:200:1:2:5aa2:e1ff:fed6:c6ca(fc00:200:1:2:5aa2:e1ff:fed6:c6ca) from
fc00:200:1:1:a288:c2ff:fe3b:5066 : 56 data bytes

64 bytes from fc00:200:1:2:5aa2:e1ff:fed6:cbca: icmp_seq=1 ttl=63 time=0.598 ms
64 bytes from fc00:200:1:2:5aa2:e1ff:fe46:cbca: icmp_seq=2 ttl=63 time=0.555 ms
64 bytes from fc00:200:1:2:5aa2:e1ff:fed6:cbca: icmp_seq=3 ttl=63 time=0.552 ms
64 bytes from fc00:200:1:2:5aa2:e1ff:fe46:cbca: icmp_seq=4 ttl=63 time=0.594 ms
64 bytes from fc00:200:1:2:5aa2:e1ff:fed6:cbca: icmp_seq=5 ttl=63 time=0.625 ms
--- fc00:200:1:2:5aa2:e1ff:fed46:c6ca ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 4102ms

rtt min/avg/max/mdev = 0.552/0.584/0.625/0.027 ms

jnpr@H100-01:~$ ping fc00:200:2:2:5aa2:e1ff:fed46:c6ce -I fc00:200:2:1:a288:c2ff:fe3b:506a -c 5
PING fc00:200:2:2:5aa2:e1ff:fe46:c6ce(fc00:200:2:2:5aa2:e1ff:fe46:c6ce) from
fc00:200:2:1:a288:c2ff:fe3b:506a : 56 data bytes

64 bytes from fc00:200:2:2:5aa2:e1ff:fe46:cbce: icmp_seq=1 ttl=63 time=0.330 ms
64 bytes from fc00:200:2:2:5aa2:e1ff:fed6:cbce: icmp_seq=2 ttl=63 time=0.285 ms
64 bytes from fc00:200:2:2:5aa2:e1ff:fe46:cbce: icmp_seq=3 ttl=63 time=0.290 ms
64 bytes from fc00:200:2:2:5aa2:e1ff:fed6:cbce: icmp_seq=4 ttl=63 time=0.283 ms
64 bytes from fc00:200:2:2:5aa2:e1ff:fe46:cbce: icmp_seq=5 ttl=63 time=0.286 ms
--- fc00:200:2:2:5aa2:e1ff:fed46:cbce ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 4075ms

rtt min/avg/max/mdev = 0.283/0.294/0.330/0.017 ms

Server SLAAC Configuration:

The interfaces on the servers do not need to be configured with any IPvé address. Disabling DHCPvé is
enough.

Example:

gpud_eth:
match:
macaddress: a0:88:c2:3b:50:66
dhcp6: false
mtu: 9000

set-name: gpu@_eth

The servers must also be configured to accept and process RA messages, for IPvé address
autoconfiguration via Router Advertisements (RA) to work. In most cases, this will be enabled by default
but the steps to enabled it are described here:

The configuration has two layers:

1. Interface-level RA policy in Netplan or systemd

2. Kernel-level sysctl parameters (accept_ra, autoconf)
Both must align to ensure proper RA behavior.

e If the system uses Netplan with systemd-networkd (common on Ubuntu Server):

In the Netplan YAML file (e.g., /etc/netplan/01-netcfg.yaml), add the following under each interface:
accept-ra: true
IPv6-privacy: false

Then apply the changes:

sudo netplan generate
sudo netplan apply

This ensures that Netplan renders a .network file for systemd-networkd with IPv6AcceptRA=yes,
which enables RA-based autoconfiguration.

However, this alone is not enough. If the kernel is still configured to ignore RAs. You must also verify
that the kernel is set to accept RAs at runtime. You can check using:

sudo sysctl net.IPv6.conf.<interface>.accept_ra

If the value is O, RAs will be ignored regardless of Netplan settings. This can be temporarily corrected
with:

sudo sysctl -w net.IPv6.conf.<interface>.accept_ra=1

To make it persistent across reboots, add the following to a sysctl configuration file (e.g., /etc/
sysctl.d/99-accept-ra.conf):

net.IPv6.conf.<interface>.accept_ra = 1
And apply it with:

sudo sysctl --system

NOTE: Notice that parameters such as accept-ra can be enable or disable globally or on a per
interface basis.

Table 17. Scope and Behavior of accept_ra Sysctl Parameters in IPvé Configuration

Sysctl Scope Effect

net.IPvé.conf.all.accept_ra Global (all current Applies immediately to all existing interfaces, but... read-
interfaces) only if forwarding=1

net.IPvé.conf.default.accept_r | Global (for future Sets the default value used when a new interface comes

a interfaces) up (e.g., plugged in or created later)

net.IPvé.conf.gpuO_eth.accept = Per-interface Controls RA processing for a specific active interface

_ra

If the interface is managed directly by the kernel (not using Netplan/systemd):

Enable RA acceptance and autoconfiguration by setting:

sudo sysctl -w net.IPv6.conf.<interface>.accept_ra=1
sudo sysctl -w net.IPv6.conf.<interface>.autoconf=1

sudo tee /etc/sysctl.d/99-IPv6-ra.conf > /dev/null <<EOF
net.IPv6.conf.<interface>.accept_ra = 1
net.IPv6.conf.<interface>.autoconf = 1

EOF

sudo sysctl --system

Follow the steps in AMD Configuration | Juniper Networks to configure the interfaces on AMD GPU
servers or NVIDIA Configuration | Juniper Networks for NVIDIA GPU servers.

Leaf Node SLAAC Configuration

To enable SLAAC, the leaf nodes must be explicitly configured with IPv6 addresses on the interfaces
facing the GPU servers.

Example:

jnpr@stripel-leaf1# show interface et-0/0/0:0
description " Multitenancy Tenant-1 GPU@ Server 1";
mtu 9216;
unit @ {
family inet6 {
mtu 9140;
address FC00:200:1:1::1/64;

}
jnpr@stripel-leaf1# show interface et-0/0/1:0
description "Multitenancy Tenant-1 GPU@ Server 2";
mtu 9216;
unit 0 {
family inet6 {
mtu 9140;
address FC00:200:1:2::1/64;

}
jnpr@stripel-leaf1# show interface et-0/0/2:0
description "Multitenancy Tenant-1 GPU@ Server 3";
mtu 9216;
unit @ {

family inet6 {

https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-amd/amd_configuration.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/nvidia_configuration.html

mtu 9140;
address FC00:200:1:3::1/64;

jnpr@stripe2-leaf1# show interface et-0/0/0:0
description "Multitenancy Tenant-1 GPU@ Server 9";
mtu 9216;
unit @ {
family inet6 {
mtu 9140;
address FC00:200:1:9::1/64;

}
jnpr@stripe2-leaf1# show interface et-0/0/0:0
description "Multitenancy Tenant-1 GPU@ Server 10";
mtu 9216;
unit 0 {
family inet6 {
mtu 9140;
address FC00:200:1:10::1/64;

After assigning the IPvé6 addresses, prefix advertisement must be enabled under the protocols router-
advertisement hierarchy, as shown in the example below:

[edit protocols router-advertisement]
jnpr@stripel-leaf1# show
interface et-0/0/0:0.0 {
retransmit-timer 10000;
prefix FC00:200:1:1::1/64;
}
interface et-0/0/1:0.0 {
retransmit-timer 10000;
prefix FC00:200:1:2::1/64;

interface et-0/0/2:0.0 {
retransmit-timer 10000;
prefix FC00:200:1:3::1/64;

}

[edit protocols router-advertisement]

jnpr@stripel-leaf2# show

interface et-0/0/0:0.0 {
retransmit-timer 10000;
prefix FC00:200:2:1::1/64;

}

interface et-0/0/1:0.0 {
retransmit-timer 10000;
prefix FC00:200:2:2::1/64;

}

interface et-0/0/2:0.0 {
retransmit-timer 10000;
prefix FC00:200:2:3::1/64;

The retransmit-timer 10000 configures the retransmission frequency of neighbor advertisements in
milliseconds.

Configuring router advertisements for a given prefix requires that the interface itself has an IPvé6 address
within that same prefix. If the prefix specified under router-advertisement is not also configured on the
interface, the commit will fail with an error.

Example:

[edit interfaces et-0/0/0:0]
jnpr@stripel-leaf1# show
unit @ {
family inet6 {
address FC00:255:1:1::1/64;

}
[edit protocols router-advertisement]
jnpr@stripel-leaf1# show
interface et-0/0/0:0.0 {
prefix FC00:200:1:1::1/64;
}
[edit protocols router-advertisement interface et-0/0/12:0.0]
jnpr@stripel-leaf1# commit
[edit protocols router-advertisement interfacel]

'et-0/0/0.0'
Family inet6 should be configured on this interface

error: commit failed: (statements constraint check failed)

Also, configure the rio-prefix under protocol router-advertisement, as shown in the example:

[edit protocols router-advertisement]
jnpr@stripel-leaf1# show
interface et-0/0/0:0.0 {
retransmit-timer 10000;
prefix FC00:200:1:1::/64;
rio-prefix fc00:200:1::/56 {
rio-lifetime 1800;

}
interface et-0/0/1:0.0 {
retransmit-timer 10000;
prefix FC00:200:1:2::/64;
rio-prefix fc00:200:1::/56 {
rio-lifetime 1800;

}
interface et-0/0/2:0.0 {
retransmit-timer 10000;
prefix FC00:200:1:3::/64;
rio-prefix fc00:200:1::/56 {
rio-lifetime 1800;

[edit protocols router-advertisement]
jnpr@stripel-leaf2# show
interface et-0/0/0:0.0 {
retransmit-timer 10000;
prefix FC00:200:2:1::/64;
rio-prefix fc00:200:2::/56 {
rio-lifetime 1800;

}
interface et-0/0/1:0.0 {

retransmit-timer 10000;

prefix FC00:200:2:2::/64;

rio-prefix fc00:200:2::/56 {
rio-lifetime 1800;

}
interface et-0/0/2:0.0 {
retransmit-timer 10000;
prefix FC00:200:2:3::/64;
rio-prefix fc00:200:2::/56 {
rio-lifetime 1800;

[edit protocols router-advertisement]
jnpr@stripe2-leaf1# show
interface et-0/0/0:0.0 {
retransmit-timer 10000;
prefix FC00:200:1:9::/64;
rio-prefix fc00:200:1::/56 {
rio-lifetime 1800;

}
interface et-0/0/1:0.0 {
retransmit-timer 10000;
prefix FC00:200:1:10::/64;
rio-prefix fc00:200:1::/56 {
rio-lifetime 1800;

}
interface et-0/0/2:0.0 {
retransmit-timer 10000;
prefix FC00:200:1:11::/64;
rio-prefix fc00:200:1::/56 {
rio-lifetime 1800;

[edit protocols router-advertisement]

jnpr@stripe2-leaf2# show
interface et-0/0/0:0.0 {
retransmit-timer 10000;
prefix FC00:200:2:9::/64;
rio-prefix fc00:200:2::/56 {
rio-lifetime 1800;

}
interface et-0/0/1:0.0 {
retransmit-timer 10000;
prefix FC00:200:2:10::/64;
rio-prefix fc00:200:2::/56 {
rio-lifetime 1800;

}
interface et-0/0/2:0.0 {
retransmit-timer 10000;
prefix FC00:200:2:11::/64;
rio-prefix fc00:200:2::/56 {
rio-lifetime 1800;

Notice that the lifetime is mandatory for the rio-prefix. In the example, this value is set 1800 seconds
(30 minutes). The rio-prefix must be the /56 prefix assigned to the tenant, as described in the previous
section.

SLAAC Verification:

To verify that RA-based configuration is working and that the GPU interface has autoconfigured its IPvé
address, use: ip -6 addr show dev <interface> or ifconfig <interface>

The command should display the interface’s link local address (FE80::<EUI-64>) and the global ineté
address generated by SLAAC (prefix::EUI-64). This global address will be marked as dynamic to indicate
it was dynamically configured.

Example:

jnpr@H100-01:~$ ip -6 addr show dev gpu@_eth
17: gpu@_eth: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9000 gdisc mq state UP group default glen
1000

inet6 fc00:200:1:1:2288:c2ff:fe3b:5066/64 scope global dynamic mngtmpaddr noprefixroute
valid_1ft 2591741sec preferred_1ft 604541sec
inet6 fe80::a288:c2ff:fe3b:5066/64 scope link
valid_1ft forever preferred_1ft forever
jnpr@H100-01:~$ ifconfig gpud_eth
gpud_eth: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 9000
inet6 fe80::a288:c2ff:fe3b:5066 prefixlen 64 scopeid 0x20<link>
inet6 fc00:200:1:1:2288:c2ff:fe3b:5066 prefixlen 64 scopeid 0x0<global>
ether a0:88:¢2:3b:50:66 txqueuelen 1000 (Ethernet)
RX packets 67096 bytes 5792577 (5.7 MB)
RX errors @ dropped @ overruns @ frame @
TX packets 20886 bytes 3122514 (3.1 MB)
TX errors @ dropped @ overruns @ carrier @ collisions 0

You can also observe incoming RA messages using tcpdump: sudo tcpdump -i <interface> -vv icmp6 and
'ip6[40] == 134"

Example:

jnpr@H100-01:~$ sudo tcpdump -i gpu@_eth -vv icmp6 and 'ip6[40] == 134'
tcpdump: listening on gpu@_eth, link-type EN1@MB (Ethernet), snapshot length 262144 bytes
19:26:15.604130 IP6 (flowlabel Oxcbfef, hlim 255, next-header ICMPv6 (58) payload length: 72)
fe80::9e5a:80ff:fecl:ae60 > ip6-allnodes: [icmp6 sum ok] ICMP6, router advertisement, length 72
hop limit 64, Flags [nonel, pref medium, router lifetime 1800s, reachable time Oms,
retrans timer Oms
source link-address option (1), length 8 (1): 9c:5a:80:c1:ae:60
0x0000: 9c5a 80cl1 ae60
prefix info option (3), length 32 (4): fc00:200:1:1::/64, Flags [onlink, auto], valid
time 2592000s, pref. time 604800s
0x0000: 40c0@ 0027 8d00 0009 3a80 0000 0000 fc0o
0x0010: 0200 0001 0001 0000 0000 0000 0000
route info option (24), length 16 (2): fc00:200:1::/56, pref=medium, lifetime=60000s
0x0000: 3800 0000 eabd fco0 0200 0001 0000
19:26:31.605713 IP6 (flowlabel @xcbfef, hlim 255, next-header ICMPv6 (58) payload length: 72)
fe80::9e5a:80ff:fecl:ae60 > ip6-allnodes: [icmp6 sum ok] ICMP6, router advertisement, length 72
hop limit 64, Flags [nonel, pref medium, router lifetime 1800s, reachable time Oms,
retrans timer Oms
source link-address option (1), length 8 (1): 9c:5a:80:c1:ae:60
0x0000: 9c5a 80cl1 ae6O
prefix info option (3), length 32 (4): fc00:200:1:1::/64, Flags [onlink, auto], valid
time 2592000s, pref. time 604800s
0x0000: 40c@ 0027 8d00 0009 3a80 0000 0000 fcoo

0x0010: 0200 0001 0001 0000 0000 0000 0000
route info option (24), length 16 (2): fc00:200:1::/56, pref=medium, lifetime=60000s
0x0000: 3800 0000 eabd fco0 0200 0001 0000

NOTE: If a new prefix needs to be advertised on an interface, reconfigure the router
advertisements to age out the old address and to advertise the new one.

jnpr@H100-01:/etc/netplan$ ip -6 addr show dev gpu@_eth
17: gpu@_eth: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9000 qdisc mq state UP group default glen
1000
inet6 fc00:200:1:1:2288:c2ff:fe3b:5066/64 scope global dynamic mngtmpaddr noprefixroute
valid_1ft 2591988sec preferred_1ft 604788sec
inet6 fe80::a288:c2ff:fe3b:5066/64 scope link
valid_1ft forever preferred_1ft forever
jnpr@H100-01:/etc/netplan$ ip -6 route | grep gpud_eth
fc00:200:1:1::/64 dev gpud_eth proto ra metric 100 expires 2591949sec pref medium
fc00:200:1::/56 via fe80::9e5a:80ff:fecl:ae60 dev gpud_eth proto ra metric 100 expires 1749sec
pref medium
fe80::/64 dev gpud_eth proto kernel metric 256 pref medium
default via fe80::9e5a:80ff:fecl:ae60 dev gpud_eth proto ra metric 100 expires 1749sec pref
medium
[edit protocols router-advertisement]
jnpr@stripel-leaf1#
interface et-0/0/0:0 {
/* DEPRECATED IPv6 PREFIX */
prefix fc00:200:1:1::/64 {
valid-lifetime 0;
preferred-lifetime 0;
}
rio-prefix fc00:200:1::/56 {
rio-lifetime 0;
}
/* NEW IPv6 PREFIX */
prefix fc00:200:100:100::/64;
rio-prefix fc00:200:100::/56 {
rio-lifetime 1800;

}
jnpr@H100-01:/etc/netplan$ ip -6 addr show dev gpu@_eth
17: gpu@_eth: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 9000 gdisc mq state UP group default glen

1000
inet6 fc00:200:100:100:a288:c2ff:fe3b:5066/64 scope global tentative dynamic mngtmpaddr
noprefixroute
valid_1ft 2591999sec preferred_1ft 604799sec
inet6 fe80::a288:c2ff:fe3b:5066/64 scope link
valid_1ft forever preferred_1ft forever
jnpr@H100-01:/etc/netplan$ ip -6 route | grep gpud_eth
fc00:200:100::/56 via fe80::9e5a:80ff:fecl:ae60 dev gpub_eth proto ra metric 100 expires 1797sec
pref medium
fc00:200:100:100: : /64 dev gpu@_eth proto ra metric 100 expires 2591997sec pref medium
fe80::/64 dev gpud_eth proto kernel metric 256 pref medium
default via fe80::9e5a:80ff:fecl:ae60 dev gpud_eth proto ra metric 100 expires 1797sec pref

medium

If you need to manually flush any IPvé address from the server interface you can use the following
commands:

sudo ip addr flush dev <interface>sudo ip link set <interface> down && sleep 1&& sudo ip link set <interface> up
After bringing the interface back up, wait a few seconds and re-check the IPv6 address with:
ip -6 addr show dev <interface>

This ensures that stale addresses are removed, and fresh RAs are processed.

NOTE: All IPvé6 settings can be found under: /proc/sys/net/IPvé/conf

To verify that router advertisements are being sent, you can use the following command:show ipv6 router-

advertisement interface <interface>

Example:

jnpr@stripel-leaf1> show IPv6 router-advertisement interface et-0/0/0:0
Interface: et-0/0/0:0.0

Advertisements sent: 3, last sent 00:01:48 ago

Solicits sent: 1, last sent 00:02:20 ago

Solicits received: 0

Advertisements received: 0

Solicited router advertisement unicast: Disable

IPv6 RA Preference: DEFAULT/MEDIUM

Passive mode: Disable

Upstream mode: Disable

Downstream mode: Disable

Proxy blackout timer: Not Running

Route Information: fc00:200:1::/56
IPv6 RA Preference: DEFAULT/MEDIUM
Route lifetime: 60000 sec

You can also capture router advertisement packets on the interface using: monitor traffic interface
et-0/0/0:0.0 extensive matching "icmp6 and ip6[40] == 134"

Example:
jnpr@stripel-leaf1> monitor traffic interface et-0/0/0:0.0 extensive matching "icmp6 and ip6[40]
== 134"
18:05:50.344868 9c:5a:80:c1:ae:60 > 33:33:00:00:00:01, ethertype IPv6 (0x86dd), length 188:
(flowlabel 0x19976, hlim 255, next-header ICMPv6 (58) payload length: 56)
fe80::9e5a:80ff:fecl:ae60 > ff02::1: [icmp6 sum ok] ICMP6, router advertisement, length 56
hop limit 64, Flags [none], pref medium, router lifetime 1800s, reachable time Oms,
retrans timer Oms
source link-address option (1), length 8 (1): 9c:5a:80:c1:ae:60
0x0000: 9cba 80cl1 ae60
prefix info option (3), length 32 (4): fc00:200:1:1::/64, Flags [onlink, auto], valid
time 2592000s, pref. time 604800s
0x0000: 40c0 0027 8d00 0009 3a80 0000 0000 fcoo
0x0010: 0200 0001 0001 0000 0000 0000 0000
route info option (24), length 16 (2): fc00:200:1::/56, pref=medium, lifetime=60000s

Notice that Router Advertisements are sent using the link local address of the leaf node interfaces as
source, the IPvé all-nodes multicast address (FF02::1), next-header ICMPvé6 (58). The following are the
most relevant attributes for these:

Table 18. Fields and Semantics in IPvé Router Advertisement

PARAMETER VALUE DESCRIPTION

Flags auto Hosts can assume addresses in this prefix are on the local link.

This prefix can be used for SLAAC (Stateless Address Auto
Configuration).

Flags On-link tells hosts which destinations are directly reachable without going
through a router.

(Continued)

PARAMETER VALUE DESCRIPTION
source link-address 9c:5a:80:c1:ae:6 = Tells the receiver the link-layer (MAC) address of the router
option 0 sending the RA. The receiver knows the router’s MAC address

without having to send a separate Neighbor Solicitation.

prefix info option fc00:200:1:1::/6 = Advertises IPvé prefixes that hosts can use to autoconfigured its
4 IPv6 address.
route info option fc00:200:1::/56 = Carries routes to destinations other than the default.

Routers can advertise more specific routes (beyond just “I'm the
default gateway”).

Valid Lifetime 2592000 Prefix is valid for 30 days (used for reachability).

Preferred Lifetime 604800 Preferred lifetime of 7 days (after which it becomes deprecated for
new connections).

router lifetime 1800s The router is considered a default gateway for 1800 seconds

After receiving the router-advertisement, the server’s NIC interfaces will have autoconfigured their IPvé
addresses by concatenating the prefix advertise by the Leaf node, with the host portion of the address
calculated using the EUI-64 address format (based on the interface’s MAC address), as shown in Table
19.

Table 19. GPU to Leaf nodes IPvé6 addresses

LEAF NODE LEAF NODE GPU NIC GPU NIC GPU NIC IPv6

INTERFACE IPvé MAC address ADDRESS
ADDRESS

Stripe 1 Leaf 1 =~ FC00:200:1:1::1/ = Server 1 - a0:88:c2:3b:50:6 = FCO00:200:1:1:a288:c2ff:fe3b:50
64 gpuO_eth 6 66

et-0/0/0:0

Stripe 1 Leaf 1 = FC00:200:1:2::1/ | Server 2 - 58:a2:el1:46:c6:c FC00:200:1:2:a288:c2ff:fe3b:50
64 gpuO_eth a 6a

et-0/0/1:0

https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.1

(Continued)

LEAF NODE LEAF NODE GPU NIC GPU NIC

INTERFACE IPvé6 MAC address
ADDRESS

Stripe 2 Leaf 1 = FC00:200:1:3::1/ | Server 3 - a0:88:¢c2:3h:50:6
64 gpuO_eth e

et-0/0/2:0

GPU NIC IPvé6
ADDRESS

FC00:200:1:3:a2:88:c2ff:fe3b:50:
be

IPv6 Leaf Nodes to Spine Nodes Connections Using Link Local Addresses

When deploying the underlay using IPvé Link-Local underlay, the interfaces between the leaf and spine
nodes do not require explicitly configured IP addresses and are configured as untagged interfaces with
only family inet6 to enable processing of IPvé traffic as shown in Figure 50.

Figure 50: Leaf Nodes to Spine Nodes Connectivity

SPINE1 SPINE2
AS101 AS102
FC00:10::1/128 FC00:10::2/128

— —
—_— —_—
—_— —
—_— —_—

SPINE3
AS103
FC00:10::3/128

—
—_—

—
—_—

SPINE4
AS104
FC00:10::4/128

—
—_—

—
—_—

et-0/0/0:0 FE80::<EUI-64>/64 et-0/0/0:0 FE80::<EUI-64>/64 et-0/0/0:0 FE80::<EUI-64>/64 et-0/0/0:0 FE80::<EUI-64>/64
et-0/0/1:0 FE80::<EUI-64>/64 et-0/0/1:0 FE80::<EUI-64>/64 et-0/0/1:0 FE80::<EUI-64>/64—et-0/0/1:0 FE80::<EUI-64>/64
et-0/0/2:0 FE80::<EUI-64>/64 et-0/0/2:0 FE80::<EUI-64>/64"et-0/0/2:0 FE80::<EUI-64>/64 et-0/0/2:0 FE80::<EUI-64>/64
et-0/0/3:0 FE80::<EUI-64>/64 et-0/0/3:0 FE80::<EUI-64>/64 et-0/0/3:0 FE80::<EUI-64>/64 et-0/0/3:0 FE80::<EUI-64>/64

et-0/0/30:0 FE80::<EUI-64>/64
et-0/0/31:0 FE80::<EUI-64>/64
et-0/0/32:0 FE80::<EUI-64>/64
et-0/0/33:0 FE80::<EUI-64>/64

— —
—_— —_—

STRIPE1 LEAF1
AS201
FC00:10:0:1:1/128

Table 20. Spine to Leaf Interface Configuration Example

(

STRIPE 1 LEAF 1 (et-0/0/0:30)
[edit interfaces et-0/0/30]
jnpr@stripel-leafl# show
description "Breakout et-0/0/30";
number-of-sub-ports 1;
speed 800g;

[edit interfaces et-0/0/30:0]
jnpr@stripel-leafl# show
description facing_spinel:et-0/0/0:0;
mtu 9216;
unit @ {

family inet6 {

mtu 9202;

}

}

SPINE 1 (et-0/0/0:0)
[edit interfaces et-0/0/0]
jnpr@spinel# show
description "Breakout et-0/0/0";
number-of-sub-ports 1;
speed 800g;

[edit interfaces et-0/0/0:0]
jnpr@spinel# show
description facing_Leafl:et-0/0/0:0;
mtu 9216;
unit @ {

family inet6 {

mtu 9202;

¥

}

Enabling IPv6 on an interface automatically assigns a link-local IPvé address. The switch autogenerates
link local addresses for the interfaces using the EUI-64 address format (based on the interface’s MAC

address), as shown in Table 21.

Table 21. Spine and Leaf IPv6-Enabled Interface Link Local Addresses

LEAF NODE INTERFACE = LEAF NODE IPvé

ADDRESS

Stripe 1 Leaf 1 - fe80::9e5a:80ff:fec1:ae00
et-0/0/30:0 /64

Stripe 1 Leaf 1 - fe80::9e5a:80ff:fec1:ae08
et-0/0/31:0 /64

Stripe 1 Leaf 1 - fe80::9e5a:80ff:fec1:af00
et-0/0/32:0 /64

Stripe 1 Leaf 1 - fe80::9e5a:80ff:fec1:af08
et-0/0/33:0 /64

Stripe 1 Leaf 2 - fe80::5a86:70ff:fe79:dad
et-0/0/30:0 5/64

Stripe 1 Leaf 2 - fe80::5a86:70ff:fe79:dad
et-0/0/31:0 d/64

Stripe 1 Leaf 2 - fe80::5a86:70ff:fe79:dbd
et-0/0/32:0 5/64

Stripe 1 Leaf 2 - fe80::5a86:70ff:fe79:dbd
et-0/0/33:0 d/64

SPINE NODE INTERFACE = SPINE IPvé6 ADDRESS

fe80::9e5a:80ff:feef:a28f/
64

Spine 1 - et-0/0/0:0

fe80::5a86:70ff:fe7b:ced
5/64

Spine 2 - et-0/0/0:0

fe80::5a86.70ff:fe78:e0d
5/64

Spine 3 - et-0/0/0:0

fe80::5a86:70ff:fe79:3d5
/64

Spine 4 - et-0/0/0:0

fe80::9e5a:80ff:feef:a297
/64

Spine 1 - et-0/0/1:0

fe80::5a86:70ff:fe7b:cedd
/64

Spine 2 - et-0/0/1:0

fe80::5a86:70ff:fe78:e0d
d/64

Spine 3 - et-0/0/1:0

fe80::5a86:70ff:fe79:3dd
/64

Spine 4 - et-0/0/1:0

95

https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.1

(Continued)

LEAF NODE INTERFACE = LEAF NODE IPvé SPINE NODE INTERFACE = SPINE IPv6 ADDRESS
ADDRESS

These addresses need to be advertised through standard router advertisements as part of the IPvé
Neighbor Discovery process to allow the leaf and spine nodes to then establish BGP sessions between
them. Router advertisement must be enabled on all the interfaces between the leaf and spine nodes as
shown:

Table 22. IPv6 Router Advertisement on Leaf and Spine Interfaces

[edit protocols router-advertisement] [edit]

/* ROUTER ADVERTISEMENTS TO SPINE1l */ jnpr@spinel# show protocols router-advertisement
interface et-0/0/30:0.0; /* ROUTER ADVERTISEMENTS TO LEAF1 */

/* ROUTER ADVERTISEMENTS TO SPINE2 */ interface et-0/0/0:0.0;

interface et-0/0/31:0.0; /* ROUTER ADVERTISEMENTS TO LEAF2 */

/* ROUTER ADVERTISEMENTS TO SPINE3 */ interface et-0/0/1:0.0;

interface et-0/0/32:0.0; /* ROUTER ADVERTISEMENTS TO LEAF3 */

/* ROUTER ADVERTISEMENTS TO SPINE4 */ interface et-0/0/2:0.0;

interface et-0/0/33:0.0; /* ROUTER ADVERTISEMENTS TO LEAF4 */

} interface et-0/0/3:0.0;

To verify that router advertisements are being sent you can use:show IPv6 router-advertisement interface
<interface> and show IPv6 neighbors

Example:

jnpr@stripe1-leaf1> show IPv6 router-advertisement interface et-0/0/30:0

Interface: et-0/0/30:0.0

Advertisements sent: 4, last sent 00:02:28 ago

Solicits sent: 1, last sent 00:08:06 ago

Solicits received: 0

Advertisements received: 3

Solicited router advertisement unicast: Disable

IPv6 RA Preference: DEFAULT/MEDIUM

Passive mode: Disable

Upstream mode: Disable

Downstream mode: Disable

Proxy blackout timer: Not Running

Advertisement from fe80::9e5a:80ff:feef:a28f, heard 00:01:57 ago
Managed: 0
Other configuration: 0
Reachable time: @ ms
Default lifetime: 1800 sec
Retransmit timer: @ ms
Current hop limit: 64

jnpr@stripe1-leaf1> show IPv6 neighbors

IPv6 Address Linklayer Address State Exp Rtr Secure Interface
fe80::5a86:70ff:fe78:e0d5 58:86:70:78:e0:d5 reachable 11 yes no
et-0/0/31:0.0
fe80::5a86:70ff:fe79:3d5 58:86:70:79:03:d5 reachable 23 yes no
et-0/0/33:0.0
fe80::5a86:70ff:fe7b:ced5 58:86:70:7b:ce:d5 reachable 13 yes no
et-0/0/32:0.0
fe80::9e5a:80ff: feef:a28f 9c:5a:80:ef:a2:8f reachable 25 yes no

et-0/0/30:0.0
Total entries: 4

The loopback interface IPv6 addresses and the Autonomous System numbers for all devices in the fabric
are included in table 23:

Table 23. Spine and Leaf Loopback Addresses and ASNs

LEAF NODE INTERFACE 100.0 IPv6 ADDRESS Local AS #
Stripe 1 Leaf 1 FC00:10:0:1::1/128 201
Stripe 1 Leaf 2 FC00:10:0:1::2/128 202
Stripe 1 Leaf 3 FC00:10:0:1::3/128 203
Stripe 1 Leaf 4 FC00:10:0:1::4/128 204
Stripe 1 Leaf 5 FC00:10:0:1::5/128 205
Stripe 1 Leaf 6 FC00:10:0:1::6/128 206

Stripe 1 Leaf 7 FC00:10:0:1::7/128 207

(Continued)

LEAF NODE INTERFACE 100.0 IPv6 ADDRESS Local AS #
Stripe 1 Leaf 8 FCO00:10:0:1::8/128 208
Stripe 2 Leaf 1 FC00:10:0:1::9/128 209
Stripe 2 Leaf 2 FCO00:10:0:1::10/128 210
SPINE1 FC00:10:0::1/128 101
SPINE2 FCO00:10:0::2/128 102
SPINE3 FCO00:10:0::3/128 103
SPINE4 FCO00:10:0::4/128 104

Table 24. Spine and Leaf Loopback Address Configuration

STRIPE 1 LEAF 1 SPINE 1

[edit interfaces 10@] [edit interfaces 1o@]
jnpr@stripel-leafl# show jnpr@spinel# show
unit @ { unit @ {

family inet { family inet {

address FC00:10:0:1::1/128; address FC00:10::1/128;

} }

} }

Recommended MTU

Configure the MTU consistently across the fabric and make sure that the MTU of the server->leaf links
does not exceed the MTU of the leaf->spine links considering the extra overhead of the VXLAN
encapsulation.

VXLAN Overhead Calculation
For IPv6, the MTU can also be calculated as:

Table 26 VXLAN Overhead Calculation

HEADER BYTES

Outer Ethernet 14
Outer IP (IPvé) 40

UDP 8
VXLAN 8

Total 70 bytes

Recommended MTU Strategy

Table 27. Recommended MTU

LINK TYPE MTU
Server © Leaf 9000
Leaf ¢ Spine IPv6 > 9070

It is important to keep in mind that RoCEv2 message sizes are still limited by the RDMA MTU reported
by ibv_devinfo

jnpr@MI300-01:~/SCRIPTS$ ibv_devinfo -d bnxt_re@

hca_id: bnxt_re0

transport: InfiniBand (@)

fw_ver: 230.2.49.0

node_guid: 7Tec2:55ff: febd:75d0

sys_image_guid: 7ec2:55ff: febd: 75d0

vendor_id: 0x14e4

vendor_part_id: 5984

hw_ver: 0x1D42

phys_port_cnt: 1

port: 1

state: PORT_ACTIVE (4)
max_mtu: 4096 (5)
active_mtu: 4096 (5)
sm_lid: 0

port_lid: 0

port_lmc: 0x00
link_layer: Ethernet

Table 28. MTU Types: Ownership and Functional Role

MTU TYPE OWNER PURPOSE

Interface MTU (e.g. 9000) Linux network stack Defines the max L3/IP packet size

ifconfig, ip

RDMA MTU (e.g. 4096) RDMA stack Defines the max RDMA message size per Work

Queue Element (WQE)
ibv_devinfo

The RDMA MTU can be configured at the verbs level, and it’s negotiated during QP (Queue Pair) setup.
You cannot override it by just setting the NIC's MTU to a higher value, but you would need to use low-
level tools or RDMA apps.

Some performance tools such as ib_send_bw, ib_write_bw (via -m flag). For example:
ib_write_bw -m 1024 # sets RDMA MTU to 1024 bytes

ib_write_bw -m 4096 # sets RDMA MTU to 4096 (max allowed according to the output of ibv_devinfo
shown before)

RDMA MTU must be < Interface MTU - encapsulation overhead

IPv6 GPU Backend Fabric Underlay, using BGP Neighbor Discovery

Refer to Configure BGP Unnumbered EVPN Fabric | Juniper Networks for more information.

The underlay EBGP sessions are configured between the leaf and spine nodes to use peer auto-
discovery, and are configured to advertise these loopback interfaces, as shown in the example between
Stripel Leaf 1 and Spine 1 below:

Table 29. GPU Backend Fabric: BGP Underlay with Peer Auto-Discovery Configuration

https://www.juniper.net/documentation/us/en/software/nce/nce-225-bgp-unnumbered/topics/example/nce-225_bgp_unnumbered-example.html

STRIPE 1 LEAF 1 SPINE 1

[edit routing-options]
jnpr@stripel-leafl# show
router-id 10.0.1.1;
autonomous-system 201;
graceful-restart;
forwarding-table {
export PFE-LB;
ecmp-fast-reroute;

}

[edit policy-options]
jnpr@stripel-leafl# show | match as-list
as-list discovered-as-list members 101-104;

[edit protocols bgp group 13clos-inet6-auto-underlay]
jnpr@stripel-leafl# show
type external;
family inet6 {
unicast;

}
export (LEAF_TO_SPINE_FABRIC_OUT & BGP-AOS-Policy);
local-as 201;
multipath {
multiple-as;

bfd-liveness-detection {
minimum-interval 3000;
multiplier 3;
}
dynamic-neighbor underlay-dynamic-neighbors {
peer-auto-discovery {
family inet6 {
ipv6-nd;
}

/* SPINE 1 */
interface et-0/0/0:0.0;
/* SPINE 2 */
interface et-0/0/1:0.0;
/* SPINE 3 */
interface et-0/0/32:0.0;
/* SPINE 3 */
interface et-0/0/33:0.0;
}
}

peer-as-list discovered-as-list;

[edit routing-options]
jnpr@spinel# show
router-id 10.0.0.1;
autonomous-system 101;
graceful-restart;
forwarding-table {
export PFE-LB;
ecmp-fast-reroute;

}

[edit policy-options]
jnpr@stripel-leafl# show | match as-list
as-list discovered-as-list members 201-216;

[edit protocols bgp group 13clos-inet6-auto-underlay]
jnpr@stripel-leafl# show
type external;
family inet6 {
unicast;

}
export (SPINE_TO_LEAF_FABRIC_OUT && BGP-AOS-Policy);
local-as 101;
multipath {
multiple-as;

bfd-liveness-detection {
minimum-interval 3000;
multiplier 3;
}
dynamic-neighbor underlay-dynamic-neighbors {
peer-auto-discovery {
family inet6 {
ipv6-nd;
}
/* LEAF1 1 */
interface et-0/0/0:0.0;
/* LEAF1 2 */
interface et-0/0/1:0.0;
/* LEAF1 3 */
interface et-0/0/2:0.0;

.
}

peer-as-list discovered-as-list;

To configure peer auto discovery, the dynamic-neighbor named underlay-dynamic-neighbors, under BGP

group I3clos-inet6-auto-underlay, specifies the interfaces where auto discovery is permitted. This
replaces the neighbor a.b.c.d commands that would statically configure the neighbors.

The family ineté IPv6-nd statement enables the use of IPvé Neighbor Discovery to dynamically
determine the addresses of neighbors with which to establish BGP sessions. To control and secure

dynamic peer formation, a peer-as-list (discovered-as-list) is configured, restricting peering to neighbors

whose autonomous system numbers fall within the defined range of AS 101-104.

The family ineté unicast statements configure the sessions to advertise IPvé prefixes to support the IPvé

overlays.

The BGP sessions are also configured with multipath multiple-as, allowing multiple paths (even with
different AS paths) to be considered for ECMP (Equal-Cost Multi-Path) routing. BFD (Bidirectional
Forwarding Detection) is additionally enabled to accelerate convergence in case of link or neighbor

failures.

You can check that the sessions have been established using:

101

show bgp summary group <group-name>

Example:

jnpr@stripel-leaf1> show bgp summary group 13clos-inet6-auto-underlay
fe80::5a86:70ff:fe78:e0d5%et-0/0/31:0.0 102 201 196 0 0
1:29:35 Establ

inet6.0: 4/4/4/0
fe80::5a86:70ff:fe79:3d5%et-0/0/33:0.0 104 201 196 0 0
1:29:15 Establ

inet6.0: 4/4/4/0
fe80::5a86:70ff:fe7b:ced5%et-0/0/32:0.0 103 201 196 0 0
1:29:21 Establ

inet6.0: 4/4/4/0
fe80::9e5a:80ff: feef:a28f%et-0/0/30:0.0 101 202 197 0 0
1:29:30 Establ

inet6.0: 4/4/4/0

Notice that when BGP sessions are established using link-local addresses Junos displays the neighbor
address along with the interface scope (e.g. fe80::5a86:70ff:fe78:e0d5%et-0/0/1:0.0). The scope
identifier (the part after the %) is necessary because the same link-local address (fe80::/10) could exist
on multiple interfaces. The device must know which interface to use to send packets to that neighbor.
Thus, after peer discovery is completed, the show bgp summary output lists the neighbor using the format:

IPv6_link-local_address%interface-name.
You can check details about discovered neighbors using:

show bgp neighbor auto-discovered <peer-id>
Example:

jnpr@stripel-leaf1> show bgp neighbor auto-discovered fe80::5a86:70ff:fe78:e0d5%et-0/0/31:0.0
Peer: fe80::5a86:70ff:fe78:e0d5%et-0/0/31:0.0+179 AS 102 Local:
fe80::9e5a:80ff:fecl:ae08%et-0/0/31:0.0+53984 AS 201

Group: 13clos-inet6-auto-underlay Routing-Instance: master

Forwarding routing-instance: master

Type: External State: Established Flags: <Sync PeerAsList AutoDiscoveredNdp>

Last State: OpenConfirm Last Event: RecvKeepAlive

Last Error: None

Export: [(LEAF_TO_SPINE_FABRIC_OUT && BGP-A0S-Policy) 1]

Options: <GracefulRestart AddressFamily Multipath LocalAS Refresh>

Options: <MultipathAs BfdEnabled>

Options: <GracefulShutdownRcv>

Address families configured: inet6-unicast

Holdtime: 90 Preference: 170

Graceful Shutdown Receiver local-preference: 0

Local AS: 201 Local System AS: 201

Number of flaps: @

Receive eBGP Origin Validation community: Reject

Peer ID: 10.0.0.2 Local ID: 10.0.1.1 Active Holdtime: 90

Keepalive Interval: 30 Group index: @ Peer index: 0 SNMP index:

I/0 Session Thread: bgpio-@ State: Enabled

BFD: enabled, up

Local Interface: et-0/0/1:0.0

NLRI for restart configured on peer: inet6-unicast

NLRI advertised by peer: inet6-unicast

NLRI for this session: inet6-unicast

Peer supports Refresh capability (2)

Restart time configured on the peer: 120

Stale routes from peer are kept for: 300

Restart time requested by this peer: 120

Restart flag received from the peer: Notification

NLRI that peer supports restart for: inet6-unicast

NLRI peer can save forwarding state: inet6-unicast

NLRI that peer saved forwarding for: inet6-unicast

NLRI that restart is negotiated for: inet6-unicast

NLRI of received end-of-rib markers: inet6-unicast

NLRI of all end-of-rib markers sent: inet6-unicast

Peer does not support LLGR Restarter functionality

Peer supports 4 byte AS extension (peer-as 102)

Peer does not support Addpath

NLRI(s) enabled for color nexthop resolution: inet6-unicast

Table inet6.0 Bit: 20000
RIB State: BGP restart is complete
Send state: in sync
Active prefixes:
Received prefixes:
Accepted prefixes:

Suppressed due to damping:

- o A b b

Advertised prefixes:
Last traffic (seconds): Received 20 Sent 24 Checked 5788

Input messages: Total 216 Updates 5 Refreshes 0 Octets 4535
Output messages: Total 212 Updates 1 Refreshes 0 Octets 4125
Output Queue[1]: 0 (inet6.0, inet6-unicast)

Trace options: all
Trace file: /var/log//bgp size 131072 files 10

30

To verify the operation of BFD for the BGP sessions use:
show bfd session

Example:

jnpr@stripel-leaf1> show bfd session

Detect Transmit

Address State Interface Time Interval Multiplier
fe80::5a86:70ff:fe78:e0d5 Up et-0/0/31:0.0 9.000 3.000 3
fe80::5a86:70ff:fe79:3d5 Up et-0/0/33:0.0 9.000 3.000 3
fe80::5a86:70ff: fe7b:ced5 Up et-0/0/32:0.0 9.000 3.000 3
fe80::9e5a:80ff: feef:a28f Up et-0/0/30:0.0 9.000 3.000 3

8 sessions, 8 clients

Cumulative transmit rate 2.7 pps, cumulative receive rate 2.7 pps

To control the propagation of routes, and make sure the loopback interface addresses are advertised,
export policies are applied to these EBGP sessions as shown in the example in Table 30.

Table 30. Export policy example IPvé6 Underlay with auto discovery

LEAF
[edit policy-options policy-statement
LEAF_TO_SPINE_FABRIC_OUT]
jnpr@stripel-leafl# show
term LEAF_TO_SPINE_FABRIC_OUT-10 {
from {
protocol bgp;
community FROM_SPINE_FABRIC_TIER;
}

then reject;

term LEAF_TO_SPINE_FABRIC_OUT-20 {
then accept;

}

[edit policy-options community FROM_SPINE_FABRIC_TIER]
jnpr@stripel-leafl# show
members 0:15;

[edit policy-options policy-statement BGP-AO0S-Policy]
jnpr@stripel-leafl# show
term BGP-A0S-Policy-10 {

from policy AllPodNetworks;

then accept;

term BGP-A0S-Policy-20 {
from {
protocol evpn;
route-filter 0::0/0 prefix-length-range /128-/128;
}

then accept;

term BGP-AOS-Policy-100 {
then reject;

}

[edit policy-options policy-statement AllPodNetworks]
jnpr@stripel-leafl# show
term AllPodNetworks-10 {
from {
family inet6;
protocol direct;
interface 100.0;

}

then {
community add DEFAULT_DIRECT_V6;
accept;

}

term AllPodNetworks-100 {
then reject;

}

[edit policy-options community DEFAULT_DIRECT_V6]
jnpr@stripel-leafl# show
members [5:20008 21001:26000];

SPINE
[edit policy-options policy-statement
SPINE_TO_LEAF_FABRIC_OUT]
jnpr@spinel# show
term SPINE_TO_LEAF_FABRIC_OUT-10 {

then {
community add FROM_SPINE_FABRIC_TIER;
accept;

}

[edit policy-options community FROM_SPINE_FABRIC_TIER]
jnpr@spinel# show
members 0:15;

[edit policy-options policy-statement BGP-AOS-Policy]
jnpr@spinel# show
term BGP-A0S-Policy-10 {

from policy AllPodNetworks;

then accept;

term BGP-A0S-Policy-20 {
from protocol bgp;
then accept;

term BGP-A0S-Policy-100 {
then reject;
}

[edit policy-options policy-statement AllPodNetworks]
jnpr@spinel# show
term AllPodNetworks-10 {
from {
family inet6;
protocol direct;
interface 100.0;

}

then {
community add DEFAULT_DIRECT_V6;
accept;

}

term AllPodNetworks-100 {
then reject;

}

[edit policy-options community DEFAULT_DIRECT_V6]
jnpr@spinel# show
members [1:20008 21001:26000];

These policies ensure loopback reachability without advertising unnecessary routes.

On the spine nodes, routes are exported only if they are accepted by both the
SPINE_TO_LEAF_FABRIC_OUT and BGP-AOS-Policy export policies.

o The SPINE_TO_LEAF_FABRIC_OUT policy has no match conditions and accepts all routes
unconditionally, tagging them with the FROM_SPINE_FABRIC_TIER community (0:15).

o The BGP-AQOS-Policy accepts BGP-learned routes as well as any routes accepted by the nested

AllPodNetworks policy.

105

o The AllPodNetworks policy, in turn, matches directly connected IPvé6 routes and tags them with the
DEFAULT_DIRECT_V6 community (1:20008 and 21001:26000 on Spine1l).

As a result, each spine advertises both its directly connected routes (including its loopback interface) and
any routes it has received from other leaf nodes.

You can verify that the expected routes are being advertised by the spine node using: show route
advertising-protocol bgp <peer-id> table inet6.0

Example:

The following example shows the routes advertised to Stripe 1 Leaf 1 by Spine 1 which correspond to
the loopback interface addresses of itself, as well as Stripel Leaf 2, Stripe 2 Leaf 1, and Stripe 2 Leaf 2.

jnpr@spinel> show route advertising-protocol bgp fe80::9e5a:80ff:fecl:ae00%et-0/0/30:0.0 table
inet6.0

inet6.0: 11 destinations, 11 routes (11 active, © holddown, @ hidden)

Restart Complete

Prefix Nexthop MED Lclpref AS path
* fc00:10::1/128 Self I
* fc00:10:0:1::2/128 Self 202 I
* fc00:10:0:1::9/128 Self 209 I
* fc00:10:0:1::10/128 Self 210 I

To verify routes are received by the Leaf nodes use: show route receive-protocol bgp <peer-id> table inet6.0

Example:

jnpr@stripel-leaf1> show route receive-protocol bgp fe80::5a86:70ff:fe78:e0d5%et-0/0/1:0.0 table
inet6.0

inet6.0: 14 destinations, 23 routes (14 active, © holddown, © hidden)

Restart Complete

Prefix Nexthop MED Lclpref AS path

* c00:10::1/128 fe80::9e5a:80ff: feef:a28f 101 I
fc00:10:0:1::2/128 fe80::9e5a:80ff: feef:a28f 101 202 I
fc00:10:0:1::9/128 fe80::9e5a:80ff: feef:a28f 101 209 I
fc00:10:0:1::10/128 fe80::9e5a:80ff: feef:a28f 101 210 I

On the leaf nodes, routes are exported only if they are accepted by both the
LEAF TO_SPINE_FABRIC OUT and BGP-AOS-Policy export policies.

e The LEAF TO _SPINE_FABRIC OUT policy accepts all routes except those learned via BGP that are
tagged with the FROM_SPINE_FABRIC_TIER community (0:15). These routes are explicitly rejected
to prevent re-advertisement of spine-learned routes back into the spine layer. As described earlier,

spine nodes tag all routes they advertise to leaf nodes with this community to facilitate this filtering
logic.

e The BGP-AOS-Policy accepts all routes allowed by the nested AllPodNetworks policy, which matches
directly connected IPvé6 routes and tags them with the DEFAULT_DIRECT_V4 community (5:20007
and 21001:26000 for Stripel-Leaf1).

e As aresult, leaf nodes will advertise only their directly connected interface routes, including their
loopback interfaces, to the spines.

You can verify that the expected routes are being advertised by the spine node using: show route
advertising-protocol bgp <peer-id> table inet6.9

Example:

The following example shows the routes advertised to Spine 1 by Stripe 1 Leaf 1.

jnpr@stripel-leaf1> show route advertising-protocol bgp fe80::5a86:70ff:fe78:e0d5%et-0/0/30:0.0
table inet6.0
inet6.0: 14 destinations, 23 routes (14 active, © holddown, © hidden)
Restart Complete
Prefix Nexthop MED Lclpref AS path
* fc00:10:0:1::1/128 Self I

To verify routes are received by the spine node, use: show route receive-protocol bgp <peer-id> table inet6.0

Example:

jnpr@spinel> show route receive-protocol bgp fe80::9e5a:80ff:fecl:aed0%et-0/0/0:0.0 table
inet6.0
inet6.0: 11 destinations, 11 routes (11 active, @ holddown, @ hidden)
Restart Complete
Prefix Nexthop MED Lclpref AS path
* fc00:10:0:1::1/128 fe80::9e5a:80ff:fecl:ae00 201 I

IPv6 GPU Backend Fabric Overlay

When EVPN Type 5 is used to implement L3 tenant isolation across a VXLAN fabric, multiple routing
tables are instantiated on each participating leaf node. These tables are responsible for managing
control-plane separation, enforcing tenant boundaries, and supporting the overlay forwarding model.

Each routing instance (VRF) creates its own set of routing and forwarding tables, in addition to the
global and EVPN-specific tables used for fabric-wide communication. These tables are listed in Table 31.

Table 31. Routing and Forwarding Tables for EVPN Type 5

TABLE

bgp.evpn.0

<tenant-
name>.evpn.0

<tenant-
name>.inet.0

DESCRIPTON

Holds EVPN route information received via BGP, including Type 5 (IP Prefix) routes and
other EVPN route types.

This is the control plane source for EVPN-learned routes

The tenant-specific EVPN table.

The tenant-specific IPv4 unicast routing table.
Contains directly connected and EVPN-imported Type 5 prefixes for that tenant.

Used for routing data plane traffic.

When routing instances are created for the tenants, separate routing domains (tenant-name.<tenant-
name>.inet6.0) are created, providing full route and traffic isolation across the EVPN/VXLAN fabric.

The protocol next-hop (loopback interface or remote leaf) on each EVPN route is resolved in inet6.0.
Then the route is added to the bgp.evpn.O table. The routes are then imported into <tenant>.evpn.0 and
<tenant>.inet6.0, based on route-targets.

The Overlay BGP Sessions between the leaf and spine nodes are statically configured (not auto
discovered) using the loopback interfaces global IPvé6 addresses, which were advertised by the Underlay

BGP sessions.

As an example, consider the configuration between Stripel Leaf 1 and Spine 1.

Table 32. GPU Backend Fabric Overlay Using IPv6 Loopback Addresses

STRIPE 1 LEAF 1 SPINE 1

[edit group 13clos-inet6-auto-overlay]
jnpr@stripel-leafl# show
type external;
multihop {
ttl 1;

}

multipath {
multiple-as;

}

bfd-liveness-detection {
minimum-interval 3000;
multiplier 3;

¥
/* SPINE 1 */
neighbor fc00:10::1 {
description facing_spinel-evpn-overlay;
local-address fc00:10:0:1::1;
family evpn {
signaling;

}
export (LEAF_TO_SPINE_EVPN_OUT && EVPN_EXPORT);
peer-as 101;

}
/* SPINE 2 */
neighbor fc00:10::2 {
description facing_spine2-evpn-overlay;
local-address fc00:10:0:1::1;
family evpn {
signaling;

export (LEAF_TO_SPINE_EVPN_OUT && EVPN_EXPORT);
peer-as 102;

}
/* SPINE 3 */
neighbor fc00:10::3 {
description facing_spine3-evpn-overlay;
local-address fc00:10:0:1::1;
family evpn {
signaling;

export (LEAF_TO_SPINE_EVPN_OUT && EVPN_EXPORT);
peer-as 103;

/* SPINE 4 */
neighbor fc00:10::4 {
description facing_spine4-evpn-overlay;
local-address fc00:10:0:1::1;
family evpn {
signaling;

export (LEAF_TO_SPINE_EVPN_OUT && EVPN_EXPORT);
peer-as 104;

}
vpn-apply-export;

[edit group 13clos-inet6-auto-overlay]
jnpr@spinel# show
type external;
multihop {
ttl 1;
no-nexthop-change;

multipath {
multiple-as;

}

bfd-liveness-detection {
minimum-interval 3000;
multiplier 3;

}
/* LEAF 1 */
neighbor FC00:10:0:1::1 {
description facing_leafl-evpn-overlay;
local-address FC00:10::1;
family evpn {
signaling;

}
export (SPINE_TO_LEAF_EVPN_OUT);
peer-as 201;
}

/* LEAF 2 */

neighbor FC00:10:0:1::1 {
description facing_leafl-evpn-overlay;
local-address F(C00:10::1;
family evpn {

signaling;

export (SPINE_TO_LEAF_EVPN_OUT);
peer-as 201;

}
/* LEAF 3 */
neighbor FC00:10:0:1::1 {
description facing_leafl-evpn-overlay;
local-address FC00:10::1;
family evpn {
signaling;

export (SPINE_TO_LEAF_EVPN_OUT);
peer-as 201;

}
/* LEAF 4 */
neighbor FC00:10:0:1::1 {
description facing_leafl-evpn-overlay;
local-address FC00:10::1;
family evpn {
signaling;

export (SPINE_TO_LEAF_EVPN_OUT);
peer-as 201;

vpn-apply-export;

The sessions use family evpn signaling to enable EVPN route exchange. The multihop ttl 1 statement

allows EBGP sessions to be established between the loopback interfaces.

As with the underlay BGP sessions, these sessions are configured with multipath multiple-as, allowing
multiple EVPN paths with different AS paths to be considered for ECMP (Equal-Cost Multi-Path)
routing. BFD (Bidirectional Forwarding Detection) is also enabled to improve convergence time in case

of failures.

The no-nexthop-change knob on the spine nodes is used to preserve the original next-hop address,
which is critical in EVPN for ensuring that the remote VTEP can be reached directly. The vpn-apply-

109

export statement is included to ensure that the export policies are evaluated for VPN address families,
such as EVPN, allowing fine-grained control over which routes are advertised to each peer.

You can check that the sessions have been established using: show bgp summary group <group-name>

Example:

jnpr@stripel-leaf1> show bgp summary group l3clos-inet6-auto-overlay

fc00:10:0:1::1 201 118 127 0 0 52:58 Establ
bgp.evpn.0: 4/4/4/0

fc00:10:0:1::2 202 119 128 0 0 53:01 Establ
bgp.evpn.0: 4/4/4/0

fc00:10:0:1::9 209 119 127 0 0 53:10 Establ
bgp.evpn.0: 4/4/4/0

fc00:10:0:1::10 210 81 81 0 3 35:28 Establ

bgp.evpn.0: 4/4/4/0
To verify the operation of BFD for the BGP sessions use: show bfd session

Example:

jnpr@stripel-leaf1> show bfd session

Detect Transmit

Address State Interface Time Interval Multiplier
fc00:10::1 Up 9.000 3.000 3
fc00:10::2 Up 9.000 3.000 3
fc00:10::3 Up 9.000 3.000 3
fc00:10::4 Up 9.000 3.000 3

8 sessions, 8 clients

Cumulative transmit rate 2.7 pps, cumulative receive rate 2.7 pps

You can check details about discovered neighbors using: show bgp neighbor <peer-id>

Example:

jnpr@stripel-leaf1> show bgp neighbor fc00:10::1

Peer: fc@0:10::1+48522 AS 101 Local: fc@0:10:0:1::1+179 AS 201
Description: facing_spinel-evpn-overlay
Group: 13clos-inet6-auto-overlay Routing-Instance: master
Forwarding routing-instance: master
Type: External State: Established Flags: <Sync>
Last State: OpenConfirm Last Event: RecvKeepAlive

Last Error: None
Export: [(LEAF_TO_SPINE_EVPN_OUT && EVPN_EXPORT) 1]
Options: <Multihop LocalAddress GracefulRestart Ttl AddressFamily PeerAS Multipath Rib-group
Refresh>
Options: <VpnApplyExport MultipathAs BfdEnabled>
Options: <GracefulShutdownRcv>
Address families configured: evpn
Local Address: fc00:10:0:1::1 Holdtime: 90 Preference: 170
Graceful Shutdown Receiver local-preference: 0
Number of flaps: @
Receive eBGP Origin Validation community: Reject
Peer ID: 10.0.0.1 Local ID: 10.0.1.1 Active Holdtime: 90
Keepalive Interval: 30 Group index: 2 Peer index: 3 SNMP index: 61
I/0 Session Thread: bgpio-@ State: Enabled
BFD: enabled, up
NLRI for restart configured on peer: evpn
NLRI advertised by peer: evpn
NLRI for this session: evpn
Peer supports Refresh capability (2)
Restart time configured on the peer: 120
Stale routes from peer are kept for: 300
Restart time requested by this peer: 120
Restart flag received from the peer: Notification
NLRI that peer supports restart for: evpn
NLRI peer can save forwarding state: evpn
NLRI that peer saved forwarding for: evpn
NLRI that restart is negotiated for: evpn
NLRI of received end-of-rib markers: evpn
NLRI of all end-of-rib markers sent: evpn
Peer does not support LLGR Restarter functionality
Peer supports 4 byte AS extension (peer-as 101)
Peer does not support Addpath
NLRI(s) enabled for color nexthop resolution: evpn
Table bgp.evpn.0@ Bit: 40000
RIB State: BGP restart is complete
RIB State: VPN restart is complete
Send state: in sync

Active prefixes: 0
Received prefixes: 12
Accepted prefixes: 12

Suppressed due to damping: 0
Advertised prefixes: 4

Table Tenant-1.evpn.@

RIB State: BGP restart is complete
RIB State: VPN restart is complete
Send state: not advertising

Active prefixes: 0

Received prefixes: 4

Accepted prefixes: 4

Suppressed due to damping: 0
Last traffic (seconds): Received 14 Sent 11
Input messages: Total 158 Updates 16
Output messages: Total 146 Updates 1

Output Queue[3]: 0

Refreshes 0

Refreshes 0

Checked 3980
Octets 6079
Octets 3105

(bgp.evpn.0, evpn)

To control the propagation of routes, export policies are applied to these EBGP sessions as shown in the

example in Table 33.

Table 33. Export Policy example to advertise EVPN routes over IPvé6 overlay

LEAF
[edit policy-options policy-statement
LEAF_TO_SPINE_EVPN_OUT]
jnpr@stripel-leafl# show | display set relative
term LEAF_TO_SPINE_EVPN_OUT-10 {
from {
protocol bgp;
community FROM_SPINE_EVPN_TIER;
}

then reject;

term LEAF_TO_SPINE_EVPN_OUT-20 {
then accept;

}

[edit policy-options community FROM_SPINE_EVPN_TIER]
jnpr@stripel-leafl# show | display set relative
members 0:14;

[edit policy-options policy-statement EVPN_EXPORT]
jnpr@stripel-leafl# show | display set relative
term EVPN_EXPORT-10 {

then accept;

}

SPINE
[edit policy-options policy-statement SPINE_TO_LEAF_EVPN_OUT]
jnpr@spinel# show | display set relative
term SPINE_TO_LEAF_EVPN_OUT-10 {

then {
community add FROM_SPINE_EVPN_TIER;
accept;

}

[edit policy-options community FROM_SPINE_EVPN_TIER]
jnpr@spinel# show | display set relative
members 0:14;

These policies are simpler in structure and are intended to enable end-to-end EVPN reachability
between tenant GPUs, while preventing route loops within the overlay.

NOTE: Routes will only be advertised if EVPN routing-instances have been created, as described
in the Per Tenant IP-VRF Routing Instances section.

On the spine nodes, routes are exported if they are accepted by the SPINE_ TO_LEAF_EVPN_OUT
policy.

o The SPINE_TO_LEAF_EVPN_OUT policy has no match conditions and accepts all routes. It tags each

exported route with the FROM_SPINE_EVPN_TIER community (0:14).

112

As a result, the spine nodes export EVPN routes received from one leaf to all other leaf nodes, allowing
tenant-to-tenant communication across the fabric.

You can verify that the expected routes are being advertised by the spine node using:show route
advertising-protocol bgp <peer-id> table bgp.evpn.0@show route advertising-protocol bgp <peer-id> match-prefix
<prefix>

Example:

jnpr@spinel> show route advertising-protocol bgp FC00:10:0:1::1 table bgp.evpn.0
bgp.evpn.0: 16 destinations, 16 routes (16 active, @ holddown, @ hidden)
Restart Complete

Prefix Nexthop MED Lclpref AS path
5:10.0.1.2:2002::0::fc00:100:1:2::::64/248

* fc00:10:0:1::2 202 1
5:10.0.1.2:2002::0::1c00:200:2:1::::64/248

* fc00:10:0:1::2 202 1
5:10.0.1.2:2002::0::1c00:200:2:2::::64/248

* fc00:10:0:1::2 202 1
5:10.0.1.2:2002::0::1c00:200:2:3::::64/248

* fc00:10:0:1::2 202 1
5:10.0.1.9:2001::0::fc00:100:2:1::::64/248

* fc00:10:0:1::9 209 I
5:10.0.1.9:2001::0::c00:200:1:9::::64/248

* fc00:10:0:1::9 209 I
5:10.0.1.9:2001::0::1c00:200:1:10::::64/248

* fc00:10:0:1::9 209 I
5:10.0.1.9:2001::0::fc00:200:1:11::::64/248

* fc00:10:0:1::9 209 I
5:10.0.1.10:2002::0::fc00:100:2:2::::64/248

* fc00:10:0:1::10 210 I
5:10.0.1.10:2002::0::1c00:200:2:9::::64/248

* fc00:10:0:1::10 210 I
5:10.0.1.10:2002::0::1c00:200:2:10::::64/248

* fc00:10:0:1::10 210 I
5:10.0.1.10:2002::0::1c00:200:2:11::::64/248

* fc00:10:0:1::10 210 I

jnpr@spinel> show route advertising-protocol bgp FC00:10:0:1::1 match-prefix
5:10.0.1.2:2002::0::fc00:100:1:2::::64/248
bgp.evpn.0: 16 destinations, 16 routes (16 active, @ holddown, @ hidden)
Restart Complete
Prefix Nexthop MED Lclpref AS path
5:10.0.1.2:2002::0::fc00:100:1:2::::64/248

* fc00:10:0:1::2 202 1
jnpr@spinel> show route advertising-protocol bgp FC00:10:0:1::1 match-prefix
5:10.0.1.2:2002::0::fc00:100:1:2::::64/248 extensive
bgp.evpn.0: 16 destinations, 16 routes (16 active, @ holddown, @ hidden)
Restart Complete
*x 5:10.0.1.2:2002::0::Tc00:100:1:2::::64/248 (1 entry, 1 announced)
BGP group 13clos-inet6-auto-overlay type External

Route Distinguisher: 10.0.1.2:2002

Route Label: 20002

Overlay gateway address: ::

Nexthop: fc00:10:0:1::2

AS path: [101] 202 I

Communities: 0:14 5:20008 21002:26000 target:20002:1 encapsulation:vxlan(@x8) router-
mac:58:86:70:79:df:db
jnpr@spinel> show route advertising-protocol bgp FC00:10:0:1::1 match-prefix
5:10.0.1.9:2001::0::fc00:200:1:9::::64/248
bgp.evpn.0: 16 destinations, 16 routes (16 active, @ holddown, @ hidden)
Restart Complete

Prefix Nexthop MED Lclpref AS path
5:10.0.1.9:2001::0::fc00:200:1:9::::64/248
* fc00:10:0:1::9 209 I

jnpr@spinel> show route advertising-protocol bgp FC00:10:0:1::1 match-prefix
5:10.0.1.9:2001::0::fc00:200:1:9::::64/248 extensive
bgp.evpn.0: 16 destinations, 16 routes (16 active, @ holddown, @ hidden)
Restart Complete
*x 5:10.0.1.9:2001::0::fc00:200:1:9::::64/248 (1 entry, 1 announced)
BGP group 13clos-inet6-auto-overlay type External

Route Distinguisher: 10.0.1.9:2001

Route Label: 20001

Overlay gateway address: ::

Nexthop: fc00:10:0:1::9

AS path: [101] 209 I

Communities: 0:14 5:20008 21001:26000 target:20001:1 encapsulation:vxlan(@x8) router-
mac:58:86:70:7b:10:db

The leaf nodes receive the routes and first install them in the bgp.evpn.O routing table which can be
verified using:show route receive-protocol bgp <peer-id> table bgp.evpn.@

Example:

jnpr@stripel-leaf1> show route receive-protocol bgp fc00:10::1 table bgp.evpn.@
bgp.evpn.0: 16 destinations, 52 routes (16 active, @ holddown, @ hidden)

Restart Complete

Prefix Nexthop MED Lclpref AS path
5:10.0.1.2:2002::0::Tc00:100:1:2::::64/248

fc00:10:0:1::2 101 202 I
5:10.0.1.2:2002::0::Tc00:200:2:1::::64/248

fc00:10:0:1::2 101 202 I
5:10.0.1.2:2002::0::Tc00:200:2:2::::64/248

fc00:10:0:1::2 101 202 I
5:10.0.1.2:2002::0::Tc00:200:2:3::::64/248

fc00:10:0:1::2 101 202 I
5:10.0.1.9:2001::0::Tc00:100:2:1::::64/248

fc00:10:0:1::9 101 209 I
5:10.0.1.9:2001::0::Tc00:200:1:9::::64/248

fc00:10:0:1::9 101 209 I
5:10.0.1.9:2001::0::c00:200:1:10::::64/248

fc00:10:0:1::9 101 209 I
5:10.0.1.9:2001::0::c00:200:1:11::::64/248

fc00:10:0:1::9 101 209 I
5:10.0.1.10:2002::0::fc00:100:2:2::::64/248

fc00:10:0:1::10 101 210 I
5:10.0.1.10:2002::0::fc00:200:2:9::::64/248

fc00:10:0:1::10 101 210 I
5:10.0.1.10:2002::0::fc00:200:2:10::::64/248

fc00:10:0:1::10 101 210 I
5:10.0.1.10:2002::0::Tc00:200:2:11::::64/248

fc00:10:0:1::10 101 210 I

jnpr@stripel-leaf1> show route receive-protocol bgp fc00:10::1 table bgp.evpn.@ match-prefix
5:10.0.1.2:2002::0::fc00:100:1:2::::64/248

bgp.evpn.0: 16 destinations, 52 routes (16 active, @ holddown, @ hidden)

Restart Complete

Prefix Nexthop MED Lclpref AS path
5:10.0.1.2:2002::0::fc00:100:1:2::::64/248
fc00:10:0:1::2 101 202 I

jnpr@stripel-leaf1> show route receive-protocol bgp fc00:10::1 table bgp.evpn.@® match-prefix
5:10.0.1.2:2002::0::fc00:100:1:2::::64/248 extensive
bgp.evpn.0: 16 destinations, 52 routes (16 active, @ holddown, @ hidden)
Restart Complete
5:10.0.1.2:2002::0::Tc00:100:1:2::::64/248 (4 entries, @ announced)
Accepted
Route Distinguisher: 10.0.1.2:2002
Route Label: 20002
Overlay gateway address: ::
Nexthop: fc00:10:0:1::2

AS path: 101 202 I
Communities: 0:14 5:20008 21002:26000 target:20002:1 encapsulation:vxlan(@x8) router-
mac:58:86:70:79:df :db

On the leaf nodes, routes are exported if they are accepted by both the LEAF_ TO_SPINE_EVPN_OUT
and EVPN_EXPORT policies.

e The LEAF TO _SPINE_EVPN_OUTpolicy rejects any BGP-learned routes that carry the
FROM_SPINE_EVPN_TIER community (0:14). These routes are explicitly rejected to prevent re-
advertisement of spine-learned routes back into the spine layer. As described earlier, spine nodes tag
all routes they advertise to leaf nodes with this community to facilitate this filtering logic.

e The EVPN_EXPORT policy accepts all routes without additional conditions.

As a result, the leaf nodes export only locally originated EVPN routes for the directly connected
interfaces between GPU servers and the leaf nodes. These routes are part of the tenant routing
instances and are used to establish reachability between GPUs belonging to the same tenant.

You can verify that the expected routes are being advertised by the Leaf nodes using: show route
advertising-protocol bgp <peer-id> table bgp.evpn.0 show route advertising-protocol bgp <peer-id> match-prefix

<prefix>

Example:

jnpr@stripel-leaf1> show route advertising-protocol bgp FC00:10::1 table bgp.evpn.0
bgp.evpn.0: 16 destinations, 52 routes (16 active, @ holddown, @ hidden)
Restart Complete

Prefix Nexthop MED Lclpref AS path
5:10.0.1.1:2001::0::fc00:100:1:1::::64/248

* Self I
5:10.0.1.1:2001::0::fc00:200:1:1::::64/248

* Self I
5:10.0.1.1:2001::0::fc00:200:1:2::::64/248

* Self I
5:10.0.1.1:2001::0::fc00:200:1:3::::64/248

* Self I

jnpr@stripel-leaf1> show route advertising-protocol bgp FC00:10::1 table bgp.evpn.@ match-prefix
5:10.0.1.1:2001::0::fc00:100:1:1::::64/248

bgp.evpn.0: 16 destinations, 52 routes (16 active, @ holddown, @ hidden)

Restart Complete

Prefix Nexthop MED Lclpref AS path
5:10.0.1.1:2001::0::fc00:100:1:1::::64/248
* Self I

jnpr@stripel-leaf1> show route advertising-protocol bgp FC00:10::1 table bgp.evpn.@ match-prefix

5:10.0.1.1:2001::0::fc00:100:1:1::::64/248 extensive
bgp.evpn.0: 16 destinations, 52 routes (16 active, @ holddown, @ hidden)
Restart Complete
*x 5:10.0.1.1:2001::0::fc00:100:1:1::::64/248 (1 entry, 1 announced)
BGP group 13clos-inet6-auto-overlay type External
Route Distinguisher: 10.0.1.1:2001
Route Label: 20001
Overlay gateway address: ::
Nexthop: Self
Flags: Nexthop Change
AS path: [201] I
Communities: 5:20008 21001:26000 target:20001:1 encapsulation:vxlan(0x8) router-
mac:9c:5a:80:c1:b3:06

To verify routes are received by the spine nodes use: show route receive-protocol bgp <peer-id> table

bgp.evpn.0

Example:

jnpr@spinel> show route receive-protocol bgp fc00:10:0:1::1 table bgp.evpn.0
bgp.evpn.0: 16 destinations, 16 routes (16 active, @ holddown, @ hidden)
Restart Complete

Prefix Nexthop MED Lclpref AS path
5:10.0.1.1:2001::0::fc00:100:1:1::::64/248

* fc00:10:0:1::1 201 I
5:10.0.1.1:2001::0::c00:200:1:1::::64/248

* fc00:10:0:1::1 201 I
5:10.0.1.1:2001::0::fc00:200:1:2::::64/248

* fc00:10:0:1::1 201 I
5:10.0.1.1:2001::0::fc00:200:1:3::::64/248

* fc00:10:0:1::1 201 I

jnpr@spinel> show route receive-protocol bgp fc00:10:0:1::1 match-prefix
5:10.0.1.1:2001::0::fc00:100:1:1::::64/248

bgp.evpn.0: 16 destinations, 16 routes (16 active, @ holddown, @ hidden)
Restart Complete

Prefix Nexthop MED Lclpref AS path
5:10.0.1.1:2001::0::fc00:100:1:1::::64/248
* fc00:10:0:1::1 201 I

jnpr@spinel> show route receive-protocol bgp fc00:10:0:1::1 match-prefix
5:10.0.1.1:2001::0::fc00:100:1:1::::64/248 extensive

bgp.evpn.0: 16 destinations, 16 routes (16 active, @ holddown, @ hidden)
Restart Complete

*x 5:10.0.1.1:2001::0::Tc00:100:1:1::::64/248 (1 entry, 1 announced)

Accepted

Route Distinguisher: 10.0.1.1:2001

Route Label: 20001
Overlay gateway address:
Nexthop: fc00:10:0:1::1
AS path: 201 I

Communities: 5:20008 21001:26000 target:20001:1 encapsulation:vxlan(0x8) router-

mac:9c:5a:80:c1:b3:06

Tenants IP-VRF Routing Instances

Stripe 1 Leaf 1 and Stripe 1 Leaf 2 have been configured for Tenant-1 and Tenant-2 respectively as

shown in Table 34. Stripe 2 Leaf 1 and Stripe 2 Leaf 2 are configured similarly.

Table 34. EVPN Routing-Instance for Tenant-1 and Tenant-2 Across Stripe 1 and Stripe 2

STRIPE 1 - LEAF 1 STRIPE 1 - LEAF 2

[edit routing-instances Tenant-1]
jnpr@stripel-leafl# show | display set relative
instance-type vrf;
routing-options {
rib Tenant-1.inet6.0 {
multipath;
}
graceful-restart;
multipath;
}
protocols {
evpn {
ip-prefix-routes {
advertise direct-nexthop;
encapsulation vxlan;
vni 20001;
export BGP-AOS-Policy-Tenant-1;

}

/* SERVER 1 GPU@ TENANT-1 */
interface et-0/0/0:0.0;
/* SERVER 2 GPU® TENANT-1 */
interface et-0/0/1:0.0;
/* SERVER 3 GPU@ TENANT-1 */
interface et-0/0/2:0.0;

interface 100.1;
route-distinguisher 10.0.1.1:2001;
vrf-target target:20001:1;

[edit interfaces 100]
jnpr@stripel-leafl# show unit 1
family inet6 {

address fc00:101:1:1::1/64;
}

[edit routing-instances Tenant-2]
jnpr@stripel-leaf2# show | display set relative
instance-type vrf;
routing-options {
rib Tenant-2.inet6.0 {
multipath;
}
graceful-restart;
multipath;
}
protocols {
evpn {
ip-prefix-routes {
advertise direct-nexthop;
encapsulation vxlan;
vni 20002;
export BGP-AOS-Policy-Tenant-2;

}

/* SERVER 1 GPU1 TENANT-2 */
interface et-0/0/0:0.0;
/* SERVER 2 GPU1 TENANT-2 */
interface et-0/0/1:0.0;
/* SERVER 3 GPU1 TENANT-2 */
interface et-0/0/2:0.0;

interface 100.2;
route-distinguisher 10.0.1.1:2002;
vrf-target target:20002:1;

[edit interfaces 100]
jnpr@stripel-leaf2# show unit 2
family inet6 {

address fc00:102:1:2::1/64;
}

118

Table 35. Policies Examples for Tenant-1 and Tenant-2

TENANT-1 POLICIES TENANT-2 POLICIES

[edit policy-options policy-statement BGP-AOS-Policy-
Tenant-1]
jnpr@stripel-leafl# show | display set relative
term BGP-AOS-Policy-Tenant-1-10 {
from policy AllPodNetworks-Tenant-1;
then accept;

term BGP-A0S-Policy-Tenant-1-20 {
from {
protocol evpn;
route-filter 0::0/0 prefix-length-range /128-/128;

}

then {
community add TENANT-1_COMMUNITY_V6;
accept;

}

term BGP-AOS-Policy-Tenant-1-100 {
then reject;

}

[edit policy-options policy-statement AllPodNetworks-
Tenant-1]
jnpr@stripel-leafl# show | display set relative
term AllPodNetworks-Tenant-1-10 {
from {
family inet6;
protocol direct;

}

then {
community add TENANT-1_COMMUNITY_V6;
accept;

}

}
term AllPodNetworks-Tenant-1-100 {
then reject;

}

[edit policy-options community TENANT-A_COMMUNITY_V6]
jnpr@stripel-leafl# show | display set relative
members [5:20008 21001:26000];

[edit policy-options policy-statement BGP-AOS-Policy-
Tenant-2]
jnpr@stripel-leafl# show | display set relative
term BGP-AOS-Policy-Tenant-2-10 {
from policy AllPodNetworks-Tenant-2;
then accept;

term BGP-AOS-Policy-Tenant-2-20 {
from {
protocol evpn;
route-filter 0::0/0 prefix-length-range /128-/128;

}

then {
community add TENANT-2_COMMUNITY_V6;
accept;

¥

term BGP-A0S-Policy-Tenant-2-100 {
then reject;

}

[edit policy-options policy-statement AllPodNetworks-
Tenant-2]
jnpr@stripel-leafl# show | display set relative
term AllPodNetworks-Tenant-2-10 {
from {
family inet6;
protocol direct;

}

then {
community add TENANT-2_COMMUNITY_V6;
accept;

}

}
term AllPodNetworks-Tenant-2-100 {
then reject;

}

[edit policy-options community TENANT-B_COMMUNITY_V6]
jnpr@stripel-leafl# show | display set relative
members [5:20008 21002:26000];

Each routing instance is configured with the following key elements:

1. Interfaces:

The interfaces listed under each tenant VRF (e.g. et-0/0/0:0.0 and et-0/0/1:0.0) are explicitly added
to the corresponding routing table. By placing these interfaces under the VREF, all routing decisions
and traffic forwarding associated with them are isolated from other tenants and from the global
routing table. Assigning an interface that connects a particular GPU to the leaf node effectively maps
that GPU to a specific tenant, isolating it from GPUs assigned to other tenants.

2. Route-distinguisher (RD):
10.0.1.1:2001 and 10.0.1.1:2002 uniquely identify EVPN routes from Tenant-1 and Tenant-2,
respectively. Even if both tenants use overlapping IP prefixes, the RD ensures their routes remain
distinct in the BGP control plane. Although the GPU to leaf links use unique /32 prefixes, an RD is
still required to advertise these routes over EVPN.

3. Route target (RT) community:

VRF targets 20001:1 and 20002:1 control which routes are exported from and imported into each
tenant routing table. These values determine which routes are shared between VRFs that belong to

119

the same tenant across the fabric and are essential for enabling fabric-wide tenant connectivity, for
example, when a tenant has GPUs assigned to multiple servers across different stripes.

. Protocols evpn parameters:

e The ip-prefix-routes controls how IP Prefix Routes (EVPN Type 5 routes) are advertised.

e The advertise direct-nexthop enables the leaf node to send IP prefix information using EVPN pure
Type 5 routes, which includes a router MAC extended community. These routes include a Router

MAC extended community, which allows the remote VTEP to resolve the next-hop MAC address
without relying on Type 2 routes.

e The encapsulation vxlan indicates that the payload traffic for this tenant will be encapsulated
using VXLAN. The same type of encapsulation must be used end to end.

e The VXLAN Network Identifier (VNI) acts as the encapsulation tag for traffic sent across the
EVPN/VXLAN fabric. When EVPN Type 5 (IP Prefix) routes are advertised, the associated VNI is
included in the BGP update. This ensures that remote VTEPs can identify the correct VXLAN
segment for returning traffic to the tenant’s VRF.

e Unlike traditional use cases where a VNI maps to a single Layer 2 segment, in EVPN Type 5 the
VNI represents the tenant-wide Layer 3 routing domain. All point-to-point subnets, such as
the /32 links between GPU servers and the leaf, that belong to the same VRF are advertised with
the same VNI.

In this configuration, VNIs 20001 and 20002 are mapped to the Tenant-1 and Tenant-2 VRFs,
respectively. All traffic destined for interfaces in Tenant-1 will be forwarded using VNI 20001, and all
traffic for Tenant-2 will use VNI 20002.

Notice that the same VNI for a specific tenant is configured on both Stripel-Leaf1 and Stripe2-Leaf1.

. Export Policy Logic

EVPN Type 5 routes from Tenant-1 are exported if they are accepted by the BGP-AOS-Policy-
Tenant-1 export policy, which references a nested policy named A//PodNetworks-Tenant-1 (and the
equivalent policies for Tenant-2)

o Policy BGP-AQOS-Policy-Tenant-1 controls which prefixes from this VRF are allowed to be
advertised into EVPN. It accepts any route that is permitted by the Al/PodNetworks-Tenant-1
policy and explicitly rejects all other routes.

o Policy AllPodNetworks-Tenant-1 accepts directly connected IPv4 routes (family inet, protocol
direct) that are part of the Tenant-1 VRF. It tags these routes with the TENANT-1
_COMMUNITY_V4 (5:20007 21002:26000) community before accepting them. All other routes
are rejected.

As a result, only the directly connected IPv4 routes from the Tenant-1 (/32 links between GPU
servers and the leaf) are exported as EVPN Type 5 routes.

https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/statement/ip-prefix-routes-edit-routing-instances-protocols-evpn.html
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/statement/ip-prefix-routes-edit-routing-instances-protocols-evpn.html#ip-prefix-routes__d4e155

To verify that the interfaces have been assigned to the correct routing instance and installed in the
correct tenant’s routing table use: show interfaces routing-instance <tenant-name> terse

Example:

jnpr@stripel-leaf1> show interfaces routing-instance Tenant-1 terse

Interface Admin Link Proto Local Remote
et-0/0/0:0.0 up up inet6 fc00:200:1:1::1/64
fe80::9e5a:80ff:fecl:ae60/64
multiservice
et-0/0/1:0.0 up up inet6 fc00:200:1:2::1/64
fe80::9e5a:80ff:fecl:ae61/64
multiservice
et-0/0/2:0.0 up up inet6 fc00:200:1:3::1/64
fe80::9e5a:80ff:fecl:ae68/64
multiservice
100.1 up up inet6 fc00:100:1:1::1/64

fe80::9e5a:80f0:c1:b2ff-->
jnpr@stripel-leaf2> show interfaces routing-instance Tenant-2 terse

Interface Admin Link Proto Local Remote
et-0/0/0:0.0 up up inet6 fc00:200:2:1::1/64
fe80::5a86:70ff:fe79:db35/64
multiservice
et-0/0/1:0.0 up up inet6 fc00:200:2:2::1/64
fe80::5a86:70ff:fe79:db36/64
multiservice
et-0/0/2:0.0 up up inet6 fc00:200:2:3::1/64
fe80::5a86:70ff:fe79:db3d/64
multiservice
100.2 up up inet6 fc00:100:1:2::1/64

fe80::5a86:70f0:79:dfd4-->

You can also check the direct routes installed to the correspondent routing table using: show route protocol
direct table <tenant-name>.inet6.0

Example:

jnpr@stripel-leaf1> show route protocol direct table Tenant-1.inet6.0
Tenant-1.inet6.0: 17 destinations, 17 routes (17 active, @ holddown, @ hidden)
Restart Complete

@

+

Routing Use Only, # = Forwarding Use Only

Active Route, - = Last Active, * = Both

fc00:100:1:1::/64 *[Direct/0] 01:02:26

> via 100.1
fc00:200:1:1::/64 *[Direct/0] 01:10:04

> via et-0/0/12:0.0
fc00:200:1:2::/64 *[Direct/0] 01:10:04

> via et-0/0/12:1.0
fc00:200:1:3::/64 x[Direct/0] 01:10:04

> via et-0/0/13:0.0
fe80::9e5a:80f0:c1:b2ff/128

*[Direct/0] 03:22:19

> via 100.1
jnpr@stripel-leaf2> show route protocol direct table Tenant-2.inet6.0
Tenant-2.inet6.0: 17 destinations, 17 routes (17 active, @ holddown, @ hidden)
Restart Complete
@ = Routing Use Only, # = Forwarding Use Only
+ = Active Route, - = Last Active, * = Both
fc00:100:1:2::/64 *[Direct/0] 00:24:41

> via 100.2
fc00:200:2:1::/64 *[Direct/0] 00:24:41

> via et-0/0/12:0.0
fc00:200:2:2::/64 *[Direct/0] 00:24:41

> via et-0/0/12:1.0
fc00:200:2:3::/64 *[Direct/0] 00:24:41

> via et-0/0/13:0.0
fe80::5a86:70f0:79:dfd4/128

*[Direct/0] 00:24:41

> via 100.2
jnpr@stripe2-leaf1> show route protocol direct table Tenant-1.inet6.0
Tenant-1.inet6.0: 17 destinations, 17 routes (17 active, @ holddown, @ hidden)
Restart Complete
@ = Routing Use Only, # = Forwarding Use Only
+ = Active Route, - = Last Active, * = Both
fc00:100:2:1::/64 *[Direct/0] 00:25:28

> via 100.1
fc00:200:1:9::/64 *[Direct/0] 00:25:17

> via et-0/0/12:0.0
fc00:200:1:10::/64 *[Direct/0] 00:25:17

> via et-0/0/12:1.0
fc00:200:1:11::/64 *x[Direct/0] 00:25:17

> via et-0/0/13:0.0
fe80::5a86:70f0:7b:10d4/128

*[Direct/0] 00:25:28

> via 100.1

jnpr@stripe2-leaf2> show route protocol direct table Tenant-2.inet6.0
Tenant-2.inet6.0: 17 destinations, 17 routes (17 active, @ holddown, © hidden)
Restart Complete
@ = Routing Use Only, # = Forwarding Use Only
+ = Active Route, - = Last Active, * = Both
fc00:100:2:2::/64 x[Direct/0] 00:24:51
> via 100.2
fc00:200:2:9::/64 x[Direct/0] 00:24:40
> via et-0/0/12:0.0
fc00:200:2:10::/64 *x[Direct/0] 00:24:40
> via et-0/0/12:1.0
fc00:200:2:11::/64 *x[Direct/0] 00:24:40
> via et-0/0/13:0.0
fe80::5a86:70f0:79:99d4/128
*[Direct/0] 00:24:51
> via 100.2

To verify evpn I3 contexts including encapsulation, VNI, router MAC address use: show evpn 13-contextshow

evpn 13-context <tenant-name> extensive

Example:

jnpr@stripel-leaf1> show evpn 13-context
L3 context Type Adv Encap VNI/Label Router MAC/GW intf dt4-sid dt6-sid dt46-sid
Tenant-1 Cfg Direct VXLAN 20001 9c:5a:80:c1:b3:06
jnpr@stripel-leaf2> show evpn 13-context
L3 context Type Adv Encap VNI/Label Router MAC/GW intf dt4-sid dt6-sid dt46-sid
Tenant-2 Cfg Direct VXLAN 20002 58:86:70:79:df:db
jnpr@stripe2-leaf1> show evpn 13-context
L3 context Type Adv Encap VNI/Label Router MAC/GW intf dt4-sid dt6-sid dt46-sid
Tenant-1 Cfg Direct VXLAN 20001 58:86:70:7b:10:db
jnpr@stripe2-leaf2> show evpn 13-context
L3 context Type Adv Encap VNI/Label Router MAC/GW intf dt4-sid dt6-sid dt46-sid
Tenant-2 Cfg Direct VXLAN 20002 58:86:70:79:99:db
jnpr@stripel-leaf1> show evpn 13-context Tenant-1 extensive
L3 context: Tenant-1

Type: Configured

Advertisement mode: Direct nexthop, Router MAC: 9c:5a:80:c1:b3:06

Encapsulation: VXLAN, VNI: 20001

IPv6 source VTEP address: fc00:10:0:1::1

IP->EVPN export policy: BGP-AOS-Policy-Tenant-1

Flags: 0xc209 <Configured IRB-MAC ROUTING RT-INSTANCE-TARGET-IMPORT-POLICY RT-INSTANCE-TARGET-

EXPORT-POLCIY>
Change flags: 0x20000 <VXLAN-VNI-Update-RTT-0PQ>
Composite nexthop support: Disabled
Route Distinguisher: 10.0.1.1:2001
Reference count: 9
EVPN Multicast Routing mode: CRB
jnpr@stripel-leaf2> show evpn 13-context Tenant-2 extensive
L3 context: Tenant-2
Type: Configured
Advertisement mode: Direct nexthop, Router MAC: 58:86:70:79:df:db
Encapsulation: VXLAN, VNI: 20002
IPv6 source VTEP address: fc00:10:0:1::2
IP->EVPN export policy: BGP-AOS-Policy-Tenant-2
Flags: 0xc209 <Configured IRB-MAC ROUTING RT-INSTANCE-TARGET-IMPORT-POLICY RT-INSTANCE-TARGET-
EXPORT-POLCIY>
Change flags: 0x20000 <VXLAN-VNI-Update-RTT-O0PQ>
Composite nexthop support: Disabled
Route Distinguisher: 10.0.1.2:2002
Reference count: 9
EVPN Multicast Routing mode: CRB
jnpr@stripel-leaf1> show evpn ip-prefix-database
L3 context: Tenant-1
IPv6->EVPN Exported Prefixes

Prefix EVPN route status
fc00:100:1:1::/64 Created
fc00:200:1:1::/64 Created
fc00:200:1:2::/64 Created
fc00:200:1:3::/64 Created
EVPN->IPv6 Imported Prefixes
Prefix Etag
fc00:100:2:1::/64 0
Route distinguisher VNI/Label/SID Router MAC Nexthop/Overlay GW/ESI
Route-Status Reject-Reason
10.0.1.9:2001 20001 58:86:70:7b:10:db fc00:10:0:1::9
Accepted n/a
fc00:200:1:9::/64 0
Route distinguisher VNI/Label/SID Router MAC Nexthop/Overlay GW/ESI
Route-Status Reject-Reason
10.0.1.9:2001 20001 58:86:70:7b:10:db fc00:10:0:1::9
Accepted n/a
fc00:200:1:10::/64 0
Route distinguisher VNI/Label/SID Router MAC Nexthop/Overlay GW/ESI

Route-Status Reject-Reason

10.0.1.9:2001 20001 58:86:70:7b:10:db fc00:10:0:1::9

Accepted n/a
fc00:200:1:11::/64 0

Route distinguisher VNI/Label/SID Router MAC Nexthop/Overlay GW/ESI
Route-Status Reject-Reason

10.0.1.9:2001 20001 58:86:70:7b:10:db fc00:10:0:1::9
Accepted n/a

jnpr@stripel-leaf2> show evpn ip-prefix-database
L3 context: Tenant-2
IPv6->EVPN Exported Prefixes

Prefix EVPN route status
fc00:100:1:2::/64 Created
fc00:200:2:1::/64 Created
fc00:200:2:2::/64 Created
fc00:200:2:3::/64 Created
EVPN->IPv6 Imported Prefixes
Prefix Etag
fc00:100:2:2::/64 0

Route distinguisher VNI/Label/SID Router MAC Nexthop/Overlay GW/ESI
Route-Status Reject-Reason

10.0.1.10:2002 20002 58:86:70:79:99:db fc00:10:0:1::10
Accepted n/a
fc00:200:2:9::/64 0

Route distinguisher VNI/Label/SID Router MAC Nexthop/Overlay GW/ESI
Route-Status Reject-Reason

10.0.1.10:2002 20002 58:86:70:79:99:db fc00:10:0:1::10
Accepted n/a
fc00:200:2:10::/64 0

Route distinguisher VNI/Label/SID Router MAC Nexthop/Overlay GW/ESI
Route-Status Reject-Reason

10.0.1.10:2002 20002 58:86:70:79:99:db fc00:10:0:1::10
Accepted n/a
fc00:200:2:11::/64 0

Route distinguisher VNI/Label/SID Router MAC Nexthop/Overlay GW/ESI
Route-Status Reject-Reason

10.0.1.10:2002 20002 58:86:70:79:99:db fc00:10:0:1::10
Accepted n/a

You can verify that the expected routes for each tenant are being advertised by the leaf nodes using:

show route advertising-protocol bgp <peer-id> table <tenant-name>.evpn.0

Example:

jnpr@stripel-leaf1> show route advertising-protocol bgp FC00:10::1 table Tenant-1.evpn.0
Tenant-1.evpn.0: 8 destinations, 20 routes (8 active, @0 holddown, @ hidden)
Restart Complete

Prefix Nexthop MED Lclpref AS path
5:10.0.1.1:2001::0::fc00:100:1:1::::64/248

* Self I
5:10.0.1.1:2001::0::fc00:200:1:1::::64/248

* Self I
5:10.0.1.1:2001::0::fc00:200:1:2::::64/248

* Self I
5:10.0.1.1:2001::0::fc00:200:1:3::::64/248

* Self I

jnpr@stripel-leaf2> show route advertising-protocol bgp FC00:10::1 table Tenant-2.evpn.0
Tenant-2.evpn.0: 8 destinations, 20 routes (8 active, 0 holddown, @ hidden)
Restart Complete

Prefix Nexthop MED Lclpref AS path
5:10.0.1.2:2002::0::fc00:100:1:2::::64/248

* Self I
5:10.0.1.2:2002::0::fc00:200:2:1::::64/248

* Self I
5:10.0.1.2:2002::0::c00:200:2:2::::64/248

* Self I
5:10.0.1.2:2002::0::fc00:200:2:3::::64/248

* Self I

jnpr@stripe2-leaf1> show route advertising-protocol bgp FC00:10::1 table Tenant-1.evpn.0
Tenant-1.evpn.0: 8 destinations, 20 routes (8 active, 0 holddown, @ hidden)
Restart Complete

Prefix Nexthop MED Lclpref AS path
5:10.0.1.9:2001::0::fc00:100:2:1::::64/248

* Self I
5:10.0.1.9:2001::0::fc00:200:1:9::::64/248

* Self I
5:10.0.1.9:2001::0::fc00:200:1:10::::64/248

* Self I
5:10.0.1.9:2001::0::fc00:200:1:11::::64/248

* Self I

jnpr@stripe2-leaf2> show route advertising-protocol bgp FC00:10::1 table Tenant-2.evpn.0
Tenant-2.evpn.0: 8 destinations, 20 routes (8 active, @0 holddown, @ hidden)
Restart Complete

Prefix Nexthop MED Lclpref AS path

5:10.0.1.10:2002::0::Tc00:100:2:2::::64/248

* Self I
5:10.0.1.10:2002::0::fc00:200:2:9::::64/248

* Self I
5:10.0.1.10:2002::0::fc00:200:2:10::::64/248

* Self I
5:10.0.1.10:2002::0::fc00:200:2:11::::64/248

* Self I

You can verify that the expected routes for each tenant, are being received by the leaf nodes, and
installed in the correct routing table use: show route receive-protocol bgp <peer-id> table <tenant-

name>.evpn.@show route table Tenant-1.inet6.0 protocol evpn

Example:

jnpr@stripel-leaf1> show route receive-protocol bgp FC00:10::1 table Tenant-1.evpn.0
Tenant-1.evpn.0: 8 destinations, 20 routes (8 active, @ holddown, © hidden)
Restart Complete

Prefix Nexthop MED Lclpref AS path
5:10.0.1.9:2001::0::fc00:100:2:1::::64/248

fc00:10:0:1::9 101 209 I
5:10.0.1.9:2001::0::c00:200:1:9::::64/248

fc00:10:0:1::9 101 209 I
5:10.0.1.9:2001::0::fc00:200:1:10::::64/248

fc00:10:0:1::9 101 209 I
5:10.0.1.9:2001::0::fc00:200:1:11::::64/248

fc00:10:0:1::9 101 209 I

jnpr@stripel-leaf1> show route table Tenant-1.inet6.0 protocol evpn
Tenant-1.inet6.0: 17 destinations, 17 routes (17 active, 0 holddown, © hidden)
Restart Complete
@ = Routing Use Only, # = Forwarding Use Only
+ = Active Route, - = Last Active, * = Both
fc00:100:2:1::/64 *[EVPN/170] 00:20:14
to fe80::9e5a:80ff:feef:a28f via et-0/0/30:0.0
to fe80::5a86:70ff:fe78:e0d5 via et-0/0/31:0.0
to fe80::5a86:70ff:fe7b:ced5 via et-0/0/32:0.0
> to fe80::5a86:70ff:fe79:3d5 via et-0/0/33:0.0
fc00:200:1:9::/64 *[EVPN/170] 00:20:14
to fe80::9e5a:80ff:feef:a28f via et-0/0/30:0.0
> to fe80::5a86:70ff:fe78:e0d5 via et-0/0/31:0.0
to fe80::5a86:70ff:fe7b:ced5 via et-0/0/32:0.0
to fe80::5a86:70ff:fe79:3d5 via et-0/0/33:0.0

fc00:200:1:10::/64 *[EVPN/170] 00:20:14
to fe80::9e5a:80ff:feef:a28f via et-0/0/30:0.0
to fe80::5a86:70ff:fe78:e0d5 via et-0/0/31:0.0
to fe80::5a86:70ff:fe7b:ced5 via et-0/0/32:0.0
> to fe80::5a86:70ff:fe79:3d5 via et-0/0/33:0.0
fc00:200:1:11::/64 x[EVPN/170] 00:20:14
to fe80::9e5a:80ff:feef:a28f via et-0/0/30:0.0
to fe80::5a86:70ff:fe78:e0d5 via et-0/0/31:0.0
to fe80::5a86:70ff:fe7b:ced5 via et-0/0/32:0.0
> to fe80::5a86:70ff:fe79:3d5 via et-0/0/33:0.0
jnpr@stripel-leaf2> show route receive-protocol bgp FC00:10::1 table Tenant-2.evpn.0
Tenant-2.evpn.0: 8 destinations, 20 routes (8 active, @ holddown, @ hidden)
Restart Complete

Prefix Nexthop MED Lclpref AS path
5:10.0.1.10:2002::0::fc00:100:2:2::::64/248

fc00:10:0:1::10 101 210 I
5:10.0.1.10:2002::0::fc00:200:2:9::::64/248

fc00:10:0:1::10 101 210 I
5:10.0.1.10:2002::0::Tc00:200:2:10::::64/248

fc00:10:0:1::10 101 210 I
5:10.0.1.10:2002::0::Tc00:200:2:11::::64/248

fc00:10:0:1::10 101 210 I

jnpr@stripel-leaf2> show route table Tenant-2.inet6.0 protocol evpn
Tenant-2.inet6.0: 17 destinations, 17 routes (17 active, © holddown, © hidden)
Restart Complete
@ = Routing Use Only, # = Forwarding Use Only
+ = Active Route, - = Last Active, * = Both
fc00:100:2:2::/64 *[EVPN/170] 00:22:12
to fe80::9e5a:80ff:feef:a297 via et-0/0/30:0.0
to fe80::5a86:70ff:fe78:e0dd via et-0/0/31:0.0
to fe80::5a86:70ff:fe7b:cedd via et-0/0/32:0.0
> to fe80::5a86:70ff:fe79:3dd via et-0/0/33:0.0
fc00:200:2:9::/64 *[EVPN/170] 00:22:12
to fe80::9e5a:80ff:feef:a297 via et-0/0/30:0.0
> to fe80::5a86:70ff:fe78:e0dd via et-0/0/31:0.0
to fe80::5a86:70ff:fe7b:cedd via et-0/0/32:0.0
to fe80::5a86:70ff:fe79:3dd via et-0/0/33:0.0
fc00:200:2:10::/64 *[EVPN/170] 00:22:12
to fe80::9e5a:80ff:feef:a297 via et-0/0/30:0.0
to fe80::5a86:70ff:fe78:e0dd via et-0/0/31:0.0
to fe80::5a86:70ff:fe7b:cedd via et-0/0/32:0.0
> to fe80::5a86:70ff:fe79:3dd via et-0/0/33:0.0
fc00:200:2:11::/64 *[EVPN/170] 00:22:12

to fe80::9e5a:80ff:feef:a297 via et-0/0/30:0.0
to fe80::5a86:70ff:fe78:e0dd via et-0/0/31:0.0
to fe80::5a86:70ff:fe7b:cedd via et-0/0/32:0.0
> to fe80::5a86:70ff:fe79:3dd via et-0/0/33:0.0
jnpr@stripe2-leaf1> show route receive-protocol bgp FC00:10::1 table Tenant-1.evpn.0
Tenant-1.evpn.0: 8 destinations, 20 routes (8 active, @ holddown, @ hidden)

Restart Complete

Prefix Nexthop MED Lclpref AS path
5:10.0.1.1:2001::0::Tc00:100:1:1::::64/248

fc00:10:0:1::1 101 201 I
5:10.0.1.1:2001::0::Tc00:200:1:1::::64/248

fc00:10:0:1::1 101 201 I
5:10.0.1.1:2001::0::Tc00:200:1:2::::64/248

fc00:10:0:1::1 101 201 I
5:10.0.1.1:2001::0::Tc00:200:1:3::::64/248

fc00:10:0:1::1 101 201 I

jnpr@stripe2-leaf1> show route table Tenant-1.inet6.0 protocol evpn
Tenant-1.inet6.0: 17 destinations, 17 routes (17 active, @ holddown, © hidden)
Restart Complete
@ = Routing Use Only, # = Forwarding Use Only
+ = Active Route, - = Last Active, * = Both
fc00:100:1:1::/64 *[EVPN/170] 00:22:04
to fe80::9e5a:80ff:feef:a2af via et-0/0/30:0.0
to fe80::5a86:70ff:fe78:e0f5 via et-0/0/31:0.0
to fe80::5a86:70ff:fe7b:cef5 via et-0/0/32:0.0
> to fe80::5a86:70ff:fe79:3f5 via et-0/0/33:0.0
fc00:200:1:1::/64 *[EVPN/170] 00:22:04
to fe80::9e5a:80ff:feef:a2af via et-0/0/30:0.0
to fe80::5a86:70ff:fe78:e0f5 via et-0/0/31:0.0
to fe80::5a86:70ff:fe7b:cef5 via et-0/0/32:0.0
> to fe80::5a86:70ff:fe79:3f5 via et-0/0/33:0.0
fc00:200:1:2::/64 *[EVPN/170] 00:22:04
to fe80::9e5a:80ff:feef:a2af via et-0/0/30:0.0
to fe80::5a86:70ff:fe78:e0f5 via et-0/0/31:0.0
to fe80::5a86:70ff:fe7b:cef5 via et-0/0/32:0.0
> to fe80::5a86:70ff:fe79:3f5 via et-0/0/33:0.0
fc00:200:1:3::/64 *[EVPN/170] 00:22:04
to fe80::9e5a:80ff:feef:a2af via et-0/0/30:0.0
to fe80::5a86:70ff:fe78:e0f5 via et-0/0/31:0.0
to fe80::5a86:70ff:fe7b:cef5 via et-0/0/32:0.0
> to fe80::5a86:70ff:fe79:3f5 via et-0/0/33:0.0
jnpr@stripe2-leaf2> show route receive-protocol bgp FC00:10::1 table Tenant-2.evpn.0
Tenant-2.evpn.0: 8 destinations, 20 routes (8 active, 0 holddown, @ hidden)

Restart Complete

Prefix Nexthop MED Lclpref AS path
5:10.0.1.2:2002::0::fc00:100:1:2::::64/248

fc00:10:0:1::2 101 202 I
5:10.0.1.2:2002::0::fc00:200:2:1::::64/248

fc00:10:0:1::2 101 202 I
5:10.0.1.2:2002::0::fc00:200:2:2::::64/248

fc00:10:0:1::2 101 202 I
5:10.0.1.2:2002::0::Tc00:200:2:3::::64/248

fc00:10:0:1::2 101 202 I

jnpr@stripe2-leaf2> show route table Tenant-2.inet6.0 protocol evpn
Tenant-2.inet6.0: 17 destinations, 17 routes (17 active, @ holddown, © hidden)
Restart Complete
@ = Routing Use Only, # = Forwarding Use Only
+ = Active Route, - = Last Active, * = Both
fc00:100:1:2::/64 *[EVPN/170] 00:22:16
to fe80::9e5a:80ff:feef:a2b7 via et-0/0/30:0.0
to fe80::5a86:70ff:fe78:e0fd via et-0/0/31:0.0
to fe80::5a86:70ff:fe7b:cefd via et-0/0/32:0.0
> to fe80::5a86:70ff:fe79:3fd via et-0/0/33:0.0
fc00:200:2:1::/64 *[EVPN/170] 00:22:16
to fe80::9e5a:80ff:feef:a2b7 via et-0/0/30:0.0
to fe80::5a86:70ff:fe78:e0fd via et-0/0/31:0.0
to fe80::5a86:70ff:fe7b:cefd via et-0/0/32:0.0
> to fe80::5a86:70ff:fe79:3fd via et-0/0/33:0.0
fc00:200:2:2::/64 *[EVPN/170] 00:22:16
to fe80::9e5a:80ff:feef:a2b7 via et-0/0/30:0.0
to fe80::5a86:70ff:fe78:e0fd via et-0/0/31:0.0
to fe80::5a86:70ff:fe7b:cefd via et-0/0/32:0.0
> to fe80::5a86:70ff:fe79:3fd via et-0/0/33:0.0
fc00:200:2:3::/64 *[EVPN/170] 00:22:16
to fe80::9e5a:80ff:feef:a2b7 via et-0/0/30:0.0
to fe80::5a86:70ff:fe78:e0fd via et-0/0/31:0.0
to fe80::5a86:70ff:fe7b:cefd via et-0/0/32:0.0
> to fe80::5a86:70ff:fe79:3fd via et-0/0/33:0.0

Type 5 EVPN/VXLAN GPU Backend Fabric, SLAAC
IPv6 Overlay over IPvé6 Link-Local Underlay - IP
Services

IN THIS SECTION

Congestion Management and Congestion Control Configuration | 131
Traffic Classification | 133

Traffic Scheduling | 137

NO-LOSS Traffic Scheduling (Scheduler s1) | 137

CNP Traffic Scheduling (Scheduler s2-cnp) | 139

Load Balancing Configuration | 145

Dynamic Load Balancing (DLB) | 145

Load Balancing Verification | 147

In this section, we describe the strategies employed to address traffic congestion and optimize load
distribution within the Backend GPU fabric.

Congestion Management and Congestion Control Configuration

Congestion management and congestion control are implemented through a VXLAN-aware Data Center
Quantized Congestion Notification (DCQCN) approach, ensuring traffic fairness and maintaining stability
across the lossless fabric.

Al clusters impose unique demands on network infrastructure due to their high-density and low-entropy
traffic patterns, characterized by frequent elephant flows and minimal flow variability. Moreover, most Al
training workloads require uninterrupted, lossless packet delivery to be completed successfully.
Consequently, when designing a network infrastructure for Al traffic flows, the key objectives include
maximizing throughput, minimizing latency, and minimizing network interference while ensuring lossless
operation. These requirements necessitate the deployment of effective congestion control mechanisms.

Data Center Quantized Congestion Notification (DCQCN) has become the industry-standard method for
end-to-end congestion control in RoOCEv2 environments. DCQCN provides mechanisms to adjust traffic

rates in response to congestion events without relying on packet drops, striking a balance between
reducing traffic rates and maintaining ongoing traffic flow.

It is important to note that DCQCN is primarily required in the GPU backend fabric, where the majority
of Al workload traffic resides. It is generally unnecessary in the Frontend and Storage Backend fabrics.

DCQCN combines two complementary mechanisms to implement flow and congestion control:
e Priority-based Flow Control (PFC)
e Explicit Congestion Notification (ECN)

Priority-Based Flow Control (PFC) mitigates data loss by pausing traffic transmission for specific traffic
classes, based on IEEE 802.1p priorities or DSCP markings mapped to queues.

When congestion is detected, PFC operates by sending PAUSE control frames upstream, requesting the
sender to halt transmission of traffic associated with a specific priority. The sender completely stops
sending traffic for that priority until the congestion subsides or the PAUSE timer expires.

While PFC prevents packet drops and allows the receiver to catch up, it also impacts application
performance for traffic using the affected queues. Furthermore, resuming transmission after a pause can
lead to sudden traffic surges, potentially re-triggering congestion. For these reasons, PFC should be
configured carefully so that it is used as a last resource.

Explicit Congestion Notification (ECN) offers a proactive congestion signaling mechanism, reducing
transmission rates while allowing traffic to continue flowing during congestion periods.

When congestion occurs, ECN bits in the IP header are marked (11), prompting the receiver to generate
Congestion Notification Packets (CNPs), which inform the source to throttle its transmission rate. Unlike
PFC, ECN aims to gradually reduce congestion without halting traffic completely or triggering packet
drops.

When deploying ECN in a VXLAN overlay, it is essential to ensure that ECN markings from the outer
VXLAN/IP headers are copied into the inner payload headers. This enables congestion signals detected
in the transport layer (the VXLAN network) to correctly propagate to the inner RoCEv2 flows, ensuring
that the devices generating the RoCEv2 traffic can be notified of congestion so they can respond
accordingly. The QFX5240 switches will perform this function automatically without the need for any
additional configuration.

Best Practice: Combining PFC and ECN provides the most effective congestion control strategy in a
lossless IP fabric supporting RoCEv2. Their parameters must be carefully tuned so that ECN mechanisms
are triggered before PFC.

For more detailed guidance, refer to /ntroduction to Congestion Control in Juniper Al Networks , which
outlines best practices for building lossless fabrics for Al workloads using DCQCN (ECN and PFC)
congestion control methods alongside Dynamic Load Balancing (DLB). The document is based on

https://www.juniper.net/documentation/us/en/software/nce/congestion-control-ai-ml/congestion-control-ai-ml.pdf#:~:text=This%20document%20provides%20an%20introductory%20look%20at%20how,PFC%29%20congestion%20control%20methods%20in%20Juniper%20AI%2FML%20networks.

validation against DLRM training models and demonstrates how ECN thresholds, PFC parameters, input
drops, and tail drops can be monitored and adjusted to optimize fabric performance for RoCEv2 traffic.

NOTE: While we provide general recommendations and lab-validated parameters, each Al
workload may present distinct traffic patterns. Class of Service (CoS) and load balancing
attributes might need to be further tuned to match the specific characteristics of a particular
model and cluster environment.

This leaf and spines nodes in the JVD are configured with CoS parameters that were determined to
provide the best performance.

The following configuration is applied uniformly across all devices in the fabric.

Traffic Classification

set class-of-service classifiers dscp fabric-dscp forwarding-class CNP loss-priority low code-points 110000
set class-of-service classifiers dscp fabric-dscp forwarding-class NO-LOSS loss-priority low code-points
011010

set class-of-service interfaces et-* unit * classifiers dscp fabric-dscp

Traffic classification is based on DSCP and implemented using the fabric-dscp classifier, which defines
two forwarding classes: NO-LOSS and CNP. This classifier is applied to all et-* unit * logical interfaces.

All incoming traffic with DSCP 011010 (26) is classified as NO-LOSS, while traffic marked with DSCP
110000 (48) is classified as CNP. All GPU servers are configured to mark RoCEv2 traffic with DSCP 26
and Congestion Notification Packets (CNPs) with DSCP 48.

NOTE: Refer to Configuring NVIDIA DCQCN - ECN section of the Al Data Center Network with
Juniper Apstra, NVIDIA GPUs, and WEKA Storage JVD and the Configuring AMD DCQCN -
ECN of the Al Data Center Network with Juniper Apstra, AMD GPUs, and Vast Storage JVD for
details on how to configure DCQCN parameters on the Nvidia and AMD GPU servers.

set class-of-service forwarding-classes class CNP queue-num 3
set class-of-service forwarding-classes class NO-LOSS queue-num 4

set class-of-service forwarding-classes class NO-LOSS no-loss

https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/nvidia_configuration.html#Toc185408625__configuring_nvidia_dcqcn_ecn
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-amd/amd_configuration.html#Toc191368797__congestion_control_cc_or_ecn_explicit_congestion_notification
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-amd/amd_configuration.html#Toc191368797__congestion_control_cc_or_ecn_explicit_congestion_notification
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-amd/

set class-of-service forwarding-classes class NO-LOSS pfc-priority 3

CNPtraffic is assigned to output queue 3, while NO-LOSS traffic is assigned to output queue 4.

Queue 4 is configured as a lossless using the no-loss attribute, and it mapped to PFC priority 3. Defining
a queue as lossless ensures that packets mapped to this class are not dropped due to congestion, an
essential requirement for ROCEv2. Configuring a forwarding class as lossless also impacts buffer
allocation on the switch, reserving additional space to support flow control mechanisms such as PFC.

There are two types of buffers:

e Shared Buffer Pool: A global memory space dynamically shared by all ports. It is partitioned between
lossy and lossless traffic types. Larger shared buffers help absorb traffic bursts.

e Dedicated Buffer Pool: A reserved portion of memory allocated per port which is then divided among
the queues on that port. Though it can be tuned a minimum amount is always reserved by the
system. A larger dedicated buffer pool means congestion on one port is less likely to affect traffic on
another port because the traffic does not need to use as much shared buffer space. The larger the
dedicated buffer pool, the less bursty traffic the switch can handle because there is less dynamic
shared buffer memory.

The recommended values for the Shared and Dedicated Buffers in this JVD are as follows:

set class-of-service shared-buffer ingress buffer-partition lossless percent 66

set class-of-service shared-buffer ingress buffer-partition lossless dynamic-threshold 10set class-of-
service shared-buffer ingress buffer-partition lossless-headroom percent 24

set class-of-service shared-buffer ingress buffer-partition lossy percent 10

set class-of-service shared-buffer egress buffer-partition lossless percent 66

set class-of-service shared-buffer egress buffer-partition lossy percent 10

set class-of-service dedicated-buffer egress percent 30

set class-of-service dedicated-buffer ingress percent 15

Shared buffers:

o Ingress lossless percent 66: Reserves 66% of the ingress shared buffer space for lossless traffic (e.g.,
RoCEv2).

¢ Ingress lossless-headroom percent 24: Carves out an additional 24% of ingress buffer space
specifically as headroom for burst absorption. This ensures that RoCEv2 flows have sufficient space
to accommodate microbursts while waiting for PFC pause frames to take effect.

o Ingress lossy percent 10: Reserves 10% of ingress shared buffer space for lossy traffic.

https://www.juniper.net/documentation/us/en/software/junos/traffic-mgmt-qfx/topics/concept/cos-qfx-series-lossless-ieee8021p-priority-config-understanding.html#understanding-cos-ieee--p-priorities-for-lossless-traffic-flows__d7367e227
https://www.juniper.net/documentation/us/en/software/junos/traffic-mgmt-qfx/topics/concept/cos-qfx-series-buffer-configuration-understanding.html

o Ingress lossless dynamic-threshold 10: Allows the lossless buffer pool to dynamically expand into
unused lossy buffer space by up to 10%, providing flexibility under heavy load./

o Egress lossless percent 66: Reserves 66% of egress shared buffer space for lossless traffic.
o Egress lossy percent 10: Allocates 10% for lossy traffic.
Dedicated Buffers (per-port or per-queue):

e Ingress percent 15: Allocates 15% of the total ingress buffer capacity as dedicated buffers. These are
not shared and are reserved for specific traffic classes or ports.

e Egress percent 30: Reserves 30% of egress buffer space for dedicated use.

When this buffer space begins to fill, the PFC mechanism sends Ethernet PAUSE frames to the traffic
source instructing it to temporarily halt transmission and prevent packet loss.

Since traffic classification is DSCP-based and interfaces between GPU servers and leaf nodes are
untagged, the PFC implementation is DSCP based PFC. The congestion-notification-profile pfc, which is
applied to all et-* interfaces, defines operation details for PFC.

set class-of-service interfaces et-* congestion-notification-profile pfc

set class-of-service congestion-notification-profile pfc pfc-watchdog

set class-of-service congestion-notification-profile pfc input dscp code-point 011010 pfc

set class-of-service congestion-notification-profile pfc output ieee-802.1 code-point @11 flow-control-queue
4

NOTE: The congestion-notification-profile might be interpreted as related to Congestion
Notification Packets (ECN). congestion-notification-profile can also be found abbreviated as CNP
in some documentation. However, this profile defines the behavior of PFC, not ECN.

The PFC watchdog function monitors for deadlock or stuck queues caused by persistent PFC pause
conditions. If a queue remains paused for too long (indicating possible head-of-line blocking), the
watchdog can take corrective actions to avoid traffic stall conditions.

The input dscp code-point 011010 pfc statement specifies that incoming traffic marked with DSCP
value 011010 (decimal 26) should trigger PFC when congestion is detected. Essentially, if DSCP 26
(RoCEv2) traffic is experiencing congestion, PFC frames for priority 3 will be generated to pause
upstream senders (PFC priority 3 mapped to code point 26). The pause frames will be generated for a
priority 3 based on the forwarding-class NO-LOSS configuration previously described.

In the example below:

https://www.juniper.net/documentation/us/en/software/junos/traffic-mgmt-qfx/cos/topics/concept/cos-lossless-l3-dscp-pfc-understanding.html
https://www.juniper.net/documentation/us/en/software/junos/cos/topics/topic-map/cos-pfc-watchdog-configure.html
https://www.juniper.net/documentation/us/en/software/junos/traffic-mgmt-qfx/cos/topics/concept/cos-lossless-l3-dscp-pfc-understanding.html

Figure 52: PFC Pause Frames Generation Example

QUEUE 4

;

» -------> prio 3 ﬁ
et-0/0/0:0 | *e

t-0/0/1:0
=

PAUSE FRAME [+

Destination address (6 bytes) = 01:80:C2:00:00:01

Source address (6 bytes) = MAC address of QFX interface et-0/0/0:0

Type (2 bytes) = 0x8808 (indicates MAC Control frame)

Opcode (2 bytes) = 0x0101 (indicates PFC frame)

Class Enable Vector (1 byte) = 0x08 Bitmask (indicates PFC is active for priority 3)
Reserved (1 byte) = 0 (Must be zero)

Pause Time for Priority O (2 bytes) = 0 (Quanta to pause traffic with CoS 0)

Pause Time for Priority 1 (2 bytes) = O (Quanta to pause traffic with CoS 1)

Pause Time for Priority 2 (2 bytes) = 0 (Quanta to pause traffic with CoS 2)

Pause Time for Priority 3 (2 bytes) = Non-zero value (Quanta to pause traffic with CoS 3)

Pause Time for Priority 7 (2 bytes) = O (Quanta to pause traffic with CoS 7)

where Quanta = 512 bit times.
The actual pause duration depends on the link speed.
A value of 0 indicates no pause.

The combination of the following commands applied to interfaces et-0/0/0:0 and et-0/0/1:0, configures
the device to classify all inbound traffic with DSCP 26 to the forwarding class NO-LOSS which is
assigned to Queue 4, and mapped to pfc-priority 3, makes queue 4 a no-loss queue, and enables PFC for
traffic with DSCP 26

set class-of-service classifiers dscp fabric-dscp forwarding-class NO-LOSS loss-priority low code-points
011010

set class-of-service forwarding-classes class NO-LOSS queue-num 4

set class-of-service forwarding-classes class NO-LOSS no-loss

set class-of-service forwarding-classes class NO-LOSS pfc-priority 3

set class-of-service congestion-notification-profile pfc input dscp code-point 011010 pfc

The output ieee-802.1 code-point 011 flow-control-queue 4 statement specifies that when paused
frames with priority 3 are received, traffic for queue 4 must stop.

136

137

Figure 53: PFC Received Pause Frames Behavior

i i QUEUE4
DSCP =26
N pno'=3@
et-0/0/0:0

et-0/0/1:0
i —

PAUSE FRAME

T R e) Destination address (6 bytes) = 01:80:C2:00:00:01
e il i Source address (6 bytes) = MAC address of neighbor on interface et-0/0/1:0

i) Type (2 bytes) = 0x8808 (indicates MAC Control frame)

Opcode (2 bytes) = 0x0101 (indicates PFC frame)

Class Enable Vector (1 byte) = 0x08 Bitmask (indicates PFC is active for priority 3)

Reserved (1 byte) = 0 (Must be zero)

Pause Time for Priority 0 (2 bytes) = 0 (Quanta to pause traffic with CoS Q)

Pause Time for Priority 1 (2 bytes) = @ (Quanta to pause traffic with CoS 1)

Pause Time for Priority 2 (2 bytes) = O (Quanta to pause traffic with CoS 2)

Pause Time for Priority 3 (2 bytes) = Non-zero value (Quanta to pause traffic with CoS 3)

Frane 3: 64 bytes on wire (512
Ethernet 13, Src: Junipert_es;
De:

1OBFC) Pause (Bx0101)

Pause Time for Priority 7 (2 bytes) = O (Quanta to pause traffic with CoS 7)

where Quanta = 512 bit times.
The actual pause duration depends on the link speed.
A value of O indicates no pause.

Traffic Scheduling

set class-of-service interfaces et-* scheduler-map smi
set class-of-service scheduler-maps sm1 forwarding-class CNP scheduler s2-cnp
set class-of-service scheduler-maps sm1 forwarding-class NO-LOSS scheduler si

The scheduler map sm1 is applied to all et-* interfaces and defines how traffic for each forwarding class
is scheduled.

Two schedulers are included:
e sl for NO-LOSS traffic (queue 4)

e s2-cnp for CNP traffic (queue 3)

NO-LOSS Traffic Scheduling (Scheduler s1)

set class-of-service schedulers s1 drop-profile-map loss-priority any protocol any drop-profile dp1
set class-of-service schedulers s1 explicit-congestion-notification
set class-of-service drop-profiles dpl1 interpolate fill-level 55

set class-of-service drop-profiles dpl interpolate fill-level 90

https://www.juniper.net/documentation/us/en/software/junos/traffic-mgmt-qfx/topics/task/cos-schedulers-qfx-series-cli.html#:~:text=explicit-congestion-notification%20%E2%80%94Enables%20ECN%20on%20a%20best-effort%20queue.%20ECN,between%20the%20endpoints%20for%20ECN%20to%20work%20properly.

set class-of-service drop-profiles dpl interpolate drop-probability 0

set class-of-service drop-profiles dpl1 interpolate drop-probability 100

Scheduler s1 controls how traffic in the NO-LOSS forwarding class (queue 4) is serviced. It applies the

drop-profile dp1 and enables Explicit Congestion Notification (ECN) marking using the explicit-

congestion-notification statement.

NOTE: Drop profiles in Junos are commonly used to control how aggressively packets are
dropped as the queue buffer fills up. However, when ECN is enabled, the profile is used to mark
packets instead of dropping them. Marking packets means setting the Congestion Experienced
(CE) bit in the IP header based on the configured thresholds.

Figure 54: ECN Profile Example

8

o
fe]

CE MARKING PROBABILITY (%) ¥ %

/

50 0 100
QUEUE FULLNESS (%)

| MARKED® 1 MARKED |

I
| (rotdogped) ! (notdropped) | TAL DROPPED

1 2 3 4 5 6 7

DSCP | ecn |
01 = ECN Capable Transport(1), ECT(1)

10 = ECN Capable Transport(0), ECT(0)
11 = Congestion Experienced, CE.

The profile dp1 defines a linear drop curve where:

o At 55% buffer fill, packets are not marked (0% probability).

o At 90% buffer fill, all matching packets are marked (100% probability).

e Between 55% and 90%, the marking probability increases linearly from 0% to 100%.

This approach ensures early congestion feedback to RoCEv2 endpoints while maintaining lossless

delivery.

CNP Traffic Scheduling (Scheduler s2-cnp)

Scheduler s2-cnp specifies how CNPtraffic in queue 3 is serviced. It assigns the queue strict-high
priority and reserves 5% of the interface’s bandwidth:

set class-of-service schedulers s2-cnp

transmit-rate percent
5
set class-of-service schedulers s2-cnp

priority strict-high

Assigning strict-high priority along with a minimum bandwidth ensures that, during congestion, the
Congestion Notification Packets (CNPs) required to trigger source-based rate reduction in DCQCN can
be transmitted across the fabric.

NOTE: Strict-high priority queues are always serviced before any other queues, except for other
high-priority queues, which could potentially starve lower-priority traffic. However, the risk of
starvation in this case is minimal, because CNP traffic is generally very low volume. As a result,
there is no need to rate-limit this queue.

Congestion Management and Congestion Control Verification

The show class-of-service interface <interface> command shows the scheduler-map, whether congestion-
notification is enabled and the profile name, as well as the classifier applied to the interface.

jnpr@stripel-leaf2> show class-of-service interface et-0/0/0:0
Physical interface: et-0/0/0:0, Index: 1292
Maximum usable queues: 12, Queues in use: 5
Exclude aggregate overhead bytes: disabled
Logical interface aggregate statistics: disabled
Scheduler map: smi
Congestion-notification: Enabled, Name: cnp, Index: 1
Logical interface: et-0/0/0:0.0, Index: 1256
Object Name Type Index
Classifier fabric-dscp dscp 5

https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/statement/transmit-rate-edit-cos.html
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/statement/transmit-rate-edit-cos.html
https://www.juniper.net/documentation/us/en/software/junos/cos/topics/concept/schedulers-priority-overview-cos-config-guide.html#:~:text=Junos%20supports%20multiple%20levels%20of%20transmission%20priority%2C%20which,software%20to%20service%20higher-priority%20queues%20before%20lower-priority%20queues.
https://www.juniper.net/documentation/us/en/software/junos/cos/topics/concept/schedulers-priority-overview-cos-config-guide.html#:~:text=Junos%20supports%20multiple%20levels%20of%20transmission%20priority%2C%20which,software%20to%20service%20higher-priority%20queues%20before%20lower-priority%20queues.

The show class-of-service classifier <classifier-name> command shows the mapping between DSCP values
and forwarding classes and can be used to confirm correct assignments (CNP => 48, and NO-LOSS =>
26)

jnpr@stripel-leaf2> show class-of-service classifier name fabric-dscp
Classifier: fabric-dscp, Code point type: dscp, Index: 5

Code point Forwarding class Loss priority
011010 NO-LOSS low
110000 CNP low

The show class-of-service forwarding-class command output shows the forwarding-classes to queue
mapping. Can be used to confirm correct mapping (CNP => queue 3, and NO-LOSS => queue 4), as well
and the No-loss status and PFC priority of the NO-LOSS queue.

jnpr@stripel-leaf2> show class-of-service forwarding-class

Forwarding class 1D Queue Policing priority No-Loss PFC
priority
CNP 1 3 normal disabled 0
NO-LOSS 2 4 normal enabled 3
best-effort 0 0 normal disabled 0
mcast 8 8 normal disabled 0
network-control 3 7 normal disabled 0

The show class-of-service scheduler-map sm1 command output shows the scheduler map sm1 and the
schedulers s1, and s2-cnp, including their priority, assigned rate, and whether ECN is enabled.

jnpr@spinel> show class-of-service scheduler-map smi
Scheduler map: sm1, Index: 2
Scheduler: s2-cnp, Forwarding class: CNP, Index: 7
Transmit rate: 5 percent, Rate Limit: none, Buffer size: unspecified, Buffer Limit: none,
Buffer dynamic threshold:
unspecified,
Priority: strict-high
Excess Priority: unspecified, Excess rate: unspecified, Explicit Congestion Notification:
disable, ECN pfc no assist:
disable
Drop profiles:
Loss priority Protocol Index Name
Low any 0 default-drop-profile
Medium high any 0 default-drop-profile
High any 0 default-drop-profile

Scheduler: s1, Forwarding class: NO-LOSS, Index: 6

Transmit rate: unspecified, Rate Limit: none, Buffer size: unspecified, Buffer Limit: none,
Buffer dynamic threshold:

unspecified,

Priority: low

Excess Priority: unspecified, Excess rate: unspecified, Explicit Congestion Notification:
enable, ECN pfc no assist: mark

Drop profiles:

Loss priority Protocol Index Name

Low any 0 dp1
Medium high any 0 dp1
High any 0 dp1

The show interfaces queue <interface> command combined with different options and output filter can help
determine if there have been any packet drops, ECN marking, and PFC Pause frames.

jnpr@stripel-leaf2> show interfaces queue et-0/0/0:0 forwarding-class CNP
Physical interface: et-0/0/0:0, up, Physical link is Up
Interface index: 1292, SNMP ifIndex: 703
Description: facing_spinel:et-0/0/1:0
Forwarding classes: 12 supported, 5 in use
Egress queues: 12 supported, 5 in use
Queue: 3, Forwarding classes: CNP

Queued:

Packets g 0 0 pps
Bytes 0 0 bps

Transmitted:
Packets 0 0 pps
Bytes 0 0 bps
Tail-dropped packets : 0 0 pps
Tail-dropped bytes 0 0 bps
RED-dropped packets 0 0 pps
RED-dropped bytes 0 0 bps
ECN-CE packets 0 0 pps
ECN-CE bytes 0 0 bps

The output shows the number of CNP packets (DSCP 48) that have been queued. Increments in this
value indicate congestion has been detected along the path and the receiver is sending CNP packets in
response to packets with CE = 1.

jnpr@stripel-leaf2> show interfaces queue et-0/0/0:0 forwarding-class NO-LOSS
Physical interface: et-0/0/0:0, up, Physical link is Up
Interface index: 1292, SNMP ifIndex: 703
Description: facing_spinel:et-0/0/1:0
Forwarding classes: 12 supported, 5 in use
Egress queues: 12 supported, 5 in use

Queue: 4, Forwarding classes: NO-LOSS

Queued:
Packets : 1375227202 0 pps
Bytes : 4236817861328 0 bps
Transmitted:
Packets - 1375227202 0 pps
Bytes : 4236817861328 0 bps
Tail-dropped packets : 0 0 pps
Tail-dropped bytes 0 0 bps
RED-dropped packets 0 0 pps
RED-dropped bytes 0 0 bps
ECN-CE packets 0 0 pps
ECN-CE bytes g 0 0 bps

The output shows the number of NO-LOSS packets (DSCP = 26) marked with CE=1. If this number is
increasing that is an indication that congestion has been detected.

jnpr@stripel-leaf2> show interfaces et-0/0/0:0 extensive | match ecn

Resource errors: 0, ECN Marked packets: 0

The output shows the number of packets marked with CE=1 that have been seen on interface
et-0/0/0:0.

jnpr@stripel-leaf2> show interfaces et-0/0/0:0 extensive | find "MAC Priority Flow Control

Statistics"

MAC Priority Flow Control Statistics:
Priority : @ 0 0
Priority : 1 0 0
Priority : 2 0 0
Priority : 3 0 0

Priority : 4 0 0
Priority : 5 0 0
Priority : 6 0 0
Priority : 7 0 0

The output shows the number of PFC pause frames that have been sent/received per priority on
interface et-0/0/0:0.

jnpr@stripel-leaf2> show interfaces et-0/0/0:0 extensive | find " CoS information:"
CoS information:
Direction : Output
CoS transmit queue

Bandwidth Buffer Priority Limit
% bps % usec
3 CNP 5 20000000000 r 0 strict-high none
4 NO-LOSS r r r 0 low none

The output shows bandwidth allocation, transmit rate, and queue priority for the forwarding classes
CNP, and NO-LOSS on interface et-0/0/0:0.

jnpr@stripel-leaf2> show interfaces queue buffer-occupancy et-0/0/0:0
Physical interface: et-0/0/0:0, Enabled, Physical link is Up
Interface index: 1292, SNMP ifIndex: 703
Forwarding classes: 12 supported, 5 in use
Egress queues: 12 supported, 5 in use
Queue: 0, Forwarding classes: best-effort
Queue-depth bytes
Peak : 0
Queue: 3, Forwarding classes: CNP
Queue-depth bytes
Peak : 0
Queue: 4, Forwarding classes: NO-LOSS
Queue-depth bytes
Peak : 0
Queue: 7, Forwarding classes: network-control
Queue-depth bytes
Peak : 254

Queue: 8, Forwarding classes: mcast

Queue-depth bytes
Peak : 0

The output shows peak queue occupancy for each queue on interface et-0/0/0:0.

jnpr@stripel-leaf2> show class-of-service shared-buffer

Ingress:
Total Buffer ;169207 KB
Dedicated Buffer : 4627 KB
Shared Buffer 1 143472 KB
Lossless ;94691 KB
Lossless Headroom : 34432 KB
Lossy . 14347 KB
Lossless dynamic threshold : 10
Lossy dynamic threshold ;10
Lossless Headroom Utilization:
Node Device Total Used Free
0 34432 KB 29235 KB 5197 KB
ITM@ Headroom Utilization:
Total Used Free
17216 KB 15260 KB 1956 KB
ITM1 Headroom Utilization:
Total Used Free
17216 KB 13975 KB 3241 KB
Egress:
Total Buffer ;169207 KB
Dedicated Buffer : 14162 KB
Shared Buffer 1 143472 KB
Lossless ;94691 KB
Lossy : 14347 KB

Lossy dynamic threshold : 7

The output shows systems buffer allocations.

NOTE: Juniper ITM (Ingress Traffic Manager) is a component that manages packet buffering and
gueues.

https://community.juniper.net/blogs/parthipan-ts/2025/04/25/qfx5k-series-switches-packet-buffer-architecture

Load Balancing Configuration

The fabric architecture used in this JVD for both the Frontend and backend follows the 2-stage clos
design, with every leaf node connected to all the available spine nodes, and via multiple interfaces. As a
result, multiple paths are available between the leaf and spine nodes to reach other devices.

Al traffic characteristics may impede optimal link utilization when implementing traditional Equal Cost
Multiple Path (ECMP) Static Load Balancing (SLB) over these paths. This is because the hashing
algorithm which looks at specific fields in the packet headers will result in multiple flows mapped to the
same link due to their similarities. Consequently, certain links will be favored, and their high utilization
may impede the transmission of smaller low-bandwidth flows, leading to potential collisions, congestion
and packet drops. To improve the distribution of traffic across all the available paths, either Dynamic
Load Balancing (DLB) or Global Load Balancing (GLB) can be implemented instead.

Dynamic Load Balancing (DLB)

Dynamic Load Balancing (DLB) ensures that all paths are utilized more fairly, by not only looking at the
packet headers, but also considering real-time link quality based on port load (link utilization) and port
gueue depth when selecting a path. This method provides better results when multiple long-lived flows
moving large amounts of data need to be load balanced.

DLB can be configured in two different modes:

o Per packet mode: packets from the same flow are sprayed across link members of an IP ECMP group,
which can cause packets to arrive out of order.

¢ Flowlet Mode: packets from the same flow are sent across a link member of an IP ECMP group. A
flowlet is defined as bursts of the same flow separated by periods of inactivity. If a flow pauses for
longer than the configured inactivity timer, it is possible to reevaluate the link members' quality, and
for the flow to be reassigned to a different link.

In this JVD, both the leaf and spine nodes are configured to Load Balance traffic using Dynamic Load
Balancing flowlet-mode, applied to both IPv4 and IPvé traffic.

For more information refer to Load Balancing in the Data Center which provides a comprehensive deep
dive into the various load-balancing mechanisms and their evolution to suit the needs of the data center.

The following example shows the configuration applied on all devices:

jnpr@gpu-backend-rack1-001-1leaf2> show configuration forwarding-options | display set
set forwarding-options hash-key family inet layer-3

set forwarding-options hash-key family inet layer-4

https://www.juniper.net/documentation/us/en/software/junos/interfaces-ethernet-switches/topics/topic-map/switches-interface-load-balancing.html#id-understanding-dynamic-load-balancing
https://www.juniper.net/documentation/us/en/software/junos/interfaces-ethernet-switches/topics/topic-map/switches-interface-load-balancing.html#id-understanding-dynamic-load-balancing
https://s2.bl-1.com/h/dwpj6tJL?url=https://www.juniper.net/documentation/us/en/software/nce/load-balancing-in-data-center/load-balancing-in-data-center.pdf

set forwarding-options enhanced-hash-key ecmp-dlb flowlet inactivity-interval 128
set forwarding-options enhanced-hash-key ecmp-dlb flowlet flowset-table-size 2048
set forwarding-options enhanced-hash-key ecmp-dlb ether-type ipv4

set forwarding-options enhanced-hash-key ecmp-dlb ether-type IPv6

set forwarding-options enhanced-hash-key ecmp-dlb sampling-rate 1000000

This configuration defines how flows are identified and the conditions for reassigning them to alternate
ECMP paths based on real-time congestion and flow characteristics.

The hash-key family inet layer-3 and hash-key family inet layer-4 statements configure the ECMP hashing
function to include both IP addresses and TCP/UDP ports, ensuring granular distribution of IPv4 flows
across ECMP paths.

The parameters under enhanced-hash-key modify the DLB hashing algorithm for ECMP traffic
forwarding, enabling flowlet-based detection and intelligent reassignment. These include:

o ecmp-dlb flowlet inactivity-interval

Specifies the minimum inter-packet gap (in microseconds) used to detect the boundary between
flowlets. A new flowlet is recognized when this threshold is exceeded.

The recommended value is 128 usec.

e ecmp-dlb flowset-table-size

Defines the maximum number of flowset (macroflow) entries that can be stored in the DLB hash table.
This controls how many active flows the device can track for dynamic reassignment. This value must be
a multiple of 8.

The recommended value is 2048.
e sampling rate :

Defines the sampling rate to detect congestion by configuring the QFX forwarding ASIC to sample the
port load on the egress ECMP members, and update quality scores.

The recommended value is 1,000,000, which means 1 in every million packets is sampled, balancing
overhead and responsiveness.

ether-type ipv4 and ether-type IPvé:

Enable enhanced ECMP DLB for both IPv4 and IPvé packets

Load Balancing Verification

To verify the DLB parameters currently in use, you can use the operational command: show forwarding-
options enhanced-hash-key . The output shows the values applied by the system for ECMP Dynamic Load
Balancing (DLB), including flowlet behavior.

jnpr@stripel-leaf1> show forwarding-options enhanced-hash-key
Current RTAG7 Settings

Hash-Mode :layer2-payload

Hash-Seed 1112443776
inet RTAG7 settings:

inet packet fields

protocol :yes
Destination IPv4 Addr :yes
Source IPv4 Addr :yes
destination L4 Port :yes
Source L4 Port :yes
Vlan id :no
RDMA Queue Pair :yes

inet non-packet fields
incoming port :yes
inet6 RTAG7 settings:

inet6 packet fields

next-header :yes
Destination IPv6 Addr :yes
Source IPv6 Addr :yes
destination L4 Port :yes
Source L4 Port :yes
Vlan id :no
RDMA Queue Pair :yes

inet6 non-packet fields
incoming port :yes
Hash-Parameter Settings for ECMP:
Hash Function = CRC16_BISYNC
Hash offset base = 16
Hash offset 5

Hash preprocess = 0

Hash-Parameter Settings for LAG:
Hash Function = CRC16_CCITT
Hash offset base = 0
Hash offset =5

0

Ecmp Resilient Hash = Disabled

ECMP DLB Load Balancing Options:

Hash preprocess

Load Balancing Method : Flowlet
Inactivity Interval : 128 (us)
Flowset Table size : 2048 (entries per ECMP)
Reassignment Probability Threshold : 0
Reassignment Quality Delta 10
Egress Port Load Weight : 50
EgressBytes Min Threshold : 10
EgressBytes Max Threshold : 50
Sampling Rate : 1000000
Ether Type : IPv4 IPv6

The Egress Port Load Weight shown in the output defines the weights given to port load and port queue
length when calculating the port quality score. The EgressBytes Min and EgressBytes Max Thresholds
define quality bands. DLB assigns any egress port with a port load falling below this minimum to the
highest quality band (7). Any port load larger than the maximum threshold falls into the lowest quality
band (0). DLB divides the remaining port load quantities among quality bands 1 through 6.

We recommend maintaining the default values, Egress Port Load Weight (50) EgressBytes Min Threshold
(10) and EgressBytes Max Thresholds (50). No configuration is needed to use these values.

Figure 55: DLB quality bands.

https://www.juniper.net/documentation/us/en/software/junos/ai-ml-evo/interfaces-ethernet-switches/topics/topic-map/port-quality-metric.html

149

maximum threshold = 50%

Port quality = 1

Port quality = 2
Port quality = 3
Port quality = 4
Port quality = 5
Port quality = 6

minimum threshold = 10% -----

Servers and Storage Configuration

IN THIS SECTION

NVIDIA Configuration | 149
AMD Configuration | 150
Weka Storage Configuration | 150

VAST Storage Configuration | 150

I NVIDIA Configuration

For details about how to connect and configure the NVIDIA GPU servers, including Nvidia CX7 NICs,
refer to the NVIDIA Configuration section of the Al Data Center Network with Juniper Apstra, NVIDIA
GPUs, and Weka Storage—Juniper Validated Design (JVD).

https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/nvidia_configuration.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/nvidia_configuration.html

AMD Configuration

For details about how to connect and configure the AMD GPU servers, including Broadcom Thor 2 NICs,
and AMD Pensando™ Pollara 400 NICs, refer to the AMD Configuration section of the Al Data Center
Network with Juniper Apstra, AMD GPUs, and Vast Storage—Juniper Validated Design (JVD).

Weka Storage Configuration

For details about how to connect and configure the Weka Storage devices, refer to the Weka Storage
Solution section of the Al Data Center Network with Juniper Apstra, NVIDIA GPUs, and Weka Storage—
Juniper Validated Design (JVD). document.

VAST Storage Configuration

For details about how to connect and configure the Vast Storage devices, refer to the Vast Storage
Configuration section of the Al Data Center Network with Juniper Apstra, AMD GPUs, and Vast Storage
—Juniper Validated Design (JVD).

Fabric Devices Configuration

The configurations files for the QFX devices that were used for validating the features in this solution
are posted in the following github repository:

https:/github.com/Juniper/jvd/tree/main/Data%20Center/AIDC/backend/Al_ML_Multitenancy

Full configuration example (Stripe 1 Leaf 1):

° set routing-options router-id 10.0.1.1
set routing-options autonomous-system 201
set routing-options graceful-restart

set routing-options forwarding-table export PFE-LB

https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-amd/amd_configuration.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-amd/amd_configuration.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/weka_storage_solution.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/weka_storage_solution.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/weka_storage_solution.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-amd/vast_storage_configuration.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-amd/vast_storage_configuration.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-amd/vast_storage_configuration.html
https://github.com/Juniper/jvd/tree/main/Data%20Center/AIDC/backend/AI_ML_Multitenancy

set routing-options forwarding-table ecmp-fast-reroute

LOAD BALANCING

set forwarding-options

set forwarding-options

set forwarding-options

set forwarding-options

set forwarding-options

set forwarding-options

CLASS OF SERVICE

set

class-of-service

points 110000

set

class-of-service

points 011010

set

set

set

set

set

set

set

set

set

set

class-of-service

class-of-service

class-of-service

class-of-service

class-of-service

class-of-service

class-of-service

class-of-service

class-of-service

class-of-service

hash-key family inet layer-3

hash-key family inet layer-4

enhanced-hash-key ecmp-dlb flowlet inactivity-interval 256

enhanced-hash-key ecmp-dlb flowlet flowset-table-size 2048

enhanced-hash-key ecmp-dlb ether-type ipv4

enhanced-hash-key ecmp-dlb sampling-rate 1000000

classifiers dscp mydscp forwarding-class CNP loss-priority low code-

classifiers dscp mydscp forwarding-class NO-LOSS loss-priority low code-

drop-profiles

drop-profiles

drop-profiles

drop-profiles

shared-buffer

shared-buffer

shared-buffer

shared-buffer

shared-buffer

dp1 interpolate fill-level 55

dp1 interpolate fill-level 90

dp1 interpolate drop-probability 0

dp1 interpolate drop-probability 100

ingress buffer-partition lossless percent 80

ingress buffer-partition lossless-headroom percent 10

ingress buffer-partition lossy percent 10

egress buffer-partition lossless percent 80

egress buffer-partition lossy percent 10

forwarding-classes class CNP queue-num 3

set class-of-service

set class-of-service

set class-of-service

set class-of-service

set class-of-service

flow-control-queue 4

set class-of-service

set class-of-service

set class-of-service

set class-of-service

set class-of-service

set class-of-service
profile dp1l

set class-of-service

set class-of-service

set class-of-service

BGP UNDERLAY

forwarding-classes class NO-LOSS queue-num 4

forwarding-classes class NO-LOSS no-loss

forwarding-classes class NO-LOSS pfc-priority 3

congestion-notification-profile cnp input dscp code-point 011010 pfc

congestion-notification-profile cnp output ieee-802.1 code-point 011

interfaces et-* congestion-notification-profile cnp

interfaces et-* scheduler-map sml

interfaces et-* unit * classifiers dscp mydscp

scheduler-maps sm1 forwarding-class CNP scheduler s2-cnp

scheduler-maps sm1 forwarding-class NO-LOSS scheduler si

schedulers s1 drop-profile-map loss-priority any protocol any drop-

schedulers s1 explicit-congestion-notification

schedulers s2-cnp transmit-rate percent 5

schedulers s2-cnp priority strict-high

set protocols bgp group 13clos-inet6-auto-underlay family inet6 unicast

set protocols bgp group 13clos-inet6-auto-underlay export (LEAF_TO_SPINE_FABRIC_OUT && BGP-

AOS-Policy)

set protocols bgp group 13clos-inet6-auto-underlay local-as 201

set protocols bgp group 13clos-inet6-auto-underlay multipath multiple-as

set protocols bgp group 13clos-inet6-auto-underlay bfd-liveness-detection minimum-interval

3000

set protocols bgp group 13clos-inet6-auto-underlay bfd-liveness-detection multiplier 3

set protocols bgp group 13clos-inet6-auto-underlay dynamic-neighbor UNDERLAY peer-auto-

discovery family inet6 ipv6-nd

/* AUTODISCOVERED PEER SPINE 1 */

set protocols bgp group 13clos-inet6-auto-underlay dynamic-neighbor UNDERLAY peer-auto-
discovery interface et-0/0/30:0.0

/* AUTODISCOVERED PEER SPINE 2 */

set protocols bgp group 13clos-inet6-auto-underlay dynamic-neighbor UNDERLAY peer-auto-
discovery interface et-0/0/31:0.0

/* AUTODISCOVERED PEER SPINE 3 */

set protocols bgp group 13clos-inet6-auto-underlay dynamic-neighbor UNDERLAY peer-auto-
discovery interface et-0/0/32:0.0

/* AUTODISCOVERED PEER SPINE 4 */

set protocols bgp group 13clos-inet6-auto-underlay dynamic-neighbor UNDERLAY peer-auto-
discovery interface et-0/0/33:0.0

set protocols bgp group 13clos-inet6-auto-underlay peer-as-list discovered-as-list

set policy-options as-list discovered-as-list members 101-104

BGP OVERLAY

set protocols bgp group 13clos-inet6-auto-overlay type external

set protocols bgp group 13clos-inet6-auto-overlay multihop ttl 1

set protocols bgp group 13clos-inet6-auto-overlay family route-target

set protocols bgp group 13clos-inet6-auto-overlay multipath multiple-as

set protocols bgp group 13clos-inet6-auto-overlay bfd-liveness-detection minimum-interval

3000

set protocols bgp group 13clos-inet6-auto-overlay

set protocols bgp group 13clos-inet6-auto-overlay

facing_spinel-evpn-overlay

set protocols bgp group 13clos-inet6-auto-overlay
fc00:10:0:1::1

set protocols bgp group 13clos-inet6-auto-overlay

set protocols bgp group 13clos-inet6-auto-overlay
(LEAF_TO_SPINE_EVPN_OUT && EVPN_EXPORT)

set protocols bgp group 13clos-inet6-auto-overlay

set protocols bgp group 13clos-inet6-auto-overlay

facing_spine2-evpn-overlay

set protocols bgp group 13clos-inet6-auto-overlay
fc00:10:0:1::1

set protocols bgp group 13clos-inet6-auto-overlay

set protocols bgp group 13clos-inet6-auto-overlay
(LEAF_TO_SPINE_EVPN_OUT && EVPN_EXPORT)

set protocols bgp group 13clos-inet6-auto-overlay

set protocols bgp group 13clos-inet6-auto-overlay

facing_spine3-evpn-overlay

set protocols bgp group 13clos-inet6-auto-overlay
fc00:10:0:1::1

set protocols bgp group 13clos-inet6-auto-overlay

set protocols bgp group 13clos-inet6-auto-overlay
(LEAF_TO_SPINE_EVPN_OUT &8 EVPN_EXPORT)

set protocols bgp group 13clos-inet6-auto-overlay

set protocols bgp group 13clos-inet6-auto-overlay

facing_spine4-evpn-overlay

bfd-liveness-detection multiplier 3

neighbor fc00:10::1 description

neighbor

neighbor

neighbor

neighbor

neighbor

neighbor

neighbor

neighbor

neighbor

neighbor

neighbor

neighbor

neighbor

neighbor

neighbor

fcoo:

fcoo:

fcoo:

fcoo:

fcoo:

fcoo:

fcoo:

fcoo:

fcoo:

fcoo:

fcoo:

fcoo:

fcoo:

fcoo:

fcoo:

10::

10::

10::

10::

10::

10::

10::

10::

10::

10::

10::

10::

10::

10::

10::

local-address

family evpn signaling

export

peer-as 101

description

local-address

family evpn signaling

export

peer-as 102

description

local-address

family evpn signaling

export

peer-as 103

description

set protocols bgp group 13clos-inet6-auto-overlay neighbor fc00:10::4 local-address

fc00:10:0:1::1

set protocols bgp group 13clos-inet6-auto-overlay neighbor fc00:10::4 family evpn signaling

set protocols bgp group 13clos-inet6-auto-overlay neighbor fc00:10::4 export
(LEAF_TO_SPINE_EVPN_OUT && EVPN_EXPORT)

set protocols bgp group 13clos-inet6-auto-overlay neighbor fc00:10::4 peer-as 104

set protocols bgp group 13clos-inet6-auto-overlay vpn-apply-export

/* ROUTER ADVERTISEMENTS TO SPINE1

set protocols router-advertisement

/* ROUTER ADVERTISEMENTS TO SPINE2

set protocols router-advertisement

/* ROUTER ADVERTISEMENTS TO SPINE3

set protocols router-advertisement

/* ROUTER ADVERTISEMENTS TO SPINE4

set protocols router-advertisement

/* ROUTER ADVERTISEMENTS TO SERVER

set protocols router-advertisement

set protocols router-advertisement

set protocols router-advertisement
lifetime 1800

/* ROUTER ADVERTISEMENTS TO SERVER

set protocols router-advertisement

set protocols router-advertisement

*/

interface

x/

interface

*/

interface

*/

interface

1 GPU@ */

interface

interface

interface

2 GPU@ */

interface

interface

et-0/0/30:0.0 retransmit-timer 10000

et-0/0/31:0.0 retransmit-timer 10000

et-0/0/32:0.0 retransmit-timer 10000

et-0/0/33:0.0 retransmit-timer 10000

et-0/0/0:0.0 retransmit-timer 10000

et-0/0/0:0.0 prefix fc00:200:1:1::/64

et-0/0/0:0.0 rio-prefix fc00:200:1::/56 rio-

et-0/0/1:0.0 retransmit-timer 10000

et-0/0/1:0.0 prefix fc00:200:1:2::/64

set protocols router-advertisement interface et-0/0/1:0.0 rio-prefix fc00:200:1::/56 rio-
lifetime 1800

/* ROUTER ADVERTISEMENTS TO SERVER 2 GPUQ */

set protocols router-advertisement interface et-0/0/2:0.0 retransmit-timer 10000

set protocols router-advertisement interface et-0/0/2:0.0 prefix fc00:200:1:3::/64

set protocols router-advertisement interface et-0/0/2:0.0 rio-prefix fc00:200:1::/56 rio-
lifetime 1800

TENANT ROUTING INSTANCES

set routing-instances Tenant-1 instance-type vrf

set routing-instances Tenant-1 routing-options rib Tenant-1.inet6.0 multipath

set routing-instances Tenant-1 routing-options graceful-restart

set routing-instances Tenant-1 routing-options multipath

set routing-instances Tenant-1 protocols evpn ip-prefix-routes advertise direct-nexthop

set routing-instances Tenant-1 protocols evpn ip-prefix-routes encapsulation vxlan

set routing-instances Tenant-1 protocols evpn ip-prefix-routes vni 20001

set routing-instances Tenant-1 protocols evpn ip-prefix-routes export BGP-AOS-Policy-Tenant-1

/* CONNECTION TO SERVER 1 */

set routing-instances Tenant-1 interface et-0/0/0:0.0

/* CONNECTION TO SERVER 2 */

set routing-instances Tenant-1 interface et-0/0/1:0.0

/* CONNECTION TO SERVER 3 */

set routing-instances Tenant-1 interface et-0/0/2:0.0

set routing-instances Tenant-1 interface 100.1

set routing-instances Tenant-1 route-distinguisher 10.0.1.1:2001

set routing-instances Tenant-1 vrf-target target:20001:1

ROUTING POLICIES

set policy-options

set policy-options

set policy-options

set policy-options
DEFAULT_DIRECT_V6

set policy-options

set policy-options

set policy-options

from family inet6

set policy-options

policy-statement

policy-statement

policy-statement

policy-statement

policy-statement

policy-statement

policy-statement

policy-statement

from protocol direct

Al1PodNetworks term

Al1PodNetworks term

Al1PodNetworks term

Al1PodNetworks term

Al1PodNetworks term

Al1PodNetworks term

Al1PodNetworks-10 from family inet6

Al1PodNetworks-10 from protocol direct

Al1PodNetworks-10 from interface 100.0

Al1PodNetworks-10 then community add

AllPodNetworks-10 then accept

AllPodNetworks-100 then reject

Al1PodNetworks-Tenant-1 term Al1PodNetworks-Tenant-1-10

Al1PodNetworks-Tenant-1 term AllPodNetworks-Tenant-1-10

set policy-options policy-statement AllPodNetworks-Tenant-1 term AllPodNetworks-Tenant-1-10
TENANT-1_COMMUNITY_V6

then community add

set policy-options
then accept

set policy-options

then reject

set policy-options
AllPodNetworks

set policy-options

set policy-options

policy-statement AllPodNetworks-Tenant-1 term AllPodNetworks-Tenant-1-10

policy-statement AllPodNetworks-Tenant-1 term AllPodNetworks-Tenant-1-100

policy-statement BGP-AQS-Policy term BGP-AOS-Policy-10 from policy

policy-statement BGP-AOS-Policy term BGP-AOS-Policy-10 then accept

policy-statement BGP-AOS-Policy term BGP-AQOS-Policy-20 from protocol evpn

set policy-options policy-statement BGP-A0S-Policy term BGP-AOS-Policy-20 from route-filter

0::0/0 prefix-length-range /128-/128

set policy-options policy-statement BGP-AO0S-Policy term BGP-AOS-Policy-20 then accept

set policy-options policy-statement BGP-A0S-Policy term BGP-AOS-Policy-100 then reject

set policy-options policy-statement BGP-A0S-Policy-Tenant-1 term BGP-AOS-Policy-Tenant-1-10

from policy AllPodNetworks-Tenant-1

set policy-options policy-statement BGP-AOS-Policy-Tenant-1

then accept

set policy-options policy-statement BGP-A0S-Policy-Tenant-1
from protocol evpn

set policy-options policy-statement BGP-AOS-Policy-Tenant-1
from route-filter 0::0/0 prefix-length-range /128-/128

set policy-options policy-statement BGP-A0S-Policy-Tenant-1
then community add TENANT-1_COMMUNITY_V6

set policy-options policy-statement BGP-AOS-Policy-Tenant-1

then accept

set policy-options policy-statement BGP-A0S-Policy-Tenant-1
then reject

term

term

term

term

term

term

BGP-A0S-Policy-Tenant-1-10

BGP-A0S-Policy-Tenant-1-20

BGP-A0S-Policy-Tenant-1-20

BGP-A0S-Policy-Tenant-1-20

BGP-A0S-Policy-Tenant-1-20

BGP-A0S-Policy-Tenant-1-100

set policy-options policy-statement EVPN_EXPORT term EVPN_EXPORT-4095 then accept

set policy-options policy-statement LEAF_TO_SPINE_EVPN_OUT term LEAF_TO_SPINE_EVPN_OUT-10

from protocol bgp

set policy-options policy-statement LEAF_TO_SPINE_EVPN_OUT term LEAF_TO_SPINE_EVPN_OUT-10

from community FROM_SPINE_EVPN_TIER

set policy-options policy-statement LEAF_TO_SPINE_EVPN_OUT term LEAF_TO_SPINE_EVPN_OUT-10

then reject

set policy-options policy-statement LEAF_TO_SPINE_EVPN_OUT term LEAF_TO_SPINE_EVPN_OUT-20

then accept

set policy-options policy-statement LEAF_TO_SPINE_FABRIC_OUT term LEAF_TO_SPINE_FABRIC_OUT-10

from protocol bgp

set policy-options policy-statement LEAF_TO_SPINE_FABRIC_OUT term LEAF_TO_SPINE_FABRIC_OUT-10

from community FROM

set policy-options policy-statement LEAF_TO_SPINE_FABRIC_OUT term LEAF_TO_SPINE_FABRIC_OUT-10

then reject

set policy-options
then accept

set policy-options

set policy-options

set policy-options

set policy-options

set policy-options

TELEMETRY

set system services

set system services

set system services

set system services

set system services

_SPINE_FABRIC_TIER

policy-statement LEAF_TO_SPINE_FABRIC_OUT term LEAF_TO_SPINE_FABRIC_OUT-20

policy-statement PFE-LB term 1 then load-balance per-packet

policy-statement direct from protocol direct

policy-statement direct then accept

community TENANT-1_COMMUNITY_V6 members 5:20008

community TENANT-1_COMMUNITY_V6 members 21001:26000

extension-service

extension-service

extension-service

extension-service

extension-service

request-response

request-response

request-response

request-response

request-response

grpc

grpc

grpc

grpc

grpc

ssl port 32767

ssl local-certificate aos_grpc

max-connections 30

routing-instance mgmt_junos

skip-authentication

Telemetry and Monitoring

IN THIS SECTION

Configuring QFX Switches to Provide Telemetry Information | 160

Recommended KPIs to Monitor | 181

Al cluster networks demand lossless, high-throughput, and low-latency connectivity. A key component
of maintaining performance is the collection and analysis of operational data to monitor congestion,
system health, and traffic patterns. Junos OS telemetry enables detailed tracking of critical performance
indicators, including thresholds, counters, and congestion metrics specific to Al workloads. Once
collected, this data must be analyzed, structured, and visualized to support monitoring, decision-making,
and continuous network optimization.

The following sections describe how to configure the devices to enable data collection and outline key
performance metrics recommended for the Al EVPN/VXLAN fabric solution.

Configuring QFX Switches to Provide Telemetry Information

To implement telemetry collection the switches need to be configure to allow gPRC-based access as
described in the OpenConfig and gRPC for Junos Telemetry Interface section of Junos Telemetry
Interface User Guide.

The following configuration was used on all the leaf and spine node devices for this purpose:

user@spine1> show configuration system services extension-service
request-response {
grpc {
ssl {
port 32767;
local-certificate aos_grpc;
}

routing-instance mgmt_junos;

https://www.juniper.net/documentation/us/en/software/junos/interfaces-telemetry/topics/concept/open-config-grpc-junos-telemetry-interface-understanding.html

Table 49. gRPC Configuration Commands for Junos OS

Command Description

extension-service request-response grpc Enables the gRPC interface under the extension
service framework, used for APIs like Junos Telemetry
Interface (JTI) or third-party integrations. The client
issues a request and waits for a response from the
Junos OS server.

ssl port 32767 Configures TCP port 32767 for communication using
SSL encryption.
local-certificate aos_grpc Configures authentication using a certificate named

aos_grpc to secure the gRPC session. Follow the steps
described in Configure gRPC Services to generate and
install the necessary certificates.

routing-instance mgmt_junos Binds the gRPC server to the mgmt_junos routing-
instance, meaning it only listens on the out-of-band
management interface.

To validate connectivity between the telemetry collector, use the show system connections command and
search for the ssl port number configured.

jnpr@stripe2-leaf1> show system connections | match "Address|32767"

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp6 0 0 :::32767 Tk LISTEN 11937/ jsd
tcp6 0 0 10.161.33.38:32767 10.100.1.17:56634 ESTABLISHED 11937/jsd
tcp6 0 0 10.161.33.38:32767 10.100.1.20:53184 ESTABLISHED 11937/jsd
tcp6 0 0 10.161.33.38:32767 10.100.1.20:53170 ESTABLISHED 11937/jsd

The sample output shows connections from two collectors (10.100.1.17 and 10.100.1.20).

To confirm that the collectors are actively pulling data via gRPC/gNMI and see what sensors are in use,
use:

show network-agent statistics

show network-agent statistics detail

show network-agent statistics subscription-paths <sensor-path>

show network-agent statistics juniper

https://www.juniper.net/documentation/us/en/software/junos/grpc-network-services/topics/topic-map/grpc-services-configuring.html#concept-grpc-authentication-overview

e show network-agent statistics gnmi

Example:

jnpr@stripe2-leaf1> show network-agent statistics

Subscription Details :
Subscription ID
Type
Client IP
Subscription Time (UTC)
Sensor Statistics :
Sensor Path
entries/entry/
Reporting Interval

Component(s)

Child Sensor Statistics :

Path
entries/entry/
Component
Component-1D
Path
entries/entry/
Component
Component-1D
Subscription Details :
Subscription ID
Type
Client IP
GNMI mode
Subscription Time (UTC)
Sensor Statistics :
Sensor Path
Reporting Interval
Component(s)
GNMI Sub Mode
Component ID
Sensor Path
Reporting Interval
Component(s)
GNMI Sub Mode

Child Sensor Statistics :

Path

21

: juniper

: IPv6:::ffff:10.100.1.17:56634
: Thu May 1 12:38:57 2025

: /network-instances/network-instance/mac-table/

1 0
: 12aldT™,12ald

: /network-instances/network-instance/mac-table/

: 12ald
: 65535

: /network-instances/network-instance/mac-table/

: 12aldTM
: 65535

12

: gnmi

: IPv6:::ffff:10.100.1.17:56634
: STREAM

: Thu May 1 12:38:57 2025

: /interfaces/interface/state/admin-status/
: 120

: re@/mib2d

: SAMPLE

: 65535

: /interfaces/interface/state/oper-status/
: 120

: re@/mib2d,evo-pfemand

: SAMPLE

: /interfaces/interface/state/oper-status/

Component
GNMI-SubMode
Component-1D
Path
Component
GNMI-SubMode
Component-1D
Sensor Statistics :
Sensor Path
state/admin-status/
Reporting Interval
Component(s)
GNMI Sub Mode
Component ID
Sensor Path
state/oper-status/
Reporting Interval
Component(s)
GNMI Sub Mode

Child Sensor Statistics :

Path
state/oper-status/
Component
GNMI-SubMode
Component-1D
Path
state/oper-status/
Component
GNMI -SubMode
Component-ID
Subscription Details :
Subscription ID
Type
Client IP
Subscription Time (UTC)
Sensor Statistics :
Sensor Path
Reporting Interval
Component(s)
Component ID
Subscription Details :
Subscription ID
Type

: evo-pfemand

: SAMPLE

1 0

: /interfaces/interface/state/oper-status/
: re@/mib2d

: SAMPLE

: 65535

: /interfaces/interface/subinterfaces/subinterface/

: 120

: re@/mib2d
: SAMPLE

: 65535

: /interfaces/interface/subinterfaces/subinterface/

: 120
: re@/mib2d, evo-pfemand
: SAMPLE

: /interfaces/interface/subinterfaces/subinterface/

: evo-pfemand
: SAMPLE
: 0

: /interfaces/interface/subinterfaces/subinterface/

: re@/mib2d
: SAMPLE
: 65535

13

: juniper

: IPv6:::ffff:10.100.1.17:56634
: Thu May 1 12:39:01 2025

: /junos/system/linecard/gmon-sw/
: 5

: evo-pfemand

1 0

: gnmi

Client IP

GNMI mode

Subscription Time (UTC)

Sensor Statistics :
Sensor Path
Reporting Interval
Component(s)
GNMI Sub Mode
Component ID

Subscription Details :

Subscription ID

Type

Client IP

Subscription Time (UTC)

Sensor Statistics :
Sensor Path
Reporting Interval
Component(s)

Component ID

Subscription Details :

Subscription ID

Type

Client IP

Subscription Time (UTC)

Sensor Statistics :
Sensor Path
Reporting Interval

Component(s)

Child Sensor Statistics :

Path
Component
Component-ID
Path
Component

Component-1D

Subscription Details :

Subscription ID

Type

Client IP

Subscription Time (UTC)

Sensor Statistics :
Sensor Path

Reporting Interval

: IPv6:::ffff:10.161.38.48:39588
: STREAM
: Thu May 1 12:39:15 2025

: /components/component/cpu/utilization/
12

: re@/ehmd
: SAMPLE

: 65535

: 5

: juniper

: IPv6:::ffff:10.161.38.48:57182
: Thu May 1 12:39:04 2025

: /junos/system/linecard/npu/memory/
1 2

: evo-pfemand

1 0

)

: juniper

: IPv6:::ffff:10.161.38.48:57182
: Thu May 1 12:39:04 2025

: /junos/system/linecard/interface/
1 2

: picd,evo-pfemand

: /junos/system/linecard/interface/
: evo-pfemand

: 0

: /junos/system/linecard/interface/
: picd

1 0

2 7

: juniper

: IPv6:::ffff:10.161.38.48:57182
: Thu May 1 12:39:04 2025

: /junos/system/linecard/gmon-sw/
1 2

Component(s)
Component ID
Subscription Details :

Subscription ID

Type

Client IP

Subscription Time (UTC)

Sensor Statistics :
Sensor Path
Reporting Interval
Component(s)
Component ID

: evo-pfemand
1 0

0 8

: juniper
: IPv6:::ffff:10.161.38.48:57182
: Thu May 1 12:39:04 2025

: /junos/system/linecard/interface/queue/
12

: Not available

: 65535

jnpr@stripel-leaf1> show network-agent statistics detail

Subscription Details :
Subscription ID
Type
Client IP
GNMI mode
Subscription Time (UTC)
Sensor Statistics :
Sensor Path
Reporting Interval
Component(s)
GNMI Sub Mode
Component ID
Average ilatency (ms)
Average Circular Buffer Used (%)
Bytes Sent
Packets Sent
Drops
Initial Sync Bytes Sent
Initial Sync Packets Sent
Initial Sync Drops

Initial Sync Average ilLatency (ms)

01

: gnmi

: ipv6:::ffff:10.161.38.194:49526
: STREAM
: Wed Oct 1 14:39:38 2025

: /components/component/cpu/utilization/

: 2

: re@/ehmd
: SAMPLE
1 65535
: 0

: 0

: 347630
: 648

: 0

: 4536

: 8

: 0

: 0

Initial Sync Average Circular Buffer Used (%) : 0

Sensor Path
utilized/
Reporting Interval
Component(s)
GNMI Sub Mode
Average ilLatency (ms)
Average Circular Buffer Used (%)
Bytes Sent

: /components/component/state/memory/

: 30

: re@/hwdre/stackl, re@/hwdre,picd

: SAMPLE
: N

: 0

1 34425

Packets Sent

Drops

Initial Sync Bytes Sent
Initial Sync Packets Sent
Initial Sync Drops

Initial Sync Average ilLatency (ms)

;131

. 7482
: 29

. 1

Initial Sync Average Circular Buffer Used (%) : 0

Child Sensor Statistics :
Path
Component
GNMI -SubMode
Component-ID
Average ilatency (ms)
Bytes Sent
Packets Sent
Drops
Initial Sync Bytes Sent
Initial Sync Packets Sent
Initial Sync Drops

Initial Sync Average ilLatency (ms) :

Path

Component

GNMI -SubMode
Component-ID

Average ilatency (ms)
Bytes Sent

Packets Sent

Drops

Initial Sync Bytes Sent
Initial Sync Packets Sent
Initial Sync Drops

Initial Sync Average ilLatency (ms) :

Path

Component

GNMI -SubMode
Component-ID

Average ilatency (ms)
Bytes Sent

Packets Sent

Drops

Initial Sync Bytes Sent
Initial Sync Packets Sent
Initial Sync Drops

: /components/component/state/memory/utilized/
: picd

: SAMPLE
: 0

: 13

: 31154
: 116

: 0

1 7220

1 28

1 0

12

: /components/component/state/memory/utilized/
: re@/hwdre

: SAMPLE

: 65535

1 0

1 928

S © O O o O

: /components/component/state/memory/utilized/
: re@/hwdre/stackl

: SAMPLE

: 65535

1 0

1 2343

: 10

: 0

1 262

avg/

Initial Sync Average ilLatency (ms) :
Sensor Statistics :

Sensor Path

Reporting Interval

Component(s)

GNMI Sub Mode

Average ilatency (ms)

Average Circular Buffer Used (%)

Bytes Sent

Packets Sent

Drops

Initial Sync Bytes Sent

Initial Sync Packets Sent

Initial Sync Drops

Initial Sync Average ilLatency (ms)

Initial Sync

Child Sensor
Path
Component
GNMI -SubMode

Component-ID

Statistics :

Average ilatency (ms)
Bytes Sent

Packets Sent

Drops

Initial Sync Bytes Sent
Initial Sync Packets Sent
Initial Sync Drops
Initial Sync Average ilLatency (ms) :
Path

Component

GNMI -SubMode

Component-ID

Average ilatency (ms)
Bytes Sent

Packets Sent

Drops

Initial Sync Bytes Sent
Initial Sync Packets Sent
Initial Sync Drops
Initial Sync Average ilLatency (ms) :

Sensor Statistics :

0

: /components/component/state/temperature/

: 30

: re@/hwdre/stack1,re@/hwdre
: SAMPLE

: 1

: 0

. 51773

: 180

: 9494
: 34

Average Circular Buffer Used (%) : 0

: /components/component/state/temperature/avg/
: re@/hwdre
: SAMPLE

: 65535

21

: 46300

: 160

: 0

: 8634

: 31

1 0

1

: /components/component/state/temperature/avg/
: re@/hwdre/stackl
: SAMPLE

: 65535

1 0

: 5473

: 20

: 0

: 860

03

1 0

1

Sensor Path : /components/component/state/used-power/

Reporting Interval : 30
Component(s) : re@/hwdre/stack1, re@/hwdre
GNMI Sub Mode : SAMPLE
Average ilatency (ms) 12
Average Circular Buffer Used (%))
Bytes Sent . 15636
Packets Sent : 65
Drops : 0
Initial Sync Bytes Sent : 2615
Initial Sync Packets Sent 1
Initial Sync Drops : 0
Initial Sync Average ilLatency (ms))

Initial Sync Average Circular Buffer Used (%) : 0
Child Sensor Statistics :

Path : /components/component/state/used-power/
Component : re@/hwdre

GNMI -SubMode : SAMPLE
Component-ID : 65535

Average ilatency (ms))

Bytes Sent 1 13453

Packets Sent 55

Drops 1 0

Initial Sync Bytes Sent : 2375

Initial Sync Packets Sent : 10

Initial Sync Drops 10

Initial Sync Average ilLatency (ms) : 3

Path : /components/component/state/used-power/
Component : re@/hwdre/stackl
GNMI -SubMode : SAMPLE
Component-ID : 65535

Average ilatency (ms) : 0

Bytes Sent : 2183

Packets Sent : 10

Drops 1 0

Initial Sync Bytes Sent 1 240

Initial Sync Packets Sent s 1

Initial Sync Drops 10

Initial Sync Average ilLatency (ms) : 2
Subscription Details :
Subscription ID 12
Type : juniper
Client IP : ipv6:::ffff:10.161.38.194:45730

Subscription Time (UTC) : Wed Oct 1 14:40:14 2025
Sensor Statistics :

Sensor Path : /junos/system/linecard/npu/memory/
Reporting Interval 1 2
Component(s) : evo-pfemand
Component ID : 0

Average ilatency (ms) : 0

Average Circular Buffer Used (%))

Bytes Sent . 532438
Packets Sent : 54

Drops 0

Initial Sync Bytes Sent 0

Initial Sync Packets Sent 1 0

Initial Sync Drops 0

Initial Sync Average ilLatency (ms) 0

Initial Sync Average Circular Buffer Used (%) 0

Subscription Details :

Subscription ID 1 3
Type : juniper
Client IP : ipv6:::ffff:10.161.38.194:45730
Subscription Time (UTC) : Wed Oct 1 14:40:14 2025
Sensor Statistics :
Sensor Path : /interfaces/interface/state/
Reporting Interval 1 2
Component(s) : re@/mgmt-ethd, re@/mib2d,picd, evo-pfemand
Average ilatency (ms))
Average Circular Buffer Used (%) 1 0
Bytes Sent 1 3748322
Packets Sent 1 329
Drops 0
Initial Sync Bytes Sent 0
Initial Sync Packets Sent 0
Initial Sync Drops : 0
Initial Sync Average ilLatency (ms) 0
Initial Sync Average Circular Buffer Used (%) 0

Child Sensor Statistics :

Path : /junos/system/linecard/interface/
Component : evo-pfemand

Component-1D : 0

Average ilatency (ms) : 0

Bytes Sent : 651076

Packets Sent : 54

Drops 1 0

Initial Sync Bytes Sent
Initial Sync Packets Sent
Initial Sync Drops

Initial Sync Average ilLatency (ms) :

Path

Component

Component-1D

Average ilatency (ms)
Bytes Sent

Packets Sent

Drops

Initial Sync Bytes Sent
Initial Sync Packets Sent
Initial Sync Drops

Initial Sync Average ilLatency (ms) :

Path

Component

Component-ID

Average ilatency (ms)
Bytes Sent

Packets Sent

Drops

Initial Sync Bytes Sent
Initial Sync Packets Sent
Initial Sync Drops

Initial Sync Average ilLatency (ms) :

Path

Component

Component-1D

Average ilatency (ms)
Bytes Sent

Packets Sent

Drops

Initial Sync Bytes Sent
Initial Sync Packets Sent
Initial Sync Drops

Initial Sync Average ilLatency (ms) :

Subscription Details :

Subscription ID 1 4

Type
Client IP

Subscription Time (UTC)

: juniper
: ipv6:::ffff:10.161.38.194:45730

: Wed Oct

Sensor Statistics :

S © O

: /junos/system/linecard/interface/
: picd

1 0

: 0

: 771043

S © © O

: /interfaces/interface/state/
: re@/mgmt-ethd

: 65535

1 0

1 34318

: 55

S © ©O O

: /interfaces/interface/state/
: re@/mib2d

: 65535

: 0

: 2291885

: 165

1 0

S O ©

1 14:40:14 2025

Sensor Path : /junos/system/linecard/interface/queue/
Reporting Interval 1 2

Component(s) : Not available

Component ID : 65535

Average ilLatency (ms)

Average Circular Buffer Used (%)

Bytes Sent

Packets Sent

0
0
0
0
Drops : 0
Initial Sync Bytes Sent 0
Initial Sync Packets Sent 0
Initial Sync Drops 0
Initial Sync Average ilLatency (ms) 0
Initial Sync Average Circular Buffer Used (%) 0
Subscription Details :
Subscription ID : 5
Type : juniper
Client IP : ipv6:::ffff:10.161.38.194:45730
Subscription Time (UTC) : Wed Oct 1 14:40:14 2025
Sensor Statistics :
Sensor Path : /junos/system/linecard/gmon-sw/
Reporting Interval 1 2
Component(s) : evo-pfemand
Component ID : 0
Average ilatency (ms) : 0
Average Circular Buffer Used (%))
Bytes Sent . 423086
Packets Sent : 54
Drops
Initial Sync Bytes Sent

0
0
Initial Sync Packets Sent 1 0
Initial Sync Drops 0
Initial Sync Average ilLatency (ms) 0
Initial Sync Average Circular Buffer Used (%) 0

Subscription Details :

Subscription ID : 6
Type : juniper
Client IP : ipv6:::ffff:10.161.53.17:36216
Subscription Time (UTC) : Wed Oct 1 14:40:26 2025
Sensor Statistics :
Sensor Path : /network-instances/network-instance/mac-
table/entries/entry/

Reporting Interval : 0

Component(s)
Average ilatency (ms)
Average Circular Buffer Used (%)
Bytes Sent
Packets Sent
Drops
Initial Sync Bytes Sent
Initial Sync Packets Sent
Initial Sync Drops
Initial Sync Average ilLatency (ms)
Initial Sync Average Circular Buffer Used (
Child Sensor Statistics :
Path
entries/entry/
Component
Component-ID
Average ilatency (ms)
Bytes Sent
Packets Sent
Drops
Initial Sync Bytes Sent
Initial Sync Packets Sent
Initial Sync Drops
Initial Sync Average ilLatency (ms) :
Path
entries/entry/
Component
Component-ID
Average ilatency (ms)
Bytes Sent
Packets Sent
Drops
Initial Sync Bytes Sent
Initial Sync Packets Sent
Initial Sync Drops
Initial Sync Average ilLatency (ms) :
Subscription Details :

Subscription ID 2 7

Type : gnmi
Client IP : ipv6:::
GNMI mode : STREAM
Subscription Time (UTC) : Wed Oct

Sensor Statistics :

: 12aldTM,12ald
0

10

: 0
0
0

1 2152

%)

: /network-instances/network-instance/mac-table/

: 12ald
: 65535
: 0

: /network-instances/network-instance/mac-table/

: 12aldT™
: 65535
: 0

ffff:10.161.53.17:36216

1 14:40:26 2025

Sensor Path . /interfaces/interface/state/admin-

status/
Reporting Interval : 120
Component(s) : re0/mib2d
GNMI Sub Mode : SAMPLE
Component ID : 65535

Average ilatency (ms) 0
Average Circular Buffer Used (%) 0
Bytes Sent : 0
Packets Sent 0

0

Drops

Initial Sync Bytes Sent : 21669

Initial Sync Packets Sent . 87

Initial Sync Drops : 0

Initial Sync Average ilLatency (ms) 1 4

Initial Sync Average Circular Buffer Used (%) : 0

Sensor Path : /interfaces/interface/state/oper-status/
Reporting Interval : 120

Component(s) : evo-pfemand, re@/mib2d

GNMI Sub Mode : SAMPLE

Average ilatency (ms) 0
Average Circular Buffer Used (%) 0
Bytes Sent : 0
Packets Sent 0

0

Drops

Initial Sync Bytes Sent 1 41497
Initial Sync Packets Sent : 168
Initial Sync Drops : 0
Initial Sync Average ilLatency (ms) ¢ 3

Initial Sync Average Circular Buffer Used (%) : 0
Child Sensor Statistics :

Path : /interfaces/interface/state/oper-status/
Component : evo-pfemand
GNMI -SubMode : SAMPLE

Component-1D 0
Average ilatency (ms) 0
Bytes Sent 1 0
Packets Sent 0
0
1

Drops

Initial Sync Bytes Sent 9943
Initial Sync Packets Sent : 81
Initial Sync Drops 10

Initial Sync Average ilLatency (ms) : 3

Path

: /interfaces/interface/state/oper-status/

Component : re@/mib2d
GNMI -SubMode : SAMPLE
Component-ID : 65535
Average ilatency (ms))

Bytes Sent 1 0

Packets Sent : 0

Drops : 0

Initial Sync Bytes Sent : 21554
Initial Sync Packets Sent . 87
Initial Sync Drops 1 0

Initial Sync Average ilatency (ms) : 4
Sensor Statistics :
Sensor Path : /interfaces/interface/subinterfaces/
subinterface/state/admin-status/

Reporting Interval : 120
Component(s) : re@/mib2d
GNMI Sub Mode : SAMPLE
Component ID : 65535
Average ilatency (ms) 0
Average Circular Buffer Used (%) 1 0
Bytes Sent : 0
Packets Sent 0
Drops 0
Initial Sync Bytes Sent 1 31742
Initial Sync Packets Sent : 91
Initial Sync Drops : 0
Initial Sync Average ilLatency (ms) 112

Initial Sync Average Circular Buffer Used (%) : 0

Sensor Path

subinterface/state/oper-status/

. /interfaces/interface/subinterfaces/

Reporting Interval : 120
Component(s) : evo-pfemand, re@/mib2d
GNMI Sub Mode : SAMPLE
Average ilatency (ms) 0
Average Circular Buffer Used (%))
Bytes Sent : 0
Packets Sent 0
Drops 0
Initial Sync Bytes Sent : 63249
Initial Sync Packets Sent : 180
Initial Sync Drops : 0
Initial Sync Average ilLatency (ms) 1 4

Initial Sync Average Circular Buffer Used (%) : 0
Child Sensor Statistics :
Path : /interfaces/interface/subinterfaces/

subinterface/state/oper-status/
Component
GNMI-SubMode
Component-1D
Average ilatency (ms)
Bytes Sent
Packets Sent
Drops
Initial Sync Bytes Sent
Initial Sync Packets Sent
Initial Sync Drops
Initial Sync Average ilLatency (ms) :
Path

subinterface/state/oper-status/

S © © O

: 30
: 89
1 0

1

: /i

: evo-pfemand
. SA

MPLE

750

nterfaces/interface/subinterfaces/

Component : re@/mib2d
GNMI -SubMode : SAMPLE
Component-ID : 65535
Average ilatency (ms))
Bytes Sent 1 0
Packets Sent : 0
Drops : 0
Initial Sync Bytes Sent 1 32499
Initial Sync Packets Sent : 91
Initial Sync Drops 1 0
Initial Sync Average ilLatency (ms) : 6
Subscription Details :
Subscription ID : 8
Type : juniper
Client IP : ipv6:::ffff:10.161.53.17:36216
Subscription Time (UTC) : Wed Oct 1 14:40:29 2025

Sensor Statistics :
Sensor Path
Reporting Interval
Component(s)
Component ID
Average ilatency (ms)
Average Circular Buffer Used (%)
Bytes Sent
Packets Sent

Drops

: /junos/system/linecard/gmon-sw/
: 5

: evo-pfemand

. 0

: 0

. 0

: 109920

. 15

: 0

Initial Sync Bytes Sent

Initial Sync Packets Sent

Initial Sync Drops

Initial Sync Average ilLatency (ms)

Initial Sync Average Circular Buffer Used (
jnpr@stripel-leaf1> show network-agent statistics s
oper-status/ detail

Subscription Details :

Subscription ID 12

Type : gnmi
Client IP : IPv6:::
GNMI mode : STREAM
Subscription Time (UTC) : Thu May

Sensor Statistics :
Sensor Path
Reporting Interval
Component(s)
GNMI Sub Mode
Average ilatency (ms)
Average Circular Buffer Used (%)
Bytes Sent
Packets Sent
Drops
Initial Sync Bytes Sent
Initial Sync Packets Sent
Initial Sync Drops
Initial Sync Average ilLatency (ms)
Initial Sync Average Circular Buffer Used (
Child Sensor Statistics :
Path
Component
GNMI-SubMode
Component-1D
Average ilatency (ms)
Bytes Sent
Packets Sent
Drops
Initial Sync Bytes Sent
Initial Sync Packets Sent
Initial Sync Drops
Initial Sync Average ilLatency (ms) :
Path

Component

: 182314
: 12
: 0
: 0
%) : 0

ubscription-paths /interfaces/interface/state/

ffff:10.161.53.17:56132

1 14:49:53 2025

: /interfaces/interface/state/oper-status/
0 120
: re@/mib2d,evo-pfemand
: SAMPLE
03
. 0
: 2328768
: 8939
: 0
1 40679
: 165
. 0
: 4
%) : 0

: /interfaces/interface/state/oper-status/
: evo-pfemand
: SAMPLE

1 0

12

: 1087006

. 4187

1 0

: 19165

: 18

: 0

2

: /interfaces/interface/state/oper-status/
: re@/mib2d

GNMI -SubMode : SAMPLE

Component-ID : 65535
Average ilatency (ms) : 5

Bytes Sent 1 1241762
Packets Sent : 4752
Drops : 0
Initial Sync Bytes Sent : 21514
Initial Sync Packets Sent . 87
Initial Sync Drops 1 0

Initial Sync Average ilLatency (ms) : 5

To confirm the status of sensors, you can use: show agents sensors

jnpr@stripel-leaf1> show agent sensors

Sensor Information :

Name : sensor_1000
Resource : /network-instances/network-instance/mac-table/
entries/entry/
Version : 1.0
Sensor-id 1 562949953421313
Subscription-ID : 1000
Component(s) : re0/12ald-agent
Profile Information :
Name : export_1000
Reporting-interval 10
Payload-size : 5000
Address : 0.0.0.0
Port : 1000
Timestamp : ntp
Format : GPB
Sensor Information :
Name : sensor_1001
Resource : /interfaces/interface/state/admin-status/
Version : 1.0
Sensor-id : 562949953421443
Subscription-ID : 1001
Component(s) : re@/mib2d
Profile Information :
Name : export_1001
Reporting-interval : 120
Payload-size : 5000

Address :0.0.0.0

Port
Timestamp

Format

Sensor Information :

Name

Resource

Version

Sensor-id

Subscription-ID

Component(s)

Profile Information :
Name
Reporting-interval
Payload-size
Address
Port
Timestamp
Format

Sensor Information :

Name

Resource

state/admin-status/

Version

Sensor-id

Subscription-ID

Component(s)

Profile Information :
Name
Reporting-interval
Payload-size
Address
Port
Timestamp
Format

Sensor Information :

Name

Resource

state/oper-status/

Version
Sensor-id
Subscription-ID
Component(s)

Profile Information :

: 1000
: ntp
: JSON

: sensor_1002

: /interfaces/interface/state/oper-status/
: 1.0

: 562949953421314

: 1002

: re@/evoaft-jvisiond-brcm, re@/mib2d

: export_1002
: 120

: 5000

: 0.0.0.0

: 1000

: ntp

: JSON

: sensor_1003

: /interfaces/interface/subinterfaces/subinterface/

: 1.0

1 562949953421444
: 1003

: re@/mib2d

: export_1003
: 120

: 5000
:0.0.0.0

: 1000

: ntp

: JSON

: sensor_1004

: /interfaces/interface/subinterfaces/subinterface/

;1.0
1 562949953421316
: 1004

: re@/evoaft-jvisiond-brcm, re@/mib2d

Name
Reporting-interval
Payload-size
Address

Port

Timestamp

Format

Sensor Information :

Name

Resource

Version

Sensor-id

Subscription-ID

Component(s)

Profile Information :
Name
Reporting-interval
Payload-size
Address
Port
Timestamp
Format

Sensor Information :

Name

Resource

Version

Sensor-id

Subscription-ID

Component(s)

Profile Information :
Name
Reporting-interval
Payload-size
Address
Port
Timestamp

Format

Sensor Information :

Name
Resource
Version
Sensor-id

Subscription-ID

: export_1004
: 120

: 5000

: 0.0.0.0

: 1000

: ntp

: JSON

: sensor_1005
: /components/component/cpu/utilization/
: 1.0

: 562949953421450
: 1005

: re@/ehmd

: export_1005
1 2

: 5000
:0.0.0.0

: 1000

: ntp

: GPB

: sensor_1006

: /junos/system/linecard/npu/memory/
;1.0

: 562949953421449

: 1006

: red/evoaft-jvisiond-brcm

: export_1006
: 2

: 5000

: 0.0.0.0

: 1000

: ntp

: GPB

: sensor_1007

: /junos/system/linecard/gmon-sw/
: 1.0

: 562949953421452

: 1007

Component(s) : re@/evoaft-jvisiond-brcm
Profile Information :

Name : export_1007
Reporting-interval 12
Payload-size : 5000
Address : 0.0.0.0
Port : 1000
Timestamp : ntp
Format : GPB
Sensor Information :
Name : sensor_1008
Resource : /interfaces/interface/state/
Version : 1.0
Sensor-id 1 562949953421451
Subscription-ID : 1008
Component(s) : re@/evoaft-jvisiond-brcm, re@/mgmt-ethd, re@/mib2d
Profile Information :
Name : export_1008
Reporting-interval 1 2
Payload-size : 5000
Address :0.0.0.0
Port : 1000
Timestamp : ntp
Format : GPB
Sensor Information :
Name : sensor_1009
Resource : /junos/system/linecard/gmon-sw/
Version : 1.0
Sensor-id 1 562949953421427
Subscription-ID : 1009
Component(s) : re@/evoaft-jvisiond-brcm

Profile Information :

Name : export_1009
Reporting-interval : 5
Payload-size : 5000
Address :0.0.0.0
Port : 1000
Timestamp : ntp
Format : GPB
Sensor Information :
Name : sensor_1011
Resource : /1ldp/state/enabled/

Version ;1.0

Sensor-id 1 562949953421493

Subscription-ID : 1011
Component(s) : re@/12cpd-agent
Profile Information :

Name : export_1011

Reporting-interval : 30

Payload-size : 5000

Address : 0.0.0.0

Port : 1000

Timestamp : ntp

Format : JSON

Recommended KPIs to Monitor

Table 50. Recommended KPlIs for Monitoring GPU Backend Fabric with Junos Commands and Telemetry
Sensors Paths

KPI JUNOS COMMAND SENSOR
Interface show interfaces <interface> terse /interfaces/interface[name=<interface>]/state/oper-status
State
/interfaces/interface[name=<interface>]/state/admin-
status
Interface show interfaces <interface> /interfaces/interface[name=<interface>]/state/description
Description = extensive | match Description
Interface show interfaces <interface> /interfaces/interface[name=<interface>]/state/mtu
MTU extensive | match MTU
Interface show interfaces <interface> /interfaces/interface[name=<interface>]/state/high-speed
speed extensive [match speed
Interface show interfaces <interface> /interfaces/interface[name=<interface>]/state/
input Drops | extensive / find "Input errors” counters/in-discards
Interface show interfaces <interface> /interfaces/interface[name=<interface>]/state/counters/
output extensive | find "Output errors” out-discards

Drops

(Continued)

KPI

Interface
output Pkts

Interface
output
unicast Pkts

Interface
input Pkts

Interface
input
unicast Pkts

Per
interface
ECN marked
packets

Per
interface
per queue

buffer-
occupancy

Per
Interface,

Per
forwarding
class (queue)
Tail Drops

JUNOS COMMAND

run show interfaces <interface>
extensive [match "Total Packets"

run show interfaces <interface>
extensive | match Unicast

run show interfaces <interface>
extensive [match "Total Packets"

run show interfaces <interface>
extensive | match Unicast

show interfaces <interface>
extensive | match ecn

show interfaces queue buffer-
occupancy <interface>

show interfaces queue <interface>
forwarding-class <forwarding-
class> [match "Tail"

SENSOR

/interfaces/interface[name=<interface>]/state/counters/
out-pkts

/interfaces/interface[name=<interface>]/state/counters/
out-unicast-pkts

/interfaces/interface[name=<interface>]/state/
counters/in-pkts

/interfaces/interface[name=<interface>]/state/
counters/in-unicast-pkts

/state/interfaces/interface[name=<interface>/counters/
errors/out-ecn-ce-marked-pkts

/junos/system/linecard/gmon-sw/

/cos/interfaces/interface/queues/queue/ecnMarkedPkts

/junos/system/linecard/gmon-sw/

/cos/interfaces/interface/queues/queue/
peakBufferOccupancyPercent

/cos/interfaces/interface/queues/queue/
peakBufferOccupancy

/junos/system/linecard/gmon-sw/

/cos/interfaces/interface/queues/queue/tailDropPkts

(Continued)

KPI

Per
Interface
PFC Pause
frames

EVPN I3-
context

IPv6 BGP
Underlay

Advertised
routes

IPv6 BGP
Underlay
Received
routes

JUNOS COMMAND

show interfaces <interface>
extensive [math "Priority :
<priority>"

show evpn I3-context extensive
<context-name>

<context-name> = VRF routing-
instance name = Tenant name

show route advertised-routes
protocol bgp <neijghbor-address>
extensive

<neighbor-address> = auto
discovered link local address of
directly connected EBGP neighbor

show route received-routes
protocol bgp <neighbor-address>
extensive

<neighbor-address> = auto
discovered link local address of
directly connected EBGP neighbor

SENSOR

/interfaces/interface[name=<interface-name>]/ethernet/
state/counters/in-pause-pkts

/interfaces/interface[name=<interface-name>]/ethernet/
state/counters/out-pause-pkts

/junos/evpn/I3-context[context-name=<context-name>]/

<context-name> = VRF routing-instance name = Tenant
name

/junos/evpn/I3-context[context-name=<context-name>]/
advertisement-mode

/junos/evpn/I3-context[context-name=<context-name>]/
encapsulation

/junos/evpn/I3-context[context-name=<context-
name>]/ip-prefix-database

/junos/evpn/I3-context[context-name=<context-
name>]/ip-prefix-database/route-status

/network-instances/network-instance/protocols/
protocol/bgp/rib/afi-safis/afi-safi/IPvé-unicast/neighbors/
neighbor/adj-rib-out-pre/routes/

/network-instances/network-instance/protocols/
protocol/bgp/rib/afi-safis/afi-safi/IPvé-unicast/neighbors/
neighbor/adj-rib-in-pre/routes/

/network-instances/network-instance/protocols/
protocol/bgp/rib/afi-safis/afi-safi/IPv6-unicast/neighbors/
neighbor/adj-rib-in-post/routes/

(Continued)

KPI

EVPN BGP
Advertised
type-5
routes per
tenant

EVPN BGP
Received
type-5
routes per
tenant

EVPN BGP
Received
type-5
routes per
tenant per
neighbor

JUNOS COMMAND

show route advertised-routes
protocol bgp <nejghbor-address>
extensive

<neighbor-address> = IPv4 or IPv6
address of remote VTEP neighbor

show route advertised-routes
protocol bgp <nejghbor-address>
extensive table <Tenant-
name.inet.0>

<neighbor-address> = IPv4 or IPv6
address of remote VTEP neighbor

show route advertised-routes
protocol bgp <neijghbor-address>
extensive table <Tenant-
name.inet.0>

<neighbor-address> = IPv4 or IPv6
address of remote VTEP neighbor

SENSOR

/network-instances/network-instance/protocols/
protocol/bgp/rib/afi-safis/afi-safi/I2vpn-evpn/loc-rib/
routes/route-distinguisher[route-distinguisher=<tenant-
route-distinguisher>]/type-five-ip-prefix/type-five-route

/network-instances/network-instance/protocols/
protocol/bgp/rib/afi-safis/afi-safi/I2vpn-evpn/loc-rib/
routes/route-distinguisher[route-distinguisher=<tenant-
route-distinguisher>]/type-five-ip-prefix/type-five-route/
paths/path/state/source-route-distinguisher

/network-instances/network-instance/protocols/
protocol/bgp/rib/afi-safis/afi-safi/|2vpn-evpn/loc-rib/
routes/route-distinguisher[route-distinguisher=<tenant-
route-distinguisher>]/type-five-ip-prefix/type-five-route/
paths/path[peer-ip =<neighbor-1Pvé-address>/state/
source-route-distinguisher

Refer to Network Configuration Example: Al/ML - Telemetry Reference Guide for more details.

JVD Hardware and Software Components

The Juniper products and software versions listed below pertain to the latest validated configuration for
the Al DC use case. As part of an ongoing validation process, we routinely test different hardware
models and software versions and update the design recommendations accordingly.

The following table summarizes the validated Juniper devices for this JVD and includes devices tested
for Al Data Center Network with Juniper Apstra, NVIDIA GPUs, and WEKA Storage—Juniper Validated

Design (JVD).

Table 51: Validated Devices and Positioning

https://www.juniper.net/documentation/us/en/software/nce/nce-512-ai-ml-telemetry-reference-guide/nce-512-ai-ml-telemetry-reference-guide.pdf
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html

Validated Devices and Positioning

Fabric Leaf Switches Spine Switches
Frontend QFX5130-32CD QFX5130-32CD
GPU Backend QFX5240-640D QFX5240-64CD
Storage Backend QFX5220-32CD QFX5220-32CD
QFX5230-64CD QFX5230-64CD
QFX5240-64CD QFX5240-64CD

The following table summarizes the software versions tested and validated by role for this JVD.

Table 52: Platform Recommended Release

Platform Role Junos OS Release
QFX5240-64CD GPU Backend Leaf 23.4X100-D31
QFX5240-64CD GPU Backend Spine 23.4X100-D31

NOTE: For minimum software released for QFX5220-64CD, QFX5230-64CD, PTX10008 in the
GPU backend fabric, check the Recommendations Section in the Al Data Center Network with
Juniper Apstra, NVIDIA GPUs, and WEKA Storage—Juniper Validated Design (JVD).

JVD Validation Framework

IN THIS SECTION

Platforms / Devices Under Test (DUT) on this JVD | 186

https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html

Platforms / Devices Under Test (DUT) on this JVD

To review the software versions and platforms on which this JVD was validated by Juniper Networks,
see the Validated Platforms and Software section in this document

NOTE: QFX5220-64CD, and QFX5230-64CD acting as leaf nodes, as well as QFX5230-64CD
and PTX10008 acting as spine nodes are covered in A/ Data Center Network with Juniper
Apstra, NVIDIA GPUs, and WEKA Storage—Juniper Validated Design (JVD). The same document
also covers WEKA storage and NVIDIA GPUs servers.

JVD Validation Goals and Scope

IN THIS SECTION

Tests Objectives | 186
Tests Scope | 187

Other Features Tested | 187
Features Not Included | 188

Tested Optics | 188

Tests Objectives

The primary objectives of the JVD testing can be summarized as:

e Qualification of the complete Al fabric design functionality including the Frontend, GPU Backend,
and Storage Backend fabrics, and connectivity between AMD GPUs and Vast Storage.

e Ensuring the design is well-documented and will produce a reliable, predictable deployment for the
customer.

The qualification objectives included:

https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-evpn-multitenancy/validated-platforms.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html

e \Validation of blueprint deployment, device upgrade, incremental configuration pushes/provisioning,
Telemetry/Analytics checking, failure mode analysis, congestion avoidance and mitigation, and
verification of host, storage, and GPU traffic.

Tests Scope

The Al JVD testing for the described network included the following:

Congestion management with PFC and ECN, including failure scenarios

End-to-end traffic flow, with Dynamic Load Balancing (DLB)

e System health, ARP, ND, MAC, BGP (route, next-hop), interface traffic counters.

e Software operation verification

e |Pv6 Stateless Address Auto-configuration (SLAAC)

e Advertising IPv4 Network Layer Reachability Information with an IPvé Next Hop (RFC5549)
o BGP IPvé6 link local neighbor autodiscovery

Under these scenarios the following were evaluated/validated:

e Completion of Al Job models within MLCommons Training benchmarks

o Traffic recovery after all failure scenarios.

Other Features Tested

e Broadcom 97608 THOR2 NICs

e Mellanox Connect-X NICs

o DSCP and CNP configuration on the NICs

e BERT/LLAMAS test completion times

e Llama2 Inference against existing infrastructure.

e Refer to the test report for more information.

Features Not Included

IPv4 DHCP/DHCP relay for tenants - Might be included in future version of this JVD

e |Pv6 DHCP/DHCP relay for tenants - Might be included in future version of this JVD

e Multihomed - TBD

¢ Global Load Balancing (GLB) - Will be included in future JVD

e Storage Multitenancy - TBD

¢ [nference/Frontend Multitenancy - Will be included in future JVD

e |Pvé6 underlay/overlay deployment using Apstra - Will be included in future version of this JVD

Tested Optics

Table 54: Frontend Fabric Optics

Frontend Fabric

Part number Optics Name

740-085351 QSFP56-
DD-400GBASE-
DR4

740-085351 QSFP56-
DD-400GBASE-
DR4

740-061405 QSFP-100GBASE-
SR4-T2

740-046565 QSFP+-40G-SR4
w/ 4x10G breakout
cable.

AFBR-709SMZ AVAGO 10GBASE-

SR SFP+ 300m

Device Role

spine

leaf

leaf

leaf

Server

Device Model

QFX5130-32CD

QFX5130-32CD

QFX5130-32CD

QFX5130-32CD

SuperMicro
Headend Server

Interface/NIC type

QSFP-DD

QSFP-DD

QSFP28

QSFP+

Intel X710

(Continued)

Frontend Fabric

AFBR-89CDDZ

AFBR-89CDDZ

AVAGO 100GbE
QSFP28 300m

AVAGO 100GbE
QSFP28 300m

Table 55: Backend Storage Fabric Optics

Backend Storage Fabric

Part number

740-085351

740-085351

740-058734

720-128730

740-061405

740-159002

740-159002

740-061405

Optics Name

QSFP-100GBASE-SR4

QSFP-100GBASE-SR4

QSFP-100GBASE-SR4

GPU

Server

GPU

Server

QSFP56-DD-400GBASE-DR4

QSFP56-DD-400GBASE-DR4

QSFP56-DD-2x200GBASE-CR4-
CU-2.5M w/ 400G DAC Breakout
into 2X200G

QSFP56-DD-2x200G-BOAOC-5M

QSFP56-DD-2x200G-BOAOC-5M

Device
Role

spine

leaf

leaf

leaf

leaf

GPU
Server

GPU
Server

Storage

AMD MI300Xx Dell
XE96880

AMD MI300Xx
SuperMicro

AS-8125GS-
TNMR2

Device Model

QFX5220-32CD

QFX5220-32CD

QFX5220-32CD

QFX5220-32CD

QFX5220-32CD

AMD MI300Xx Dell
XE9680

AMD MI300Xx
SuperMicro

AS-8125GS-TNMR2

Vast Storage CBOX

BCM97608 THOR2

ConnectX-7

Interface/NIC type

QSFP-DD

QSFP-DD

QSFP28

QSFP-DD

QSFP28

BCM97608 THOR2

ConnectX-7

ConnectX-6

(Continued)

Backend Storage Fabric

740-061405 | QSFP-100GBASE-SR4

Table 56: Backend GPU Fabric Optics

Backend GPU Fabric

Part number

740-174933

740-174933

740-085351

740-085351

Q112-400G-DR4

Optics Name

OSFP-800G-DR8

OSFP-800G-DR8

QDD-400G-DR4

QDD-400G-DR4

400G QSFP112
DR4 1310 nm

Storage

Device Role

spine

leaf

GPU Server

GPU Server

GPU

Server

Vast Storage DBOX

Device Model

QFX5240-640D

QFX5240-640D

AMD MI300Xx Dell
XE9680

AMD MI300Xx
SuperMicro

AS-8125GS-
TNMR2

AMD MI300Xx
SuperMicro

AS-8125GS-
TNMR2

ConnectX-6

Interface/NIC type

OSPF800

OSPF800

BCM97608 THOR2

BCM97608 THOR2

POLLARA 1x400G
QSFP112

(AMD Pensando™
Pollara 400 Al NIC)

NOTE: For optics tested on QFX5220-64CD, QFX5230-64CD, PTX10008, WEKA storage and
NVIDIA GPUs servers check A/ Data Center Network with Juniper Apstra, NVIDIA GPUs, and
WEKA Storage—Juniper Validated Design (JVD) Tested Optics Section.

https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html

JVD Validation Test Results Summary and Analysis

For a detailed test results report, see the Test Report Brief.

Recommendations Summary

Follow best practice recommendations:

e A minimum of 4 spines in each fabric is suggested.

NOTE: Though the design for cluster 1 in this document only includes only 2 spines, we found
that under certain dual failure scenarios, combined with congestion, the fabric becomes
susceptible to PFC storms (not vendor-unique). We recommend deploying the solution with 4
spines as described for the QFX5240s fabric (cluster 2) even when using different switch models.

e Follow a rail-optimized fabric and maintain a 1:1 relation with bandwidth subscription and Leaf to

GPU symmetry.

¢ Implement Dynamic Load Balancing (DLB) instead of traditional ECMP for optimal load distribution.

¢ Implement DCQCN (PFC and ECN) to ensure a lossless fabric in the GPU Backend Fabric, and
possibly in the Storage Backend Fabric as required per vendor recommendation.

e Configure DCQCN (PFC and ECN) parameters on the servers and change the NCCL_SOCKET
interface to be the management (frontend) interface.

e The recommended Junos OS releases for this JVD is Junos OS Release 23.4X100-D31.6-EVO for the
Juniper QFX5240-64CD

NOTE: For minimum software released for QFX5220-64CD, QFX5230-64CD, PTX10008, check
the A/ Data Center Network with Juniper Apstra, NVIDIA GPUs, and WEKA Storage—Juniper
Validated Design (JVD) Recommendations Section.

The Juniper hardware listed in the Juniper Hardware and Software Components section are the best-
suited switch platforms regarding features, performance, and the roles specified in this JVD.

https://www.juniper.net/documentation/us/en/software/jvd/test-report-brief-evpn-multitenancy.pdf
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/index.html

Revision History

Table 57: Revision History

Date Version Description
Sep 2025 JVD-AICLUSTERDC- Replaced the use of VRFs on the GPU servers with
EVPNType5-01-04 rio-prefix under IPvé router advertisement.

Moved IPv4 content to Appendix A.

Aug 2025 JVD-AICLUSTERDC- Added Pollara NIC references and RCCL
EVPNType5-01-03 description in the "Tested Optics" on page 188
section.
June 2025 JVD-AICLUSTERDC- New content on IPv6 SLAAC for GPU servers
EVPNType5-01-02 address assignment and how to run a job using

IPvé, plus clarified content and improved examples.

May 2025 JVD-AICLUSTERDC- Initial Publish
EVPNType5-01-01

Appendix A - IPv4 Overlay Over IPv6 Underlay
Fabric Implementation

When the underlay BGP sections use IPv6 and peer auto-discovery, and the overlay is IPv4, the overlay
BGP sessions must be configured to advertise IPv4 routes with IPvé next-hops as described in RFC
5549 (Advertising IPv4 Network Layer Reachability Information with an IPvé Next Hop).

Consider the example depicted in Figure below.

Figure: IPvé Link-Local underlay and IPvé6 Overlay Example

SERVER 1 SERVER 2 SERVER 3 SERVER 4

.... Q@@QQ_@Q] HESOS oD

RT5-IPVRF_5
TENANT-A
VN1

RT5-IPVRF_
TENANT-A

W STRIPE 2
© LEAFs 1-8

N
. @] =
S 'LN\ T STRIPE2 LEAF 1 (VTEP2)
A% As209
100.0 10.1.1.9/32
¥ FC00:10::1:9/128

25
STRIPE 1 2
LEAFs 1-8 o

STRIPEL LEAF 1 (VTEP1)
AS201 &
100.010.1.1.1/32 %2
FC00:10::1:1/128 %, '

-
O”
=

As101 « SPINE 2 SPINE 3 SPINE 4

100.0 10.0.0.1/32 lo0.0 100.0 l00.0
FC00:10::1/128 10.0.0.2/32 10.0.0.3/32 10.0.0.4/32

SPINE 1

IPv6 GPU Server NICs to Leaf Nodes Connections

The links between the GPU interfaces and the leaf nodes are statically configured with /31 IPv4
addresses as shown in the Table below No Router advertisements are sent by the leaf nodes, and SLAAC
is not used in this case. All the IPv4 addresses in the example are subnets of 10.200/16 (with
10.200.0/24 being assigned to the links between the GPU servers and the leaf nodes in stripe 1, and
10.200.1/24 being assigned to the links between the GPU servers and the leaf nodes in stripe 2).

LEAF NODE INTERFACE LEAF NODE IPv4 GPU NIC GPU NIC IPv4
ADDRESS ADDRESS
Stripe 1 Leaf 1 - et-0/0/0:0 10.200.0.0/31 Server 1 - gpuO_eth 10.200.0.1/31
Stripe 1 Leaf 2 - et-0/0/0:0 10.200.0.2/31 Server 1 - gpul_eth 10.200.0.3/31
Stripe 1 Leaf 3 - et-0/0/0:0 10.200.0.4/31 Server 1 - gpu2_eth 10.200.0.5/31
Stripe 1 Leaf 4 - et-0/0/0:0 10.200.0.6/31 Server 1 - gpu3_eth 10.200.0.7/31
Stripe 1 Leaf 5 - et-0/0/0:0 10.200.0.8/31 Server 1 - gpu4_eth 10.200.0.9/31
Stripe 1 Leaf 6 - et-0/0/0:0 10.200.0.10/31 Server 1 - gpu5_eth 10.200.0.11/31
Stripe 1 Leaf 7 - et-0/0/0:0 10.200.0.12/31 Server 1 - gpu6_eth 10.200.0.13/31

Stripe 1 Leaf 8 - et-0/0/0:0 10.200.0.14/31 Server 1 - gpu7_eth 10.200.0.15/31

(Continued)

LEAF NODE INTERFACE

Stripe 1 Leaf 1 - et-0/0/1:0

Stripe 1 Leaf 2 - et-0/0/1:0

Stripe 1 Leaf 3 - et-0/0/1:0

Stripe 1 Leaf 4 - et-0/0/1:0

Stripe 1 Leaf 5 - et-0/0/1:0

Stripe 1 Leaf 6 - et-0/0/1:0

Stripe 1 Leaf 7 - et-0/0/1:0

Stripe 1 Leaf 8 - et-0/0/1:0

Stripe 1 Leaf 1 - et-0/0/2:0

Stripe 1 Leaf 2 - et-0/0/2:0

Stripe 1 Leaf 3 - et-0/0/2:0

Stripe 1 Leaf 4 - et-0/0/2:0

Stripe 1 Leaf 5 - et-0/0/2:0

Stripe 1 Leaf 6 - et-0/0/2:0

Stripe 1 Leaf 7 - et-0/0/2:0

Stripe 1 Leaf 8 - et-0/0/2:0

Stripe 2 Leaf 1 - et-0/0/0:0

Stripe 2 Leaf 2 - et-0/0/0:0

LEAF NODE IPv4

ADDRESS

10.200.0.16/31

10.200.0.18/31

10.200.0.20/31

10.200.0.22/31

10.200.0.24/31

10.200.0.26/31

10.200.0.28/31

10.200.0.30/31

10.200.0.32/31

10.200.0.34/31

10.200.0.36/31

10.200.0.38/31

10.200.0.40/31

10.200.0.42/31

10.200.0.44/31

10.200.0.46/31

10.200.1.0/31

10.200.1.2/31

GPU NIC

Server 2 - gpuO_eth

Server 2 - gpul_eth

Server 2 - gpu2_eth

Server 2 - gpu3_eth

Server 2 - gpu4_eth

Server 2 - gpu5_eth

Server 2 - gpué_eth

Server 2 - gpu7_eth

Server 3 - gpuO_eth

Server 3 - gpul_eth

Server 3 - gpu2_eth

Server 3 - gpu3_eth

Server 3 - gpu4_eth

Server 3 - gpu5_eth

Server 3 - gpu6_eth

Server 3 - gpu7_eth

Server 9 - gpuO_eth

Server 9 - gpul_eth

GPU NIC IPv4
ADDRESS

10.200.0.17/31

10.200.0.19/31

10.200.0.21/31

10.200.0.23/31

10.200.0.25/31

10.200.0.27/31

10.200.0.29/31

10.200.0.31/31

10.200.0.33/31

10.200.0.35/31

10.200.0.37/31

10.200.0.39/31

10.200.0.41/31

10.200.0.43/31

10.200.0.45/31

10.200.0.47/31

10.200.1.1/31

10.200.1.3/31

(Continued)

LEAF NODE INTERFACE LEAF NODE IPv4 GPU NIC GPU NIC IPv4
ADDRESS ADDRESS
Stripe 2 Leaf 3 - et-0/0/0:0 10.200.1.4/31 Server 9 - gpu2_eth 10.200.1.5/31
Stripe 2 Leaf 4 - et-0/0/0:0 10.200.1.6/31 Server 9 - gpu3_eth 10.200.1.7/31
Stripe 2 Leaf 5 - et-0/0/0:0 10.200.1.8/31 Server 9 - gpu4_eth 10.200.1.9/31
Stripe 2 Leaf 6 - et-0/0/0:0 10.200.1.10/31 Server 9 - gpu5_eth 10.200.1.11/31
Stripe 2 Leaf 7 - et-0/0/0:0 10.200.1.12/31 Server 9 - gpué_eth 10.200.1.13/31

The following example shows the configuration of the interfaces on the leaf node. Only family IPv4 is
enabled, with a /31 static IPv4 address.

[edit interfaces et-0/0/0]
jnpr@stripel-leaf1# show
description "Breakout et-0/0/0";
number-of-sub-ports 2;
speed 400g;
[edit interfaces et-0/0/0:0]
jnpr@stripel-leaf1# show
mtu 9216;
unit 2 {

family inet {

address 10.200.0.254/24;

The following example shows the configuration of the interfaces on the server side. Only family IPv4 is
enabled, with a /31 static IPv4 address.

gpud_eth:
match:
macaddress: a0:88:c2:3b:50:66
dhcp4: false
mtu: 9000

addresses:

- 10.200.0.10/24
routes:
- to: 10.200.0.0/16
via: 10.200.0.254
from: 10.200.0.10

set-name: gpu@_eth

The netplan disables dhcp4 and configures a static IPv4 address on each of the gpu_eth interfaces. It
also configures a static route for prefix 10.200/16, pointing to the address of the leaf node, for each
gpu_eth. The route includes the address of the interface, which guarantees that the correct interface is
used when sending traffic from a gpu_eth interface to a remote address belonging to the same tenant.

H100-01

10.200.0.0/31 dev gpu0_eth proto kernel scope link src 10,200.0.1
[l 10.200.0.2/31 dev gpul_eth proto kernel scope link src 10.200.0.3
o “n“ o 10.200.0.4/31 dev gpu2_eth proto kernel scope link src 10.200.0.5
10.200.0.6/31 dev gpu3_eth proto kernel scope link src 10.200.0.7
10.200.0.8/31 dev gpu4_eth proto kernel scope link src 10.200.0.9
10.200.0.10/31 dev gpu5_eth proto kernel scope link src 10.200.0.11
10.200.0.12/31 dev gpu6_eth proto kernel scope link src 10.200.0.13
10.200.0.14/31 dev gpu7_eth proto kernel scope link src 10.200.0.15

=

gpu0_eth gpul_eth gpu2_eth gpu3_eth gpud _eth gpu5_eth gpué_eth gpu7_eth

o] = el = = E g 2 10.200.0.0/16 via 10.200.0.0 dev gpu0_eth proto static src 10.200.0.1
g 8 8 8 g o S S 10.200.0.0/16 via 10.200.0.2 dev gpul_eth proto static src 10.200.0.3
= = S o & 5 & 5 10.200.0.0/16 via 10.200.0.4 dev gpu2_eth proto static src 10.200.0.5
- 1 =1 = = 2 = g 10.200.0.0/16 via 10.200.0.6 dev gpu3_eth proto static src 10.200.0.7
10.200.0.0/16 via 10.200.0.8 dev gpu4_eth proto static src 10.200.0.9
= = g o = 5 5 5_ 10.200.0.0/16 via 10.200.0.10 dev gpu5_eth proto static src 10.200.0.11
3] 5 3 & =] o = 10.200.0.0/16 via 10.200.0.12 dev gpué_eth proto static src 10.200.0.13
o o oo} o it - - -—] 10.200.0.0/16 via 10.200.0.14 dev gpu7_eth proto static src 10.200.0.15
=1 o] =] =} S 5 5 5
e g g ! S S S S

STRIPE 1 LEAF 1-8

Netplan Example

jnpr@H100-01: /etc/netplan$ sudo cat 00-installer-config-type5_vrf.yaml
This is the network config written by 'subiquity'
network:
version: 2
ethernets:
mgmt_eth:
match:
macaddress: 6c:fe:54:48:2e:48
dhcp4: false
addresses:
- 10.10.1.16/31
nameservers:
addresses:
- 8.8.8.8
routes:
- to: default

via: 10.10.1.17
set-name: mgmt_eth
gpud_eth:
match:
macaddress: a@:88:¢2:3b:50:66
dhcp4: false
mtu: 9000
addresses:

- 10.200.0.10/24

routes:

- to: 10.200.0.0/16
via: 10.200.0.254
from: 10.200.0.10

set-name: gpu@_eth
gpul_eth:
match:
macaddress: a@:88:c2:3b:50:6a
dhcp4: false
mtu: 9000
addresses:

- 10.200.1.10/24

routes:

- to: 10.200.0.0/16
via: 10.200.1.254
from: 10.200.1.10

set-name: gpul_eth
gpu2_eth:
match:
macaddress: a@:88:c2:3b:50:6e
dhcp4: false
mtu: 9000
addresses:

- 10.200.2.10/24

routes:

- to: 10.200.0.0/16
via: 10.200.2.254
from: 10.200.2.10

set-name: gpu2_eth
gpu3_eth:
match:
macaddress: a@:88:¢2:3b:50:72
dhcp4: false
mtu: 9000

addresses:

- 10.200.3.10/24

routes:

- to: 10.200.0.0/16
via: 10.200.3.254
from: 10.200.3.10

set-name: gpu3_eth
gpud_eth:
match:
macaddress: a0:88:c2:0a:79:48
dhcp4: false
mtu: 9000
addresses:

- 10.200.4.10/24

routes:

- to: 10.200.0.0/16
via: 10.200.4.254
from: 10.200.4.10

set-name: gpud_eth
gpu5_eth:
match:
macaddress: a0:88:c2:0a:79:4c
dhcp4: false
mtu: 9000
addresses:

- 10.200.5.10/24

routes:

- to: 10.200.0.0/16
via: 10.200.5.254
from: 10.200.5.10

set-name: gpu5_eth
gpub_eth:
match:
macaddress: a0:88:c2:0a:79:40
dhcp4: false
mtu: 9000
addresses:

- 10.200.6.10/24

routes:

- to: 10.200.0.0/16
via: 10.200.6.254
from: 10.200.6.10

set-name: gpu6_eth

gpu7_eth:
match:

macaddress: a@:88:c2:0a:79:44

dhcp4: false
mtu: 9000
addresses:

- 10.200.7.10/24

routes:

- to: 10.200.0.0/16
via: 10.200.7.254
from: 10.200.7.10

set-name: gpu7_eth
stor@_eth:
match:
macaddress: b8:3f:d2:63:e5:44
dhcp4: false
mtu: 9000
addresses:

- 10.100.1.13/31

routes:

- to: 10.100.0.0/21
via: 10.100.1.12

set-name: stor@_eth

Refer to the following documentation for details to configure the interfaces on AMD GPU servers or
NVIDIA GPU servers respectively:

¢ AMD Configuration | Juniper Networks

¢ NVIDIA Configuration | Juniper Networks

All leaf and spine nodes are configured with IPv4 addresses under the loopback interface (100.0). The
loopback and Autonomous System numbers for all devices in the fabric are included in Table 23:

Table 23. Spine and Leaf Loopback Addresses and ASNs

LEAF NODE INTERFACE 100.0 IPV4 ADDRESS Local AS #
Stripe 1 Leaf 1 10.0.1.1/32 201
Stripe 1 Leaf 2 10.0.1.2/32 202

Stripe 1 Leaf 3 10.0.1.3/32 203

https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-amd/amd_configuration.html
https://www.juniper.net/documentation/us/en/software/jvd/jvd-ai-dc-apstra-nvidia-weka/nvidia_configuration.html

(Continued)

LEAF NODE INTERFACE 100.0 IPV4 ADDRESS Local AS #
Stripe 1 Leaf 4 10.0.1.4/32 204
Stripe 1 Leaf 5 10.0.1.5/32 205
Stripe 1 Leaf 6 10.0.1.6/32 206
Stripe 1 Leaf 7 10.0.1.7/32 207
Stripe 1 Leaf 8 10.0.1.8/32 208
Stripe 2 Leaf 1 10.0.1.9/32 209
Stripe 2 Leaf 2 10.0.1.10/32 210
SPINE1 101
SPINE2 102
SPINE3 103
SPINE4 104

IPv6 Leaf Nodes to Spine Nodes Connections Using Link Local Addresses

When deploying the underlay using IPvé Link-Local underlay, the interfaces between the leaf and spine
nodes do not require explicitly configured IP addresses and are configured as untagged interfaces with
only family ineté to enable processing of IPvé traffic as shown in Figure 50.

Figure 50: Leaf nodes to spine nodes connectivity

SPINE1
AS101
FC00:10::1/128

SPINE4
AS104
FC00:10::4/128

—
—_—

—
—_—

SPINE2 SPINE3
AS102 AS103
FC00:10::2/128 FC00:10::3/128

—_—

— —
—_— —_—
— —
—_— —_—

et-0/0/0:0 FE80::<EUI-64>/64 t-0/0/0:0 FE80::<EUI-64>/64 et-0/0/0:0 FE80::<EUI-64>/64 et-0/0/0:0 FE80::<EUI-64>/64
et-0/0/1:0 FE80::<EUI-64>/64 et-0/0/1:0 FE80::<EUI-64>/64 et-0/0/1:0 FE80::<EUI-64>/64—et-0/0/1:0 FE80::<EUI-64>/64
et-0/0/2:0 FE80:<EUI-64>/64 et-0/0/2:0 FE80::<EUI-64>/64""et-0/0/2:0 FE80::<EUI-64>/64 et-0/0/2:0 FE80:<EUI-64>/64
et-0/0/3:0 FE80::<EUI-64>/64 et-0/0/3:0 FE80::<EUI-64>/64 et-0/0/3:0 FE80::<EUI-64>/64 et-0/0/3:0 FE80::<EUI-64>/64

et-0/0/30:0 FE80::<EUI-64>/64
et-0/0/31:0 FE80::<EUI-64>/64
et-0/0/32:0 FE80::<EUI-64>/64
et-0/0/33:0 FE80::<EUI-64>/64

— -—
—_ —_—
— —
—_ —_—

STRIPE1 LEAF1
AS201
FC00:10:0:1:1/128

Table 24. Spine to Leaf Interface Configuration Example

STRIPE 1 LEAF 1 (et-0/0/0:30)
[edit interfaces et-0/0/30]
jnpr@stripel-leafl# show
description "Breakout et-0/0/30";
number-of-sub-ports 1;
speed 800g;

[edit interfaces et-0/0/30:0]
jnpr@stripel-leafl# show
description facing_spinel:et-0/0/0:0;
mtu 9216;
unit 0 {

family inet6 {

mtu 9202;
}

SPINE 1 (et-0/0/0:0)
[edit interfaces et-0/0/0]
jnpr@spinel# show
description "Breakout et-0/0/0";
number-of-sub-ports 1;
speed 800g;

[edit interfaces et-0/0/0:0]
jnpr@spinel# show
description facing_Leafl:et-0/0/0:0;
mtu 9216;
unit @ {

family inet6 {

mtu 9202;
}

Enabling IPvé6 on an interface automatically assigns a link-local IPvé address. The switch autogenerates
link local addresses for the interfaces using the EUI-64 address format (based on the interface’s MAC

address), as shown in Table 25.

Table 25. Spine and Leaf IPv6-Enabled Interface Link Local Addresses

LEAF NODE INTERFACE
ADDRESS

Stripe 1 Leaf 1 -
et-0/0/30:0 /64

Stripe 1 Leaf 1 -
et-0/0/31:0 /64

LEAF NODE IPvé

fe80::9e5a:80ff:.fec1:ae00 = Spine 1 - et-0/0/0:0

fe80::9e5a:80ff:fec1:ae08 = Spine 2 - et-0/0/0:0

SPINE NODE INTERFACE = SPINE IPv6 ADDRESS

fe80::9e5a:80ff:feef:a28f/
64

fe80::5a86:70ff:fe7b:ced
5/64

201

https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.1

(Continued)

LEAF NODE INTERFACE

Stripe 1 Leaf 1 -
et-0/0/32:0

Stripe 1 Leaf 1 -
et-0/0/33:0

Stripe 1 Leaf 2 -
et-0/0/30:0

Stripe 1 Leaf 2 -
et-0/0/31:0

Stripe 1 Leaf 2 -
et-0/0/32:0

Stripe 1 Leaf 2 -
et-0/0/33:0

LEAF NODE IPvé
ADDRESS

fe80::9e5a:80ff:fec1:af00
/64

fe80::9e5a:80ff:fec1:af08
/64

fe80::5a86:70ff:fe79:dad
5/64

fe80::5a86:70ff:fe79:dad
d/64

fe80::5a86:70ff:fe79:dbd
5/64

fe80::5a86:70ff:fe79:dbd
d/64

SPINE NODE INTERFACE = SPINE IPv6 ADDRESS

Spine 3 - et-0/0/0:0

Spine 4 - et-0/0/0:0

Spine 1 - et-0/0/1:0

Spine 2 - et-0/0/1:0

Spine 3 - et-0/0/1:0

Spine 4 - et-0/0/1:0

fe80::5a86.70ff:fe78:e0d
5/64

fe80::5a86:70ff:fe79:3d5
/64

fe80::9e5a:80ff:feef:a297
/64

fe80::5a86:70ff:fe7b:cedd
/64

fe80::5a86:70ff:fe78:e0d
d/64

fe80::5a86:70ff:fe79:3dd
/64

These addresses need to be advertised through standard router advertisements as part of the IPvé

Neighbor Discovery process to allow the leaf and spine nodes to then establish BGP sessions between

them. Router advertisement must be enabled on all the interfaces between the leaf and spine nodes as

shown:

Table 26. IPv6 Router Advertisement on Leaf and Spine Interfaces

STRIPE 1 LEAF 1 SPINE 1

[edit protocols router-advertisement]
/* ROUTER ADVERTISEMENTS TO SPINE1l */

interface et-0/0/30:0.0;
interface et-0/0/31:0.0;
interface et-0/0/32:0.0;

interface et-0/0/33:0.0;
}

/* ROUTER ADVERTISEMENTS TO SPINE2 */
/* ROUTER ADVERTISEMENTS TO SPINE3 */

/* ROUTER ADVERTISEMENTS TO SPINE4 */

[edit]

jnpr@spinel# show protocols router-advertisement
/* ROUTER ADVERTISEMENTS TO LEAF1 */

interface et-0/0/0:0.0;

/* ROUTER ADVERTISEMENTS TO LEAF2 */

interface et-0/0/1:0.0;

/* ROUTER ADVERTISEMENTS TO LEAF3 */

interface et-0/0/2:0.0;

/* ROUTER ADVERTISEMENTS TO LEAF4 */

interface et-0/0/3:0.0;

202

To verify that router advertisements are being sent you can use: show IPv6 router-advertisement interface

<interface> and show IPv6 neighbors

Example:

jnpr@stripel-leaf1> show IPv6 router-advertisement interface et-0/0/30:0
Interface: et-0/0/30:0.0
Advertisements sent: 4, last sent 00:02:28 ago
Solicits sent: 1, last sent 00:08:06 ago
Solicits received: 0
Advertisements received: 3
Solicited router advertisement unicast: Disable
IPv6 RA Preference: DEFAULT/MEDIUM
Passive mode: Disable
Upstream mode: Disable
Downstream mode: Disable
Proxy blackout timer: Not Running
Advertisement from fe80::9e5a:80ff:feef:a28f, heard 00:01:57 ago
Managed: 0
Other configuration: 0
Reachable time: @ ms
Default lifetime: 1800 sec
Retransmit timer: @ ms
Current hop limit: 64
jnpr@stripel-leaf1> show IPv6 neighbors

IPv6 Address Linklayer Address State Exp Rtr Secure Interface
fe80::5a86:70ff:fe78:e0d5 58:86:70:78:€0:d5 reachable 11 yes no
et-0/0/31:0.0
fe80::5a86:70ff:fe79:3d5 58:86:70:79:03:d5 reachable 23 yes no
et-0/0/33:0.0
fe80::5a86:70ff:felb:ced5 58:86:70:7b:ce:d5 reachable 13 yes no
et-0/0/32:0.0
fe80::9e5a:80ff:feef:a28f 9c:5a:80:ef:a2:8f reachable 25 yes no

et-0/0/30:0.0
Total entries: 4

The loopback interface IPv6 addresses and the Autonomous System numbers for all devices in the fabric
are included in Table 26:

Table 26. Spine and Leaf Loopback Addresses and ASNs

LEAF NODE INTERFACE 100.0 IPv6 ADDRESS Local AS #

Stripe 1 Leaf 1 FC00:10:0:1::1/128 201
Stripe 1 Leaf 2 FC00:10:0:1::2/128 202
Stripe 1 Leaf 3 FC00:10:0:1::3/128 203
Stripe 1 Leaf 4 FC00:10:0:1::4/128 204
Stripe 1 Leaf 5 FC00:10:0:1::5/128 205
Stripe 1 Leaf 6 FC00:10:0:1::6/128 206
Stripe 1 Leaf 7 FC00:10:0:1::7/128 207
Stripe 1 Leaf 8 FC00:10:0:1::8/128 208
Stripe 2 Leaf 1 FC00:10:0:1::9/128 209
Stripe 2 Leaf 2 FC00:10:0:1::10/128 210
SPINE1 FC00:10:0::1/128 101
SPINE2 FC00:10:0::2/128 102
SPINE3 FC00:10:0::3/128 103

SPINE4 FCO00:10:0::4/128 104

Table 27. Spine and Leaf Loopback Address Configuration

STRIPE 1 LEAF 1 SPINE 1

[edit interfaces 100] [edit interfaces 100]
jnpr@stripel-leafl# show jnpr@spinel# show
unit 0 { unit @ {

family inet { family inet {

address FC00:10:0:1::1/128; address FC00:10::1/128;

} }

} }

Recommended MTU

Configure the MTU consistently across the fabric and make sure that the MTU of the server->leaf links
does not exceed the MTU of the leaf->spine links considering the extra overhead of the VXLAN
encapsulation.

VXLAN Overhead Calculation
For IPv6, the MTU can also be calculated as:

Table 28 VXLAN Overhead Calculation

HEADER BYTES
Outer Ethernet 14
Quter IP (IPvé) 40

UDP 8
VXLAN 8

Total 70 bytes

Recommended MTU Strategy

Table 29. Recommended MTU

LINK TYPE MTU

Server & Leaf 9000

Leaf & Spine IPv6 > 9070

205

It is important to keep in mind that RoCEv2 message sizes are still limited by the RDMA MTU reported
by ibv_devinfo

jnpr@MI300-01:~/SCRIPTS$ ibv_devinfo -d bnxt_re0

hca_id: bnxt_re0

transport: InfiniBand (@)

fw_ver: 230.2.49.0

node_guid: 7ec2:55ff: febd:75d0

sys_image_guid: 7Tec2:55ff: febd: 75d0

vendor_id: 0x14e4

vendor_part_id: 5984

hw_ver: 0x1D42

phys_port_cnt: 1

port: 1

state: PORT_ACTIVE (4)
max_mtu: 4096 (5)
active_mtu: 4096 (5)
sm_lid: 0
port_lid: 0
port_lmc: 0x00
link_layer: Ethernet

Table 30. MTU Types: Ownership and Functional Role

MTU TYPE OWNER PURPOSE

Interface MTU (e.g. 9000) Linux network stack Defines the max L3/IP packet size

ifconfig, ip

RDMA MTU (e.g. 4096) RDMA stack Defines the max RDMA message size per Work

Queue Element (WQE)
ibv_devinfo

The RDMA MTU can be configured at the verbs level, and it's negotiated during QP (Queue Pair) setup.
You cannot override it by just setting the NIC's MTU to a higher value, but you would need to use low-
level tools or RDMA apps.

Some performance tools such as ib_send_bw, ib_write_bw (via -m flag). For example:

ib_write_bw -m 1024 # sets RDMA MTU to 1024 bytes

ib_write_bw -m 4096 # sets RDMA MTU to 4096 (max allowed according to the output of ibv_devinfo

shown before)

RDMA MTU must be < Interface MTU - encapsulation overhead.

IPv6 GPU Backend Fabric Underlay, using BGP neighbor discovery

Refer to . Configure BGP Unnumbered EVPN Fabric | Juniper Networks for more information.

The underlay EBGP sessions are configured between the leaf and spine nodes to use peer auto-

discovery, and are configured to advertise these loopback interfaces, as shown in the example between

Stripel Leaf 1 and Spine 1 below:

Table 31. GPU Backend Fabric: BGP Underlay with Peer Auto-Discovery Configuration

STRIPE 1 LEAF 1 SPINE 1

[edit routing-options]
jnpr@stripel-leafl# show
router-id 10.0.1.1;
autonomous-system 201;
graceful-restart;
forwarding-table {
export PFE-LB;
ecmp-fast-reroute;

}

[edit policy-options]
jnpr@stripel-leafl# show | match as-list
as-list discovered-as-list members 101-104;

[edit protocols bgp group 13clos-inet6-auto-underlay]
jnpr@stripel-leafl# show
type external;
family inet {
unicast;
extended-nexthop;

}
export (LEAF_TO_SPINE_FABRIC_OUT && BGP-AOQS-Policy);
local-as 201;
multipath {
multiple-as;
}
bfd-liveness-detection {
minimum-interval 3000;
multiplier 3;
}
dynamic-neighbor underlay-dynamic-neighbors {
peer-auto-discovery {
family inet6 {
ipv6-nd;
}
/* SPINE 1 */
interface et-0/0/0:0.0;
/* SPINE 2 */
interface et-0/0/1:0.0;
/* SPINE 3 */
interface et-0/0/32:0.0;
/* SPINE 3 */
interface et-0/0/33:0.0;
}
}

peer-as-list discovered-as-list;

[edit routing-options]
jnpr@spinel# show
router-id 10.0.0.1;
autonomous-system 101;
graceful-restart;
forwarding-table {
export PFE-LB;
ecmp-fast-reroute;

}

[edit policy-options]
jnpr@stripel-leafl# show | match as-list
as-list discovered-as-list members 201-216;

[edit protocols bgp group 13clos-inet6-auto-underlay]
jnpr@stripel-leafl# show
type external;
family inet {
unicast;
extended-nexthop;

}
export (SPINE_TO_LEAF_FABRIC_OUT && BGP-AOS-Policy);
local-as 101;
multipath {
multiple-as;
}
bfd-liveness-detection {
minimum-interval 3000;
multiplier 3;
}
dynamic-neighbor underlay-dynamic-neighbors {
peer-auto-discovery {
family inet6 {
ipv6-nd;
}
/* LEAF1 1 */
interface et-0/0/0:0.0;
/* LEAF1 2 */
interface et-0/0/1:0.0;
/* LEAF1 3 */
interface et-0/0/2:0.0;

.
¥

peer-as-list discovered-as-list;

To configure peer auto discovery, the dynamic-neighbor named underlay-dynamic-neighbors, under BGP

group I3clos-inet6-auto-underlay, specifies the interfaces where auto discovery is permitted. This
replaces the neighbor a.b.c.d commands that would statically configure the neighbors.

207

https://www.juniper.net/documentation/us/en/software/nce/nce-225-bgp-unnumbered/topics/example/nce-225_bgp_unnumbered-example.html

The family inet unicast and family ineté unicast statements configure the sessions to advertise both IPv4
to support the IPv4 overlay. When BGP sessions are established over IPvé6 link-local addresses but carry
IPv4 routes (IPv4 overlay), the extended-nexthop statement must be configured under family inet
unicast. This allows IPv4 next-hops to be resolved across an IPvé transport session, enabling correct
installation of IPv4 prefixes in the routing table as described in RFC5549. Failing to include the
extended-nexthop will result in hidden routes, as the protocol next-hop cannot be resolved.

The family ineté IPv6-nd statement enables the use of IPvé Neighbor Discovery to dynamically
determine the addresses of neighbors with which to establish BGP sessions. To control and secure
dynamic peer formation, a peer-as-list (discovered-as-list) is configured, restricting peering to neighbors
whose autonomous system numbers fall within the defined range of AS 101-104.

The BGP sessions are also configured with multipath multiple-as, allowing multiple paths (even with
different AS paths) to be considered for ECMP (Equal-Cost Multi-Path) routing. BFD (Bidirectional
Forwarding Detection) is additionally enabled to accelerate convergence in case of link or neighbor
failures.

You can check that the sessions have been established using: show bgp summary group <group-name>

Example:

jnpr@stripel-leaf1> show bgp summary group l3clos-inet6-auto-underlay
fe80::5a86:70ff:fe78:e0d5%et-0/0/31:0.0 102 201 196 0 0
1:29:35 Establ

inet.0: 4/4/4/9
fe80::5a86:70ff:fe79:3d5%et-0/0/33:0.0 104 201 196 0 0
1:29:15 Establ

inet.0: 4/4/4/0
fe80::5a86:70ff:fe7b:ced5%et-0/0/32:0.0 103 201 196 0 0
1:29:21 Establ

inet.0: 4/4/4/9
fe80::9e5a:80ff:feef:a28f%et-0/0/30:0.0 101 202 197 0 0
1:29:30 Establ

inet.0: 4/4/4/0

Notice that when BGP sessions are established using link-local addresses Junos displays the neighbor
address along with the interface scope (e.g. fe80::5a86:70ff:fe78:e0d5%et-0/0/1:0.0). The scope
identifier (the part after the %) is necessary because the same link-local address (fe80::/10) could exist
on multiple interfaces. The device must know which interface to use to send packets to that neighbor.
Thus, after peer discovery is completed, the show bgp summary output lists the neighbor using the
format: IPvé_link-local_address%interface-name.

Even though, the sessions are established using the IPv6 link-local addresses the advertised routes are
IPv4 and installed in the inet.O routing table.

You can check details about discovered neighbors using: show bgp neighbor auto-discovered <peer-id>

Example:

jnpr@stripel-leaf1> show bgp neighbor auto-discovered fe80::5a86:70ff:fe78:e0d5%et-0/0/31:0.0
Peer: fe80::5a86:70ff:fe78:e0d5%et-0/0/31:0.0+179 AS 102 Local:
fe80::9e5a:80ff:fecl:ae@8%et-0/0/31:0.0+53984 AS 201

Group: 13clos-inet-auto-underlay Routing-Instance: master

Forwarding routing-instance: master

Type: External State: Established Flags: <Sync PeerAsList AutoDiscoveredNdp>

Last State: OpenConfirm Last Event: RecvKeepAlive

Last Error: None

Export: [(LEAF_TO_SPINE_FABRIC_OUT && BGP-AOS-Policy)]

Options: <GracefulRestart AddressFamily Multipath LocalAS Refresh>

Options: <MultipathAs BfdEnabled>

Options: <GracefulShutdownRcv>

Address families configured: inet-unicast

Holdtime: 90 Preference: 170

Graceful Shutdown Receiver local-preference: 0

Local AS: 201 Local System AS: 201

Number of flaps: 0

Receive eBGP Origin Validation community: Reject

Peer ID: 10.0.0.2 Local ID: 10.0.1.1 Active Holdtime: 90

Keepalive Interval: 30 Group index: 0 Peer index: @ SNMP index: 30

I/0 Session Thread: bgpio-0 State: Enabled

BFD: enabled, up

Local Interface: et-0/0/1:0.0

NLRI for restart configured on peer: inet-unicast

NLRI advertised by peer: inet-unicast

NLRI for this session: inet-unicast

Peer supports Refresh capability (2)

Restart time configured on the peer: 120

Stale routes from peer are kept for: 300

Restart time requested by this peer: 120

Restart flag received from the peer: Notification

NLRI that peer supports restart for: inet-unicast

NLRI peer can save forwarding state: inet-unicast

NLRI that peer saved forwarding for: inet-unicast

NLRI that restart is negotiated for: inet-unicast

NLRI of received end-of-rib markers: inet-unicast

NLRI of all end-of-rib markers sent: inet-unicast

Peer does not support LLGR Restarter functionality

Peer supports 4 byte AS extension (peer-as 102)

Peer does not support Addpath

NLRI(s) enabled for color nexthop resolution: inet-unicast

Table inet.@ Bit: 20000
RIB State: BGP restart is complete
Send state: in sync
Active prefixes:
Received prefixes:
Accepted prefixes:

Suppressed due to damping:

- o A~ B b

Advertised prefixes:
Last traffic (seconds): Received 20 Sent 24 Checked 5788

Input messages: Total 216 Updates 5 Refreshes 0 Octets 4535
Output messages: Total 212 Updates 1 Refreshes 0 Octets 4125
Output Queue[1]: 0 (inet.0, inet-unicast)

Trace options: all
Trace file: /var/log//bgp size 131072 files 10

To verify the operation of BFD for the BGP sessions use: show bfd session

Example:

jnpr@stripel-leaf1> show bfd session

Detect Transmit

Address State Interface Time Interval Multiplier
fe80::5a86:70ff:fe78:e0d5 Up et-0/0/31:0.0 9.000 3.000 3
fe80::5a86:70ff:fe79:3d5 Up et-0/0/33:0.0 9.000 3.000 3
fe80::5a86:70ff:fe7b:ced5 Up et-0/0/32:0.0 9.000 3.000 3
fe80::9e5a:80ff: feef:a28f Up et-0/0/30:0.0 9.000 3.000 3

8 sessions, 8 clients

Cumulative transmit rate 2.7 pps, cumulative receive rate 2.7 pps

To control the propagation of routes, and make sure the loopback interface addresses are advertised,
export policies are applied to these EBGP sessions as shown in the example in Table 32.

Table 32. Export policy example IPv4 Underlay with auto discovery

LEAF
[edit policy-options policy-statement LEAF_TO_SPINE_FABRIC_OUT]
jnpr@stripel-leafl# show | display set relative
set term LEAF_TO_SPINE_FABRIC_OUT-10 from protocol bgp
set term LEAF_TO_SPINE_FABRIC_OUT-1@ from community FROM_SPINE_FABRIC_TIER
set term LEAF_TO_SPINE_FABRIC_OUT-18 then reject
set term LEAF_TO_SPINE_FABRIC_OUT-2@ then accept

[edit policy-options community FROM_SPINE_FABRIC_TIER]
jnpr@stripel-leafl# show | display set relative
set members @:15

[edit policy-options policy-statement BGP-A05-Policy]
jnpr@stripel-leafl# show | display set relative

set term BGP-A0S-Policy-10 from policy AllPodNetworks
set term BGP-AO0S5-Policy-18 then accept

set term BGP-AOS-Policy-18@ then reject

[edit pelicy-options policy-statement AllPodNetworks]
jnpr@stripel-leafl# show | display set relative

set term AllPodNetworks-18 from family inet

set term AllPodNetworks-1@ from protocol direct

set term AllPodNetworks-1@ from interface lo@.8

set term AllPodNetworks-18 then community add DEFAULT_DIRECT_V4
set term AllPodNetworks-1@ then accept

set term AllPodNetworks-2@ from family inet6

set term AllPodNetworks-28 from protocol direct

set term AllPodNetworks-2@ from interface lo@.@

set term AllPodNetworks-2@ then community add DEFAULT_DIRECT_V6
set term AllPodNetworks-28 then accept

set term AllPodNetworks-16@ then reject

[edit pelicy-options community DEFAULT_DIRECT_V4]
jnpr@stripel-leafl# show | display set relative
set members 5:20807

set members 21001:26080

[edit policy-options community DEFAULT_DIRECT_V6]
jnpr@stripel-leafl# show | display set relative
set members 5:20888

set members 210@1:26080

SPINE

[edit policy-options policy-statement SPINE_TO_LEAF_FABRIC_OUT]

jnpr@spinel# show | display set relative

set term SPINE_TO_LEAF_FABRIC_OUT-18 then community add FROM_SPINE_FABRIC_TIER
set term SPINE_TO_LEAF_FABRIC_OUT-1@ then accept

[edit policy-options community FROM_SPINE_FABRIC_TIER]
jnpr@spinel# show | display set relative
set members 8:15

[edit policy-options policy-statement BGP-ADS5-Policy]
jnpr@spinel# show | display set relative

set term BGP-AOS-Policy-10 from policy AllPodNetworks
set term BGP-A0S-Policy-18 then accept

set term BGP-AO0S-Policy-20 from protocol bgp

set term BGP-AQS-Policy-2@ then accept

set term BGP-AOS-Policy-1€@ then reject

[edit policy-options policy-statement AllPodNetworks]

| jnpr@spine1# show | display set relative

set term AllPodNetworks-1@ from family inet

set term AllPodNetworks-18 from protocol direct

set term AllPodNetworks-18 from interface 1lo8.8

set term AllPodNetworks-18 then community add DEFAULT_DIRECT_V4
set term AllPodNetworks-18 then accept

set term AllPodNetworks-20 from family ineté

set term AllPodNetworks-28 from protocol direct

set term AllPodNetworks-28 from interface 108.8

set term AllPodNetworks-28 then community add DEFAULT_DIRECT_V6
set term AllPodNetworks-28 then accept

set term AllPodNetworks-18@ then reject

[edit policy-options community DEFAULT_DIRECT_V4]
jnpr@spinel# show | display set relative

set members 1:20807

set members 21001:26000

[edit policy-options community DEFAULT_DIRECT_V6]
jnpr@spinel# show | display set relative

set members 1:28888

set members 21001:26000

These policies ensure loopback reachability without advertising unnecessary routes.

On the spine nodes, routes are exported only if they are accepted by both the
SPINE_TO_LEAF_FABRIC_OUT and BGP-AOS-Policy export policies.

e The SPINE_TO_LEAF FABRIC OUT policy has no match conditions and accepts all routes
unconditionally, tagging them with the FROM_SPINE_FABRIC_TIER community (0:15).

o The BGP-AOS-Policy accepts BGP-learned routes as well as any routes accepted by the nested

AllPodNetworks policy.

e The AllPodNetworks policy, in turn, matches directly connected IPvé6 routes and tags them with the
DEFAULT_DIRECT_Vé community (1:20008 and 21001:26000 on Spine1).

As a result, each spine advertises both its directly connected routes (including its loopback interface) and

any routes it has received from other leaf nodes.

You can verify that the expected routes are being advertised by the spine node using: show route

advertising-protocol bgp <peer-id> table inet6.0

Example:

211

The following example shows the routes advertised to Stripe 1 Leaf 1 by Spine 1 which correspond to
the loopback interface addresses of itself, as well as Stripel Leaf 2, Stripe 2 Leaf 1, and Stripe 2 Leaf 2.

jnpr@spinel> show route advertising-protocol bgp fe80::9e5a:80ff:fecl:ae00%et-0/0/30:0.0 table
inet.0
inet4.0: 11 destinations, 11 routes (11 active, @ holddown, @ hidden)
Restart Complete
Prefix Nexthop MED Lclpref AS path
inet.0: 5 destinations, 5 routes (5 active, @ holddown, @ hidden)

Restart Complete

Prefix Nexthop MED Lclpref AS path
* 10.0.0.1/32 Self I
*10.0.1.2/32 Self 202 I
* 10.0.1.9/32 Self 209 I
*10.0.1.10/32 Self 210 I

To verify routes are received by the Leaf nodes use: show route receive-protocol bgp <peer-id> table inet6.0

Example:

jnpr@stripel-leaf1> show route receive-protocol bgp fe80::5a86:70ff:fe78:e0d5%et-0/0/1:0.0 table
inet.0

inet6.0: 14 destinations, 23 routes (14 active, @ holddown, @ hidden)

Restart Complete

Prefix Nexthop MED Lclpref AS path
* 10.0.0.1/32 fe80::9e5a:80ff: feef:a28f 101 I
10.0.0.2/32 fe80::9e5a:80ff: feef:a28f 101 202 I
10.0.0.9/32 fe80::9e5a:80ff: feef:a28f 101 209 I
10.0.0.10/32 fe80::9e5a:80ff: feef:a28f 101 210 I

On the leaf nodes, routes are exported only if they are accepted by both the
LEAF_TO_SPINE_FABRIC_OUT and BGP-AOS-Policy export policies.

o The LEAF TO_SPINE_FABRIC_OUT policy accepts all routes except those learned via BGP that are
tagged with the FROM_SPINE_FABRIC_TIER community (0:15). These routes are explicitly rejected
to prevent re-advertisement of spine-learned routes back into the spine layer. As described earlier,
spine nodes tag all routes they advertise to leaf nodes with this community to facilitate this filtering
logic.

e The BGP-AOS-Policy accepts all routes allowed by the nested AllPodNetworks policy, which matches
directly connected IPvé6 routes and tags them with the DEFAULT_DIRECT_V4 community (5:20007
and 21001:26000 for Stripel-Leaf1).

As a result, leaf nodes will advertise only their directly connected interface routes, including their
loopback interfaces, to the spines.

You can verify that the expected routes are being advertised by the spine node using: show route
advertising-protocol bgp <peer-id> table inet6.9

Example:

The following example shows the routes advertised to Spine 1 by Stripe 1 Leaf 1.

jnpr@stripel-leaf1> show route advertising-protocol bgp fe80::5a86:70ff:fe78:e0d5%et-0/0/30:0.0
table inet6.0

inet6.0: 14 destinations, 23 routes (14 active, © holddown, © hidden)
Restart Complete

Prefix Nexthop MED Lclpref AS path
* 10.0.0.1/32 Self I

To verify routes are received by the spine node, use: show route receive-protocol bgp <peer-id> table inet6.0

Example:

jnpr@spinel> show route receive-protocol bgp fe80::9e5a:80ff:fecl:aed0%et-0/0/0:0.0 table
inet6.0

inet6.0: 11 destinations, 11 routes (11 active, @ holddown, @ hidden)
Restart Complete

Prefix Nexthop MED Lclpref AS path
* 10.0.0.1/32 fe80::9e5a:80ff: fecl:ae0d 201 I

IPv6 GPU Backend Fabric Overlay

GPU Backend Fabric Overlay Using IPv4 The overlay EBGP sessions are configured between the leaf
and spine nodes using the IPv4 addresses of the loopback interfaces, as shown in the example between
Stripel Leaf 1/Stripe 2 Leaf 1 and Spine 1.

Table 33. GPU Backend Fabric Overlay Using IPv4 Loopback Addresses - Stripe 1 Example

STRIPE 1 LEAF 1 SPINE 1

[edit]
jnpr@stripel-leafl# show protocols bgp
group 13clos-inet4-auto-overlay {
type external;
multihop {
ttl 1;
}
family inet {
unicast;
}
export direct;
multipath {
multiple-as;

bfd-liveness-detection {
minimum-interval 3000;
multiplier 3;

neighbor 10.0.0.1 {
description facing_spinel-evpn-overlay;
local-address 10.0.1.1;
family evpn {
signaling;

export (LEAF_TO_SPINE_EVPN_OUT && EVPN_EXPORT);
peer-as 101;

vpn-apply-export;

edit]
jnpr@spinel# show protocols bgp
group 13clos-inet4-auto-overlay {
type external;
traceoptions {
file bgp;
flag all;

}

multihop {
ttl 1;
no-nexthop-change;

multipath {
multiple-as;

}

bfd-liveness-detection {
minimum-interval 3000;
multiplier 3;

}
neighbor 10.0.1.1 {
description facing_leafl-evpn-overlay;
local-address 10.0.0.1;
family evpn {
signaling;

export (SPINE_TO_LEAF_EVPN_OUT);
peer-as 201;

vpn-apply-export;

Table 34. GPU Backend Fabric Overlay Using IPv4 Loopback Addresses - Stripe 2 Example

STRIPE 2 LEAF 1 SPINE 1

[edit]
jnpr@stripe2-leafl# show protocols bgp
group 13clos-inet4-auto-overlay {
type external;
multihop {
ttl 1;
}
family inet {
unicast;
}
export direct;
multipath {
multiple-as;

bfd-liveness-detection {
minimum-interval 3000;
multiplier 3;

neighbor 10.0.0.1 {
description facing_spinel-evpn-overlay;
local-address 10.0.1.9;
family evpn {
signaling;

export (LEAF_TO_SPINE_EVPN_OUT && EVPN_EXPORT);
peer-as 101;

vpn-apply-export;

edit]
jnpr@spinel# show protocols bgp
group 13clos-inet4-auto-overlay {
type external;
traceoptions {
file bgp;
flag all;

multihop {
ttl 1;
no-nexthop-change;

multipath {
multiple-as;

}

bfd-liveness-detection {
minimum-interval 3000;
multiplier 3;

}
neighbor 10.0.1.9 {
description facing_leafl-evpn-overlay;
local-address 10.0.0.1;
family evpn {
signaling;

export (SPINE_TO_LEAF_EVPN_OUT);
peer-as 209;

vpn-apply-export;

214

The overlay BGP sessions use family evpn signaling to enable EVPN route exchange. The multihop ttl 1

statement allows EBGP sessions to be established between the loopback interfaces.

As with the underlay BGP sessions, these sessions are configured with multipath multiple-as, allowing
multiple EVPN paths with different AS paths to be considered for ECMP (Equal-Cost Multi-Path)

routing. BFD (Bidirectional Forwarding Detection) is also enabled to improve convergence time in case

of failures.

The no-nexthop-change knob on the spine nodes is used to preserve the original next-hop address,
which is critical in EVPN for ensuring that the remote VTEP can be reached directly. The vpn-apply-

export statement is included to ensure that the export policies are evaluated for VPN address families,

such as EVPN, allowing fine-grained control over which routes are advertised to each peer.

To control the propagation of routes, export policies are applied to these EBGP sessions as shown in the

example in table 33.

Table 35. Export Policy example to advertise EVPN routes over IPv4 overlay

LEAF
[edit policy-options policy-statement LEAF_TO_SPINE_EVPN_OUT]
jnpr@stripel-leafl# show | display set relative
set term LEAF_TO_SPINE_EVPN_OUT-10 from protocol bgp
set term LEAF_TO_SPINE_EVPN_OUT-1@ from community FROM_SPINE_EVPN_TIER
set term LEAF_TO_SPINE_EVPN_OUT-10 then reject
set term LEAF_TO_SPINE_EVPN_OUT-20 then accept

[edit policy-options community FROM_SPINE_EVPN_TIER]
jnpr@stripel-leafl# show | display set relative
set members 0:14

[edit policy-options policy-statement EVPN_EXPORT]
jnpr@stripel-leafl# show | display set relative
set term EVPN_EXPORT-4095 then accept

SPINE
[edit policy-options policy-statement SPINE_TO_LEAF_EVPN_OUT]
jnpr@spinel# show | display set relative

set term SPINE_TO_LEAF_EVPN_OUT-10 then community add FROM_SPINE_EVPN_TIER

set term SPINE_TO_LEAF_EVPN_OUT-1@ then accept

[edit policy-options community FROM_SPINE_EVPN_TIER]
jnpr@spinel# show | display set relative
set members 0:14

These policies are simpler in structure and are intended to enable end-to-end EVPN reachability
between tenant GPUs, while preventing route loops within the overlay.

Routes will only be advertised if EVPN routing-instances have been created. Example:

Table 36. EVPN Routing-Instances for a single tenant example across different leaf nodes.

STRIPE 1 - LEAF 1 STRIPE 2 - LEAF 1

[edit routing-instances Tenant-A]

jnpr@stripel-leafl# show | display set relative

set instance-type vrf

set routing-options graceful-restart

set routing-options multipath

set protocols evpn ip-prefix-routes advertise direct-nexthop
set protocols evpn ip-prefix-routes encapsulation vxlan

set protocols evpn ip-prefix-routes vni 20001

set protocols evpn ip-prefix-routes export BGP-AOS-Policy-Tenant-A
set interface et-0/0/12:0.0

set interface 100.1

set route-distinguisher 10.0.1.1:2001

set vrf-target target:20001:1

[[edit routing-instances Tenant-A]

jnpr@stripe2-leafi# show | display set relative

set instance-type vrf

set routing-options graceful-restart

set routing-options multipath

set protocols evpn ip-prefix-routes advertise direct-nexthop
set protocols evpn ip-prefix-routes encapsulation vxlan

set protocols evpn ip-prefix-routes vni 20009

set protocols evpn ip-prefix-routes export BGP-AOS-Policy-Tenant-A
set interface et-0/0/12:0.0

set interface 10@.1

set route-distinguisher 10.0.1.9:2009

set vrf-target target:20001:1

On the spine nodes, routes are exported if they are accepted by the SPINE_TO_LEAF EVPN_OUT

policy.

The SPINE_TO_LEAF_EVPN_OUT policy has no match conditions and accepts all routes. It tags each
exported route with the FROM_SPINE_EVPN_TIER community (0:14).

215

As a result, the spine nodes export EVPN routes received from one leaf to all other leaf nodes, allowing
tenant-to-tenant communication across the fabric.

Example:

jnpr@spinel> show route advertising-protocol bgp 10.0.1.1 | match 5:10.%2001.%31
5:10.0.1.2:2001::0::10.200.0.2::31/248

:10.0.1.2:2001::0::10.200.0.34::31/248

:10.0.1.9:2001::0::10.200.1.0::31/248

:10.0.1.9:2001::0::10.200.1.32::31/248

:10.0.1.10:2001::0::10.200.1.2::31/248
5:10.0.1.10:2001::0::10.200.1.34::31/248

jnpr@spinel>show route advertising-protocol bgp 10.0.1.1 match-prefix

5:10.0.1.9:2001::0::10.200.1.0::31/248

bgp.evpn.0: 378 destinations, 378 routes (378 active, @ holddown, @ hidden)

5
5
5
5

Restart Complete

Prefix Nexthop MED Lclpref
AS path
5:10.0.1.9:2001::0::10.200.1.0::31/248 *10.0.1.9 209 I

On the leaf nodes, routes are exported if they are accepted by both the LEAF TO SPINE_EVPN_OUT
and EVPN_EXPORT policies:

o The LEAF TO_SPINE_EVPN_OUT policy rejects any BGP-learned routes that carry the
FROM_SPINE_EVPN_TIER community (0:14). These routes are explicitly rejected to prevent re-
advertisement of spine-learned routes back into the spine layer. As described earlier, spine nodes tag
all routes they advertise to leaf nodes with this community to facilitate this filtering logic.

o The EVPN_EXPORT policy accepts all routes without additional conditions.

As a result, the leaf nodes export only locally originated EVPN routes for the directly connected
interfaces between GPU servers and the leaf nodes. These routes are part of the tenant routing
instances and are required to establish reachability between GPUs belonging to the same tenant.

jnpr@stripel-leaf1> show route advertising-protocol bgp 10.0.0.1 table Tenant-1
Tenant-1.evpn.0: 8 destinations, 20 routes (8 active, @ holddown, @ hidden)
Restart Complete

Prefix Nexthop MED Lclpref AS path
5:10.0.1.1:2001::0::10.200.0.0::31/248

* Self I
5:10.0.1.1:2001::0::10.200.0.16::31/248

* Self I

jnpr@stripel-leaf1> show route advertising-protocol bgp 10.0.0.1 table Tenant-2

Tenant-2.evpn.0: 8 destinations, 20 routes (8 active, 0 holddown, @ hidden)
Restart Complete

Prefix Nexthop MED Lclpref AS path
5:10.0.1.1:2002::0::10.200.0.2::31/248

* Self I
5:10.0.1.1:2002::0::10.200.0.18::31/248

* Self I

Appendix B - IPv4 Overlay over IPv4 Underlay
Fabric Implementation

IN THIS SECTION

GPU Backend Fabric Overlay with IPv4 | 225

This section outlines the configuration components for an IPv4 underlay and IPv4 overlay deployment.
Control plane implementation with IPv4 underlay and IPv4 overlay

This model provides an IPv4 transport underlay and IPv4 EVPN/VXLAN transport in the overlay that
can support IPv4-only devices communicating across the fabric. This model aligns with traditional IP
fabric designs, where interface addressing is fully controlled and visible, neighbor relationships are
explicitly defined, and support IPv4-only end devices.

The interfaces between leaf and spine nodes are configured with explicit /31 IPv4 addresses assigned
from a pool of IPv4 addresses reserved for the underlay. Each device on the point-to-point link is
configured with one of the two usable IPv4 addresses in the corresponding /31 subnet. This allows
efficient address assignments for the point-to-point links between leaf and spine nodes. All leaf and
spine nodes are also configured with IPv4 addresses on the loopback interface (100.0).

The underlay EBGP sessions are set up between the leaf and spine nodes, by explicitly configuring each
neighbor, using the /31 IPv4 addresses assigned between them.

The EBGP configuration for this model includes each neighbor’s IPv4 address and Autonomous System
(AS) number, the local Autonomous System (AS) number, and the export policy that allows the
advertisement of routes to reach all the leaf and spine nodes in the fabric. These routes are standard
IPv4 unicast advertising the IPv4 addresses assigned to the loopback interface (100.0).

The overlay EBGP sessions are also set up by explicitly configuring each neighbor, using the IPv4
addresses of the loopback interfaces advertised by the underlay EBGP sessions, and are also established
between the leaf and spine nodes.

The leaf nodes act as VTEPs and advertise the IPv4 prefixes assigned to the links between the GPU
servers and the leaf nodes using EVPN Type 5 routes.

Example:
Consider the example depicted in Figure 55.

For the underlay, STRIPE1 LEAF 1 in AS 201 establishes an EBGP session with SPINE 1 in AS 101, over
the directly connected IPv4 link 10.2.1.2/31 <=> 10.2.1.1/31. Similarly, STRIPE2 LEAF 1 in AS 209
establishes an EBGP session with SPINE 1 over the link 10.2.9.2/31 <=> 10.2.9.1/31.

Figure 55: IPv4 Underlay and IPv4 Overlay Example

SERVER 1 SERVER 2 SERVER 3 SERVER 4

@@Q@@Q@J%@@@Q@Q@N%Q@@QQ@@

RTS-IPVRF_ N 2,
TENANT-A o 2

U dggad

RT5-IPVRF_5
TENANT-A

(e STRIPE 1
Q-
» LEAFs 1-8

ER=N=N=R=R=0=

STRIPE 2
LEAFs 1-8

STRIPE1 LEAF 1 (VTEP1)
AS201
100.010.0.1.1/32 2,%

02
238 STRIPE2 LEAF 1(VTEP2)
ant As209
A 100.0 10.0.1.9/32

N

e
P
-

=

As101 *7 SPINE 2 SPINE 3 SPINE 4
100.010.0.0.1/32 l00.0 100.0 100.0
SPINE 1 10.0.0.2/32 10.0.0.3/32 10.0.0.4/32

These sessions exchange IPv4 unicast routes advertising the address of the loopback interface (100.0) of
STRIPE1 LEAF 1 (10.0.1.1), STRIPE2 LEAF 1 (10.0.1.9) and SPINE 1 (10.0.0.1).

NOTE: Although it is not shown in the diagram, STRIPE1 LEAF 1 and STRIPE2 LEAF 1 will also
establish EBGP sessions with SPINE 2, SPINE 3, and SPINE 4 to ensure multiple paths are
available for traffic.

EBGP sessions are established between the leaf nodes and SPINE 1 using their loopback addresses
(10.0.1.1, 10.0.1.9, and 10.0.0.1, respectively).

The leaf nodes acting as VTEP advertise the links connecting the GPU servers and leaf nodes as /31
EVPN type 5 routes.

For example, STRIPE1 LEAF 1 advertises routes to the IPv4 addresses on the links connecting SERVER 1
GPU1 and SERVER 2 GPU1 to STRIPE1 LEAF 1 (10.1.1.0/31 and 10.1.1.16/31 respectively). Similarly,
STRIPE2 LEAF 1 advertises router to the IPv4 addresses on the links connecting SERVER 3 GPU1 and
SERVER 4 GPU1 (10.1.1.32/31 and 10.1.1.40/31 respectively).

Assuming all four GPUs in the example belong to the same tenant, their associated interfaces are
mapped to the same VRF, RT5-IP-VRF_TENANT-1.

RT5-IP-VRF_TENANT-1 is configured on both STRIPE1 LEAF 1 and STRIPE2 LEAF 1 with the same
VXLAN Network Identifier (VNI) and route targets. STRIPE1 LEAF 1 advertises the prefixes 10.1.1.0/31
and 10.1.1.16/31 to SPINE 1 as EVPN Route Type 5, with its own loopback (10.0.1.1) as the next-hop
VTEP. STRIPE2 LEAF 1 advertises 10.1.1.32/31 and 10.1.1.40/31 with 10.0.1.9 as the next-hop.

When SERVER 1 GPU1 sends traffic to SERVER 3 GPU1, the destination addresses 10.1.1.32 for
example, is found in the VRF routing table on STRIPE1 LEAF 1 (Tenant-1.inet.0). The route points to
STRIPE2 LEAF 1 (VTEP at 10.0.1.9) as the protocol next-hop (which is resolved to the addresses of the
spine nodes). The route also specifies VNI 1 as the VXLAN encapsulation ID. The packet is encapsulated
with the VXLAN header and tunneled across the fabric to its destination.

Spine Nodes to Leaf Connections

The interfaces between the leaf and spine nodes do not require explicitly configured IP addresses and
are configured as untagged interfaces with only family inet and family ineté to enable processing of IPv4
and IPvé traffic as shown in Figure 56.

Figure 56: IPv4 Underlay and IPv4 Overlay Configuration Example

SPINEL SPINE2 SPINE3 SPINE4
AS101 AS102 AS103 A5104
100.0 10.0.0.1/32 160.0 10.0.0.2/32 100.010.0.0.3/32 100.0 10.0.0.4/32

e L4 t4

€0/0/0:0,0 10.0.2:64/31 Z etooood 0028 <-0/0/0:00 10.02.98/31 €t:0/0/0:0.0 10.0.2.114/31

|Pvd UNDERLAY <G===== P
EBGP

IPv4 QVERLAY G
EBGP

©t-0/0/30:0,0 10.0.2.65/31 2
€1-0/0/31:0.0 10.0.2.83/31 .}
€1-0/0/32:0.0 10.0.2.99/31 ;"
€t-0/0/33:00 10.0.2.115/31 {

]
—
—

t-0/0/0:0.0
10.200.0.0/31

STRIPE1 LEAF
AS201 W
100.0 10.0.1.1/32

10.200.0.1/31

LR

The interfaces between the leaf and spine nodes are configured with /31 addresses as shown in Table
58.

Table 58. IPv4 Address Assignments for Leaf-to-Spine Interfaces (/31 Subnetting)

LEAF NODE INTERFACE = LEAF NODE IPv4 SPINE NODE INTERFACE = SPINE IPv4 ADDRESS
ADDRESS

Stripe 1 Leaf 1 - 10.0.2.65/31 Spine 1 - et-0/0/0:0 10.0.2.64/31

et-0/0/30:0

Stripe 1 Leaf 1 - 10.0.2.83/31 Spine 2 - et-0/0/1:0 10.0.2.82/31

et-0/0/31:0

Stripe 1 Leaf 1 - 10.0.2.99/31 Spine 3 - et-0/0/2:0 10.0.2.98/31

et-0/0/32:0

Stripe 1 Leaf 1 - 10.0.2.115/31 Spine 4 - et-0/0/3:0 10.0.2.114/31

et-0/0/33:0

Stripe 1 Leaf 5 - 10.0.2.69/31 Spine 1 - et-0/0/0:0 10.0.2.68/31

et-0/0/30:0

Stripe 1 Leaf 2 - 10.0.2.85/31 Spine 2 - et-0/0/1:0 10.0.2.84/31

et-0/0/31:0

Stripe 1 Leaf 2 - 10.0.2.101/31 Spine 3 - et-0/0/2:0 10.0.2.100/31

et-0/0/32:0

Stripe 1 Leaf 2 - 10.0.2.119/31 Spine 4 - et-0/0/3:0 10.0.2.118/31

et-0/0/33:0

These interfaces are configured as untagged interfaces, with family inet and static IPv4 addresses, as
shown in the example for the link between Stripe 1 leaf 1 and Spine 1 below:

Table 59. Example Junos Configuration for Leaf-Spine IPv4 Interface

STRIPE 1 LEAF 1 (et-0/0/0:30)
[edit interfaces et-0/0/30]
jnpr@stripel-leafl# show | display set relative
set description "Breakout et-0/0/30"
set number-of-sub-ports 1
set speed 800g

[edit interfaces et-0/0/30:0]
jnpr@stripel-leafl# show | display set relative
set description facing_spinel:et-0/0/0:0

set mtu 9216

set unit @ family inet mtu 9170

set unit @ family inet address 10.0.2.64/31

SPINE 1 (et-0/0/0:0)
[edit interfaces et-0/0/0]
jnpr@spinel# show | display set
set interfaces et-0/0/0 description "Breakout et-0/0/0"
set interfaces et-0/0/0 number-of-sub-ports 1
set interfaces et-0/0/0 speed 800g

[edit interfaces et-0/0/0:0]

jnpr@spinel# show | display set relative
set description "To Leafl"

set mtu 9216

set unit @ family inet mtu 9170

set unit @ family inet address 10.0.2.65/31

The loopback and Autonomous System numbers for all devices in the fabric are included in Table 60:

Table 60. Loopback IPv4 Addresses and Autonomous System Numbers for Fabric Devices

LEAF NODE INTERFACE 100.0 IPv4 ADDRESS Local AS #
Stripe 1 Leaf 1 10.0.1.1/32 201
Stripe 1 Leaf 2 10.0.1.2/32 202
Stripe 1 Leaf 3 10.0.1.3/32 203
Stripe 1 Leaf 4 10.0.1.4/32 204
Stripe 1 Leaf 5 10.0.1.5/32 205
Stripe 1 Leaf 6 10.0.1.6/32 206
Stripe 1 Leaf 7 10.0.1.7/32 207
Stripe 1 Leaf 8 10.0.1.8/32 208
SPINE1 10.0.0.1/32 101
SPINE2 10.0.0.2/32 102

SPINE3 10.0.0.3/32

103

221

(Continued)
LEAF NODE INTERFACE 100.0 IPv4 ADDRESS Local AS #
SPINE4 10.0.0.4/32 104

Table 61. Example Junos Configuration for Loopback Interfaces and Routing Options

STRIPE 1 LEAF 1 SPINE 1

[edit routing-options] [edit routing-options]

jnpr@stripel-leafl# show | display set relative jnpr@spinel# show | display set

set router-id 10.0.1.1 set router-id 10.0.0.1

set autonomous-system 201 set autonomous-system 101

set graceful-restart set graceful-restart

set forwarding-table export PFE-LB set forwarding-table export PFE-LB

set forwarding-table ecmp-fast-reroute set forwarding-table ecmp-fast-reroute

[edit interfaces 1o@] [edit interfaces 100]

jnpr@stripel-leafl# show |display set relative jnpr@stripel-leafl# show |display set relative
set unit @ family inet address 10.0.1.1/32 set unit @ family inet address 10.0.0.1/32

GPU Backend Fabric Underlay with IPv4

The underlay EBGP sessions are configured between the leaf and spine nodes using the IP addresses of
the directly connected links, as shown in the example between Stripel Leaf 1 and the spine nodes
below:

Table 62. EBGP Underlay Configuration Example: Stripe 1 Leaf 1 to Spine 1

STRIPE 1 LEAF 1 SPINE 1

[edit] [edit]
jnpr@stripel-leafi# show protocols bgp jnpr@stripel-leafl# show protocols bgp
group 13clos-inet-underlay { group 13clos-inet-underlay {
type external; type external;
multipath { multipath {
multiple-as; multiple-as;
} }
bfd-liveness-detection { bfd-liveness-detection {
minimum-interval 1000; minimum-interval 1000;
multiplier 3; multiplier 3;
} }
neighbor 10.0.2.64 { neighbor 10.0.2.65 {
description facing_spinel; description facing_stripel-leafl;
local-address 10.0.2.65; local-address 10.0.2.64;
family inet { family inet {
unicast; unicast;
} }
export (LEAF_TO_SPINE_FABRIC_OUT && BGP-AOS-Policy); export (SPINE_TO_LEAF_FABRIC_OUT && BGP-AOS-Policy);
peer-as 108; peer-as 208;
} }
vpn-apply-export; vpn-apply-export;
} }

Table 63. EBGP Underlay Configuration Example: Stripe 1 Leaf 1 to Spine 2

222

RIPE 1 LEAF 1 SPINE 2

[edit]
jnpr@stripel-leafl# show protocols bgp
group 13clos-inet-underlay {
type external;
multipath {
multiple-as;

bfd-liveness-detection {
minimum-interval 1000;
multiplier 3;

}
neighbor 10.0.2.82 {
description facing_spinel;
local-address 10.0.2.83;
family inet {
unicast;

export (LEAF_TO_SPINE_FABRIC_OUT && BGP-AOS-Policy);
peer-as 108;

vpn-apply-export;

[edit]
jnpr@stripel-leafl# show protocols bgp
group 13clos-inet-underlay {
type external;
multipath {
multiple-as;

bfd-liveness-detection {
minimum-interval 1000;
multiplier 3;

}
neighbor 10.0.2.83 {
description facing_stripel-leafl;
local-address 10.0.2.82;
family inet {
unicast;

}
export (SPINE_TO_LEAF_FABRIC_OUT & BGP-AOS-Policy);
peer-as 208;

vpn-apply-export;

All the BGP sessions are configured with multipath

multiple-as, which allows multiple paths (to the same

destination) with different AS paths to be considered for ECMP (Equal-Cost Multi-Path) routing, and
with BFD to improve convergence in case of failures.

To control the propagation of routes, export policies are applied to these EBGP sessions as shown in the

example in Table 64.

Table 64. Export policy example to advertise IPv4 routes over IPv4 Underlay

LEAF

[edit policy-options policy-statement LEAF_TO_SPINE_FABRIC_OUT]
jnpr@stripel-leafl# show | display set relative

set term LEAF_TO_SPINE_FABRIC_OUT-10 from protocol bgp

set term LEAF_TO_SPINE_FABRIC_OUT-10 from community FROM_SPINE_FABRIC_TIER
set term LEAF_TO_SPINE_FABRIC_OUT-10 then reject

set term LEAF_TO_SPINE_FABRIC_OUT-20 then accept

[edit policy-options community FROM_SPINE_FABRIC_TIER]
jnpr@stripel-leafi# show | display set relative
set members 0:15

[edit policy-options policy-statement BGP-AOS-Policy]
jnpr@stripel-leafl# show | display set relative

set term BGP-AOS-Policy-10 from policy AllPodNetworks
set term BGP-AOS-Policy-10 then accept

set term BGP-AOS-Policy-100 then reject

[edit policy-options policy-statement AllPodNetworks]
jnpr@stripel-leafi# show | display set relative

set term AllPodNetworks-1@ from family inet

set term AllPodNetworks-10 from protocol direct

set term AllPodNetworks-1@ from interface 100.0

set term AllPodNetworks-10 then community add DEFAULT_DIRECT_V4
set term AllPodNetworks-10 then accept

set term AllPodNetworks-100 then reject

[edit policy-options community DEFAULT_DIRECT_V4]
jnpr@stripel-leafl# show | display set relative
set members 5:20007

set members 21001:26000

SPINE

[edit policy-options policy-statement SPINE_TO_LEAF_FABRIC_OUT]

jnpr@spinel# show | display set relative

set term SPINE_TO_LEAF_FABRIC_OUT-10 then community add FROM_SPINE_FABRIC_TIER
set term SPINE_TO_LEAF_FABRIC_OUT-10 then accept

[edit policy-options community FROM_SPINE_FABRIC_TIER]
jnpr@spinel# show | display set relative
set members @:15

[edit policy-options policy-statement BGP-AOS-Policy]
jnpr@spinel# show | display set relative

set term BGP-AOS-Policy-10 from policy AllPodNetworks
set term BGP-AOS-Policy-10 then accept

set term BGP-AOS-Policy-20 from protocol bgp

set term BGP-AOS-Policy-20 then accept

set term BGP-AOS-Policy-100 then reject

[edit policy-options policy-statement AllPodNetworks]
jnpr@spinel# show | display set relative

set term AllPodNetworks-10 from family inet

set term AllPodNetworks-10 from protocol direct

set term AllPodNetworks-1@ from interface 100.0

set term AllPodNetworks-10 then community add DEFAULT_DIRECT_V4
set term AllPodNetworks-10 then accept

set term AllPodNetworks-100 then reject

[edit policy-options community DEFAULT_DIRECT_V4]
jnpr@spinel# show | display set relative

set members 1:20007

set members 21001:26000

These policies ensure loopback reachability is advertised cleanly and without the risk of route loops.

On the spine nodes, routes are exported only if they are accepted by both the
SPINE_TO_LEAF_FABRIC_OUT and BGP-AOS-Policy export policies:

223

e The SPINE_TO_LEAF FABRIC OUT policy has no match conditions and accepts all routes
unconditionally, tagging them with the FROM_SPINE_FABRIC_TIER community (0:15).

e The BGP-AOS-Policy accepts BGP-learned routes as well as any routes accepted by the nested
AllPodNetworks policy.

e The AllPodNetworks policy, in turn, matches directly connected IPv4 routes and tags them with the
DEFAULT_DIRECT_V4 community (1:20007 and 21001:26000 on Spine1).

As a result, each spine advertises both its directly connected routes (including its loopback interface) and
any routes it has received from other leaf nodes.

Example:

jnpr@spinel> show route advertising-protocol bgp 10.0.2.65 | match /32

* 10.0.0.1/32 Self I

*x 10.0.1.2/32 Self 202 1
* 10.0.1.3/32 Self 203 1
=Rl fE===

jnpr@spinel> show route advertising-protocol bgp 10.0.2.65 10.0.0.1/32 extensive
inet.0: 85 destinations, 169 routes (85 active, @ holddown, @ hidden)
Restart Complete
* 10.0.0.1/32 (1 entry, 1 announced)
BGP group 13clos-underlay type External
Nexthop: Self
AS path: [101] I
Communities: 0:15 1:20007 21001:26000
jnpr@spine2> show route advertising-protocol bgp 10.0.2.65 10.0.1.2/32 extensive
inet.0: 85 destinations, 169 routes (85 active, © holddown, @ hidden)
Restart Complete
* 10.0.1.2/32 (2 entries, 1 announced)
BGP group 13clos-underlay type External
AS path: [101] 202 I
Communities: 0:15 6:20007 21001:26000

On the leaf nodes, routes are exported only if they are accepted by both the
LEAF_TO_SPINE_FABRIC_OUT and BGP-AOS-Policy export policies:

e The LEAF_ TO_SPINE_FABRIC_OUT policy accepts all routes except those learned via BGP that are
tagged with the FROM_SPINE_FABRIC_TIER community (0:15). These routes are explicitly rejected
to prevent re-advertisement of spine-learned routes back into the spine layer. As described earlier,
spine nodes tag all routes they advertise to leaf nodes with this community to facilitate this filtering
logic.

o The BGP-AOS-Policy accepts all routes allowed by the nested A/lPodNetworks policy, which matches
directly connected IPv4 routes and tags them with the DEFAULT_DIRECT_V4 community (5:20007
and 21001:26000 for Stripel-Leaf1).

As a result, leaf nodes will advertise only their directly connected interface routes, including their
loopback interfaces, to the spines.

jnpr@stripel-leaf1> show route advertising-protocol bgp 10.0.2.64 | match /32
* 10.0.1.1/32 Self I
jnpr@stripel-leaf1> show route advertising-protocol bgp 10.0.2.64 10.0.1.1/32 extensive
inet.@: 48 destinations, 257 routes (48 active, 0 holddown, @ hidden)
Restart Complete
x 10.0.1.1/32 (1 entry, 1 announced)
BGP group 13clos-underlay type External
Nexthop: Self
AS path: [201] I
Communities: 5:20007 21001:26000

GPU Backend Fabric Overlay with IPv4

The overlay EBGP sessions are configured between the leaf and spine nodes using the IPv4 addresses of
the loopback interfaces, as shown in the example between Stripel Leaf 1 and Spines.

Table 65. EVPN Overlay EBGP Configuration Example: Stripe 1 Leaf 1 to Spine 1

STRIPE 1 LEAF 1 SPINE 1

[edit protocols bgp]
jnpr@stripel-leafl# show
group 13clos-inet-overlay {
type external;
multihop {
ttl 1;
no-nexthop-change;

family evpn {
signaling {
loops 2;
}

}
multipath {
multiple-as;

bfd-liveness-detection {
minimum-interval 3000;
multiplier 3;

neighbor 10.0.0.1 {
description facing_spinel-evpn-overlay;
local-address 10.0.1.1;
family evpn {
signaling;
}
export (LEAF_TO_SPINE_EVPN_OUT && EVPN_EXPORT);
peer-as 101;

vpn-apply-export;

[edit protocols bgp]
jnpr@spinel# show
group 13clos-inet-overlay {
type external;
multihop {
ttl 1;
no-nexthop-change;

3
family evpn {
signaling {
loops 2;
}

}
multipath {
multiple-as;

bfd-liveness-detection {
minimum-interval 3000;
multiplier 3;

neighbor 10.0.1.1 {
description facing_stripel-leafl-overlay;
local-address 10.0.0.1;
family evpn {
signaling;
}

export (SPINE_TO_LEAF_EVPN_OUT);
peer-as 201;

vpn-apply-export;

Table 66. EVPN Overlay EBGP Configuration Example: Stripe 2 Leaf 1 to Spine 1

STRIPE 2 LEAF 1 SPINE 1

[edit protocols bgp]
jnpr@stripel-leafl# show
group 13clos-inet-overlay {
type external;
multihop {
ttl 1;
no-nexthop-change;

3
family evpn {
signaling {
loops 2;
}
}

multipath {
multiple-as;

}

bfd-liveness-detection {
minimum-interval 3000;
multiplier 3;

neighbor 10.0.0.1 {
description facing_spinel-evpn-overlay;
local-address 10.0.1.9;
family evpn {
signaling;

export (LEAF_TO_SPINE_EVPN_OUT && EVPN_EXPORT);
peer-as 101;

vpn-apply-export;

[edit protocols bgp]
jnpr@spinel# show
group 13clos-inet-overlay {
type external;
multihop {
ttl 1;
no-nexthop-change;

3
family evpn {
signaling {
loops 2;
}
}

multipath {
multiple-as;

}

bfd-liveness-detection {
minimum-interval 3000;
multiplier 3;

neighbor 10.0.1.9 {
description facing_stripel-leafl-overlay;
local-address 10.0.0.1;
family evpn {
signaling;

export (SPINE_TO_LEAF_EVPN_OUT);
peer-as 209;

vpn-apply-export;

The overlay BGP sessions use family evpn signaling to enable EVPN route exchange. The multihop ttl 1

statement allows EBGP sessions to be established between the loopback interfaces.

As with the underlay BGP sessions, these sessions are configured with multipath multiple-as, allowing
multiple EVPN paths with different AS paths to be considered for ECMP (Equal-Cost Multi-Path)
routing. BFD (Bidirectional Forwarding Detection) is also enabled to improve convergence time in case

of failures.

226

The no-nexthop-change knob is used to preserve the original next-hop address, which is critical in EVPN for
ensuring that the remote VTEP can be reached directly. The vpn-apply-export statement is included to
ensure that the export policies are evaluated for VPN address families, such as EVPN, allowing fine-
grained control over which routes are advertised to each peer.

To control the propagation of routes, export policies are applied to these EBGP sessions as shown in the
example in Table 67.

Table 67. Export Policy Example to Advertise EVPN Routes over IPv4 Overlay

LEAF SPINE
[edit policy-options policy-statement LEAF_TO_SPINE_EVPN_OUT] [edit policy-options policy-statement SPINE_TO_LEAF_EVPN_OUT]
jnpr@stripel-leafl# show | display set relative jnpr@spinel# show | display set relative
set term LEAF_TO_SPINE_EVPN_OUT-10 from protocol bgp set term SPINE_TO_LEAF_EVPN_OUT-1@ then community add FROM_SPINE_EVPN_TIER

set term LEAF_TO_SPINE_EVPN:OUT—10 from community FROM_SPINE_EVPN_TIER |set term SPINE_TO_LEAF_EVPN_OUT-10 then accept
set term LEAF_TO_SPINE_EVPN_OUT-16 then reject
set term LEAF_TO_SPINE_EVPN_OUT-20 then accept

[edit policy-options community FROM_SPINE_EVPN_TIER]
jnpr@stripel-leafl# show | display set relative [edit policy-options community FROM_SPINE_EVPN_TIER]
set members 0:14 jnpr@spinel# show | display set relative

set members 0:14

[edit policy-options policy-statement EVPN_EXPORT]
jnpr@stripel-leafl# show | display set relative
set term EVPN_EXPORT-4095 then accept

These policies are simpler in structure and are intended to enable end-to-end EVPN reachability
between tenant GPUs, while preventing route loops within the overlay.

Routes will only be advertised if EVPN routing-instances have been created. Example:

Table 68. EVPN Routing-Instances for a Single Tenant Example Across Different Leaf Nodes.

[edit routing-instances Tenant-A] [[edit routing-instances Tenant-A]

jnpr@stripel-leafl# show | display set relative jnpr@stripe2-leafl# show | display set relative

set instance-type vrf set instance-type vrf

set routing-options graceful-restart set routing-options graceful-restart

set routing-options multipath set routing-options multipath

set protocols evpn ip-prefix-routes advertise direct-nexthop set protocols evpn ip-prefix-routes advertise direct-nexthop
set protocols evpn ip-prefix-routes encapsulation vxlan set protocols evpn ip-prefix-routes encapsulation vxlan

set protocols evpn ip-prefix-routes vni 20001 set protocols evpn ip-prefix-routes vni 20009

set protocols evpn ip-prefix-routes export BGP-AOS-Policy-Tenant-A set protocols evpn ip-prefix-routes export BGP-AOS-Policy-Tenant-A
set interface et-0/0/12:0.0 set interface et-0/0/12:0.0

set interface 1lo@.1 set interface 100.1

set route-distinguisher 10.0.1.1:2001 set route-distinguisher 10.0.1.9:2009

set vrf-target target:20001:1 set vrf-target target:20001:1

On the spine nodes, routes are exported if they are accepted by the SPINE_TO_LEAF_EVPN_OUT
policy:

o The SPINE_TO_LEAF EVPN_OUT policy has no match conditions and accepts all routes. It tags each
exported route with the FROM_SPINE_EVPN_TIER community (0:14).

As a result, the spine nodes export EVPN routes received from one leaf to all other leaf nodes, allowing
tenant-to-tenant communication across the fabric.

227

Example:

jnpr@spinel> show route advertising-protocol bgp 10.0.1.1 | match 5:10.%2001.%31
5:10.0.1.2:2001::0::10.200.0.2::31/248

:10.0.1.2:2001::0::10.200.0.66::31/248

:10.0.1.9:2001::0::10.200.1.0::31/248

:10.0.1.9:2001::0::10.200.1.64::31/248

:10.0.1.10:2001::0::10.200.1.2::31/248
5:10.0.1.10:2001::0::10.200.1.66::31/248

jnpr@spinel> show route advertising-protocol bgp 10.0.1.1 match-prefix

5:10.0.1.2:2001::0::10.200.0.2::31/248

bgp.evpn.0: 378 destinations, 378 routes (378 active, @ holddown, @ hidden)

Restart Complete
Prefix Nexthop MED Lclpref

AS path

bgp.evpn.0: 20 destinations, 20 routes (20 active, @ holddown, @ hidden)
5:10.0.1.2:2001::0::10.200.0.2::31/248

* 10.0.1.2 202 1

5
5
5
5

On the leaf nodes, routes are exported if they are accepted by both the LEAF_TO_SPINE_EVPN_OUT
and EVPN_EXPORT policies:

o The LEAF. TO_SPINE_EVPN_OUT policy rejects any BGP-learned routes that carry the
FROM_SPINE_EVPN_TIER community (0:14). These routes are explicitly rejected to prevent re-
advertisement of spine-learned routes back into the spine layer. As described earlier, spine nodes tag
all routes they advertise to leaf nodes with this community to facilitate this filtering logic.

e The EVPN_EXPORT policy accepts all routes without additional conditions.

As a result, the leaf nodes export only locally originated EVPN routes for the directly connected
interfaces between GPU servers and the leaf nodes. These routes are part of the tenant routing
instances and are required to establish reachability between GPUs belonging to the same tenant.

jnpr@stripel-leaf1> show route advertising-protocol bgp 10.0.0.1 table Tenant-1
Tenant-1.evpn.0: 12 destinations, 39 routes (12 active, @ holddown, @ hidden)
Restart Complete
Prefix Nexthop MED Lclpref AS path
5:10.0.1.1:2001::0::10.200.0.0::31/248
* Self I
5:10.0.1.1:2001::0::10.200.0.64::31/248
* Self I
5:10.0.1.1:2001::0::192.168.11.1::32/248

* Self I

jnpr@stripel-leaf1> show route advertising-protocol bgp 10.0.0.1 table Tenant-2
Tenant-2.evpn.0: 8 destinations, 20 routes (8 active, 0 holddown, @ hidden)
Restart Complete

Prefix Nexthop MED Lclpref AS path
5:10.0.1.1:2002::0::10.200.0.32::31/248
* Self I
5:10.0.1.1:2002::0::10.200.0.96::31/248
* Self I
5:10.0.1.1:2002::0::192.168.11.2::32/248
* Self I

Configuration and verification example

Consider the following scenario where Tenant-1 has been assigned GPU O on Server 1 and GPU1 on
Server 2, and Tenant-2 has been assigned GPU 0 on Server 2 and GPU1 on Server 1 as shown in figure
57.

Figure 57: GPU Assignment Across Servers for Tenant-1 and Tenant-2

SPINE2 SPINE2 SPINE3 SPINE4
AS101 AS102 A$103 AS104
100.0 10.0.0.1/32 100.0 10.0.0.2/32 100.0 10.0.0.3/32 100.0 10.0.0.4/32
— |4 4 |e— |n Ah [e— T —
—_— i —_ A —_— A ——
—. i ™ —. —. —.
et-0/0/0:0.0 ¢ et-0/0/0:0.0
10.200.0.0/31 m i £ / . o \ i m 10.200.0.2/31
BGP UPDATE BGP UPDATE i
o 10.200.0.0/31 VNI 2001 10.200.0.8/31 NI 2001 |, | UG
€t-0/0/1:0.0 10.200.0.16/31 VNI 2001 10.200.0.18/31 vNi 2001 |} = €t-0/0/0:1.0
10.200.0.16/31 . — T i 10.200.0.18/31
kS 5 STRIPE1LEAF1 | ’ A : 88
g 2 5201 VE | STRIPEZ LEAF1 | %
E g 100010012732 £ "l P As209 g| 8
g g oOeIREL 00,0 10.0.1.9/32 gl =
s s g| =

Both Stripe 1 Leaf 1 and Leaf 2 have been configured for Tenant-1 and Tenant-2 as shown below:

Table 69. EVPN Routing-Instance for Tenant-1 and Tenant-2 Across Stripe 1 and Stripe 2

STRIPE 1 - LEAF 1 STRIPE 2 - LEAF 1

[edit routing-instances Tenant-A]
jnpr@stripel-leafl# show | display set relative
set instance-type vrf

set routing-options graceful-restart

[[edit routing-instances Tenant-A]
jnpr@stripe2-leafl# show | display set relative
set instance-type vrf

set routing-options graceful-restart

set
set
set
set
set
set
set
set
set

routing-options multipath

protocols evpn ip-prefix-routes advertise direct-nexthop
protocols evpn ip-prefix-routes encapsulation vxlan

protocols evpn ip-prefix-routes vni 20001

protocols evpn ip-prefix-routes export BGP-AOS-Policy-Tenant-A
interface et-0/0/0:0.0

interface 100.1

route-distinguisher 10.0.1.1:2001

vrf-target target:20001:1

set
set
set
set
set
set
set
set
set

routing-options multipath
protocols evpn ip-prefix-routes
protocols evpn ip-prefix-routes
protocols evpn ip-prefix-routes
protocols evpn ip-prefix-routes
interface et-0/0/0:0.0
interface 1o@.1

advertise direct-nexthop
encapsulation vxlan

vni 20001

export BGP-AOS-Policy-Tenant-A

route-distinguisher 10.0.1.9:2001

vrf-target target:20001:1

set
set
set

[edit routing-instances Tenant-B]
jnpr@stripel-leafl# show | display set relative

instance-type vrf
routing-options graceful-restart
routing-options multipath

[[edit routing-instances Tenant-B]
jnpr@stripe2-leafl# show | display set relative

set
set
set

instance-type vrf

routing-options graceful-restart

routing-options multipath

set protocols evpn ip-prefix-routes advertise direct-nexthop set protocols evpn ip-prefix-routes advertise direct-nexthop

set protocols evpn ip-prefix-routes encapsulation vxlan set protocols evpn ip-prefix-routes encapsulation vxlan

set protocols evpn ip-prefix-routes vni 20002 set protocols evpn ip-prefix-routes vni 20002

set protocols evpn ip-prefix-routes export BGP-AOS-Policy-Tenant-A set protocols evpn ip-prefix-routes export BGP-AOS-Policy-Tenant-A
set interface et-0/0/0:1.0 set interface et-0/0/0:1.0

set interface 100.2 set interface 100.2

set route-distinguisher 10.0.1.1:2002 set route-distinguisher 10.0.1.9:2002

set vrf-target target:20002:1 set vrf-target target:20001:1

The routing instances create separate routing spaces for the two tenants, providing full route and traffic
isolation across the EVPN/VXLAN fabric. Each routing instance has been configured with the following
key elements:

1.

4.

Interfaces:

The interfaces listed under each tenant VRF (e.g. et-0/0/0:0.0 and et-0/0/1:0.0) are explicitly added
to the corresponding routing table. By placing these interfaces under the VRF, all routing decisions
and traffic forwarding associated with them are isolated from other tenants and from the global
routing table. Assigning an interface that connects a particular GPU to the leaf node effectively maps
that GPU to a specific tenant, isolating it from GPUs assigned to other tenants.

Route-distinguisher (RD):

10.0.1.1:2001 and 10.0.1.1:2002 uniquely identify EVPN routes from Tenant-1 and Tenant-2,
respectively. Even if both tenants use overlapping IP prefixes, the RD ensures their routes remain
distinct in the BGP control plane. Although the GPU to leaf links use unique /127 prefixes, an RD is
still required to advertise these routes over EVPN.

Route target (RT) community:

VRF targets 20001:1 and 20002:1 control which routes are exported from and imported into each
tenant routing table. These values determine which routes are shared between VRFs that belong to
the same tenant across the fabric and are essential for enabling fabric-wide tenant connectivity, for
example, when a tenant has GPUs assigned to multiple servers across different stripes.

Protocols evpn parameters:

e The ip-prefix-routes controls how IP Prefix Routes (EVPN Type 5 routes) are advertised.

e The advertise direct-nexthop enables the leaf node to send IP prefix information using EVPN pure
Type 5 routes, which includes a router MAC extended community. These routes include a Router

230

https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/statement/ip-prefix-routes-edit-routing-instances-protocols-evpn.html
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/statement/ip-prefix-routes-edit-routing-instances-protocols-evpn.html#ip-prefix-routes__d4e155

MAC extended community, which allows the remote VTEP to resolve the next-hop MAC address
without relying on Type 2 routes.

e The encapsulation vxlan indicates that the payload traffic for this tenant will be encapsulated
using VXLAN. The same type of encapsulation must be used end to end.

e The VXLAN Network Identifier (VNI) acts as the encapsulation tag for traffic sent across the
EVPN/VXLAN fabric. When EVPN Type 5 (IP Prefix) routes are advertised, the associated VNI is
included in the BGP update. This ensures that remote VTEPs can identify the correct VXLAN
segment for returning traffic to the tenant’s VRF.

e Unlike traditional use cases where a VNI maps to a single Layer 2 segment, in EVPN Type 5 the
VNI represents the tenant-wide Layer 3 routing domain. All point-to-point subnets, such as
the /127 links between GPU servers and the leaf, that belong to the same VRF are advertised
with the same VNI.

In this configuration, VNIs 20001 and 20002 are mapped to the Tenant-1 and Tenant-2 VRFs,
respectively. All traffic destined for interfaces in Tenant-1 will be forwarded using VNI 20001, and all
traffic for Tenant-2 will use VNI 20002.

Notice that the same VNI is configured for the tenant on both Stripel-Leaf1 and Stripe2-Leaf1.

The export policy BGP-AOS-Policy-Tenant-1 controls which prefixes from this VRF are allowed to be
advertised into EVPN.

Table 70. Policies Examples for Tenant-1 and Tenant-2 Across Stripe 1 and Stripe 2

TENANT-A POLICIES TENANT-B POLICIES
[edit policy-options policy-statement BGP-AOS-Policy-Tenant-A] [edit policy-options policy-statement BGP-AOS-Policy-Tenant-B]
jnpr@stripel-leafl# show | display set relative jnpr@stripel-leafl# show | display set relative
set term BGP-AOS-Policy-Tenant-A-10 from policy AllPodNetworks-Tenant-A set term BGP-AOS-Policy-Tenant-B-10 from policy AllPodNetworks-Tenant-B
set term BGP-AOS-Policy-Tenant-A-10 then accept set term BGP-AOS-Policy-Tenant-B-10 then accept
set term BGP-AOS-Policy-Tenant-A-100 then reject set term BGP-AOS-Policy-Tenant-B-100 then reject
[edit policy-options policy-statement AllPodNetworks-Tenant-A] [edit policy-options policy-statement AllPodNetworks-Tenant-B]
jnpr@stripel-leafl# show | display set relative jnpr@stripel-leafl# show | display set relative
set term AllPodNetworks-Tenant-A-1@ from family inet set term AllPodNetworks-Tenant-B-10 from family inet
set term AllPodNetworks-Tenant-A-1@ from protocol direct set term AllPodNetworks-Tenant-B-10 from protocol direct
set term AllPodNetworks-Tenant-A-1@ then community add TENANT-A_COMMUNITY_V4 set term AllPodNetworks-Tenant-B-10 then community add TENANT-B_COMMUNITY_V4
set term AllPodNetworks-Tenant-A-10@ then accept set term AllPodNetworks-Tenant-B-10 then accept
set term AllPodNetworks-Tenant-A-100 then reject set term AllPodNetworks-Tenant-B-100 then reject
[edit policy-options community TENANT-A_COMMUNITY_V4] [edit policy-options community TENANT-B_COMMUNITY_V4]
jnpr@stripel-leafl# show | display set relative jnpr@stripel-leafl# show | display set relative
set members 5:20007 set members 5:20007
set members 21002:26000 set members 21003:26000

Export Policy Logic

EVPN Type 5 routes from Tenant-1 are exported if they are accepted by the BGP-AOS-Policy-Tenant-1
export policy, which references a nested policy named AllPodNetworks-Tenant-1.

¢ Policy BGP-AOS-Policy-Tenant-1 accepts any route that is permitted by the AllPodNetworks-
Tenant-1 policy and explicitly rejects all other routes.

¢ Policy AllPodNetworks-Tenant-1 accepts directly connected IPvé routes (family ineté, protocol direct)
that are part of the Tenant-1 VRF. It tags these routes with the TENANT-1_COMMUNITY_V4
(5:20007 21002:26000) community before accepting them. All other routes are rejected.

As a result, only the directly connected IPvé routes from the Tenant-1 (/127 links between GPU servers
and the leaf) are exported as EVPN Type 5 routes.

To verify the interface assignments to the different tenants, use: show interfaces routing-instance <tenant-

name> terse.

jnpr@stripel-leaf1> show interfaces routing-instance Tenant-1 terse

Interface Admin Link Proto Local Remote
et-0/0/0:0.0 up up inet 10.200.0.0/31

multiservice
100.1 up up inet 192.168.11.1 --> 0/0
jnpr@stripel-leaf1> show interfaces routing-instance Tenant-2 terse
et-0/0/1:0.0 up up inet 10.200.0.16/31

multiservice
100.1 up up inet 192.168.11.2 --> 0/0
jnpr@stripel-leaf2> show interfaces routing-instance Tenant-1 terse
Interface Admin Link Proto Local Remote
et-0/0/0:0.0 up up inet 10.200.0.2/31

multiservice
100.1 up up inet 192.168.12.1 -->0/0
jnpr@stripel-leaf2> show interfaces routing-instance Tenant-2 terse
et-0/0/1:0.0 up up inet 10.200.0.18/31

multiservice
100.1 up up inet 192.168.12.2 -->0/0

You can also check the direct routes installed to the correspondent routing table:

jnpr@stripel-leaf1> show route protocol direct table

Tenant-1.1inet.0

Tenant-1.inet.0: 14 destinations, 14 routes (14 active, @ holddown, @ hidden)
Restart Complete

@ = Routing Use Only, # = Forwarding Use Only

+ = Active Route, - = Last Active, * = Both

10.200.0.0/31 *[Direct/0] 02:24:29
> via et-0/0/12:0.0

192.168.11.1/32 *[Direct/0] 02:16:52

> via 100.1
jnpr@stripel-leaf1> show route protocol direct table
Tenant-2.1inet.0
Tenant-2.inet.0: 14 destinations, 14 routes (14 active, @ holddown, @ hidden)
Restart Complete
@ = Routing Use Only, # = Forwarding Use Only

+ = Active Route, - = Last Active, * = Both

10.200.0.16/31 *[Direct/0] 02:24:29
> via et-0/0/12:0.0
192.168.11.1/32 *[Direct/0] 02:16:52

> via 100.2
jnpr@stripel-leaf2> show route protocol direct table
Tenant-1.1inet.0
tenant-1.inet.0: 14 destinations, 14 routes (14 active, @ holddown, @ hidden)
Restart Complete

@ = Routing Use Only, # = Forwarding Use Only
+ = Active Route, - = Last Active, * = Both
10.200.0.2/31 *[Direct/0] 1d 17:42:33
> via et-0/0/2:0.0
192.168.12.1/32 *[Direct/0] 02:16:52

> via 100.1
jnpr@stripel-leaf2> show route protocol direct table
Tenant-2.1inet.0
tenant-1.inet.0: 14 destinations, 14 routes (14 active, @ holddown, @ hidden)
Restart Complete
@ = Routing Use Only, # = Forwarding Use Only

+ = Active Route, - = Last Active, * = Both

10.200.0.18/31 *[Direct/0] 1d 17:42:33
> via et-0/0/3:0.0

192.168.12.1/32 *[Direct/0] 02:16:52

> via 100.2

To verify evpn I3 contexts including encapsulation, VNI, router MAC address, use show evpn 13-context

Use <tenant-name> extensive for mode details.

jnpr@stripel-leaf1> show evpn 13-context

L3 context Type Adv Encap VNI/Label Router MAC/GW intf dt4-
sid dt6-sid dt46-sid

Tenant-1 Cfg Direct VXLAN 20001

9c:5a:80:c1:b3:06

Tenant-2 Cfg Direct VXLAN 20002

9c:5a:80:¢1:b3:06

jnpr@stripel-leaf2> show evpn 13-context

L3 context Type Adv Encap VNI/Label Router MAC/GW intf dt4-
sid dt6-sid dt46-sid
Tenant-1 Cfg Direct VXLAN 20001

58:86:70:79:df :db

Tenant-2 Cfg Direct VXLAN 20002
58:86:70:79:df:db
jnpr@stripel-leaf1> show evpn 13-context Tenant-1 extensive
L3 context: Tenant-1
Type: Configured
Advertisement mode: Direct nexthop, Router MAC: 9c:5a:80:c1:b3:06
Encapsulation: VXLAN, VNI: 20001
IPv4 source VTEP address: 10.0.1.1
IP->EVPN export policy: BGP-AOS-Policy-Tenant-1
Flags: 0xc209 <Configured IRB-MAC ROUTING RT-INSTANCE-TARGET-IMPORT-POLICY RT-INSTANCE-TARGET-
EXPORT-POLICY>
Change flags: 0x20000 <VXLAN-VNI-Update-RTT-O0PQ>
Composite nexthop support: Disabled
Route Distinguisher: 10.0.1.1:2001
Reference count: 5
EVPN Multicast Routing mode: CRB
jnpr@stripel-leaf1> show evpn 13-context Tenant-2 extensive
L3 context: Tenant-2
Type: Configured
Advertisement mode: Direct nexthop, Router MAC: 9c:5a:80:c1:b3:06
Encapsulation: VXLAN, VNI: 20002
IPv4 source VTEP address: 10.0.1.1
IP->EVPN export policy: BGP-AOS-Policy-Tenant-2
Flags: 0xc209 <Configured IRB-MAC ROUTING RT-INSTANCE-TARGET-IMPORT-POLICY RT-INSTANCE-TARGET-
EXPORT-POLICY>
Change flags: 0x20000 <VXLAN-VNI-Update-RTT-O0PQ>
Composite nexthop support: Disabled
Route Distinguisher: 10.0.1.1:2002
Reference count: 5
EVPN Multicast Routing mode: CRB
jnpr@stripel-leaf2> show evpn 13-context Tenant-1 extensive
L3 context: Tenant-1
Type: Configured
Advertisement mode: Direct nexthop, Router MAC: 58:86:70:79:df:db
Encapsulation: VXLAN, VNI: 20001
IPv4 source VTEP address: 10.0.1.2
IP->EVPN export policy: BGP-A0S-Policy-Tenant-1
Flags: 0xc209 <Configured IRB-MAC ROUTING RT-INSTANCE-TARGET-IMPORT-POLICY RT-INSTANCE-TARGET-
EXPORT-POLICY>
Change flags: 0x20000 <VXLAN-VNI-Update-RTT-0PQ>
Composite nexthop support: Disabled
Route Distinguisher: 10.0.1.2:2001
Reference count: 5

EVPN Multicast Routing mode: CRB
jnpr@stripel-leaf2> show evpn 13-context Tenant-1 extensive
L3 context: Tenant-2
Type: Configured
Advertisement mode: Direct nexthop, Router MAC: 58:86:70:79:df:db
Encapsulation: VXLAN, VNI: 20002
IPv4 source VTEP address: 10.0.1.2
IP->EVPN export policy: BGP-A0S-Policy-Tenant-2
Flags: 0xc209 <Configured IRB-MAC ROUTING RT-INSTANCE-TARGET-IMPORT-POLICY RT-INSTANCE-TARGET-
EXPORT-POLICY>
Change flags: 0x20000 <VXLAN-VNI-Update-RTT-OPQ>
Composite nexthop support: Disabled
Route Distinguisher: 10.0.1.2:2002
Reference count: 5
EVPN Multicast Routing mode: CRB
jnpr@stripel-leaf1> show evpn ip-prefix-database
L3 context: Tenant-1
IPv4->EVPN Exported Prefixes

Prefix EVPN route status
10.200.0.0/31 Created
192.168.11.1/32 Created
EVPN->IPv4 Imported Prefixes
Prefix Etag
10.200.0.2/31 0
Route distinguisher VNI/Label/SID Router MAC Nexthop/Overlay GW/ESI
Route-Status Reject-Reason
10.0.1.2:2001 20001 58:86:70:79:df:db 10.0.1.2
Accepted n/a
192.168.12.1/32 0
Route distinguisher VNI/Label/SID Router MAC Nexthop/Overlay GW/ESI
Route-Status Reject-Reason
10.0.1.2:2001 20001 58:86:70:79:df:db 10.0.1.2
Accepted n/a

L3 context: Tenant-2
IPv4->EVPN Exported Prefixes

Prefix EVPN route status
10.200.0.16/31 Created
192.168.11.2/32 Created
EVPN->IPv4 Imported Prefixes
Prefix Etag
10.200.0.18/31 0
Route distinguisher VNI/Label/SID Router MAC Nexthop/Overlay GW/ESI

Route-Status Reject-Reason

10.0.1.2:2002 20002 58:86:70:79:df:db 10.0.1.2

Accepted n/a
192.168.12.2/32 0
Route distinguisher VNI/Label/SID Router MAC Nexthop/Overlay GW/ESI
Route-Status Reject-Reason
10.0.1.2:2002 20002 58:86:70:79:df:db 10.0.1.2
Accepted n/a

When EVPN Type 5 is used to implement L3 tenant isolation across a VXLAN fabric, multiple routing
tables are instantiated on each participating leaf node. These tables are responsible for managing
control-plane separation, enforcing tenant boundaries, and supporting the overlay forwarding model.
Each routing instance (VRF) creates its own set of routing and forwarding tables, in addition to the
global and EVPN-specific tables used for fabric-wide communication. These tables are listed in Table 71.

Table 71. Routing and Forwarding Tables for EVPN Type 5

TABLE DESCRIPTON

bgp.evpn.O Holds EVPN route information received via BGP, including Type 5 (IP Prefix) routes and other
EVPN route types.

This is the control plane source for EVPN-learned routes

:vxlan.inet.0 Used internally for VXLAN tunnel resolution.

Maps VTEP IP addresses to physical next-hops.

<tenant>.inet. | The tenant-specific IPvé unicast routing table.

0
Contains directly connected and EVPN-imported Type 5 prefixes for that tenant.

Used for routing data plane traffic.

<tenant>.evp The tenant-specific EVPN table.
n.0

The protocol next-hop is extracted from each EVPN route, is extracted and resolved in inet.0. The EVPN
route is added to the bgp.evpn.O table. The result is placed in :vxlan.inet.O.

The route-target community value is used to determine which tenant the route belongs to, and the
route is placed in tenant.evpn.O. From there, IPv4 routes are imported into tenant.inet.O to be used for
route lookups when traffic arrives at the interfaces belonging to the VRF.

IPv4 EBGP sessions advertising evpn routes for Tenant-1 and Tenant-2 should be established. The
routes should be installed in both the bgp.evpn.0 table and the <Tenant>.inet.O table.

jnpr@stripel-leaf1> show bgp summary | no-more

---more---

Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/
Received/Accepted/Damped. . .

10.0.0.1 101 5 4 0 0 18 Establ

bgp.evpn.0: 4/4/4/0
Tenant-1.evpn.0: 2/2/2/0
Tenant-2.evpn.0: 2/2/2/0
10.0.0.2 102 5 4 0 0 14 Establ
bgp.evpn.0: 0/4/4/0
Tenant-1.evpn.0: 0/2/2/0
Tenant-2.evpn.0: 0/2/2/0
10.0.0.3 103 5 4 0 0 10 Establ
bgp.evpn.0: 0/4/4/0
Tenant-1.evpn.0: 0/2/2/0
Tenant-2.evpn.0: 0/2/2/0
10.0.0.4 104 5 4 0 0 6 Establ
bgp.evpn.0: 0/4/4/0
Tenant-1.evpn.0: 0/2/2/0
Tenant-2.evpn.0: 0/2/2/0

jnpr@stripe2-leaf1> show bgp summary | no-more

---more---

Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/
Received/Accepted/Damped. . .

10.0.0.1 101 206 199 0 0 1:29:40 Establ

bgp.evpn.0: 0/4/4/0
Tenant-1.evpn.0: 0/2/2/0
Tenant-2.evpn.0: 0/2/2/0
10.0.0.2 102 206 199 0 0 1:29:25 Establ
bgp.evpn.0: 0/4/4/0
Tenant-1.evpn.0: 0/2/2/0
Tenant-2.evpn.0: 0/2/2/0
10.0.0.3 103 206 199 0 0 1:29:26 Establ
bgp.evpn.0: 0/4/4/0
Tenant-1.evpn.0: 0/2/2/0
Tenant-2.evpn.0: 0/2/2/0
10.0.0.4 104 207 199 0 0 1:29:39 Establ
bgp.evpn.0: 0/4/4/0

Tenant-1.evpn.0: 0/2/2/0
Tenant-2.evpn.0: 0/2/2/0

To check that evpn routes are being advertised, use show route advertising-protocol bgp <neighbor>. For a
specific route, use the match-prefix option and include the entire evpn prefix as shown in the example
below:

jnpr@stripel-leaf1> show route advertising-protocol bgp 10.0.0.1 table Tenant | match
5:10.0.1.1:2001 | match 31/248
5:10.0.1.1:2001::0::10.200.0.0::31/248

jnpr@stripel-leaf1> show route advertising-protocol bgp 10.0.0.1 table Tenant | match
5:10.0.1.1:2002 | match 31/248

5:10.0.1.1:2002::0::10.200.0.16::31/248
jnpr@stripel-leaf2> show route advertising-protocol bgp 10.0.0.1 table Tenant | match
5:10.0.1.2:2001 | match 31/248

5:10.0.1.2:2001::0::10.200.0.2::31/248

jnpr@stripel-leaf2> show route advertising-protocol bgp 10.0.0.1 table Tenant | match
5:10.0.1.2:2002 | match 31/248
5:10.0.1.2:2002::0::10.200.0.18::31/248
jnpr@ stripel-leaf1> show route advertising-protocol bgp 10.0.0.1 match-prefix
5:10.0.1.1:2001::0::10.200.0.0::31/248 table Tenant-1
Tenant-1.evpn.0: 12 destinations, 54 routes (12 active, 0 holddown, 0 hidden)
Restart Complete
Prefix Nexthop MED Lclpref AS path
5:10.0.1.1:2001::0::10.200.0.0::31/248 * Self I
jnpr@ stripel-leaf1> show route advertising-protocol bgp 10.0.0.1 match-prefix
5:10.0.1.1:2002::0::10.200.0.16::31/248 table Tenant-2
Tenant-2.evpn.0: 12 destinations, 54 routes (12 active, 0 holddown, 0 hidden)
Restart Complete
Prefix Nexthop MED Lclpref AS path
5:10.0.1.1:2002::0::10.200.0.16::31/248 * Self I
jnpr@stripel-leaf2> show route advertising-protocol bgp 10.0.0.1 match-prefix
5:10.0.1.2:2001::0::10.200.0.2::31/248 table Tenant-1
Tenant-1.evpn.0: 12 destinations, 54 routes (12 active, 0 holddown, 0 hidden)
Restart Complete
Prefix Nexthop MED Lclpref AS path
5:10.0.1.2:2001::0::10.200.0.2::31/248 * Self I
jnpr@stripel-leaf2> show route advertising-protocol bgp 10.0.0.1 match-prefix
5:10.0.1.2:2002::0::10.200.0.18::31/248 table Tenant-2
Tenant-2.evpn.0: 12 destinations, 54 routes (12 active, 0 holddown, 0 hidden)

Restart Complete
Prefix Nexthop MED Lclpref AS path
5:10.0.1.2:2002::0::10.200.0.18::31/248 * Self I

The /248 prefixes represent EVPN route type 5 advertising each IPv4 prefix connecting the GPU servers
and leaf nodes.

For example: 5:10.0.1.2:2001::0::10.200.0.0::31/248 is an EVPN route type 5 for prefix 10.200.0.0/31
where:

Table 72. EVPN Type 5 Route Advertisement Fields Description.

Name Value Description

Route type 5: Indicates the route is a Type 5 (IP Prefix) route

Route Distinguisher | 10.0.1.2:2001 Uniquely identifies the routes

Placeholder fields =0:: For MAC address and other Type 2-related fields (not used here)
IP Prefix 10.200.0.4::31 The actual prefix being advertised

VNI 20001 VNI to push for traffic to the destination

Advertising router 10.0.0.1 (Spine 1) Spine the route was received from.

To check that evpn routes are being received, use show route receive-protocol bgp <neighbor>. For a specific
route, use the match-prefix option and include the entire evpn prefix as shown in the example below:

jnpr@stripel-leaf1> show route receive-protocol bgp 10.0.0.1 | match 5:10.0.1.2:2001 | match 31
5:10.0.1.2:2001::0::10.200.0.2::31/248

jnpr@stripel-leaf1> show route receive-protocol bgp 10.0.0.1 | match 5:10.0.1.2:2002 | match 31
5:10.0.1.2:2002::0::10.200.0.18::31/248

jnpr@stripel-leaf2> show route receive-protocol bgp 10.0.0.1 | match 5:10.0.1.1:2001 | match 31
5:10.0.1.1:2001::0::10.200.0.0::31/248

jnpr@stripel-leaf2> show route receive-protocol bgp 10.0.0.1 | match 5:10.0.1.1:2002 | match 31
5:10.0.1.1:20021::0::10.200.0.16::31/248

The examples show routes received from Spine 1, but each route is received from all 4 spines nodes,
which you can also confirm by entering:

jnpr@stripel-leaf1> show route table bgp.evpn.@ match-prefix
5:10.0.1.2:2001::0::10.200.0.2::31/248 | match BGP
bgp.evpn.0: 314 destinations, 1040 routes (314 active, @ holddown, @ hidden)
* [BGP/170] 11:31:33, localpref 100, from 10.0.0.1
[BGP/170] 11:31:21, localpref 100, from 10.0.0.2
[BGP/170] 11:31:14, localpref 100, from 10.0.0.3
[BGP/170] 11:31:10, localpref 100, from 10.0.0.4
jnpr@stripel-leaf2> show route table bgp.evpn.@ match-prefix
5:10.0.1.1:2001::0::10.200.0.0::31/248 | match BGP
bgp.evpn.0: 314 destinations, 1040 routes (314 active, @ holddown, @ hidden)
* [BGP/170] 11:31:13, localpref 100, from 10.0.0.1
[BGP/170] 11:31:41, localpref 100, from 10.0.0.2
[BGP/170] 11:31:12, localpref 100, from 10.0.0.3
[BGP/170] 11:31:52, localpref 100, from 10.0.0.4

Additional information for a given route can be found using the extensive keyword:

jnpr@stripel-leaf1> show route table bgp.evpn.® match-prefix
5:10.0.1.2:2001::0::10.200.0.2::31/248 active-path extensive
bgp.evpn.0: 314 destinations, 1040 routes (314 active, @ holddown, @ hidden)
Restart Complete
5:10.0.1.2:2001::0::10.200.0.2::31/248 (4 entries, @ announced)
*BGP Preference: 170/-101

Route Distinguisher: 10.0.1.2:2001

Next hop type: Indirect, Next hop index: @

Address: 0x55dfb9c305fc

Next-hop reference count: 48

Kernel Table Id: @

Source: 10.0.0.1

Protocol next hop: 10.0.1.2

Label operation: Push 20001

Label TTL action: prop-ttl

Load balance label: Label 20001: None;

Indirect next hop: 0x2 no-forward INH Session ID: 0

Indirect next hop: INH non-key opaque: (nil) INH key opaque: (nil)

State: <Active Ext>

Local AS: 201 Peer AS: 101

Age: 7:54:49 Metric2: 0

Validation State: unverified
Task: BGP_109.10.0.0.1
AS path: 109 210 I

Communities: 0:14 7:20007 21002:26000 target:20001:1
encapsulation:vxlan(@x8) router-mac:58:86:70:7b:10:db
Import Accepted

Route Label: 20001

Overlay gateway address: 0.0.0.0

ESI 00:00:00:00:00:00:00:00:00:00

Localpref: 100

Router ID: 10.0.0.1

Secondary Tables: Tenant-1.evpn.@

Thread: junos-main

Indirect next hops: 1

Protocol next hop: 10.0.1.2 ResolvState: Resolved
Label operation: Push 20001

Label TTL action: prop-ttl

Load balance label: Label 20001: None;

Indirect next hop: 0x2 no-forward INH Session ID: 0

Indirect next hop: INH non-key opaque: (nil) INH key opaque: (nil)
Indirect path forwarding next hops: 4
Next hop type: Router
Next hop: 10.0.2.64 via et-0/0/2:0.0
Session Id: 0
Next hop: 10.0.2.82 via et-0/0/3:0.0
Session Id: 0
Next hop: 10.0.2.98 via et-0/0/0:0.0
Session Id: 0
Next hop: 10.0.2.114 via et-0/0/1:0.0
Session Id: 0
10.0.1.2/32 Originating RIB: inet.@
Node path count: 1
Forwarding nexthops: 4

---(more)---

Table 73. EVPN Type 5 Route Advertisement Fields Description - Extensive

Name Value Description

Route type 5: Indicates the route is a Type 5 (IP Prefix) route

(Continued)

Name

Route Distinguisher

Placeholder fields

IP Prefix

VNI

Advertising router

Protocol next hop

Encapsulation

Route target

Value

10.0.1.2:2001

10.200.105.0::24

20001

10.0.0.1

10.0.1.2 (Stripe 1
Leaf 2)

Type: 0x08

target:20001:1

Description

Uniquely identifies the routes

For MAC address and other Type 2-related fields (not used here)

The actual prefix being advertised

VNI to push for traffic to the destination

Spine the route was received from.

Router that originated the EVPN route (remote VTEP)

standardized IANA-assigned value for VXLAN encapsulation in the
EVPN Encapsulation extended community (RFC 9014)

Identifies the route as belonging to Tenant-1

To check that the routes are being imported into the correspondent tenant'’s routing tables, use show

route table <tenant-name>.inet.@ protocol evpn, as shown in the example below:

jnpr@stripel-leaf1> show route table

10.200.0.2/31

*[EVPN/170]

jnpr@stripel-leaf1> show route table

10.200.0.18/31

*[EVPN/170]

jnpr@stripel-leaf2> show route table

10.200.0.0/31

*[EVPN/170]

jnpr@stripel-leaf2> show route table

10.200.0.16/31

*[EVPN/170]

04:02:

04:02:

04:02:

04:02:

Tenant-1.inet.@ protocol evpn | match /31
04
Tenant-2.inet.@ protocol evpn | match /31
04
Tenant-1.inet.@ protocol evpn | match /31
04
Tenant-2.inet.@ protocol evpn | match /31
04

Appendix C - IPv6 Overlay with Static Addresses
Over IPv6 Underlay Fabric Implementation

IN THIS SECTION

GPU Backend Fabric Underlay with IPv6é | 249

This section outlines the configuration components for an IPvé underlay and IPvé overlay deployment.
Control Plane Implementation with IPv6 Underlay and IPv6 Overlay

This model provides an IPvé transport underlay and IPvé6 EVPN/VXLAN transport in the overlay that
can support both IPv4 and IPvé6 devices communicating across the fabric. This model aligns with
traditional IP fabric designs, where interface addressing is fully controlled and visible, and neighbor
relationships are explicitly defined, while also supporting both IPv4-only and IPvé6 only end devices.

The interfaces between leaf and spine nodes are configured with explicit /127 IPvé addresses assigned
from a pool of IPv6 addresses reserved for the underlay. These addresses can be global or site local
routable IPvé addresses. Each device on the point-to-point link is configured with one of the two usable
IPvé6 addresses in the corresponding /127 subnet. This allows efficient address assignments for the
point-to-point links between leaf and spine nodes. All leaf and spine nodes are also configured with IPvé
addresses on the loopback interface (100.0).

The underlay EBGP sessions are set up between the leaf and spine nodes, by explicitly configuring each
neighbor, using the /127 IPv6 addresses assigned between them.

The EBGP configuration for this model includes each neighbor’s IPv6 address and Autonomous System
(AS) number, the local Autonomous System (AS) number, and the export policy that allows the
advertisement of routes to reach all the leaf and spine nodes in the fabric. These routes are standard
IPv6 unicast advertising the IPvé6 addresses assigned to the loopback interface (100.0).

The overlay EBGP sessions are also set up by explicitly configuring each neighbor, using the IPvé
addresses of the loopback interfaces advertised by the underlay EBGP sessions, and are also established
between the leaf and spine nodes.

The leaf nodes act as VTEPs, and exchange EVPN Type 5 routes advertising the IPv4 prefixes or IPvé
prefixes assigned to the links between the GPU servers and the leaf nodes.

Example:

Consider the example depicted in Figure 58.

For the underlay, STRIPE1 LEAF 1 in AS 201 establishes an EBGP session with SPINE 1 in AS 101 over
the directly connected IPvé point-to-point link FC00:0:2:1::2/127 <=> FC00:0:2:1::1/127. Similarly,
STRIPE2 LEAF 1 in AS 209 establishes an EBGP session with SPINE 1 over the link FC00:0:2:9::2/127
<=> FC00:0:2:9::11/127.

Figure 58: IPv6 Underlay and IPv6 Overlay Example

SERVER 1 SERVER 2 SERVER 3 SERVER 4

Sagg0g0d UQJ

RT5-IPVRF_5
TENANT-A

@

RT5-IPVRF_
TENANT-A

STRIPE 2
LEAFs 1-8

STRIPE 1
LEAFs 1-8

STRIPE1 LEAF 1 (VTEP1)
AS201
FC00:10:1:1/128 %2

Ps'l“gn
F0lvy STRIPE2 LEAF 1 (VTEP2)
feaﬂ AS209
» FC00:10:1::9/128

AS101 « SPINE 2 SPINE 3 SPINE 4
FC00:10::1/128 l00.0 l00.0 lo0.0
SPINE 1 10.0.0.2/32 10.0.0.3/32 10.0.0.4/32
SERVER 1 SERVER 2 SERVER 3 SERVER 4

&5

&k

)

D

&

Q8 @8898000

=]

£k

BiE)

&k

£r

£

2

)

e £k

P

RT5-IPVRF_5

RT5-IPVRF_

7 0.;1_ TENANT-A TENANT-A
2,2,
RN STRIPE 1 STRIPE 2
2 LEAFs 1-8 LEAFs 1-8
STRIPE1 LEAF 1 (VTEP1) 7_(\% g
AS201 & "n STRIPE2 LEAF 1 (VTEP2)
09

AS101 - SPINE 2 SPINE 3 SPINE 4
100.010.0.0.1/32 l00.0 100.0 l00.0
FC00:10::1/128 10.0.0.2/32 10.0.0.3/32 10.0.0.4/32
SPINE 1

These sessions exchange IPvé unicast routes advertising the address of the loopback interface (100.0) of
STRIPE1 LEAF 1 (FC00:10::1:1), STRIPE2 LEAF 1 (FC00:10::1:9) and SPINE 1 (FC00:10::1).

Although it is not shown in the diagram, STRIPE1 LEAF 1 and STRIPE2 LEAF 1 will also establish EBGP
sessions with SPINE 2, SPINE 3, and SPINE 4 to ensure multiple paths are available for traffic. EBGP

sessions are established between the leaf nodes and SPINE 1 using their loopback addresses
(FC00:10::1:1, FC00:10::1:9, and FC00:10::1 respectively).

The leaf nodes acting as VTEP advertise the links connecting the GPU servers and leaf nodes which in
the example are configured with /31 IPv4 and /127 IPvé6 addresses.

NOTE: The GPU servers and leaf nodes links are shown here with both IPv4 and IPvé for
demonstration purposes. It is not a requirement. The customer can choose which network layer
address scheme to use.

The prefixes on the GPU servers and leaf nodes links are advertised using EVPN type 5 routes.

For example, STRIPE1 LEAF 1 advertises routes to the IPv4 and IPvé6 addresses on the links connecting
SERVER 1 GPU1 (10.1.1.0/31 and FC00:10:1:1::0/127 respectively) and SERVER 2 GPU1 to STRIPE1
LEAF 1(10.1.1.16/31 and FC00:10:1:1::16/127 respectively).

Similarly, STRIPE2 LEAF 1 advertises router to the IPv4 addresses on the links connecting SERVER 3
GPU1 (10.1.1.32/31 and FC00:10:1:1::32/127 respectively) and SERVER 4 GPU1 to STRIPE1 LEAF 1
(10.1.1.40/31 and FC00:10:1:1::40/127 respectively).

Assuming all four GPUs in the example belong to the same tenant, their associated interfaces are
mapped to the same VRF (RT5-IP-VRF_TENANT-1).

RT5-1P-VRF_TENANT-1 is configured on both STRIPE1 LEAF 1 and STRIPE2 LEAF 1 with the same
VXLAN Network Identifier (VNI) and route targets. STRIPE1 LEAF 1 advertises the prefixes 10.1.1.0/31
and 10.1.1.16/31 (or their equivalent IPv6 prefixes) to SPINE 1 as EVPN Route Type 5, with its own
loopback (10.0.1.1) as the next-hop VTEP. In the same way, STRIPE2 LEAF 1 advertises 10.1.1.32/31
and 10.1.1.40/31 (or their equivalent IPvé6 prefixes) with 10.0.1.9 as the next-hop.

When SERVER 1 GPU1 sends traffic to SERVER 3 GPU1, the destination addresses 10.1.1.32 for
example, is found in the VRF routing table on STRIPE1 LEAF 1 (Tenant-1.inet.0). The route points to
STRIPE2 LEAF 1 (VTEP at 10.0.1.9) as the protocol next-hop (which is resolved to the addresses of the
spine nodes). The route also specifies VNI 1 as the VXLAN encapsulation ID. The packet is encapsulated
with the VXLAN header and tunneled across the fabric to its destination.

Spine Nodes to Leaf Connections

The interfaces between the leaf and spine nodes do not require explicitly configured IP addresses and
are configured as untagged interfaces with only family inet and family ineté to enable processing of IPv4
and IPvé traffic as shown in Figure 59.

Figure 59: IPv6 underlay and IPvé overlay configuration example

SPINE1 SPINE2 SPINE3 SPINE4

As101 AS5102 AS103 AS104

160.0 FC00:10::1/128 100.0 FC00:10::2/128 lo0.0 FCO0:10::3/128 100.0 FC00:10::4/128
— 1 A= [e
=\ = = =

& eroi/00 FC00:1002:82/127 &t-0/0/0:0 FCO
£ et0/0/1:0 FC00:10:0:2:84/127

€t-0/0/0:0 FCOO0:10:0:2:x¢
t-0/0/1:0 FCOO0:10: 2
t-0/0/2:0 FCOO0:10: =
t-0/0/3:0 FCOO0:10: 5

5 eUD/0/L0 FC0:100.2:116/127
T #t-0/0/2:0 FCOO:: 22/127

L ETEEE- S
IPvé UNDERLAY 1-0/0/3:0 FCO0:10:0:2:124/127

EBGP
IPv6 OVERLAY <3
EBGP

o
et-0/0/3:0 FCOl

t-0/0/2:0 FCO0:10:0:2;
£t-0/0/3:0 FCO0:1s

T
et-0/0/0:00 | o
102000031 | —

STRIPE1LEAFT ;
AS201 Wk
100.0 FC00:10::1:1/128

10.200.0.1/31

HEggeag s

The interfaces between the leaf and spine nodes are configured with /127 addresses as shown in Table
74.

Table 74. IPv6 Address Assignments for Leaf-to-Spine Interfaces (/127 Subnetting)

LEAF NODE INTERFACE = LEAF NODE IPvé SPINE NODE INTERFACE = SPINE IPvé6 ADDRESS
ADDRESS
Stripe 1 Leaf 1 - FCO00:10:0:2::65/127 Spine 1 - et-0/0/0:0 FCO00:10:0:2::64/31

et-0/0/30:0

Stripe 1 Leaf 1 - FC00:10:0:2::83/127 Spine 2 - et-0/0/1:0 FC00:10:0:2::82/127
et-0/0/31:0

Stripe 1 Leaf 1 - FC00:10:0:2::99/127 Spine 3 - et-0/0/2:0 FC00:10:0:2::98/127
et-0/0/32:0

Stripe 1 Leaf 1 - FC00:10:0:2::155/127 Spine 4 - et-0/0/3:0 FC00:10:0:2::114/127
et-0/0/33:0

Stripe 1 Leaf 5 - FC00:10:0:2::69/127 Spine 1 - et-0/0/0:0 FC00:10:0:2::68/127
et-0/0/30:0

Stripe 1 Leaf 2 - FC00:10:0:2::85/127 Spine 2 - et-0/0/1:0 FC00:10:0:2::..84/127
et-0/0/31:0

(Continued)
LEAF NODE INTERFACE LEAF NODE IPvé
ADDRESS

Stripe 1 Leaf 2 - FC00:10:0:2::101/127

et-0/0/32:0

Stripe 1 Leaf 2 - FC00:10:0:2::119/127

et-0/0/33:0

SPINE NODE INTERFACE = SPINE IPv6 ADDRESS
FCO00:10:0:2::100/127

Spine 3 - et-0/0/2:0

Spine 4 - et-0/0/3:0 FC00:10:0:2::118/127

These interfaces are configured as untagged interfaces, with family ineté and static IPvé addresses, as
shown in the example for the link between Stripe 1 Leaf 1 and Spine 1 below:

Table 75. Example Junos Configuration for Leaf-Spine IPvé6 Interface (/127 Subnet)

STRIPE 1 LEAF 1 (et-0/0/0:30) SPINE 1 (et-0/0/0:0)

[edit interfaces et-0/0/30]

jnpr@stripel-leafl# show | display set relative
set description "Breakout et-8/0/30"

set number-of-sub-ports 1

set speed 860g

[edit interfaces et-0/0/30:0]

jnpr@stripel-leafl# show | display set relative
set description facing_spinel:et-0/0/0:0

set mtu 9216

set unit 6 family inet mtu 9282

set unit @ family inet address FC00:10:0:2::65/127

[edit interfaces et-@/0/0]

jnpr@spinel# show | display set

set interfaces et-©/0/0 description "Breakout et-8/6/0"
set interfaces et-0/0/0 number-of-sub-ports 1

set interfaces et-6/0/0 speed 800g

[edit interfaces et-0/0/0:0]

jnpr@spinel# show | display set relative

set description "To Leafl”

set mtu 9216

set unit @ family inet mtu 9202

set unit @ family inet address FC00:10:0:2::64/127

The loopback and Autonomous System numbers for all devices in the fabric are included in Table 76.

Table 76. Loopback IPvé Addresses and Autonomous System Numbers

LEAF NODE INTERFACE 100.0 IPv6 ADDRESS Local AS #
Stripe 1 Leaf 1 FC00:10:0:1::1/128 201
Stripe 1 Leaf 2 FC00:10:0:1::2/128 202
Stripe 1 Leaf 3 FC00:10:0:1::3/128 203

247

(Continued)

LEAF NODE INTERFACE

Stripe 1 Leaf 4

Stripe 1 Leaf 5

Stripe 1 Leaf 6

Stripe 1 Leaf 7

Stripe 1 Leaf 8

Stripe 2 Leaf 1

Stripe 2 Leaf 2

SPINE1

SPINE2

SPINE3

SPINE4

100.0 IPv6 ADDRESS

FC00:10:0:1::4/128

FC00:10:0:1::5/128

FC00:10:0:1::6/128

FC00:10:0:1::7/128

FC00:10:0:1::8/128

FC00:10:0:1::9/128

FC00:10:0:1::10/128

FC00:10::1/128

FCO00:10::2/128

FC00:10::3/128

FC00:10::4/128

Local AS #

204

205

206

207

208

209

210

101

102

103

104

Table 77. Example Junos Configuration for IPv6 Loopback Interfaces and Routing Options

STRIPE 1 LEAF 1 SPINE 1

[edit]
jnpr@spinel# show routing-options
router-id 10.0.1.1;
autonomous-system 201;
graceful-restart;
forwarding-table {
export PFE-LB;
ecmp-fast-reroute;

}

[edit]
jnpr@stripel-leafl# show interfaces lo®
unit @ {
family inet {
address FC00:10:0:1::1/128;
}

}

[edit]
jnpr@spinel# show routing-options
router-id 10.0.0.1;
autonomous-system 101;
graceful-restart;
forwarding-table {
export PFE-LB;
ecmp-fast-reroute;

}

[edit]
jnpr@spinel# show interfaces lo®@
unit @ {
family inet {
address FCe0@:10::1/128;
}
}

GPU Backend Fabric Underlay with IPvé

The underlay EBGP sessions are configured between the leaf and spine nodes using the IP addresses of

the directly connected links, as shown in the example between Stripel Leaf 1 and the spine nodes

below:

Table 78. IPv6 EBGP Underlay Configuration Example: Stripe 1 Leaf 1 to Spine 1

STRIPE 2 LEAF 1 SPINE 1

[edit protocols bgp]
jnpr@stripel-leafl# show
group 13clos-inet6-underlay {
type external;
multipath {
multiple-as;
}
bfd-liveness-detection {
minimum-interval 1000;
multiplier 3;

neighbor FC0©:10:0:2::64 {
description facing_spinel;
local-address FC00:10:0:2::65;
family inet6 {
unicast;

export (LEAF_TO_SPINE_FABRIC_OUT && BGP-AOS-Policy);
peer-as 101;

vpn-apply-export;

[edit protocols bgp]
jnpr@spinel# show
group 13clos-inet6-underlay {
type external;
multipath {
multiple-as;
}
bfd-liveness-detection {
minimum-interval 1000;
multiplier 3;

neighbor FC0©:10:0:2::65 {
description facing_stripel-leafl;
local-address FC00:10:0:2::64;
family inet6 {
unicast;

export (SPINE_TO_LEAF_FABRIC_OUT & BGP-AOS-Policy);
peer-as 201;

vpn-apply-export;

Table 79. IPv6 EBGP Underlay Configuration Example: Stripe 1 Leaf 1 to Spine 2

249

STRIPE 2 LEAF 1 SPINE 2

[edit protocols bgp]
jnpr@stripel-leafl# show
group 13clos-inet6-underlay {
type external;
multipath {
multiple-as;
¥
bfd-liveness-detection {
minimum-interval 1000;
multiplier 3;

neighbor FC0©:10:0:2::82 {
description facing_spinel;
local-address 2001:10:0:2::83;
family inet6 {
unicast;

}
export (LEAF_TO_SPINE_FABRIC_OUT && BGP-AOS-Policy);
peer-as 102;

vpn-apply-export;

[edit protocols bgp]
jnpr@spinel# show
group 13clos-inet6-underlay {
type external;
multipath {
multiple-as;
¥
bfd-liveness-detection {
minimum-interval 1000;
multiplier 3;

neighbor FC0©:10:0:2::83 {
description facing_stripel-leafl;
local-address 2001:10:0:2::82;
family inet6 {
unicast;

¥
export (SPINE_TO_LEAF_FABRIC_OUT && BGP-AOS-Policy);
peer-as 201;

vpn-apply-export;

All the BGP sessions are configured with multipath multiple-as, which allows multiple paths (to the same
destination) with different AS paths to be considered for ECMP (Equal-Cost Multi-Path) routing, and
with BFD to improve convergence in case of failures.

To control the propagation of routes, export policies are applied to these EBGP sessions as shown in the

example in Table 80.

Table 80. Export policy example to advertise IPvé routes over IPv6 BGP Underlay

[edit policy-options policy-statement LEAF_TO_SPINE_FABRIC_OUT]
jnpr@stripel-leafl# show | display set relative

set term LEAF_TO_SPINE_FABRIC_OUT-1@ from protocol bgp

set term LEAF_TO_SPINE_FABRIC_OUT-1@ from community FROM_SPINE_FABRIC_TIER
set term LEAF_TO_SPINE_FABRIC_OUT-10 then reject

set term LEAF_TO_SPINE_FABRIC_OUT-20 then accept

[edit policy-options community FROM_SPINE_FABRIC_TIER]
jnpr@stripel-leafl# show | display set relative
set members 0:15

[edit policy-options policy-statement BGP-AOS-Policy]
jnpr@stripel-leafl# show | display set relative

set term BGP-AOS-Policy-10 from policy AllPodNetworks
set term BGP-AOS-Policy-10 then accept

set term BGP-AOS-Policy-100 then reject

[edit policy-options policy-statement AllPodNetworks]
jnpr@stripel-leafi# show | display set relative

set term AllPodNetworks-10 from family ineté

set term AllPodNetworks-10 from protocol direct

set term AllPodNetworks-1@ from interface 10@.@

set term AllPodNetworks-10 then community add DEFAULT_DIRECT_V6
set term AllPodNetworks-10 then accept

set term AllPodNetworks-100 then reject

[edit policy-options community DEFAULT_DIRECT_V6]
jnpr@stripel-leafl# show | display set relative
set members 5:20008

set members 21001:26000

[edit policy-options policy-statement SPINE_TO_LEAF_FABRIC_OUT]

jnpr@spinel# show | display set relative

set term SPINE_TO_LEAF_FABRIC_OUT-1@ then community add FROM_SPINE_FABRIC_TIER
set term SPINE_TO_LEAF_FABRIC_OUT-10 then accept

[edit policy-options community FROM_SPINE_FABRIC_TIER]
jnpr@spinel# show | display set relative
set members 0:15

[edit policy-options policy-statement BGP-AOS-Policy]
jnpr@spinel# show | display set relative

set term BGP-AOS-Policy-10 from policy AllPodNetworks
set term BGP-AOS-Policy-10 then accept

set term BGP-AOS-Policy-20 from protocol bgp

set term BGP-AOS-Policy-20 then accept

set term BGP-AOS-Policy-100 then reject

[edit policy-options policy-statement AllPodNetworks]
jnpr@spinel# show | display set relative

set term AllPodNetworks-10 from family ineté

set term AllPodNetworks-10 from protocol direct

set term AllPodNetworks-1@ from interface 10@.0

set term AllPodNetworks-10 then community add DEFAULT_DIRECT_V6
set term AllPodNetworks-10 then accept

set term AllPodNetworks-100 then reject

[edit policy-options community DEFAULT_DIRECT_V6]
jnpr@spinel# show | display set relative

set members 1:20008

set members 21001:26000

These policies ensure loopback reachability is advertised cleanly and without the risk of route loops.

On the spine nodes, routes are exported only if they are accepted by both the
SPINE_TO_LEAF_FABRIC_OUT and BGP-AOS-Policy export policies.

250

e The SPINE_TO_LEAF FABRIC OUT policy has no match conditions and accepts all routes
unconditionally, tagging them with the FROM_SPINE_FABRIC_TIER community (0:15).

e The BGP-AOS-Policy accepts BGP-learned routes as well as any routes accepted by the nested
AllPodNetworks policy.

e The AllPodNetworks policy, in turn, matches directly connected IPvé routes and tags them with the
DEFAULT_DIRECT_V4 community (1:20007 and 21001:26000 on Spine1).

As a result, each spine advertises both its directly connected routes (including its loopback interface) and
any routes it has received from other leaf nodes.

Example:

jnpr@spinel> show route advertising-protocol bgp FC00:10:0:2::65 | match /32

* FC00:10::1/128 Self I

*x FC00:10:0:1::2/128 Self 202 1
* FC00:10:0:1::3/128 Self 203 1
=Rl fE===

jnpr@spinel> show route advertising-protocol bgp FC00:10:0:2::65 FC00:10::0/128 extensive
inet6.0: 36 destinations, 40 routes (36 active, © holddown, @ hidden)
Restart Complete
*x FC00:10::0/128 (1 entry, 1 announced)
BGP group 13clos-inet6-underlay type External
Nexthop: Self
AS path: [101] I
Communities: 0:15 1:20008 21001:26000
jnpr@spinel> show route advertising-protocol bgp FC00:10:0:2::65 FC00:10:0:1::2/128 extensive
inet6.0: 85 destinations, 169 routes (85 active, © holddown, © hidden)
Restart Complete
*x FC00:10:0:1::2/128 (1 entry, 1 announced)
BGP group 13clos-inet6-underlay type External
AS path: [101] 202 I
Communities: 0:15 5:20008 21001:26000

On the leaf nodes, routes are exported only if they are accepted by both the
LEAF_TO_SPINE_FABRIC_OUT and BGP-AOS-Policy export policies.

The LEAF_TO_SPINE_FABRIC_OUT policy accepts all routes except those learned via BGP that are
tagged with the FROM_SPINE_FABRIC_TIER community (0:15). These routes are explicitly rejected to
prevent re-advertisement of spine-learned routes back into the spine layer. As described earlier, spine
nodes tag all routes they advertise to leaf nodes with this community to facilitate this filtering logic.

The BGP-AQOS-Policy accepts all routes allowed by the nested AllPodNetworks policy, which matches
directly connected IPvé6 routes and tags them with the DEFAULT_DIRECT_V4 community (5:20007 and
21001:26000 for Stripel-Leaf1).

As a result, leaf nodes will advertise only their directly connected interface routes—including their
loopback interfaces, to the spines.

jnpr@stripel-leaf1> show route advertising-protocol bgp FC00:10:0:2::64 | match /32
* FC00:10:0:1::1/128 Self I
jnpr@stripel-leaf1> show route advertising-protocol bgp FC00:10:0:2::64 FC00:10:0:1::1/128
extensive
inet6.0: 48 destinations, 257 routes (48 active, © holddown, © hidden)
Restart Complete
*x FC00:10:0:1::1/128 (1 entry, 1 announced)
BGP group 13clos-inet6-underlay type External

Nexthop: Self

AS path: [201] I

Communities: 5:20007 21001:26000

GPU Backend Fabric Overlay with IPvé

The overlay EBGP sessions are configured between the leaf and spine nodes using the IPv4 addresses of
the loopback interfaces, as shown in the example between Stripel Leaf 1/Stripe 2 Leaf 1 and Spine 1.

Table 81. IPv6 EVPN Overlay EBGP Configuration Example: Stripe 1 Leaf 1 to Spine 1

STRIPE 1 LEAF 1 SPINE 1

[edit]
jnpr@stripel-leafl# show protocols bgp
group 13clos-inet6-overlay {
type external;
multihop {
ttl 1;
X
family inet6 {
unicast;

multipath {
multiple-as;

}

bfd-liveness-detection {
minimum-interval 3000;
multiplier 3;

neighbor FCB0:10::1 {
description facing_spinel-evpn-overlay;
local-address FC00:10:0:1::1;
family evpn {
signaling;

export (LEAF_TO_SPINE_EVPN_OUT && EVPN_EXPORT);
peer-as 101;

vpn-apply-export;

edit]
jnpr@spinel# show protocols bgp
group 13clos-inet6-overlay {
type external;
multihop {
ttl 1;
no-nexthop-change;
}
family inet6 {
unicast;

}

multipath {
multiple-as;

}

bfd-liveness-detection {
minimum-interval 3000;
multiplier 3;

}

neighbor FC0:10:0:1::1 {
description facing_leafl-evpn-overlay;
local-address FC00:10::1;
family evpn {

signaling;

export (SPINE_TO_LEAF_EVPN_OUT);
peer-as 201;

vpn-apply-export;

Table 82. IPv6 EVPN Overlay EBGP Configuration Example: Stripe 2 Leaf 1 to Spine 1

STRIPE 2 LEAF 1 SPINE 1

[edit]
jnpr@stripel-leafl# show protocols bgp
group 13clos-inet6-overlay {
type external;
multihop {
ttl 1;
}
family inet6 {
unicast;

multipath {
multiple-as;

}

bfd-liveness-detection {
minimum-interval 3000;
multiplier 3;

neighbor FCe0:10::1 {
description facing_spinel-evpn-overlay;
local-address FC00:10:0:1::9;
family evpn {
signaling;

}
export (LEAF_TO_SPINE_EVPN_OUT && EVPN_EXPORT);
peer-as 101;

vpn-apply-export;

edit]
jnpr@spinel# show protocols bgp
group 13clos-inet6-overlay {
type external;
multihop {
ttl 1;
no-nexthop-change;
}
family inet6 {
unicast;

multipath {
multiple-as;

}

bfd-liveness-detection {
minimum-interval 3000;
multiplier 3;

}

neighbor FCE@:10:0:1::9 {
description facing_leafl-evpn-overlay;
local-address FC00:10::1;
family evpn {

signaling;

export (SPINE_TO_LEAF_EVPN_OUT);
peer-as 209;

vpn-apply-export;

The overlay BGP sessions use family evpn signaling to enable EVPN route exchange. The multihop ttl

statement allows EBGP sessions to be established between the loopback interfaces.

253

As with the underlay BGP sessions, these sessions are configured with multipath multiple-as, allowing
multiple EVPN paths with different AS paths to be considered for ECMP (Equal-Cost Multi-Path)
routing. BFD (Bidirectional Forwarding Detection) is also enabled to improve convergence time in case
of failures.

The no-nexthop-change knob on the spine nodes is used to preserve the original next-hop address, which is
critical in EVPN for ensuring that the remote VTEP can be reached directly. The vpn-apply-export
statement is included to ensure that the export policies are evaluated for VPN address families, such as
EVPN, allowing fine-grained control over which routes are advertised to each peer.

To control the propagation of routes, export policies are applied to these EBGP sessions as shown in the
example in Table 83.

Table 83. Export Policy example to advertise EVPN routes over IPv6 BGP Overlay

LEAF SPINE
[edit policy-options policy-statement LEAF_TO_SPINE_EVPN_OUT] [edit policy-options policy-statement SPINE_TO_LEAF_EVPN_OUT]
jnpr@stripel-leafl# show | display set relative jnpr@spinel# show | display set relative
set term LEAF_TO_SPINE_EVPN_OUT-1@ from protocol bgp set term SPINE_TO_LEAF_EVPN_OUT-10 then community add FROM_SPINE_EVPN_TIER

set term LEAF_TO_SPINE:EVPN:OUT—10 from community FROM_SPINE_EVPN_TIER |set term SPINE_TO_LEAF_EVPN_OUT-10@ then accept
set term LEAF_TO_SPINE_EVPN_OUT-10 then reject
set term LEAF_TO_SPINE_EVPN_OUT-20 then accept

[edit policy-options community FROM_SPINE_EVPN_TIER]
jnpr@stripel-leafl# show | display set relative [edit policy-options community FROM_SPINE_EVPN_TIER]
set members 0:14 jnpr@spinel# show | display set relative

set members 0:14

[edit policy-options policy-statement EVPN_EXPORT]
jnpr@stripel-leafl# show | display set relative
set term EVPN_EXPORT-4095 then accept

These policies are simpler in structure and are intended to enable end-to-end EVPN reachability
between tenant GPUs, while preventing route loops within the overlay.

Routes will only be advertised if EVPN routing-instances have been created. Example:

Table 84. EVPN Routing-Instances for a single tenant example across different leaf nodes.

STRIPE 1 - LEAF 1 STRIPE 2 - LEAF 1

[edit routing-instances Tenant-A] [[edit routing-instances Tenant-A]

jnpr@stripel-leafi# show | display set relative jnpr@stripe2-leafi# show | display set relative

set instance-type vrf set instance-type vrf

set routing-options graceful-restart set routing-options graceful-restart

set routing-options multipath set routing-options multipath

set protocols evpn ip-prefix-routes advertise direct-nexthop set protocols evpn ip-prefix-routes advertise direct-nexthop
set protocols evpn ip-prefix-routes encapsulation vxlan set protocols evpn ip-prefix-routes encapsulation vxlan

set protocols evpn ip-prefix-routes vni 20001 set protocols evpn ip-prefix-routes vni 20009

set protocols evpn ip-prefix-routes export BGP-AOS-Policy-Tenant-A set protocols evpn ip-prefix-routes export BGP-AOS-Policy-Tenant-A
set interface et-0/0/12:0.0 set interface et-0/0/12:0.0

set interface 100.1 set interface 10@.1

set route-distinguisher 10.0.1.1:2001 set route-distinguisher 10.0.1.9:2009

set vrf-target target:20001:1 set vrf-target target:20001:1

On the spine nodes, routes are exported if they are accepted by the SPINE_ TO_LEAF_EVPN_OUT
policy.

e The SPINE_TO_LEAF_EVPN_OUT policy has no match conditions and accepts all routes. It tags each
exported route with the FROM_SPINE_EVPN_TIER community (0:14).

As a result, the spine nodes export EVPN routes received from one leaf to all other leaf nodes, allowing
tenant-to-tenant communication across the fabric.

254

Example:

jnpr@spinel> show

3
5
3
5
3

5

:10.0.1.
:10.0.1.
:10.0.1.
:10.0.1.
:10.0.1.
:10.0.1.

2:2001:
2:2001::
9:2001:
9:2001::
10:2001:
10:2001:

jnpr@spinel> show
5:10.0.1.9:2001::0::10.200.1.0::31/248

bgp.evpn.0: 378 destinations, 378 routes (378 active, @ holddown, @ hidden)
Restart Complete

P

refix

route advertising-protocol bgp FC00:10:0:1::1 | match 5:10.%2001.%31

:0:
0::10.200.0.34::31/248

:0::
0::10.200.1.32::31/248

:10.200.0.2::31/248

10.200.1.0::31/248

:0::10.200.1.2::31/248
:0::10.200.1.34::31/248
route advertising-protocol bgp FC00:10:0:1::1 match-prefix

Nexthop MED Lclpref AS path

5:10.0.1.9:2001::0::10.200.1.0::31/248 x FC00:10:0:1::9 209 I

On the leaf nodes, routes are exported if they are accepted by both the LEAF TO SPINE_EVPN_OUT
and EVPN_EXPORT policies.

o The LEAF TO_SPINE_EVPN_OUT policy rejects any BGP-learned routes that carry the
FROM_SPINE_EVPN_TIER community (0:14). These routes are explicitly rejected to prevent re-
advertisement of spine-learned routes back into the spine layer. As described earlier, spine nodes tag
all routes they advertise to leaf nodes with this community to facilitate this filtering logic.

o The EVPN_EXPORT policy accepts all routes without additional conditions.

As a result, the leaf nodes export only locally originated EVPN routes for the directly connected
interfaces between GPU servers and the leaf nodes. These routes are part of the tenant routing
instances and are required to establish reachability between GPUs belonging to the same tenant.

jnpr@stripel-leaf1> show route advertising-protocol bgp FC00:10::1 table Tenant-1

Tenant-1.evpn.0: 8 destinations, 20 routes (8 active, @ holddown, @ hidden)

Restart Complete

P

refix

Nexthop MED Lclpref AS path

5:10.0.1.1:2001::0::10.200.0.0::31/248

Self I

5:10.0.1.1:2001::0::10.200.0.16::31/248

*

Self I

jnpr@stripel-leaf1> show route advertising-protocol bgp FC00:10::1 table Tenant-2

Tenant-2.evpn.0: 8 destinations, 20 routes (8 active, @ holddown, @ hidden)

Restart Complete

P

refix

Nexthop MED Lclpref AS path

256

5:10.0.1.1:2002::0::10.200.0.2::31/248

* Self I
5:10.0.1.1:2002::0::10.200.0.18::31/248
* Self I

Configuration and Verification Example

Consider the following scenario where Tenant-1 has been assigned GPU 0 on Server 1 and GPU1 on
Server 2, and Tenant-2 has been assigned GPU O on Server 2 and GPU1 on Server 1 as shown in Figure
60.

Figure 60: Overlay example with two tenants

SPINE? SPINEZ SPINE3 SPINE4
AS101 A5102 AS5103 AS5104
100.0 FC00:10::1/128 100.0 FC00:10::2/128 100.0 FC00:10::3/128 100.0 FC00:10::4/128
—. |4 A4 [+—_|k Ah [e— Ty —
— | s —| A —_— - A —_—
t-0/0/0:0.0 _-: i % S et-0/0/0:0.0
10.200.0.0/31 : & ’ a 5 H 10.200.0.2/31
m BGP UPDATE L BGP UPDATE T
< 10.200.0.0/31 VNI FCOO 10.200.0.6/31 viiFcoo | |
t-0/0/1:0.0 10.. /31 VNI FCOO 10.200.0.18/31 yNI FEoo | © - et-0/0/0:1.0
10.200.0.16/31 - F 10.200.0.18/31
g 3 STRIPET LEAF1 - : gl 8
3 s As201 v J b3 5
g g [oDOFCO0:I00:0:1/126 Io0.0 FC00:10:0:1:9/128 & | §
= L s -
] == .] .] . e T B | o | |

Both Stripe 1 Leaf 1 and Leaf 2 have been configured for Tenant-1 and Tenant-2 as shown below:

Table 85. EVPN Routing-Instance for Tenant-1 and Tenant-2 Across Stripe 1 and Stripe 2

STRIPE 1 - LEAF 1 STRIPE 2 - LEAF 1

[edit routing-instances Tenant-A] [[edit routing-instances Tenant-A]

jnpr@stripel-leafl# show | display set relative jnpr@stripe2-leafl# show | display set relative

set instance-type vrf set instance-type vrf

set routing-options graceful-restart set routing-options graceful-restart

set routing-options multipath set routing-options multipath

set protocols evpn ip-prefix-routes advertise direct-nexthop set protocols evpn ip-prefix-routes advertise direct-nexthop
set protocols evpn ip-prefix-routes encapsulation vxlan set protocols evpn ip-prefix-routes encapsulation vxlan

set protocols evpn ip-prefix-routes vni 20001 set protocols evpn ip-prefix-routes vni 20001

set protocols evpn ip-prefix-routes export BGP-AOS-Policy-Tenant-A set protocols evpn ip-prefix-routes export BGP-AOS-Policy-Tenant-A
set interface et-0/0/0:0.0 set interface et-0/0/0:0.0

set interface lo@.1 set interface 1lo@.1

set route-distinguisher 10.0.1.1:2001 set route-distinguisher 10.0.1.9:2001

set vrf-target target:20001:1 set vrf-target target:20001:1

[edit routing-instances Tenant-B] [[edit routing-instances Tenant-B]

jnpr@stripel-leafl# show | display set relative jnpr@stripe2-leafl# show | display set relative

set instance-type vrf set instance-type vrf

set routing-options graceful-restart set routing-options graceful-restart

set routing-options multipath set routing-options multipath

set protocols evpn ip-prefix-routes advertise direct-nexthop set protocols evpn ip-prefix-routes advertise direct-nexthop
set protocols evpn ip-prefix-routes encapsulation vxlan set protocols evpn ip-prefix-routes encapsulation vxlan

set protocols evpn ip-prefix-routes vni 20002 set protocols evpn ip-prefix-routes vni 20002

set protocols evpn ip-prefix-routes export BGP-AOS-Policy-Tenant-A set protocols evpn ip-prefix-routes export BGP-AOS-Policy-Tenant-A
set interface et-0/0/0:1.0 set interface et-0/0/0:1.0

set interface 100.2 set interface 100.2

set route-distinguisher 10.0.1.1:2002 set route-distinguisher 10.0.1.9:2002

set vrf-target target:20002:1 set vrf-target target:20002:1

Table 86. Policies Examples for Tenant-1 and Tenant-2 Across Stripe 1 and Stripe 2

TENANT-A POLICIES TENANT-B POLICIES

[edit policy-options policy-statement BGP-AOS-Policy-Tenant-A] [edit policy-options policy-statement BGP-AOS-Policy-Tenant-B]
jnpr@stripel-leafl# show | display set relative jnpr@stripel-leafl# show | display set relative

set term BGP-AOS-Policy-Tenant-A-10@ from policy AllPodNetworks-Tenant-A set term BGP-AOS-Policy-Tenant-B-10 from policy AllPodNetworks-Tenant-B
set term BGP-AOS-Policy-Tenant-A-10 then accept set term BGP-AOS-Policy-Tenant-B-10 then accept

set term BGP-AOS-Policy-Tenant-A-100 then reject set term BGP-AOS-Policy-Tenant-B-100 then reject

[edit policy-options policy-statement AllPodNetworks-Tenant-A] [edit policy-options policy-statement AllPodNetworks-Tenant-B]
jnpr@stripel-leafl# show | display set relative jnpr@stripel-leafl# show | display set relative

set term AllPodNetworks-Tenant-A-10 from family inet set term AllPodNetworks-Tenant-B-10 from family inet

set term AllPodNetworks-Tenant-A-1@ from protocol direct set term AllPodNetworks-Tenant-B-10 from protocol direct

set term AllPodNetworks-Tenant-A-1@ then community add TENANT-A_COMMUNITY_V4 set term AllPodNetworks-Tenant-B-10 then community add TENANT-B_COMMUNITY_V4
set term AllPodNetworks-Tenant-A-1@ then accept set term AllPodNetworks-Tenant-B-10 then accept

set term AllPodNetworks-Tenant-A-100 then reject set term AllPodNetworks-Tenant-B-100 then reject

[edit policy-options community TENANT-A_COMMUNITY_V4] [edit policy-options community TENANT-B_COMMUNITY_V4]
jnpr@stripel-leafl# show | display set relative jnpr@stripel-leafl# show | display set relative

set members 5:20007 set members 5:20007

set members 21002:26000 set members 21003:26000

The routing instances create separate routing spaces for the two tenants, providing full route and traffic
isolation across the EVPN/VXLAN fabric. Each routing instance has been configured with the following
key elements:

e Interfaces:

The interfaces listed under each tenant VRF (e.g. et-0/0/0:0.0 and et-0/0/1:0.0) are explicitly added to
the corresponding routing table. By placing these interfaces under the VREF, all routing decisions and
traffic forwarding associated with them are isolated from other tenants and from the global routing
table. Assigning an interface that connects a particular GPU to the leaf node effectively maps that GPU
to a specific tenant, isolating it from GPUs assigned to other tenants.

¢ Route-distinguisher (RD):

10.0.1.1:2001 and 10.0.1.1:2002 uniquely identify EVPN routes from Tenant-1 and Tenant-2,
respectively. Even if both tenants use overlapping IP prefixes, the RD ensures their routes remain
distinct in the BGP control plane. Although the GPU to leaf links use unique /32 prefixes, an RD is still
required to advertise these routes over EVPN.

257

e Route target (RT) community:

VRF targets 20001:1 and 20002:1 control which routes are exported from and imported into each
tenant routing table. These values determine which routes are shared between VRFs that belong to the
same tenant across the fabric and are essential for enabling fabric-wide tenant connectivity, for
example, when a tenant has GPUs assigned to multiple servers across different stripes.

¢ Protocols evpn parameters:
e The ip-prefix-routes controls how IP Prefix Routes (EVPN Type 5 routes) are advertised.
e The advertise direct-nexthop enables the leaf node to send IP prefix information using EVPN pure
Type 5 routes, which includes a router MAC extended community. These routes include a Router

MAC extended community, which allows the remote VTEP to resolve the next-hop MAC address
without relying on Type 2 routes.

¢ The encapsulation vxlan indicates that the payload traffic for this tenant will be encapsulated
using VXLAN. The same type of encapsulation must be used end to end.

e The VXLAN Network Identifier (VNI) acts as the encapsulation tag for traffic sent across the
EVPN/VXLAN fabric. When EVPN Type 5 (IP Prefix) routes are advertised, the associated VNI is
included in the BGP update. This ensures that remote VTEPs can identify the correct VXLAN
segment for returning traffic to the tenant’s VRF.

Unlike traditional use cases where a VNI maps to a single Layer 2 segment, in EVPN Type 5 the VNI
represents the tenant-wide Layer 3 routing domain. All point-to-point subnets, such as the /32 links
between GPU servers and the leaf, that belong to the same VRF are advertised with the same VNI.

In this configuration, VNIs 20001 and 20002 are mapped to the Tenant-1 and Tenant-2 VRFs,
respectively. All traffic destined for interfaces in Tenant-1 will be forwarded using VNI 20001, and all
traffic for Tenant-2 will use VNI 20002.

Notice that the same VNI for a specific tenant is configured on both Stripe1-Leaf1 and Stripe2-Leaf1.
e Export Policy Logic

EVPN Type 5 routes from Tenant-1 are exported if they are accepted by the BGP-AOS-Policy-Tenant-1
export policy, which references a nested policy named AllPodNetworks-Tenant-1 (and the equivalent
policies for Tenant-2)

e Policy BGP-AOS-Policy-Tenant-1 controls which prefixes from this VRFs are allowed to be advertised
into EVPN. It accepts any route that is permitted by the A/lPodNetworks-Tenant-1 policy and
explicitly rejects all other routes.

o Policy AllPodNetworks-Tenant-1 accepts directly connected IPv4 routes (family inet, protocol direct)
that are part of the Tenant-1 VRF. It tags these routes with the TENANT-1_COMMUNITY_V4
(5:20007 21002:26000) community before accepting them. All other routes are rejected.

https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/statement/ip-prefix-routes-edit-routing-instances-protocols-evpn.html
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/statement/ip-prefix-routes-edit-routing-instances-protocols-evpn.html#ip-prefix-routes__d4e155

As a result, only the directly connected IPv4 routes from the Tenant-1 (/32 links between GPU servers
and the leaf) are exported as EVPN Type 5 routes.

To verify the interface assignments to the different tenants, use show interfaces routing-instance <tenant-
name> terse.

jnpr@stripel-leaf1> show interfaces routing-instance Tenant-1 terse

Interface Admin Link Proto Local Remote
et-0/0/0:0.0 up up inet 10.200.0.0/31

multiservice
100.1 up up inet 192.168.11.1 --> 0/0
jnpr@stripel-leaf1> show interfaces routing-instance Tenant-2 terse
Interface Admin Link Proto Local Remote
et-0/0/1:0.0 up up inet 10.200.0.16/31

multiservice
100.1 up up inet 192.168.11.2 --> 0/0
jnpr@stripel-leaf2> show interfaces routing-instance Tenant-1 terse
Interface Admin Link Proto Local Remote
et-0/0/0:0.0 up up inet 10.200.0.2/31

multiservice
100.1 up up inet 192.168.12.1 --> 0/0
jnpr@stripel-leaf2> show interfaces routing-instance Tenant-2 terse
Interface Admin Link Proto Local Remote
et-0/0/1:0.0 up up inet 10.200.0.18/31

multiservice
100.1 up up inet 192.168.12.2 --> 0/0

You can also check the direct routes installed to the correspondent routing table:

jnpr@stripel-leaf1> show route protocol direct table Tenant-1.inet.@
Tenant-1.inet.0: 14 destinations, 14 routes (14 active, @ holddown, @ hidden)
Restart Complete

@ = Routing Use Only, # = Forwarding Use Only

+ = Active Route, - = Last Active, * = Both

10.200.0.0/31 *[Direct/0] 02:24:29
> via et-0/0/12:0.0

192.168.11.1/32 *[Direct/0] 02:16:52

> via 100.1
jnpr@stripel-leaf1> show route protocol direct table Tenant-2.inet.0
Tenant-2.inet.0: 14 destinations, 14 routes (14 active, @ holddown, @ hidden)
Restart Complete
@ = Routing Use Only, # = Forwarding Use Only

+ = Active Route, - = Last Active, * = Both

10.200.0.16/31 *[Direct/0] 02:24:29
> via et-0/0/12:0.0
192.168.11.1/32 *[Direct/0] 02:16:52

> via 100.2
jnpr@stripel-leaf2> show route protocol direct table Tenant-1.inet.0
tenant-1.inet.0: 14 destinations, 14 routes (14 active, @ holddown, @ hidden)
Restart Complete

@ = Routing Use Only, # = Forwarding Use Only

+ = Active Route, - = Last Active, * = Both

10.200.0.2/31 *[Direct/0] 1d 17:42:33
> via et-0/0/2:0.0

192.168.12.1/32 *[Direct/0] 02:16:52

> via 100.1
jnpr@stripel-leaf2> show route protocol direct table Tenant-2.inet.0
tenant-1.inet.0: 14 destinations, 14 routes (14 active, @ holddown, @ hidden)
Restart Complete

@ = Routing Use Only, # = Forwarding Use Only

+ = Active Route, - = Last Active, * = Both

10.200.0.18/31 *[Direct/0] 1d 17:42:33
> via et-0/0/3:0.0

192.168.12.1/32 *[Direct/0] 02:16:52

> via 100.2

To verify evpn I3 contexts including encapsulation, VNI, router MAC address, use show evpn 13-context

Use <tenant-name> extensive for more details.

jnpr@stripel-leaf1> show evpn 13-context

L3 context Type Adv Encap VNI/Label Router MAC/GW intf dt4-
sid dt6-sid dt46-sid

Tenant-1 Cfg Direct VXLAN 20001

9c:5a:80:c1:b3:06

Tenant-2 Cfg Direct VXLAN 20002

9c:5a:80:¢1:b3:06

jnpr@stripel-leaf1> show evpn 13-context

L3 context Type Adv Encap VNI/Label Router MAC/GW intf dt4-
sid dt6-sid dt46-sid

Tenant-1 Cfg Direct VXLAN 20001

58:86:70:79:df:db

Tenant-2 Cfg Direct VXLAN 20002

58:86:70:79:df :db

jnpr@stripel-leaf1> show evpn 13-context Tenant-1 extensive
L3 context: Tenant-1
Type: Configured
Advertisement mode: Direct nexthop, Router MAC: 9c:5a:80:c1:b3:06
Encapsulation: VXLAN, VNI: 20001
IPv6 source VTEP address: FC00:10:0:1::1
IP->EVPN export policy: BGP-AOS-Policy-Tenant-1
Flags: 0xc209 <Configured IRB-MAC ROUTING RT-INSTANCE-TARGET-IMPORT-POLICY RT-INSTANCE-TARGET-
EXPORT-POLICY>
Change flags: 0x20000 <VXLAN-VNI-Update-RTT-O0PQ>
Composite nexthop support: Disabled
Route Distinguisher: 10.0.1.1:2001
Reference count: 5
EVPN Multicast Routing mode: CRB
jnpr@stripel-leaf1> show evpn 13-context Tenant-2 extensive
L3 context: Tenant-2
Type: Configured
Advertisement mode: Direct nexthop, Router MAC: 9c:5a:80:c1:b3:06
Encapsulation: VXLAN, VNI: 20002
IPv6 source VTEP address: FC00:10:0:1::1
IP->EVPN export policy: BGP-AOS-Policy-Tenant-2
Flags: 0xc209 <Configured IRB-MAC ROUTING RT-INSTANCE-TARGET-IMPORT-POLICY RT-INSTANCE-TARGET-
EXPORT-POLICY>
Change flags: 0x20000 <VXLAN-VNI-Update-RTT-O0PQ>
Composite nexthop support: Disabled
Route Distinguisher: 10.0.1.1:2002
Reference count: 5
EVPN Multicast Routing mode: CRB
jnpr@stripel-leaf2> show evpn 13-context Tenant-1 extensive
L3 context: Tenant-1
Type: Configured
Advertisement mode: Direct nexthop, Router MAC: 58:86:70:79:df:db
Encapsulation: VXLAN, VNI: 20001
IPv6 source VTEP address: FC00:10:0:1::2
IP->EVPN export policy: BGP-AOS-Policy-Tenant-1
Flags: 0xc209 <Configured IRB-MAC ROUTING RT-INSTANCE-TARGET-IMPORT-POLICY RT-INSTANCE-TARGET-
EXPORT-POLICY>
Change flags: 0x20000 <VXLAN-VNI-Update-RTT-0PQ>
Composite nexthop support: Disabled
Route Distinguisher: 10.0.1.2:2001
Reference count: 5
EVPN Multicast Routing mode: CRB

jnpr@stripel-leaf2> show evpn 13-context Tenant-1 extensive

L3 context: Tenant-2
Type: Configured
Advertisement mode: Direct nexthop, Router MAC: 58:86:70:79:df:db
Encapsulation: VXLAN, VNI: 20002
IPv6 source VTEP address: FC00:10:0:1::2
IP->EVPN export policy: BGP-A0S-Policy-Tenant-2
Flags: 0xc209 <Configured IRB-MAC ROUTING RT-INSTANCE-TARGET-IMPORT-POLICY RT-INSTANCE-TARGET-
EXPORT-POLICY>
Change flags: 0x20000 <VXLAN-VNI-Update-RTT-OPQ>
Composite nexthop support: Disabled
Route Distinguisher: 10.0.1.2:2002
Reference count: 5
EVPN Multicast Routing mode: CRB
jnpr@stripel-leaf1> show evpn ip-prefix-database
L3 context: Tenant-1
IPv4->EVPN Exported Prefixes

Prefix EVPN route status
10.200.0.0/31 Created
192.168.11.1/32 Created
EVPN->IPv4 Imported Prefixes
Prefix Etag
10.200.0.2/31 0

Route distinguisher VNI/Label/SID Router MAC Nexthop/Overlay GW/ESI
Route-Status Reject-Reason

10.0.1.2:2001 20001 58:86:70:79:df:db FC00:10:0:1::2
Accepted n/a
192.168.12.1/32 0

Route distinguisher VNI/Label/SID Router MAC Nexthop/Overlay GW/ESI
Route-Status Reject-Reason

10.0.1.2:2001 20001 58:86:70:79:df:db FC00:10:0:1::2
Accepted n/a

L3 context: Tenant-2
IPv4->EVPN Exported Prefixes

Prefix EVPN route status
10.200.0.16/31 Created
192.168.11.2/32 Created
EVPN->IPv4 Imported Prefixes
Prefix Etag
10.200.0.18/31 0
Route distinguisher VNI/Label/SID Router MAC Nexthop/Overlay GW/ESI
Route-Status Reject-Reason
10.0.1.2:2002 20002 58:86:70:79:df:db 10.0.1.2

Accepted n/a

192.168.12.2/32 0

Route distinguisher VNI/Label/SID Router MAC Nexthop/Overlay GW/ESI
Route-Status Reject-Reason

10.0.1.2:2002 20002 58:86:70:79:df:db 10.0.1.2
Accepted n/a

When EVPN Type 5 is used to implement L3 tenant isolation across a VXLAN fabric, multiple routing
tables are instantiated on each participating leaf node. These tables are responsible for managing
control-plane separation, enforcing tenant boundaries, and supporting the overlay forwarding model.
Each routing instance (VRF) creates its own set of routing and forwarding tables, in addition to the
global and EVPN-specific tables used for fabric-wide communication. These tables are listed in Table 87.

Table 87. Routing and Forwarding Tables for EVPN Type 5

TABLE DESCRIPTON

bgp.evpn.O Holds EVPN route information received via BGP, including Type 5 (IP Prefix) routes and other
EVPN route types.

This is the control plane source for EVPN-learned routes

:vxlan.inet.0 Used internally for VXLAN tunnel resolution.

Maps VTEP IP addresses to physical next-hops.

<tenant>.inet. | The tenant-specific IPv4 unicast routing table.

0
Contains directly connected and EVPN-imported Type 5 prefixes for that tenant.

Used for routing data plane traffic.

<tenant>.evp The tenant-specific EVPN table.
n.0

When an EVPN route is received, the protocol next-hop is extracted and resolved in inet.0. The EVPN
route is added to the bgp.evpn.O table. The result is placed in :vxlan.inet.O.

The route-target community value is used to determine which tenant the route belongs to, and the
route is placed in tenant.evpn.O. From there, IPv4 routes are imported into tenant.inet4.0 to be used for
route lookups when traffic arrives at the interfaces belonging to the VRF.

IPv6 EBGP sessions advertising evpn routes for Tenant-1 and Tenant-2 should be established. The
routes should be installed in both the bgp.evpn.0 table and the <Tenant>.inet.O table.

jnpr@stripel-leaf1> show bgp summary | no-more

---more---

Peer AS
Received/Accepted/Damped. . .
FC00:10::1 101

bgp.evpn.0: 4/4/4/0
Tenant-1.evpn.0: 2/2/2/0
Tenant-2.evpn.0: 2/2/2/0
FC00:10::2 102
bgp.evpn.0: 0/4/4/0
Tenant-1.evpn.0: 0/2/2/0
Tenant-2.evpn.0: 0/2/2/0
FC00:10::3 103
bgp.evpn.0: 0/4/4/0
Tenant-1.evpn.0: 0/2/2/0
Tenant-2.evpn.0: 0/2/2/0
FC00:10::4 104
bgp.evpn.0: 0/4/4/0
Tenant-1.evpn.0: 0/2/2/0
Tenant-2.evpn.0: 0/2/2/0

jnpr@stripe2-leaf1> show bgp summary |

---more---

Peer AS
Received/Accepted/Damped. . .
FC00:10::1 101

bgp.evpn.0: 4/4/4/0
Tenant-1.evpn.0: 2/2/2/0
Tenant-2.evpn.0: 2/2/2/0
FC00:10::2 102
bgp.evpn.0: 4/4/4/0
Tenant-1.evpn.0: 2/2/2/0
Tenant-2.evpn.0: 2/2/2/0
FC00:10::3 103
bgp.evpn.0: 4/4/4/0
Tenant-1.evpn.0: 2/2/2/0
Tenant-2.evpn.0: 2/2/2/0
FC00:10::4 104
bgp.evpn.0: 4/4/4/0

InPkt

InPkt

OutPkt
5 4
5 4
5 4
5 4
no-more
OutPkt
206 199
206 199
206 199
207 199

OutQ

OutQ

Flaps Last Up/Dwn State|#Active/

0 0
0 0
0 0
0 0
Flaps Last
0 0
0 0
0 0
0 0

18 Establ

14 Establ

10 Establ

6 Establ

Up/Dwn State|#Active/

1:29:40 Establ

1:29:25 Establ

1:29:26 Establ

1:29:39 Establ

Tenant-1.evpn.0: 2/2/2/0
Tenant-2.evpn.0: 2/2/2/0

To check that evpn routes are being advertised, use show route advertising-protocol bgp <neighbor>. For a
specific route, use the match-prefix option and include the entire evpn prefix as shown in the example
below.

jnpr@stripel-leaf1> show route advertising-protocol bgp FC00:10::1 table Tenant | match
5:10.0.1.1:2001 | match 31/248
5:10.0.1.1:2001::0::10.200.0.0::31/248

jnpr@stripel-leaf1> show route advertising-protocol bgp FC00:10::1 table Tenant | match
5:10.0.1.1:2002 | match 31/248

5:10.0.1.1:2002::0::10.200.0.16::31/248
jnpr@stripel-leaf2> show route advertising-protocol bgp FC00:10::1 table Tenant | match
5:10.0.1.2:2001 | match 31/248

5:10.0.1.2:2001::0::10.200.0.2::31/248

jnpr@stripel-leaf2> show route advertising-protocol bgp FC00:10::1 table Tenant | match
5:10.0.1.2:2002 | match 31/248
5:10.0.1.2:2002::0::10.200.0.18::31/248
jnpr@ stripel-leaf1> show route advertising-protocol bgp FC00:10::1 match-prefix
5:10.0.1.1:2001::0::10.200.0.0::31/248 table Tenant-1
Tenant-1.evpn.0: 12 destinations, 54 routes (12 active, 0 holddown, 0 hidden)
Restart Complete
Prefix Nexthop MED Lclpref AS path
5:10.0.1.1:2001::0::10.200.0.0::31/248 * Self I
jnpr@ stripel-leaf1> show route advertising-protocol bgp FC00:10::1 match-prefix
5:10.0.1.1:2002::0::10.200.0.16::31/248 table Tenant-2
Tenant-2.evpn.0: 12 destinations, 54 routes (12 active, 0 holddown, 0 hidden)
Restart Complete

Prefix Nexthop MED Lclpref AS path
5:10.0.1.1:2002::0::10.200.0.16::31/248 *
Self I

jnpr@stripel-leaf2> show route advertising-protocol bgp FC00:10::1 match-prefix
5:10.0.1.2:2001::0::10.200.0.2::31/248 table Tenant-1

Tenant-1.evpn.0: 12 destinations, 54 routes (12 active, @ holddown, @ hidden)
Restart Complete

Prefix Nexthop MED Lclpref AS path
5:10.0.1.2:2001::0::10.200.0.2::31/248 *
Self I

jnpr@stripel-leaf2> show route advertising-protocol bgp FC00:10::1 match-prefix

5:10.0.1.2:2002::0::10.200.0.18::31/248 table Tenant-2
Tenant-2.evpn.0: 12 destinations, 54 routes (12 active, @ holddown, @ hidden)
Restart Complete

Prefix Nexthop MED Lclpref AS path
5:10.0.1.2:2002::0::10.200.0.18::31/248 *
Self I

The /248 prefixes represent EVPN route type 5 advertising each IPv4 prefix connecting the GPU servers
and leaf nodes.

For example: 5:10.0.1.2:2001::0::10.200.0.0::31/248 is an EVPN route type 5 for prefix 10.200.0.0/31
where:

Table 88. EVPN Type 5 Route Advertisement Fields Description

Name Value Description

Route type 5: Indicates the route is a Type 5 (IP Prefix) route

Route Distinguisher ' 10.0.1.2:2001 Uniquely identifies the routes

Placeholder fields =0:: For MAC address and other Type 2-related fields (not used here)
IP Prefix 10.200.0.4::31 The actual prefix being advertised

VNI 20001 VNI to push for traffic to the destination

Advertising router FC00:10::1 (Spine 1) = Spine the route was received from.

To check that evpn routes are being received, use show route receive-protocol bgp <neighbor>. For a specific
route, use the match-prefix option and include the entire evpn prefix as shown in the example below:

jnpr@stripel-leaf1> show route receive-protocol bgp FC00:10::1 | match 5:10.0.1.2:2001 | match
31

5:10.0.1.2:2001::0::10.200.0.2::31/248
jnpr@stripel-leaf1> show route receive-protocol bgp FC00:10::1 | match 5:10.0.1.2:2002 | match
31

5:10.0.1.2:2002::0::10.200.0.18::31/248
jnpr@stripel-leaf2> show route receive-protocol bgp FC00:10::1 | match 5:10.0.1.1:2001 | match
31

5:10.0.1.1:2001::0::10.200.0.0::31/248
jnpr@stripel-leaf2> show route receive-protocol bgp FC00:10::1 | match 5:10.0.1.1:2002 | match

31
5:10.0.1.1:2002::0::10.200.0.16::31/248

The examples show routes received from Spine 1, but each route is received from all 4 spines nodes,
which you can also confirm by entering:

jnpr@stripel-leaf1> show route table bgp.evpn.@ match-prefix
5:10.0.1.2:2001::0::10.200.0.2::31/248 | match BGP
bgp.evpn.0: 314 destinations, 1040 routes (314 active, @ holddown, @ hidden)
* [BGP/170] 11:31:33, localpref 100, from FC00:10::1
[BGP/170] 11:31:21, localpref 100, from FC00:10::2
[BGP/170] 11:31:14, localpref 100, from FC00:10::3
[BGP/170] 11:31:10@, localpref 100, from FC00:10::4
jnpr@stripel-leaf2> show route table bgp.evpn.@ match-prefix
5:10.0.1.1:2001::0::10.200.0.0::31/248 | match BGP
bgp.evpn.0: 314 destinations, 1040 routes (314 active, @ holddown, @ hidden)
* [BGP/170] 11:31:13, localpref 100, from FC00:10::1
[BGP/170] 11:31:41, localpref 100, from FC00:10::2
[BGP/170] 11:31:12, localpref 100, from FC00:10::3
[BGP/170] 11:31:52, localpref 100, from FC00:10::4

Additional information for a given route can be found using the extensive keyword:

jnpr@stripel-leaf1> show route table bgp.evpn.@ match-prefix
5:10.0.1.2:2001::0::10.200.0.2::31/248 active-path extensive
bgp.evpn.0: 314 destinations, 1040 routes (314 active, @ holddown, @ hidden)
Restart Complete
5:10.0.1.2:2001::0::10.200.0.2::31/248 (4 entries, @ announced)
*BGP Preference: 170/-101

Route Distinguisher: 10.0.1.2:2001

Next hop type: Indirect, Next hop index: @

Address: 0x55dfb9c305fc

Next-hop reference count: 48

Kernel Table Id: @

Source: FC00:10::1

Protocol next hop: FC00:10:0:1::2

Label operation: Push 20001

Label TTL action: prop-ttl

Load balance label: Label 20001: None;

Indirect next hop: 0x2 no-forward INH Session ID: 0

Indirect next hop: INH non-key opaque: (nil) INH key opaque: (nil)

State: <Active Ext>
Local AS: 201 Peer AS: 101
Age: 7:54:49 Metric2: 0
Validation State: unverified
Task: BGP_109.FC00:10::1
AS path: 109 210 I
Communities: 0:14 7:20007 21002:26000 target:20001:1
encapsulation:vxlan(@x8) router-mac:58:86:70:7b:10:db
Import Accepted
Route Label: 20001
Overlay gateway address: 0.0.0.0
ESI 00:00:00:00:00:00:00:00:00:00
Localpref: 100
Router ID: 10.0.0.1
Secondary Tables: Tenant-1.evpn.@
Thread: junos-main
Indirect next hops: 1
Protocol next hop: FC00:10:0:1::2 ResolvState: Resolved
Label operation: Push 20001
Label TTL action: prop-ttl
Load balance label: Label 20001: None;

Indirect next hop: 0x2 no-forward INH Session ID: 0

Indirect next hop: INH non-key opaque: (nil) INH key opaque: (nil)
Indirect path forwarding next hops: 4

Next hop type: Router

Next hop: FC00:10:0:2::144 via et-0/0/0:0.0

Session Id: @

Next hop: FC00:10:0:2::150 via et-0/0/1:0.0

Session Id: @

Next hop: FC00:10:0:2::158 via et-0/0/2:0.0

Session Id: @

Next hop: FC00:10:0:2::176 via et-0/0/3:0.0

Session Id: @

FC00:10:0:1::2/128 Originating RIB: inet6.0

Node path count: 1
Forwarding nexthops: 4

Next hop type: Router
Next hop: FC00:10:0:2::144 via et-0/0/0:0.0
Session Id: @
Next hop: FC00:10:0:2::150 via et-0/0/1:0.0
Session Id: @
Next hop: FC00:10:0:2::158 via et-0/0/2:0.0
Session Id: @

Next hop: FC00:10:0:2::176 via et-0/0/3:0.0
Session Id: 0

=== (ore)===

Table 89. EVPN Type 5 Route Advertisement Fields Description - Extensive

Name Value Description

Route type 5: Indicates the route is a Type 5 (IP Prefix) route

Route Distinguisher | 10.0.1.2:2001 Uniquely identifies the routes

Placeholder fields =0:: For MAC address and other Type 2-related fields (not used here)
IP Prefix 10.200.105.0::24 The actual prefix being advertised

VNI 20001 VNI to push for traffic to the destination

Advertising router FC00:10::1 Spine the route was received from.

Protocol next hop 10.0.1.2 (Stripe 1 Router that originated the EVPN route (remote VTEP)

Leaf 2)
Encapsulation Type: 0x08 standardized IANA-assigned value for VXLAN encapsulation in the
EVPN Encapsulation extended community (RFC 9014).
Route target target:20001:1 Identifies the route as belonging to Tenant-1

To check that the routes are being imported into the correspondent tenant’s routing tables, use show
route table <tenant-name>.inet.@ protocol evpn, as shown in the example below:

jnpr@stripel-leaf1> show route table Tenant-1.inet.@ protocol evpn | match /31
10.200.0.2/31 *[EVPN/170] 04:02:04
jnpr@stripel-leaf1> show route table Tenant-2.inet.@ protocol evpn | match /31
10.200.0.18/31 *[EVPN/170] 04:02:04
jnpr@stripel-leaf2> show route table Tenant-1.inet.@ protocol evpn | match /31
10.200.0.0/31 *[EVPN/170] 04:02:04
jnpr@stripel-leaf2> show route table Tenant-2.inet.@ protocol evpn | match /31
10.200.0.16/31 *[EVPN/170] 04:02:04

Appendix D - How to Run NCCL Tests Using
Autoconfigured IPv6 Address

IN THIS SECTION

GPU-NIC Mapping and Topology Awareness | 275

To run a model or NCCL test using a global IPvé addresses assigned either statically or automatically via
SLAAC the value of the NCCL_IB_GID_INDEX variable must be adjusted.

NOTE: Starting with NCCL 2.21, the GID index no longer needs to be specified manually. It is
automatically handled based on the NCCL_SOCKET_FAMILY setting. If NCCL_SOCKET_FAMILY
is set to AF_INET6 and IPvé connectivity between hosts is in place, RoCEv2 traffic over IPvé
should work as expected.

The NCCL_IB_GID_INDEX variable defines the Global ID index used by RoCE (RDMA) communication.
The default value is -1, which means that NCCL will automatically select the correct GID index based on
the active link layer of the InfiniBand device. If the link layer is Ethernet (RoCE), NCCL will use the GID
index that returns a GID with RoCE v2 support (usually GID index 3, depending on driver/firmware).

For more details you can review Nvidia's Environment Variables documentation

To find the GID for the desired address, use the following command:

ibv_devinfo -vvv -d <mellanox-interface-name> | grep GID

To find the mellanox interface name you can use the following script:

jnpr@H100-01:~/scripts$ cat nvidia_map_iface_to_mlx.sh

Script to map network interfaces to Mellanox interfaces
echo "Network Interface to Mellanox Interface Mapping:"

Loop through each network interface in /sys/class/net/
for iface in $(1s /sys/class/net/); do

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html

if [-d /sys/class/net/$iface/device/infiniband_verbs J]; then
Find the Mellanox interface by reading the ibdev file
mlx_iface=$(cat /sys/class/net/$iface/device/infiniband_verbs/x/ibdev)
echo "$iface => $mlx_iface"

fi

done

Example:

jnpr@H100-01:/etc/netplan$ ibv_devinfo -vvv -d mlx5_6 | grep GID
GID[0]: fe80:0000:0000:0000:a288:c2ff:fe3b:506a, RoCE vi
GID[1]: feB80::a288:c2ff:fe3b:506a, RoCE v2
GID[2]: 0000:0000:0000:0000:0000:ffff:0ac8:010a, RoCE v1
GID[L 3]: ::ffff:10.200.1.10, RoCE v2
GID[4]: FC00:200:0000:0002:a288:c2ff:fe3b:506a, RoCE v1
GID[5]: FC00:200:0:2:a288:c2ff:fe3b:506a, RoCE v2

jnpr@H100-01:~/scripts$./nvidia_map_iface_to_mlx.sh | egrep "gpu|Map"
Network Interface to Mellanox Interface Mapping:

gpud_eth => mlx5_11

gpul_eth => mlx5_6

gpu2_eth => mlx5_10

gpu3_eth => mlx5_9

gpud_eth => mlx5_4

gpu5_eth => mlx5_3

gpu6_eth => mlx5_5

gpu7_eth => mlx5_0

NOTE: Make sure the GID matches in all nodes.

The easily find mapping information between the Mellanox interface names, the user assigned interface
names (e.g. gpuO_eth), NICs, and the GPUs you can use the script find_pxb_gpu_nic_pairs.py which can
be found under: https:/github.com/Juniper/jvd/tree/main/Data%20Center/AIDC/backend/
Al_ML_Multitenancy

Example:

jnpr@H100-01:~/SCRIPTS$ python3 find_pxb_gpu_nic_pairs.py
Running full GPUeNIC mapping workflow. ..

https://github.com/Juniper/jvd/tree/main/Data%20Center/AIDC/backend/AI_ML_Multitenancy
https://github.com/Juniper/jvd/tree/main/Data%20Center/AIDC/backend/AI_ML_Multitenancy

Collecting GPU-NIC topology via nvidia-smi...

Converting raw_topo.txt > topo.csv ...

Parsing topo.csv and identifying PXB pairs...

Detected GPU ¢ NIC (PXB) Pairs:

GPUO
GPU1
GPU2
GPU3
GPU4
GPU5
GPU6
GPU7

«>

«>

«>

«>

«>

«>

«>

«>

NICO
NIC3
NIC4
NIC5
NIC6
NIC9
NIC10
NIC11

Saved to pxb_gpu_nic_pairs.txt

Building

mlx5_X e
mlx5_0
mlx5_1
mlx5_2
mlx5_3
mlx5_4
mlx5_5
mlx5_6
mlx5_7
mlx5_8
mlx5_9

Saved to

Building
gpud_eth
gpul_eth
gpu2_eth
gpu3_eth
gpud_eth
gpu5_eth
gpub_eth
gpu7_eth
Saved to

mlx5_X > NIC# mapping via mst status...

NIC# Mapping:

«>

>

«>

>

«>

>

«>

>

«>

>

NICO
NIC1
NIC2
NIC3
NIC4
NIC5
NIC6
NIC7
NIC8
NIC9

mlx-to-nic-map.txt

gpuX_eth » NIC# mapping from PXB pairs...

>

«>

>

«>

>

«>

>

«>

NICO
NIC3
NIC4
NIC5
NIC6
NIC9
NIC10
NIC11

gpu_eth-to-nic. txt

Once you have identified the GID you can run a NCCL test using:

TENANT=<TENANT#> GID=<GID> ./run-tenant.sh

which can also be found under: https:/github.com/Juniper/jvd/tree/main/Data%20Center/AIDC/
backend/Al_ML_Multitenancy

NOTE: The script was created for Tenants = 1-8.

Example:

jnpr@headend-svr-1:/mnt/nfsshare/source/aicluster/new-nccl$ TENANT=1 GID=5 ./run-tenant.sh
The RAIL partition directory /mnt/nfsshare/logs/new-nccl/H100-RAILS-ALL/ already exists ...
Created SLURM logs directory /mnt/nfsshare/logs/new-nccl/H100-RAILS-ALL/10152025_19_16_31 ...
=== JOB SUMMARY

TENANT =1

NODES =4

NODE_LIST = H100-01,H100-02,H100-03,H100-04

PARTITION = H100-RAILS-ALL

LOGDIR = /mnt/nfsshare/logs/new-nccl/H100-RAILS-ALL/10152025_19_16_31
TEST = all_reduce_perf (bsize=16G, esize=16G, iters=10, agg_iters=1)
GID input = 3(GID) (GID_INDEX)

NCCL_IB_GID_INDEX = 3

UCX_IB_GID_INDEX = 3

Submitted batch job 29713

jnpr@headend-svr-1:/mnt/nfsshare/source/aicluster/new-nccl$ cat /mnt/nfsshare/logs/new-nccl/H100-
RAILS-ALL/10152025_19_16_31/slurm-29713.out|grep Avg
[1,0]<stdout>: # Avg bus bandwidth : 47.669

To check if the correct GPU is being used when running a NCCL test use the following:

jnpr@H100-01:~/scripts$ cat show-gpu-procs.sh
#!/bin/bash

show-gpu-procs.sh — display only the "Processes" section of nvidia-smi
set -euo pipefail
echo "| Processes: | "

echo "| GPU GI CI PID Type Process name GPU Memory |"
nvidia-smi | awk '/GPU GI/{flag=1;next}/*$/{flag=0}flag’

https://github.com/Juniper/jvd/tree/main/Data%20Center/AIDC/backend/AI_ML_Multitenancy
https://github.com/Juniper/jvd/tree/main/Data%20Center/AIDC/backend/AI_ML_Multitenancy

Example:

jnpr@headend-svr-1:/mnt/nfsshare/source/aicluster/new-nccl$ TENANT=1 GID=5 ./run-tenant.sh
The RAIL partition directory /mnt/nfsshare/logs/new-nccl/H100-RAILS-ALL/ already exists ...
Created SLURM logs directory /mnt/nfsshare/logs/new-nccl/H100-RAILS-ALL/10162025_15_24_33 ...
=== JOB SUMMARY

TENANT =1

NODES =4

NODE_LIST = H100-01,H100-02,H100-03,H100-04

PARTITION = H100-RAILS-ALL

LOGDIR = /mnt/nfsshare/logs/new-nccl/H100-RAILS-ALL/10162025_15_24_33
TEST = all_reduce_perf (bsize=16G, esize=16G, iters=10, agg_iters=1)
GID input = 5(GID) (GID_INDEX)

NCCL_IB_GID_INDEX = 5
UCX_IB_GID_INDEX 5

Submitted batch job 29814

jnpre@headend-svr-1:/mnt/nfsshare/source/aicluster/new-nccl$ TENANT=2 GID=5 ./run-tenant.sh
The RAIL partition directory /mnt/nfsshare/logs/new-nccl/H100-RAILS-ALL/ already exists ...
Created SLURM logs directory /mnt/nfsshare/logs/new-nccl/H100-RAILS-ALL/10162025_15_24_36 ...
=== JOB SUMMARY

TENANT =2

NODES =4

NODE_LIST = H100-01,H100-02,H100-03,H100-04

PARTITION = H100-RAILS-ALL

LOGDIR = /mnt/nfsshare/logs/new-nccl/H100-RAILS-ALL/10162025_15_24_36
TEST = all_reduce_perf (bsize=16G, esize=16G, iters=10, agg_iters=1)
GID input = 5(GID) (GID_INDEX)

NCCL_IB_GID_INDEX = 5

UCX_IB_GID_INDEX =5

Submitted batch job 29815

jnpr@H100-01:~/scripts$ sudo ./show-gpu-procs.sh

| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
| |
| 4 N/A N/A 4120128 C nccl-tests/build/all_reduce_perf 51020MiB |
| 7 N/A N/A 4119971 C nccl-tests/build/all_reduce_perf 51020MiB |

GPU-NIC Mapping and Topology Awareness

Make sure that the correct GPU and NIC are mapped to each Tenant. Maintaining tight NUMA and PCle
alignment between the assigned GPU and NIC ensures the best performance. Each tenant’s GPU and
NIC should be strategically co-located within the same NUMA region and PCle hierarchy whenever
possible.

The nvidia-smi topo -m command displays the interconnect topology between GPUs, NICs, and CPUs in
the system. The output is shown as a matrix where rows and columns represent devices, and each cell
indicates the connection type (or “distance”) between them. These connection types reveal how traffic
flows across PCle switches, host bridges, and CPU sockets, helping identify which GPU-NIC pairings
deliver the best performance.

X Same device (diagonal of the matrix)
PIX Single PCle switch or bridge. Shortest Path Fastest communication
PXB Multiple PCle bridges within the same root complex (NUMA node), but without traversing the PCle

Host Bridge. Slightly longer path and latency.
PHB Crosses a PCle Host Bridge (attached to CPU). May cross CPU boundaries. Lower performance.
SYS Crosses multiple PCle Host Bridges within the same NUMA node. More latency.

NODE Crosses NUMA nodes, traversing QPI/UPI interconnects between CPU sockets. Slowest path — avoid
for RDMA or latency-sensitive traffic.

For RDMA traffic, choose PXB or PIX paths for GPU&NIC pairs to keep communication within the same
NUMA domain and PCle Host Bridge. Avoid SYS or NODE paths whenever possible, as they add
unnecessary latency and reduce bandwidth efficiency.

As an example, consider a case where GPU2 and NICO are assigned to Tenant-A, and GPU5 and NIC9
are assigned to Tenant-B, as shown in Figure below. The nvidia-smi topo -m output in Figure ##
indicates that traffic from GPU2—->NICO must traverse multiple PCle host bridges and cross NUMA
domains, resulting in degraded performance for Tenant-A. In contrast, GPU5—NIC9 communicates
through multiple PCle bridges within the same root complex, avoiding CPU traversal and maintaining
better performance for Tenant-B.

Figure 61. Tenants GPU and NIC assignment example

GPU2
{assigned to
Tenant-A)

H100-01

GPU3

GPU4

(assigned to

GPUS

Tenant-B)

1
gpul _eth

I
gpu2 _eth gpuO _eth

gpu7_eth gpu5 _eth gpud _eth gpu6 _eth gpu3 _eth
(NICO) (NIC3) (NIC4) (NIC5) (NICB) (NIC9) (NIC10) (NIC11)
et-0/0/0:0 et-0/0/0:0 et-0/0/0:0 et-0/0/0:0 et-0/0/0:0 et-0/0/0:0 et-0/0/0:0 et-0/0/0:0
| | | | | | | |
TENANT-B
VRF
STRIPEL || STRIPE1 STRIPE1 || STRIPE1 STRIPEL || STRIPE1 STRIPEL || STRIPE1
LEAF1 LEAF2 LEAF3 LEAF4 LEAFS LEAF6 LEAF7 LEAF8

GPU1
GPU2
GPU3
GPU4
GPUS
GPU6
GPU7
NICO
NIC1
NIC2
NIC3
NIC4
NIC5
NIC6
NIC7
NIC8
NICo

-GPUU GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NICO NIC5 NIC6 NIC7 NIC8 NIC9 NIC10 CPU Affinity | NUMA Affinity
(el X | NVIS | NV18 | NV18|NV18 | NVIS | NV18 NV18| PXB |[NODE| NODE NODE|NODE NODE| SYS | SYS | SYS | S¥YS | S¥S [SYS | 0-55,112-167 0
NV18| X |NV18 NV1S8|NV1S| NV18 | NV1E NV18 | NODE NODE NODE| PXB [NODE/NODE| SYS | SYS | SYS | SYS | SYS | SYS | 0-55,112-167 0
NVIS NV18| X |NV18|NVIS| NV18 | NV18 NV18 | NODE NODE| NODE NODE| PXB |[NODE| SYS | SYS | SYS | SYS | SYS | SYS | 0-55,112-167 0
NV1S| NV18 NV1&| X |[NV1S| NV18 | NV1& NV18 | NODE NODE NODE NODE[NODE| PXB | SYS | SYS | SYS | SYS | SYS | SYS | 0-55,112-167 0
NVIS | NV18 | NV18 NV18|(X |NV18 NVI8 NV18| SYS | SYS | SYS | SYS | SYS | SYS | PXB |NODE|NODE|NODE| NODE| NODE | 56-111,168-223 1
NV1S | NV18 | NV18 NV1S|(NVIS| X |NV18 NV18| SYS | SYS | SYS | SYS | SYS | S¥YS NODE NODE|NODE| PXB | NODE|NODE|56-111,168-223 1
NVIS | NV18 | NV18 NVIS8|(NVIS NV18| X |NVI8| S¥YS | SYS | SYS | SYS | SYS | S¥YS |NODE NODE|NODE| NODE| PXB | NODE|56-111,168-223 1
NV18 | NV18 | NV18 NV18| NV1S| NV1S | NV1E| X SYS | S¥YS | SYS | SYS | SYS | S¥S |NODE NODE|NODE NODE NODE(PXB |56-111,168-223 1
PXB |NODE NODE| NODE| 5YS | SY5 | S¥S | SYS X |NODE|NODE NODE|NODE NODE| SYS | SYS | SYS | 5YS | SYS | S¥YS
NODE |NODE|NODE NODE| SYS | SYS | SYS | SYS |NODE| X PIX |NODE|[NODE| NODE| SYS | SYS | SYS | SYS | SYS | S¥YS
NODE |NODE|NODE |[NODE| SYS | SYS | SYS | SYS |NODE| PIX X |NODE[NODE|NODE| SYS | SYS | SYS | SYS | SYS | S¥S
NODE| PXB |NODE | NODE| SYS | SYS | SYS | SYS |NODE NODE NODE| X |NODE NODE| SYS | SYS | SYS | SYS | SYS | SYS
NODE NODE| PXB |[NODE| SYS | S¥S | SYS | SYS |NODE NODE| NODE NODE| X |NODE| SYS | SYS | SYS | 5Y§ | 5¥YS | S¥YS
NODE |NODE|NODE| PXB | SYS | SYS | SYS | SYS |NODE NODE| NODE NODE|NODE| X SYS | SYS | SYS | SYS | SYS | SYS
SYS | SYS | SYS | SYS | PXB |[NODE NODE | NODE| SYS | SYS | SYS | SYS | SYS | S¥S X |NODE|NODE| NODE | NODE | NODE
SYS | SYS PN SYS |NODE|NODE|NODE|NODE| SYS | SYS | SYS | SYS | SYS | S¥YS |NODE| X PIX |NODE | NODE | NODE
SYS | 5Y§ | SYS | S¥YS |NODE|NODE NODE NODE| 5YS | 5¥YS | 5YS | SYS | 5YS | SYS |NODE| PIX X |NODE| NODE | NODE
SYS | SYS | SYS | S¥YS NODEM NODE |NODE| SYS | SYS | SYS | SYS [SYS | SYS |NODE NODE(NODE| X |NODE|NODE
N[shll SYS | SYS | SYS | SYS [NODENODE| PXB |NODE| SYS | SYS | SYS | SYS | 5¥YS | SYS |NODE| NODE|NODE NODE| X |NODE
QI[eky SYS | SYS | SYS | SYS NODE‘NODE‘NODE PXB | SYS | SYS | SYS | SYS | SYS | S¥YS |NODE NODE|NODE NODE NODE| X

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper
Networks, Inc. in the United States and other countries. All other trademarks, service marks, registered
marks, or registered service marks are the property of their respective owners. Juniper Networks assumes
no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change,
modify, transfer, or otherwise revise this publication without notice. Copyright © 2025 Juniper Networks,
Inc. All rights reserved.

	Table of Contents
	About this Document
	Solution Benefits
	AI Use Case and Reference Design
	Solution Architecture
	Solution Implementation
	EVPN/VXLAN GPU Backend Fabric – GPU Multitenancy
	EVPN/VXLAN GPU Backend Fabric for Multitenancy – Implementation Options
	EVPN/VXLAN GPU Backend Fabric for Multitenancy – Type 5 EVPN/VXLAN Implementation
	Type 5 EVPN/VXLAN GPU Backend Fabric Implementation – Control Plane
	Control Plane Implementation with IPv6 Link-Local IPv6 Underlay and IPv6 Overlay Example
	Type 5 EVPN/VXLAN GPU Backend Implementation – Forwarding Plane
	Type 5 EVPN/VXLAN GPU Backend Fabric, SLAAC IPv6 Overlay over IPv6 Link-Local Underlay - Configuration
	Type 5 EVPN/VXLAN GPU Backend Fabric, SLAAC IPv6 Overlay over IPv6 Link-Local Underlay - IP Services
	Servers and Storage Configuration
	Fabric Devices Configuration
	Telemetry and Monitoring
	JVD Hardware and Software Components
	JVD Validation Framework
	JVD Validation Goals and Scope
	JVD Validation Test Results Summary and Analysis
	Recommendations Summary
	Revision History
	Appendix A – IPv4 Overlay Over IPv6 Underlay Fabric Implementation
	Appendix B – IPv4 Overlay over IPv4 Underlay Fabric Implementation
	Appendix C – IPv6 Overlay with Static Addresses Over IPv6 Underlay Fabric Implementation
	Appendix D – How to Run NCCL Tests Using Autoconfigured IPv6 Address

