JUDLR@! | Engineering

Simplicity

Overview for Junos OS Evolved

Published
2025-06-20

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA

408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

Overview for Junos OS Evolved
Copyright © 2025 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

https://support.juniper.net/support/eula/

Table of Contents

About This Guide | vi

1 Overview of Junos OS Evolved
Junos OS Evolved Overview | 2
Top Differences Between Junos OS Evolved and Junos OS | 5
How Junos OS Evolved Differs from Junos OS | 14
Default Directories for Junos OS Evolved File Storage | 61
Junos OS Evolved Components and Processes | 62

Error TPAs for Route Installation | 66

Overview of Error Third-Party Attachments (TPAs) on Errored Objects During Route
Installations | 66

Set Up the System for Error TPAs | 67

CLI Commands for Viewing Error Details | 67
Shell Commands for Junos OS Evolved | 68
Where to Find Information on Common Procedures | 70
2 Junos OS Evolved Configuration Overview
Junos OS Evolved Configuration Basics | 72
Methods for Configuring Junos OS Evolved | 72
Junos OS Evolved Configuration from External Devices | 75

3 Running 3rd Party Applications with Junos OS Evolved

Overview of Third-Party Applications on Junos OS Evolved | 77

Introduction to Third-Party Applications on Junos OS Evolved | 77
Running Applications in Containers | 77

Running Applications Natively With Signing Keys | 78

Application Pre-requisites | 78

Application APIs | 79
Security Caveats | 80
File Security with IMA | 80

Running Third-Party Applications in Containers | 81

Deploying a Docker Container | 82
Managing a Docker Container | 83
Enabling Netlink or PacketlO in a Container | 83

Selecting a VRF for a Docker Container | 85

Modifying Resource Limits for Containers | 87
Running Third-Party Applications Natively With Signing Keys | 89
Signing Keys Overview | 89

Generating Signing Keys | 90

Generating Signing Keys Using the OpenSSL Command-Line | 90
Generating Signing Keys Using an OpenSSL Configuration File | 91

Importing Signing Keys into the System Keystore and IMA Extended Keyring | 92
Viewing the System Keystore and IMA Extended Keyring | 93
How to Sign Applications | 94

Managing Third-Party Applications | 95

Using Intercept Libraries | 95

Example of a Preloaded Linux Command | 96
Interface Name Translation | 101

Caveats for the Intercept Feature | 103
Removing Third-Party Applications | 104
Building Third-Party Applications | 105

JET SDK for Junos OS Evolved | 105

Downloading the JET SDK and JET Toolkit | 106
Installing the JET SDK and JET Toolkit for Junos OS Evolved | 106

SysMan and systemd Controlled Applications | 107

Folder Structure for Third-Party Applications | 107

Third-Party Application Files | 109

Makefile | 109
SRC Files | 109
Script Files | 109
Service Files | 110
yaml Files | 111

Creating a Third-Party Package | 113

Create a SysMan Managed Package | 113

Create a systend Managed Package | 114

Jet-evo Tool Configuration | 114
Installing a Third-Party Package | 116

Creating a Bundled ISO | 118

Jet-evo-bundle-iso Tool Configuration | 118
Installing a Bundled I1SO | 119
Upgrading with a Bundled ISO | 121

Rollback from a Bundled ISO | 122

Finding Software Documentation for Junos OS Evolved

Where to Find Software Documentation for Junos OS Evolved | 124

Configuration Statements and Operational Commands

Junos CLI Reference Overview | 127

About This Guide

Use this guide to become acquainted with Junos OS Evolved, a unified, end-to-end network operating
system. Learn about its strengths, similarities to, and differences from Junos OS.

CHAPTER

Overview of Junos OS Evolved

IN THIS CHAPTER

Junos OS Evolved Overview | 2

Top Differences Between Junos OS Evolved and Junos OS | 5
How Junos OS Evolved Differs from Junos OS | 14

Default Directories for Junos OS Evolved File Storage | 61
Junos OS Evolved Components and Processes | 62

Error TPAs for Route Installation | 66

Shell Commands for Junos OS Evolved | 68

Where to Find Information on Common Procedures | 70

Junos OS Evolved Overview

IN THIS SECTION

Benefits | 2

Native Linux Base | 3

Integrated Database for State | 3
Modular Design | 4

Secure Boot | 4

Junos OS Evolved is a unified, end-to-end network operating system that provides reliability, agility, and
open programmability for successful cloud-scale deployments. With Junos OS Evolved, you can enable
higher availability, accelerate your deployments, innovate more rapidly, and operate your network more
efficiently. We've aligned Junos OS Evolved with Junos OS so that you can seamlessly continue to
manage and to automate your network.

Benefits

Junos OS Evolved provides several benefits to Juniper Networks customers:

e It runs natively on Linux, providing direct access to all the Linux utilities and operations. With Linux
integration, you can use standard Linux and open-source tools to speed up onboarding, accelerate
feature adoption with a smooth upgrade process, and enjoy enhanced debugging capabilities for
streamlined qualification and deployment.

e Support for 3rd party applications and tools. You can run Linux applications directly on Junos OS
Evolved using Docker containers, or create custom applications for advanced networking solutions.
You can use existing Linux tools and procedures to create custom functions on a developer-friendly
platform with a short learning curve. This versatility allows you to create the solution that best fits
your needs through simple third-party application integration and the ability to implement the
components required for specific use cases.

e You can install multiple different Junos OS Evolved software releases on a device, with support for
rolling back to previous versions. This gives you the flexibility to try out different software releases
and easily revert back to your preferred version if necessary.

e Enhanced security at all OS layers. Junos OS Evolved uses an integrity solution called Integrity
Measurement Architecture (IMA), and a companion mechanism called the Extended Verification
Module (EVM). These open source protections are part of a set of Linux Security Modules that are
industry-standard and consistent with the trust mechanisms specified by the Trusted Computing
Group. Junos OS Evolved also supports other security features such as TPM infrastructure, hardened
secure BIOS, and secure boot. Security is a core design principle for Junos OS Evolved. Juniper
Networks is committed to maintaining a strong security infrastructure to keep your network safe and
protected.

e Nearly all of the CLI and user interfaces are identical to those provided in Junos OS, meaning you can
pick up Junos OS Evolved with a minimal learning curve. These similarities provide simplicity and
operational consistency, minimizing the effort required to implement, maintain, and customize your
end-to-end solution.

Native Linux Base

Whereas Junos OS runs over an instance of the FreeBSD operating system on a specific hardware
element (for example, the CPU on the Routing Engine), Junos OS Evolved runs over a native Linux
system. Having Linux as a base leverages a much wider, dynamic, and active development community.
The Linux system also contains multiple third-party applications and tools developed for Linux that
Junos OS Evolved can integrate with minimal effort.

The Junos OS Evolved infrastructure is a horizontal software layer that decouples the application
processes from the hardware on which the processes run. Effectively, this decoupling creates a general-
purpose software infrastructure spanning all the different compute resources on the system (Routing
Engine CPUs, line card CPUs, and possibly others). Application processes (protocols, services, and so on)
run on top of this infrastructure and communicate with each other by publishing and consuming (that is,
subscribing to) state.

Integrated Database for State

State is the retained information or status about physical or logical entities that the system preserves
and shares across the system, and supplies during restarts. State includes both operational and
configuration state, including committed configuration, interface state, routes, and hardware state. In
Junos OS Evolved, state can be held in a database called the Distributed Data Store (DDS).

The DDS does not interpret state. Its only job is to hold state received from subscribers and propagate
state to consumers. It implements the publish-subscribe messaging pattern for communicating state
between applications that are originators of a state to applications that are consumers of that state (see

Figure 1 on page 4). Each application publishes state to and subscribes to state from the DDS directly,
making applications independent of each other.

Figure 1: Publish-Subscribe Model

Forwarding
Plane

Management Routing
(MGD) (RPD)
Platform Linux Tools
PR 4

Phe - A

1

1

1

@ I

v

Linux

8200501

Hardware — Juniper Networks or 3rd Party

Decoupling applications in this manner isolates the failure of one application from others. The failing
application can restart using the last known state of the system held in the state database.

Modular Design

Junos OS Evolved is composed of components with well-defined interfaces. Applications can be
individually restarted without requiring a system reboot. Restarted applications reload the state that is
preserved in the DDS.

Secure Boot

Secure Boot is a significant system security enhancement based on the UEFI standard (see
www.uefi.org). It works by safeguarding the BIOS itself from tampering or modification and then
maintaining that protection throughout the boot process.

The Secure Boot process begins with Secure Flash, which ensures that unauthorized changes cannot be
made to the firmware. Authorized releases of Junos OS carry a digital signature produced by either
Juniper Networks directly or one of its authorized partners. At each point of the boot-up process, each
component verifies the next link is sound by checking the signature to ensure that the binaries have not
been modified. The boot process cannot continue unless the signature is correct. This "chain of trust"

http://www.uefi.org/

continues until the operating system takes control. In this way, overall system security is enhanced,
increasing resistance to some firmware-based persistent threats.

Figure 1 shows a simplified version of this “chain of trust.”

Figure 2: Secure Boot Model

BIOS checks Loaderchecks i
i Loader Signature i Kernel Signatures §

! before handoff i ! before handoff

Start

BIOS

8200108

Secure Boot requires no actions on your part to implement. It is implemented on supported hardware by
default.

For information on which Junos OS Evolved releases and hardware support Secure Boot, see Feature
Explorer and enter Secure Boot.

Top Differences Between Junos OS Evolved and
Junos OS

IN THIS SECTION

System Differences | 6
Software Structure and Applications | 7
State Model | 7

Software Management | 8

System Hostnames | 9

[

[

[

[

® Management Interfaces | 9
[

©® Routing Engine Firewall Filters | 10
[

Junos OS Evolved Network Stack | 11

https://pathfinder.juniper.net/feature-explorer/
https://pathfinder.juniper.net/feature-explorer/

System Logging | 12
System Log Message Format | 12

Tracing Architecture | 13

Although we've aligned Junos OS Evolved with Junos OS, there are some key differences to keep in
mind when operating Junos OS Evolved. Junos OS Evolved is built on top of a Linux kernel, while Junos
OS operates on the FreeBSD kernel. This and other fundamental differences in the design of Junos OS
Evolved may be relevant in the management of your network. Read on to learn about the top differences
between Junos OS Evolved and Junos OS.

System Differences

The concept of systemin Junos OS Evolved is different from Junos OS. Junos OS uses a Routing Engine
centric model, where system usually refers to a Routing Engine. However, Junos OS Evolved uses a
node-based model, where system refers to all nodes, including Routing Engines, Flexible PIC
Concentrators (FPCs), and more. In Junos OS Evolved, a nodeis any component that can run the Linux
kernel and Junos OS Evolved applications, and all nodes are considered compute nodes.

Operational Impact

In Junos OS Evolved you can perform many actions on a per-node basis. You can use CLI commands to
view information and request operations on individual nodes.

Relevant CLI Commands
e show system nodes — View a list of all nodes in the system.
e show node (reboot | statistics) node-name — View information about a specific node.

e show system applications <node node-name> — Display application summary information for all nodes or a
specific node.

e show system core-dumps <node rnode-name> — Show system core files for all nodes or a specific node.

e show system errors active—Use this command instead of the show chassis errors active command to view
system error information.

e show system processes <node node-name> <detail> — Display process information for all nodes or a specific
node.

e show system storage node (re@d | rel | fpco | fpcl | ...) — View the free disk space for a specific node.

e show version node (all | node-name) — Display software version information for all nodes or a specific
node.

e request node (halt | offline | online | power-off/on | reboot) node-name — Request an operation on a
specific node.

e request system reboot — In Junos OS Evolved this command will reboot all nodes.

Software Structure and Applications

Junos OS Evolved functions as a distributed Linux OS with processes running as self-contained
applications. Every Junos OS Evolved process runs as an application. All Junos OS Evolved applications
are managed by the systemd process using service units. Applications run as separate services, which
provides fault isolation because you can restart an application separately without impacting other
applications. Most applications publish and consume state, which is stored in a central database.

Operational Impact

In Junos OS Evolved, many high availability features are per-application rather than per-node. Some
applications run a full-time backup for rapid failover, while other applications are restarted on a new
node in the event of a failure.

Relevant CLI Commands

e show system applications <node node-name> — Display application summary information for all nodes or a
specific node.

e restart process — In Junos OS this command restarts a specific process. In Junos OS Evolved the same
command restarts a specific application (process) on the same node from which the command is
issued.

e request system application restart app application node node — This command is specific to Junos OS
Evolved and restarts a specific application on a specific node.

State Model

Junos OS Evolved uses a distributed state infrastructure. Applications publish or subscribe to state
objects, which are stored in a state database called the Distributed Data Store (DDS) that is distributed
across nodes. By comparison, Junos OS processes store state internally, exchanging state information
and state changes with other processes through the kernel. The Junos OS Evolved state model is

asynchronous and eventually consistent at the transport layer with causal consistency at the application
layer when accessing state. This means that if a process restarts in Junos OS Evolved, information is not
lost because it can retrieve state information from the DDS.

Operational Impact

The Junos OS Evolved state model leads to faster performance because you don't have to wait for the
slowest component to update. Applications read from and write to system state without waiting for
every other process to first complete updates. If an application restarts, state is preserved and retrieved
from the DDS by the new instance, even if the application is spawned on a different node.

Software Management

Each time you install a software image on Junos OS Evolved, the previous software image and
configuration are preserved automatically. Junos OS Evolved stores software images in the /soft
directory. Each version of the software is stored in a distinct area, thus ensuring that a software package
installation does not affect the other software versions installed on the system. While Junos OS
supports installing two software versions on the device, Junos OS Evolved supports storing as many
software images as space allows. However, we recommend that you keep no more than five versions of
software on the system.

During a successful installation, the installation package completely re-installs the existing software. It
retains configuration files and similar information, such as secure shell and host keys, from the previous
version. When you reboot the system after a software package installation, all the Routing Engines and
FPCs in the system run the new version of the software.

Operational Impact

Junos OS Evolved ensures that all Routing Engines and FPCs in the system are running the same
software version. When you install a software image on the primary Routing Engine, the system installs
the new version of software on both Routing Engines, if the Routing Engines are online and part of the
system. If you insert a Routing Engine that has a different software version into the system and you have
not configured the system auto-sw-sync enable statement, the Routing Engine is kept outside the system,
and the system generates a software mismatch alarm.

When you install a new software image, the previous software package is preserved in a separate area,
and you can manually roll back to it if necessary. Junos OS Evolved enables you to roll back to an
alternate image with either the current configuration file or with the configuration snapshot from when
the alternate image was last running.

Relevant CLI Commands

e show system software list — On Junos OS Evolved, view the currently installed images on each node.

e show system storage — View available storage space. On Junos OS Evolved, the /soft, /var, and /data
directories must have less than 90% capacity to install additional images.

o request system software delete — Clean up old images. Starting in Junos OS Evolved Release 20.1R1, use
this command instead of the request system storage cleanup command to remove ISO images from the
system.

e request system snapshot — Take a snapshot of the files currently used to run the device, and copy the
files onto the alternate solid-state drive (SSD). The snapshot includes the complete contents of the /
soft, /config, and /root directories, copies of user data, and content from the /var directory (except
the /var/core, /var/external, /var/log, and /var/tmp directories).

e request system software rollback reboot <package-name> <with-old-snapshot-config> — Roll back all Routing
Engines and FPCs to another software version and reboot. Include the with-old-snapshot-config option
to use the saved configuration that corresponds to the rollback software image.

e request system software sync (all-versions | current | rollback) — Synchronize software and
configurations from the primary Routing Engine to the other nodes and reboot the other nodes.

e set system auto-sw-sync enable — Automatically synchronize the software and the configuration from
the primary Routing Engine to a newly added Routing Engine and reboot, when the newly added
Routing Engine has a different software version from the rest of the system.

Management Interfaces

On Junos OS Evolved, management interfaces are renamed to accommodate more than one
management port per Routing Engine node.

Operational Impact

Management interfaces in Junos OS Evolved do not use the same names as Junos OS (fxp@, emd, med).
Instead, the Junos OS Evolved management interface name format is device-name: type-port. For
example: red:mgmt-0, red:mgmt-1, rel:mgmt-0, rel:mgmt-1.

The show interfaces output displays the status of all interfaces, including management Ethernet interfaces
from both Routing Engines of a dual Routing Engine system.

System Hosthames

In Junos OS Evolved, system hostnames are appended with a corresponding Routing Engine number
such as -red or -ref.

Operational Impact

In Junos OS Evolved, when you specify the host-name statement, the current Routing Engine name is
appended to the hostname you specify. For example, on Routing Engine O, set system host-name my-host
sets the hostname to my-host-re0. You can also use the %s character to designate where to substitute the
Routing Engine name. For example, on Routing Engine 1, set system host-name %s_my_host sets the hostname
to rel_my-host .

Relevant CLI Commands

e set system host-name hostname

Routing Engine Firewall Filters

In Junos OS, to control the flow of local packets between the physical interfaces and the Routing Engine,
you can apply stateless firewall filters to the input or output of the loopback interface. The loopback
interface (I00) is the interface to the Routing Engine and carries no data packets. In Junos OS, filters
applied to the loopback interface apply to both network control traffic and management traffic.

Junos OS Evolved, on the other hand, supports two different filters to control the flow of local packets:
one for network control traffic (loopback traffic) and one for management traffic. Thus, filters applied to
the loopback interface apply only to network control traffic. You can also apply filters separately to the

management interface, which enables you to configure a stricter filter on management traffic.

Operational Impact

In Junos OS Evolved, firewall filters applied to the loopback interface apply only to network control
traffic. You must explicitly apply firewall filters to the management interface to filter management traffic.
In Junos OS Evolved, management filtering uses Routing Engine filters based on Netfilter, a framework
that the Linux kernel provides. As a result, only certain matches and actions are supported. Table 1 on
page 10 outlines the Junos OS Evolved filter application.

Table 1: Filter Application for Network Control Traffic and Management Traffic
Interface Filter Direction Junos OS Evolved Behavior

loO input Filters are applied at the Packet
Forwarding Engine and applied on
network ingress traffic.

Table 1: Filter Application for Network Control Traffic and Management Traffic (Continued)

Interface Filter Direction Junos OS Evolved Behavior

output Filters are applied at the Routing
Engine and applied on network
egress traffic.

management input Filters are applied at the Routing
Engine and applied on management
ingress traffic.

output Filters are applied at the Routing
Engine and applied on management
egress traffic.

Junos OS Evolved Network Stack

Junos OS Evolved runs on native Linux. There are some differences between the way Linux displays
requested network topology information, such as interface and route data, and the way Junos OS
displays this information. The Junos OS Evolved CLI is designed to overcome these differences. Thus, we
recommend that you use CLI commands rather than shell commands for any network operations,
particularly for operations that require specifying a routing instance.

If you must perform operations in the Linux shell when using Junos OS Evolved, you need to know
about the following routing instances, also known as virtual routing and forwarding instances (VRFs):

e default—Handles both WAN and management traffic by default, unless you configure the mgmt_junos
routing instance.

o mgmt_junos—When you configure this routing instance, it puts the management port into its own
routing instance, which separates the management traffic from the WAN traffic for the Routing
Engine.

e iri—Handles control plane traffic (internode communication). In the Junos OS Evolved CLI, this is
equivalent to the __juniper_privatel__ routing instance.

Operational Impact

In the Junos OS Evolved shell, you can use the chvrf (change VRF) utility to execute a command in the
context of a specific routing instance, or VRF. For example:

[vrf:none] user@host:~$ chvrf -JU default ping 172.16.1.1
[vrf:none] user@host:~$ chvrf -JU iri ping fpc1l

[vrf:none] user@host:~$ chvrf -JU mgmt_junos ping 198.51.100.1
[vrf:none] user@host:~$ chvrf -JU iri ssh reil

System Logging

In Junos OS Evolved, each node has the standard journalctl tool, which is an interface to retrieve and
filter the system journal. System log messages are parsed from the system journal. The relay-eventd
process runs on all nodes and retrieves events (based on the syslog configuration) from the system
journal as well as error messages from the different applications and forwards them to the master-eventd
process. The master-eventd process runs on the primary Routing Engine and writes the log messages and
errors to disk.

Use the System Log Explorer application to view or compare system log messages in different releases.
Operational Impact

In Junos OS Evolved there is no messages file on the backup Routing Engine. All backup Routing Engine
logs are in the messages file on the primary Routing Engine node.

System Log Message Format

By default, Junos OS Evolved appends the node name to the hostname in system log messages; Junos
OS does not. This action keeps Junos OS Evolved system log messages compliant with RFC5424.

However, some monitoring systems may not identify a Junos OS Evolved hostname correctly, because
the hostname-node name combination does not match any hostnames in the inventory of hostnames.

Operational Impact

If your monitoring system is not identifying Junos OS Evolved hostnames correctly, you should issue the
set system syslog alternate-format configuration mode command. This command changes the format of the
Junos OS Evolved system log messages. The node name is prepended to the process name in the
message rather than appended to the hostname, thereby allowing the monitoring system to identify the
hostname correctly.

https://apps.juniper.net/syslog-explorer/

Tracing Architecture

Junos OS Evolved uses a new tracing architecture. All running applications create trace information, with
multiple instances of the same application having their own trace information. The Junos OS Evolved
trace-relay and trace-writer applications coordinate tracing information. The trace-relay application runs
on local nodes and shares a memory buffer with each application. When a Junos OS Evolved application
writes to memory, the trace-relay application reads the data directly from memory and sends it to the
trace-writer applications. A trace-writer application runs on each Routing Engine node. It receives the
trace information sent from the trace-relay applications and writes it to the appropriate file in Common
Trace Format (CTF).

@ NOTE: For general monitoring and troubleshooting of devices running Junos OS or
Junos OS Evolved, we recommend using standard tools such as CLI show commands,
system log messages, SNMP, and telemetry data. You should avoid using trace messages
for general debugging purposes and long-term solutions because they are subject to
change without notice.

Operational Impact

In Junos OS, you enable tracing operations by configuring the traceoptions statement at the specific
hierarchy level you want to trace. Junos OS Evolved, on the other hand, uses an application-based
model, and thus trace messages are logged, viewed, and configured by application. As a result, Junos OS
Evolved does not support the traceoptions statement at many of the hierarchy levels that Junos OS
supports. However, some hierarchy levels, such as those under [edit protocols], still require configuring
the traceoptions statement to enable trace messages.

Although Junos OS disables global tracing operations for many hierarchy levels by default, some
processes log trace messages by default for important events. In contrast, all running applications on
Junos OS Evolved create trace information at the info level by default.

In Junos OS Evolved, you do not view trace files directly, and you should never add, edit, or remove
trace files under the /var/log/traces directory because this can corrupt the traces. Instead, you use the
show trace application ggplication-name node node-name command to read and decode trace messages stored
in the trace files.

Relevant CLI Commands
e show trace application guplication-name node node-name — Read and decode trace files.
e clear trace — Manually clean up trace files.

e set system trace guplication — Modify trace message configurations at the application level.

How Junos OS Evolved Differs from Junos OS

IN THIS SECTION

Behavioral Differences Between Junos OS Evolved and Junos OS | 14
New CLI Statements and Commands (Junos OS Evolved) | 27
Modified CLI Statements and Commands (Junos OS Evolved) | 36
Changed CLI Command Output (Junos OS Evolved) | 47

Removed CLI Statements and Commands (Junos OS Evolved) | 51

XML Differences Between Junos OS and Junos OS Evolved | 54

In many ways, Junos OS Evolved is the same as Junos OS: Key applications such as the routing, bridging,
and management software are the same in both and management plane interfaces and APls, such as CLI,
NETCONF, JET, JTI, AFI, and underlying data models, remain highly consistent. In both Junos OS and
Junos OS Evolved, you can use remote authentication methods through the console port. There are,
however, some differences in behavior, the CLI syntax, and CLI and XML output. These differences are
indicated throughout the Junos OS documentation. However, this section outlines the differences in one
place, for your convenience. If applicable, a link takes you to the place in the Junos OS documentation
that covers the item.

For a more detailed overview of the top differences between Junos OS and Junos OS Evolved, see "Top
Differences Between Junos OS Evolved and Junos OS" on page 5.

Behavioral Differences Between Junos OS Evolved and Junos OS

Behavioral differences between Junos OS Evolved and Junos OS are ways that the two operating
systems act differently in certain circumstances. See Table 2 on page 14.

Table 2: How Junos OS Evolved Behavior Differs from Junos OS

Junos OS Evolved Behavior Junos OS Behavior Link to
Documentation

Access and Authentication

Table 2: How Junos OS Evolved Behavior Differs from Junos OS (Continued))

Junos OS Evolved Behavior

In Junos OS Evolved Release 20.4R1 and

earlier releases, when you do not configure the

password authentication method and the
remote authentication servers reject the
authentication request, the device still
attempts local password authentication.

Remote authentication methods are supported

through the console port in 23.2R2-EVO and
from 23.4R1-EVO onwards, and unsupported
before 23.2R2-EVO and 23.3 EVO.

Junos OS Evolved does not support the
following options at the [edit system login
retry-options] hierarchy level:

e backoff-threshold
e backoff-factor

® maximum-time

® minimum-time

e tries-before-disconnect

Interfaces

The management interface name format
changed to accommodate more than one
management port per Routing Engine node.
The names are re0:mgmt-0/re0:mgmt-1 and
rel:mgmt-0/rel:mgmt-1. Both the
management interfaces are configurable and
displayed.

Junos OS Behavior

In Junos OS, when you do not configure
the password authentication method
and the remote authentication servers
reject the authentication request, the
request ends with the rejection.

In Junos OS, the backoff-threshold,
backoff-factorlockout-period, maximum-
time, minimum-time, and tries-before-
disconnect options are supported at
[edit system login retry-options]
hierarchy.

The management interface name that
you use depends on the type of device
that you are setting up. Some devices
use me0, some use fxp0, and some use
emO.

Link to
Documentation

Authentication
Order for LDAPS,
RADIUS, TACACS+,
and Local Password

retry-options

Understanding
Management
Ethernet Interfaces

Table 2: How Junos OS Evolved Behavior Differs from Junos OS (Continued))

Junos OS Evolved Behavior

In an untagged link aggregation group (LAG),
child logical interface (IFL) members are
created. Requests are made per child IFL
member. The results are aggregated and
displayed in the CLI.

In a VLAN-tagged LAG, extra child IFLs are not
created as part of the aggregated Ethernet
bundle. Link IFL statistics and marker statistics
for child IFLs are not displayed.

When a new interface is added as a member to
an aggregated Ethernet bundle, the new
member interface flaps: the physical interface
is deleted as a regular interface and then added
back in as an aggregated Ethernet member and
the statistics are reset.

Junos OS Evolved does not impose a limit on
the maximum number of member (or child)
interfaces in an aggregated interface. However,
platform limits still apply.

In Junos OS Evolved, when you configure a
parent interface for Aggregated Ethernet with
the [set interfaces interface-name ether-
options 802.3ad ae-name] statement, any
secondary (child) interface configurations made
from the [edit interfaces interface-name]
hierarchy will not take effect until the interface
has been committed to the named Aggregated
Ethernet (ae) interface. This applies to both
ether-options and gigether-options.

Junos OS Behavior

Child IFL members are created in
untagged and VLAN-tagged LAGs.
Requests are made per child IFL
member. The results are aggregated
and displayed in the CLI.

When a new interface is added as a
member to an aggregated Ethernet
bundle, that new interface is not first
deleted as a lone interface and then
added, but everything below it is.
Because the interface is not deleted, it
keeps all the statistics and other history
associated with it.

Junos OS imposes a limit of 64 member
(or child) interfaces in an aggregated
interface.

In Junos OS, configurations for
aggregated Ethernet interfaces and
non-aggregated Ethernet interfaces at
the [edit interfaces interface]
hierarchy are independent of
configurations at the [edit interfaces
Interface ether-options] and [edit
interfaces interface gigether-options]
hierarchies and will be effective when
applied.

Link to
Documentation

Aggregated
Ethernet Interfaces

Aggregated
Ethernet Interfaces
and Overview

Aggregated
Ethernet Interfaces
and Overview

ether-options,
gigether-options

Table 2: How Junos OS Evolved Behavior Differs from Junos OS (Continued))

Junos OS Evolved Behavior

In Junos OS Evolved, when you add a duplicate
IP address or prefix to an existing
configuration, the operating system will error
out and prevent a commit. Instead, you must
first delete the existing prefix and commit the
new configuration. After you have done that,
you can add the duplicate prefixes and commit.

Starting from Junos OS Evolved Release
21.1R1, we changed the default forward error
correction (FEC) for 25-Gigabit and 50-Gigabit
interfaces to FEC91 from FEC74 because
FEC91 has better performance.

FEC mode is assigned by default. You must
disable FEC mode if you do not want it
assigned by default.

High Availability

On PTX10004 and PTX10008 platforms
running Junos OS Evolved, graceful Routing
Engine switchover (GRES) is enabled by default
and cannot be disabled.

In Junos OS Evolved, the output for show system
switchover displays entries for Object database

and Applications' ready state. Junos OS
Evolved uses an application-based architecture.

(Only for QFX5220-32CD switches) In-Service
Software Upgrade (ISSU) is performed by using

the request system software add restart
command.

Junos OS Behavior

In Junos OS, you can add a duplicate IP
address or prefix to an existing
configuration without having your
commit blocked.

In Junos OS, the default FEC for 25-
Gigabit and 50-Gigabit interfaces is
FEC74. You can configure FEC clauses
CL74 on 25-Gigabit and 50-Gigabit
interfaces, and CL91 on 100-Gigabit
interfaces. Since the FEC clauses are
applied by default on these interfaces,
you must disable the FEC clauses if you
do not want to apply them.

GRES is disabled by default.

Junos OS output for show system
switchover displays an entry for

Kernel database.

ISSU is performed by using the request
system software in-service-upgrade
command.

Link to
Documentation

prefix-list

fec (ether)

Understand
Graceful Routing
Engine Switchover
for Junos OS
Evolved

show system
switchover

request system
software add restart

Table 2: How Junos OS Evolved Behavior Differs from Junos OS (Continued))

Junos OS Evolved Behavior

Junos XML API and Scripting

You must set up the password-less login
between two devices to use the jcs:open
extension function in SLAX or XSLT scripts to
open a connection to the local or remote
device.

The eventd process does not give any warning
message if there are duplicate event policies.
Instead eventd accepts the event policy on a
first-come, first-served basis.

For op scripts run with the max-datasize
configuration statement configured for the
minimum memory, an error occurs. In Junos OS
Evolved, the error is "Out of memory."

If you execute the sysctl() extension function
in a script and request an invalid sysctl variable
name, Junos OS Evolved generates a sysctl

error: No such file or directory error.

Junos OS Behavior

You are not limited to password-less
login. Junos OS supports both a
supplied password and interactive
password, for example, to execute
RPCs on remote devices.

The eventd process gives a warning
message if you try to create duplicate
event policies.

For op scripts run with the max-datasize
configuration statement configured for
the minimum memory, an error occurs.
In Junos OS, the error is "Memory
allocation failed."

If you execute the sysctl() extension
function in a script and request an
invalid sysctl variable name, Junos OS
does not generate any error.

Link to
Documentation

open() Function
(SLAX and XSLT)

Event Policies and
Event Notifications
Overview

max-datasize

Using the sysctl()
Extension Function
on Junos Devices

Table 2: How Junos OS Evolved Behavior Differs from Junos OS (Continued))

Junos OS Evolved Behavior

Junos OS Evolved collects the trace data for all
scripts in trace files that correspond to the
cscript application instead of in separate log
files. The trace log includes data for commit,
event, op, and SNMP scripts; YANG action and
translation scripts; and Juniper Extension
Toolkit scripts. You can view the trace data by
issuing the show trace application cscript
command. Junos OS Evolved captures trace
data for all applications by default. You can
modify the default trace settings for all scripts
by configuring statements at the [edit system
trace application cscript] hierarchy.

Messaging

TIP: You can compare syslog messages in a
Junos OS release to a Junos OS Evolved
release using the System Log Explorer.

The messages file located under /var/log is
only written on the primary Routing Engine.
Backup Routing Engine messages are found in
the messages file on the primary Routing
Engine.

Junos OS Evolved appends the node name to
the hostname in system log messages. As of
Junos OS Evolved Release 20.4R2, you can

configure the alternate-format statement at the

[edit system syslog] hierarchy level to attach
the node name to the process name instead of
the hostname. This alternate format allows
monitoring systems to identify the hostname
correctly.

Junos OS Behavior

Junos OS stores the trace data for each
type of script in a different log file in
the /var/log directory. To view a
particular log, issue the show log
logname command, where /ogname s
the default or user-configured filename,
for example, cscript.log, escript.log, op-
script.log, and so on. On Junos OS,
tracing operations for scripts, by
default, log important events. You can
modify the default trace settings by
configuring the traceoptions statement
at the hierarchy level for that script
type.

The messages file is written on both the
primary Routing Engine and the backup
Routing Engine.

Junos OS does not.

Link to
Documentation

Trace Script
Processing on
Devices Running
Junos OS Evolved

System Log Explorer

Displaying System
Log Files

Overview of System
Logging

https://apps.juniper.net/syslog-explorer/

Table 2: How Junos OS Evolved Behavior Differs from Junos OS (Continued))

Junos OS Evolved Behavior

Starting in Junos OS Evolved Release 20.1R1
and 19.4R2, if you are sending syslog messages
to a remote host that is identified by its IP
address at the [edit system syslog host ip-
address] hierarchy, you only need to configure
the management-instance statement to use the
mgmt_junos routing instance. You do not need
to configure the mgmt_junos routing instance
at the [edit system syslog host ip-address
routing-instance] hierarchy.

When a regular expression returns empty
pattern matches, there is no error message.

Junos Evolved does not support a /var/log/

inventory file.

Routing Policy and Firewall Filters

When you issue the show firewall filter ?
command, the names of the firewall filters are
listed. The names of the Flowspec filters are
not listed. To see the names of the configured
Flowspec filters, use the show firewall

application routing command.

Junos OS Behavior

Configure the mgmt_junos routing
instance at the [edit system syslog host
Ip-address routing-instance] hierarchy
if you want to send syslog messages to
a remote host that is identified by its IP
address at the [edit system syslog host
Ip-address] hierarchy.

When a regular expression returns
empty pattern matches, you get the
following error: regex error: empty
(sub)expression

In Junos the /var/log/inventory log file
stores hardware serial numbers. For
Junos Evolved use the CLI show chassis
hardware operational mode command to
display hardware inventory.

When you issue the show firewall
filter ? command, you see not only
the names of the firewall filters listed
but also the names of the configured
Flowspec filters. The Flowspec filters
show up inside underscores.

Link to
Documentation

routing-instance

Junos System Log
Regular Expression
Operators for the
match Statement

NOTE: The
/var/log/
inventory
logfile is
deprecated
functionality in
Junos.

show firewall

Table 2: How Junos OS Evolved Behavior Differs from Junos OS (Continued))

Junos OS Evolved Behavior

Firewall filters applied to the loopback
interface apply only to network control traffic.
You must explicitly apply firewall filters to the
management interface to filter management
traffic.

In Junos OS Evolved, if a match action term on
your filter configuration fails on commit, the
entire filter is not applied. This happens when a
term you configured is not supported on your
device.

When you use an IPvé filter with packet length
matching, the match parameter only considers
the TCP header length and the data length. To
configure the statement set firewall family
inet6 filter filter-name term term-name from
packet-length packet-Iength correctly, you need
to specify the packet-length parameter without
the IPv6 header size included.

In a filter with icmp match conditions, Junos
OS Evolved supports configuration of a single
icmp-type value along with an icmp-code
value. Junos OS Evolved supports
configuration of multiple icmp-type values only
when an icmp-code value is not specified.

Software Installation and Upgrade

Multiple releases of the software can be
installed on the device simultaneously as long
as there is space. If there is no more space, you
must delete an older image of the software
before installing the new one.

Junos OS Behavior

Firewall filters applied to the loopback
interface apply to both network control
traffic and management traffic.

In Junos OS, if a match action term on
your filter configuration fails on
commit, the remainder of the filter is
applied.

When you use an IPvé filter with
packet length matching, the match
length parameter includes the IPv6
header size.

Junos OS supports a configuration that
contains multiple icmp-type values and
an icmp-code value.

Only two versions of the software can
be installed on the device: the current
version and the previous version.

Link to
Documentation

Stateless Firewall
Filter Overview

Firewall Filters
Overview

Parameterized Filter
Match Conditions
for IPvé Traffic

Overview of
Firewall Filters
(OCX Series)

Software
Installation and
Upgrade Overview
(Junos OS Evolved)

Table 2: How Junos OS Evolved Behavior Differs from Junos OS (Continued)

Junos OS Evolved Behavior

The request system snapshot command takes a
snapshot of the files currently used to run the
device and copies all of these files onto an
alternate solid-state drive. The snapshot
includes the complete contents of the /soft, /
config, and /root directories, copies of user
data, and content from the /var directory
(except the /var/core, /var/external, /var/log,
and /var/tmp directories).

The request system storage cleanup command
does not remove Junos OS Evolved images
from the device after Release 20.1R1. It
removes all core files, log files from /var/log/,
and all /var/log/* files. To remove old images
from the device, use the request system

software delete command.

During the validation phase of a software
upgrade, Junos OS Evolved installs the image in
a temporary storage location until validation is
complete. After validation is complete, Junos
OS Evolved will attempt to uninstall the image
and display a status message.

After you add a new software image, you must
reboot the system to run the new software. If
you have added the software image but have
not yet rebooted, you can issue the request
system software delete package-name command
to remove the newly added package and cancel
the installation.

Junos OS Behavior

The request system snapshot command
takes a snapshot of the software and
configuration and saves it to the /
packages/sets directory.

The request system storage cleanup
command removes all Junos OS images
from the device, including old images
and the currently installed image, as
well as core files from /var/crash, log
files from /var/log/, and certain other
files from /var/tmp.

Junos OS installs the software upgrade
image in a standard storage location.
No message is displayed following
image validation.

If you have completed the installation
of the software image but have not yet
rebooted, issue the request system
software rollback command to return to
the original software installation
package.

Link to
Documentation

request system
snapshot (Junos OS
Evolved)

Software
Installation and
Upgrade Overview
(Junos OS Evolved)

request system
storage cleanup
(Junos OS Evolved)

Validate the
Configuration
against the
Installation Image

request system
software delete
(Junos OS Evolved)

Table 2: How Junos OS Evolved Behavior Differs from Junos OS (Continued))

Junos OS Evolved Behavior

Junos OS Evolved supports one system log file
that contains all system log messages for the
Zero Touch Provisioning (ZTP)

process: /var/log/ztp.log.

ZTP for Junos OS Evolved supports WAN
interfaces as well as the management interface
for Routing Engine 0. ZTP dynamically detects
the port speed of WAN interfaces and uses this
information to create ZTP server ports with the
same speed.

For ZTP on Junos OS Evolved, if downloading a
file fails, ZTP clears the DHCP client binding on
that interface and restarts the state machine on
other interfaces. If installation fails for any
reason, ZTP retries on other interfaces.

ZTP for Junos OS Evolved accepts unsigned
scripts in DHCP option 43, suboption 1.

Junos OS Behavior

Junos OS ZTP system log messages are

spread out over several system log files:

e /var/log/dhcp_logfile

e /var/log/event-script.log
e /var/log/image_load_log
e /var/log/messages

e /var/log/op-script.log

e /var/log/script_output

ZTP for Junos OS supports
management interfaces.

If downloading a file fails on Junos OS,
the DHCP client attempts to fetch files
from the DHCP server for up to six
times, with ten to fifteen seconds
elapsing between attempts. If the
download fails, ZTP stops. ZTP then
clears the DHCP client bindings and
restarts the state machine on the
DHCP-configured interfaces. If
installation fails for any reason, ZTP
restarts.

ZTP for Junos OS with Enhanced
Automation accepts unsigned scripts in
DHCP option 43, suboption 1;
otherwise, scripts must be signed.

Link to
Documentation

Zero Touch
Provisioning for
Junos OS Evolved

Zero Touch
Provisioning for
Junos OS Evolved

Zero Touch
Provisioning for
Junos OS Evolved

Zero Touch
Provisioning for
Junos OS Evolved

Table 2: How Junos OS Evolved Behavior Differs from Junos OS (Continued))

Junos OS Evolved Behavior

ZTP for Junos OS Evolved uses DHCP option
43, suboption 5 for the IP address of the FTP
server and does not use option 8.

ZTP for Junos OS Evolved does not change the
default route.

System Management

In Junos OS Evolved, hostnames cannot be
configured with an underscore or special
characters as part of the hostname. Any other
combination of alphabetic characters, numbers,
and dashes/hyphens can be used.

Hostnames cannot start with a dash/hyphen.

You can configure the hostname at the [edit
system] hierarchy level.

In Junos OS Evolved, the request system reboot
command reboots the entire system (all nodes)
at once.

To reboot a specific node, use the request node
reboot command.

Junos OS Behavior

ZTP for Junos OS uses DHCP option
43, suboption 5 for the HTTP port and
uses suboption 8 for the IP address of
the HTTP proxy server.

For Junos OS, after the lists of bound
and unbound client interfaces are
created, and a DHCP client gets
selected for ZTP activity, any existing
default route is deleted and the DHCP
client interface that was selected adds a
new default route. To add a new default
route, only one ZTP instance can be
active.

In Junos OS, hostnames can be
configured with any combination of
alphabetic characters, numbers, dashes,
and underscores. Special Characters
cannot be used.

You can configure the hostname at the

[edit system] hierarchy level.

In Junos OS, by default, the request
system reboot command reboots only
the Routing Engine to which you are
connected.

Link to
Documentation

Zero Touch
Provisioning for
Junos OS Evolved

Zero Touch
Provisioning for
Junos OS Evolved

Hostnames

Overview

request system
reboot (Junos OS
Evolved)

https://www.juniper.net/documentation/us/en/software/junos/junos-getting-started-evo/junos-getting-started/topics/concept/hostnames-understanding.html
https://www.juniper.net/documentation/us/en/software/junos/junos-getting-started-evo/junos-getting-started/topics/concept/hostnames-understanding.html

Table 2: How Junos OS Evolved Behavior Differs from Junos OS (Continued))

Junos OS Evolved Behavior

After rebooting Junos OS Evolved, the system
initializes time from the hardware clock. The
ntpd command with the -g option runs to
adjust the time if the initial offset is large
(greater than 1000 seconds). In addition, the
system synchronizes time with a valid NTP
server.

Troubleshooting

Junos OS Evolved uses a new tracing
infrastructure. For Junos OS Evolved, trace
data from all applications on all nodes is
collected on the Routing Engine. You use the
show trace application application-name node
node-name command to read and decode trace
messages stored in the trace files. You can

modify trace options for specific applications at

the [edit system trace application] hierarchy
level. However, a few applications still use the

traceoptions statement.

For Junos OS Evolved, a core file created
during early bootup is stored in /var/core/re.
However, a core file created later in the
bootup, for example, after the Routing Engine
slot number can be determined, is stored

in /var/core/re0 or /var/core/rel. The
command show system core-dumps shows all
cores generated.

Junos OS Behavior

When you boot Junos OS, the system
issues an ntpdate request, which polls a
network server to determine the local
date and time. You need to configure a
server that the system can use to
determine the time when the system
boots. If an NTP boot server was
configured when the system boots, the
system immediately synchronizes with
the NTP boot server. Synchronization
occurs even when the NTP process is
explicitly disabled or when the time
difference between the client and the
NTP boot server exceeds the threshold
value of 1000 seconds.

Configure traceoptions to enable trace
logging for a specific process or
protocol.

For Junos OS, core files are stored
in /var/crash or /var/tmp.

Link to
Documentation

Synchronize and
Coordinate Time
Distribution Using
NTP

trace

show system core
dumps (Junos OS
Evolved)

https://www.juniper.net/documentation/us/en/software/junos/time-mgmt/topics/topic-map/network-time-protocol.html#id_hhy_mrd_jrb
https://www.juniper.net/documentation/us/en/software/junos/time-mgmt/topics/topic-map/network-time-protocol.html#id_hhy_mrd_jrb
https://www.juniper.net/documentation/us/en/software/junos/time-mgmt/topics/topic-map/network-time-protocol.html#id_hhy_mrd_jrb
https://www.juniper.net/documentation/us/en/software/junos/time-mgmt/topics/topic-map/network-time-protocol.html#id_hhy_mrd_jrb

Table 2: How Junos OS Evolved Behavior Differs from Junos OS (Continued))

Junos OS Evolved Behavior

User Interface

Junos OS Evolved does not support the
virtual-memory-mapping option.

The show system reboot command has options
to Execute this command or Pipe through a
command.

In Junos OS Evolved, enabling the command
set system switchover-on-routing-crash causes
a Routing Engine mastership switchover to
occur only on rpd crashes and any uncontrolled
rpd exits from outside the CLI (like kill -9
rpi_pid from the Linux shell). Commands like
restart routing within the CLI do NOT trigger a
switchover.

In Junos OS Evolved, when set system
processes routing failover other-routing-
engine is configured, repeating commands like
restart routing and restart routing
immediatelywithin the CLI will not cause a
Routing Engine mastership switchover when
entered more than 4 times in 30 seconds.
However, repeated uncontrolled exits (more
than 3 times in 5 minutes) from outside the CLI
(like rpd crash -9 and rpd kill -15) from the
Linux shell will cause rpd to fail and trigger a
switchover. If this happens, you must restart
the app using the command line interface.

Junos OS Behavior

The virtual-memory-mapping option of
the configuration-database statement
defines parameters for using virtual
memory mapping for the configuration
database on a per-process basis.

The show system reboot command has
options to Execute this command,
Show halt or reboot requests on both
Routing Engines, or Pipe through a
command.

When NSR is configured and the
command edit system switchover-on-
routing-crash is enabled, Junos OS will
immediately switch to the backup
Routing Engine when rpd crashes.

Junos OS triggers a switchover when
edit system processes routing failover
other-routing-engine is configured and
certain commands such as restart
routingand restart routing immediately
are used many times in short
succession.

Link to
Documentation

configuration-
database

show system reboot

switchover-on-
routing-crash

failover (System
Process)

Table 2: How Junos OS Evolved Behavior Differs from Junos OS (Continued))

Junos OS Evolved Behavior Junos OS Behavior Link to

Documentation
The menu used for root password recovery is The menu used for root password Recovering Root
the GRUB menu. recovery is the Junos Main Menu (the Password

Recovery mode option).

*Primary ptx-fixed-19.1-16
Primary [Recover password]
Primary-Rollback ptx-fixed-19.1-15
Primary-Rollback [Recover password]

The show system firmware command displays When the FRU is offline, the cached show system
information based on the accessibility of the firmware information of the FRU isnot | firmware
device, not the FRU state. The firmware available to view.

information is cached so, even if the FRU is in a
fault condition, the status from the show system
firmware command appears as OK. The fault is
visible with the commands show chassis alarms,
show chassis fpc, and so on.

New CLI Statements and Commands (Junos OS Evolved)

The changes in infrastructure between Junos OS and Junos OS Evolved sometimes require different CLI
configuration statements and operational commands. For more on these new statements and
commands, see Table 3 on page 27.

Table 3: New CLI Statements and Commands (Junos OS Evolved)

Statement or Description Link
Command

New Statements

Table 3: New CLI Statements and Commands (Junos OS Evolved) (Continued)

Statement or
Command

[edit chassis fabric
event reachability-

fault degraded error-
threshold percentagel

[edit system
extensions extension-
service application
file filename
interpreter (bash |
python | python3)]

[edit services
monitoring twamp]

Description Link

You can configure how much fabric degradation is allowed reachability-fault
before automatic recovery actions are taken by Junos OS

Evolved.

You can use the configuration statement interpreter to file

specify that a device running Junos OS Evolved run a
daemonized on-device JET application using Bash, Python 2,
or Python 3.

Starting in Junos OS Evolved Release 22.3R1, Python 2.7 is no
longer supported. The python statement is deprecated. Use the
python3 statement instead.

You can configure the TWAMP monitoring service on devices Understanding Two-
running Junos OS Evolved by using the hierarchy level [edit Way Active

services monitoring twamp] . This service sends out probes to Measurement
measure network performance. The support for this service is | FProtocol on Routers
limited to the following: and twamp

e |Pv4 and IPvé traffic (including link-local addresses) for
control sessions and test sessions

e Control session status and statistics
e Test session operational management status and history

e Test session probe generation and reception, as well as
reflection

e Timestamps set by the Routing Engine or the Packet
Forwarding Engine

e Error reporting through system log messages and SNMP
traps only

e Unauthenticated mode only

Table 3: New CLI Statements and Commands (Junos OS Evolved) (Continued)

Statement or
Command

[edit security host-
vpn]

[edit security host-
vpn connections]

[edit security host-
vpn connections

children child-name]

[edit security host-
vpn connections dpd-
delay]

[edit security host-
vpn remote]

[edit system auto-sw-
sync]

Description

Junos OS Evolved supports host IPsec in the control plane
only (that is, IPsec between the router and external
management devices), which is not available in Junos OS.
These statements configure a host-to-host VPN type of IPsec
connection. Use the connections, ike-log, and ike-secrets
statements at the [edit security host-vpn] hierarchy level to
configure IKE and IPsec values.

You can configure the additional algorithms aes256-sha384-
modp3072 and aes256-gcm128-modp3072 at each of the following
hierarchy levels:

e [edit security host-vpn connections parent-connection-name

ike-proposal]

e [edit security host-vpn connections parent-connection-name
children child-connection-name esp-proposal]

Statements at this hierarchy level include local-traffic-

selector, and remote-traffic-selector.

Statement to support dead peer detection. The dead peer
detection delay sends keepalives to find out if a peer has gone
dead.

Configure identity details for authenticating the remote device
during IKE negotiations.

Automatically copy over all the images (software and
configuration) from the primary Routing Engine of the system
to the new Routing Engine and reboot the new Routing
Engine so it runs the same software version and configuration
as the primary Routing Engine.

Link

Overview of IPsec
and host-vpn

connections (Host
VPN)and children

children

connections (Host
VPN)

remote (Host VPN)

auto-sw-sync

Table 3: New CLI Statements and Commands (Junos OS Evolved) (Continued)

Statement or
Command

[edit system

configuration-database

extend-size]

[edit system log
alternate-format]

[edit system trace
application]

New Commands

clear node reboot

clear security host-
vpn security-

associations

clear services
monitoring twamp
server control-

connection

Description

Increase the memory space available for the configuration
database.

NOTE: In some releases prior to Junos OS Evolved Release
22.1R1, the extend-size statement is available in the CLI
and you can configure and commit it, but it has no
operational effect.

Attach the node name to the process name instead of the
hostname. This alternate format allows monitoring systems to
identify the hostname correctly.

For Junos OS Evolved, trace data from all applications on all
nodes is collected on the Routing Engine. See "Top
Differences Between Junos OS Evolved and Junos OS" on
page 13 for information about tracing architecture. See also
the clear trace and show trace commands listed in the New
Commands section of this table.

Remove all pending node halt, reboot, and power-off requests.

Clear host IPsec security association information. See also

[edit security host-vpn]in the New Statements section of
this table.

Clear connections established between the Two-Way Active
Measurement Protocol (TWAMP) server and control clients.

Link

configuration-
database

syslog

trace

clear node reboot

clear security host-
vpn security-
associations

clear services
monitoring twamp
server control-
connection

Table 3: New CLI Statements and Commands (Junos OS Evolved) (Continued)

Statement or
Command

clear trace

request node (halt |
offline | online |
power-off/on | reboot)
node-name

request services
monitoring twamp

client

request system
application restart

request system debug-
info

Description Link

Junos OS Evolved uses a new tracing infrastructure. This clear trace
command deletes the trace data stored on the Routing Engine,
enabling you to remove inactive tracing sessions.

See also [edit system trace application]in the New
Statements section of this table.

Request an operation on a specific node. request node halt
(Junos OS Evolved)

request node (offline |
online) (Junos OS
Evolved)

request node power-
off (Junos OS
Evolved)

request node power-
on (Junos OS Evolved)

request node reboot

(re0 [re1) (Junos OS
Evolved)

Start or stop a Two-Way Active Measurement Protocol request services

(TWAMP) session. monitoring twamp
client

Stop and then start (restart) a specific process (for example, request system

cmdd) on the node you specify. application (Junos OS
Evolved)

Collect debug information from Junos OS Evolved, such as request system

logs. The logs are stored in the /var/tmp/ debug-info

debug_collector_timestamp directory. Use the node option to
collect information from a specific node.

Table 3: New CLI Statements and Commands (Junos OS Evolved) (Continued)

Statement or
Command

request system
software sync (all-
versions | current |
rollback)

request system
software validate
restart

restart app-name

show chassis routing-
engine hard-disk-test

show node reboot

show node statistics

show security host-vpn
security-associations

show security host-vpn

version

Description

Synchronize software and configurations from the primary
Routing Engine to the other nodes and reboot the other
nodes.

The command performs a dry run of the request system
software add restart command and displays the ISSU impact
of the new restart option. See request system software add

(Junos OS Evolved) for more on the restart option.

The following message is logged when you use the restart
command:

App restarting <app name>. Related apps that may be impacted
- <related-app name>.

Display the health of the hard disk with the hard-disk-test
option. Use disk /dev/disk-name status argument to display
the status of a particular disk.

Display any pending halt, reboot, or power-off requests on a
node.

Display the network statistics of a node.

Display host IPsec security association information for a
specific security association or for all connections. See also

[edit security host-vpn]in the New Statements section of
this table.

Display the version of IPsec being used in the system.

Link

request system
software sync

request system
software validate
(Junos OS Evolved)

restart (Junos OS
Evolved)

show chassis routing-
engine

show node reboot

show node statistics

show security host-
vpn security-
associations

show security host-
vpn version

Table 3: New CLI Statements and Commands (Junos OS Evolved) (Continued)

Statement or
Command

show services
monitoring rpm
history-results

show services
monitoring rpm probe-

results

show services
monitoring twamp
client history-results

show services
monitoring twamp
client probe-results

show services
monitoring twamp

client control-info

show services
monitoring twamp
client test-info

show services
monitoring twamp
server control-info

show services
monitoring twamp

server test-info

Description

Display the results stored for the specified real-time
performance monitoring (RPM) probes.

Display the results of the most recent real-time performance
monitoring (RPM) probes.

Display standard information about the results of the last 50
probes for a Two-Way Active Measurement Protocol
(TWAMP) control connection.

Display the results of the most recent Two-Way Active
Measurement Protocol (TWAMP) probes.

Display information about the control connections established
between the Two-Way Active Measurement Protocol
(TWAMP) server and control clients.

Display information about the test sessions established
between the Two-Way Active Measurement Protocol
(TWAMP) server and control clients.

Display information about the control connections established
between the Two-Way Active Measurement Protocol
(TWAMP) server and control clients for managed servers.

Display information about the test sessions established
between the Two-Way Active Measurement Protocol
(TWAMP) server and control clients.

Link

show services
monitoring rom
history-results

show services
monitoring rpm
probe-results

show services
monitoring twamp
client history-results

show services
monitoring twamp
client probe-results

show services
monitoring twamp
client control-info

show services
monitoring twamp
client test-info

show services
monitoring twamp
server control-info

show services
monitoring twamp
server test-info

Table 3: New CLI Statements and Commands (Junos OS Evolved) (Continued)

Statement or Description Link

Command

show system Display information about active applications on the system. show system
applications (app app- applications (Junos
name | brief | detail OS Evolved)

| node node-name)

show system errors Display information about faults in the system. show system errors

NOTE: For Junos OS Evolved, only the QFX5200 supports
this command. For all other Junos OS Evolved platforms,
use the show system errors active, show system errors
count, show system errors error-id, or show system errors

frucommand.
show system errors Display information about faults in the system that have been = show system errors
history cleared. history

NOTE: For Junos OS Evolved, only the QFX5200 supports
this command. For all other Junos OS Evolved platforms,
use the show system errors active, show system errors
count, show system errors error-id, or show system errors

fru command.

show system nodes View a list of all nodes in the system. show system nodes

show system software Display all console messages from the last in-service software = show system software

add-restart upgrade (ISSU). add-restart (Junos OS
Evolved)

show system software Display the installed versions on all nodes in the system. show system software

list list

show system statistics | Displays system statistics options for the backup Routing show system

backup Engine. The options provided are the same as the options for statistics

show system statistics.

Table 3: New CLI Statements and Commands (Junos OS Evolved) (Continued)

Statement or
Command

show system statistics
jtd

show system ztp

show trace

show forwarding-
options enhanced-hash-
key

show vlans

Description

Displays system jtd statistics.

Junos OS Evolved implements ZTP using the Linux dhcp
client. Users can find out the interfaces chosen by ZTP,
arguments returned by DHCP, and ZTP state machine states.

Junos OS Evolved uses a new tracing infrastructure. This
command shows the trace data from all nodes that are
collected on the Routing Engine.

Junos OS Evolved uses a new command to display the hashing
algorithm to make hashing decisions. This command shows
the data about which packet fields are used by the hashing
algorithm.

Junos OS Evolved replaces the show bridge command with the
show vlans command. This command displays detailed
information on the VLAN configurations present on the
Routing Engine and includes the following options:

e brief: Display brief output.

e (etail: Display detailed output.

e extensive: Display extensive output.

e instance: Display information for a specified instance.
e interface: Name of interface for which to display table.
e logical-system: Name of logical system, or ‘all'

e operational: Show operational bridging instance.

Link

show system
statistics

show system ztp

show trace

show forwarding-
options enhanced-
hash-key

show vians

Modified CLI Statements and Commands (Junos OS Evolved)

Some CLI statements and commands in Junos OS Evolved have a different set of options from Junos OS.

For a list of these changes, see Table 4 on page 36.

®

Table 4: Modified CLI Statements and Commands (Junos OS Evolved)

Statement or Command

Modified Statements

[edit chassis error minor action]

[edit firewall family Family-name
filter filter-name]

[set forwarding options enhanced-
hash-key]

[edit instance-type mac-vrf
protocols evpn]

[edit instance-type virtual-
switch protocols vpls]

[edit interfaces interface-name
ether-options]

Change in Junos OS Evolved

The offline and disable-pfe actions are not
available for errors with minor severity.

Egress filters do not support gre-key matches.

The vxlan configuration options are not
supported.

In Junos OS Evolved, instance-type mac-vrf
protocols evpn is configured instead of
instance-type evpn as in Junos OS.

In Junos OS Evolved, instance-type virtual-
switch protocols vpls is configured instead of
instance-type vpls as in Junos OS.

The following options are added to the ether-
options statement:

o fec

e |oopback-remote

NOTE: For the CLI commands that produce changed output, see Table 5 on page 47.

Link

error

promote

show forwarding-options

enhanced-hash-key

instance-type

instance-type

ether-options

Table 4: Modified CLI Statements and Commands (Junos OS Evolved) (Continued))

Statement or Command

[edit interfaces aggregated-
interface-name aggregated-ether-
options lacp]

[edit services monitoring twamp
client control-connection test-
session offload-type]

Change in Junos OS Evolved

The following options for this command are
not supported:
® accept-data

e link-protection

® no-peer-loopback-validation

In Junos OS Evolved, the option inline-
timestamping is configured instead of the
hardware-timestamping option as in Junos OS.

Link

Configuring Aggregated
Ethernet LACP

test-session (Junos OS
Evolved)

Table 4: Modified CLI Statements and Commands (Junos OS Evolved) (Continued))

Statement or Command

[edit system internet-options]

host other-routing-engine

Change in Junos OS Evolved

In Junos OS Evolved, the following options are
not supported:

e gre-path-mtu-discovery

e icmpv4-rate-limit

e icmpv6-rate-limit

e ipip-path-mtu-discovery

e ipv6-path-mtu-discovery-timeout
e no-gre-path-mtu-discovery

® no-ipip-path-mtu-discovery

® no-ipv6-path-mtu-discovery

® no-ipv6-reject-zero-hop-limit
® no-source-quench

e no-tcp-reset

e no-tcp-rfcl1323

e no-tcp-rfc1323-paws

e source-port

e source-quench

e tcp-drop-synfin-set

In Junos OS Evolved, the host other-routing-
engine statement is not available.

Link

internet-options

Direct System Log
Messages to a Remote
Machine or the Other
Routing Engine

Table 4: Modified CLI Statements and Commands (Junos OS Evolved) (Continued))

Statement or Command

[edit system commit]

Modified Commands

clear ipv6 neighbors

monitor traffic interface

Change in Junos OS Evolved

Junos OS Evolved does not support the
following options:

fast-synchronize
® peers
e peer-synchronize

e commit-synchronize-server

In Junos OS Evolved, issuing the clear ipv6
neighbors command clears the cache for IPvé
neighbors that are in a reachable state.

The write-file option for the monitor traffic
interfacecommand takes precedence over the
extensive option when you configure those
two options simultaneously. If you try to
configure these options at the same time,
Junos OS Evolved gives you a warning
message that the options are not compatible,
and it only runs the monitor traffic interface
write-file command.

Link

commit (Commit Scripts)

clear ipvé neighbors

monitor traffic

Table 4: Modified CLI Statements and Commands (Junos OS Evolved) (Continued))

Statement or Command

ping

request chassis routing-engine
master switch

Change in Junos OS Evolved

Junos OS Evolved does not support the

following ping command options:

e detail

e logical-system

e loose-source

e mac-address

e strict

e strict-source

e vpls

The default wait time on the PTX10008
between Routing Engine switchovers when

using the request chassis routing-engine

master switch command has increased from
120 seconds to 360 seconds.

Link

ping

request chassis routing-
engine master

Table 4: Modified CLI Statements and Commands (Junos OS Evolved) (Continued))

Statement or Command Change in Junos OS Evolved Link

request system software add The following request system software add request system software
command options are not applicable in Junos add (Junos OS Evolved)
OS Evolved:

best-effort-load
e both-routing-engines
e chassis

e device-alias

o delay-restart

e force-host

e lcc

e member

e no-copy

® on-primary

o (red|rel)

e re-choice

e satellite

® scc

e set

e sfc

e upgrade-group

e unlink

e validate

e validate-on-host

Table 4: Modified CLI Statements and Commands (Junos OS Evolved) (Continued))

Statement or Command

request system software delete

Change in Junos OS Evolved

e validate-on-routing-engine

The following request system software delete
command options are not applicable in Junos
OS Evolved:

e chassis

e lcc

e member

e re-choice

® scC

e sfc

e upgrade-group

e unlink

e validate

e validate-on-host

e validate-on-routing-engine

Link

request system software
delete (Junos OS Evolved)

Table 4: Modified CLI Statements and Commands (Junos OS Evolved) (Continued))

Statement or Command

request system software rollback

request system software validate

Change in Junos OS Evolved

The following options are added to the request
system software rollback command:

e (no-validate | validate)
e with-old-snapshot-config

The following options are not applicable in
Junos OS Evolved:

e device-alias

e satellite

e satellite-arg

e upgrade-group

The following request system software validate

command options are not applicable in Junos
OS Evolved:

e chassis

e lcc

e member

e package-options
® scc

e sfc

Link

request system software
rollback

request system software
validate (Junos OS
Evolved)

Table 4: Modified CLI Statements and Commands (Junos OS Evolved) (Continued))

Statement or Command

request system storage cleanup

request security pki ca-

certificate ca-profile-group load

request system zeroize

show agent sensors

show chassis fabric summary

Change in Junos OS Evolved

Use the new option force-deep to clean up all
user-generated files.

The user is prompted to check the list of files
to be deleted by using the dry-run option.

The following options are not applicable in
Junos OS Evolved:

e re0
o rel

e routing-engine

The default option is not supported on
PTX10003-80C, PTX10003-160C, and
PTX10008 routers.

The local option is removed. The command
will reboot all Routing Engines on the local
chassis when you issue the command.

This command displays output on each Routing

Engine, instead of just the primary Routing
Engine.

More detailed information is provided. The
following fields are introduced:

e Link Error
e Link TF
e Reachability Errors (Local/Remote)

e Uptime

Link

request system storage
cleanup (Junos OS
Evolved)

request security pki ca-
certificate ca-profile-group
load

request system zeroize
(Junos OS)

show agent sensors

show chassis fabric
summary

Table 4: Modified CLI Statements and Commands (Junos OS Evolved) (Continued))

Statement or Command

show firewall

show host

show system

show system connections

show system core-dumps

show chassis errors

show chassis routing-engine
errors

show system memory

Change in Junos OS Evolved

The application lsp option allows you to
specify the display of implicit policers that are
published by rpd.

The routing-instance mgmt_junos option is
introduced.

The nodes and node-attributes options are
introduced.

The node option is introduced.

Junos OS Evolved does not support the
following show system connections command
options..

e extensive
e show-routing-instance
The node option is introduced. The core dump

files generated on the nodes are stored in
the /var/core/ directory.

The error-id option is moved to the show system

errors tree.

The output for this command is moved to show
system errors.

The node option is introduced.

Link

show firewall

show host

show system nodes, show

system node-attributes

show system connections

show system core-dumps

show system errors active

show system errors active

show system memory

Table 4: Modified CLI Statements and Commands (Junos OS Evolved) (Continued))

Statement or Command Change in Junos OS Evolved Link

show system processes The following show system processes command show system processes
options are not applicable in Junos OS
Evolved:
e health

e resource-limits

show system storage The node option is introduced. show system storage

The invoke-on option is removed.

show system virtual-memory The node option is introduced. show system virtual-
memory

show version The node option is introduced. show version

ssh Junos OS Evolved does not support the ssh

following ssh command options:

e interface

telnet Junos OS Evolved does not support the telnet

following telnet command options:
e bypass-routing

e interface

e logical-system

® no-resolve

® source

Table 4: Modified CLI Statements and Commands (Junos OS Evolved) (Continued))

Statement or Command Change in Junos OS Evolved Link

traceroute Junos OS Evolved does not support the traceroute

following traceroute command options:

e interface

e logical-system
e next-hop

e port

e propagate-ttl

Changed CLI Command Output (Junos OS Evolved)

For changes in output for Junos OS Evolved, see Table 5 on page 47.

Table 5: Changed Command Output (Junos OS Evolved)

Command Description of Change in Output Link

clear interfaces Clears not only LACP statistics but also the counters displayed clear interfaces
statistics in the show lacp statistics interfaces command. statistics
monitor traffic When you use the command monitor traffic interface monitor traffic
interface interface- Interface-name on a logical interface, the output displays all

name packets received or transmitted on that interface, including

Layer 2 traffic. When you use this command on a physical
interface, the output only displays packets received and
transmitted on the physical interface and does not include
traffic from the logical interface.

ping When pinging a nonresponsive route, the display output of the | ping
ping command does not print the number of packets sent or
received or the packet loss.

Table 5: Changed Command Output (Junos OS Evolved) (Continued)

Command

request system
snapshot

request system
software add

request system
software delete

request system
software rollback

The show chassis
environment cb
command does not
show the Bus and
FPGA revision
information. Use the
show system firmware
command in order to
view the FPGA
revision or version
information for the
CB.

show chassis
environment fpc

show interfaces

aenumber extensive

Description of Change in Output

Output displays the names of the directory and the individual
files being copied instead of only the directory names.

For Junos OS Evolved, this command has a built-in feature to
not start an upgrade if a reboot is pending after an upgrade or
rollback.

Output displays the version instead of the package.

Output displays the version instead of the package.

Use the show chassis environment cb command to display
environmental information about the Control Boards (CBs).

Displays different output.

LACP packets and LAG links on the members of an aggregated
Ethernet interface are not counted as part of the bundle input
or output statistics in the show interfaces aenumber extensive
command output.

Link

request system
snapshot (Junos OS
Evolved)

request system
software add (Junos
OS Evolved)

request system
software delete
(Junos OS Evolved)

request system
software rollback
(Junos OS Evolved)

show chassis
environment cb

show chassis
environment fpc

show interfaces
(Aggregated
Ethernet)

Table 5: Changed Command Output (Junos OS Evolved) (Continued)

Command

show interfaces

show interfaces detail

show interfaces
extensive

show interfaces
interface-name
statistics

show interfaces
Interface-name ifl-

class

show 11dp local-
information

show multicast route

extensive

show multicast usage

show policer

Description of Change in Output

Configuration of IPvé over the reO:mgmt-* interfaces is
supported.

Output displays the Last Flapped field with the value Never after
a Routing Engine reboot. The Last Flapped field provides details
of the date, time, and how long ago the interface went up. The

value Never signifies that the interface never flapped.

Output does not display the Packet Forwarding Engine
configuration and CoS default bandwidth allocation
information.

Output displays zero for all loopback interface (lo0) statistics.

Junos OS Evolved does not display statistics for an interface if
it is a child of an aggregated ethernet (AE) interface.

Junos OS Evolved does not display statistics for an interface if
it is a child of an aggregated ethernet (AE) interface.

Output does not display "kernel JUNOS" in the system
description field because Junos OS Evolved does not have a
kernel.

Output displays the Sensor ID field that corresponds to a
multicast route.

Output displays the Sensor ID field that corresponds to a
multicast route.

Output doesn't display the default ARP policer because it isn't
needed in Junos OS Evolved. Distributed denial of service
(DDoS) protection replaces the functionality of the default ARP
policer.

Link

show interfaces

show interfaces
detail

show interfaces

show interfaces
statistics

show interfaces
statistics

show lldp local-
information

show multicast route

show multicast
usage

show policer

Table 5: Changed Command Output (Junos OS Evolved) (Continued)

Command

show snmp mib get

show snmp mib walk

show system errors fru
detail

show system memory

show system snapshot

show system statistics
arp

show system statistics

tep

show system uptime

show task replication

Description of Change in Output

Output for a Routing Engine displays the Routing Engine slot
number, not the Routing Engine number.

The show snmp mib walk jnxFilledDescr output only shows the
fan tray number. This output does not show the number of fan
slots present in each tray.

Output displays status of FRUs including CB, chassis, fans, FPC,
FPM, PDU, PICS, PSM, RE, and SIB, not just FPC.

Output displays the information per node, and the System
memory usage distribution displays only the total, active,
inactive, and free memory.

Output displays the snapshot device and a list of snapshots.
The list shows the names of the snapshots instead of the
version of the operating system. Output does not display the
date the snapshot was created.

After running ping on an unreachable host, output shows that
counts for ARP requests received and for datagrams for an
address not on the interface are incremented.

Output for the show system statistics tcp command is trimmed
to show only fields supported in Junos OS Evolved.

In certain releases, the output displays only the System booted
and System-wide users information and does not display
information on current time, system booted, protocols started,
or last configured parameters. The show system uptime node
command shows the other information.

Output displays the same state whether the command is run
from the primary or the backup Routing Engine.

Link

show snmp mib

show snmp mib

show system errors

fru

show system
memory

show system
snapshot (Junos OS
Evolved)

show system
statistics arp

show system
statistics tcp

show system uptime

show task
replication

Table 5: Changed Command Output (Junos OS Evolved) (Continued)

Command Description of Change in Output Link
show version Output of the show version command is changed to clearly show version (Junos
show which Junos architecture is running on the device. OS Evolved)

Output of the show version node all command is revised to
explicitly identify the Routing Engine in both the XML and CLI

output.

traceroute Output of the traceroute command displays MPLS data parsed traceroute

in the same way as the Linux traceroute command: L=label,
E=exp_use, S=stack_bottom, and T=TTL.

Removed CLI Statements and Commands (Junos OS Evolved)

For a listing of which CLI statements and commands are removed from Junos OS Evolved, see Table 6 on
page 51. Where there is an alternative statement or command to use, it is noted in the table.

Table 6: Removed CLI Statements and Commands (Junos OS Evolved)

Statement or Command

Removed Statements

[edit forwarding-options analyzer]

[edit forwarding-options enhanced-
hash-key ecmp-dlb ether-type]

[edit forwarding-options enhanced-
hash-key lag-dlb ether-type]

[edit system services extension-

service notification]

Description

The analyzer application for port mirroring is not supported on Junos OS
Evolved.

On QFX5130 and QFX5700 devices, ether-type is not supported on
Junos OS Evolved.

Junos OS Evolved does not support the notification service for JET
applications.

Table 6: Removed CLI Statements and Commands (Junos OS Evolved) (Continued))

Statement or Command

[set chassis fabric degraded action-

on-non-blackhole-degradation
percentage]

[set chassis fabric degraded action-

on-per-plane-fpc-degradation
percentage]

Removed Commands

gigether-options

request chassis beacon service-node

request system core-dump

request system recover

request system scripts (delete |
rollback)

request system software abort

request system software (add |
delete) set

Description

These commands are replaced by [set chassis fabric event
reachability-fault degraded error-threshold percentagel.

The gigether-options statement at the [edit interfaces interface-name]
hierarchy no longer appears because it is not needed. To configure link
aggregation groups (LAG), use the set interfaces interface-nameether-

options command instead.

This command is removed from Junos OS Evolved.

This command is removed from Junos OS Evolved.

This command is removed from Junos OS Evolved.

Al-Scripts and Service Now are not supported on Junos OS Evolved.

This command is removed because the request system software add
command has a built-in feature not to start an upgrade if a reboot is
pending after an upgrade or rollback.

Junos OS Evolved bundles all packages into one single I1SO file, so the set
option serves no purpose in the request system software add and request

system software delete commands.

Table 6: Removed CLI Statements and Commands (Junos OS Evolved) (Continued))

Statement or Command

request system software in-service-
upgrade

request system software set

request system storage user-disk

show bridge

show chassis fabric unreachability

show chassis memory-usage-chassisd

show chassis network-services

show chassis routing-engine errors

show class-of-service forwarding-
table

show database-replication

show firewall family inet filter
filter-name term term-name then
traffic-class-count

Description

Use the request system software add restart command for ISSU. The
request system software add command has a built-in feature not to start
upgrade if a reboot is pending after an upgrade or rollback.

To set the current system to an installed software version, use the

request system software rollback reboot command.

There are no satellite packages in Junos OS Evolved.

The command show bridge is replaced by the command show vlan in Junos
OS Evolved.

See the show system errors command for similar functionality.

The functionality for this command and all options under this command

are moved to show system memory.

This command is not supported.

This command has been replaced by show system errors in Junos OS
Evolved.

The removed options include classifier, classifier mapping, drop-
profile, policer, rewrite-rule, rewrite-rule mapping, scheduler-map, and
shaper.

This command is not supported.

The traffic-class-count option is not supported under the firewall
hierarchy in Junos OS Evolved.

Table 6: Removed CLI Statements and Commands (Junos OS Evolved) (Continued))

Statement or Command

show interfaces mac-database

show interfaces mc-ae

show system buffers

show system software detail

show system uptime invoke-on

traceoptions

Description

This command is not supported.

This command has been replaced with show multi-chassis mc-lag.

This command is removed starting in Junos OS Evolved Releases 21.1R1
and 20.3R2. This command is not applicable in Junos OS Evolved
because the command displays the status of kernel mbufs, which are not
used in Linux-based systems like Junos OS Evolved.

Use show system software list to display a list of the software versions
installed on all nodes. For more details about the software, use show

version detail.

This command is removed from Junos OS Evolved.

Junos OS Evolved removes the traceoptions option at many hierarchy
levels because trace messages are now logged, viewed, and configured
per application. However, some routing protocols (the [edit protocols]

hierarchy level) and a few other applications still use traceoptions.

XML Differences Between Junos OS and Junos OS Evolved

This section lists the differences in XML output between Junos OS and Junos OS Evolved.

request system storage cleanup

In Junos OS, the XML output of request system storage cleanup uses the <file-list> XML tag for all file
types in the list of files to be deleted. In Junos OS Evolved, the XML output groups different file types
inside different XML tags, for example, <core-file-1list> and <log-file-list>. Additionally, the command

targets all nodes on Junos OS Evolved, so a <node> element encloses the output for each node.

request system storage cleanup (Junos OS)

user@host> request system storage cleanup | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/18.410/junos">
<system-storage-cleanup-information>
<file-list junos:style="normal">
<file>
<file-name>/var/log/dfcd_enc.0.gz</file-name>
<size junos:format="551B">551</size>
<date>Nov 23 15:33</date>
<file>
</file-list>
</system-storage-cleanup-information>

</rpc-reply>

request system storage cleanup (Junos OS Evolved)

user@host> request system storage cleanup | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/19.110/junos">
<system-storage-cleanup-information>
<node>
<node-name> REQ </node-name>
<core-file-list>
<description>List of all core files to be cleared: </description>
<file>
<file-name>/var/core/re@/auditd.re.re0.17130.2019_02_28.03_39_36.tar.gz</
file-name>
<size>3.8M</size>
<date>Thu Feb 28 03:40</date>
</file>
</core-file-list>
<core-local-host-file-1list>
</core-local-host-file-list>
<core-subdir-file-list>
</core-subdir-file-list>
<fpc-file-list>
</fpc-file-list>
<logical-systems-file-1list>
</logical-systems-file-list>
<log-file-list>
<description>Clears all App logs, App traces and App SI traces

under /var/log/*, /var/log/traces/* and /var/log/si_traces/* </description>
</log-file-list>
<iso-file-list>
</iso-file-list>
</node
</system-storage-cleanup-information>
</rpc-reply>

show system memory

In Junos OS Evolved, the show system memory XML output is changed to better reflect the way Linux
manages memory. The output comprises a top-level <nulti-routing-engine-results> element and one <multi-
routing-engine-item> child element for each node, which contains the node name and the <system-memory-
information> for that node. In Junos OS, the device only emits a <system-memory-information> element.
Additionally, the <system-memory-summary-information> includes the following new child elements:

o <system-memory-used> and <system-memory-used-percent>

e <system-memory-buffer> and <system-memory-buffer-percent>

e <system-memory-swap> and <system-memory-swap-percent>

and omits the following elements:

e <system-memory-reserved> and <system-memory-reserved-percent>
e <system-memory-wired> and <system-memory-wired-percent>

e <system-memory-cache> and <system-memory-cache-percent>

user@host> show system memory | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/22.1R0/junos">
<multi-routing-engine-results>
<multi-routing-engine-item>
<re-name>fpc1</re-name>
<system-memory-information>
<system-memory-summary-information>
<system-memory-total>16125892</system-memory-total>
<system-memory-total-percent>100%</system-memory-total-percent>
<system-memory-used>3885112</system-memory-used>
<system-memory-used-percent>24%</system-memory-used-percent>
<system-memory-active>2447796</system-memory-active>

<system-memory-active-percent>15%</system-memory-active-percent>

<system-memory-inactive>2101128</system-memory-inactive>
<system-memory-inactive-percent>13%</system-memory-inactive-percent>
<system-memory-free>9327316</system-memory-free>
<system-memory-free-percent>57%</system-memory-free-percent>
<system-memory-buffer>314516</system-memory-buffer>
<system-memory-buffer-percent>1%</system-memory-buffer-percent>
<system-memory-swap>2598948</system-memory-swap>
<system-memory-swap-percent>16%</system-memory-swap-percent>
</system-memory-summary-information>
<pmap-terse-information xmlns="http://xml.juniper.net/fbsd10/14.210/junos-pmap">
<pmap-terse-summary junos:style="pmap-process-terse-summary">
<pid>1</pid>
<process-name>/lib/systemd/systemd</process-name>
<size>159116</size>
<size-percent>0</size-percent>
<resident>8408</resident>
<resident-percent>0</resident-percent>

</pmap-terse-summary>

</pmap-terse-information>
</system-memory-information>
</multi-routing-engine-item>
<multi-routing-engine-item>
<re-name>re@</re-name>
<system-memory-information>
<system-memory-summary-information>
<system-memory-total>16125576</system-memory-total>
<system-memory-total-percent>100%</system-memory-total-percent>
<system-memory-used>6912492</system-memory-used>
<system-memory-used-percent>42%</system-memory-used-percent>
<system-memory-active>4936580</system-memory-active>
<system-memory-active-percent>30%</system-memory-active-percent>
<system-memory-inactive>8939976</system-memory-inactive>
<system-memory-inactive-percent>55%</system-memory-inactive-percent>
<system-memory-free>170744</system-memory-free>
<system-memory-free-percent>1%</system-memory-free-percent>
<system-memory-buffer>524676</system-memory-buffer>
<system-memory-buffer-percent>3%</system-memory-buffer-percent>
<system-memory-swap>8517664</system-memory-swap>
<system-memory-swap-percent>52%</system-memory-swap-percent>
</system-memory-summary-information>
<pmap-terse-information xmlns="http://xml.juniper.net/fbsd10/14.210/junos-pmap">

<pmap-terse-summary junos:style="pmap-process-terse-summary">

<pid>1</pid>
<process-name>/sbin/init</process-name>
<size>162220</size>
<size-percent>0</size-percent>
<resident>10780</resident>
<resident-percent>0</resident-percent>

</pmap-terse-summary>

</pmap-terse-information>
</system-memory-information>

</multi-routing-engine-item>

</multi-routing-engine-results>

show system processes

On certain platforms running Junos OS Evolved Release 20.3R1 or earlier, the XML output for the show
system processes command and the show system processes wide command is the CLI output enclosed in an
<output> element. Starting in Junos OS Evolved Release 20.4R1, the XML output matches the Junos OS
XML output.

show system processes (Junos OS)

user@host> show system processes | display xml | no-more
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/20.1R@/junos">
<system-process-information junos:style="brief">
<process-information>
<process>
<pid>0</pid>
<terminal-name>- </terminal-name>
<state>DLs</state>
<cpu-time>8:39.74</cpu-time>
<command>[kernel J</command>
</process>
<process>
<pid>1</pid>
<terminal-name>- </terminal-name>
<state>ILs</state>
<cpu-time>0:00.25</cpu-time>
<command>/sbin/init --</command>

</process>

</process-information>
</system-process-information>
<cli>

</banner>
</cli>

</rpc-reply>

show system processes (Junos OS Evolved)

user@host> show system processes | display xml | no-more
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/20.210/junos">

<output>
node: re@
uID PID PPID C SZ RSS PSR STIME TTY TIME CMD
root 1 0 0 9947 2732 1 Apri@ ? 00:00:22 /sbin/init --dump-core
root 2 0 0 0 0 5 Aprie ? 00:00:00 [kthreadd]
root 3 2 0 0 @ 0 Aprio ? 00:00:20 [ksoftirqd/0]
root 5 2 0 0 0@ 0 Aprio ? 00:00:00 [kworker/@:0H]
root 7 2 0 0 0 5 Aprle ? 00:04:20 [rcu_preempt]
</output>
<cli>
</banner>
</cli>

</rpc-reply>

show system processes wide (Junos OS)

user@host> show system processes wide | display xml | no-more
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/20.1R0/junos">
<system-process-information junos:style="brief">
<process-information>
<process>
<pid>0</pid>
<terminal-name>- </terminal-name>
<state>DLs</state>
<cpu-time>8:39.86</cpu-time>
<command>[kernel]</command>

</process>

<process>
<pid>1</pid>
<terminal-name>- </terminal-name>
<state>ILs</state>
<cpu-time>0:00.25</cpu-time>
<command>/sbin/init --</command>

</process>

</process-information>
</system-process-information>
<cli>

</banner>
</cli>

</rpc-reply>

show system processes wide (Junos OS Evolved)

user@host> show system processes wide | display xml | no-more

<rpc-reply xmlns:junos="http://xml.juniper.net/junos/20.210/junos">

<output>
node: re@
uID PID PPID C SZ RSS PSR STIME TTY TIME CMD
root 1 0 0 9947 2732 0 Apr1@ ? 00:00:22 /sbin/init --dump-core
root 2 0 0 0 0 5 Aprie ? 00:00:00 [kthreadd]
root 3 2 0 0 @ 0 Aprio ? 00:00:20 [ksoftirqd/0]
root 5 2 0 0 0@ 0 Aprio ? 00:00:00 [kworker/@:0H]
root 7 2 0 0 0 0 Aprle ? 00:04:20 [rcu_preempt]
</output>
<cli>
</banner>
</cli>

</rpc-reply>

Default Directories for Junos OS Evolved File

Storage

Junos OS Evolved files are stored in the following directories on the device:

/boot—This directory contains the boot loader and associated files.

/config—This directory contains the current operational router or switch configuration and the last
three committed configurations, in the files juniper.conf, juniper.conf.1, juniper.conf.2, and
juniper.conf.3, respectively. The /config/scripts directory contains all stored scripts.

/data—This is the directory for all mutable copies of mutable directories. It contains the following
subdirectories:

e /config—Contains version-specific Juniper configuration files. This directory is bind mounted to /
config, meaning that changes in either directory will be reflected in both directories.

o /etc—Contains version-specific Linux configuration files. This directory is bind mounted to /etc.
e /var/etc—Contains SSH host keys.

e /var—Shared writable directory for all software versions. This directory is bind mounted to /var.

e /var_db—Contains version-specific /var/db files. This directory is bind mounted to /var/db.

e /var_db_scripts—Contains subdirectories for various script types. Scripts are stored in and
executed from these directories. This directory is bind mounted to /var/db/scripts.

o /var/db/scripts/commit—Contains commit scripts.

/var/db/scripts/op—Contains op scripts.

/var/db/scripts/event—Contains event scripts.

/var/db/scripts/snmp—Contains SNMP scripts.

/var/db/scripts/lib—Contains imported scripts.
e /var_etc—Contains version-specific /var/etc files. This directory is bind mounted to /var/etc.

o /var_pfe—Contains version-specific PFE configuration files. This directory is bind mounted
to /var/pfe.

e /var_rundb—Contains Ul-related runtime-generated database files that are shared across
versions. This directory is bind mounted to /var/rundb.

/soft—This directory is the software install area. All software versions are installed here.

e /u—This directory is a read-only file system for the running version of Junos OS Evolved.
o /var—This directory contains the following subdirectories:

¢ /home—Contains users’ home directories, which are created when you create user access
accounts. For users using SSH authentication, their .ssh file, which contains their SSH key, is
placed in their home directory. When a user saves or loads a configuration file, that file is loaded
from the current working directory unless the user specifies a full pathname.

e /db/config—Contains up to 46 previous versions of committed configurations, which are stored in
the files juniper.conf.4.gz through juniper.conf.49.gz.

¢ /log—Contains system log and tracing files.

e /core—Contains core files. The software saves up to five core files, numbered from O through 4.
File number O is the oldest core file and file number 4 is the newest core file. To preserve the
oldest core files, the software overwrites the newest core file, number 4, with any subsequent
core file.

e /tmp—Contains temporary files, including files that are generated when a crash event is detected.

‘ Junos OS Evolved Overview | 2

Junos OS Evolved Components and Processes

IN THIS SECTION

Linux Kernel | 63

Initialization Process | 63

System Epoch Management Process | 63
System Manager Process | 64
Management Process | 64

Routing Protocol Process | 64

Interface Process | 64

Distributor Process | 65

SNMP and MIB |l Processes | 65
ZooKeeper Process | 65

Process Limits | 65

A Junos OS Evolved system is comprised of one or more Linux nodes, coupled together with an efficient
communications substrate, and supplied with a distributed application launcher. A horizontal software
layer decouples application processes from the specific hardware node where they can be run.
Applications use the Distributed Data Store (DDS) to share state, and state is synchronized between
nodes. A high-level description of the various software components is listed below.

Linux Kernel

Junos OS Evolved is built on top of a stock Linux kernel. Functionality performed by the router like
configuration management, interface management and routing are processes that run as Linux
processes. All applications run natively on the Linux kernel, including Juniper and non-Juniper
applications.

Initialization Process

When the device boots, an initialization process (init) starts and monitors all the other software
processes.

If a software process terminates or fails to start when called, the init process attempts to restart it a
limited number of times and logs any failure information for further investigation.

System Epoch Management Process

The system epoch management process (SysEpochMan) is responsible for organizing the various Linux
nodes into a cohesive system, and to monitor the system to ensure integrity if any nodes fail. If the
system needs to be restarted, SysEpochMan ensures a clean transition from the previous system state to
the new system state.

System Manager Process

The system manager process (SysMan) is responsible for the launching, coordination, and monitoring of
applications in Junos OS Evolved. The SysMan Master oversees the placement of applications on nodes
as specified by each application, and communicates its decisions to the local SysMan instances. If an
application fails, the local SysMan process will detect the failure, and take corrective action based on
what is specific for the application.

Management Process

The management process (mgd) manages the configuration of the router and all user commands. The
management process is responsible for managing all user access to the device and for notifying other
processes when a new configuration is committed. A dedicated management process handles Junos

XML protocol XML requests from its client, which might be the CLI or any Junos XML protocol client.

Routing Protocol Process

Within Junos OS Evolved, the routing protocol process (rpd) controls the routing protocols that run on
the device. The rpd process starts all configured routing protocols and handles all routing messages. It
maintains one or more routing tables, which consolidate the routing information learned from all routing
protocols. From this routing information, the routing protocol process determines the active routes to
network destinations and installs these routes into the Routing Engine’s forwarding table. Finally, rpd
implements routing policy, which enables you to control the routing information that is transferred
between the routing protocols and the routing table. Using routing policy, you can filter and limit the
transfer of information as well as set properties associated with specific routes.

Interface Process

The Junos OS Evolved interface process (Ifmand) is responsible managing all interfaces on the device.
Ifmand creates all the operational state related to interfaces (IFD, IFL, IFF, IFA) as well as the necessary
interface specific routes and nexthops.

Ifmand enables you to configure and control the physical interface devices and logical interfaces present
in a network device. You can configure interface properties such as the interface location, for example,
in which slot the Flexible PIC Concentrator (FPC) is installed and in which location on the FPC the
Physical Interface Card (PIC) is installed, as well as the interface encapsulation and interface-specific

properties. You can configure the interfaces currently present in the device, as well as interfaces that are
not present but that you might add later.

Distributor Process

The distributor process is responsible for holding the Distributed Data Store (DDS) and coordinating
with individual applications for delivery of their state. The distributor process synchronizes state across
the system.

SNMP and MIB Il Processes

Junos OS Evolved supports the Simple Network Management Protocol (SNMP), which helps
administrators monitor the state of a device. The software supports SNMP version 1 (SNMPv1), version
2 (SNMPv2, also known as version 2c, or v2c), and version 3 (SNMPv3).

ZooKeeper Process

The ZooKeeper process is a synchronous transport service that helps in the election of active services,
locks resources to avoid data inconsistency, and allocates resources like IP addresses.

Process Limits

There are limits to the total number of Junos OS Evolved processes that can run simultaneously on a
device. There are also limits set for the maximum number of iterations of any single process. The limit
for iterations of any single process can only be reached if the limit of overall system processes is not
exceeded.

Error TPAs for Route Installation

SUMMARY IN THIS SECTION

If you configure this feature, during route Overview of Error Third-Party Attachments
installations the consumer of a state update notifies (TPAs) on Errored Objects During Route
the producing application when there are errors in Installations | 66

processing the state update sent by the producer. Set Up the System for Error TPAs | 67

The producer then attaches a third-party attachment

(TPA) object on top of the errored object, with details CLI Commands for Viewing Error

of the error, and publishes it. Details | 67

Overview of Error Third-Party Attachments (TPAs) on Errored Objects
During Route Installations

In a distributed system, states can be produced anywhere and consumed anywhere, making it difficult
for a producer (for example, a PFE) to determine whether the system is in the correct state for the
consumer (for example, an rpdagent). If you configure this feature, during route installations the
consumer notifies the producing application when there are errors in processing the state update sent
by the producer. The producer then attaches a TPA object on top of the errored object with details of
the error and publishes it.

Details of errors include:
e errorlD

e severity

e 0bj_guid

e error_description

e error_module

e error_object_name

e error_timestamp

e error_producer_name

e natural_name

The errors generated have standard error numbers.

The forwarding information base (FIB) telemetry daemon (FIBtd) also receives error notifications. You
use the Junos telemetry interface (JTI) and remote procedure calls (gRPC) services to stream or export
ON_CHANGE FIB statistics to an outside SDN collector. Set the collector to subscribe to xpath /state/
system/anomalies/fib/ to get both the IPv4 and IPvé error routes.

You can use the CLI to query errored objects and related information. To avoid flooding the system with
error objects, the number of published error objects from a producer is set to a threshold limit of
20,000. Once the threshold is reached, no more error objects are published. However, errored objects
and related information is still saved, you can query it using CLI

The consumer is notified when the errors are cleared and the route installation is successful.

Set Up the System for Error TPAs

SUMMARY

1. Configure FIP streaming on the client device.

set system
set system
set system
set system

set system

fib-streaming

services extension-service
services extension-service
services extension-service

services extension-service

request-response grpc max-connections number
request-response grpc skip-authentication
notification allow-clients address ip-address

request-response grpc clear-text port port-number

2. On the collector, subscribe to the xpath /state/system/anomalies/fib/ to get both the IPv4 and IPv6

error routes.

CLI Commands for Viewing Error Details

SUMMARY

Use the following CLI commands to view details of error TPAs that are generated during route
installations:

Table 7: CLI Commands to View Error TPA Information

Command Example Link

show system applications show system applications error app | show system applications (Junos
rpdagent node re0 OS Evolved)

show fib-streaming show fib-streaming native-model show fib-streaming

route-errors inet

show agent sensors - show agent sensors

Shell Commands for Junos OS Evolved

IN THIS SECTION

How to Use the Shell | 69

Common Shell Commands | 69

Shell commands are Linux commands that are executed through the Linux shell rather than the Junos
OS Evolved CLI. Junos OS Evolved supports existing Linux shell commands. This topic lists commonly
used shell commands for Junos OS Evolved.

How to Use the Shell

To start the Linux shell, enter the start shell command from the Junos OS Evolved CLI. When you are in
the shell, the command prompt will change to the following format:

username@hostname: ~$

Once the shell is active, you can enter shell commands using the shell prompt. To return to the Junos OS
Evolved CLI, use the exit command.

Common Shell Commands

The following table lists some of the shell commands that are useful for operating a Junos OS Evolved
device:

Table 8: Junos OS Evolved Shell Commands
Command Description

sync Synchronize the Routing Engines

This command should only be used in situations where the CLI cannot be
accessed.

reboot Reboot the current Routing Engine.

This command should only be used in situations where the CLI cannot be
accessed.

/sbin/upgrade /var/tmp/iso Upgrade the current Routing Engine using the specified .iso file.
This command should only be used in situations where the CLI cannot be
accessed.

vssh node-name Open a SSH session to the remote node from the Routing and Control Board.

chvrf iri network-command Creates the network context required to access the control plane and reach
other nodes.

Table 8: Junos OS Evolved Shell Commands (Continued)

Command Description

systemctl enable --now Enable automatic startup for the Docker container service
docker.service

who Displays a list of users logged into the device. Hostname is displayed for users
connected via telent and IP address is displayed for users connected via SSH.

ecmp-tracer --interface & Displays the forwarding packets going through an interface.

‘ Junos OS Evolved Overview | 2

Where to Find Information on Common Procedures

This guide, /ntroducing Junos OS Evolved, has information about the features and changes in the next
generation of Junos OS. However, much about using Junos OS remains the same. Junos OS Evolved has
the same CLI user interface, some of the same processes, and the same management and automation
tools as Junos OS. You configure and manage Junos OS Evolved the same way as you always have
configured and managed Junos OS.

For your convenience, this section lists some links to the Junos OS documentation you might want to
consult.

o Getting Started with Junos OS Evolved—Procedures for initial configuration.

e User Access and Authentication Administration Guide for Junos OS Evolved—Procedures on granting
access and setting up authentication on your device.

e Network Management and Monitoring Guide—Procedures on SNMP, remote monitoring (RMON),
destination class usage (DCU) and source class usage (SCU) data, accounting profiles, and logging.

e Junos® OS Evolved Software Installation and Upgrade Guide—Procedures for installing and
upgrading Junos OS Evolved software.

e CLI User Guide for Junos OS Evolved—Procedures on using the CLI for Junos OS Evolved software.

https://www.juniper.net/documentation/us/en/software/junos/junos-getting-started-evo/index.html
https://www.juniper.net/documentation/us/en/software/junos/user-access-evo/index.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/network-management/network-management.html
https://www.juniper.net/documentation/us/en/software/junos/junos-install-upgrade-evo/topics/concept/software-install-and-upgrade-overview-evo.html
https://www.juniper.net/documentation/us/en/software/junos/cli-evo/

CHAPTER

Junos OS Evolved Configuration

Overview

IN THIS CHAPTER

Junos OS Evolved Configuration Basics | 72
Methods for Configuring Junos OS Evolved | 72

Junos OS Evolved Configuration from External Devices | 75

Junos OS Evolved Configuration Basics

Your compatible Juniper Networks device comes with Junos OS Evolved installed on it, unless you
specifically order it without the operating system. When Junos OS Evolved is pre-installed, you simply
power on the device and all software starts automatically. You just need to configure the device so it will
be ready to participate in the network.

To configure the Junos OS Evolved, you must specify a hierarchy of configuration statements which
define the preferred software properties. You can configure all properties of the Junos OS Evolved,
including interfaces, general routing information, routing protocols, and user access, as well as some
system hardware properties. After you have created a candidate configuration, you commit the
configuration to be evaluated and activated by Junos OS Evolved.

Junos OS Evolved Configuration from External Devices | 75
Methods for Configuring Junos OS Evolved | 72

Junos OS Evolved Overview | 2

Methods for Configuring Junos OS Evolved

IN THIS SECTION

Junos OS Evolved Command-Line Interface | 73
ASCII File | 74

Junos XML Management Protocol Software | 74
NETCONF XML Management Protocol Software | 74

Configuration Commit Scripts | 74

Depending on specific device support, you can use the methods shown here to configure Junos OS
Evolved. For more information, see the Juniper Networks Feature Explorer.

https://apps.juniper.net/feature-explorer/

Table 9: Methods for Configuring Junos OS Evolved

Method

Command-line interface
(CLI)

ASCII file

Junos XML
management protocol
(API)

NETCONF application
programming interface
(API)

Configuration commit
scripts

Description

Create the configuration for the device using the CLI. You can enter commands from a
single command line, and scroll through recently executed commands.

Load an ASCII file containing a configuration that you created earlier, either on this
system or on another system. You can then activate and run the configuration file, or
you can edit it using the CLI and then activate it.

Client applications use the Junos XML management protocol to monitor and configure
Juniper Networks devices. The Junos XML management protocol is customized for
Junos OS Evolved, and operations in the API are equivalent to those in the Junos OS
Evolved CLI.

Client applications use the NETCONF XML management protocol to monitor and
configure supported devices. The NETCONF XML management protocol includes
features that accommodate the configuration data models of multiple vendors.

Create scripts that run at commit time to enforce custom configuration rules. Commit
scripts are written in Python, Stylesheet Language Alternative syntaX (SLAX), or
Extensible Stylesheet Language Transformations (XSLT).

The following sections describe the methods you can use to configure Junos OS Evolved:

Junos OS Evolved Command-Line Interface

The Junos OS Evolved CLlI is a straightforward terminal-based command interface. You use Emacs-style
keyboard sequences to move around on a command line and scroll through a buffer that contains
recently executed commands. You type commands on a single line, and the commands are executed
when you press the Enter key. The CLI also provides command help and command completion.

ASCII File

You can load an ASCII file containing a configuration that you created earlier, either on this system or
another system. You can then activate and run the configuration file as is, or you can edit it using the CLI
and then activate it.

Junos XML Management Protocol Software

The Junos XML Management Protocol is an XML-based protocol that client applications use to monitor
and configure Juniper Networks devices. It uses an XML-based data encoding for the configuration data
and remote procedure calls. This APl is customized for Junos OS Evolved, and operations in the API are
equivalent to CLI commands.

NETCONF XML Management Protocol Software

The NETCONF XML management protocol is an XML-based protocol that client applications use to
monitor and configure network devices. It uses an XML-based data encoding for the configuration data
and remote procedure calls. NETCONF includes features that accommodate the configuration data
models of multiple vendors. Juniper Networks provides a set of Perl modules that enable Perl client
applications to communicate with the NETCONF server on Junos devices. The Perl modules enable you
to develop custom applications for configuring and monitoring Junos OS Evolved.

Configuration Commit Scripts

You can create and use scripts that run at commit time to enforce custom configuration rules. If a
configuration breaks the custom rules, the script can generate actions that the Junos OS Evolved
performs. These actions include:

Generating custom error messages

Generating custom warning messages

Generating custom system log messages

Making changes to the configuration

Configuration commit scripts also enable you to create macros, which expand simplified custom aliases
for frequently used configuration statements into standard Junos OS Evolved configuration statements.
Commit scripts are written in Python, Stylesheet Language Alternative syntaX (SLAX), or Extensible
Stylesheet Language Transformations (XSLT).

CLI Explorer
CLI User Guide
Junos OS Evolved Configuration from External Devices | 75

NETCONF XML Management Protocol Developer Guide

Junos OS Evolved Overview | 2

Junos OS Evolved Configuration from External
Devices

You can configure a Junos OS Evolved network device from a system console connected to the console
port or by using 7e/netto access the device remotely. External management hardware can be connected
to the Routing Engine and the Junos OS Evolved through these ports:

e Console port
e Auxiliary port

e Ethernet management port

@ NOTE: See hardware guide for your particular Junos OS Evolved device for instructions
about how to connect external hardware to the console, auxiliary, and/or Ethernet
management ports. Capabilities and features can vary depending on device model.

Methods for Configuring Junos OS Evolved | 72

Junos OS Evolved Overview | 2

https://www.juniper.net/documentation/content-applications/cli-explorer/junos/
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-cli/junos-cli.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/netconf-guide/netconf.html

CHAPTER

Running 3rd Party Applications with
Junos OS Evolved

IN THIS CHAPTER

Overview of Third-Party Applications on Junos OS Evolved | 77
Running Third-Party Applications in Containers | 81

Running Third-Party Applications Natively With Signing Keys | 89
Managing Third-Party Applications | 95

Building Third-Party Applications | 105

Creating a Bundled ISO | 118

Overview of Third-Party Applications on Junos OS
Evolved

SUMMARY IN THIS SECTION
You can run third-party applications inside Linux Introduction to Third-Party Applications on
containers or natively on Junos OS Evolved with Junos OS Evolved | 77

signing keys. Applications use Juniper APIs to
interact with the Junos OS Evolved system, and
Linux APIs for network tasks. Unverified applications
are prevented by an integrity solution called Integrity Keys | 78

Measurement Architecture (IMA). Application Pre-requisites | 78

Running Applications in Containers | 77

Running Applications Natively With Signing

Application APIs | 79
Security Caveats | 80

File Security with IMA | 80

Introduction to Third-Party Applications on Junos OS Evolved

Junos OS Evolved runs natively on Linux, which means you can integrate third-party applications and
tools developed for Linux into Junos OS Evolved. Linux development tools also give you the power to
create and run your own applications on Junos OS Evolved. You can choose to run these applications
inside a container, or natively on the device with signing keys.

Running Applications in Containers

Junos OS Evolved supports running applications inside Docker containers. Containers run on Junos OS
Evolved, and applications run inside the containers, keeping them isolated from the OS. You can use
prebuilt Docker container images and install additional tools and libraries inside the container.
Containers can be upgraded by using Linux workflow.

Containers are already a commonly used method for running Linux applications, so many existing third-
party applications can be easily imported into Junos OS Evolved by deploying them inside containers.
The isolated nature of containers makes them easy to deploy and remove without compromising the

integrity of Junos OS Evolved. In addition, Junos OS Evolved places default limits on the resource usage
of containers, to ensure that rogue containers cannot overwhelm your system.

The Docker container service is not automatically started at system initialization. To enable automatic
startup for the Docker container service, enter the following command from the Linux shell:

e # systemctl enable --now docker.service

For more information about running applications in containers, see "Running Third-Party Applications in
Containers" on page 81

Running Applications Natively With Signing Keys

Third-party applications can run natively on Junos OS Evolved by using signing keys. You generate
signing keys and use them to sign executable files or shared objects. Signing an executable file gives it
permission to run on the device, allowing you to approve trusted applications to run alongside
authorized Juniper Networks software.

Signing keys are controlled by a Linux subsystem called Integrity Measurement Architecture (IMA). IMA
policy consists of rules that define which actions needs to be taken before a file can be executed. IMA
measurement policy will measure and store a file’s hash, and IMA appraisal policy will make sure that the
file has a valid hash or digital signature. IMA will only allow a file to run if this validation succeeds.

Junos OS Evolved requires users to sign all files that will be mapped into memory for execution. IMA
verification helps ensure that these files have not been accidentally or maliciously altered. Containers
and files inside containers do not need to be signed.

For more information about using signing keys, see "Signing Third-Party Applications to Run Natively on
Junos OS Evolved" on page 89

Application Pre-requisites

Third party applications are supported for the following Junos OS Evolved releases:
e Junos OS Evolved release 20.1R1 and later for applications in containers.

e Junos OS Evolved release 22.4R1 and later for native applications.

e Junos OS Evolved release 23.2R1 and later for dual Routing Engine applications.

Applications must support the Linux kernel version running on Junos OS Evolved to work properly. Use
the show version command to view the currently running Linux kernel version.

Applications written for Junos OS Evolved typically require the ability to read and modify the
networking state, to send and receive packets, and to read and modify the configuration. Junos OS
Evolved supports a limited number of APIs, so applications must be configured with these APIs in mind.

Application APIs

There are two categories of APIs used by applications:
e Linux APIs for reading and modifying the networking state, and sending and receiving packets.
e Juniper APIs for interacting with the system.

Junos OS Evolved supports these two categories of APIs. Table 10 on page 79 provides a high-level
view of the set of APIs used by applications:

Table 10: Application APIs

AP/ Functionality

Packet 10 and Linux socket = Ability to send and receive packets over mgmt and/or data interfaces.

APls
Standard libc - send, receive, listen, etc.

rtnetlink Ability to use rtnetlink to query networking state like interfaces, routes, etc.

netdevice Ability to configure network devices.

proc Ability to query kernel data structures using standard interfaces provided by Linux
kernel.

Junos APlIs Ability to access Juniper Northbound APIs - NetConf/JET/Telemetry.

@ NOTE: For more information on Juniper Northbound APIs, see the following:
e Overview of JET APIs

e NETCONF XML Management Protocol and Junos XML API Overview

http://man7.org/linux/man-pages/man7/netlink.7.html
http://man7.org/linux/man-pages/man7/netdevice.7.html
http://man7.org/linux/man-pages/man5/proc.5.html
https://www.juniper.net/documentation/us/en/software/junos/jet-api/topics/concept/jet-apis.html
https://www.juniper.net/documentation/us/en/software/junos/netconf/topics/concept/netconf-xml-protocol-and-junos-api-overview.html

e Overview of the Junos Telemetry Interface

Security Caveats

Junos OS Evolved is designed from the ground up with security in mind. IMA and Linux containers help
to control the security impact of third-party applications on Junos OS Evolved, but third-party
applications still have the potential to introduce security vulnerabilities through malicious code.

Always consider the security implications of adding a third-party application to Junos OS Evolved. Make
sure any applications you add to Junos OS Evolved are thoroughly vetted for potential security risks.

File Security with IMA

Network devices that run Junos OS Evolved are protected by an integrity solution called Integrity
Measurement Architecture (IMA).

Integrity is a fundamental security property that represents trust, completeness, and freedom from
alteration. In computer security, common targets for integrity protections are operating system files. A
common method of ensuring integrity is to compare a file against a known good file.

In the context of Junos OS Evolved, the security goal is to ensure that the software running on a device
has not been accidentally or maliciously altered. The software running on a device is either authentic
Junos software from Juniper Networks or authorized software deployed by a customer.

The threat model for network devices includes attempts by malicious actors to deploy malware that
violates either the implicit or explicit policies of device owners. Such malware could include back doors,
Trojan horses, or implants that could adversely the safe and secure operation of devices or networks.
Malicious actors use a variety of tools, techniques, and procedures to breach integrity including physical
attacks, local attacks, and remote attacks.

Many regulatory schemes levy file integrity requirements, including PCI-DSS - Payment Card Industry
Data Security Standard (Requirement 11.5), SOX - Sarbanes-Oxley Act (Section 404), NERC CIP - NERC
CIP Standard (CIP-010-2), FISMA - Federal Information Security Management Act (NIST SP800-53
Rev3), HIPAA - Health Insurance Portability and Accountability Act of 1996 (NIST Publication 800-66)
and the SANS Critical Security Controls (Control 3).

In order to ensure file integrity and to mitigate the malware risk, Junos OS Evolved runs IMA, and a
companion mechanism: the Extended Verification Module (EVM). These open source protections are
part of a set of Linux Security Modules that are industry-standard and consistent with the trust
mechanisms specified by the Trusted Computing Group.

https://www.juniper.net/documentation/us/en/software/junos/interfaces-telemetry/topics/concept/junos-telemetry-interface-oveview.html

Juniper Networks applies digital signatures to Junos OS Evolved files, and allows customers to apply
digital signatures as well. Digital signatures are created using protected private keys, and then verified
using public keys embedded into one or more keyrings.

The IMA/EVM subsystem protects the system by performing run-time checks. If a file fails verification, it
is not opened or executed.

That means that unverified software is blocked on a device running Junos OS Evolved.

Running Third-Party Applications in Containers

IN THIS SECTION

Deploying a Docker Container | 82

Managing a Docker Container | 83

Enabling Netlink or PacketlO in a Container | 83
Selecting a VRF for a Docker Container | 85

Modifying Resource Limits for Containers | 87

To run your own applications on Junos OS Evolved, you have the option to deploy them as a Docker
container. The container runs on Junos OS Evolved, and the applications run in the container, keeping
them isolated from the host OS. Containers are installed in a separate partition mounted at /var/
extensions. Containers persist across reboots and software upgrades.

@ NOTE: Docker containers are not integrated into Junos OS Evolved, they are created and
managed entirely through Linux by using Docker commands. For more information on
Docker containers and commands, see the official Docker documentation: https:/
docs.docker.com/get-started/

Containers have default limits for the resources that they can use from the system:

o Storage - The size of the /var/extensions partition is platform driven: 8GB or 30% of the total size
of /var, whichever is smaller.

e Memory - Containers have no default physical memory limit. This can be changed.

https://docs.docker.com/get-started/
https://docs.docker.com/get-started/

e CPU - Containers have no default CPU limit. This can be changed.

@ NOTE: You can modify the resource limits on containers if necessary. See "Modifying
Resource Limits for Containers" on page 87.

Deploying a Docker Container

To deploy a Docker container:

1. Start the Docker service bound to a VRF (for example vrfe). For Junos OS Evolved Releases 23.4R1
and earlier, all the containers managed by this Docker service will be bound to this Linux VRF. For
Junos OS Evolved Release 24.1R1 and later, we recommend binding specific tasks within the
container to a VRF. See "Selecting a VRF for a Docker Container" on page 85 for more details.

[vrf:vrfo] user@host_REQ:~# systemctl start docker@vrfo

2. Set the Docker socket for the client by configuring the following environment variable:

[vrf:vrf@] user@host_REQ:~# export DOCKER_HOST=unix:///run/docker-vrf@.sock

3. Import the image.

@ NOTE: The URL for the import command needs to be changed for different containers.

[vrf:vrf@] user@host_REQ:~# docker import http://198.0.2.2/1xc-images/images/pyez_new/2.1.9/
amd64/default/20190225_19:53/rootfs. tar.xz

4. Make sure the image is downloaded, and get the image ID.
[vrf:vrf@] user@host_REQ:~# docker image ls

REPOSITORY TAG IMAGE 1D CREATED SIZE
pyez latest 738c70533604 59 seconds ago 491MB

5. Create a container using the image ID and enter a bash session in that container.

[vrf:vrf@] user@host_REQ:~# docker run -it --name pyezl --network=host 738c70533604 bash

6. Create a container with Packet 1O and Netlink capablity using the image ID and enter a bash session in

that container.

[vrf:vrf@] user@host_REQ:~# docker run --rm -it --network=host --ipc=host --cap-add=NET_ADMIN
--mount source=jnet,destination=/usr/evo --device=/dev/jtd0 -v /dev/mcgrp:/dev/mcgrp -v /dev/
shm: /dev/shm --env-file=/run/docker-vrf@/jnet.env --dns ::1 debian:stretch ip link

738c70533604 bash

@ NOTE: Docker containers are daemonized by default unless you use the -it argument.

Managing a Docker Container

Docker containers are managed through standard Docker Linux workflow. Use the docker ps, ps or top
Linux commands to show which Docker containers are running, and use Docker commands to manage
the containers. For more information on Docker commands, see: https:/docs.docker.com/engine/

reference/commandline/cli/

@ NOTE: Junos OS Evolved high availability features are not supported for custom
applications in Docker containers, If an application has high availability functionality then
you should run the application on each RE to ensure it can sync itself. Such an
application will need to have the required business logic to manage itself and
communicate with all instances.

Enabling Netlink or PacketlO in a Container

You need to provide additional arguments to Docker commands if your container requires extra
capabilities like Netlink or PacketlO. You will also need to enable nlsd service for enabling Netlink
functionality on certain releases. The following example shows how to activate Netlink or PacketlO
capabilities for a container by adding arguments to a Docker command:

https://docs.docker.com/engine/reference/commandline/cli/
https://docs.docker.com/engine/reference/commandline/cli/

Create a read-only name persistent volume upon starting Docker services. Mounting the jnet
volume will mount required libraries needed for PacketlO and Netlink functionality over WAN/data
ports:

--mount source=jnet,destination=/usr/evo

Share the host’s Network and IPC namespace with the container. Containers requiring PacketlO
and Netlink functionality over WAN/data ports will need to be in the host Network and IPC
namespace:

--network=host --ipc=host

Automatically start the container upon system reboot:

--restart=always

Enable net admin capability, which is required by Netlink and PacketlO libraries:

--cap-add=NET_ADMIN

Enable the environmental variables required for Netlink and PacketlO over WAN/data ports:

--env-file=/run/docker/jnet.env

Mount the jtdO device from host to the container to help with PacketlO:

--device=/dev/jtde

Mount the host’s /dev/shm directory to the container for Netlink and PacketlO over WAN/data
ports:

-v /dev/shm:/dev/shm

8. If multicast group management is required by the container application, mount the /dev/mcgrp
directory from the host to the container:

-v /dev/mcgrp:/dev/mcgrp

9. After Junos OS Evolved release 24.1R1, containers in the host network namespace that want to
have DNS resolution will need to pass the --dns ::1 option to the docker run command. This is not
required for Junos OS Evolved release 23.4 and earlier:

--dns ::1

10. If your container requires Netlink related processing, then you also need to enable the Netlink
asynchronous API (nlsd) process in Junos OS Evolved with the following CLI configuration:

[edit]
user@host# set system processes nlsd enable

@ NOTE: Native Linux or container-based applications that require PacketlO and Netlink
functionality should be dynamically linked. We recommend using Ubuntu based Docker
containers, as they are the only containers that are officially qualified by Juniper
Networks. Ubuntu-based containers should use the glibc compatible with the base Junos
Evolved OS glibc.

Selecting a VRF for a Docker Container

For Junos OS Evolved Releases 23.4R1 and earlier, containers inherit virtual routing and forwarding
(VRF) from the Docker process. In order to run containers in a distinct VRF, a Docker process instance
needs to be started in the corresponding VRF. The docker@vrf.service instance allows for starting a
process in the corresponding VRF. If the VRF is unspecified, the VRF defaults to vrfe.

The docker.service runs in vrf:none by default.

For Junos OS Evolved Releases 24.1R1 and later, we recommend binding a specific task within the
container to a specific Linux VRF by using the ip vrf exec task command. This requires the container to
be started with the option --privileged, and the container needs to have a compatible version of iproute2
installed. The container should also share the network namespace with the host. You can also use the

socket option SO_BINDTODEVICE to bind the socket for a specific task or application within the container to a
specific Linux VRF device, in which case iproute2 is not needed.

The ip vrf show command lists all available Linux VRFs. If you choose to bind the sockets for a task within
the container to a VRF using iproute2, we recommend overwriting some env variables by using --env-
file=/run/docker-vrf@/jnet.env, so libnli.so won't be preloaded to avoid it interfering with iproute2.

You can launch a container and bind the socket associated with the container's task to the default vrf
vrf@ with the following commands:

[vrf:none] user@host:~# docker -H unix:///run/docker-vrf@.sock run --rm -it --privileged --
network=host --ipc=host --cap-add=NET_ADMIN --mount source=jnet,destination=/usr/evo --
device=/dev/jtd@ -v /dev/mcgrp:/dev/mcgrp -v /dev/shm:/dev/shm --env-file=/run/docker-vrfe/

jnet.env --dns ::1 debian:stretch bash

explicitly preload libsi.so and avoid libnli.so. Bind ping’s socket to vrf@ (default) VRF
[vrf:none] user@host: my-container/# LD_PRELOAD=1ibsi.so0.0@ ip vrf exec vrf@ ping 1.2.3.4

With this approach, different sockets associated with different tasks within the container can be
associated with different VRFs instead of all sockets bound to just one VRF.

The Docker process for a specific VRF listens on corresponding socket located at /run/docker- vrf.sock.

This is the VRF as seen on the Linux and not the Junos OS Evolved VRF. The utility evo_vrf_name (available
starting in Junos OS Evolved release 24.1) can be used to find the Linux VRF that corresponds to a
Junos OS Evolved VRF.

The Docker client gets associated with the VRF specific Docker process by use the following arguments:

--env-file /run/docker-vrf/jnet.env
--host unix:///run/docker-vrf.sock or export DOCKER_HOST=unix:///run/docker-vrf.sock

For example, to run a container in vrf@ enter the following Docker command and arguments:

[vrf:none] user@host:~# docker -H unix:///run/docker-vrf@.sock run --rm -it --network=host --
ipc=host --cap-add=NET_ADMIN --mount source=jnet,destination=/usr/evo --device=/dev/jtd0 -v /dev/
mcgrp:/dev/mcgrp -v /dev/shm:/dev/shm --env-file=/run/docker-vrf@/jnet.env --dns ::1
debian:stretch ip link
1002: et-01000000000: BROADCAST,MULTICAST,UP mtu 1514 state UP glen 1

link/ether ac:a:a:18:01:ff brd ff:ff.ff.ff.ff.ff
1001: mgmt-0-00-0000: BROADCAST,MULTICAST,UP mtu 1500 state UP glen 1

link/ether 50:60:a:e:08:bd brd ff:ff.ff.ff.ff.ff

1000: 100_0: LOOPBACK,UP mtu 65536 state UP glen 1
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

@ NOTE: A container can only be associated to a single VRF.

Modifying Resource Limits for Containers

The default resource limits for containers are controlled through a file located at /etc/extensions/
platform_attributes. You will see the following text upon opening this file:

Edit to change upper cap of total resource limits for all containers.

applies only to containers and does not apply to container runtimes.

memory.memsw.limit_in_bytes = EXTENSIONS_MEMORY_MAX_MIB + EXTENSIONS_MEMORY_SWAP_MAX_MIB: -0
please start extensions-cglimits.service to apply changes to CPU and Memory values here

please restart var-extensions.mount to apply changes to partition resize here

make sure the docker daemon is stopped before changing mount size

For changing EXTENSIONS_FS_DEVICE_SIZE_MIB, please also remove file rm /var/extensions_fs
make sure to create a backup before partition resize

check current defaults, after starting extensions-cglimits.service

$ /usr/libexec/extensions/extensions_cglimits get

you can also set current values like this as an alternative to starting extensions-
cglimits.service

$ /usr/libexec/extensions/extensions_cglimits set

if you set one of the memory values, set the other one as well - mandated by cgroup

device size limit will be ignored once extensionsfs device is created
H#EXTENSIONS_FS_DEVICE_SIZE_MIB=

H#EXTENSIONS_CPU_QUOTA_PERCENTAGE=

H#EXTENSIONS_MEMORY_MAX_MIB=

H#EXTENSIONS_MEMORY_SWAP_MAX_MIB=

To change the resource limits for containers, add values to the EXTENSIONS entries at the bottom of the file.
Make sure to do this prior to starting the Docker process.

e EXTENSIONS_FS_DEVICE_SIZE_MIB= controls the maximum storage space that containers can use. Enter the
value in megabytes. The default value is 8000 or 30% of the total size of /var, whichever is smaller.

Make sure to add this entry before starting the Docker process for the first time. If you need to
change this value later on, you will need to delete the existing partition, which can lead to loss of
data on this partition. If this storage partition needs to be changed after the Docker service has
already been started then Docker process needs to be stopped first with the systemctl stop docker
command, and the existing partition can be deleted using the systemctl stop var-extensions.mount
command followed by the rm /var/extensions_fs command. Once this attribute has been changed, start
the Docker process again and the new partition with the specified size will be created. You can also
restart var-extensions.mount with the systemctl restart var-extensions.mount command to achieve the same
result. We suggest taking a backup of the partition to avoid losing important data. We do not
recommend increasing this value beyond 30% of the /var partition as this can affect the normal
function of Junos OS Evolved.

e EXTENSIONS_CPU_QUOTA_PERCENTAGE= controls the maximum CPU usage that containers can use. Enter a
value as a percentage of CPU usage. The default value is 20% but can vary depending on the
platform.

e EXTENSIONS_MEMORY_MAX_MIB= controls the maximum amount of physical memory that containers can use.
Enter the value in megabytes. The default value is 2000 but it can vary depending on the platform. If
this needs to be modified, the swap value EXTENSIONS_MEMORY_SWAP_MAX_MIB= should also be specified. Note
that Linux cgroup does not allow unreasonable values to be set for memory and CPU limits. If the
values set are not reflected in the cgroup, the most likely reason is that the values are wrong (possibly
very high or very low).

e EXTENSIONS_MEMORY_SWAP_MAX_MIB= controls the maximum amount of swap memory that containers can use.
Enter the value in megabytes. The default value is 15% of available swap space, but it can vary
depending on the platform. Both the EXTENSION_MEMORY_MAX_MIB= and EXTENSIONS_MEMORY_SWAP_MAX_MIB= should
be set if either one is being modified. Recommended value for swap is 15% of
EXTENSION_MEMORY_MAX_MIB=. The actual cgroup value for swap would be EXTENSION_MEMORY_MAX_MIB +
EXTENSIONS_MEMORY_SWAP_MAX_MIB.

By default these are set to platform-specific values, so we recommend setting the values before starting
containers.

A CAUTION: Before modifying the resource limits for containers, be aware of the CPU and
memory requirements for the scale you have to support in your configuration. Exercise
caution when increasing resource limits for containers to prevent them from causing a
strain on your system.

Running Third-Party Applications Natively With
Signing Keys

IN THIS SECTION

Signing Keys Overview | 89

Generating Signing Keys | 90

Importing Signing Keys into the System Keystore and IMA Extended Keyring | 92
Viewing the System Keystore and IMA Extended Keyring | 93

How to Sign Applications | 94

Signing Keys Overview

Starting in Junos OS Evolved Release 22.4R1, you can generate signing keys and use them to sign
executable files or shared objects. Signing an executable file gives it permission to run on the device,
allowing you to approve trusted applications to run alongside authorized Juniper Networks software.

Junos OS Evolved requires users to sign all files that will be mapped into memory for execution. This
includes the following file types:

e Executable and Linkable Format (ELF) files

e Shared Obijects (.so) files

The following types of files do not need to be signed:
¢ Docker containers

e Applications inside containers

e Scripts

@ NOTE: Although scripts don't need to be signed, they do need to be passed through a
signed interpreter for execution. Junos OS Evolved comes installed with signed Python
2 and Python 3 interpreters that can be used through the python script-name shell
command.

Signing keys are controlled by a Linux subsystem called Integrity Measurement Architecture (IMA). IMA
policy consists of rules that define which actions needs to be taken before a file can be executed. IMA
measurement policy will measure and store a file’s hash, and IMA appraisal policy will make sure that the
file has a valid hash or digital signature. IMA will only allow a file to run if this validation succeeds. For
more information about IMA, see "Protecting the Integrity of Junos OS Evolved with IMA" on page 80.

Signing keys are stored in the system keystore, and the certificates used the verify signing keys are
stored in the /IMA extended keyring. Keep reading to learn how to generate, import, view, and use
signing keys.

Generating Signing Keys

IN THIS SECTION

Generating Signing Keys Using the OpenSSL Command-Line | 90

Generating Signing Keys Using an OpenSSL Configuration File | 91

Keys can be generated through the OpenSSL command-line or a OpenSSL configuration file.

Generating Signing Keys Using the OpenSSL Command-Line

The following example OpenSSL command can be used to generate signing keys:

openssl req -new \

-newkey rsa:3072 \ # Create an RSA 3072 key

-x509 \ # Need an X509 certificates
-sha256 \ # Strong hashing algorithm
-nodes \ # No encrypted private-key
-out ima-cert.x509 \ # Name of the certificate file
-outform DER \ # Key in DER format

-keyout privkey.pem \ # Name of the private key

This command will generate 2 files:
1. privkey.pem - The PEM encoded private key that can be used to sign executable files.

2. ima-cert.x509 - The DER encoded certificate to be loaded into the IMA extended keyring.

@ NOTE: The OpenSSL command-line is limited in its functionality. It does not allow you to
set values for the X509v3 extensions. All keys generated using the command above can
be used as Certificate Authorities (CAs), and therefore can be used to sign other
certificates. To prevent this, we can use an OpenSSL Configuration File.

Generating Signing Keys Using an OpenSSL Configuration File

Create a file named ima-x509.cnf and paste the following contents:

Begining of ima-x509.cnf

[req]

default_bits = 2048

distinguished_name = custom_distinguished_name
prompt = no

string_mask = utf8only

x509_extensions = custom_exts

[custom_distinguished_name]
0 = Juniper Networks, Inc.
CN = IMA extended signing key

emailAddress = john.smith@juniper.net

[custom_exts]
basicConstraints=critical,CA:FALSE
keyUsage=digitalSignature
subjectKeyIdentifier=hash
authorityKeyIdentifier=keyid

EOF

After the configuration file is created, use the following OpenSSL command to create the ima-privkey.pem
and ima-cert.x509 files:

openssl req -new \
-nodes \
-utf8 \
-shal \
-days 36500 \
-batch \
-x509 \

-config ima-x509.cnf \

-outform DER -out ima-cert.x509 \

-keyout ima-privkey.pem

The private key file ima-privkey.pem is used to generate signing keys, and the certificate file ima-cert.x509 is
used to verify the signature. Both files are used during the process of importing signing keys into the
system keystore and IMA extended keyring.

Importing Signing Keys into the System Keystore and IMA Extended
Keyring

Signing keys need to be imported into the system keystore prior to use. Keys that are imported into the
system keystore are automatically imported into the IMA extended keyring. Keys will be imported on
both Routing Engines.

To import a signing key into the system keystore, use the request security system-keystore import command
with the following 2 mandatory arguments:

1. key-name - A unique name for the key
2. x509-cert - Path to the DER encoded certificate file

The following example command will create a key named ima-test-key by using the certificate file ima-
cert.x509:

user@host> request security system-keystore import key-name ima-test-key x509-cert ima-cert.x509

Key Name: ima-test-key
X509 Cert Path: /etc/ima-ext/ima-test-key/ima-cert.x509
Key SKI: b71b35e380517cd224b46072dadeb6c53e0ab8al

When the key is successfully imported into the system-keystore you will see the above output displaying
the name of the key, the path to the certificate on disk, and the Subject Key Identifier (SKI) for the key.
You can check if this SKI matches with the key loaded into the IMA Extended keyring with the following
command:

user@host> show security integrity extended-keyring

Keyring
351716837 ---1swrv 0 0 keyring: ima_ext

684930381 --als--v 0 @ _ asymmetric: Juniper Extended Signing Key:
b71b35e380517cd224b46072dadeb6c53e0a58al

Viewing the System Keystore and IMA Extended Keyring

You can view the contents of the system keystore and the IMA extended keyring through Junos OS
Evolved CLI show commands.

Use the show security integrity system-keystore command to view the available signing keys in the system
keystore:

user@host> show security integrity system-keystore

Available signing keys:

Key Name: ima-test-key

X509 Cert Path: /etc/ima-ext/ima-test-key/ima-cert.x509
Key SKI: b71b35e380517cd224b46072dadeb6c53e0a58aT
Key Name: test-key1

X509 Cert Path: /etc/ima-ext/test-keyl/ima-cert.x509

Key SKI: 332f173d61bba0d3fed5399a609523chd3cfe66b3
Key Name: test-key2

X509 Cert Path: /etc/ima-ext/test-key2/ima-cert.x509

Key SKI: 26ebafd58b54f7b8b530d0311503fd84873ee754

The information in the Key SKI field can be used to map these keys to the IMA extended keyring.

Use the show security integrity extended-keyring command to view the contents of the IMA extended
keyring:

user@host> show security integrity extended-keyring

Keyring
351716837 ---1swrv 0 0 keyring: ima_ext
684930381 --als--v 0 @ _ asymmetric: Juniper Extended Signing Key:

b71b35e380517cd224b46072dadeb6c53e0a58al

316767440 --als--v 0 @ _ asymmetric: Juniper Extended Signing Key:
26ebafd58b54f7b8b530d0311503fd84873ee754
950431262 --als--v 0 @ _ asymmetric: Juniper Extended Signing Key:
332f173d61bbad3fed5399a609523chd3cfe66b3

How to Sign Applications

After a signing key has been imported into the system keystore, it can be used to sign executable
binaries.

Use the request security integrity measure file filename key key-name command to sign a file.

The following example command shows a file named ima-test being signed by a key named ima-test-
key:

user@host> request security integrity measure file ima-test key ima-test-key
Successfully signed file /data/var/home/root/ima-test

You can verify that your file was successfully signed by using the request security integrity appraise file
filename key key-name command, as follows:

user@host> request security integrity appraise file ima-test key ima-test-key
File /data/var/home/root/ima-test has a valid IMA signature

If the file was not signed properly, the following message will display:

user@host> request security integrity appraise file ima-test key ima-test-key

warning: IMA signature verification failed for /data/var/home/root/ima-test using ima-test-
key

IMA appraisal for /data/var/home/root/ima-test failed.

After a file has been signed, it can be run natively on your Junos OS Evolved device.

Managing Third-Party Applications

IN THIS SECTION

Using Intercept Libraries | 95

Removing Third-Party Applications | 104

Using Intercept Libraries

IN THIS SECTION

Example of a Preloaded Linux Command | 96
Interface Name Translation | 101

Caveats for the Intercept Feature | 103

Junos OS Evolved can run third-party applications because it runs on native Linux. There are some
differences between the way Linux displays requested network topology information such as interface
and route data and the way Junos OS displays this information. The CLI is designed to overcome these
differences. But typically, third-party applications running on native Linux obtain this information
directly from the native Linux sources using shell commands.

Junos OS Evolved uses an intercept mechanism that redirects shell requests for network topology
information to a space where the information can be obtained from Junos OS. This intercept mechanism
is accomplished through intercept libraries, libsi.so and libnli.so, that you preload. After you preload the
intercept library, certain types of requests are intercepted and show Junos OS information.

The intercept libraries are optional; they are needed only if the application requires the APIs mentioned
in Table 11 on page 96:

Table 11: APIs That Require Intercept Libraries

API Description

Packet 10 and Linux socket | Ability to send and receive packets over management and/or data interfaces.

APIs Standard libc, such as send, receive, listen.

rtnetlink Ability to use rtnetlink to query networking state like interfaces, routes.

netdevice Ability to configure network devices.

proc Ability to query kernel data structures using standard interfaces provided by Linux
kernel.

Junos APIs Ability to access Juniper North Bound APIs - NetConf/JET/Telemetry.

@ NOTE: For more information on Juniper Northbound APIs, see the following:
e Overview of JET APIs

e NETCONF XML Management Protocol and Junos XML API Overview

e Overview of the Junos Telemetry Interface

@ NOTE: Junos OS Evolved Release 20.1R1 supports the following features:

e Use the set system netlink-async-mode configuration to enable NETLINK_ROUTE
asynchronous notifications. This feature is disabled by default. Use show nsld mode to
show the current netlink asynchronous mode.

e SIOCETHTOOL ioctl, which can be used by other applications.

e Multipath next-hop route information through netlink route attributes.

Example of a Preloaded Linux Command

An example how the preload directive works follows using the command ifconfig, which displays
interfaces.

If you preload the ifconfig command with the intercept library, Junos OS interface information is
returned. Notice that the intercept library only translates logical interfaces. In this example, because

http://man7.org/linux/man-pages/man7/netlink.7.html
http://man7.org/linux/man-pages/man7/netdevice.7.html
http://man7.org/linux/man-pages/man5/proc.5.html
https://www.juniper.net/documentation/us/en/software/junos/jet-api/topics/concept/jet-apis.html
https://www.juniper.net/documentation/us/en/software/junos/netconf/topics/concept/netconf-xml-protocol-and-junos-api-overview.html
https://www.juniper.net/documentation/us/en/software/junos/interfaces-telemetry/topics/concept/junos-telemetry-interface-oveview.html

there are logical interfaces only on o0 and re0:mgmt-0.0, the output displays only these two interfaces

for the preloaded ifconfig command.

[vrf:none] user@host_REQ:~# LD_PRELOAD=1ibnli.so ifconfig

100_0

Link encap:Ethernet HWaddr 00:00:00:00:00:00

inet addr:128.102.224.244 Mask:255.255.255.255
inet6 addr: abcd::128:102:224:244/128 Scope:Global
inet6 addr: fe80::5668:a6f0:6e:b79/128 Scope:Link

UP LOOPBACK RUNNING MTU:65535 Metric:1

RX packets:@ errors:0 dropped:@ overruns:@ frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:@ txqueuelen:1

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

mgmt-0-00-0000 Link encap:Ethernet HWaddr 56:68:a6:6e:0b:79

inet addr:10.102.224.244 Bcast:10.102.239.255 Mask:255.255.240.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:1103938 errors:@ dropped:@ overruns:@ frame:Q

TX packets:1905 errors:@ dropped:@ overruns:@ carrier:0
collisions:@ txqueuelen:1

RX bytes:85166899 (81.2 MiB) TX bytes:243066 (237.3 KiB)

You can get the same results by running jbash, which is a shell provided with Junos OS Evolved that

preloads libnli.so and libsi.so by default.

A CAUTION: Only use jbash to get the network state information. Don't use jbash as your

default shell.

If you issue the command without preloading it with the intercept library, the output shown is from
Linux. Notice that the following output is longer than that from Junos OS. Linux does not make the
distinction between physical interfaces and logical interfaces that the Junos CLI does.

[vrf:none] user@host_REQ:~# ifconfig -a

etho

ethi

Link encap:Ethernet HWaddr 56:68:a6:6e:0b:79

UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500 Metric:1
RX packets:1608443 errors:44 dropped:@ overruns:@ frame:44
TX packets:2652 errors:@ dropped:@ overruns:@ carrier:0
collisions:@ txqueuelen:1000

RX bytes:150837081 (143.8 MiB) TX bytes:341675 (333.6 KiB)

Link encap:Ethernet HWaddr 56:68:a6:6e:0b:7e

eth2

eth3

eth4

ingvrf

iri

UP BROADCAST RUNNING PROMISC MULTICAST MTU:9600 Metric:1
RX packets:@ errors:0 dropped:@ overruns:0 frame:0

TX packets:5 errors:0 dropped:0 overruns:0 carrier:0
collisions:@ txqueuelen:1000

RX bytes:0 (0.0 B) TX bytes:418 (418.0 B)

Link encap:Ethernet HWaddr 56:68:a6:6e:0b:83

UP BROADCAST RUNNING PROMISC MULTICAST MTU:9600 Metric:1
RX packets:907046 errors:@ dropped:0 overruns:@ frame:0

TX packets:926156 errors:@ dropped:@ overruns:@ carrier:0
collisions:@ txqueuelen:1000

RX bytes:70342248 (67.0 MiB) TX bytes:119965968 (114.4 MiB)

Link encap:Ethernet HWaddr 56:68:a6:6e:0b:8d
BROADCAST MULTICAST MTU:1500 Metric:1

RX packets:@ errors:0 dropped:@ overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:@ txqueuelen:1000

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Link encap:Ethernet HWaddr 56:68:a6:6e:0b:9d

UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500 Metric:1
RX packets:1607983 errors:44 dropped:@ overruns:@ frame:44
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:@ txqueuelen:1000

RX bytes:150335380 (143.3 MiB) TX bytes:0 (0.0 B)

Link encap:Ethernet HWaddr 12:6e:39:d6:5a:64

UP RUNNING NOARP MASTER MTU:65536 Metric:1

RX packets:@ errors:0 dropped:@ overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:@ txqueuelen:1000

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Link encap:Ethernet HWaddr 4e:a2:93:c0:ac:67

inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr: ::1/128 Scope:Host

UP RUNNING NOARP MASTER MTU:65536 Metric:1

RX packets:2199380 errors:@ dropped:@ overruns:@ frame:0

TX packets:2216726 errors:0 dropped:@ overruns:@ carrier:0
collisions:@ txqueuelen:1000

RX bytes:674308465 (643.0 MiB) TX bytes:735412009 (701.3 MiB)

jtdo Link encap:Ethernet HWaddr 06:50:4e:19:c6:c5
inet6 addr: fe80::450:4eff:fe19:c6c5/64 Scope:Link
UP BROADCAST RUNNING NOARP MTU:65536 Metric:1
RX packets:@ errors:0 dropped:@ overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:@ txqueuelen:1
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

jtdrop Link encap:Ethernet HWaddr ba:d0:d0:72:7e:eb
inet6 addr: fe80::b8d0:deff:fe72:7eeb/64 Scope:Link
UP BROADCAST RUNNING NOARP MTU:65536 Metric:1
RX packets:@ errors:0 dropped:@ overruns:0 frame:0
TX packets:3 errors:0 dropped:0 overruns:0 carrier:0
collisions:@ txqueuelen:1
RX bytes:0 (0.0 B) TX bytes:210 (210.0 B)

jtdvo Link encap:Ethernet HWaddr 56:2a:0c:39:f1:5d
inet6 addr: fe80::542a:cff:fe39:f15d/64 Scope:Link
UP BROADCAST RUNNING NOARP MTU:65536 Metric:1
RX packets:@ errors:0 dropped:@ overruns:0 frame:0
TX packets:4 errors:0 dropped:0 overruns:0 carrier:0
collisions:@ txqueuelen:1
RX bytes:0 (0.0 B) TX bytes:280 (280.0 B)

jtdv50 Link encap:Ethernet HWaddr 56:5e:67:d6:e2:d2
inet6 addr: fe80::545e:67ff:fed6:e2d2/64 Scope:Link
UP BROADCAST RUNNING NOARP MTU:65536 Metric:1
RX packets:@ errors:0 dropped:@ overruns:0 frame:0
TX packets:4 errors:0 dropped:0 overruns:0 carrier:0
collisions:@ txqueuelen:1
RX bytes:0 (0.0 B) TX bytes:280 (280.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:32 errors:@ dropped:0 overruns:@ frame:0
TX packets:32 errors:0 dropped:@ overruns:@ carrier:0
collisions:@ txqueuelen:1
RX bytes:2144 (2.0 KiB) TX bytes:2144 (2.0 KiB)

mgmt_junos Link encap:Ethernet HWaddr 6a:75:4b:20:d0:4e
inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr: ::1/128 Scope:Host

UP RUNNING NOARP MASTER MTU:65536 Metric:1

RX packets:@ errors:0 dropped:@ overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:@ txqueuelen:1000

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

sito Link encap:UNSPEC HWaddr 00-00-00-00-30-30-30-00-00-00-00-00-00-00-00-00
NOARP MTU:1480 Metric:1
RX packets:@ errors:0 dropped:@ overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:@ txqueuelen:1
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

tunlo Link encap:IPIP Tunnel HWaddr
NOARP MTU:1480 Metric:1
RX packets:@ errors:0 dropped:@ overruns:@ frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:@ txqueuelen:1
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

vch Link encap:Ethernet HWaddr 56:68:a6:6e:0b:83
inet addr:176.1.1.1 Bcast:0.0.0.0 Mask:255.255.255.252
UP BROADCAST RUNNING PROMISC MULTICAST MTU:9600 Metric:1
RX packets:907043 errors:@ dropped:0 overruns:@ frame:0
TX packets:924347 errors:0 dropped:@ overruns:@ carrier:0
collisions:@ txqueuelen:1000
RX bytes:57643466 (54.9 MiB) TX bytes:118743890 (113.2 MiB)

vfb Link encap:Ethernet HWaddr 56:68:a6:6e:0b:7e
UP BROADCAST RUNNING PROMISC MULTICAST MTU:9600 Metric:1
RX packets:@ errors:0 dropped:@ overruns:0 frame:0
TX packets:0 errors:@ dropped:0 overruns:0 carrier:0
collisions:@ txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

vib Link encap:Ethernet HWaddr 3e:fb:67:87:16:1a
inet addr:128.0.0.4 Bcast:0.0.0.0 Mask:255.0.0.0
inet6 addr: fe80::3cfb:67ff:fe87:161a/64 Scope:Link
UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500 Metric:1
RX packets:@ errors:0 dropped:@ overruns:0 frame:0
TX packets:74 errors:0 dropped:@ overruns:@ carrier:0

collisions:@ txqueuelen:1000

RX bytes:0 (0.0 B) TX bytes:3420 (3.3 KiB)

vmb@ Link encap:Ethernet HWaddr 56:68:a6:6e:0b:79
inet addr:10.102.224.244 Bcast:0.0.0.0 Mask:255.255.240.0
UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500 Metric:1
RX packets:1602504 errors:@ dropped:@ overruns:@ frame:Q
TX packets:2645 errors:@ dropped:@ overruns:@ carrier:0
collisions:@ txqueuelen:1000
RX bytes:124666750 (118.8 MiB) TX bytes:340201 (332.2 KiB)

vmb1 Link encap:Ethernet HWaddr 56:68:a6:6e:0b:9d
UP BROADCAST RUNNING PROMISC MULTICAST MTU:1500 Metric:1
RX packets:1602784 errors:@ dropped:0 overruns:@ frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:@ txqueuelen:1000
RX bytes:124008554 (118.2 MiB) TX bytes:0 (0.0 B)

vrfo Link encap:Ethernet HWaddr ca:12:9e:40:a8:01
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP RUNNING NOARP MASTER MTU:65536 Metric:1
RX packets:124413 errors:0 dropped:0 overruns:@ frame:0
TX packets:2597 errors:@ dropped:@ overruns:@ carrier:0
collisions:@ txqueuelen:1000
RX bytes:19087613 (18.2 MiB) TX bytes:338185 (330.2 KiB)

vrf50 Link encap:Ethernet HWaddr 06:de:d7:3d:18:be
UP RUNNING NOARP MASTER MTU:65536 Metric:1
RX packets:@ errors:0 dropped:@ overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:@ txqueuelen:1000
RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

Interface Name Translation

One limiting factor to using this intercept mechanism is that Linux interface naming is incompatible with
the Junos OS interface naming. Linux supports 15-byte interface names (15 + null-character); network
interface names that exceed this limit are truncated in outputs. Junos OS logical interface names could
be longer than 15 bytes, for example, et-0/0/10:2.32767.

To work around this difference, Junos OS Evolved uses a translation rule (see Table 12 on page 102) to
render logical interface names in a Linux-compliant format. The translation renders a format such as

name-fpcSlot/picSlot/port:channelld.subUnit to nn-ffpttcessss. Using interface names translated according to
this rule, third-party applications can effectively fetch the topology information from Junos OS.

Only translation of logical interface names is supported, and translation of both channelized and
nonchannelized logical interface names is supported.

Table 12: Translation Rule for Interface Names

Value Description Allotted Space (in bytes) Range

nn mapped name bytes 2

ff fpcin hex 2 0-255

p pic in hex 1 0-15

tt port number in hex 2 0-255

cc channel in hex; use “xx” if not 2 0-255
present

SSSS subunit in hex 4 0-65535

Except for management interfaces, if the logical interface name does not have a hyphen (-) in it, the dot (.) in the
name is changed to an underscore (_), for example: ifdname.subunit gets translated to ifdname_subunit.

For management interfaces, reX:mgmt-Y.Z translates to mgmt-x-yy-zzzz, where x, yy, zzzz are in hex-padded with O
for a fixed length. And the reverse translation happens on the same lines.

See Table 13 on page 102 for examples of Junos logical interface names and their Linux-compliant
forms.

Table 13: Examples of Translated Logical Interface Names

Junos Logical Interface Name Translated Linux-Compliant Interface Name

et-1/2/3.4 et-01203xx0004

Table 13: Examples of Translated Logical Interface Names (Continued)

Junos Logical Interface Name

ge-1/2/3.32

et-1/15/3.4

et-1/2/255:6.7

et-1/2/4:5.32767

reO:mgmt-1.2

ae0.1

irb0.11

Translated Linux-Compliant Interface Name

ge-01203xx0020

et-01f03xx0004

et-012ff060007

et-01204057fff

mgmt-0-01-0002

ae0_1

irb0_11

When accessing Junos OS states by preloading libnli.so, the interface name in the output is shown as a
translated Linux-compliant interface name. You must also use the translated Linux-compliant interface
name when using it as an argument in a command. The translated et-01000000000 interface name is used
as an argument in the following example:

[vrf:none] user@host_REQ:~# LD_PRELOAD=1ibnli.so ifconfig et-01000000000
et-01000000000 Link encap:Ethernet HWaddr 5c:31:b0:35:01:ff
inet addr:20.20.20.24 Bcast:20.20.20.255 Mask:255.255.255.0
inet6 addr: 2000:200:20::2/64 Scope:Global
inet6 addr: fe80::5e31:b0ff:fe35:1ff/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1514 Metric:1
RX packets:312 errors:@ dropped:@ overruns:@ frame:0
TX packets:156 errors:0 dropped:@ overruns:@ carrier:0
collisions:@ txqueuelen:1
RX bytes:31004 (30.2 KiB) TX bytes:21346 (20.8 KiB)

Caveats for the Intercept Feature

This intercept feature supports read-only requests. Any write request returns an error.

Representation of certain Junos network state may not be mappable to Linux equivalents. In these
cases, the data is either be omitted or re-mapped to a comparable Linux model. For example, Junos OS
Evolved supports a rich suite of nexthop types such as composite or unilist that do not have comparable
implementations in native Linux.

Third-party applications that are linked statically cannot be intercepted and, therefore, are not
supported by this feature.

Removing Third-Party Applications
There are several methods for removing third-party applications. The method you should use is based on
how you installed the application.

o If a third-party application was installed with the request system software add command, then you can
remove the same application by using the request system software delete command.

user@host> request system software delete ima-test
Removing version 'ima-test'.

Software ... done.

Data ... done.

Version 'ima-test' removed successfully.

e The first step in removing these applications is to unlink the key with the request security system-
keystore unlink ey command.

user@host> request security system-keystore unlink key

Next, remove any binaries that you installed for the application with the rm -f /path/to/binary1 /
path/to/binary2 shell command.

user@host:~# rm -f /path/to/binaryl /path/to/binary2

e If a third-party application was installed through a Docker container, then use the following Docker
command to remove the container:

docker rm container-name

Building Third-Party Applications

IN THIS SECTION

JET SDK for Junos OS Evolved | 105

SysMan and systemd Controlled Applications | 107
Folder Structure for Third-Party Applications | 107
Third-Party Application Files | 109

Creating a Third-Party Package | 113

Installing a Third-Party Package | 116

Junos OS Evolved supports packages of signed third-party applications developed in C, C++, and Python
with the JET SDK for Junos OS Evolved. The Junos OS Evolved application manager (SysMan) or the Linux
system manager (systemd) controls these third-party applications based on the nature and usage of the
application.

JET SDK for Junos OS Evolved

IN THIS SECTION

Downloading the JET SDK and JET Toolkit | 106
Installing the JET SDK and JET Toolkit for Junos OS Evolved | 106

Before building a third-party application to run on your device, you must first generate signing keys to
give your application permission to run. See "Generating Signing Keys" on page 90 for more information.

Junos OS Evolved release 22.4R1 and later versions support the JET SDK for Junos OS Evolved on the
following platforms:

Table 14: JET SDK for Junos OS Evolved Supported Platforms

ACX Series PTX Series QFX Series
ACX7100-32C PTX10001-36MR QFX5130-32CD
ACX7100-48L PTX10003 QFX5130-48C
ACX7509 PTX10004 QFX5220
PTX10008
PTX10016

Downloading the JET SDK and JET Toolkit

Before you begin building a third-party application, download and install the JET SDK for Junos OS
Evolved and the JET Toolkit for Junos OS Evolved. You can find these files on the Juniper Extension
Toolkit (For Junos Evolved) page:

e The JET SDK for Junos OS Evolved: jet-junos-evo-sdk- release-EVO.deb

e The JET Toolkit for Junos OS Evolved: jet-junos-evo-toolkit-release-EVO.tar.gz

Installing the JET SDK and JET Toolkit for Junos OS Evolved

After downloading the JET Toolkit for Junos OS Evolved, unpack the tar file and extract the Jet-evo utility
from the package.

@ NOTE: Starting in Junos OS Evolved release 23.2R1 and later you can also extract the
Jet-evo-bundle-iso utility for creating bundled I1SOs. For more information on bundled
ISOs, see "Creating a Bundled ISO" on page 118.

After downloading the SDK, install and source it. The JET SDK for Junos OS Evolved is a Debian
package that you can install on Debian-based Linux distributions like Ubuntu and Debian. Use the
following Linux command to install the JET SDK for Junos OS Evolved release 22.4R1:

user@host:~$ dpkg -i jet-junos-evo-sdk-22.4R1.10-EVO.deb
The dpkg command will install the SDK into the /opt/jnpr/sdk/3.0.2-31 folder.

https://support.juniper.net/support/downloads/?p=juniper-extension-toolkit-evo
https://support.juniper.net/support/downloads/?p=juniper-extension-toolkit-evo

Next, you need to source the SDK for your third-party package. Use the following commands to source
the JET SDK for Junos OS Evolved for a package in Junos OS Evolved release 22.4R1:

user@host: ~/package-name$ source /opt/jnpr/sdk/3.0.2-31/environment-setup-core2-32-poky-linux
user@host: ~/package-name$ source/opt/jnpr/sdk/3.0.2-31/environment-setup-core2-64-poky-linux

user@host:~~/package-name$ source /opt/jnpr/sdk/3.0.2-31/environment-setup-x86-pokymllib32-1inux

SysMan and systemd Controlled Applications

The native Junos OS Evolved application manager (SysMan), or the Linux system manager (systemd) can
control third-party applications. SysMan controlled applications can take advantage of Junos OS Evolved's
distributed infrastructure and run across multiple nodes. Meanwhile, systemd managed applications can
only run on a single node, so SysMan is the preferred application manager in most cases.

SysMan and systemd managed applications use different methods to define policy through service files.
Applications managed through SysMan use .yaml files to define policy and assign services. See "yaml Files"
on page 111 for more information.

Applications managed through systemd define policy and assign services through .service files. See
"Service Files" on page 110 for more information.

When routing engine switchover occurs, SysMan managed applications will start automatically on the new
primary Routing Engine, but systemd managed applications will continue running on the original Routing
Engine. We recommend using SysMan controlled applications when possible on dual Routing Engine
systems.

Folder Structure for Third-Party Applications

IN THIS SECTION

root-fs Folder Structure | 108

Post-install Folder Structure | 108

Third-party application packages follow a specific folder structure in Junos OS Evolved.

root-fs Folder Structure

The root-fs folder contains the following folders:

usr/sbin (mandatory): Contains the binary executable file for the application.
o usr/lib64 (optional): Contains the necessary libraries for the application.

o etc/sytemd/sytem (optional): Contains systemd service unit files for systemd controlled applications
(mandatory for systemd managed applications).

e usr/conf (optional): Contains .yaml files for policy generation (mandatory for SysMan managed
applications).

You can find the following optional folders outside the root-fs folder:
e scripts (optional): Contains the preinstall, post-install and pre-uninstall scripts.

e etc/config (optional): Contains application specific configurations.

Post-install Folder Structure

After you install the third-party package, it will store the files at the following paths by default:

/usr/sbin/: Contains the binary executable files for applications in the package.

/usr/lib64/: Contains the libraries for applications in the package.

e /data/var/external/ current-evo-version/: Contains pre-install, post-install, and pre-uninstall script
files, as well as .bom, .sh, .fs and .ima files for the applications in the package.

o /etc/systemd/system/: Contains .service files for setting application policies and attached services.

e /usr/conf/: Contains .yaml files for SysMan controlled applications.

@ NOTE: You can find the files for libraries and binaries in read-only folders. We do not
recommend placing libraries and binaries in read-write enabled folders like /etc or /var.

Third-Party Application Files

IN THIS SECTION

Makefile | 109
SRC Files | 109
Script Files | 109
Service Files | 110
yaml Files | 111

Third-party application packages include several types of files. Keep reading for more information about
the different file types:

Makefile

The Makefile is a necessary file for building and installing your third-party application. The Makefile
needs to include the paths for other files like the SRC file, configuration file, and .yaml file. It also controls
the installation location of the necessary files.

SRC Files

SRC files contain the source code for your application. You can write SRC files in C, C++ or Python.
These files are necessary for the function of your third-party application.

Script Files

Script files include pre-install, post-install and pre-uninstall scripts. These optional files are shell scripts
that you can customize to fit the needs of your application.

e Pre-install scripts run before installing your third-party package. These scripts are typically used for
testing and checking various factors on your device. For example you could create a pre-install script
to check the version of Junos OS Evolved that is running before starting installation.

e Post-install scripts run after installing your third-party package. These scripts contain that commands
to run after finishing installation. For example, creating additional log files or a logging directory for
your package.

e Pre-uninstall scripts run before uninstalling your third-party package. These scripts are typically used
to clean up folders and files created during the installation of your third-party package.

@ NOTE: All scripts must return zero upon successful execution and nonzero upon failure.

Scripts can be created in any folder. During the third-party package creation process with the Jet-evo
tool, you can enter the paths to each type of script and they will be installed in the /data/var/external/
current-evo-version/ folder on your device. For more information on the Jet-evo tool, see "Jet-evo Tool
Configuration" on page 114.

@ NOTE: If you are creating custom scripts, we recommend that you do not use any bash
commands that will create additional CLI output. You can redirect CLI output to your
own log file.

Service Files

Service files are mandatory files for systemd controlled applications. These files control application policy
and determine which nodes and Routing Engines the application runs on.

You must place the service files inside the etc/systemd/system/ folder in the root-fs directory for your
package.

The following example is a .service file for an application named Sample App. This .service file defines the
path to start the application, and the system state required to run the application.

[Unit]

Description="Sample App"

After=syslog.target sysman.service network.target network-online.target
Before=pre-evoapp-shutdown.service

OnFailure=failure_handler@%p.service

[Service]
EnvironmentFile=/usr/conf/system/system_env
TimeoutStopSec=60
WorkingDirectory=/usr/sbin
ExecStart=/usr/evo/evostart -d /usr/sbin -p %p /usr/bin/python /usr/sbin/sample/sample_app.py
ExecStop=/usr/shin/exit_foo.py --bar
ExecStopPost=/usr/evo/exit_handler.sh %p
Restart=no

StartLimitBurst=3

StartLimitInterval=300

MemoryLimit=2G

RemainAfterExit=true
SyslogIdentifier=sample_app

The following fields are mandatory and should be used with the same syntax as the example file:
o After

e Before

e OnFailure

e WorkingDirectory

e ExecStart

ExeStopPost

yaml Files

.yaml files are mandatory files for SysMan controlled applications. These files are used to pass application
specific policies that are used in the creation of systemd based service units and SysMan based policies
during installation. .yaml files are also used to determine which nodes and Routing Engines the
application runs on.

@ NOTE: If you include both .yaml and .service files for the same application in a package,
then the .service file attributes will take precedence and the application will be treated as
a sysman controlled application.

Third-party packages can have more than one service attached with the package. Each application
controlled by SysMan must have a separate .yaml file for each attached service, with the service names as
the .yaml filenames. .yaml filenames should match with the service names, rather the package name,
because third-party package names can be different from the services included with the package.

You must place .yaml files inside the usr/conf folder in the root-fs directory for your package.

A .yaml file consists of multiple fields containing information about the corresponding application. See
the following list for definitions of the .yaml file fields:

binpath Defines the path to the binary executable file.

exec-start Defines how to start the application, including the path and the arguments required for
starting the application. This field corresponds to the ExecStart field in a systemd service unit.

working-dir Defines the path to the parent directory with binaries.

id Controls the name of the application. Should match the .yaml filename.

network Sets the network type, with values of internal or external. Applications that communicate

outside the device should use the external value.

on-exit Controls the setting for restarting the application upon exit.

restart: Controls if the application will be restarted upon exit with true or false values.

resource Sets the limits to system resources used by the application:

max-memory: Controls the maximum amount of memory allowed to be consumed by each
instance of application.

node-attribute: Controls the type of node that the application will run on, with values
such as -re and fpc.

o node-type: Control the type of node for the action to run on, with values such as -re
and fpc.

startup: Controls if the application will be started after installation if a user defined
Junos OS Evolved configuration is present with true or false values.

instances: Controls the nodes that the application will be running on and maximum
number of instances it can run.

e 3ll_nodes: Control if the application will run on all nodes with true or false values.

e max_num_of_instances: Control the max number of instances that an application can run
with a number value.

The following sample .yaml file shows the configuration for a sample application that will run on the

primary Routing Engine with only 1 instance. Setting the all_nodes field to false prevents the application

from running on all Routing Engines. Setting the max_number_of_instances field to 1 limits the application to
1 instance. Setting the node-attribute field to -re makes the application run on the Routing Engine. With

this configuration, if the primary Routing Engine goes down, the application will automatically start on

the backup Routing Engine.

description: "Sample app"

binpath: /usr/sbin/sample/sample_app.py

exec-start: "/usr/bin/python /usr/sbin/sample/sample_app.py"

working-dir: /usr/sbin

id: sample-app

network: internal

on-exit:

restart: true
resource:
instances:
all_nodes: false
max_num_of_instances: 1
node-attributes: - re
max-memory: 2G

startup: true

Creating a Third-Party Package

IN THIS SECTION

Create a SysMan Managed Package | 113
Create a systend Managed Package | 114

Jet-evo Tool Configuration | 114

The Jet-evo tool creates third-party packages using the applications, binaries, and libraries created by the
application developer. The process for creating a third-party package differs based on whether the Junos
OS Evolved SysMan process or the Linux systemd process will manage the package. See below for more
details on each specific scenario:

Create a SysMan Managed Package

External applications managed by SysMan need to have .yanl files for the services attached to the
application.

1. Build and compile the application with C, C++, or Python using the JET SDK for Junos OS Evolved.

2. Create the necessary folders as explained in "Folder Structure for Third-Party Applications" on page
107.

3. Keep the binary executable in the usr/sbin/ folder.
4. Keep the .yaml files in the usr/conf/ folder and configuration files in the etc/config/ folder.

5. Run the Jet-evo tool using options specific to your package. See "Jet-evo Tool Configuration" on page
114 for more information about the configuration options in the Jet-evo tool.

@ NOTE: You can optionally package your own systemd file along with the .yaml file if you
need to use complex functions of systemd that cannot be included in a .yanl file. Place the
service file in the etc/systemd/system/ folder and .yaml file in the usr/conf folder.

Create a systemd Managed Package

External applications managed by systend need to have a .service file for the services attached to the
application.

1. Build and compile the application with C, C++, or Python using the JET SDK for Junos OS Evolved.

2. Create the necessary folders as explained in "Folder Structure for Third-Party Applications" on page
107.

3. Keep the binary executable in the usr/sbin/ folder.
4. Keep the service file in the etc/systemd/system/ folder.

5. Run the Jet-evo tool using options specific to your package. See "Jet-evo Tool Configuration" on page
114 for more information about the configuration options in the Jet-evo tool.

Jet-evo Tool Configuration

IN THIS SECTION

Required Arguments | 115
Optional Arguments | 115

Example Syntax | 116

The Jet-evo tool is used to name your third-party package, set the version number, run installation
scripts, and set the installation location for your third-party package. These variables are all controlled
by options set when you run the jet-evo command:

$./Jet-evo -h

usage: Jet-evo [-h] -n NAME -r ROOT [-v VERSION] [-a ARCH] [-N NODE]
[-i PREINSTALL] [-p POSTINSTALL] [-u PREUNINSTALL]
[-d DIRECTORY] [-x] [-t] [-1 LOGFILE] [-k KEY]

@ NOTE: See "Generating Signing Keys" on page 90 for information on generating a private
key to use with the Jet-evo tool.

Required Arguments

The following arguments are required:
-h name Set the name of your third-party package.
-r root. Define the root paths to the applications included in your package, separated by commas.

-V version. Set a version number for your package.

Optional Arguments

The following arguments are optional:

-h Displays a help message explaining the Jet-evo fields.

-a architecture Choose the architecture targeted by your third-party package.
-n node Define the nodes targeted by your third-party package.

-i pre-install Specify file paths to pre-install scripts.

-p post-install Specify file paths to post-install scripts.

-u pre-uninstall Specify file paths to pre-uninstall scripts.

-d directory Set the target directory for installing your package.

-X Strips all debug files from the package.

-t Create a TAR file with all the output of the Jet-evo tool.

-| name Set the name and path of the packager logging file.

-k key Private key used for signing the third-party package.

Example Syntax

The following is an example of the syntax for the jet-evo command using a package named sample_package
with version 1.0.1:

$ jet-evo -n sample_package -v 1.0.1 -t
-i ./src/scripts/sample_package_preinstall
-p ./src/scripts/sample_package_postinstall
-u ./src/scripts/sample_package_preuninstall
-d ./target/ -r ./install/
-k ima-privkey.pem

Installing a Third-Party Package

After you have built or obtained a third-party application package, you can install it onto a Junos OS
Evolved device. A package can install multiple applications together. The installation process will
overwrite any previously installed application that exists in the package. We recommend keeping
applications inside packages unique across different packages.

Before installing a third-party application, you must first install the appropriate signing keys and
certificates on all REs. Installation will fail if signing keys are not properly generated. See "Generating
Signing Keys" on page 90 for more information.

You can view installed keys by using the show security integrity extended-keyring command.

You can install third-party packages using the request system software add package-name command. For
example:

request system software add sample_package.1.0.1.tgz

@ NOTE: Third-party packages can only be installed from the master Routing Engine.

After successfully installing a third-party package, the installation process will copy all associated files
into the /data/var/external/ current-evo-version/ folder. The show version output will display all of the third-
party packages on each Routing Engine for a particular software version under the External Software field:

user@host> show version
Hostname: sample_host
Model: ptx10008

Junos: 22.4120221214083306-EVO

Yocto: 3.0.2

Linux Kernel: 5.2.60-yocto-standard-gae998d995

JUNOS-EVO 0S 64-bit [junos-evo-install-ptx-x86-64-22.4120221214083306-EVO]
External Software:

JET app sample_package 1.0.1

To display all the versions of Junos OS Evolved installed on your device, and the third-party packages
installed for the current version on each node and each Routing Engine, you can use the show software
list command:

user@host> show system software list | no-more

Active boot device is primary: /dev/vda
List of installed version(s) :
'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version
'x' deleted JSU version

> junos-evo-install-ptx-x86-64-22.4120221214085042
- junos-evo-install-ptx-x86-64-22.4120221214083306
< junos-evo-install-ptx-x86-64-22.4120221214072149

junos-evo-install-ptx-x86-64-22.4120221214055215

[2022-12-14 09:14:39]
[2022-12-14 08:58:24]
[2022-12-14 08:04:20]
[2022-12-14 06:39:46]

External Software:
JET app sample_package 1.0.1

Active boot device is primary: /dev/vda
List of installed version(s) :
'-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version
'x' deleted JSU version

> junos-evo-install-ptx-x86-64-22.4120221214085042 - [2022-12-14 09:16:48]

- junos-evo-install-ptx-x86-64-22.4120221214083306 - [2022-12-14 08:58:59]
< junos-evo-install-ptx-x86-64-22.4120221214072149 - [2022-12-14 08:04:52]
junos-evo-install-ptx-x86-64-22.4120221214055215 - [2022-12-14 06:40:38]

External Software:
JET app sample_package 1.0.1

Creating a Bundled ISO

SUMMARY IN THIS SECTION
You can use bundled I1SOs to combine a Junos OS Jet-evo-bundle-iso Tool Configuration | 118
Evolved image with third-party packages into a single Installing a Bundled ISO | 119

bundle for easy installation.
Upgrading with a Bundled ISO | 121

Rollback from a Bundled ISO | 122

Starting in Junos OS Evolved release 23.2R1, you can bundle a Junos OS Evolved image together with

custom applications and scripts to create a bundled ISO. Bundled ISO installation follows the standard

Junos OS Evolved software upgrade process. Bundled ISOs help simplify the process of installing third-
party applications and scripts.

Bundled ISOs are created using a tool in the JET Toolkit for Junos OS Evolved called Jet-evo-bundle-iso.
For more information on installing the JET Toolkit for Junos OS Evolved and the Jet-evo-bundle-iso tool,
see "Installing the JET SDK and JET Toolkit for Junos OS Evolved" on page 106.

Jet-evo-bundle-iso Tool Configuration

IN THIS SECTION

Required Arguments | 119

Optional Arguments | 119

The Jet-evo-bundle-iso tool is used to generate the bundled ISO. You need to specify the directories
containing the files to be bundled into the bundled ISO, and set the install path for the bundled I1SO. You
can control these variables with the follow options from the Jet-evo-bundle-iso command:

$ Jet-evo-bundle-iso -h
Usage : Jet-evo-bundle-iso -p <custom-package-path> -i <input-evo-iso> -n <bundle-name> -o
<output-directory>

@ NOTE: You should include all the third-party packages and scripts that you want to
install, even if they exist on the system as part of another bundled ISO or standalone
application package.

Required Arguments

The following arguments are required:

-p directory Path to the directory containing custom package tgzs.

-i path Path to the standard Junos OS Evolved ISO that will be included in the bundled 1SO.
-0 path Path where the bundled ISO will be created.
Optional Arguments

The following arguments are optional:

-h Displays a help message explaining the Jet-evo-bundle-iso fields.

-n name Custom name for the bundled ISO. If a name is not specified, then the output ISO name will
be the same as the input ISO.

When you run the Jet-evo-bundle-iso command with all the required arguments, the bundled I1SO gets
created at the path specified by the -o argument.

Installing a Bundled 1ISO

After successfully running the Jet-evo-bundle-iso command, you can install the bundled ISO using the
regular Junos OS Evolved installation process.

@ NOTE: Before installing a bundled ISO, you must install the private keys and certificates
for the custom packages inside the bundled ISO on each RE. For more information on
installing signing keys, see "Importing Signing Keys into the System Keystore and IMA
Extended Keyring" on page 92.

Before installation, you can validate the bundled ISO with the following command:
e request system software validate bundled-iso-path

Enter the following command to install the bundled I1SO:

e request system software add bundled-iso-path

When the installation process finishes, reboot the device:

e request system reboot

After the device reboots, the bundled image will become the running version and all applications in the
bundled ISO will start.

If any step of the install process fails for any of the third-party packages inside a bundled ISO, then the
installation will fail for the entire bundled 1SO.

@ NOTE: If you are upgrading from a bundled ISO to another bundled ISO, existing third-
party packages don't get copied over to the upgraded image. If you wish to upgrade to
another bundled ISO and keep using the same third-party packages, then the upgraded
image must contain all the same custom packages as the existing image.

After successfully installing a bundled I1SO, you can use the show version command to confirm the
installation. The [Custom Bundle] tag next to the currently running version of Junos OS Evolved indicates a
bundled ISO installation:

user@host> show version

Hostname: host

Model: ptx10008

Junos: 23.2120230225124619-EVO

Yocto: 3.0.2

Linux Kernel: 5.2.60-yocto-standard-g12117a8

JUNOS-EVO 0S 64-bit [junos-evo-install-ptx-x86-64-23.2120230225131046] [Custom Bundle]
External Software:

JET app custom_logger1.0.1

JET app multi_appl.1.1
JET app custom_multi_app1.0.1

The output of the show software list command will also display the [Custom Bundle] tag to indicate a
bundled ISO:

user@host> show system software list

Active boot device is primary: /dev/vda

List of installed version(s) :

-' running version
'>' next boot version after upgrade/downgrade
'<' rollback boot version

'x' deleted JSU version

- junos-evo-install-ptx-x86-64-23.2120230225131046 - [2023-02-25 14:08:17] [Custom Bundle]
JET app custom_logger 1.0.1
JET app custom_multi_app 1.0.1
JET app multi_app 1.1.1

< junos-evo-install-ptx-x86-64-23.2120230225124619-EV0 - [2023-02-25 13:06:14]

@ NOTE: Third-party packages that have been installed through a bundled ISO can be
removed with the same process as independently installed third-party packages. See
"Removing Third-Party Applications" on page 104.

Upgrading with a Bundled ISO

You can upgrade from a standard or bundled I1SO to another standard or bundled I1SO if the Junos OS
Evolved image version is the same for both the source and target images. Use the request system software
add restart target-isocommand to initiate the upgrade process.

For more information on the expected behavior for different bundled ISO upgrade scenarios, see the
following list:

Upgrade from standard ISO to Only the third-party packages from the bundled ISO will be
bundled ISO installed.

Upgrade from bundled ISO to All third-party packages from the current bundled ISO will be
standard ISO deleted.

Upgrade from a bundled ISO to a All the third-party packages from the current bundled ISO will be
different bundled ISO deleted and the third-party packages from the incoming bundled
ISO will be installed.

@ NOTE: When you install a standalone third-party package on top of a bundled ISO, it will
be considered part of the custom bundle and will not be carried over during upgrades.

Rollback from a Bundled ISO

After installing a bundled ISO, you can rollback to the previous installation by using the request system
software rollback command. Third-party packages don't get copied when rolling back to a previous
release.

CHAPTER

Finding Software Documentation for

Junos OS Evolved

IN THIS CHAPTER

Where to Find Software Documentation for Junos OS Evolved | 124

Where to Find Software Documentation for Junos
OS Evolved

SUMMARY

Learn where to find software documentation for Junos OS Evolved in the Juniper Networks
TechLibrary.

Looking for Junos OS Evolved documentation? You've come to the correct place! Learn where to find
software documentation for Junos OS Evolved in the Junos OS documentation set.

In general, Juniper features and technologies work the same on Junos OS and Junos OS Evolved, so
much of the documentation applies to both operating systems. Given the incredible number of features
and amount of documentation available, we want to help you and other Junos OS Evolved users find the
most relevant content quickly.

In a few cases, Junos OS and Junos OS Evolved differ. Where possible, we inserted inline

.
JUNQS . D . o . .
notes into the documentation like this to highlight the difference or differences.

EVOLVED

The following resources specific to Junos OS Evolved will help you get up and running quickly:

e Feature Explorer—Use Feature Explorer to view and compare the software features supported on
Junos OS Evolved according to your software release and platform.

e Release Notes—Check out the Release Notes page to obtain the Release Notes for your version of
Junos OS Evolved. Learn about new features, known issues, and more!

e Software Guides—Use these OS-specific guides to help you learn about the basics of Junos OS
Evolved:

e CLI User Guide for Junos OS Evolved

o Getting Started with Junos OS Evolved

¢ Interfaces Fundamentals for Junos OS Evolved
e Introducing Junos OS Evolved

e Junos OS Evolved Software Installation and Upgrade Guide

https://apps.juniper.net/feature-explorer/select-software.html?swName=Junos+OS+Evolved&typ=1
https://www.juniper.net/documentation/product/us/en/junos-os-evolved#cat=release_notes
https://www.juniper.net/documentation/us/en/software/junos/cli-evo/index.html
https://www.juniper.net/documentation/us/en/software/junos/junos-getting-started-evo/index.html
https://www.juniper.net/documentation/us/en/software/junos/interfaces-fundamentals-evo/index.html
https://www.juniper.net/documentation/us/en/software/junos/overview-evo/index.html
https://www.juniper.net/documentation/us/en/software/junos/junos-install-upgrade-evo/index.html

125

e User Access and Authentication Administration Guide for Junos OS Evolved

https://www.juniper.net/documentation/us/en/software/junos/user-access-evo/index.html

CHAPTER

Configuration Statements and

Operational Commands

IN THIS CHAPTER

Junos CLI Reference Overview | 127

Junos CLI Reference Overview

We've consolidated all Junos CLI commands and configuration statements in one place. Read this guide
to learn about the syntax and options that make up the statements and commands. Also understand the
contexts in which you'll use these CLI elements in your network configurations and operations.

e Junos CLI Reference

Click the links to access Junos OS and Junos OS Evolved configuration statement and command
summary topics.

e Configuration Statements

e Operational Commands

https://www.juniper.net/documentation/us/en/software/junos/cli-reference/index.html
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/topic-map/configuration-statements.html
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/topic-map/operational-commands.html

	Table of Contents
	About This Guide
	Overview of Junos OS Evolved
	Junos OS Evolved Overview
	Top Differences Between Junos OS Evolved and Junos OS
	How Junos OS Evolved Differs from Junos OS
	Default Directories for Junos OS Evolved File Storage
	Junos OS Evolved Components and Processes
	Error TPAs for Route Installation
	Overview of Error Third-Party Attachments (TPAs) on Errored Objects During Route Installations
	Set Up the System for Error TPAs
	CLI Commands for Viewing Error Details

	Shell Commands for Junos OS Evolved
	Where to Find Information on Common Procedures

	Junos OS Evolved Configuration Overview
	Junos OS Evolved Configuration Basics
	Methods for Configuring Junos OS Evolved
	Junos OS Evolved Configuration from External Devices

	Running 3rd Party Applications with Junos OS Evolved
	Overview of Third-Party Applications on Junos OS Evolved
	Introduction to Third-Party Applications on Junos OS Evolved
	Running Applications in Containers
	Running Applications Natively With Signing Keys
	Application Pre-requisites
	Application APIs
	Security Caveats
	File Security with IMA

	Running Third-Party Applications in Containers
	Deploying a Docker Container
	Managing a Docker Container
	Enabling Netlink or PacketIO in a Container
	Selecting a VRF for a Docker Container
	Modifying Resource Limits for Containers

	Running Third-Party Applications Natively With Signing Keys
	Signing Keys Overview
	Generating Signing Keys
	Generating Signing Keys Using the OpenSSL Command-Line
	Generating Signing Keys Using an OpenSSL Configuration File

	Importing Signing Keys into the System Keystore and IMA Extended Keyring
	Viewing the System Keystore and IMA Extended Keyring
	How to Sign Applications

	Managing Third-Party Applications
	Using Intercept Libraries
	Example of a Preloaded Linux Command
	Interface Name Translation
	Caveats for the Intercept Feature

	Removing Third-Party Applications

	Building Third-Party Applications
	JET SDK for Junos OS Evolved
	Downloading the JET SDK and JET Toolkit
	Installing the JET SDK and JET Toolkit for Junos OS Evolved

	SysMan and systemd Controlled Applications
	Folder Structure for Third-Party Applications
	Third-Party Application Files
	Makefile
	SRC Files
	Script Files
	Service Files
	.yaml Files

	Creating a Third-Party Package
	Create a SysMan Managed Package
	Create a systemd Managed Package
	Jet-evo Tool Configuration

	Installing a Third-Party Package

	Creating a Bundled ISO
	Jet-evo-bundle-iso Tool Configuration
	Installing a Bundled ISO
	Upgrading with a Bundled ISO
	Rollback from a Bundled ISO

	Finding Software Documentation for Junos OS Evolved
	Where to Find Software Documentation for Junos OS Evolved

	Configuration Statements and Operational Commands
	Junos CLI Reference Overview

