
How to Configure the NFX250

Published

2023-12-13

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

 How to Configure the NFX250
Copyright © 2023 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

ii

https://support.juniper.net/support/eula/

Table of Contents

About This Guide | viii

1 Overview

NFX250 Overview | 2

JDM Architecture Overview | 6

Understanding Disaggregated Junos OS | 6

Understanding Physical and Virtual Components | 9

Disaggregated Junos OS VMs | 12

Virtio and SR-IOV Usage | 14

JDM CLI Overview | 18

Understanding the JDM CLI | 18

Accessing the JDM Shell, JDM CLI, and JCP Prompts in a Disaggregated Junos OS Platform | 19

Accessing the JDM CLI | 19

Accessing the JDM Shell | 19

Accessing the JCP Prompt from the JDM CLI | 20

Accessing the Hypervisor from the JDM CLI | 20

Accessing the ipsec-nm from the JDM CLI | 20

Software Upgrade Path for NFX250 Devices | 21

Junos OS Releases Supported on NFX Series Hardware | 22

2 Installation and Configuration

Performing Initial Software Configuration on an NFX250 Device | 26

Installing Software on NFX250 Devices | 29

Downloading and Installing Software | 30

Downloading Software | 30

Software Installation on NFX250 Network Services Platform | 34

Upgrading an Image on the Disaggregated Junos OS Platform | 35

iii

Reverting the System to the Factory-Default Configuration | 40

Rebooting the System | 40

Configuring JDM User Accounts and Authentication | 41

JDM User Accounts Overview | 41

Configuring JDM User Accounts and Authentication | 42

YANG files on NFX250 Devices | 44

Understanding YANG on NFX250 Devices | 44

Generating YANG Files | 45

Synchronizing Time Using NTP | 48

Configuring Management Interfaces for JDM | 50

JDM Management Interfaces Overview | 50

Configuring the Out-of-Band Management Interface for JDM | 52

Configuring the Out-of-Band Management Interface with IPv4 Addressing for JDM | 52

Configuring the Out-of-Band Management Interface with IPv6 Addressing for JDM | 53

Configuring the In-Band Management Interface for JDM | 53

Configuring the Out-of-Band Management Interface for Hypervisor | 57

Configuring the Out-of-Band Management Interface with IPv4 Addressing for Hypervisor | 57

Configuring the Out-of-Band Management Interface with IPv6 Addressing for Hypervisor | 57

Configuring Remote Access to JDM | 58

Configuring SSH Service and NETCONF-Over-SSH Connections for Remote Access to the
Disaggregated Junos OS Platform | 58

Configuring HTTP Access to the Disaggregated Junos OS Platform | 59

Configuring HTTPS Access to the Disaggregated Junos OS Platform | 59

Configuring Enhanced Orchestration and Hugepages | 60

Enhanced Orchestration | 60

Hugepages | 61

Managing Virtual Network Functions Using JDM | 64

Understanding Virtual Network Functions | 65

iv

Prerequisites to Onboard Virtual Network Functions on NFX250 Devices | 67

Prerequisites for VNFs | 67

Managing the VNF Life Cycle | 67

Planning Resources for a VNF | 68

Managing the VNF Image | 70

Preparing the Bootstrap Configuration | 70

Launching a VNF | 71

Allocating Resources for a VNF | 72

Managing VNF States | 78

Managing VNF MAC Addresses | 79

Managing MTU | 79

Accessing a VNF from JDM | 80

Viewing List of VNFs | 81

Displaying the VNF Details | 81

Deleting a VNF | 81

Creating the vSRX Virtual Firewall VNF on the NFX250 Platform | 82

Configuring the vMX Virtual Router as a VNF on NFX250 | 85

Virtual Route Reflector on NFX250 Overview | 87

Configuring vRR as a VNF on NFX250 | 89

Configuring vRR VNF on NFX250 in Linux Bridge Mode | 89

Configuring vRR VNF on NFX250 in Enhanced Orchestration Mode | 102

Configuring Cross-connect | 105

Configuring Analyzer VNF and Port-mirroring | 107

Configuring Service Chaining Using JDM | 109

Understanding Service Chaining on Disaggregated Junos OS Platforms | 109

Configuring Service Chaining Using VLANs | 110

Configuring Service Chaining Using DHCP Services on VLANs | 111

Example: Configuring Service Chaining Using VLANs on NFX250 Network Services Platform | 112

Requirements | 112

Overview | 112

Configuration | 114

v

Example: Configuring Service Chaining Using SR-IOV on NFX250 Network Services Platform | 118

Requirements | 119

Overview | 119

Configuration | 121

ADSL2 and ADSL2+ Interfaces on NFX250 Devices | 126

ADSL Interface Overview | 126

Example: Configuring ADSL SFP Interface on NFX250 Devices | 127

Requirements | 128

Overview | 128

Configuration | 128

Results | 131

VDSL2 Interfaces on NFX250 Devices | 131

VDSL Interface Overview | 132

VDSL2 Network Deployment Topology | 133

VDSL2 Interface Support on NFX Series Devices | 134

Example: Configuring VDSL SFP Interface on NFX250 Devices | 136

Requirements | 137

Overview | 137

Configuration | 137

Results | 140

3 Configuring High Availability

Chassis Cluster on NFX250 Devices | 142

NFX250 Chassis Cluster Overview | 142

Chassis Cluster Interfaces | 143

Chassis Cluster Limitation | 144

Example: Configuring a Chassis Cluster on NFX250 Devices | 144

Requirements | 144

Overview | 145

Configuration | 145

Verification | 156

vi

4 Monitoring and Troubleshooting JDM

Configuring SNMP on JDM | 162

Configuring SNMP Community | 162

Configuring SNMP System Parameters | 162

Configuring SNMP v3 | 163

Configuring SNMP Traps | 164

Querying SNMP MIBs | 164

Managing Traps | 165

Managing the Log Files and Core Files | 165

Viewing and Managing Centralized Log Files | 166

Enabling Centralized Logging | 166

Viewing Log Messages | 167

Managing Core Files | 167

Viewing Core Files | 168

Recovering the Root Password for NFX250 | 168

5 Configuration Statements and Operational Commands

Junos CLI Reference Overview | 172

vii

About This Guide

Use this guide to perform initial provisioning, configure Junos OS features, chain multiple virtualized
network functions, monitor, and manage the NFX250 devices using the Juniper Device Manager (JDM).

RELATED DOCUMENTATION

Release Notes: Junos® OS 15.1X53-D45 for NFX250 Network Services Platform

Release Notes: Junos OS Release 15.1X53-D40 for NFX Series

viii

https://www.juniper.net/documentation/en_US/junos15.1/information-products/topic-collections/nfx-series/release-notes/nfx-series-junos-release-notes-15.1X53-D45-250-ls1.pdf
https://www.juniper.net/documentation/en_US/junos15.1/information-products/topic-collections/nfx-series/release-notes/nfx-series-junos-release-notes-15.1X53-D40-250.pdf

1
CHAPTER

Overview

NFX250 Overview | 2

JDM Architecture Overview | 6

JDM CLI Overview | 18

Software Upgrade Path for NFX250 Devices | 21

Junos OS Releases Supported on NFX Series Hardware | 22

NFX250 Overview

IN THIS SECTION

Benefits of NFX250 Network Services Platform | 3

NFX250 Models | 4

NFX250 Components | 5

The Juniper Networks NFX250 Network Services Platform is a secure, automated, software-driven
customer premised equipment (CPE) platform that delivers virtualized network and security services on
demand. An integral part of Juniper’s fully automated Cloud CPE solution suite for NFV, this high-
performance virtualized services platform helps service providers improve overall operational efficiency
and service agility while empowering enterprise customers with immediate access to custom-designed
managed services. Simultaneously supporting multiple Juniper and third-party VNFs on a single device
and providing built-in, dynamic, policy-based routing, the NFX250 addresses the needs of small to
midsize businesses as well as large multinational or distributed enterprises with a single, highly scalable
solution.

NFX250 Network Services Platform are Juniper Network’s secure, automated, software-driven customer
premises equipment (CPE) devices that deliver virtualized network and security services on demand.
Leveraging Network Functions Virtualization (NFV) and built on the Juniper Cloud CPE solution,
NFX250 enables service providers to deploy and service chain multiple, secure, high-performance
virtualized network functions (VNFs) as a single device. This automated, software-driven solution
dynamically provisions new services on demand.

Figure 1 on page 3 illustrates the important position JDM occupies in the overall architecture.

2

Figure 1: Position of the Juniper Device Manager

Benefits of NFX250 Network Services Platform

The NFX250 is an integrated branch router and switch with a multicore CPU that enables it to run
multiple Virtual Network Functions (VNFS). The NFX250 Network Services Platform provides these
benefits:

• Simultaneously supports multiple Juniper and third-party VNFs on a single device, providing built-in,
dynamic, and policy-based routing

• Provides and open framework that supports industry standards, protocols, and seamless API
integration

• Supports a variety of flexible deployments. A distributed services deployment model ensures high
availability, performance, and compliance

• Incorporates many advanced security features. Secure Boot feature safeguards device credentials,
automatically authenticates system integrity, verifies system configuration, and enhances overall
platform security

• Modular software architecture provides high performance and scalability for routing, switching, and
security enhanced by carrier-class reliability

• Automated configuration eliminates complex device setup and delivers a plug-and-play experience

• High performance simplifies network topologies and operations

3

NFX250 Models

The NFX250 device is available in four models.

Product
Number

Specifications Features

NFX250-S1 2.0 GHz 6-core Intel CPU

16 GB of memory and 100 GB of solid-state drive (SSD) storage

Eight 1-GbE network ports, two 1-GbE RJ-45 ports which can be
used as either access ports or as uplinks, two SFP ports, two SFP+
ports, one Management port, and two Console ports

Basic Layer 2/Layer 3

NFX250-S2 2.0 GHz 6-core Intel CPU

32 GB of memory and 400 GB of SSD storage

Eight 1-GbE network ports, two 1-GbE RJ-45 ports which can be
used as either access ports or as uplinks, two SFP ports, two SFP+
ports, one Management port, and two Console ports

Basic Layer 2/Layer 3

NFX250-
LS1

1.6 GHz 4-core Intel CPU

16 GB of memory and 100 GB of solid-state drive (SSD) storage

Eight 1-GbE network ports, two 1-GbE RJ-45 ports which can be
used as either access ports or as uplinks, two SFP ports, two SFP+
ports, one Management port, and two Console ports

Supports up to 100 MBPS
throughput Secure Router
functionality for the
following features:

• IPSec VPN

• NAT

• Stateful Firewall

• Routing services – BGP,
OSPF, DHCP, IPv4 and
IPv6

4

(Continued)

Product
Number

Specifications Features

NFX250-
S1E

2.0 GHz 6-core Intel CPU

16 GB of memory, a primary 200 GB of solid-state drive (SSD)
storage, and a secondary 25 GB SSD

NOTE: If the primary SSD fails or gets corrupted, the device boots
the secondary SSD.

Eight 1-GbE network ports, two 1-GbE RJ-45 ports which can be
used as either access ports or as uplinks, two SFP ports, two SFP+
ports, one Management port, and two Console ports

Supports up to 100 MBPS
throughput Secure Router
functionality for the
following features:

• IPSec VPN

• NAT

• Stateful Firewall

• Routing services – BGP,
OSPF, DHCP, IPv4 and
IPv6

NFX250 Components

The NFX250 consists of the following key components:

• Juniper Device Manager: The Juniper Device Manager (JDM) is a low-footprint Linux container that
provides these functions:

• Virtual Machine (VM) lifecycle management

• Device management and isolation of host OS from user installations

• NIC, single-root I/O virtualization (SR-IOV), and virtual input/output (VirtIO) interface
provisioning

• Support for the Network Service Orchestrator module to connect to Network Activator

• Inventory and resource management

• Internal network and image management

• Service chaining—provides building blocks such as virtual interfaces and bridges for users to
implement service chaining polices

• Virtual console access to VNFs including vSRX Virtual Firewall and vjunos

5

• Junos Control Plane: Junos Control Plane (JCP) is the Junos VM running on the hypervisor. You can
use JCP to configure the network ports of the NFX250 device, and JCP runs by default as vjunos0 on
NFX250. You can log on to JCP from JDM using the SSH service and the command-line interface
(CLI) is the same as Junos.

RELATED DOCUMENTATION

Performing Initial Software Configuration on an NFX250 Device | 26

JDM Architecture Overview

IN THIS SECTION

Understanding Disaggregated Junos OS | 6

Understanding Physical and Virtual Components | 9

Disaggregated Junos OS VMs | 12

Virtio and SR-IOV Usage | 14

Understanding Disaggregated Junos OS

Many network equipment vendors have traditionally bound their software to purpose-built hardware
and sold customers the bundled and packaged software–hardware combination. However, with the
disaggregated Junos OS architecture, Juniper Network devices are now aligned with networks that are
cloud-oriented, open, and rely on more flexible implementation scenarios.

The basic principle of the disaggregated Junos OS architecture is decomposition (disaggregation) of the
tightly bound Junos OS software and proprietary hardware into virtualized components that can
potentially run not only on Juniper Networks hardware, but also, on white boxes or bare-metal servers.
In this new architecture, the Juniper Device Manager (JDM) is a virtualized root container that manages
software components.

The JDM is the only root container in the disaggregated Junos OS architecture (there are other industry
models that allow more than one root container, but the disaggregated Junos OS architecture is not one
of them). The disaggregated Junos OS is a single-root model. One of the major functions of JDM is to

6

prevent modifications and activities on the platform from impacting the underlying host OS (usually
Linux). As the root entity, the JDM is well-suited for that task. The other major function of JDM is to
make the hardware of the device look as much like a traditional Junos OS–based physical system as
possible. This also requires some form of root capabilities.

Figure 2 on page 7 illustrates the important position JDM occupies in the overall architecture.

Figure 2: Position of the Juniper Device Manager

A VNF is a consolidated offering that contains all the components required for supporting a fully
virtualized networking environment. A VNF has network optimization as its focus.

JDM enables:

• Management of guest virtualized network functions (VNFs) during their life cycle.

• Installation of third-party modules.

• Formation of VNF service chains.

• Management of guest VNF images (their binary files).

• Control of the system inventory and resource usage.

Note that some implementations of the basic architecture include a Packet Forwarding Engine as well as
the usual Linux platform hardware ports. This allows better integration of the Juniper Networks data
plane with the bare-metal hardware of a generic platform.

The disaggregated Junos OS architecture enables JDM to handle virtualized network functions such as a
firewall or Network Address Translation (NAT) functions. The other VNFs and containers integrated with

7

JDM can be Juniper Networks products or third-party products as native Linux applications. The basic
architecture of the disaggregated Junos OS is shown schematically in Figure 3 on page 8.

Figure 3: Basic Disaggregated Junos OS Architecture

NOTE: There are multiple ways to implement the basic disaggregated Junos OS architecture on
various platforms. Details can vary greatly. This topic describes the overall architecture.

The virtualization of the simple software process running on fixed hardware poses several challenges in
the area of interprocess communication. How does, for example, a VNF with a NAT function work with
a firewall running as a container on the same device? After all, there might be only one or two external
Ethernet ports on the whole device, and the processes are still internal to the device. One benefit is the
fact that the interfaces between these virtualized processes are often virtualized themselves, perhaps as
SXE ports; which means that you can configure a type of MAC-layer bridge between processes directly,
or between a process and the host OS and then between the host OS and another process. This
supports the chaining of services as traffic enters and exits the device.

JDM provides users with a familiar Junos OS CLI and handles all interactions with underlying Linux
kernel to maintain the “look and feel” of a Juniper Networks device.

Some of the benefits of the disaggregated Junos OS are:

• The whole system can be managed like managing a server platform.

• Customers can install third-party applications, tools, and services, such as Chef, Wiireshark, or
Quagga, in a virtual machine (VM) or container.

• These applications and tools can be upgraded by using typical Linux repositories and are
independent of Junos OS releases.

• Modularity increases reliability because faults are contained within the module.

8

• The control and data planes can be programmed directly through APIs.

Understanding Physical and Virtual Components

In the disaggregated Junos OS Network Functions Virtualization (NFV) environment, device components
might be physical or virtual. The same physical-virtual distinction can be applied to interfaces (ports), the
paths that packets or frames take through the device, and other aspects such as CPU cores or disk
space.

The disaggregated Junos OS specification includes an architectural model. The architectural model of a
house can have directions for including a kitchen, a roof, and a dining room, and can represent various
kinds of dwellings; from a seaside cottage to a palatial mansion. All these houses look very different, but
still follow a basic architectural model and share many characteristics.

Similarly, in the case of the disaggregated Junos OS architectural models, the models cover vastly
different types of platforms, from simple customer premises equipment (CPE) to complex switching
equipment installed in a large data center, but have some basic characteristics that the platforms share.

What characteristics do these platforms share? All disaggregated Junos OS platforms are built on three
layers. These layers and some possible content are shown in Figure 4 on page 10.

9

Figure 4: Physical and Virtual Layers in the Disaggregated Junos OS

The lowest layer is the hardware layer. In addition to memory (RAM) and disk space (SSD), the platform
hardware has a multi-core CPU with an external NIC port used for management. In some cases, there
will be a single NIC port used for the control and data plane, but that port can also be used to
communicate with a Packet Forwarding Engine for user traffic streams.

The platform software layer sits on top of the hardware layer. All platform-dependent functions take
place here. These functions can include a software switching function for various virtual components to
bridge traffic between them. A Linux or kernel-based virtual machine (KVM) runs the platform, and, in
some models, a phone home agent contacts a vendor or service provider device to perform
autoconfiguration tasks. The phone home agent is particularly preferred for smaller CPE platforms.

Above the platform software layer is the customer software layer, which perfoms various platform-
independent functions. Some of the components might be Juniper Networks virtual machines, such as a
virtual SRX device (vSRX Virtual Firewall) or the Junos Control Plane (JCP). The JCP works with the JDM
to make the device resemble a dedicated Juniper Networks platform, but one with a lot more flexibility.
Much of this flexibility comes from the ability to support one or more VNFs that implement a virtualized
network function (VNF). These VNFs consist of many types of tasks, such as Network Address
Translation (NAT),specialized Domain Name System (DNS) server lookups, and so on.

10

Generally, there are a fixed number of CPU cores, and a finite amount of disk space. But in a virtual
environment, resource allocation and use is more complex. Virtual resources such as interfaces, disk
space, memory, or cores are parceled out among the VNFs running at the time, as determined by the
VNF image.

The VNFs, whether virtual machines (VMs) or containers, which share the physical device are often
required to communicate with each other. Packets or frames enter a device through a physical interface
(a port) and are distributed to some initial VNF. After some processing of the traffic flow, the VNF passes
the traffic over to another VNF if configured to do so, and then to another, before the traffic leaves the
physical device. These VNFs form a data plane service chain that is traversed inside the device.

How do the VNFs, which are isolated VMs or containers, pass traffic from one to the other? The service
chain is configured to pass traffic from a physical interface to one or more internal virtual interfaces.
Therefore, there are virtual NICs associated with each VM or Container, all connected by a virtual switch
or bridge function inside the device. This generic relationship, which enables communication between
physical and virtual interfaces is shown in Figure 5 on page 11.

Figure 5: Physical and Virtual Component Communication

In this general model, which can have variations in different platforms, data enters through a port on the
physical NIC and is bridged through the virtual switch function to Virtual Machine1 through Virtual NIC
1, based on destination MAC address. The traffic can also be bridged through another configured virtual
interface to Virtual Machine2 or more VNFs until it is passed back to a physical port and exits the
device.

For configuration purposes, these interfaces might have familiar designations such as ge-0/0/0 or fxp0,
or new designations such as sxe0 or hsxe0. Some might be real, but internal ports (such as sxe0), and
some might be completely virtual constructs (such as hsxe0) needed to make the device operational.

11

Disaggregated Junos OS VMs

Cloud computing enables applications to run in a virtualized environment, both for end-user server
functions and network functions needed to connect scattered endpoints across a large data center, or
even among multiple data centers. Applications and network functions can be implemented by
virtualized network functions (VNFs). What are the differences between these two types of packages
and why would someone use one type or the other?

Both VNFs and containers allow the multiplexing of hardware with tens or hundreds of VNFs sharing
one physical server. This allows not only rapid deployment of new services, but also extension and
migration of workloads at times of heavy use (when extension can be used) or physical maintenance
(when migration can be used).

In a cloud computing environment, it is common to employ VNFs to do the heavy work on the massive
server farms that characterize big data in modern networks. Server virtualization allows applications
written for different development environments, hardware platforms, or operating systems to run on
generic hardware that runs an appropriate software suite.

VNFs rely on a hypervisor to manage the physical environment and allocate resources among the VNFs
running at any particular time. Popular hypervisors include Xen, KVM, and VMWare ESXi, but there are
many others. The VNFs run in the user space on top of the hypervisor and include a full implementation
of the VM application’s operating system. For example, an application written in the C++ language and
complied and run on Microsoft Windows operating system can be run on a Linux operating system using
the hypervisor. In this case, Windows is a guest operating system.

The hypervisor provides the guest operating system with an emulated view of the hardware of the
VNFs. Among other resources such as disk space of memory, the hypervisor provides a virtualized view
of the network interface card (NIC) when endpoints for different VMs reside on different servers or
hosts (a common situation). The hypervisor manages the physical NICs and exposes only virtualized
interfaces to the VNFs.

The hypervisor also runs a virtual switch environment, which allows the VNFs at the VLAN frame layer
to exchange packets inside the same box, or over a (virtual) network.

The biggest advantage of VNFs is that most applications can be easily ported to the hypervisor
environment and run well without modification.

The biggest drawback is that, often the resource-intense overhead of the guest operating system must
include a complete version of the operating system even if the function of the entire VNF is to provide a
simple service such as a domain name system (DNS).

Containers, unlike VNFs, are purpose-built to be run as independent tasks in a virtual environment.
Containers do not bundle an entire operating system inside like VNFs do. Containers can be coded and
bundled in many ways, but there are also ways to build standard containers that are easy to maintain
and extend. Standard containers are much more open than containers created in a haphazard fashion.

12

Standard Linux containers define a unit of software delivery called a standard container. Instead of
encapsulating the whole guest operating system, the standard container encapsulates only the
application and any dependencies required to perform the task the application is programmed to
perform. This single runtime element can be modified, but then the container must be rebuilt to include
any additional dependencies that the extended function might need. The overall architecture of
containers in shown in Figure 6 on page 13.

Figure 6: Containers–Overall Architecture

The containers run on the host OS kernel and not on the hypervisor. The container architecture uses a
container engine to manage the underlying platform. If you still want to run VNFs, the container can
package up a complete hypervisor and guest OS environment as well.

Standard containers include:

• A configuration file.

• A set of standard operations.

• An execution environment.

The name container is borrowed from the shipping containers that are used to transport goods around
the world. Shipping containers are standard delivery units that can be loaded, labelled, stacked, lifted,
and unloaded by equipment built specifically to handle the containers. No matter what is inside, the
container can be handled in a standard fashion, and each container has its own user space that cannot
be used by other containers. Although Docker is a popular container management system to run
containers on a physical server, there are alternatives such as Drawbridge or Rocket to consider.

Each container is assigned a virtual interface. Container management systems such as Docker include a
virtual Ethernet bridge connecting multiple virtual interfaces and the physical NIC. Configuration and
environment variables in the container determine which containers can communicate with each other,
which can use the external network, and so on. External networking is usually accomplished with NAT
although there are other methods because, containers often use the same network address space.

The biggest advantage of containers is that they can be loaded on a device and executed much faster
than VNFs. Containers also use resources much more sparingly— you can run many more containers
than VNFs on the same hardware. This is because containers do not require a full guest operating

13

https://www.juniper.net/us/en/products-services/what-is/docker-container/

system or boot time. Containers can be loaded and run in milliseconds, not tens of seconds. However,
the biggest drawback with containers is that they have to be written specifically to conform to some
standard or common implementation, whereas VNFs can be run in their native state.

Virtio and SR-IOV Usage

IN THIS SECTION

Understanding Virtio Usage | 14

Understanding SR-IOV Usage | 16

Comparing Virtio and SR-IOV | 17

You can enable communication between a Linux-based virtualized device and a Network Functions
Virtualization (NFV) module either by using virtio or by using suitable hardware and single-root I/O
virtualization (SR-IOV). Each method has distinct characteristics.

Understanding Virtio Usage

When a physical device is virtualized, both physical NIC interfaces and external physical switches as well
as the virtual NIC interfaces and internal virtual switches coexist. So when the isolated VNFs in the
device, each with their own memory and disk space and CPU cycles, attempt to communicate with each
other, the multiple ports, MAC addresses, and IP addresses in use pose a challenge. With the virtio
library, traffic flow between the isolated virtual functions becomes simpler and easier.

Virtio is part of the standard Linux libvirt library of useful virtualization functions and is normally
included in most versions of Linux. Virtio is a software-only approach to inter-VNF communication.
Virtio provides a way to connect individual virtual processes. The bundled nature of virtio makes it
possible for any Linux-run device to use virtio.

Virtio enables VNFs and containers to use simple internal bridges to send and receive traffic. Traffic can
still arrive and leave through an external bridge. An external bridge uses a virtualized internal NIC
interface on one end of the bridge and a physical external NIC interface on the other end of the bridge
to send and receive packets and frames. An internal bridge, of which there are several types, links two
virtualized internal NIC interfaces by bridging them through a virtualized internal switch function in the
host OS. The overall architecture of virtio is shown in Figure 7 on page 15.

14

Figure 7: VNF Bridging with Virtio

Figure 7 on page 15 shows the inner structure of a server device with a single physical NIC card running
a host OS (the outer cover of the device is not shown). The host OS contains the virtual switch or bridge
implemented with virtio. Above the OS, several virtual machines employ virtual NICs that communicate
through virtio. There are multiple virtual machines running, numbered 1 to N in the figure. The standard
“dot dot dot” notation indicates possible virtual machines and NICs not shown in the figure. The dotted
lines indicate possible data paths using virtio. Note that traffic entering or leaving the device does so
through the physical NIC and port.

Figure 7 on page 15 also shows traffic entering and leaving the device through the internal bridge.
Virtual Machine 1 links its virtualized internal NIC interface to the physical external NIC interface.
Virtual Machine 2 and Virtual Machine N link internal virtual NICs through the internal bridge in the host
OS. Note that these interface might have VLAN labels associated with them, or internal interface names.
Frames sent across this internal bridge between VNFs never leave the device. Note the position of the
bridge (and virtualized switch function) in the host OS. Note the use of simple bridging in the device.
These bridges can be configured either with regular Linux commands or the use of CLI configuration
statements. Scripts can be used to automate the process.

Virtio is a virtualization standard for disk and network device drivers. Only the guest device driver (the
devices driver for the virtualized functions) needs to know that it is running in a virtual environment.
These drivers cooperate with the hypervisor and the virtual functions get performance benefits in return
for the added complication. Virtio is architecturally similar to, but not the same as, Xen paravirtualized
device drivers (drivers added to a guest to make them faster when running on Xen). VMWare’s Guest
Tools are also similar to virtio.

Note that much of the traffic is concentrated on the host OS CPU—more explicitly, on the virtualized
internal bridges. Therefore, the host CPU must be able to perform adequately as the device scales.

15

Understanding SR-IOV Usage

When a physical device is virtualized, both physical network interface card (NIC) interfaces and external
physical switches as well as the virtual NIC interfaces and internal virtual switches coexist. So when the
isolated virtual machines (VMs) or containers in the device, each with their own memory and disk space
and CPU cycles, attempt to communicate with each other, the multiple ports, MAC addresses, and IP
addresses in use pose a challenge.

SR-IOV extends the concept of virtualized functions right down to the physical NIC . The single physical
card is divided into up to 16 partitions per physical NIC port that correspond to the virtual functions
running at the higher layers. Communication between these virtual functions are handled the same way
that communications between devices with individual NIC are usually handled: with a bridge. SR-IOV
includes a set of standard methods for creating, deleting, enumerating, and querying the SR-IOV NIC
switch, as well as the standard parameters than can be set.

The single-root part of SR-IOV refers to the fact that there is really only one primary piece of the NIC
controlling all operations. An SR-IOV-enabled NIC is just a standard Ethernet port providing the same
physical bit-by-bit function of any network card.

However, the SR-IOV also provides several virtual functions, which are accomplished by simple queues
to handle input and output tasks. Each VNF running on the device is mapped to one of these NIC
partitions so that VNFs themselves have direct access to NIC hardware resources. The NIC also has a
simple Layer 2 sorter function, which classifies frames into traffic queues. Packets are moved directly to
and from the network virtual function to the VM’s memory using direct memory access (DMA),
bypassing the hypervisor completely. The role of the NIC in the SR-IOV operation is shown in Figure 8
on page 16.

Figure 8: VNF Communication Using SR-IOV

16

The hypervisor is still involved in the assignment of the VNFs to the virtual network functions, and in
the management of the physical card, but not in the transfer of the data inside the packets. Note that
VNF-to-VNF communication is performed by Virtual NIC 1, Virtual NIC 2, and Virtual NIC N. There is
also a portion of the NIC (not shown) that keeps track of all the virtual functions and the sorter to
shuttle traffic among the VNFs and external device ports.

Note that the ability to support SR-IOV is dependent on the platform hardware, specifically the NIC
hardware, and the software of the VNFs or containers to employ DMA for data transfer. Partitionable
NICs, and the internal bridging required, tend to be more expensive, because of which, their use can
increase the cost on smaller devices by an appreciable amount. Rewriting VNFs and containers is not a
trivial task either.

Comparing Virtio and SR-IOV

Virtio is part of the standard libvirt library of helpful virtualization functions and is normally included in
most versions of Linux. Virtio adopts a software-only approach. SR-IOV requires software written in a
certain way and specialized hardware, which means an increase in cost, even with a simple device.

Generally, using virtio is quick and easy. Libvirt is part of every Linux distribution and the commands to
establish the bridges are well-understood. However, virtio places all of the burden of performance on
the host OS, which normally bridges all the traffic between VNFs, into and out of the device.

Generally, SR-IOV can provide lower latency and lower CPU utilization—in short, almost native, non-
virtual device performance. But VNF migration from one device to another is complex because the VNF
is dependent on the NIC resources on one machine. Also, the forwarding state for the VNF resides in
the Layer 2 switch built into the SR-IOV NIC. Because of this, forwarding is no longer quite as flexible
because the rules for forwarding are coded into the hardware and cannot be changed often.

While support for virtio is nearly universal, support for SR-IOV varies by NIC hardware and platform.
The Juniper Networks NFX250 Network Services Platform supports SR-IOV capabilities and allows 16
partitions on each physical NIC port.

Note that a given VNF can use either virtio or SR-IOV, or even both methods simultaneously, if
supported.

NOTE: Virtio is the recommended method for establishing connection between a virtualized
device and an NFV module.

RELATED DOCUMENTATION

Configuring JDM User Accounts and Authentication | 41

17

JDM CLI Overview

IN THIS SECTION

Understanding the JDM CLI | 18

Accessing the JDM Shell, JDM CLI, and JCP Prompts in a Disaggregated Junos OS Platform | 19

Understanding the JDM CLI

Junos Device Manager (JDM) can be configured using the JDM CLI. In most cases, you are logged into
the JDM CLI by default when you access a disaggregated Junos OS platform.

The JDM CLI is similar to the Junos OS CLI in look and feel. It provides the same value-added facilities
as the Junos OS CLI, which include:

• Separate configuration and command modes

• Commit check

• Configuration save, restore, and rollback

• NETCONF and YANG support

The JDM CLI is based on the Junos OS CLI and follows many of its processes and procedures. Like Junos
OS, the JDM CLI has an operational mode and configuration mode. You use the configure command to go
from operational mode to configuration mode, and the exit command to exit configuration mode. Many
operational mode commands—such as show and request commands—are available in the JDM CLI and the
Junos OS CLI. Many configuration commands available in the Junos OS CLI are also available in the JDM
CLI, and are often entered using the same command at the same hierarchy level.

If you are placed in the JDM shell for any reason, such as if you logged in to the disaggregated Junos OS
platform as the root user, enter the cli command from the JDM shell prompt to get to the JDM CLI
prompt:

root# cli
 root@jdm>

18

Accessing the JDM Shell, JDM CLI, and JCP Prompts in a Disaggregated
Junos OS Platform

IN THIS SECTION

Accessing the JDM CLI | 19

Accessing the JDM Shell | 19

Accessing the JCP Prompt from the JDM CLI | 20

Accessing the Hypervisor from the JDM CLI | 20

Accessing the ipsec-nm from the JDM CLI | 20

This topic describes how to access the JDM shell, JDM CLI, and JCP prompts in a disaggregated Junos
OS platform.

It contains the following sections:

Accessing the JDM CLI

You are in operational mode in the JDM CLI if you see the @jdm> prompt. The JDM CLI also includes the
configuration prompt @jdm#, which can be accessed by entering the configure command at the JDM CLI
operational mode prompt.

By default, most logins to a disaggregated Junos OS platform take the user to the operational mode in
the JDM CLI prompt.

The JDM CLI prompt can also be accessed from the JDM shell.

To access the JDM CLI from the JDM shell, enter the cli command at the JDM shell prompt:

root@jdm:~# cli
root@jdm>

Accessing the JDM Shell

By default, you are placed in the JDM shell when you login to the console port as the root user. The
JDM shell uses the ~# prompt.

19

To access the JDM shell from the JDM CLI, enter the start shell command at the JDM CLI prompt:

root@jdm> start shell
jdm:~#

Accessing the JCP Prompt from the JDM CLI

To access the JCP prompt from the JDM CLI, enter the ssh vjunos0 command at the JDM CLI prompt:

root@jdm> ssh vjunos0
The authenticity of host 'vjunos0 (192.168.1.2)' can't be established.

ECDSA key fingerprint is 18:83:1f:95:88:db:1b:75:9f:07:ce:2c:4a:45:a3:b0.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'vjunos0,192.168.1.2' (ECDSA) to the list of known hosts.
Password:
Last login: Thu Oct 8 09:47:42 2015
--- JUNOS 15.1I20150824_0501 built 2015-08-24 05:13:01 UTC

root@:RE:0% cli
root>

Accessing the Hypervisor from the JDM CLI

To access the Hypervisor from the JDM CLI, enter the ssh hypervisor statement at the JDM CLI prompt:

root@jdm> ssh hypervisor
Last login: Sun Jan 18 15:01:55 2015 from jdm

NOTE: Only a root user can use this option.

Accessing the ipsec-nm from the JDM CLI

To access the ipsec-nm from the JDM CLI, enter the ssh ipsec-nm statement at the JDM CLI prompt:

root@jdm> ssh ipsec-nm
Last login: Sun Jan 18 15:01:55 2015 from jdm

20

root@ipsec-nm: % cli
root@ipsec-nm>

RELATED DOCUMENTATION

Configuring JDM User Accounts and Authentication | 41

Software Upgrade Path for NFX250 Devices

Table 1 on page 21 provides details of the software upgrade path for NFX250 devices.

Table 1: NFX250 Software Upgrade Path

From Junos OS Release Target / Intermediate Junos
OS Release

Recommended Junos OS Release

15.1X53-D47.4 15.1X53-D470.6 18.1R1.9 (intermediate) -> 18.4R1.8

15.1X53-D47.4 15.1X53-D497.1

15.1X53-D47.4 18.1R1.9 18.4R1.8

15.1X53-D470.6 15.1X53-D472 18.1R1.9 (intermediate) -> 18.4R1.8

15.1X53-D470.6 18.1R1.9 18.4R1.8

15.1X53-D472 15.1X53-D473.1 18.1R1.9 (intermediate) -> 18.4R1.8

15.1X53-D472 18.1R1.9 18.4R1.8

15.1X53-D473.1 18.1R1.9 18.4R1.8

21

Table 1: NFX250 Software Upgrade Path (Continued)

From Junos OS Release Target / Intermediate Junos
OS Release

Recommended Junos OS Release

15.1X53-D497.1 18.1R1.9 18.4R1.8

17.3R1.10 18.1R1.9 18.4R1.8

17.4R3.4 18.1R1.9 18.4R1.8

18.1R1.9 - 18.4R1.8

18.2R1.9 - 18.4R1.8

18.3R1.9 - 18.4R1.8

Junos OS Releases Supported on NFX Series
Hardware

The Table 2 on page 23 provides details of Junos OS software releases supported on the NFX Series
devices.

NOTE: Support for Linux bridge mode on NFX250 devices ended in Junos OS Release 18.4.

NOTE: Support for nfx-2 software architecture on NFX250 devices ended in Junos OS Release
19.1R1.

22

Table 2: Supported Junos OS Releases on NFX Series Devices

NFX
Series
Platform

Supported
Junos OS
Release

Software Package Software Downloads
Page

NFX150 18.1R1 or
later

nfx-3

jinstall-host-nfx-3-x86-64-<release-number>- secure-
signed.tgz

install-media-host-usb-nfx-3-x86-64-<release-number>-
 secure.img

NFX150 Software
Download Page

NFX250 15.1X53-
D45,
15.1X53-
D47,
15.1X53-
D470, and
15.1X53-
D471

nfx-2

jinstall-host-nfx-2-flex-x86-64-<release-number >-
secure-signed.tgz

install-media-host-usb-nfx-2-flex-x86-64-<release-
number>- secure.img

NFX250 Software
Download Page

17.2R1
through
19.1R1

19.1 R1 or
later

nfx-3

jinstall-host-nfx-3-x86-64-<release-number>-secure-
signed.tgz

install-media-host-usb-nfx-3-x86-64-<release-number>-
secure.img

NFX250 Software
Download Page

NFX350 19.4 R1 or
later

nfx-3

jinstall-host-nfx-3-x86-64-<release-number>-secure-
signed.tgz

install-media-host-usb-nfx-3-x86-64-<release-number>-
secure.img

NFX350 Software
Download Page

23

https://www.juniper.net/support/downloads/?p=nfx150#sw
https://www.juniper.net/support/downloads/?p=nfx150#sw
https://www.juniper.net/support/downloads/?p=nfx250#sw
https://www.juniper.net/support/downloads/?p=nfx250#sw
https://www.juniper.net/support/downloads/?p=nfx250#sw
https://www.juniper.net/support/downloads/?p=nfx250#sw
https://www.juniper.net/support/downloads/?p=nfx350#sw
https://www.juniper.net/support/downloads/?p=nfx350#sw

RELATED DOCUMENTATION

NFX250 Overview | 2

24

2
CHAPTER

Installation and Configuration

Performing Initial Software Configuration on an NFX250 Device | 26

Installing Software on NFX250 Devices | 29

Configuring JDM User Accounts and Authentication | 41

YANG files on NFX250 Devices | 44

Synchronizing Time Using NTP | 48

Configuring Management Interfaces for JDM | 50

Configuring Remote Access to JDM | 58

Configuring Enhanced Orchestration and Hugepages | 60

Managing Virtual Network Functions Using JDM | 64

Configuring Service Chaining Using JDM | 109

ADSL2 and ADSL2+ Interfaces on NFX250 Devices | 126

VDSL2 Interfaces on NFX250 Devices | 131

Performing Initial Software Configuration on an
NFX250 Device

Before you begin connecting and configuring an NFX250 device, set the following parameter values on
the console server or PC:

• Baud Rate—9600

• Flow Control—None

• Data—8

• Parity—None

• Stop Bits—1

• DCD State—Disregard

You must perform the initial configuration of the NFX250 device through the console port using the
Juniper Device Manager (JDM) command-line interface (CLI).

NOTE: Note that there are changes in the CLI commands. The CLI configuration commands for
Release 15.1X53-D40 may not be applicable for this release.

To connect and configure the device from the console:

1. Connect the console port to a laptop or PC using the supplied RJ-45 cable and RJ-45 to DB-9
adapter. The console (CON) port is located on the management panel of the device.

NOTE: See the procedure after Step 11 for details on the Network Service Orchestrator
process.

2. The Juniper Device Manager (JDM) command-line interface (CLI) displays; log in as root. There is no
password. If the software booted before you connected to the console port, you might need to press
the Enter key for the prompt to appear.

login: root

26

3. Start the CLI.

root@jdm% cli

4. Enter configuration mode.

root@jdm> configure

5. Add a password to the root administration user account.

[edit]
root@jdm# set system root-authentication plain-text-password
New password: password
Retype new password: password

6. (Optional) Configure the name of the device. If the name includes spaces, enclose the name in
quotation marks (“ ”).

[edit]
root@jdm# set system host-name host-name

7. Configure the IP address and prefix length for the device management interface.

[edit]
root@jdm# # set interfaces jmgmt0 unit 0 family inet address address/prefix length

jmgmt0 is the out-of-band management network interface in JDM.

To configure an IPV6 address, run the root@jdm# set interfaces jmgmt0 unit 0 family inet6 address
v6_address.

NOTE: jmgmt0 is located on front panel port of the NFX250 device.

8. Configure the default gateway.

[edit]
root@jdm# set routing-options static route default next-hop address

27

9. Commit the configuration to activate it on the device.

[edit]
root@jdm# commit

If Network Service Orchestrator module is configured, this client connects to the Network Activator as
soon as the device is switched on, and provisions the initial configuration and the latest software image
and, if the image on the NFX250 device is not the latest.

Network Activator is responsible for the bare-minimum bootstrapping of the NFX250. After successful
configuration and software upgrade, the device reboots and the Network Activator configuration is
removed.

To complete the configuration of the Network Service Orchestrator module process:

1. Connect to any front panel WAN port (see Figure 10 on page 29).

2. Open web browser and enter the IP address 10.10.10.1.

3. Enter the authentication code in the Web page that is displayed.

Figure 9: Network Service Orchestrator module

Once the process is complete, a confirmation message is displayed. Click Logs to display details of
the bootstrapping process. Refer to Captive Portal Log Messages for the list of log messages that are
displayed.

28

https://www.juniper.net/documentation/en_US/junos/topics/reference/general/nfx-captive-portal-messages.html

NOTE: You can also use the CLI to provide the authentication code:

root@jdm> test phone-home server-authentication-code code

Figure 10: NFX250 Front Panel Components

 1— 1-Gigabit Ethernet RJ-45 network ports 7— System status LEDs

 2— SFP and SFP+ ports Link and Status LEDs 8— Mode button

 3— mini-USB console port 9— 1/10-Gigabit SFP+ uplink ports

 4— Console port 10— 1-Gigabit SFP network/uplink ports

 5— USB port 11— 1-Gigabit Ethernet RJ-45 network/uplink
ports

 6— 1-Gigabit Management port

RELATED DOCUMENTATION

NFX250 Overview | 2

Installing Software on NFX250 Devices

IN THIS SECTION

Downloading and Installing Software | 30

Software Installation on NFX250 Network Services Platform | 34

29

Upgrading an Image on the Disaggregated Junos OS Platform | 35

Reverting the System to the Factory-Default Configuration | 40

Rebooting the System | 40

Downloading and Installing Software

IN THIS SECTION

Downloading Software | 30

Downloading Software

IN THIS SECTION

Downloading Software by Using a Browser | 30

Installing Software by Using the Command-Line Interface | 32

You can download the software package you need in one of two ways:

Downloading Software by Using a Browser

You download the software package you need from the Juniper Networks Support website at https://
www.juniper.net/support/.

NOTE: To access the download section, you must have a service contract and an access account.
If you need help obtaining an account, complete the registration form at the Juniper Networks
website: https://userregistration.juniper.net/entitlement/setupAccountInfo.do.

To download the software image:

30

https://www.juniper.net/support/
https://www.juniper.net/support/
https://userregistration.juniper.net/entitlement/setupAccountInfo.do

1. From your browser, go to https://www.juniper.net/support/.

The Online Support (CSC) page opens.

2. Click the Download Software link.

The Download Software page appears.

3. Select the software package that you want to download. You can select software that supports a
specific platform or technology.

4. On the page that appears, click the Software tab and select the Junos OS installation package to
download.

5. Log in with your username and password.

6. On the Download Software page that appears, the following options are available:

• If you want to download the software on your local host, click the CLICK HERE link and save the
file to your system. If you want to place the file on a remote system, you must make sure that the
file can be accessible by the router, switch, or services gateway by using HTTP, FTP, or SCP.
Proceed with the installation. See "Installing Software by Using the Command-Line Interface" on
page 32 for more details.

• If you want to download the software on your device, use the following procedure to download
and install the software on the device.

a.
Click Copy to copy the generated URL generated to the clipboard.

NOTE: The URL string generated remains active only for 15 minutes.

b. Log in to your device.

c. In operational mode, enter the file copy “URL” destination command.

In the command, paste the copied URL string (for URL) and then enter /var/tmp (as the
destination on your hard disk).

Example:

user@host> file copy "https://cdn.juniper.net/software/ittest/software_target/
agileEcotTest/Dev_Binary_Build.tar?
SM_USER=user1=1507622971_dce164fa854b4a27550c254eef950dd8” /var/tmp

31

https://www.juniper.net/support/

NOTE: Ensure that the URL string is enclosed within quotation marks. Also ensure that
there is sufficient free space available on the device.

The software image is downloaded on your device.

d. Install the software by using the request system software add package-name command.

Example:

user@host> request system software add /var/tmp/ junos-install-mx-x86-32-17.3R1.10.tgz

Your software is installed on the device.

SEE ALSO

Junos Platforms - Download Software

Installing Software by Using the Command-Line Interface

Download the software package you need from the Juniper Networks Support website at https://
www.juniper.net/support/, and place the package on a local system. You can then transfer the
downloaded package to the device using either the router or switch command-line interface, or the local
system command-line interface.

NOTE: To access the download section, you must have a service contract and an access account.
If you need help obtaining an account, complete the registration form at the Juniper Networks
website: https://userregistration.juniper.net/entitlement/setupAccountInfo.do.

Before you transfer the software package, ensure that the FTP service is enabled on the device.
Enable the FTP service using the set system services ftp command:

user@host# set system services ftp

To transfer the software package using the device command-line interface:

32

https://www.juniper.net/support/downloads/junos.html
https://www.juniper.net/support/
https://www.juniper.net/support/
https://userregistration.juniper.net/entitlement/setupAccountInfo.do

1. From the router or switch command line, initiate an FTP session with the local system (host) where
the package is located by using the ftp command:

user@host> ftp host

host is the hostname or address of the local system.

2. Log in with your customer support–supplied username and password:

User Name: username
331 Password required for username.
Password: password

After your credentials are validated, the FTP session opens.

3. Navigate to the software package location on the local system, and transfer the package by using the
get command:

user@host> get installation-package

Following is an example of an installation-package name: junos-install-mx-x86-32-17.3R1.10.tgz

4. Close the FTP session by using the bye command:

user@host> bye
Goodbye

To transfer the package by using the local system command-line interface:

1. From the local system command line, initiate an FTP session with the device using the ftp command:

user@host> ftp host

host is the hostname or address of the router or switch.

2. Log in with your customer support–supplied username and password:

User Name: username
331 Password required for username.
Password: password

33

After your credentials are validated, the FTP session opens.

3. Navigate to the software package location on the local system, and transfer the package by using the
put command:

user@host> put installation-package

Following is an example of an installation-package name: junos-install-mx-x86-32-17.3R1.10.tgz

4. Close the FTP session by using the bye command:

user@host> bye
Goodbye

SEE ALSO

Junos Platforms - Download Software

Software Installation on NFX250 Network Services Platform

This topic lists the commands to be used for installing a software package and upgrading an image on
NFX250 Network Services Platform and rebooting the NFX250 platform. It also lists the commands to
be used for formatting and reverting the system to factory state.

To install a new package on the NFX250 Network Services Platform:

[edit]
user@jdm> request system software add package [reboot]

Reboot is an option to reboot the device after installing the new software package.

Replace package with the following path:

For a software package in a local directory on the platform—/var/tmp/package.tgz

34

https://www.juniper.net/support/downloads/junos.html

To reboot the platform:

[edit]
user@jdm> request system reboot

To format the system by deleting all user data, configuration details, and reinstall current software on
the NFX250 Network Services platform:

user@jdm> request system zeroize

To format the system by deleting all user data, configuration details, and to upgrade the software on the
NFX250 Network Services platform:

user@jdm> request system software add package clean-install

NOTE: The zeroize and clean-install commands work only for primary installation and do not
work for backup installation.

CAUTION: The zeroize and clean-install commands might remove all user installed
software packages, VNF files of the user, and so on. After completing these operations,
you must fetch these information and reinstall the software. You might require a
console access to configure the basic remote network access if the system is in factory
state.

Upgrading an Image on the Disaggregated Junos OS Platform

• To upgrade the images of JCP, JDM, and the host OS on the disaggregated Junos OS platform:

user@jdm>request system software add jinstall reboot

35

For example:

user@jdm>request system software add /var/tmp/jinstall-nfx-2-flex-15.1X53-D40.3.secure-
domestic-signed.tgz reboot | no-more
System software upgrade in progress, please wait...
Pushing Junos image package to the host...
Installing /var/tmp/install-media-nfx-2-junos-15.1X53-D45.3.secure.tgz
Extracting the package ...
total 1191772
-rw-r--r-- 1 20607 758 313873261 Nov 22 09:18 jinstall-nfx-2-junos-15.1X53-D45.3.secure-
linux.tgz
-rw-r--r-- 1 20607 758 906487459 Nov 22 09:18 jinstall-nfx-2-junos-15.1X53-D45.3.secure-
app.tgz

==
Host OS upgrade is FORCED
Current Host kernel version : 3.14.61-rt58-WR7.0.0.13_ovp
Package Host kernel version : 3.14.61-rt58-WR7.0.0.13_ovp
Current Host version : 3.0.2
Package Host version : 3.0.2
Min host version required for applications: 2.2.0
==

Validate linux image...
upgrade_platform: -------------------
upgrade_platform: Parameters passed:
upgrade_platform: silent=0
upgrade_platform: package=/var/tmp/tmp.LKb5WwiFu8junos_cli_upg/jinstall-nfx-2-junos-15.1X53-
D45.3.secure-linux.tgz
upgrade_platform: clean install=0
upgrade_platform: on primary =0
upgrade_platform: clean upgrade=0
upgrade_platform: Need reboot after staging=1
upgrade_platform: -------------------
upgrade_platform:
upgrade_platform: Checking input /var/tmp/tmp.LKb5WwiFu8junos_cli_upg/jinstall-nfx-2-
junos-15.1X53-D45.3.secure-linux.tgz ...
upgrade_platform: Input package /var/tmp/tmp.LKb5WwiFu8junos_cli_upg/jinstall-nfx-2-
junos-15.1X53-D45.3.secure-linux.tgz is valid.
Secure Boot is enforced.
ALLOW:usr/secureboot/grub/BOOTX64.EFI
ALLOW:boot/bzImage-intel-x86-64.bin

36

ALLOW:boot/initramfs.cpio.gz
Setting up Junos host applications for installation ...
Installing Host OS ...
upgrade_platform: -------------------
upgrade_platform: Parameters passed:
upgrade_platform: silent=0
upgrade_platform: package=/var/tmp/jinstall-nfx-2-junos-15.1X53-D45.3.secure-linux.tgz
upgrade_platform: clean install=0
upgrade_platform: on primary =0
upgrade_platform: clean upgrade=0
upgrade_platform: Need reboot after staging=0
upgrade_platform: -------------------
upgrade_platform:
upgrade_platform: Checking input /var/tmp/jinstall-nfx-2-junos-15.1X53-D45.3.secure-
linux.tgz ...
upgrade_platform: Input package /var/tmp/jinstall-nfx-2-junos-15.1X53-D45.3.secure-linux.tgz
is valid.
Secure Boot is enforced.
ALLOW:usr/secureboot/grub/BOOTX64.EFI
ALLOW:boot/bzImage-intel-x86-64.bin
ALLOW:boot/initramfs.cpio.gz
upgrade_platform: Staging the upgrade package - /var/tmp/jinstall-nfx-2-junos-15.1X53-
D45.3.secure-linux.tgz..
./
./bzImage-intel-x86-64.bin
./bzImage-intel-x86-64.bin.psig
./grub/
./grub/grub.conf
./grub/grub.efi
./initramfs.cpio.gz
./initramfs.cpio.gz.psig
./linux.checksum
./version.txt
./upgrade_platform
./host-version
./platform_info
./initrd.cpio.gz
bzImage-intel-x86-64.bin: OK
initramfs.cpio.gz: OK
version.txt: OK
upgrade_platform: Checksum verified and OK...
1528703 blocks
upgrade_platform: Staging of /var/tmp/jinstall-nfx-2-junos-15.1X53-D45.3.secure-linux.tgz

37

completed
upgrade_platform: System need *REBOOT* to complete the upgrade
upgrade_platform: Run upgrade_platform with option -r | --rollback to rollback the upgrade

Host OS upgrade staged. Reboot the system to complete installation!

Rebooting ...
System going down for reboot in 30 seconds...
System reboot in progress...
Shutting down virtual-machines...
Waiting for virtual-machines to shutdown, retry = 0
Waiting for virtual-machines to shutdown, retry = 1
Waiting for virtual-machines to shutdown, retry = 2
No virtual-machines active now.
Rebooting the system...
INIT: Sending processes the TERM signal

{master:0}
root@nfx250-m-p2a-sys11-jdm> Stopping OpenBSD Secure Shell server: sshdstopped /usr/sbin/sshd
(pid 4169)
.
Unmount Junos cgroup... Done
Stopping atd: OK
Stopping domain name service: named.
Unmounting cgroups...Done
Stopping system message bus: dbus.
stopping DNS forwarder and DHCP server: dnsmasq... stopped /usr/bin/dnsmasq (pid 9449 9448)
done.
Stopping docker:
Stopping HOSTAP Daemon: no /usr/sbin/hostapd found; none killed
hostapd.
Shutting down irqbalance: no irqbalance found; none killed
done
Stopping ntpd: done
stopping rsyslogd ... done
Stopping internet superserver: xinetd.

Waiting for sanlock to stop: Success

Clearing ebtables rulesets: filter nat broute done. ok
Stopping crond: OK
Stopping S.M.A.R.T. daemon: smartd.
Stopping network management services: snmpd snmptrapd libvirtMib_subagent.

38

 * Stopping virtualization library daemon: libvirtd
Deconfiguring network interfaces... done.
Stopping tcsd: OK
Stopinit: Failed to release D-Bus name: Did not receive a reply. Possible causes include: the
remote application did not send a reply,
the message bus security policy blocked the reply, the reply timeout expired, or the network
connection was broken.
ping redis-server...
Sending all processes the TERM signal...
Sending all processes the KILL signal...
Unmounting remote filesystems...
Deactivating swap...
Unmounting local filesystems...
Rebooting... RE-FPGA-DRV: reboot notifier called with 0x0001
RE-FPGA-DRV: Please standby while rebooting.
.
..
..
..
.

Booting from Flash A

FPGA Reset Reason = 0x80

Primary BIOS version CBDE_SFP_00.21_01.01

Total Memory Size = 16GB

Checking Primary BIOS code integrity...Passed!
Press Esc for boot options
ME is in normal operational state

Booting HDD00.1 (StorFly VSFBM6CC100G-JUN)...

Secure boot is enforced
Welcome to GRUB!

Secure Grub2 Diskboo

39

Reverting the System to the Factory-Default Configuration

To revert the system to factory-default configuration:

user@jdm# load factory-default
warning: activating factory configuration

Rebooting the System

To reboot the system:

user@jdm>request system reboot

For example:

user@jdm>request system reboot
Reboot the system ? [yes,no] (no) yes
System reboot operation started, please wait...
System going down for reboot in 30 seconds...
System reboot in progress...
Shutting down virtual-machines...

. . . .

NOTE: The time taken to reboot the system depends on the number of active VNFs. The system
is rebooted only after all the active VNFs are shut down.

RELATED DOCUMENTATION

NFX250 Overview | 2

40

Configuring JDM User Accounts and Authentication

IN THIS SECTION

JDM User Accounts Overview | 41

Configuring JDM User Accounts and Authentication | 42

JDM User Accounts Overview

IN THIS SECTION

Root Account | 41

Auto Login for Junos VNFs | 42

Other User Accounts | 42

User Authentication | 42

On a disaggregated Junos OS platform, all computing elements are separate compute entities, and their
user accounts and passwords are managed separately. For example, JDM user accounts, including the
root user account, are completely separate from the Junos VM user accounts.

Root Account

In the factory-default configuration, the JDM is set up with a root user account. However, there is no
password set for the account. You must configure a root password as part of the initial configuration. If
the initial configuration of the platform is performed through the phone home feature, the configuration
must contain the root password setting. Until you configure a root password, you cannot access some of
the user prompts and you cannot commit a configuration by using the JDM CLI.

You can set the root password only from the JDM CLI. You cannot set or change the root password from
the JDM shell. The JDM root password is automatically propagated to the JDM shell.

41

Auto Login for Junos VNFs

When Junos VNFs such as JCP and vSRX Virtual Firewall are present on an NFX250 device, JDM auto
login account allows you to login to Junos VNF without a password.

To configure auto login to JDM:

root@jdm> request setup jdm-auto-login

To login to Junos VNF from JDM:

root@jdm> ssh jdm-sysuser@vjunos0

Other User Accounts

You can create user accounts other than the root account in the JDM. To do this, you must use the JDM
CLI. You cannot use the JDM shell to create user accounts.

The JDM supports the same features for user accounts as does Junos OS. That is, the JDM supports
login classes, custom password requirements, limits on the number of login attempts, and so on.

User Authentication

The JDM supports two of the three methods for user authentication that Junos OS supports: local
password authentication and TACACS+ authentication. It does not support RADIUS authentication.

Configuring JDM User Accounts and Authentication

You create user accounts and configure authentication for those accounts in JDM the same way you do
in Junos OS. This topic provides some brief guidance on how to configure user accounts and
authentication. For more details, consult the Junos OS documentation.

• To set the JDM root password:

root@jdm# set system root-authentication plain-text-password

You must use the JDM CLI to set the root password. You cannot set the root password using the
JDM shell.

42

• To create a new JDM user account:

root@jdm# set system login user user-name class class-name authentication plain-text-password

You cannot create JDM user accounts from the JDM shell.

• To configure SSH keys for a user to enable SSH without a password:

root@jdm# set system login user user-name load-key-file URL-to-ssh-key-file

• To configure TACAS+ authentication for user accounts:

root@jdm# set system tacplus-server server-address secret password

NOTE: TACACS+ is used to support SSH authentication, and once configured, TACACS+
configuration is applicable for both, JDM and host SSH authentication. On the host, TACACS
+ is used to authenticate SSH requests only for the root account and when requested from
outside the device.

Optionally, you can specify the TACACS+ authentication server port number and the timeout period.
To do so:

root@jdm# set system tacplus-server server-address port port-number

root@jdm# set system tacplus-server server-address timeout period

NOTE: By default, the TACACS+ port number is set to 49, and the timeout period is set to 5
seconds.

You must also configure the user name along with the class of the user locally on JDM:

root@jdm# set system login user user-name
root@jdm# set system login user user-name class super-user

43

• To allow users to log in to the NFX250 device as a root user:

root@jdm# root-login allow

• To prevent users from logging in to the NFX250 device as a root user:

root@jdm# root-login deny

• To allow users to log in to the NFX250 device as a root user through an authentication method (for
example, RSA authentication) that does not require a password:

root@jdm# root-login deny-password

RELATED DOCUMENTATION

NFX250 Overview | 2

JDM Architecture Overview | 6

YANG files on NFX250 Devices

IN THIS SECTION

Understanding YANG on NFX250 Devices | 44

Generating YANG Files | 45

Understanding YANG on NFX250 Devices

YANG is a standards-based, extensible data modeling language that is used to model the configuration
and operational state data, remote procedure calls (RPCs), and server event notifications of network
devices. The NETMOD working group in the IETF originally designed YANG to model network

44

management data and to provide a standard for the content layer of the Network Configuration Protocol
(NETCONF) model. However, YANG is protocol independent, and YANG data models can be used
independent of the transport or RPC protocol and can be converted into any encoding format supported
by the network configuration protocol.

Juniper Networks provides YANG modules that define the Junos OS configuration hierarchy and
operational commands and Junos OS YANG extensions. You can generate the modules on the device
running Junos OS.

YANG uses a C-like syntax, a hierarchical organization of data, and provides a set of built-in types as well
as the capability to define derived types. YANG stresses readability, and it provides modularity and
flexibility through the use of modules and submodules and reusable types and node groups.

A YANG module defines a single data model and determines the encoding for that data. A YANG module
defines a data model through its data, and the hierarchical organization of and constraints on that data.
A module can be a complete, standalone entity, or it can reference definitions in other modules and
submodules as well as augment other data models with additional nodes.

A YANG module defines not only the syntax but also the semantics of the data. It explicitly defines
relationships between and constraints on the data. This enables you to create syntactically correct
configuration data that meets constraint requirements and enables you to validate the data against the
model before uploading it and committing it on a device.

YANG uses modules to define configuration and state data, notifications, and RPCs for network
operations in a manner similar to how the Structure of Management Information (SMI) uses MIBs to
model data for SNMP operations. However, YANG has the benefit of being able to distinguish between
operational and configuration data. YANG maintains compatibility with SNMP’s SMI version 2 (SMIv2),
and you can use libsmi to translate SMIv2 MIB modules into YANG modules and vice versa. Additionally,
when you cannot use a YANG parser, you can translate YANG modules into YANG Independent
Notation (YIN), which is an equivalent XML syntax that can be read by XML parsers and XSLT scripts.

For information about YANG, see RFC 6020, YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF), and related RFCs.

For more information, see YANG Modules Overview, Using Juniper Networks YANG Modules, and show
system schema.

Generating YANG Files

You can generate YANG files for JDM and JCP on NFX250 devices.

To generate YANG files for JDM:

45

https://tools.ietf.org/html/rfc6020
https://www.juniper.net/documentation/en_US/junos/topics/concept/netconf-yang-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/task/operational/netconf-yang-module-obtaining-and-importing.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-system-schema.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-system-schema.html

1. Log in to the NFX device using SSH or console:

login: root

2. Start the CLI:

root@jdm:~# cli
{master:0}
root@jdm>

3. Create a temporary directory to store the generated YANG files:

{master:0}
root@jdm> file make-directory /var/third-party/jdm_yang
{master:0}
root@jdm> file list /var/third-party/jdm_yang
/var/third-party/jdm_yang:
{master:0}
root@jdm>

4. Generate YANG files for JDM:

{master:0}
root@jdm> show system schema module all format yang output-directory /var/third-party/jdm_yang

5. Verify whether YANG files are generated in the specified target directory:

{master:0}
root@jdm> file list /var/third-party/jdm_yang
/var/third-party/jdm_yang:

jdm-conf-root@2020-01-01.yang
jdm-rpc-bridges@2020-01-01.yang
jdm-rpc-clear@2020-01-01.yang
jdm-rpc-cli@2020-01-01.yang
jdm-rpc-connections@2020-01-01.yang
...Output truncated...

To generate YANG files for JCP:

46

1. Log in to the JCP CLI:

{master:0}
root@jdm> ssh jdm-sysuser@vjunos0
{master:0}
jdm-sysuser>

2. Create a temporary directory to store the generated YANG files:

{master:0}
jdm-sysuser> file make-directory /var/tmp/jcp_yang
{master:0}
jdm-sysuser> file list /var/tmp/jcp_yang
/var/tmp/jcp_yang:
{master:0}
jdm-sysuser>

3. Generate YANG files for JCP:

{master:0}
root> show system schema module all format yang output-directory /var/tmp/jcp_yang

4. Verify whether YANG files are generated in the specified target directory:

{master:0}
root> file list /var/tmp/jcp_yang
/var/tmp/jcp_yang:

junos-common-types@2020-01-01.yang
junos-qfx-conf-access-profile@2020-01-01.yang
junos-qfx-conf-access@2020-01-01.yang
junos-qfx-conf-accounting-options@2020-01-01.yang
junos-qfx-conf-applications@2020-01-01.yang
...Output truncated...

5. Copy the generated YANG files from JCP to JDM:

47

a. Exit the JCP CLI to return to the JDM CLI:

{master:0}
jdm-sysuser> exit
Connection to vjunos0 closed.
{master:0}
root@jdm>

b. Navigate to JDM shell and copy the generated JCP YANG files from JCP to JDM:

{master:0}
root@jdm> start shell
jdm:~# scp -r jdm-sysuser@vjunos0:/var/tmp/jcp_yang /var/third-party/
junos-qfx-conf-access-profile@2020-01-01.yang 100% 923 0.9KB/s
00:00
junos-qfx-conf-access@2020-01-01.yang 100% 179KB 178.9KB/s
00:00
junos-qfx-conf-accounting-options@2020-01-01.yang 100% 20KB 20.4KB/s
00:00
junos-qfx-conf-applications@2020-01-01.yang 100% 11KB 10.6KB/s
00:00
...Output truncated...
jdm:~#

6. Copy the generated JDM and JCP YANG files from the NFX device to the YANG based tools or
orchestrators by using the scp or file copy command.

Synchronizing Time Using NTP

You can synchronize time on the following components of the NFX platform using Network Time
Protocol (NTP):

• Junos Control Plane (JCP) - JCP runs the NTP server, and synchronizes time using the external NTP
servers that are configured. JCP acts as the NTP server for the host.

• Host (hypervisor) - The host runs the NTP server and client, and synchronizes time using the Junos
Control Plane (JCP) NTP server through JDM. The host, in turn, acts as the NTP server for the virtual
network functions (VNFs).

48

• VNF - This is optional. VNFs run the NTP client, and synchronize the time using either JCP,
hypervisor, or any external server that is configured.

To set the date and time using NTP:

1. Configure the NTP server and set the date on JCP:

root# set system ntp server <ip-address>
root# exit
root> set date ntp

Commit the configuration.

2. Once the NTP server has been configured on JCP, you can set the date and time on the host using
JDM:

root@jdm> set date ntp

3. (Optional) Set the local time zone to match the location of the device and to present the time in the
correct local format. Universal Coordinated Time (UTC) is the default. Many administrators prefer to
keep all their devices configured to use the UTC time zone. This approach has the benefit of allowing
you to easily compare the time stamps of logs and other events across a network of devices in many
different time zones.

root@jdm# set time zone time-zone

NOTE: If the VNFs are not running the NTP clients, reboot the system to synchronize the date
and time on all VNFs.

RELATED DOCUMENTATION

Understanding Virtual Network Functions | 65

49

Configuring Management Interfaces for JDM

IN THIS SECTION

JDM Management Interfaces Overview | 50

Configuring the Out-of-Band Management Interface for JDM | 52

Configuring the In-Band Management Interface for JDM | 53

Configuring the Out-of-Band Management Interface for Hypervisor | 57

JDM Management Interfaces Overview

IN THIS SECTION

Console Interface | 50

Out-of-Band Management Interface | 51

In-Band Management Interface | 51

You can access JDM through the system console, a dedicated out-of-band management interface, or an
in-band management interface.

Console Interface

On disaggregated Junos OS platforms that host Juniper Device Manager (JDM), you are placed in either
the JDM shell prompt or the JDM CLI when you first connect to a device using the device console port.
You can access the JDM CLI or other VMs, including the Junos Control Plane (JCP) CLI that is used to
manage Junos OS software, from this prompt. See "Accessing the JDM Shell, JDM CLI, and JCP Prompts
in a Disaggregated Junos OS Platform" on page 19.

50

Out-of-Band Management Interface

The JDM out-of-band management interface is named jmgmt0. The jmgmt0 interface is directly
connected to the dedicated Ethernet management port on the disaggregated Junos OS platform.

The jmgmt0 interface in a disaggregated Junos OS platform is analogous to the em0, me0, or fxp0
interfaces on a Juniper Networks switch or a router running traditional Junos OS software. To use
jmgmt0 as a management port, you must configure a logical interface (jmgmt0.0) on it with a valid IP
address. You can then connect to the management interface over the network using utilities such as SSH
or Telnet. SNMP can be used on the management interface to gather statistics.

The dedicated Ethernet management port on the platform is shared by other compute entities. For
example, JCP uses the dedicated Ethernet management port for its out-of-band management interface,
em0, as shown in Figure 11 on page 51.

Figure 11: Out-of-band Management Interface

In-Band Management Interface

JDM has an interface—jsxe0—that can be used as in-band management interface. Unlike the out-of-
band management interface jmgmt0, this interface is not directly connected to a physical port. You must
connect jsxe0 to a physical interface through VLAN bridging—that is, you must configure both the
physical interface and jsxe0 to be in the same management VLAN.

Figure 12 on page 52 illustrates how a network port is bridged to jsxe0. In this figure, ge-0/0/0 is the
network port being used for in-band management. Interface sxe-0/0/0 is a JCP interface. Both ge-0/0/0
and sxe-0/0/0 are managed by JCP, and are configured in JCP to be part of the management VLAN,
mgmt-vlan. JDM interface jsxe0 is also configured to part of the mgmt-vlan.

51

Figure 12: In-Band Management Interface Network

Configuring the Out-of-Band Management Interface for JDM

IN THIS SECTION

Configuring the Out-of-Band Management Interface with IPv4 Addressing for JDM | 52

Configuring the Out-of-Band Management Interface with IPv6 Addressing for JDM | 53

This topic discusses how to configure an out-of-band management interface for JDM in a disaggregated
Junos OS platform.

On a disaggregated Junos OS platform, the out-of-band management interface for JDM is named
mgmt0. The mgmt0 interface has a direct connection to the dedicated Ethernet management port on
the front panel of the device.

Configuring the Out-of-Band Management Interface with IPv4 Addressing for JDM

To configure the management interface with IPv4 addressing:

1. Configure the logical interface and the IP address:

root@jdm# set interfaces jmgmt0 unit 0 family inet address ipv4-address/mask

52

2. Set the default route:

root@jdm# set routing-options static route 0.0.0.0/0 nexthop ipv4-address

Configuring the Out-of-Band Management Interface with IPv6 Addressing for JDM

To configure the management interface with IPv6 addressing:

1. Configure the logical interface and the IP address:

root@jdm# set interfaces jmgmt0 unit 0 family inet6 address ipv6-address/mask

2. Set the default route:

root@jdm# set routing-options static route ::/0 nexthop ipv6-address

Configuring the In-Band Management Interface for JDM

JDM provides an internal interface—jsxe0—that can be used for in-band management. This internal
interface is not directly connected to a physical interface. You must link jsxe0 to a physical interface
through VLAN bridging—that is, you must configure both the physical interface and jsxe0 to be in the
same management VLAN. See Figure 13 on page 54.

JCP, and not JDM manages the physical network interfaces and the service interfaces; therefore, you
must first configure the sxe-0/0/0 and sxe-0/0/1 internal interfaces using the JCP CLI before you can
manage the jsxe0 interface using the JDM CLI.

53

Figure 13: In-Band Management Interface Example

NOTE: Choose the management VLAN ID to ensure that only the management traffic is directed
to JDM.

To configure jsxe0 as an in-band management interface:

1. Log in to the JCP CLI and enter configuration mode:

root@jdm> ssh jdm-sysuser@vjunos0

root@:RE:0% cli
{master:0}
{master:0}[edit]

2. Configure the physical network port as a trunk port:

[edit]
root# set interfaces interface-name unit 0 family ethernet-switching interface-mode trunk

54

For example:

[edit]
root# set interfaces ge-0/0/0 unit 0 family ethernet-switching interface-mode trunk

3. Configure a JCP service port as a trunk port:

root# set interfaces service-interface-name unit 0 family ethernet-switching interface-mode
trunk

For example:

[edit]
root# set interfaces sxe-0/0/0 unit 0 family ethernet-switching interface-mode trunk

4. Configure the management VLAN and add the physical network interface and the service interface as
members of the VLAN:.

[edit]
root@jcp# set vlans mgmt-vlan vlan-id vlan-id
root@jcp# set interfaces service-interface-name unit 0 family ethernet-switching vlan members
mgmt-vlan
root@jcp# set interfaces interface-name unit 0 family ethernet-switching vlan members mgmt-
vlan

For example:

[edit]
root@jcp# set vlans inband_mgmt vlan-id 4040
root@jcp# set interfaces sxe-0/0/0 unit 0 family ethernet-switching vlan members inband_mgmt
root@jcp# set interfaces ge-0/0/9 unit 0 family ethernet-switching vlan members inband_mgmt

5. Exit the JCP CLI to return to the JDM CLI (hostname@jdm> prompt):

[edit]
root# exit
Exiting configuration mode
root> exit
root% exit

55

logout
Connection to vjunos0 closed.
root@jdm>

6. Configure the jsxe0 interface as a trunk interface with membership in the management VLAN, and
configure the management IP address on the interface:

root@jdm# set interfaces jsxe0 vlan-tagging
root@jdm# set interfaces jsxe0 unit logical-unit-number vlan-id mgmt-vlan-id family inet
address mgmt-ip-address/prefix-length

Example: Configuring the In-Band Management Interface on JDM

root@jdm> ssh jdm-sysuser@vjunos0

root@:RE:0% cli
{master:0}
{master:0}[edit]
root@jdm# set interfaces jsxe0 vlan-tagging
root@jdm# set interfaces jsxe0 unit 4040 vlan-id 4040
root@jdm# set interfaces jsxe0 unit 4040 family inet address 10.20.30.40/24
root@jdm# set interfaces jsxe0 unit 4040 family inet6 address 2001::10:20:30:40/64

Example: Configuring the In-Band Management Interface on JCP

root@jdm> ssh jdm-sysuser@vjunos0

root@:RE:0% cli
{master:0}
{master:0}[edit]
root@jcp# set vlans inband_mgmt vlan-id 4040
root@jcp# set interfaces ge-0/0/9 description "WAN interface to PE"
root@jcp# set interfaces ge-0/0/9.0 family ethernet-switching interface-mode trunk
root@jcp# set interfaces ge-0/0/9.0 family ethernet-switching vlan members inband_mgmt
root@jcp# set interfaces sxe-0/0/0.0 family ethernet-switching interface-mode trunk
root@jcp# set interfaces sxe-0/0/0.0 family ethernet-switching vlan members inband_mgmt

56

Configuring the Out-of-Band Management Interface for Hypervisor

IN THIS SECTION

Configuring the Out-of-Band Management Interface with IPv4 Addressing for Hypervisor | 57

Configuring the Out-of-Band Management Interface with IPv6 Addressing for Hypervisor | 57

This topic discusses how to configure an out-of-band management interface for Hypervisor in a
disaggregated Junos OS platform.

On a disaggregated Junos OS platform, the out-of-band management interface for Hypervisor is named
eth0br. The eth0br interface has a direct connection to the dedicated Ethernet management port on the
front panel of the device.

Configuring the Out-of-Band Management Interface with IPv4 Addressing for
Hypervisor

To configure the management interface with IPv4 addressing:

1. Configure the logical interface and the IP address:

root@jdm# set host-os interfaces eth0br unit 0 family inet address ipv4-address/mask

2. Set the default route:

root@jdm# set host-os routing-options static route 0.0.0.0/0 next-hop gateway-ipv4-address

Configuring the Out-of-Band Management Interface with IPv6 Addressing for
Hypervisor

To configure the management interface with IPv6 addressing:

1. Configure the logical interface and the IP address:

root@jdm# set host-os interfaces eth0br unit 0 family inet6 address ipv6-address/mask

57

2. Set the default route:

root@jdm# set host-os routing-options static route ::/0 next-hop gateway-ipv6-address

RELATED DOCUMENTATION

JDM Architecture Overview | 6

JDM CLI Overview | 18

Configuring Remote Access to JDM

IN THIS SECTION

Configuring SSH Service and NETCONF-Over-SSH Connections for Remote Access to the Disaggregated
Junos OS Platform | 58

Configuring HTTP Access to the Disaggregated Junos OS Platform | 59

Configuring HTTPS Access to the Disaggregated Junos OS Platform | 59

Configuring SSH Service and NETCONF-Over-SSH Connections for
Remote Access to the Disaggregated Junos OS Platform

You can configure the disaggregated Junos OS platform to accept NETCONF sessions over SSH as an
access service.

To do so:

1. Access the system services SSH configuration:

[edit]
user@jdm#set system services netconf ssh

58

2. Configure the TCP port used for NETCONF-over-SSH connections:

[edit system services netconf ssh]
user@jdm#user@jdm# port port-number

The configured port only accepts NETCONG-over-SSH connections. Regular SSH connections to the
port are ignored.

Configuring HTTP Access to the Disaggregated Junos OS Platform

You can configure HTTP access to the disaggregated Junos OS platform.

To do so:

1. Access the system services HTTP configuration:

[edit]
user@jdm#edit system services http

2. Set the HTTP port for incoming connections:

[edit system services http]
user@jdm# set port port

Configuring HTTPS Access to the Disaggregated Junos OS Platform

You can configure HTTPS access to the disaggregated Junos OS platform.

To do so:

1. Access the HTTPS configuration:

[edit]
user@jdm#edit system services https

59

2. Set the HTTPS port for incoming connections:

[edit system services https]
user@jdm# set port port-number

RELATED DOCUMENTATION

JDM Architecture Overview | 6

JDM CLI Overview | 18

Configuring JDM User Accounts and Authentication | 41

Configuring Enhanced Orchestration and Hugepages

IN THIS SECTION

Enhanced Orchestration | 60

Hugepages | 61

Enhanced Orchestration

Enhanced orchestration mode enables you to easily manage VNFs and service chains without requiring
the VNF XML descriptor files. By default, this mode is ON and this is the recommended mode.

To enable enhanced orchestration:

[edit system services]
user@jdm# set enhanced-orchestration

NOTE: Ensure that you reboot the system after enabling the enhanced orchestration mode.

60

Hugepages

IN THIS SECTION

Pre-allocating Hugepages | 62

Allocating Hugepages for a VNF | 64

Troubleshooting Hugepages | 64

Hugepages in NFX250 devices are contiguous memory blocks of 2 MB and 1 GB sizes, which are used
for virtual memory management. Due to memory fragmentation, the system might not have sufficient
memory to assign the required amount of hugepages when a new VNF is launched. This might result in
the VNF either failing to launch or switching to the shutdown state during configuration. Hence, to
launch VNFs on NFX250 devices, you must pre-allocate memory using hugepages before configuring
the VNFs.

NOTE: Hugepages must be enabled for all VNFs that use OVS for service chaining.

When pre-allocating hugepages, ensure that there is sufficient memory for system use as insufficient
memory might cause the system to become unresponsive. The system, which consists of the JCP, JDM,
and Hypervisor, requires around 6 to 7 GB of memory. Only the remaining memory can be used by the
VNFs.

To view the current state of memory and hugepages available, issue the following command at the JDM
CLI prompt:

user@jdm> show system visibility memory

The default configuration comes with one hugepage of 1 GB size that is used by the OVS, and
hugepages of 2 MB size for system use.

Table 3 on page 62 lists the maximum hugepage memory that can be reserved for the various NFX250
models.

61

https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-system-visibility-memory.html

Table 3: Recommended Hugepage Memory for the NFX250 Devices

Model Memory Maximum Hugepage
Memory (GB)

Maximum Hugepage
Memory (GB) for CSO-
SDWAN

NFX250-S1 16 GB 8 -

NFX250-S1E 16 GB 8 13

NFX250-S2 32 GB 24 13

NFX250-LS1 16 GB 8 -

Pre-allocating Hugepages

To pre-allocate hugepages, issue the following command at the JDM CLI prompt:

user@jdm# set system memory hugepages page-size page-size page-count page-count

where:

• page-size can be one of the following values:

• 1024 for 1 GB hugepage

• 2 for 2 MB hugepage

• page-count is the number of hugepages

The page-size and page-count values depend on the size and total number of hugepages required by all the
VNFs that will be launched in the system. The values are also limited by the available memory on the
device.

We recommend that you reboot the system after configuring hugepages to pre-allocate hugepages
during bootup.

NOTE: By default, OVS uses 1 GB hugepage from the allocated set of hugepages.

62

The following sample output shows a configuration with both 1 GB and 2 MB hugepages configured. A
total of 8 hugepages of 1 GB size are configured, in which one hugepage is used by the OVS and the
remaining seven hugepages can be used for the VNFs. There are 376 hugepages of 2 MB size that can
be used for VNFs. The remaining hugepages (500-376=124) are reserved for system use.

Virtual Memory:

Total (KiB): 15949136
Used (KiB): 12690344
Available (KiB): 4687452
Free (KiB): 3258792
Percent Used : 70.60

Swap Memory:

Total (KiB): 0
Used (KiB): 0
Free (KiB): 0
Percent Used: 0.00

Memory Limits:

User VNFs Total Memory Limit (KiB): 9437184

Huge Pages:

Total 1GiB Huge Pages: 8
Free 1GiB Huge Pages: 7
Configured 1GiB Huge Pages: 8
Total 2MiB Huge Pages: 500
Free 2MiB Huge Pages: 376
Configured 2MiB Huge Pages: 500

Note that the value of Configured 1 GB Huge Pages includes the hugepage that the system allocates for the
OVS.

NOTE: On NFX250 NG devices, the value of the Total 1GiB Huge Pages will be one more than the
total hugepages reserved through the CLI (Configured 1GiB Huge Pages).

63

Allocating Hugepages for a VNF

To allocate hugepages for a VNF, issue the following command:

user@jdm# set virtual-network-functions vnf-name memory features hugepages [page-size page-size]

Troubleshooting Hugepages

If the number of hugepages configured results in insufficient memory for system use, the following error
message appears when you access the JDM CLI after rebooting the device:

fatal error - could not reserve address space in "getmem.c"

To reconfigure the hugepages:

1. Establish an SSH connection to the hypervisor:

user@jdm# ssh hypervisor

2. Determine the number of hugepages configured:

cat /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages

3. Reset the number of hugepages to 0:

echo 0 > /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages

4. Reboot the device.

5. Access the JDM CLI and reconfigure the number of hugepages.

Managing Virtual Network Functions Using JDM

IN THIS SECTION

Understanding Virtual Network Functions | 65

Prerequisites to Onboard Virtual Network Functions on NFX250 Devices | 67

Managing the VNF Life Cycle | 67

Creating the vSRX Virtual Firewall VNF on the NFX250 Platform | 82

64

Configuring the vMX Virtual Router as a VNF on NFX250 | 85

Virtual Route Reflector on NFX250 Overview | 87

Configuring vRR as a VNF on NFX250 | 89

Configuring Cross-connect | 105

Configuring Analyzer VNF and Port-mirroring | 107

Understanding Virtual Network Functions

Virtualized network functions (VNFs) include all virtual entities that can be launched and managed from
the Juniper Device Manager (JDM). Currently, virtual machines (VMs) are the only VNF type that is
supported.

There are several components in a JDM environment:

• JDM—Manages the life cycle for all service VMs. JDM also provides a CLI with configuration
persistence or the ability to use NETCONF for scripting and automation.

• Primary Junos OS VM—A system VM that is the primary virtual device. This VM is always present
when the system is running.

• Other Junos OS VMs—These VMs are service VMs and are activated dynamically by an external
controller. A typical example of this type of VM is a vSRX Virtual Firewall instance.

• Third-party VNFs—JDM supports the creation and management of third-party VMs such as Ubuntu
Linux VMs.

The JDM architecture provides an internal network that connects all VMs to the JDM as shown in
Figure 14 on page 66.

65

Figure 14: Network Connections Between JDM and the VMs

The JDM can reach any VNF using an internal network (192.0.2.1/24).

NOTE: Up to Junos OS Release 15.1X53-D470, the liveliness IP is in 192.168.1.0/24 subnet. In
all later Junos OS Releases, the liveliness IP is in 192.0.2.0/24 subnet.

A VNF can own or share management ports and NIC ports in the system.

All VMs run in isolation and a state change in one VM does not affect another VM. When the system
restarts, the service VMs are brought online as specified in the persistent configuration file. When you
gracefully shut down the system, all VMs including the Junos VMs are shut down.

Table 4 on page 66 provides a glossary of commonly used VNF acronyms and terms.

Table 4: VNF Glossary

Term Definition

JCP Junos Control Plane (also known as the primary Junos OS VM)

JDM Juniper Device Manager

NFV Network Functions Virtualization

VM Virtual Machine

VNF Virtualized Network Function

66

Prerequisites to Onboard Virtual Network Functions on NFX250 Devices

IN THIS SECTION

Prerequisites for VNFs | 67

You can onboard and manage Juniper VNFs and third-party VNFs on NFX devices through the Junos
Control Plane (JCP).

The number of VNFs that you can onboard on the device depends on the availability of system
resources such as the number of CPUs and system memory.

Before you onboard the VNFs, it is recommended to check the available system resources such as CPUs,
memory, and storage for VNFs. For more information, see "Managing the VNF Life Cycle " on page 67.

Prerequisites for VNFs

To instantiate VNFs, the NFX devices support:

• KVM based hypervisor deployment

• OVS or Virtio interface drivers

• raw or qcow2 VNF file types

• (Optional) SR-IOV

• (Optional) CD-ROM and USB configuration drives

• (Optional) Hugepages for memory requirements

Managing the VNF Life Cycle

IN THIS SECTION

Planning Resources for a VNF | 68

Managing the VNF Image | 70

67

Preparing the Bootstrap Configuration | 70

Launching a VNF | 71

Allocating Resources for a VNF | 72

Managing VNF States | 78

Managing VNF MAC Addresses | 79

Managing MTU | 79

Accessing a VNF from JDM | 80

Viewing List of VNFs | 81

Displaying the VNF Details | 81

Deleting a VNF | 81

You can use the JDM CLI to manage the VNF. Additionally, libvirt software offers extensive virtualization
features. To ensure that you are not limited by the CLI, JDM provides an option to operate VNF using an
XML descriptor file. Network Configuration Protocol (NETCONF) supports all VNF operations. Multiple
VNFs can co-exist in a system and you can configure multiple VNFs using either an XML descriptor file
or an image.

NOTE: Ensure that VNF resources that are specified in the XML descriptor file do not exceed the
available system resources.

This topic covers the life-cycle management of a VNF.

Planning Resources for a VNF

IN THIS SECTION

Purpose | 68

Purpose

Before launching a VNF, it is important to check the system inventory and confirm that the resources
required by the VNF are available. The VNF must be designed and configured properly so that its
resource requirements do not exceed the available capacity of the system.

68

NOTE:

• The output of the show system inventory command displays only the current snapshot of system
resource usage. When you start a VNF, the resource usage might be less than what was
available when you installed the VNF package.

• Before starting a VNF, you must check the system resource usage.

NOTE: Some of the physical CPUs are reserved by the system. Except for the following physical
CPUs, all others are available for user-defined VNFs:

Table 2 provides the list of physical CPUs that are reserved for NFX250-LS1.

Table 5: Physical CPU Allocation for NFX250-LS1

CPU Core Allocation

0 Host, JDM, and JCP

4 Host bridge

7 IPSec

Table 3 provides the list of physical CPUs that are reserved for NFX250-S1, NFX250-S2, and NFX250-
S1E devices.

Table 6: Physical CPU Allocation for NFX250

CPU Core Allocation

0 Host, JDM, and JCP

6 Host bridge

7 IPSec

69

For more information, see the following:

• show system inventory hardware cpu

• show system inventory hardware memory

• show system inventory hardware network

• show system inventory hardware storage

• show system inventory software vnf

• show system visibility jcp

• show system visibility jdm

• show system visibility jcp

• show system visibility vnf

• show system visibility storage

• show system visibility network

• show system visibility memory

• show system visibility cpu

• show system visibility host

Managing the VNF Image

To load a VNF image on the device from a remote location, use the file-copy command. Alternatively,
you can use the NETCONF command file-put, to load a VNF image.

NOTE: You must save the VNF image in the /var/third-party/images directory.

Preparing the Bootstrap Configuration

You can bootstrap a VNF by attaching either a CD or a USB storage device that contains a bootstrap-
config ISO file.

A bootstrap configuration file must contain an initial configuration that allows the VNF to be accessible
from an external controller, and accepts SSH, HTTP, or HTTPS connections from an external controller
for further runtime configurations.

70

https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-system-inventory-hardware-cpu.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-system-inventory-hardware-memory.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-system-inventory-hardware-network.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-system-inventory-hardware-storage.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-system-inventory-software-vnf.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-system-visibility-vnf.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-system-visibility-storage.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-system-visibility-network.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-system-visibility-memory.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-system-visibility-cpu.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-system-visibility-host.html

An ISO disk image must be created offline for the bootstrap configuration file as follows:

user@jdm>request genisoimage bootstrap-config-filename iso-filename

Launching a VNF

You can launch a VNF by configuring the VNF name, and specifying either the path to an XML
descriptor file or to an image.

While launching a VNF with an image, two VNF interfaces are added by default. These interfaces are
required for management and internal network. For those two interfaces, the target Peripheral
Component Interconnect (PCI) addresses, such as 0000:00:03:0 and 0000:00:04:0 are reserved.

To launch a VNF using an XML descriptor file:

user@jdm# set virtual-network-functions vnf-name init-descriptor file-path
user@jdm# commit

To launch a VNF using an image:

user@jdm# set virtual-network-functions vnf-name image file-path
user@jdm# commit

To specify a UUID for the VNF:

user@jdm# set virtual-network-functions vnf-name [uuid vnf-uuid]

uuid is an optional parameter, and it is recommended to allow the system to allocate a UUID for the VNF.

NOTE:

• You cannot change the init-descriptor or image configuration after saving and committing the
init-descriptor and image configuration. To change the init-descriptor or image for a VNF, you
must delete and create a VNF again.

• Commit checks are applicable only for VNF configurations that are based on image
specification through JDM CLI, and not for VNF configurations that are based on init-
descriptor XML file.

71

NOTE: For creating VNFs using image files, ensure the following:

• You must use unique files for image, disk, USB that are used within a VNF or across VNFs
except for an iso9660 type file, which can be attached to mutiple VNFs.

• A file specified as image in raw format should be a block device with a partition table and a
boot partition.

• A file specified as image in qcow2 format should be a valid qcow2 file.

Allocating Resources for a VNF

IN THIS SECTION

Specifying CPU for VNF | 72

Allocating Memory for a VNF | 73

Configuring VNF Storage Devices | 74

Configuring VNF Interfaces and VLANs | 75

This topic covers the process of allocating various resources to a VNF.

Specifying CPU for VNF

To specify the number of virtual CPUs that are required for a VNF, type the following command:

user@jdm# set virtual-network-functions vnf-name virtual-cpu count 1-4

To pin a virtual CPU to a physical CPU, type the following command:

user@jdm# set virtual-network-functions vnf-name virtual-cpu vcpu-number physical-cpu pcpu-number

The physical CPU number can either be a number or a range. By default, a VNF is allocated with one
virtual CPU that is not pinned to any physical CPU.

72

NOTE: You cannot change the CPU configuration of a VNF when the VNF is in running state.
Restart the VNF for changes to take effect.

To enable hardware-virtualization or hardware-acceleration for VNF CPUs, type the following command:

user@jdm# set virtual-network-functions vnf-name virtual-cpu features hardware-virtualization

Allocating Memory for a VNF

To specify the maximum primary memory that the VNF can use, enter the following command:

user@jdm# set virtual-network-functions vnf-name memory size size

By default, 1 GB of memory is allocated to a VNF.

NOTE: You cannot change the memory configuration of a VNF if the VNF is in running state.
Restart the VNF for changes to take effect.

To allocate hugepages for a VNF, type the following command:

user@jdm# set virtual-network-functions vnf-name memory features hugepages [page-size page-size]

page-size is an optional parameter. Possible values are 1024 for a page size of 1GB and 2 for a page size
of 2 MB. Default value is 1024 hugepages.

NOTE: Configuring hugepages is recommended only if the enhanced orchestration mode is
enabled. If the enhanced orchestration mode is disabled and if VNF requires hugepages, the VNF
XML descriptor file should contain the XML tag with hugepages configuration.

NOTE: For VNFs that are created using image files, there is a maximum limit of the total memory
that can be configured for all user-defined VNFs including memory based on hugepages and
memory not based on hugepages.

73

Table 4 lists the maximum hugepage memory that can be reserved for the various NFX250
models.

Table 7: Recommended Hugepage Memory for the NFX250 Devices

Model Memory Maximum Hugepage
Memory (GB)

Maximum Hugepage
Memory (GB) for CSO-
SDWAN

NFX250-S1 16 GB 8 -

NFX250-S1E 16 GB 8 13

NFX250-S2 32 GB 24 13

NFX250-LS1 16 GB 8 -

Configuring VNF Storage Devices

To add a virtual CD or to update the source file of a virtual CD, enter the following command:

user@jdm# set virtual-network-functions vnf-name storage device-name type cdrom source file file-
name

To add a virtual USB storage device, enter the following command:

user@jdm# set virtual-network-functions vnf-name storage device-name type usb source file file-
name

To attach an additional hard disk, enter the following command:

user@jdm# set virtual-network-functions vnf-name storage device-name type disk [bus-type virtio
| ide] [file-type raw | qcow2] source file file-name

74

To delete a virtual CD, USB storage device, or a hard disk from the VNF, enter the following command:

user@jdm# delete virtual-network-functions vnf-name storage device-name

NOTE:

• After attaching or detaching a CD from a VNF, you must restart the device for changes to take
effect. The CD detach operation fails if the device is in use within the VNF.

• VNF supports one virtual CD, one virtual USB storage device, and multiple virtual hard disks.

• You can update the source file in a CD or USB storage device while the VNF is in running
state.

• You must save the source file in the /var/third-party directory and the file must have read and
write permission for all users.

NOTE: For VNFs created using image files, ensure the following:

• A file specified as a hard disk in raw format should be a block device with a partition table.

• A file specified as a hard disk in qcow2 format should be a valid qcow2 file.

• A file specified as USB should be a block device with a partition table, or an iso9660 type file.

• A file specified as CD-ROM should be a block device of type iso9660.

• If a VNF has an image specified with bus-type=ide, it should not have any device attached
with name hda.

• If a VNF has an image specified with bus-type=virtio, then it should not have any device
attached with name vda.

Configuring VNF Interfaces and VLANs

You can create a VNF interface and attach it to a physical NIC port, management interface, or VLANs.

1. To attach a VNF interface to a physical interface by using the SR-IOV virtual function:

user@jdm# set virtual-network-functions vnf-name interfaces interface-name mapping physical-
interface-name virtual-function [vlan-id vlan-id]

75

vlan-id is optional and it is the port VLAN ID.

2. To create VLAN:

user@jdm# set host-os vlans vlan-name vlan-id vlan-id

3. To attach a VNF interface to a VLAN:

user@jdm# set virtual-network-functions vnf-name interfaces interface-name mapping vlan
members list-of-vlans [mode trunk|access]

NOTE:

• The interfaces attached to the VNF are persistent across VNF restarts.

• If the VNF supports hot-plugging, you can attach the interfaces when the VNF is in
running state. Otherwise, add the interfaces, and then restart the VNF.

• To map interfaces to VLAN, you must enable the memory features hugepages command
option.

• You cannot change the mapping of VNF interface when the VNF is in running state.

4. To map virtual interfaces with physical interfaces:

user@jdm# set virtual-network-functions vnf-name interfaces interface-name mapping peer-
interfaces

Mapping of virtual interfaces and physical interfaces (ge-0/0/n and xe-0/0/n) makes sure that the
state of the virtual interface matches with the state of the physical interface to which it is mapped.
For example, if a physical interface is down and virtual interface is up, the virtual interface will be
brought down within 5 seconds of detection. One or more virtual interface can be mapped to one or
more physical interfaces.

5. To connect VNF interfaces to the internal management network:

76

NOTE: Before connecting VNF interfaces to the internal management network, you must
configure the VNFs by using the set virtual-network-function vnf-name no_default_interface
command.

user@jdm# set virtual-network-functions vnf-name interfaces interface-name management internal
user@jdm# set virtual-network-functions vnf-name interfaces interface-name management out-of-
band

Any of the VNF interfaces including eth0 and eth1 can have internal or out-of-band attribute
management. However, only one VNF interface out of all interfaces that are connected can have
either out-of-band-management or internal-management. You cannot specify both the attribute
values to the same VNF interface. For example, eth5 can have management internal while eth0 can
have management out-of-band.

6. To specify the target PCI address for a VNF interface:

user@jdm# set virtual-network-functions vnf-name interfaces interface-name pci-address target-
pci-address

You can use the target PCI address to rename or reorganize interfaces within the VNF.

For example, a Linux-based VNF can use udev rules within the VNF to name the interface based on
the PCI address.

NOTE:

• The target PCI-address string should be in the following format:

0000:00:<slot:>:0, which are the values for domain:bus:slot:function. The slot should be
different for each VNF interface. The values for domain, bus, and function should be zero.

• You cannot change the target PCI-address of VNF interface when the VNF is in running
state.

7. To delete a VNF interface:

user@jdm# delete virtual-network-functions vnf-name interfaces interface-name
user@jdm# commit

77

NOTE:

• To delete an interface, you must stop the VNF, delete the interface, and start the VNF.

• After attaching or detaching a virtual function, you must restart the VNF for changes to
take effect.

• eth0 and eth1 are reserved for default VNF interfaces that are connected to the internal
network and out-of-band management network. Therefore, the configurable VNF
interface names start from eth2.

• Within a VNF, the interface names can be different, based on guest OS naming
convention. VNF interfaces that are configured in JDM might not appear in the same order
within the VNF.

• You must use the target PCI addresses to map to the VNF interfaces that are configured in
JDM and name them accordingly.

Managing VNF States

By default, the VNF is autostarted on committing the VNF config.

1. To disable an autostart of a VNF on a VNF config commit:

user@jdm# set virtual-network-functions vnf-name no-autostart

2. To manually start a VNF:

user@jdm> request virtual-network-functions vnf-name start

3. To stop a VNF:

user@jdm> request virtual-network-functions vnf-name stop

4. To restart a VNF:

user@jdm> request virtual-network-functions vnf-name restart

78

Managing VNF MAC Addresses

VNF interfaces that are defined, either using a CLI or specified in an init-descriptor XML file, are
assigned a globally-unique and persistent MAC address. A common pool of 64 MAC addresses is used to
assign MAC addresses. You can configure a MAC address other than that available in the common pool,
and this address will not be overwritten.

1. To configure a specific MAC address for a VNF interface:

user@jdm# set virtual-network-functions vnf-name interfaces interface-name mac-address mac-
address

2. To delete the MAC address configuration of a VNF interface:

user@jdm# delete virtual-network-functions vnf-name interfaces interface-name mac-address mac-
address

NOTE:

• To delete or modify the MAC address of a VNF interface, you must stop the VNF, make the
necessary changes, and then start the VNF.

• The MAC address specified for a VNF interface can be either a system MAC address or a
user-defined MAC address.

• The MAC address specified from the system MAC address pool must be unique for VNF
interfaces.

Managing MTU

The maximum transmission unit (MTU) is the largest data unit that can be forwarded without
fragmentation. You can configure either 1500 bytes or 2048 bytes as the MTU size. The default MTU
value is 1500 bytes.

NOTE: MTU configuration is supported only on VLAN interfaces.

1. To configure MTU on a VNF interface:

user@jdm# set virtual-network-functions vnf-name interfaces interface-name mtu size

79

NOTE: You must restart the VNF after configuring MTU if the VNF does not support hot-
plugging functionality.

2. To delete MTU of a VNF interface:

user@jdm# delete virtual-network-functions vnf-name interfaces interface-name mtu

NOTE: After the deletion of MTU, the MTU of VNF interface is reset to 1500 bytes.

NOTE:

• MTU size can be either 1500 bytes or 2048 bytes.

• The maximum number of VLAN interfaces on the OVS that can be configured in the system is
20.

• The maximum size of the MTU for a VNF interface is 2048 bytes.

Accessing a VNF from JDM

You can access a VNF from JDM using either SSH or a VNF console.

1. To access a VNF using SSH:

user@jdm> ssh vnf-name

2. To access a VNF using a virtual console:

user@jdm> request virtual-network-functions vnf-name console

NOTE:

• Use ctrl-] to exit the virtual console.

• Do not use Telnet session to run the command.

80

Viewing List of VNFs

To view the list of VNFs:

user@jdm> show virtual-network-functions
ID Name State Liveliness

3 vjunos0 running alive
- vsrx shut off down

The Liveliness output field of a VNF indicates whether the IP address of the VNF is reachable or not
reachable from JDM. The default IP address of the liveliness bridge 192.0.2.1/24.

Displaying the VNF Details

To display VNF details:

user@jdm> show virtual-network-functions vnf-name
Virtual Machine Information

Name: vsrx
IP Address: 192.0.2.4
Status: Running
Liveliness: Up
VCPUs: 1
Maximum Memory: 2000896
Used Memory: 2000896
Virtual Machine Block Devices

Target Source

hda /var/third-party/images/vsrx/media-srx-ffp-vsrx-vmdisk-15.1-2015-05-29_X_151_X49.qcow2
hdf /var/third-party/test.iso

Deleting a VNF

To delete a VNF:

user@jdm# delete virtual-network-functions vnf-name

81

NOTE: The VNF image remains in the disk even after you delete the VNF.

Creating the vSRX Virtual Firewall VNF on the NFX250 Platform

vSRX Virtual Firewall is a virtual security appliance that provides security and networking services in
virtualized private or public cloud environments. It can be run as a virtual network function (VNF) on the
NFX250 platform. For more details on vSRX Virtual Firewall, see the product documentation page on
the Juniper Networks website at https://www.juniper.net/.

To activate the vSRX Virtual Firewall VNF from the Juniper Device Manager (JDM) command-line
interface:

1. Allocate hugepages memory:

set virtual-network-functions vsrx memory size 4194304
set virtual-network-functions vsrx memory features hugepages

2. Define VLANs required for vSRX Virtual Firewall VNF interfaces. For example:

set host-os vlans v1 vlan-id 2614
set host-os vlans v2 vlan-id 2615
set host-os vlans v3 vlan-id 2714
set host-os vlans v4 vlan-id 2715

3. Define any glue VLANs required for the vSRX Virtual Firewall VNF interfaces. For example:

set host-os vlans gluebr0 vlan-id 2814
set host-os vlans gluebr1 vlan-id 2815

4. Define vSRX Virtual Firewall VNF with vSRX Virtual Firewall image. For example:

set virtual-network-functions vsrx image /var/third-party/images/vsrx.qcow2

82

https://www.juniper.net/

5. (Optional) Create the vSRX Virtual Firewall VNF with groups that contain custom configuration. For
example:

set virtual-network-functions vsrx apply-groups junos-vsrx

6. Map the vSRX Virtual Firewall VNF interfaces to VLANs or glue-VLANs. For example:

set virtual-network-functions vsrx interfaces eth2 mapping vlan members v1
set virtual-network-functions vsrx interfaces eth3 mapping vlan members v2
set virtual-network-functions vsrx interfaces eth4 mapping vlan members v3
set virtual-network-functions vsrx interfaces eth5 mapping vlan members v4
set virtual-network-functions vsrx interfaces eth6 mapping vlan members gluebr0
set virtual-network-functions vsrx interfaces eth7 mapping vlan members gluebr1

7. Specify a mode for the vSRX Virtual Firewall VNF interfaces. The interface mode can be either
access or trunk mode. For example:

set virtual-network-functions vsrx interfaces eth2 mapping vlan mode trunk

8. Specify the maximum transmission unit (MTU) size for the media in bytes for vSRX Virtual Firewall
VNF interfaces. MTU size can be either 1500 bytes or 2048 bytes. For example:

set virtual-network-functions vsrx interfaces eth2 mtu 1500

9. Specify the target PCI address for the VNF interface. For example:

set virtual-network-functions vsrx interfaces eth2 pci-address pci-address

10. At the CLI prompt, enter the commit command to activate the vSRX Virtual Firewall VNF.

[edit]
root# commit

11. Attach the ISO to vSRX Virtual Firewall as a CD-ROM device and start vSRX Virtual Firewall.

[edit]
root@jdm# set virtual-network-functions vsrx storage hdb type cdrom source file /var/third-
party/iso/testcd/bootstrapconf.iso

83

NOTE: If a vSRX Virtual Firewall instance is running, you must restart the instance so that
the new configuration is applied from the CD-ROM.

12. (Optional) To create the vSRX Virtual Firewall VNF with a custom bootstrap configuration, create an
ISO image with the configuration file juniper.conf .

[edit]
root@jdm> request genisoimage /var/third-party/iso/testcd/juniper.conf /var/third-party/iso/
testcd/bootstrapconf.iso
ISO image "/var/third-party/iso/testcd/bootstrapconf.iso" successfully generated from "/var/
third-party/iso/testcd/juniper.conf".

NOTE: Ensure that the configuration file is named juniper.conf.

13. Verify if the vSRX Virtual Firewall VNF initiated correctly. You can use JDM cli or Linux virsh
commands to verify.

[edit]
root@jdm# run show virtual-network-functions
ID Name State Liveliness

2 vjunos0 running alive
12 vsrx running alive
7433 jdm running alive

Using the Linux virsh command

[edit]
root@jdm> start shell
jdm:~# virsh list
 ID Name State
--
 2 vjunos0 running
 3 vsrx running

You can see that the vSRX Virtual Firewall VNF is active.

84

14. SSH connection to vSRX Virtual Firewall works only if the liveliness in the show output shows the
status alive, that is if bootstrap iso config was used to enable DHCP on fxp0 interface of vSRX
Virtual Firewall to get the internal management IP address). If the liveliness status for vSRX Virtual
Firewall VNF is down, refer to Configuring the Internal Management IP Address of vSRX VNF.

To log on to the vSRX Virtual Firewall VNF, enter the command run ssh vsrx.

15. (Optional) Verify the vSRX Virtual Firewall VNF details.

root@jdm> show virtual-network-functions vsrx
Virtual Machine Information

Name: vsrx
IP Address: 192.168.1.4
Status: Running
Liveliness: Up
VCPUs: 2
Maximum Memory: 4000768
Used Memory: 4000768
Virtual Machine Block Devices

Target Source

hda /var/third-party/images/vsrx.qcow2
hdf /var/third-party/iso/testcd/bootstrapconf.iso

Configuring the vMX Virtual Router as a VNF on NFX250

The vMX router is a virtual version of the Juniper MX Series 5G Universal Routing Platform. To quickly
migrate physical infrastructure and services, you can configure vMX as a virtual network function (VNF)
on the NFX250 platform. For more details on the configuration and management of vMX, see vMX
Overview.

Before you configure the VNF, check the system inventory and confirm that the required resources are
available. vMX as VNF must be designed and configured so that its resource requirements do not exceed
the available capacity of the system. Ensure that a minimum of 20 GB space is available on NFX250.

To configure vMX as VNF on NFX250 using the Juniper Device Manager (JDM) command-line interface
(CLI):

1. Download the nested image available at vmx-nested-< release>.qcow2.

85

https://www.juniper.net/documentation/en_US/release-independent/junos/topics/task/configuration/nfx250-configure-vsrx-internal-ip.html
https://www.juniper.net/documentation/en_US/vmx18.1/topics/concept/vmx-overview.html
https://www.juniper.net/documentation/en_US/vmx18.1/topics/concept/vmx-overview.html

2. Define VLANs required for the vMX VNF interfaces. For example:

user@host# set host-os vlans v1 vlan-id 2614
user@host# set host-os vlans v2 vlan-id 2615

3. Define the glue VLANs required for the vMX VNF interfaces. For example:

user@host# set host-os vlans gluebr0 vlan-id 2614
user@host# set host-os vlans gluebr1 vlan-id 2615

4. Define vMX for VNF with the vMX image. For example:

user@host# set virtual-network-functions vmx image /var/third-party/images/vmx-nested-
<release>.qcow2

5. Specify the maximum primary memory that the VNF can use. For optimal performance, it is
recommended to configure with at least 5 GB memory.

user@host# set virtual-network-functions vmx memory size < n>

6. Specify the number of cores per CPU in a virtual machine. For vMX VNF, you need a minimum of 4
virtual CPU cores.

user@host# set virtual-network-functions vmx virtual-cpu count < n> features hardware-
virtualization

7. Add an additional data drive that stores the configuration parameters.

user@host# set virtual-network-functions vmx storage vdc type disk file-type vmx-nested-<
release>.qcow2

8. Map the vMX VNF interfaces to VLANs or glue-VLANs.

user@host# set virtual-network-functions vmx interfaces eth2 description wan0

user@host# set virtual-network-functions vmx interfaces eth2 mapping vlan members < vlan>

user@host# set virtual-network-functions vmx interfaces eth3 description wan1

user@host# set virtual-network-functions vmx interfaces eth3 mapping vlan members < vlan>

9. At the CLI prompt, enter the commit command to activate vMX VNF.

user@host# commit

10. Verify if the vMX VNF has been configured correctly on NFX250.

root@jdm# run show virtual-network-functions

ID Name State Liveliness

3 vjunos0 running alive

86

10 vmx running alive
11341 jdm running alive

If you use virsh, enter

root@jdm# virsh list
 ID Name State
--
2 vjunos0 running
3 vmx running

This shows that the vMX VNF is active.

11. Verify if the vMX VNF has been configured correctly on NFX250.

root@jdm# run show virtual-network-functions

To upgrade the vMX VNF, deactivate the VNF configuration and select the new image copied to
the /var/third-party/images/vmx-nested-< release>.qcow2 location. Reactivate the VNF
configuration again.

12. For in-band management network connections, the assigned management port is fxp0. For out-of-
band management, ge-0/0/0 is used, and ge-0/0/1 is used for WAN interfaces.

Virtual Route Reflector on NFX250 Overview

IN THIS SECTION

Benefits of vRR | 88

Software Requirements for vRR on NFX250 | 88

The virtual Route Reflector (vRR) feature allows you to implement route reflector capability using a
general purpose virtual machine that can be run on a 64-bit Intel-based blade server or appliance.
Because a route reflector works in the control plane, it can run in a virtualized environment. A virtual
route reflector on an Intel-based blade server or appliance works the same as a route reflector on a
router, providing a scalable alternative to full mesh internal BGP peering.

87

Starting in Junos OS Release 17.3R1, you can implement the virtual route reflector (vRR) feature on the
NFX250 Network Services platform. The Juniper Networks NFX250 Network Services Platform
comprises the Juniper Networks NFX250 devices, which are Juniper Network’s secure, automated,
software-driven customer premises equipment (CPE) devices that deliver virtualized network and
security services on demand. NFX250 devices use the Junos Device Manager (JDM) for virtual machine
(VM) lifecycle and device management, and for a host of other functions. The JDM CLI is similar to the
Junos OS CLI in look and provides the same added-value facilities as the Junos OS CLI.

NOTE:

• Starting in vRR Junos OS Release 20.1R1, both Linux Bridge (LB) and enhanced orchestration
(EO) modes are supported for vRR. It is recommended to instantiate vRR VNF in EO mode.

• Support for LB mode on NFX250 devices ended in NFX Junos OS Release 18.4.

• Support for NFX-2 software architecture on NFX250 devices ended in NFX Junos OS Release
19.1R1.

• Starting in NFX Host Release 21.4R2 and vRR Junos OS Release 21.4R2, you can deploy a
vRR VNF on an NFX250 NextGen device. Only enhanced orchestration (EO) mode is
supported for vRR.

Benefits of vRR

vRR has the following benefits:

• Scalability: By implementing the vRR feature, you gain scalability improvements, depending on the
server core hardware on which the feature runs. Also, you can implement virtual route reflectors at
multiple locations in the network, which helps scale the BGP network with lower cost. The maximum
routing information base (RIB) scale with IPv4 routes on NFX250 is 20 million.

• Faster and more flexible deployment: You install the vRR feature on an Intel server, using open source
tools, which reduces your router maintenance.

• Space savings: Hardware-based route reflectors require central office space. You can deploy the
virtual route reflector feature on any server that is available in the server infrastructure or in the data
centers, which saves space.

For more information about vRR, refer Virtual Route Reflector (vRR) Documentation.

Software Requirements for vRR on NFX250

The following software components are required to support vRR on NFX250:

88

https://www.juniper.net/documentation/product/en_US/virtual-route-reflector

• Juniper Device Manager: The Juniper Device Manager (JDM) is a low-footprint Linux container that
supports Virtual Machine (VM) lifecycle management, device management, Network Service
Orchestrator module, service chaining, and virtual console access to VNFs including vSRX Virtual
Firewall, vjunos, and now vRR as a VNF.

• Junos Control Plane: Junos Control Plane (JCP) is the Junos VM running on the hypervisor. You can
use JCP to configure the network ports of the NFX250 device, and JCP runs by default as vjunos0 on
NFX250. You can log on to JCP from JDM using the SSH service and the command-line interface
(CLI) is the same as Junos.

Configuring vRR as a VNF on NFX250

IN THIS SECTION

Configuring vRR VNF on NFX250 in Linux Bridge Mode | 89

Configuring vRR VNF on NFX250 in Enhanced Orchestration Mode | 102

You can configure vRR as a VNF in either Linux Bridge (LB) mode or Enhanced Orchestration (EO) mode.

Configuring vRR VNF on NFX250 in Linux Bridge Mode

IN THIS SECTION

Configuring Junos Device Manager (JDM) for vRR | 90

Verifying that the Management IP is Configured | 91

Verifying that the Default Routes are Configured | 92

Configuring Junos Control Plane (JCP) for vRR | 92

Launching vRR | 96

Enabling Liveliness Detection of vRR VNF from JDM | 99

89

Configuring Junos Device Manager (JDM) for vRR

By default, the Junos Device Manager (JDM) virtual machine comes up after NFX250 is powered on. By
default, enhanced orchestration mode is enabled on JDM. While configuring vRR, disable enhanced
orchestration mode, remove the interfaces configuration, and reboot the NFX device.

To configure the Junos Device Manager (JDM) virtual machine for vRR, perform the following steps:

1. In configuration mode, at the [edit] hierarchy level, disable enhanced orchestration. By default,
enhanced orchestration mode is enabled on JDM.

[edit]
user@jdm# delete system services enhanced-orchestration

2. Delete interface configuration.

[edit]
user@jdm# delete interfaces

3. Set the JDM root password.

[edit]
user@jdm# set system root-authentication plain-text-password

4. Commit the configuration using the commit command and reboot the system for the configuration to
take effect.

[edit]
user@jdm# commit
user@jdm# run request reboot

5. After the system reboots, the default bridges configuration is available on JDM. Configure the JDM
root password, management port IP, and add default routes.

NOTE: After the system reboots, if the groups groups1604-configs is not present in the
configuration, include it so the default bridges configuration is available on JDM.

[edit]
user@jdm# set system root-authentication encrypted-password

90

user@jdm# set system services ssh
user@jdm# set interface eth0 vlan-id valn-id family inet address address
user@jdm# set route destination address next-hop address

Verifying that the Management IP is Configured

IN THIS SECTION

Purpose | 91

Action | 91

Purpose

Ensure that the management IP address has been configured accurately.

Action

From configuration mode, enter the show interface command.

user@jdm# show interface eth0

vlan-id 0 {
 family {
 inet {
 address 10.48.14.18/22;
 }
 }
}

91

Verifying that the Default Routes are Configured

IN THIS SECTION

Purpose | 92

Action | 92

Purpose

Ensure that the default routes are configured for DNS and gateway access.

Action

From configuration mode, enter the show route command.

user@jdm# show route

destination 172.16.0.0/12 next-hop 10.48.15.254;
destination 192.168.0.0/16 next-hop 10.48.15.254;
destination 207.17.136.0/24 next-hop 10.48.15.254;
destination 10.0.0.0/10 next-hop 10.48.15.254;
destination 10.64.0.0/10 next-hop 10.48.15.254;
destination 10.128.0.0/10 next-hop 10.48.15.254;
destination 10.192.0.0/11 next-hop 10.48.15.254;
destination 10.224.0.0/12 next-hop 10.48.15.254;
destination 10.240.0.0/13 next-hop 10.48.15.254;
destination 10.248.0.0/14 next-hop 10.48.15.254;
destination 10.252.0.0/15 next-hop 10.48.15.254;
destination 10.254.0.0/16 next-hop 10.48.15.254;
destination 66.129.0.0/16 next-hop 10.48.15.254;
destination 10.48.0.0/15 next-hop 10.48.15.254;

Configuring Junos Control Plane (JCP) for vRR

By default, the Junos Control Plane (JCP) VM comes up after NFX250 is powered on. The JCP virtual
machine controls the front panel ports in the NFX250 device. VLANs provide the bridging between the

92

virtual route reflector VM interfaces and the JCP VMs using sxe ports. The front panel ports are
configured as part of the same VLAN bridging of the VRR ports. As a result, packets are transmitted or
received using these bridging ports between JCP instead of the vRR VNF ports.

To configure JCP for vRR, perform the following steps:

1. In the operational mode, connect to the JCP virtual machine.

user@jdm>ssh vjunos0
user@jcp> configure
user@jcp#

2. Configure the front panel ports with the same VLAN bridging of vRR VNF ports. In this example, the
front panel ports, ge-0/0/1, ge-0/0/10, and xe-0/0/12 are mapped with vRR VNF interfaces, em1, em2, and
em3. The ge-0/0/1 (front panel port) maps to the sxe-0/0/0 (internal interface) which maps to em1 (vRR
VNF interface). They are all part of the same VLAN (VLAN ID 100).

root#set interfaces ge-0/0/1 unit 0 family ethernet-switching interface-mode trunk
root# set interfaces ge-0/0/10 unit 0 family ethernet-switching interface-mode trunk
root# set interfaces xe-0/0/12 unit 0 family ethernet-switching interface-mode trunk

root# set interfaces sxe-0/0/0 unit 0 family ethernet-switching interface-mode trunk
root# set interfaces sxe-0/0/1 unit 0 family ethernet-switching interface-mode trunk

3. Configure the VLANs and add the physical interface and the service interface as members of the
same VLAN. In this example, we have 3 VLANs (100, 101, and 102).

root@jcp# set vlans vlan100 vlan-id 100
root@jcp# set vlans vlan101 vlan-id 101
root@jcp# set vlans vlan102 vlan-id 102
root@jcp#set interfaces ge-0/0/1 unit 0 family ethernet-switching interface-mode trunk vlan
members vlan100
root@jcp# set interfaces ge-0/0/10 unit 0 family ethernet-switching interface-mode trunk vlan
members vlan101
root@jcp# set interfaces xe-0/0/12 unit 0 family ethernet-switching interface-mode trunk vlan
members vlan102
root@jcp# set interfaces sxe-0/0/0 unit 0 family ethernet-switching interface-mode trunk vlan
members 100
root@jcp# set interfaces sxe-0/0/1 unit 0 family ethernet-switching interface-mode trunk vlan
members 101-102

93

4. Configure MTU:

NOTE: The maximum MTU that you can configure on JCP and vRR VNF interfaces is 1518
bytes.

root@jcp# set interfaces ge-0/0/1 mtu 1518
root@jcp# set interfaces ge-0/0/1 unit 0 family ethernet-switching interface-mode trunk
root@jcp# set interfaces ge-0/0/1 unit 0 family ethernet-switching vlan members vlan100
root@jcp# set interfaces ge-0/0/1 unit 0 family ethernet-switching vlan members default
root@jcp# set interfaces ge-0/0/1 unit 0 storm-control default

5. Verify that you have configured the mapping of interfaces accurately.

sxe-0/0/0 {
 ether-options {
 no-flow-control;
 }
 unit 0 {
 family ethernet-switching {
 interface-mode trunk;
 vlan {
 members [100 default vlan-2];
 }
 }
 }
 }
ge-0/0/1 {
 unit 0 {
 family ethernet-switching {
 interface-mode trunk;
 vlan {
 members [default vlan100];
 }
 storm-control default;
 }
 }
 }
 sxe-0/0/1 {
 ether-options {
 no-flow-control;

94

 }
 unit 0 {
 family ethernet-switching {
 interface-mode trunk;
 vlan {
 members [101-102 vlan-3];
 }
 }
 }
 }
ge-0/0/10 {
 unit 0 {
 family ethernet-switching {
 interface-mode trunk;
 vlan {
 members [default vlan101];
 }
 storm-control default;
 }
 }
 }
 xe-0/0/12 {
 unit 0 {
 family ethernet-switching {
 interface-mode trunk;
 vlan {
 members [vlan-2 vlan102];
 }
 storm-control default;
 }
 }
 }
vlans{
..
 vlan100 {
 vlan-id 100;
 }
 vlan101 {
 vlan-id 101;
 }
 vlan102 {
 vlan-id 102;

95

 }
 }

Launching vRR

You can launch the vRR VNF as a virtualized network function (VNF) using the XML configuration
templates that are part of the vRR image archive.

1. To launch the vRR VNF, use the virsh command and specify the VM name.

root$ virsh define vrr.xml
root$ virsh start vrr

Where, vrr is the virsh domain name specified in the vrr.xml.

2. To create a VRR VNF of size 24GB with 2 virtual CPUs and 2 VNF interfaces (em2, em3) as shown in
this example, you can use this sample configuration.

NOTE: To create a vRR VNF, use the default memory allocation mode and not hugepages.

<domain type='kvm' id='10'>
<!-- Assign VRR VM instance name -->
<name>template_vrr</name>
<!-- Assign Memory required for this VRR VM instance -->
<memory unit=’KiB’>25769803</currentMemory>
<currentMemory unit='KiB'>25165824</currentMemory>
<memoryBacking>
<locked/>
</memoryBacking>
<!-- Assign required virtual CPU for VRR VM instance, here 2 vcpu is assigned -->
<vcpu placement='static' cpuset='0-1'>2</vcpu>
 <cputune>
 <vcpupin vcpu='0' cpuset='0'/>
 <vcpupin vcpu='1' cpuset='1'/>
 </cputune>
 <resource>
 <partition>/machine</partition>
 </resource>
 <sysinfo type='smbios'>
 <bios>

96

 <entry name='vendor'>Juniper</entry>
 </bios>
 <system>
 <entry name='manufacturer'>Juniper</entry>
 <entry name='product'>VRR</entry>
 <entry name='version'>16.1</entry>
 </system>
 </sysinfo>
 <os>
 <type arch='x86_64' machine='pc-i440fx-1.7'>hvm</type>
 <boot dev='hd'/>
 <smbios mode='sysinfo'/>
 </os>
 <features>
 <acpi/>
 <apic/>
 </features>
 <cpu mode='host-model'>
 <model fallback='allow'/>
 <topology sockets='1' cores='4' threads='1'/>
 </cpu>
 <clock offset='utc'/>
 <devices>
 <emulator>/usr/bin/kvm</emulator>
 <!-- Provide VRR VM instance image location -->
 <disk type='file' device='disk'>
 <driver name='qemu' type='qcow2' cache='writethrough'/>
 <source file='/var/opt/test/nikramas/forsriov/fin_val/16.1R5.7/junos-
x86-64-16.1R5.7.img'/>
 <backingStore/>
 <target dev='vda' bus='virtio'/>
 <alias name='virtio-disk0'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/>
 </disk>
 <controller type='pci' index='0' model='pci-root'>
 <alias name='pci.0'/>
 </controller>
 <!-- em0 – management interface with the associated bridge -->
 <interface type='bridge'>
 <source bridge='eth0br'/>
 <target dev='vnet5'/>
 <model type='virtio'/>
 <alias name='net0'/>

97

 <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/>
 </interface>
 <!-- em1 – internal data interface with the associated bridge -->
 <interface type='bridge'>
 <source bridge='virbr0'/>
 <target dev='vnet6'/>
 <model type='virtio'/>
 <alias name='net1'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/>
 </interface>
 <!-- em2 – external data interface with the associated bridge -->
 <interface type='bridge'>
 <source bridge='sxe0br'/>
 <target dev='vnet7'/>
 <model type='virtio'/>
 <alias name='net2'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x04' function='0x0'/>
 </interface>
 <!-- em3 – external data interface with the associated bridge -->
 <interface type='bridge'>
 <source bridge='sxe1br'/>
 <target dev='vnet8'/>
 <model type='virtio'/>
 <alias name='net3'/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/>
 </interface>
 <serial type='pty'>
 <source path='/dev/pts/0'/>
 <target port='0'/>
 <alias name='serial0'/>
 </serial>
 <console type='pty' tty='/dev/pts/0'>
 <source path='/dev/pts/0'/>
 <target type='serial' port='0'/>
 <alias name='serial0'/>
 </console>
 <memballoon model='none'>
 <alias name='balloon0'/>
 </memballoon>
 </devices>
 <seclabel type='none' model='none'/>
 </domain>

98

Enabling Liveliness Detection of vRR VNF from JDM

Liveliness of a VNF indicates if the IP address of the VM is accessible to the Junos Device Manager
(JDM). If the liveliness of the VM is down, it implies that the VM is not reachable from JDM. You can
view the liveliness of VMs using the show virtual-machines command. By default, the liveliness of vRR VNF
is shown as down. Before creating the vRR VNF, it is recommended that you enable liveliness detection
in JDM.

To enable liveliness detection of the vRR VNF from JDM, perform the following steps:

1. To verify that liveliness detection of vRR VNF from JDM, issue the following command:

NOTE: By default, the liveliness of vRR VNF is shown as down. You must enable liveliness
detection of vRR VNF from the JDM.

user@jdm> show virtual-machines
ID Name State Liveliness

2 vjunos0 running alive
18 VRR running down
8366 jdm running alive

2. Create a dummy interface with internal bridge, virbr0, by modifying the network interface settings for
the vRR VNF interface. stanza of the VM template like as shown below. The PCI details like bus, slot,
function information can be based on your existing interfaces arbitrary running next number,
especially the slot number.

This is a sample network interface setting.

<interface type='bridge'>
 <source bridge='eth0br'/>
<model type=’e1000’/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/>
</interface>

You must change the settings as follows:

<interface type='bridge'>
 <source bridge='virbr0'/>
<model type=’e1000’/>

99

 <address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/>
</interface>

When you are modifying the settings make sure that:

• The interface type is 'bridge'.

• The model type is e1000 to prevent problems with VLAN subinterfaces.

• The PCI resource for the address is unique for this VM.

3. To identify the MAC address associated with the virbr0 interface, use the virsh dumpxml vrr-vm-name
command.

user@jdm:/var/third-party# virsh dumpxml VRR

...
<interface type='bridge'>
<mac address=’52:54:00:c4:fe:8d'/>
 <source bridge='virbr0'/>
<model type=’e1000’/>
 <address type='pci' domain='0x0000' bus='0x00' slot='0x06' function='0x0'/>
</interface>
...

This is the MAC address assigned by the vRR VNF to the virbr0 interface.

4. To assign an IP address to the vRR VNF interface connected to virbr0 interface, you must use an IP,
that is part of the internal network. In this example, the MAC address, 52:54:00:c4:fe:8d, assigned by
the vRR VNF is associated with the em4 interface of the vRR VNF. So, we must configure the em4
interface with the IP address as shown in this step.

user@> set interfaces em4 unit 0 family inet address 192.168.1.10/24
user@# run show interfaces em4
Physical interface: em4, Enabled, Physical link is Up
 Interface index: 130, SNMP ifIndex: 154
 Type: Ethernet, Link-level type: Ethernet, MTU: 1514, Speed: 1000mbps
 Device flags : Present Running
 Interface flags: SNMP-Traps
 Link type : Full-Duplex
 Current address: 52:54:00:c4:fe:8d, Hardware address: 52:54:00:c4:fe:8d
 Last flapped : 2017-07-11 07:42:38 UTC (00:04:42 ago)
 Input packets : 40
 Output packets: 4

100

 Logical interface em4.0 (Index 69) (SNMP ifIndex 155)
 Flags: Up SNMP-Traps 0x4000000 Encapsulation: ENET2
 Input packets : 37
 Output packets: 4
 Protocol inet, MTU: 1500
 Max nh cache: 100000, New hold nh limit: 100000, Curr nh cnt: 0,
 Curr new hold cnt: 0, NH drop cnt: 0
 Flags: Sendbcast-pkt-to-re, Is-Primary
 Addresses, Flags: Is-Default Is-Primary
 Local: 192.168.1.10

The MAC address assigned by the vRR VNF in this example is associated with em4 interface.

5. In Junos Device Manager (JDM), update the file /etc/hosts with the IP address and vRR VNF name.

NOTE: When you update the /etc/hosts file, include space between the IP address and the
vRR VNF name. Do not include tab spaces.

user@jdm> cat /etc/hosts
127.0.0.1 localhost
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters
192.168.1.1 hypervisor
192.168.1.2 vjunos0
192.168.1.3 vjunos1
192.168.1.4 vsrx
192.168.1.254 jdm nfx-vrr-jdm
128.0.0.254 jdm nfx-vrr-jdm
192.168.1.5 ipsec-nm
192.168.1.10 VRR

6. Ping the IP address of the vRR VNF from JDM to verify that the internal bridge virbr0 is accessible
from JDM.

user@jdm> ping 192.168.1.10
PING 192.168.1.10 (192.168.1.10) 56(84) bytes of data.
64 bytes from 192.168.1.10: icmp_seq=1 ttl=64 time=0.316 ms
64 bytes from 192.168.1.10: icmp_seq=2 ttl=64 time=0.379 ms

101

^C
--- 192.168.1.10 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 999ms
rtt min/avg/max/mdev = 0.316/0.347/0.379/0.036 ms

7. To verify that liveliness detection of vRR VNF from JDM, issue the following command:

user@jdm> show virtual-machines
ID Name State Liveliness

2 vjunos0 running alive
18 VRR running alive
8366 jdm running alive

Now, the liveliness status of vRR VNF is shown as alive.

Configuring vRR VNF on NFX250 in Enhanced Orchestration Mode

Before you configure the vRR VNF, check the system inventory and confirm that the required resources
are available by using show system visibility command. vRR as VNF must be designed and configured so
that its resource requirements do not exceed the available capacity of the system.

You can instantiate the vRR VNF in Enhanced Orchestration (EO) mode by using the JDM CLI
configuration and without using the XML descriptor file. EO mode uses Open vSwitch (OVS) as NFV
backplane for bridging the interfaces.

To activate the vRR VNF from the Juniper Device Manager (JDM) CLI:

1. Download the qcow2.img vRR image to the /var/third-party/images/ folder.

2. Define the vRR VNF. For example:

user@host# set virtual-network-functions VRR-1 image /var/third-party/images/junos-
x86-64-18.4R1-S2.4.img

3. Define VLANs required for vSRX Virtual Firewall VNF interfaces. For example:

user@host# set host-os vlans vlan10 vlan-id 10
user@host# set host-os vlans vlan20 vlan-id 20

102

4. Allocate hugepages as memory for the vRR VNF. For example:

user@host# set system memory hugepages page-size 1024 page-count 8

5. Specify the number of virtual CPUs required for the vRR VNF. It is recommended that at least two
virtual CPUs are assigned to a vRR VNF. For example:

user@host# set virtual-network-functions VRR-1 virtual-cpu count 2

6. Connect a virtual CPU to a physical CPU. For example:

user@host# set virtual-network-functions VRR-1 virtual-cpu 0 physical-cpu 8
user@host# set virtual-network-functions VRR-1 virtual-cpu 1 physical-cpu 9

7. Configure the maximum transmission unit (MTU) on the vRR interface (eth2). For example:

user@host# set virtual-network-functions VRR-1 interfaces eth2 mtu 2048

8. Configure the LAN-side internal-facing interface as a trunk port and add it to the LAN-side VLAN.
For example:

user@host# set virtual-network-functions VRR-1 interfaces eth2 mapping vlan mode trunk
user@host# set virtual-network-functions VRR-1 interfaces eth2 mapping vlan members vlan10

9. Configure the maximum transmission unit (MTU) on the vRR interface (eth3). For example:

NOTE: MTU size can be either 1500 bytes or 2048 bytes.

user@host# set virtual-network-functions VRR-1 interfaces eth3 mtu 2048

10. Configure the LAN-side internal-facing interface as a trunk port and add it to the LAN-side VLAN.
For example:

user@host# set virtual-network-functions VRR-1 interfaces eth3 mapping vlan mode trunk
user@host# set virtual-network-functions VRR-1 interfaces eth3 mapping vlan members vlan20

103

11. Specify the memory allocation for the vRR VNF. It is recommended that at least 4GB memory is
allocated to the vRR VNF. For example:

user@host# set virtual-network-functions VRR-1 memory size 4194304

12. Configure hugepages for memory requirements. For example:

user@host# set virtual-network-functions VRR-1 memory features hugepages

13. Commit the configuration to activate vRR VNF. For example:

user@host# commit

After you commit the configuration, VNF takes some time to boot. The first interface (em0) is
automatically given an IP address by DHCP from JDM for liveliness.

14. Verify that the VNF is up. For example:

user@host> show virtual-network-functions brief
ID Name State Liveliness
-
1 vjunos0 Running alive
5 VRR-1 Running alive
9887 jdm Running alive

15. (Optional) Verify the vRR VNF details. For example:

user@host> show virtual-network-functions VRR-1 detail
Virtual Network Function Information
-

Id: 5
Name: VRR-1
State: Running
Liveliness: alive
IP Address: 192.0.2.100
VCPUs: 2
Maximum Memory: 4194304 KiB
Used Memory: 45015 KiB
Used 1G Hugepages: 2

104

Used 2M Hugepages: 0
Error: None

Configuring Cross-connect

The Cross-connect feature enables traffic switching between any two OVS interfaces such as VNF
interfaces or physical interfaces such as hsxe0 and hsxe1 that are connected to the OVS. You can
bidirectionally switch either all traffic or traffic belonging to a particular VLAN between any two OVS
interfaces.

NOTE: This feature does not support unidirectional traffic flow.

The Cross-connect feature supports the following:

• Unconditional cross-connect between two VNF interfaces for all network traffic.

• VLAN-based traffic forwarding between VNF interfaces support the following functions:

• Provides an option to switch traffic based on a VLAN ID.

• Supports network traffic flow from trunk to access port.

• Supports network traffic flow from access to trunk port.

• Supports VLAN PUSH, POP, and SWAP operations.

To configure cross-connect:

1. Configure VLANs:

[edit]
user@jdm#set host-os vlans vlan-name vlan-id vlan-id
user@jdm#set host-os vlans v10 vlan-id 10
user@jdm#set host-os vlans v20 vlan-id 20
user@jdm#set host-os vlans v30 vlan-id 30
user@jdm#set host-os vlans v40 vlan-id 40

105

2. Configure VNFs:

user@jdm# set virtual-network-functions vnf-name interfaces interface-name mapping vlan
members list
user@jdm# set virtual-network-functions vnf1 interfaces eth1 mapping vlan members v10
user@jdm# set virtual-network-functions vnf1 interfaces eth1 mapping vlan members v30
user@jdm# set virtual-network-functions vnf1 interfaces eth1 mapping vlan members v40
user@jdm# set virtual-network-functions vnf1 interfaces eth1 mapping vlan mode trunk
user@jdm# set virtual-network-functions vnf2 interfaces eth2 mapping vlan members v10
user@jdm# set virtual-network-functions vnf2 interfaces eth2 mapping vlan members v20
user@jdm# set virtual-network-functions vnf2 interfaces eth2 mapping vlan members v30
user@jdm# set virtual-network-functions vnf2 interfaces eth2 mapping vlan mode trunk
user@jdm# set virtual-network-functions vnf2 interfaces eth3 mapping vlan members v10
user@jdm# set virtual-network-functions vnf2 interfaces eth3 mapping vlan members v20
user@jdm# set virtual-network-functions vnf2 interfaces eth3 mapping vlan members v30
user@jdm# set virtual-network-functions vnf2 interfaces eth3 mapping vlan mode trunk
user@jdm# set virtual-network-functions vnf4 interfaces eth4 mapping vlan members v30
user@jdm# set virtual-network-functions vnf5 interfaces eth5 mapping vlan members v50
user@jdm# set virtual-network-functions vnf5 interfaces eth6
user@jdm# set virtual-network-functions vnf6 interfaces eth7

3. Configure cross-connect:

• Configure VLAN-based cross-connect:

user@jdm# set cross-connect vlan-cross-connect-name virtual-network-functions vnf-name
interfaces interface-name vlan-id vlan-id
user@jdm# set cross-connect c1 virtual-network-functions vnf1 interfaces eth2 vlan-id 10
user@jdm# set cross-connect c1 virtual-network-functions vnf4 interfaces eth2 vlan-id 10

• Configure unconditional cross-connect

user@jdm# set cross-connect unconditional-cross-connect-name virtual-network-functions vnf-
name interfaces interface-name
user@jdm# set cross-connect c2 virtual-network-functions vnf1 interfaces eth1
user@jdm# set cross-connect c2 virtual-network-functions vnf5 interfaces eth5

106

• Configure cross-connect with VLAN SWAP operation enabled:

user@jdm# set cross-connect swap-cross-connect-name virtual-network-functions vnf-name
interfaces interface-name vlan-id vlan-id
user@jdm# set cross-connect c1 virtual-network-functions vnf1 interfaces eth1 vlan-id 10
user@jdm# set cross-connect c1 virtual-network-functions vnf4 interfaces eth4 vlan-id 30

• Configure cross-connect with VLAN PUSH or POP operation enabled:

user@jdm# set cross-connect push-pop-cross-connect-name virtual-network-functions vnf-name
interfaces interface-name vlan-id vlan-id
user@jdm# set cross-connect push-pop-cross-connect-name virtual-network-functions vnf-name
interfaces interface-name
user@jdm# set cross-connect c3 virtual-network-functions vnf1 interfaces eth1 vlan-id 10
user@jdm# set cross-connect c3 virtual-network-functions vnf6 interfaces eth7

• Configure native VLAN traffic on cross-connect

user@jdm# set cross-connect push-pop cross-connect-name virtual-network-functions vnf-name
interfaces interface-name vlan-id vlan-id
user@jdm# set cross-connect c2 virtual-network-functions vnf1 interfaces eth1 vlan-id none
user@jdm# set cross-connect c2 virtual-network-functions vnf5 interfaces eth5 vlan-id none

Configuring Analyzer VNF and Port-mirroring

The Port-mirroring feature allows you to monitor network traffic. If the feature is enabled on a VNF
interface, the OVS system bridge sends a copy of all network packets of that VNF interface to the
analyzer VNF for analysis. You can use the port-mirroring or analyzer JDM commands for analyzing the
network traffic.

NOTE:

• Port-mirroring is supported only on VNF interfaces that are connected to an OVS system
bridge.

107

• VNF interfaces must be configured before configuring port-mirroring options.

• If the analyzer VNF is active after you configure, you must restart the VNF for changes to
take effect.

• You can configure up to four input ports and only one output port for an analyzer rule.

• Output ports must be unique in all analyzer rules.

• After changing the configuration of the input VNF interfaces, you must de-activate and
activate the analyzer rules referencing to it along with the analyzer VNF restart.

To configure the analyzer VNF and enable port-mirroring:

1. Configure the analyzer VNF:

[edit]
user@jdm#set virtual-network-functions analyzer-vnf-name image file-path
user@jdm#set virtual-network-functions analyzer-vnf-name memory features hugepages page-size
page-size
user@jdm#set virtual-network-functions analyzer-vnf-name interfaces interface-name analyzer

2. Enable port-mirroring of the network traffic in the input and output ports of the VNF interface and
analyzer VNF:

user@jdm# set host-os forwarding-options analyzer analyzer-instance-name input [ingress |
egress] virtual-network-function vnf-name interface interface-name
user@jdm# set host-os forwarding-options analyzer analyzer-rule-name output virtual-network-
function analyzer-vnf-name interface interface-name

Release History Table

Release Description

17.3R1 Starting in Junos OS Release 17.3R1, you can implement the virtual route reflector (vRR) feature on the
NFX250 Network Services platform.

RELATED DOCUMENTATION

NFX250 Overview | 2

108

JDM Architecture Overview | 6

virtual-network-functions

show virtual-network-functions

Configuring Service Chaining Using JDM

IN THIS SECTION

Understanding Service Chaining on Disaggregated Junos OS Platforms | 109

Configuring Service Chaining Using VLANs | 110

Configuring Service Chaining Using DHCP Services on VLANs | 111

Example: Configuring Service Chaining Using VLANs on NFX250 Network Services Platform | 112

Example: Configuring Service Chaining Using SR-IOV on NFX250 Network Services Platform | 118

Understanding Service Chaining on Disaggregated Junos OS Platforms

In many network environments, it is common for traffic to flow through several network services on the
way to its destination. These services—firewalls, Network Address Translators (NAT), load balancers, and
so on—are generally spread across multiple network elements. Each device is a separate piece of
hardware, providing a different service, and requiring separate operation and management. This method
of linking together multiple network functions could be thought of as physical service chaining.

A more efficient model for service chaining is to virtualize and consolidate network functions onto a
single device.

Platforms running the disaggregated Junos OS software support virtualized service chaining. These
devices enable virtual network functions (VNFs) by supporting the installation and instantiation of VNFs.
VNFs can be linked together to provide network services for traffic flowing through the device, as
shown in Figure 15 on page 110.

109

Figure 15: Virtual Network Functions on a Disaggregated Junos OS Platform

Configuring Service Chaining Using VLANs

You can achieve service chaining using VLANs.

• Ensure that connectivity to the host is not lost during the configuration process.

To configure service chaining:

1. Create a VLAN. Use one of the following commands:

• Create a VLAN without a VLAN ID. You can add only access ports to this VLAN:

set host-os vlans vlan-name vlan-id none

• Create a VLAN with a VLAN ID:

set host-os vlans vlan-name vlan-id vlan-id

• Create a VLAN using a list of VLAN IDs:

set host-os vlans vlan-name vlan-id-list vlan-id range | comma-separated list

2. Attach an interface on the VNF to the VLAN:

set virtual-network-functions vnf-name interfaces ethx mapping vlan mode [access|trunk]
set virtual-network-functions vnf-name interfaces ethx mapping vlan members list

110

3. Attach a native VLAN ID to the VNF interface:

set virtual-network-functions vnf-name interfaces ethx mapping vlan native-vlan-id vlan-id

Configuring Service Chaining Using DHCP Services on VLANs

Using DHCP services, you need not manually configure the IP addresses on the VNF interfaces to
achieve service-chaining. Enable DHCP clients on the glue bridge interfaces within the VNF for an IP
address to be assigned from the DHCP pool. Based on the IP subnet, the IRB interface on the VLAN is
automatically mapped to the corresponding subnet dhcp pool.

To configure service chaining:

1. Create a VLAN with a VLAN ID none.

set host-os vlans vlan-name vlan-id none

NOTE: To use the DHCP pooling feature, the VLAN ID must be set to none.

2. Create IRB interfaces on the hypervisor

set host-os interfaces irb unit logical-unit-number family inet address inet-address
set host-os vlans vlan-name l3-interface irb. logical-interface-number

3. Specify the IP address pool to be used:

set access address-assignment pool p4 family inet network network-address
set access address-assignment pool p4 family inet range r4 low start-IP-address
set access address-assignment pool p4 family inet range r4 high end-IP-address

4. Attach an interface on the VNF to the VLAN to complete the service chain:

set virtual-network-functions vnf-name interfaces ethx mapping vlan mode [access|trunk]
set virtual-network-functions vnf-name interfaces ethx mapping vlan members list

5. Enable the DHCP client on the VNF.

111

To check the assigned IP address, use the show system visibility vnf command.

Example: Configuring Service Chaining Using VLANs on NFX250
Network Services Platform

IN THIS SECTION

Requirements | 112

Overview | 112

Configuration | 114

This example shows how to configure service chaining using VLANs on the host bridge.

Requirements

This example uses the following hardware and software components:

• NFX250 running Junos OS Release 15.1X53-D45

Before you configure service chaining, be sure you have:

• Installed and launched the relevant VNFs, assigned the corresponding interfaces, and configured the
resources.

Overview

IN THIS SECTION

Topology | 113

Service chaining on a device running the disaggregated Junos OS allows multiple services, or virtual
network functions (VNFs), to be applied to traffic as it flows through the device. This example explains
how to configure the various layers of the device to enable traffic to enter the device, flow through two
service VNFs, and exit the device.

112

https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-system-visibility-vnf.html

Topology

This example uses a single device running the disaggregated Junos OS, as shown in Figure 16 on page
113.

Figure 16: Service Chaining Using VLANs

This example is configured using the Juniper Device Manager (JDM) and Junos Control Plane (JCP). The
key configuration elements include:

• The Packet Forwarding Engine’s front panel ports.

• The Packet Forwarding Engine’s internal-facing ports.

• A routing instance named host-os. The host-os routing instance is the CLI construct that provides the
ability to configure host OS elements from the JDM.

• NIC ports. As these interfaces are not directly configurable, they are abstracted in the host OS. Using
the JDM CLI, NIC interfaces (sxe ports) are configured in the host-os routing instance as “hsxe”
interfaces.

• The VM interfaces. In the JDM, VNF interfaces must use the format eth#, where # is from 2 through
to 9.

• VLANs, to provide bridging between the sxe and VM interfaces.

113

Configuration

IN THIS SECTION

Configuring the Packet Forwarding Engine Interfaces | 114

Configuring the VNF Interfaces and Creating the Service Chain | 117

Configuring the Packet Forwarding Engine Interfaces

CLI Quick Configuration

To quickly configure the Packet Forwarding Engine interfaces, enter the following configuration
statements from the JCP:

[edit]
user@jcp#

set vlans vlan1 vlan-id 77
set interfaces ge-0/0/2.0 family ethernet-switching vlan members vlan1
set interfaces sxe-0/0/0.0 family ethernet-switching interface-mode trunk
set interfaces sxe-0/0/0.0 family ethernet-switching vlan members vlan1
set vlans vlan2 vlan-id 1177
set interfaces xe-0/0/12.0 family ethernet-switching interface-mode trunk
set interfaces xe-0/0/12.0 family ethernet-switching vlan members vlan2
set interfaces sxe-0/0/0.0 family ethernet-switching vlan members vlan2

Step-by-Step Procedure

To configure the Packet Forwarding Engine interfaces:

1. Connect to the JCP.

user@jdm> ssh vjunos0
user@jcp> configure
[edit]

114

user@jcp#

2. Configure a VLAN for the LAN-side interfaces.

user@jcp# set vlans vlan1 vlan-id 77

3. Configure the Packet Forwarding Engine’s LAN-side front panel port and add it to the LAN-side
VLAN.

The LAN-side port is typically an access port, but could be a trunk port if appropriate.

user@jcp# set interfaces ge-0/0/2.0 family ethernet-switching vlan members vlan1

4. Configure the Packet Forwarding Engine’s LAN-side internal-facing interface as a trunk port and add
it to the LAN-side VLAN.

The internal-facing interfaces are typically trunk ports, as they must support traffic from multiple
front panel ports and VLANs.

user@jcp# set interfaces sxe-0/0/0.0 family ethernet-switching interface-mode trunk
user@jcp# set interfaces sxe-0/0/0.0 family ethernet-switching vlan members vlan1

5. Configure a VLAN for the WAN-side interfaces.

user@jcp# set vlans vlan2 vlan-id 1177

6. Configure the Packet Forwarding Engine’s WAN-side front panel port as a trunk port and add it to
the WAN-side VLAN.

115

The WAN-side front panel port is typically a trunk port, as it might be required to support multiple
VLANs.

user@jcp# set interfaces xe-0/0/12.0 family ethernet-switching interface-mode trunk
user@jcp# set interfaces xe-0/0/12.0 family ethernet-switching vlan members vlan2

7. Configure the Packet Forwarding Engine’s WAN-side internal-facing interface as a trunk port and add
it to the WAN-side VLAN.

The internal-facing interfaces are typically trunk ports, as they must support traffic from multiple
front panel ports and VLANs.

user@jcp# set interfaces sxe-0/0/0.0 family ethernet-switching vlan members vlan2

8. Commit the configuration and return to the JDM.

user@jcp# commit and-quit
user@jcp> exit
user@jdm>

Results

From configuration mode, check the results of your configuration by entering the following show
commands:

[edit]
user@jcp# show interfaces ge-0/0/2
unit 0 {
 family ethernet-switching {
 vlan {
 members vlan1;
 }
 }
}

[edit]

116

user@jcp# show interfaces xe-0/0/12
unit 0 {
 family ethernet-switching {
 interface-mode trunk;
 vlan {
 members vlan2;
 }
 }
}

[edit]
user@jcp# show interfaces sxe-0/0/0
unit 0 {
 family ethernet-switching {
 interface-mode trunk;
 vlan {
 members [vlan1 vlan2];
 }
 }
}

[edit]
user@jcp# show vlans
vlan2 {
 vlan-id 1177;
}
vlan1 {
 vlan-id 77;
}

Configuring the VNF Interfaces and Creating the Service Chain

Step-by-Step Procedure

Once you have completed the configuration on JCP, you need to:

117

1. Configure the host-os instance with either with LAN, WAN, or glue-vlan to be used for service
chaining

user@jdm# set host-os vlans vlan1 vlan-id 77
user@jdm# set host-os vlans vlan2 vlan-id 1177
user@jdm# set host-os vlans glue-vlan vlan-id 123

2. Bring up the VM1 with one virtio interface mapped to VLAN, and another interface mapped to glue-
vlan.

user@jdm# set virtual-network-functions VM1 interfaces eth2 mapping vlan members vlan1
user@jdm# set virtual-network-functions VM1 interfaces eth3 mapping vlan members glue-vlan

3. Similarly bring up VM2 with one interface with one interface mapped to VLAN2, and the second
interface mapped to the same glue-vlan.

user@jdm# set virtual-network-functions VM2 interfaces eth2 mapping vlan members vlan2
user@jdm# set virtual-network-functions VM2 interfaces eth3 mapping vlan members glue-vlan

4. Finally, configure the IP addresses and static routes for each interface of the VMs as shown in Figure
16 on page 113.

Example: Configuring Service Chaining Using SR-IOV on NFX250
Network Services Platform

IN THIS SECTION

Requirements | 119

Overview | 119

Configuration | 121

118

This example shows how to configure service chaining using SR-IOV on platforms running the
disaggregated Junos OS software.

Requirements

This example uses the following hardware and software components:

• NFX250 running Junos OS Release 15.1X53-D45

Before you configure service chaining, be sure you have:

• Installed and launched the relevant VNFs

Overview

IN THIS SECTION

Topology | 119

Service chaining on a device running the disaggregated Junos OS allows multiple services, or virtual
network functions (VNFs), to be applied to traffic as it flows through the device. This example explains
how to configure the various layers of the device to enable traffic to enter the device, flow through two
service VNFs, and exit the device.

Topology

This example uses a single device running the disaggregated Junos OS, as shown in Figure 17 on page
120.

119

Figure 17: Service Chaining Using SR-IOV—Device Infrastructure

This example uses the Packet Forwarding Engine’s front panel ports xe-0/0/12 and xe-0/0/13, and its
internal-facing ports, sxe-0/0/0 and sxe-0/0/1. The internal NIC’s two ports (sxe0 and sxe1) are not
configured directly; instead, they are abstracted at the host OS layer and configured as interfaces hsxe0
and hsxe1. The VMs use two interfaces each (eth2 and eth3).

These elements are generally separated into two parts: a LAN side and a WAN side.

As this example uses SR-IOV, the NIC ports’ virtual functions (VFs) are used to bypass the host OS and
provide direct NIC-to-VM connectivity. Given this setup, it might seem unusual to see host OS
interfaces (hsxe0 and hsxe1) included in this scenario. However, as there is no direct configuration
method for the NIC ports, it is necessary to use their abstracted versions, hsxe0 and hsxe1.

This example is configured using the Juniper Device Manager (JDM) and Junos Control Plane (JCP). The
key configuration elements include:

• The Packet Forwarding Engine’s front panel ports.

120

• The Packet Forwarding Engine’s internal-facing ports.

• NIC ports. Because NIC interfaces (sxe ports) cannot be configured directly, the host OS construct
for these interfaces (hsxe) must be used.

• The VNF interfaces. In the JDM, VNF interfaces must use the format eth#, where # is from 2 through
to 9.

• The virtual function setting, to indicate SR-IOV is being used to provide direct access between hsxe
and VNF interfaces.

Configuration

IN THIS SECTION

Configuring the Packet Forwarding Engine Interfaces | 121

Creating the Service Chain | 125

This example describes:

Configuring the Packet Forwarding Engine Interfaces

CLI Quick Configuration

To quickly configure the Packet Forwarding Engine interfaces, enter the following configuration
statements from the JCP:

[edit]
user@jcp#

set vlans Vlan11 vlan-id 11
set interfaces xe-0/0/12.0 family ethernet-switching vlan member Vlan11
set interfaces sxe-0/0/0.0 family ethernet-switching interface-mode trunk
set interfaces sxe-0/0/0.0 family ethernet-switching vlan member Vlan11
set vlans Vlan22 vlan-id 22
set interfaces xe-0/0/13.0 family ethernet-switching interface-mode trunk
set interfaces xe-0/0/13.0 family ethernet-switching vlan member Vlan22
set interfaces sxe-0/0/1.0 family ethernet-switching interface-mode trunk

121

set interfaces sxe-0/0/1.0 family ethernet-switching vlan member Vlan22

Step-by-Step Procedure

To configure the Packet Forwarding Engine interfaces:

1. Connect to the JCP.

user@jdm> ssh vjunos0
user@jcp> configure
[edit]
user@jcp#

2. Configure a VLAN for the LAN-side interfaces.

user@jcp# set vlans Vlan11 vlan-id 11

3. Configure the Packet Forwarding Engine’s LAN-side front panel port, and add it to the LAN-side
VLAN.

The LAN-side port is typically an access port, but could be a trunk port if appropriate.

user@jcp# set interfaces xe-0/0/12.0 family ethernet-switching vlan members Vlan11

4. Configure the Packet Forwarding Engine’s LAN-side internal-facing interface as a trunk port, and add
it to the LAN-side VLAN.

The internal-facing interfaces are typically trunk ports, as they must support traffic from multiple
front panel ports and VLANs.

user@jcp# set interfaces sxe-0/0/0.0 family ethernet-switching interface-mode trunk
user@jcp# set interfaces sxe-0/0/0.0 family ethernet-switching vlan member Vlan11

122

5. Configure a VLAN for the WAN-side interfaces.

user@jcp# set vlans Vlan22 vlan-id 22

6. Configure the Packet Forwarding Engine’s WAN-side front panel port as a trunk port, and add it to
the WAN-side VLAN.

The WAN-side front panel port is typically a trunk port, as it might be required to support multiple
VLANs.

user@jcp# user@jcp# set interfaces xe-0/0/13.0 family ethernet-switching interface-mode trunk
user@jcp# user@jcp# set interfaces xe-0/0/13.0 family ethernet-switching vlan members Vlan22

7. Configure the Packet Forwarding Engine’s WAN-side internal-facing interface as a trunk port, and
add it to the WAN-side VLAN.

The internal-facing interfaces are typically trunk ports, as they must support traffic from multiple
front panel ports and VLANs.

user@jcp# set interfaces sxe-0/0/1.0 family ethernet-switching interface-mode trunk
user@jcp# set interfaces sxe-0/0/1.0 family ethernet-switching vlan members Vlan22

8. Commit the configuration and return to the JDM.

user@jcp# commit and-quit
user@jcp> exit
user@jdm>

123

Results

From configuration mode, check the results of your configuration by entering the following show
commands:

[edit]
user@jcp# show interfaces xe-0/0/12
unit 0 {
 family ethernet-switching {
 vlan {
 members Vlan11;
 }
 }
}

[edit]
user@jcp# show interfaces xe-0/0/13
unit 0 {
 family ethernet-switching {
 interface-mode trunk;
 vlan {
 members Vlan22;
 }
 }
}

[edit]
user@jcp# show interfaces sxe-0/0/0
unit 0 {
 family ethernet-switching {
 interface-mode trunk;
 vlan {
 members Vlan11;
 }
 }
}

[edit]
user@jcp# show interfaces sxe-0/0/1
unit 0 {
 family ethernet-switching {
 interface-mode trunk;

124

 vlan {
 members Vlan22;
 }
 }
}

[edit]
user@jcp# show vlans
Vlan11 {
 vlan-id 11;
}
Vlan22 {
 vlan-id 22;
}

Creating the Service Chain

Step-by-Step Procedure

To configure the VNF interfaces and create the service chain:

1. Configure VM1’s LAN-side interface as a Layer 3 interface, and map it to the LAN-side NIC interface.
Include the virtual function (VF) setting to specify direct NIC-to-VM connectivity. VNF must use the
interfaces from eth2 through to eth9.

The hsxe interface is the configurable representation of the related NIC (sxe) interface.

user@jdm> configure
[edit]
user@jdm# set virtual-network-functions vnf1 interfaces eth2 mapping hsxe0 virtual-function

2. Configure VM1’s WAN-side interface from sxe1 NIC as shown in Figure 17 on page 120.

user@jdm# set virtual-network-functions vnf1 interfaces eth3 mapping hsxe1 virtual-function

3. Similarly bring up VM2 with both interfaces eth2 and eth3 on sxe1 NIC.

user@jdm# set virtual-network-functions vnf2 interfaces eth2 mapping hsxe1 virtual-function
user@jdm# set virtual-network-functions vnf2 interfaces eth3 mapping hsxe1 virtual-function

125

4. Finally, configure the IP addresses and static routes for each interface of the VNFs, and add routes to
achieve the complete bidirectional path for the service chain.

RELATED DOCUMENTATION

JDM Architecture Overview | 6

JDM CLI Overview | 18

ADSL2 and ADSL2+ Interfaces on NFX250 Devices

IN THIS SECTION

ADSL Interface Overview | 126

Example: Configuring ADSL SFP Interface on NFX250 Devices | 127

ADSL Interface Overview

IN THIS SECTION

ADSL2 and ADSL2+ | 127

Asymmetric digital subscriber line (ADSL) technology is part of the xDSL family of modem technologies
that use existing twisted-pair telephone lines to transport high-bandwidth data. ADSL lines connect
service provider networks and customer sites over the "last mile" of the network—the loop between the
service provider and the customer site.

ADSL transmission is asymmetric because the downstream bandwidth is typically greater than the
upstream bandwidth. The typical bandwidths of ADSL2 and ADSL2+ circuits are defined in Table 8 on
page 127.

126

Table 8: Standard Bandwidths of DSL Operating Modes

Operating Modes Upstream Downstream

ADSL2 1—1.5 Mbps 12—14 Mbps

ADSL2+ 1—1.5 Mbps 24—25 Mbps

ADSL2 and ADSL2+ support the following standards:

• LLCSNAP bridged 802.1q

• VC MUX bridged

Supported security devices with xDSL SFP can use PPP over Ethernet(PPPoE) to connect through ADSL
lines only.

ADSL2 and ADSL2+

The ADSL2 and ADSL2+ standards were adopted by the ITU in July 2002. ADSL2 improves the data
rate and reach performance, diagnostics, standby mode, and interoperability of ADSL modems.

ADSL2+ doubles the possible downstream data bandwidth, enabling rates of 20 Mbps on telephone
lines shorter than 5000 feet (1.5 km).

ADSL2 uses seamless rate adaptation (SRA) to change the data rate of a connection during operation
with no interruptions or bit errors. The ADSL2 transceiver detects changes in channel conditions—for
example, the failure of another transceiver in a multicarrier link—and sends a message to the transmitter
to initiate a data rate change. The message includes data transmission parameters such as the number of
bits modulated and the power on each channel. When the transmitter receives the information, it
transitions to the new transmission rate.

Example: Configuring ADSL SFP Interface on NFX250 Devices

IN THIS SECTION

Requirements | 128

Overview | 128

127

Configuration | 128

Results | 131

Requirements

This example uses the following hardware and software components:

• NFX250 device running Junos OS Release 15.1X53-D495.

Overview

In this example, you are configuring ADSL SFP interface on an NFX250 device with the following
configurations:

• Physical interface - ge-0/0/11

• Virtual network function (VNF) - nfx250-a-vsrx1

• Memory size - 4194304

• ADSL SFP options - vpi3, vci34, and encap llcsnap-bridged-802dot1q

To configure ADSL SFP interface on NFX250 devices, you must configure JDM, vSRX Virtual Firewall,
and vJunos0.

NOTE: Ensure that connectivity to the host is not lost during the configuration process.

Configuration

IN THIS SECTION

Procedure | 129

128

Procedure

Step-by-Step Procedure

To configure ADSL SFP interfaces on NFX250 devices:

1. Connect to the host.

user@host> configure
[edit]
user@host#

2. Create VLANs using VLAN IDs:

user@host# set host-os vlans xdsl-test vlan-id 50
user@host# set host-os vlans vlan130 vlan-id 130
user@host# set host-os vlans vlan131 vlan-id 131
user@host# set host-os vlans vlan132 vlan-id 132

3. Enable enhanced orchestration to manage VNFs and service chains without requiring the VNF XML
descriptor files:

user@host# set system services enhanced-orchestration

4. Allocate resources for a VNF:

user@host# set virtual-network-functions nfx250-a-vsrx1 image /var/third-party/images/media-
vsrx-vmdisk-15.1-2018-04-24.0_DEV_X_151_X49.qcow2
user@host# set virtual-network-functions nfx250-a-vsrx1 virtual-cpu 0 physical-cpu 2
user@host# set virtual-network-functions nfx250-a-vsrx1 virtual-cpu 1 physical-cpu 6
user@host# set virtual-network-functions nfx250-a-vsrx1 virtual-cpu count 2
user@host# set virtual-network-functions nfx250-a-vsrx1 virtual-cpu features hardware-
virtualization
user@host# set virtual-network-functions nfx250-a-vsrx1 no-default-interfaces
user@host# set virtual-network-functions nfx250-a-vsrx1 memory size 4194304
user@host# set virtual-network-functions nfx250-a-vsrx1 memory features hugepages
user@host# set virtual-network-functions nfx250-a-vsrx1 interfaces eth0 management out-of-band

129

5. Map physical interfaces to virtual interfaces:

user@host# set virtual-network-functions nfx250-a-vsrx1 interfaces eth1 mapping vlan mode
trunk
user@host# set virtual-network-functions nfx250-a-vsrx1 interfaces eth1 mapping vlan members
vlan130
user@host# set virtual-network-functions nfx250-a-vsrx1 interfaces eth2 mapping vlan mode
trunk
user@host# set virtual-network-functions nfx250-a-vsrx1 interfaces eth2 mapping vlan members
vlan130
user@host# set virtual-network-functions nfx250-a-vsrx1 interfaces eth2 mapping vlan members
vlan131
user@host# set virtual-network-functions nfx250-a-vsrx1 interfaces eth2 mapping vlan members
vlan132
user@host# set virtual-network-functions nfx250-a-vsrx1 interfaces eth2 mapping vlan members
xdsl-test
user@host# set virtual-network-functions nfx250-a-vsrx1 interfaces eth2 mapping vlan native-
vlan-id 50
user@host# set virtual-network-functions nfx250-a-vsrx1 interfaces eth3 mapping vlan mode
trunk
user@host# set virtual-network-functions nfx250-a-vsrx1 interfaces eth3 mapping vlan members
xdsl-test
user@host# set virtual-network-functions nfx250-a-vsrx1 interfaces eth3 mapping vlan native-
vlan-id 50

6. Configure the Junos Control Plane (JCP) virtual machine (VM):

user@host# set interfaces sxe-0/0/0 unit 0 family ethernet-switching interface-mode trunk
user@host# set interfaces sxe-0/0/0 unit 0 family ethernet-switching vlan members xdsl-test
user@host# set interfaces sxe-0/0/0 unit 0 family ethernet-switching vlan members vlan130
user@host# set interfaces sxe-0/0/0 unit 0 family ethernet-switching vlan members vlan131
user@host# set interfaces sxe-0/0/0 unit 0 family ethernet-switching vlan members vlan132
user@host# set interfaces ge-0/0/11 native-vlan-id 50
user@host# set interfaces ge-0/0/11 dsl-sfp-options adsl-options vpi 3
user@host# set interfaces ge-0/0/11 dsl-sfp-options adsl-options vci 34
user@host# set interfaces ge-0/0/11 dsl-sfp-options adsl-options encap llcsnap-
bridged-802dot1q
user@host# set interfaces ge-0/0/11 unit 0 family ethernet-switching interface-mode trunk
user@host# set interfaces ge-0/0/11 unit 0 family ethernet-switching vlan members xdsl-test
user@host# set interfaces ge-0/0/11 unit 0 family ethernet-switching vlan members vlan130
user@host# set interfaces ge-0/0/11 unit 0 family ethernet-switching vlan members vlan131

130

user@host# set interfaces ge-0/0/11 unit 0 family ethernet-switching vlan members vlan132
user@host# set vlans vlan130 vlan-id 130
user@host# set vlans vlan131 vlan-id 131
user@host# set vlans vlan132 vlan-id 132
user@host# set vlans xdsl-test vlan-id 50

7. Commit the configuration.

user@host# commit and-quit
user@host> exit

Results

RELATED DOCUMENTATION

NFX250 Overview | 2

JDM Architecture Overview | 6

JDM CLI Overview | 18

VDSL2 Interfaces on NFX250 Devices

IN THIS SECTION

VDSL Interface Overview | 132

VDSL2 Network Deployment Topology | 133

VDSL2 Interface Support on NFX Series Devices | 134

Example: Configuring VDSL SFP Interface on NFX250 Devices | 136

131

VDSL Interface Overview

IN THIS SECTION

VDSL2 Vectoring Overview | 132

Very-high-bit-rate digital subscriber line (VDSL) technology is part of the xDSL family of modem
technologies that provide faster data transmission over a single flat untwisted or twisted pair of copper
wires. The VDSL lines connect service provider networks and customer sites to provide high bandwidth
applications (triple-play services) such as high-speed Internet access, telephone services like VoIP, high-
definition TV (HDTV), and interactive gaming services over a single connection.

VDSL2 is an enhancement to G.993.1 (VDSL) and permits the transmission of asymmetric (half-duplex)
and symmetric (full-duplex) aggregate data rates up to 100 Mbps on short copper loops using a
bandwidth up to 17 MHz. The VDSL2 technology is based on the ITU-T G.993.2 (VDSL2) standard,
which is the International Telecommunication Union standard describing a data transmission method for
VDSL2 transceivers.

The VDSL2 uses discrete multitone (DMT) modulation. DMT is a method of separating a digital
subscriber line signal so that the usable frequency range is separated into 256 frequency bands (or
channels) of 4.3125 KHz each. The DMT uses the Fast Fourier Transform (FFT) algorithm for
demodulation or modulation for increased speed.

VDSL2 interface supports Packet Transfer Mode (PTM). The PTM mode transports packets (IP, PPP,
Ethernet, MPLS, and so on) over DSL links as an alternative to using Asynchronous Transfer Mode
(ATM). PTM is based on the Ethernet in the First Mile (EFM) IEEE802.3ah standard.

VDSL2 provides backward compatibility with ADSL2 and ADSL2+ because this technology is based on
both the VDSL1-DMT and ADSL2/ADSL2+ recommendations.

VDSL2 Vectoring Overview

Vectoring is a transmission method that employs the coordination of line signals that reduce crosstalk
levels and improve performance. It is based on the concept of noise cancellation, like noise-cancelling
headphones. The ITU-T G.993.5 standard, "Self-FEXT Cancellation (Vectoring) for Use with VDSL2
Transceivers,” also known as G.vector, describes vectoring for VDSL2.

The scope of Recommendation ITU-T G.993.5 is specifically limited to the self-FEXT (far-end crosstalk)
cancellation in the downstream and upstream directions. The FEXT generated by a group of near-end

132

transceivers and interfering with the far-end transceivers of that same group is canceled. This
cancellation takes place between VDSL2 transceivers, not necessarily of the same profile.

VDSL2 Network Deployment Topology

In standard telephone cables of copper wires, voice signals use only a fraction of the available
bandwidth. Like any other DSL technology, the VDSL2 technology utilizes the remaining capacity to
carry the data and multimedia on the wire without interrupting the line's ability to carry voice signals.

This example depicts the typical VDSL2 network topology deployed using NFX device.

A VDSL2 link between network devices is set up as follows:

1. Connect an end-user device such as a LAN, hub, or PC through an Ethernet interface to the customer
premises equipment (CPE) (for example, an NFX device).

2. Connect the CPE to a DSLAM.

3. The VDSL2 interface uses either Gigabit Ethernet or fiber as second mile to connect to the
Broadband Remote Access Server (B-RAS) as shown in Figure 18 on page 134.

4. The ADSL interface uses either Gigabit Ethernet (in case of IP DSLAM] as the “second mile” to
connect to the B-RAS or OC3/DS3 ATM as the second mile to connect the B-RAS as shown in
Figure 19 on page 134.

NOTE: The VDSL2 technology is backward compatible with ADSL2 and ADSL2+. VDSL2
provides an ADSL2 and ADSL2+ interface in an ATM DSLAM topology and provides a VDSL2
interface in an IP or VDSL DSLAM topology.

The DSLAM accepts connections from many customers and aggregates them to a single, high-
capacity connection to the Internet.

Figure 18 on page 134 shows a typical VDSL2 network topology.

133

Figure 18: Typical VDSL2 End-to-End Connectivity and Topology Diagram

Figure 19 on page 134 shows a backward-compatible ADSL topology using ATM DSLAM.

Figure 19: Backward-Compatible ADSL Topology (ATM DSLAM)

VDSL2 Interface Support on NFX Series Devices

IN THIS SECTION

VDSL2 Interface Compatibility with ADSL Interfaces | 135

VDSL2 Interfaces Supported Profiles | 136

The VDSL2 interface is supported on the NFX Series devices listed in Table 9 on page 135. (Platform
support depends on the Junos OS release in your installation.)

134

Table 9: VDSL2 Annex A and Annex B Features

Features POTS

Devices CPE-SFP-VDSL2

Supported annex operating modes Annex A and Annex B*

Supported Bandplans Annex A 998

Annex B 997 and 998

Supported standards ITU-T G.993.2 and ITU-T G.993.5 (VDSL2)

Used in North American network implementations

ADSL backward compatibility G 992.3 (ADSL2)

G 992.5 (ADSL2+)

NOTE: Only one CPE-SFP-VDSL2 device is supported at a time.

VDSL2 Interface Compatibility with ADSL Interfaces

VDSL2 interfaces on NFX Series devices are backward compatible with most ADSL2 and ADSL2+
interface standards. The VDSL2 interface uses Ethernet in the First Mile (EFM) mode or Packet Transfer
Mode (PTM) and uses the named interface ge-0/0/10 and ge-0/0/11.

NOTE:

• The VDSL2 interface has backward compatibility with ADSL2 and ADSL2+.

• It requires around 60 seconds to switch from VDSL2 to ADSL2 and ADSL2+ or from ADSL2
and ADSL2+ to VDSL2 operating modes.

135

VDSL2 Interfaces Supported Profiles

A profile is a table that contains a list of pre-configured VDSL2 settings. Table 10 on page 136 lists the
different profiles supported on the VDSL2 interfaces and their properties.

Table 10: Supported Profiles on the VDSL2 Interfaces

Profiles Data Rate

8a 50

8b 50

8c 50

8d 50

12a 68

12b 68

17a 100

Auto Negotiated (based on operating mode)

Example: Configuring VDSL SFP Interface on NFX250 Devices

IN THIS SECTION

Requirements | 137

Overview | 137

Configuration | 137

Results | 140

136

Requirements

This example uses the following hardware and software components:

• NFX250 device running Junos OS Release 15.1X53-D495.

Overview

In this example, you are configuring VDSL SFP interface on an NFX250 device with the following
configurations:

• Physical interface - ge-0/0/11

• Virtual network function (VNF) - nfx250-a-vsrx1

• Memory size - 4194304

• VDSL SFP options - profile auto and carrier auto

To configure VDSL SFP interface on NFX250 devices, you must configure JDM, vSRX Virtual Firewall,
and vJunos0.

NOTE: Ensure that connectivity to the host is not lost during the configuration process.

Configuration

IN THIS SECTION

Procedure | 137

Procedure

Step-by-Step Procedure

To configure VDSL SFP interfaces on NFX250 devices:

137

1. Connect to the host.

user@host> configure
[edit]
user@host#

2. Allocate hugepages:

user@host# run show system visibility memory
user@host# set system memory hugepages size 1024 count 5

Reboot the device.

3. Create VLANs using VLAN IDs:

user@host# set host-os vlans xdsl-test vlan-id 50
user@host# set host-os vlans vlan130 vlan-id 130
user@host# set host-os vlans vlan131 vlan-id 131
user@host# set host-os vlans vlan132 vlan-id 132

4. Allocate resources for a VNF:

user@host# set virtual-network-functions nfx250-a-vsrx1 image /var/public/media-vsrx-
vmdisk-15.1-2018-04-24.0_DEV_X_151_X49.qcow2
user@host# set virtual-network-functions nfx250-a-vsrx1 virtual-cpu 0 physical-cpu 2
user@host# set virtual-network-functions nfx250-a-vsrx1 virtual-cpu 1 physical-cpu 6
user@host# set virtual-network-functions nfx250-a-vsrx1 virtual-cpu count 2
user@host# set virtual-network-functions nfx250-a-vsrx1 virtual-cpu features hardware-
virtualization
user@host# set virtual-network-functions nfx250-a-vsrx1 no-default-interfaces
user@host# set virtual-network-functions nfx250-a-vsrx1 memory size 4194304
user@host# set virtual-network-functions nfx250-a-vsrx1 memory features hugepages
user@host# set virtual-network-functions nfx250-a-vsrx1 interfaces eth0 management out-of-band

5. Map VNF interfaces to NFV backplane:

user@host# set virtual-network-functions nfx250-a-vsrx1 interfaces eth1 mapping vlan mode
trunk
user@host# set virtual-network-functions nfx250-a-vsrx1 interfaces eth1 mapping vlan members

138

vlan130
user@host# set virtual-network-functions nfx250-a-vsrx1 interfaces eth2 mapping vlan mode
trunk
user@host# set virtual-network-functions nfx250-a-vsrx1 interfaces eth2 mapping vlan members
vlan130
user@host# set virtual-network-functions nfx250-a-vsrx1 interfaces eth2 mapping vlan members
vlan131
user@host# set virtual-network-functions nfx250-a-vsrx1 interfaces eth2 mapping vlan members
vlan132
user@host# set virtual-network-functions nfx250-a-vsrx1 interfaces eth2 mapping vlan members
xdsl-test
user@host# set virtual-network-functions nfx250-a-vsrx1 interfaces eth2 mapping vlan native-
vlan-id 50
user@host# set virtual-network-functions nfx250-a-vsrx1 interfaces eth3 mapping vlan mode
trunk
user@host# set virtual-network-functions nfx250-a-vsrx1 interfaces eth3 mapping vlan members
xdsl-test

6. Configure the Junos Control Plane (JCP):

user@host# set interfaces sxe-0/0/0 unit 0 family ethernet-switching interface-mode trunk
user@host# set interfaces sxe-0/0/0 unit 0 family ethernet-switching vlan members xdsl-test
user@host# set interfaces sxe-0/0/0 unit 0 family ethernet-switching vlan members vlan130
user@host# set interfaces sxe-0/0/0 unit 0 family ethernet-switching vlan members vlan131
user@host# set interfaces sxe-0/0/0 unit 0 family ethernet-switching vlan members vlan132
user@host# set interfaces ge-0/0/11 native-vlan-id 50
user@host# set interfaces ge-0/0/11 dsl-sfp-options vdsl-options profile auto
user@host# set interfaces ge-0/0/11 dsl-sfp-options vdsl-options carrier auto
user@host# set interfaces ge-0/0/11 unit 0 family ethernet-switching interface-mode trunk
user@host# set interfaces ge-0/0/11 unit 0 family ethernet-switching vlan members xdsl-test
user@host# set interfaces ge-0/0/11 unit 0 family ethernet-switching vlan members vlan130
user@host# set interfaces ge-0/0/11 unit 0 family ethernet-switching vlan members vlan131
user@host# set interfaces ge-0/0/11 unit 0 family ethernet-switching vlan members vlan132
user@host# set vlans vlan130 vlan-id 130
user@host# set vlans vlan131 vlan-id 131
user@host# set vlans vlan132 vlan-id 132
user@host# set vlans xdsl-test vlan-id 50

139

7. Commit the configuration.

user@host# commit and-quit
user@host> exit

Results

RELATED DOCUMENTATION

NFX250 Overview | 2

JDM Architecture Overview | 6

JDM CLI Overview | 18

140

3
CHAPTER

Configuring High Availability

Chassis Cluster on NFX250 Devices | 142

Chassis Cluster on NFX250 Devices

IN THIS SECTION

NFX250 Chassis Cluster Overview | 142

Chassis Cluster Interfaces | 143

Chassis Cluster Limitation | 144

Example: Configuring a Chassis Cluster on NFX250 Devices | 144

Chassis clustering involves the synchronizing of configuration files and the dynamic runtime session
states between two devices, which are part of the chassis cluster setup. In NFX250, the vSRX Virtual
Firewall instances on two devices are grouped into a cluster to provide high availability (HA).

NFX250 Chassis Cluster Overview

IN THIS SECTION

Chassis Cluster Modes | 143

You can configure NFX250 devices to operate in cluster mode by connecting and configuring the vSRX
Virtual Firewall instances on each device to operate like a single node, providing redundancy at the
device, interface, and service level.

When two devices are configured to operate as a chassis cluster, each device becomes a node of that
cluster. The two nodes back up each other, with one node acting as the primary device and the other
node acting as the secondary device, ensuring stateful failover of processes and services when the
system or hardware fails. If the primary device fails, the secondary device takes over the processing of
traffic.

The nodes of a cluster are connected together through two links called control link and fabric link. The
devices in a chassis cluster synchronize the configuration, kernel, and PFE session states across the
cluster to facilitate high availability, failover of stateful services, and load balancing.

142

• Control link—Synchronizes the configuration between the nodes. When you submit configuration
statements to the cluster, the configuration is automatically synchronized over the control interface.

To create a vSRX Virtual Firewall cluster control link data path, connect the ge-0/0/0 interface on
one node to the ge-0/0/0 interface on the second node.

NOTE: You can use only the ge-0/0/0 interface to create a control link.

• Fabric link (data link)—Forwards traffic between the nodes. Traffic arriving on a node that needs to be
processed on the other node is forwarded over the fabric link. Similarly, traffic processed on a node
that needs to exit through an interface on the other node is forwarded over the fabric link.

You can use any interface except the ge-0/0/0 to create a fabric link.

Chassis Cluster Modes

The chassis cluster can be configured in active/passive or active/active mode.

• Active/passive mode—In active/passive mode, the transit traffic passes through the primary node
while the backup node is used only in the event of a failure. When a failure occurs, the backup device
becomes the primary device and takes over all forwarding tasks.

• Active/active mode—In active/active mode, the transit traffic passes through both nodes all the time.

Chassis Cluster Interfaces

The chassis cluster interfaces include:

• Redundant Ethernet (reth) interface—A pseudo-interface that includes a physical interface from each
node of a cluster. The reth interface of the active node is responsible for passing the traffic in a
chassis cluster setup.

A reth interface must contain, at minimum, a pair of Fast Ethernet interfaces or a pair of Gigabit
Ethernet interfaces that are referred to as child interfaces of the redundant Ethernet interface (the
redundant parent). If two or more child interfaces from each node are assigned to the redundant
Ethernet interface, a redundant Ethernet interface link aggregation group can be formed.

NOTE: You can configure a maximum of 128 reth interfaces on NFX250 devices.

143

• Control interface—An interface that provides the control link between the two nodes in the cluster.
This interface is used for routing updates and for control plane signal traffic, such as heartbeat and
threshold information that trigger node failover.

• Fabric interface—An interface that provides the physical connection between two nodes of a cluster.
A fabric interface is formed by connecting a pair of Ethernet interfaces back-to-back (one from each
node). The Packet Forwarding Engines of the cluster uses this interface to transmit transit traffic and
to synchronize the runtime state of the data plane software. You must specify the physical interfaces
to be used for the fabric interface in the configuration.

NOTE: Chassis cluster is enabled over vSRX Virtual Firewall 2.0 VNF instances running on two
separate NFX250 devices.

Chassis Cluster Limitation

Redundant LAG (RLAG) of reth member interfaces of the same node is not supported. A reth interface
with more than one child interface per node is called RLAG.

Example: Configuring a Chassis Cluster on NFX250 Devices

IN THIS SECTION

Requirements | 144

Overview | 145

Configuration | 145

Verification | 156

This example shows how to set up chassis clustering on NFX250 devices.

Requirements

Before you begin:

• Physically connect the two devices and ensure that they are the same NFX250 model.

144

• Ensure that both devices are running the same Junos OS version

• (Optional) Remove all interface mapping for the control port ge-0/0/0 on both the nodes.

• Connect the control port ge-0/0/0 on node 0 to the ge-0/0/0 port on node 1.

• Connect the fabric port on node 0 to the fabric port on node 1.

Overview

This example shows how to set up basic active/passive chassis clustering. One device actively maintains
control of the chassis cluster. The other device passively maintains its state for cluster failover
capabilities in case the active device becomes inactive.

NOTE: This example does not describe in detail miscellaneous configurations such as how to
configure security features. They are essentially the same as they would be for standalone
configurations.

Configuration

IN THIS SECTION

Deploy vSRX Virtual Firewall 2.0 VNF on NFX250 devices | 145

Configure the JCP Datapath | 147

Creating VNF HA Chassis Cluster | 149

Configuring a Chassis Cluster | 150

Configure Fabric interfaces | 152

Configure Redundant Groups and Redundant Interfaces | 154

Deploy vSRX Virtual Firewall 2.0 VNF on NFX250 devices

Step-by-Step Procedure

1. Copy the vSRX Virtual Firewall 2.0 VNF image to the /var/third-party/images/ folder.

145

2. Define the host-OS VLANs:

user@host1# set host-os vlans control_vlan vlan-id 200
set host-os vlans fab vlan-id 209
set host-os vlans port1 vlan-id 201
set host-os vlans port2 vlan-id 202
set host-os vlans port3 vlan-id 203
set host-os vlans port4 vlan-id 204
set host-os vlans port5 vlan-id 205
set host-os vlans port6 vlan-id 206
set host-os vlans port7 vlan-id 207

3. Deploy the vSRX Virtual Firewall VNF on NFX250:

user@host1# set virtual-network-functions VSRX image /var/third-party/images/junos-media-
srxmr-x86-64-vmdisk-19.3R2-S5.6.qcow2
set virtual-network-functions VSRX virtual-cpu 0 physical-cpu 2
set virtual-network-functions VSRX virtual-cpu 0 physical-cpu 3
set virtual-network-functions VSRX virtual-cpu 1 physical-cpu 3
set virtual-network-functions VSRX virtual-cpu 1 physical-cpu 5
set virtual-network-functions VSRX virtual-cpu count 2
set virtual-network-functions VSRX virtual-cpu features hardware-virtualization
set virtual-network-functions VSRX no-default-interfaces
set virtual-network-functions VSRX interfaces eth0 description outboundMgmt
set virtual-network-functions VSRX interfaces eth0 management out-of-band
set virtual-network-functions VSRX interfaces eth1 description clustercontrol
set virtual-network-functions VSRX interfaces eth1 mapping vlan mode access
set virtual-network-functions VSRX interfaces eth1 mapping vlan members control_vlan
set virtual-network-functions VSRX interfaces eth1 offloads disable
set virtual-network-functions VSRX interfaces eth2 description port1
set virtual-network-functions VSRX interfaces eth2 mapping vlan mode access
set virtual-network-functions VSRX interfaces eth2 mapping vlan members port1
set virtual-network-functions VSRX interfaces eth2 mapping peer-interfaces ge-0/0/0
set virtual-network-functions VSRX interfaces eth3 mapping vlan mode access
set virtual-network-functions VSRX interfaces eth3 mapping vlan members port2
set virtual-network-functions VSRX interfaces eth3 mapping peer-interfaces ge-0/0/1
set virtual-network-functions VSRX interfaces eth4 mapping vlan mode access
set virtual-network-functions VSRX interfaces eth4 mapping vlan members port3
set virtual-network-functions VSRX interfaces eth4 mapping peer-interfaces ge-0/0/2
set virtual-network-functions VSRX interfaces eth5 mapping vlan mode access
set virtual-network-functions VSRX interfaces eth5 mapping vlan members port4

146

set virtual-network-functions VSRX interfaces eth5 mapping peer-interfaces ge-0/0/3
set virtual-network-functions VSRX interfaces eth6 mapping vlan mode access
set virtual-network-functions VSRX interfaces eth6 mapping vlan members port5
set virtual-network-functions VSRX interfaces eth6 mapping peer-interfaces ge-0/0/4
set virtual-network-functions VSRX interfaces eth7 mapping vlan mode access
set virtual-network-functions VSRX interfaces eth7 mapping vlan members port6
set virtual-network-functions VSRX interfaces eth7 mapping peer-interfaces ge-0/0/5
set virtual-network-functions VSRX interfaces eth8 description fab
set virtual-network-functions VSRX interfaces eth8 mapping vlan mode access
set virtual-network-functions VSRX interfaces eth8 mapping vlan members fab
set virtual-network-functions VSRX interfaces eth8 mapping peer-interfaces ge-0/0/7
set virtual-network-functions VSRX memory size 4194304
set virtual-network-functions VSRX memory features hugepages

Configure the JCP Datapath

Step-by-Step Procedure

1. Configure the front panel ports in Ethernet switching family and map it to the VLANs:

user@host1# set interfaces ge-0/0/0 speed auto
set interfaces ge-0/0/0 ether-options auto-negotiation
set interfaces ge-0/0/0 unit 0 family ethernet-switching vlan members vlan201
set interfaces ge-0/0/0 unit 0 family ethernet-switching storm-control default
set interfaces sxe-0/0/0 unit 0 family ethernet-switching interface-mode trunk
set interfaces sxe-0/0/0 unit 0 family ethernet-switching vlan members fab
set interfaces sxe-0/0/0 unit 0 family ethernet-switching vlan members ctrl
set interfaces sxe-0/0/0 unit 0 family ethernet-switching vlan members vlan201
set interfaces sxe-0/0/0 unit 0 family ethernet-switching vlan members vlan202
set interfaces sxe-0/0/0 unit 0 family ethernet-switching vlan members vlan203
set interfaces sxe-0/0/0 unit 0 family ethernet-switching vlan members vlan204
set interfaces sxe-0/0/0 unit 0 family ethernet-switching vlan members vlan205
set interfaces sxe-0/0/0 unit 0 family ethernet-switching vlan members vlan206
set interfaces sxe-0/0/0 unit 0 family ethernet-switching vlan members vlan207
set interfaces sxe-0/0/0 unit 0 family ethernet-switching vlan members vlan208
set interfaces ge-0/0/1 speed auto
set interfaces ge-0/0/1 ether-options auto-negotiation
set interfaces ge-0/0/1 unit 0 family ethernet-switching vlan members vlan202
set interfaces ge-0/0/1 unit 0 family ethernet-switching storm-control default
set interfaces ge-0/0/2 speed auto
set interfaces ge-0/0/2 ether-options auto-negotiation

147

set interfaces ge-0/0/2 unit 0 family ethernet-switching vlan members vlan203
set interfaces ge-0/0/2 unit 0 family ethernet-switching storm-control default
set interfaces ge-0/0/3 speed auto
set interfaces ge-0/0/3 ether-options auto-negotiation
set interfaces ge-0/0/3 unit 0 family ethernet-switching vlan members vlan204
set interfaces ge-0/0/3 unit 0 family ethernet-switching storm-control default
set interfaces ge-0/0/4 speed auto
set interfaces ge-0/0/4 ether-options auto-negotiation
set interfaces ge-0/0/4 unit 0 family ethernet-switching vlan members vlan205
set interfaces ge-0/0/4 unit 0 family ethernet-switching storm-control default
set interfaces ge-0/0/5 speed auto
set interfaces ge-0/0/5 ether-options auto-negotiation
set interfaces ge-0/0/5 unit 0 family ethernet-switching vlan members vlan206
set interfaces ge-0/0/5 unit 0 family ethernet-switching storm-control default
set interfaces ge-0/0/6 ether-options auto-negotiation
set interfaces ge-0/0/6 unit 0 family ethernet-switching storm-control default
set interfaces ge-0/0/7 ether-options auto-negotiation
set interfaces ge-0/0/7 unit 0 family ethernet-switching vlan members vlan208
set interfaces ge-0/0/7 unit 0 family ethernet-switching storm-control default
set interfaces ge-0/0/10 speed auto
set interfaces ge-0/0/10 ether-options auto-negotiation
set interfaces ge-0/0/10 unit 0 family ethernet-switching vlan members ctrl
set interfaces ge-0/0/10 unit 0 family ethernet-switching storm-control default
set interfaces ge-0/0/11 speed auto
set interfaces ge-0/0/11 ether-options auto-negotiation
set interfaces ge-0/0/11 unit 0 family ethernet-switching vlan members fab
set interfaces ge-0/0/11 unit 0 family ethernet-switching storm-control default
set forwarding-options storm-control-profiles default all
set vlans ctrl vlan-id 200
set vlans default vlan-id 4089
set vlans fab vlan-id 209
set vlans vlan-2 vlan-id 2
set vlans vlan-3 vlan-id 3
set vlans vlan201 vlan-id 201
set vlans vlan202 vlan-id 202
set vlans vlan203 vlan-id 203
set vlans vlan204 vlan-id 204
set vlans vlan205 vlan-id 205
set vlans vlan206 vlan-id 206
set vlans vlan207 vlan-id 207
set vlans vlan208 vlan-id 208

148

Creating VNF HA Chassis Cluster

Step-by-Step Procedure

1. Access the VNF:

root@jdm> request virtual-network-functions console p
root@jdm> request virtual-network-functions console <VNF_NAME>

2. Change the mode to chassis cluster:

user@host1# set chassis cluster cluster-id 1 node 0 reboot
user@host1# set chassis cluster cluster-id 1 node 1 reboot

3. Configure the VNFs that are spawned in a cluster mode:

user@host1> set groups global interfaces fab0 fabric-options member-interfaces ge-0/0/6
set groups global interfaces fab1 fabric-options member-interfaces ge-7/0/6
set groups node0 system host-name vsrx2-porter2-ha-a
set groups node0 system backup-router 10.204.239.254
set groups node0 system backup-router destination 10.0.0.0/8
set groups node0 system backup-router destination 172.0.0.0/8
set groups node0 system backup-router destination 192.0.0.0/8
set groups node0 interfaces fxp0 unit 0 family inet address 10.204.230.245/20
set groups node1 system host-name vsrx2-porter2-ha-b
set groups node1 system backup-router 10.204.239.254
set groups node1 system backup-router destination 10.0.0.0/8
set groups node1 system backup-router destination 172.0.0.0/8
set groups node1 system backup-router destination 192.0.0.0/8
set groups node1 interfaces fxp0 unit 0 family inet address 10.204.230.246/20
set apply-groups global
set apply-groups "${node}"
set system ports console log-out-on-disconnect
set chassis cluster traceoptions flag all
set chassis cluster reth-count 1
set chassis cluster node 0
set chassis cluster node 1
set chassis cluster redundancy-group 0 node 0 priority 254

149

set chassis cluster redundancy-group 0 node 1 priority 1
Commit

Configuring a Chassis Cluster

Step-by-Step Procedure

1. Configure the cluster ID on both the nodes and reboot the devices. A reboot is required to enter into
cluster mode after the cluster ID and node ID are set.

NOTE: You must enter the operational mode to issue the commands on both devices.

user@host1> set chassis cluster cluster-id 1 node 0 reboot
user@host2> set chassis cluster cluster-id 1 node 1 reboot

The cluster-id is the same on both devices, but the node ID must be different because one device is
node 0 and the other device is node 1. The range for the cluster-id is 0 through 255 and setting it to
0 is equivalent to disabling cluster mode.

2. Verify that the chassis cluster is configured successfully:

• user@host1> show chassis cluster status
Monitor Failure codes:
 CS Cold Sync monitoring FL Fabric Connection monitoring
 GR GRES monitoring HW Hardware monitoring
 IF Interface monitoring IP IP monitoring
 LB Loopback monitoring MB Mbuf monitoring
 NH Nexthop monitoring NP NPC monitoring
 SP SPU monitoring SM Schedule monitoring
 CF Config Sync monitoring RE Relinquish monitoring

Cluster ID: 1
Node Priority Status Preempt Manual Monitor-failures

Redundancy group: 0 , Failover count: 0
node0 1 primary no no None
node1 1 secondary no no None

150

• root@host1> show chassis cluster information
node0:
--
Redundancy Group Information:

 Redundancy Group 0 , Current State: primary, Weight: 255

 Time From To Reason
 Mar 15 11:33:47 hold secondary Hold timer expired
 Mar 15 11:34:03 secondary primary Only node present

Chassis cluster LED information:
 Current LED color: Green
 Last LED change reason: No failures

node1:
--
Redundancy Group Information:

 Redundancy Group 0 , Current State: secondary, Weight: 255

 Time From To Reason
 Mar 15 12:14:49 hold secondary Hold timer expired

Chassis cluster LED information:
 Current LED color: Green
 Last LED change reason: No failures

After the chassis cluster is set up, you can enter the configuration mode and perform all the
configurations on the primary node, node0.

3. Configure the host names and the out-of-band management IP addresses for nodes 0 and 1:

user@host1# set groups node0 system host-name NFX250NG-1
user@host1# set groups node0 interfaces fxp0 unit 0 family inet address 172.16.100.1/24

user@host2# set groups node1 system host-name NFX250NG-2
user@host2# set groups node1 interfaces fxp0 unit 0 family inet address 172.16.100.2/24

151

If you are accessing the device from a different subnet other than the one configured for the out-of-
band management, then set up a static route:

user@host1# set routing-options static route 198.51.100.0/24 next-hop 172.16.0.0
user@host1# set routing-options static route 203.0.113.0/24 next-hop 172.16.0.0

4. Configure a backup router to access the router from an external network for the out-of-band
management

user@host1# set groups node0 system backup-router 172.16.0.0
user@host1# set groups node0 system backup-router destination 172.0.0.0/8
user@host1# set groups node0 system backup-router destination 203.0.0.0/8
user@host1# set groups node1 system backup-router 172.16.0.0
user@host1# set groups node1 system backup-router destination 172.0.0.0/8
user@host1# set groups node1 system backup-router destination 203.0.0.0/8

Configure Fabric interfaces

Step-by-Step Procedure

The ge-0/0/0 interface is a pre-defined control link. Therefore, you should select any other interface on
the device to configure a fabric interface. For example, in the below configuration, ge-0/0/1 is used as
the fabric interface.

1. Connect one end of the Ethernet cable to ge-0/0/1 on NFX250NG-1 device and the other end of
the cable to ge-0/0/1 on NFX250NG-2 device.

2. Map physical LAN to virtual WAN port:

user@host1> set vmhost virtualization-options interfaces ge-8/0/1
user@host1> set vmhost virtualization-options interfaces ge-1/0/1

152

3. Configure front panel (L2) interfaces corresponding to fabric interface:

user@host1# set interfaces ge-0/0/11 mtu 9192
user@host1# set interfaces ge-0/0/11 unit 0 family ethernet-switching interface-mode access
user@host1# set interfaces ge-0/0/11 unit 0 family ethernet-switching vlan members vlan100

user@host1# set interfaces sxe-0/0/0 mtu 9192
user@host1# set interfaces sxe-0/0/0 unit 0 family ethernet-switching interface-mode trunk
user@host1# set interfaces sxe-0/0/0 unit 0 family ethernet-switching vlan members vlan100
user@host1# set vlans vlan100 vlan-id 100

4. Configure L3 interfaces as fabric member:

user@host1# set chassis cluster fabric-member ge-0/0/6 vlan-id 100
user@host1# set interfaces fab0 fabric-options member-interfaces ge-0/0/6
user@host1# set groups fab chassis cluster fabric-member ge-0/0/6 vlan-id 100
user@host1# set groups fab chassis cluster fabric-member ge-7/0/6 vlan-id 100
user@host1# set groups fab interfaces fab0 fabric-options member-interfaces ge-0/0/6
user@host1# set groups fab interfaces fab1 fabric-options member-interfaces ge-7/0/6
user@host1# set groups fab vmhost virtualization-options interfaces ge-0/0/6
user@host1# set groups fab vmhost virtualization-options interfaces ge-7/0/6

5. Configure data path for fabric interfaces:

user@host1# set groups fab interfaces sxe-7/0/0 unit 0 family ethernet-switching vlan members
vlan100
user@host1# set groups fab interfaces sxe-0/0/0 unit 0 family ethernet-switching vlan members
vlan100
user@host1# set groups fab interfaces ge-0/0/9 mtu 9000
user@host1# set groups fab interfaces ge-0/0/9 unit 0 family ethernet-switching interface-
mode access
user@host1# set groups fab interfaces ge-0/0/9 unit 0 family ethernet-switching vlan members
vlan100
user@host1# set groups fab interfaces ge-7/0/9 mtu 9000
user@host1# set groups fab interfaces ge-7/0/9 unit 0 family ethernet-switching interface-
mode access
user@host1# set groups fab interfaces ge-7/0/9 unit 0 family ethernet-switching vlan members
vlan100

153

user@host1# set groups fab vlan vlan100 vlan-id 100
user@host1# set apply-groups fab

6. Configure port peering for fabric and reth members. Port peering ensures that when a LAN interface
controlled by the Layer 2 dataplane (FPC0) fails, the corresponding interface on the Layer 3
dataplane (FPC1) is marked down and vice versa. This helps in the failover of the corresponding
redundant group to the secondary node.

user@host1# set groups node1 chassis cluster redundant-interface ge-8/0/1 mapping-interface
ge-7/0/1
user@host1# set groups node0 chassis cluster redundant-interface ge-1/0/1 mapping-interface
ge-0/0/1

Configure Redundant Groups and Redundant Interfaces

Step-by-Step Procedure

1. Configure redundancy groups 1 and 2. Both redundancy-group 1 and redundancy-group 2 control the data
plane and include the data plane ports. Each node has interfaces in a redundancy group. As part of
redundancy group configuration, you must also define the priority for control plane and data plane—
which device is preferred for the control plane, and which device is preferred for the data plane. For
chassis clustering, higher priority is preferred. The higher number takes precedence.

In this configuration, node 0 is the active node as it is associated with redundancy-group 1. reth0 is
member of redundancy-group 1 and reth1 is member of redundancy-group 2. You must configure all changes
in the cluster through node 0. If node 0 fails, then node 1 will be the active node.

user@host1# set chassis cluster reth-count 4
user@host1# set chassis cluster redundancy-group 1 node 0 priority 200
user@host1# set chassis cluster redundancy-group 1 node 1 priority 100
user@host1# set chassis cluster redundancy-group 2 node 0 priority 200
user@host1# set chassis cluster redundancy-group 2 node 1 priority 100
user@host1# set chassis cluster redundancy-group 1 preempt
user@host1# set chassis cluster redundancy-group 2 preempt

154

2. Configure front panel (L2) interfaces corresponding to reth interface:

user@host1# set interfaces ge-0/0/3 unit 0 family ethernet-switching interface-mode access
user@host1# set interfaces ge-0/0/3 unit 0 family ethernet-switching vlan members vlan300

user@host1# set interfaces ge-0/0/4 unit 0 family ethernet-switching interface-mode access
user@host1# set interfaces ge-0/0/4 unit 0 family ethernet-switching vlan members vlan400

user@host1# set interfaces ge-7/0/3 unit 0 family ethernet-switching interface-mode access
user@host1# set interfaces ge-7/0/3 unit 0 family ethernet-switching vlan members vlan300

user@host1# set interfaces ge-7/0/4 unit 0 family ethernet-switching interface-mode access
user@host1# set interfaces ge-7/0/4 unit 0 family ethernet-switching vlan members vlan400

user@host1# set interfaces sxe-0/0/1 unit 0 family ethernet-switching interface-mode trunk
user@host1# set interfaces sxe-0/0/1 unit 0 family ethernet-switching vlan members vlan300
user@host1# set interfaces sxe-0/0/1 unit 0 family ethernet-switching vlan members vlan400

user@host1# set interfaces sxe-7/0/1 unit 0 family ethernet-switching interface-mode trunk
user@host1# set interfaces sxe-7/0/1 unit 0 family ethernet-switching vlan members vlan300
user@host1# set interfaces sxe-7/0/1 unit 0 family ethernet-switching vlan members vlan400

user@host1# set vlans vlan300 vlan-id 300
user@host1# set vlans vlan400 vlan-id 400

3. Configure WAN (L3) interfaces as reth member:

user@host1# set interfaces ge-0/0/3 gigether-options redundant-parent reth0
user@host1# set interfaces ge-7/0/3 gigether-options redundant-parent reth0
user@host1# set interfaces ge-0/0/4 gigether-options redundant-parent reth1
user@host1# set interfaces ge-7/0/4 gigether-options redundant-parent reth1

4. Configure reth interfaces:

155

• Configure reth0:

user@host1# set interfaces reth0 vlan-tagging
user@host1# set interfaces reth0 redundant-ether-options redundancy-group 1
user@host1# set interfaces reth0 unit 0 vlan-id 300
user@host1# set interfaces reth0 unit 0 family inet address 192.0.2.0/24

• Configure reth1:

user@host1# set interfaces reth1 vlan-tagging
user@host1# set interfaces reth1 redundant-ether-options redundancy-group 2
user@host1# set interfaces reth1 unit 0 vlan-id 400
user@host1# set interfaces reth1 unit 0 family inet address 198.51.100.0/24

5. Configure interface monitoring for reth interfaces members:

user@host1# set chassis cluster redundancy-group 1 interface-monitor ge-0/0/3 weight 255
user@host1# set chassis cluster redundancy-group 1 interface-monitor ge-7/0/3 weight 255
user@host1# set chassis cluster redundancy-group 2 interface-monitor ge-0/0/4 weight 255
user@host1# set chassis cluster redundancy-group 2 interface-monitor ge-7/0/4 weight 255

6. Configure security policies to allow traffic from LAN to WAN, and from WAN to LAN:

user@host1# set security policies default-policy permit-all
user@host1# set security zones security-zone trust host-inbound-traffic system-services all
user@host1# set security zones security-zone trust host-inbound-traffic protocols all
user@host1# set security zones security-zone trust interfaces all

Verification

IN THIS SECTION

Verifying Chassis Cluster Status | 157

156

Verifying Chassis Cluster Status

Purpose

Verify the status of the chassis cluster and its interfaces.

Action

From operational mode, issue the following commands:

• Verify the status of the cluster:

root@host1> show chassis cluster status
Monitor Failure codes:
 CS Cold Sync monitoring FL Fabric Connection monitoring
 GR GRES monitoring HW Hardware monitoring
 IF Interface monitoring IP IP monitoring
 LB Loopback monitoring MB Mbuf monitoring
 NH Nexthop monitoring NP NPC monitoring
 SP SPU monitoring SM Schedule monitoring
 CF Config Sync monitoring RE Relinquish monitoring
 IS IRQ storm

Cluster ID: 1
Node Priority Status Preempt Manual Monitor-failures

Redundancy group: 0 , Failover count: 1
node0 1 primary no no None
node1 1 secondary no no None

Redundancy group: 1 , Failover count: 1
node0 200 primary yes no None
node1 100 secondary yes no None

Redundancy group: 2 , Failover count: 1
node0 200 primary yes no None
node1 100 secondary yes no None

157

• Verify the status of the redundancy groups:

root@host1> show chassis cluster information
node0:
--
Redundancy Group Information:

 Redundancy Group 0 , Current State: primary, Weight: 255

 Time From To Reason
 Jun 8 11:24:14 hold secondary Hold timer expired
 Jun 8 11:24:30 secondary primary Only node present

 Redundancy Group 1 , Current State: primary, Weight: 255

 Time From To Reason
 Jun 8 11:24:14 hold secondary Hold timer expired
 Jun 8 11:24:30 secondary primary Only node present

 Redundancy Group 2 , Current State: primary, Weight: 255

 Time From To Reason
 Jun 8 11:24:14 hold secondary Hold timer expired
 Jun 8 11:24:30 secondary primary Only node present

Chassis cluster LED information:
 Current LED color: Green
 Last LED change reason: No failures

node1:
--
Redundancy Group Information:

 Redundancy Group 0 , Current State: secondary, Weight: 255

 Time From To Reason
 Jun 8 11:25:24 hold secondary Hold timer expired

 Redundancy Group 1 , Current State: secondary, Weight: 255

 Time From To Reason
 Jun 8 11:25:24 hold secondary Hold timer expired

158

 Redundancy Group 2 , Current State: secondary, Weight: 255

 Time From To Reason
 Jun 8 11:25:23 hold secondary Hold timer expired

Chassis cluster LED information:
 Current LED color: Green
 Last LED change reason: No failures

• Verify the status of the interfaces:

root@host1> show chassis cluster interfaces
Control link status: Up

Control interfaces:
 Index Interface Monitored-Status Internal-SA Security
 0 em1 Up Disabled Disabled

Fabric link status: Up

Fabric interfaces:
 Name Child-interface Status Security
 (Physical/Monitored)
 fab0 ge-1/0/1 Up / Up Disabled
 fab0
 fab1 ge-8/0/1 Up / Up Disabled
 fab1

Redundant-ethernet Information:
 Name Status Redundancy-group
 reth0 Up 1
 reth1 Up 2
 reth2 Down Not configured
 reth3 Down Not configured

Redundant-pseudo-interface Information:
 Name Status Redundancy-group
 lo0 Up 0

Interface Monitoring:
 Interface Weight Status Redundancy-group

159

 (Physical/Monitored)
 ge-8/0/3 255 Up / Up 1
 ge-1/0/3 255 Up / Up 1
 ge-8/0/4 255 Up / Up 2
 ge-1/0/4 255 Up / Up 2

• Verify the status of the port-peering interfaces:

root@host1> show chassis cluster port-peering
node0:
--

Port peering interfaces:
 Backend L3 Mapped Peer L2
 Interface Status Interface Status
 ge-1/0/3 Up ge-0/0/3 Up
 ge-1/0/4 Up ge-0/0/4 Up
 ge-1/0/1 Up ge-0/0/1 Up

node1:
--

Port peering interfaces:
 Backend L3 Mapped Peer L2
 Interface Status Interface Status
 ge-8/0/3 Up ge-7/0/3 Up
 ge-8/0/4 Up ge-7/0/4 Up
 ge-8/0/1 Up ge-7/0/1 Up

RELATED DOCUMENTATION

Monitoring of Global-Level Objects in a Chassis Cluster

Monitoring Chassis Cluster Interfaces

Monitoring IP Addresses on a Chassis Cluster

Configuring Cluster Failover Parameters

Chassis Cluster Redundancy Group Failover

160

https://www.juniper.net/documentation/en_US/junos/topics/concept/chassis-cluster-monitoring-global-level-object-understanding.html
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/security-chassis-cluster-interface-monitoring.html
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/security-chassis-cluster-ip-address-monitoring.html
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/security-chassis-cluster-failover-parameters.html
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/security-chassis-cluster-redundancy-group-failover.html

4
CHAPTER

Monitoring and Troubleshooting JDM

Configuring SNMP on JDM | 162

Managing the Log Files and Core Files | 165

Recovering the Root Password for NFX250 | 168

Configuring SNMP on JDM

IN THIS SECTION

Configuring SNMP Community | 162

Configuring SNMP System Parameters | 162

Configuring SNMP v3 | 163

Configuring SNMP Traps | 164

Querying SNMP MIBs | 164

Managing Traps | 165

There are several SNMP-enabled components in NFX (JDM, hypervisor, and so on). This topic discusses
the SNMP implementation of JDM and hypervisor. For JCP, see the Junos documentation. On the
NFX250 platform, JDM plays the role of the SNMP agent and at the same time it acts as an SNMP
proxy for the hypervisor (host OS). When SNMP is configured in JDM, hypervisor also takes the same
SNMP configuration. By default, SNMP is disabled on disaggregated Junos OS platforms. To enable
SNMP , you must include the SNMP configuration statements at the [edit snmp] hierarchy level. This
section describes:

Configuring SNMP Community

To configure SNMP community:

Specify a name for the SNMP community:

user@jdm# set snmp community community

Configuring SNMP System Parameters

To configure SNMP system parameters:

162

1. Set the system name:

user@jdm# set snmp name name

2. Enter a description for the system being managed:

user@jdm# set snmp description description

3. Specify the location of the system:

user@jdm# set snmp location location

4. Specify the name of the contact person:

user@jdm# set snmp contact contact

Configuring SNMP v3

In contrast to SNMP version 1 (SNMPv1) and SNMP version 2 (SNMPv2), SNMP version 3 (SNMPv3)
supports authentication and encryption. SNMPv3 uses the user-based security model (USM) for
message security and the view-based access control model (VACM) for access control. USM specifies
authentication and encryption. VACM specifies access-control rules. To configure local engine
information for the user-based security model (USM) with Secure Hash Algorithm (SHA) as the
authentication type for the SNMPv3 user, enter the command:

user@jdm# set snmp v3 usm local-engine user username authentication-sha authentication-password
authentication-password

To configure local engine information for the USM with MD5 as the authentication type for the
SNMPv3 user, enter the command:

user@jdm# set snmp v3 usm local-engine user username authentication-md5 authentication-password
authentication-password

163

Configuring SNMP Traps

To configure SNMP traps, create a named group of hosts to receive the specified trap notifications. At
least one trap group must be configured for SNMP traps to be sent:

user@jdm# set snmp trap-group group-name targets address

Querying SNMP MIBs

The NFX 250 platform supports querying SNMP MIBs on both, the JDM and the hypervisor. NFX MIBS
are read-only, which means that the values can be read from the MIB but cannot be configured using
SNMP.

The commands below are the queries on SNMP v1, SNMP v2 and SNMP v3. :

user@SNMP_server# snmpwalk -v 1 -c community-name jdm_ip-address oid

user@jdm# snmpwalk -v 2 -c community-name ip-address oid

user@jdm# snmpwalk -v3 -u username -l authNoPriv -a SHA -A password ip-address oid

To query the hypervisor, you need to provide an additional context name, which is the user name
appended by -host:

user@jdm# snmpwalk -v 1 -c community-name-host ip-address oid

user@jdm# snmpwalk -v 2 -c community-name-host ip-address oid

user@jdm# snmpwalk -v3 -u username-host -l authNoPriv -a SHA -A password ip-address oid

164

You can query libvirt MIBs only as a host:

user@jdm# snmpwalk -v 2c -c community-name-host ip-address oid

Managing Traps

The agent sends traps to notify the manager of significant events that occur on the device. To configure
traps:

user@jdm# set snmp trap-group group-name targets ip-address

JDM traps are assigned the context jdm, and hypervisor traps are assigned the context host.

RELATED DOCUMENTATION

NFX250 Overview | 2

JDM Architecture Overview | 6

JDM CLI Overview | 18

Managing the Log Files and Core Files

IN THIS SECTION

Viewing and Managing Centralized Log Files | 166

Managing Core Files | 167

165

Viewing and Managing Centralized Log Files

IN THIS SECTION

Enabling Centralized Logging | 166

Viewing Log Messages | 167

On a disaggregated Junos OS platform, a centralized logging server collects all system logs for all
computing entities in the disaggregated Junos OS. Centralized logging simplifies device management by
allowing users to view all log files for all disaggregation Junos entities in a single place.

NOTE: Syslog feature configuration is not supported on JDM.

This topic describes:

Enabling Centralized Logging

You can enable centralized logging on vSRX Virtual Firewall to view the log files on JDM.

1. Log in to vSRX Virtual Firewall:

root@jdm> ssh vsrx-hostname

2. Ensure that the fxp0 interface is assigned the management IP address:

root>show interfaces fxp0 terse

3. Assign a hostname to the vSRX Virtual Firewall instance:

root# set system host-name hostname

4. To specify JDM as the host for the central log file:

root# set system syslog host 192.168.1.254 any any

192.168.1.254 is the internal management IP address of JDM

166

You can specify filters for the messages that you want displayed. If you specify any any all the
messages will be logged.

Viewing Log Messages

To view system log messages logged by VNFs and the system generated logs on JDM, use the command:

user@jdm> show log syslog

To view other log messages, use the command:

user@jdm> show log <filename>

NOTE: You cannot view JCP log files on JDM.

A log rotation process runs every 5 minutes. If the log file size is greater than 5 MB, then the log
files get rotated. The log files are saved in the /var/log directory.

Managing Core Files

IN THIS SECTION

Viewing Core Files | 168

This topic discusses how to view core files for a disaggregated Junos OS platform.

It contains the following sections:

167

Viewing Core Files

To view all core files from the JDM CLI, enter the show system core-dumps command:

/var/tmp/*core* :
drwxr-xr-x 2 root root 4096 Jan 17 19:01 corefiles
/var/crash/*core* :
-rw-r--r-- 1 root root 382853 Jan 1 00:54 jdm.jdmd.4899.1420073655.core.tgz
-rw-r--r-- 1 root root 372095 Jan 1 01:11 jdm.jdmd.5697.1420074677.core.tgz
-rw-r--r-- 1 root root 3141405 Jan 17 19:01 jdm.jdmd.6875.1421521308.core.tgz
-rw-r--r-- 1 root root 18440 Jan 17 14:24 jdm.test.19278.1421504682.core.tgz

To view all core files displayed in JDM, open the core files using Unix commands. The core files are
stored in the /var/tmp/corefiles/ directory on Hypervisor.

RELATED DOCUMENTATION

NFX250 Overview | 2

JDM Architecture Overview | 6

JDM CLI Overview | 18

Recovering the Root Password for NFX250

The root password helps to prevent unauthorized users from making changes to your network. If you
forget the root password, you can use the password recovery procedure to reset the root password.

NOTE: You can recover the root password only if the password recovery option is enabled. To
enable password recovery, use the following commands:

user@jdm# set system password-recovery
user@jdm# commit

You need console access to the device to recover the root password.

To recover the root password:

168

1. Power off the device by switching off the AC power outlet of the device. Or, if necessary, pull the
power cords out of the device’s power supplies.

2. Plug one end of the Ethernet rollover cable supplied with the device into the RJ-45-to-DB-9 serial
port adapter supplied with the device.

3. Plug the RJ-45-to-DB-9 serial port adapter into the serial port on the management device.

4. Connect the other end of the Ethernet rollover cable to the console port on the device.

5. On the management device, start any asynchronous terminal emulation application (such as
Microsoft Windows HyperTerminal), and select the appropriate COM port to use (for example,
COM1).

6. Configure the port settings as follows:

• Bits per second—9600

• Data bits—8

• Parity—None

• Stop bits—1

• Flow control—None

7. Power on the NFX250 by switching on the AC power outlet the device is plugged into. Or, if
necessary, power it on by plugging the power cords into the device's power supply.

The terminal emulation screen on your management device displays the device’s boot sequence.

8. When the system prompts you to press the Esc key, start pressing the Down Arrow key.

Checking Primary BIOS code integrity...Passed!
Press Esc for boot options
ME is in normal operational state
Booting HDD00.1 (TS512GMTS600)...

Secure boot is enforced
Welcome to GRUB!

Secure Grub2 Diskboot

9. Continue to press the Down Arrow key until you see the following output. Select Juniper Linux -
Debug.

GNU GRUB version 2.02-juniper/rel_v4-
——
Juniper Linux

169

Juniper Linux - Debug
Juniper Linux - Recovery

10. Press the Enter key until you see the following message on your screen. Select Reset JDM root
password.

Hit [Enter] immediately to interrupt booting...

Select one of the following options:
1. Reset JDM root password.
2. JDM shell for maintenance.
3. Reboot the system.
Selection [1-3]:

11. Enter the new password and reboot the device.

Selection [1-3]:1
Enter new UNIX password:
Retype new UNIX password:
Authentication tokens updated successfully
Reboot (y/n)? Y

After the device reboots, you can login with the new password.

RELATED DOCUMENTATION

NFX250 Overview | 2

JDM Architecture Overview | 6

JDM CLI Overview | 18

170

5
CHAPTER

Configuration Statements and
Operational Commands

Junos CLI Reference Overview | 172

Junos CLI Reference Overview

We've consolidated all Junos CLI commands and configuration statements in one place. Learn about the
syntax and options that make up the statements and commands and understand the contexts in which
you’ll use these CLI elements in your network configurations and operations.

• Junos CLI Reference

Click the links to access Junos OS and Junos OS Evolved configuration statement and command
summary topics.

• Configuration Statements

• CLI Commands

172

	Table of Contents
	About This Guide
	Overview
	NFX250 Overview
	JDM Architecture Overview
	Understanding Disaggregated Junos OS
	Understanding Physical and Virtual Components
	Disaggregated Junos OS VMs
	Virtio and SR-IOV Usage

	JDM CLI Overview
	Understanding the JDM CLI
	Accessing the JDM Shell, JDM CLI, and JCP Prompts in a Disaggregated Junos OS Platform
	Accessing the JDM CLI
	Accessing the JDM Shell
	Accessing the JCP Prompt from the JDM CLI
	Accessing the Hypervisor from the JDM CLI
	Accessing the ipsec-nm from the JDM CLI

	Software Upgrade Path for NFX250 Devices
	Junos OS Releases Supported on NFX Series Hardware

	Installation and Configuration
	Performing Initial Software Configuration on an NFX250 Device
	Installing Software on NFX250 Devices
	Downloading and Installing Software
	Downloading Software
	Downloading Software by Using a Browser
	Installing Software by Using the Command-Line Interface

	Software Installation on NFX250 Network Services Platform
	Upgrading an Image on the Disaggregated Junos OS Platform
	Reverting the System to the Factory-Default Configuration
	Rebooting the System

	Configuring JDM User Accounts and Authentication
	JDM User Accounts Overview
	Configuring JDM User Accounts and Authentication

	YANG files on NFX250 Devices
	Understanding YANG on NFX250 Devices
	Generating YANG Files

	Synchronizing Time Using NTP
	Configuring Management Interfaces for JDM
	JDM Management Interfaces Overview
	Configuring the Out-of-Band Management Interface for JDM
	Configuring the Out-of-Band Management Interface with IPv4 Addressing for JDM
	Configuring the Out-of-Band Management Interface with IPv6 Addressing for JDM

	Configuring the In-Band Management Interface for JDM
	Configuring the Out-of-Band Management Interface for Hypervisor
	Configuring the Out-of-Band Management Interface with IPv4 Addressing for Hypervisor
	Configuring the Out-of-Band Management Interface with IPv6 Addressing for Hypervisor

	Configuring Remote Access to JDM
	Configuring SSH Service and NETCONF-Over-SSH Connections for Remote Access to the Disaggregated Junos OS Platform
	Configuring HTTP Access to the Disaggregated Junos OS Platform
	Configuring HTTPS Access to the Disaggregated Junos OS Platform

	Configuring Enhanced Orchestration and Hugepages
	Enhanced Orchestration
	Hugepages

	Managing Virtual Network Functions Using JDM
	Understanding Virtual Network Functions
	Prerequisites to Onboard Virtual Network Functions on NFX250 Devices
	Prerequisites for VNFs

	Managing the VNF Life Cycle
	Planning Resources for a VNF
	Managing the VNF Image
	Preparing the Bootstrap Configuration
	Launching a VNF
	Allocating Resources for a VNF
	Specifying CPU for VNF
	Allocating Memory for a VNF
	Configuring VNF Storage Devices
	Configuring VNF Interfaces and VLANs

	Managing VNF States
	Managing VNF MAC Addresses
	Managing MTU
	Accessing a VNF from JDM
	Viewing List of VNFs
	Displaying the VNF Details
	Deleting a VNF

	Creating the vSRX Virtual Firewall VNF on the NFX250 Platform
	Configuring the vMX Virtual Router as a VNF on NFX250
	Virtual Route Reflector on NFX250 Overview
	Configuring vRR as a VNF on NFX250
	Configuring vRR VNF on NFX250 in Linux Bridge Mode
	Configuring Junos Device Manager (JDM) for vRR
	Verifying that the Management IP is Configured
	Verifying that the Default Routes are Configured
	Configuring Junos Control Plane (JCP) for vRR
	Launching vRR
	Enabling Liveliness Detection of vRR VNF from JDM

	Configuring vRR VNF on NFX250 in Enhanced Orchestration Mode

	Configuring Cross-connect
	Configuring Analyzer VNF and Port-mirroring

	Configuring Service Chaining Using JDM
	Understanding Service Chaining on Disaggregated Junos OS Platforms
	Configuring Service Chaining Using VLANs
	Configuring Service Chaining Using DHCP Services on VLANs
	Example: Configuring Service Chaining Using VLANs on NFX250 Network Services Platform
	Requirements
	Overview
	Configuration

	Example: Configuring Service Chaining Using SR-IOV on NFX250 Network Services Platform
	Requirements
	Overview
	Configuration

	ADSL2 and ADSL2+ Interfaces on NFX250 Devices
	ADSL Interface Overview
	Example: Configuring ADSL SFP Interface on NFX250 Devices
	Requirements
	Overview
	Configuration
	Results

	VDSL2 Interfaces on NFX250 Devices
	VDSL Interface Overview
	VDSL2 Network Deployment Topology
	VDSL2 Interface Support on NFX Series Devices
	Example: Configuring VDSL SFP Interface on NFX250 Devices
	Requirements
	Overview
	Configuration
	Results

	Configuring High Availability
	Chassis Cluster on NFX250 Devices
	NFX250 Chassis Cluster Overview
	Chassis Cluster Interfaces
	Chassis Cluster Limitation
	Example: Configuring a Chassis Cluster on NFX250 Devices
	Requirements
	Overview
	Configuration
	Verification

	Monitoring and Troubleshooting JDM
	Configuring SNMP on JDM
	Configuring SNMP Community
	Configuring SNMP System Parameters
	Configuring SNMP v3
	Configuring SNMP Traps
	Querying SNMP MIBs
	Managing Traps

	Managing the Log Files and Core Files
	Viewing and Managing Centralized Log Files
	Enabling Centralized Logging
	Viewing Log Messages

	Managing Core Files
	Viewing Core Files

	Recovering the Root Password for NFX250

	Configuration Statements and Operational Commands
	Junos CLI Reference Overview

