
Junos® OS

NETCONF XML Management Protocol
Developer Guide

Published

2025-12-09

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

Junos® OS NETCONF XML Management Protocol Developer Guide
Copyright © 2025 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

ii

https://support.juniper.net/support/eula/

Table of Contents

About This Guide | xvii

1 Overview

NETCONF XML Management Protocol Overview | 2

Understanding the NETCONF XML Management Protocol | 2

Benefits of NETCONF | 2

NETCONF XML Management Protocol Overview | 3

NETCONF and the Junos XML API Overview | 4

Advantages of Using NETCONF and the Junos XML API | 7

NETCONF and Junos XML Tags Overview | 10

XML and Junos OS Overview | 10

XML Overview | 12

XML and NETCONF XML Management Protocol Conventions Overview | 15

Map Junos OS Commands and Command Output to Junos XML Tag Elements | 20

Mapping Command Output to Junos XML Elements | 21

Mapping Commands to Junos XML Request Tag Elements | 22

Mapping for Command Options with Variable Values | 23

Mapping for Fixed-Form Command Options | 24

Map Configuration Statements to Junos XML Tag Elements | 25

Using NETCONF Configuration Response Tag Elements in NETCONF Requests and Configuration
Changes | 32

2 Manage NETCONF Sessions

NETCONF Session Overview | 35

NETCONF Session Overview | 35

Understanding the Client Application’s Role in a NETCONF Session | 36

Generate Well-Formed XML Documents | 37

Understanding the Request Procedure in a NETCONF Session | 39

iii

Manage NETCONF Sessions | 41

Establish an SSH Connection for a NETCONF Session | 41

Understanding NETCONF Sessions over SSH | 42

Common Prerequisites for NETCONF Sessions over SSH or Outbound SSH | 42

Install SSH Software on the Configuration Management Server | 42

Enable NETCONF Service over SSH | 43

Prerequisites for Establishing an SSH Connection for NETCONF Sessions | 45

Configure a User Account for the Client Application on Junos Devices | 45

Configure a Public/Private Keypair or Password for the Junos OS User Account | 46

Access the Keys or Password with the Client Application | 48

Prerequisites for Establishing an Outbound SSH Connection for NETCONF Sessions | 48

Configure the Junos Device for Outbound SSH | 49

Receive and Manage the Outbound SSH Initiation Sequence on the Client | 50

NETCONF Sessions over Transport Layer Security (TLS) | 51

Understanding NETCONF-over-TLS Connections | 51

How to Establish a NETCONF Session over TLS | 56

Install TLS Client Software on the Network Management System | 56

Obtain X.509 Certificates for the Server and Client | 56

Install the Server’s Local Certificate in the Junos PKI | 59

Install the CA Certificates in the Junos PKI | 60

Enable the NETCONF Service over TLS | 62

Configure the TLS Client-to-NETCONF Username Mapping | 63

Configure the Default NETCONF Username Mapping | 64

Configure the User Account for the NETCONF User | 65

Start the NETCONF-over-TLS Session | 66

NETCONF and Shell Sessions over Enhanced Outbound HTTPS | 68

Understanding NETCONF and Shell Sessions over Enhanced Outbound HTTPS | 68

How to Establish NETCONF and Shell Sessions over Enhanced Outbound HTTPS | 71

Obtain an X.509 Certificate for the gRPC Server | 72

Set Up the gRPC Server | 74

Configure the User Account for the NETCONF or Shell User | 77

Configure the Outbound HTTPS Clients | 77

Configure the Outbound HTTPS Extension Service on Junos Devices | 80

Start the NETCONF or Shell Session | 82

iv

NETCONF Sessions over Outbound HTTPS | 84

Understanding NETCONF Sessions over Outbound HTTPS | 85

How to Establish a NETCONF Session over Outbound HTTPS | 87

Obtain an X.509 Certificate for the gRPC Server | 88

Set Up the gRPC Server | 91

Configure the User Account for the NETCONF User | 92

Configure the Outbound HTTPS Client | 93

Configure the Outbound HTTPS Extension Service on Junos Devices | 95

Start the NETCONF Session | 97

NETCONF Call Home Sessions | 98

Understanding NETCONF Call Home | 99

How to Set Up NETCONF Call Home | 101

Configure the Junos User Account | 101

Configure SSH Authentication | 102

Enable the NETCONF Service | 112

Configure the Junos Device to Connect to the NETCONF Call Home Client | 113

NETCONF Sessions | 116

Connect to the NETCONF Server Using SSH | 117

Start a NETCONF Session | 118

Send Requests to the NETCONF Server | 124

Parse the NETCONF Server Response | 127

Parse Response Tag Elements Using a Standard API in NETCONF and Junos XML Protocol
Sessions | 130

Handle an Error or Warning in a NETCONF Session | 130

Lock and Unlock the Candidate Configuration | 132

Terminate a NETCONF Session | 134

End a NETCONF Session and Close the Connection | 136

Sample NETCONF Session | 136

Exchanging Initialization Tag Elements | 137

Sending an Operational Request | 138

Locking the Configuration | 139

Changing the Configuration | 140

Committing the Configuration | 140

Unlocking the Configuration | 141

v

Closing the NETCONF Session | 141

How Character Encoding Works on Juniper Networks Devices | 142

Configure RFC-Compliant NETCONF Sessions | 143

NETCONF Monitoring | 153

NETCONF State Information Overview | 153

Retrieve NETCONF Capabilities | 156

Retrieve Configuration Datastores | 158

Retrieve Schemas | 159

Retrieve NETCONF Session Information | 162

Retrieve NETCONF Server Statistics | 164

NETCONF Event Notifications | 165

NETCONF Event Notifications Overview | 165

NETCONF Event Notification Format | 167

Interleave Capability | 168

Filtering Capability | 169

How to Enable and Subscribe to NETCONF Event Notifications | 170

Enable the NETCONF Event Notification Service | 170

Subscribe to Receive Event Notifications | 172

Terminate the Subscription | 174

NETCONF Tracing Operations | 175

NETCONF and Junos XML Protocol Tracing Operations Overview | 175

Example: Trace NETCONF and Junos XML Protocol Session Operations | 177

Requirements | 177

Overview | 177

Configuration | 177

Verification | 180

NETCONF Protocol Operations and Attributes | 183

<close-session/> | 183

<commit> | 184

<copy-config> | 186

<delete-config> | 189

vi

<discard-changes/> | 190

<edit-config> | 191

<get> | 195

<get-config> | 198

<kill-session> | 200

<lock> | 201

operation | 202

<unlock> | 204

<validate> | 205

NETCONF Request and Response Tags | 207

End-of-document Character Sequence | 207

<data> | 209

<error-info> | 210

<hello> | 211

<ok/> | 213

<rpc> | 213

<rpc-error> | 214

<rpc-reply> | 216

<target> | 217

Junos XML Protocol Elements Supported in NETCONF Sessions | 219

<abort/> | 220

<abort-acknowledgement/> | 221

<checksum-information> | 222

<close-configuration/> | 223

<commit-configuration> | 224

<commit-results> | 230

vii

<commit-revision-information> | 232

<database-status> | 234

<database-status-information> | 236

<end-session/> | 237

<get-checksum-information> | 238

<get-configuration> | 239

<load-configuration> | 246

<load-configuration-results> | 252

<lock-configuration/> | 253

<open-configuration> | 254

<reason> | 256

<request-end-session/> | 257

<routing-engine> | 258

<unlock-configuration/> | 260

<xnm:error> | 261

<xnm:warning> | 264

Junos XML Protocol Element Attributes Supported in NETCONF Sessions | 266

junos:changed-localtime | 266

junos:changed-seconds | 267

junos:commit-localtime | 268

junos:commit-seconds | 269

junos:commit-user | 270

replace-pattern | 271

xmlns | 273

3 Manage Configurations Using NETCONF

Change the Configuration Using NETCONF | 277

viii

Edit the Configuration Using NETCONF | 277

Upload and Format Configuration Data in a NETCONF Session | 279

Referencing Configuration Data Files | 280

Streaming Configuration Data | 283

Formatting Data: Junos XML versus CLI Configuration Statements | 285

Set the Edit Configuration Mode in a NETCONF Session | 287

Specifying the merge Data Mode | 289

Specifying the replace Data Mode | 290

Specifying the none (no-change) Data Mode | 290

Handle Errors While Editing the Candidate Configuration in a NETCONF Session | 292

Replace the Candidate Configuration Using NETCONF | 293

Using <copy-config> to Replace the Configuration | 294

Using <edit-config> to Replace the Configuration | 295

Rolling Back to a Previously Committed Configuration | 296

Replacing the Candidate Configuration with the Rescue Configuration | 297

Roll Back Uncommitted Changes in the Candidate Configuration Using NETCONF | 298

Delete the Configuration Using NETCONF | 299

Change Individual Configuration Elements Using NETCONF | 300

Merge Configuration Elements Using NETCONF | 301

Create Configuration Elements Using NETCONF | 304

Delete Configuration Elements Using NETCONF | 306

Deleting a Hierarchy Level or Container Object | 307

Deleting a Configuration Object That Has an Identifier | 308

Deleting a Single-Value or Fixed-Form Option from a Configuration Object | 310

Deleting Values from a Multi-value Option of a Configuration Object | 311

Replace Configuration Elements Using NETCONF | 314

Replace Patterns in Configuration Data Using the NETCONF or Junos XML Protocol | 316

Replace Patterns Globally Within the Configuration | 317

Replace Patterns Within a Hierarchy Level or Container Object That Has No Identifier | 318

Replace Patterns for a Configuration Object That Has an Identifier | 319

ix

Commit the Configuration Using NETCONF | 322

Verify the Candidate Configuration Syntax Using NETCONF | 322

Commit the Candidate Configuration Using NETCONF | 323

Commit the Candidate Configuration Only After Confirmation Using NETCONF | 325

Ephemeral Configuration Database | 328

Understanding the Ephemeral Configuration Database | 328

Unsupported Configuration Statements in the Ephemeral Configuration Database | 342

Enable and Configure Instances of the Ephemeral Configuration Database | 346

Enable Ephemeral Database Instances | 346

Configure Ephemeral Database Options | 347

Enable MSTP, RSTP, and VSTP Configuration | 348

Open Ephemeral Database Instances | 349

Configure Ephemeral Database Instances | 350

Display Ephemeral Configuration Data in the CLI | 353

Deactivate Ephemeral Database Instances | 354

Delete Ephemeral Database Instances | 355

Commit and Synchronize Ephemeral Configuration Data Using the NETCONF or Junos XML
Protocol | 357

Commit an Ephemeral Instance Overview | 358

How to Commit an Ephemeral Instance | 359

Overview of Synchronizing an Ephemeral Instance | 360

How to Configure GRES-Enabled Devices to Synchronize Ephemeral Configuration Data | 363

How to Synchronize an Ephemeral Instance on a Per-Commit Basis | 364

How to Synchronize an Ephemeral Instance on a Per-Session Basis | 365

How to Automatically Synchronize an Ephemeral Instance upon Commit | 366

How to Configure Failover Configuration Synchronization for the Ephemeral Database | 367

Managing Ephemeral Configuration Database Space | 369

Understanding Cyclic Versioning | 370

Understanding Ephemeral Database Resizing | 371

Configure Cyclic Versioning | 373

Resize an Ephemeral Database Instance | 374

Example: Configure the Ephemeral Configuration Database Using NETCONF | 376

x

Requirements | 376

Overview | 376

Configuration | 377

Verification | 380

Troubleshooting | 382

4 Request Operational and Configuration Information Using NETCONF

Request Operational Information Using NETCONF | 386

Request Operational Information Using NETCONF | 386

Specify the Output Format for Operational Information Requests in a NETCONF Session | 390

Request Configuration Information Using NETCONF | 398

Request the Committed Configuration and Device State Using NETCONF | 398

Request Configuration Data Using NETCONF | 400

Specify the Source for Configuration Information Requests Using NETCONF | 402

Specify the Scope of Configuration Information to Return in a NETCONF Response | 404

Request the Complete Configuration Using NETCONF | 405

Request a Configuration Hierarchy Level or Container Object Without an Identifier Using
NETCONF | 407

Request All Configuration Objects of a Specified Type Using NETCONF | 410

Request Identifiers for Configuration Objects of a Specified Type Using NETCONF | 413

Request A Specific Configuration Object Using NETCONF | 416

Request Specific Child Tags for a Configuration Object Using NETCONF | 419

Request Multiple Configuration Elements Simultaneously Using NETCONF | 424

Retrieve a Previous (Rollback) Configuration Using NETCONF | 425

Compare Two Previous (Rollback) Configurations Using NETCONF | 429

Retrieve the Rescue Configuration Using NETCONF | 432

Request an XML Schema for the Configuration Hierarchy Using NETCONF | 434

Request an XML Schema for the Configuration Hierarchy | 435

Create the junos.xsd File | 436

Example: Request an XML Schema | 436

xi

5 NETCONF Utilities

NETCONF Perl Client | 440

Understanding the NETCONF Perl Client and Sample Scripts | 440

Install the NETCONF Perl Client | 443

Develop NETCONF Perl Client Applications | 444

Write NETCONF Perl Client Applications | 444

Import Perl Modules and Declare Constants in NETCONF Perl Client Applications | 446

Connect to the NETCONF Server in Perl Client Applications | 447

Satisfy Protocol Prerequisites | 447

Group Requests | 448

Obtain and Record Parameters Required by the NET::Netconf::Manager Object | 448

Obtaining Application-Specific Parameters | 449

Establishing the Connection | 449

Collect Parameters Interactively in NETCONF Perl Client Applications | 450

Submit a Request to the NETCONF Server in Perl Client Applications | 454

Mapping Junos OS Commands and NETCONF Operations to Perl Methods | 454

Providing Method Options | 455

Submitting a Request | 458

Example: Request an Inventory of Hardware Components Using a NETCONF Perl Client
Application | 460

Example: Change the Configuration Using a NETCONF Perl Client Application | 461

Handling Error Conditions | 462

Locking the Configuration | 463

Reading In the Configuration Data | 463

Editing the Configuration Data | 465

Committing the Configuration | 465

Parse the NETCONF Server Response in Perl Client Applications | 466

Close the Connection to the NETCONF Server in Perl Client Applications | 467

6 YANG

YANG Overview | 470

xii

Understanding YANG on Devices Running Junos OS | 470

Understanding Junos YANG Modules | 471

YANG Modules Overview | 479

Understanding the YANG Modules That Define the Junos OS Configuration | 480

Understanding the YANG Modules for Junos Operational Commands | 484

Junos Genstate YANG Data Models | 488

Genstate YANG Data Models Overview | 488

Genstate Modules Overview | 489

How to Construct genstate Resource Paths | 496

Map Genstate Model Resource Paths to CLI Commands | 497

How to Obtain the genstate YANG Modules | 499

Understanding the Junos DDL Extensions YANG Module | 500

YANG Metadata Annotations for Junos Devices | 503

junos-configuration-metadata Module Overview | 504

Using junos-configuration-metadata Annotations in Configuration Data | 506

Add Comments in the Configuration | 507

Activate or Deactivate Configuration Statements | 509

Protect or Unprotect Configuration Statements | 513

openconfig-metadata Module Overview | 516

View Metadata Annotations in Configuration Data | 518

Use Juniper Networks YANG Modules | 519

Obtain Juniper Networks YANG Data Models | 520

Download YANG Modules from Juniper Networks | 520

Generate YANG Modules on Junos Devices | 521

Generate YANG Modules from a Remote Session | 522

Importing Juniper Networks YANG Modules | 522

Platform-Specific YANG Module Behavior | 523

Create and Use Non-Native YANG Modules | 525

Understanding the Management of Nonnative YANG Modules on Devices Running Junos OS | 525

Manage YANG Packages, Modules, and Scripts on Junos Devices | 527

Create a YANG Package and Add Modules and Scripts | 528

xiii

Update a YANG Package with New or Modified Modules and Scripts | 530

Delete a YANG Package | 531

Managing YANG Packages and Configurations During a Software Upgrade or Downgrade | 533

Backing up and Deleting the Configuration Data | 534

Restoring the YANG Packages and Configuration Data | 535

Create Translation Scripts for YANG Configuration Models | 536

Disable and Enable YANG Translation Scripts on Devices Running Junos OS | 541

Commit and Display Configuration Data for Nonnative YANG Modules | 543

Create Custom RPCs in YANG for Devices Running Junos OS | 549

Create Action Scripts for YANG RPCs on Junos Devices | 556

Action Script Boilerplate | 556

Parsing RPC Input Arguments | 558

Retrieving Operational and Configuration Data | 563

Emitting the RPC XML Output | 564

Validating and Loading Action Scripts on a Device | 566

Troubleshooting Action Scripts | 567

Use Custom YANG RPCs on Devices Running Junos OS | 569

Example: Use a Custom YANG RPC to Retrieve Operational Information from Junos Devices | 571

Requirements | 572

Overview of the RPC and Action Script | 572

YANG Module | 574

Action Script | 576

Enable the Execution of Python Scripts | 584

Load the RPC on the Device | 585

Verify the RPC | 586

Troubleshoot RPC Execution Errors | 588

Understanding Junos OS YANG Extensions for Formatting RPC Output | 590

Customize YANG RPC Output on Devices Running Junos OS | 594

blank-line | 595

capitalize | 596

colon, formal-name, and leading | 597

xiv

comma | 598

default-text | 599

explicit | 600

field and line | 600

fieldwrap and wordwrap | 601

float, header, picture, and truncate | 603

format | 606

header and header-group | 606

indent | 609

no-line-break | 610

space | 611

style | 612

template | 612

Define Different Levels of Output in Custom YANG RPCs for Junos Devices | 614

Defining Different Levels of Output in Custom YANG RPCs | 614

Example: Defining Different Levels of Output | 618

Requirements | 619

Overview of the RPC and Action Script | 619

YANG Module and Action Script | 621

Configuration | 625

Verify the RPC | 627

Display Valid Command Option and Configuration Statement Values in the CLI for Custom YANG
Modules | 630

Understanding Context-Sensitive Help for Custom YANG Modules | 630

Defining the YANG Module | 631

Creating the CLI Expansion Script | 633

Loading the YANG Package | 636

Example: Displaying Context-Sensitive Help for a Command Option | 638

Requirements | 638

Overview | 638

YANG Module and Action Scripts | 639

Configuration | 646

Verifying the Context-Sensitive Help | 648

Configure a NETCONF Proxy Telemetry Sensor in Junos | 649

xv

Create a User-Defined YANG File | 654

Load the Yang File in Junos | 658

Collect Sensor Data | 659

Installing a User-Defined YANG File | 662

Troubleshoot Telemetry Sensors | 664

7 OpenDaylight Integration

Configure OpenDaylight Integration | 667

Configure Interoperability Between MX Series Routers and OpenDaylight | 667

Configuring NETCONF on the MX Series Router | 667

Configuring NETCONF Trace Options | 668

Connecting ODL to MX Series Router | 669

8 Configuration Statements and Operational Commands

Junos CLI Reference Overview | 671

xvi

About This Guide

Use this guide to remotely manage the configuration of devices running Junos OS using the Network
Configuration Protocol (NETCONF), understand the native YANG data models on devices running Junos
OS, or create YANG data models to add custom configuration hierarchies or RPCs to devices running
Junos OS.

RELATED DOCUMENTATION

Junos XML Management Protocol Developer Guide

xvii

https://www.juniper.net/documentation/us/en/software/junos/junos-xml-protocol/index.html

1
PART

Overview

NETCONF XML Management Protocol Overview | 2

NETCONF and Junos XML Tags Overview | 10

CHAPTER 1

NETCONF XML Management Protocol Overview

IN THIS CHAPTER

Understanding the NETCONF XML Management Protocol | 2

Understanding the NETCONF XML Management Protocol

SUMMARY

Learn about the Network Configuration Protocol
(NETCONF) and the advantages of using NETCONF
to manage your network devices.

IN THIS SECTION

Benefits of NETCONF | 2

NETCONF XML Management Protocol
Overview | 3

NETCONF and the Junos XML API
Overview | 4

Advantages of Using NETCONF and the
Junos XML API | 7

Benefits of NETCONF

• NETCONF is a standards-based protocol that was developed specifically for managing network
devices.

• NETCONF uses secure, connection-oriented sessions that provide for authentication, data integrity,
and confidentiality.

• NETCONF is vendor agnostic, so you can use the same NETCONF base operations to manage
devices from different vendors.

2

NETCONF XML Management Protocol Overview

The NETCONF XML management protocol is a standards-based protocol that is specifically tailored for
communicating with and managing network devices. NETCONF uses a client/server model and remote
procedure call (RPC)-based communication. A NETCONF client establishes a connection and NETCONF
session with a NETCONF server and executes operations on the device. Junos devices integrate the
NETCONF server into the OS, and thus the server does not appear as a separate entry in process
listings.

NETCONF uses XML-based data encoding for the RPCs and configuration data. The NETCONF protocol
defines basic operations that are equivalent to CLI configuration mode commands. Client applications
use the protocol operations to display, edit, and commit configuration data (among other operations),
just as administrators use the CLI configuration mode commands to perform those operations. Within a
NETCONF session, client applications can also execute RPCs equivalent to Junos OS operational mode
commands.

Conceptually, NETCONF can be divided into 4 layers. Table 1 on page 3 describes the layers.

Table 1: NETCONF Layers

NETCONF
Layer

Description

Transport The transport layer facilitates the creation of sessions between the client and the server using
various protocols.

Messages The messages layer is a transport-independent framing mechanism for encoding RPCs and
notifications. The tags include:

• <rpc>—Encapsulates RPCs sent to the NETCONF server.

• <rpc-reply>—Encapsulates RPC replies received from the NETCONF server, which can
include data, <ok/> tags, and errors and warnings.

• <notification>—Encapsulates notification messages, which are one-way messages that the
NETCONF server sends asynchronously to NETCONF clients that subscribe to
notifications. For more information about NETCONF event notifications, see "NETCONF
Event Notifications" on page 165.

Operations The operations layer defines the protocol operations that you can perform on a network
device. The operations comprise base protocol operations, for example, <get-config>, <edit-
config>, and <commit>, as well as vendor-specific operations. A client application invokes the
operations as RPCs and provides XML-encoded parameters. See the NETCONF Protocol
Operations and Attributes section of this guide for more information about specific operations.

3

Table 1: NETCONF Layers (Continued)

NETCONF
Layer

Description

Content The content layer contains the RPC request and response payloads in XML format. This layer
defines the configuration data and the notification data.

Communication between the NETCONF server and a client application is session based. The server and
client explicitly establish a connection and session before exchanging data. As defined by the transport
layer, NETCONF can use any secure transport protocol that meets the necessary requirements. Junos
devices support NETCONF sessions over SSH, outbound SSH, TLS, and outbound HTTPS, as well as
NETCONF Call Home sessions over outbound SSH.

Each NETCONF session begins with a handshake, in which the server and client exchange <hello> tags
that enclose their supported NETCONF capabilities. Within a NETCONF session, the client and server
exchange messages, which contain RPCs, RPC replies, or notifications. The NETCONF operations layer
defines the protocol operations that a client application can use to manage a device. The content layer
describes the encoded parameters and data included in the RPCs. "NETCONF and the Junos XML API
Overview" on page 4 describes the content layer in more detail. After the client application finishes
making requests, it closes the NETCONF session and connection.

A NETCONF client sends RPCs to the NETCONF server to request information, execute operational
commands, or modify the configuration on a device. The NETCONF server processes the RPCs and
sends RPC replies to the client. Depending on the request, RPC replies return requested information or
indicate the success or failure of the requested operation.

For more information about NETCONF, see the following RFCS:

• RFC 6241, Network Configuration Protocol (NETCONF)

• RFC 6242, Using the NETCONF Protocol over Secure Shell (SSH)

NETCONF and the Junos XML API Overview

The Junos XML API is an XML representation of Junos OS configuration statements and operational
mode commands. The Junos XML API defines an XML equivalent for all statements in the Junos OS
configuration hierarchy and many of the commands that you issue in CLI operational mode. Each
operational mode command with a Junos XML counterpart maps to a request tag element and, if
necessary, a response tag element. Junos XML request tags are equivalent in function to the
corresponding operational mode commands in the CLI.

NETCONF client applications can request information, execute operational commands, or modify the
configuration on a Junos device. The client application encodes the request in NETCONF and Junos
XML API tag elements and sends it to the NETCONF server on the device. The NETCONF server directs

4

the request to the appropriate software modules, encodes the response in NETCONF and Junos XML
API tag elements, and returns the result to the client application.

When a NETCONF client modifies the Junos OS configuration, the RPC content includes Junos XML
configuration data. NETCONF clients can also send operational RPCs with the appropriate request tags
to execute operational commands or retrieve information. The server returns the response using Junos
XML API elements enclosed within the corresponding response tag element.

For example, to request information about the status of a device’s interfaces, a client application sends
the Junos XML API <get-interface-information/> request tag.

<rpc>
 <get-interface-information/>
</rpc>

The NETCONF server gathers the information from the interface process and returns it in the Junos
XML API <interface-information> response tag element.

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:junos="http://xml.juniper.net/
junos/25.2R1/junos">
<interface-information xmlns="http://xml.juniper.net/junos/25.2R1/junos-interface"
junos:style="normal">
<physical-interface>
<name>
ge-0/0/0
</name>
<admin-status junos:format="Enabled">
up
</admin-status>
...
</interface-information>
</rpc-reply>

You can determine Junos XML API content in a number of ways. The Juniper Networks XML API
Explorer enables you to browse Junos XML API elements. You can view the configuration elements and
the operational request and response tags supported in a given OS and release.

Additionally, on Junos devices, you can use the pipe (|) operator in the CLI to view Junos XML API
content. For example, to retrieve the operational request tag for a given command, issue command | display

5

https://apps.juniper.net/xmlapi/
https://apps.juniper.net/xmlapi/

xml rpc in the CLI. The following example shows that the request tag for the show interfaces command is
<get-interface-information>.

user@host> show interfaces | display xml rpc
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/25.2R1/junos">
 <rpc>
 <get-interface-information>
 </get-interface-information>
 </rpc>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

Similarly, to retrieve configuration data in XML format use the show configuration | display xml command.

user@host> show configuration system services | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/25.2R1/junos">
 <configuration junos:commit-seconds="1747272887" junos:commit-localtime="2025-05-14 18:34:47
PDT" junos:commit-user="admin">
 <system>
 <services>
 <netconf>
 <ssh>
 </ssh>
 </netconf>
 <ssh>
 <root-login>allow</root-login>
 </ssh>
 <ftp>
 </ftp>
 </services>
 </system>
 </configuration>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

You can use NETCONF and the Junos XML API to manage Junos devices. You can write client
applications to interact with the NETCONF server. You can also use NETCONF to build custom end-user

6

interfaces for configuration and information retrieval and display, such as a Web browser-based
interface.

Advantages of Using NETCONF and the Junos XML API

IN THIS SECTION

Parse Device Output | 7

Display Device Output | 8

NETCONF and the Junos XML API fully document all options for every supported Junos OS operational
request and all elements in every Junos OS configuration statement. The tag names clearly indicate the
function of an element in an operational request or configuration statement.

The combination of meaningful tag names and the structural rules in a DTD makes it easy to understand
the content and structure of an XML-tagged data set. NETCONF and Junos XML tag elements make it
straightforward for client applications to parse the device output to find and display specific information,
as described in the following sections.

Parse Device Output

The following example illustrates how the Junos XML API makes it easier to parse device output and
extract the needed information. The example compares formatted ASCII and XML-tagged output from a
device running Junos OS. The formatted ASCII output is:

Physical interface: fxp0, Enabled, Physical link is Up
 Interface index: 64, SNMP ifIndex: 1

The corresponding XML-tagged version is:

<physical-interface>
 <name>fxp0</name>
 <admin-status junos:format="Enabled">up</admin-status>
 <oper-status>up</oper-status>
 <local-index>64</local-index>
 <snmp-index>1</snmp-index>
 ...
</physical-interface>

7

When a client application needs to extract a specific value from formatted ASCII output, it must rely on
the value’s location, expressed either absolutely or with respect to labels or values in adjacent fields.
Suppose that the client application wants to extract the interface index. It can use a regular-expression
matching utility to locate specific strings, but the number of digits in the interface index is not
necessarily predictable. The client application cannot simply read a certain number of characters after
the Interface index: label. Instead, it must extract everything between the label and the subsequent label,
which is:

, SNMP ifIndex

A problem arises if the format or ordering of output changes in a later version of the Junos OS. For
example, the output might add a Logical index field following the interface index number.

Physical interface: fxp0, Enabled, Physical link is Up
 Interface index: 64, Logical index: 12, SNMP ifIndex: 1

An application that extracts the interface index number delimited by the Interface index: and SNMP ifIndex
labels now obtains an incorrect result. In this case, you must update the application to manually search
for the following label instead:

, Logical index

In contrast, the structured nature of XML-tagged output enables a client application to retrieve the
interface index by extracting everything within the opening <local-index> tag and closing </local-index>
tag. The application does not have to rely on an element’s position in the output string. As a result, the
NETCONF server can emit the child tag elements in any order within the <physical-interface> element.
Adding a new <logical-index> element does not affect an application’s ability to locate the <local-index>
element and extract its contents.

Display Device Output

XML-tagged output is also easier to transform into different display formats. For example, you might
want to display different amounts of detail about a given device component at different times. When a
device returns formatted ASCII output, you must write special routines and data structures in your
application to extract the information needed for a given detail level. In contrast, the inherent structure
of XML output is an ideal basis for a display program’s own structures. You can use the same extraction
routine for several levels of detail, simply ignoring the tag elements that you don't need when displaying
less detail.

8

RELATED DOCUMENTATION

XML and Junos OS Overview

XML Overview

9

CHAPTER 2

NETCONF and Junos XML Tags Overview

IN THIS CHAPTER

XML and Junos OS Overview | 10

XML Overview | 12

XML and NETCONF XML Management Protocol Conventions Overview | 15

Map Junos OS Commands and Command Output to Junos XML Tag Elements | 20

Map Configuration Statements to Junos XML Tag Elements | 25

Using NETCONF Configuration Response Tag Elements in NETCONF Requests and Configuration
Changes | 32

XML and Junos OS Overview

Extensible Markup Language (XML) is a standard for representing and communicating information. It is a
metalanguage for defining customized tags that are applied to a data set or document to describe the
function of individual elements and codify the hierarchical relationships between them. Junos OS
natively supports XML for the operation and configuration of devices running Junos OS.

The Junos OS command-line interface (CLI) and the Junos OS infrastructure communicate using XML.
When you issue an operational mode command in the CLI, the CLI converts the command into XML
format for processing. After processing, Junos OS returns the output in the form of an XML document,
which the CLI converts back into a readable format for display. Remote client applications also use XML-
based data encoding for operational and configuration requests on devices running Junos OS.

The Junos XML API is an XML representation of Junos OS configuration statements and operational
mode commands. It defines an XML equivalent for all statements in the Junos OS configuration
hierarchy and many of the commands that you issue in CLI operational mode. Each operational mode
command with a Junos XML counterpart maps to a request tag element and, if necessary, a response tag
element.

To display the configuration or operational mode command output as Junos XML tag elements instead
of as the default formatted ASCII, issue the command, and pipe the output to the display xml command.
Infrastructure tag elements in the response belong to the Junos XML management protocol. The tag

10

elements that describe Junos OS configuration or operational data belong to the Junos XML API, which
defines the Junos OS content that can be retrieved and manipulated by both the Junos XML
management protocol and the NETCONF XML management protocol operations. The following example
compares the text and XML output for the show chassis alarms operational mode command:

user@host> show chassis alarms
No alarms currently active

user@host> show chassis alarms | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/10.4R1/junos">
 <alarm-information xmlns="http://xml.juniper.net/junos/10.4R1/junos-alarm">
 <alarm-summary>
 <no-active-alarms/>
 </alarm-summary>
 </alarm-information>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

To display the Junos XML API representation of any operational mode command, issue the command,
and pipe the output to the display xml rpc command. The following example shows the Junos XML API
request tag for the show chassis alarms command.

user@host> show chassis alarms | display xml rpc
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/10.4R1/junos">
 <rpc>
 <get-alarm-information>
 </get-alarm-information>
 </rpc>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

As shown in the previous example, the | display xml rpc option displays the Junos XML API request tag
that is sent to Junos OS for processing whenever the command is issued. In contrast, the | display xml
option displays the actual output of the processed command in XML format.

11

When you issue the show chassis alarms operational mode command, the CLI converts the command into
the Junos XML API <get-alarm-information> request tag and sends the XML request to the Junos OS
infrastructure for processing. Junos OS processes the request and returns the <alarm-information>
response tag element to the CLI. The CLI then converts the XML output into the “No alarms currently
active” message that is displayed to the user.

Junos OS automation scripts use XML to communicate with the host device. Junos OS provides XML-
formatted input to a script. The script processes the input source tree and then returns XML-formatted
output to Junos OS. The script type determines the XML input document that is sent to the script as
well as the output document that is returned to Junos OS for processing. Commit script input consists of
an XML representation of the post-inheritance candidate configuration file. Event scripts receive an
XML document containing the description of the triggering event. All script input documents contain
information pertaining to the Junos OS environment, and some scripts receive additional script-specific
input that depends on the script type.

RELATED DOCUMENTATION

Junos XML API Explorer

XML Overview

IN THIS SECTION

Tag Elements | 13

Attributes | 14

Namespaces | 14

Document Type Definition | 15

Extensible Markup Language (XML) is a language for defining a set of markers, called tags, that are
applied to a data set or document to describe the function of individual elements and codify the
hierarchical relationships between them. XML tags look much like HTML tags, but XML is actually a
metalanguage used to define tags that best suit the kind of data being marked.

For more details about XML, see A Technical Introduction to XML at http://www.xml.com/pub/a/98/10/
guide0.html and the additional reference material at the http://www.xml.com site. The official XML

12

https://apps.juniper.net/xmlapi/
http://www.xml.com/pub/a/98/10/guide0.html
http://www.xml.com/pub/a/98/10/guide0.html
http://www.xml.com

specification from the World Wide Web Consortium (W3C), Extensible Markup Language (XML) 1.0, is
available at http://www.w3.org/TR/REC-xml.

The following sections discuss general aspects of XML.

Tag Elements

XML has three types of tags: opening tags, closing tags, and empty tags. XML tag names are enclosed in
angle brackets and are case sensitive. Items in an XML-compliant document or data set are always
enclosed in paired opening and closing tags, and the tags must be properly nested. That is, you must
close the tags in the same order in which you opened them. XML is stricter in this respect than HTML,
which sometimes uses only opening tags. The following examples show paired opening and closing tags
enclosing a value. The closing tags are indicated by the forward slash at the start of the tag name.

<interface-state>enabled</interface-state>
<input-bytes>25378</input-bytes>

The term tag element or element refers to a three-part set: opening tag, contents, and closing tag. The
content can be an alphanumeric character string as in the preceding examples, or can itself be a
container tag element, which contains other tag elements. For simplicity, the term tag is often used
interchangeably with tag element or element.

If an element is empty—has no contents—it can be represented either as paired opening and closing tags
with nothing between them, or as a single tag with a forward slash after the tag name. For example, the
notation <snmp-trap-flag/> is equivalent to <snmp-trap-flag></snmp-trap-flag>.

As the preceding examples show, angle brackets enclose the name of the element. This is an XML
convention, and the brackets are a required part of the complete element name. They are not to be
confused with the angle brackets used in the Juniper Networks documentation to indicate optional parts
of Junos OS CLI command strings.

Junos XML elements follow the XML convention that the element name indicates the kind of
information enclosed by the tags. For example, the Junos XML <interface-state> element indicates that it
contains a description of the current status of an interface on the device, whereas the <input-bytes>
element indicates that its contents specify the number of bytes received.

When discussing XML elements in text, this documentation conventionally uses just the opening tag to
represent the complete element (opening tag, contents, and closing tag). For example, the
documentation refers to the <input-bytes> tag to indicate the entire <input-bytes>number-of-bytes</input-
bytes> element.

13

http://www.w3.org/TR/REC-xml

Attributes

XML elements can contain associated properties in the form of attributes, which specify additional
information about an element. Attributes appear in the opening tag of an element and consist of an
attribute name and value pair. The attribute syntax consists of the attribute name followed by an equals
sign and then the attribute value enclosed in quotation marks. An XML element can have multiple
attributes. Multiple attributes are separated by spaces and can appear in any order.

In the following example, the configuration element has two attributes, junos:changed-seconds and
junos:changed-localtime.

<configuration junos:changed-seconds="1279908006" junos:changed-localtime="2010-07-23 11:00:06
PDT">

The value of the junos:changed-seconds attribute is "1279908006", and the value of the junos:changed-
localtime attribute is "2010-07-23 11:00:06 PDT".

Namespaces

Namespaces allow an XML document to contain the same tag, attribute, or function names for different
purposes and avoid name conflicts. For example, many namespaces may define a print function, and
each may exhibit a different functionality. To use the functionality defined in one specific namespace,
you must associate that function with the namespace that defines the desired functionality.

To refer to a tag, attribute, or function from a defined namespace, you must first provide the namespace
Uniform Resource Identifier (URI) in your style sheet declaration . You then qualify a tag, attribute, or
function from the namespace with the URI. Since a URI is often lengthy, generally a shorter prefix is
mapped to the URI.

In the following example the jcs prefix is mapped to the namespace identified by the URI http://
xml.juniper.net/junos/commit-scripts/1.0, which defines extension functions used in commit, op, event, and
SNMP scripts. The jcs prefix is then prepended to the output function, which is defined in that
namespace.

<?xml version="1.0"?>
 <xsl:stylesheet version="1.0" xmlns:jcs="http://xml.juniper.net/junos/commit-scripts/1.0">
 ...
 <xsl:value-of select="jcs:output('The VPN is up.')"/>
 </xsl: stylesheet>

During processing, the prefix is expanded into the URI reference. Although there may be multiple
namespaces that define an output element or function, the use of jcs:output explicitly defines which output

14

function is used. You can choose any prefix to refer to the contents in a namespace, but there must be
an existing declaration in the XML document that binds the prefix to the associated URI.

Document Type Definition

An XML-tagged document or data set is structured because a set of rules specifies the ordering and
interrelationships of the items in it. A file called a document type definition, or DTD, defines these rules.
The rules define the contexts in which each tagged item can—and in some cases must—occur. A DTD:

• Lists every element that can appear in the document or data set

• Defines the parent-child relationships between the tags

• Specifies other tag characteristics

The same DTD can apply to many XML documents or data sets.

RELATED DOCUMENTATION

Junos XML Management Protocol and Junos XML API Overview

XML and Junos OS Overview

XML and NETCONF XML Management Protocol Conventions Overview

IN THIS SECTION

Request and Response Tag Elements | 16

Child Tag Elements of a Request Tag Element | 17

Child Tag Elements of a Response Tag Element | 17

Spaces, Newline Characters, and Other White Space | 18

XML Comments | 18

Predefined Entity References | 18

A client application must comply with XML and NETCONF XML management protocol conventions.
Each request from the client application must be a well-formed XML document; that is, it must obey the
structural rules defined in the NETCONF and Junos XML document type definitions (DTD)s for the kind

15

of information encoded in the request. The client application must emit tag elements in the required
order and only in the legal contexts. Compliant applications are easier to maintain in the event of
changes to the Junos OS or NETCONF protocol.

Similarly, each response from the NETCONF server constitutes a well-formed XML document (the
NETCONF server obeys XML and NETCONF conventions).

The following sections describe NETCONF XML management protocol conventions:

Request and Response Tag Elements

A request tag element is one generated by a client application to request information about a device’s
current status or configuration, or to change the configuration. A request tag element corresponds to a
CLI operational or configuration command. It can occur only within an <rpc> tag.

A response tag element represents the NETCONF server’s reply to a request tag element and occurs
only within an <rpc-reply> tag.

The following example represents an exchange in which a client application emits the <get-interface-
information> request tag element with the <extensive/> flag and the NETCONF server returns the
<interface-information> response tag element.

Client Application

<rpc>
 <get-interface-information>
 <extensive/>
 </get-interface-information>
</rpc>
]]>]]>

NETCONF Server

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <interface-information xmlns="URL">
 <!-- children of <interface-information> -->
 </interface-information>
</rpc-reply>
]]>]]>

16

NOTE: This example, like all others in this guide, shows each tag element on a separate
line, in the tag streams emitted by both the client application and NETCONF server. In
practice, a client application does not need to include newline characters between tag
elements, because the server automatically discards such white space. For further
discussion, see "Spaces, Newline Characters, and Other White Space" on page 18.

Child Tag Elements of a Request Tag Element

Some request tag elements contain child tag elements. For configuration requests, each child tag
element represents a configuration element (hierarchy level or configuration object). For operational
requests, each child tag element represents one of the options you provide on the command line when
issuing the equivalent CLI command.

Some requests have mandatory child tag elements. To make a request successfully, a client application
must emit the mandatory tag elements within the request tag element’s opening and closing tags. If any
of the children are themselves container tag elements, the opening tag for each must occur before any
of the tag elements it contains, and the closing tag must occur before the opening tag for another tag
element at its hierarchy level.

In most cases, the client application can emit children that occur at the same level within a container tag
element in any order. The important exception is a configuration element that has an identifier tag
element, which distinguishes the configuration element from other elements of its type. The identifier
tag element must be the first child tag element in the container tag element. Most frequently, the
identifier tag element specifies the name of the configuration element and is called <name>. For more
information, see "Mapping for Objects That Have an Identifier" on page 26.

Child Tag Elements of a Response Tag Element

The child tag elements of a response tag element represent the individual data items returned by the
NETCONF server for a particular request. The children can be either individual tag elements (empty tags
or tag element triples) or container tag elements that enclose their own child tag elements. For some
container tag elements, the NETCONF server returns the children in alphabetical order. For other
elements, the children appear in the order in which they were created in the configuration.

The set of child tag elements that can occur in a response or within a container tag element is subject to
change in later releases of the Junos XML API. Client applications must not rely on the presence or
absence of a particular tag element in the NETCONF server’s output, nor on the ordering of child tag
elements within a response tag element. For the most robust operation, include logic in the client
application that handles the absence of expected tag elements or the presence of unexpected ones as
gracefully as possible.

17

Spaces, Newline Characters, and Other White Space

As dictated by the XML specification, the NETCONF server ignores white space (spaces, tabs, newline
characters, and other characters that represent white space) that occurs between tag elements in the
tag stream generated by a client application. Client applications can, but do not need to, include white
space between tag elements. However, they must not insert white space within an opening or closing
tag. If they include white space in the contents of a tag element that they are submitting as a change to
the candidate configuration, the NETCONF server preserves the white space in the configuration
database.

In its responses, the NETCONF server includes white space between tag elements to enhance the
readability of responses that are saved to a file: it uses newline characters to put each tag element on its
own line, and spaces to indent child tag elements to the right compared to their parents. A client
application can ignore or discard the white space, particularly if it does not store responses for later
review by human users. However, it must not depend on the presence or absence of white space in any
particular location when parsing the tag stream.

For more information about white space in XML documents, see the XML specification from the World
Wide Web Consortium (W3C), Extensible Markup Language (XML) 1.0, at http://www.w3.org/TR/REC-
xml/ .

XML Comments

Client applications and the NETCONF server can insert XML comments at any point between tag
elements in the tag stream they generate, but not within tag elements. Client applications must handle
comments in output from the NETCONF server gracefully but must not depend on their content. Client
applications also cannot use comments to convey information to the NETCONF server, because the
server automatically discards any comments it receives.

XML comments are enclosed within the strings <!-- and -->, and cannot contain the string -- (two
hyphens). For more details about comments, see the XML specification at http://www.w3.org/TR/REC-
xml/ .

The following is an example of an XML comment:

<!-- This is a comment. Please ignore it. -->

Predefined Entity References

By XML convention, there are two contexts in which certain characters cannot appear in their regular
form:

• In the string that appears between opening and closing tags (the contents of the tag element)

18

http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/

• In the string value assigned to an attribute of an opening tag

When including a disallowed character in either context, client applications must substitute the
equivalent predefined entity reference, which is a string of characters that represents the disallowed
character. Because the NETCONF server uses the same predefined entity references in its response tag
elements, the client application must be able to convert them to actual characters when processing
response tag elements.

Table 2 on page 19 summarizes the mapping between disallowed characters and predefined entity
references for strings that appear between the opening and closing tags of a tag element.

Table 2: Predefined Entity Reference Substitutions for Tag Content Values

Disallowed Character Predefined Entity Reference

& (ampersand) &

> (greater-than sign) >

< (less-than sign) <

Table 3 on page 19 summarizes the mapping between disallowed characters and predefined entity
references for attribute values.

Table 3: Predefined Entity Reference Substitutions for Attribute Values

Disallowed Character Predefined Entity Reference

& (ampersand) &

' (apostrophe) '

> (greater-than sign) >

< (less-than sign) <

" (quotation mark) "

19

As an example, suppose that the following string is the value contained by the <condition> tag element:

if (a<b && b>c) return "Peer’s not responding"

The <condition> tag element looks like this (it appears on two lines for legibility only):

<condition>if (a<b && b>c) return "Peer’s not \
 responding"</condition>

Similarly, if the value for the <example> tag element’s heading attribute is Peer’s "age" <> 40, the opening tag
looks like this:

<example heading="Peer's "age" <> 40">

Map Junos OS Commands and Command Output to Junos XML Tag
Elements

IN THIS SECTION

Mapping Command Output to Junos XML Elements | 21

Mapping Commands to Junos XML Request Tag Elements | 22

Mapping for Command Options with Variable Values | 23

Mapping for Fixed-Form Command Options | 24

The Junos XML API is an XML representation of Junos OS configuration statements and operational
mode commands. It defines an XML equivalent for all statements in the Junos OS configuration
hierarchy and many of the commands that you issue in CLI operational mode. Each operational mode
command with a Junos XML counterpart maps to a request tag element and, if necessary, a response tag
element.

Request tag elements are used in remote procedure calls (RPCs) within NETCONF and Junos XML
protocol sessions to request information from a device running Junos OS or a device running Junos OS
Evolved. The server returns the response using Junos XML tag elements enclosed within the response

20

tag element. For example, the show interfaces command maps to the <get-interface-information> request
tag, and the server returns the <interface-information> response tag.

The following sections outline how to map commands, command options, and command output to
Junos XML tag elements.

Mapping Command Output to Junos XML Elements

On the Junos OS CLI, to display command output as Junos XML elements instead of as the default
formatted ASCII text, include the | display xml option after the command. The XML elements that
describe the Junos OS configuration or operational data belong to the Junos XML API. The Junos XML
API defines the Junos OS content that can be retrieved and manipulated by NETCONF and Junos XML
management protocol operations.

The following example shows the output from the show chassis hardware command. The output is identical
to the server’s response for the <get-chassis-inventory> RPC request.

user@host> show chassis hardware | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/25.2R1.9/junos">
 <chassis-inventory xmlns="http://xml.juniper.net/junos/25.2R0/junos-chassis">
 <chassis junos:style="inventory">
 <name>Chassis</name>
 <serial-number>JN1085AA1AFA</serial-number>
 <description>MX960</description>
 <chassis-module>
 <name>Midplane</name>
 <version>REV 02</version>
 <part-number>710-013698</part-number>
 <serial-number>AA0001</serial-number>
 <description>MX960 Backplane</description>
 <model-number>CHAS-BP-MX960-S</model-number>
 </chassis-module>
 <chassis-module>
 <name>FPM Board</name>
 <version>REV 02</version>
 <part-number>710-014974</part-number>
 <serial-number>AA0002</serial-number>
 <description>Front Panel Display</description>
 <model-number>CRAFT-MX960-S</model-number>
 </chassis-module>
 <chassis-module>
 <name>PDM</name>
 <version>Rev 02</version>

21

 <part-number>740-013110</part-number>
 <serial-number>AAA0000001A</serial-number>
 <description>Power Distribution Module</description>
 </chassis-module>
 <!-- other child tags of <chassis> -->
 </chassis>
 </chassis-inventory>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

Mapping Commands to Junos XML Request Tag Elements

You can find information about the available Junos OS or Junos OS Evolved operational mode
commands and their equivalent Junos XML RPC request tags using the following methods:

• Appending | display xml rpc to an operational command in the CLI.

• Using the Junos XML API Explorer - Operational Tags application to search for a command or request
tag in a given release.

You can use the Junos XML API Explorer tool to: verify a command, map the command to its equivalent
Junos XML RPC request tag and child tags, and view the expected response tag for various Junos OS or
Junos OS Evolved releases.

In the Junos OS CLI, you can display the Junos XML request tag elements for any operational mode
command that has a Junos XML counterpart. To display the request tags for a given command, enter the
command and pipe it to the display xml rpc command.

The following example displays the RPC tags for the show route command:

user@host> show route | display xml rpc
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/25.2R1.9/junos">
 <rpc>
 <get-route-information>
 </get-route-information>
 </rpc>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

22

https://apps.juniper.net/xmlapi/operational/

NOTE: Starting in Junos OS Release 20.3R1, the names of some Junos XML RPC request
tags have been updated to ensure consistency across the Junos XML API. Junos devices
still accept the old request tag names for backwards compatibility, but we recommend
using the new names going forward. To verify the Junos XML RPC request tag for an
operational mode command in a given Junos OS release, see the Junos XML API
Explorer - Operational Tags tool.

Mapping for Command Options with Variable Values

Many CLI commands have options that identify the object that the command affects or reports on,
distinguishing the object from other objects of the same type. In some cases, the CLI does not precede
the identifier with a fixed-form keyword, but XML convention requires that the Junos XML API define a
tag element for every option. To find the names for each identifier (and any other child tag elements) for
an operational request tag element, consult the tag element’s entry in the appropriate DTD.
Alternatively, issue the command and command option in the CLI and append the | display xml rpc
option.

Table 4 on page 23 shows the Junos XML tag elements for two operational commands that have
variable-form options. In the show interfaces command, ge-0/0/1 is the name of the interface. In the show
bgp neighbor command, 10.168.1.222 is the IP address for the BGP peer of interest.

Table 4: Commands with Variable-Form Options

Command Junos XML Tags

show interfaces ge-0/0/1
<rpc>
 <get-interface-information>
 <interface-name>ge-0/0/1</interface-name>
 </get-interface-information>
</rpc>

show bgp neighbor 10.168.1.122
<rpc>
 <get-bgp-neighbor-information>
 <neighbor-address>10.168.1.122</neighbor-address>
 </get-bgp-neighbor-information>
</rpc>

23

https://apps.juniper.net/xmlapi/operational/
https://apps.juniper.net/xmlapi/operational/

You can display the Junos XML RPC tags for a command and its options in the CLI by executing the
command and command option and appending | display xml rpc.

user@host> show interfaces ge-0/0/1 | display xml rpc
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/25.2R1.9/junos">
 <rpc>
 <get-interface-information>
 <interface-name>ge-0/0/1</interface-name>
 </get-interface-information>
 </rpc>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

Mapping for Fixed-Form Command Options

Some CLI commands include options that have a fixed form, such as the brief and detail options, which
specify the amount of detail to include in the output. The Junos XML API usually maps such an option to
an empty tag whose name matches the option name.

The following example shows the Junos XML tag elements for the show isis adjacency command, which
has a fixed-form option called detail:

To view the tags in the CLI:

user@host> show isis adjacency detail | display xml rpc
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/25.2R1.9/junos">
 <rpc>
 <get-isis-adjacency-information>
 <detail/>
 </get-isis-adjacency-information>
 </rpc>
 <cli>
 <banner></banner>

24

 </cli>
</rpc-reply>

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

20.3R1 Starting in Junos OS Release 20.3R1, the names of some Junos XML RPC request tags have been
updated to ensure consistency across the Junos XML API.

Map Configuration Statements to Junos XML Tag Elements

IN THIS SECTION

Mapping for Hierarchy Levels and Container Statements | 26

Mapping for Objects That Have an Identifier | 26

Mapping for Single-Value and Fixed-Form Leaf Statements | 28

Mapping for Leaf Statements with Multiple Values | 29

Mapping for Multiple Options on One or More Lines | 30

Mapping for Comments About Configuration Statements | 31

The Junos XML API defines a tag element for every container and leaf statement in the configuration
hierarchy. At the top levels of the configuration hierarchy, there is almost always a one-to-one mapping
between tag elements and statements, and most tag names match the configuration statement name. At
deeper levels of the hierarchy, the mapping is sometimes less direct, because some CLI notational
conventions do not map directly to XML-compliant tagging syntax.

NOTE: For some configuration statements, the notation used when you type the
statement at the CLI configuration-mode prompt differs from the notation used in a
configuration file. The same Junos XML tag element maps to both notational styles.

The following sections describe the mapping between configuration statements and Junos XML tag
elements:

25

https://apps.juniper.net/feature-explorer/

Mapping for Hierarchy Levels and Container Statements

The <configuration> element is the top-level Junos XML container element for configuration statements. It
corresponds to the [edit] hierarchy level in CLI configuration mode. Most statements at the next few
levels of the configuration hierarchy are container statements. The Junos XML container tag element
that corresponds to a container statement almost always has the same name as the statement.

The following example shows the Junos XML tag elements for two statements at the top level of the
configuration hierarchy. Note that a closing brace in a CLI configuration statement corresponds to a
closing Junos XML tag.

Mapping for Objects That Have an Identifier

At some hierarchy levels, the same kind of configuration object can occur multiple times. Each instance
of the object has a unique identifier to distinguish it from the other instances. In the CLI notation, the
parent statement for such an object consists of a keyword and identifier of the following form:

keyword identifier {
… configuration statements for individual characteristics …
}

keyword is a fixed string that indicates the type of object being defined, and identifier is the unique name
for this instance of the type. In the Junos XML API, the tag element corresponding to the keyword is a
container tag element for child tag elements that represent the object’s characteristics. The container
tag element’s name generally matches the keyword string.

The Junos XML API differs from the CLI in its treatment of the identifier. Because the Junos XML API
does not allow container tag elements to contain both other tag elements and untagged character data
such as an identifier name, the identifier must be enclosed in a tag element of its own. Most frequently,

26

identifier tag elements for configuration objects are called <name>. Some objects have multiple identifiers,
which usually have names other than <name>. To verify the name of each identifier tag element for a
configuration object, consult the entry for the object in the Junos XML API Configuration Developer
Reference.

NOTE: The Junos OS reserves the prefix junos- for the identifiers of configuration groups
defined within the junos-defaults configuration group. User-defined identifiers cannot
start with the string junos-.

Identifier tag elements also constitute an exception to the general XML convention that tag elements at
the same level of hierarchy can appear in any order; the identifier tag element always occurs first within
the container tag element.

The configuration for most objects that have identifiers includes additional leaf statements, which
represent other characteristics of the object. For example, each BGP group configured at the [edit
protocols bgp group] hierarchy level has an associated name (the identifier) and can have leaf statements
for other characteristics such as type, peer autonomous system (AS) number, and neighbor address. For
information about the Junos XML mapping for leaf statements, see "Mapping for Single-Value and
Fixed-Form Leaf Statements" on page 28, "Mapping for Leaf Statements with Multiple Values" on page
29, and "Mapping for Multiple Options on One or More Lines" on page 30.

The following example shows the Junos XML tag elements for configuration statements that define two
BGP groups called <name> and <name>. Notice that the Junos XML <name> element that encloses the
identifier of each group (and the identifier of the neighbor within a group) does not have a counterpart
in the CLI statements.

27

Mapping for Single-Value and Fixed-Form Leaf Statements

A leaf statement is a CLI configuration statement that does not contain any other statements. Most leaf
statements define a value for one characteristic of a configuration object and have the following form:

keyword value;

In general, the name of the Junos XML tag element corresponding to a leaf statement is the same as the
keyword string. The string between the opening and closing Junos XML tags is the same as the value string.

The following example shows the Junos XML tag elements for two leaf statements that have a keyword
and a value: the message statement at the [edit system login] hierarchy level and the preference statement at
the [edit protocols ospf] hierarchy level.

28

Some leaf statements consist of a fixed-form keyword only, without an associated variable-form value.
The Junos XML API represents such statements with an empty tag. The following example shows the
Junos XML tag elements for the disable statement at the [edit forwarding-options sampling] hierarchy level.

Mapping for Leaf Statements with Multiple Values

Some Junos OS leaf statements accept multiple values, which can be either user-defined or drawn from
a set of predefined values. CLI notation uses square brackets to enclose all values in a single statement,
as in the following:

statement [value1 value2 value3 ...];

The Junos XML API instead encloses each value in its own tag element. The following example shows
the Junos XML tag elements for a CLI statement with multiple user-defined values. The import statement
imports two routing policies defined elsewhere in the configuration.

29

The following example shows the Junos XML tag elements for a CLI statement with multiple predefined
values. The permissions statement grants three predefined permissions to members of the user-accounts
login class.

Mapping for Multiple Options on One or More Lines

For some Junos OS configuration objects, the standard CLI syntax places multiple options on a single
line, usually for greater legibility and conciseness. In most such cases, the first option identifies the
object and does not have a keyword, but later options are paired keywords and values. The Junos XML
API encloses each option in its own tag element. Because the first option has no keyword in the CLI
statement, the Junos XML API assigns a name to its tag element.

The following example shows the Junos XML tag elements for a CLI configuration statement with
multiple options on a single line. The Junos XML API defines a tag element for both options and assigns
a name to the tag element for the first option (10.0.0.1), which has no CLI keyword.

30

The syntax for some configuration objects includes more than one multioption line. Again, the Junos
XML API defines a separate tag element for each option. The following example shows Junos XML tag
elements for a traceoptions statement at the [edit protocols isis] hierarchy level. The statement has three
child statements, each with multiple options.

Mapping for Comments About Configuration Statements

A Junos OS configuration can include comments that describe statements in the configuration. In CLI
configuration mode, the annotate command defines the comment to associate with a statement at the
current hierarchy level. You can also use a text editor to insert comments directly into a configuration
file. For more information, see the CLI User Guide.

The Junos XML API encloses comments about configuration statements in the <junos:comment> element.
(These comments are different from the comments that are enclosed in the strings <!-- and --> and are
automatically discarded by the protocol server.)

In the Junos XML API, the <junos:comment> element immediately precedes the element for the associated
configuration statement. (If the tag element for the associated statement is omitted, the comment is not

31

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-cli/junos-cli.html

recorded in the configuration database.) The comment text string can include one of the two delimiters
that indicate a comment in the configuration database: either the # character before the comment or the
paired strings /* before the comment and */ after it. If the client application does not include the
delimiter, the protocol server adds the appropriate one when it adds the comment to the configuration.
The protocol server also preserves any white space included in the comment.

The following example shows the Junos XML tag elements that associate comments with two
statements in a sample configuration statement. The first comment illustrates how including newline
characters in the contents of the <junos:comment> element (/* New backbone area */) results in the comment
appearing on its own line in the configuration file. There are no newline characters in the contents of the
second <junos:comment> element, so in the configuration file the comment directly follows the associated
statement on the same line.

Using NETCONF Configuration Response Tag Elements in NETCONF
Requests and Configuration Changes

The NETCONF server encloses its response to each configuration request in <rpc-reply> and
<configuration> tag elements. Enclosing each configuration response within a <configuration> tag element
contrasts with how the server encloses each different operational response in a tag element named for
that type of response—for example, the <chassis-inventory> tag element for chassis information or the
<interface-information> tag element for interface information.

The Junos XML tag elements within the <configuration> tag element represent configuration hierarchy
levels, configuration objects, and object characteristics, always ordered from higher to deeper levels of
the hierarchy. When a client application loads a configuration, it can emit the same tag elements in the
same order as the NETCONF server uses when returning configuration information. This consistent

32

representation makes handling configuration information more straightforward. For instance, the client
application can request the current configuration, store the NETCONF server’s response in a local
memory buffer, make changes or apply transformations to the buffered data, and submit the altered
configuration as a change to the candidate configuration. Because the altered configuration is based on
the NETCONF server’s response, it is certain to be syntactically correct.

Similarly, when a client application requests information about a configuration element (hierarchy level
or configuration object), it uses the same tag elements that the NETCONF server will return in response.
To represent the element, the client application sends a complete stream of tag elements from the top of
the configuration hierarchy (represented by the <configuration> tag element) down to the requested
element. The innermost tag element, which represents the level or object, is either empty or includes
the identifier tag element only. The NETCONF server’s response includes the same stream of parent tag
elements, but the tag element for the requested configuration element contains all the tag elements that
represent the element’s characteristics or child levels. For more information, see "Request Configuration
Data Using NETCONF" on page 400.

The tag streams emitted by the NETCONF server and by a client application can differ in the use of
white space, as described in "XML and NETCONF XML Management Protocol Conventions Overview"
on page 15.

RELATED DOCUMENTATION

XML and NETCONF XML Management Protocol Conventions Overview | 15

Map Configuration Statements to Junos XML Tag Elements | 25

Request Configuration Data Using NETCONF | 400

33

2
PART

Manage NETCONF Sessions

NETCONF Session Overview | 35

Manage NETCONF Sessions | 41

NETCONF Tracing Operations | 175

NETCONF Protocol Operations and Attributes | 183

NETCONF Request and Response Tags | 207

Junos XML Protocol Elements Supported in NETCONF Sessions | 219

Junos XML Protocol Element Attributes Supported in NETCONF Sessions |
 266

CHAPTER 3

NETCONF Session Overview

IN THIS CHAPTER

NETCONF Session Overview | 35

Understanding the Client Application’s Role in a NETCONF Session | 36

Generate Well-Formed XML Documents | 37

Understanding the Request Procedure in a NETCONF Session | 39

NETCONF Session Overview

Communication between the NETCONF server and a client application is session based. The server and
client explicitly establish a connection and session before exchanging data and close the session and
connection when they are finished.

The streams of NETCONF and Junos XML tag elements emitted by the NETCONF server and the client
application must each constitute well-formed XML by obeying the structural rules defined in the
document type definition (DTD) for the kind of information they are exchanging. The client application
must emit tag elements in the required order and only in the allowed contexts.

Client applications can access the NETCONF server by using the SSH protocol and standard SSH
authentication mechanisms; by using the TLS protocol, which uses mutual X.509 certificate-based
authentication; or by using outbound HTTPS, which uses one-way X.509 certificate based
authentication. After authentication, the NETCONF server uses the configured or derived Junos OS
username and class to determine whether a client application is authorized to make each request.

The following list outlines the basic structure of a NETCONF session:

1. The client application establishes a connection to the NETCONF server and opens the NETCONF
session.

2. The NETCONF server and client application exchange initialization information, which is used to
determine if they are using compatible versions of the Junos OS and the NETCONF XML
management protocol.

3. The client application sends one or more requests to the NETCONF server and parses its responses.

35

4. The client application closes the NETCONF session and the connection to the NETCONF server.

For an example of a complete NETCONF session, see "Sample NETCONF Session" on page 136.

RELATED DOCUMENTATION

Generate Well-Formed XML Documents | 37

Understanding the Client Application’s Role in a NETCONF Session

To create a NETCONF session and communicate with the NETCONF server, a client application
performs the following procedures, which are described in the indicated sections:

1. Satisfies the prerequisites for the given connection protocol, as described in:

• "Establish an SSH Connection for a NETCONF Session" on page 41

• "NETCONF Sessions over Transport Layer Security (TLS)" on page 51

• "NETCONF and Shell Sessions over Enhanced Outbound HTTPS" on page 68

2. Establishes a connection to the NETCONF server.

• For NETCONF sessions over SSH, see "Connect to the NETCONF Server Using SSH" on page
117.

• For NETCONF sessions over TLS, see "How to Establish a NETCONF Session over TLS" on page
56.

• For NETCONF sessions over outbound HTTPS, see "How to Establish NETCONF and Shell
Sessions over Enhanced Outbound HTTPS" on page 71.

3. Opens a NETCONF session, as described in "Start a NETCONF Session" on page 118.

4. Optionally locks the candidate configuration or opens an instance of the ephemeral configuration
database.

Locking the configuration prevents other users or applications from changing it at the same time. For
more information, see "Lock and Unlock the Candidate Configuration" on page 132.

For information about the ephemeral configuration database, see "Understanding the Ephemeral
Configuration Database" on page 328 and "Enable and Configure Instances of the Ephemeral
Configuration Database" on page 346.

36

5. Requests operational or configuration information, or changes configuration information, as
described in:

• "Request Operational Information Using NETCONF" on page 386

• "Request Configuration Data Using NETCONF" on page 400

• "Edit the Configuration Using NETCONF" on page 277

6. (Optional) Verifies the syntactic correctness of the candidate configuration before attempting to
commit it, as described in "Verify the Candidate Configuration Syntax Using NETCONF" on page 322.

7. Commits changes made to the candidate configuration or to an open instance of the ephemeral
configuration database, as described in

• "Commit the Candidate Configuration Using NETCONF" on page 323

• "Commit the Candidate Configuration Only After Confirmation Using NETCONF" on page 325

• "Commit and Synchronize Ephemeral Configuration Data Using the NETCONF or Junos XML
Protocol" on page 357

8. Unlocks the candidate configuration if it is locked or closes an open instance of the ephemeral
configuration database.

Other users and applications cannot change the candidate configuration while it remains locked. For
more information, see "Lock and Unlock the Candidate Configuration" on page 132.

9. Ends the NETCONF session and closes the connection to the device, as described in "End a
NETCONF Session and Close the Connection" on page 136.

Generate Well-Formed XML Documents

Each set of NETCONF and Junos XML tag elements emitted by the NETCONF server and a client
application within a <hello>, <rpc>, or <rpc-reply> tag element must constitute a well-formed XML
document. That is, it must obey the structural rules defined in the document type definition (DTD) for
the kind of information being sent. The client application must emit tag elements in the required order
and only in the allowed contexts.

NETCONF sessions use a framing mechanism to separate the messages that the NETCONF server and
client send within the session. The NETCONF server and client must emit messages using the framing
mechanism appropriate for that session. Junos devices support the following framing mechanisms:

• End-of-document character sequence (]]>]]>)—Message separator defined in RFC 4742 Using the
NETCONF Configuration Protocol over Secure SHell (SSH)

37

• Chunked framing—Framing mechanism defined in RFC 6242, Using the NETCONF Protocol over
Secure Shell (SSH), which encodes all NETCONF messages with chunked framing.

You can configure supported Junos devices to comply with RFC 6242 by configuring the rfc-compliant
and version-1.1 statements at the [edit system services netconf] hierarchy level. When you enable RFC
6242 compliance and both peers advertise the :base:1.1 capability, the NETCONF session uses the
chunked framing mechanism for the remainder of the session. For more information, see "Configure
RFC-Compliant NETCONF Sessions" on page 143.

If the NETCONF session does not use the chunked framing mechanism, the NETCONF server and client
applications comply with RFC 4742. In particular, the server and applications send the end-of-document
character sequence]]>]]> after each XML document. In practice, the client application sends the
sequence after the closing </hello> tag and each closing </rpc> tag, and the NETCONF server sends it
after the closing </hello> tag and each closing </rpc-reply> tag.

The following example demonstrates the general structure of the XML document and the]]>]]>
character sequence in a NETCONF session:

<!-- generated by the client application -->
<hello | rpc>
 <!-- contents of top-level tag element -->
</hello | /rpc>
]]>]]>

<!-- generated by the NETCONF server -->
<hello | rpc-reply attributes>
 <!-- contents of top-level tag element -->
</hello | /rpc-reply>
]]>]]>

When the NETCONF session uses chunked framing, the server and client encode all NETCONF
messages as chunked following the Augmented Backus-Naur Form (ABNF) rule Chunked-Message. The
following example uses chunked framing:

<!-- generated by the client application -->
\n#140\n
<?xml version="1.0" encoding="UTF-8"?>\n
<rpc message-id="106"\n
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">\n
 <close-session/>\n
</rpc>
\n##\n

38

<!-- generated by the NETCONF server -->
\n#139\n
<?xml version="1.0" encoding="UTF-8"?>\n
<rpc-reply id="106"\n
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">\n
 <ok/>\n
</rpc-reply>
\n##\n

Understanding the Request Procedure in a NETCONF Session

You can use the NETCONF XML management protocol and Junos XML API to request information
about the status and the current configuration of devices running Junos OS or device running Junos OS
Evolved. The tags for operational requests are defined in the Junos XML API and correspond to Junos
OS command-line interface (CLI) operational commands. There is a request tag element for many
commands in the CLI show family of commands.

The tag element for configuration requests is the NETCONF <get-config> tag element. It corresponds to
the CLI configuration mode show command. The Junos XML tag elements that make up the content of
both the client application’s requests and the NETCONF server’s responses correspond to CLI
configuration statements, which are described in the Junos OS configuration guides.

In addition to information about the current configuration, client applications can request other
configuration-related information, including information about previously committed (rollback)
configurations, information about the rescue configuration, or an XML schema representation of the
configuration hierarchy.

To request information from the NETCONF server, a client application performs the procedures
described in the indicated sections:

1. Establishes a connection to the NETCONF server on the routing, switching, or security platform.

2. Opens a NETCONF session.

3. Optionally locks the candidate configuration or opens an instance of the ephemeral configuration
database.

Locking the configuration prevents other users or applications from changing it at the same time. For
more information, see "Lock and Unlock the Candidate Configuration" on page 132.

39

For information about the ephemeral configuration database, see "Understanding the Ephemeral
Configuration Database" on page 328 and "Enable and Configure Instances of the Ephemeral
Configuration Database" on page 346.

4. Makes any number of requests one at a time, freely intermingling operational and configuration
requests. See "Request Operational Information Using NETCONF" on page 386 and "Request
Configuration Data Using NETCONF" on page 400. The application can also intermix requests with
configuration changes.

5. Accepts the tag stream emitted by the NETCONF server in response to each request and extracts its
content, as described in "Parse the NETCONF Server Response" on page 127.

6. Unlocks the candidate configuration, if it is locked, or closes an open instance of the ephemeral
configuration database.

Other users and applications cannot change the candidate configuration while it remains locked. For
more information, see "Lock and Unlock the Candidate Configuration" on page 132

7. Ends the NETCONF session and closes the connection to the device, as described in "End a
NETCONF Session and Close the Connection" on page 136.

40

CHAPTER 4

Manage NETCONF Sessions

IN THIS CHAPTER

Establish an SSH Connection for a NETCONF Session | 41

NETCONF Sessions over Transport Layer Security (TLS) | 51

NETCONF and Shell Sessions over Enhanced Outbound HTTPS | 68

NETCONF Sessions over Outbound HTTPS | 84

NETCONF Call Home Sessions | 98

NETCONF Sessions | 116

Sample NETCONF Session | 136

How Character Encoding Works on Juniper Networks Devices | 142

Configure RFC-Compliant NETCONF Sessions | 143

NETCONF Monitoring | 153

NETCONF Event Notifications | 165

Establish an SSH Connection for a NETCONF Session

IN THIS SECTION

Understanding NETCONF Sessions over SSH | 42

Common Prerequisites for NETCONF Sessions over SSH or Outbound SSH | 42

Prerequisites for Establishing an SSH Connection for NETCONF Sessions | 45

Prerequisites for Establishing an Outbound SSH Connection for NETCONF Sessions | 48

41

Understanding NETCONF Sessions over SSH

You can use the SSH protocol to establish connections between a configuration management server
(CMS) and a Junos device. You use a configuration management server to manage the Junos device
remotely.

You can use the following options to establish an SSH connection between the configuration
management server and the Junos device.

• SSH—The configuration management server initiates an SSH session with the Junos device.

• Outbound SSH—The Junos device initiates, establishes, and maintains an SSH connection with a
predefined set of configuration management servers. Use this option when the configuration
management server cannot initiate an SSH connection because of network restrictions (such as a
firewall).

NOTE: Junos OS includes a customized implementation of OpenSSH for device
management. Security fixes are backported as needed, independent of the OpenSSH
version numbers. The version displayed in CLI output (for example, show version) might
not reflect all applied patches. Always refer to Juniper Security Advisories (JSAs) for
vulnerability impact assessments.

Common Prerequisites for NETCONF Sessions over SSH or Outbound SSH

IN THIS SECTION

Install SSH Software on the Configuration Management Server | 42

Enable NETCONF Service over SSH | 43

For NETCONF sessions that use either SSH or outbound SSH, you must install SSH software on the
configuration management server and enable the NETCONF service on the Junos device. See the
following sections for detailed instructions:

Install SSH Software on the Configuration Management Server

For SSH connections, the configuration management server (CMS) handles the SSH connection with the
Junos device. For outbound SSH connections, the Junos device establishes the SSH connection to the
configuration management server, and then the configuration management server takes control of the
SSH session.

42

To establish an SSH or outbound SSH connection with a device, the configuration management server
must have SSH software installed locally. For information about obtaining and installing SSH software,
see:

• http://www.ssh.com

• http://www.openssh.com

Enable NETCONF Service over SSH

To establish NETCONF sessions on a Junos device, you must enable the NETCONF service. You can
configure the NETCONF server to accept NETCONF sessions on the following ports:

• Default NETCONF port (830) or a user-defined port

• Default SSH port (22)

We recommend that you use the default NETCONF port because the device can identify and filter
NETCONF traffic more effectively. Alternatively, you can configure the device to accept NETCONF
sessions on a port number of your choosing instead of the default NETCONF port. The defined port
accepts only NETCONF-over-SSH sessions and rejects regular SSH session requests.

If you enable NETCONF and you also enable SSH services on the device, the device accepts NETCONF
sessions on both the default SSH port and the configured NETCONF port (default or user-defined port).
For added security, you can configure event policies that utilize UI_LOGIN_EVENT information to effectively
disable the SSH port from accepting NETCONF sessions or to further restrict NETCONF server access
on a port.

To enable NETCONF service over SSH on a Junos device:

1. Enable the NETCONF service on either the default NETCONF port (830) or a user-defined port:

• To use the default NETCONF port (830), include the netconf ssh statement at the [edit system
services] hierarchy level:

[edit system services]
user@host# set netconf ssh

• To use a specific port, configure the port statement with the port number at the [edit system
services netconf ssh] hierarchy level.

[edit system services]
user@host# set netconf ssh port port-number

43

http://www.ssh.com
http://www.openssh.com

The port-number can range from 1 through 65535. The configured port accepts only NETCONF-
over-SSH sessions and rejects regular SSH session requests.

NOTE: Although you can configure NETCONF on any port from 1 through 65535,
you should not configure access on a port that is normally assigned for another
service. This practice avoids potential resource conflicts. If you configure a port
assigned for another service, such as FTP, and that service is enabled, a commit check
does not reveal a resource conflict or issue any warning message.

2. (Optional) To also enable access to the NETCONF SSH subsystem using the default SSH port (22),
include the ssh statement at the [edit system services] hierarchy level.

[edit system services]
user@host# set ssh

This configuration enables SSH access to the device for all users and applications.

NOTE: In certain releases, the default behavior is to restrict the root user from using the
SSH service. In those releases, you must configure the root-login allow statement at the
[edit system services ssh] hierarchy level to enable the root user to open NETCONF
sessions over SSH.

3. (Optional) Configure the device to disconnect unresponsive NETCONF clients.

Specify the timeout interval (in seconds) after which, if no data has been received from the client, the
sshd process requests a response. Additionally, specify the threshold of missed client-alive responses
that triggers a disconnect.

[edit system services]
user@host# set netconf ssh client-alive-interval 10
user@host# set netconf ssh client-alive-count-max 10

NOTE: Statements configured at the [edit system services netconf ssh] hierarchy level
apply only to NETCONF sessions that connect through the default port (830) or
through the user-defined port that is configured at the same hierarchy level.

44

4. Commit the configuration:

[edit]
user@host# commit

5. Repeat the preceding steps on each Junos device where the client application establishes NETCONF
sessions.

Prerequisites for Establishing an SSH Connection for NETCONF Sessions

IN THIS SECTION

Configure a User Account for the Client Application on Junos Devices | 45

Configure a Public/Private Keypair or Password for the Junos OS User Account | 46

Access the Keys or Password with the Client Application | 48

Before the configuration management server can establish an SSH connection with a Junos device, you
must satisfy the common requirements discussed in:

• "Common Prerequisites for NETCONF Sessions over SSH or Outbound SSH" on page 42

You must also satisfy the requirements discussed in the following sections:

Configure a User Account for the Client Application on Junos Devices

The configuration management server must log in to the Junos device to establish a NETCONF session.
Thus, the configuration management server needs a user account on each device where it establishes a
NETCONF session. The following instructions explain how to create a local user account on Junos
devices. Alternatively, you can skip this section and enable authentication through RADIUS or TACACS
+.

To create a local user account:

1. Configure the user statement and specify a username. Include the class statement, and specify a login
class that has the permissions required for all actions to be performed by the application.

[edit system login]
user@host# set user username class class-name

45

2. Optionally, include the full-name and uid statements at the [edit system login user username] hierarchy
level.

3. Commit the configuration to activate the user account on the device.

[edit]
user@host# commit

4. Repeat the preceding steps on each Junos device where the client application establishes NETCONF
sessions.

Configure a Public/Private Keypair or Password for the Junos OS User Account

The configuration management server needs an SSH public/private keypair, a text-based password, or
both to authenticate with the NETCONF server. A keypair is sufficient if the account is used only to
connect to the NETCONF server through SSH. If the account is also used to access the device in other
ways (for login on the console, for example), it must have a text-based password. The password is also
used (the SSH server prompts for it) if key-based authentication is configured but fails.

NOTE: You can skip this section if you have chosen to enable authentication through
RADIUS or TACACS+.

To create a text-based password:

1. Include either the plain-text-password or encrypted-password statement at the [edit system login user
username authentication] hierarchy level.

To enter a password as text, issue the following command. You are prompted for the password, which
the device encrypts before storing.

[edit system login user username authentication]
user@host# set plain-text-password
New password: password
Retype new password: password

To enter a password that you previously created and hashed using MD5 or SHA-1, issue the
following command:

[edit system login user username authentication]
user@host# set encrypted-password "password"

46

2. Commit the configuration.

[edit system login user username authentication]
user@host# commit

3. Repeat the preceding steps on each device where the client application establishes NETCONF
sessions.

To create an SSH public/private keypair, perform the following steps:

1. On the configuration management server where the client application runs, issue the ssh-keygen
command in the standard command shell and provide the appropriate arguments.

user@cms:~$ ssh-keygen options

For example:

netconf-user@cms:~$ ssh-keygen -t rsa -b 4096
Generating public/private rsa key pair.
Enter file in which to save the key (/home/netconf-user/.ssh/id_rsa):
Created directory '/home/netconf-user/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/netconf-user/.ssh/id_rsa
Your public key has been saved in /home/netconf-user/.ssh/id_rsa.pub
...

For more information about ssh-keygen options, see the man page for the ssh-keygen command.

2. Associate the public key with the Junos OS login account.

[edit system login user username authentication]
user@host# set load-key-file URL

Junos OS copies the contents of the specified file onto the device. URL is the path to the file that
contains one or more public keys. The ssh-keygen command by default stores each public key in a file
in the .ssh subdirectory of the user home directory; the filename depends on the encoding and SSH
version. For information about specifying URLs, see the CLI User Guide.

47

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-cli/junos-cli.html

NOTE: Alternatively, you can include the ssh-rsa statement at the [edit system login user
account-name authentication] hierarchy level. We recommend using the load-key-file
statement, however, because it eliminates the need to type or cut-and-paste the public
key on the command line.

3. Commit the configuration.

[edit]
user@host# commit

4. Repeat Step "2" on page 47 and Step "3" on page 48 on each Junos device where the client
application establishes NETCONF sessions.

Access the Keys or Password with the Client Application

The client application must be able to access the configured keypair or password and provide it when
the NETCONF server prompts for it.

There are several methods for enabling the application to access the key or password:

• If public/private keys are used, the ssh-agent program runs on the device where the client application
runs, and handles the private key.

• When a user starts the application, the application prompts the user for the password and stores it
temporarily in a secure manner.

• The password is stored in encrypted form in a secure local-disk location or in a secured database.

Prerequisites for Establishing an Outbound SSH Connection for NETCONF Sessions

IN THIS SECTION

Configure the Junos Device for Outbound SSH | 49

Receive and Manage the Outbound SSH Initiation Sequence on the Client | 50

To enable a configuration management server to establish an outbound SSH connection to the
NETCONF server, you must satisfy the common requirements discussed in:

• "Common Prerequisites for NETCONF Sessions over SSH or Outbound SSH" on page 42

48

You must also satisfy the requirements discussed in the following sections:

Configure the Junos Device for Outbound SSH

To configure the Junos device for outbound SSH:

1. At the [edit system services ssh] hierarchy level, set the SSH protocol-version to v2:

[edit system services ssh]
user@host# set protocol-version v2

2. Generate or obtain a public/private keypair for the Junos device. This keypair is used to encrypt the
data transferred across the SSH connection.

3. If you are manually installing the public key on the configuration management server, transfer the
public key to the CMS.

4. At the [edit system services] hierarchy level, include the outbound-ssh configuration hierarchy and any
required statements.

[edit system services]
outbound-ssh {
 client client-id {
 address {
 port port-number;
 retry number;
 timeout seconds;
 }
 device-id device-id;
 keep-alive {
 retry number;
 timeout seconds;
 }
 reconnect-strategy (in-order | sticky);
 secret password;
 services netconf;
 }
}

For detailed information about each of the options, see outbound-ssh.

49

5. Commit the configuration:

[edit]
user@host# commit

Receive and Manage the Outbound SSH Initiation Sequence on the Client

When you configure a Junos device for outbound SSH, the device attempts to maintain a constant
connection with a configuration management server. Whenever an outbound SSH session is not
established, the device sends an outbound SSH initiation sequence to a configuration management
server listed in the device’s configuration management server list. Before establishing a connection with
the device, each configuration management server must be set up to receive this initiation sequence,
establish a TCP connection with the device, and transmit the device identity back to the device.

The initiation sequence takes one of two forms, depending on how you chose to handle the Junos OS
server's public key.

If the public key is installed manually on the configuration management server, the initiation sequence
takes the following form:

MSG-ID: DEVICE-CONN-INFO\r\n
MSG-VER: V1\r\n
DEVICE-ID: <device-id>\r\n

If the device forwards the public key to the configuration management server during the initialization
sequence, the sequence takes the following form:

MSG-ID: DEVICE-CONN-INFO\r\n
MSG-VER: V1\r\n
DEVICE-ID: : <device-id>\r\n
HOST-KEY: <pub-host-key>\r\n
HMAC: <HMAC(pub-SSH-host-key,<secret>)>\r\n

RELATED DOCUMENTATION

Remote Access Overview

Junos OS User Accounts

50

NETCONF Sessions over Transport Layer Security (TLS)

SUMMARY

Network Configuration Protocol (NETCONF) clients
can use the Transport Layer Security (TLS) protocol
with mutual X.509 certificate-based authentication
to establish a NETCONF session with supported
Junos devices.

IN THIS SECTION

Understanding NETCONF-over-TLS
Connections | 51

How to Establish a NETCONF Session over
TLS | 56

Understanding NETCONF-over-TLS Connections

IN THIS SECTION

Benefits of NETCONF over TLS | 51

NETCONF over TLS Overview | 51

Understanding the TLS Client to NETCONF Username Mapping | 53

NETCONF-over-TLS Connection Workflow | 55

Benefits of NETCONF over TLS

• Enables remote management of devices using mutual certificate-based authentication

• Enables you to more easily manage networks on a larger scale than when using NETCONF over SSH

• Uses public-key infrastructure to provide mutual TLS certificate-based authentication for both the
client and the server

• Secures the connection and exchange of NETCONF messages

• Ensures data integrity for exchanged messages

NETCONF over TLS Overview

You can establish a Network Configuration Protocol (NETCONF) session over Transport Layer Security
(TLS) on certain Junos devices, as an alternative to establishing a NETCONF session over SSH. TLS is a
cryptographic protocol that uses mutual certificate-based authentication and provides a secure and
reliable connection between two devices. It is a successor to the Secure Sockets Layer (SSL) protocol.

51

When you establish a NETCONF session over TLS, the NETCONF server acts as the TLS server, and the
NETCONF client is the TLS client.

NETCONF sessions over TLS provide some advantages over sessions that use SSH. Whereas SSH
authenticates a client by using credentials (username and password) or keys, TLS uses certificates to
mutually authenticate both the client and the server. Certificates can provide additional information
about a client, and they can be used to securely authenticate one device to another. Thus, while
NETCONF sessions over SSH work well for manually managing individual devices, NETCONF sessions
that use TLS enable secure device-to-device communication to better manage and automate devices in
large-scale networks.

NETCONF-over-TLS sessions with Junos devices have the following requirements:

• NETCONF client that supports TLS version 1.2

• The server and client must have X.509 public key certificates that are signed by a certificate
authority

• The Junos public key infrastructure (PKI) must have the appropriate local and CA certificates loaded

• The Junos device is configured for NETCONF over TLS and defines a default or specific certificate-
to-NETCONF-username mapping for a client

• The NETCONF username corresponds to a valid Junos OS user account

TLS uses X.509 digital certificates for server and client authentication. A digital certificate is an
electronic means for verifying your identity through a trusted third party, known as a certificate
authority or certification authority (CA). A certificate authority issues digital certificates, which can be
used to establish a secure connection between two endpoints through certificate validation. The X.509
standard defines the format for the certificates. To establish a NETCONF session over TLS on supported
Junos devices, both the server and the client must have a valid X.509 certificate, and the certificates
must be signed by a CA. Self-signed certificates cannot be used to establish NETCONF sessions over
TLS.

The Junos OS PKI provides an infrastructure for digital certificate management. To establish a TLS
connection, you must install the following in the Junos OS PKI:

• NETCONF server’s local certificate and its intermediate CA certificates

NOTE: If the server certificate chain does not include intermediate CAs, you must
configure the root CA certificate.

• NETCONF client’s root CA certificate required to validate the NETCONF client certificate or
certificate chain

52

After the server verifies the identity of the client and establishes the TLS connection, it must derive the
NETCONF username for that client before it can establish the NETCONF session. The NETCONF
username is the Junos user account under whose access privileges and permissions the NETCONF
operations are performed. You can configure a list of client certificate-to-NETCONF username
mappings, and you can also configure a default NETCONF username mapping. Junos OS uses the
default mapping when a client certificate does not match any of the configured clients. If the server
extracts a valid NETCONF username, it then establishes the NETCONF session. For more information
about deriving the NETCONF username, see "Understanding the TLS Client to NETCONF Username
Mapping" on page 53.

The Junos process tls-proxyd handles the TLS connection. It performs the TLS handshake, encrypts and
decrypts the traffic, determines the NETCONF username, and fetches the authorization parameters for
the NETCONF user. The tls-proxyd process works in conjunction with the management process (mgd) to
create and manage the NETCONF session. The NETCONF-over-TLS session workflow is outlined in
"NETCONF-over-TLS Connection Workflow" on page 55.

For more information about NETCONF over TLS, see RFC 7589, Using the NETCONF Protocol over
Transport Layer Security (TLS) with Mutual X.509 Authentication.

For more information about the Transport Layer Security protocol, see RFC 5246, The Transport Layer
Security (TLS) Protocol Version 1.2.

Understanding the TLS Client to NETCONF Username Mapping

The authenticated identity of the NETCONF-over-TLS client is the NETCONF username. Junos devices
execute the NETCONF operations under the account privileges of this user. You can configure the
method used to derive the NETCONF username for individual clients, and you can also define a default
method to derive the NETCONF username for those clients that do not match a configured client.

You can configure the mapping of client certificates to NETCONF usernames at the [edit system services
netconf tls client-identity] hierarchy level. For each client, you configure the certificate fingerprint and a
map type. If the fingerprint of a client certificate matches a configured fingerprint, Junos OS uses the
corresponding map type to derive the NETCONF username. You can configure only one fingerprint per
client, and each client fingerprint must be unique. For example:

netconf {
 tls {
 client-identity client1 {
 fingerprint
04:D2:96:AF:89:AB:33:A4:F9:5C:0F:34:9E:FC:67:2D:98:C6:08:9B:E8:6C:DE:63:60:1C:F6:CD:1A:43:5A:30:A
D;
 map-type specified;
 username netconf-user;
 }

53

 client-identity client2 {
 fingerprint
04:95:71:45:4F:56:10:CA:B1:89:A3:8C:5D:89:CC:BD:01:37:03:EC:B5:4A:55:22:AD:49:DA:9B:D8:8B:3A:21:1
2;
 map-type san-dirname-cn;
 }
 }
}

The configured certificate fingerprint uses x509c2n:tls-fingerprint format as defined in RFC 7407, A
YANG Data Model for SNMP Configuration. In this format, the first octet is the hashing algorithm
identifier, and the remaining octets are the result of the hashing algorithm. The hashing algorithm
identifier, which is shown here for reference, is defined in RFC 5246, The Transport Layer Security (TLS)
Protocol Version 1.2.

• md5: 1

• sha1: 2

• sha224: 3

• sha256: 4

• sha384: 5

• sha512: 6

You can also configure a default mapping for the NETCONF username at the [edit system services netconf
tls default-client-identity] hierarchy level. If the fingerprint of a client certificate does not match any
configured clients, the Junos device uses the default map type to derive the NETCONF username.

Junos devices support the following map types:

• san-dirname-cn—Use the common name (CN) defined for the SubjectAltName’s (SAN) DirName field
(DirName:/CN) in the client certificate as the NETCONF username.

• specified—Use the NETCONF username defined in the username statement at the same hierarchy level.

After the server verifies the identity of the client and establishes the TLS connection, it derives the
NETCONF username. It first matches the fingerprint for each configured client against the fingerprint of
the presented certificate. If there is a match, it uses the corresponding map type to derive the
NETCONF username. If none of the configured fingerprints match that of the client’s certificate, the
default map type is used to derive the NETCONF username.

After the server determines the username, it fetches the authorization for the user locally or remotely.
The username must either have a user account defined locally on the device, or it must be authenticated
by a Lightweight Directory Access Protocol (LDAP) server, which then maps it to a user template

54

https://tools.ietf.org/html/rfc5246

account that is defined locally on the Junos device. If the extracted username is not a valid local or
remote user, then the TLS connection is terminated.

NETCONF-over-TLS Connection Workflow

The Junos device acts as the TLS and NETCONF server. The server listens for incoming NETCONF-over-
TLS connections on TCP port 6513. The NETCONF client, which is also the TLS client, initiates a
connection with the server on that port.

The client and server perform the following actions to establish and use the NETCONF session over
TLS:

1. The client sends a TLS ClientHello message to initiate the TLS handshake.

2. The server sends a ServerHello message, the server certificate chain, and a CertificateRequest
message to request a certificate from the client.

3. The client verifies the identity of the server and sends the client certificate chain.

4. The server verifies the client certificate chain with the client’s root CA, which has been preconfigured
on the server.

5. The server derives the NETCONF username for that client.

6. If the NETCONF username is valid, the server starts the NETCONF session, and the server and client
exchange NETCONF <hello> messages.

7. The client performs NETCONF operations using the access privileges and permissions of the
NETCONF user.

8. The client executes the <close-session> operation to end the NETCONF session, which subsequently
closes the TLS connection.

The server fails to establish the NETCONF session over TLS in the following scenarios:

• The server or client certificate is expired or self-signed.

• The client doesn’t provide a certificate.

• The client doesn’t send its intermediate CA certificates.

• The client’s root CA certificate is not configured on the server.

• The server cannot map the client certificate to a configured or default map type to derive the
NETCONF username.

• The server uses the san-dirname-cn map type to derive the NETCONF username for the client, but the
client’s certificate does not specify a username in the corresponding field.

55

SEE ALSO

PKI Components In Junos OS

How to Establish a NETCONF Session over TLS

IN THIS SECTION

Install TLS Client Software on the Network Management System | 56

Obtain X.509 Certificates for the Server and Client | 56

Install the Server’s Local Certificate in the Junos PKI | 59

Install the CA Certificates in the Junos PKI | 60

Enable the NETCONF Service over TLS | 62

Configure the TLS Client-to-NETCONF Username Mapping | 63

Configure the Default NETCONF Username Mapping | 64

Configure the User Account for the NETCONF User | 65

Start the NETCONF-over-TLS Session | 66

A network management system (NMS) is used to remotely manage the Junos device. You can establish a
NETCONF session over TLS between a network management system and supported Junos devices. The
NMS is the NETCONF and TLS client, and the Junos device is the NETCONF and TLS server.

Before the client and server can establish a NETCONF session over TLS, you must satisfy the
requirements discussed in the following sections:

Install TLS Client Software on the Network Management System

To establish a NETCONF session using TLS, the network management system must first establish a TLS
connection with the Junos device. Thus, the network management system requires software for
managing the TLS protocol. For example, you can install and use the OpenSSL toolkit, which is a toolkit
for the Transport Layer Security (TLS) and Secure Sockets Layer (SSL) protocols. It is licensed under an
Apache-style license.

For more information about OpenSSL, see https://www.openssl.org.

Obtain X.509 Certificates for the Server and Client

The TLS protocol uses X.509 public key certificates to authenticate the identity of the server and the
client. To establish a NETCONF session over TLS, both the server and the client must have an X.509

56

https://www.juniper.net/documentation/en_US/junos/topics/concept/certificate-digital-understanding.html
https://www.openssl.org

certificate, and the certificate must be signed by a valid certificate authority (CA). Self-signed certificates
are not accepted for NETCONF sessions over TLS.

To use OpenSSL to obtain a certificate for the NETCONF client:

1. Generate a private key, and specify the key length in bits.

user@nms:~$ openssl genrsa -out client.key 2048
Generating RSA private key, 2048 bit long modulus (2 primes)
..+++++
.............+++++
e is 65537 (0x010001)

NOTE: Junos devices do not support using Elliptic Curve Digital Signature Algorithm
(ECDSA) keys in NETCONF sessions over TLS.

2. If you are defining the NETCONF username in the client's certificate, update your openssl.cnf or
equivalent configuration file to define the subjectAltName=dirName extension and specify the NETCONF
username.

user@nms:~$ cat openssl.cnf
OpenSSL configuration file.
...
[usr_cert]
subjectAltName=dirName:dir_sect

[dir_sect]
CN=netconf-user
...

3. Generate a certificate signing request (CSR), which contains the entity's public key and information
about their identity.

user@nms:~$ openssl req -new -key client.key -out client.csr -sha256
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

57

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:CA
Locality Name (eg, city) []:Sunnyvale
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Juniper
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:netconf-tls-client.example.com
Email Address []:
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

4. Generate the certificate by doing one of the following:

• Submit the CSR to a certificate authority to request an X.509 certificate, and provide the
configuration file to include any additional extensions.

• Sign the CSR with a CA to generate the client certificate, and include the -extfile and -extensions
options if you need to reference your configuration file and extensions.

user@nms:~$ openssl x509 -req -in client.csr -CA clientRootCA.crt -CAkey clientRootCA.key -
CAcreateserial -out client.crt -days 365 -extensions usr_cert -extfile openssl.cnf
Signature ok
subject=C = US, ST = CA, L = Sunnyvale, O = Juniper, CN = netconf-tls-client.example.com
Getting CA Private Key

5. Verify that the Common Name (CN) field and extensions, if provided, are correct.

user@nms:~$ openssl x509 -text -noout -in client.crt
Certificate:
 Data:
 Version: 3 (0x2)
 ...
 Subject: C = US, ST = CA, L = Sunnyvale, O = Juniper, CN = netconf-tls-
client.example.com
 ...
 X509v3 extensions:
 X509v3 Subject Alternative Name:
 DirName:/CN=netconf-user
 ...

58

Similarly, generate the server certificate.

1. Generate a private key, and specify the key length in bits.

user@nms:~$ openssl genrsa -out server.key 2048
Generating RSA private key, 2048 bit long modulus (2 primes)
..+++++
.............+++++
e is 65537 (0x010001)

2. Generate a certificate signing request (CSR).

user@nms:~$ openssl req -new -key server.key -out server.csr -sha256 -subj "/C=US/ST=CA/
L=Sunnyvale/O=Juniper/CN=host.example.com"

3. Generate the certificate by doing one of the following:

• Submit the CSR to a certificate authority to request an X.509 certificate.

• Sign the CSR with a CA to generate the server certificate.

user@nms:~$ openssl x509 -req -in server.csr -CA serverIntCA.crt -CAkey serverIntCA.key -
CAcreateserial -out server.crt -days 365
Signature ok
subject=C = US, ST = CA, L = Sunnyvale, O = Juniper, CN = host.example.com
Getting CA Private Key

The Junos OS public key infrastructure (PKI) provides an infrastructure for digital certificate
management. You can also use the Junos OS PKI to generate the required key pair and CSR for the
server’s local certificate. For information about the Junos OS PKI and the different methods for
obtaining certificates, see Digital Certificates with PKI Overview and related documentation.

Install the Server’s Local Certificate in the Junos PKI

The server’s local certificate is the X.509 certificate for the Junos device that is acting as the NETCONF
and TLS server. You must install the local certificate for the device in the Junos PKI.

To install the server’s local certificate in the Junos PKI:

1. Copy the certificate and private key to the Junos device.

2. Load the certificate from the specified file using the Junos PKI.

59

https://www.juniper.net/documentation/en_US/junos/topics/topic-map/security-digital-certificates-with-pki-overview.html

Define a unique certificate identifier, and specify the file paths to the certificate and the private key
or key pair. For example:

user@host> request security pki local-certificate load certificate-id netconf-server-cert
filename /var/tmp/server.crt key /var/tmp/server.key
Local certificate loaded successfully

3. (Optional) Verify the certificate.

user@host> show security pki local-certificate certificate-id netconf-server-cert
Certificate identifier: netconf-server-cert
 Issued to: host, Issued by: C = US, ST = California, L = Sunnyvale, O = ServerIntCA, CN =
ServerIntCA
 Validity:
 Not before: 03- 6-2020 22:32 UTC
 Not after: 03- 6-2021 22:32 UTC
 Public key algorithm: rsaEncryption(2048 bits)
 Keypair Location: Keypair generated locally

Install the CA Certificates in the Junos PKI

A digital certificate is an electronic means for verifying your identity through a trusted third party,
known as a certificate authority (CA). When establishing a NETCONF session over TLS, the client and
server must each have an X.509 digital certificate to authenticate their identity. You must configure the
root CA certificate required to validate the client certificate in the Junos public key infrastructure (PKI).
You must also configure any CAs required to validate the server’s local certificate in the Junos PKI. Thus,
for each CA, you configure a certificate authority profile and load the corresponding CA certificate and
certificate revocation list (CRL). This configuration enables the Junos device to validate a certificate
against the CA.

NOTE: If the server certificate chain does not include intermediate CAs, you must
configure the root CA certificate. Otherwise, you only need to configure the
intermediate CAs.

To manually configure a CA profile and load the corresponding CA certificate and CRL:

1. Download the CA certificates and any required CA certificate revocation lists (CRLs) to the Junos
device.

60

2. Configure a trusted CA profile for each required CA, for example:

[edit security pki]
user@host# set ca-profile clientRootCA ca-identity clientRootCA
user@host# set ca-profile serverRootCA ca-identity serverRootCA
user@host# set ca-profile serverIntCA ca-identity serverIntCA
user@host# commit and-quit

3. Load the CA certificate associated with the client’s root CA profile in the Junos PKI, and specify the
location of the certificate file.

user@host> request security pki ca-certificate load ca-profile clientRootCA filename /var/tmp/
clientRootCA.crt
Fingerprint:
 93:cc:d4:bb:ce:6b:e5:8d:91:e2:f9:46:7c:f8:a5:52:87:88:b5:28 (sha1)
 03:18:f4:42:38:fd:ad:c4:73:78:06:cd:45:2a:de:e2 (md5)
Do you want to load this CA certificate ? [yes,no] (no) yes

CA certificate for profile clientRootCA loaded successfully

4. Load the CA certificates associated with the server’s CA profile in the Junos PKI, and specify the
location of the certificate file.

• If the certificate chain only has a root CA, load the root CA certificate.

user@host> request security pki ca-certificate load ca-profile serverRootCA
filename /var/tmp/serverRootCA.crt
Fingerprint:
 af:67:c6:f0:7c:2d:11:35:72:0e:c3:b3:76:ee:63:57:d4:81:a4:77 (sha1)
 2a:87:1f:f8:9d:67:4c:d3:94:d2:b1:29:14:e0:90:2e (md5)
Do you want to load this CA certificate ? [yes,no] (no) yes

CA certificate for profile serverRootCA loaded successfully

• If the certificate chain includes intermediate CAs, you only need to load the intermediate CA
certificates.

user@host> request security pki ca-certificate load ca-profile serverIntCA
filename /var/tmp/serverIntCA.crt
Fingerprint:
 7c:a2:59:0e:6d:8b:6a:c5:da:e2:73:73:b0:cc:4a:28:39:dd:a2:52 (sha1)

61

 57:03:85:ef:eb:e8:72:a6:70:a0:c3:c9:35:e8:6a:eb (md5)
Do you want to load this CA certificate ? [yes,no] (no) yes

CA certificate for profile serverIntCA loaded successfully

5. Load the CRL for a given CA profile where required, for example:

user@host> request security pki crl load ca-profile clientRootCA filename /var/tmp/revoke.crl

NOTE: If you do not configure a certificate revocation list for a given CA profile, then
you must disable revocation checks by configuring the revocation-check disable statement
at the [edit security pki ca-profile profile-name] hierarchy level.

6. (Optional) Verify the CA certificate.

user@host> show security pki ca-certificate ca-profile clientRootCA detail
LSYS: root-logical-system
 CA profile: clientRootCA
Certificate identifier: clientRootCA
 Certificate version: 3
...

Enable the NETCONF Service over TLS

To enable NETCONF over TLS:

1. Configure the server’s local certificate ID, and reference the ID that was defined when the certificate
was installed.

[edit system services netconf tls]
user@host# set local-certificate netconf-server-cert

2. Define how the server should derive the NETCONF username for a given client.

• You can define the mapping for an individual client, as described in "Configure the TLS Client-to-
NETCONF Username Mapping" on page 63.

• You can also define a default mapping that is used when a client does not match any of the
configured clients. See "Configure the Default NETCONF Username Mapping" on page 64.

62

3. (Optional) Configure trace options for NETCONF sessions over TLS, for example:

[edit system services netconf tls]
user@host# set traceoptions file size 10m
user@host# set traceoptions file files 2
user@host# set traceoptions flag all

4. Commit the configuration.

[edit system services netconf tls]
user@host# commit

Configure the TLS Client-to-NETCONF Username Mapping

You can define the mapping between the client certificate and the NETCONF username for specific
clients. If you do not define a mapping for a specific client, then you must define a default mapping in
order for the client to establish a NETCONF session over TLS.

To define the mapping to derive the NETCONF username for a given client:

1. Determine the fingerprint for the client’s certificate by executing the command appropriate for your
environment on the network management system and the format of the certificate, for example:

user@nms:~$ openssl x509 -noout -fingerprint -sha256 -in client.crt
SHA256
Fingerprint=D2:96:AF:89:AB:33:A4:F9:5C:0F:34:9E:FC:67:2D:98:C6:08:9B:E8:6C:DE:63:60:1C:F6:CD:1
A:43:5A:30:AD

2. Determine the fingerprint’s hashing algorithm identifier as defined in RFC 5246, The Transport Layer
Security (TLS) Protocol Version 1.2.

This examples uses the SHA-256 hashing algorithm, which corresponds to the identifier value of 4.

• md5: 1

• sha1: 2

• sha224: 3

• sha256: 4

• sha384: 5

• sha512: 6

63

https://tools.ietf.org/html/rfc5246

3. On the Junos device, define a unique identifier for the client.

[edit system services netconf tls]
user@host# edit client-identity client1

4. Configure the client’s certificate fingerprint in x509c2n:tls-fingerprint format.

The fingerprint’s first octet is the hashing algorithm identifier, and the remaining octets are the result
of the hashing algorithm.

[edit system services netconf tls client-identity client1]
user@host# set fingerprint
04:D2:96:AF:89:AB:33:A4:F9:5C:0F:34:9E:FC:67:2D:98:C6:08:9B:E8:6C:DE:63:60:1C:F6:CD:1A:43:5A:3
0:AD

5. Configure the map type that defines how the server derives the NETCONF username for that client.

[edit system services netconf tls client-identity client1]
user@host# set map-type (san-dirname-cn | specified)

6. If the map type is specified, configure the NETCONF username to use for that client.

[edit system services netconf tls client-identity client1]
user@host# set username netconf-user

7. Commit the configuration.

[edit system services netconf tls client-identity client1]
user@host# commit

Configure the Default NETCONF Username Mapping

You can define a default mapping that is used to derive the NETCONF username when a client does not
match a client configured at the [edit system services netconf tls client-identity] hierarchy level.

To define the default mapping to derive the NETCONF username:

64

1. Configure the default map type that the server uses to derive the NETCONF username.

[edit system services netconf tls]
user@host# set default-client-identity map-type (san-dirname-cn | specified)

2. If the map type is specified, configure the default NETCONF username.

[edit system services netconf tls]
user@host# set default-client-identity username netconf-default-user

3. Commit the configuration.

[edit system services netconf tls]
user@host# commit

Configure the User Account for the NETCONF User

When establishing a NETCONF session over TLS, the server maps the client certificate to the NETCONF
user that performs the operations on the device for that session. Junos OS supports local users and
LDAP remote users for NETCONF-over-TLS sessions. The NETCONF user must either have a user
account defined locally on the device, or it must be authenticated by an LDAP server, which then maps
it to a local user template account that is defined locally on the device. The following instructions
explain how to create a user account on Junos devices.

To create a user account for the NETCONF user on a Junos device:

1. Configure the user statement with a unique username, and include the class statement to specify a
login class that has the permissions required for all actions to be performed by the user.

For example, the following configuration defines two users: netconf-user and netconf-default-user.

[edit system login]
user@host# set user netconf-user class super-user
user@host# set user netconf-default-user class super-user

2. (Optional) Configure the uid and full-name statements to specify the user’s ID and name.

[edit system login]
user@host# set user netconf-user uid 2001 full-name "NETCONF TLS User"

65

3. Commit the configuration to activate the user account on the device.

[edit]
user@host# commit

4. Repeat the preceding steps on each Junos device where the client establishes NETCONF sessions
over TLS.

SEE ALSO

Junos OS User Accounts Overview

Configuring Local User Template Accounts for User Authentication

Start the NETCONF-over-TLS Session

The network management system acts as the NETCONF and TLS client. You can use any software for
managing the TLS protocol to initiate the NETCONF-over-TLS session with the Junos device.

To start the NETCONF-over-TLS session:

1. Initiate the connection to the NETCONF server on port 6513, and provide the client’s certificate and
key, the root CA certificate for the server, and all intermediate CA certificates required to validate the
client certificate.

user@nms:~$ openssl s_client -connect 198.51.100.1:6513 -CAfile all_CAs -cert client.crt -key
client.key -tls1_2
CONNECTED(00000005)
...
[TLS handshake]
...

<!-- No zombies were killed during the creation of this user interface -->
<!-- user netconf-user, class j-super-user -->
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>urn:ietf:params:netconf:base:1.0</capability>
 <capability>urn:ietf:params:netconf:capability:candidate:1.0</capability>
 <capability>urn:ietf:params:netconf:capability:confirmed-commit:1.0</capability>
 <capability>urn:ietf:params:netconf:capability:validate:1.0</capability>
 <capability>urn:ietf:params:netconf:capability:url:1.0?scheme=http,ftp,file</capability>
 <capability>urn:ietf:params:xml:ns:netconf:base:1.0</capability>

66

https://www.juniper.net/documentation/en_US/junos/topics/topic-map/junos-os-user-accounts.html
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/junos-os-user-authentication-overview.html

 <capability>urn:ietf:params:xml:ns:netconf:capability:candidate:1.0</capability>
 <capability>urn:ietf:params:xml:ns:netconf:capability:confirmed-commit:1.0</capability>
 <capability>urn:ietf:params:xml:ns:netconf:capability:validate:1.0</capability>
 <capability>urn:ietf:params:xml:ns:netconf:capability:url:1.0?scheme=http,ftp,file</
capability>
 <capability>urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring</capability>
 <capability>http://xml.juniper.net/netconf/junos/1.0</capability>
 <capability>http://xml.juniper.net/dmi/system/1.0</capability>
 </capabilities>
 <session-id>35510</session-id>
</hello>
]]>]]>

2. Verify that the session maps to the correct NETCONF user.

The server emits the NETCONF username for that session during the session establishment.

<!-- user netconf-user, class j-super-user -->

3. Perform NETCONF operations as necessary.

<rpc><get-configuration/></rpc>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:junos="http://
xml.juniper.net/junos/20.2R1/junos">
<configuration xmlns="http://xml.juniper.net/xnm/1.1/xnm" junos:changed-seconds="1583544555"
junos:changed-localtime="2020-03-07 01:29:15 UTC">
...

4. Close the NETCONF session and TLS connection.

<rpc><close-session/></rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:junos="http://
xml.juniper.net/junos/20.2R1/junos">
<ok/>
</rpc-reply>
]]>]]>
<!-- session end at 2020-03-11 19:10:28 UTC -->
closed

67

NETCONF and Shell Sessions over Enhanced Outbound HTTPS

SUMMARY

Client applications can establish Network
Configuration Protocol (NETCONF) sessions and
shell sessions using enhanced outbound HTTPS on
supported Junos devices.

IN THIS SECTION

Understanding NETCONF and Shell Sessions
over Enhanced Outbound HTTPS | 68

How to Establish NETCONF and Shell
Sessions over Enhanced Outbound
HTTPS | 71

Understanding NETCONF and Shell Sessions over Enhanced Outbound HTTPS

IN THIS SECTION

Benefits of NETCONF and Shell Sessions over Outbound HTTPS | 68

NETCONF and Shell Sessions over Outbound HTTPS Overview | 68

Connection Workflow for Sessions over Enhanced Outbound HTTPS | 70

Benefits of NETCONF and Shell Sessions over Outbound HTTPS

• Enable NETCONF or shell client applications to manage devices that are not accessible through other
protocols.

• Enable remote management of devices using certificate-based authentication for the outbound
HTTPS client.

NETCONF and Shell Sessions over Outbound HTTPS Overview

You can establish NETCONF and shell sessions over outbound HTTPS between supported Junos devices
and a network management system. A NETCONF or shell session over outbound HTTPS enables you to
remotely manage devices that might not be accessible through other protocols such as SSH. This might
happen, for example, if the device is behind a firewall, and the firewall or another security tool blocks
those protocols. HTTPS, on the other hand, uses a standard port, which is typically allowed outbound in
most environments.

68

On supported devices, the Junos software image includes a Juniper Extension Toolkit (JET) application
that supports establishing a NETCONF or shell session using outbound HTTPS. The JET application uses
the gRPC framework to connect to the outbound HTTPS client, which consists of a gRPC server running
on the network management system. gRPC is a language-agnostic, open-source remote procedure call
(RPC) framework. Figure 1 on page 69 illustrates the outbound HTTPS setup in its simplest form.

Figure 1: NETCONF and Shell Sessions over Outbound HTTPS

In this scenario, the gRPC server acts as the NETCONF/shell client, and the JET application is the gRPC
client and NETCONF/shell server. The gRPC server listens for connection requests on the specified port,
which defaults to port 443. You configure the JET application as an extension service. The relevant
connection and authentication information is passed to the script. While the script runs, it automatically
attempts to connect to the gRPC server on the configured host and port.

The JET application and gRPC server establish a persistent HTTPS connection over a TLS-encrypted
gRPC session. The JET application authenticates the gRPC server using an X.509 digital certificate, and
if the authentication is successful, the requested NETCONF or shell session is established over this
connection. The NETCONF operations and shell commands execute under the account privileges of the
user configured for the extension service application.

The outbound HTTPS connection uses an X.509 digital certificate to authenticate the gRPC server. A
digital certificate is an electronic means for verifying your identity through a trusted third party, known
as a certificate authority or certification authority (CA). A certificate authority issues digital certificates,
which can be used to establish a secure connection between two endpoints through certificate
validation. The X.509 standard defines the format for the certificate. To establish a NETCONF or shell
session over outbound HTTPS on supported Junos devices, the gRPC server must have a valid X.509
certificate.

Enhanced outbound HTTPS provides support for:

• Connecting to multiple outbound HTTPS clients

69

• Configuring multiple backup gRPC servers for each outbound HTTPS client

• Establishing multiple, concurrent NETCONF and shell sessions with a given client

• Authenticating the outbound HTTPS client using self-signed or CA-signed X.509 digital certificates

• Authenticating the Junos device using a shared secret

Connection Workflow for Sessions over Enhanced Outbound HTTPS

In a NETCONF or shell session over outbound HTTPS, the gRPC server running on the network
management system acts as the NETCONF/shell client, and the JET application on the Junos device is
the gRPC client and NETCONF/shell server. You can configure multiple outbound HTTPS clients, and
you can configure one or more backup gRPC servers for each client. The JET application connects to
only one gRPC server in the client’s server list at any one time.

The gRPC client and server perform the following actions to establish a NETCONF or shell session over
outbound HTTPS:

1. The gRPC server listens for incoming connections on the specified port, or if no port is specified, on
the default port 443.

2. The gRPC client initiates a TCP/IP connection with the configured gRPC server and port. If you
configure an outbound HTTPS client with one or more backup gRPC servers, the gRPC client tries to
connect to each server in the list until it establishes a connection.

3. The gRPC client sends a TLS ClientHello message to initiate the TLS handshake.

4. The gRPC server sends a ServerHello message and its certificate.

5. The gRPC client verifies the identity of the gRPC server.

6. The gRPC client sends the device ID and shared secret configured for that outbound HTTPS client to
the gRPC server.

7. The outbound HTTPS client requests a NETCONF or shell session, and the gRPC server uses the
device ID and shared secret to authenticate the Junos device. If authentication is successful, the
session is established.

8. If a NETCONF session is requested, the server and client exchange NETCONF <hello> messages.

9. The NETCONF or shell client application performs operations as needed.

The gRPC client initiates another TCP/IP connection with the same gRPC server, and the gRPC client
and server repeat the process, which enables the outbound HTTPS client to establish multiple
NETCONF and shell sessions with the network device.

70

How to Establish NETCONF and Shell Sessions over Enhanced Outbound HTTPS

IN THIS SECTION

Obtain an X.509 Certificate for the gRPC Server | 72

Set Up the gRPC Server | 74

Configure the User Account for the NETCONF or Shell User | 77

Configure the Outbound HTTPS Clients | 77

Configure the Outbound HTTPS Extension Service on Junos Devices | 80

Start the NETCONF or Shell Session | 82

You can use the JET application that is included as part of the Junos software image to establish
NETCONF and shell sessions over outbound HTTPS between network management systems (NMS) and
supported Junos devices. The JET application, configured as an extension service, initiates a connection
to a gRPC server running on an NMS and establishes a persistent HTTPS connection over a TLS-
encrypted gRPC session. The NETCONF or shell session runs over this HTTPS connection. In this
scenario, the gRPC server is the NETCONF/shell client, and the JET application is the gRPC client and
NETCONF/shell server.

The following hardware and software are required for establishing sessions over enhanced outbound
HTTPS:

• Network management system running Python 3.5 or later

• Device running Junos OS Evolved or device running Junos OS with upgraded FreeBSD Release 20.3
or later that also supports running JET applications

NOTE: For supported devices, see Feature Explorer.

Figure 2 on page 72 illustrates the setup referenced in the tasks that follow. The management interface
name on the Junos device varies depending on the platform and OS.

71

https://apps.juniper.net/feature-explorer/

Figure 2: NETCONF over Outbound HTTPS Topology

Before the client and server can establish a NETCONF or shell session over outbound HTTPS, you must
satisfy the requirements discussed in the following sections:

Obtain an X.509 Certificate for the gRPC Server

The outbound HTTPS connection uses an X.509 public key certificate to authenticate the identity of the
gRPC server running on the network management system. The gRPC stack supports the X.509 v3
certificate format.

The requirements for the gRPC server’s certificate are:

• The certificate can be self-signed or signed by a certificate authority (CA).

• The certificate must define either the gRPC server’s hostname in the Common Name (CN) field, or it
must define the gRPC server’s IP address in the SubjectAltName (SAN) IP Address field. The Junos
device must use the same value to establish the connection to the server. If the certificate defines
the SubjectAltName IP Address field, the device ignores the Common Name field during
authentication.

• The certificate must be PEM-encoded and use a .crt extension.

• The certificate and its key must be named server.crt and server.key, respectively.

To use OpenSSL to obtain a certificate:

1. Generate a private key, and specify the key length in bits.

user@nms:~$ openssl genrsa -out server.key 4096
Generating RSA private key, 4096 bit long modulus (2 primes)
...++++
..++++
e is 65537 (0x010001)

72

NOTE: We recommend using 3072 bits or greater for the size of the private key. The
key length should not exceed 4096 bits.

2. If you are connecting to the gRPC server’s IP address, update your openssl.cnf or equivalent
configuration file to define the subjectAltName=IP extension with the gRPC server’s address.

user@nms:~$ cat openssl.cnf
OpenSSL configuration file.
...
extensions = v3_sign
...
[v3_sign]
subjectAltName=IP:198.51.100.11

3. Generate a certificate signing request (CSR), which contains the entity’s public key and information
about their identity.

user@nms:~$ openssl req -new -key server.key -out server.csr
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:CA
Locality Name (eg, city) []:Sunnyvale
Organization Name (eg, company) [Internet Widgits Pty Ltd]: Juniper
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:nms.example.com
Email Address []:
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

4. Generate the certificate by doing one of the following:

• Send the CSR to a certificate authority to request an X.509 certificate, and provide the
configuration file to include any additional extensions.

73

• Sign the CSR with a CA to generate the client certificate, and include the -extfile option if you
need to reference your configuration file and extensions.

user@nms:~$ openssl x509 -req -in server.csr -CA RootCA.crt -CAkey RootCA.key -set_serial
0101 -out server.crt -days 365 -sha256 -extfile openssl.cnf
Signature ok
subject=C = US, ST = CA, L = Sunnyvale, O = Juniper, CN = nms.example.com
Getting Private key

• Sign the CSR with the server key to generate a self-signed client certificate, and include the -
extfile option if you need to reference your configuration file and extensions.

user@nms:~$ openssl x509 -req -in server.csr -signkey server.key -out server.crt -days 365
-sha256 -extfile openssl.cnf
Signature ok
subject=C = US, ST = CA, L = Sunnyvale, O = Juniper, CN = nms.example.com
Getting Private key

5. Verify that the Common Name (CN) field and extensions, if provided, are correct.

user@nms:~$ openssl x509 -text -noout -in server.crt
Certificate:
 Data:
 Version: 3 (0x2)
 ...
 Subject: C = US, ST = CA, L = Sunnyvale, O = Juniper, CN = nms.example.com
 ...
 X509v3 extensions:
 X509v3 Subject Alternative Name:
 IP Address:198.51.100.11
 ...

Set Up the gRPC Server

The network management system requires the following software:

• Python 3.5 or later

The network management system and the JET application on the Junos device use the gRPC framework
to establish a persistent HTTPS connection over a TLS-encrypted gRPC session. The network

74

management system must have the gRPC stack installed and run a gRPC server that listens on the
specified port for the connection request. Juniper Networks provides the necessary proto definition files
and sample gRPC server application files in the Juniper Networks netconf-https-outbound repository on
GitHub.

This section sets up the gRPC server on a network management system running Ubuntu 18.04. If you
are running a different operating system, use the commands appropriate for your OS.

To set up the gRPC server on a network management system running Ubuntu 18.04:

1. Install pip for Python 3.

user@nms:~$ sudo apt install python3-pip

2. Install the grpcio package.

user@nms:~$ sudo pip3 install grpcio==1.29.0

3. Install the grpcio-tools package.

user@nms:~$ sudo pip3 install grpcio-tools==1.18.0

NOTE: If you encounter installation errors for the grpcio or grpcio packages, try installing
the latest version.

4. Go to the Juniper GitHub repository at https://github.com/Juniper/netconf-https-outbound, and
select the directory corresponding to the release running on the Junos device.

Release Directory

Junos OS Release 20.3R1 or later 20.3

Junos OS Evolved Release 22.4R1 or later junos-evolved/22.4

5. Download the application and proto files in the GitHub directory to the directory on the network
management system where the gRPC server’s certificate resides.

a. Select each file, click the Raw button, and copy the URL for the file.

75

https://github.com/Juniper/netconf-https-outbound
https://github.com/Juniper/netconf-https-outbound

b. Download the file by using the URL with the download tool of your choice, for example, wget or
curl.

user@nms:~$ ls
jnx_common_base_types.proto jnx_netconf_service.proto nc_grpc_server.py
request_session.py server.crt

6. Use the protocol buffer compiler, protoc, to compile each proto definition file and generate Python
code, which produces two output files for each proto file.

user@nms:~$ python3 -m grpc_tools.protoc -I./ --python_out=. --grpc_python_out=.
filename.proto

For example:

user@nms:~$ python3 -m grpc_tools.protoc -I./ --python_out=. --grpc_python_out=.
jnx_common_base_types.proto
user@nms:~$ python3 -m grpc_tools.protoc -I./ --python_out=. --grpc_python_out=.
jnx_netconf_service.proto

user@nms:~$ ls jnx*.py
jnx_common_base_types_pb2_grpc.py jnx_netconf_service_pb2_grpc.py
jnx_common_base_types_pb2.py jnx_netconf_service_pb2.py

7. Start the gRPC server, and specify the port for the connection, if it’s different from the default port
443.

user@nms:~$ python3 nc_grpc_server.py -p 50051

NOTE: You might need to execute the script with root permissions to listen on port
443.

The gRPC server listens indefinitely on the specified port for incoming connections. After you configure
the Junos device to connect to the gRPC server and a connection and session are established, you can
perform NETCONF operations or shell commands as appropriate.

76

Configure the User Account for the NETCONF or Shell User

To establish a NETCONF or shell session over outbound HTTPS, you must create a user account locally
on the Junos device. You use this account to perform the NETCONF or shell operations on the device
for that session. The JET application runs using the permissions configured for this account.

To create a user account on a Junos device:

1. Configure the user statement with a unique username, and include the class statement to specify a
login class that has the permissions required for all actions to be performed by the user. For example:

[edit system login]
user@R0# set user netconf-user class super-user

2. (Optional) Configure the uid and full-name statements to specify a unique user ID and the user’s name.

[edit system login]
user@R0# set user netconf-user uid 2001 full-name "NETCONF User"

3. Commit the configuration to activate the user account on the device.

[edit system login]
user@R0# commit

4. Repeat the preceding steps on each Junos device where the client needs to establish NETCONF or
shell sessions over outbound HTTPS.

Configure the Outbound HTTPS Clients

Enhanced outbound HTTPS enables you to configure multiple outbound HTTPS clients at the [edit
system services outbound-https] hierarchy level and configure multiple backup gRPC servers for each client.
The JET application connects to only one gRPC server in the client’s server list at any one time.

Before you configure the device, you will need the following information:

• The port on which the gRPC server is listening for connections.

• The contents of the SubjectAltName IP Address field, or if there is no such field, the contents of the
Common Name (CN) field in the gRPC server's certificate.

• The contents of the gRPC server’s certificate, if it’s self-signed, or the contents of the CA certificates,
if the server certificate is authenticated using a certificate chain.

To configure an outbound HTTPS client:

77

1. Navigate to the outbound HTTPS client hierarchy, and define an identifier that uniquely identifies the
outbound HTTPS client.

[edit]
user@R0# edit system services outbound-https client nms1

2. Define the device identifier, which is a user-defined string that the gRPC server uses to identify and
authenticate the Junos device during session establishment.

[edit system services outbound-https client nms1]
user@R0# set device-id router1

3. Define a shared secret string, which is a user-defined string that the gRPC server uses to
authenticate the Junos device during session establishment.

[edit system services outbound-https client nms1]
user@R0# set secret my-shared-secret

The device stores the shared secret string as an encrypted value in the configuration database.

[edit system services outbound-https client nms1]
user@R0# show secret
secret "9atZjq36ABIE/CIcyr8LGDik.53nCO1R690IcSMWJGDikPz39"; ## SECRET-DATA

4. (Optional) Define the method used to reestablish a disconnected outbound HTTPS connection as
sticky or in-order.

[edit system services outbound-https client nms1]
user@R0# set reconnect-strategy sticky

5. (Optional) Define the time in seconds that the gRPC client waits in between attempts to connect to
the outbound HTTPS client’s list of servers.

[edit system services outbound-https client nms1]
user@R0# set waittime 30

6. Configure the hostname or IPv4 address for one or more gRPC servers and the port on which the
server is listening for outbound HTTPS connection requests.

78

The hostname or IP address must match the value of the Common Name (CN) field or the
SubjectAltName IP Address field, respectively, in that gRPC server's certificate.

[edit system services outbound-https client nms1]
user@R0# set 198.51.100.11 port 50051

7. For each gRPC server, configure the trusted_cert statement with the certificate information required
to authenticate the server.

• If the server’s certificate is self-signed, configure the contents of the gRPC server’s certificate,
server.crt, omitting any newlines.

[edit system services outbound-https client nms1]
user@R0# set 198.51.100.11 trusted-cert "-----BEGIN CERTIFICATE-----MIIFH***FjQ==-----END
CERTIFICATE-----"

• If the server’s certificate is authenticated using a certificate chain, concatenate any intermediate
CA and root CA certificates in that order, remove all newlines, and configure the resulting single
string.

[edit system services outbound-https client nms1]
user@R0# set 198.51.100.11 trusted-cert "-----BEGIN CERTIFICATE-----MIIFA***ioUS-----END
CERTIFICATE----------BEGIN CERTIFICATE-----MIIFX***0xUc=-----END CERTIFICATE-----"

NOTE: To easily generate the value for the trusted_cert statement, you can concatenate
the appropriate certificates in the required order and remove any newlines, for example,
by using a command similar to the following:

user@nms:~$ cat IntermediateCA.crt RootCA.crt | tr -d '\n' > allCA

8. Repeat the preceding steps for each outbound HTTPS client that will manage the Junos device.

9. Commit the configuration.

[edit system services outbound-https client nms1]
user@R0# commit and-quit

79

NOTE: If the outbound HTTPS extension service is already running, and you add, delete,
or modify an outbound HTTPS client and commit the configuration, you do not need to
restart the service for the changes to take effect. They are picked up automatically.

Configure the Outbound HTTPS Extension Service on Junos Devices

Junos releases that support NETCONF and shell sessions over outbound HTTPS include a JET
application and supporting files in the software image. Table 5 on page 80 outlines the files, which are
located in the /var/db/scripts/jet directory on the device.

Table 5: JET Files for Sessions over Enhanced Outbound HTTPS

File Description

nc_grpc_app.pyc JET application that uses the gRPC framework to establish a persistent HTTPS connection
with a gRPC server running on the network management system.

nc_grpc_app_lib.pyc Required libraries

To configure the Junos device for sessions over outbound HTTPS:

1. Verify that the JET application and related files are present on the device.

user@R0> file list /var/db/scripts/jet/nc*.pyc
/var/db/scripts/jet/nc_grpc_app.pyc@ -> /packages/mnt/junos-runtime/var/db/scripts/jet/
nc_grpc_app.pyc
/var/db/scripts/jet/nc_grpc_app_lib.pyc@ -> /packages/mnt/junos-runtime/var/db/scripts/jet/
nc_grpc_app_lib.pyc

2. Enter configuration mode.

user@R0> configure
Entering configuration mode

3. Enable the device to run unsigned Python 3 applications.

[edit]
user@R0# set system scripts language python3

80

4. Configure extension service notifications for the loopback address.

[edit]
user@R0# set interfaces lo0 unit 0 family inet address 127.0.0.1
user@R0# set system commit notification configuration-diff-format xml
user@R0# set system services extension-service notification allow-clients address 127.0.0.1

5. Navigate to the hierarchy of the extension service application.

[edit]
user@R0# edit system extensions extension-service application file nc_grpc_app.pyc

6. Configure the application to run in the background as a daemonized process.

[edit system extensions extension-service application file nc_grpc_app.pyc]
user@R0# set daemonize

7. Configure the application to respawn on normal exit.

[edit system extensions extension-service application file nc_grpc_app.pyc]
user@R0# set respawn-on-normal-exit

8. Configure the usename under whose privileges the application executes and the NETCONF
operations and shell commands are performed.

[edit system extensions extension-service application file nc_grpc_app.pyc]
user@R0# set username netconf-user

9. Commit the configuration.

[edit system extensions extension-service application file nc_grpc_app.pyc]
user@R0# commit and-quit

When you commit the configuration, the daemonize option causes the application to start
automatically.

81

10. Verify that the application is running.

user@R0> show extension-service status nc_grpc_app.pyc
Extension service application details:
Name : nc_grpc_app
Process-id: 81383
Stack-Segment-Size: 16777216B
Data-Segment-Size: 134217728B

After the application successfully starts, it logs messages to the outbound_https.log file.

NOTE: If the application does not automatically start after you commit the configuration,
review the log messages related to this application to troubleshoot the issue. In Junos
OS, issue the show log jet.log command. In Junos OS Evolved, issue the show trace
application cscript and show log messages commands.

Start the NETCONF or Shell Session

The gRPC server running on the network management system acts as the NETCONF/shell client, and
the JET application on the Junos device acts as the gRPC client and NETCONF/shell server. After you
start the gRPC server and JET application, the JET application attempts to connect to the gRPC server
on the specified port. If the connection is successful, the gRPC client authenticates the gRPC server. If
the server authentication is successful, you can then request one or more NETCONF or shell sessions.

Before you begin, you will need the following information:

• The device identifier and shared secret string configured for the outbound HTTPS client

To establish a NETCONF or shell session over enhanced outbound HTTPS:

1. On the network management system, if you did not already start the gPRC server, start the server,
and specify the port for the connection.

user@nms:~$ python3 nc_grpc_server.py -p 50051
2020-08-03 13:45:52,278 [INFO] /home/user/
2020-08-03 13:45:52,279 [INFO] first parent process is exited
2020-08-03 13:45:52,287 [INFO] second parent process is exited

2. To establish one or more sessions with a Junos device, execute the request_session.py script. Specify
the session type as well as the device ID and shared secret that you configured for that outbound
HTTPS client on the Junos device. For example:

82

• To request a csh session, which is the default, you do not need to specify a session type.

user@nms:~$ python3 request_session.py -d router1 -sk my-shared-secret

• To request a NETCONF session, include the -s netconf option.

user@nms:~$ python3 request_session.py -d router1 -sk my-shared-secret -s netconf

If the server successfully authenticates the Junos device, the requested session starts.

3. Verify that the session is established by reviewing the output.

• Shell sessions should display the csh session is started output, for example:

$
 csh session is started
whoami
 netconf-user
ls
 base-config.conf

• NETCONF sessions should display the NETCONF capabilities as shown here:

<!-- No zombies were killed during the creation of this user interface -->
<!-- user netconf-user, class j-super-user -->
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>urn:ietf:params:netconf:base:1.0</capability>
 <capability>urn:ietf:params:netconf:capability:candidate:1.0</capability>
 ...
 <capability>http://xml.juniper.net/netconf/junos/1.0</capability>
 <capability>http://xml.juniper.net/dmi/system/1.0</capability>
 </capabilities>
 <session-id>57602</session-id>
</hello>
]]>]]>

83

4. Perform NETCONF or shell operations as necessary.

<rpc><get-configuration/></rpc>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:junos="http://
xml.juniper.net/junos/20.3R1/junos">
<configuration xmlns="http://xml.juniper.net/xnm/1.1/xnm" junos:changed-seconds="1592517292"
junos:changed-localtime="2020-10-18 14:54:52 PDT">
...
</configuration>
</rpc-reply>
]]>]]>

5. When you are finished with the session, type Ctrl+C.

^CForce exit
Killed

6. When you are finished using the outbound HTTPS connection, you can stop the extension service
application on the Junos device by deleting or deactivating the relevant hierarchy in the
configuration and then committing the change.

user@R0# delete system extensions extension-service application file nc_grpc_app.pyc
user@R0# commit and-quit

NETCONF Sessions over Outbound HTTPS

SUMMARY

Client applications can establish Network
Configuration Protocol (NETCONF) sessions using
outbound HTTPS on supported devices running
Junos OS Release 20.2.

IN THIS SECTION

Understanding NETCONF Sessions over
Outbound HTTPS | 85

How to Establish a NETCONF Session over
Outbound HTTPS | 87

84

This topic discusses how to establish NETCONF sessions using outbound HTTPS on devices running
Junos OS Release 20.2. For information about establishing NETCONF and shell sessions using enhanced
outbound HTTPS, see "NETCONF and Shell Sessions over Enhanced Outbound HTTPS" on page 68.

Understanding NETCONF Sessions over Outbound HTTPS

IN THIS SECTION

Benefits of NETCONF Sessions over Outbound HTTPS | 85

NETCONF Sessions over Outbound HTTPS Overview | 85

Connection Workflow for Sessions over Outbound HTTPS | 86

Benefits of NETCONF Sessions over Outbound HTTPS

• Enable NETCONF client applications to manage devices that are not accessible through other
protocols.

• Enable remote management of devices using certificate-based authentication for the outbound
HTTPS client.

NETCONF Sessions over Outbound HTTPS Overview

You can establish NETCONF sessions over outbound HTTPS between supported Junos devices and a
network management system. A NETCONF session over outbound HTTPS enables you to remotely
manage devices that might not be accessible through other protocols such as SSH. This might happen,
for example, if the device is behind a firewall, and the firewall or another security tool blocks those
protocols. HTTPS, on the other hand, uses a standard port, which is typically allowed outbound in most
environments.

On supported devices, Junos OS includes a Juniper Extension Toolkit (JET) application that supports
establishing a NETCONF session using outbound HTTPS. The JET application uses the gRPC framework
to connect to the outbound HTTPS client, which consists of a gRPC server running on the network
management system. gRPC is a language-agnostic, open-source remote procedure call (RPC) framework.
Figure 3 on page 86 illustrates the outbound HTTPS setup in its simplest form.

85

Figure 3: NETCONF Sessions over Outbound HTTPS

In this scenario, the gRPC server acts as the NETCONF client, and the JET application is the gRPC client
and NETCONF server. The gRPC server listens for connection requests on the specified port, which
defaults to port 443. You configure the JET application as an extension service. The relevant connection
and authentication information is passed to the script. While the script runs, it automatically attempts to
connect to the gRPC server on the configured host and port.

The JET application and gRPC server establish a persistent HTTPS connection over a TLS-encrypted
gRPC session. The JET application authenticates the gRPC server using an X.509 digital certificate, and
if the authentication is successful, the requested NETCONF session is established over this connection.
The NETCONF operations execute under the account privileges of the user configured for the extension
service application.

The outbound HTTPS connection uses an X.509 digital certificate to authenticate the gRPC server. A
digital certificate is an electronic means for verifying your identity through a trusted third party, known
as a certificate authority or certification authority (CA). A certificate authority issues digital certificates,
which can be used to establish a secure connection between two endpoints through certificate
validation. The X.509 standard defines the format for the certificate. To establish a NETCONF session
over outbound HTTPS on supported Junos devices, the gRPC server must have a valid X.509 certificate.

The basic outbound HTTPS feature provides support for connecting to a single outbound HTTPS client
and configuring one gRPC server for that client. Server authentication must use a self-signed X.509
certificate. You can establish a single NETCONF session over the connection.

Connection Workflow for Sessions over Outbound HTTPS

In a NETCONF session over outbound HTTPS, the gRPC server running on the network management
system acts as the NETCONF client, and the JET application on the Junos device is the gRPC client and
NETCONF server.

86

The gRPC client and server perform the following actions to establish a NETCONF session over
outbound HTTPS:

1. The gRPC server listens for incoming connections on the specified port, or if no port is specified, on
the default port 443.

2. The gRPC client initiates a TCP/IP connection with the configured gRPC server and port.

3. The gRPC client sends a TLS ClientHello message to initiate the TLS handshake.

4. The gRPC server sends a ServerHello message and its certificate.

5. The gRPC client verifies the identity of the gRPC server.

6. The NETCONF session is established.

7. The server and client exchange NETCONF <hello> messages.

8. The NETCONF client application performs operations as needed.

How to Establish a NETCONF Session over Outbound HTTPS

IN THIS SECTION

Obtain an X.509 Certificate for the gRPC Server | 88

Set Up the gRPC Server | 91

Configure the User Account for the NETCONF User | 92

Configure the Outbound HTTPS Client | 93

Configure the Outbound HTTPS Extension Service on Junos Devices | 95

Start the NETCONF Session | 97

You can use the JET application that is included as part of the Junos software image to establish a
NETCONF session over outbound HTTPS between a network management system (NMS) and
supported Junos devices. The JET application, configured as an extension service, initiates a connection
to a gRPC server running on an NMS and establishes a persistent HTTPS connection over a TLS-
encrypted gRPC session. The NETCONF session runs over this HTTPS connection. In this scenario, the
gRPC server is the NETCONF client, and the JET application is the gRPC client and NETCONF server.

The following hardware and software are required for establishing a NETCONF session over outbound
HTTPS:

• Network management system running Python 3.5 or later

87

• Device running Junos OS with upgraded FreeBSD Release 20.2 that also supports running JET
applications

NOTE: For supported devices, see Feature Explorer NETCONF sessions over outbound
HTTPS.

Figure 4 on page 88 illustrates the setup referenced in the tasks that follow.

Figure 4: NETCONF over Outbound HTTPS Topology

Before the client and server can establish a NETCONF session over outbound HTTPS, you must satisfy
the requirements discussed in the following sections:

Obtain an X.509 Certificate for the gRPC Server

The outbound HTTPS connection uses an X.509 public key certificate to authenticate the identity of the
gRPC server running on the network management system. The gRPC stack supports the X.509 v3
certificate format.

The requirements for the gRPC server’s certificate are:

• The certificate must be self-signed.

• The certificate must define either the gRPC server’s hostname in the Common Name (CN) field, or it
must define the gRPC server’s IP address in the SubjectAltName (SAN) IP Address field. The Junos
device must use the same value to establish the connection to the server. If the certificate defines
the SubjectAltName IP Address field, the device ignores the Common Name field during
authentication.

• The certificate must be PEM-encoded and use a .crt extension.

• The certificate and its key must be named server.crt and server.key, respectively.

To use OpenSSL to obtain a certificate:

88

https://apps.juniper.net/feature-explorer/feature-info.html?fKey=9441&fn=NETCONF+sessions+over+outbound+HTTPS
https://apps.juniper.net/feature-explorer/feature-info.html?fKey=9441&fn=NETCONF+sessions+over+outbound+HTTPS

1. Generate a private key, and specify the key length in bits.

user@nms:~$ openssl genrsa -out server.key 4096
Generating RSA private key, 4096 bit long modulus (2 primes)
...++++
..++++
e is 65537 (0x010001)

NOTE: We recommend using 3072 bits or greater for the size of the private key.

2. If you are connecting to the gRPC server’s IP address, update your openssl.cnf or equivalent
configuration file to define the subjectAltName=IP extension with the gRPC server’s address.

user@nms:~$ cat openssl.cnf
OpenSSL configuration file.
...
extensions = v3_sign
...
[v3_sign]
subjectAltName=IP:198.51.100.11

3. Generate a certificate signing request (CSR), which contains the client’s public key and information
about their identity.

user@nms:~$ openssl req -new -key server.key -out server.csr
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:CA
Locality Name (eg, city) []:Sunnyvale
Organization Name (eg, company) [Internet Widgits Pty Ltd]: Juniper
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:nms.example.com
Email Address []:
Please enter the following 'extra' attributes

89

to be sent with your certificate request
A challenge password []:
An optional company name []:

4. Generate the certificate.

Sign the CSR with the server key to generate a self-signed client certificate, and include the -extfile
option if you need to reference your configuration file and extensions.

user@nms:~$ openssl x509 -req -in server.csr -signkey server.key -out server.crt -days 365 -
sha256 -extfile openssl.cnf
Signature ok
subject=C = US, ST = CA, L = Sunnyvale, O = Juniper, CN = nms.example.com
Getting Private key

5. Verify that the Common Name (CN) field and extensions, if provided, are correct.

user@nms:~$ openssl x509 -text -noout -in server.crt
Certificate:
 Data:
 Version: 3 (0x2)
 ...
 Subject: C = US, ST = CA, L = Sunnyvale, O = Juniper, CN = nms.example.com
 ...
 X509v3 extensions:
 X509v3 Subject Alternative Name:
 IP Address:198.51.100.11
 ...

6. (Optional) Copy the server.crt file to the /var/db/scripts/jet directory on the device running Junos
OS to use the certificate file for authentication.

user@nms:~$ scp server.crt <device-hostname-or-ip>:/var/db/scripts/jet

Password:
server.crt 100%
1862 3.9MB/s 00:00

90

NOTE: You can omit this step if the key size is less than or equal to 4096 bits and you
instead configure the certificate’s contents in the JET application’s trusted_certs
argument on the Junos device.

Set Up the gRPC Server

The network management system requires the following software:

• Python 3.5 or later

The network management system and the JET application on the Junos device use the gRPC framework
to establish a persistent HTTPS connection over a TLS-encrypted gRPC session. The network
management system must have the gRPC stack installed and run a gRPC server that listens on the
specified port for the connection request. Juniper Networks provides the necessary proto definition files
and sample gRPC server application files in the Juniper Networks netconf-https-outbound repository on
GitHub.

This section sets up the gRPC server on a network management system running Ubuntu 18.04. If you
are running a different operating system, use the commands appropriate for your OS.

To set up the gRPC server on a network management system running Ubuntu 18.04:

1. Install pip for Python 3.

user@nms:~$ sudo apt install python3-pip

2. Install the grpcio package.

user@nms:~$ sudo pip3 install grpcio==1.29.0

3. Install the grpcio-tools package.

user@nms:~$ sudo pip3 install grpcio-tools==1.18.0

4. Go to the Juniper GitHub repository at https://github.com/Juniper/netconf-https-outbound, and
select the directory corresponding to the release running on the Junos device.

5. Download the application and proto files in the GitHub directory to the directory on the network
management system where the gRPC server’s certificate resides.

a. Select each file, click the Raw button, and copy the URL for the file.

91

https://github.com/Juniper/netconf-https-outbound
https://github.com/Juniper/netconf-https-outbound

b. Download the file by using the URL with the download tool of your choice, for example, wget or
curl.

user@nms:~$ ls
nc_grpc.proto nc_grpc_server.py server.crt

6. Use the protocol buffer compiler, protoc, to compile each proto definition file and generate Python
code, which produces two output files for each proto file.

user@nms:~$ python3 -m grpc_tools.protoc -I./ --python_out=. --grpc_python_out=.
filename.proto

For example:

user@nms:~$ python3 -m grpc_tools.protoc -I./ --python_out=. --grpc_python_out=. nc_grpc.proto

7. Start the gRPC server, and specify the port for the connection, if it’s different from the default port
443.

user@nms:~$ python3 nc_grpc_server.py -p 50051

NOTE: You might need to execute the script with root permissions to listen on port
443.

The gRPC server listens indefinitely on the specified port for incoming connections. After you configure
the Junos device to connect to the gRPC server and a connection and session are established, you can
perform NETCONF operations as appropriate.

Configure the User Account for the NETCONF User

To establish a NETCONF session over outbound HTTPS, you must create a user account locally on the
Junos device. You use this account to perform the NETCONF operations on the device for that session.
The JET application runs using the permissions configured for this account.

To create a user account on a Junos device:

92

1. Configure the user statement with a unique username, and include the class statement to specify a
login class that has the permissions required for all actions to be performed by the user. For example:

[edit system login]
user@R0# set user netconf-user class super-user

2. (Optional) Configure the uid and full-name statements to specify a unique user ID and the user’s name.

[edit system login]
user@R0# set user netconf-user uid 2001 full-name "NETCONF User"

3. Commit the configuration to activate the user account on the device.

[edit system login]
user@R0# commit

4. Repeat the preceding steps on each Junos device where the client needs to establish NETCONF
sessions over outbound HTTPS.

Configure the Outbound HTTPS Client

The JET application can connect to only one outbound HTTPS client. You configure the connection and
authentication information for the client as command-line arguments to the JET script. Table 6 on page
93 outlines the arguments.

Table 6: nc_grpc_app.py Arguments

Argument Value

--device or -d The hostname or IPv4 address of the gRPC server to which the JET application connects.
The argument value must match the hostname in the Common Name (CN) field or the IP
address in the SubjectAltName IP address field in the gRPC server's certificate.

--port or -p (Optional) Port on which the JET application attempts to connect to the gRPC server.
Omit this argument to use the default port 443.

93

Table 6: nc_grpc_app.py Arguments (Continued)

Argument Value

--trusted_certs or -ts (Optional) The gRPC server's certificate contents between the -----BEGIN
CERTIFICATE----- and -----END CERTIFICATE----- lines, omitting any newlines.

You can omit this argument if you instead copy the certificate to the /var/db/scripts/jet
directory on the device. You must copy the certificate to the device for key sizes greater
than 4096 bits.

Before you begin, you will need the values for the script arguments, including:

• The port on which the gRPC server is listening for connections.

• The contents of the SubjectAltName IP Address field, or if there is no such field, the contents of the
Common Name (CN) field in the gRPC server's certificate.

• The contents of the gRPC server's certificate between -----BEGIN CERTIFICATE----- and -----END
CERTIFICATE-----, omitting any newlines. This information is only required when you configure the
certificate contents as a script argument instead of copying the certificate to the device running
Junos OS.

To configure the outbound HTTPS client:

1. Navigate to the hierarchy of the nc_grpc_app.py extension service application.

[edit]
user@R0# edit system extensions extension-service application file nc_grpc_app.py

2. Configure the arguments that are passed to the application when it starts.

[edit system extensions extension-service application file nc_grpc_app.py]
user@R0# set arguments "--device 198.51.100.11 --port 50051 --trusted_certs MIIFR***fhd7y"

3. Commit the configuration.

[edit system extensions extension-service application file nc_grpc_app.py]
user@R0# commit

94

Configure the Outbound HTTPS Extension Service on Junos Devices

Junos releases that support NETCONF sessions over outbound HTTPS include a JET application and
supporting files in the software image. Table 7 on page 95 outlines the files, which are located in
the /var/db/scripts/jet directory on the device.

Table 7: JET Files for Sessions over Outbound HTTPS

Files Description

nc_grpc_app.py JET application that uses the gRPC framework to establish a persistent HTTPS
connection with a gRPC server running on the network management system.

nc_grpc_pb2.py

nc_grpc_pb2_grpc.py

Required libraries

To configure the Junos device for sessions over outbound HTTPS:

1. Verify that the JET application and related files are present on the device.

user@R0> file list /var/db/scripts/jet/nc*
/var/db/scripts/jet/nc_grpc_app.py@ -> /packages/mnt/junos-runtime/var/db/scripts/jet/
nc_grpc_app.py
/var/db/scripts/jet/nc_grpc_pb2.py@ -> /packages/mnt/junos-runtime/var/db/scripts/jet/
nc_grpc_pb2.py
/var/db/scripts/jet/nc_grpc_pb2_grpc.py@ -> /packages/mnt/junos-runtime/var/db/scripts/jet/
nc_grpc_pb2_grpc.py

2. Enter configuration mode.

user@R0> configure
Entering configuration mode

3. Enable the device to run unsigned Python 3 applications.

[edit]
user@R0# set system scripts language python3

95

4. Navigate to the hierarchy of the extension service application.

[edit]
user@R0# edit system extensions extension-service application file nc_grpc_app.py

5. Configure the application to run in the background as a daemonized process.

[edit system extensions extension-service application file nc_grpc_app.py]
user@R0# set daemonize

6. Configure the application to respawn on normal exit.

[edit system extensions extension-service application file nc_grpc_app.py]
user@R0# set respawn-on-normal-exit

7. Configure the usename under whose privileges the application executes and the NETCONF
operations are performed.

[edit system extensions extension-service application file nc_grpc_app.py]
user@R0# set username netconf-user

8. Commit the configuration.

[edit system extensions extension-service application file nc_grpc_app.py]
user@R0# commit and-quit

When you commit the configuration, the daemonize option causes the application to start
automatically.

9. Verify that the application is running.

user@R0> show extension-service status nc_grpc_app.py
Extension service application details:
Name : nc_grpc_app
Arguments: -device 198.51.100.11 -port 50051 -trusted_certs *****
Stack-Segment-Size: 16777216B
Data-Segment-Size: 0B

After the application successfully starts, it logs messages to the outbound_https.log file.

96

NOTE: If the application does not automatically start after you commit the configuration,
review the log messages related to this application to troubleshoot the issue. In Junos
OS, issue the show log jet.log command.

Start the NETCONF Session

The gRPC server running on the network management system acts as the NETCONF client, and the JET
application on the Junos device acts as the gRPC client and NETCONF server. After you start the gRPC
server and JET application, the JET application attempts to connect to the gRPC server on the specified
port. If the connection is successful, the gRPC client authenticates the gRPC server. If the server
authentication is successful, the NETCONF session starts automatically.

To establish a NETCONF session over outbound HTTPS:

1. On the network management system, if you did not already start the gPRC server, start the server,
and specify the port for the connection.

user@nms:~$ python3 nc_grpc_server.py -p 50051
server started

The NETCONF session starts automatically.

2. Verify that the session is successfully established by reviewing the output.

NETCONF sessions should display the NETCONF capabilities as shown here:

Initial hand shake completed and the client is trusted
<!-- No zombies were killed during the creation of this user interface -->
<!-- user netconf-user, class j-super-user -->
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>urn:ietf:params:netconf:base:1.0</capability>
 <capability>urn:ietf:params:netconf:capability:candidate:1.0</capability>
 ...
 <capability>http://xml.juniper.net/netconf/junos/1.0</capability>
 <capability>http://xml.juniper.net/dmi/system/1.0</capability>
 </capabilities>
 <session-id>57602</session-id>
</hello>
]]>]]>

97

3. Perform NETCONF operations as necessary.

<rpc><get-configuration/></rpc>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:junos="http://
xml.juniper.net/junos/20.2R1/junos">
<configuration xmlns="http://xml.juniper.net/xnm/1.1/xnm" junos:changed-seconds="1592517292"
junos:changed-localtime="2020-09-18 14:54:52 PDT">
...
</configuration>
</rpc-reply>
]]>]]>

4. When you are finished with the session, type Ctrl+C.

^CForce exit
Killed

5. When you are finished using the outbound HTTPS connection, you can stop the extension service
application on the Junos device by deleting or deactivating the relevant hierarchy in the
configuration and then committing the change.

user@R0# delete system extensions extension-service application file nc_grpc_app.py
user@R0# commit and-quit

NETCONF Call Home Sessions

SUMMARY

NETCONF Call Home enables a NETCONF server to
initiate a secure connection to a NETCONF client.
The NETCONF client can then establish an SSH
session and NETCONF session with the server.

IN THIS SECTION

Understanding NETCONF Call Home | 99

How to Set Up NETCONF Call Home | 101

NETCONF Call Home enables a NETCONF client to remotely manage Junos devices in cases where the
client cannot initiate a connection to the network device. The Junos device that is acting as the
NETCONF server initiates and maintains secure connections to a predefined set of NETCONF clients.
The following sections discuss the NETCONF Call Home feature.

98

Understanding NETCONF Call Home

IN THIS SECTION

NETCONF Call Home Overview | 99

Benefits of NETCONF Call Home | 101

NETCONF Call Home Overview

For normal NETCONF sessions over SSH, the NETCONF client first initiates a TCP connection to the
Junos device that is acting as the NETCONF server. The client then starts the SSH session followed by
the NETCONF session. In a NETCONF call home scenario, the roles of the TCP server and client are
reversed. The NETCONF server initiates the TCP connection to the NETCONF client. After the
connection is established, the NETCONF client then starts the SSH session and NETCONF session as
normal.

NETCONF Call Home enables you to remotely manage Junos devices that might not be otherwise
accessible. This might happen, for example, if the device is behind a firewall, and the firewall or another
security tool restricts management access to the device or implements Network Address Translation
(NAT). In such cases, the NETCONF client might not be able to initiate the connection with the Junos
device. However, you can configure the Junos device to initiate, establish, and maintain a connection
with a predefined set of network management systems.

You can use NETCONF Call Home in the following scenarios:

• Initial deployment

• General device management

Figure 5 on page 100 outlines the call home sequence. In a NETCONF call home scenario, the network
management system (NMS) is the TCP server, and the Junos device is the TCP client. You configure the
TCP server to listen for connection requests on a specified port. The NETCONF Call Home standard
port is 4334, but you can configure any valid port number that does not conflict with another service.
You configure the Junos device to connect to one or more predefined network management systems on
the specified port. After the devices establish a TCP connection, the NMS assumes its role as SSH client
and NETCONF client.

99

Figure 5: NETCONF Call Home Connection

The NETCONF client initiates an SSH session over the TCP connection. During SSH session
establishment, the NETCONF client must authenticate the server by validating the server's presented
host key or certificate. The NETCONF server must also authenticate the client. The client can choose
any SSH authentication method supported by the server. The server first checks certificate-based
authentication, then key-based authentication, and finally password-based authentication.

We recommend using SSH certificate-based authentication for users and hosts. Certificate-based
authentication enables you to set up SSH access to a device with password-less login for users and gives
the capability to trust hosts without the need to verify key fingerprints. Additionally, you can define the
length of time that a given certificate is valid. For certificate-based authentication, the server and client
each send their SSH certificate. You must configure the client with the CA public key that verifies the
server's certificate. Similarly, you must configure the server with the CA public key that verifies the
client's certificate.

NOTE: Junos OS includes a customized implementation of OpenSSH for device
management. Security fixes are backported as needed, independent of the OpenSSH
version numbers. The version displayed in CLI output (for example, show version) may not
reflect all applied patches. Always refer to Juniper Security Advisories (JSAs) for
vulnerability impact assessments.

For more information about NETCONF Call Home, see RFC 8071, NETCONF Call Home and
RESTCONF Call Home.

100

https://www.rfc-editor.org/rfc/rfc8071.txt
https://www.rfc-editor.org/rfc/rfc8071.txt

Benefits of NETCONF Call Home

• NETCONF Call Home can streamline the initial deployment of devices.

• NETCONF Call Home using certificate-based authentication can simplify the management and
scaling of authentication keys and offer stronger security compared to traditional password-based
approaches.

How to Set Up NETCONF Call Home

IN THIS SECTION

Configure the Junos User Account | 101

Configure SSH Authentication | 102

Enable the NETCONF Service | 112

Configure the Junos Device to Connect to the NETCONF Call Home Client | 113

To configure NETCONF Call Home, perform the steps described in the following sections:

Configure the Junos User Account

For all SSH authentication methods, the NETCONF client needs a local user account or user template
account on each device where it establishes a NETCONF session.

To create a local user template account:

1. Configure the user statement at the [edit system login] hierarchy level and specify a username. Include
the class statement, and specify a login class that has the permissions required for all actions to be
performed by the user.

[edit system login]
user@host# set user username class class-name

2. Commit the configuration

[edit]
user@host# commit

101

3. Repeat the preceding steps on each Junos device where the client application establishes NETCONF
sessions.

Configure SSH Authentication

IN THIS SECTION

Configure Password-Based Authentication | 102

Configure Key-Based Authentication | 103

Configure Certificate-Based Authentication | 104

During SSH session establishment, the NETCONF client authenticates the server by validating the
server's presented host key or certificate. Similarly, the NETCONF server authenticates the client. The
server first checks certificate-based authentication, then key-based authentication, and finally
password-based authentication. You must configure the server and client for whichever authentication
method you choose. The SSH authentication methods are described in the following sections:

Configure Password-Based Authentication

If the NETCONF client uses password-based authentication, configure the Junos user account with a
password.

To create a text-based password:

1. Include the plain-text-password or encrypted-password statement for the user account.

• To enter a password as text, issue the following command. You are prompted for the password,
which is encrypted before being stored.

[edit system login user username authentication]
user@host# set plain-text-password
New password: password
Retype new password: password

102

To store a pre-encrypted password, for example, a password that you previously created and
hashed using Message Digest 5 (MD5), issue the following command:

[edit system login user username authentication]
user@host# set encrypted-password "password"

2. Commit the configuration.

[edit system login user username authentication]
user@host# commit

3. Repeat the preceding steps on each Junos device where the client application establishes NETCONF
sessions using password-based authentication.

Configure Key-Based Authentication

If the NETCONF client uses key-based authentication, first generate the user's SSH key pair on the
configuration management server. Then configure the public key under the corresponding user account
on the Junos device.

To configure key-based authentication for the NETCONF client:

1. Generate the SSH key pair for the given user.

On the network management system, issue the ssh-keygen command and provide the appropriate
arguments.

user@nms:~$ ssh-keygen options

For example:

netconf-user@nms:~$ ssh-keygen -t rsa -b 4096
Generating public/private rsa key pair.
Enter file in which to save the key (/home/netconf-user/.ssh/id_rsa):
Created directory '/home/netconf-user/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/netconf-user/.ssh/id_rsa
Your public key has been saved in /home/netconf-user/.ssh/id_rsa.pub
...

103

By default, the ssh-keygen command stores the public and private keys in files in the .ssh subdirectory
of the user home directory; the filename depends on the encoding and SSH version. See the ssh-
keygen manual page for more information about the command options.

2. On the Junos device, associate the public key with the Junos login account for that user.

[edit system login user username authentication]
user@host# set load-key-file URL

Junos OS copies the contents of the specified file onto the device running Junos OS. URL is the path
to the file that contains one or more public keys. For information about specifying URLs, see the CLI
User Guide.

NOTE: Alternatively, you can configure the public key by including the ssh-rsa or
equivalent statement at the [edit system login user username authentication] hierarchy level.

3. Commit the configuration.

[edit]
user@host# commit

4. Repeat the steps for configuring the public key on each Junos device where the client application
establishes a NETCONF session.

During the initialization of the SSH connection, the client can authenticate the identity of the NETCONF
server by using the server's public key. You can either install the server's public key on the network
management system, or you can pass in the key during session initialization.

Configure Certificate-Based Authentication

NETCONF Call Home supports using SSH certificates for authentication. An SSH certificate comprises
an SSH public key that has been signed by a certificate authority (CA). A CA private key (signing key)
signs the host public key to generate the host certificate. Similarly a CA private key signs the user public
key to generate the user certificate. The host certificate authenticates the host to users, and the user
certificate authenticates the user to hosts.

You can use OpenSSH to create SSH certificates and the associated CA infrastructure. The OpenSSH
certificate specifies a public key, identity information, and validity constraints. To use SSH certificates for
authentication you must:

• Create the certificate authorities and generate the CA signing keys.

104

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-cli/junos-cli.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-cli/junos-cli.html

• Generate the user's SSH key pair.

• Generate the user and host certificates by using the CA private key to sign the user public key and
host public key.

• Configure the CA public key as trusted on the Junos device and the network management system.

• Configure the authorized principals on the Junos device.

By default, generated certificates are valid for all users. To limit the user certificate to a specific set of
users (principals), you must specify the authorized principals when you generate the certificate. Junos
devices require certificates that specify one or more authorized principals. You must also configure the
list of authorized principals on the Junos device. If any authorized principal configured on the device
matches an authorized principal in the certificate, the device authenticates the certificate. The
connecting user is authorized even if they are not explicitly configured as an authorized principal in the
certificate or on the device.

To configure certificate-based authentication, perform the following steps:

Generate the Certificate Authorities

1. On any Linux/FreeBSD system, generate the certificate authority signing keys.

user@nms:~$ ssh-keygen -t type -f output-key-file -N passphrase -b bits

For example, the following commands create separate CA signing keys for signing the user and host
certificates.

user@nms:~$ sudo ssh-keygen -t rsa -f /root/.ssh/user_ca -N "" -b 4096
Generating public/private rsa key pair.
Your identification has been saved in /root/.ssh/user_ca
Your public key has been saved in /root/.ssh/user_ca.pub
The key fingerprint is:
SHA256:0GbR/Lar1eH3/lULO66XSikD+gSwbibgTtFdnHNwlKg root@nms
...

user@nms:~$ sudo ssh-keygen -t rsa -f /root/.ssh/host_ca -N "" -b 4096
Generating public/private rsa key pair.
Your identification has been saved in /root/.ssh/host_ca
Your public key has been saved in /root/.ssh/host_ca.pub
The key fingerprint is:

105

SHA256:Aps80CYHqK8jRaMt2BNkjS1SrJpuEcgF7QTlBoB/ygI root@nms
...

2. Configure the network management system to trust the host CA.

Copy the contents of the host CA public key and add it to the global or user's SSH known hosts file
to mark it as a trusted CA. In the following example, we copy the host CA public key contents and
add @cert-authority * host-ca-public-key to the user's known_hosts file.

user@nms:~$ sudo cat /root/.ssh/host_ca.pub
ssh-rsa AAAAB3Nz...

user@nms:~$ cat ~/.ssh/known_hosts
@cert-authority * ssh-rsa AAAAB3Nz...

NOTE: The NMS uses the host CA public key to verify the host certificate. To trust the
certificate for only specific hosts or domains, replace the wildcard (*) with the
appropriate host or domain names.

3. Copy the user CA public key to the Junos device.

user@nms:~$ scp path-to-user-CA-public-key user@device-ip:/var/tmp/

For example:

user@nms:~$ sudo scp /root/.ssh/user_ca.pub user@198.51.100.1:/var/tmp/

4. On the Junos device, configure the user CA public key as a trusted CA key.

[edit system services ssh]
user@host# set trusted-user-ca-key-file path-to-user-CA-public-key

106

The following example adds the CA public key that is stored in the user_ca.pub file as a trusted user
CA key.

[edit system services ssh]
user@host# set trusted-user-ca-key-file /var/tmp/user_ca.pub
user#host# commit

When you configure this statement, the device adds the user CA public key to the /var/etc/
ssh_trusted_user_ca.pub file. The Junos device uses the user CA public key to verify the user
certificate during SSH session establishment.

Generate the User Certificate

To generate the SSH certificate for the NETCONF client:

1. On the client NMS, generate an SSH key pair for the user.

user@nms:~$ ssh-keygen -t (rsa | ecdsa | ed25519) -f output-key-file -N passphrase -b bits

For example:

lab@nms:~$ ssh-keygen -t rsa -f ~/.ssh/id_rsa -N "" -b 4096
Generating public/private rsa key pair.
Your identification has been saved in /home/lab/.ssh/id_rsa
Your public key has been saved in /home/lab/.ssh/id_rsa.pub
...

2. Copy the user's public key to the CA server that has the CA signing keys, if the devices are different.

3. Generate the user certificate.

Use the user CA private key to sign the user's public key, and specify the list of authorized principals
(users) that can access the Junos device using this certificate.

user@nms:~$ ssh-keygen -s path-to-user-ca-private-key -I key-identity -n
principal1,principal2,principal3 -V validity-interval path-to-user-public-key

107

The following command uses the CA private key stored in user_ca to sign the user's public key stored
in id_rsa.pub. The certificate is valid for two principals: lab and netconf-user.

user@nms:~$ sudo ssh-keygen -s /root/.ssh/user_ca -I netconfusers -n lab,netconf-user -V
+52w6d /home/lab/.ssh/id_rsa.pub
Signed user key /home/user/.ssh/id_rsa-cert.pub: id "netconfusers" serial 0 for lab,netconf-
user valid from 2024-04-11T17:47:00 to 2025-04-16T17:48:20

4. Verify that the user certificate is created.

user@nms:~$ ssh-keygen -Lf path-to-user-cert

For the previous step, the command creates the id_rsa-cert.pub file.

lab@nms:~$ ssh-keygen -Lf /home/lab/.ssh/id_rsa-cert.pub
/home/lab/.ssh/id_rsa-cert.pub:
 Type: ssh-rsa-cert-v01@openssh.com user certificate
 Public key: RSA-CERT SHA256:SMInnJm8SXfsYLm7NvQZqcaGpuXc9QuraKZSsewdFKM
 Signing CA: RSA SHA256:0GbR/Lar1eH3/lULO66XSikD+gSwbibgTtFdnHNwlKg (using rsa-
sha2-512)
 Key ID: "netconfusers"
 Serial: 0
 Valid: from 2024-04-11T17:51:00 to 2025-04-16T17:52:45
 Principals:
 lab
 netconf-user
 Critical Options: (none)
 Extensions:
 permit-X11-forwarding
 permit-agent-forwarding
 permit-port-forwarding
 permit-pty
 permit-user-rc

5. Copy the user certificate to the network management system, if the devices are different.

$ scp path-to-user-cert user@nms-ip:/home/user/.ssh

108

6. Ensure the user certificate file owner and permissions are correct.

user@nms:~$ sudo chown user:group /home/user/.ssh/id_rsa-cert.pub
user@nms:~$ sudo chmod 644 /home/user/.ssh/id_rsa-cert.pub

7. Add the SSH key and certificate identities to the ssh-agent application, if they are not added
automatically. For example:

lab@nms:~$ ssh-add
Identity added: /home/lab/.ssh/id_rsa (lab@nms)
Certificate added: /home/lab/.ssh/id_rsa-cert.pub (netconfusers)

Generate the Host Certificate

The Junos device stores SSH keys in the /etc/ssh directory. To generate the host certificate, first copy
the host's public key to the CA server, and then use the host CA private key to sign the host public key.

1. On the Junos device, verify the host public keys.

user@host> file list /etc/ssh/*.pub
/etc/ssh/ssh_host_ec_p384_key.pub
/etc/ssh/ssh_host_ec_p521_key.pub
/etc/ssh/ssh_host_ecdsa_key.pub
/etc/ssh/ssh_host_ed25519_key.pub
/etc/ssh/ssh_host_rsa_key.pub

2. Copy the Junos device's public key to the CA server that has the CA signing keys.

user@host> scp /etc/ssh/ssh_host_rsa_key.pub user@ca-server-ip:/var/tmp/

3. Generate the host certificate.

Use the host CA private key to sign the host's public key, and specify the -h option to create a host
certificate.

user@nms:~$ ssh-keygen -s path-to-host-CA-private-key -I key-identity -h path-to-host-public-
key

109

The following command uses the CA private key stored in host_ca to sign the host's public key stored
in ssh_host_rsa_key.pub.

user@nms:~$ sudo ssh-keygen -s /root/.ssh/host_ca -I ssh_server -h /var/tmp/
ssh_host_rsa_key.pub
Signed host key /var/tmp/ssh_host_rsa_key-cert.pub: id "ssh_server" serial 0 valid forever

4. Verify that the host certificate is created.

user@nms:~$ ls path-to-host-certificate

For the previous step, the command creates the ssh_host_rsa_key-cert.pub file.

user@nms:~$ ls /var/tmp/ssh_host_rsa_key-cert.pub
/var/tmp/ssh_host_rsa_key-cert.pub

5. Copy the host certificate to the Junos device.

user@nms:~$ scp path-to-host-certificate user@device-ip:/var/tmp/

For example:

user@nms:~$ scp /var/tmp/ssh_host_rsa_key-cert.pub user@198.51.100.1:/var/tmp/

6. On the Junos device, configure the host certificate.

[edit system services ssh]
user@host# set host-certificate-file /var/tmp/ssh_host_rsa_key-cert.pub
user#host# commit

When you configure this statement, the device adds the host certificate to the /var/etc/
ssh_host_ca.pub file.

Configure the Authorized Principals

User certificates can be tied to specific users, or principals. Junos devices require that the user
certificate specify one or more authorized principals. You must also configure authorized principals on

110

the Junos device. The Junos device authenticates the certificate if at least one of the authorized
principals configured on the device matches an authorized principal in the certificate.

You can configure the list of authorized principals using several methods. You can load a file that
contains the list of authorized principals, each on a separate line. You can also configure the authorized
principal list directly in the configuration.

To configure the authorized principals:

1. (Optional) Create the authorized principals file and copy it to the Junos device.

user@host> file show /var/tmp/auth_principals_list
lab
netconf-user

2. Configure the authorized principals that can access the system using SSH certificates.

• To load a file containing the authorized principals, configure the authorized-principals-file
statement and specify the path of the file to load.

[edit system services ssh]
user@router# set authorized-principals-file filepath

For example:

[edit system services ssh]
user@router# set authorized-principals-file /var/tmp/auth_principals_list

• To configure one or more authorized principals directly in the configuration, use the authorized-
principals statement and specify a principal name or a list of principal names.

[edit system services ssh]
user@host# set authorized-principals principal
user@host# set authorized-principals [principal1 principal2 principal3]

For example:

[edit system services ssh]
user@host# set authorized-principals [lab netconf-user]

111

3. Commit the configuration.

[edit]
user@host# commit

When you configure authorized principals, the device adds the list of authorized principals to
the /var/etc/ssh_authorized_principals file.

Enable the NETCONF Service

To configure the NETCONF service for NETCONF Call Home on the Junos device:
1. Enable the NETCONF service on either the default NETCONF port (830) or a user-defined port.

• To use the default NETCONF port (830), do not specify a port number.

[edit system services]
user@host# set netconf ssh

• To use a specific port, configure the port number.

The port can range from 1 through 65535, however, you should avoid configuring access on a
port that is normally assigned for another service .

[edit system services]
user@host# set netconf ssh port port-number

2. Configure RFC-compliant NETCONF sessions.

[edit system services]
user@host# set netconf rfc-compliant

3. Configure YANG-compliant NETCONF sessions.

[edit system services]
user@host# set netconf yang-compliant

112

4. Commit the configuration:

[edit system services]
user@host# commit

Configure the Junos Device to Connect to the NETCONF Call Home Client

In a NETCONF call home scenario, the roles of the TCP server and client are reversed. You configure the
Junos device to initiate, establish, and maintain a connection with a predefined set of network
management systems. NETCONF Call Home uses outbound SSH to connect to the specified NETCONF
clients.

Before you begin:

• If you use SSH certificates for authentication, configure the user CA certificates, the host certificate,
and the authorized principals.

NOTE: The NETCONF call home client configuration registers the SSH certificate
configuration at the time that you commit the client configuration. You must configure
the host certificate and at least one user CA certificate and one authorized principal at
the time that you commit the client configuration. If you add these initial values later,
you must deactivate and commit the client configuration and then activate and commit
the client configuration for the values to take effect. If the initial values are configured
when you first activate the client configuration, then the client configuration will
automatically register any updates to the existing values.

To configure a NETCONF Call Home client on the Junos device:

1. At the [edit system services ssh] hierarchy level, set the SSH version to v2.

[edit system services ssh]
user@host# set protocol-version v2

2. Navigate to the outbound SSH client hierarchy, and define an identifier that uniquely identifies the
NETCONF Call Home client.

[edit]
user@host# edit system services outbound-ssh client client-id

113

For example:

[edit]
user@host# edit system services outbound-ssh client nms1

3. Configure the hostname or the IPv4 or IPv6 address for the NETCONF client. Additionally, specify
the port on which the NETCONF client (acting as the TCP server) is listening for connection
requests.

[edit system services outbound-ssh client nms1]
user@host# set address port port

For example:

[edit system services outbound-ssh client nms1]
user@host# set 198.51.100.10 port 4334

4. Define the device identifier, which is a user-defined string that identifies the Junos device to the
client during the initiation sequence.

[edit system services outbound-ssh client nms1]
user@host# set device-id device-id

For example:

[edit system services outbound-ssh client nms1]
user@host# set device-id router1

5. Define the method used to reestablish a disconnected outbound SSH connection as sticky or in-
order.

[edit system services outbound-ssh client nms1]
user@host# set reconnect-strategy in-order

6. Configure the NETCONF service for the session.

[edit system services outbound-ssh client nms1]
user@host# set services netconf

114

7. (Optional) Configure the Junos device to send keepalive messages to the management server.

[edit system services outbound-ssh client nms1]
user@host# set keep-alive retry num timeout seconds

For example, the following configuration sends a keepalive signal every 15 seconds (the default),
and terminates the SSH connection after sending 3 messages (the default) that do not receive a
response.

[edit system services outbound-ssh client nms1]
user@host# set keep-alive timeout 15 retry 3

8. (Optional) Configure the secret statement if you want pass the device's public key to the
management server during session initialization.

[edit system services outbound-ssh client nms1]
user@host# set secret password

When you configure this statement, the device passes its public key along with a SHA1 hash
derived in part from the secret statement to the management server during session initialization.
The client application can use the shared secret and hash to verify whether the presented host key
is from the device identified by the device-id statement.

9. Repeat the preceding steps for each NETCONF Call Home client that will manage the Junos device.

10. Commit the configuration.

[edit system services outbound-ssh client nms1]
user@R0# commit and-quit

After you configure the device to connect to the NETCONF Call Home client and commit the
configuration, the device attempts to initiate a TCP/IP connection with the client. The device continues
to create this connection until successful or until the NETCONF call home client configuration is deleted
or deactivated.

115

Each time the Junos device establishes an outbound SSH connection, it sends an initiation sequence
that identifies the device to the client. Within this transmission is the value of device-id. When you do
not configure the secret statement, the initiation sequence is:

MSG-ID: DEVICE-CONN-INFO\r\n
MSG-VER: V1\r\n
DEVICE-ID: <device-id>\r\n

If you configure the secret statement, the initiation sequence includes the Junos device's public key, and
a SHA1 hash derived in part from the secret statement. The client can compute the expected hash value
and compare it to the HMAC value to verify that the presented host key is from the device identified by
the device-id statement.

MSG-ID: DEVICE-CONN-INFO\r\n
MSG-VER: V1\r\n
DEVICE-ID: <device-id>\r\n
HOST-KEY: <public-host-key>\r\n
HMAC:<HMAC(pub-SSH-host-key, <secret>)>\r\n

The client authenticates the Junos device by validating the presented host key or certificate. Similarly,
the NETCONF server authenticates the client. The server first checks certificate-based authentication,
then key-based authentication, and finally password-based authentication. After the SSH session is
established, the client starts the NETCONF session.

NETCONF Sessions

SUMMARY

Understand NETCONF sessions on Junos devices.

IN THIS SECTION

Connect to the NETCONF Server Using
SSH | 117

Start a NETCONF Session | 118

Send Requests to the NETCONF
Server | 124

Parse the NETCONF Server Response | 127

116

Parse Response Tag Elements Using a
Standard API in NETCONF and Junos XML
Protocol Sessions | 130

Handle an Error or Warning in a NETCONF
Session | 130

Lock and Unlock the Candidate
Configuration | 132

Terminate a NETCONF Session | 134

End a NETCONF Session and Close the
Connection | 136

You can use the Network Configuration Protocol (NETCONF) to manage network devices. The following
sections provide an overview of NETCONF sessions on Junos devices.

Connect to the NETCONF Server Using SSH

IN THIS SECTION

SSH Library Routines | 117

ssh Command | 117

The most common method for connecting to the NETCONF server is to use SSH. Before a NETCONF
client can connect to the NETCONF server using SSH, you must satisfy the requirements described in
"Establish an SSH Connection for a NETCONF Session" on page 41. When the prerequisites are
satisfied, a NETCONF client can connect to the NETCONF server using one of the following methods:

SSH Library Routines

A NETCONF client uses SSH library routines to establish an SSH connection to the NETCONF server,
provide authentication, and create a channel that acts as an SSH subsystem for the NETCONF session.
Providing instructions for using library routines is beyond the scope of this document.

ssh Command

You can establish a NETCONF session as an SSH subsystem with a dedicated port. Alternatively, you
can establish a NETCONF session over the default SSH port and use pseudo-tty allocation. Using an
SSH subsystem over a dedicated port enables the device to easily identify and filter NETCONF traffic.

117

However, using the default SSH port with pseudo-tty allocation can provide visibility to the session, for
example, when issuing the show system users operational command.

The application must include code to intercept the NETCONF server’s prompt for the password or
passphrase. For example, the application can use a utility such as the expect command.

• To establish a NETCONF session as an SSH subsystem over the default NETCONF port (830), the
client application issues the following command:

ssh user@hostname -p 830 -s netconf

The -p option defines the port number on which the NETCONF server listens. This option can be
omitted if you enabled access to SSH over the default port.

The -s option establishes the NETCONF session as an SSH subsystem.

• To establish a NETCONF session over the default SSH port (22) and use pseudo-tty allocation, the
client application issues the following command:

ssh user@hostname -t netconf

NOTE: Using multiple -t options forces pseudo-tty allocation even if SSH has no local
tty.

Start a NETCONF Session

IN THIS SECTION

Exchanging <hello> Tag Elements | 119

Verifying Compatibility | 122

Each NETCONF session begins with a handshake in which the NETCONF server and the client
application specify their supported NETCONF capabilities. The following sections describe how to start
a NETCONF session.

118

Exchanging <hello> Tag Elements

The NETCONF server and client application each begin by emitting a <hello> tag element to specify
which operations, or capabilities, they support from among those defined in the NETCONF
specification. The client application must emit the <hello> element before any other element and must
only emit it once.

The <hello> tag encloses the following elements:

• <capabilities>—List of <capability> elements, which each define a supported function.

• <session-id>—UNIX process ID (PID) of the NETCONF server for the session.

Each capability defined in the NETCONF specification is represented in a <capability> element by a
uniform resource name (URN). Capabilities defined by individual vendors are represented by uniform
resource identifiers (URIs), which can be URNs or URLs. The NETCONF server emits a <hello> element
similar to the following output:

<hello>
 <capabilities>
 <capability>urn:ietf:params:netconf:base:1.0</capability>
 <capability>urn:ietf:params:netconf:capability:candidate:1.0</capability>
 <capability>
 urn:ietf:params:netconf:capability:confirmed-commit:1.0
 </capability>
 <capability>urn:ietf:params:netconf:capability:validate:1.0</capability>
 <capability>
 urn:ietf:params:netconf:capability:url:1.0?scheme=http,ftp,file
 </capability>
 <capability>urn:ietf:params:xml:ns:netconf:base:1.0</capability>
 <capability>
 urn:ietf:params:xml:ns:netconf:capability:candidate:1.0
 </capability>
 <capability>
 urn:ietf:params:xml:ns:netconf:capability:confirmed-commit:1.0
 </capability>
 <capability>
 urn:ietf:params:xml:ns:netconf:capability:validate:1.0
 </capability>
 <capability>
 urn:ietf:params:xml:ns:netconf:capability:url:1.0?protocol=http,ftp,file
 </capability>
 <capability>http://xml.juniper.net/netconf/junos/1.0</capability>

119

 <capability>http://xml.juniper.net/dmi/system/1.0</capability>
 </capabilities>
 <session-id>22062</session-id>
</hello>

The URIs in the <hello> element indicate the supported capabilities. Table 8 on page 120 lists some
common capabilities.

Table 8: Common Capabilities

Capability Description

urn:ietf:params:netconf:base:1.0 The NETCONF server supports the basic operations and
elements defined in the base NETCONF specification.

urn:ietf:params:netconf:base:1.1 The NETCONF session is compliant with RFC 6242, which
supports the chunked framing mechanism for message
framing.

urn:ietf:params:netconf:capability:candidate:1.0 The NETCONF server supports operations on a candidate
configuration.

urn:ietf:params:netconf:capability:confirmed-
commit:1.0

The NETCONF server supports confirmed commit
operations.

For more information, see "Commit the Candidate
Configuration Only After Confirmation Using NETCONF"
on page 325

urn:ietf:params:netconf:capability:validate:1.0 The NETCONF server supports the validation operation,
which verifies the syntactic correctness of a configuration
without actually committing it.

For more information, see "Verify the Candidate
Configuration Syntax Using NETCONF" on page 322.

urn:ietf:params:netconf:capability:url:1.0?
protocol=http,ftp,file

The NETCONF server accepts configuration data stored in
a file. It can retrieve files both from its local file system and
from remote machines by using HTTP or FTP.

For more information, see "Upload and Format
Configuration Data in a NETCONF Session" on page 279.

120

Table 8: Common Capabilities (Continued)

Capability Description

http://xml.juniper.net/netconf/junos/1.0 The NETCONF server supports:

• Operations defined in the Junos XML API for
requesting and changing operational information

• Junos XML protocol operations for requesting or
changing configuration information

NETCONF client applications should use only native
NETCONF operations and supported Junos XML protocol
extensions for configuration functions. The semantics of
corresponding Junos XML protocol operations and
NETCONF protocol operations are not necessarily
identical, so using Junos XML protocol configuration
operations other than the documented supported
extensions can lead to unexpected results.

http://xml.juniper.net/dmi/system/1.0 The NETCONF server supports the operations defined in
the Device Management Interface (DMI) specification.

By default, the NETCONF server does not advertise supported YANG modules in the NETCONF
capabilities exchange. To advertise supported YANG modules, configure one or more of the following
statements at the [edit system services netconf hello-message yang-module-capabilities] hierarchy level:

• advertise-custom-yang-modules—Advertise third-party YANG modules installed on the device.

• advertise-native-yang-modules—Advertise Junos OS native YANG modules.

• advertise-standard-yang-modules—Advertise standard YANG modules supported by the device, for
example, OpenConfig modules.

To comply with the NETCONF specification, the client application also emits a <hello> element to define
the capabilities it supports. It does not include the <session-id> element:

<hello>
<capabilities>
 <capability>first-capability</capability>
 <!-- tag elements for additional capabilities -->
</capabilities>

121

</hello>
]]>]]>

NETCONF sessions use a framing mechanism to separate the messages that the NETCONF server and
client send within the session. By default, a NETCONF session with a Junos device uses the character
sequence]]>]]> as a message separator. However, if you configure RFC 6242-compliant NETCONF
sessions, and both peers advertise the :base:1.1 capability in the capabilities exchange, the NETCONF
session uses chunked framing for the remainder of the session. Chunked framing is a standardized
framing mechanism that ensures that character sequences within XML elements are not misinterpreted
as message boundaries. For more information, see "Configure RFC-Compliant NETCONF Sessions" on
page 143.

The session continues when the client application sends a request to the NETCONF server. The
NETCONF server does not emit any elements after session initialization except in response to the client
application’s requests.

Verifying Compatibility

Exchanging <hello> tag elements enables the NETCONF server and client to determine if they support
the same capabilities. In addition, we recommend that the client application determine the Junos OS
version running on the NETCONF server. After emitting its <hello> tag, the client application can emit the
<get-software-information> request.

<rpc>
 <get-software-information/>
</rpc>
]]>]]>

The NETCONF server returns the <software-information> element, which encloses different tags depending
on the Junos OS variant. Junos OS returns the <host-name>, <product-name>, and <junos-version> elements. The
server also returns a <package-information> element for each software module. The <comment> elements
specify the Junos OS release and the build date. In the following example, the release is 24.4R1.9.

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:junos="http://xml.juniper.net/junos/24.4R1.9/junos">
<software-information>
 <host-name>balerion-mx204-a</host-name>
 <product-model>mx204</product-model>
 <product-name>JNP204 [MX204]</product-name>
 <os-name>junos</os-name>
 <junos-version>24.4R1.9</junos-version>

122

 <package-information>
 <name>os-kernel</name>
 <package-name>os-kernel-prd-x86-64-20241104.1ed86e6_builder_bsd15_244</package-name>
 <comment>JUNOS OS Kernel 64-bit [20241104.1ed86e6_builder_bsd15_244]</comment>
 </package-information>
 <package-information>
 <name>junos-modules</name>
 <package-name>junos-modules-x86-64-20241219.060016_builder_junos_244_r1</package-name>
 <comment>JUNOS modules [20241219.060016_builder_junos_244_r1]</comment>
 </package-information>
 <!-- <package-information> tag elements for additional modules -->
</software-information>
</rpc-reply>
]]>]]>

Normally, the version is the same for all Junos OS modules running on the device (we recommend this
configuration for predictable routing performance). Therefore, verifying the version number of just one
module is usually sufficient.

The client application is responsible for determining how to handle any differences in version or
capabilities. For fully automated performance, include code in the client application that determines
whether it supports the same capabilities and Junos OS version as the NETCONF server. When there
are differences, determine which of the following options is appropriate, and implement the
corresponding response:

• Ignore differences—Ignore differences in capabilities and Junos OS version, and do not alter the client
application’s behavior to accommodate the NETCONF server. A difference in Junos OS versions does
not necessarily make the server and client incompatible, so this is often a valid approach. Similarly, it
is a valid approach if the capabilities that the client application does not support are operations that
are always initiated by a client, such as validation of a configuration and confirmed commit. In that
case, the client maintains compatibility by not initiating the operation.

• Alter standard behavior to be compatible with the NETCONF server—If the client application is
running a later version of the Junos OS, for example, it can choose to emit only NETCONF and Junos
XML tag elements that represent the software features available in the NETCONF server’s version of
Junos OS.

• End the NETCONF session and terminate the connection—Use this option if you decide that it is not
practical to accommodate the NETCONF server’s version or capabilities.

123

Send Requests to the NETCONF Server

IN THIS SECTION

How to Send Requests | 124

Operational Requests | 125

Configuration Information Requests | 125

Configuration Change Requests | 126

How to Send Requests

To initiate a request to the NETCONF server, a client application emits the following:

• Opening <rpc> tag

• One or more tag elements that represent the particular request

• Closing </rpc> tag

<rpc>
 <!-- tag elements representing a request -->
</rpc>
]]>]]>

The application encloses each request in its own separate pair of opening <rpc> and closing </rpc> tags.
Each request must constitute a well-formed XML document by including only compliant and correctly
ordered tag elements. The NETCONF server ignores any newline characters, spaces, or other white
space characters that occur between tag elements in the tag stream, but it preserves white space within
tag elements.

Optionally, a client application can include one or more attributes of the form attribute-name="value" in the
opening <rpc> tag for each request. The NETCONF server echoes each attribute, unchanged, in the
opening <rpc-reply> tag in which it encloses its response.

A client application can use this feature to associate requests and responses by including an attribute in
each opening <rpc> request tag that assigns a unique identifier. The NETCONF server echoes the
attribute in its opening <rpc-reply> tag, making it easy to map the response to the initiating request. The
NETCONF specification specifies the name message-id for this attribute.

124

Although operational and configuration requests conceptually belong to separate classes, a NETCONF
session does not have distinct modes that correspond to CLI operational and configuration modes. Each
request tag element is enclosed within its own <rpc> tag, so a client application can freely alternate
operational and configuration requests. A client application can make three classes of requests:
operational requests, configuration information requests, and configuration change requests.

Operational Requests

Operational requests are requests for information about the status of a device. Operational requests
correspond to the Junos OS CLI operational mode commands. The Junos XML API defines a request tag
element for many CLI commands. For example, the <get-interface-information> tag element corresponds to
the show interfaces command, and the <get-chassis-inventory> tag element requests the same information
as the show chassis hardware command.

The following RPC requests detailed information about interface ge-2/3/0:

<rpc>
 <get-interface-information>
 <interface-name>ge-2/3/0</interface-name>
 <detail/>
 </get-interface-information>
</rpc>
]]>]]>

For more information about operational requests, see "Request Operational Information Using
NETCONF" on page 386.

For information about Junos XML request tags, see the XML API Explorer.

Configuration Information Requests

Configuration information requests are requests for information about the device’s candidate
configuration, a private configuration, the ephemeral configuration, or the committed (active)
configuration. The candidate and committed configurations diverge when there are uncommitted
changes to the candidate configuration.

The NETCONF protocol defines the <get-config> operation for retrieving configuration information. The
Junos XML API defines a tag element for every container and leaf statement in the configuration
hierarchy.

125

https://apps.juniper.net/xmlapi/

The following example requests information from the [edit system login] hierarchy level of the candidate
configuration:

<rpc>
 <get-config>
 <source>
 <candidate/>
 </source>
 <filter type="subtree">
 <configuration>
 <system>
 <login/>
 </system>
 </configuration>
 </filter>
 </get-config>
</rpc>
]]>]]>

For more information about configuration information requests, see "Request Configuration Data Using
NETCONF" on page 400.

For a summary of the available configuration tag elements, see the XML API Explorer.

Configuration Change Requests

Configuration change requests are requests to change the configuration, or to commit those changes on
the device. The NETCONF protocol defines the <edit-config> and <copy-config> operations for changing
configuration information. The Junos XML API defines a tag element for every container and leaf
statement in the configuration hierarchy.

The following example creates a Junos OS user account called admin at the [edit system login] hierarchy
level in the candidate configuration:

<rpc>
 <edit-config>
 <target>
 <candidate/>
 </target>
 <config>
 <configuration>
 <system>

126

https://apps.juniper.net/xmlapi/

 <login>
 <user>
 <name>admin</name>
 <full-name>Administrator</full-name>
 <class>superuser</class>
 </user>
 </login>
 <login/>
 </system>
 </configuration>
 </config>
 </edit-config>
</rpc>
]]>]]>

For more information about configuration change requests, see "Edit the Configuration Using
NETCONF" on page 277.

For a summary of the available configuration tag elements, see the XML API Explorer.

Parse the NETCONF Server Response

IN THIS SECTION

NETCONF Server Response Overview | 127

Operational Responses | 128

Configuration Information Responses | 129

Configuration Change Responses | 130

NETCONF Server Response Overview

In a NETCONF session, a client application sends RPCs to the NETCONF server to request information
and manage the device configuration. The NETCONF server encloses its response to each client request
in a separate pair of opening <rpc-reply> and closing </rpc-reply> tags. Each response constitutes a well-
formed XML document.

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" \
 xmlns:junos="http://xml.juniper.net/junos/release/junos" \
 [echoed attributes]>

127

https://apps.juniper.net/xmlapi/

 <!-- tag elements representing a response -->
</rpc-reply>
]]>]]>

The xmlns attribute in the opening <rpc-reply> tag defines the namespace for enclosed tag elements that
do not have the junos: prefix in their names and that are not enclosed in a child container tag that has
the xmlns attribute with a different value.

NOTE: If you configure the rfc-compliant statement on the device, the NETCONF server
explicitly declares the NETCONF namespace, which is bound to the nc prefix, and
qualifies all NETCONF tags in its replies with the prefix.

The xmlns:junos attribute defines the default namespace for enclosed Junos XML tag elements that are
qualified by the junos: prefix. The release variable in the URI represents the Junos OS release that is
running on the NETCONF server device, for example 20.4R1.

Client applications must include code for parsing the stream of response tag elements coming from the
NETCONF server, either processing the elements as they arrive or storing them until the response is
complete. The NETCONF server returns three classes of responses: operational responses, configuration
information responses, and configuration change responses.

Operational Responses

Operational responses are responses to requests for information about the status of a device. They
correspond to the output from CLI operational commands.

The Junos XML API defines response tag elements for all defined operational request tag elements. For
example, the NETCONF server returns the information requested by the <get-interface-information> tag in
a response tag called <interface-information>. Similarly, the server returns the information requested by
the <get-chassis-inventory> tag in a response tag called <chassis-inventory>.

By default, the server returns operational responses in XML format. The client application can also
request responses in formatted ASCII or in JSON. For more information about formatting operational
responses, see "Specify the Output Format for Operational Information Requests in a NETCONF
Session" on page 390.

The following sample operational response includes information about the interface ge-2/3/0:

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"\
 xmlns:junos="http://xml.juniper.net/junos/20.4R1/junos">
 <interface-information \
 xmlns="http://xml.juniper.net/junos/20.4R1/junos-interface">
 <physical-interface>

128

 <name>ge-2/3/0</name>
 <!-- other data tag elements for the ge-2/3/0 interface -  ->
 </physical-interface>
 </interface-information>
</rpc-reply>
]]>]]>

For more information about the xmlns attribute and the contents of operational response tag elements,
see "Request Operational Information Using NETCONF" on page 386.

Configuration Information Responses

Configuration information responses are responses to requests for information about the device’s
current configuration. The Junos XML API defines a tag element for every container and leaf statement
in the configuration hierarchy.

The following sample response includes configuration data at the [edit system login] hierarchy level:

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"\
 xmlns:junos="http://xml.juniper.net/junos/20.4R1/junos">
 <data>
 <configuration attributes>
 <system>
 <login>
 <user>
 <name>admin</name>
 <full-name>Administrator</full-name>
 <!-- other data tag elements for the admin user -->
 </user>
 </login>
 </system>
 </configuration>
 </data>
</rpc-reply>
]]>]]>

For information about the attributes in the opening <configuration> tag, see "Specify the Source for
Configuration Information Requests Using NETCONF" on page 402.

129

Configuration Change Responses

Configuration change responses are responses to requests that change the state or contents of the
device configuration. The NETCONF server indicates successful execution of a request by returning the
<ok/> tag within the <rpc-reply> tag element.

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <ok/>
</rpc-reply>
]]>]]>

If the operation fails, the <rpc-reply> tag element instead encloses an <rpc-error> element that describes
the cause of the failure.

Parse Response Tag Elements Using a Standard API in NETCONF and Junos XML
Protocol Sessions

In a NETCONF or Junos XML protocol session, client applications can handle incoming XML tag
elements by feeding them to a parser that is based on a standard API such as the Document Object
Model (DOM) or Simple API for XML (SAX). Describing how to implement and use a parser is beyond
the scope of this documentation.

Routines in the DOM accept incoming XML and build a tag hierarchy in the client application’s memory.
There are also DOM routines for manipulating an existing hierarchy. DOM implementations are available
for several programming languages, including C, C++, Perl, and Java. For detailed information, see the
Document Object Model (DOM) Level 1 Specification from the World Wide Web Consortium (W3C) at
http://www.w3.org/TR/REC-DOM-Level-1/ . Additional information is available from the
Comprehensive Perl Archive Network (CPAN) at https://metacpan.org/search?q=dist:XML-DOM+dom.

One potential drawback with DOM is that it always builds a hierarchy of tag elements, which can
become very large. If a client application needs to handle only one subhierarchy at a time, it can use a
parser that implements SAX instead. SAX accepts XML and feeds the tag elements directly to the client
application, which must build its own tag hierarchy. For more information, see the official SAX website at
http://sax.sourceforge.net/ .

Handle an Error or Warning in a NETCONF Session

A client application sends RPCs to the NETCONF server to request information and manage the device
configuration. The NETCONF server sends a response for each client request. If the server encounters
an error condition, it emits an <rpc-error> element containing child elements that describe the error.

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <rpc-error>

130

http://www.w3.org/TR/REC-DOM-Level-1/
https://metacpan.org/search?q=dist:XML-DOM+dom
http://sax.sourceforge.net/

 <error-severity>error-severity</error-severity>
 <error-path>error-path</error-path>
 <error-message>error-message</error-message>
 <error-info>
 <bad-element>command-or-statement</bad-element>
 </error-info>
 <rpc-error>
</rpc-reply>
]]>]]>

The <rpc-error> element can include the following child elements:

• <bad-element> identifies the command or configuration statement that was being processed when the
error or warning occurred. For a configuration statement, <error-path> specifies the statement’s parent
hierarchy level.

• <error-message> describes the error or warning in a natural-language text string.

• <error-path> specifies the path to the Junos OS configuration hierarchy level at which the error or
warning occurred.

• <error-severity> indicates the severity of the event that caused the NETCONF server to return the
<rpc-error> tag element. The two possible values are error and warning.

An error can occur while the server is performing any of the following operations. The server can send a
different combination of child tag elements in each case.

• Processing an operational request submitted by a client application

• Opening, locking, changing, committing, or closing a configuration as requested by a client
application

• Parsing configuration data submitted by a client application in an <edit-config> tag element

Client applications must be prepared to receive and handle an <rpc-error> element at any time. The
information in any response tag elements already received and related to the current request might be
incomplete. The client application can include logic for deciding whether to discard or retain the
information.

When the <error-severity> element has the value error, the usual response is for the client application to
discard the information and terminate. When the <error-severity> tag element has the value warning,
indicating that the problem is less serious, the usual response is for the client application to log the
warning or pass it to the user and to continue parsing the server’s response.

131

NOTE: When you configure the rfc-compliant statement at the [edit system services
netconf] hierarchy level to enforce certain behaviors by the NETCONF server, the
NETCONF server cannot return an RPC reply that includes both an <rpc-error> element
and an <ok/> element. If the operation is successful, but the server reply would include
one or more <rpc-error> elements with a severity level of warning in addition to the <ok/>
element, then the warnings are omitted.

SEE ALSO

<rpc-error> | 214

Lock and Unlock the Candidate Configuration

IN THIS SECTION

Locking the Candidate Configuration | 133

Unlocking the Candidate Configuration | 134

When a client application is requesting or changing configuration information, it can use one of the
following methods to access the candidate configuration:

• Lock the candidate configuration, which prevents other users or applications from changing the
shared configuration database until the application releases the lock. This is equivalent to the CLI
configure exclusive command.

• Change the candidate configuration without locking it. We do not recommend this method, because
of the potential for conflicts with changes made by other applications or users that are editing the
shared configuration database at the same time.

If an application is simply requesting configuration information and not changing it, locking the
configuration is not required. The application can begin requesting information immediately. However, if
it is important that the information being returned not change during the session, it is appropriate to
lock the configuration.

132

Locking the Candidate Configuration

Locking the candidate configuration prevents other users or applications from changing the candidate
configuration until the lock is released. We recommend that you lock the configuration before making
changes, particularly on devices where multiple users are authorized to change the configuration. A
commit operation applies to all changes in the candidate configuration, not just those made by the user
or application that requests the commit. Allowing multiple users or applications to make changes
simultaneously can lead to unexpected results.

To lock the candidate configuration, a client application executes the <lock> operation with <target> set to
<candidate/> as follows:

<rpc>
 <lock>
 <target>
 <candidate/>
 </target>
 </lock>
</rpc>
]]>]]>

The RPC is equivalent to the CLI configure exclusive command.

The NETCONF server confirms that it has locked the candidate by returning the <ok/> tag.

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <ok/>
</rpc-reply>
]]>]]>

If the NETCONF server cannot lock the configuration, the <rpc-reply> instead encloses an <rpc-error>
element explaining the reason for the failure. Reasons for the failure can include the following:

• Another user or application has already locked the candidate configuration. The error message
reports the NETCONF session identifier of the user or application.

• The candidate configuration already includes changes that have not yet been committed.

Only one application can hold the lock on the candidate configuration at a time. Other users and
applications can read the candidate configuration while it is locked. The lock persists until either the
client application unlocks the configuration by emitting the <unlock> tag element or the NETCONF
session ends.

133

If the client application unlocks the candidate configuration before committing the changes, or if the
NETCONF session ends for any reason before the changes are committed, the changes are automatically
discarded. The candidate and committed configurations remain unchanged.

Unlocking the Candidate Configuration

As long as a client application holds a lock on the candidate configuration, other applications and users
cannot change the candidate. To unlock the candidate configuration, the client application executes the
<unlock> operation.

<rpc>
 <unlock>
 <target>
 <candidate/>
 </target>
 </unlock>
</rpc>
]]>]]>

The NETCONF server confirms that it has unlocked the candidate by returning the <ok/> tag.

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <ok/>
</rpc-reply>
]]>]]>

If the NETCONF server cannot unlock the configuration, the <rpc-reply> instead encloses an <rpc-error>
element explaining the reason for the failure.

Terminate a NETCONF Session

In a NETCONF session, a client application’s attempt to lock the candidate configuration can fail
because another user or application already holds the lock. In this case, the NETCONF server returns an
error message that includes the username and process ID (PID) for the entity that holds the existing
lock.

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <rpc-error>
 <error-severity>error</error-severity>
 <error-message>
 configuration database locked by:

134

user terminal (pid PID) on since YYYY-MM-DD hh:mm:ss TZ, idle hh:mm:ss
 exclusive
 </error-message>
 </rpc-error>
</rpc-reply>
]]>]]>

If the client application has the Junos OS maintenance permission, it can end the session that holds the
lock by executing the <kill-session> operation. The <session-id> element specifies the PID obtained from
the error message.

<rpc>
 <kill-session>
 <session-id>PID</session-id>
 </kill-session>
</rpc>
]]>]]>

The NETCONF server confirms that it terminated the other session by returning the <ok/> tag.

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <ok/>
</rpc-reply>
]]>]]>

We recommend that the application include logic for determining whether it is appropriate to terminate
another session. The logic might include factors such as the identity of the user or application that holds
the lock or the length of idle time.

When a session is terminated, the NETCONF server that is servicing the session rolls back all
uncommitted changes that have been made during the session. If a confirmed commit is pending
(changes have been committed but not yet confirmed), the NETCONF server restores the configuration
to its state before the confirmed commit instruction was issued.

The following example shows how to terminate another session:

135

End a NETCONF Session and Close the Connection

When a client application is finished making requests, it ends the NETCONF session by emitting the
empty <close-session/> tag within an <rpc> element.

<rpc>
 <close-session/>
</rpc>
]]>]]>

The NETCONF server emits an <rpc-reply> element and the <ok/> tag.

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <ok/>
</rpc-reply>
]]>]]>

Because the connection to the NETCONF server is an SSH subsystem, it closes automatically when the
NETCONF session ends.

Sample NETCONF Session

IN THIS SECTION

Exchanging Initialization Tag Elements | 137

136

Sending an Operational Request | 138

Locking the Configuration | 139

Changing the Configuration | 140

Committing the Configuration | 140

Unlocking the Configuration | 141

Closing the NETCONF Session | 141

The following sections describe the sequence of tag elements in a sample NETCONF session with a
device running Junos OS. The client application begins by establishing a connection to a NETCONF
server.

Exchanging Initialization Tag Elements

After the client application establishes a connection to a NETCONF server, the two exchange <hello> tag
elements, as shown in the following example. For legibility, the example places the client application’s
<hello> tag element below the NETCONF server’s. The two parties can actually emit their <hello> tag
elements at the same time. For information about the]]>]]> character sequence used in this and the
following examples, see "Generate Well-Formed XML Documents" on page 37. For a detailed discussion
of the <hello> tag element, see "Start a NETCONF Session" on page 118.

137

Sending an Operational Request

The client application emits the <get-chassis-inventory> tag element to request information about the
device’s chassis hardware. The NETCONF server returns the requested information in the <chassis-
inventory> tag element.

138

Locking the Configuration

The client application then prepares to incorporate a change into the candidate configuration by
emitting the <lock/> tag to prevent any other users or applications from altering the candidate
configuration at the same time. To confirm that the candidate configuration is locked, the NETCONF
server returns an <ok/> tag in an <rpc-reply> tag element.

139

Changing the Configuration

The client application now emits tag elements to create a new Junos OS login class called network-mgmt at
the [edit system login class] hierarchy level in the candidate configuration. To confirm that the load
operation was successful, the NETCONF server returns an <ok/> tag in an <rpc-reply> tag element.

Committing the Configuration

The client application then commits the candidate configuration. To confirm that the commit operation
was successful, the NETCONF server returns an <ok/> tag in an <rpc-reply> tag element.

140

Unlocking the Configuration

The client application unlocks (and by implication closes) the candidate configuration. To confirm that
the unlock operation was successful, the NETCONF server returns an <ok/> tag in an <rpc-reply> tag
element.

Closing the NETCONF Session

The client application closes the NETCONF session by emitting the <close-session> tag.

141

RELATED DOCUMENTATION

NETCONF Sessions | 116

Generate Well-Formed XML Documents | 37

How Character Encoding Works on Juniper Networks Devices

Junos OS configuration data and operational command output might contain non-ASCII characters,
which are outside of the 7-bit ASCII character set. When displaying operational or configuration data in
certain formats or within a certain type of session, the software escapes and encodes these characters.
The software escapes or encodes the characters using the equivalent UTF-8 decimal character
reference.

The CLI attempts to display any non-ASCII characters in configuration data that is produced in text, set,
or JSON format. The CLI also attempts to display these characters in command output that is produced
in text format. In the exception cases, the CLI displays the UTF-8 decimal character reference instead.
(Exception cases include configuration data in XML format and command output in XML or JSON
format,) In NETCONF and Junos XML protocol sessions, you see a similar result if you request
configuration data or command output that contains non-ASCII characters. In this case, the server
returns the equivalent UTF-8 decimal character reference for those characters for all formats.

For example, suppose the following user account, which contains the Latin small letter n with a tilde (ñ),
is configured on the device.

[edit]
user@host# set system login user mariap class super-user uid 2007 full-name "Maria Peña"

When you display the resulting configuration in text format, the CLI prints the corresponding character.

[edit]
user@host# show system login user mariap
full-name "Maria Peña";
uid 2007;
class super-user;

142

When you display the resulting configuration in XML format in the CLI, the ñ character maps to its
equivalent UTF-8 decimal character reference Ã±. The same result occurs if you display the
configuration in any format in a NETCONF or Junos XML protocol session.

[edit]
user@host# show system login user mariap | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/17.2R1/junos">
 <configuration junos:changed-seconds="1494033077" junos:changed-localtime="2017-05-05
18:11:17 PDT">
 <system>
 <login>
 <user>
 <name>mariap</name>
 <full-name>Maria PeÃ±a</full-name>
 <uid>2007</uid>
 <class>super-user</class>
 </user>
 </login>
 </system>
 </configuration>
 <cli>
 <banner>[edit]</banner>
 </cli>
</rpc-reply>

When you load configuration data onto a device, you can load non-ASCII characters using their
equivalent UTF-8 decimal character references.

Configure RFC-Compliant NETCONF Sessions

IN THIS SECTION

Understanding RFC-Compliant NETCONF Sessions | 144

Benefits of RFC-Compliant Sessions | 144

(RFC 4741) Namespaces | 145

(RFC 4741) Changes to <get> and <get-config> Operations | 147

143

(RFC 4741) <rpc-error> Elements with a Severity Level of Warning in RPC Replies | 147

(RFC 4741) NETCONF Server Response to <commit> and <validate> Operations | 148

(RFC 6242) Chunked Framing | 149

Understanding RFC-Compliant NETCONF Sessions

When you use NETCONF to manage Junos devices, you can require that the NETCONF session enforce
certain behaviors that are compliant with specific RFCs. You can configure Junos devices to be compliant
with the following RFCs:

• RFC 4741, NETCONF Configuration Protocol

• RFC 6242, Using the NETCONF Protocol over Secure Shell (SSH)

To enforce RFC 4741 compliance, configure the rfc-compliant statement at the [edit system services
netconf] hierarchy level. Configuring the rfc-compliant statement affects the following aspects of the
NETCONF session:

• Namespaces emitted in NETCONF server replies

• NETCONF server replies for <get> and <get-config> operations in cases where the server does not
return any configuration data

• NETCONF server replies that would return both an <ok/> element and an <rpc-error> element with a
severity level of warning

• NETCONF server replies for <commit> and <validate> operations

To also enforce RFC 6242 compliance, configure both the rfc-compliant and version-1.1 statements at the
[edit system services netconf] hierarchy level. If you configure RFC 6242 compliance, and both peers
advertise the :base:1.1 capability in the capabilities exchange, the NETCONF session uses chunked
framing instead of the end-of-message character sequence (]]>]]>) for message framing. For additional
details, see "(RFC 6242) Chunked Framing" on page 149.

The session differences are described in detail in the corresponding sections.

Benefits of RFC-Compliant Sessions

• Standards Compliance: Ensures that NETCONF communications are compliant with the latest
industry standards, facilitating interoperability with other compliant systems.

144

• Enhanced Reliability: By using chunked framing, NETCONF messages are encoded in a way that
prevents misinterpretation of character sequences within XML elements, ensuring reliable message
parsing.

(RFC 4741) Namespaces

By default, the NETCONF server sets the default namespace to the NETCONF namespace in the
opening tag of the server’s reply, and NETCONF tag names are not qualified. For example:

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>urn:ietf:params:netconf:base:1.0</capability>
 ...
 </capabilities>
 <session-id>27700</session-id>
<hello>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:junos="http://xml.juniper.net/
junos/25.2R1.9/junos">

When you configure the rfc-compliant statement, the NETCONF server does not define a default
namespace in its replies. Instead, the server includes a namespace declaration for the NETCONF
namespace, which is bound to the nc prefix. The server qualifies all NETCONF tags in its replies with the
prefix. If you set the default namespace to the NETCONF namespace in an RPC request, the server
discards the default namespace. The server emits its reply using only the declared namespace that is
bound to the nc prefix.

The following sample output shows the NETCONF server’s <hello> message and capabilities exchange in
an RFC-compliant NETCONF session. The <hello> tag contains the xmlns:nc declaration, and all NETCONF
tags include the nc prefix.

<nc:hello xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <nc:capabilities>
 <nc:capability>urn:ietf:params:netconf:base:1.0</nc:capability>
 ...
 </nc:capabilities>
 <nc:session-id>27703</nc:session-id>
</nc:hello>

145

The following output shows a sample RPC reply for an RFC-compliant session:

<nc:rpc-reply
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:junos="http://xml.juniper.net/junos/25.2R1.9/junos">
 <database-status-information>
 <database-status>
 <pid>47868</pid>
 <user>admin</user>
 <terminal>pts/1</terminal>
 <start-time junos:seconds="1760133182">2025-10-10 14:53:02 PDT</start-time>
 <edit-path>{master}[edit system]</edit-path>
 </database-status>
 </database-status-information>
</nc:rpc-reply>

Additionally, if you request configuration data in an RFC-compliant NETCONF session, the server sets
the default namespace for the <configuration> element to the same namespace as in the corresponding
YANG model.

<rpc>
 <get-config>
 <source>
 <running/>
 </source>
 </get-config>
</rpc>
]]>]]>

<nc:rpc-reply
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:junos="http://xml.juniper.net/junos/25.2R1.9/junos">
<nc:data>
<configuration
 xmlns="http://yang.juniper.net/junos/conf/root"
 junos:commit-seconds="1760133210"
 junos:commit-localtime="2025-10-10 14:53:30 PDT"
 junos:commit-user="user">
 ...
</configuration>
</nc:data>

146

</nc:rpc-reply>
]]>]]>

(RFC 4741) Changes to <get> and <get-config> Operations

The rfc-compliant statement affects the <get> and <get-config> server replies in cases where the server
does not return any configuration data. This situation can occur, for example, when you apply a filter to
return a subset of the configuration, and that portion of the configuration is empty.

In these cases, if you do not configure the rfc-compliant statement, the RPC reply contains an empty
<configuration> element inside the <data> element.

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:junos="http://xml.juniper.net/
junos/15.1D0/junos">
<data>
<configuration>
</configuration>
</data>
</rpc-reply>

If you configure the rfc-compliant statement, the RPC reply instead returns an empty <data> element and
omits the <configuration> element.

<nc:rpc-reply xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:junos="http://
xml.juniper.net/junos/25.2R1.9/junos">
<nc:data>
</nc:data>
</nc:rpc-reply>

(RFC 4741) <rpc-error> Elements with a Severity Level of Warning in RPC Replies

When you configure the rfc-compliant statement, the NETCONF server cannot return an RPC reply that
includes both an <rpc-error> element and an <ok/> element. If the operation is successful, but the server
reply would include one or more <rpc-error> elements with a severity level of warning in addition to the
<ok/> element, then the warnings are omitted. In addition, starting in Junos OS Release 21.2R1, any
warnings that are omitted during a <commit> operation are redirected to the system log file for tracking.

147

If you do not configure the rfc-compliant statement, the NETCONF server might issue an RPC reply that
includes both an <rpc-error> element with a severity level of warning and an <ok/> element. For example, a
commit operation might be successful but return a warning as in the following NETCONF server reply:

<nc:rpc-reply xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:junos="http://
xml.juniper.net/junos/25.2R1.9/junos">
 <nc:rpc-error>
 <nc:error-severity>warning</nc:error-severity>
 <nc:error-message>
 uid changed for jadmin (2001->2014)
 </nc:error-message>
 </nc:rpc-error>
 <nc:ok/>
</nc:rpc-reply>
]]>]]>

If you configure the rfc-compliant statement, then the server reply omits the warning.

<nc:rpc-reply xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:junos="http://
xml.juniper.net/junos/25.2R1.9/junos">
<nc:ok/>
</nc:rpc-reply>
]]>]]>

(RFC 4741) NETCONF Server Response to <commit> and <validate> Operations

Starting in Junos OS Release 21.2R1, when you configure the rfc-compliant statement, the NETCONF
server's response to <commit> operations includes the following changes:

• If a successful <commit> operation returns a response with one or more warnings, the server redirects
the warnings to the system log file, in addition to omitting the warnings from the response.

• The NETCONF server response emits the <source-daemon> element as a child of the <error-info> element
instead of the <rpc-error> element.

• If you also configure the flatten-commit-results statement at the [edit system services netconf] hierarchy
level, the NETCONF server emits only an <ok/> or <rpc-error> element in its response and suppresses
any <commit-results> XML subtree.

148

Starting in Junos OS Release 23.2R1 and Junos OS Evolved Release 23.4R1, when you configure the rfc-
compliant statement, the NETCONF server emits only an <ok/> or <rpc-error> element in response to
<validate> operations. In earlier releases, the RPC reply also includes the <commit-results> element.

(RFC 6242) Chunked Framing

NETCONF sessions use a framing mechanism to separate the messages that the NETCONF server and
client send within a session. By default, the NETCONF server emits the :base:1.0 capability, and both the
NETCONF server and client use the character sequence]]>]]> defined in RFC 4742 as the message
separator. However, this character sequence can also potentially appear in XML attributes, comments,
and processing instructions, where it could be misinterpreted as a message boundary.

To clearly define message boundaries, you can configure RFC 6242 compliance with support for
chunked framing on Junos devices that support this feature. Chunked framing is a standardized framing
mechanism that ensures that character sequences within XML elements are not misinterpreted as
message boundaries. When you enable RFC 6242 compliance, and both peers advertise the :base:1.1
capability in the capabilities exchange, the NETCONF session uses chunked framing for the remainder of
the session.

The chunked framing mechanism encodes all NETCONF messages as chunked following the Augmented
Backus-Naur Form (ABNF) rule Chunked-Message, which is defined as follows:

Chunked-Message = 1*chunk
 end-of-chunks

chunk = LF HASH chunk-size LF
 chunk-data
chunk-size = 1*DIGIT1 0*DIGIT
chunk-data = 1*OCTET

end-of-chunks = LF HASH HASH LF

DIGIT1 = %x31-39
DIGIT = %x30-39
HASH = %x23
LF = %x0A
OCTET = %x00-FF

NOTE: The ABNF specification is defined in RFC 5234, Augmented BNF for Syntax
Specifications: ABNF.

149

The chunk framing protocol divides NETCONF messages into distinct chunks, each with a specified size
(chunk-size) and data (chunk-data), followed by an end-of-chunks marker. This structure ensures that
sequences such as]]>]]> within XML elements are not misinterpreted as end-of-message markers.

For example, when the NETCONF client emits the <get-system-information> RPC using the end-of-
document character sequence, it emits the message as follows:

<rpc message-id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-system-information/>
</rpc>
]]>]]>

When the NETCONF client emits the same RPC using chunked framing, it might structure the message
as follows:

#4
<rpc
#18
 message-id="102"
#85
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-system-information/>
</rpc>
##

Similarly, the NETCONF server returns its reply using chunked framing.

#141
<nc:rpc-reply xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:junos="http://
xml.juniper.net/junos/24.4R1/junos" message-id="102" >

#21
<system-information>

#90
<host-name>R1</host-name>
<hardware-model>mx960</hardware-model>
<os-name>junos</os-name>

#73

150

<os-version>24.4R1.10</os-version>
<serial-number>ABC123</serial-number>

#22
</system-information>

#16
</nc:rpc-reply>

##

To enable RFC 6242 compliance with chunked framing support:

1. Enable the NETCONF service.

[edit system services netconf]
user@host# set ssh

2. Configure NETCONF session compliance with RFC 4741 and RFC 6242.

[edit system services netconf]
user@host# set rfc-compliant
user@host# set version-1.1

3. Commit the configuration.

[edit system services netconf]
user@host# commit

To use chunked framing in the NETCONF session, the client application and NETCONF server must both
advertise the :base:1.1 capability in the capabilities exchange. For example:

admin@host:~$ ssh 198.51.100.1 -p 830 -s netconf
<nc:hello xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <nc:capabilities>
 <nc:capability>urn:ietf:params:netconf:base:1.1</nc:capability>
 </nc:capabilities>
</nc:hello>
]]>]]>

151

<!-- No zombies were killed during the creation of this user interface -->
<!-- user admin, class j-super-user -->
<nc:hello xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <nc:capabilities>
 <nc:capability>urn:ietf:params:netconf:base:1.0</nc:capability>
 <nc:capability>urn:ietf:params:netconf:base:1.1</nc:capability>
 ...
 </nc:capabilities>
 <nc:session-id>80206</nc:session-id>
</nc:hello>
]]>]]>

After both peers advertise the :base:1.1 capability, the NETCONF session uses chunked framing for the
remainder of the session.

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

23.2R1 and
23.4R1-EVO

Starting in Junos OS Release 23.2R1 and Junos OS Evolved Release 23.4R1, when you configure
the rfc-compliant statement, the NETCONF server emits only an <ok/> or <rpc-error> element in
response to <validate> operations. In earlier releases, the RPC reply also includes the <commit-
results> element.

21.2R1 Starting in Junos OS Release 21.2R1, when you configure the rfc-compliant statement, the
NETCONF server's response to <commit> operations is modified.

18.4R1 Starting in Junos OS Release 17.4R3, 18.2R2, 18.3R2, and 18.4R1, when you configure the rfc-
compliant statement, the NETCONF server cannot return an RPC reply that includes both an <rpc-
error> element and an <ok/> element.

RELATED DOCUMENTATION

rfc-compliant

152

https://apps.juniper.net/feature-explorer/

NETCONF Monitoring

SUMMARY

You can query Junos devices to retrieve NETCONF
state information and supported schemas from the
NETCONF server.

IN THIS SECTION

NETCONF State Information Overview | 153

Retrieve NETCONF Capabilities | 156

Retrieve Configuration Datastores | 158

Retrieve Schemas | 159

Retrieve NETCONF Session
Information | 162

Retrieve NETCONF Server Statistics | 164

Junos devices support concurrent management sessions from multiple local and remote NETCONF
clients. At times, you need visibility into the active NETCONF sessions on a device as well as
information about NETCONF server statistics and support. Having easy access to NETCONF state
information enables you to more effectively manage your network devices.

The NETCONF monitoring data model provides operational information about the NETCONF server.
NETCONF clients can query a Junos device to retrieve NETCONF state information from the NETCONF
server. Clients can request information for NETCONF capabilities, NETCONF sessions and statistics,
configuration datastores, and supported schemas.

For more information about the NETCONF monitoring model, see RFC 6022, YANG Module for
NETCONF Monitoring.

NETCONF State Information Overview

The NETCONF monitoring data model defines the NETCONF server's operational data. The netconf-state
container comprises subtrees that define and include the data for the different areas of operation.

Table 9 on page 153 outlines the netconf-state subtrees supported on Junos devices.

Table 9: Supported netconf-state Subtrees

netconf-state Subtree Description

capabilities NETCONF operations supported by the NETCONF server.

153

https://datatracker.ietf.org/doc/html/rfc6022

Table 9: Supported netconf-state Subtrees (Continued)

netconf-state Subtree Description

datastores Available configuration datastores, for example, candidate or running (active), and their
lock state.

schemas Schemas supported on the device.

sessions Active NETCONF management sessions on the device.

statistics NETCONF server performance data.

Junos devices that support the NETCONF monitoring data model advertise this capability in the
NETCONF session's capabilities exchange during session setup.

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <capabilities>
 <capability>urn:ietf:params:netconf:base:1.0</capability>
 <capability>urn:ietf:params:xml:ns:netconf:base:1.0</capability>
 ...
 <capability>urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring</capability>
 ...
 </capabilities>
 <session-id>12976</session-id>
</hello>
]]>]]>

To request NETCONF state information, send a <get> request, and specify the netconf-state subtree of
interest, for example, <datastores>.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <netconf-state xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
 <subtree>
 </netconf-state>
 </filter>

154

 </get>
</rpc>

When you request NETCONF state information, the server's RPC reply includes the <data> and <netconf-
state> elements. These elements enclose the subtree for the requested information.

<rpc-reply xmlns:junos="http://xml.juniper.net/junos/23.4R1.12-EVO/junos"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<netconf-state xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
...
</netconf-state>
</data>
</rpc-reply>

The netconf-state <sessions> and <statistics> subtrees include information about active NETCONF sessions
and NETCONF server data, respectively. Table 10 on page 155 outlines the supported elements
returned for these filters. The <sessions> data includes per-session counters. The <statistics> data reports
global counters for the NETCONF server.

Table 10: NETCONF Sessions and Statistics Data

Node Description Filters

<dropped-sessions> Number of NETCONF sessions that were abnormally terminated. <statistics>

<in-bad-rpcs> Number of incorrect RPC messages received by the server. <sessions>

<statistics>

<in-rpcs> Number of correct RPC messages received by the server. <sessions>

<statistics>

<in-sessions> Number of NETCONF sessions started. <statistics>

<login-time> Date and time when the NETCONF session was established. <sessions>

<netconf-start-time> Date and time when the NETCONF server was started. <statistics>

155

Table 10: NETCONF Sessions and Statistics Data (Continued)

Node Description Filters

<out-notifications> Number of <notification> messages sent. <sessions>

<statistics>

<out-rpc-errors> Number of NETCONF server RPC replies that contained an <rpc-error>
element.

<sessions>

<statistics>

<session-id> NETCONF session identifier. <sessions>

<source-host> IP address or hostname from which the NETCONF client connected. <sessions>

<transport> Transport protocol for the NETCONF session, for example, netconf-ssh. <sessions>

<username> Client identity authenticated by the NETCONF transport protocol. <sessions>

Retrieve NETCONF Capabilities

A NETCONF client can retrieve the NETCONF server's capabilities. The capabilities define the
operations supported by the NETCONF server. The NETCONF server advertises the supported
capabilities during session setup. By default, Junos devices do not advertise supported YANG modules
in the capabilities list. However, you can configure the device to include them.

To request the capabilities of the NETCONF server:

1. (Optional) Configure the device to advertise the different supported YANG modules in the NETCONF
capabilities list, if desired.

[edit system services netconf hello-message yang-module-capabilities]
user@host# set advertise-custom-yang-modules
user@host# set advertise-native-yang-modules
user@host# set advertise-standard-yang-modules
user@host# commit and-quit

156

2. In a NETCONF session, execute a <get> operation for the netconf-state/capabilities subtree.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <netconf-state xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
 <capabilities/>
 </netconf-state>
 </filter>
 </get>
</rpc>

The NETCONF server returns the <capabilities> element with the supported capabilities. The
<capabilities> information is identical to that in the <hello> message exchange sent during session setup.

<rpc-reply xmlns:junos="http://xml.juniper.net/junos/23.4R1.12-EVO/junos"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<netconf-state xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
 <capabilities>
 <capability>urn:ietf:params:netconf:base:1.0</capability>
 <capability>urn:ietf:params:netconf:capability:candidate:1.0</capability>
 <capability>urn:ietf:params:netconf:capability:confirmed-commit:1.0</capability>
 <capability>urn:ietf:params:netconf:capability:validate:1.0</capability>
 <capability>urn:ietf:params:netconf:capability:url:1.0?scheme=http,ftp,file</capability>
 <capability>urn:ietf:params:xml:ns:netconf:base:1.0</capability>
 <capability>urn:ietf:params:xml:ns:netconf:capability:candidate:1.0</capability>
 <capability>urn:ietf:params:xml:ns:netconf:capability:confirmed-commit:1.0</capability>
 <capability>urn:ietf:params:xml:ns:netconf:capability:validate:1.0</capability>
 <capability>urn:ietf:params:xml:ns:netconf:capability:url:1.0?scheme=http,ftp,file</
capability>
 <capability>urn:ietf:params:xml:ns:yang:ietf-yang-metadata?module=ietf-yang-
metadata&revision=2016-08-05</capability>
 <capability>urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring</capability>
 <capability>http://xml.juniper.net/netconf/junos/1.0</capability>
 <capability>http://xml.juniper.net/dmi/system/1.0</capability>
 <capability>http://yang.juniper.net/junos/jcmd?module=junos-configuration-
metadata&revision=2021-09-01</capability>
 <capability>http://yang.juniper.net/junos/common/types?module=junos-common-
types&revision=2023-01-01</capability>
 <capability>http://yang.juniper.net/junos/conf/access-profile?module=junos-conf-access-

157

profile&revision=2023-01-01</capability>
 <capability>http://yang.juniper.net/junos/conf/access?module=junos-conf-
access&revision=2023-01-01</capability>
 <capability>http://yang.juniper.net/junos/conf/accounting-options?module=junos-conf-
accounting-options&revision=2023-01-01</capability>
 ...
 </capabilities>
</netconf-state>
</data>
</rpc-reply>

Retrieve Configuration Datastores

The configuration datastores are the configuration databases supported on the device. When you
request information about the configuration datastores, the server also returns their lock status.

To request the list of configuration datastores supported by the NETCONF server:

• In a NETCONF session, execute a <get> operation for the netconf-state/datastores subtree.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <netconf-state xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
 <datastores/>
 </netconf-state>
 </filter>
 </get>
</rpc>

The NETCONF server returns the configuration datastores and their lock states. In this case, the
datastores include the candidate configuration, which has a lock on it, and the running (active)
configuration.

<rpc-reply xmlns:junos="http://xml.juniper.net/junos/23.4R1.12-EVO/junos"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
 <netconf-state xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
 <datastores>
 <datastore>
 <name>candidate</name>
 <locks>

158

 <locked-by-session>0</locked-by-session>
 <locked-time junos:seconds="1691539727">2023-08-08T17:08:47-07:00</locked-time>
 </locks>
 </datastore>
 <datastore>
 <name>running</name>
 </datastore>
 </datastores>
 </netconf-state>
</data>
</rpc-reply>

Retrieve Schemas

NETCONF clients can request the list of schemas supported on the device. By default, Junos devices
return only the Junos native schemas in the supported schemas list. However, you can configure the
device to include any additional supported schemas, including custom YANG modules that are installed
on the device as well as standard modules, such as OpenConfig.

To request the list of supported schemas:

1. (Optional) Configure the device to emit any additional schemas, other than the default native
schemas.

• To include schemas for custom YANG modules installed on the device, configure the retrieve-
custom-yang-modules statement.

[edit system services netconf netconf-monitoring]
user@host# set netconf-state-schemas retrieve-custom-yang-modules

• To include schemas for standard YANG modules, such as OpenConfig, configure the retrieve-
standard-yang-modules statement.

[edit system services netconf netconf-monitoring]
user@host# set netconf-state-schemas retrieve-standard-yang-modules

2. If you modified the configuration in the previous step, commit the configuration.

[edit]
user@host# commit and-quit

159

3. In a NETCONF session, execute a <get> operation for the netconf-state/schemas subtree.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <netconf-state xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
 <schemas/>
 </netconf-state>
 </filter>
 </get>
</rpc>

The device returns the list of supported schemas. The output includes the Junos native schemas. The
output also include custom and standard schemas, if you configured the device to emit these schemas.

<rpc-reply xmlns:junos="http://xml.juniper.net/junos/23.4R1.12-EVO/junos"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<netconf-state xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
<schemas>
<schema>
<identifier>junos-common-types</identifier>
<version>2023-01-01</version>
<format>yang</format>
<namespace>http://yang.juniper.net/junos/common/types</namespace>
<location>NETCONF</location>
</schema>
<schema>
<identifier>junos-conf-access-profile</identifier>
<version>2023-01-01</version>
<format>yang</format>
<namespace>http://yang.juniper.net/junos/conf/access-profile</namespace>
<location>NETCONF</location>
</schema>
...
</schemas>
</netconf-state>
</data>
</rpc-reply>

160

The netconf-state/schemas subtree only returns the identifiers for the supported schemas. It does not
include the actual schemas. Given the identifer, you can retrieve a specific schema instance. To request a
schema instance in a NETCONF session:

• Execute the <get-schema> operation and specify the schema identifier.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-schema xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
 <identifier>schema-identifier</identifier>
 </get-schema>
</rpc>

For example, the following RPC retrieves the junos-conf-access-profile schema.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-schema xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
 <identifier>junos-conf-access-profile</identifier>
 </get-schema>
</rpc>

The NETCONF server returns the schema in YANG format, which is the default and only supported
format.

<rpc-reply xmlns:junos="http://xml.juniper.net/junos/23.4R1.12-EVO/junos"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
/*
 * Copyright (c) 2023 Juniper Networks, Inc.
 * All rights reserved.
 */
 module junos-conf-access-profile {
 namespace "http://yang.juniper.net/junos/conf/access-profile";

 prefix jc-access-profile;

 import junos-common-types {
 prefix jt;
 revision-date 2023-01-01;
 }

 import junos-conf-root {

161

 prefix jc;
 revision-date 2023-01-01;
 }

 organization "Juniper Networks, Inc.";

 contact "yang-support@juniper.net";

 description "Junos access-profile configuration module";

 revision 2023-01-01 {
 description "Junos: 23.4R1.12-EVO";
 }

 augment /jc:configuration {
 uses access-profile-group;
 }
 augment /jc:configuration/jc:groups {
 uses access-profile-group;
 }
 grouping access-profile-group {
 container access-profile {
 description "Access profile for this instance";
 leaf access-profile-name {
 description "Profile name";
 type string;
 }
 }
 }
 }
</data>
</rpc-reply>

Retrieve NETCONF Session Information

NETCONF clients can request a list of the active NETCONF sessions on the device. The NETCONF
server returns the active sessions along with information about each session. The returned data includes
per-session counters. See Table 10 on page 155 for descriptions of the output fields.

For sessions where certain values are undefined, for example, internal sessions, the default values for
transport, username, and source-host are netconf-ssh, internal-user, and local-host, respectively.

To retrieve the active NETCONF sessions on the device:

162

• In a NETCONF session, execute a <get> operation for the netconf-state/sessions subtree.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <netconf-state xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
 <sessions/>
 </netconf-state>
 </filter>
 </get>
</rpc>

The NETCONF server returns the active NETCONF sessions along with the session-specific data.

<rpc-reply xmlns:junos="http://xml.juniper.net/junos/23.4R1.12-EVO/junos"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<netconf-state xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
 <sessions>
 <session>
 <session-id>2614</session-id>
 <transport>netconf-ssh</transport>
 <username>admin</username>
 <source-host>10.1.1.101</source-host>
 <login-time junos:seconds="1691699108">2023-08-10T13:25:08-07:00</login-time>
 <in-rpcs>6</in-rpcs>
 <in-bad-rpcs>0</in-bad-rpcs>
 <out-rpc-errors>1</out-rpc-errors>
 <out-notifications>0</out-notifications>
 </session>
 <session>
 <session-id>2879</session-id>
 <transport>netconf-ssh</transport>
 <username>sec-admin</username>
 <source-host>198.51.100.11</source-host>
 <login-time junos:seconds="1691699237">2023-08-10T13:27:17-07:00</login-time>
 <in-rpcs>11</in-rpcs>
 <in-bad-rpcs>1</in-bad-rpcs>
 <out-rpc-errors>2</out-rpc-errors>
 <out-notifications>0</out-notifications>
 </session>

163

 <session>
 <session-id>13559</session-id>
 <transport>netconf-ssh</transport>
 <username>root</username>
 <source-host>local-host</source-host>
 <login-time junos:seconds="1689712208">2023-07-18T13:30:08-07:00</login-time>
 <in-rpcs>14</in-rpcs>
 <in-bad-rpcs>0</in-bad-rpcs>
 <out-rpc-errors>0</out-rpc-errors>
 <out-notifications>0</out-notifications>
 </session>
 </sessions>
</netconf-state>
</data>
</rpc-reply>

Retrieve NETCONF Server Statistics

A NETCONF client can request the NETCONF server statistics for a given device. Whereas the <netconf-
state> <sessions> filter returns per-session counters, the <netconf-state> <statistics> filter returns global
counters for the NETCONF server. See Table 10 on page 155 for descriptions of the output fields.

To request NETCONF server statistics on a device:

• In a NETCONF session, execute a <get> operation for the netconf-state/statistics subtree.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <netconf-state xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
 <statistics/>
 </netconf-state>
 </filter>
 </get>
</rpc>

The NETCONF server returns the global performance data for the server.

<rpc-reply xmlns:junos="http://xml.juniper.net/junos/23.4R1.12-EVO/junos"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<netconf-state xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
<statistics>

164

<netconf-start-time junos:seconds="1689712174">2023-07-18T13:29:34-07:00</netconf-start-time>
<in-sessions>43</in-sessions>
<dropped-sessions>3</dropped-sessions>
<in-rpcs>58</in-rpcs>
<in-bad-rpcs>48</in-bad-rpcs>
<out-rpc-errors>4</out-rpc-errors>
<out-notifications>2</out-notifications>
</statistics>
</netconf-state>
</data>
</rpc-reply>

RELATED DOCUMENTATION

<get> | 195

NETCONF Event Notifications

SUMMARY

NETCONF clients can subscribe to event
notifications in NETCONF sessions to receive alerts
for events that might impact device operations or
management activities.

IN THIS SECTION

NETCONF Event Notifications
Overview | 165

NETCONF Event Notification Format | 167

Interleave Capability | 168

Filtering Capability | 169

How to Enable and Subscribe to NETCONF
Event Notifications | 170

NETCONF Event Notifications Overview

Certain devices running Junos OS Evolved support NETCONF event notifications, an asynchronous
event notification service between a NETCONF server and a NETCONF client. After you enable the
notification service, the NETCONF server sends event notifications, asynchronously as the events occur,
to all NETCONF clients that subscribe to the notifications. Clients can subscribe to NETCONF
notifications to receive alerts for events that might impact device operations or management activities.

165

The NETCONF server sends notifications for the following types of events:

• netconf-session-start—Indicates when a NETCONF session starts and identifies the user who started
the session.

• netconf-session-end—Indicates when a NETCONF session ends and identifies the user who owned the
session and the reason that the session was terminated.

• netconf-config-change—Indicates when a management session commits changes to the active
configuration and provides a summary of the changes.

You can enable the NETCONF event notification service on supported devices. See "How to Enable and
Subscribe to NETCONF Event Notifications" on page 170 for instructions. You can optionally configure
the interleave capability, which enables NETCONF clients to subscribe to notifications and send RPCs in
the same NETCONF session, as described in "Interleave Capability" on page 168.

NOTE: We recommend that you configure and stream only one set of notifications,
either NETCONF notifications or telemetry data, at a time. If you configure a device to
enable NETCONF notifications, the device streams all notifications over the NETCONF
channel and does not stream telemetry notifications over gRPC.

After you enable NETCONF event notifications, the NETCONF server advertises the notification
capability and the interleave capability in the capabilities exchange.

<nc:hello xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <nc:capabilities>
 ...
 <nc:capability>urn:ietf:params:netconf:capability:notification:1.0</nc:capability>
 <nc:capability>urn:ietf:params:xml:ns:netconf:notification:1.0</nc:capability>
 <nc:capability>urn:ietf:params:netconf:capability:interleave:1.0</nc:capability>
 <nc:capability>urn:ietf:params:xml:ns:netmod:notification</nc:capability>
 ...
 </nc:capabilities>
 <nc:session-id>29862</nc:session-id>
</nc:hello>

To subscribe to the notification service for events on a specific device, a NETCONF client sends a
<create-subscription> RPC to the NETCONF server on the device and indicates the following:

• <stream>—The stream of events that is of interest.

A stream is a set of event notifications that matches some forwarding criteria. A subscription is
bound to a single stream for the lifetime of the subscription. The NETCONF stream is the default and

166

only supported stream on Junos devices. The NETCONF server returns an error if the subscription
request is for any other stream. If you omit this parameter, the device treats the subscription request
as a request for the NETCONF stream.

• <filter>—A subtree filter that selects a subset of all possible events.

If a NETCONF client specifies a filter, the server forwards only those events selected by the filter. If a
client does not specify a filter, the server forwards all events. Junos OS Evolved supports only top-
level filters and does not support using XPATH filters for this element. See "Filtering Capability" on
page 169 for more information.

After a NETCONF client subscribes to event notifications, the NETCONF server sends the notifications
as they occur. The notifications continue until the NETCONF session terminates.

NOTE: A NETCONF client receives all event notifications by default. There is no way to
restrict or limit the content of a notification based on user privileges. Because some
events, for example, netconf-config-change events, can contain sensitive information, it is
important to control read access to the information.

For additional information about NETCONF event notifications, see the following RFCs:

• RFC 5277, NETCONF Event Notifications

• RFC 6470, Network Configuration Protocol (NETCONF) Base Notifications

NETCONF Event Notification Format

NETCONF event notifications are well-formed XML documents. When the NETCONF server receives an
internal event, it converts it to an appropriate XML encoding with a top-level <notification> element and
an <eventTime> child element. The actual content contained in the notification depends on the event.

A subscription request can include filters for specific types of notifications. If the subscription request
includes filters, the user-defined filters are applied to each notification in the event stream, and the
NETCONF server forwards only matching events to the client.

The following sample event notification contains a netconf-config-change event. The notification captures
the event timestamp, the commit timestamp, the user who committed the configuration changes, and a
summary of those changes.

<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2021-04-15T11:39:41-07:00</eventTime>
 <netconf-config-change xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-notifications">
 <change-time>2021-04-15T18:39:41Z</change-time>
 <changed-by>

167

https://datatracker.ietf.org/doc/html/rfc5277
https://datatracker.ietf.org/doc/html/rfc6470

 <username>admin</username>
 <session-id>29862</session-id>
 <source-host>198.51.100.25</source-host>
 </changed-by>
 <datastore>running</datastore>
 <edit>
 <target xmlns:junos-conf-root="http://yang.juniper.net/junos/conf/root" xmlns:junos-
conf-interfaces="http://yang.juniper.net/junos/conf/interfaces">/junos-conf-root:configuration/
junos-conf-interfaces:interfaces/junos-conf-interfaces:interface[junos-conf-
interfaces:name='et-0/0/0']/junos-conf-interfaces:description</target>
 <operation>replace</operation>
 </edit>
 </netconf-config-change>
</notification>

The following notifications contain sample netconf-session-start and netconf-session-end events:

<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2021-04-15T11:28:51-07:00</eventTime>
 <netconf-session-start xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-notifications">
 <username>admin</username>
 <session-id>29862</session-id>
 <source-host>198.51.100.25</source-host>
 </netconf-session-start>
</notification>

<notification xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2021-04-15T11:49:06-07:00</eventTime>
 <netconf-session-end xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-notifications">
 <username>admin</username>
 <session-id>29862</session-id>
 <source-host>198.51.100.25</source-host>
 <termination-reason>closed</termination-reason>
 </netconf-session-end>
</notification>

Interleave Capability

By default, after a NETCONF client subscribes to event notifications in a NETCONF session, the client
cannot also send RPCs in the same session. The interleave capability enables the NETCONF client and

168

server to continue exchanging RPCs and RPC replies within the same NETCONF session that is used for
notifications. The interleave capability reduces the overall number of NETCONF sessions because you
don’t need a dedicated NETCONF session for notifications. To use the interleave capability on devices
that support this feature, you must configure the interleave statement at the [edit system services netconf
notification] hierarchy level.

A NETCONF client ends a subscription by terminating either the NETCONF session or the NETCONF
session’s underlying transport session, for example, with a <close-session> or <kill-session> operation. If
you enable the interleave capability, a client can terminate the session by executing a <close-session>
operation from within the same session. If you do not enable the interleave capability, the client can
terminate the session, for example, by executing the <kill-session> operation from another session.

Filtering Capability

When a NETCONF client subscribes to event notifications, the client can subscribe to all event
notifications in the stream, or the client can subscribe to a subset of event notifications. To subscribe to
a subset of event notifications, the client includes the optional <filter> element in the <create-
subscription> RPC. If the subscription request includes filters, the filters are applied to each notification in
the event stream, and the NETCONF server forwards only matching events to the client. Otherwise, the
server forwards all events.

The <filter> parameter format for the <create-subscription> operation is similar to the filter parameter
format for other NETCONF operations. It encloses a subtree filter that selects the desired event
notifications. In the case of the <create-subscription> operation, however, Junos devices only support
subtree filters that match against the top-level element of the enclosed notification, for example,
<netconf-config-change>. The filter is applied to the notifications in the stream and only against the
contents of the <notification> wrapper.

NOTE: Junos devices do not support using XPath to filter the notifications.

When you filter for specific notifications, you must include the appropriate namespace in the tag. If you
do not specify the namespace, the event notifications will not match the filter, and the NETCONF server
will not forward the notifications. In the following example, the subscription request returns a subset of
all NETCONF event notifications. The filter selects and forwards only <netconf-config-change> events and
<oc-ifl-event> events.

<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <create-subscription xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <filter type="subtree">
 <netconf-config-change xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-notifications"></
netconf-config-change>
 <oc-ifl-event xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0"></oc-ifl-event>

169

 </filter>
 </create-subscription>
</nc:rpc>
]]>]]>

How to Enable and Subscribe to NETCONF Event Notifications

IN THIS SECTION

Enable the NETCONF Event Notification Service | 170

Subscribe to Receive Event Notifications | 172

Terminate the Subscription | 174

You must enable the NETCONF event notification service on a device before a NETCONF client can
subscribe to event notifications in a NETCONF session. After the service is enabled, a NETCONF client
subscribes to receive event notifications by sending a subscription request to the NETCONF server. The
NETCONF server reply indicates if the request is successful. If the request is successful, the server sends
asynchronous event notifications to the NETCONF client as the events occur and until the NETCONF
session is terminated.

This example requires the following hardware and software:

• Device running Junos OS Evolved Release 21.2R1 or later that supports the NETCONF event
notification service. See Feature Explorer for supported devices.

To enable and subscribe to NETCONF event notifications, perform the following tasks:

Enable the NETCONF Event Notification Service

To enable a client to subscribe to event notifications in a NETCONF session:

1. Enable the NETCONF event notification service by configuring the notification statement.

[edit]
user@host# set system services netconf notification

170

https://apps.juniper.net/feature-explorer/

2. (Optional) Configure the interleave option to enable a NETCONF client to execute RPCs in a
NETCONF session that also subscribes to notifications.

[edit]
user@host# set system services netconf notification interleave

3. Configure the rfc-compliant statement to ensure the device is compliant with NETCONF RFC 4741.

[edit]
user@host# set system services netconf rfc-compliant

4. (Optional) Configure NETCONF tracing options for troubleshooting any issues.

[edit]
user@host# set system services netconf traceoptions file filename
user@host# set system services netconf traceoptions file files number size size
user@host# set system services netconf traceoptions flag flag

For example:

[edit]
user@host# set system services netconf traceoptions file netconf.log
user@host# set system services netconf traceoptions file files 3 size 3m
user@host# set system services netconf traceoptions flag all

5. Enable notification services on the default port for applications running on the device.

In releases that require the allow-clients statement, you must also specify the clients (hostnames or IP
addresses) that are allowed to subscribe to notifications.

[edit]
user@host# set system services extension-service notification allow-clients address [address1
address2]

For example:

[edit]
user@host# set system services extension-service notification allow-clients address
[198.51.100.25 10.1.1.101]

171

6. Commit the configuration.

[edit]
user@host# commit and-quit

Subscribe to Receive Event Notifications

After you enable the NETCONF event notification service on a device, NETCONF clients can subscribe
to receive event notifications in a NETCONF session. A NETCONF client can include the following
optional parameters in the subscription request:

• <stream>—Stream of events that is of interest. The default and only acceptable value is NETCONF.

• <filter>—Subtree filter that selects a subset of all possible events.

To subscribe to event notifications in a NETCONF session:

1. Start the NETCONF session.

2. Verify that the NETCONF event notification service is enabled on the device by confirming that the
notification capability is advertised in the capabilities exchange.

<nc:hello xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <nc:capabilities>
 ...
 <nc:capability>urn:ietf:params:netconf:capability:notification:1.0</nc:capability>
 <nc:capability>urn:ietf:params:xml:ns:netconf:notification:1.0</nc:capability>
 <nc:capability>urn:ietf:params:xml:ns:netmod:notification</nc:capability>
 <nc:capability>urn:ietf:params:netconf:capability:interleave:1.0</capability>
 </nc:capabilities>
 <nc:session-id>29862</nc:session-id>
</nc:hello>
]]>]]>

3. Issue a create-subscription request, and optionally specify the NETCONF stream.

• To subscribe to all notifications, omit the <filter> parameter.

<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
<create-subscription xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
<stream>NETCONF</stream>

172

</create-subscription>
</nc:rpc>

• To subscribe to a subset of notifications, include the <filter type="subtree"> element, and define
one or more subtree filters for the notifications of interest. Junos devices only support subtree
filters that match against the top-level element of the enclosed notification. You must include the
appropriate namespace in the tag for the specific notification.

<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <create-subscription xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <stream>NETCONF</stream>
 <filter type="subtree">
 ...subtree filters...
 </filter>
 </create-subscription>
</nc:rpc>

For example:

<nc:rpc xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <create-subscription xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <filter type="subtree">
 <netconf-config-change xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-
notifications"></netconf-config-change>
 </filter>
 </create-subscription>
</nc:rpc>
]]>]]>

4. Verify that the subscription request is successful.

The NETCONF server returns <ok/> if the request is successful or an <rpc-error> element if it cannot
complete the subscription request.

<nc:rpc-reply xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:junos="http://
xml.juniper.net/junos/21.2R1/junos">
<nc:ok/>
</nc:rpc-reply>
]]>]]>

173

If the subscription request is successful, the NETCONF server starts sending event notifications
asynchronously over the connection.

5. If the interleave capability is enabled, the NETCONF client can continue to send RPCs within the
same session.

Terminate the Subscription

A NETCONF client terminates a subscription to receive event notifications by terminating either the
NETCONF session or the NETCONF session’s underlying transport session.

To terminate the NETCONF session and subscription, perform one of the following actions:

• If the interleave capability is enabled, issue the <close-session/> operation in the NETCONF session.

<rpc><close-session/></rpc>

• Issue the <kill-session> operation from an external NETCONF session, and specify the session ID for
the NETCONF session to end (as defined in the <session-id> element of the initial <hello> exchange).

<rpc><kill-session><session-id>29862</session-id></kill-session></rpc>

• Terminate the NETCONF session’s underlying transport session.

174

CHAPTER 5

NETCONF Tracing Operations

IN THIS CHAPTER

NETCONF and Junos XML Protocol Tracing Operations Overview | 175

Example: Trace NETCONF and Junos XML Protocol Session Operations | 177

NETCONF and Junos XML Protocol Tracing Operations Overview

You can configure tracing operations for the NETCONF and Junos XML management protocols.
NETCONF and Junos XML protocol tracing operations record NETCONF and Junos XML protocol
session data, respectively, in a trace file. By default, devices running Junos OS and devices running Junos
OS Evolved do not enable NETCONF or Junos XML protocol tracing operations.

You configure NETCONF and Junos XML protocol tracing operations at the [edit system services netconf
traceoptions] hierarchy level. When you enable tracing operations, the configuration applies to both
NETCONF and Junos XML protocol sessions. The system adds the [NETCONF] or [JUNOScript] tag to the log
file entries to distinguish the session type.

[edit system services]
netconf {
 traceoptions {
 file <filename> <files number> <match regular-expression> <size size> <world-readable |
 no-world-readable>;
 flag flag;
 no-remote-trace;
 on-demand;
 }
}

To enable tracing operations and trace all incoming and outgoing data from NETCONF and Junos XML
protocol sessions on a device, configure the flag all statement. You can also configure the flag debug
statement to enable debug-level tracing. However, we recommend using the flag all option.

175

You can restrict tracing to only incoming or outgoing session data by configuring the flag value as either
incoming or outgoing, respectively. Additionally, you can restrict the trace output to include only those lines
that match a particular expression. To use specific match criteria, configure the match statement and
define the regular expression against which to match the output.

To control the tracing operation from within a NETCONF or Junos XML protocol session, configure the
on-demand statement. This option requires that you start and stop trace operations from within the
session. To start tracing for that session, issue the following RPC within the session:

<rpc><request-netconf-trace><start/></request-netconf-trace></rpc>

To stop tracing for that session, issue the following RPC:

<rpc><request-netconf-trace><stop/></request-netconf-trace></rpc>

NETCONF and Junos XML protocol tracing operations record session data in the file /var/log/netconf.
To specify a different trace file, configure the file statement and the filename.

By default, when the trace file reaches 128 KB in size, it is compressed and renamed to filename.0.gz,
then filename.1.gz, and so on, until there are 10 trace files. Then the oldest trace file (filename.9.gz) is
overwritten. You can configure limits on the number and size of trace files by including the file files
number and file size size statements. You can configure up to a maximum of 1000 files. Specify the file
size in bytes or use sizek to specify KB, sizem to specify MB, or sizeg to specify GB. You cannot configure
the maximum number of trace files and the maximum trace file size independently. If you configure one
option, you must also configure the other option along with a filename.

By default, access to the trace file is restricted to the owner. You can configure access by including
either the world-readable or no-world-readable statement. The no-world-readable statement, which is the
default, restricts trace file access to the owner. The world-readable statement enables unrestricted access
to the trace file.

RELATED DOCUMENTATION

Example: Trace NETCONF and Junos XML Protocol Session Operations

netconf

ssh (NETCONF)

traceoptions (NETCONF and Junos XML Protocol)

176

Example: Trace NETCONF and Junos XML Protocol Session Operations

IN THIS SECTION

Requirements | 177

Overview | 177

Configuration | 177

Verification | 180

This example configures tracing operations for NETCONF and Junos XML protocol sessions.

Requirements

• A device running Junos OS or a device running Junos OS Evolved.

Overview

This example configures basic tracing operations for NETCONF and Junos XML protocol sessions. When
you configure tracing operations at the [edit system services netconf traceoptions] hierarchy, the device
enables tracing operations for both NETCONF and Junos XML protocol sessions. The system adds the
[NETCONF] or [JUNOScript] tag to the log file entries to distinguish the session type.

In this example, you configure the trace file netconf-ops.log. You configure a maximum number of 20
trace files and a maximum size of 3 MB for each file. The flag all statement configures tracing for all
incoming and outgoing NETCONF and Junos XML protocol data. The world-readable option enables
unrestricted access to the trace files.

Configuration

IN THIS SECTION

CLI Quick Configuration | 178

Configure NETCONF and Junos XML Protocol Tracing Operations | 178

Results | 180

177

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them in a text file, remove any
line breaks, change any details necessary to match your network configuration, and then copy and paste
the commands into the CLI at the [edit] hierarchy level.

set system services netconf ssh
set system services netconf traceoptions file netconf-ops.log
set system services netconf traceoptions file size 3m
set system services netconf traceoptions file files 20
set system services netconf traceoptions file world-readable
set system services netconf traceoptions flag all

Configure NETCONF and Junos XML Protocol Tracing Operations

Step-by-Step Procedure

To configure NETCONF and Junos XML protocol tracing operations:

1. For NETCONF sessions, enable NETCONF over SSH.

[edit]
user@R1# set system services netconf ssh

2. Configure the traceoptions flag to specify which session data to capture.

You can specify incoming, outgoing, all, or debug data. This example configures tracing for all session
data.

[edit]
user@R1# set system services netconf traceoptions flag all

3. (Optional) Configure the filename of the trace file.

The following statement configures the trace file /var/log/netconf-ops.log. If you do not specify a
filename, the system logs NETCONF and Junos XML protocol session data in /var/log/netconf.

[edit]
user@R1# set system services netconf traceoptions file netconf-ops.log

178

4. (Optional) Configure the maximum number of trace files and the maximum size of each file.

The following statements configure a maximum of 20 trace files with a maximum size of 3 MB per
file.

[edit]
user@R1# set system services netconf traceoptions file files 20
user@R1# set system services netconf traceoptions file size 3m

5. (Optional) Restrict the trace output to include only those lines that match a particular regular
expression.

The following configuration, which is not used in this example, matches on and logs only session data
that contains “error-message”.

[edit]
user@R1# set system services netconf traceoptions file match error-message

6. (Optional) Configure on-demand tracing to control tracing operations from the NETCONF or Junos
XML protocol session.

The following configuration, which is not used in this example, enables on-demand tracing.

[edit]
user@R1# set system services netconf traceoptions on-demand

7. (Optional) Configure the permissions on the trace file by specifying whether the file is world-readable
or no-world-readable.

This example enables unrestricted access to the trace file.

[edit]
user@R1# set system services netconf traceoptions file world-readable

8. Commit the configuration.

[edit]
user@R1# commit

179

Results

[edit]
system {
 services {
 netconf {
 ssh;
 traceoptions {
 file netconf-ops.log size 3m files 20 world-readable;
 flag all;
 }
 }
 }
}

Verification

IN THIS SECTION

Verify NETCONF and Junos XML Protocol Tracing Operation | 180

Verify NETCONF and Junos XML Protocol Tracing Operation

Purpose

Verify that the device logs NETCONF and Junos XML protocol operations to the configured trace file.
This example logs both incoming and outgoing NETCONF and Junos XML protocol data. In the sample
NETCONF session, which is not detailed here, the user modifies the candidate configuration to include
the bgp-troubleshoot.slax op script and then commits the configuration.

Action

Display the configured trace file by issuing the show log filename operational mode command.

user@R1 show log netconf-ops.log
Apr 3 13:09:04 [NETCONF] Started tracing session: 3694
Apr 3 13:09:29 [NETCONF] - [3694] Incoming: <rpc>

180

Apr 3 13:09:29 [NETCONF] - [3694] Outgoing: <rpc-reply
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:junos="http://xml.juniper.net/junos/24.4R1/
junos">
Apr 3 13:09:39 [NETCONF] - [3694] Incoming: <edit-config>
Apr 3 13:09:43 [NETCONF] - [3694] Incoming: <target>
Apr 3 13:09:47 [NETCONF] - [3694] Incoming: <candidate/>
Apr 3 13:09:53 [NETCONF] - [3694] Incoming: </target>
Apr 3 13:10:07 [NETCONF] - [3694] Incoming: <default-operation>merge</default-operation>
Apr 3 13:10:10 [NETCONF] - [3694] Incoming: <config>
Apr 3 13:10:13 [NETCONF] - [3694] Incoming: <configuration>
Apr 3 13:10:16 [NETCONF] - [3694] Incoming: <system>
Apr 3 13:10:19 [NETCONF] - [3694] Incoming: <scripts>
Apr 3 13:10:23 [NETCONF] - [3694] Incoming: <op>
Apr 3 13:10:26 [NETCONF] - [3694] Incoming: <file>
Apr 3 13:10:44 [NETCONF] - [3694] Incoming: <name>bgp-troubleshoot.slax</name>
Apr 3 13:10:46 [NETCONF] - [3694] Incoming: </file>
Apr 3 13:10:48 [NETCONF] - [3694] Incoming: </op>
Apr 3 13:10:52 [NETCONF] - [3694] Incoming: </scripts>
Apr 3 13:10:56 [NETCONF] - [3694] Incoming: </system>
Apr 3 13:11:00 [NETCONF] - [3694] Incoming: </configuration>
Apr 3 13:11:00 [NETCONF] - [3694] Outgoing: <ok/>
Apr 3 13:11:12 [NETCONF] - [3694] Incoming: </config>
Apr 3 13:11:18 [NETCONF] - [3694] Incoming: </edit-config>
Apr 3 13:11:26 [NETCONF] - [3694] Incoming: </rpc>
Apr 3 13:11:26 [NETCONF] - [3694] Outgoing: </rpc-reply>
Apr 3 13:11:26 [NETCONF] - [3694] Outgoing:]]>]]>
Apr 3 13:11:31 [NETCONF] - [3694] Incoming:]]>]]>

Apr 3 13:14:20 [NETCONF] - [3694] Incoming: <rpc>
Apr 3 13:14:20 [NETCONF] - [3694] Outgoing: <rpc-reply
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:junos="http://xml.juniper.net/junos/24.4R1/
junos">
Apr 3 13:14:26 [NETCONF] - [3694] Incoming: <commit/>
Apr 3 13:14:35 [NETCONF] - [3694] Outgoing: <ok/>
Apr 3 13:14:35 [NETCONF] - [3694] Incoming: </rpc>
Apr 3 13:14:35 [NETCONF] - [3694] Outgoing: </rpc-reply>
Apr 3 13:14:35 [NETCONF] - [3694] Outgoing:]]>]]>
Apr 3 13:14:40 [NETCONF] - [3694] Incoming:]]>]]>

Apr 3 13:30:48 [NETCONF] - [3694] Outgoing: <!-- session end at 2025-04-03 13:30:48 PDT -->

181

Meaning

This example configures the flag all statement, so the trace file logs all incoming and outgoing data for
any NETCONF and Junos XML protocol sessions. Each operation includes the date and timestamp. The
log file indicates the session type, either NETCONF or Junos XML protocol, by including the [NETCONF] or
[JUNOScript] tag, respectively. The device distinguishes multiple NETCONF and Junos XML protocol
sessions by using a unique session number. In this example, only one NETCONF session, using session
identifier 3694, is active.

RELATED DOCUMENTATION

NETCONF and Junos XML Protocol Tracing Operations Overview

traceoptions (NETCONF and Junos XML Protocol)

182

CHAPTER 6

NETCONF Protocol Operations and Attributes

IN THIS CHAPTER

<close-session/> | 183

<commit> | 184

<copy-config> | 186

<delete-config> | 189

<discard-changes/> | 190

<edit-config> | 191

<get> | 195

<get-config> | 198

<kill-session> | 200

<lock> | 201

operation | 202

<unlock> | 204

<validate> | 205

<close-session/>

IN THIS SECTION

Usage | 184

Description | 184

183

Usage

<rpc>
 <close-session/>
</rpc>
]]>]]>

Description

Request that the NETCONF server end the current session.

RELATED DOCUMENTATION

End a NETCONF Session and Close the Connection | 136

<commit>

IN THIS SECTION

Usage | 184

Description | 185

Contents | 186

Usage

<rpc>
 <commit/>
</rpc>
]]>]]>

<rpc>
 <commit>

184

 <confirmed/>
 <confirm-timeout>rollback-delay</confirm-timeout>
 </commit>
</rpc>
]]>]]>

Description

Request that the NETCONF server perform one of the variants of the commit operation on the
candidate configuration or open configuration database. Table 11 on page 185 describes the commit
operations.

NOTE: The <confirmed/> tag is not supported when committing configuration data to the
ephemeral configuration database.

Table 11: Commit Operations

<commit> Operation Description

<commit/>
Commit the configuration immediately, making it the active configuration
on the device.

<commit>
 <confirmed/>
</commit>

<commit>
 <confirmed/>
 <confirm-timeout>rollback-
delay</confirm-timeout>
</commit>

Commit the configuration but require an explicit confirmation for the
commit to become permanent. If the commit is not confirmed, the
configuration rolls back to the previous configuration after the specified
time.

Optionally, include the <confirm-timeout> element to specify the rollback
delay in the range from 1 through 4,294,967,295 seconds. By default, the
rollback occurs after 600 seconds.

To delay the rollback again (past the original rollback deadline), emit the
<commit><confirmed/></commit> tags before the deadline passes, and
optionally include the <confirm-timeout> element. The rollback can be
delayed repeatedly in this way.

To confirm the commit, emit the empty <commit/> tag before the rollback
deadline passes. The device commits the candidate configuration and
cancels the rollback.

185

Contents

<confirmed> Request a temporary commit of the candidate configuration. If the commit is not
confirmed, the device reverts to the previous active configuration after a specified time,
which is 600 seconds (10 minutes) by default.

<confirm-
timeout>

Specify the number of seconds before the device reverts to the previously active
configuration. If you omit this element, the server uses the default value.

• Range: 1 through 4,294,967,295 seconds

• Default: 600 seconds

RELATED DOCUMENTATION

Commit the Candidate Configuration Using NETCONF | 323

Commit the Candidate Configuration Only After Confirmation Using NETCONF | 325

<copy-config>

IN THIS SECTION

Usage | 186

Description | 187

Attributes | 188

Contents | 188

Release Information | 188

Usage

<rpc>
 <copy-config>
 <target>
 <url>

186

 <!-- location specifier for target file -->
 </url>
 </target>
 <source>
 <(candidate | running)/>
 </source>
 </copy-config>

 <copy-config>
 <target>
 <candidate/>
 </target>
 <source>
 <running/>
 </source>
 </copy-config>

 <copy-config>
 <target>
 <candidate/>
 </target>
 <source>
 <url format="(xml | text)">
 <!-- location specifier for input file -->
 </url>
 </source>
 </copy-config>
</rpc>
]]>]]>

Description

Copy the source configuration datastore to the target configuration datastore.

If a client application issues the Junos XML protocol <open-configuration> operation to open a specific
configuration database before executing a <copy-config> operation, <candidate/> refers to the open
configuration database. Otherwise, <candidate/> refers to the candidate configuration.

You can use <copy-config> to perform the following operations:

• Copy the active or candidate configuration data in XML format to a file.

• Copy the active configuration to the candidate configuration or open configuration database.

187

• Copy the configuration data in the specified file to the candidate configuration or open configuration
database.

Attributes

format="(text |
 xml)"

Specify the format of the source configuration data.

• text—Load configuration data formatted as text.

• xml—Load configuration data formatted as Junos XML tag elements. This is the
default.

Contents

<candidate/> Specify the open configuration database, or if there is no open database, the candidate
configuration database.

<running/> Specify the active configuration database.

<source> Specify the source configuration datastore.

<target> Specify the target configuration datastore.

<url> Specify the location of the input or output file. For more information, see "Upload and
Format Configuration Data in a NETCONF Session" on page 279.

Release Information

<url> (as target) support for file:// URI with absolute path added in Junos OS Release 23.4R1 and Junos
OS Evolved Release 23.4R1.

RELATED DOCUMENTATION

Replace the Candidate Configuration Using NETCONF | 293

Upload and Format Configuration Data in a NETCONF Session | 279

188

<delete-config>

IN THIS SECTION

Usage | 189

Description | 189

Contents | 189

Usage

<rpc>
 <delete-config>
 <target>
 <candidate/>
 </target>
 </delete-config>
</rpc>
]]>]]>

Description

Delete all configuration data in the existing candidate configuration or open configuration database.

If a client application issues the Junos XML protocol <open-configuration> operation to open a specific
configuration database before executing the <delete-config> operation on the target <candidate/>, Junos
OS performs the <delete-config> operation on the open configuration database. Otherwise, the operation
is performed on the candidate configuration.

Contents

The <target> tag element and its contents are explained separately.

RELATED DOCUMENTATION

Delete the Configuration Using NETCONF | 299

189

Delete Configuration Elements Using NETCONF | 306

<target> | 217

<discard-changes/>

IN THIS SECTION

Usage | 190

Description | 190

Usage

<rpc>
 <discard-changes/>
</rpc>
]]>]]>

Description

Discard changes made to the candidate configuration and make its contents match the contents of the
current running (active) configuration. This operation is equivalent to the Junos OS CLI configuration
mode rollback 0 command.

NOTE: The <discard-changes/> operation cannot be used to discard uncommitted changes
that have been loaded into the ephemeral configuration database.

RELATED DOCUMENTATION

Roll Back Uncommitted Changes in the Candidate Configuration Using NETCONF | 298

190

<edit-config>

IN THIS SECTION

Usage | 191

Description | 192

Contents | 192

Usage

<rpc>
 <edit-config>
 <target>
 <candidate/>
 </target>

 <!-- EITHER -->

 <config>
 <configuration>
 <!-- tag elements representing the data to incorporate -->
 </configuration>
 </config>

 <!-- OR -->

 <config-text>
 <configuration-text>
 <!-- configuration data in text format -->
 </configuration-text>
 </config-text>

 <!-- OR -->

 <url format="(xml | text)">
 <!-- location specifier for file containing data -->
 </url>

191

 <default-operation>(merge | none | replace)</default-operation>
 <error-option>(ignore-error | stop-on-error)</error-option>
 <test-option>(set | test-then-set)</test-option>
 </edit-config>
</rpc>
]]>]]>

Description

Request that the NETCONF server incorporate configuration data into the candidate configuration or
open configuration database. Provide the data in one of three ways:

• Data stream of Junos XML elements—Include the <config> tag element to provide a data stream of
Junos XML configuration tag elements to incorporate. The tag elements are enclosed in the
<configuration> tag element.

• Data stream of configuration data in text format—Include the <config-text> tag element to provide a
data stream of CLI configuration statements to incorporate. The configuration statements are
enclosed in the <configuration-text> tag element.

• File containing configuration data—Include the <url> tag element to specify the location of a file that
contains the Junos OS configuration to incorporate. The format of the configuration data can be
Junos XML elements or CLI configuration statements.

If a client application issues the Junos XML protocol <open-configuration> operation to open a specific
configuration database before executing the <edit-config> operation on the target <candidate/>, Junos OS
performs the <edit-config> operation on the open configuration database. Otherwise, the operation is
performed on the candidate configuration.

Contents

<config> Enclose the <configuration> tag element.

<configuration> Enclose configuration data in Junos XML format. This configuration data is provided
as a data stream and is incorporated into the candidate configuration or open
configuration database. For information about the syntax for representing the
elements to create, delete, or modify, see "Map Configuration Statements to Junos
XML Tag Elements" on page 25.

<config-text> Enclose the <configuration-text> tag element.

192

<configuration-
text>

Enclose configuration data formatted as CLI configuration statements. This
configuration data is provided as a data stream and is incorporated into the candidate
configuration or open configuration database.

<default-
operation>

(Optional) Specify how to incorporate the new configuration data into the candidate
configuration or open configuration database, particularly when there are conflicting
statements.

• Default: merge

• Values:

• merge—Combine the new configuration data with the existing configuration
according to the rules defined in "Set the Edit Configuration Mode in a
NETCONF Session" on page 287. This mode applies to all elements in the new
data that do not have the operation attribute in their opening container tag to
specify a different mode.

• none—Retain each configuration element in the existing configuration unless the
new data includes a corresponding element that has the operation attribute in its
opening container tag to specify an incorporation mode. This mode prevents
the NETCONF server from creating parent hierarchy levels for an element that
is being deleted. See "Set the Edit Configuration Mode in a NETCONF Session"
on page 287.

• replace—Discard the existing configuration data in the candidate configuration
or open configuration database and replace it with the new data. See "Replace
the Candidate Configuration Using NETCONF" on page 293.

<error-option> (Optional) Specify how the NETCONF server handles errors encountered while it
incorporates the configuration data.

• Default: stop-on-error

• Values:

• ignore-error—Instruct the NETCONF server to continue incorporating the new
configuration data even if it encounters an error.

• stop-on-error—Instruct the NETCONF server to stop incorporating the new
configuration data when it encounters an error.

<test-option> (Optional) Specify whether the NETCONF server validates the configuration data
before incorporating it into the candidate configuration.

193

• Default: test-then-set

• Values:

• set—Do not perform validation

• test-then-set—Perform validation and do not incorporate the data if the
validation fails

Regardless of the value provided, the NETCONF server performs a basic syntax check
on the Junos OS configuration data in the <edit-config> tag element. It performs a
complete syntactic and semantic validation on the candidate configuration in
response to the <validate> and <commit> tag elements, but not for the <edit-config> tag
element.

NOTE: The ephemeral configuration database does not support using
the <test-option> element when loading configuration data into the
database.

<url> Specify the full pathname of the file that contains the configuration data to load.

When the configuration data is formatted as Junos XML tag elements, set the <url>
format attribute to "xml" or omit the attribute. When the configuration data is
formatted as CLI configuration statements, set the <url> format attribute to "text". For
more information, see "Upload and Format Configuration Data in a NETCONF
Session" on page 279.

The <target> tag element and its contents are explained separately.

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

21.1R1 and
21.1R1-EVO

Starting in Junos OS Release 21.1R1 and Junos OS Evolved Release 21.1R1,when you set
<default-operation> to replace, the device uses a load update operation instead of a load override
operation to replace the configuration. In load update operations, the device notifies only the
Junos processes that correspond to changed statements, thus minimizing possible disruptions to
the network.

194

https://apps.juniper.net/feature-explorer/

RELATED DOCUMENTATION

Change Individual Configuration Elements Using NETCONF | 300

Edit the Configuration Using NETCONF | 277

Replace the Candidate Configuration Using NETCONF | 293

Set the Edit Configuration Mode in a NETCONF Session | 287

Upload and Format Configuration Data in a NETCONF Session | 279

<target> | 217

<get>

IN THIS SECTION

Usage | 195

Description | 196

Attributes | 196

Contents | 196

Release Information | 197

Usage

<rpc>
 <get [format="(json | json-minified | set | text | xml | xml-minified)"]>
 <filter type="subtree">
 <configuration>
 <!-- tag elements representing the configuration elements to return -->
 </configuration>
 </filter>
 </get>

 <get>
 <filter type="subtree">
 <netconf-state xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
 (<capabilities/> | <datastores/> | <schemas/> | <sessions/> | <statistics/>)

195

 </netconf-state>
 </filter>
 </get>

</rpc>
]]>]]>

Description

Request the committed configuration or NETCONF state information from the NETCONF server.

Attributes

format Specify the return format for the configuration data.

• Default: xml

• Values:

• json—Configuration statements are formatted in JSON.

• json-minified—Configuration statements are formatted in JSON with unnecessary spaces,
tabs, and newlines removed.

• set—Configuration statements are formatted as Junos OS configuration mode commands.

• text—Configuration statements are formatted as ASCII text, using the newline character,
tabs and other white space, braces, and square brackets to indicate the hierarchical
relationships between the statements.

• xml—Configuration statements are represented by the corresponding Junos XML tag
elements.

• xml-minified—Configuration statements are represented by the corresponding Junos XML
tag elements with unnecessary spaces, tabs, and newlines removed.

Contents

<filter> (Optional) Specify the information that the NETCONF server should return.

• Values:

196

• <configuration>—Return the committed configuration.

To specify the configuration elements to return, optionally include the Junos XML tag
elements that represent all levels of the configuration hierarchy from the root
(represented by the <configuration> tag element) down to each element to display.

• <netconf-state>—Return NETCONF state data for the requested subtree. You must specify
one of the following:

• capabilities—NETCONF capabilities supported by the NETCONF server.

• datastores—Available configuration datastores, for example, candidate or running
(active), and their lock state.

• schemas—Schemas supported on the device.

• sessions—Active NETCONF management sessions on the device.

• statistics—NETCONF server performance data.

NOTE: The optional type attribute indicates the kind of syntax used to
represent the requested configuration elements or state information; the only
acceptable value is subtree.

Release Information

<netconf-state> <schemas> added in Junos OS Release 21.1R1 and Junos OS Evolved Release 21.1R1.

<netconf-state> <capabilities>, <datastores>, <sessions>, and <statistics> added in Junos OS Release 23.4R1
and Junos OS Evolved Release 23.4R1.

RELATED DOCUMENTATION

Request the Committed Configuration and Device State Using NETCONF | 398

197

<get-config>

IN THIS SECTION

Usage | 198

Description | 198

Contents | 199

Usage Guidelines | 199

Usage

<rpc>
 <get-config>
 <source>
 <(candidate | running)/>
 </source>
 </get-config>

 <get-config>
 <source>
 <(candidate | running)/>
 </source>
 <filter type="subtree">
 <configuration>
 <!-- tag elements for each configuration element to return -->
 </configuration>
 </filter>
 </get-config>
</rpc>
]]>]]>

Description

Request configuration data from the NETCONF server. The child tag elements <source> and <filter>
specify the source and scope of data to display:

198

• To display the entire active configuration, enclose the <source> tag element and <running/> tag in the
<get-config> tag element.

• To display either the entire candidate configuration or all configuration data in the open configuration
database, enclose the <source> tag element and <candidate/> tag in the <get-config> tag element.

If a client application issues the Junos XML protocol <open-configuration> operation to open a specific
configuration database before executing the <get-config> operation, setting the source to <candidate/>
retrieves the configuration data from the open configuration database. Otherwise, the server returns
the configuration data from the candidate configuration.

• To display one or more sections of the configuration hierarchy (hierarchy levels or configuration
objects), enclose the appropriate child tag elements in the <source> and <filter> tag elements.

Contents

<candidate/> Specify the open configuration database, or if there is no open database, the candidate
configuration.

<configuration> Enclose tag elements that specify which configuration elements to return.

<filter> Enclose the <configuration> tag element. The mandatory type attribute indicates the kind
of syntax used to represent the requested configuration elements; the only acceptable
value is subtree.

To specify the configuration elements to return, include within the <filter> tag element
the Junos XML tag elements that represent all levels of the configuration hierarchy from
the root (represented by the <configuration> tag element) down to each element to
display. For information about the configuration elements available in the current
version of the Junos OS, see the XML API Explorer.

<running/> Specify the active (mostly recently committed) configuration.

<source> Enclose the tag that specifies the source of the configuration data. To specify either the
candidate configuration or an open configuration database, include the <candidate/> tag.
To specify the active configuration, include the <running/> tag.

Usage Guidelines

See "Request Configuration Data Using NETCONF" on page 400.

199

https://apps.juniper.net/xmlapi/

RELATED DOCUMENTATION

<data> | 209

<kill-session>

IN THIS SECTION

Usage | 200

Description | 200

Contents | 200

Usage

<rpc>
 <kill-session>
 <session-id>PID</session-id>
 </kill-session>
</rpc>
]]>]]>

Description

Request that the NETCONF server terminate another CLI or NETCONF session. The usual reason to
emit this tag is that the user or application for the other session holds a lock on the candidate
configuration, preventing the client application from locking the configuration itself.

The client application must have the Junos OS maintenance permission to perform this operation.

Contents

<session-id> Process identifier (PID) of the entity conducting the session to terminate. The PID is
reported in the <rpc-error> tag element that the NETCONF server generates when it cannot
lock a configuration as requested.

200

NOTE: Starting in Junos OS Release 19.1R1, if the session identifier is equal to the
current session ID, the values of the <error-type> and <error-tag> elements in the resulting
<rpc-error> are application and invalid-value, respectively. In earlier releases, the <error-type>
and <error-tag> values are protocol and operation-failed.

RELATED DOCUMENTATION

Terminate a NETCONF Session | 134

<lock>

IN THIS SECTION

Usage | 201

Description | 202

Contents | 202

Usage

<rpc>
 <lock>
 <target>
 <candidate/>
 </target>
 </lock>
</rpc>
]]>]]>

201

Description

Request that the NETCONF server lock the candidate configuration, enabling the client application both
to read and change it, but preventing any other users or applications from changing it. The client
application must emit the <unlock/> tag to unlock the configuration.

If the NETCONF session ends or the application emits the <unlock> tag element before the candidate
configuration is committed, all changes made to the candidate are discarded.

Contents

The <target> tag element and its contents are explained separately.

RELATED DOCUMENTATION

Lock and Unlock the Candidate Configuration | 132

<target> | 217

<unlock> | 204

operation

IN THIS SECTION

Usage | 202

Description | 203

Release Information | 204

Usage

<rpc>
 <edit-config>
 <config>
 <configuration>
 <!-- opening tags for each parent of the changing element -->

202

 <changing-element operation="(create | delete | remove | replace)">
 <name>identifier</name>
 <!-- if changing element has an identifier -->
 <!-- other child tag elements, if appropriate -->
 </changing-element>
 <!-- closing tags for each parent of the changing element -->
 </configuration>
 </config>
 <!-- other child tag elements of the <edit-config> tag element -->
 <edit-config>
</rpc>
]]>]]>

Description

Specify how the NETCONF server incorporates an individual configuration element into the target
configuration, which can be either the candidate configuration or the open configuration database. If
you omit the attribute, the element is merged into the configuration according to the rules defined in
"Set the Edit Configuration Mode in a NETCONF Session" on page 287. The NETCONF server accepts
the following values:

create Create the specified element in the target configuration only if the element does not already
exist.

delete Delete the specified element from the target configuration. If the element does not exist in the
target configuration, the server returns an <rpc-error> element with an <error-tag> value of data-
missing.

When you use this attribute, we recommend that you include the <default-operation>none</
default-operation> element in the <edit-config> RPC.

remove Delete the specified element from the target configuration. If the element does not exist in the
target configuration, the server silently ignores the request and does not return any error
related to this request.

When you use this attribute, we recommend that you include the <default-operation>none</
default-operation> element in the <edit-config> RPC.

replace Replace the specified element in the target configuration with new configuration data.

203

NOTE: The operation="replace" attribute is not supported when loading
configuration data into the ephemeral configuration database.

Release Information

Starting in Junos OS Release 23.1R1 and Junos OS Evolved Release 23.1R1, the NETCONF server <rpc-
error> response is changed when <edit-config> uses the operation="delete" operation to delete a
configuration element that is absent in the target configuration. The error severity is error instead of
warning, and the <rpc-error> element includes the <error-tag>data-missing</error-tag> and <error-
type>application</error-type> elements.

RELATED DOCUMENTATION

Change Individual Configuration Elements Using NETCONF | 300

Create Configuration Elements Using NETCONF | 304

Delete Configuration Elements Using NETCONF | 306

Replace Configuration Elements Using NETCONF | 314

Set the Edit Configuration Mode in a NETCONF Session | 287

<edit-config> | 191

<unlock>

IN THIS SECTION

Usage | 205

Description | 205

Contents | 205

204

Usage

<rpc>
 <unlock>
 <target>
 <candidate/>
 </target>
 </unlock>
</rpc>
]]>]]>

Description

Request that the NETCONF server unlock and close the candidate configuration, which the client
application previously locked by emitting the <lock> tag element. Until the application emits this tag
element, other users or applications can read the configuration but cannot change it.

Contents

The <target> tag element and its contents are explained separately.

RELATED DOCUMENTATION

Lock and Unlock the Candidate Configuration | 132

<lock> | 201

<target> | 217

<validate>

IN THIS SECTION

Usage | 206

Description | 206

Contents | 206

205

Release Information | 206

Usage

<rpc>
 <validate>
 <source>
 <candidate/>
 </source>
 </validate>
</rpc>
]]>]]>

Description

Check that the candidate configuration is syntactically valid.

Contents

<source> Enclose the tag that specifies the configuration to validate.

<candidate/> Specify the candidate configuration.

Release Information

Starting in Junos OS Release 23.2R1 and Junos OS Evolved Release 23.4R1, when you configure the rfc-
compliant statement at the [edit system services netconf] hierarchy level, the NETCONF server emits only
an <ok/> or <rpc-error> element in response to <validate> operations. In earlier releases, the RPC reply also
includes the <commit-results> element.

RELATED DOCUMENTATION

Verify the Candidate Configuration Syntax Using NETCONF | 322

206

CHAPTER 7

NETCONF Request and Response Tags

IN THIS CHAPTER

End-of-document Character Sequence | 207

<data> | 209

<error-info> | 210

<hello> | 211

<ok/> | 213

<rpc> | 213

<rpc-error> | 214

<rpc-reply> | 216

<target> | 217

End-of-document Character Sequence

IN THIS SECTION

Usage | 207

Description | 208

Usage

<hello>
 <!-- child tag elements included by client application or NETCONF server -->

207

</hello>
]]>]]>

<rpc [attributes]>
 <!-- tag elements in a request from a client application -->
</rpc>
]]>]]>

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <!-- tag elements in the response from the NETCONF server -->
</rpc-reply>
]]>]]>

Description

Signal the end of each XML document sent by the NETCONF server and client applications. A client
application sends the sequence after its closing </hello> tag and each closing </rpc> tag. The NETCONF
server sends the sequence after its closing </hello> tag and each closing </rpc-reply> tag.

Use of this signal is required by RFC 4742, Using the NETCONF Configuration Protocol over Secure
SHell (SSH), available at http://www.ietf.org/rfc/rfc4742.txt .

NOTE: Starting in Junos OS Release 24.4R1 and Junos OS Evolved Release 24.4R1, you
can configure the NETCONF session to comply with RFC 6242, Using the NETCONF
Protocol over Secure Shell (SSH). If you enable RFC 6242 compliance and both peers
advertise the :base:1.1 capability, the NETCONF session uses chunked framing for all
messages after the initial <hello> message. Otherwise, the NETCONF session uses the
end-of-document character sequence (]]>]]>) as the message separator.

RELATED DOCUMENTATION

Generate Well-Formed XML Documents | 37

<hello> | 211

<rpc> | 213

<rpc-reply> | 216

208

http://www.ietf.org/rfc/rfc4742.txt

<data>

IN THIS SECTION

Usage | 209

Description | 209

Contents | 209

Usage Guidelines | 210

Usage

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <data>
 <configuration>
 <!-- Junos XML tag elements for the configuration data -->
 </configuration>
 </data>
</rpc-reply>
]]>]]>

Description

Encloses configuration data and device information returned by the NETCONF server in response to a
<get> request or configuration data returned by the NETCONF server in response to a <get-config>
request.

NOTE: The NETCONF server, by default, returns configuration data formatted as Junos
XML tag elements. The configuration data enclosed in the <data> element can vary if a
client application requests a different format in a <get> request.

Contents

<configuration> Encloses configuration tag elements. It is the top-level tag element in the Junos XML
API, equivalent to the [edit] hierarchy level in the Junos OS CLI. For information about

209

Junos OS configuration elements, see the Junos XML API Configuration Developer
Reference.

Usage Guidelines

See "Request Configuration Data Using NETCONF" on page 400.

RELATED DOCUMENTATION

<get> | 195

<get-config> | 198

<rpc-reply> | 216

<error-info>

IN THIS SECTION

Usage | 210

Description | 211

Contents | 211

Usage

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <rpc-error>
 <error-info>
 <bad-element>command-or-statement</bad-element>
 </error-info>
 </rpc-error>
</rpc-reply>
]]>]]>

210

Description

Provides additional information about the event or condition that causes the NETCONF server to report
an error or warning in the <rpc-error> tag element.

Contents

<bad-
element>

Identifies the command or configuration statement that was being processed when the
error or warning occurred. For a configuration statement, the <error-path> tag element
enclosed in the <rpc-error> tag element specifies the statement’s parent hierarchy level.

RELATED DOCUMENTATION

Handle an Error or Warning in a NETCONF Session | 130

<rpc-error> | 214

<rpc-reply> | 216

<hello>

IN THIS SECTION

Usage | 211

Description | 212

Contents | 212

Usage

<!-- emitted by a client application -->
<hello>
 <capabilities>
 <capability>URI</capability>
 </capabilities>

211

</hello>
]]>]]>

<!-- emitted by the NETCONF server -->
<hello>
 <capabilities>
 <capability>URI</capability>
 </capabilities>
 <session-id>session-identifier</session-id>
</hello>
]]>]]>

Description

Specify which operations, or capabilities, the emitter supports from among those defined in the
NETCONF specification. The client application must emit the <hello> tag element before any other tag
element during the NETCONF session, and must not emit it more than once.

Contents

<capabilities> Encloses one or more <capability> tags, which together specify the set of supported
NETCONF operations.

<capability> Specifies the uniform resource identifier (URI) of a capability defined in the NETCONF
specification or by a vendor. Each capability from the NETCONF specification is
represented by a uniform resource name (URN). Capabilities defined by vendors are
represented by URNs or URLs.

<session-id> (Generated by NETCONF server only) Specifies the UNIX process ID (PID) of the
NETCONF server for the session.

RELATED DOCUMENTATION

Exchanging <hello> Tag Elements | 119

212

<ok/>

IN THIS SECTION

Usage | 213

Description | 213

Usage

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <ok/>
</rpc-reply>
]]>]]>

Description

Indicates that the NETCONF server successfully performed the requested operation that changes the
state or contents of the device configuration.

RELATED DOCUMENTATION

<rpc-reply> | 216

<rpc>

IN THIS SECTION

Usage | 214

Description | 214

Attributes | 214

213

Usage

<rpc [attributes]>]
 <!-- tag elements in a request from a client application -->
</rpc>
]]>]]>

Description

Enclose all tag elements in a request generated by a client application.

Attributes

(Optional) One or more attributes of the form attribute-name="value". This feature can be used to
associate requests and responses if the value assigned to an attribute by the client application is unique
in each opening <rpc> tag. The NETCONF server echoes the attribute unchanged in its opening <rpc-
reply> tag, making it simple to map the response to the initiating request. The NETCONF specification
assigns the name message-id to this attribute.

RELATED DOCUMENTATION

Send Requests to the NETCONF Server | 124

<rpc-reply> | 216

<rpc-error>

IN THIS SECTION

Usage | 215

Description | 215

Contents | 215

214

Usage

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <rpc-error>
 <error-severity>error-severity</error-severity>
 <error-path>error-path</error-path>
 <error-message>error-message</error-message>
 <error-info>...</error-info>
 </rpc-error>
</rpc-reply>
]]>]]>

Description

Indicate that the NETCONF server has experienced an error while processing the client application’s
request. If the server has already emitted the response tag element for the current request, the
information enclosed in that response tag element might be incomplete. The client application must
include code that discards or retains the information, as appropriate. The child tag elements described in
the Contents section detail the nature of the error. The NETCONF server does not necessarily emit all
child tag elements; it omits tag elements that are not relevant to the current request.

NOTE: Starting in Junos OS Release 17.4R3, 18.2R2, 18.3R2, and 18.4R1, when you
configure the rfc-compliant statement at the [edit system services netconf] hierarchy level to
enforce certain behaviors by the NETCONF server, the NETCONF server cannot return
an RPC reply that includes both an <rpc-error> element and an <ok/> element. If the
operation is successful, but the server reply would include one or more <rpc-error>
elements with a severity level of warning in addition to the <ok/> element, then the
warnings are omitted.

Contents

<error-message> Describes the error or warning in a natural-language text string.

<error-path> Specifies the path to the Junos OS configuration hierarchy level at which the error or
warning occurred, in the form of the CLI configuration mode banner.

<error-severity> Indicates the severity of the event that caused the NETCONF server to return the <rpc-
error> tag element. The two possible values are error and warning.

The <error-info> tag element is described separately.

215

RELATED DOCUMENTATION

Handle an Error or Warning in a NETCONF Session | 130

<error-info> | 210

<rpc-reply> | 216

<rpc-reply>

IN THIS SECTION

Usage | 216

Description | 216

Attributes | 217

Usage

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <!-- tag elements in a reply from the NETCONF server-->
</rpc-reply>
]]>]]>

Description

Encloses all tag elements in a reply from the NETCONF server. The immediate child tag element is
usually one of the following:

• Junos XML response tag—Encloses the data that the client application requests using a Junos XML
operational request tag. For example, the server returns the <interface-information> tag in response to
the <get-interface-information> request tag.

• <data>—Encloses the data that the client application requests using either the <get> or the <get-config>
tag element.

• <ok/>—Confirms that the NETCONF server successfully performed an operation that changes the
state or contents of the configuration (such as a lock, change, or commit operation)

216

• <output>—Encloses data for requests where the Junos XML API does not define a specific tag element
for the requested operational information.

• <rpc-error>—Encloses errors or warnings.

Attributes

xmlns Name of the default XML namespace for the enclosed tag elements.

RELATED DOCUMENTATION

Parse the NETCONF Server Response | 127

<data> | 209

<ok/> | 213

<rpc> | 213

<rpc-error> | 214

<target>

IN THIS SECTION

Usage | 217

Description | 218

Contents | 218

Usage

<rpc>
 <(copy-config | delete-config | edit-config | lock | unlock)>
 <target>
 <candidate/>
 </target>
 ...

217

 </(copy-config | delete-config | edit-config | lock | unlock)>

 <copy-config>
 <target>
 <url>
 <!-- location specifier for target file -->
 </url>
 </target>
 <source>
 <(candidate | running)/>
 </source>
 </copy-config>
</rpc>
]]>]]>

Description

Specify the target configuration datastore for the specified operation.

If a client application issues the Junos XML protocol <open-configuration> operation to open a specific
configuration database before executing a <copy-config>, <delete-config>, or <edit-config> operation on the
target <candidate/>, the device performs the requested operation on the open configuration database.
Otherwise, the device performs the operation on the candidate configuration. Client applications can
only perform the <lock> and <unlock> operations on the candidate configuration.

Contents

<candidate/> Specify the target configuration database for the specified operation, either the open
configuration database, or if there is no open database, the candidate configuration. This is
the only acceptable value for Junos devices.

<url> For <copy-config> operations, specify the output file location.

RELATED DOCUMENTATION

Delete the Configuration Using NETCONF | 299

Edit the Configuration Using NETCONF | 277

Replace the Candidate Configuration Using NETCONF | 293

Lock and Unlock the Candidate Configuration | 132

218

CHAPTER 8

Junos XML Protocol Elements Supported in
NETCONF Sessions

IN THIS CHAPTER

<abort/> | 220

<abort-acknowledgement/> | 221

<checksum-information> | 222

<close-configuration/> | 223

<commit-configuration> | 224

<commit-results> | 230

<commit-revision-information> | 232

<database-status> | 234

<database-status-information> | 236

<end-session/> | 237

<get-checksum-information> | 238

<get-configuration> | 239

<load-configuration> | 246

<load-configuration-results> | 252

<lock-configuration/> | 253

<open-configuration> | 254

<reason> | 256

<request-end-session/> | 257

<routing-engine> | 258

<unlock-configuration/> | 260

<xnm:error> | 261

<xnm:warning> | 264

219

<abort/>

IN THIS SECTION

Usage | 220

Description | 220

Release Information | 220

Usage

<rpc>
 <!-- child tag elements -->
</rpc>
<abort/>

Description

Direct the NETCONF or Junos XML protocol server to stop processing the request that is currently
outstanding. The server responds by returning the <abort-acknowledgment/> tag. If the server already sent
tagged data in response to the request, the client application must discard those elements.

Release Information

This operation is a Junos XML management protocol operation. It is supported in Junos XML protocol
sessions, and it is supported as a Juniper Networks proprietary extension in NETCONF sessions on
Junos devices that identify the URI http://xml.juniper.net/netconf/junos/1.0 in the capabilities exchange.

RELATED DOCUMENTATION

Halt a Request in Junos XML Protocol Sessions

<abort-acknowledgement/>

220

<abort-acknowledgement/>

IN THIS SECTION

Usage | 221

Description | 221

Release Information | 221

Usage

<rpc-reply xmlns:junos="URL">
 <any-child-of-rpc-reply>
 <abort-acknowledgement/>
 </any-child-of-rpc-reply>
</rpc-reply>

Description

Indicates that the NETCONF or Junos XML protocol server has received the <abort/> tag and has
stopped processing the current request. If the client application receives any tag elements related to the
request between sending the <abort/> tag and receiving this tag, it must discard them.

Release Information

This is a Junos XML management protocol response tag. It is supported in Junos XML protocol sessions,
and it is supported as a Juniper Networks proprietary extension in NETCONF sessions on Junos devices
that identify the URI http://xml.juniper.net/netconf/junos/1.0 in the capabilities exchange.

RELATED DOCUMENTATION

<abort/>

221

<checksum-information>

IN THIS SECTION

Usage | 222

Description | 222

Contents | 222

Release Information | 223

Usage

<rpc-reply>
 <checksum-information>
 <file-checksum>
 <computation-method>MD5</computation-method>
 <input-file>
 <!-- name and path of file-->
 </input-file>
 </file-checksum>
 </checksum-information>
</rpc-reply>

Description

Encloses tag elements that include the file to check, the checksum algorithm used, and the checksum
output.

Contents

<checksum> Resulting value from the checksum computation.

<computation-method> Checksum algorithm used. Currently, all checksum computations use the MD5
algorithm; thus, the only possible value is MD5.

222

<file-checksum> Wrapper that holds the resulting <input-file>, <computation-method>, and <checksum>
attributes for a particular checksum computation.

<input-file> Name and path of the file that the checksum algorithm was run against.

Release Information

This is a Junos XML management protocol response tag. It is supported in Junos XML protocol sessions,
and it is supported as a Juniper Networks proprietary extension in NETCONF sessions on Junos devices
that identify the URI http://xml.juniper.net/netconf/junos/1.0 in the capabilities exchange.

RELATED DOCUMENTATION

<get-checksum-information>

<close-configuration/>

IN THIS SECTION

Usage | 223

Description | 223

Release Information | 224

Usage

<rpc>
 <close-configuration/>
</rpc>

Description

Close the open configuration database and discard any uncommitted changes.

223

This operation is normally used to close a private copy of the candidate configuration or an open
instance of the ephemeral configuration database and discard any uncommitted changes. The
application must have previously emitted the <open-configuration> operation. Closing the NETCONF or
Junos XML protocol session (by emitting the <request-end-session/> tag, for example) has the same effect
as emitting this operation.

Release Information

This operation is a Junos XML management protocol operation. It is supported in Junos XML protocol
sessions, and it is supported as a Juniper Networks proprietary extension in NETCONF sessions on
Junos devices that identify the URI http://xml.juniper.net/netconf/junos/1.0 in the capabilities exchange.

RELATED DOCUMENTATION

Lock, Unlock, or Create a Private Copy of the Candidate Configuration Using the Junos XML Protocol

<open-configuration>

<request-end-session/>

<commit-configuration>

IN THIS SECTION

Usage | 224

Description | 226

Contents | 229

Release Information | 230

Usage

<rpc>
 <commit-configuration/>

 <commit-configuration>
 <check/>

224

 </commit-configuration>

 <commit-configuration>
 <log>log-message</log>
 </commit-configuration>

 <commit-configuration>
 <at-time>time-specification</at-time>
 <log>log-message</log>
 </commit-configuration>

 <commit-configuration>
 <confirmed/>
 <confirm-timeout>rollback-delay</confirm-timeout>
 <log>log-message</log>
 </commit-configuration>

 <commit-configuration>
 <synchronize/>
 <log>log-message</log>
 </commit-configuration>

 <commit-configuration>
 <synchronize/>
 <at-time>time-specification</at-time>
 <log>log-message</log>
 </commit-configuration>

 <commit-configuration>
 <synchronize/>
 <check/>
 <log>log-message</log>
 </commit-configuration>

 <commit-configuration>
 <synchronize/>
 <confirmed/>
 <confirm-timeout>rollback-delay</confirm-timeout>
 <log>log-message</log>
 </commit-configuration>

 <commit-configuration>
 <synchronize/>

225

 <force-synchronize/>
 </commit-configuration>
</rpc>

Description

Request that the NETCONF or Junos XML protocol server perform one of the variants of the commit
operation. You can perform the commit operation on the candidate configuration, a private copy of the
candidate configuration, or an open instance of the ephemeral configuration database.

On devices with dual Routing Engines, you can commit the candidate configuration, private copy, or
ephemeral database instance stored on the local Routing Engine on both Routing Engines. The
ephemeral database supports only the <synchronize/> option.

Some restrictions apply to the commit operation for a private copy of the candidate configuration and
for the ephemeral configuration database. For example:

• The commit operation fails for a private copy if the regular candidate configuration is locked by
another user or application or if it includes uncommitted changes made since the private copy was
created.

• A commit operation on an instance of the ephemeral configuration database supports only the
<synchronize/> option.

• The confirmed commit operation is not available when committing a private copy of the
configuration or an open instance of the ephemeral configuration database.

To execute a commit or commit synchronize operation, enclose the appropriate tags in the <commit-
configuration> tag element to specify the type of commit operation. Table 12 on page 226 and Table 13
on page 227 describe common commit and commit synchronize operations.

Table 12: Commit Operations

<commit-configuration> Operation Description

<commit-configuration/>
Commit the configuration immediately, making it the active
configuration on the device.

<commit-configuration>
 <check/>
</commit-configuration>

Verify the syntactic correctness of the candidate configuration or a
private copy without actually committing it.

226

Table 12: Commit Operations (Continued)

<commit-configuration> Operation Description

<commit-configuration>
 <confirmed/>
</commit-configuration>

<commit-configuration>
 <confirmed/>
 <confirm-timeout>rollback-delay</
confirm-timeout>
</commit-configuration>

Commit the candidate configuration but require an explicit
confirmation for the commit to become permanent. If the commit is
not confirmed, the configuration rolls back to the previous
configuration after the specified time.

Optionally include the <confirm-timeout> element to specify the
rollback delay in the range from 1 through 65,535 minutes. By
default, the rollback occurs after 10 minutes.

To delay the rollback again (past the original rollback deadline), emit
the <commit-configuration><confirmed/></commit-configuration> tags
before the deadline passes, and optionally Include the <confirm-
timeout> element. The rollback can be delayed repeatedly in this way.

To confirm the commit, emit the empty <commit-configuration/> tag
or the <commit-configuration><check/><commit-configuration> tags
before the rollback deadline passes. The device commits the
candidate configuration and cancels the rollback.

Table 13: Commit Synchronize Operations

<commit-configuration> Operation Description

<commit-configuration>
 <synchronize/>
</commit-configuration>

Copy the candidate configuration or the open
ephemeral instance data from the local Routing Engine
to the other Routing Engine, verify the configuration’s
syntactic correctness, and commit it immediately on
both Routing Engines.

<commit-configuration>
 <synchronize/>
 <at-time>time-specification</at-time>
</commit-configuration>

Copy the candidate configuration stored on the local
Routing Engine to the other Routing Engine, verify the
candidate’s syntactic correctness, and commit it on
both Routing Engines at a defined future time.

You can also specify <force-synchronize/>.

227

Table 13: Commit Synchronize Operations (Continued)

<commit-configuration> Operation Description

<commit-configuration>
 <synchronize/>
 <check/>
</commit-configuration>

Copy the candidate configuration stored on the local
Routing Engine to the other Routing Engine and verify
the candidate’s syntactic correctness on each Routing
Engine.

You can also specify <force-synchronize/>.

<commit-configuration>
 <synchronize/>
 <confirmed/>
 <confirm-timeout>rollback-delay</confirm-timeout>
</commit-configuration>

Copy the candidate configuration stored on the local
Routing Engine to the other Routing Engine, verify the
candidate’s syntactic correctness, and commit it on
both Routing Engines but require confirmation.

<commit-configuration>
 <synchronize/>
 <force-synchronize/>
</commit-configuration>

Force the same synchronized commit operation as
invoked by the <synchronize/> tag to succeed, even if
there are open configuration sessions or uncommitted
configuration changes on the remote machine.

To schedule the candidate configuration for commit at a future time, enclose the <at-time> element in the
<commit-configuration> element. When you execute the operation, the configuration is checked
immediately for syntactic correctness. If the check succeeds, the configuration is scheduled for commit
at the specified time. If the check fails, the commit operation is not scheduled. Table 14 on page 228
outlines the valid types of time specifiers.

Table 14: <at-time> Time Specifiers

Time Specifier Description Example

reboot Commit the configuration the next time the
device reboots.

• <at-time>reboot</at-time>

228

Table 14: <at-time> Time Specifiers (Continued)

Time Specifier Description Example

hh:mm[:ss] Commit the configuration at the specified
time (hours, minutes, and, optionally,
seconds). The time must be in the future but
before 11:59:59 PM on the current day. Use
24-hour time for the hh value. The device
interprets the time with respect to its clock
and time zone settings.

• Execute the operation at 4:30:00 AM:
<at-time>04:30:00</at-time>

• Execute the operation at 8:00 PM:
<at-time>20:00</at-time>

yyyy-mm-
dd hh:mm[:ss]

Commit the configuration at the specified
date and time (year, month, date, hours,
minutes, and, optionally, seconds). The
specified time must be after you execute the
<commit-configuration> operation. Use 24-
hour time for the hh value. The device
interprets the time with respect to its clock
and time zone settings.

• Execute the operation at 3:30 PM
on August 21, 2005:

<at-time>2005-08-21 15:30:00</at-time>

Contents

<at-time> Schedule the commit operation for a specified future time. Valid time specifiers
include:

• reboot

• hh:mm[:ss]

• yyyy-mm-dd hh:mm[:ss]

<check> Request verification that the configuration is syntactically correct, but do not actually
commit it.

<confirmed> Request a commit of the candidate configuration and require an explicit confirmation
for the commit to become permanent. If the commit is not confirmed, roll back to the
previous configuration after a short time, 10 minutes by default. Use the <confirm-
timeout> tag element to specify a different amount of time.

<confirm-timeout> Specify the number of minutes for which the configuration remains active when the
<confirmed/> tag is enclosed in the <commit-configuration> tag element.

229

• Range: 1 through 65,535 minutes

• Default: 10 minutes

<log> Record a message in the commit history log when the commit operation succeeds.

<synchronize> On dual control plane systems, request that the configuration on one control plane be
copied to the other control plane, checked for correct syntax, and committed on both
Routing Engines.

<force-
synchronize>

On dual control plane systems, force the candidate configuration on one control plane
to be copied to the other control plane.

Release Information

This operation is a Junos XML management protocol operation. It is supported in Junos XML protocol
sessions, and it is supported as a Juniper Networks proprietary extension in NETCONF sessions on
Junos devices that identify the URI http://xml.juniper.net/netconf/junos/1.0 in the capabilities exchange.

RELATED DOCUMENTATION

Commit the Candidate Configuration Using the Junos XML Protocol

Commit a Private Copy of the Configuration Using the Junos XML Protocol

Committing a Configuration at a Specified Time Using the Junos XML Protocol

Commit the Candidate Configuration Only After Confirmation Using the Junos XML Protocol

Commit and Synchronize a Configuration on Redundant Control Planes Using the Junos XML
Protocol

<commit-results>

<commit-results>

IN THIS SECTION

Usage | 231

Description | 231

230

Contents | 231

Release Information | 232

Usage

<rpc-reply xmlns:junos="URL">
 <!-- for the candidate configuration or ephemeral configuration -->
 <commit-results>
 <routing-engine>...</routing-engine>
 </commit-results>

 <!-- for a private copy -->
 <commit-results>
 <load-success/>
 <routing-engine>...</routing-engine>
 </commit-results>

 <!-- for a private copy that does not include changes -->
 <commit-results>
 </commit-results>

</rpc-reply>

Description

Tag element returned by the Junos XML protocol server in response to a <commit-configuration> request by
a client application. The <commit-results> element contains information about the requested commit
operation performed by the server on a particular Routing Engine.

Contents

<load-success/> Indicates that the Junos XML protocol server successfully merged changes from the
private copy into a copy of the candidate configuration, before committing the
combined candidate on the specified Routing Engine.

The <routing-engine> tag element is described separately.

231

Release Information

This is a Junos XML management protocol response tag. It is supported in Junos XML protocol sessions,
and it is supported as a Juniper Networks proprietary extension in NETCONF sessions on Junos devices
that identify the URI http://xml.juniper.net/netconf/junos/1.0 in the capabilities exchange.

RELATED DOCUMENTATION

Committing the Candidate Configuration Using the Junos XML Protocol

<commit-configuration>

<routing-engine>

<commit-revision-information>

IN THIS SECTION

Usage | 232

Description | 233

Contents | 233

Release Information | 233

Usage

<rpc-reply xmlns:junos="URL">
 <commit-results>
 <routing-engine>

 <!-- configuration with commit revision identifier -->
 <commit-revision-information>
 <old-db-revision>old-revision-id</old-db-revision>
 <new-db-revision>new-revision-id</new-db-revision>
 </commit-revision-information>

 </routing-engine>

232

 </commit-results>

</rpc-reply>

Description

Child element included in a Junos XML protocol server <commit-results> response element to return
information about the old and new configuration revision identifiers (CRI) on a particular Routing Engine.
The CRI is a unique string (for example, re0-1365168149-1) that is associated with a committed
configuration.

Network management system (NMS) applications, such as Junos Space, can use the configuration
revision identifier to determine if the NMS's known configuration for a Junos device is identical to the
device's current configuration. The NMS can detect if out-of-band commits were made to the device by
comparing the CRI associated with the NMS's last commit to the CRI of the configuration on the device.

Contents

<old-db-revision> Indicates the old configuration revision identifier, which is the identifier of the
configuration prior to the previously successfully committed configuration.

<new-db-revision> Indicates the new configuration revision identifier, which is the identifier of the last
successfully committed configuration.

Release Information

This is a Junos XML management protocol response tag. It is supported in Junos XML protocol sessions,
and it is supported as a Juniper Networks proprietary extension in NETCONF sessions on Junos devices
that identify the URI http://xml.juniper.net/netconf/junos/1.0 in the capabilities exchange.

Element introduced in Junos OS Release 16.1.

RELATED DOCUMENTATION

View the Configuration Revision Identifier for Determining Synchronization Status of Devices with
NMS

<commit-results>

<routing-engine>

233

<database-status>

IN THIS SECTION

Usage | 234

Description | 234

Contents | 234

Release Information | 235

Usage

<xnm:error>
 <database-status-information>
 <database-status>
 <user>username</user>
 <terminal>terminal</terminal>
 <pid>pid</pid>
 <start-time>start-time</start-time>
 <idle-time>idle-time</idle-time>
 <commit-at>time</commit-at>
 <exclusive/>
 <edit-path>edit-path</edit-path>
 </database-status>
 </database-status-information>
</xnm:error>

Description

The database-status element describes a user or NETCONF client application that is logged in to the
configuration database. For simplicity, we use the term user to refer to both human users and client
applications, except where the information differs for the two.

Contents

<commit-at/> Indicate that the user has scheduled a commit operation for a later time.

234

<edit-path> Specify the user’s current location in the configuration hierarchy, in the form of the CLI
configuration mode banner.

<exclusive/> Indicate that the user or application has an exclusive lock on the configuration database. A
user enters exclusive configuration mode by issuing the configure exclusive command in CLI
operational mode. A client application obtains the lock by emitting the <lock-configuration/>
tag element.

<idle-time> Specify how much time has passed since the user last performed an operation in the
database.

<pid> Specify the process ID of the Junos OS management process (mgd) that is handling the
user’s login session.

<start-time> Specify the time when the user logged in to the configuration database, in the format
YYYY-MM-DD hh:mm:ss TZ (year, month, date, hour in 24-hour format, minute, second,
time zone).

<terminal> Identify the UNIX terminal assigned to the user’s connection.

<user> Specify the Junos OS login ID of the user whose login to the configuration database
caused the error.

Release Information

This is a Junos XML management protocol response tag. It is supported as a Juniper Networks
proprietary extension in NETCONF sessions on Junos devices that identify the URI http://
xml.juniper.net/netconf/junos/1.0 in the capabilities exchange.

RELATED DOCUMENTATION

<database-status-information> | 236

<xnm:error> | 261

235

<database-status-information>

IN THIS SECTION

Usage | 236

Description | 236

Release Information | 236

Usage

<data>
 <database-status-information>
 <database-status>...</database-status>
 </database-status-information>
</data>

<xnm:error>
 <database-status-information>
 <database-status>...</database-status>
 </database-status-information>
</xnm:error>

Description

Describes one or more users who have an open editing session in the configuration database.

The <database-status> tag element is explained separately.

Release Information

This is a Junos XML management protocol response tag. It is supported as a Juniper Networks
proprietary extension in NETCONF sessions on Junos devices that identify the URI http://
xml.juniper.net/netconf/junos/1.0 in the capabilities exchange.

236

RELATED DOCUMENTATION

<database-status> | 234

<xnm:error> | 261

<end-session/>

IN THIS SECTION

Usage | 237

Description | 237

Release Information | 237

Usage

<rpc-reply xmlns:junos="URL">
 <end-session/>
</rpc-reply>

Description

Indicates that the NETCONF or Junos XML protocol server is about to end the current session for a
reason other than an error. Most often, the reason is that the client application has sent the <request-end-
session/> tag.

Release Information

This is a Junos XML management protocol response tag. It is supported in Junos XML protocol sessions,
and it is supported as a Juniper Networks proprietary extension in NETCONF sessions on Junos devices
that identify the URI http://xml.juniper.net/netconf/junos/1.0 in the capabilities exchange.

RELATED DOCUMENTATION

Ending a Junos XML Protocol Session and Closing the Connection

237

<request-end-session/>

<get-checksum-information>

IN THIS SECTION

Usage | 238

Description | 238

Contents | 238

Release Information | 239

Usage

<rpc>
 <get-checksum-information>
 <path>
 <!-- name and path of file -->
 </path>
 </get-checksum-information>
</rpc>

Description

Request checksum information for the specified file.

Contents

<path> Name and path of the file to check.

238

Release Information

This operation is a Junos XML management protocol operation. It is supported in Junos XML protocol
sessions, and it is supported as a Juniper Networks proprietary extension in NETCONF sessions on
Junos devices that identify the URI http://xml.juniper.net/netconf/junos/1.0 in the capabilities exchange.

Operation added in Junos OS Release 9.2R1.

RELATED DOCUMENTATION

<checksum-information>

<get-configuration>

IN THIS SECTION

Usage | 239

Description | 240

Attributes | 241

Release Information | 245

Usage

<rpc>
 <get-configuration
 [changed="changed"]
 [commit-scripts="(apply | apply-no-transients | view)"]
 [compare=("configuration-revision" [configuration-revision="revision-id"] | "rollback"
[rollback="[0-49]"])]
 [database="(candidate | committed)"]
 [database-path=$junos-context/commit-context/database-path]
 [format="(json | set | text | xml)"]
 [inherit="(defaults | inherit)"
 [groups="groups"] [interface-ranges="interface-ranges"]]
 [(junos:key | key)="key"] >

239

 <!-- tag elements for the configuration element to display -->
 </get-configuration>
</rpc>

Description

Request configuration data from the NETCONF or Junos XML protocol server. The attributes specify the
source and formatting of the data to display.

If a client application issues the Junos XML protocol <open-configuration> operation to open a specific
configuration database before executing the <get-configuration> operation, the server returns the
configuration data from the open configuration database. Otherwise, the server returns the
configuration data from the candidate configuration. You can explicitly request the active configuration
database by including the database="committed" attribute.

A client application can request the entire configuration hierarchy or a subset of it.

• Entire configuration hierarchy—To display the entire configuration hierarchy, emit the empty <get-
configuration/> tag.

• Subset of configuration hierarchy—To display a configuration element (hierarchy level or
configuration object), emit the <get-configuration> element and include the elements that represent all
levels of the configuration hierarchy from the root (<configuration>) down to the level or object to
display. To represent a hierarchy level or a configuration object that does not have an identifier, emit
it as an empty tag. To represent an object that has one or more identifiers, emit its container tag
element and identifier tag elements only, not any tag elements that represent other characteristics.

NOTE: To retrieve configuration data from an instance of the ephemeral configuration
database, a client application must first open the ephemeral instance using the <open-
configuration> operation with the appropriate child tags before emitting the <get-
configuration> operation. When retrieving ephemeral configuration data using the <get-
configuration> operation, the only supported attributes are format and key.

NOTE: You can use the <get-configuration> operation to request the entire logical system
configuration or request specific logical system configuration hierarchies using child
configuration tags.

240

Attributes

changed Request that the junos:changed="changed" attribute appear in the opening tag of each changed
configuration element.

The attribute appears in the opening tag of every parent tag in the path to the changed
configuration element, including the top-level <configuration> tag. If the changed
configuration element is represented by a single (empty) tag, the junos:changed="changed"
attribute appears in the tag. If the changed element is represented by a container tag, the
junos:changed="changed" attribute appears in the opening container tag and also in each child
tag enclosed in the container tag element.

• Values: changed

The database attribute can be combined with the changed="changed" attribute to request either
the candidate or active configuration:

• When you request the candidate configuration, elements added to the candidate
configuration after the last commit operation are marked with the junos:changed="changed"
attribute.

• When you request the active configuration, elements added to the active configuration
by the most recent commit are marked with the junos:changed="changed" attribute.

NOTE: When a commit operation succeeds, the server removes the
junos:changed="changed" attribute from all elements. However, if warnings are
generated during the commit, the attribute is not removed. In this case, the
junos:changed="changed" attribute appears in elements that changed before the
commit operation as well as on those elements that changed after it. To
remove the junos:changed="changed" attribute from elements that changed
before the commit, you must eliminate the cause of the warning, and
commit the configuration again.

commit-
scripts

Request that the NETCONF or Junos XML protocol server display commit-script-style XML
data. The value of the attribute determines the output.

• Values:

• apply—Display the configuration with commit script changes applied, including both
transient and non-transient changes. The output is equivalent to the | display commit-
scripts output in the CLI.

241

• apply-no-transients—Display the configuration with commit script changes applied, but
exclude transient changes. The output is equivalent to the | display commit-scripts no-
transients output in the CLI.

• view—Display the configuration in the XML format that is input to a commit script.
The output is equivalent to viewing the configuration with the following attributes
applied: inherit="inherit", groups="groups", and changed="changed". The output is equivalent
to the | display commit-scripts view output in the CLI.

compare Request that the NETCONF or Junos XML protocol server display the differences between
the active or candidate configuration and a previously committed configuration (the
comparison configuration). By default, the comparison uses the candidate configuration.
Include the database attribute to specify the active configuration.

• Values:

• configuration-revision—Reference the comparison configuration by its configuration
revision ID string, which you define in the configuration-revision="revision-id" attribute.

• rollback—Reference the comparison configuration by its rollback index, which you
define in the rollback="rollback-number" attribute.

If you include the compare attribute but either omit the corresponding configuration-revision or
rollback attribute or provide an invalid configuration revision ID, the server uses the most
recently committed configuration as the comparison configuration.

When you compare the candidate configuration to the active configuration, the compare
operation returns XML output. However, you can include the format attribute to display the
differences in text, XML, or JSON format. For all other comparisons, the server returns the
output as text using a patch format.

NOTE: When you compare the candidate and active configurations and
display the differences in XML or JSON format, the device omits the root
configuration object in the following cases:

• The comparison returns no differences

• The comparison returns differences for only non-native configuration
data, for example, configuration data associated with an OpenConfig
data model.

database Specify the configuration database from which to display data.

242

• Default: candidate

• Values:

• candidate—The candidate configuration

• committed—The active configuration (the one most recently committed)

If you include both the database and the database-path attributes, the database attribute takes
precedence.

database-
path

Within a commit script, this attribute specifies the path to the session’s pre-inheritance
candidate configuration. For normal configuration sessions, the commit script retrieves the
normal, pre-inheritance candidate configuration. For private configuration sessions, the
commit script retrieves the private, pre-inheritance candidate configuration.

• Values: $junos-context/commit-context/database-path

If you include both the database and the database-path attributes, the database attribute takes
precedence.

format Specify the format in which the NETCONF or Junos XML protocol server returns the
configuration data.

• Default: xml

• Values:

• json—Configuration data format is JSON.

NOTE: Integers in Junos OS configuration data emitted in JSON format
are not enclosed in quotation marks.

• set—Configuration data format is Junos OS configuration mode commands.

• text—Configuration data format is ASCII text, which uses the newline character, tabs
and other white space, braces, and square brackets to indicate the hierarchical
relationships between the statements.

• xml—Configuration data format is Junos XML.

NOTE: Starting in Junos OS Release 21.1R1 and Junos OS Evolved Release
22.3R1, NETCONF sessions additionally support the json-minified and xml-

243

minified formats, which return the respective format with unnecessary
spaces, tabs, and newlines removed.

groups Request that the junos:group="group-name" attribute appear in the opening tag for each
configuration element that is inherited from a configuration group. The group-name
variable specifies the name of the configuration group from which that element was
inherited.

• Values: groups

When you specify the groups attribute, you must also specify the inherit attribute.

inherit Specify how the NETCONF or Junos XML protocol server displays statements that are
defined in configuration groups and interface ranges. If you omit the inherit attribute, the
output uses the <groups>, <apply-groups>, and <apply-groups-except> tags to represent user-
defined configuration groups and uses the <interface-range> tag to represent user-defined
interface ranges. The output does not include tag elements for statements defined in the
junos-defaults group.

• Values:

• defaults—The output does not include the <groups>, <apply-groups>, and <apply-groups-
except> tags, but instead displays elements that are inherited from user-defined
groups and from the junos-defaults group as children of the inheriting tag elements.

• inherit—The output does not include the <groups>, <apply-groups>, <apply-groups-except>,
and <interface-range> tags, but instead displays elements that are inherited from user-
defined groups and ranges as children of the inheriting tag elements. The output
does not include tag elements for statements defined in the junos-defaults group.

interface-
ranges

Request that the junos:interface-ranges="source-interface-range" attribute appear in the
opening tag for each configuration element that is inherited from an interface range. The
source-interface-range variable specifies the name of the interface range.

• Values: interface-ranges

When you specify the interface-ranges attribute, you must also specify the inherit attribute.

junos:key |
key

Request that the junos:key="key" attribute appear in the opening tag of each element that
serves as an identifier for a configuration object.

• Values: key

244

Release Information

This operation is a Junos XML management protocol operation. It is supported in Junos XML protocol
sessions, and it is supported as a Juniper Networks proprietary extension in NETCONF sessions on
Junos devices that identify the URI http://xml.juniper.net/netconf/junos/1.0 in the capabilities exchange.

interface-ranges attribute added in Junos OS Release 10.3R1.

commit-scripts attribute values apply and apply-no-transients added in Junos OS Release 12.1

database-path attribute added in Junos OS Release 12.2.

format attribute value json added in Junos OS Release 14.2.

format attribute value set added in Junos OS Release 15.1.

Starting in Junos OS Release 16.1, devices running Junos OS emit JSON-formatted configuration data
using a new default implementation for serialization.

Starting in Junos OS Releases 16.1R4, 16.2R2, and 17.1R1, integers in Junos OS configuration data
emitted in JSON format are not enclosed in quotation marks.

compare attribute value configuration-revision added in Junos OS Release 20.4R1 and Junos OS Evolved
Release 20.4R1.

format attribute values json-minified and xml-minified added for NETCONF sessions only in Junos OS
Release 21.1R1 and Junos OS Evolved Release 22.3R1.

RELATED DOCUMENTATION

Request Configuration Data Using the Junos XML Protocol

junos:changed

junos:group

junos:interface-range

junos:key

245

<load-configuration>

IN THIS SECTION

Usage | 246

Description | 247

Attributes | 248

Release Information | 251

Usage

<rpc>
 <load-configuration configuration-revision="revision-id"/>

 <load-configuration rescue="rescue"/>

 <load-configuration rollback="index"/>

 <load-configuration url="url"
 [action="(merge | override | replace | update)"]
 [format="(text | xml)"] />

 <load-configuration url="url" [action="(merge | override | update)"]
 format="json" />

 <load-configuration url="url" action="set" format="text"/>

 <load-configuration [action="(merge | override | replace | update)"]
 [format="xml"] >
 <configuration>
 <!-- tag elements for configuration elements to load -->
 </configuration>
 </load-configuration>

 <load-configuration [action="(merge | override | replace | update)"]
 format="text" >
 <configuration-text>

246

 <!-- formatted ASCII configuration statements to load -->
 </configuration-text>
 </load-configuration>

 <load-configuration [action="(merge | override | update)"] format="json">
 <configuration-json>
 <!-- JSON configuration data to load -->
 </configuration-json>
 </load-configuration>

 <load-configuration action="set" format="text" >
 <configuration-set>
 <!-- configuration mode commands to load -->
 </configuration-set>
 </load-configuration>
</rpc>

Description

Request that the NETCONF or Junos XML protocol server load configuration data into the candidate
configuration or open configuration database.

If a client application issues the Junos XML protocol <open-configuration> operation to open a specific
configuration database before executing the <load-configuration> operation, the server loads the
configuration data into the open configuration database. Otherwise, the server loads the configuration
data into the candidate configuration.

Table 15 on page 247 describes the common load configuration operations.

Table 15: Load Configuration Data

<load-configuration> Operation Description

<load-configuration configuration-
revision="revision-id"/>

Load a previously committed configuration by referencing
its configuration revision ID. The specified configuration
completely replaces the candidate configuration.

<load-configuration rescue="rescue"/>
Load the rescue configuration. The rescue configuration
completely replaces the candidate configuration.

247

Table 15: Load Configuration Data (Continued)

<load-configuration> Operation Description

<load-configuration rollback="index"/>
Load a previously committed configuration by referencing
its numerical rollback index. The specified configuration
completely replaces the candidate configuration.

<load-configuration url="url" format="(text | xml
| json)/>

<load-configuration url="url" action="set"
format="text"/>

Load configuration data from the file specified in the url
attribute. Specify the full path of the file that contains the
configuration data to load and the format of the data in
the file. For example:

<load-configuration url="/tmp/add.conf" format="text"/>

<load-configuration format="xml">
 <configuration>...</configuration>
</load-configuration>

<load-configuration format="text">
 <configuration-text>...</configuration-text>
</load-configuration>

<load-configuration format="json">
 <configuration-json>...</configuration-json>
</load-configuration>

<load-configuration action="set" format="text">
 <configuration-set>...</configuration-set>
</load-configuration>

Load the configuration as a data stream. Enclose the
configuration data in the appropriate set of tags for the
format.

Attributes

action Specify how to load the configuration data, particularly when the target configuration
database and the loaded configuration contain conflicting statements.

The ephemeral configuration database supports all of the action attribute values. The
update value is supported in Junos OS Release 21.1R1 and later.

• Default: merge

248

• Values:

• merge—Combine the data in the loaded configuration with the data in the target
configuration. If statements in the loaded configuration conflict with statements
in the target configuration, the loaded statements replace those statements in the
target configuration.

• override—Discard the entire candidate configuration and replace it with the loaded
configuration. When you commit the configuration, all system processes parse
the new configuration.

• replace—Substitute each hierarchy level or configuration object defined in the
loaded configuration for the corresponding level or object in the candidate
configuration.

If the configuration data format is ASCII text, place the replace: statement on the
line directly preceding the statements that represent the hierarchy level or object
to replace. If the configuration data is Junos XML elements, include the
replace="replace" attribute in the opening tags of the elements that represent the
hierarchy levels or objects to replace.

• set—Load configuration data formatted as Junos OS configuration mode
commands. This option executes the configuration instructions line by line. You
can store the instructions in a file named by the url attribute, or you can enclose
the instructions in a <configuration-set> element to provide a data stream. The
instructions can contain any configuration mode command, such as set, delete,
edit, or deactivate. When using the set action, the default and only acceptable
value for the format attribute is "text".

• update—Compare a complete loaded configuration against the candidate
configuration. For each hierarchy level or configuration object that is different in
the two configurations, the version in the loaded configuration replaces the
version in the candidate configuration. When you commit the configuration, only
system processes that are affected by the changed configuration elements parse
the new configuration.

configuration-
revision

Load a previously committed configuration by referencing its configuration revision ID.
The specified configuration completely replaces the candidate configuration.

format Specify the format used for the configuration data.

• Default:

249

• xml, for all action values except set

• text, when action="set"

• Values:

• json–Indicate that the configuration data format is JSON.

• text—Indicate that the configuration data format is ASCII text or configuration
mode commands.

ASCII text format uses the newline character, tabs and other white space, braces,
and square brackets to indicate the hierarchical relationships between the
statements. Junos devices use this format for configuration files stored on the
device and for the output of the CLI show configuration command.

The set command format consists of Junos OS configuration mode commands.
You can view this format using the show configuration | display set CLI command.
To load configuration mode commands, you must set the action attribute to "set".

• xml—Indicate that the configuration data is Junos XML elements.

rescue Replace the candidate configuration with the rescue configuration.

• Values: rescue

NOTE: You can also use the <rollback-config> RPC to load a previously
committed configuration. The <rollback-config> RPC is useful for
applications that do not support executing RPCs that include XML
attributes.

rollback Load a previously committed configuration by referencing its numerical rollback index.
Valid values are 0 (for the most recently committed configuration) through one less than
the number of stored previous configurations (maximum is 49).

NOTE: You can also use the <rollback-config> RPC to load a previously
committed configuration. The <rollback-config> RPC is useful for
applications that do not support executing RPCs that include XML
attributes.

url Specify the full pathname of the file that contains the configuration data to load. The
value can be a local file path, an FTP location, or an HTTP URL.

250

• Syntax:

• Local filename:

• /path/filename—File on a mounted file system, either on the local flash drive
or on hard disk.

• a:filename or a:path/filename—File on the local drive. The default path
is / (the root-level directory). The removable media can be in MS-DOS or
UNIX (UFS) format.

• ftp://username:password@hostname/path/filename

• http://username:password@hostname/path/filename

In each case, the default value for the path variable is the home directory for the
username. To specify an absolute path, the application starts the path with the
characters %2F; for example, ftp://username:password@hostname/%2Fpath/filename.

Release Information

This operation is a Junos XML management protocol operation. It is supported in Junos XML protocol
sessions, and it is supported as a Juniper Networks proprietary extension in NETCONF sessions on
Junos devices that identify the URI http://xml.juniper.net/netconf/junos/1.0 in the capabilities exchange.

action attribute value set added in Junos OS Release 11.4.

format attribute value json added in Junos OS Release 16.1.

configuration-revision attribute added in Junos OS Release 20.4R1 and Junos OS Evolved Release 20.4R1.

RELATED DOCUMENTATION

Request Configuration Changes Using the Junos XML Protocol

<load-configuration-results>

replace

251

<load-configuration-results>

IN THIS SECTION

Usage | 252

Description | 252

Contents | 252

Release Information | 253

Usage

<rpc-reply xmlns:junos="URL">
 <load-configuration-results>
 <load-success/>
 <load-error-count>errors</load-error-count>
 </load-configuration-results>
</rpc-reply>

Description

Tag element returned by the NETCONF or Junos XML protocol server in response to a <load-
configuration> request by a client application.

In a Junos XML protocol session, the <load-configuration-results> element encloses either a <load-success/>
tag or a <load-error-count> tag, which indicates the success or failure of the load configuration operation.
In a NETCONF session, the <load-configuration-results> element encloses either an <ok/> tag or a <load-
error-count> tag to indicate the success or failure of the load configuration operation.

Contents

<load-error-
count>

Specifies the number of errors that occurred when the server attempted to load new
data into the candidate configuration or open configuration database. The target
configuration must be restored to a valid state before it is committed.

<load-success/> Indicates that the server successfully loaded new data into the candidate configuration
or open configuration database.

252

Release Information

This is a Junos XML management protocol response tag. It is supported in Junos XML protocol sessions,
and it is supported as a Juniper Networks proprietary extension in NETCONF sessions on Junos devices
that identify the URI http://xml.juniper.net/netconf/junos/1.0 in the capabilities exchange.

RELATED DOCUMENTATION

<load-configuration>

<lock-configuration/>

IN THIS SECTION

Usage | 253

Description | 253

Release Information | 254

Usage

<rpc>
 <lock-configuration/>
</rpc>

Description

Request that the NETCONF or Junos XML protocol server open and lock the candidate configuration.
This operation enables the client application to read and change the candidate configuration while
preventing other users or applications from changing it. The application must emit the <unlock-
configuration/> tag to unlock the configuration.

If the Junos XML protocol session ends or the application emits the <unlock-configuration/> tag before the
candidate configuration is committed, all changes made to the candidate are discarded.

253

Release Information

This operation is a Junos XML management protocol operation. It is supported in Junos XML protocol
sessions, and it is supported as a Juniper Networks proprietary extension in NETCONF sessions on
Junos devices that identify the URI http://xml.juniper.net/netconf/junos/1.0 in the capabilities exchange.

RELATED DOCUMENTATION

Lock, Unlock, or Create a Private Copy of the Candidate Configuration Using the Junos XML Protocol

<unlock-configuration/>

<open-configuration>

IN THIS SECTION

Usage | 254

Description | 255

Contents | 255

Release Information | 256

Usage

<rpc>
 <open-configuration>
 <private/>
 </open-configuration>

 <open-configuration>
 <ephemeral/>
 </open-configuration>

 <open-configuration>
 <ephemeral-instance>instance-name</ephemeral-instance>

254

 </open-configuration>
</rpc>

Description

Create a private copy of the candidate configuration database or open the default instance or a user-
defined instance of the ephemeral configuration database.

NOTE: Before opening a user-defined instance of the ephemeral configuration database,
you must first enable the instance by configuring the instance instance-name statement at
the [edit system configuration-database ephemeral] hierarchy level on the device.

A client application can perform the same operations on the private copy or ephemeral instance as on
the regular candidate configuration, including load and commit operations. There are, however,
restrictions on these operations. For details, see <load-configuration> and <commit-configuration>.

To close a private copy or ephemeral instance and discard all uncommitted changes, execute the <close-
configuration/> operation. Changes to the private copy or ephemeral instance are also lost if the
NETCONF or Junos XML protocol session ends for any reason before the changes are committed. It is
not possible to save the changes other than by performing a commit operation, for example, by emitting
the <commit-configuration/> tag.

NOTE: The Junos XML protocol <open-configuration> operation does not emit an
"uncommitted changes will be discarded on exit" warning message when opening a private
copy of the candidate configuration. However, the device still discards the uncommitted
changes upon closing the private copy.

Contents

<private/> Open a private copy of the candidate configuration database.

<ephemeral/> Open the default instance of the ephemeral configuration database.

<ephemeral-instance> Open the specified instance of the ephemeral configuration database. This instance
must already be configured at the [edit system configuration-database ephemeral]
hierarchy level on the device.

255

Release Information

This operation is a Junos XML management protocol operation. It is supported in Junos XML protocol
sessions, and it is supported as a Juniper Networks proprietary extension in NETCONF sessions on
Junos devices that identify the URI http://xml.juniper.net/netconf/junos/1.0 in the capabilities exchange.

<ephemeral> and <ephemeral-instance> elements added in Junos OS Release 16.2R2.

RELATED DOCUMENTATION

Lock, Unlock, or Create a Private Copy of the Candidate Configuration Using the Junos XML Protocol

<reason>

IN THIS SECTION

Usage | 256

Description | 257

Contents | 257

Release Information | 257

Usage

<xnm:error | xnm:warning>
 <reason>
 <daemon>process</daemon>
 <process-not-configured/>
 <process-disabled/>
 <process-not-running/>
 </reason>
</xnm:error | xnm:warning>

256

Description

Child element included in an <xnm:error> or <xnm:warning> element in a NETCONF protocol server response
to explain why a process could not service a request.

Contents

<daemon> Identifies the process.

<process-disabled> Indicates that the process has been explicitly disabled by an administrator.

<process-not-configured> Indicates that the process has been disabled because it is not configured.

<process-not-running> Indicates that the process is not running.

Release Information

This is a Junos XML management protocol response tag. It is supported as a Juniper Networks
proprietary extension in NETCONF sessions on Junos devices that identify the URI http://
xml.juniper.net/netconf/junos/1.0 in the capabilities exchange.

RELATED DOCUMENTATION

<xnm:error> | 261

<xnm:warning> | 264

<request-end-session/>

IN THIS SECTION

Usage | 258

Description | 258

Release Information | 258

257

Usage

<rpc>
 <request-end-session/>
</rpc>

Description

Request that the NETCONF or Junos XML protocol server end the current session.

Release Information

This operation is a Junos XML management protocol operation. It is supported in Junos XML protocol
sessions, and it is supported as a Juniper Networks proprietary extension in NETCONF sessions on
Junos devices that identify the URI http://xml.juniper.net/netconf/junos/1.0 in the capabilities exchange.

RELATED DOCUMENTATION

<end-session/>

<routing-engine>

IN THIS SECTION

Usage | 259

Description | 259

Contents | 259

Release Information | 260

258

Usage

<rpc-reply xmlns:junos="URL">
 <commit-results>

 <!-- when the candidate configuration or private copy is committed -->
 <routing-engine>
 <name>reX</name>
 <commit-success/>
 <commit-revision-information>
 <old-db-revision>old-revision-id</old-db-revision>
 <new-db-revision>new-revision-id</new-db-revision>
 </commit-revision-information>
 </routing-engine>

 <!-- when the candidate configuration or private copy is syntactically valid -->
 <routing-engine>
 <name>reX</name>
 <commit-check-success/>
 </routing-engine>

 <!-- when an instance of the ephemeral database is committed -->
 <routing-engine>
 <name>reX</name>
 <commit-success/>
 </routing-engine>
 </commit-results>
</rpc-reply>

Description

Child element included in a Junos XML protocol server <commit-results> response element to return
information about a requested commit operation on a particular Routing Engine.

Contents

<commit-check-
success>

Indicates that the configuration is syntactically correct.

<commit-success> Indicates that the Junos XML protocol server successfully committed the
configuration.

259

<name> Name of the Routing Engine on which the commit operation was performed.
Possible values are re0 and re1.

The <commit-revision-information> tag element is described separately.

Release Information

This is a Junos XML management protocol response tag. It is supported in Junos XML protocol sessions,
and it is supported as a Juniper Networks proprietary extension in NETCONF sessions on Junos devices
that identify the URI http://xml.juniper.net/netconf/junos/1.0 in the capabilities exchange.

RELATED DOCUMENTATION

<commit-results>

<commit-revision-information>

<unlock-configuration/>

IN THIS SECTION

Usage | 260

Description | 261

Release Information | 261

Usage

<rpc>
 <unlock-configuration/>
</rpc>

260

Description

Request that the NETCONF or Junos XML protocol server unlock and close the candidate configuration.
Until the application emits this tag, other users or applications can read the configuration but cannot
change it.

Release Information

This operation is a Junos XML management protocol operation. It is supported in Junos XML protocol
sessions, and it is supported as a Juniper Networks proprietary extension in NETCONF sessions on
Junos devices that identify the URI http://xml.juniper.net/netconf/junos/1.0 in the capabilities exchange.

RELATED DOCUMENTATION

Lock, Unlock, or Create a Private Copy of the Candidate Configuration Using the Junos XML Protocol

<lock-configuration/>

<xnm:error>

IN THIS SECTION

Usage | 261

Description | 262

Attributes | 262

Contents | 262

Release Information | 263

Usage

<xnm:error xmlns="namespace-URL" xmlns:xnm="namespace-URL">
 <parse/>
 <source-daemon>module-name </source-daemon>
 <filename>filename</filename>
 <line-number>line-number </line-number>

261

 <column>column-number</column>
 <token>input-token-id </token>
 <edit-path>edit-path</edit-path>
 <statement>statement-name </statement>
 <message>error-string</message>
 <re-name>re-name-string</re-name>
 <database-status-information>...</database-status-information>
 <reason>...</reason>
</xnm:error>

Description

Indicates that the NETCONF server has experienced an error while processing the client application’s
request. If the server has already emitted the response tag element for the current request, the
information enclosed in the response tag element might be incomplete. The client application must
include code that discards or retains the information, as appropriate. The child tag elements detail the
nature of the error. The NETCONF server does not necessarily emit all child tag elements; it emits tag
elements that are relevant to the current request.

Attributes

xmlns Defines the XML namespace for the contents of the tag element. The value is a URL of the
form http://xml.juniper.net/xnm/version/xnm, where version is a string such as 1.1.

xmlns:xnm Defines the XML namespace for child tag elements that include the xnm: prefix. The value is
a URL of the form http://xml.juniper.net/xnm/version/xnm, where version is a string such as 1.1.

Contents

<column> (Occurs only during loading of a configuration file) Identifies the element that caused the
error by specifying its position as the number of characters after the first character in
the specified line in the configuration file that was being loaded. The line and file are
defined in the <line-number> and <filename> elements.

<edit-path> (Occurs only during loading of configuration data) Specifies the path to the configuration
hierarchy level at which the error occurred, in the form of the CLI configuration mode
banner.

<filename> (Occurs only during loading of a configuration file) Filename of the configuration file that
was being loaded.

262

<line-number> (Occurs only during loading of a configuration file) Specifies the line number where the
error occurred in the configuration file that was being loaded, which is defined in the
<filename> element.

<message> Describes the error in a natural-language text string.

<parse/> Indicates that there was a syntactic error in the request submitted by the client
application.

<re-name> Identifies the Routing Engine on which the error occurred.

<source-daemon> Identifies the Junos OS module that was processing the request in which the error
occurred.

<statement> (Occurs only during loading of configuration data) Identifies the configuration statement
that was being processed when the error occurred. The <edit-path> element specifies the
statement’s parent hierarchy level.

<token> Identifies the element in the request that caused the error.

The other tag elements are explained separately.

Release Information

This is a Junos XML management protocol response tag. It is supported as a Juniper Networks
proprietary extension in NETCONF sessions on Junos devices that identify the URI http://
xml.juniper.net/netconf/junos/1.0 in the capabilities exchange.

RELATED DOCUMENTATION

<database-status-information> | 236

<reason> | 256

<xnm:warning> | 264

263

<xnm:warning>

IN THIS SECTION

Usage | 264

Description | 264

Attributes | 264

Contents | 265

Release Information | 265

Usage

<xnm:warning xmlns="namespace-URL" xmlns:xnm="namespace-URL">
 <source-daemon>module-name </source-daemon>
 <filename>filename</filename>
 <line-number>line-number </line-number>
 <column>column-number</column>
 <token>input-token-id </token>
 <edit-path>edit-path</edit-path>
 <statement>statement-name </statement>
 <message>error-string</message>
 <reason>...</reason>
</xnm:warning>

Description

Indicates that the server has encountered a problem while processing the client application’s request.
The child tag elements detail the nature of the warning.

Attributes

xmlns—Defines the XML namespace for the contents of the tag element. The value is a URL of the form
http://xml.juniper.net/xnm/version/xnm, where version is a string such as 1.1.

xmlns:xnm—Defines the XML namespace for child tag elements that have the xnm: prefix in their names.
The value is a URL of the form http://xml.juniper.net/xnm/version/xnm, where version is a string such as 1.1.

264

Contents

<column> (Occurs only during loading of a configuration file) Identifies the element that caused the
problem by specifying its position as the number of characters after the first character in
the specified line in the configuration file that was being loaded. The line and file are
defined in the <line-number> and <filename> tag elements.

<edit-path> (Occurs only during loading of configuration data) Specifies the path to the configuration
hierarchy level at which the problem occurred, in the form of the CLI configuration
mode banner.

<filename> (Occurs only during loading of a configuration file) Filename of the configuration file that
was being loaded.

<line-number> (Occurs only during loading of a configuration file) Specifies the line number where the
problem occurred in the configuration file that was being loaded, which is defined in the
<filename> element.

<message> Describes the warning in a natural-language text string.

<source-daemon> Identifies the Junos OS module that was processing the request in which the warning
occurred.

<statement> (Occurs only during loading of configuration data) Identifies the configuration statement
that was being processed when the error occurred. The <edit-path> element specifies the
statement’s parent hierarchy level.

<token> Identifies the element in the request that caused the warning.

The other tag element is explained separately.

Release Information

This is a Junos XML management protocol response tag. It is supported as a Juniper Networks
proprietary extension in NETCONF sessions on Junos devices that identify the URI http://
xml.juniper.net/netconf/junos/1.0 in the capabilities exchange.

RELATED DOCUMENTATION

<reason> | 256

<xnm:error> | 261

265

CHAPTER 9

Junos XML Protocol Element Attributes Supported
in NETCONF Sessions

IN THIS CHAPTER

junos:changed-localtime | 266

junos:changed-seconds | 267

junos:commit-localtime | 268

junos:commit-seconds | 269

junos:commit-user | 270

replace-pattern | 271

xmlns | 273

junos:changed-localtime

IN THIS SECTION

Usage | 266

Description | 267

Usage Guidelines | 267

Usage

<rpc-reply xmlns:junos="URL">
 <configuration xmlns="URL" junos:changed-seconds="seconds" \
 junos:changed-localtime="YYYY-MM-DD hh:mm:ss TZ">
 <!-- Junos XML tag elements for the requested configuration data -->

266

 </configuration>
</rpc-reply>

Description

(Displayed when the candidate configuration is requested) Specifies the time when the configuration
was last changed as the date and time in the device’s local time zone.

Usage Guidelines

See "Specify the Source for Configuration Information Requests Using NETCONF" on page 402.

RELATED DOCUMENTATION

<rpc-reply> | 216

junos:changed-seconds | 267

xmlns | 273

junos:changed-seconds

IN THIS SECTION

Usage | 267

Description | 268

Usage Guidelines | 268

Usage

<rpc-reply xmlns:junos="URL">
 <configuration xmlns="URL" junos:changed-seconds="seconds" \
 junos:changed-localtime="YYY-MM-DD hh:mm:ss TZ">
 <!-- Junos XML tag elements for the requested configuration data -->

267

 </configuration>
</rpc-reply>

Description

(Displayed when the candidate configuration is requested) Specifies the time when the configuration
was last changed as the number of seconds since midnight on 1 January 1970.

Usage Guidelines

See "Specify the Source for Configuration Information Requests Using NETCONF" on page 402.

RELATED DOCUMENTATION

<rpc-reply> | 216

junos:changed-localtime | 266

xmlns | 273

junos:commit-localtime

IN THIS SECTION

Usage | 268

Description | 269

Usage Guidelines | 269

Usage

<rpc-reply xmlns:junos="URL">
 <configuration xmlns="URL" junos:commit-seconds="seconds" \
 junos:commit-localtime="YYYY-MM-DD hh:mm:ss TZ" \
 junos:commit-user="username">
 <!-- Junos XML tag elements for the requested configuration data -->

268

 </configuration>
</rpc-reply>

Description

(Displayed when the active configuration is requested) Specifies the time when the configuration was
committed as the date and time in the device’s local time zone.

Usage Guidelines

See "Specify the Source for Configuration Information Requests Using NETCONF" on page 402.

RELATED DOCUMENTATION

<rpc-reply> | 216

junos:commit-user | 270

junos:commit-seconds | 269

xmlns | 273

junos:commit-seconds

IN THIS SECTION

Usage | 269

Description | 270

Usage Guidelines | 270

Usage

<rpc-reply xmlns:junos="URL">
 <configuration xmlns="URL" junos:commit-seconds="seconds" \
 junos:commit-localtime="YYY-MM-DD hh:mm:ss TZ" \
 junos:commit-user="username">

269

 <!--Junos XML tag elements for the requested configuration data -->
 </configuration>
</rpc-reply>

Description

(Displayed when the active configuration is requested) Specifies the time when the configuration was
committed as the number of seconds since midnight on 1 January 1970.

Usage Guidelines

See "Specify the Source for Configuration Information Requests Using NETCONF" on page 402.

RELATED DOCUMENTATION

<rpc-reply> | 216

junos:commit-user | 270

junos:commit-localtime | 268

xmlns | 273

junos:commit-user

IN THIS SECTION

Usage | 270

Description | 271

Usage Guidelines | 271

Usage

<rpc-reply xmlns:junos="URL">
 <configuration xmlns="URL" junos:commit-seconds="seconds" \
 junos:commit-localtime="YYY-MM-DD hh:mm:ss TZ" \

270

 junos:commit-user="username">
 <!-- Junos XML tag elements for the requested configuration data -->
 </configuration>
</rpc-reply>

Description

(Displayed when the active configuration is requested) Specifies the Junos OS username of the user who
requested the commit operation.

Usage Guidelines

See "Specify the Source for Configuration Information Requests Using NETCONF" on page 402.

RELATED DOCUMENTATION

<rpc-reply> | 216

junos:commit-localtime | 268

junos:commit-seconds | 269

xmlns | 273

replace-pattern

IN THIS SECTION

Usage | 272

Description | 272

Attributes | 273

Release Information | 273

271

Usage

<rpc>
 <load-configuration>

 <!-- replace a pattern globally -->
 <configuration replace-pattern="pattern1" with="pattern2" [upto="n"]>
 </configuration>

 <!-- replace a pattern at a specific hierarchy level -->
 <configuration>
 <!-- opening tag for each parent element -->
 <level-or-object replace-pattern="pattern1" with="pattern2"
 [upto="n"]/>
 <!-- closing tag for each parent element -->
 </configuration>

 <!-- replace a pattern for an object that has an identifier -->
 <configuration>
 <!-- opening tag for each parent element -->
 <container-tag replace-pattern="pattern1" with="pattern2"
 [upto="n"]>
 <name>identifier</name>
 </container-tag>
 <!-- closing tag for each parent element -->
 </configuration>

 </load-configuration>
</rpc>

Description

Replace a variable or identifier in the candidate configuration or open configuration database. Junos OS
replaces the pattern specified by the replace-pattern attribute with the replacement pattern defined by
the with attribute. The optional upto attribute limits the number of objects replaced. The placement of the
attributes in the configuration data determines the scope of the replacement.

272

Attributes

replace-
pattern="pattern1"

Text string or regular expression that defines the identifiers or values you want to
match.

with="pattern2" Text string or regular expression that replaces the identifiers and values located
with pattern1.

upto="n" Number of objects replaced. The value of n controls the total number of objects
that the device replaces in the configuration (not the total number of times the
pattern occurs). The device replaces objects at the same hierarchy level (siblings)
first. The device considers multiple occurrences of a pattern within a given object
as a single replacement. If you omit the upto attribute or if you set the attribute
equal to zero, the device replaces all identifiers and values that match the pattern.

• Range: 1 through 4294967295

• Default: 0

Release Information

Attribute introduced in Junos OS Release 15.1R1.

RELATED DOCUMENTATION

Replace Patterns in Configuration Data Using the NETCONF or Junos XML Protocol

Modifying the Configuration for a Device

Modifying the Configuration for a Device

replace

xmlns

IN THIS SECTION

Usage | 274

Description | 274

273

Usage Guidelines | 274

Usage

<rpc-reply xmlns:junos="URL">
 <operational-response xmlns="URL-for-DTD">
 <!-- Junos XML tag elements for the requested operational data -->
 </operational-response>
</rpc-reply>

<rpc-reply xmlns:junos="URL">
 <configuration xmlns="URL" junos:(changed | commit)-seconds="seconds" \
 junos:(changed | commit)-localtime="YYY-MM-DD hh:mm:ss TZ" \
 [junos:commit-user="username"]>
 <!-- Junos XML tag elements for the requested configuration data -->
 </configuration>
</rpc-reply>

Description

For operational responses, defines the XML namespace for the enclosed tag elements that do not have a
prefix (such as junos:) in their names. The namespace indicates which Junos XML document type
definition (DTD) defines the set of tag elements in the response.

For configuration data responses, define the XML namespace for the enclosed tag elements.

Usage Guidelines

See "Request Operational Information Using NETCONF" on page 386 and "Specify the Source for
Configuration Information Requests Using NETCONF" on page 402.

RELATED DOCUMENTATION

<rpc-reply> | 216

junos:changed-localtime | 266

junos:changed-seconds | 267

274

junos:commit-user | 270

junos:commit-localtime | 268

junos:commit-seconds | 269

275

3
PART

Manage Configurations Using
NETCONF

Change the Configuration Using NETCONF | 277

Commit the Configuration Using NETCONF | 322

Ephemeral Configuration Database | 328

CHAPTER 10

Change the Configuration Using NETCONF

IN THIS CHAPTER

Edit the Configuration Using NETCONF | 277

Upload and Format Configuration Data in a NETCONF Session | 279

Set the Edit Configuration Mode in a NETCONF Session | 287

Handle Errors While Editing the Candidate Configuration in a NETCONF Session | 292

Replace the Candidate Configuration Using NETCONF | 293

Roll Back Uncommitted Changes in the Candidate Configuration Using NETCONF | 298

Delete the Configuration Using NETCONF | 299

Change Individual Configuration Elements Using NETCONF | 300

Merge Configuration Elements Using NETCONF | 301

Create Configuration Elements Using NETCONF | 304

Delete Configuration Elements Using NETCONF | 306

Replace Configuration Elements Using NETCONF | 314

Replace Patterns in Configuration Data Using the NETCONF or Junos XML Protocol | 316

Edit the Configuration Using NETCONF

In a NETCONF session with a Junos device, you can use NETCONF operations to modify the device
configuration. The NETCONF operations <copy-config>, <edit-config>, and <discard-changes> offer
functionality that is analogous to configuration mode commands in the Junos OS CLI. The <copy-config>
and <edit-config> operations support loading configuration data formatted as Junos XML elements or CLI
configuration statements.

To change the configuration, a client application emits the <copy-config>, the <edit-config>, or the <discard-
changes> tag element and the corresponding tag subelements within the <rpc> tag element.

277

The following examples show the various available tag elements:

<rpc>
 <copy-config>
 <target><candidate/></target>
 <error-operation> (ignore-error | stop-on-error) </error-operation>
 <source>
 (<running/> | <url>location</url>)
 </source>
 </copy-config>
</rpc>
]]>]]>

<rpc>
 <edit-config>
 <target><candidate/></target>
 <default-operation>operation</default-operation>
 <error-operation>error</error-operation>
 <(config | config-text | url)>
 <!-- configuration change file or data -->
 </(config | config-text | url)>
 </edit-config>
</rpc>
]]>]]>

<rpc>
 <discard-changes/>
</rpc>
]]>]]>

The only acceptable value for the <target> element is <candidate/>, which can refer to either the candidate
configuration or the open configuration database. If a client application issues the Junos XML protocol
<open-configuration> operation to open a specific configuration database before executing a <copy-config>
or <edit-config> operation, the device performs the operation on the open configuration database.
Otherwise, the device performs the operation on the candidate configuration.

The three tags—<copy-config>, <edit-config>, and <discard-changes>—correspond to the three basic
configuration tasks available to you, which are described here:

278

• Overwrite the target configuration with a new configuration—Use the <copy-config> operation to
replace the target configuration with a new configuration.

• Edit configuration elements—Use the <edit-config> operation to add, change, or delete specific
configuration elements within the target configuration. To specify how the device should handle
configuration changes, see "Set the Edit Configuration Mode in a NETCONF Session" on page 287.

• Roll back changes to the current configuration—Use the <discard-changes> operation to roll back the
candidate configuration to match the contents of the current running (active) configuration. This
operation is analogous to the rollback 0 configuration mode command in the CLI.

NOTE: The <discard-changes/> tag element cannot be used to discard uncommitted
changes that have been loaded into the ephemeral configuration database.

RELATED DOCUMENTATION

Upload and Format Configuration Data in a NETCONF Session | 279

Set the Edit Configuration Mode in a NETCONF Session | 287

Replace the Candidate Configuration Using NETCONF | 293

Roll Back Uncommitted Changes in the Candidate Configuration Using NETCONF | 298

Understanding the Client Application’s Role in a NETCONF Session | 36

<copy-config> | 186

<discard-changes/> | 190

<edit-config> | 191

Upload and Format Configuration Data in a NETCONF Session

IN THIS SECTION

Referencing Configuration Data Files | 280

Streaming Configuration Data | 283

Formatting Data: Junos XML versus CLI Configuration Statements | 285

279

A NETCONF client application can specify the delivery mechanism and the format of the configuration
data when modifying the Junos device configuration. Client applications can use a text file or streaming
data to upload configuration data in one of the accepted formats to the candidate configuration or open
configuration database.

A client can choose to stream configuration changes within the session or reference data files that
include the desired configuration changes. Each method has advantages and disadvantages. Streaming
data allows you to send your configuration change data in line, using your NETCONF connection. This is
useful when the device is behind a firewall and you cannot establish another connection to upload a
data file. With text files you can keep the edit configuration commands simple; there is no need to
include the possibly complex configuration data stream.

The <copy-config> and <edit-config> operations accept one of two formats for the Junos configuration data:
Junos XML or CLI configuration statements. The choice between one data format over the other is
personal preference.

NOTE: When managing Junos devices, a NETCONF client can use the Junos XML
protocol <load-configuration> operation in a NETCONF session to upload configuration
data formatted using JSON or configuration mode set commands, in addition to Junos
XML or CLI configuration statement formats.

The delivery mechanism and the format are discussed in detail in the following sections.

Referencing Configuration Data Files

A client application can use the <copy-config> or <edit-config> operation to upload configuration data
stored in a file. The <copy-config> operation replaces the entire configuration. The <edit-config> operation
loads the data as indicated by the edit configuration mode specified in the <default-operation> element or
the individual configuration data elements.

Before loading the file, the client application or an administrator saves Junos XML tag elements or CLI
configuration statements as the contents of the file. The file includes the tag elements or configuration
statements representing all levels of the configuration hierarchy from the root (represented by the
<configuration> tag element) down to each element to change.

To specify the file, the client includes the <url> element as shown in the examples.

<rpc>
 <copy-config>
 <target>
 <candidate/>
 </target>
 <source>

280

 <url>
 <!-- location and name of file containing configuration data -->
 </url>
 </source>
 </copy-config>
</rpc>
]]>]]>

<rpc>
 <edit-config>
 <target>
 <candidate/>
 </target>
 <url>
 <!-- location and name of file containing configuration data -->
 </url>
 </edit-config>
</rpc>
]]>]]>

The data within these files can be formatted as either Junos XML elements or CLI configuration
statements. When the configuration data is formatted as CLI configuration statements, include the
format="text" attribute in the <url> tag.

<url format="text">
 <!-- location and name of file containing configuration data -->
</url>

The configuration file can be placed locally or as a network resource.

• When placed locally, the configuration file path can be relative or absolute.

• Relative file path—The file location is relative to the user’s home directory. For example:

<url>config-replace.xml</url>

281

• Absolute file path—The file location is based on the directory structure of the device, for example
<drive>:filename or <drive>/:path/filename . If you are using removable media, the drive can be
in the MS-DOS or UNIX (UFS) format. Junos OS also supports the file:// URI. For example:

<url>/var/tmp/config-replace.xml</url>

<url>file:///var/tmp/config-replace.xml</url>

• When located on the network, the configuration file can be accessed using FTP or HTTP:

• FTP example:

ftp://username:password@hostname/path/filename

NOTE: By default, the FTP path variable is relative to the user’s home directory. To
specify an absolute path, start the path with the characters %2F; for example: ftp://
username:password@hostname/%2Fpath/filename .

• HTTP example:

http://username:password@hostname/path/filename

The following example shows how to incorporate configuration data stored in the file /var/tmp/
configFile on the FTP server called ftp.myco.com:

282

Streaming Configuration Data

To provide configuration data as a data stream, a client application emits the <config> or <config-text> tag
elements within the <rpc> and <edit-config> tag elements. To specify the configuration elements to
change, the application emits Junos XML or CLI configuration statements representing all levels of the
configuration hierarchy from the root (represented by the <configuration> or <configuration-text> tag
element) down to each element to change.

<rpc>
 <edit-config>
 <target>
 <candidate/>
 </target>
 <config>
 <configuration>
 <!-- configuration changes -->
 </configuration>
 </config>
 </edit-config>
</rpc>
]]>]]>

<rpc>
 <edit-config>

283

 <target>
 <candidate/>
 </target>
 <config-text>
 <configuration-text>
 <!-- configuration changes -->
 </configuration-text>
 </config-text>
 </edit-config>
</rpc>
]]>]]>

The following example shows how to provide Junos XML configuration data in a data stream to
configure the messages system log file:

284

Formatting Data: Junos XML versus CLI Configuration Statements

The NETCONF <copy-config> and <edit-config> operations accept one of two formats for Junos OS
configuration data: Junos XML or CLI configuration statements. The choice between one data format
over the other is personal preference.

NOTE: When managing Junos devices, a NETCONF client can use the Junos XML
protocol <load-configuration> operation in a NETCONF session to upload configuration

285

data formatted using JSON or configuration mode set commands, in addition to Junos
XML or CLI configuration statement formats.

When you load configuration data from a file, you include the <url> element with the file location. The
default format for the configuration data is Junos XML.

<url>dataFile</url>

To specify that the data file contains CLI configuration statements, include the format="text" attribute in
the <url> tag.

<url format="text">dataFile</url>

When streaming data, you specify the data format by including one of two tags: <config> for Junos XML
elements or <config-text> for CLI configuration statements.

In the following example, the <configuration> element encloses Junos XML-formatted configuration data:

<config>
 <configuration>
 <system>
 <services>
 <ssh>
 <protocol-version>v2</protocol-version>
 </ssh>
 </services>
 </system>
 </configuration>
</config>

In the following example, the <configuration-text> element encloses the same data formatted as CLI
configuration statements:

<config-text>
 <configuration-text>
 system {
 services {
 ssh {
 protocol-version v2;

286

 }
 }
 }
 </configuration-text>
</config-text>

RELATED DOCUMENTATION

Edit the Configuration Using NETCONF | 277

Map Configuration Statements to Junos XML Tag Elements | 25

<copy-config> | 186

<edit-config> | 191

Set the Edit Configuration Mode in a NETCONF Session

IN THIS SECTION

Specifying the merge Data Mode | 289

Specifying the replace Data Mode | 290

Specifying the none (no-change) Data Mode | 290

When sending configuration data to the NETCONF server, you can specify how the device should
handle the configuration changes. This is known as the edit configuration mode. You can set the edit
configuration mode globally for the entire session. You can also set the edit mode for only specific
elements within the session.

Devices running Junos OS have the following edit configuration modes:

• merge—The device merges new configuration data into the existing configuration data. This is the
default.

• replace—The device replaces existing configuration data with the new configuration data.

• none—The device does not change the existing configuration unless the new configuration element
includes an operation attribute.

287

To set the edit configuration mode globally for the session, include the <default-operation> element with
the desired mode as a child element of <edit-config>.

<rpc>
 <edit-config>
 <default-operation>mode</default-operation>
 <edit-config>
</rpc>

To specify the edit configuration mode for an individual element, include the operation attribute and
desired mode in that element’s tag.

<rpc>
 <edit-config>
 <config>
 <configuration>
 <protocols>
 <rip>
 <message-size operation="replace">255</message-size>
 </rip>
 </protocols>
 </configuration>
 </config>
 </edit-config>
</rpc>

You can also set a global edit configuration mode for an entire set of configuration changes and specify a
different mode for individual elements that you want handled in a different manner. For example:

<rpc>
 <edit-config>
 <default-operation>merge</default-operation>
 <config>
 <configuration>
 <protocols>
 <rip>
 <message-size operation="replace">255</message-size>
 </rip>
 </protocols>
 </configuration>
 </config>

288

 </edit-config>
</rpc>

The edit configuration modes are discussed in more detail in the following sections:

Specifying the merge Data Mode

By default, the NETCONF server merges new configuration data into the candidate configuration or
open configuration database. Thus, if you do not specify an edit configuration mode, the device merges
the new configuration elements into the existing configuration.

Merging configurations is performed according to the following rules. (The rules also apply when
updating configuration data in an open configuration database, for example, the ephemeral database,
but for simplicity the following discussion refers to the candidate configuration only.)

• A configuration element (hierarchy level or configuration object) that exists in the candidate
configuration but not in the new configuration remains unchanged.

• A configuration element that exists in the new configuration but not in the candidate configuration is
added to the candidate configuration.

• If a configuration element exists in both configurations, the following results occur:

• If a child statement of the configuration element (represented by a child tag element) exists in the
candidate configuration but not in the new configuration, it remains unchanged.

• If a child statement exists in the new configuration but not in the candidate, it is added to the
candidate configuration.

• If a child statement exists in both configurations, the value in the new data replaces the value in
the candidate configuration.

To explicitly specify that data be merged, the application includes the <default-operation> tag element with
the value merge in the <edit-config> tag element.

<rpc>
 <edit-config>
 <default-operation>merge</default-operation>
 <!-- other child tag elements of the <edit-config> tag element -->
 </edit-config>
</rpc>
]]>]]>

289

Specifying the replace Data Mode

In the replace edit configuration mode, the new configuration data completely replaces the data in the
candidate configuration or open configuration database. To specify that the data be replaced, the
application includes the <default-operation> tag element with the value replace in the <edit-config> tag
element.

<rpc>
 <edit-config>
 <default-operation>replace</default-operation>
 </edit-config>
</rpc>
]]>]]>

We recommend using the global replace mode only when you plan to completely overwrite the existing
configuration with new configuration data. Furthermore, when the edit configuration mode is set to
replace, we do not recommend using the operation attribute for individual configuration elements.

You can also replace individual configuration elements while merging or creating others. See "Replace
Configuration Elements Using NETCONF" on page 314.

Specifying the none (no-change) Data Mode

In the none (no-change) edit configuration mode, changes to the configuration are ignored. This mode is
useful when you are deleting elements, and it prevents the NETCONF server from creating parent
hierarchy levels for an element that is being deleted. For more information, see "Delete Configuration
Elements Using NETCONF" on page 306.

To set the no-change edit configuration mode globally, the application includes the <default-operation> tag
element with the value none in the <edit-config> tag element.

<rpc>
 <edit-config>
 <default-operation>none</default-operation>
 </edit-config>
</rpc>

NOTE: If the new configuration data includes a configuration element that is not in the
existing configuration, the NETCONF server returns an error. We recommend using

290

mode none only when removing configuration elements from the configuration. When
creating or modifying elements, applications must use merge mode.

When you use the <default-operation> tag to globally set the edit configuration mode to none to indicate
the no-change mode, you can still override this mode and specify a different edit configuration mode for
individual elements by including the operation attribute in the element’s tag. For example:

<rpc>
 <edit-config>
 <default-operation>none</default-operation>
 <config>
 <configuration>
 <system>
 <services>
 <outbound-ssh>
 <client>
 <name>test</name>
 <device-id>test</device-id>
 <keep-alive>
 <retry operation="merge">4</retry>
 <timeout operation="merge">15</timeout>
 </keep-alive>
 </client>
 </outbound-ssh>
 </services>
 </system>
 </configuration>
 </config>
 </edit-config>
</rpc>

Change History Table

291

Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

21.1R1 and
21.1R1-EVO

Starting in Junos OS Release 21.1R1 and Junos OS Evolved Release 21.1R1,when you set
<default-operation> to replace, the device uses a load update operation instead of a load override
operation to replace the configuration. In load update operations, the device notifies only the
Junos processes that correspond to changed statements, thus minimizing possible disruptions to
the network.

RELATED DOCUMENTATION

Delete Configuration Elements Using NETCONF | 306

Handle Errors While Editing the Candidate Configuration in a NETCONF
Session

In a NETCONF session with a device running Junos OS, you can use NETCONF XML management
protocol operations along with Junos XML or command-line interface (CLI) configuration statements to
change the configuration on a routing, switching, or security platform. If the NETCONF server cannot
incorporate the configuration data, the server returns the <rpc-error> tag element with information
explaining the reason for the failure. By default, when the NETCONF server encounters an error while
incorporating new configuration data into the candidate configuration, it halts the incorporation process.
You can explicitly specify that the NETCONF server ignore errors or halt on error when incorporating
new configuration data by including the <error-option> tag element.

A client application can explicitly specify that the NETCONF server stop incorporating new
configuration data when it encounters an error. The application includes the <error-option> tag element
with the value stop-on-error in the <edit-config> tag element.

<rpc>
 <edit-config>
 <error-option>stop-on-error</error-option>
 <!-- other child tag elements of the <edit-config> tag element -->
 </edit-config>
</rpc>
]]>]]>

292

https://apps.juniper.net/feature-explorer/

Alternatively, the application can specify that the NETCONF server continue to incorporate new
configuration data when it encounters an error. The application includes the <error-option> tag element
with the value ignore-error in the <edit-config> tag element.

<rpc>
 <edit-config>
 <error-option>ignore-error</error-option>
 <!-- other child tag elements of the <edit-config> tag element -->
 </edit-config>
</rpc>
]]>]]>

The client application can include the optional <test-option> tag element described in the NETCONF
specification. Regardless of the value provided, the NETCONF server for the Junos OS performs a basic
syntax check on the configuration data in the <edit-config> tag element. When the <test-option> tag is
included, NETCONF performs a complete syntactic and semantic validation in response to the <commit>
and <validate> tag elements (that is, when the configuration is committed or explicitly checked), but not
in response to the <edit-config> tag element.

RELATED DOCUMENTATION

Edit the Configuration Using NETCONF | 277

Verify the Candidate Configuration Syntax Using NETCONF | 322

Commit the Candidate Configuration Using NETCONF | 323

Upload and Format Configuration Data in a NETCONF Session | 279

Replace the Candidate Configuration Using NETCONF

IN THIS SECTION

Using <copy-config> to Replace the Configuration | 294

Using <edit-config> to Replace the Configuration | 295

Rolling Back to a Previously Committed Configuration | 296

Replacing the Candidate Configuration with the Rescue Configuration | 297

293

A NETCONF client application can replace the entire candidate configuration or all data in the open
configuration database, either with new data or by rolling back to a previous configuration or a rescue
configuration.

NOTE: If a client application issues the Junos XML protocol <open-configuration> operation
to open a specific configuration database, the device performs the requested operation
on the open configuration database. Otherwise, the device performs the operation on
the candidate configuration.

The following sections discuss how to replace configuration data in the candidate configuration or open
configuration database. The client application must commit the configuration after replacing the data to
make it the active configuration on the device.

Using <copy-config> to Replace the Configuration

NETCONF clients can use the <copy-config> operation to replace the entire candidate configuration or all
data in the open configuration database. The <target> tag encloses the <candidate/> tag. The <candidate/>
tag indicates that the new configuration data replaces the data in the open configuration database (if the
client application issued the Junos XML protocol <open-configuration> operation prior to executing the
<copy-config> operation), or if there is no open database, the data in the candidate configuration.

The <source> element specifies the source configuration datastore. The client application can specify the
following sources:

• <running/>—Copy the active configuration to the target datastore.

• <url>—Copy the configuration data in the specified file to the target datastore.

Include the format attribute to specify the format of the configuration data as xml (default) or text.

<rpc>
 <copy-config>
 <target>
 <candidate/>
 </target>
 <source>
 <running/>

 <!-- OR -->

 <url format="(xml | text)">
 <!-- location specifier for input file -->
 </url>

294

 </source>
 </copy-config>
</rpc>

Using <edit-config> to Replace the Configuration

A NETCONF client can also use the <edit-config> operation to replace the entire candidate configuration
or all data in the open configuration database. The application includes the <default-operation> tag
element and sets the edit configuration mode to replace as a global variable, as described in "Set the Edit
Configuration Mode in a NETCONF Session" on page 287.

The <target> tag encloses the <candidate/> tag to indicate that the new configuration data replaces either
the data in the open configuration database (if the client application issued the Junos XML protocol
<open-configuration> operation prior to executing the <edit-config> operation), or if there is no open
database, the data in the candidate configuration.

To specify the new configuration data, the application includes a <config> or <config-text> tag element that
contains the data, or it includes a <url> tag element that specifies the file containing the data as
discussed in "Upload and Format Configuration Data in a NETCONF Session" on page 279.

<rpc>
 <edit-config>
 <target>
 <candidate/>
 </target>
 <default-operation>replace</default-operation>

 <!-- EITHER -->
 <config>
 <configuration>
 <!-- Junos XML configuration data -->
 </configuration>
 </config>
 <!-- OR -->
 <config-text>
 <configuration-text>
 <!-- configuration data in text format -->
 </configuration-text>
 </config-text>
 <!-- OR -->
 <url>
 <!-- location specifier for file containing changes -->

295

 </url>

 </edit-config>
</rpc>
]]>]]>

Rolling Back to a Previously Committed Configuration

Junos devices store a copy of the most recently committed configuration and up to 49 previous
configurations, depending on the platform. You can roll back to any of the stored configurations. This is
useful when configuration changes cause undesirable results, and you want to revert back to a known
working configuration. Rolling back the configuration is similar to the process for making configuration
changes on the device, but instead of loading configuration data, you perform a rollback, which replaces
the entire candidate configuration with a previously committed configuration.

Starting in Junos OS Release 18.1R1, a NETCONF application can execute the <rollback-config> RPC to
replace either the candidate configuration or all data in the open configuration database with a
previously committed configuration. To roll back the configuration, the application emits the <rollback-
config> element with the <index> child element, which specifies the numerical index of the previous
configuration to load. Valid values are 0 (zero, for the most recently committed configuration) through
one less than the number of stored previous configurations (maximum is 49).

NOTE: NETCONF applications can also use the Junos XML protocol <load-configuration>
operation with the rollback attribute to roll back the configuration.

For example, to load the configuration with a rollback index of 1, the client application emits the
following RPC:

<rpc>
 <rollback-config>
 <index>1</index>
 </rollback-config>
</rpc>
]]>]]>

The NETCONF server indicates that the load operation was successful by returning the <rollback-config-
results> and <ok/> elements in its RPC reply.

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:junos="http://xml.juniper.net/
junos/18.1R1/junos">
 <rollback-config-results>

296

 <ok/>
 </rollback-config-results>
</rpc-reply>
]]>]]>

If the load operation is successful, the client application must commit the configuration to make it the
active configuration on the device. If the server encounters an error while loading the rollback
configuration, it returns an <rpc-error> element with information about the error.

Replacing the Candidate Configuration with the Rescue Configuration

A rescue configuration allows you to define a known working configuration or a configuration with a
known state that you can restore at any time. You use the rescue configuration when you need to revert
to a known configuration or as a last resort if the device configuration and the backup configuration files
become damaged beyond repair. When you create a rescue configuration, the device saves the most
recently committed configuration as the rescue configuration.

Starting in Junos OS Release 18.1R1, a NETCONF application can execute the <rollback-config> RPC to
replace either the candidate configuration or all data in the open configuration database with the
device’s rescue configuration. To load the rescue configuration, the application emits the <rollback-config>
element and <rescue/> child tag. The rescue configuration must exist on the device before you can load it.

NOTE: NETCONF applications can also use the Junos XML protocol <load-configuration>
operation with the rescue attribute to load the rescue configuration.

For example, to load the rescue configuration, the client application emits the following RPC:

<rpc>
 <rollback-config>
 <rescue/>
 </rollback-config>
</rpc>
]]>]]>

The NETCONF server indicates that the load operation was successful by returning the <rollback-config-
results> and <ok/> elements in its RPC reply.

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:junos="http://xml.juniper.net/
junos/18.1R1/junos">
 <rollback-config-results>
 <ok/>

297

 </rollback-config-results>
</rpc-reply>
]]>]]>

If the load operation is successful, the client application must commit the configuration to make it the
active configuration on the device. If the rescue configuration does not exist or the server encounters
another error while loading the configuration data, it returns an <rpc-error> element with information
about the error.

RELATED DOCUMENTATION

Set the Edit Configuration Mode in a NETCONF Session | 287

Replace Configuration Elements Using NETCONF | 314

Upload and Format Configuration Data in a NETCONF Session | 279

<copy-config> | 186

<edit-config> | 191

Roll Back Uncommitted Changes in the Candidate Configuration Using
NETCONF

In a NETCONF session with a device running Junos OS, the client application can roll back the candidate
configuration to the current running configuration, which removes any uncommitted changes from the
candidate configuration. This operation is equivalent to the CLI configuration mode rollback 0 command.

To roll back the candidate configuration to the current running configuration, enclose the <discard-
changes> tag within the <rpc> element.

<rpc>
 <discard-changes/>
</rpc>
]]>]]>

After you issue the </discard-changes> tag, the NETCONF server indicates that it successfully discarded
the changes by returning the <ok/> tag.

298

RELATED DOCUMENTATION

Replace the Candidate Configuration Using NETCONF | 293

Retrieve a Previous (Rollback) Configuration Using NETCONF | 425

<discard-changes/> | 190

Delete the Configuration Using NETCONF

In a NETCONF session with a device running Junos OS, the <delete-config> tag element enables you to
delete all configuration data in the current candidate configuration or in the open configuration
database. Exercise caution when issuing the <delete-config> tag element. If you commit an empty
candidate configuration, the device will go offline.

To delete the candidate configuration or all data in the open configuration database, insert the <delete-
config> tag element in the <rpc> element. The <target> tag encloses the <candidate/> tag, which can refer to
either the candidate configuration or the open configuration database. If a client application issues the
Junos XML protocol <open-configuration> operation to open a specific configuration database before
executing a <delete-config> operation, Junos OS performs the operation on the open configuration
database. Otherwise, the operation is performed on the candidate configuration.

<rpc>
 <delete-config>
 <target>
 <candidate/>
 </target>
 </delete-config>
</rpc>

WARNING: If you take the device offline, you will need to access the device through the
console port on the device. From this console, you can access the CLI and perform a
rollback to a suitable configuration. For more information about the console port, see the
hardware manual for your specific device.

RELATED DOCUMENTATION

Delete Configuration Elements Using NETCONF | 306

Replace the Candidate Configuration Using NETCONF | 293

299

Roll Back Uncommitted Changes in the Candidate Configuration Using NETCONF | 298

<delete-config> | 189

Change Individual Configuration Elements Using NETCONF

In a NETCONF session with a device running Junos OS, a client application can change individual
configuration elements in the existing configuration by using the <edit-config> tag element. By default,
the NETCONF server merges new configuration data into the existing configuration. However, a client
application can also replace, create, or delete individual configuration elements (hierarchy levels or
configuration objects). The same basic tag elements are emitted for all operations: <config>, <config-text>,
or <url> tag sub-elements within the <edit-config> tag element.

Within the <edit-config> element, the <target> element encloses the <candidate/> tag, which can refer to
either the candidate configuration or the open configuration database. If a client application issues the
Junos XML protocol <open-configuration> operation to open a specific configuration database before
executing the <edit-config> operation, Junos OS performs the operation on the open configuration
database. Otherwise, the operation is performed on the candidate configuration.

<rpc>
 <edit-config>
 <target>
 <candidate/>
 </target>

 <!-- EITHER -->
 <config>
 <configuration>
 <!-- tag elements representing the configuration elements to change -->
 </configuration>
 </config>
 <!-- OR -->
 <config-text>
 <configuration-text>
 <!-- configuration data in text format -->
 </configuration-text>
 </config-text>
 <!-- OR -->
 <url>
 <!-- location specifier for file containing changes -->
 </url>

300

 </edit-config>
</rpc>
]]>]]>

The application includes the configuration data within the <config> or <config-text> tag elements or in the
file specified by the <url> tag element. To define a configuration element, the application includes the tag
elements representing all levels of the configuration hierarchy from the root down to the immediate
parent level for the element. To represent the element, the application includes its container tag
element. The child tags included within the container element depend on the operation.

For more information about the tag elements that represent configuration statements, see "Map
Configuration Statements to Junos XML Tag Elements" on page 25. For information about the tag
elements for a specific configuration element, see the Junos XML API Configuration Developer
Reference.

The NETCONF server indicates that it changed the configuration in the requested way by enclosing the
<ok/> tag in the <rpc-reply> tag element:

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <ok/>
</rpc-reply>
]]>]]>

RELATED DOCUMENTATION

Create Configuration Elements Using NETCONF | 304

Delete Configuration Elements Using NETCONF | 306

Merge Configuration Elements Using NETCONF | 301

Replace Configuration Elements Using NETCONF | 314

Merge Configuration Elements Using NETCONF

In a NETCONF session with a device running Junos OS, to merge configuration elements, including
hierarchy levels or configuration objects, into the existing configuration in the candidate configuration or
the open configuration database (if the client application issued the Junos XML protocol <open-
configuration> operation prior to executing the <edit-config> operation), a client application emits the basic
tag elements described in "Change Individual Configuration Elements Using NETCONF" on page 300.

301

To represent each element to merge in (either within the <config> or <config-text> tag elements or in the
file specified by the <url> tag element), the application includes the tag elements representing its parent
hierarchy levels and its container tag element, as described in "Change Individual Configuration
Elements Using NETCONF" on page 300. Within the container tag, the application includes each of the
element’s identifier tag elements (if it has them) and the tag element for each child to add or for which
to set a different value. In the following, the identifier tag element is called <name>:

<configuration>
 <!-- opening tags for each parent of the element -->
 <element>
 <name>identifier</name>
 <!-- - child tag elements to add or change -->
 </element>
 <!-- closing tags for each parent of the element -->
</configuration>

The NETCONF server merges in the new configuration element according to the rules specified in "Set
the Edit Configuration Mode in a NETCONF Session" on page 287. As described in that section, the
application can explicitly specify merge mode by including the <default-operation> tag element with the
value merge in the <edit-config> tag element.

The following example shows how to merge information for a new interface called so-3/0/0 into the
[edit interfaces] hierarchy level in the candidate configuration:

302

RELATED DOCUMENTATION

Change Individual Configuration Elements Using NETCONF | 300

Create Configuration Elements Using NETCONF | 304

Delete Configuration Elements Using NETCONF | 306

Replace Configuration Elements Using NETCONF | 314

Set the Edit Configuration Mode in a NETCONF Session | 287

303

Create Configuration Elements Using NETCONF

In a NETCONF session with a device running Junos OS, to create configuration elements, including
hierarchy levels or configuration objects, that do not already exist in the target configuration, which can
be either the candidate configuration or the open configuration database (if the client application issued
the Junos XML protocol <open-configuration> operation prior to executing the <edit-config> operation), a
client application emits the basic tag elements described in "Change Individual Configuration Elements
Using NETCONF" on page 300.

To represent each configuration element being created (either within the <config> or <config-text> tag
elements or in the file specified by the <url> tag element), the application emits the tag elements
representing its parent hierarchy levels and its container tag element, as described in "Change Individual
Configuration Elements Using NETCONF" on page 300. Within the container tag, the application
includes each of the element’s identifier tag elements (if it has them) and all child tag elements (with
values, if appropriate) that are being defined for the element. In the following, the identifier tag element
is called <name>. The application includes the operation="create" attribute in the opening container tag:

<configuration>
 <!-- opening tags for each parent of the element -->
 <element operation="create">
 <name>identifier</name> <!-- if element has an identifier -->
 <!-- other child tag elements -->
 </element>
 <!-- closing tags for each parent of the element -->
</configuration>

The NETCONF server adds the new element to the target configuration only if there is no existing
element with that name (for a hierarchy level) or with the same identifiers (for a configuration object).

The following example shows how to enable OSPF on a device if it is not already configured:

304

RELATED DOCUMENTATION

Change Individual Configuration Elements Using NETCONF | 300

Delete Configuration Elements Using NETCONF | 306

Merge Configuration Elements Using NETCONF | 301

Replace Configuration Elements Using NETCONF | 314

Set the Edit Configuration Mode in a NETCONF Session | 287

305

Delete Configuration Elements Using NETCONF

SUMMARY

Delete configuration elements

IN THIS SECTION

Deleting a Hierarchy Level or Container
Object | 307

Deleting a Configuration Object That Has an
Identifier | 308

Deleting a Single-Value or Fixed-Form Option
from a Configuration Object | 310

Deleting Values from a Multi-value Option of
a Configuration Object | 311

You can use NETCONF to delete configuration elements, including hierarchy levels or configuration
objects, from the Junos configuration. You can delete objects from the candidate configuration or the
open configuration database (if the client application issued the Junos XML protocol <open-configuration>
operation prior to executing the <edit-config> operation).

To delete an element, a client application emits the basic tag elements described in "Change Individual
Configuration Elements Using NETCONF" on page 300. It also emits the <default-operation> tag element
with the value none to change the default mode to no-change.

<rpc>
 <edit-config>
 <target>
 <candidate/>
 </target>
 <default-operation>none</default-operation>

 <!-- EITHER -->
 <config>
 <configuration>
 <!-- tag elements representing the configuration elements to delete -->
 </configuration>
 </config>
 <!-- OR -->
 <url>
 <!-- location specifier for file containing elements to delete -->

306

 </url>

 </edit-config>
</rpc>
]]>]]>

In no-change mode, existing configuration elements remain unchanged unless the corresponding
element in the new configuration has the operation="delete" attribute or operation="remove" attribute in its
opening tag. This mode prevents the NETCONF server from creating parent hierarchy levels for an
element that is being deleted. We recommend that client applications only perform deletion operations
when using no-change mode. When merging, replacing, or creating configuration elements, client
applications use merge mode.

The delete and remove attributes both instruct the NETCONF server to delete the specified configuration
element in the target configuration. However, the NETCONF server behaves differently for each
attribute when the specified configuration element does not exist. If you use the remove attribute and the
element does not exist, the server silently ignores the request. If you use the delete attribute and the
element does not exist, the server returns an <rpc-error> element with an <error-tag> value of data-missing.
We recommend that you use the remove attribute when you want to delete an element but are unsure if
the element exists.

To represent each configuration element being deleted (either within the <config> tag element or in the
file named by the <url> tag element), the application emits the tag elements representing its parent
hierarchy levels, as described in "Change Individual Configuration Elements Using NETCONF" on page
300. The placement of the operation="delete" attribute or operation="remove" attribute depends on the
element type, as described in the following sections.

Deleting a Hierarchy Level or Container Object

To delete a hierarchy level and all of its children (or a container object that has children but no identifier),
a client application includes the operation="delete" attribute or the operation="remove" attribute in the empty
tag that represents the level.

<configuration>
 <!-- opening tags for each parent level -->
 <level-to-delete operation="(delete | remove)"/>
 <!-- closing tags for each parent level -->
</configuration>

We recommend that the application set the default mode to no-change by including the <default-
operation> tag element with the value none, as described in "Set the Edit Configuration Mode in a
NETCONF Session" on page 287. For more information about hierarchy levels and container objects, see
"Map Configuration Statements to Junos XML Tag Elements" on page 25.

307

The following example shows how to remove the [edit protocols ospf] hierarchy level of the candidate
configuration:

Deleting a Configuration Object That Has an Identifier

To delete a configuration object that has an identifier, a client application includes the operation="delete"
attribute or the operation="remove" attribute in the container tag element for the object. Inside the
container tag element, it includes the identifier tag element only, not any tag elements that represent
other characteristics. In the following, the identifier tag element is called <name>:

<configuration>
 <!-- opening tags for each parent of the object -->
 <object operation="(delete | remove)">
 <name>identifier</name>
 </object>
 <!-- closing tags for each parent of the object -->
</configuration>

308

NOTE: The delete or remove attribute appears in the opening container tag, not in the
identifier tag element. You include the identifier tag element to delete the specified
object, not the entire hierarchy level represented by the container tag.

We recommend that the application set the default mode to no-change by including the <default-
operation> tag element with the value none, as described in "Set the Edit Configuration Mode in a
NETCONF Session" on page 287. For more information about identifiers, see "Map Configuration
Statements to Junos XML Tag Elements" on page 25.

The following example shows how to remove the user object barbara from the [edit system login user]
hierarchy level in the candidate configuration:

309

Deleting a Single-Value or Fixed-Form Option from a Configuration Object

To delete either a fixed-form option or an option that takes just one value from a configuration object, a
client application includes the operation="delete" attribute or the operation="remove" attribute in the tag
element for the option. In the following example, the identifier tag element for the object is called <name>.
(For information about deleting an option that can take multiple values, see "Deleting Values from a
Multi-value Option of a Configuration Object" on page 311.)

<configuration>
 <!-- opening tags for each parent of the object -->
 <object>
 <name>identifier</name> <!-- if object has an identifier -->
 <option1 operation="(delete | remove)">
 <option2 operation="(delete | remove)">
 <!-- tag elements for other options to delete -->
 </object>
 <!-- closing tags for each parent of the object -->
</configuration>

We recommend that the application set the default mode to no-change by including the <default-
operation> tag element with the value none, as described in "Set the Edit Configuration Mode in a
NETCONF Session" on page 287. For more information about options, see "Map Configuration
Statements to Junos XML Tag Elements" on page 25.

The following example shows how to remove the fixed-form option disable at the [edit forwarding-
options sampling] hierarchy level:

310

Deleting Values from a Multi-value Option of a Configuration Object

As described in "Map Configuration Statements to Junos XML Tag Elements" on page 25, some Junos
OS configuration objects are leaf statements that have multiple values. In the formatted ASCII CLI
representation, the values are enclosed in square brackets following the name of the object:

object [value1 value2 value3 ...];

The Junos XML representation does not use a parent tag for the object, but instead uses a separate
instance of the object tag element for each value. In the following example, the identifier tag element is
called <name>:

<parent-object>
 <name>identifier</name>
 <object>value1</object>
 <object>value2</object>

311

 <object>value3</object>
</parent-object>

To remove one or more values for such an object, a client application includes the operation="delete"
attribute or the operation="remove" attribute in the opening tag for each value. It does not include tag
elements that represent values to be retained. In the following example, the identifier tag element is
called <name>:

<configuration>
 <!-- opening tags for each parent of the parent object -->
 <parent-object>
 <name>identifier</name>
 <object operation="(delete | remove)">value1</object>
 <object operation="(delete | remove)">value2</object>
 </parent-object>
 <!-- closing tags for each parent of the parent object -->
</configuration>

We recommend that the application set the default mode to no-change by including the <default-
operation> tag element with the value none, as described in "Set the Edit Configuration Mode in a
NETCONF Session" on page 287. For more information about leaf statements with multiple values, see
"Map Configuration Statements to Junos XML Tag Elements" on page 25.

The following example shows how to remove two of the permissions granted to the user-accounts login
class:

312

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

23.1R1 and
23.1R1-EVO

Starting in Junos OS Release 23.1R1 and Junos OS Evolved Release 23.1R1, the NETCONF
server <rpc-error> response is changed when <edit-config> uses the operation="delete" operation
to delete a configuration element that is absent in the target configuration. The error severity is
error instead of warning, and the <rpc-error> element includes the <error-tag>data-missing</
error-tag> and <error-type>application</error-type> elements.

313

https://apps.juniper.net/feature-explorer/

RELATED DOCUMENTATION

Change Individual Configuration Elements Using NETCONF | 300

Delete the Configuration Using NETCONF | 299

Create Configuration Elements Using NETCONF | 304

Merge Configuration Elements Using NETCONF | 301

Replace Configuration Elements Using NETCONF | 314

Set the Edit Configuration Mode in a NETCONF Session | 287

Replace Configuration Elements Using NETCONF

In a NETCONF session with a device running Junos OS, to replace configuration elements, including
hierarchy levels or configuration objects, in the candidate configuration, a client application emits the
basic tag elements described in "Change Individual Configuration Elements Using NETCONF" on page
300.

To represent the new definition for each configuration element being replaced (either within the <config>
or <config-text> tag elements or in the file specified by the <url> tag element), the application emits the
tag elements representing its parent hierarchy levels and its container tag element, as described in
"Change Individual Configuration Elements Using NETCONF" on page 300. Within the container tag, the
application includes each of the element’s identifier tag elements (if it has them) and all child tag
elements (with values, if appropriate) that are being defined for the new version of the element. In the
following example, the identifier tag element is called <name>. The application includes the
operation="replace" attribute in the opening container tag:

<configuration>
 <!-- opening tags for each parent of the element -->
 <container-tag operation="replace">
 <name>identifier</name>
 <!-- other child tag elements -->
 </container-tag>
 <!-- closing tags for each parent of the element -->
</configuration>

The NETCONF server removes the existing element that has the specified identifiers and inserts the
new element.

314

NOTE: The operation="replace" attribute is not supported when loading configuration data
into the ephemeral configuration database.

The application can also replace all objects in the configuration in one operation. For instructions, see
"Replace the Candidate Configuration Using NETCONF" on page 293.

The following example shows how to grant new permissions for the object named operator at the
[edit system login class] hierarchy level.

RELATED DOCUMENTATION

Change Individual Configuration Elements Using NETCONF | 300

Create Configuration Elements Using NETCONF | 304

315

Delete Configuration Elements Using NETCONF | 306

Merge Configuration Elements Using NETCONF | 301

Set the Edit Configuration Mode in a NETCONF Session | 287

Replace Patterns in Configuration Data Using the NETCONF or Junos
XML Protocol

SUMMARY

NETCONF and Junos XML protocol client
applications can replace variables and identifiers in
the configuration when performing a <load-
configuration> operation.

IN THIS SECTION

Replace Patterns Globally Within the
Configuration | 317

Replace Patterns Within a Hierarchy Level or
Container Object That Has No
Identifier | 318

Replace Patterns for a Configuration Object
That Has an Identifier | 319

A NETCONF or Junos XML protocol client application can replace variables and identifiers in the
configuration of devices running Junos OS or devices running Junos OS Evolved. For example, you might
need to replace all occurrences of an interface name when a PIC is moved to another slot in the router.

To replace a pattern, a client application uses the <load-configuration> operation with the replace-pattern
attribute. The replace-pattern attribute replaces the existing pattern with the new pattern. The scope of
the replacement can be global or at a specified hierarchy or object level in the configuration. The
functionality of the replace-pattern attribute is identical to that of the replace pattern configuration mode
command in the Junos OS CLI.

NOTE: To use the replace pattern operations, you must use Junos XML elements for the
configuration data format.

To replace a pattern, a client application emits the <rpc> and <load-configuration> elements and includes
the basic Junos XML tag elements described in Create, Modify, or Delete Configuration Elements Using
the Junos XML Protocol. At the hierarchy or object level where you want to replace the pattern, include
the following attributes:

• replace-pattern—Pattern to replace.

316

• with—Replacement pattern.

• upto—(Optional) Number of occurrences to replace. If you omit this attribute or set it to zero, the
device replaces all instances of the pattern within the specified scope.

The placement of the attributes within the configuration determines the scope of the replacement as
described in the following sections.

Replace Patterns Globally Within the Configuration

To replace a pattern globally throughout the candidate configuration or open configuration database,
include the replace-pattern and with attributes in the opening <configuration> tag. You can optionally include
the up-to attribute to replace only a specified number of occurrences.

<rpc>
 <load-configuration>
 <configuration replace-pattern="pattern1" with="pattern2" [upto="n"]>
 </configuration>
 </load-configuration>
</rpc>

For example, the following RPC replaces all instances of 172.17.1.5 with 172.16.1.1:

<rpc>
 <load-configuration>
 <configuration replace-pattern="172.17.1.5" with="172.16.1.1"/>
 </configuration>
 </load-configuration>
</rpc>

After executing the RPC, you can compare the updated candidate configuration to the active
configuration to verify the pattern replacement. You must commit the configuration for the changes to
take effect.

<rpc>
 <get-configuration compare="rollback" rollback="0" format="text">
 </get-configuration>
</rpc>

<rpc-reply xmlns:junos="http://xml.juniper.net/junos/24.4R1/junos">
<configuration-information>
<configuration-output>

317

[edit groups global system ntp]
- boot-server 172.17.1.5;
+ boot-server 172.16.1.1;
[edit groups global system ntp]
+ server 172.16.1.1;
- server 172.17.1.5;
</configuration-output>
</configuration-information>
</rpc-reply>

Replace Patterns Within a Hierarchy Level or Container Object That Has No Identifier

A client application can replace a pattern under a specific hierarchy level including all of its children (or a
container object that has children but no identifier). To replace the pattern within a specific hierarchy
level, a client application includes the replace-pattern and with attributes in the empty tag that represents
the hierarchy level or container object.

<rpc>
 <load-configuration>
 <configuration>
 <!-- opening tag for each parent element -->
 <level-or-object replace-pattern="pattern1" with="pattern2" [upto="n"]/>
 <!-- closing tag for each parent element -->
 </configuration>
 </load-configuration>
</rpc>

The following RPC replaces instances of fe-0/0/1 with ge-1/0/1 at the [edit interfaces] hierarchy level:

<rpc>
 <load-configuration>
 <configuration>
 <interfaces replace-pattern="fe-0/0/1" with="ge-1/0/1"/>
 </configuration>
 </load-configuration>
</rpc>

318

Compare the updated candidate configuration to the active configuration to verify the pattern
replacement. For example:

<rpc>
 <get-configuration compare="rollback" rollback="0" format="text">
 </get-configuration>
</rpc>

<rpc-reply xmlns:junos="http://xml.juniper.net/junos/24.4R1/junos">
<configuration-information>
<configuration-output>
[edit interfaces]
- fe-0/0/1 {
- unit 0 {
- family inet {
- address 10.0.1.1/27;
- }
- }
- }
+ ge-1/0/1 {
+ unit 0 {
+ family inet {
+ address 10.0.1.1/27;
+ }
+ }
+ }
</configuration-output>
</configuration-information>
</rpc-reply>

Replace Patterns for a Configuration Object That Has an Identifier

To replace a pattern for a configuration object that has an identifier, a client application includes the
replace-pattern and with attributes in the opening tag for the object. Within the container tag, the
application also includes the identifier element for that object. In the following example, the identifier
tag is <name>:

<rpc>
 <load-configuration>
 <configuration>
 <!-- opening tag for each parent element -->

319

 <container-tag replace-pattern="pattern1" with="pattern2" [upto="n"]>
 <name>identifier</name>
 </container-tag>
 <!-- closing tag for each parent element -->
 </configuration>
 </load-configuration>
</rpc>

The following RPC replaces instances of 4.5 with 4.1, but only for the fe-0/0/2 interface under the [edit
interfaces] hierarchy:

<rpc>
 <load-configuration>
 <configuration>
 <interfaces>
 <interface replace-pattern="4.5" with="4.1">
 <name>fe-0/0/2</name>
 </interface>
 </interfaces>
 </configuration>
 </load-configuration>
</rpc>

You can compare the updated candidate configuration to the active configuration to verify the pattern
replacement. For example:

<rpc>
 <get-configuration compare="rollback" rollback="0" format="text">
 </get-configuration>
</rpc>

<rpc-reply xmlns:junos="http://xml.juniper.net/junos/24.4R1/junos">
<configuration-information>
<configuration-output>
[edit interfaces fe-0/0/2 unit 0 family inet]
+ address 10.0.4.1/30;
- address 10.0.4.5/30;
</configuration-output>
</configuration-information>

320

RELATED DOCUMENTATION

replace-pattern

Modifying the Configuration for a Device

Modifying the Configuration for a Device

replace

321

CHAPTER 11

Commit the Configuration Using NETCONF

IN THIS CHAPTER

Verify the Candidate Configuration Syntax Using NETCONF | 322

Commit the Candidate Configuration Using NETCONF | 323

Commit the Candidate Configuration Only After Confirmation Using NETCONF | 325

Verify the Candidate Configuration Syntax Using NETCONF

In a NETCONF session with a device running Junos OS, during the process of committing the candidate
configuration or a private copy, the NETCONF server confirms that the configuration is syntactically
correct. If the syntax check fails, the server does not commit the candidate configuration. To avoid the
potential complications of such a failure, it often makes sense to confirm the correctness of the
candidate configuration before actually committing it.

In a NETCONF session with a device running Junos OS, to verify the syntax of the candidate
configuration, a client application includes the <validate> and <source> tag elements and the <candidate/>
tag in an <rpc> tag element:

<rpc>
 <validate>
 <source>
 <candidate/>
 </source>
 </validate>
</rpc>
]]>]]>

322

The NETCONF server confirms that the candidate configuration syntax is valid by returning the <ok/> tag
in the <rpc-reply> tag element:

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <ok/>
</rpc-reply>
]]>]]>

If the candidate configuration syntax is not valid, the server returns the <rpc-reply> element and <rpc-
error> child element, which explains the reason for the error.

RELATED DOCUMENTATION

Commit the Candidate Configuration Using NETCONF | 323

Commit the Candidate Configuration Only After Confirmation Using NETCONF | 325

Commit the Candidate Configuration Using NETCONF

When you commit the candidate configuration on a device running Junos OS, it becomes the active
configuration on the routing, switching, or security platform. For more detailed information about
commit operations, including a discussion of the interaction among different variants of the operation,
see the CLI User Guide.

In a NETCONF session with a device running Junos OS, to commit the candidate configuration, a client
application encloses the <commit/> tag in an <rpc> tag element.

<rpc>
 <commit/>
</rpc>
]]>]]>

We recommend that the client application lock the candidate configuration before modifying it and emit
the <commit/> tag while the configuration is still locked. This process avoids inadvertently committing
changes made by other users or applications. After committing the configuration, the application must
unlock it in order for other users and applications to make changes.

323

https://www.juniper.net/documentation/us/en/software/junos/cli/index.html

The NETCONF server confirms that the commit operation was successful by returning the <ok/> tag in
the <rpc-reply> tag element.

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <ok/>
</rpc-reply>
]]>]]>

If the commit operation fails, the server returns the <rpc-reply> element and <rpc-error> child element,
which explains the reason for the failure. The most common causes are semantic or syntactic errors in
the candidate configuration.

You can configure the rfc-compliant statement at the [edit system services netconf] hierarchy level to
enforce certain behaviors by the NETCONF server, which includes changes in the NETCONF server's
response to <commit> operations. Table 16 on page 324 describes the changes in RFC-compliant sessions.

Table 16: Commit RPC Response Differences in RFC-Compliant Sessions

Commit RPC Response Default Response RFC-Compliant Session Response

A successful <commit> operation
returns a response with warnings.

The NETCONF server returns an
<ok/> element and can also return
one or more <rpc-error> elements
with a severity level of warning.

Starting in Junos OS Release
17.4R3, 18.2R2, 18.3R2, and
18.4R1, the NETCONF server
returns an <ok/> element but omits
any warnings. In Junos OS Release
21.2R1 and later, the warnings are
also redirected to the system log
file.

A <commit> operation response
returns an <rpc-error> element that
includes a <source-daemon> element.

The NETCONF server response
emits the <source-daemon> element
as a child of <rpc-error>.

Starting in Junos OS Release
21.2R1, the NETCONF server
response emits the <source-daemon>
element as a child of <error-info>.

A <commit> operation response
includes a <commit-results>
element.

The NETCONF server includes the
<commit-results> XML subtree in
addition to an <ok/> element or
<rpc-error> child element.

If you also configure the flatten-
commit-results statement at the
[edit system services netconf]
hierarchy level, the NETCONF
server suppresses the <commit-
results> XML subtree and only
emits an <ok/> or <rpc-error>
element in its response.

324

RELATED DOCUMENTATION

Commit the Candidate Configuration Only After Confirmation Using NETCONF | 325

Commit the Candidate Configuration Only After Confirmation Using
NETCONF

When you commit the candidate configuration on a device running Junos OS, it becomes the active
configuration on the routing, switching, or security platform. For more detailed information about
commit operations, including a discussion of the interaction among different variants of the operation,
see the CLI User Guide

When you commit the candidate configuration, you can require an explicit confirmation for the commit
to become permanent. The confirmed commit operation is useful for verifying that a configuration
change works correctly and does not prevent management access to the device. If the change prevents
access or causes other errors, the automatic rollback to the previous configuration restores access after
the rollback deadline passes. If the commit is not confirmed within the specified amount of time, which
is 600 seconds (10 minutes) by default, the device automatically loads and commits (rolls back to) the
previously committed configuration.

In a NETCONF session with a device running Junos OS, to commit the candidate configuration but
require an explicit confirmation for the commit to become permanent, a client application encloses the
empty <confirmed/> tag in the <commit> and <rpc> tag elements.

<rpc>
 <commit>
 <confirmed/>
 </commit>
</rpc>
]]>]]>

To specify a number of seconds for the rollback deadline that is different from the default value of 600
seconds, the application includes the <confirm-timeout> tag element, and specifies the number of seconds
for the delay, in the range from 1 through 4,294,967,295 seconds.

<rpc>
 <commit>
 <confirmed/>
 <confirm-timeout>rollback-delay</confirm-timeout>
 </commit>

325

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-cli/junos-cli.html

</rpc>
]]>]]>

NOTE: You cannot perform a confirmed commit operation on an instance of the
ephemeral configuration database.

In either case, the NETCONF server confirms that it committed the candidate configuration temporarily
by returning the <ok/> tag in the <rpc-reply>.

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <ok/>
</rpc-reply>
]]>]]>

If the NETCONF server cannot commit the candidate configuration, the <rpc-reply> element instead
encloses an <rpc-error> element explaining the reason for the failure. The most common causes are
semantic or syntactic errors in the candidate configuration.

To delay the rollback to a time later than the current rollback deadline, the client application emits the
<confirmed/> tag in a <commit> tag element again before the deadline passes. Optionally, it includes the
<confirm-timeout> element to specify how long to delay the next rollback; omit that tag element to delay
the rollback by the default of 600 seconds (10 minutes). The client application can delay the rollback
indefinitely by emitting the <confirmed/> tag repeatedly in this way.

To commit the configuration permanently, the client application emits the <commit/> tag enclosed in an
<rpc> tag element before the rollback deadline passes. The rollback is canceled and the candidate
configuration is committed immediately, as described in "Commit the Candidate Configuration Using
NETCONF" on page 323. If the candidate configuration is still the same as the temporarily committed
configuration, this effectively recommits the temporarily committed configuration.

If another application uses the <kill-session/> tag element to terminate this application’s session while a
confirmed commit is pending (this application has committed changes but not yet confirmed them), the
NETCONF server that is servicing this session restores the configuration to its state before the
confirmed commit instruction was issued.

The following example shows how to commit the candidate configuration with a rollback deadline of
300 seconds.

Client Application

<rpc>
 <commit>

326

 <confirmed/>
 <confirm-timeout>300</confirm-timeout>
 </commit>
</rpc>
]]>]]>

NETCONF Server

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <ok/>
</rpc-reply>
]]>]]>

RELATED DOCUMENTATION

Commit the Candidate Configuration Using NETCONF | 323

327

CHAPTER 12

Ephemeral Configuration Database

IN THIS CHAPTER

Understanding the Ephemeral Configuration Database | 328

Unsupported Configuration Statements in the Ephemeral Configuration Database | 342

Enable and Configure Instances of the Ephemeral Configuration Database | 346

Commit and Synchronize Ephemeral Configuration Data Using the NETCONF or Junos XML Protocol | 357

Managing Ephemeral Configuration Database Space | 369

Example: Configure the Ephemeral Configuration Database Using NETCONF | 376

Understanding the Ephemeral Configuration Database

IN THIS SECTION

Benefits of the Ephemeral Configuration Database | 329

Ephemeral Configuration Database Overview | 329

Ephemeral Database Instances | 330

Ephemeral Database General Commit Model | 332

Using the Ephemeral Database with High Availability Features | 333

Ephemeral Database Best Practices | 339

The ephemeral database is an alternate configuration database that provides a fast programmatic
interface for performing configuration updates on devices running Junos OS and Junos OS Evolved. The
ephemeral database enables Juniper Extension Toolkit (JET) applications and NETCONF and Junos XML
management protocol client applications to concurrently load and commit configuration changes to a
device and with significantly greater throughput than when committing data to the candidate
configuration database.

328

Use Feature Explorer to confirm platform and release support for specific features.

The following sections discuss the different aspects of the ephemeral configuration database.

Benefits of the Ephemeral Configuration Database

• Enables multiple client applications to concurrently configure a device by loading and committing
data to separate instances of the ephemeral database

• Enables fast provisioning and rapid configuration changes in dynamic environments that require fast
commit times

Ephemeral Configuration Database Overview

When managing Junos devices, the recommended and most common method to configure the device is
to modify and commit the candidate configuration, which corresponds to a persistent (static)
configuration database. The standard commit operation handles configuration groups, macros, and
commit scripts; performs commit checks to validate the configuration’s syntax and semantics; and stores
copies of the committed configurations. The standard commit model is robust because it prevents
configuration errors and it enables you to roll back to a previously committed configuration. However, in
some cases, the commit operation can consume a significant amount of time and device resources.

JET applications and NETCONF and Junos XML protocol client applications can also configure the
ephemeral database. The ephemeral database is an alternate configuration database that provides a
configuration layer separate from both the candidate configuration database and the configuration
layers of other client applications. The ephemeral commit model enables Junos devices to commit and
merge changes from multiple clients and execute the commits with significantly greater throughput than
when committing data to the candidate configuration database. Thus, the ephemeral database is
advantageous in dynamic environments where fast provisioning and rapid configuration changes are
required, such as in large data centers.

A commit operation on the ephemeral database requires less time than the same operation on the static
database because the ephemeral database is not subject to the same validation required in the static
database. As a result, the ephemeral commit model provides better performance than the standard
commit model but at the expense of some of the more robust features present in the standard model.
The ephemeral commit model has the following restrictions:

• Configuration data syntax is validated, but configuration data semantics are not validated.

• Certain configuration statements are not supported as described in Unsupported Configuration
Statements in the Ephemeral Configuration Database.

• Configuration groups and interface ranges are not processed.

• Macros, commit scripts, and translation scripts are not processed.

329

https://apps.juniper.net/feature-explorer/feature/8860?fn=Ephemeral%20Configuration%20Database

• Previous versions of the ephemeral configuration are not archived.

• Standard show commands do not display ephemeral configuration data in the output.

• Ephemeral configuration data does not persist when you:

• Install a package that requires rebuilding the Junos schema, for example, an OpenConfig or YANG
package.

• Perform a software upgrade or a unified in-service software upgrade (ISSU).

• Reboot or power cycle the device.

CAUTION: We strongly recommend that you exercise caution when using the ephemeral
configuration database. Committing invalid configuration data can corrupt the ephemeral
database, which can cause Junos processes to restart or stop responding and result in
disruption to the system or network.

Junos devices validate the syntax but not the semantics, or constraints, of the configuration data
committed to the ephemeral database. For example, if the configuration references an undefined routing
policy, the configuration might be syntactically correct, but it would be semantically incorrect. The
standard commit model generates a commit error in this case, but the ephemeral commit model does
not. Therefore, it is imperative to validate all configuration data before committing it to the ephemeral
database. If you commit configuration data that is invalid or results in undesirable network disruption,
you must remove the problematic data from the database. You can delete the data, or if necessary, you
can reboot the device, which deletes the configuration data in all instances of the ephemeral
configuration database.

NOTE: The ephemeral configuration database stores internal version information in
addition to configuration data. As a result, the size of the ephemeral configuration
database is always larger than the static configuration database for the same
configuration data, and most operations on the ephemeral database, whether additions,
modifications, or deletions, increase the size of the database.

NOTE: When you use the ephemeral configuration database, commit operations on the
static configuration database might take longer, because the device must perform
additional operations to merge the static and ephemeral configuration data.

Ephemeral Database Instances

Junos devices provide a default ephemeral database instance, which is automatically enabled. You can
also enable multiple user-defined instances of the ephemeral configuration database. JET applications

330

and NETCONF and Junos XML protocol client applications can concurrently load and commit data to
separate instances of the ephemeral database. The active device configuration is a merged view of the
static and ephemeral configuration databases.

Ephemeral database instances are useful when multiple client applications need to simultaneously
update a device configuration. For example, two or more SDN controllers might need to simultaneously
push configuration data to the same device. In the standard commit model, one controller might have an
exclusive lock on the candidate configuration, thereby preventing the other controller from modifying it.
By using separate ephemeral instances, the controllers can deploy the changes at the same time.

NOTE: Applications can simultaneously load and commit data to different ephemeral
database instances in addition to the static configuration database. However, the device
processes the commits sequentially. As a result, the commit to a specific database might
be delayed, depending on the processing order.

The Junos processes read the configuration data from both the static configuration database and the
ephemeral configuration database. When one or more ephemeral database instances are in use and
there is conflicting data, statements in a database with a higher priority override the statements in a
database with a lower priority. The database priority, from highest to lowest, is as follows:

1. Statements in a user-defined instance of the ephemeral configuration database.

If the device uses multiple user-defined ephemeral instances, it determines the priority by the order
in which the instances are configured at the [edit system configuration-database ephemeral] hierarchy
level, running from highest to lowest priority.

2. Statements in the default ephemeral database instance.

3. Statements in the static configuration database.

Consider the following configuration:

system {
 configuration-database {
 ephemeral {
 instance 1;
 instance 2;
 }
 }
}

Figure 6 on page 332 illustrates the priority of the ephemeral database instances and the static
(committed) configuration database. In this example, ephemeral database instance 1 has the highest

331

priority, followed by ephemeral database instance 2, then the default ephemeral database instance, and
finally the static configuration database.

Figure 6: Ephemeral Database Instances

Ephemeral Database General Commit Model

JET applications and NETCONF and Junos XML protocol client applications can modify the ephemeral
configuration database. JET applications must send configuration requests as pairs of load and commit
operations. NETCONF and Junos XML protocol client applications can perform multiple load operations
before executing a commit operation.

CAUTION: You must validate all configuration data before loading it into the ephemeral
database and committing it on the device. Committing invalid configuration data can
cause Junos processes to restart or stop responding and result in disruption to the
system or network.

Client applications can simultaneously load and commit data to different ephemeral database instances.
Commits issued at the same time for different ephemeral instances are queued and processed serially by
the device. If a client disconnects from a session, the device discards any uncommitted configuration
changes in the ephemeral instance. However, configuration data that has already been committed to the
ephemeral instance by that client is unaffected.

332

When you commit an ephemeral instance, the system validates the syntax, but not the semantics, of the
ephemeral configuration data. When the commit is complete, the device notifies the affected system
processes. The processes read the updated configuration and merge the ephemeral data into the active
configuration according to the rules of prioritization described in "Ephemeral Database Instances" on
page 330. The active device configuration is a merged view of the static and ephemeral configuration
databases.

NOTE: The ephemeral database's commit time will be slightly longer on devices running
Junos OS Evolved than on devices running Junos OS because of the architectural
differences between the two operating systems.

For detailed information about committing and synchronizing instances of the ephemeral configuration
database, see Commit and Synchronize Ephemeral Configuration Data Using the NETCONF or Junos
XML Protocol.

Using the Ephemeral Database with High Availability Features

High availability refers to the hardware and software components that provide redundancy and
reliability for network communications. You should consider certain behaviors and caveats before using
the ephemeral database on systems that use high availability features. High availability features include
redundant Routing Engines, graceful Routing Engine switchover (GRES), nonstop active routing (NSR),
and interchassis redundancy for MX Series routers or EX Series switches using Virtual Chassis. The
following sections describe these behaviors and outline how the different ephemeral database commit
synchronize models can affect these behaviors.

Understanding Ephemeral Database Commit Synchronize Models

The ephemeral configuration database has two models for synchronizing ephemeral configuration data
across Routing Engines or Virtual Chassis members during a commit synchronize operation:

• Asynchronous

• Synchronous

Starting with Junos OS Release 25.4R1 and Junos OS Evolved Release 25.4R1, the ephemeral database
uses the synchronous model by default and devices that enable GRES or NSR must use the synchronous
model. However, you can still use either model to synchronize ephemeral data on devices that do not
enable GRES or NSR. In earlier releases, the asynchronous model is the default.

Asynchronous Model

When the ephemeral database uses the asynchronous commit model, the primary Routing Engine or
Virtual Chassis primary device commits the configuration and then notifies the backup device. The

333

requesting Routing Engine does not wait for the other Routing Engine to first synchronize and commit
the configuration. Devices that use high availability features require that the primary and backup
Routing Engines are synchronized in case of a failover. However, there can be situations in which an
asynchronous commit synchronize operation can be interrupted and fail to synchronize the ephemeral
configuration to the other Routing Engine.

Synchronous Model

The synchronous commit model is similar to the model used by the static configuration database.
Synchronous commit operations are slower than asynchronous commit operations, but they provide
better assurance that the ephemeral configuration is synchronized across Routing Engines or Virtual
Chassis members. Thus, the synchronous commit model enables you to use the ephemeral database
with greater reliability on devices that use high availability features.

In a dual Routing-Engine or MX Series Virtual Chassis environment, the synchronous commit model
works as follows:

1. The primary Routing Engine or Virtual Chassis primary device starts its commit operation for the
ephemeral instance.

2. At a given point during the commit operation, the device initiates a commit on the backup Routing
Engine or Virtual Chassis backup device.

3. If the other Routing Engine successfully commits the configuration, then the primary Routing Engine
continues its commit operation. If the commit fails on the other Routing Engine, then the primary
Routing Engine also fails the commit.

When an EX Series Virtual Chassis uses the synchronous commit model, the member switch in the
primary Routing Engine role first initiates the commit operation on the other members simultaneously.
Because an EX Series Virtual Chassis can have many members, the primary switch then proceeds with
its commit operation, even if the commit fails on another member.

NOTE: As is the case for the static configuration database, even with the synchronous
commit synchronize model, there can be rare circumstances in which the device commits
an updated ephemeral configuration on the backup Routing Engine but fails to complete
the commit on the primary Routing Engine resulting in the configurations being out of
synchronization.

Failover Synchronization

Devices running Junos OS Release 20.2R1 or later and devices running Junos OS Evolved also support
failover configuration synchronization for the ephemeral database. If you configure failover
synchronization, then when the backup Routing Engine synchronizes with the primary Routing Engine,
for example, when it is newly inserted, brought back online, or during a change in role, it synchronizes

334

both its static and ephemeral configuration databases. To enable failover synchronization, configure the
commit synchronize statement at the [edit system] hierarchy level in the static configuration database.

NOTE: For failover synchronization, the backup Routing Engine or the MX Virtual
Chassis backup device only synchronizes the ephemeral configuration database with the
primary device if both the backup device and the primary device are running the same
software version.

Both commit synchronize operations and failover synchronize operations synchronize the ephemeral
configuration data to the other Routing Engine using a load update operation instead of a load override
operation. By using a load update operation, the device only needs to notify the Junos processes that
correspond to changed statements during the update, which minimizes possible disruptions to the
network.

Redundant Routing Engines

Dual Routing Engine systems support configuring the ephemeral database. However, the ephemeral
commit model does not automatically synchronize ephemeral configuration data to the backup Routing
Engine during a commit operation. You can synchronize the data in an ephemeral instance on a per-
commit or per-session basis. You can also configure an ephemeral instance to automatically synchronize
its data every time you commit the instance. For more information, see Commit and Synchronize
Ephemeral Configuration Data Using the NETCONF or Junos XML Protocol.

NOTE: Multichassis environments do not support synchronizing the ephemeral
configuration database to the other Routing Engines.

When a client application commits data in an ephemeral instance and synchronizes it to the backup
Routing Engine, the device synchronizes the ephemeral data using the configured commit synchronize
model. Dual Routing Engine devices also support failover configuration synchronization for the
ephemeral database. For more information, see "Understanding Ephemeral Database Commit
Synchronize Models" on page 333.

Graceful Routing Engine Switchover (GRES)

GRES enables a device with redundant Routing Engines to continue forwarding packets, even if the
primary Routing Engine fails. GRES requires that the primary and backup Routing Engines synchronize
the configuration and certain state information before a switchover occurs.

We recommend that you use the synchronous commit synchronize model on devices that enable GRES.
Moreover, starting in Junos OS Release 25.4R1 and Junos OS Evolved Release 25.4R1, devices that
enable GRES must use the synchronous model. Synchronous commit operations are slower than

335

asynchronous commit operations, but they provide better assurance that the ephemeral configuration is
synchronized between Routing Engines.

NOTE: Dual Routing Engine devices running Junos OS Evolved enable GRES by default.

Although supported in certain releases, we do not recommend using the asynchronous commit
synchronize model on devices that enable GRES. If you use the asynchronous model, in certain
circumstances, the ephemeral database might not be synchronized between the primary and backup
Routing Engines when a switchover occurs. For example, the backup and primary Routing Engines might
not synchronize the ephemeral database if the commit synchronize operation is interrupted by a sudden
power outage. If you use the asynchronous commit model on a GRES-enabled device, you must
explicitly configure the device to synchronize ephemeral configuration data to the backup Routing
Engine. To enable synchronization, configure the allow-commit-synchronize-with-gres statement at the [edit
system configuration-database ephemeral] hierarchy level in the static configuration database.

Nonstop Active Routing (NSR)

Nonstop active routing (NSR) enables the transparent switchover of the Routing Engines in the event
that one of the Routing Engines goes down. We recommend that you use the synchronous commit
synchronize model on devices that enable NSR. Moreover, starting in Junos OS Release 25.4R1 and
Junos OS Evolved Release 25.4R1, devices that enable NSR must use the synchronous model.
Synchronous commit operations are slower than asynchronous commit operations, but they provide
better assurance that the ephemeral configuration is synchronized between Routing Engines.

Although supported in certain releases, we do not recommend using the asynchronous commit
synchronize model on devices that enable NSR, because it comes with certain caveats. In a deployment
with dual Routing Engines, a commit synchronize operation on an ephemeral instance on the primary
Routing Engine results in an asynchronous commit on the backup Routing Engine. If the device notifies
the routing protocol process (rpd) in the process of updating the configuration, it could result in an
undesirable behavior of the system due to the asynchronous nature of the commit on the backup
Routing Engine. In Junos OS Release 21.1R1 and later, the device synchronizes the ephemeral instance
to the backup Routing Engine using a load update operation, so it only notifies processes corresponding
to statements that are changed.

NOTE: Applications utilizing the ephemeral database are only impacted in this NSR
situation if they interact with the routing protocol process. For example, the SmartWall
Threat Defense Director (SmartWall TDD) would not be impacted in this case, because it
only interacts with the firewall process (dfwd) through the ephemeral database.

336

MX Series Virtual Chassis

MX Series Virtual Chassis support configuring the ephemeral database. You can configure and commit
an ephemeral instance only on the primary Routing Engine of the Virtual Chassis primary device.

An MX Series Virtual Chassis does not automatically synchronize any ephemeral configuration data
during a commit operation. As with dual Routing Engine systems, you can synchronize the data in an
ephemeral instance on a per-commit or per-session basis. You can also configure an ephemeral instance
to automatically synchronize its data every time you commit the instance. The device synchronizes the
ephemeral data only from the primary Routing Engine on the primary device to the primary Routing
Engine on the backup device.

NOTE: MX Series Virtual Chassis do not, under any circumstance, synchronize
ephemeral configuration data from the primary Routing Engine to the backup Routing
Engine on the respective Virtual Chassis member.

MX Series Virtual Chassis must have GRES configured. If you configure the ephemeral database to use
the synchronous commit synchronize model (recommended), the device synchronizes the ephemeral
instance to the other Routing Engine when you request a commit synchronize operation. However, if the
ephemeral database uses the asynchronous commit synchronize model, you must explicitly configure
the allow-commit-synchronize-with-gres statement in the static configuration database to enable
synchronization. See "Understanding Ephemeral Database Commit Synchronize Models" on page 333
for more information about the ephemeral database commit models.

NOTE: Starting with Junos OS Release 25.4R1 and Junos OS Evolved Release 25.4R1,
devices that enable GRES must use the synchronous commit synchronize model.

When you commit and synchronize an ephemeral instance on an MX Series Virtual Chassis that uses the
asynchronous commit synchronize model:

1. The Virtual Chassis primary device validates the configuration syntax and commits the ephemeral
instance on its primary Routing Engine.

2. If the commit is successful, the primary device notifies the backup device to synchronize the
ephemeral instance.

3. The backup device commits the ephemeral instance on its primary Routing Engine only. If the commit
operation fails, the backup device logs a message in the system log file but does not notify the
primary device.

When you commit and synchronize an ephemeral instance on an MX Series Virtual Chassis that is
configured to use the synchronous commit synchronize model, which is the recommended method:

337

1. The Virtual Chassis primary device starts its commit of the ephemeral instance on its primary Routing
Engine.

2. At a given point in its commit operation, the primary device initiates a commit on the backup device's
primary Routing Engine.

3. If the backup device successfully commits the configuration, then the primary device proceeds with
its commit operation. If the backup device fails to commit the configuration, then the primary device
also fails the commit.

As outlined, when you use the asynchronous commit synchronize model for the ephemeral database,
the commit can succeed on the primary device but fail on the backup device. When you use the
synchronous commit synchronize model, the commit either succeeds or fails for both primary Routing
Engines, except in rare circumstances.

MX Series Virtual Chassis support failover configuration synchronization for the ephemeral database. To
configure failover configuration synchronization, include the commit synchronize statement at the [edit
system] hierarchy level in the static configuration database. After you configure the statement, the
primary Routing Engine on the Virtual Chassis backup device synchronizes both its static and ephemeral
configuration databases when it synchronizes with the primary Routing Engine on the Virtual Chassis
primary device, for example, after it restarts.

NOTE: For failover synchronization, the MX Virtual Chassis backup device only
synchronizes the ephemeral configuration database with the primary device if both
devices are running the same software version.

EX Series Virtual Chassis

EX Series Virtual Chassis support the ephemeral configuration database. You can only configure and
commit an ephemeral instance on the member switch in the primary Routing Engine role. Starting in
Junos OS Release 23.4R1, you can synchronize the ephemeral database across EX Series Virtual Chassis
members.

An EX Series Virtual Chassis does not automatically synchronize any ephemeral configuration data
during a commit operation. You can synchronize the data in an ephemeral instance on a per-commit or
per-session basis. You can also configure an ephemeral instance to automatically synchronize its data
every time you commit the instance.

You can configure GRES on an EX Series Virtual Chassis to enable the Virtual Chassis to continue
forwarding packets if the primary Routing Engine fails. If you configure the ephemeral database to use
the synchronous commit synchronize model (recommended), the device synchronizes the ephemeral
instance to the other members when you request a commit synchronize operation. However, if the
ephemeral database uses the asynchronous commit synchronize model and GRES is configured, you

338

must explicitly configure the allow-commit-synchronize-with-gres statement in the static configuration
database to enable synchronization.

NOTE: Starting with Junos OS Release 25.4R1 and Junos OS Evolved Release 25.4R1,
devices that enable GRES must use the synchronous commit synchronize model.

When you commit and synchronize an ephemeral instance on an EX Series Virtual Chassis that uses the
asynchronous commit synchronize model:

1. The member switch in the primary Routing Engine role validates the configuration syntax and
commits the ephemeral instance.

2. If the commit is successful, the primary device notifies the commit-syncd process, which initiates the
commit on each member switch in turn.

3. Each member switch commits the ephemeral instance. If the commit operation fails on any member,
it does not affect the commit operation on the other members.

When you commit and synchronize an ephemeral instance on an EX Series Virtual Chassis that is
configured to use the synchronous commit synchronize model, which is the recommended method:

1. The member switch in the primary Routing Engine role initiates the commit on all member switches
simultaneously.

2. Each member switch commits the ephemeral instance and notifies the primary switch. If the commit
operation fails on any member, it does not affect the commit operation on the other members.

3. After receiving responses from all member switches, the primary switch commits the ephemeral
instance.

As outlined, in the asynchronous model, the primary switch relies on the commit-syncd process to initiate
the commits on each member switch sequentially. If the commit-syncd process fails for any reason, then
some commits might not be initiated. In the synchronous commit model, the primary switch initiates the
commit on all member switches directly and in parallel. Thus, the synchronous commit model is generally
more reliable than the asynchronous commit model. In either case, if the commit fails on one member, it
does not impact or prevent the commit on the other members.

Additionally, in the synchronous commit model, the primary switch displays the commit progress for
each member as the commit occurs. In the asynchronous model, the commits occur in the background,
so in this case, only the primary device logs the commit results.

Ephemeral Database Best Practices

The ephemeral configuration database enables multiple applications to make rapid configuration
changes simultaneously. Because the ephemeral configuration database does not use the same

339

safeguards as the static configuration database, you should carefully consider how you use the
ephemeral database. We recommend following these best practices to optimize performance and avoid
potential issues when you use the ephemeral configuration database.

Regulate Commit Frequency

The ephemeral database is designed for faster commits. However, committing too frequently can cause
problems if the applications that consume the configuration can't keep pace with the rate of commit
operations. Therefore, we recommend that you commit the next set of changes only after the device's
operational state reflects the changes from the previous commit.

For example, if you execute frequent, rapid commits, the device could overwrite certain configuration
data that it stores in external files before a Junos process reads the previous update. If a Junos process
misses an important update, the device or network could exhibit unpredictable behavior.

Ensure Data Integrity

Junos devices do not validate configuration data semantics when you commit data to an ephemeral
database. Therefore, you must take additional steps before loading and committing the configuration to
ensure data integrity. We recommend that you always:

• Validate configuration data before loading it in the database

• Consolidate related configuration statements into a single database

You should validate all configuration data before loading it into an ephemeral database. We recommend
that you pre-validate your configuration data using a static database, which validates both syntax and
semantics.

Additionally, you should always load related configuration data into a single database. Adding related or
dependent configuration data in the same database helps ensure that the device can detect and process
related statements during a commit operation. For example, if you define a firewall filter in the static
configuration database or in an ephemeral configuration database, then you should configure the
application of the filter to an interface in the same configuration database.

By contrast, suppose you configure some statements in the static database but you configure related or
dependent statements in an ephemeral database. When you commit the static database, the system
validates the data only within that database. The system might not identify the dependent configuration
in the ephemeral database, which can cause the validation, and thus the commit, to fail.

340

Consolidate Scaled Configurations

We recommend that you load scaled configurations into a single ephemeral database instance, rather
than distributing them across multiple databases. A scaled configuration might include, for example,
large lists of:

• Policy options

• Prefix lists

• VLANs

• Firewall filters

When you restrict a top-level configuration hierarchy to a single database, internal optimizations enable
Junos processes to consume the configuration more efficiently. Alternatively, if you spread the
configuration across multiple databases, Junos processes must parse a merged view of the configuration,
which generally requires more resources and processing time.

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

25.4R1 &
25.4R1-EVO

Starting in Junos OS Release 25.4R1 and Junos OS Evolved Release 25.4R1, the default commit
synchronize model is synchronous. In earlier releases, the default is asynchronous.

25.4R1 &
25.4R1-EVO

Starting in Junos OS Release 25.4R1 and Junos OS Evolved Release 25.4R1, devices that enable
GRES or NSR must use the synchronous commit synchronize model.

21.1R1 Starting in Junos OS Release 21.1R1, the device synchronizes the ephemeral database instance to
the backup Routing Engine using a load update operation instead of a load override operation. As
a result, Junos OS only notifies processes corresponding to the changed statements.

20.2R1 Starting in Junos OS Release 20.2R1, when you configure the commit synchronize statement at the
[edit system] hierarchy level in the static configuration database and the backup Routing Engine
synchronizes with the primary Routing Engine, for example, when it is newly inserted, brought
back online, or during a change in role, it synchronizes both its static and ephemeral configuration
databases. In earlier releases, the device synchronizes only the static configuration database.

20.2R1 Starting in Junos OS Release 20.2R1, if an ephemeral database instance is already synchronized
between the primary and backup Routing Engines, and you update the ephemeral instance on the
primary Routing Engine, Junos OS only notifies the processes corresponding to the changed
configuration when it commits the changes on the backup Routing Engine.

341

https://apps.juniper.net/feature-explorer/

18.2R1 Starting in Junos OS Release 18.2R1, devices running Junos OS support configuring up to seven
user-defined instances of the ephemeral configuration database. In earlier releases, you can
configure up to eight user-defined instances.

RELATED DOCUMENTATION

Enable and Configure Instances of the Ephemeral Configuration Database

Example: Configure the Ephemeral Configuration Database Using NETCONF | 376

Unsupported Configuration Statements in the Ephemeral Configuration
Database

IN THIS SECTION

Platform-Specific Ephemeral Database Behavior | 345

The ephemeral database is an alternate configuration database. Juniper Extension Toolkit (JET)
applications and NETCONF and Junos XML protocol client applications can simultaneously load and
commit configuration changes to the ephemeral database with significantly greater throughput than
when committing data to the candidate configuration database. To improve commit performance, the
ephemeral commit process does not perform all of the operations and validations executed by the
standard commit model. As a result, you cannot configure some features through the ephemeral
database. For example, the ephemeral configuration database does not support configuring interface
alias names.

Use Feature Explorer to confirm platform and release support for specific features.

Review the "Platform-Specific Ephemeral Database Behavior" on page 345 section for notes related to
your platform.

The ephemeral configuration database does not support the following configuration statements. We've
grouped the statements under their top-level configuration statement hierarchy. If a client attempts to
configure an unsupported statement in an ephemeral instance, the server returns an error during the
load operation.

342

https://apps.juniper.net/feature-explorer/feature/8860?fn=Ephemeral%20Configuration%20Database

[edit]

 [edit apply-groups]
 [edit access]
 [edit chassis]
 [edit dynamic-profiles]
 [edit security] (SRX Series only)

[edit interfaces]

 [edit interfaces interface-name unit logical-unit-number alias alias-name]
 [edit interfaces interface-range]

[edit logical-systems]

 [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number
alias alias-name]
 [edit logical-systems logical-system-name policy-options prefix-list name apply-path path]
 [edit logical-systems logical-system-name system processes routing]

NOTE: Starting in Junos OS Release 23.2R1 and Junos OS Evolved Release 23.4R1, you
can configure MSTP, RSTP, and VSTP in the ephemeral configuration database on
supported platforms.

[edit policy-options]

 [edit policy-options prefix-list name apply-path path]

[edit protocols]

 [edit protocols igmp]
 [edit protocols mld]

NOTE: Starting in Junos OS Release 23.2R1 and Junos OS Evolved Release 23.4R1, you
can configure MSTP, RSTP, and VSTP in the ephemeral configuration database on
supported platforms.

343

[edit routing-instances]

NOTE: Starting in Junos OS Release 23.2R1 and Junos OS Evolved Release 23.4R1, you
can configure MSTP, RSTP, and VSTP in the ephemeral configuration database on
supported platforms.

[edit security]

 [edit security group-vpn member ipsec vpn]
 [edit security ssh-known-hosts host hostname]

[edit services]

 [edit services ssl initiation profile]
 [edit services ssl proxy profile]
 [edit services ssl termination profile]

[edit system]

 [edit system archival]
 [edit system commit delta-export]
 [edit system commit fast-synchronize]
 [edit system commit notification]
 [edit system commit peers]
 [edit system commit peers-synchronize]
 [edit system commit persist-groups-inheritance]
 [edit system commit server]
 [edit system compress-configuration-files]
 [edit system configuration-database]
 [edit system extensions]
 [edit system fips]
 [edit system host-name]
 [edit system license]
 [edit system login]
 [edit system master-password]
 [edit system max-configurations-on-flash]
 [edit system radius-options]
 [edit system regex-additive-logic]
 [edit system scripts]

344

 [edit system services extension-service notification allow-clients address]
 [edit system time-zone]

Platform-Specific Ephemeral Database Behavior

Use Feature Explorer to confirm platform and release support for specific features.

Use the following table to review platform-specific behaviors for your platforms.

Table 17: Platform-Specific Behavior

Platform Difference

SRX Series • On SRX Series devices that support the ephemeral
database, you cannot configure the [edit security]
statement hierarchy in the ephemeral configuration
database.

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

23.4R1-EVO Starting in Junos OS Evolved Release 23.4R1, Junos OS Evolved supports configuring MSTP, RSTP,
and VSTP in the ephemeral configuration database on supported devices.

23.4R1 Starting in Junos OS Release 23.4R1, to configure MSTP, RSTP, or VSTP in the ephemeral
configuration database, you must first configure the ephemeral-db-support statement at the [edit
protocols layer2-control] hierarchy level in the static configuration database.

23.2R2 Starting in Junos OS Release 23.2R2, to configure MSTP, RSTP, or VSTP in the ephemeral
configuration database, you must first configure the ephemeral-db-support statement at the [edit
protocols layer2-control] hierarchy level in the static configuration database.

23.2R1 Starting in Junos OS Release 23.2R1, Junos OS supports configuring MSTP, RSTP, and VSTP in the
ephemeral configuration database on supported devices.

345

https://apps.juniper.net/feature-explorer/feature/8860?fn=Ephemeral%20Configuration%20Database
https://apps.juniper.net/feature-explorer/

RELATED DOCUMENTATION

Understanding the Ephemeral Configuration Database

Enable and Configure Instances of the Ephemeral Configuration Database

IN THIS SECTION

Enable Ephemeral Database Instances | 346

Configure Ephemeral Database Options | 347

Enable MSTP, RSTP, and VSTP Configuration | 348

Open Ephemeral Database Instances | 349

Configure Ephemeral Database Instances | 350

Display Ephemeral Configuration Data in the CLI | 353

Deactivate Ephemeral Database Instances | 354

Delete Ephemeral Database Instances | 355

The ephemeral database is an alternate configuration database. It enables multiple client applications to
concurrently load and commit configuration changes to a Junos device and with significantly greater
throughput than when committing data to the candidate configuration database. Junos devices provide
a default ephemeral database instance as well as the ability to enable and configure multiple user-
defined instances of the ephemeral configuration database.

NETCONF and Junos XML protocol client applications and JET applications can update the ephemeral
configuration database. The following sections detail how to enable instances of the ephemeral
configuration database, configure the instances using NETCONF and Junos XML protocol operations,
and display ephemeral configuration data in the CLI. The sections also discuss how to deactivate and
then reactivate an ephemeral instance as well as delete an ephemeral instance. For information about
using JET applications to configure the ephemeral configuration database, see the Juniper Extension
Toolkit Documentation.

Enable Ephemeral Database Instances

The default ephemeral database instance is automatically enabled on Junos devices that support
configuring the ephemeral database. However, you must configure any user-defined instances of the
ephemeral configuration database before you can use the instance. See Feature Explorer to verify the
hardware platforms and software releases that support the ephemeral database.

346

https://www.juniper.net/documentation/product/us/en/juniper-extension-toolkit/
https://www.juniper.net/documentation/product/us/en/juniper-extension-toolkit/
https://apps.juniper.net/feature-explorer/

To enable a user-defined instance of the ephemeral configuration database:

1. Configure the name of the instance.

The name must contain only alphanumeric characters, hyphens, and underscores, and it must not
exceed 32 characters. You cannot use default as the name.

[edit system configuration-database ephemeral]
user@host# set instance instance-name

NOTE: The priority of ephemeral database instances is determined by the order in
which the configuration lists the instances. By default, newly configured instances are
placed at the end of the list and have lower priority when resolving conflicting
configuration statements. When you configure a new instance, you can specify its
placement by using the insert command instead of the set command.

2. Commit the configuration.

[edit system configuration-database ephemeral]
user@host# commit

NOTE: When you commit statements at the [edit system configuration-database ephemeral]
hierarchy level, all Junos processes must check and evaluate their complete
configuration. As a result, there might be a spike in CPU utilization, potentially impacting
other critical software processes.

Configure Ephemeral Database Options

You can configure several options for the ephemeral configuration database. You configure the options
in the static configuration database.

1. (Optional) To disable the default instance of the ephemeral configuration database, configure the
ignore-ephemeral-default statement.

[edit system configuration-database ephemeral]
user@host# set ignore-ephemeral-default

2. (Optional) Configure the commit synchronize model as asynchronous or synchronous.

347

The synchronous commit model is slower, but it is more reliable when synchronizing ephemeral
configuration data to a backup Routing Engine or Virtual Chassis member.

[edit system configuration-database ephemeral]
user@host# set commit-synchronize-model (asynchronous | synchronous)

NOTE: Starting in Junos OS Release 25.4R1 and Junos OS Evolved Release 25.4R1, the
default commit synchronize model is synchronous and devices that enable GRES must use
the synchronous model. In earlier releases, the default is asynchronous.

3. (Optional) When the device has graceful Routing Engine switchover (GRES) enabled and the
ephemeral database uses the asynchronous commit synchronize model, configure the allow-commit-
synchronize-with-gres statement to enable the device to synchronize an ephemeral instance to the
other Routing Engine when you request a commit synchronize operation on that instance.

[edit system configuration-database ephemeral]
user@host# set allow-commit-synchronize-with-gres

NOTE: Starting in Junos OS Release 25.4R1 and Junos OS Evolved Release 25.4R1,
we've deprecated the allow-commit-synchronize-with-gres statement and only the
synchronous commit synchronize model supports synchronizing ephemeral data on
devices that enable GRES.

4. Commit the configuration.

[edit system configuration-database ephemeral]
user@host# commit

NOTE: When you commit statements at the [edit system configuration-database ephemeral]
hierarchy level, all Junos processes must check and evaluate their complete
configuration. As a result, there might be a spike in CPU utilization, potentially impacting
other critical software processes.

Enable MSTP, RSTP, and VSTP Configuration

On supported devices and releases, you can configure the following protocols in the ephemeral
configuration database:

348

• Multiple Spanning Tree Protocol (MSTP)

• Rapid Spanning Tree Protocol (RSTP)

• VLAN Spanning Tree Protocol (VSTP)

Junos OS Evolved supports configuring these protocols in the ephemeral database in supported releases
by default. However, on devices running Junos OS, you must configure the device to enable support for
these protocols in the ephemeral database.

To enable users to configure MSTP, RSTP, and VSTP in the ephemeral database on devices running
Junos OS:

1. In the static configuration database, configure the ephemeral-db-support statement at the [edit protocols
layer2-control] hierarchy level.

[edit protocols layer2-control]
user@host# set ephemeral-db-support

2. Commit the configuration.

[edit protocols layer2-control]
user@host# commit

Open Ephemeral Database Instances

A client application must open an ephemeral database instance before viewing or modifying it. Within a
NETCONF or Junos XML protocol session, a client application opens the ephemeral database instance
by using the Junos XML protocol <open-configuration> operation with the appropriate child tags. Opening
the ephemeral instance automatically acquires an exclusive lock on it.

• To open the default instance of the ephemeral database, a client application emits the <open-
configuration> element and includes the <ephemeral/> child tag.

<rpc>
 <open-configuration>
 <ephemeral/>
 </open-configuration>
</rpc>

349

• To open a user-defined instance of the ephemeral database, a client application emits the <open-
configuration> element and includes the <ephemeral-instance> element and the instance name.

<rpc>
 <open-configuration>
 <ephemeral-instance>instance-name</ephemeral-instance>
 </open-configuration>
</rpc>

Configure Ephemeral Database Instances

Client applications update the ephemeral configuration database using NETCONF and Junos XML
protocol operations. Only a subset of the operations’ attributes and options are available for use when
updating the ephemeral configuration database. For example, options and attributes that reference
groups, interface ranges, or commit scripts, or that roll back the configuration cannot be used with the
ephemeral database.

Client applications load and commit configuration data to an open instance of the ephemeral
configuration database. A client can load configuration data in any of the supported formats including
Junos XML elements, formatted ASCII text, set commands, or JSON. By default, if a client disconnects
from a session or closes the ephemeral database instance before committing new changes, the device
discards any uncommitted data, but configuration data that has already been committed to the
ephemeral database instance by that client is unaffected.

To update, commit, and close an open instance of the ephemeral configuration database, client
applications perform the following tasks:

1. Load configuration data into the ephemeral database instance by performing one or more load
operations.

Client applications emit the <load-configuration> operation in a Junos XML protocol session or the
<load-configuration> or <edit-config> operation in a NETCONF session and include the appropriate
attributes and tags for the data.

<rpc>
 <load-configuration action="(merge | override | replace | set | update)" format="(text |
json | xml)">
 <!--configuration-data-->
 </load-configuration>
</rpc>

350

NOTE: The ephemeral configuration database supports the update attribute starting in
Junos OS Release 21.1R1.

NOTE: The only acceptable format for action="set" is "text". For more information about
the <load-configuration> operation, see <load-configuration>.

<rpc>
 <edit-config>
 <target>
 <candidate/>
 </target>
 <!--configuration-data-->
 </edit-config>
</rpc>

NOTE: The target value <candidate/> can refer to either the open configuration database,
or if there is no open database, to the candidate configuration. If a client application
issues the Junos XML protocol <open-configuration> operation to open an ephemeral
instance before executing the <edit-config> operation, the device performs the <edit-
config> operation on the open instance of the ephemeral configuration database.
Otherwise, the device performs the operation on the candidate configuration.

2. (Optional) Review the updated configuration in the open ephemeral instance by emitting the <get-
configuration/> operation in a Junos XML protocol session or the <get-configuration/> or <get-config>
operation in a NETCONF session.

<rpc>
 <get-configuration format="(json | set | text | xml)"/>
</rpc>

<rpc>
 <get-config>
 <source>
 <candidate/>
 </source>

351

 </get-config>
</rpc>

3. Commit the configuration changes by emitting the <commit-configuration/> operation in a Junos XML
protocol session or the <commit-configuration/> or <commit/> operation in a NETCONF session.

Include the <synchronize/> tag in the <commit-configuration> element to synchronize the data to a backup
Routing Engine or to other members of a Virtual Chassis.

<rpc>
 <commit-configuration/>
</rpc>

<rpc>
 <commit-configuration>
 <synchronize/>
 </commit-configuration>
</rpc>

<rpc>
 <commit/>
</rpc>

NOTE: Starting in Junos OS Release 22.1R1, you can automatically synchronize an
ephemeral instance's configuration to the other Routing Engine every time you commit
the instance. To automatically synchronize an instance, include the synchronize statement
at the [edit system commit] hierarchy level within that ephemeral instance's configuration.

NOTE: After a client application commits changes to the ephemeral database instance,
the device merges the ephemeral data into the active configuration according to the
rules of prioritization.

4. Repeat steps 1 through 3 for any subsequent updates to the ephemeral database instance.

352

5. Close the ephemeral database instance, which releases the exclusive lock.

<rpc>
 <close-configuration/>
</rpc>

Display Ephemeral Configuration Data in the CLI

The active device configuration is a merged view of the static and ephemeral configuration databases.
However, when you display the configuration using the show configuration command in operational mode,
the output does not include ephemeral configuration data. To display the data in a specific ephemeral
database instance or display a merged view of the static and ephemeral configuration databases, use
variations of the show ephemeral-configuration CLI command.

Table 18 on page 353 summarizes the show ephemeral-configuration commands.

Table 18: show ephemeral-configuration Command

Action show ephemeral-configuration Command

View the configuration data in the default
ephemeral instance.

show ephemeral-configuration instance default

View the configuration data in a user-
defined ephemeral instance.

show ephemeral-configuration instance instance-name

View the complete post-inheritance
configuration merged with the
configuration data in all instances of the
ephemeral database.

show ephemeral-configuration merge

Specify the scope of the configuration
data to display in a specific ephemeral
instance. Append the statement path of
the requested hierarchy to the command.

show ephemeral-configuration instance instance-name
hierarchy-to-view

For example:

show ephemeral-
configuration instance default protocols mpls

353

Deactivate Ephemeral Database Instances

When you enable and configure an ephemeral instance, the Junos device stores the instance's
configuration data in files, which is similar to the operation of the static configuration database. You can
deactivate a specific ephemeral instance within the static configuration database. When you deactivate
an instance and commit the configuration, the device preserves the instance's configuration data and
files, but it does not merge the instance's configuration with the static configuration database. If you
later reactivate the instance in the static configuration database, the device merges the instance's
existing configuration data with the static configuration database.

NOTE: On devices running Junos OS Release 22.1R1 or later and devices running Junos
OS Evolved, when you deactivate the entire [edit system configuration-database ephemeral]
hierarchy level and commit the configuration, the device deletes the files and
corresponding configuration data for all user-defined ephemeral instances. In earlier
Junos OS releases, the device preserves the files and configuration data; however, the
device does not merge the configuration data with the static configuration database.
Deactivating the hierarchy does not affect the default ephemeral instance's files.

To deactivate the default ephemeral instance or a user-defined ephemeral instance in the static
configuration database:

1. Deactivate the ephemeral database instance.

• Deactivate the default ephemeral instance by configuring the ignore-ephemeral-default statement.

[edit system configuration-database ephemeral]
user@host# set ignore-ephemeral-default

• Deactivate a user-defined ephemeral instance by issuing the deactivate command and specifying
the instance name.

[edit system configuration-database ephemeral]
user@host# deactivate instance instance-name

2. Commit the configuration.

[edit system configuration-database ephemeral]
user@host# commit

To reactivate an ephemeral instance and thus merge its configuration with the static configuration
database again:

354

1. Activate the ephemeral database instance.

• Activate the default ephemeral instance by deleting the ignore-ephemeral-default statement.

[edit system configuration-database ephemeral]
user@host# delete ignore-ephemeral-default

• Activate a user-defined ephemeral instance by issuing the activate command and specifying the
instance name.

[edit system configuration-database ephemeral]
user@host# activate instance instance-name

2. Commit the configuration.

[edit system configuration-database ephemeral]
user@host# commit

Delete Ephemeral Database Instances

When you enable and configure an ephemeral instance, the Junos device stores the instance's
configuration data in files, which is similar to the operation of the static configuration database. On
devices running Junos OS Release 22.1R1 or later and devices running Junos OS Evolved, when you
delete an ephemeral instance from the static configuration database and commit the configuration, the
device also deletes the ephemeral instance's files and corresponding configuration data. Thus, if you
later configure an ephemeral instance with the same name, there is no existing configuration data
associated with this instance name.

However, in earlier Junos OS releases, when you delete an ephemeral instance, the device preserves the
ephemeral instance's files. Thus, if you later configure an ephemeral instance with the same name, the
device restores the configuration data associated with the instance name from the corresponding files. If
you delete an ephemeral instance in an earlier release, we recommend that you delete the ephemeral
instance's configuration data before you delete the instance from the static configuration database.

To delete the default ephemeral instance or a user-defined ephemeral instance from the static
configuration database:

1. Delete the ephemeral database instance.

355

• Delete the default ephemeral instance by configuring the delete-ephemeral-default and ignore-
ephemeral-default statements.

[edit system configuration-database ephemeral]
user@host# set delete-ephemeral-default
user@host# set ignore-ephemeral-default

NOTE: Devices running Junos OS Release 22.1R1 or later and devices running Junos
OS Evolved support the delete-ephemeral-default statement.

• Delete a user-defined ephemeral instance by issuing the delete command and specifying the
instance name.

[edit system configuration-database ephemeral]
user@host# delete instance instance-name

2. Commit the configuration.

[edit system configuration-database ephemeral]
user@host# commit

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

25.4R1 &
25.4R1-EVO

Starting in Junos OS Release 25.4R1 and Junos OS Evolved Release 25.4R1, the default commit
synchronize model is synchronous. In earlier releases, the default is asynchronous.

25.4R1 &
25.4R1-EVO

Starting in Junos OS Release 25.4R1 and Junos OS Evolved Release 25.4R1, devices that enable
GRES must use the synchronous commit synchronize model.

22.1R1 Starting in Junos OS Release 22.1R1, when you deactivate the entire [edit system configuration-
database ephemeral] hierarchy level, Junos OS deletes the files and corresponding configuration
data for all user-defined ephemeral instances. In earlier releases, the files and configuration data
are preserved; however, the configuration data is not merged with the static configuration
database.

356

https://apps.juniper.net/feature-explorer/

22.1R1 Starting in Junos OS Release 22.1R1, when you delete an ephemeral instance in the static
configuration database, the instance's configuration files are also deleted. In earlier releases, the
configuration files are preserved.

18.2R1 Starting in Junos OS Release 18.2R1, the show ephemeral-configuration operational mode
command uses a different syntax and supports filtering for displaying specific hierarchy levels.

18.1R1 Starting in Junos OS Release 18.1R1, the ephemeral configuration database supports loading
configuration data using the <load-configuration> action attribute values of override and replace
in addition to the previously supported values of merge and set.

RELATED DOCUMENTATION

Example: Configure the Ephemeral Configuration Database Using NETCONF | 376

Understanding the Ephemeral Configuration Database

Commit and Synchronize Ephemeral Configuration Data Using the NETCONF or Junos XML Protocol

ephemeral

show ephemeral-configuration

Commit and Synchronize Ephemeral Configuration Data Using the
NETCONF or Junos XML Protocol

IN THIS SECTION

Commit an Ephemeral Instance Overview | 358

How to Commit an Ephemeral Instance | 359

Overview of Synchronizing an Ephemeral Instance | 360

How to Configure GRES-Enabled Devices to Synchronize Ephemeral Configuration Data | 363

How to Synchronize an Ephemeral Instance on a Per-Commit Basis | 364

How to Synchronize an Ephemeral Instance on a Per-Session Basis | 365

How to Automatically Synchronize an Ephemeral Instance upon Commit | 366

How to Configure Failover Configuration Synchronization for the Ephemeral Database | 367

357

Commit an Ephemeral Instance Overview

The ephemeral database is an alternate configuration database. It enables NETCONF and Junos XML
protocol client applications to simultaneously load and commit configuration changes on Junos devices
and with significantly greater throughput than when committing data to the candidate configuration
database. Client applications can commit the configuration data in an open instance of the ephemeral
configuration database so that it becomes part of the active configuration on the device. When you
commit ephemeral configuration data on a device, the device’s active configuration is a merged view of
the static and ephemeral configuration databases.

CAUTION: The ephemeral commit model validates the syntax but not the semantics, or
constraints, of the configuration data committed to the ephemeral database. You must
validate all configuration data before loading it into the ephemeral database and
committing it on the device. Committing invalid configuration data can cause Junos
processes to restart or stop responding and result in disruption to the system or
network.

After a client application commits an ephemeral instance, the device merges the configuration data into
the ephemeral database. The system processes parse the configuration and then merge the ephemeral
data with the data in the active configuration. If there are conflicting statements in the static and
ephemeral configuration databases, the device merges the data according to specific rules of
prioritization. The database priority, from highest to lowest, is as follows:

1. Statements in a user-defined instance of the ephemeral configuration database.

If the device uses multiple user-defined ephemeral instances, it determines the priority by the order
in which the instances are configured at the [edit system configuration-database ephemeral] hierarchy
level, running from highest to lowest priority.

2. Statements in the default ephemeral database instance.

3. Statements in the static configuration database.

NOTE: Applications can simultaneously load and commit data to different ephemeral
database instances in addition to the static configuration database. However, the device
processes the commits sequentially. As a result, the commit to a specific database might
be delayed, depending on the processing order.

NOTE: If you commit ephemeral configuration data that is invalid or results in
undesirable network disruption, you must remove the problematic data from the

358

database. You can delete the data, or if necessary, you can reboot the device, which
deletes the configuration data in all instances of the ephemeral configuration database.

The active device configuration is a merged view of the static and ephemeral configuration databases.
However, when you display the configuration using the show configuration command in operational mode,
the output does not include ephemeral configuration data. To display the data in a specific ephemeral
database instance or display a merged view of the static and ephemeral configuration databases, use
variations of the show ephemeral-configuration CLI command.

How to Commit an Ephemeral Instance

Client applications can commit the configuration data in an open instance of the ephemeral
configuration database so that it becomes part of the active configuration on the device. To commit the
configuration, use the <commit-configuration/> operation in a Junos XML protocol session or the <commit-
configuration/> or <commit/> operation in a NETCONF session.

In a Junos XML protocol session, a client application commits the configuration data in an open instance
of the ephemeral configuration database by performing a <commit-configuration/> operation (just as for the
candidate configuration).

<rpc>
 <commit-configuration/>
</rpc>

The Junos XML protocol server reports the results of the commit operation in <rpc-reply>, <commit-results>,
and <routing-engine> tag elements. If the commit operation succeeds, the <routing-engine> element encloses
the <commit-success/> tag and the <name> element, which specifies the target Routing Engine.

<rpc-reply xmlns:junos="URL">
 <commit-results>
 <routing-engine>
 <name>routing-engine-name</name>
 <commit-success/>
 </routing-engine>
 </commit-results>
</rpc-reply>

359

In a NETCONF session, a client application commits the configuration data in an open instance of the
ephemeral configuration database by performing a <commit/> or <commit-configuration/> operation (just as
for the candidate configuration).

<rpc>
 <commit/>
</rpc>
]]>]]>

<rpc>
 <commit-configuration/>
</rpc>
]]>]]>

The NETCONF server confirms that the commit operation was successful by returning the <ok/> tag in an
<rpc-reply> tag element.

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <ok/>
</rpc-reply>
]]>]]>

If the commit operation fails, the NETCONF server returns the <rpc-reply> element and <rpc-error> child
element, which explains the reason for the failure.

The only variant of the commit operation supported for the ephemeral database is synchronizing the
configuration, as described in "Overview of Synchronizing an Ephemeral Instance" on page 360.

Overview of Synchronizing an Ephemeral Instance

Dual Routing Engine devices and Virtual Chassis systems do not automatically synchronize ephemeral
configuration data when you commit an ephemeral instance. You can synchronize the data in an
ephemeral instance on a per-commit or per-session basis. You can also configure an ephemeral instance
to synchronize its data every time you commit the instance. The environment determines where the
data is synchronized, for example:

• A dual Routing Engine device synchronizes the ephemeral instance to the backup Routing Engine.

• An MX Series Virtual Chassis synchronizes the ephemeral instance only to the backup device's
primary Routing Engine.

• An EX Series Virtual Chassis synchronizes the ephemeral instance to all members switches.

360

NOTE: Virtual Chassis environments do not support synchronizing the ephemeral
configuration database to the backup Routing Engine on the respective Virtual Chassis
member.

See the following sections for instructions on synchronizing ephemeral instances:

• "How to Configure GRES-Enabled Devices to Synchronize Ephemeral Configuration Data" on page
363

• "How to Synchronize an Ephemeral Instance on a Per-Commit Basis" on page 364

• "How to Synchronize an Ephemeral Instance on a Per-Session Basis" on page 365

• "How to Automatically Synchronize an Ephemeral Instance upon Commit" on page 366

• "How to Configure Failover Configuration Synchronization for the Ephemeral Database" on page 367

The ephemeral database supports two commit synchronize models: asynchronous and synchronous.
Starting in Junos OS Release 25.4R1 and Junos OS Evolved Release 25.4R1, the ephemeral database
uses the synchronous model by default. In earlier releases, the asynchronous model is the default. You
can configure the commit-synchronize-model statement to explicitly configure the model.

[edit system configuration-database ephemeral]
user@host# set commit-synchronize-model (asynchronous | synchronous)

In the asynchronous commit model, the NETCONF or Junos XML protocol server first commits the
configuration on the local Routing Engine and then notifies the other Routing Engine or Virtual Chassis
device. The requesting Routing Engine does not wait for the other Routing Engine or Virtual Chassis
member to first synchronize and commit the configuration.

Synchronous commit operations are slower but more reliable than asynchronous commit operations. We
recommend that you use the synchronous commit model on devices that have graceful Routing Engine
switchover (GRES) or nonstop active routing (NSR) enabled. In the synchronous model, the primary
Routing Engine or MX Virtual Chassis primary device generally only completes its commit operation if
the commit on the backup Routing Engine or Virtual Chassis backup device is successful.

When you synchronize an ephemeral instance, the Junos XML protocol server reports the results of the
commit operation for the local Routing Engine in <rpc-reply>, <commit-results>, and <routing-engine> tag
elements. If the commit operation succeeds, the <routing-engine> element encloses the <commit-success/>
tag and the <name> element, which specifies the target Routing Engine.

The server reply includes additional tags that depend on the commit synchronize model used by the
database.

361

• If the ephemeral database uses the synchronous model, the server reply includes a second <routing-
engine> element for the commit operation on the other Routing Engine.

• If the ephemeral database uses the asynchronous model, the server includes the <commit-synchronize-
server-success> element. This tag indicates that the synchronize operation is scheduled on the other
Routing Engine or Virtual Chassis members and provides the estimated time in seconds required for
the operation to complete.

For example:

<rpc-reply xmlns:junos="URL">
 <commit-results>
 <routing-engine>
 <name>re0</name>
 <commit-success/>
 </routing-engine>
 </commit-results>
 <commit-synchronize-server-success>
 <current-job-id>0</current-job-id>
 <number-of-jobs>1</number-of-jobs>
 <estimated-time>60</estimated-time>
 </commit-synchronize-server-success>
</rpc-reply>

For synchronous commit operations, the RPC reply indicates the success or failure of the commit
operation on the other Routing Engine or Virtual Chassis members. For asynchronous commit
operations, the device records the success or failure of the scheduled commit operations in the system
log file. You must configure the device to log events of the given facility and severity level corresponding
to these operations. See the System Log Explorer for the various ephemeral database events and the
facility and severity levels required to log them.

Similarly, in NETCONF sessions, the server confirms that the commit operation was successful by
returning the <ok/> tag in an <rpc-reply> tag element. Depending on the device configuration, the
response might also include the <commit-results> element for synchronous commit synchronize operations
or the <commit-synchronize-server-success> element for asynchronous commit synchronize operations. For
example:

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <ok/>
 <commit-synchronize-server-success>
 <current-job-id>0</current-job-id>
 <number-of-jobs>1</number-of-jobs>

362

https://apps.juniper.net/syslog-explorer/#q=ephemeral

 <estimated-time>60</estimated-time>
 </commit-synchronize-server-success>
</rpc-reply>
]]>]]>

NOTE: The device does not synchronize the ephemeral configuration database to the
other Routing Engine or Virtual Chassis members when you issue the commit synchronize
command on the static configuration database.

How to Configure GRES-Enabled Devices to Synchronize Ephemeral Configuration
Data

The ephemeral database supports two commit synchronize models: asynchronous and synchronous. To
ensure a GRES-enabled device synchronizes ephemeral configuration data when you request a commit
synchronize operation on an ephemeral instance, you must use one of the following methods:

• Use the synchronous model

• Use the asynchronous model and configure the allow-commit-synchronize-with-gres statement

We recommend that you use the synchronous model on devices that enable GRES. Additionally, starting
in Junos OS Release 25.4R1 and Junos OS Evolved Release 25.4R1, the ephemeral database uses the
synchronous model by default and devices that enable GRES must use the synchronous model. In earlier
releases, the asynchronous model supports synchronizing ephemeral data on GRES-enabled devices
provided that you configure the allow-commit-synchronize-with-gres statement. However, we do not
recommend using the asynchronous model on devices that enable GRES.

To configure GRES-enabled devices to synchronize ephemeral configuration data:

1. Configure the commit model that the ephemeral database uses to perform commit synchronize
operations.

• (Recommended) To use the synchronous commit model, configure the synchronous option.

[edit system configuration-database ephemeral]
user@host# set commit-synchronize-model synchronous

363

• Alternatively, to use the asynchronous commit model in Junos OS Release 25.2 and earlier or
Junos OS Evolved Release 25.2 and earlier, configure the asynchronous option and the allow-commit-
synchronize-with-gres statement.

[edit system configuration-database ephemeral]
user@host# set commit-synchronize-model asynchronous
user@host# set allow-commit-synchronize-with-gres

2. Commit the configuration.

[edit]
user@host# commit synchronize

How to Synchronize an Ephemeral Instance on a Per-Commit Basis

You can synchronize an ephemeral instance across Routing Engines or Virtual Chassis members for a
given commit operation on that instance.

To synchronize an ephemeral instance on a per-commit basis:

1. Open the ephemeral instance.

<rpc>
 <open-configuration>
 <ephemeral-instance>instance-name</ephemeral-instance>
 </open-configuration>
</rpc>

2. Configure the ephemeral instance.

<rpc>
 <load-configuration>
 <!--configuration-data-->
 </load-configuration>
</rpc>

364

3. Commit and synchronize the instance by enclosing the empty <synchronize/> tag in the <commit-
configuration> and <rpc> tag elements.

<rpc>
 <commit-configuration>
 <synchronize/>
 </commit-configuration>
</rpc>

4. Repeat steps 2 and 3, as appropriate.

5. Close the ephemeral instance.

<rpc>
 <close-configuration/>
</rpc>

How to Synchronize an Ephemeral Instance on a Per-Session Basis

You can synchronize an ephemeral instance across Routing Engines or Virtual Chassis members for all
commit operations performed for the duration that the ephemeral instance is open, which we are
loosely referring to as a session. This session should not be confused with the NETCONF or Junos XML
protocol session. Synchronizing the instance on a per-session basis enables you to execute multiple load
and commit operations and ensure that each commit operation automatically synchronizes the instance
until you close it.

To synchronize an ephemeral instance for all commit operations performed for the duration that the
instance is open:

1. Open the ephemeral instance, and include the <commit-synchronize/> tag.

<rpc>
 <open-configuration>
 <ephemeral-instance>instance-name</ephemeral-instance>
 <commit-synchronize/>
 </open-configuration>
</rpc>

2. Configure the ephemeral instance.

<rpc>
 <load-configuration>

365

 <!--configuration-data-->
 </load-configuration>
</rpc>

3. Commit the instance, which also synchronizes it to the other Routing Engine or Virtual Chassis
members.

<rpc>
 <commit-configuration/>
</rpc>

4. Repeat steps 2 and 3, as appropriate.

5. Close the ephemeral instance.

<rpc>
 <close-configuration/>
</rpc>

How to Automatically Synchronize an Ephemeral Instance upon Commit

On devices running Junos OS Release 22.1R1 or later and devices running Junos OS Evolved, you can
configure an ephemeral instance so that it synchronizes its configuration across Routing Engines or
Virtual Chassis members every time you commit the instance.

To configure the ephemeral instance to synchronize every time you commit the instance:

1. Open the ephemeral instance.

<rpc>
 <open-configuration>
 <ephemeral-instance>instance-name</ephemeral-instance>
 </open-configuration>
</rpc>

2. Configure the ephemeral instance to include the synchronize statement at the [edit system commit]
hierarchy level.

<rpc>
 <load-configuration>
 <configuration>
 <system>

366

 <commit>
 <synchronize/>
 </commit>
 </system>
 </configuration>
 </load-configuration>
</rpc>

3. Commit the instance, which also synchronizes its configuration to the other Routing Engine.

<rpc>
 <commit-configuration/>
</rpc>

4. Close the ephemeral instance.

<rpc>
 <close-configuration/>
</rpc>

After you add the synchronize statement at the [edit system commit] hierarchy level in the ephemeral
instance's configuration, the device automatically synchronizes the instance to the other Routing Engine
or Virtual Chassis members whenever you commit that instance, provided that the device meets the
necessary requirements for synchronizing the database.

How to Configure Failover Configuration Synchronization for the Ephemeral Database

Dual Routing Engine devices and MX Series Virtual Chassis support failover configuration
synchronization for the ephemeral database. Failover configuration synchronization helps ensure that
the configuration database is synchronized between Routing Engines in the event of a Routing Engine
switchover. To enable failover synchronization, you configure the commit synchronize statement at the [edit
system] hierarchy level in the static configuration database.

When you configure the commit synchronize statement in the static configuration database, it has the
following effects:

• The device synchronizes its static configuration database to the backup Routing Engine or MX Virtual
Chassis backup device during a commit operation.

NOTE: If you configure the commit synchronize statement in the static configuration
database, the device does not automatically synchronize an ephemeral instance to the

367

backup device when you commit the static configuration database or when you commit
the instance.

• Starting in Junos OS Release 20.2R1, a backup Routing Engine or an MX Virtual Chassis backup
device synchronizes both its static and ephemeral configuration databases when it synchronizes with
the primary device. In earlier releases, a backup Routing Engine only synchronizes the static
configuration database.

NOTE: For failover synchronization, the backup Routing Engine and the MX Virtual
Chassis backup device only synchronize the ephemeral configuration database with the
primary device if both the backup device and the primary device are running the same
software version.

When you configure the commit synchronize statement on the primary and backup Routing Engines, the
backup Routing Engine synchronizes its configuration with the primary Routing Engine in the following
scenarios:

• You remove and reinsert the backup Routing Engine

• You reboot the backup Routing Engine

• The device performs a graceful Routing Engine switchover

• There is a manual change in roles

• You insert a new backup Routing Engine that has the commit synchronize statement configured

On a dual Routing Engine system, the backup Routing Engine synchronizes its configuration databases
with the primary Routing Engine. In an MX Series Virtual Chassis, the primary Routing Engine on the
backup device synchronizes its configuration databases with the primary Routing Engine on the primary
device.

To enable failover configuration synchronization for both the static and ephemeral databases on
supported devices running Junos OS Release 20.2R1 or later or devices running Junos OS Evolved:

1. Configure the synchronize statement in the static configuration database.

[edit]
user@host# set system commit synchronize

368

2. Commit the configuration.

[edit]
user@host# commit synchronize

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

25.4R1 &
25.4R1-EVO

Starting in Junos OS Release 25.4R1 and Junos OS Evolved Release 25.4R1, the default
commit synchronize model is synchronous. In earlier releases, the default is asynchronous.

25.4R1 &
25.4R1-EVO

Starting in Junos OS Release 25.4R1 and Junos OS Evolved Release 25.4R1, devices that
enable GRES or NSR must use the synchronous commit synchronize model.

20.2R1 Starting in Junos OS Release 20.2R1, when you configure the synchronize statement at the
[edit system commit] hierarchy level in the static configuration database, the backup Routing
Engine synchronizes both the static and ephemeral configuration databases when it
synchronizes with the primary Routing Engine. In earlier releases, the backup Routing Engine
only synchronizes the static configuration database.

RELATED DOCUMENTATION

Enabling and Configuring Instances of the Ephemeral Configuration Database

Understanding the Ephemeral Configuration Database

Managing Ephemeral Configuration Database Space

SUMMARY

Configure options for ephemeral database instances
to more effectively manage the amount of space that
the database uses.

IN THIS SECTION

Understanding Cyclic Versioning | 370

369

https://apps.juniper.net/feature-explorer/

Understanding Ephemeral Database
Resizing | 371

Configure Cyclic Versioning | 373

Resize an Ephemeral Database
Instance | 374

Junos devices maintain versions of ephemeral configuration database objects with every commit. Thus,
any change to the ephemeral database, whether it is an addition, modification, or deletion, increases the
size of the database. As a result, the database only increases in size over time. Depending on the size of
the ephemeral configuration and the changes to the database, the database can consume a lot of disk
space, become fragmented, and could potentially run into the maximum database size. You can manage
the space that an ephemeral database instance uses by configuring different options.

In supported releases, Junos devices, by default, perform cyclic versioning when you commit an
ephemeral instance. Cyclic versioning reclaims the space occupied by objects deleted in a previous
database version. To manage the space consumed by the ephemeral database, you can configure the
device to:

• Adjust cyclic versioning as appropriate for your operations.

• Resize an ephemeral database when it meets specific criteria.

Benefits of Cyclic Versioning and Resizing

• More efficiently manage ephemeral configuration database space as required for a given
environment.

• Reduce database fragmentation for improved performance.

• Prevent an ephemeral configuration database from running into the maximum database size.

Understanding Cyclic Versioning

Junos devices maintain versioning for ephemeral database objects, and as a result, the database also
retains and stores deleted objects. A deletion is characterized by:

• Explicitly deleting the configuration.

• Changing the value of a configuration attribute.

• Reordering elements during a load update operation.

370

Cyclic versioning reclaims the space occupied by objects that were deleted in a previous version of the
database. The cyclic version value determines the ephemeral database version in which the system
reclaims deleted objects during a commit operation. The default cyclic version value for each ephemeral
database instance is 10. Thus, on devices that support cyclic versioning, the system, by default, reclaims
the space occupied by deleted configuration objects with each commit. You can modify the setting on a
per-instance basis. To disable cyclic versioning, set the cyclic version value to 0.

For example, if you use the default cyclic version value of 10, then:

• After the 11th commit (version 11), the device reclaims the space occupied by objects that were
deleted in version 1.

• After the 12th commit (version 12), the device reclaims the space occupied by objects that were
deleted in version 2.

• After the 13th commit (version 13), the device reclaims the space occupied by objects that were
deleted in version 3.

This process continues with each subsequent commit operation. As illustrated in the previous example,
the version from which the system reclaims deleted objects during the current commit operation is:

version to reclaim = current version - cyclic version

NOTE: When the system resizes the database, the system keeps only the active
configuration objects and resets the version for each object to the latest version. As a
result, the system does not reclaim deleted objects again until after you execute commit
operations equal to the cyclic version value.

In earlier releases and on devices that do not use cyclic versioning, the ephemeral database default
behavior is to purge the database when it reaches the maximum allowable version. A purge operation
reclaims the space used by deleted objects but requires all processes to read the full configuration. A
database purge operation involves:

• Creating a new database.

• Copying only the active configuration objects from the current database into the new database.

• Setting the version for all active configuration objects in the new database to version 1.

Understanding Ephemeral Database Resizing

Resizing an ephemeral database might be necessary if cyclic versioning is enabled and you make
frequent changes to the database that involve deleting or reordering elements. On devices that support
cyclic versioning, the system automatically reclaims the space occupied by deleted objects during a

371

commit operation. However, the system might or might not reallocate the freed space for new
configuration objects when you update the database. If the system does not reallocate the space, then
the database can become fragmented over time. Resizing an ephemeral database reclaims the space
occupied by all deleted objects and defragments the database, which can improve performance.

A database resize operation involves:

• Creating a new database.

• Copying only the active configuration objects from the current database into the new database.

• Setting the version for all active configuration objects in the new database to the latest version.

As with the static configuration database, you can configure Junos devices to resize the ephemeral
configuration database. After you configure database resizing, Junos devices resize the ephemeral
database during a commit operation if the database's space exceeds the specified thresholds. You can
modify the thresholds for each ephemeral instance.

The system resizes the database when the database size meets the criteria for both of the following
configuration statements:

• database-size-diff—Minimum difference between the database size and the actual usage. Default is
100 MB.

• database-size-on-disk—Minimum configuration database size on disk. Default is 450 MB.

For example, suppose you configure the device to use the default values. Then the system resizes the
database when the database size on disk exceeds 450 MB and the database size is 100 MB greater than
the actual database usage.

For information about configuring database resizing, see "Resize an Ephemeral Database Instance" on
page 374.

Use the show system configuration database usage command to display the database's disk space usage. The
command displays the current database size on disk, the actual database usage, and the maximum size
of the database.

user@host> show system configuration database usage ephemeral-instance default
Maximum size of the database: 692.49 MB
Current database size on disk: 1.50 MB
Actual database usage: 1.49 MB
Available database space: 691.01 MB

372

Configure Cyclic Versioning

Junos devices, by default, use a cyclic version value of 10. When configuring the cyclic version value, the
best practice is to use a smaller value if you perform frequent commit operations for scaled
configurations that reorder elements or delete many objects or attributes. A smaller value causes the
device to store deleted objects for fewer versions of the database and thus use less disk space overall. In
such cases, we recommend a value of 2 or 3. Otherwise, you can use a larger cyclic version value, such
as the default value of 10.

NOTE: If a Junos process misses reading more commits than the configured cyclic
version value, it must read the full configuration because the delta between the versions
is no longer available. This effect might happen more frequently if you configure smaller
cyclic version values.

To specify the cyclic version value that the device uses to reclaim the space occupied by deleted objects
during a commit operation:

1. Configure the cyclic version value for the default ephemeral instance.

[edit system configuration-database ephemeral]
user@host# set cyclic-version-for-ephemeral-default version

For example:

[edit system configuration-database ephemeral]
user@host# set cyclic-version-for-ephemeral-default 8

2. Configure the cyclic version value for a user-defined ephemeral instance.

[edit system configuration-database ephemeral]
user@host# set instance instance-name cyclic-version verison

For example:

[edit system configuration-database ephemeral]
user@host# set instance eph1 cyclic-version 3

373

3. Commit the configuration.

[edit system configuration-database ephemeral]
user@host# commit

Resize an Ephemeral Database Instance

Junos devices do not automatically resize an ephemeral database. You can configure the device to resize
an ephemeral database during a commit operation when the database size meets certain thresholds. You
can enable resizing and use either the default values or custom values that are appropriate for your
environment. To configure resizing:
1. Enable resizing for the default ephemeral instance.

• To use the default values, configure the top-level resize-ephemeral-default statement.

[edit system configuration-database ephemeral]
user@host# set resize-ephemeral-default

• To use custom values, configure the database size difference and the database size on disk in MB.

[edit system configuration-database ephemeral]
user@host# set resize-ephemeral-default database-size-diff size
user@host# set resize-ephemeral-default database-size-on-disk size

For example:

[edit system configuration-database ephemeral]
user@host# set resize-ephemeral-default database-size-diff 50
user@host# set resize-ephemeral-default database-size-on-disk 600

2. Enable resizing for a user-defined instance.

• To use the default values, configure the top-level resize statement.

[edit system configuration-database ephemeral]
user@host# set instance instance-name resize

374

• To use custom values, configure the database size difference and the database size on disk in MB.

[edit system configuration-database ephemeral]
user@host# set instance instance-name resize database-size-diff size
user@host# set instance instance-name resize database-size-on-disk size

For example:

[edit system configuration-database ephemeral]
user@host# set instance eph1 resize database-size-diff 150
user@host# set instance eph1 resize database-size-on-disk 500

3. Commit the configuration.

[edit system configuration-database ephemeral]
user@host# commit

After you configure the device to resize the database, the device resizes the database after a commit
operation on that database when it meets the specified criteria. After successfully resizing the database,
the device emits the following message:

Database resize completed

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

23.2R1 and
23.2R1-EVO

Starting in Junos OS Release 23.2R1 and Junos OS Evolved Release 23.2R1, Junos devices
automatically perform cyclic versioning for the ephemeral configuration database. In earlier
releases, the device purges deleted objects from the database only when it reaches the
maximum version number.

RELATED DOCUMENTATION

ephemeral

375

https://apps.juniper.net/feature-explorer/

Example: Configure the Ephemeral Configuration Database Using
NETCONF

IN THIS SECTION

Requirements | 376

Overview | 376

Configuration | 377

Verification | 380

Troubleshooting | 382

The ephemeral database is an alternate configuration database that enables client applications to
simultaneously load and commit configuration changes on Junos devices and with significantly greater
throughput than when committing data to the candidate configuration database. This example shows
how to enable an instance of the ephemeral configuration database and make updates to that instance
in a NETCONF session.

Requirements

This example uses the following software components:

• A device running Junos OS or a device running Junos OS Evolved that supports configuring the
ephemeral database.

Before you begin:

• Enable the NETCONF-over-SSH service on the Junos device.

Overview

Multiple NETCONF and Junos XML protocol client applications can simultaneously load and commit
configuration changes to a Junos device by using ephemeral database instances. This example enables
the ephemeral database instance eph1 and then configures the instance through a NETCONF session.

A client application must open an instance of the ephemeral configuration database in order to view or
modify it. After establishing a NETCONF session, the client opens the ephemeral instance by using the
Junos XML protocol <open-configuration> operation. The element encloses the <ephemeral-instance> child tag
and the name of the instance. Opening the ephemeral instance automatically acquires an exclusive lock
on it.

376

The client then loads configuration data in text format into the eph1 ephemeral instance. Because the
configuration data is in text format, the <load-configuration> operation must include the format="text"
attribute, and a <configuration-text> element must enclose the configuration data.

The client application commits the configuration changes in the ephemeral instance by emitting the
Junos XML protocol <commit-configuration> operation. The <load-configuration> action="merge" attribute only
determines how the the device merges configuration data into that instance of the ephemeral database.
After you commit the changes to the ephemeral instance, the device merges the configuration data into
the active configuration according to the rules of prioritization. If the different configuration databases
have conflicting data, statements in the eph1 instance have a higher priority than statements in the
default ephemeral instance or the static configuration database. If other user-defined ephemeral
instances are in use, the priority is determined by the order in which the instances are listed in the
configuration at the [edit system configuration-database ephemeral] hierarchy level.

The <close-configuration/> operation closes the open ephemeral instance and releases the exclusive lock.
The device retains the committed ephemeral data until the device is rebooted or the data is deleted. If
you reboot the device, the system deletes the configuration data in the eph1 ephemeral instance as well
as the data in all other ephemeral instances.

Configuration

IN THIS SECTION

Enable the Ephemeral Database Instance | 377

Configure the Ephemeral Database Instance | 378

Results | 379

Enable the Ephemeral Database Instance

Step-by-Step Procedure

To enable the ephemeral database instance:

1. Configure the name of the instance.

[edit]
user@host# set system configuration-database ephemeral instance eph1

377

2. Commit the configuration.

[edit]
user@host# commit

Results

From configuration mode, confirm your configuration by entering the show system configuration-database
command. If the output does not display the intended configuration, repeat the instructions in this
example to correct the configuration.

[edit]
user@host# show system configuration-database
ephemeral {
 instance eph1;
}

Configure the Ephemeral Database Instance

Step-by-Step Procedure

To configure the ephemeral database instance and commit the changes from within a NETCONF session,
a client application performs the following steps:

1. Opens the ephemeral database instance.

<rpc>
 <open-configuration>
 <ephemeral-instance>eph1</ephemeral-instance>
 </open-configuration>
</rpc>
]]>]]>

2. Loads the configuration data into the open ephemeral instance, and includes the appropriate tags
and attributes for that data.

<rpc>
 <load-configuration action="merge" format="text">

378

 <configuration-text>
 protocols {
 mpls {
 label-switched-path to-hastings {
 to 192.0.2.1;
 }
 }
 }
 </configuration-text>
 </load-configuration>
</rpc>
]]>]]>

The NETCONF server indicates a successful <load-configuration> operation by returning an empty <ok/>
tag enclosed within the <load-configuration-results> and <rpc-reply> elements.

3. Commits the configuration, provided the <load-configuration> operation does not generate any errors.

<rpc>
 <commit-configuration/>
</rpc>
]]>]]>

4. Closes the ephemeral database instance.

<rpc>
 <close-configuration/>
</rpc>
]]>]]>

Results

If there are no errors when opening or closing the database, the NETCONF server returns an empty
<rpc-reply> element in response to the requests. The NETCONF server indicates a successful <load-
configuration> operation by returning an empty <ok/> tag enclosed within the <load-configuration-results>
and <rpc-reply> elements. Similarly, the NETCONF server indicates a successful <commit-configuration>
operation by returning an empty <ok/> tag enclosed in an <rpc-reply> element.

379

Verification

IN THIS SECTION

Verify the Commit | 380

Verify the Configuration Data in the Ephemeral Database Instance | 380

Verify the Commit

Purpose

The NETCONF server’s response to the commit operation should indicate the success or failure of the
commit. You can also verify the success of the commit by reviewing the commit events for the
ephemeral database in the system log file.

Action

Review the system log file and display events that match UI_EPHEMERAL.

user@host> show log messages | match UI_EPHEMERAL
Feb 10 13:20:32 host mgd[5172]: UI_EPHEMERAL_COMMIT: User 'user' has requested commit on 'eph1'
ephemeral database
Feb 10 13:20:32 host mgd[5172]: UI_EPHEMERAL_COMMIT_COMPLETED: commit complete on 'eph1'
ephemeral database

Meaning

The UI_EPHEMERAL_COMMIT_COMPLETED message tag indicates that the commit operation on the eph1 instance
was successful.

Verify the Configuration Data in the Ephemeral Database Instance

Purpose

Verify that the ephemeral instance has the correct configuration data.

380

Action

Within the NETCONF session, open the ephemeral database instance and retrieve the configuration.

<rpc>
 <open-configuration>
 <ephemeral-instance>eph1</ephemeral-instance>
 </open-configuration>
</rpc>
]]>]]>

<rpc>
 <get-configuration format="text"/>
</rpc>
]]>]]>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:junos="http://xml.juniper.net/
junos/25.2R1.9/junos">
<configuration-text xmlns="http://xml.juniper.net/xnm/1.1/xnm">
Last changed: 2025-10-10 18:46:38 PDT
protocols {
 mpls {
 label-switched-path to-hastings {
 to 192.0.2.1;
 }
 }
}
</configuration-text>
</rpc-reply>
]]>]]>

<rpc>
 <close-configuration/>
</rpc>
]]>]]>

381

TIP: You can view the configuration data committed to an ephemeral database instance
from the CLI by issuing the show ephemeral-configuration instance instance-name operational
command.

Troubleshooting

IN THIS SECTION

Troubleshoot Issues When Opening the Ephemeral Instance | 382

Troubleshoot Operational Issues | 383

Troubleshoot Issues When Opening the Ephemeral Instance

Problem

You attempt to open an instance of the ephemeral database, and the server returns only an opening
<rpc-reply> tag. For example:

<rpc>
 <open-configuration>
 <ephemeral-instance>eph1</ephemeral-instance>
 </open-configuration>
</rpc>
]]>]]>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:junos="http://xml.juniper.net/
junos/16.2R2/junos">

This issue can occur when another client has the exclusive lock on that instance.

Solution

If another user has an exclusive lock on the ephemeral instance, a client application can issue remote
procedure calls (RPCs) to update the ephemeral instance. However, the device does not process the
operations on that ephemeral instance until the lock is released. When the lock is released, the server

382

should issue the closing </rpc-reply> tag and process any RPCs emitted while the ephemeral instance was
locked.

Alternatively, a client application can choose to update a different ephemeral instance, but with the
caveat that different ephemeral instances have different priority levels when resolving conflicting
configuration statements.

Troubleshoot Operational Issues

Problem

The device does not execute operational changes that should occur as a result of committing certain
configuration data to the ephemeral database instance. This occurs even though you have verified that
the commit was successful and that the configuration data is present in the configuration for that
ephemeral instance.

The operational changes might not occur if the device has another user-defined ephemeral instance that
has conflicting configuration data and a higher priority. If the ephemeral instances have conflicting data,
statements in an instance with a higher priority override statements in an instance with a lower priority.
A user-defined instance of the ephemeral configuration database has higher priority than the default
ephemeral database instance, which has higher priority than the static configuration database. If the
device has multiple user-defined ephemeral instances in use, the priority is determined by the order in
which the instances are listed in the configuration.

Solution

You can verify the configured ephemeral instances and their priority order by issuing the show
configuration system configuration-database ephemeral operational command on the device. The
configuration lists the instances in order from highest to lowest priority. If the device has other instances
in use with a higher priority, review the configuration data in those instances to determine if there are
conflicting statements. You can also display the merged view of the static and ephemeral configuration
databases by issuing the show ephemeral-configuration merge command.

If your ephemeral instance has conflicting configuration data and a lower priority than another user-
defined ephemeral instance, and the configuration at that hierarchy level should go into effect on the
device, you must either delete the conflicting data in the other ephemeral instance or place your
configuration data in a higher priority instance.

RELATED DOCUMENTATION

Understanding the Ephemeral Configuration Database | 328

Enable and Configure Instances of the Ephemeral Configuration Database | 346

383

ephemeral

384

4
PART

Request Operational and
Configuration Information Using
NETCONF

Request Operational Information Using NETCONF | 386

Request Configuration Information Using NETCONF | 398

CHAPTER 13

Request Operational Information Using NETCONF

IN THIS CHAPTER

Request Operational Information Using NETCONF | 386

Specify the Output Format for Operational Information Requests in a NETCONF Session | 390

Request Operational Information Using NETCONF

SUMMARY

A NETCONF client application can use Junos XML request tags to request operational information
from Junos devices.

Within a NETCONF session, a client application can request information about the current status of a
Junos device. To request operational information, a client application emits the specific request tag
element from the Junos XML API that returns the desired information.

Table 19 on page 386 provides examples of request tags, which request the same information as the
equivalent CLI command.

Table 19: Examples of Request Tags and Equivalent CLI Command

Request Tag CLI Command

<get-interface-information> show interfaces

<get-chassis-inventory> show chassis hardware

<get-system-inventory> show software information

386

You can determine the appropriate Junos XML request tag using multiple methods, including:

• Appending | display xml rpc to an operational command in the CLI.

• Using the Junos XML API Explorer - Operational Tags application to search for a command or request
tag in a given release.

For example, the following command displays the request tag corresponding to the show interfaces
command:

user@router> show interfaces | display xml rpc
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/23.4R1.9/junos">
 <rpc>
 <get-interface-information>
 </get-interface-information>
 </rpc>
</rpc-reply>

To execute an RPC, the client application encloses a request tag in an <rpc> element. The syntax depends
on whether the corresponding CLI command has any options included.

<rpc>
 <!-- If the command does not have options -->
 <operational-request/>

 <!-- If the command has options -->
 <operational-request>
 <!-- tag elements representing the options -->
 </operational-request>
</rpc>
]]>]]>

The client application can specify the formatting of the information returned by the NETCONF server.
By setting the optional format attribute in the opening operational request tag, a client application can
specify the format of the response as either XML-tagged format, which is the default, formatted ASCII
text, or JavaScript Object Notation (JSON). For more information about specifying the format, see
"Specify the Output Format for Operational Information Requests in a NETCONF Session" on page 390.

NOTE: When displaying operational or configuration data that contains characters
outside the 7-bit ASCII character set, Junos OS escapes and encodes these character

387

https://apps.juniper.net/xmlapi/operational/

using the equivalent UTF-8 decimal character reference. For more information see "How
Character Encoding Works on Juniper Networks Devices" on page 142.

If the client application requests XML output, the NETCONF server encloses its response in the specific
response tag element that corresponds to the request tag element, which is then enclosed in an <rpc-
reply> tag element.

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <operational-response xmlns="URL-for-DTD">
 <!-- tag elements for the requested information -->
 </operational-response>
</rpc-reply>
]]>]]>

For example, if the client application sends the <get-interface-information> RPC, the NETCONF server
returns the <interface-information> response tag.

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:junos="http://xml.juniper.net/
junos/23.4R1.9/junos">
<interface-information xmlns="http://xml.juniper.net/junos/23.4R1.9/junos-interface"
junos:style="normal">
<physical-interface>
<name>
ge-0/0/0
</name>
<admin-status junos:format="Enabled">
up
</admin-status>
...

For XML format, the opening tag for each operational response includes the xmlns attribute. The attribute
defines the XML namespace for the enclosed tag elements that do not have a namespace prefix (such as
junos:). The namespace indicates which Junos XML document type definition (DTD) defines the set of
tag elements in the response.

The Junos XML API defines separate DTDs for operational responses from different software modules.
For instance, the DTD for interface information is called junos-interface.dtd and the DTD for chassis
information is called junos-chassis.dtd. The division into separate DTDs and XML namespaces means
that a tag element with the same name can have distinct functions depending on which DTD it is
defined in.

388

The namespace is a URL of the following form:

http://xml.juniper.net/junos/release-code/junos-category

where:

• release-code is the standard string that represents the Junos OS release that is running on the
NETCONF server device.

• category specifies the DTD.

If the client application requests the output in formatted ASCII text, the NETCONF server encloses its
response in an <output> tag element, which is enclosed in an <rpc-reply> tag.

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <output>
 operational-response
 </output>
</rpc-reply>
]]>]]>

If the client application requests the output in JSON format, the NETCONF server encloses the JSON
data in the <rpc-reply> tag element.

<rpc-reply xmlns="URN" xmlns:junos="URL">
 operational-response
</rpc-reply>
]]>]]>

RELATED DOCUMENTATION

Understanding the Request Procedure in a NETCONF Session | 39

Specify the Output Format for Operational Information Requests in a NETCONF Session | 390

Request Configuration Data Using NETCONF | 400

389

Specify the Output Format for Operational Information Requests in a
NETCONF Session

SUMMARY

A NETCONF client application can include the format attribute in Junos XML request tags to specify
the output format for operational information requests on Junos devices.

In a NETCONF session, to request information about a Junos device, a client application emits an <rpc>
element that encloses a Junos XML request tag element. To request that the NETCONF server return
the output in a specific format, the client application includes the optional format attribute in the opening
operational request tag. The application can request output in formatted ASCII text, JavaScript Object
Notation (JSON), or XML-tagged format. The syntax is as follows:

<rpc>
 <operational-request format="(ascii | json | json-minified | text | xml | xml-minified)">
 <!-- tag elements for options -->
 </operational-request>
</rpc>

Table 20 on page 390 describes the available formats. Minified formats remove characters that are not
required for computer processing, for example, spaces, tabs, and newlines. Minified formats decrease
the size of the data, and as a result, can reduce transport costs and data delivery and processing times.

Table 20: Operational RPC Output Formats

format Attribute Value Description

ascii Formatted ASCII text

json JSON format

json-minified JSON format with unnecessary spaces, tabs, and
newlines removed

text Formatted ASCII text

390

Table 20: Operational RPC Output Formats (Continued)

format Attribute Value Description

xml Junos XML-tagged format

xml-minified Junos XML-tagged format with unnecessary spaces,
tabs, and newlines removed

XML Format

By default, the NETCONF server returns operational information in XML format. If a client application
sets the format attribute to xml or omits the format attribute, the server returns the response in XML. The
following example requests information for the ge-0/3/0 interface and omits the format attribute.

<rpc>
 <get-interface-information>
 <brief/>
 <interface-name>ge-0/3/0</interface-name>
 </get-interface-information>
</rpc>

The NETCONF server returns the information in XML. The output is identical to the CLI output when
you append the | display xml filter to the operational mode command.

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:junos="http://xml.juniper.net/junos/25.2R1.9/junos">
<interface-information
 xmlns="http://xml.juniper.net/junos/25.2R1.9/junos-interface" junos:style="brief">
 <physical-interface>
 <name>ge-0/3/0</name>
 <admin-status junos:format="Enabled">up</admin-status>
 <oper-status>down</oper-status>
 <link-level-type>Ethernet</link-level-type>
 <mtu>1514</mtu>
 <source-filtering>disabled</source-filtering>
 <speed>1000mbps</speed>
 <bpdu-error>none</bpdu-error>
 <l2pt-error>none</l2pt-error>
 <loopback>disabled</loopback>
 <if-flow-control>enabled</if-flow-control>

391

 <if-auto-negotiation>enabled</if-auto-negotiation>
 <if-remote-fault>online</if-remote-fault>
 <if-device-flags>
 <ifdf-present/>
 <ifdf-running/>
 <ifdf-down/>
 </if-device-flags>
 <if-config-flags>
 <iff-hardware-down/>
 <iff-snmp-traps/>
 <internal-flags>0x4000</internal-flags>
 </if-config-flags>
 <if-media-flags>
 <ifmf-none/>
 </if-media-flags>
 </physical-interface>
 </interface-information>
</rpc-reply>

Operational command RPCs also support returning XML output in minified format, which omits
unnecessary spaces, tabs, and newlines. To request minified XML output in supported releases, include
the format="xml-minified" attribute in the opening request tag. For example:

<rpc>
 <get-interface-information format="xml-minified">
 <brief/>
 <interface-name>ge-0/3/0</interface-name>
 </get-interface-information>
</rpc>

The NETCONF server returns the information in minified XML format.

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:junos="http://xml.juniper.net/
junos/25.2R1.9/junos">
<interface-information xmlns="http://xml.juniper.net/junos/25.2R1.9/junos-interface"
junos:style="brief"><physical-interface><name>ge-0/3/0</name><admin-status
junos:format="Enabled">up</admin-status><oper-status>down</oper-status><link-level-
type>Ethernet</link-level-type><mtu>1514</mtu><source-filtering>disabled</source-
filtering><speed>1000mbps</speed><bpdu-error>none</bpdu-error><l2pt-error>none</l2pt-
error><loopback>disabled</loopback><if-flow-control>enabled</if-flow-control><if-auto-
negotiation>enabled</if-auto-negotiation><if-remote-fault>online</if-remote-fault><if-device-

392

flags><ifdf-present/><ifdf-running/><ifdf-down/></if-device-flags><if-config-flags><iff-hardware-
down/><iff-snmp-traps/><internal-flags>0x4000</internal-flags></if-config-flags><if-media-
flags><ifmf-none/></if-media-flags></physical-interface></interface-information></rpc-reply>

ASCII Format

To request that the NETCONF server return operational information as formatted ASCII text, the client
application includes the format="text" or format="ascii" attribute in the opening request tag.

<rpc>
 <get-interface-information format="(text | ascii)">
 <brief/>
 <interface-name>ge-0/3/0</interface-name>
 </get-interface-information>
</rpc>

When the client application includes the format="text" or format="ascii" attribute in the request tag, the
NETCONF server formats the reply as ASCII text and encloses it in an <output> tag element. The
format="text" and format="ascii" attributes produce identical output.

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:junos="http://xml.juniper.net/junos/25.2R1.9/junos">
<output>
Physical interface: ge-0/3/0, Enabled, Physical link is Down
 Link-level type: Ethernet, MTU: 1514, Speed: 1000mbps, Loopback: Disabled,
 Source filtering: Disabled, Flow control: Enabled, Auto-negotiation: Enabled,
 Remote fault: Online
 Device flags : Present Running Down
 Interface flags: Hardware-Down SNMP-Traps Internal: 0x4000
 Link flags : None
</output>
</rpc-reply>

The following example shows the equivalent operational mode command executed in the CLI:

user@host> show interfaces ge-0/3/0 brief
Physical interface: ge-0/3/0, Enabled, Physical link is Down
 Link-level type: Ethernet, MTU: 1514, Speed: 1000mbps, Loopback: Disabled, Source filtering:
Disabled,
 Flow control: Enabled, Auto-negotiation: Enabled, Remote fault: Online
 Device flags : Present Running Down

393

 Interface flags: Hardware-Down SNMP-Traps Internal: 0x4000
 Link flags : None

The formatted ASCII text returned by the NETCONF server is identical to the CLI output except in cases
where the output includes disallowed characters. Disallowed characters include '<' (less-than sign), '>'
(greater-than sign), and '&' (ampersand). The NETCONF server substitutes these characters with the
equivalent predefined entity reference of '<', '>', and '&' respectively.

If the Junos XML API does not define a response tag element for the type of output requested by a
client application, the NETCONF server returns the reply as formatted ASCII text enclosed in an <output>
tag element, even if XML-tagged output is requested.

NOTE: The content and formatting of data within an <output> tag element are subject to
change, so client applications must not depend on them.

JSON Format

A client application can request operational and configuration data in JSON format. To request that the
NETCONF server return operational information in JSON format, the client application includes the
format="json" attribute in the opening request tag.

<rpc>
 <get-interface-information format="json">
 <brief/>
 <interface-name>cbp0</interface-name>
 </get-interface-information>
</rpc>

When the client application includes the format="json" attribute in the request tag, the NETCONF server
returns JSON data.

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:junos="http://xml.juniper.net/junos/25.2R1.9/junos">
{
 "interface-information" : [
 {
 "physical-interface" : [
 {
 "name" : [
 {

394

 "data" : "cbp0"
 }
],
 "admin-status" : [
 {
 "data" : "up",
 "attributes" : {"junos:format" : "Enabled"}
 }
],
 "oper-status" : [
 {
 "data" : "up"
 }
],
 "if-type" : [
 {
 "data" : "Ethernet"
 }
],
 "link-level-type" : [
 {
 "data" : "Ethernet"
 }
],
 "mtu" : [
 {
 "data" : "9192"
 }
],
 "speed" : [
 {
 "data" : "Unspecified"
 }
],
 "clocking" : [
 {
 "data" : "Unspecified"
 }
],
 "if-device-flags" : [
 {
 "ifdf-present" : [
 {

395

 "data" : [null]
 }
],
 "ifdf-running" : [
 {
 "data" : [null]
 }
]
 }
],
 "ifd-specific-config-flags" : [
 {
 }
],
 "if-config-flags" : [
 {
 "iff-snmp-traps" : [
 {
 "data" : [null]
 }
]
 }
]
 }
]
 }
]
}
</rpc-reply>

By default, Junos devices emit JSON-formatted state data in non-compact format, which emits all
objects as JSON arrays. In Junos OS Release 24.2 and earlier and Junos OS Evolved Release 24.2 and
earlier, Junos devices support emitting the device’s operational state in compact JSON format. Compact
JSON format emits JSON arrays only for objects that have multiple values. To configure the device to
emit compact JSON format, configure the compact statement at the [edit system export-format state-data
json] hierarchy level.

396

NETCONF clients can also request operational command RPC output in minified JSON format, which
omits unnecessary spaces, tabs, and newlines. To request minified JSON output in supported releases,
include the format="json-minified" attribute in the opening request tag. For example:

<rpc>
 <get-interface-information format="json-minified">
 <brief/>
 <interface-name>cbp0</interface-name>
 </get-interface-information>
</rpc>

The NETCONF server returns the information in minified JSON format.

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:junos="http://xml.juniper.net/
junos/25.2R1.9/junos">
{"interface-information":[{"physical-interface":[{"name":[{"data":"cbp0"}],"admin-status":
[{"data":"up","attributes":{"junos:format":"Enabled"}}],"oper-status":[{"data":"up"}],"if-type":
[{"data":"Ethernet"}],"link-level-type":[{"data":"Ethernet"}],"mtu":[{"data":"9192"}],"speed":
[{"data":"Unspecified"}],"clocking":[{"data":"Unspecified"}],"if-device-flags":[{"ifdf-present":
[{"data":[null]}],"ifdf-running":[{"data":[null]}]}],"ifd-specific-config-flags":[{}],"if-config-
flags":[{"iff-snmp-traps":[{"data":[null]}]}]}]}]}</rpc-reply>

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

24.4R1 & 24.4R1-EVO Starting in Junos OS Release 24.4R1 and Junos OS Evolved Release 24.4R1, we've
deprecated the compact statement at the [edit system export-format state-data json]
hierarchy level.

397

https://apps.juniper.net/feature-explorer/

CHAPTER 14

Request Configuration Information Using NETCONF

IN THIS CHAPTER

Request the Committed Configuration and Device State Using NETCONF | 398

Request Configuration Data Using NETCONF | 400

Specify the Source for Configuration Information Requests Using NETCONF | 402

Specify the Scope of Configuration Information to Return in a NETCONF Response | 404

Request the Complete Configuration Using NETCONF | 405

Request a Configuration Hierarchy Level or Container Object Without an Identifier Using NETCONF | 407

Request All Configuration Objects of a Specified Type Using NETCONF | 410

Request Identifiers for Configuration Objects of a Specified Type Using NETCONF | 413

Request A Specific Configuration Object Using NETCONF | 416

Request Specific Child Tags for a Configuration Object Using NETCONF | 419

Request Multiple Configuration Elements Simultaneously Using NETCONF | 424

Retrieve a Previous (Rollback) Configuration Using NETCONF | 425

Compare Two Previous (Rollback) Configurations Using NETCONF | 429

Retrieve the Rescue Configuration Using NETCONF | 432

Request an XML Schema for the Configuration Hierarchy Using NETCONF | 434

Request the Committed Configuration and Device State Using NETCONF

In a NETCONF session with a device running Junos OS, to request the most recently committed
configuration and the device state information for a routing, switching, or security platform, a client
application encloses the <get> tag in an <rpc> tag element. By including the <filter> tag element and
appropriate child tag elements, the application can request specific portions of the configuration. If the

398

<filter> element is omitted, the server returns the entire configuration. The optional format attribute
specifies the return format for the configuration data.

<rpc>
 <get [format="(json | set | text | xml)"]>
 <filter type="subtree">
 <!-- tag elements representing the configuration elements to return -->
 </filter>
 </get>
</rpc>
]]>]]>

The type="subtree" attribute in the opening <filter> tag indicates that the client application is using Junos
XML tag elements to represent the configuration elements about which it is requesting information.

The NETCONF server encloses its reply in the <rpc-reply> and <data> tag elements. Within the <data>
element, the configuration data is enclosed in the <configuration>, <configuration-text>, <configuration-set>,
or <configuration-json> element depending on the requested format, and the device information is
enclosed in the <database-status-information> element. The server includes attributes in the opening
<configuration> tag that indicate the XML namespace for the enclosed tag elements and when the
configuration was last changed or committed. For example:

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <data>
 <configuration xmlns="URL" junos:changed-seconds="seconds" junos:changed-
localtime="time">
 <!-- configuration data -->
 </configuration>
 <database-status-information>
 <database-status>
 <user>user</user>
 <terminal></terminal>
 <pid>pid</pid>
 <start-time junos:seconds="1416956595">2014–11–25 15:03:15 PST</start-time>
 <edit-path></edit-path>
 </database-status>
 </database-status-information>
 </data>
</rpc-reply>
]]>]]>

399

If there is no configuration data in the requested hierarchy, the RPC reply contains an empty
<configuration> tag inside the <data> element unless the rfc-compliant statement is configured, in which case
the <configuration> tag is omitted.

RELATED DOCUMENTATION

<get> | 195

Request Configuration Data Using NETCONF | 400

Request Configuration Data Using NETCONF

In a NETCONF session with a device running Junos OS, to request configuration data for a routing,
switching, or security platform, a client application encloses the <get-config>, <source>, and <filter> tag
elements in an <rpc> tag element. By including the appropriate child tag element in the <source> tag
element, the client application requests information from the active configuration or from the candidate
configuration or open configuration database. By including the appropriate child tag elements in the
<filter> tag element, the application can request the entire configuration or specific portions of the
configuration.

<rpc>
 <get-config>
 <source>
 <!-- tag specifying the source configuration -->
 <(candidate | running)/>
 </source>
 <filter type="subtree">
 <!-- tag elements representing the configuration elements to return -->
 </filter>
 </get-config>
</rpc>
]]>]]>

The type="subtree" attribute in the opening <filter> tag indicates that the client application is using Junos
XML tag elements to represent the configuration elements about which it is requesting information.

NOTE: If a client application issues the Junos XML protocol <open-configuration> operation
to open a specific configuration database before executing the <get-config> operation,

400

setting the source to <candidate/> retrieves the configuration data from the open
configuration database. Otherwise, the server returns the configuration data from the
candidate configuration.

NOTE: If the client application locks the candidate configuration before making requests,
it needs to unlock it after making its read requests. Other users and applications cannot
change the configuration while it remains locked.

The NETCONF server encloses its reply in <rpc-reply>, <data>, and <configuration> tag elements. It includes
attributes in the opening <configuration> tag that indicate the XML namespace for the enclosed tag
elements and when the configuration was last changed or committed. For information about the
attributes of the <configuration> tag, see "Specify the Source for Configuration Information Requests
Using NETCONF" on page 402.

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <data>
 <configuration attributes>
 <!-- JUNOS XML tag elements representing configuration elements -->
 </configuration>
 </data>
</rpc-reply>
]]>]]>

If a Junos XML tag element is returned within an <undocumented> tag element, the corresponding
configuration element is not documented in the Junos OS configuration guides or officially supported by
Juniper Networks. Most often, the enclosed element is used for debugging only by support personnel. In
a smaller number of cases, the element is no longer supported or has been moved to another area of the
configuration hierarchy, but appears in the current location for backward compatibility.

NOTE: When displaying operational or configuration data that contains characters
outside the 7-bit ASCII character set, Junos OS escapes and encodes these character
using the equivalent UTF-8 decimal character reference. For more information see "How
Character Encoding Works on Juniper Networks Devices" on page 142.

Client applications can also request other configuration-related information, including an XML schema
representation of the configuration hierarchy or information about previously committed configurations.

401

RELATED DOCUMENTATION

Request Operational Information Using NETCONF | 386

Specify the Source for Configuration Information Requests Using
NETCONF

In a NETCONF session with a device running Junos OS, to request information from the candidate
configuration or open configuration database, a client application includes the <source> element and
<candidate/> tag within the <rpc> and <get-config> tag elements.

<rpc>
 <get-config>
 <source>
 <candidate/>
 </source>
 <filter>
 <!-- tag elements representing the configuration elements to return -->
 </filter>
 </get-config>
</rpc>
]]>]]>

NOTE: If a client application issues the Junos XML protocol <open-configuration> operation
to open a specific configuration database before executing the <get-config> operation,
setting the source to <candidate/> retrieves the configuration data from the open
configuration database. Otherwise, the server returns the configuration data from the
candidate configuration.

To request information from the active configuration—the one most recently committed on the device—
a client application includes the <source> tag element and <running/> tag enclosed within the <rpc> and <get-
config> tag elements.

<rpc>
 <get-config>
 <source>
 <running/>
 </source>

402

 <filter>
 <!-- tag elements representing the configuration elements to return -->
 </filter>
 </get-config>
</rpc>
]]>]]>

NOTE: If a client application is requesting the entire configuration, it omits the <filter>
tag element.

The NETCONF server encloses its reply in <rpc-reply>, <data>, and <configuration> tag elements. In the
opening <configuration> tag, it includes the xmlns attribute to specify the namespace for the enclosed tag
elements.

When returning information from the candidate configuration or open configuration database, the
NETCONF server includes attributes that indicate when the configuration last changed (they appear on
multiple lines here only for legibility).

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <data>
 <configuration xmlns="URL" junos:changed-seconds="seconds" \
 junos:changed-localtime="YYYY-MM-DD hh:mm:ss TZ">
 <!-- Junos XML tag elements representing the configuration -->
 </configuration>
 </data>
</rpc-reply>
]>]]>

junos:changed-localtime represents the time of the last change as the date and time in the device’s local
time zone.

junos:changed-seconds represents the time of the last change as the number of seconds since midnight on 1
January 1970.

When returning information from the active configuration, the NETCONF server includes attributes that
indicate when the configuration was committed (they appear on multiple lines here only for legibility).

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <data>
 <configuration xmlns="URL" junos:commit-seconds="seconds" \
 junos:commit-localtime="YYYY-MM-DD hh:mm:ss TZ" \

403

 junos:commit-user="username">
 <!-- Junos XML tag elements representing the configuration -->
 </configuration>
 </data>
</rpc-reply>
]]>]]>

junos:commit-localtime represents the commit time as the date and time in the device’s local time zone.

junos:commit-seconds represents the commit time as the number of seconds since midnight on 1 January
1970.

junos:commit-user specifies the Junos OS username of the user who requested the commit operation.

RELATED DOCUMENTATION

Request Configuration Data Using NETCONF | 400

<get-config> | 198

Specify the Scope of Configuration Information to Return in a NETCONF
Response

In a NETCONF session with a device running Junos OS, a client application can request the entire
configuration or specific portions of the configuration by including the appropriate child tag elements in
the <filter> tag element within the <rpc> and <get-config> tag elements.

<rpc>
 <get-config>
 <source>
 (<candidate/> | <running/>)
 </source>
 <filter type="subtree">
 <!-- tag elements representing the configuration elements to return -->
 </filter>
 </get-config>
</rpc>
]]>]]>

404

The type="subtree" attribute in the opening <filter> tag indicates that the client application is using Junos
XML tag elements to represent the configuration elements about which it is requesting information.

For information about requesting different amounts of configuration information, see the following
topics:

• "Request the Complete Configuration Using NETCONF" on page 405

• "Request a Configuration Hierarchy Level or Container Object Without an Identifier Using
NETCONF" on page 407

• "Request All Configuration Objects of a Specified Type Using NETCONF" on page 410

• "Request Identifiers for Configuration Objects of a Specified Type Using NETCONF" on page 413

• "Request A Specific Configuration Object Using NETCONF" on page 416

• "Request Specific Child Tags for a Configuration Object Using NETCONF" on page 419

• "Request Multiple Configuration Elements Simultaneously Using NETCONF" on page 424

RELATED DOCUMENTATION

Request Configuration Data Using NETCONF | 400

Specify the Source for Configuration Information Requests Using NETCONF | 402

Request the Complete Configuration Using NETCONF

In a NETCONF session with a device running Junos OS, to request the entire candidate configuration or
the complete configuration in the open configuration database, a client application encloses <get-config>
and <source> tag elements and the <candidate/> tag in an <rpc> tag element:

<rpc>
 <get-config>
 <source>
 <candidate/>
 </source>
 </get-config>
</rpc>
]]>]]>

405

NOTE: If a client application issues the Junos XML protocol <open-configuration> operation
to open a specific configuration database before executing the <get-config> operation,
setting the source to <candidate/> retrieves the configuration data from the open
configuration database. Otherwise, the server returns the configuration data from the
candidate configuration.

To request the entire active configuration, a client application encloses <get-config> and <source> tag
elements and the <running/> tag in an <rpc> tag element:

<rpc>
 <get-config>
 <source>
 <running/>
 </source>
 </get-config>
</rpc>
]]>]]>

The NETCONF server encloses its reply in <rpc-reply>, <data>, and <configuration> tag elements. For
information about the attributes in the opening <configuration> tag, see "Specify the Source for
Configuration Information Requests Using NETCONF" on page 402.

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <data>
 <configuration attributes>
 <!-- Junos XML tag elements representing the configuration -->
 </configuration>
 </data>
</rpc-reply>
]]>]]>

RELATED DOCUMENTATION

Request Configuration Data Using NETCONF | 400

Specify the Source for Configuration Information Requests Using NETCONF | 402

Specify the Scope of Configuration Information to Return in a NETCONF Response | 404

Retrieve the Rescue Configuration Using NETCONF | 432

406

Request an XML Schema for the Configuration Hierarchy Using NETCONF | 434

Request a Configuration Hierarchy Level or Container Object Without an
Identifier Using NETCONF

In a NETCONF session with a device running Junos OS, to request complete information about all child
configuration elements at a hierarchy level or in a container object that does not have an identifier, a
client application emits a <filter> tag element that encloses the tag elements representing all levels in
the configuration hierarchy from the root (represented by the <configuration> tag element) down to the
immediate parent level of the level or container object, which is represented by an empty tag. The entire
request is enclosed in an <rpc> tag element:

<rpc>
 <get-config>
 <source>
 <!-- tag specifying the source configuration -->
 </source>
 <filter type="subtree">
 <configuration>
 <!-- opening tags for each parent of the requested level -->
 <level-or-container/>
 <!-- closing tags for each parent of the requested level -->
 </configuration>
 </filter>
 </get-config>
</rpc>
]]>]]>

For information about the <source> tag element, see "Specify the Source for Configuration Information
Requests Using NETCONF" on page 402.

The NETCONF server returns the requested section of the configuration in <data> and <rpc-reply> tag
elements. For information about the attributes in the opening <configuration> tag, see "Specify the Source
for Configuration Information Requests Using NETCONF" on page 402.

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <data>
 <configuration attributes>
 <!-- opening tags for each parent of the level -->

407

 <level-or-container>
 <!-- child tag elements of the level or container -->
 </level-or-container>
 <!-- closing tags for each parent of the level -->
 </configuration>
 </data>
</rpc-reply>
]]>]]>

The application can also request additional configuration elements of the same or other types by
including the appropriate tag elements in the same <get-config> tag element. For more information, see
"Request Multiple Configuration Elements Simultaneously Using NETCONF" on page 424.

The following example shows how to request the contents of the [edit system login] hierarchy level in the
candidate configuration.

408

RELATED DOCUMENTATION

Request Configuration Data Using NETCONF | 400

Specify the Scope of Configuration Information to Return in a NETCONF Response | 404

409

Specify the Source for Configuration Information Requests Using NETCONF | 402

Request Identifiers for Configuration Objects of a Specified Type Using NETCONF | 413

Request Multiple Configuration Elements Simultaneously Using NETCONF | 424

Request All Configuration Objects of a Specified Type Using NETCONF

In a NETCONF session with a device running Junos OS, to request information about all configuration
objects of a specified type in a hierarchy level, a client application emits a <filter> tag element that
encloses the tag elements representing all levels in the configuration hierarchy from the root
(represented by the <configuration> tag element) down to the immediate parent level for the object type.
An empty tag returns all configuration objects of the requested object type and all child tags for each
object. To return only specific child tags for the configuration objects, enclose the desired child tags in
the opening and closing tags of the object. The entire request is enclosed in an <rpc> tag element:

<rpc>
 <get-config>
 <source>
 <!-- tag specifying the source configuration -->
 </source>
 <filter type="subtree">
 <configuration>
 <!-- opening tags for each parent of the requested object type -->
 <object-type>
 <!-- optionally select specific child tags -->
 </object-type>
 <!-- closing tags for each parent of the requested object type -->
 </configuration>
 </filter>
 </get-config>
</rpc>
]]>]]>

For information about the <source> tag element, see "Specify the Source for Configuration Information
Requests Using NETCONF" on page 402.

This type of request is useful when the object’s parent hierarchy level has more than one type of child
object. If the requested object is the only child type that can occur in its parent hierarchy level, then this
type of request yields the same output as a request for the complete parent hierarchy, which is
described in "Request a Configuration Hierarchy Level or Container Object Without an Identifier Using
NETCONF" on page 407.

410

The NETCONF server returns the requested objects in <data> and <rpc-reply> tag elements. For
information about the attributes in the opening <configuration> tag, see "Specify the Source for
Configuration Information Requests Using NETCONF" on page 402.

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <data>
 <configuration attributes>
 <!-- opening tags for each parent of the object type -->
 <first-object>
 <!-- child tag elements for the first object -->
 </first-object>
 <second-object>
 <!-- child tag elements for the second object -->
 </second-object>
 <!-- additional instances of the object -->
 <!-- closing tags for each parent of the object type -->
 </configuration>
 </data>
</rpc-reply>
]]>]]>

The application can also request additional configuration elements of the same or other types by
including the appropriate tag elements in the same <get-config> tag element. For more information, see
"Request Multiple Configuration Elements Simultaneously Using NETCONF" on page 424.

The following example shows how to request complete information about all radius-server objects at the
[edit system] hierarchy level in the candidate configuration.

411

412

RELATED DOCUMENTATION

Request Configuration Data Using NETCONF | 400

Specify the Source for Configuration Information Requests Using NETCONF | 402

Specify the Scope of Configuration Information to Return in a NETCONF Response | 404

Request Identifiers for Configuration Objects of a Specified Type Using NETCONF | 413

Request Identifiers for Configuration Objects of a Specified Type Using
NETCONF

In a NETCONF session with a device running Junos OS, to request output that shows only the identifier
for each configuration object of a specific type in a hierarchy, a client application emits a <filter> tag
element that encloses the tag elements representing all levels of the configuration hierarchy from the
root (represented by the <configuration> tag element) down to the immediate parent level for the object
type. The object type is represented by its container tag element enclosing an empty <name/> tag. (The
<name> tag element can always be used, even if the actual identifier tag element has a different name. The
actual name is also valid.) The entire request is enclosed in an <rpc> tag element:

<rpc>
 <get-config>
 <source>
 <!-- tag specifying the source configuration -->
 </source>
 <filter type="subtree">
 <configuration>
 <!-- opening tags for each parent of the object type -->
 <object-type>
 <name/>
 </object-type>
 <!-- closing tags for each parent of the object type -->
 </configuration>
 </filter>
 </get-config>
</rpc>
]]>]]>

For information about the <source> tag element, see "Specify the Source for Configuration Information
Requests Using NETCONF" on page 402.

413

NOTE: You cannot request only identifiers for object types that have multiple identifiers.
However, for many such objects the identifiers are the only child tag elements, so
requesting complete information yields the same output as requesting only identifiers.
For instructions, see "Request All Configuration Objects of a Specified Type Using
NETCONF" on page 410.

The NETCONF server returns the requested objects in <data> and <rpc-reply> tag elements (here, objects
for which the identifier tag element is called <name>). For information about the attributes in the opening
<configuration> tag, see "Specify the Source for Configuration Information Requests Using NETCONF" on
page 402.

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <data>
 <configuration attributes>
 <!-- opening tags for each parent of the object type -->
 <first-object>
 <name>identifier-for-first-object</name>
 </first-object>
 <second-object>
 <name>identifier-for-second-object</name>
 </second-object>
 <!-- additional objects -->
 <!-- closing tags for each parent of the object type -->
 </configuration>
 </data>
</rpc-reply>
]]>]]>

The application can also request additional configuration elements of the same or other types by
including the appropriate tag elements in the same <get-config> tag element. For more information, see
"Request Multiple Configuration Elements Simultaneously Using NETCONF" on page 424.

The following example shows how to request the identifier for each BGP neighbor configured at the
[edit protocols bgp group next-door-neighbors] hierarchy level in the candidate configuration.

414

415

RELATED DOCUMENTATION

Request Configuration Data Using NETCONF | 400

Specify the Source for Configuration Information Requests Using NETCONF | 402

Specify the Scope of Configuration Information to Return in a NETCONF Response | 404

Request All Configuration Objects of a Specified Type Using NETCONF | 410

Request A Specific Configuration Object Using NETCONF

In a NETCONF session with a device running Junos OS, to request complete information about a
specific configuration object, a client application emits a <filter> tag element that encloses the tag
elements representing all levels of the configuration hierarchy from the root (represented by the
<configuration> tag element) down to the immediate parent level for the object.

To represent the requested object, the application emits only the container tag element and each of its
identifier tag elements, complete with identifier value, for the object. For objects with a single identifier,
the <name> tag element can always be used, even if the actual identifier tag element has a different name.
The actual name is also valid. For objects with multiple identifiers, the actual names of the identifier tag
elements must be used. To verify the name of each of the identifiers for a configuration object, see the
Junos XML API Configuration Developer Reference. The entire request is enclosed in an <rpc> tag
element:

<rpc>
 <get-config>
 <source>
 <!--tag specifying the source configuration -->
 </source>
 <filter type="subtree">
 <configuration>
 <!-- opening tags for each parent of the object -->
 <object>
 <name>identifier</name>
 </object>
 <!-- closing tags for each parent of the object -->
 </configuration>
 </filter >
 </get-config>
</rpc>
]]>]]>

416

For information about the <source> tag element, see "Specify the Source for Configuration Information
Requests Using NETCONF" on page 402.

The NETCONF server returns the requested object in <data> and <rpc-reply> tag elements (here, an object
for which the identifier tag element is called <name>). For information about the attributes in the opening
<configuration> tag, see "Specify the Source for Configuration Information Requests Using NETCONF" on
page 402.

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <data>
 <configuration attributes>
 <!-- opening tags for each parent of the object -->
 <object>
 <name>identifier</name>
 <!-- other child tag elements of the object -->
 </object>
 <!-- closing tags for each parent of the object -->
 </configuration>
 </data>
</rpc-reply>
]]>]]>

The application can also request additional configuration elements of the same or other types by
including the appropriate tag elements in the same <get-config> tag element. For more information, see
"Request Multiple Configuration Elements Simultaneously Using NETCONF" on page 424.

The following example shows how to request the contents of one multicasting scope called local, which
is at the [edit routing-options multicast] hierarchy level in the candidate configuration. To specify the
desired object, the client application emits the <name>local</name> identifier tag element as the innermost
tag element.

417

418

RELATED DOCUMENTATION

Request Configuration Data Using NETCONF | 400

Specify the Source for Configuration Information Requests Using NETCONF | 402

Specify the Scope of Configuration Information to Return in a NETCONF Response | 404

Request Specific Child Tags for a Configuration Object Using NETCONF | 419

Request Specific Child Tags for a Configuration Object Using NETCONF

In a NETCONF session with a device running Junos OS, to request specific child tag elements and
descendents for configuration objects, a client application emits a <filter> tag element that encloses the
tag elements representing all levels of the configuration hierarchy from the root (represented by the
<configuration> tag element) down to the immediate parent level for the object. To represent the
requested object, the application emits its container tag element. To request a specific configuration
object, include the identifier tag element. For objects with a single identifier, the <name> tag element can
always be used, even if the actual identifier tag element has a different name. The actual name is also
valid. For objects with multiple identifiers, the actual names of the identifier tag elements must be used.
If you omit the identifier tag element, the server returns the child tags for all configuration objects of
that type. To select specific child tags, the client application emits all desired child tag elements and
descendents within the container tag element. The entire request is enclosed in an <rpc> tag element:

<rpc>
 <get-config>
 <source>
 <!-- tag specifying the source configuration -->
 </source>
 <filter type="subtree">
 <configuration>
 <!-- opening tags for each parent of the object -->
 <object>
 <name>identifier</name>
 <first-child/>
 <second-child/>
 <third-child>
 <!--tags for descendents-->
 </third-child>
 <!-- tag for each additional child to return -->
 </object>
 <!-- closing tags for each parent of the object -->
 </configuration>

419

 </filter>
 </get-config>

</rpc>
]]>]]>

For information about the <source> tag element, see "Specify the Source for Configuration Information
Requests Using NETCONF" on page 402.

The NETCONF server returns the requested children of the object in <data> and <rpc-reply> tag elements
(here, an object for which the identifier tag element is called <name>). For information about the attributes
in the opening <configuration> tag, see "Specify the Source for Configuration Information Requests Using
NETCONF" on page 402.

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <data>
 <configuration attributes>
 <!-- opening tags for each parent of the object -->
 <object>
 <name>identifier</name>
 <!-- requested child tags -->
 </object>
 <!-- closing tags for each parent of the object -->
 </configuration>
 </data>
</rpc-reply>
]]>]]>

The application can also request additional configuration elements of the same or other types by
including the appropriate tag elements in the same <get-config> tag element. For more information, see
"Request Multiple Configuration Elements Simultaneously Using NETCONF" on page 424.

The following example shows how to request only the address of the next-hop device for the
192.168.5.0/24 route at the [edit routing-options static] hierarchy level in the candidate configuration.

420

421

The following example shows how to request the addresses for all logical interfaces configured for each
physical interface within the groups hierarchy level of the candidate configuration.

<rpc>
 <get-config>
 <source>
 <candidate/>
 </source>
 <filter type="subtree">
 <configuration>
 <groups>
 <interfaces>
 <interface>
 <unit>
 <family>
 <inet>
 <address/>
 </inet>
 </family>
 </unit>
 </interface>
 </interfaces>
 </groups>
 </configuration>
 </filter>
 </get-config>
</rpc>

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <data>
 <configuration xmlns="URL" junos:commit-seconds=seconds junos:commit-localtime="timestamp"
junos:commit-user="user">
 <groups>
 <name>re0</name>
 <interfaces>
 <interface>
 <name>lo0</name>
 <unit>
 <name>0</name>
 <family>
 <inet>

422

 <address>
 <name>127.0.0.1/32</name>
 </address>
 </inet>
 </family>
 </unit>
 </interface>
 <interface>
 <name>em0</name>
 <unit>
 <name>0</name>
 <family>
 <inet>
 <address>
 <name>198.51.100.1/24</name>
 </address>
 <address>
 <name>198.51.100.11/24</name>
 </address>
 </inet>
 </family>
 </unit>
 </interface>
 </interfaces>
 </groups>
 </configuration>
 </data>
</rpc-reply>

RELATED DOCUMENTATION

Request Configuration Data Using NETCONF | 400

Specify the Source for Configuration Information Requests Using NETCONF | 402

Specify the Scope of Configuration Information to Return in a NETCONF Response | 404

Request A Specific Configuration Object Using NETCONF | 416

Request Multiple Configuration Elements Simultaneously Using NETCONF | 424

423

Request Multiple Configuration Elements Simultaneously Using
NETCONF

In a NETCONF session with a device running Junos OS, a client application can request multiple
configuration elements of the same type or different types within a <get-config> tag element. The request
includes only one <filter> and <configuration> tag element (the NETCONF server returns an error if there
is more than one of each).

If two requested objects have the same parent hierarchy level, the client can either include both
requests within one parent tag element, or repeat the parent tag element for each request. For example,
at the [edit system] hierarchy level the client can request the list of configured services and the identifier
tag element for RADIUS servers in either of the following two ways:

<!-- both requests in one <system> tag element -->
<rpc>
 <get-config>
 <source>
 <!-- tag specifying the source configuration -->
 </source>
 <filter type="subtree">
 <configuration>
 <system>
 <services/>
 <radius-server>
 <name/>
 </radius-server>
 </system>
 </configuration>
 </filter>
 </get-config>
</rpc>
]]>]]>

<!-- separate <system> tag element for each element -->
<rpc>
 <get-config>
 <source>
 <!-- tag specifying the source configuration -->
 </source>
 <filter type="subtree">
 <configuration>

424

 <system>
 <services/>
 </system>
 <system>
 <radius-server>
 <name/>
 </radius-server>
 </system>
 </configuration>
 </filter>
 </get-config>
</rpc>
]]>]]>

The client can combine requests for any of the following types of information:

• "Request a Configuration Hierarchy Level or Container Object Without an Identifier Using
NETCONF" on page 407

• "Request All Configuration Objects of a Specified Type Using NETCONF" on page 410

• "Request Identifiers for Configuration Objects of a Specified Type Using NETCONF" on page 413

• "Request A Specific Configuration Object Using NETCONF" on page 416

• "Request Specific Child Tags for a Configuration Object Using NETCONF" on page 419

RELATED DOCUMENTATION

Request Configuration Data Using NETCONF | 400

Specify the Source for Configuration Information Requests Using NETCONF | 402

Specify the Scope of Configuration Information to Return in a NETCONF Response | 404

Retrieve a Previous (Rollback) Configuration Using NETCONF

SUMMARY

425

A NETCONF client application can use the <get-rollback-information> request tag to retrieve a
previously committed configuration.

Junos OS and Junos OS Evolved store a copy of the most recently committed configuration and up to 49
previous configurations, depending on the platform. When you successfully commit a configuration, the
device associates that configuration with a rollback index, where the most recently committed
configuration has rollback index 0. The rollback index for a committed configuration increments with
each commit. When you request a previously committed configuration, you can reference the
configuration by its current rollback index.

A NETCONF client application can retrieve a previously committed (rollback) configuration from a device
running Junos OS or a device running Junos OS Evolved. To retrieve the configuration using the rollback
index, the client application executes the <get-rollback-information> RPC with the <rollback> element. The
<rollback> element specifies the rollback index of the previous configuration to retrieve. The value can be
from 0 (zero, for the most recently committed configuration) through one less than the number of stored
previous configurations (maximum is 49). This operation is equivalent to the show system rollback
operational mode command.

To request Junos XML-tagged output, which is the default, the application either includes the
<format>xml</format> element or omits the <format> element.

<rpc>
 <get-rollback-information>
 <rollback>index-number</rollback>
 </get-rollback-information>
</rpc>

The NETCONF server encloses its response in <rpc-reply>, <rollback-information>, and <configuration>
elements. The <ok/> tag is a side effect of the implementation and does not affect the results.

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <rollback-information>
 <ok/>
 <configuration attributes>
 <!-- tag elements for complete previous configuration -->
 </configuration>
 </rollback-information>
</rpc-reply>

426

To request formatted ASCII output, the application includes the <format>text</format> element.

<rpc>
 <get-rollback-information>
 <rollback>index-number</rollback>
 <format>text</format>
 </get-rollback-information>
</rpc>

The NETCONF server encloses its response in <rpc-reply>, <rollback-information>, <configuration-information>,
and <configuration-output> elements.

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <rollback-information>
 <ok/>
 <configuration-information>
 <configuration-output>
 /* previous configuration in formatted ASCII*/
 </configuration-output>
 </configuration-information>
 </rollback-information>
</rpc-reply>

To request JSON format, the application includes the <format>json</format> element.

<rpc>
 <get-rollback-information>
 <rollback>index-number</rollback>
 <format>json</format>
 </get-rollback-information>
</rpc>

The NETCONF server encloses its response in <rpc-reply>, <rollback-information>, <configuration-information>,
and <json-output> elements.

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <rollback-information>
 <ok/>
 <configuration-information>
 <json-output>

427

 <!-- JSON data for the complete previous configuration -->
 </json-output>
 </configuration-information>
 </rollback-information>
</rpc-reply>

The following example requests Junos XML-tagged output for the rollback configuration that has an
index of 2. In actual output, the JUNOS-version variable has a value such as 24.4R1, which is the initial
version of Junos OS Release 24.4.

RELATED DOCUMENTATION

Compare Two Previous (Rollback) Configurations Using NETCONF | 429

Retrieve the Rescue Configuration Using NETCONF | 432

428

Compare Two Previous (Rollback) Configurations Using NETCONF

In a NETCONF session with a device running Junos OS, to compare the contents of two previously
committed (rollback) configurations, a client application emits the Junos XML <get-rollback-information>
tag element and its child <rollback> and <compare> tag elements in an <rpc> tag element. This operation is
equivalent to the show system rollback operational mode command with the compare option.

The <rollback> tag element specifies the index number of the configuration that is the basis for
comparison. The <compare> tag element specifies the index number of the configuration to compare with
the base configuration. Valid values in both tag elements range from 0 (zero, for the most recently
committed configuration) through 49:

<rpc>
 <get-rollback-information>
 <rollback>index-number</rollback>
 <compare>index-number</compare>
 </get-rollback-information>
</rpc>
]]>]]>

NOTE: The output corresponds more logically to the chronological order of changes if
the older configuration (the one with the higher index number) is the base configuration.
Its index number is enclosed in the <rollback> tag element and the index of the more
recent configuration is enclosed in the <compare> tag element.

The NETCONF server encloses its response in <rpc-reply>, <rollback-information>, <configuration-information>,
and <configuration-output> tag elements. The <ok/> tag is a side effect of the implementation and does not
affect the results.

The information in the <configuration-output> tag element is formatted ASCII and includes a banner line
(such as [edit interfaces]) for each hierarchy level at which the two configurations differ. Each line
between banner lines begins with either a plus sign (+) or a minus sign (–). The plus sign indicates that
adding the statement to the base configuration results in the second configuration, whereas a minus
sign means that removing the statement from the base configuration results in the second configuration.

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <rollback-information>
 <ok/>
 <configuration-information>

429

 <configuration-output>
 /* formatted ASCII representing the changes */
 </configuration-output>
 </configuration-information>
 </rollback-information>
</rpc-reply>
]]>]]>

The following example shows how to request a comparison of the rollback configurations that have
indexes of 20 and 4.

430

RELATED DOCUMENTATION

Retrieve a Previous (Rollback) Configuration Using NETCONF | 425

Retrieve the Rescue Configuration Using NETCONF | 432

431

Retrieve the Rescue Configuration Using NETCONF

SUMMARY

A NETCONF client application can use the <get-rescue-information> request tag to retrieve the existing
rescue configuration on a Junos device.

A rescue configuration allows you to define a known working configuration or a configuration with a
known state that you can restore at any time. You use the rescue configuration to revert to a known
configuration or as a last resort if the device configuration and the backup configuration files become
damaged beyond repair.

You must create a rescue configuration on the device before you can retrieve or use it. When you create
a rescue configuration, the device saves the most recently committed configuration as the rescue
configuration. You can create a rescue configuration using the following methods:

• In a NETCONF session, use the <request-save-rescue-configuration> request tag.

• In the Junos OS CLI, issue the request system configuration rescue save operational mode command.

A NETCONF client application can retrieve the rescue configuration from devices running Junos OS or
devices running Junos OS Evolved. A client application requests the rescue configuration by emitting an
<rpc> element and enclosing the Junos XML <get-rescue-information> request tag. The operation is
equivalent to the show system configuration rescue operational mode command.

<rpc>
 <get-rescue-information/>
</rpc>

By default the server returns the rescue configuration in Junos XML format. To explicitly request XML
output, the application can also include the <format>xml</format> element.

<rpc>
 <get-rescue-information>
 <format>xml</format>
 </get-rescue-information>
</rpc>

432

The NETCONF server encloses its response in <rpc-reply>, <rescue-information>, and <configuration> tag
elements. The <ok/> tag is a side effect of the implementation and does not affect the results.

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <rescue-information>
 <ok/>
 <configuration attributes
 <!-- tag elements representing the rescue configuration -->
 </configuration>
 </rescue-information>
</rpc-reply>

To request the rescue configuration in formatted ASCII output, the application includes the <format>
element with the value text.

<rpc>
 <get-rescue-information>
 <format>text</format>
 </get-rescue-information>
</rpc>

The NETCONF server encloses its response in <rpc-reply>, <rescue-information>, <configuration-information>,
and <configuration-output> tag elements.

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <rescue-information>
 <ok/>
 <configuration-information>
 <configuration-output>
 /* formatted ASCII for the rescue configuration*/
 </configuration-output>
 </configuration-information>
 </rescue-information>
</rpc-reply>

To request the rescue configuration in JSON format, the application includes the <format> element with
the value json.

<rpc>
 <get-rescue-information>

433

 <format>json</format>
 </get-rescue-information>
</rpc>

The NETCONF server encloses its response in <rpc-reply>, <rescue-information>, <configuration-information>,
and <json-output> elements.

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <rescue-information>
 <ok/>
 <configuration-information>
 <json-output>
 {
 "configuration" : {
 <!-- JSON data representing the rescue configuration -->
 }
 }
 </json-output>
 </configuration-information>
 </rescue-information>
</rpc-reply>

RELATED DOCUMENTATION

Retrieve a Previous (Rollback) Configuration Using NETCONF | 425

Compare Two Previous (Rollback) Configurations Using NETCONF | 429

Request an XML Schema for the Configuration Hierarchy Using
NETCONF

IN THIS SECTION

Request an XML Schema for the Configuration Hierarchy | 435

Create the junos.xsd File | 436

434

Example: Request an XML Schema | 436

The Junos configuration schema represents all configuration elements available in the version of the OS
that is running on a device. To determine the Junos OS or Junos OS Evolved version, emit the <get-
software-information> operational request tag. Client applications can use the schema simply to learn
which configuration statements are available in their version of Junos OS or Junos OS Evolved. Client
applications can also use the schema to validate the configuration on a device.

The schema does not indicate which elements are actually configured. Moreover, the schema does not
indicate that you can even configure an element on that type of device (some configuration statements
are available only on certain device types). To request the set of currently configured elements and their
settings, emit the <get-config> tag element instead.

Explaining the structure and notational conventions of the XML Schema language is beyond the scope
of this document. For information, see XML Schema Part 0: Primer. The primer provides a basic
introduction and lists the formal specifications where you can find detailed information.

Request an XML Schema for the Configuration Hierarchy

A NETCONF client application can request an XML Schema-language representation of the entire
configuration hierarchy on a device running Junos OS or a device running Junos OS Evolved. To request
the XML schema, a client application emits an <rpc> element and encloses the Junos XML <get-xnm-
information> element. The <get-xnm-information> element encloses the <type> and <namespace> child elements
with the indicated values.

<rpc>
 <get-xnm-information>
 <type>xml-schema</type>
 <namespace>junos-configuration</namespace>
 </get-xnm-information>
</rpc>

The NETCONF server encloses the XML schema in <rpc-reply> and <xsd:schema> tags.

<rpc-reply xmlns="URN" xmlns:junos="URL">
 <xsd:schema>
 <!-- tag elements for the Junos XML schema -->
 </xsd:schema>
</rpc-reply>

435

http://www.w3.org/TR/xmlschema-0/

Create the junos.xsd File

Most of the tag elements defined in the schema returned in the <xsd:schema> tag belong to the default
namespace for Junos OS configuration elements. However, at least one tag, <junos:comment>, belongs to a
different namespace: http://xml.juniper.net/junos/Junos-version/junos. By XML convention, a schema
describes only one namespace, so schema validators need to import information about any additional
namespaces before they can process the schema.

The <xsd:schema> element encloses the <xsd:import> tag, which references the junos.xsd file. This file
contains the required information about the junos namespace. For example, the following <xsd:import> tag
specifies the file for Junos OS Release 20.4R1:

<xsd:import schemaLocation="junos.xsd" namespace="http://xml.juniper.net/junos/20.4R1/junos"/>

To enable the schema validator to interpret the <xsd:import> tag, the junos.xsd file must exist. You must
manually create a file called junos.xsd in the directory where the Junos configuration schema resides.
Include the following text in the file. Do not use line breaks in the list of attributes in the opening
<xsd:schema> tag. Line breaks appear in the following example for legibility only. For the Junos-version
variable, substitute the release number of the Junos OS or Junos OS Evolved release running on the
device (for example, 20.4R1).

<?xml version="1.0" encoding="us-ascii"?>
<xsd:schema elementFormDefault="qualified" \
 attributeFormDefault="unqualified" \
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" \
 targetNamespace="http://xml.juniper.net/junos/Junos-version/junos">
 <xsd:element name="comment" type="xsd:string"/>
</xsd:schema>

NOTE: Schema validators might not be able to process the schema if they cannot locate
or open the junos.xsd file.

Whenever you change the version of Junos OS running on the device, remember to
update the Junos-version variable in the junos.xsd file to match.

Example: Request an XML Schema

The following examples request the Junos OS configuration schema. In the NETCONF server’s response,
the first <xsd:element> statement defines the <undocumented> Junos XML tag element. This element can be
enclosed in most other container tag elements defined in the schema (container tag elements are
defined as <xsd:complexType>).

436

The attributes in the opening tags of the server’s response appear on multiple lines for legibility only.
Also, in actual output the JUNOS-version variable is replaced by a value such as 20.4R1 for the initial
version of Junos OS Release 20.4.

Another <xsd:element> statement near the beginning of the schema defines the Junos XML <configuration>
element. It encloses the <xsd:element> statement that defines the <system> element, which corresponds to
the [edit system] hierarchy level. For brevity, the output omits the statements corresponding to other
hierarchy levels.

437

RELATED DOCUMENTATION

Request Configuration Data Using NETCONF | 400

438

5
PART

NETCONF Utilities

NETCONF Perl Client | 440

Develop NETCONF Perl Client Applications | 444

CHAPTER 15

NETCONF Perl Client

IN THIS CHAPTER

Understanding the NETCONF Perl Client and Sample Scripts | 440

Install the NETCONF Perl Client | 443

Understanding the NETCONF Perl Client and Sample Scripts

SUMMARY

Administrators familiar with Perl can use the
NETCONF Perl client API to create Perl applications
that manage Junos devices using NETCONF.

IN THIS SECTION

NETCONF Perl Client Modules | 440

Sample Scripts | 442

Devices running Junos OS and devices running Junos OS Evolved support the NETCONF XML
management protocol. The NETCONF protocol enables client applications to request information and
change the configuration on network devices. The protocol uses an Extensible Markup Language (XML)-
based data encoding for the configuration data and remote procedure calls (RPCs). The Juniper
Networks NETCONF Perl API enables programmers familiar with the Perl programming language to
create their own Perl applications to manage Junos devices using NETCONF.

The NETCONF Perl client is hosted on GitHub and CPAN. It is release-independent, and it can manage
devices running any version of Junos OS or Junos Evolved. The following sections discuss the NETCONF
Perl client modules and sample scripts.

NETCONF Perl Client Modules

Table 21 on page 441 summarizes the modules in the NETCONF Perl library. The Net::Netconf::Manager
module provides an object-oriented interface for communicating with the NETCONF server on Junos
devices. The module enables you to easily connect to the device, establish a NETCONF session, and
execute operational and configuration requests. Client applications only directly invoke the

440

Net::Netconf::Manager object. When the client application creates a Manager object, it supplies the device
name and the login name to use when accessing the device. The login name determines the client
application's access level on the device.

Table 21: NETCONF Perl Modules

Module Description

Access Creates an Access object based on the access method type specified when instantiating the object.
The module is responsible for calling the connect() method to establish a session with the NETCONF
server at the destination host and for exchanging hello packets with the server after the session is
established.

Constants Declares all NETCONF constants.

Device Implements an object-oriented interface to the NETCONF API supported by devices running Junos
OS and devices running Junos OS Evolved. Objects of this class represent the local side of the
connection to the device, which communicates to the client using the NETCONF protocol.

EzEditXML Facilitates the development of XML documents for both operational and configuration requests.

The module uses XML::LibXML as a base library, but provides Junos OS CLI-specific features to
manipulate the configuration, corresponding to the CLI commands: delete, activate, deactivate,
insert, and rename.

Manager Instantiates and returns a NETCONF or Junos XML Device object depending on which server is
requested.

SAXHandler SAX-based parser that parses responses from the NETCONF server.

SSH Provides SSH access to a Net::Netconf::Access instance, and manages the SSH connection with the
destination host. The underlying mechanism for managing the SSH connection is based on
OpenSSH.

Trace Provides tracing levels and enables tracing based on the requested debug level.

Client applications can also leverage Perl modules in the public domain to ease the development of
NETCONF Perl client applications. Because NETCONF uses XML-based data encoding, client
applications can use the many Perl modules that manipulate XML data.

441

You can use the NETCONF Perl client to create Perl applications that connect to a device, establish a
NETCONF session, and execute operations. The communication between the client and the NETCONF
server on the device through the NETCONF Perl API involves the following steps:

• Establishing a NETCONF session over SSHv2 between the client application and the NETCONF
server on the Junos device.

• Creating RPCs corresponding to requests and sending the requests to the NETCONF server.

• Receiving and processing the RPC replies from the NETCONF server.

Sample Scripts

The NETCONF Perl distribution includes an examples directory with the following sample scripts that
illustrate how to use the modules to perform various functions. For instructions on running the scripts,
see the README file in the NETCONF Perl GitHub repository at https://github.com/Juniper/netconf-
perl.

• diagnose_bgp/diagnose_bgp.pl—Illustrates how to monitor the status of the device and diagnose
problems. The script extracts and displays information about a device's unestablished BGP peers
from the full set of BGP configuration data.

• get_chassis_inventory/get_chassis_inventory.pl—Illustrates how to use a predefined query to
request information from a device. The sample script invokes the get_chassis_inventory query with the
detail option. The query requests the same information as returned by the Junos XML <get-chassis-
inventory><detail/></get-chassis-inventory> request or the CLI operational mode command
show chassis hardware detail.

• edit_configuration/edit_configuration.pl—Illustrates how to configure the device by loading a file
that contains Junos XML-formatted configuration data. The distribution includes a sample
configuration file, config.xml. However, you can specify a different configuration file on the
command line when you invoke the script.

RELATED DOCUMENTATION

Install the NETCONF Perl Client | 443

Write NETCONF Perl Client Applications | 444

442

https://github.com/Juniper/netconf-perl
https://github.com/Juniper/netconf-perl

Install the NETCONF Perl Client

The Juniper Networks NETCONF Perl API enables programmers familiar with the Perl programming
language to create their own Perl applications to manage and configure Junos devices. The NETCONF
Perl client, which is available on GitHub and through the Comprehensive Perl Archive Network (CPAN),
is independent of the Junos OS release running on the managed devices. You can use the same client
installation to manage devices running any Junos OS release.

The NETCONF Perl distribution uses the same directory structure for Perl modules as CPAN. The
distribution includes a lib directory for the NET::Netconf module and its supporting files, and an examples
directory for sample scripts. You install the NETCONF Perl distribution on a device running a Unix-like
OS. After you install the software, you can create Perl applications to connect to a device running Junos
OS, establish a NETCONF session, and execute operations.

For information about installing the NETCONF Perl API, follow the instructions in the README file
located in the NETCONF Perl GitHub repository at https://github.com/Juniper/netconf-perl.

RELATED DOCUMENTATION

Understanding the NETCONF Perl Client and Sample Scripts | 440

443

http://www.cpan.org
https://github.com/Juniper/netconf-perl

CHAPTER 16

Develop NETCONF Perl Client Applications

IN THIS CHAPTER

Write NETCONF Perl Client Applications | 444

Import Perl Modules and Declare Constants in NETCONF Perl Client Applications | 446

Connect to the NETCONF Server in Perl Client Applications | 447

Collect Parameters Interactively in NETCONF Perl Client Applications | 450

Submit a Request to the NETCONF Server in Perl Client Applications | 454

Example: Request an Inventory of Hardware Components Using a NETCONF Perl Client Application | 460

Example: Change the Configuration Using a NETCONF Perl Client Application | 461

Parse the NETCONF Server Response in Perl Client Applications | 466

Close the Connection to the NETCONF Server in Perl Client Applications | 467

Write NETCONF Perl Client Applications

The Juniper Networks NETCONF Perl client enables programmers familiar with the Perl programming
language to create their own Perl applications to manage and configure Junos devices. The
Net::Netconf::Manager module provides a release-independent object-oriented interface for communicating
with a NETCONF server on managed devices. The module enables you to connect to a device, establish
a NETCONF session, and execute operational and configuration requests.

The following outline lists the basic tasks involved in writing a NETCONF Perl client application that
manages Junos devices. Each task provides a link to more detailed information about performing that
task.

1. Import Perl Modules and Declare Constants—"Import Perl Modules and Declare Constants in
NETCONF Perl Client Applications" on page 446

2. Connect to the NETCONF Server—"Connect to the NETCONF Server in Perl Client Applications" on
page 447 and "Collect Parameters Interactively in NETCONF Perl Client Applications" on page 450

3. Submit Requests to the NETCONF Server—"Submit a Request to the NETCONF Server in Perl Client
Applications" on page 454

444

4. Parse and Format the Response from the NETCONF Server—"Parse the NETCONF Server Response
in Perl Client Applications" on page 466

5. Close the Connection to the NETCONF Server—"Close the Connection to the NETCONF Server in
Perl Client Applications" on page 467

The tasks are illustrated in the following example, which uses the Net::Netconf::Manager object to request
information from a device running Junos OS. The example presents the minimum code required to
execute a simple query.

1. Import required modules and declare constants.

use strict;
use Carp;
use Net::Netconf::Manager;

2. Create a Manager object and connect to the device.

my %deviceinfo = (
 access => "ssh",
 login => "johndoe",
 password => "password123",
 hostname => "Router1"
);
my $jnx = new Net::Netconf::Manager(%deviceinfo);

unless (ref $jnx) {
 croak "ERROR: $deviceinfo{hostname}: failed to connect.\n";
}

3. Construct the query and send it to the NETCONF server.

my $query = "get_chassis_inventory";
my $res = $jnx->$query();

4. Process the response as needed.

print "Server response: \n $jnx->{'server_response'} \n";

445

5. Disconnect from the NETCONF server.

$jnx->disconnect();

RELATED DOCUMENTATION

Understanding the NETCONF Perl Client and Sample Scripts | 440

Import Perl Modules and Declare Constants in NETCONF Perl Client
Applications

When creating a NETCONF Perl client application, include the following statement at the start of the
application. This statement imports the functions provided by the Net::Netconf::Manager object, which the
application uses to connect to the NETCONF server on a device.

use Net::Netconf::Manager;

Include statements to import other Perl modules as appropriate for your application. For example,
several of the sample scripts included in the NETCONF Perl distribution import the following standard
Perl modules, which include functions that handle input from the command line:

• Carp—Includes functions for user error warnings.

• Getopt::Std—Includes functions for reading in keyed options from the command line.

• Term::ReadKey—Includes functions for controlling terminal modes, for example suppressing onscreen
echo of a typed string such as a password.

If the application uses constants, declare their values at this point. For example, the sample script
diagnose_bgp.pl includes the following statement to declare a constant for the access method:

use constant VALID_ACCESS_METHOD => 'ssh';

446

The edit_configuration.pl sample script includes the following statements to declare constants for
reporting return codes and the status of the configuration database:

use constant REPORT_SUCCESS => 1;
use constant REPORT_FAILURE => 0;
use constant STATE_CONNECTED => 1;
use constant STATE_LOCKED => 2;
use constant STATE_CONFIG_LOADED => 3;

RELATED DOCUMENTATION

Write NETCONF Perl Client Applications | 444

Connect to the NETCONF Server in Perl Client Applications | 447

Connect to the NETCONF Server in Perl Client Applications

IN THIS SECTION

Satisfy Protocol Prerequisites | 447

Group Requests | 448

Obtain and Record Parameters Required by the NET::Netconf::Manager Object | 448

Obtaining Application-Specific Parameters | 449

Establishing the Connection | 449

The following sections explain how to use the NET::Netconf::Manager object in a Perl client application to
connect to the NETCONF server on a device running Junos OS:

Satisfy Protocol Prerequisites

The NETCONF server supports several access protocols. For each connection to the NETCONF server
on a device running Junos OS, the application must specify the protocol it is using. Perl client
applications can communicate with the NETCONF server via SSH only.

447

Before your application can run, you must satisfy the prerequisites for SSH. This involves enabling
NETCONF on the device by configuring the set system services netconf ssh statement.

Group Requests

Establishing a connection to the NETCONF server on a device running Junos OS is one of the more
time-intensive and resource-intensive functions performed by an application. If the application sends
multiple requests to a device, it makes sense to send all of them within the context of one connection. If
your application sends the same requests to multiple devices, you can structure the script to iterate
through either the set of devices or the set of requests. Keep in mind, however, that your application can
effectively send only one request to one NETCONF server at a time. This is because the
NET::Netconf::Manager object does not return control to the application until it receives the closing </rpc-
reply> tag that represents the end of the NETCONF server's response to the current request.

Obtain and Record Parameters Required by the NET::Netconf::Manager Object

The NET::Netconf::Manager object takes the following required parameters, specified as keys in a Perl hash:

• access—The access protocol to use when communicating with the NETCONF server. Before the
application runs, satisfy the SSH prerequisites.

• hostname—The name of the device to which to connect. For best results, specify either a fully-qualified
hostname or an IP address.

• login—The username under which to establish the connection to the NETCONF server and issue
requests. The username must already exist on the specified device and have the permission bits
necessary for making the requests invoked by the application.

• password—The password corresponding to the username.

The sample scripts in the NETCONF Perl distribution record the parameters in a Perl hash called
%deviceinfo, declared as follows:

my %deviceinfo = (
 'access' => $access,
 'login' => $login,
 'password' => $password,
 'hostname' => $hostname,
);

The sample scripts included in the NETCONF Perl client distribution obtain the parameters from options
entered on the command line by a user. For more information about collecting parameter values
interactively, see "Collect Parameters Interactively in NETCONF Perl Client Applications" on page 450.

448

Your application can also obtain values for the parameters from a file or database, or you can hardcode
one or more of the parameters into the application code if they are constant.

Obtaining Application-Specific Parameters

In addition to the parameters required by the NET::Netconf::Manager object, applications might need to
define other parameters, such as the name of the file to which to write the data returned by the
NETCONF server in response to a request.

As with the parameters required by the NET::Netconf::Manager object, the client application can hardcode
the values in the application code, obtain them from a file, or obtain them interactively. The sample
scripts obtain values for these parameters from command-line options in the same manner as they
obtain the parameters required by the NET::Netconf::Manager object. Several examples follow.

The following line enables a debugging trace if the user includes the -d command-line option:

my $debug_level = $opt{'d'};

The following line sets the $outputfile variable to the value specified by the -o command-line option. It
names the local file to which the NETCONF server's response is written. If the -o option is not provided,
the variable is set to the empty string.

my $outputfile = $opt{'o'} || "";

Establishing the Connection

After obtaining values for the parameters required for the NET::Netconf::Manager object, each sample script
records them in the %deviceinfo hash.

my %deviceinfo = (
 'access' => $access,
 'login' => $login,
 'password' => $password,
 'hostname' => $hostname,
);

449

The script then invokes the NETCONF-specific new subroutine to create a NET::Netconf::Manager object and
establish a connection to the specified routing, switching, or security platform. If the connection attempt
fails (as tested by the ref operator), the script exits.

my $jnx = new Net::Netconf::Manager(%deviceinfo);
unless (ref $jnx) {
 croak "ERROR: $deviceinfo{hostname}: failed to connect.\n";
}

RELATED DOCUMENTATION

Write NETCONF Perl Client Applications | 444

Import Perl Modules and Declare Constants in NETCONF Perl Client Applications | 446

Collect Parameters Interactively in NETCONF Perl Client Applications | 450

Submit a Request to the NETCONF Server in Perl Client Applications | 454

Close the Connection to the NETCONF Server in Perl Client Applications | 467

Collect Parameters Interactively in NETCONF Perl Client Applications

In a NETCONF Perl client application, a script can interactively obtain the parameters required by the
NET::Netconf::Manager object from the command-line.

The NETCONF Perl distribution includes several sample Perl scripts to perform various functions on
Junos devices. Each sample script obtains the parameters required by the NET::Netconf::Manager object
from command-line options provided by the user who invokes the script. The scripts use the getopts
function defined in the Getopt::Std Perl module to read the options from the command line and then
record the options in a Perl hash called %opt. (Scripts used in production environments probably do not
obtain parameters interactively, so this section is important mostly for understanding the sample
scripts.)

The following example references the get_chassis_inventory.pl sample script from the NETCONF Perl
GitHub repository at https://github.com/Juniper/netconf-perl/tree/master/examples/
get_chassis_inventory.

The first parameter to the getopts function defines the acceptable options, which vary depending on the
application. A colon after the option letter indicates that it takes an argument.

450

https://github.com/Juniper/netconf-perl/tree/master/examples/get_chassis_inventory
https://github.com/Juniper/netconf-perl/tree/master/examples/get_chassis_inventory

The second parameter, \%opt, specifies that the values are recorded in the %opt hash. If the user does not
provide at least one option, provides an invalid option, or provides the -h option, the script invokes the
output_usage subroutine, which prints a usage message to the screen.

my %opt;
getopts('l:p:d:f:m:o:h', \%opt) || output_usage();
output_usage() if $opt{'h'};

The following code defines the output_usage subroutine for the get_chassis_inventory.pl sample script.
The contents of the my $usage definition and the Where and Options sections are specific to the script, and
differ for each application.

sub output_usage
{
 my $usage = "Usage: $0 [options] <target>

Where:

 <target> The hostname of the target device.

Options:

 -l <login> A login name accepted by the target device.
 -p <password> The password for the login name.
 -m <access> Access method. The only supported method is 'ssh'.
 -f <xmlfile> The name of the XML file to print server response to.
 Default: chassis_inventory.xml
 -o <filename> output is written to this file instead of standard output.
 -d <level> Debug level [1-6]\n\n";

 croak $usage;
}

The get_chassis_inventory.pl script includes the following code to obtain values from the command line
for the parameters required by the NET::Netconf::Manager object. A detailed discussion of the various
functional units follows the complete code sample.

Get the hostname
my $hostname = shift || output_usage();

451

Get the access method, can be ssh only
my $access = $opt{'m'} || 'ssh';
use constant VALID_ACCESS_METHOD => 'ssh';
output_usage() unless (VALID_ACCESS_METHOD =~ /$access/);

Check for login name. If not provided, prompt for it
my $login = "";
if ($opt{'l'}) {
 $login = $opt{'l'};
} else {
 print STDERR "login: ";
 $login = ReadLine 0;
 chomp $login;
}

Check for password. If not provided, prompt for it
my $password = "";
if ($opt{'p'}) {
 $password = $opt{'p'};
} else {
 print STDERR "password: ";
 ReadMode 'noecho';
 $password = ReadLine 0;
 chomp $password;
 ReadMode 'normal';
 print STDERR "\n";
}

In the first line of the preceding code sample, the script uses the Perl shift function to read the
hostname from the end of the command line. If the hostname is missing, the script invokes the
output_usage subroutine to print the usage message, which specifies that a hostname is required.

my $hostname = shift || output_usage();

452

The script next determines which access protocol to use, setting the $access variable to the value of the -
m command-line option. If the specified value does not match the only valid value defined by the
VALID_ACCESSES constant, the script invokes the output_usage subroutine to print the usage message.

my $access = $opt{'m'} || 'ssh';
use constant VALID_ACCESS_METHOD => 'ssh';
output_usage() unless (VALID_ACCESS_METHOD =~ /$access/);

The script then determines the username, setting the $login variable to the value of the -l command-line
option. If the option is not provided, the script prompts for it and uses the ReadLine function (defined in
the standard Perl Term::ReadKey module) to read it from the command line.

my $login = "";
if ($opt{'l'}) {
 $login = $opt{'l'};
} else {
 print STDERR "login: ";
 $login = ReadLine 0;
 chomp $login;
}

The script finally determines the password for the username, setting the $password variable to the value of
the -p command-line option. If the option is not provided, the script prompts for it. It uses the ReadMode
function (defined in the standard Perl Term::ReadKey module) twice: first to prevent the password from
echoing visibly on the screen, and then to return the shell to normal (echo) mode after it reads the
password.

my $password = "";
if ($opt{'p'}) {
 $password = $opt{'p'};
} else {
 print STDERR "password: ";
 ReadMode 'noecho';
 $password = ReadLine 0;
 chomp $password;
 ReadMode 'normal';
 print STDERR "\n";
}

453

RELATED DOCUMENTATION

Write NETCONF Perl Client Applications | 444

Submit a Request to the NETCONF Server in Perl Client Applications

IN THIS SECTION

Mapping Junos OS Commands and NETCONF Operations to Perl Methods | 454

Providing Method Options | 455

Submitting a Request | 458

In a NETCONF Perl client application, after establishing a connection to the NETCONF server, the client
application can execute operational or configuration commands on a device running Junos OS to
request operational information or change the configuration. The NETCONF Perl API supports a set of
methods that correspond to CLI operational mode commands and NETCONF configuration operations.
To execute a command, the client application invokes the Perl method corresponding to that command.

See the following sections for more information:

Mapping Junos OS Commands and NETCONF Operations to Perl Methods

Most operational commands have a corresponding Junos XML request tag. You can find the Junos XML
request tags for operational commands by using the Junos XML API Explorer. You can also display the
Junos XML request tags in the CLI. Once you obtain the request tag, you can map it to the
corresponding Perl method name.

To display the Junos XML request tags for a command in the CLI, issue the command and include the |
display xml rpc option. The following example displays the request tag for the show route command:

user@host> show route | display xml rpc
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/15.1R1/junos">
 <rpc>
 <get-route-information>
 </get-route-information>
 </rpc>
</rpc-reply>

454

https://apps.juniper.net/xmlapi/operational/

You can map the request tag for an operational command to a Perl method name. To derive the method
name, replace any hyphens in the request tag with underscores, and remove the enclosing angle
brackets. For example, the <get-route-information> request tag maps to the get_route_information method
name.

Similarly, NETCONF protocol operations map to Perl method names in the same manner. For example,
the <edit-config> operation maps to the edit_config method name.

Providing Method Options

Perl methods can have one or more options. The following section describes the notation that an
application uses to define a method’s options in a NETCONF Perl client application.

• A method without options is defined as $NO_ARGS, as in the following entry for the
get_autoinstallation_status_information method:

Method : get_autoinstallation_status_information
Returns: <autoinstallation-status-information>
Command: "show system autoinstallation status"
get_autoinstallation_status_information => $NO_ARGS,

To invoke a method without options, the client application follows the method name with an empty
set of parentheses, as in the following example:

$jnx->get_autoinstallation_status_information();

• A fixed-form option is defined as type $TOGGLE. In the following example, the
get_ancp_neighbor_information method has two fixed-form options, brief and detail:

Method : get_ancp_neighbor_information
Returns: <ancp-neighbor-information>
Command: "show ancp neighbor"
get_ancp_neighbor_information => {
 brief => $TOGGLE,
 detail => $TOGGLE,
}

455

To include a fixed-form option when invoking a method, set the option equal to the string 'True', as in
the following example:

$jnx->get_ancp_neighbor_information(brief => 'True');

NOTE: When using the release-dependent NETCONF Perl distribution, to include a
fixed-form option when invoking a method, set the option equal to the value 1 (one).

• An option with a variable value is defined as type $STRING. In the following example, the
get_cos_drop_profile_information method takes the profile_name argument:

Method : get_cos_drop_profile_information
Returns: <cos-drop-profile-information>
Command: "show class-of-service drop-profile"
get_cos_drop_profile_information => {
 profile_name => $STRING,
},

To include a variable value when invoking a method, enclose the value in single quotes, as in the
following example:

$jnx->get_cos_drop_profile_information(profile_name => 'user-drop-profile');

• A set of configuration statements or corresponding tag elements is defined as type $DOM. In the
following example, the get_config method takes a set of configuration statements (along with two
attributes):

'get_config' => {
 'source' => $DOM_STRING,
 'source_url' => $URL_STRING,
 'filter' => $DOM
},

A DOM object is XML code:

my $xml_string = "
<filter type=\"subtree\">

456

<configuration>
 <protocols>
 <bgp></bgp>
 </protocols>
</configuration>
</filter>
";

my %queryargs = (
 'source' => "running",
 'filter' => $xml_string,
);

This generates the following RPC request:

<rpc message-id='1'>
<get-config>
 <source> <running/> </source>
 <filter type="subtree">
 <configuration>
 <protocols>
 <bgp></bgp>
 </protocols>
 </configuration>
 </filter>
</get-config>
</rpc>

A method can have a combination of fixed-form options, options with variable values, and a set of
configuration statements. For example, the get_forwarding_table_information method has four fixed-form
options and five options with variable values:

Method : get_forwarding_table_information
Returns: <forwarding-table-information>
Command: "show route forwarding-table"
get_forwarding_table_information => {
 detail => $TOGGLE,
 extensive => $TOGGLE,
 multicast => $TOGGLE,
 family => $STRING,
 vpn => $STRING,

457

 summary => $TOGGLE,
 matching => $STRING,
 destination => $STRING,
 label => $STRING,
},

Submitting a Request

The following code illustrates the recommended way to send a configuration request to the NETCONF
server and shows how to handle error conditions. The $jnx variable is defined to be a NET::Netconf::Manager
object. The sample code, which is taken from the edit_configuration.pl sample script, locks the
candidate configuration, loads the configuration changes, commits the changes, and then unlocks the
configuration database and disconnects from the NETCONF server. You can view the complete
edit_configuration.pl script in the examples/edit_configuration directory in the NETCONF Perl GitHub
repository at https://github.com/Juniper/netconf-perl.

my $res; # Netconf server response

connect to the Netconf server
my $jnx = new Net::Netconf::Manager(%deviceinfo);
unless (ref $jnx) {
 croak "ERROR: $deviceinfo{hostname}: failed to connect.\n";
}

Lock the configuration database before making any changes
print "Locking configuration database ...\n";
my %queryargs = ('target' => 'candidate');
$res = $jnx->lock_config(%queryargs);

See if you got an error
if ($jnx->has_error) {
 print "ERROR: in processing request \n $jnx->{'request'} \n";
 graceful_shutdown($jnx, STATE_CONNECTED, REPORT_FAILURE);
}

Load the configuration from the given XML file
print "Loading configuration from $xmlfile \n";
if (! -f $xmlfile) {
 print "ERROR: Cannot load configuration in $xmlfile\n";
 graceful_shutdown($jnx, STATE_LOCKED, REPORT_FAILURE);
}

458

https://github.com/Juniper/netconf-perl

Read in the XML file
my $config = read_xml_file($xmlfile);
print "\n\n$config \n\n";

%queryargs = (
 'target' => 'candidate'
);

If we are in text mode, use config-text arg with wrapped
configuration-text, otherwise use config arg with raw
XML
if ($opt{t}) {
 $queryargs{'config-text'} = '<configuration-text>' . $config
 . '</configuration-text>';
} else {
 $queryargs{'config'} = $config;
}

$res = $jnx->edit_config(%queryargs);

See if you got an error
if ($jnx->has_error) {
 print "ERROR: in processing request \n $jnx->{'request'} \n";
 # Get the error
 my $error = $jnx->get_first_error();
 get_error_info(%$error);
 # Disconnect
 graceful_shutdown($jnx, STATE_LOCKED, REPORT_FAILURE);
}

Commit the changes
print "Committing the <edit-config> changes ...\n";
$jnx->commit();
if ($jnx->has_error) {
 print "ERROR: Failed to commit the configuration.\n";
 graceful_shutdown($jnx, STATE_CONFIG_LOADED, REPORT_FAILURE);
}

Unlock the configuration database and
disconnect from the Netconf server
print "Disconnecting from the Netconf server ...\n";
graceful_shutdown($jnx, STATE_LOCKED, REPORT_SUCCESS);

459

RELATED DOCUMENTATION

Write NETCONF Perl Client Applications | 444

Example: Request an Inventory of Hardware Components Using a NETCONF Perl Client Application |
 460

Example: Change the Configuration Using a NETCONF Perl Client Application | 461

Parse the NETCONF Server Response in Perl Client Applications | 466

Example: Request an Inventory of Hardware Components Using a
NETCONF Perl Client Application

The NETCONF Perl distribution includes several sample Perl scripts to perform various functions on
devices running Junos OS. The get_chassis_inventory.pl script retrieves and displays a detailed
inventory of the hardware components installed in a routing, switching, or security platform. It is
equivalent to issuing the show chassis hardware detail operational mode command in the Junos OS CLI.
This topic describes the portion of the script that executes the query.

After establishing a connection to the NETCONF server, the script sends the get_chassis_inventory request
and includes the detail argument.

my $query = "get_chassis_inventory";
my %queryargs = ('detail' => 'True');

NOTE: When using the release-independent NETCONF Perl distribution, to include a
fixed-form option when invoking a method, set the option equal to the value 1 (one).

The script sends the query and assigns the return value to the $res variable. The script first prints the
RPC request and response to standard output, then it prints the response to the specified file. The script
then checks for and prints any error encountered.

my $res; # Netconf server response

send the command and get the server response
my $res = $jnx->$query(%queryargs);
print "Server request: \n $jnx->{'request'}\n Server response: \n $jnx->{'server_response'} \n";

print the server response into xmlfile
print_response($xmlfile, $jnx->{'server_response'});

460

See if you got an error
if ($jnx->has_error) {
 croak "ERROR: in processing request \n $jnx->{'request'} \n";
} else {
 print "Server Response:";
 print "$res";
}

Disconnect from the Netconf server
$jnx->disconnect();

RELATED DOCUMENTATION

Write NETCONF Perl Client Applications | 444

Submit a Request to the NETCONF Server in Perl Client Applications | 454

Example: Change the Configuration Using a NETCONF Perl Client
Application

IN THIS SECTION

Handling Error Conditions | 462

Locking the Configuration | 463

Reading In the Configuration Data | 463

Editing the Configuration Data | 465

Committing the Configuration | 465

The NETCONF Perl distribution includes several sample Perl scripts to perform various functions on
devices running Junos OS. The edit_configuration.pl script locks, modifies, uploads, and commits the
configuration on a device. It uses the basic structure for sending requests but also defines a
graceful_shutdown subroutine that handles errors. The following sections describe the different functions
that the script performs:

461

Handling Error Conditions

The graceful_shutdown subroutine in the edit_configuration.pl script handles errors encountered in the
NETCONF session. It employs the following additional constants:

query execution status constants
use constant REPORT_SUCCESS => 1;
use constant REPORT_FAILURE => 0;
use constant STATE_CONNECTED => 1;
use constant STATE_LOCKED => 2;
use constant STATE_CONFIG_LOADED => 3;

The first two if statements in the subroutine refer to the STATE_CONFIG_LOADED and STATE_LOCKED conditions,
which apply specifically to loading a configuration in the edit_configuration.pl script.

sub graceful_shutdown
{
 my ($jnx, $state, $success) = @_;
 if ($state >= STATE_CONFIG_LOADED) {
 # We have already done an <edit-config> operation
 # - Discard the changes
 print "Discarding the changes made ...\n";
 $jnx->discard_changes();
 if ($jnx->has_error) {
 print "Unable to discard <edit-config> changes\n";
 }
 }

 if ($state >= STATE_LOCKED) {
 # Unlock the configuration database
 $jnx->unlock_config();
 if ($jnx->has_error) {
 print "Unable to unlock the candidate configuration\n";
 }
 }

 if ($state >= STATE_CONNECTED) {
 # Disconnect from the Netconf server
 $jnx->disconnect();
 }

 if ($success) {

462

 print "REQUEST succeeded !!\n";
 } else {
 print "REQUEST failed !!\n";
 }

 exit;
}

Locking the Configuration

The main section of the edit_configuration.pl script begins by establishing a connection to a NETCONF
server. It then invokes the lock_configuration method to lock the configuration database. If an error
occurs, the script invokes the graceful_shutdown subroutine described in "Handling Error Conditions " on
page 462.

print "Locking configuration database ...\n";
my %queryargs = ('target' => 'candidate');
$res = $jnx->lock_config(%queryargs);
See if you got an error
if ($jnx->has_error) {
 print "ERROR: in processing request \n $jnx->{'request'} \n";
 graceful_shutdown($jnx, STATE_CONNECTED, REPORT_FAILURE);
}

Reading In the Configuration Data

In the following code sample, the edit_configuration.pl script reads in and parses a file that contains
Junos XML configuration tag elements or ASCII-formatted statements. A detailed discussion of the
functional subsections follows the complete code sample.

Load the configuration from the given XML file
print "Loading configuration from $xmlfile \n";
if (! -f $xmlfile) {
 print "ERROR: Cannot load configuration in $xmlfile\n";
 graceful_shutdown($jnx, STATE_LOCKED, REPORT_FAILURE);
}

Read in the XML file
my $config = read_xml_file($xmlfile);
print "\n\n$config \n\n";

463

%queryargs = (
 'target' => 'candidate'
);

If we are in text mode, use config-text arg with wrapped
configuration-text, otherwise use config arg with raw XML
if ($opt{t}) {
 $queryargs{'config-text'} = '<configuration text> . $config . </configuration-text>';
} else {
 $queryargs{'config'} = $config;

The first subsection of the preceding code sample verifies the existence of the file containing
configuration data. The name of the file was previously obtained from the command line and assigned to
the $xmlfile variable. If the file does not exist, the script invokes the graceful_shutdown subroutine.

print "Loading configuration from $xmlfile \n";
if (! -f $xmlfile) {
 print "ERROR: Cannot load configuration in $xmlfile\n";
 graceful_shutdown($jnx, STATE_LOCKED, REPORT_FAILURE);
}

The script then invokes the read_xml_file subroutine, which opens the file for reading and assigns its
contents to the $config variable. The queryargs key target is set to the value candidate. When the script calls
the edit_configuration method, the candidate configuration is edited.

Read in the XML file
my $config = read_xml_file($xmlfile);
print "\n\n$config \n\n";

%queryargs = (
 'target' => 'candidate'
);

If the -t command-line option was included when the edit_configuration.pl script was invoked, the file
referenced by the $xmlfile variable should contain ASCII-formatted configuration statements like those
returned by the CLI configuration-mode show command. If the configuration statements are in ASCII-
formatted text, the script encloses the configuration stored in the $config variable within the
configuration-text tag element and stores the result in the value associated with the queryargs hash key
config-text.

464

If the -t command-line option was not included when the edit_configuration.pl script was invoked, the
file referenced by the $xmlfile variable contains Junos XML configuration tag elements. In this case, the
script stores just the $config variable as the value associated with the queryargs hash key config.

if ($opt{t}) {
 $queryargs{'config-text'} = '<configuration text> . $config . </configuration-text>';
} else {
 $queryargs{'config'} = $config;

Editing the Configuration Data

The script invokes the edit_config method to load the configuration changes onto the device. It invokes
the graceful_shutdown subroutine if the response from the NETCONF server has errors.

$res = $jnx->edit_config(%queryargs);

See if you got an error
if ($jnx->has_error) {
 print "ERROR: in processing request \n $jnx->{'request'} \n";
 # Get the error
 my $error = $jnx->get_first_error();
 get_error_info(%$error);
 # Disconnect
 graceful_shutdown($jnx, STATE_LOCKED, REPORT_FAILURE);

Committing the Configuration

If there are no errors up to this point, the script invokes the commit method to commit the configuration
on the device and make it the active configuration.

Commit the changes
print "Committing the <edit-config> changes ...\n";
$jnx->commit();
if ($jnx->has_error) {
 print "ERROR: Failed to commit the configuration.\n";
 graceful_shutdown($jnx, STATE_CONFIG_LOADED, REPORT_FAILURE);
}

465

RELATED DOCUMENTATION

Write NETCONF Perl Client Applications | 444

Submit a Request to the NETCONF Server in Perl Client Applications | 454

Parse the NETCONF Server Response in Perl Client Applications

After establishing a connection to a NETCONF server, a NETCONF Perl client application can submit
one or more requests by invoking Perl methods. The NETCONF server returns the appropriate
information in an <rpc-reply> element. There are two ways of parsing the NETCONF server’s response:

• By using functions of XML::LibXML::DOM

• By using functions of XML::LibXML::XPATHContext

For example, consider the following reply from a NETCONF server:

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:junos="http://xml.juniper.net/
junos/20.1R1/junos" message-id='3'>
<chassis-inventory xmlns="http://xml.juniper.net/junos/20.1R1/junos-chassis">
<chassis style="inventory">
<name>Chassis</name>
<serial-number>G1234</serial-number>
<description>MX960</description>
...
</chassis>
</chassis-inventory>
</rpc-reply>

Suppose the user wants to parse the response and retrieve the value of the <serial-number> element.

The following code uses XML::LibXMl::DOM to retrieve the value. The example stores the response in a
variable and calls methods of DOM to parse the response.

my $query = "get_chassis_inventory";
my $res = $jnx->$query();

my $rpc = $jnx->get_dom();
my $serial = $rpc->getElementsByTagName("serial-number")->item(0)->getFirstChild->getData;

466

print ("\nserial number: $serial");

The following code uses XML::LibXML::XPATHContext to retrieve the value. The example stores the response
in a variable and calls XPathContext methods to retrieve the value. The local-name() function returns the
element name without the namespace. The XPATH expression appears on multiple lines for readability.

my $query = "get_chassis_inventory";
my $res = $jnx->$query();

my $rpc= $jnx->get_dom();
my $xpc = XML::LibXML::XPathContext->new($rpc);
my $serial=$xpc->findvalue('
 /*[local-name()="rpc-reply"]
 /*[local-name()="chassis-inventory"]
 /*[local-name()="chassis"]
 /*[local-name()="serial-number"]');

print ("\nserial number: $serial");

RELATED DOCUMENTATION

Write NETCONF Perl Client Applications | 444

Submit a Request to the NETCONF Server in Perl Client Applications | 454

Close the Connection to the NETCONF Server in Perl Client Applications

In NETCONF Perl client applications, you can end the NETCONF session and close the connection to
the device by invoking the disconnect method.

Several of the sample scripts included in the NETCONF Perl client distribution invoke the disconnect
method in standalone statements. For example:

$jnx->disconnect();

467

The edit_configuration.pl sample script invokes the graceful_shutdown method, which takes the
appropriate actions with regard to the configuration database and then invokes the disconnect method.

graceful_shutdown($jnx, $xmlfile, STATE_LOCKED, REPORT_SUCCESS);

RELATED DOCUMENTATION

Write NETCONF Perl Client Applications | 444

Connect to the NETCONF Server in Perl Client Applications | 447

468

6
PART

YANG

YANG Overview | 470

Create and Use Non-Native YANG Modules | 525

CHAPTER 17

YANG Overview

IN THIS CHAPTER

Understanding YANG on Devices Running Junos OS | 470

Understanding Junos YANG Modules | 471

YANG Modules Overview | 479

Understanding the YANG Modules That Define the Junos OS Configuration | 480

Understanding the YANG Modules for Junos Operational Commands | 484

Junos Genstate YANG Data Models | 488

Understanding the Junos DDL Extensions YANG Module | 500

YANG Metadata Annotations for Junos Devices | 503

Use Juniper Networks YANG Modules | 519

Understanding YANG on Devices Running Junos OS

Yet Another Next Generation (YANG) is a standards-based, extensible data modeling language used to
model configuration and operational state data, remote procedure calls (RPCs), and server event
notifications of network devices. The NETMOD working group in the IETF originally designed YANG to
model network management data and to provide a standard for the content layer of the Network
Configuration Protocol (NETCONF) model. However, YANG is protocol-independent, and YANG data
models can be used independent of the transport or RPC protocol and can be converted into any
encoding format supported by the network configuration protocol.

Juniper Networks publishes YANG modules that define the configuration hierarchies, operational
commands, operational state data, and YANG extensions for Junos devices. You can download the
YANG modules from the Juniper Networks website or the Juniper Networks GitHub repository for
YANG, or you can generate the modules on a Junos device.

YANG uses a C-like syntax, a hierarchical organization of data, and provides a set of built-in types as well
as the capability to define derived types. YANG emphasizes readability, modularity, and flexibility, which
is achieved through the use of modules (and submodules), reusable types, and node groups.

470

A YANG module defines a data model and determines the encoding for that data. A YANG module
defines a data model through its data, and the hierarchical organization of and constraints on that data.
A module can be a complete, standalone entity, or it can reference definitions in other modules and
submodules as well as augment other data models with additional nodes.

A YANG module defines not only the syntax but also the semantics of the data. It explicitly defines
relationships between and constraints on the data. You can create syntactically correct configuration
data that meets constraint requirements and you can validate the data against the model before
uploading it and committing it on a device.

YANG uses modules to define configuration and state data, notifications, and RPCs for network
operations. This structure is similar to how the Structure of Management Information (SMI) utilizes MIBs
to model data for SNMP operations. However, YANG has the benefit of being able to distinguish
between operational and configuration data. YANG maintains compatibility with SNMP’s SMIv2, and
you can use libsmi to translate SMIv2 MIB modules into YANG modules and vice versa. Additionally,
when you cannot use a YANG parser, you can translate YANG modules into YANG Independent
Notation (YIN), which is an equivalent XML syntax that XML parsers and XSLT scripts can read.

You can use existing YANG-based tools or develop custom network management applications to utilize
YANG modules for faster and more accurate network programmability. For example, a client application
could leverage YANG modules to generate vendor-specific configuration data for different devices and
validate that data before uploading it to the device. The application could also handle and troubleshoot
unexpected RPC responses and errors.

For information about YANG, see RFC 6020, YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF), and related RFCs.

RELATED DOCUMENTATION

YANG Modules Overview | 479

Use Juniper Networks YANG Modules | 519

show system schema

Understanding Junos YANG Modules

IN THIS SECTION

Junos YANG Modules Overview | 472

471

https://tools.ietf.org/html/rfc6020

Download and Generate Junos YANG Modules | 474

Understanding Junos YANG Module Namespaces and Prefixes | 476

Juniper Networks publishes the schema for Junos devices using YANG models for the configuration and
operational state data, operational commands, and Junos extensions. The following sections discuss the
native Junos YANG modules.

Junos YANG Modules Overview

Juniper Networks provides YANG modules that define the configuration hierarchies, operational
commands and state data, as well as YANG extensions and types, for devices running Junos OS and
devices running Junos OS Evolved. YANG modules are specific to a device family. Table 22 on page 472
outlines the identifiers for the different device families and indicates which platforms are in each family.
Starting in Junos OS Evolved Release 23.4R2, all Junos OS Evolved platforms use the junos device family
identifier.

Table 22: Junos Device Families

Device Family Identifier Junos OS Platforms Junos OS Evolved Platforms

junos ACX Series
EX Series (certain platforms)
MX Series
PTX Series

ACX Series
PTX Series
QFX Series (23.4R2 and later)

junos-es SRX Series –

junos-ex EX Series (certain platforms) –

junos-qfx QFX Series QFX Series (23.2 and earlier)

TIP: Different platforms within the same series might be categorized under different
device families. You can verify the family for a specific device by executing the show system
information operational mode command or the <get-system-information/> RPC on the device.

472

The value of the Family field in the command output or the <os-name> element in the RPC
reply indicates the device family.

Table 23 on page 473 summarizes the YANG modules that are native to Junos devices. A Junos YANG
module's name and filename include the device family, and when applicable, the area of the
configuration or command hierarchy to which the schema in the module belongs. The module's filename
also includes a revision date.

NOTE: Modules that do not require family-specific schemas and that are common to all
platforms use the junos device family for the module's name, filename, and namespace.

Table 23: Juniper Networks Native YANG Modules

Junos YANG
Module

Description Module Name Releases

Configuration
modules

Define the schema for the Junos configuration
hierarchy.

The configuration YANG module comprises a
root module (family-conf-root) that is
augmented by multiple smaller modules.

family-conf-
hierarchy

17.4R1 and
later

Operational
command modules

Represent the operational command hierarchy
and the collective group of modules that define
the remote procedure calls (RPCs) for
operational mode commands. There are
separate modules for the different areas of the
command hierarchy.

family-rpc-hierarchy 17.4R1 and
later

junos-state state
modules

Curated set of YANG modules for operational
state data.

junos-state-area 22.2R1 and
later

genstate state
modules

Define YANG data models for operational state.
The models expose a subset of show command
data through the gNMI subscribe RPC. The
genstate modules comprise a top-level root
module augmented by modules for each
operational state area.

junos-genstate-root-
tag

24.2R1 and
later (Junos OS
Evolved)

25.4R1 and
later (Junos OS)

473

Table 23: Juniper Networks Native YANG Modules (Continued)

Junos YANG
Module

Description Module Name Releases

DDL extensions
module

Contains Data Definition Language (DDL)
statements for Junos devices.

This module includes the must and must-message
keywords, which identify configuration
hierarchy constraints that use special keywords.
The module also includes statements that are
required in custom RPCs.

junos-common-ddl-
extensions

17.4R1 and
later

ODL extensions
module

Contains Output Definition Language (ODL)
statements that you can use to create and
customize formatted ASCII output for RPCs
executed on Junos devices.

junos-common-odl-
extensions

17.4R1 and
later

Metadata
annotations
extensions module

Defines metadata annotations for configuration
operations.

Annotations are defined in RFC 7952, Defining
and Using Metadata with YANG.

junos-configuration-
metadata

22.2R1 and
later (Junos OS
Evolved)

Types module Contains definitions for YANG types. junos-common-types 17.4R1 and
later

To support YANG modules for different device families in different releases, the downloaded modules
are organized by device family. Each module’s name, filename, and namespace reflects the device family
to which the schema in the module belongs.

For information about obtaining the modules, see "Download and Generate Junos YANG Modules " on
page 474.

For information about the module namespaces, see "Understanding Junos YANG Module Namespaces
and Prefixes" on page 476.

Download and Generate Junos YANG Modules

You can retrieve the Junos OS and Junos OS Evolved YANG modules by:

• Downloading the modules from the Juniper Networks website at https://www.juniper.net/support/
downloads

474

https://www.juniper.net/support/downloads
https://www.juniper.net/support/downloads

• Downloading the modules from the Juniper/yang GitHub repository

• Generating the modules on a Juniper Networks device

NOTE: Starting in Junos OS Evolved Release 23.4R1, we publish the Junos OS Evolved
native Yang modules on the Juniper Networks download site and on GitHub. In earlier
releases, you must generate the modules on the device.

Junos YANG modules are specific to a device family. As a result, the download package and GitHub
repository include a separate directory for each device family’s modules. They also include a common
directory for the modules that are common to all device families. Each family-specific directory uses its
device family identifier as the directory name and contains the modules supported by the platforms in
that family. The device family identifiers are defined in Table 22 on page 472.

The YANG modules generated on a local device, by default, contain family-specific schemas. Family-
specific schemas are identical across all devices in the given device family. You can generate modules
with device-specific schemas for the configuration and operational command modules. To emit device-
specific schemas, configure the device-specific configuration statement at the [edit system services netconf
yang-modules] hierarchy level.

Starting in Junos OS Evolved Release 23.4R1, we publish the Junos OS Evolved YANG modules on the
Juniper Networks download site and on GitHub. In earlier releases, you must generate the modules on
the device.

Additionally, starting in Junos OS Release 23.4R1 and Junos OS Evolved Release 23.4R1, we provide all
YANG data models for a given OS and release in a single download package and GitHub repository
folder. The package and repository folder include:

• Native configuration, state, and RPC data models

• OpenConfig configuration and state models supported by that OS

• IETF models supported by that OS

For more information about how to download or generate the Junos OS YANG modules, see "Use
Juniper Networks YANG Modules" on page 519.

475

https://github.com/Juniper/yang

Understanding Junos YANG Module Namespaces and Prefixes

The Junos YANG modules use a namespace that includes the device family, the module type, and an
identifier that is unique to each module. The identifier differentiates the namespace of the module from
that of other modules. The namespace format is:

namespace "http://yang.juniper.net/device-family/type/identifier";

Where:

device-
family

Identifier for the device family to which the schema in the module belongs, for example,
junos, junos-es, junos-ex, or junos-qfx. The different device families are outlined in Table 22 on
page 472.

Modules with device-specific schemas and modules with family-specific schemas both use
the same device family identifier in the namespace.

NOTE: The common modules use the junos device family identifier in the
namespace, but the modules are common to all device families.

identifier String that differentiates the namespace of the module from that of other modules.

Junos configuration and command modules include an identifier that indicates the area of
the configuration or command hierarchy to which the schema in the module belongs.
Genstate modules use an identifier that indicates the operational state area in the module.
Common modules use the module name differentiator as an identifier, for example, odl-
extensions.

type Type of the module. Possible values include:

• conf—Configuration YANG module that defines the schema for the indicated area of the
configuration.

• rpc—Operational command YANG module that defines the RPCs for operational
commands in the indicated area of the command hierarchy.

• common—Extension or type module that is common across all device families.

• genstate—YANG module that defines operational state data.

Table 24 on page 477 outlines each module’s namespace URI and prefix (as defined by the module’s
prefix statement). The prefix for each configuration YANG module reflects the configuration statement
hierarchy that is included in that module. Similarly, the prefix for each operational command module

476

reflects the command hierarchy area of the RPCs included in that module. The Junos YANG extension
and type modules use the junos device family identifier in the namespace, but the modules are common
to all device families.

Table 24: Namespaces and Prefixes for Junos YANG Modules

YANG Module Release Namespace URI Prefix

Configuration modules 17.4R1 and later http://yang.juniper.net/device-family/
conf/hierarchy

jc (root module)

jc-hierarchy

Operational command
modules

17.4R1 and later http://yang.juniper.net/device-
family/rpc/hierarchy

hierarchy

junos-state state modules 22.2R1 and later http://yang.juniper.net/junos/state/
state-area

js-area

genstate state models 24.2R1 and later http://yang.juniper.net/junos/genstate/
root-tag

jgs (root module)

DDL extensions module 17.4R1 and later http://yang.juniper.net/junos/common/ddl-
extensions

junos

ODL extensions module 17.4R1 and later http://yang.juniper.net/junos/common/odl-
extensions

junos-odl

Metadata annotations
extensions module

22.2R1 and later http://yang.juniper.net/junos/jcmd jcmd

Types module 17.4R1 and later http://yang.juniper.net/junos/common/
types

jt

When you configure the rfc-compliant statement at the [edit system services netconf] hierarchy level and
request configuration data in a NETCONF session, the server sets the default namespace for the
<configuration> element to the same namespace as in the corresponding YANG model. For example:

<rpc>
 <get-config>
 <source>

477

 <running/>
 </source>
 </get-config>
</rpc>

<nc:rpc-reply xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:junos="http://
xml.juniper.net/junos/25.2R1.8-EVO/junos">
<nc:data>
<configuration
 xmlns="http://yang.juniper.net/junos/conf/root"
 junos:commit-seconds="1763162210"
 junos:commit-localtime="2025-11-14 15:16:50 PST"
 junos:commit-user="admin">

...
</configuration>
</nc:data>
</nc:rpc-reply>

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

23.4R2-EVO Starting in Junos OS Evolved Release 23.4R2, native YANG modules for QFX Series devices
use the junos device family identifier instead of junos-qfx.

23.4R1 and
23.4R1-EVO

Starting in Junos OS Release 23.4R1 and Junos OS Evolved Release 23.4R1, we provide all
YANG data models for a given OS and release in a single download package and GitHub
repository folder.

23.4R1-EVO Starting in Junos OS Evolved Release 23.4R1, we publish the Junos OS Evolved native YANG
modules on the Juniper Networks download site and on GitHub. In earlier releases, you must
generate the modules on the device.

22.4R1 and
22.4R1-EVO

Starting in Junos OS Release 22.4R1 and Junos OS Evolved Release 22.4R1, YANG modules
that define RPCs include the junos:command extension statement in schemas emitted with
extensions.

478

https://apps.juniper.net/feature-explorer/

RELATED DOCUMENTATION

Use Juniper Networks YANG Modules | 519

Understanding the YANG Modules That Define the Junos OS Configuration | 480

Understanding the YANG Modules for Junos Operational Commands | 484

Understanding the Junos DDL Extensions YANG Module | 500

show system schema

YANG Modules Overview

YANG data models comprise modules and submodules and can define configuration and state data,
notifications, and RPCs for use by YANG-based clients. A YANG module defines a data model through
its data, and the hierarchical organization of and constraints on that data. Each module is uniquely
identified by a namespace URI.

A module defines a single data model. However, a module can reference definitions in other modules
and submodules by using the import statement to import external modules or the include statement to
include one or more submodules. Additionally, a module can augment another data model by using the
augment statement to define the placement of the new nodes in the data model hierarchy and the when
statement to define the conditions under which the new nodes are valid. A module uses the feature
statement to specify parts of a module that are conditional and the deviation statement to specify where
the device’s implementation might deviate from the original definition.

When you import an external module, you define a prefix that is used when referencing definitions in
the imported module. We recommend that you use the same prefix as that defined in the imported
module to avoid conflicts.

YANG models data using a hierarchical, tree-based structure with nodes. YANG defines four nodes
types. Each node has a name, and depending on the node type, the node might either define a value or
contain a set of child nodes. The nodes types are:

• leaf node—Contains a single value of a specific type

• leaf-list node—Contains a sequence of leaf nodes

• container node—Contains a grouping of related nodes containing only child nodes, which can be any
of the four node types

• list node—Contains a sequence of list entries, each of which is uniquely identified by one or more key
leafs

479

In YANG, each leaf and leaf-list node includes the type statement to identify the data type for valid data
for that node. YANG defines a set of built-in types and also provides the typedef statement for defining a
derived type from a base type, which can be either a built-in type or another derived type.

By default, a node defines configuration data. A node defines state data if it is tagged as config false.
Configuration data is returned using the NETCONF <get-config> operation, and state data is returned
using the NETCONF <get> operation.

For detailed information about the syntax and semantics of the YANG language, see:

• RFC 6020, YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)

• RFC 7950, The YANG 1.1 Data Modeling Language

RELATED DOCUMENTATION

Understanding YANG on Devices Running Junos OS | 470

Use Juniper Networks YANG Modules | 519

show system schema

Understanding the YANG Modules That Define the Junos OS
Configuration

IN THIS SECTION

Overview of the Configuration YANG Modules | 480

How to Obtain the Configuration YANG Modules | 482

Overview of the Configuration YANG Modules

Juniper Networks publishes the Junos OS configuration schema using YANG models. The Junos OS
configuration schema is published using a root configuration module that is augmented by multiple,
smaller modules. This enables consumers of the schema to import only the modules required for their
tasks.

480

https://tools.ietf.org/html/rfc6020
https://tools.ietf.org/html/rfc7950

The root configuration module comprises the top level configuration node and any nodes that are not
emitted as separate modules. Separate, smaller modules augment the root configuration module for the
different configuration statement hierarchies. These modules contain the schema for the configuration
statement hierarchy level that is indicated by the module’s name, filename, and namespace.

The following example shows a portion of the YANG module that defines the schema for the [edit
interfaces] statement hierarchy:

/*
 * Copyright (c) 2025 Juniper Networks, Inc.
 * All rights reserved.
 */
 module junos-conf-interfaces {
 namespace "http://yang.juniper.net/junos/conf/interfaces";

 prefix jc-interfaces;

 import junos-common-types {
 prefix jt;
 revision-date 2024-01-01;
 }

 import junos-conf-root {
 prefix jc;
 revision-date 2024-01-01;
 }

 organization "Juniper Networks, Inc.";

 contact "yang-support@juniper.net";

 description "Junos interfaces configuration module";

 revision 2024-01-01 {
 description "Junos: 24.4R1.11";
 }

 augment /jc:configuration {
 uses interfaces-group;
 }

 augment /jc:configuration/jc:groups {

481

 uses interfaces-group;
 }
 ...

YANG utilities need to import only those modules required for the specific configuration task at hand.
As a result, tools that consume the configuration modules require less time to compile, validate, or
perform other functions on the modules than when importing a single, large module.

To determine the configuration YANG module corresponding to a specific area of the configuration,
issue the show | display detail configuration mode command. In the following example, the schema for
the [edit protocols ospf] hierarchy level is included in the junos-conf-protocols@2024-01-01.yang
module.

user@host# show protocols ospf | display detail
##
ospf: OSPF configuration
YANG module: junos-conf-protocols@2024-01-01.yang
package: junos-routing-ospf-advanced junos-routing-ospf-basic
##
##
Area ID
package: junos-routing-ospf-basic
##
area 0.0.0.0 {
...

How to Obtain the Configuration YANG Modules

You can download the Junos native YANG modules from the Juniper Networks download site or the
Juniper/yang GitHub repository. You can also generate the modules on the local device.

To generate the configuration modules on the local device, issue the show system schema format yang module
module command. Specify an individual module name to return a single configuration module, or specify
all-conf to return all configuration modules.

user@host> show system schema format yang module all-conf output-directory /var/tmp/yang

If you specify module all-conf, the output files include both native Junos OS configuration modules as well
as any standard or custom configuration modules that have been added to the device.

482

https://github.com/Juniper/yang

Starting in Junos OS Release 19.2R1, the show system schema command must include the output-directory
command option and specify the directory in which to generate the files. In earlier releases, you can
omit the output-directory option when requesting a single module to display the module in standard
output.

NOTE: The native YANG modules generated on a local device contain family-specific
schemas, which are identical across all devices in the given device family. To generate
device-specific modules, configure the device-specific configuration statement at the [edit
system services netconf yang-modules] hierarchy level.

NOTE: To generate YANG modules from a remote session, execute the <get-yang-schema>
Junos OS RPC or the <get-schema> NETCONF operation with the appropriate options.

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

23.4R1-EVO Starting in Junos OS Evolved Release 23.4R1, native YANG modules for QFX Series devices use
the junos device family identifier instead of junos-qfx.

22.4R1 and
22.4R1-EVO

Starting in Junos OS Release 22.4R1 and Junos OS Evolved Release 22.4R1, if a YANG leaf node
is type identityref, Junos devices emit the namespace-qualified form of the identity in the JSON
encoding of that node. Additionally, Junos devices accept the simple (no namespace) and the
namespace-qualified form of an identity in JSON configuration data. In earlier releases, Junos
devices only emit and accept the simple form of an identity.

19.2R1 Starting in Junos OS Release 19.1R2 and 19.2R1, the show system schema command must include
the output-directory command option and specify the directory in which to generate the file or
files.

RELATED DOCUMENTATION

Use Juniper Networks YANG Modules | 519

Understanding Junos YANG Modules | 471

show system schema

483

https://apps.juniper.net/feature-explorer/

Understanding the YANG Modules for Junos Operational Commands

IN THIS SECTION

Overview of the Operational Command YANG Modules | 484

How to Obtain the Operational Command YANG Modules | 486

Understanding the RPC Output Schema | 486

Overview of the Operational Command YANG Modules

Juniper Networks publishes YANG modules that define the remote procedure calls (RPCs) for Junos
operational mode commands. Due to the large number of operational commands, each device family has
multiple YANG modules. Each top-level operational command group (clear, file, monitor, and so on) has a
module when that hierarchy has at least one command with an RPC equivalent. Additionally, the show
command hierarchy has a separate module for each area within that hierarchy.

The operational command modules define the RPCs corresponding to the operational commands in the
area indicated by the module's filename. The following example shows a portion of the junos-rpc-
clear@2024-01-01.yang module, which contains the RPCs for commands in the clear command
hierarchy:

/*
 * Copyright (c) 2025 Juniper Networks, Inc.
 * All rights reserved.
 */
 module junos-rpc-clear {
 namespace "http://yang.juniper.net/junos/rpc/clear";

 prefix clear;

 import junos-common-types {
 prefix jt;
 revision-date 2024-01-01;
 }

 organization "Juniper Networks, Inc.";

 contact "yang-support@juniper.net";

484

 description "Junos RPC YANG module for clear command(s)";

 revision 2024-01-01 {
 description "Junos: 24.4R1.11";
 }

 rpc clear-cli-logical-system {
 description "Clear logical system association";
 output {
 choice output_c {
 case output-tag {
 leaf output {
 type string;
 }
 }
 case multichassis-tag {
 anyxml multi-routing-engine-results;
 }
 }
 }
 }
 rpc clear-cli-tenant {
 description "Clear teannt association";
 output {
 choice output_c {
 case output-tag {
 leaf output {
 type string;
 }
 }
 case multichassis-tag {
 anyxml multi-routing-engine-results;
 }
 }
 }
 }
 ...

485

How to Obtain the Operational Command YANG Modules

You can download the Junos native YANG modules from the Juniper Networks download site or the
Juniper/yang GitHub repository. You can also generate the modules on the local device.

To generate the operational command YANG modules on the local device issue the show system schema
format yang module module command. Specify an individual module name to return a single operational
command module, or specify all-rpc to return all operational command modules.

user@host> show system schema format yang module all-rpc output-directory /var/tmp/yang

If you specify module all-rpc, the output files include both native Junos operational command modules as
well as any standard or custom operational command modules that have been added to the device. To
use an RPC in your custom YANG module, you must import the module that contains the RPC into your
custom module.

Starting in Junos OS Release 19.2R1, the show system schema command must include the output-directory
command option and specify the directory in which to generate the files. In earlier releases, you can
omit the output-directory option when requesting a single module to display the module in standard
output.

NOTE: The native YANG modules generated on a local device contain family-specific
schemas, which are identical across all devices in the given device family. To generate
device-specific modules, configure the device-specific configuration statement at the [edit
system services netconf yang-modules] hierarchy level.

NOTE: To generate YANG modules from a remote session, execute the <get-yang-schema>
Junos OS RPC or the <get-schema> NETCONF operation with the appropriate options.

You can emit the YANG schemas with additional Junos extension statements. The Junos extensions are
defined in "Understanding the Junos DDL Extensions YANG Module" on page 500. To include
extensions, configure the emit-extensions statement at the [edit system services netconf yang-modules]
hierarchy level. The device emits the junos:command extension statement starting in Junos OS Release
22.4R1 and Junos OS Evolved Release 22.4R1.

Understanding the RPC Output Schema

YANG defines operations using the rpc statement. The RPC definition can include input and output
substatements that describe the operation's input and output parameters. Starting in Junos OS Release

486

https://github.com/Juniper/yang

23.1R1 and Junos OS Evolved Release 23.2R1, the RPC's output statement includes an accurate output
schema, and Junos devices emit the new schemas by default.

In earlier releases, the RPC's output schema includes the anyxml statement to represent an unknown
chunk of XML in the RPC reply. To generate the earlier RPC schemas containing the anyxml statement on
a Junos device, configure the device-specific and emit-anyxml-in-rpc-output statements at the [edit system
services netconf yang-modules] hierarchy level.

[edit system services netconf yang-modules]
user@host# set device-specific
user@host# set emit-anyxml-in-rpc-output
user@host# commit

After you configure the statements, the show system schema command generates the schemas that use
anyxml.

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

23.4R1-EVO Starting in Junos OS Evolved Release 23.4R1, native YANG modules for QFX Series devices
use the junos device family identifier instead of junos-qfx.

23.2R1-EVO Starting in Junos OS Evolved Release 23.2R1, the YANG modules that define Junos RPCs
include accurate output schemas.

23.1R1 Starting in Junos OS Release 23.1R1, the YANG modules that define Junos RPCs include
accurate output schemas.

22.4R1 and
22.4R1-EVO

Starting in Junos OS Release 22.4R1 and Junos OS Evolved Release 22.4R1, YANG modules
that define RPCs include the junos:command extension statement in schemas emitted with
extensions.

19.2R1 Starting in Junos OS Release 19.1R2 and 19.2R1, the show system schema command must
include the output-directory command option and specify the directory in which to generate
the file or files.

RELATED DOCUMENTATION

Use Juniper Networks YANG Modules | 519

487

https://apps.juniper.net/feature-explorer/

Understanding Junos YANG Modules | 471

show system schema

Junos Genstate YANG Data Models

SUMMARY

The Juniper Networks genstate YANG schema
defines YANG data models for operational state on
Junos devices. gRPC Network Management Interface
(gNMI) clients can subscribe to the resource paths
defined in the models to request state data.

IN THIS SECTION

Genstate YANG Data Models
Overview | 488

Genstate Modules Overview | 489

How to Construct genstate Resource
Paths | 496

Map Genstate Model Resource Paths to CLI
Commands | 497

How to Obtain the genstate YANG
Modules | 499

Genstate YANG Data Models Overview

IN THIS SECTION

Benefits of the Genstate YANG State Models | 489

Starting in Junos OS Evolved Release 24.2R1, Juniper Networks publishes the genstate YANG data
models. The genstate models are subscribable YANG models for operational state data on Junos devices.
They are a YANG representation of the operational command output. The genstate models comprise a
top-level module augmented by modules for each of the different operational state areas as they are
published and made available.

Junos devices have a rich set of native state data. You can retrieve operational state information from
Junos devices by executing operational commands or Junos XML RPCs on the device. However, you
must still parse the command output to extract specific data. Juniper also provides the curated junos-

488

state YANG data models that telemetry collectors can consume, but the models include only a subset of
operational areas and states.

The genstate YANG models expose state data available in operational show commands through the gNMI
subscribe RPC. The modules describe the resource paths that correspond to specific state data on the
target network device. gNMI telemetry collectors can subscribe to a resource path in the published
YANG models to query for the state data for that instance.

gNMI clients in gRPC dial-in environments can subscribe to the genstate published paths. A client can use
STREAM subscriptions in SAMPLE mode to request the data. ON_CHANGE mode is not supported. For
information about using gNMI to subscribe to telemetry data, see the Junos Telemetry Interface User
Guide.

The genstate YANG data models are published and updated in different releases. You can check the
available models and supported paths for a given release in the following ways:

• View or download the modules from the Juniper/yang GitHub repository.

• Download the modules from the Juniper Networks website at https://www.juniper.net/support/
downloads.

• Emit the modules on devices running Junos OS or devices running Junos OS Evolved.

Benefits of the Genstate YANG State Models

• Increase the surface area of operational state available through gNMI and thus enable you to make
more informed usage decisions about the device and network when you use gNMI to monitor state.

• Simplify how you monitor device state by enabling you to move toward a single northbound
interface.

Genstate Modules Overview

The genstate YANG data models comprise a top-level root module augmented by modules for each of the
available operational state areas. The genstate schema uses origin 'genstate'.

The top-level module is as follows:

 module junos-genstate {
 namespace "http://yang.juniper.net/junos/genstate/";
 prefix jgs;

 organization
 "Juniper Networks, Inc.";

489

https://www.juniper.net/documentation/us/en/software/junos/interfaces-telemetry/index.html
https://www.juniper.net/documentation/us/en/software/junos/interfaces-telemetry/index.html
https://github.com/Juniper/yang
https://www.juniper.net/support/downloads
https://www.juniper.net/support/downloads

 contact
 "Juniper Networks, Inc.

 1133 Innovation Way
 Sunnyvale, CA

 +1 888 314-5822

 E-mail: yang-support@juniper.net";

 description
 "This module contains a collection of top level nodes for JUNOS genstate data.

 Copyright (c) 2023 Juniper Networks, Inc.
 All rights reserved.";

 revision 2023-01-01 {
 description "Junos: ";
 }

 grouping genstate-top {
 description "Top-level grouping for JUNOS genstate data";
 container genstate {
 description "Encapsulating top-level state container for all JUNOS genstate data";
 config false;
 }
 }
 uses genstate-top;
 }

The top-level genstate module is augmented by the modules published for each operational state area.
When you issue operational commands or RPCs on a Junos device, the device returns the XML output
enclosed in a top-level element. The root-level tag name describes the enclosed data. For example, show
interfaces commands return XML output that is enclosed in an <interface-information> tag. The genstate
modules include this root tag name in the module name and filename to easily identify the data
described in the module. The module prefix is based on the root tag name and so varies for each
module.

For example, the junos-genstate-interface-information module describes the data that would normally be
included in the <interface-information> element in Junos command and RPC output. Thus, the model

490

defines the resource paths that are available for subscription by telemetry collectors for interface state
data.

 module junos-genstate-interface-information {
 namespace "http://yang.juniper.net/junos/genstate/interface-information";
 prefix jgii;

 import junos-genstate {
 prefix jgs;
 revision-date 2023-01-01;
 }

 import junos-common-types {
 prefix jt;
 revision-date 2023-01-01;
 }

 organization
 "Juniper Networks, Inc.";

 contact
 "Juniper Networks, Inc.

 1133 Innovation Way
 Sunnyvale, CA

 +1 888 314-5822

 E-mail: yang-support@juniper.net";

 description "Junos genstate data model for interface-information";

 revision 2023-01-01 {
 description "Junos: ";
 }

 grouping interface-information-top {
 description "Top-level grouping";
 container interface-information {
 config false;
 description "Top-level container";
 list physical-interface {

491

 leaf name {
 type string;
 description "Name of this item";
 }
 leaf oper-status {
 type string;
 description "Current operational state of the interface";
 }
 leaf local-index {
 type int32;
 description "Local kernel index for this interface";
 }
 leaf snmp-index {
 type int32;
 description "SNMP ifIndex for this interface";
 }
 container if-config-flags {
 leaf iff-none {
 type empty;
 }
 leaf iff-hardware-down {
 type empty;
 }
 leaf iff-down {
 type empty;
 }
 leaf iff-up {
 type empty;
 }
 leaf iff-admin-down {
 type empty;
 }
 leaf iff-admin-up {
 type empty;
 }
 leaf iff-link-down {
 type empty;
 }
 leaf iff-device-down {
 type empty;
 }
 leaf iff-point-to-point {
 type empty;

492

 }
 leaf iff-point-to-multipoint {
 type empty;
 }
 leaf plp-to-clp {
 type empty;
 }
 leaf iff-multiaccess {
 type empty;
 }
 leaf iff-snmp-traps {
 type empty;
 }
 leaf iff-looped {
 type empty;
 }
 leaf iff-framing-conflict {
 type empty;
 }
 leaf internal-flags {
 type string;
 description "Hexadecimal value of internal flag bits";
 }
 }
 list logical-interface {
 leaf name {
 type string;
 description "Name of this item";
 }
 leaf local-index {
 type int32;
 description "Local kernel index for this interface";
 }
 leaf snmp-index {
 type int32;
 description "SNMP ifIndex for this interface";
 }
 leaf generation {
 type string;
 description "Generation number used to distinguish between successive instances of
this interface";
 }
 leaf description {

493

 type string;
 description "Description of this interface";
 }
 leaf link-address {
 type string;
 description "Link address on this logical interface";
 }
 leaf encapsulation {
 type string;
 description "Encapsulation on the logical interface";
 }
 leaf subunit {
 type int32;
 description "Subunit for this interface";
 }
 container if-config-flags {
 leaf iff-none {
 type empty;
 }
 leaf iff-hardware-down {
 type empty;
 }
 leaf iff-down {
 type empty;
 }
 leaf iff-up {
 type empty;
 }
 leaf iff-admin-down {
 type empty;
 }
 leaf iff-admin-up {
 type empty;
 }
 leaf iff-link-down {
 type empty;
 }
 leaf iff-device-down {
 type empty;
 }
 leaf iff-point-to-point {
 type empty;
 }

494

 leaf iff-point-to-multipoint {
 type empty;
 }
 leaf plp-to-clp {
 type empty;
 }
 leaf iff-multiaccess {
 type empty;
 }
 leaf iff-snmp-traps {
 type empty;
 }
 leaf iff-looped {
 type empty;
 }
 leaf iff-framing-conflict {
 type empty;
 }
 leaf internal-flags {
 type string;
 description "Hexadecimal value of internal flag bits";
 }
 }
 leaf admin-status {
 type string;
 description "Desired state of the interface";
 }
 leaf oper-status {
 type string;
 description "Current operational state of the interface";
 }
 }
 }
 }
 }
 augment "/jgs:genstate" {
 description "Adds interface-information to top-level genstate";
 uses interface-information-top;
 }
 }

495

How to Construct genstate Resource Paths

A telemetry collector can subscribe to the different resource paths as defined in the genstate models to
query for state data on devices that support this feature. The genstate model uses the following syntax:

origin:/root/operational-response-tag/optional-child-tags-to-resource

The path uses the origin genstate, a root tag named genstate, and a top-level tag name for the operational
state area. For example, to subscribe to genstate resource paths for all interface-information state data, you
would use the following path:

genstate:/genstate/interface-information

You can include supported child tags to retrieve state data for a specific resource. For example, a gNMI
client can use the following path to retrieve the operational state for all interfaces:

genstate:/genstate/interface-information/physical-interface/oper-status

The genstate resource paths can use simple path expressions to query data. You can use path-based and
key-based filters. Table 25 on page 496 outlines the supported expressions and provides some sample
resource paths. Other query patterns are not supported. The path expressions support container, leaf,
and key-based filtering and align with gNMI conventions, as outlined in Schema path encoding
conventions for gNMI.

Table 25: Path Expressions Supported in genstate Resource Paths

Filter Type Example Paths

Container • genstate:/genstate/interface-information

• genstate:/genstate/snmp-statistics/snmp-input-statistics

Leaf • genstate:/genstate/commit-revision-information/revision

• genstate:/genstate/lldp/lldp-global-status

496

https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-path-conventions.md
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-path-conventions.md

Table 25: Path Expressions Supported in genstate Resource Paths (Continued)

Filter Type Example Paths

List key • genstate:/genstate/interface-information/physical-interface[name=re0:mgmt-0]

• genstate:/genstate/interface-information/physical-interface[name=re0:mgmt-0]/oper-status

• genstate:/genstate/interface-information/physical-interface[name=et-1/0/1]/speed

Multiple list keys • genstate:/genstate/interface-information/physical-interface[name=et-1/0/1]/logical-
interface[name=et-1/0/1.16386]/local-index

• genstate:/genstate/interface-information/physical-interface[name=lo0]/logical-
interface[name=lo0.0]/address-family[address-family-name=inet]/address-family-name

Wildcard list key • genstate:/genstate/interface-information/physical-interface[name=*]/oper-status

• genstate:/genstate/interface-information/physical-interface/oper-status

Path-based filters can select containers, lists, or leaf nodes. Key-based filters select a subset of list
elements and support using precise values, specifying wildcards, or omitting the value. Specifying a
wildcard or omitting a list key value matches all entries within a particular list.

We recommend that you always enclose the path in quotation marks. This approach prevents parsing
errors in most environments and handles paths with spaces or other special characters.

For example, the following command uses quotation marks around the entire path:

$ gnmic sub --mode stream --stream-mode sample --sample-interval 30s -a 198.51.100.1:32767 -u
grpc-user -p secret --tls-ca certs/serverRootCA.crt --path "genstate:/genstate/license-summary-
information/license-detail-usage-summary/feature-summary[name=FIB Scale]"

Map Genstate Model Resource Paths to CLI Commands

You can verify the CLI command that generates the output corresponding to a specific genstate resource
path. To retrieve the command, use the show system data-models genstate operational command. Include the
xpath-cli-command-mapping option and provide the path to the desired resource.

user@host> show system data-models genstate xpath-cli-command-mapping resource-path

497

The following example retrieves the command that generates the state data corresponding to the
genstate:/genstate/system-information/os-version resource path.

user@host> show system data-models genstate xpath-cli-command-mapping genstate:/genstate/system-
information/os-version

Genstate xpath to CLI command mapping information (sometimes multiple commands might be mapped):

> show system information

Similarly, the following example maps the given resource path to the CLI command that includes that
information in the output.

user@host> show system data-models genstate xpath-cli-command-mapping genstate:/genstate/
interface-information/physical-interface/oper-status

Genstate xpath to CLI command mapping information (sometimes multiple commands might be mapped):

> show interfaces detail

You can include list key values in the genstate path. When you issue the command or corresponding
RPC and specify a list key in the path, enclose the list key value in single quotation marks and enclose
the path in double quotation marks. The following examples request the command for genstate paths
that specify a key.

user@host> show system data-models genstate xpath-cli-command-mapping "genstate:/genstate/
interface-information/physical-interface[name='et-1/0/1']/speed"

Genstate xpath to CLI command mapping information (sometimes multiple commands might be mapped):

> show interfaces et-1/0/1 brief

user@host> show system data-models genstate xpath-cli-command-mapping "genstate:/genstate/
license-summary-information/license-detail-usage-summary/feature-summary[name='FIB Scale']"

Genstate xpath to CLI command mapping information (sometimes multiple commands might be mapped):

> show system license detail

498

Similarly, you can use the <get-genstate-xpath-cli-command-mapping> RPC to retrieve the same information.

<rpc>
 <get-genstate-xpath-cli-command-mapping>
 <xpath>genstate:/genstate/interface-information/physical-interface[name='et-1/0/1']/speed</
xpath>
 </get-genstate-xpath-cli-command-mapping>
</rpc>

If a device does not support a particular genstate path, the command returns the following message:

error: No command mapping information found for xpath xpath.
The xpath does not seem to be exposed in genstate;

NOTE: If you do not have permission to execute a CLI command, you cannot access the
corresponding genstate subscription path. You can only subscribe to genstate paths of
commands for which you have valid permissions.

How to Obtain the genstate YANG Modules

You can download Junos native YANG modules from the Juniper Networks download site or the
Juniper/yang GitHub repository. You can also generate the modules on the local device. For instructions
on downloading the modules, see "Use Juniper Networks YANG Modules" on page 519.

To emit the genstate YANG module files on the local device issue the show system schema format yang module
module command. Specify an individual module name to return a single genstate module, or specify all-
genstate to return all genstate modules. You must also specify an output directory for the files.

user@host> show system schema format yang module module-name output-directory output-directory

For example, the following commands create a directory, write all the genstate modules to that
directory, and view the directory listing.

user@host> file make-directory /var/tmp/yang
user@host> show system schema format yang module all-genstate output-directory /var/tmp/yang
user@host> file list /var/tmp/yang
/var/tmp/yang:
junos-genstate-arp-table-information@2025-01-01.yang
junos-genstate-bgp-diagnostics-overview@2025-01-01.yang

499

https://github.com/Juniper/yang

junos-genstate-bgp-diagnostics-warnings@2025-01-01.yang
junos-genstate-bgp-fabric-advertise@2025-01-01.yang
...

NOTE: To generate the YANG modules from a remote session, execute the <get-yang-
schema> Junos OS RPC or the <get-schema> NETCONF operation with the appropriate
options.

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

25.4R1 & 25.4R1-
EVO

Starting in Junos OS Release 25.4R1 and Junos OS Evolved Release 25.4R1, you can use
the show system schema operational command or equivalent RPC to view the genstate
YANG data models on a device.

Understanding the Junos DDL Extensions YANG Module

IN THIS SECTION

cli-feature Supported Properties | 502

The Junos Data Definition Language (DDL) extensions YANG module contains YANG extensions for
Junos devices. These extensions include statements that can define constraints on configuration data
and the valid values for strings. There are also statements that you include in custom RPCs to define a
CLI command for the RPC and to specify details about the action script to invoke when the RPC is
executed. In addition, there are statements that you can use to define helper action scripts for individual
command options and configuration statements, for example, to display a list of acceptable values for
options or statements.

Table 26 on page 501 outlines the statements in the DDL extensions module and provides a brief
description of each statement.

500

https://apps.juniper.net/feature-explorer/

Table 26: Statements in the junos-extension Module

Statement
Keyword

Argument Description

action-execute Define the actions taken when you execute a custom RPC. Use the script substatement to
define the RPC’s action script, which is invoked when you execute the RPC.

action-expand Define the script that calculates and displays the possible values for a given command
option or configuration statement in a custom YANG data model when a user requests
context-sensitive help in the CLI.

Use the script substatement to define the Python script that implements the logic.

cli-feature Identify certain CLI properties associated with some command options and configuration
statements. See "cli-feature Supported Properties" on page 502.

command String defining the operational command that is used to execute the corresponding RPC in
the Junos OS CLI.

must String that identifies a constraint on the configuration data.

Whereas the argument for the YANG must statement is a string containing an XPath
expression, the argument for the junos:must extension statement is a string containing
special Junos OS syntax required for the expression of the configuration statement path.
This might include special keywords such as any, all, and unique.

must-message String that defines the warning message that is emitted when the constraint defined by the
corresponding junos:must statement evaluates to false.

pattern-message String that defines the error message emitted when the constraint defined by the
corresponding posix-pattern statement evaluates to false.

posix-pattern Restrict the values accepted for nodes of type string to those that match the POSIX regular
expression defined in this string.

script String specifying the name of an action script. This is a substatement of the action-execute or
action-expand statement.

501

cli-feature Supported Properties

The cli-feature YANG extension identifies certain CLI properties associated with some command options
and configuration statements. This extension is beneficial when a client consumes YANG data models,
but for certain workflows, the client needs to generate CLI-based tools. Supported properties include:

• homogenous—Text-formatted configuration data groups list objects into a single set of braces under the
object keyword.

• nokeyword—The CLI does not require explicitly specifying the leaf name in the input syntax.

• oneliner/oneliner-plus—Text-formatted configuration data places an object's attributes on a single line.
The oneliner flag does so without exception; the oneliner-plus flag does so only when zero or one
value occurs for an attribute.

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

22.3R1 and 22.3R1-
EVO

Starting in Junos OS Release 23.1R1 and Junos OS Evolved Release 23.1R1, YANG
modules that define the configuration or RPCs include the cli-feature extension
statements, where applicable, in schemas emitted with extensions.

RELATED DOCUMENTATION

Understanding Junos YANG Modules | 471

Use Juniper Networks YANG Modules | 519

Create Custom RPCs in YANG for Devices Running Junos OS | 549

502

https://apps.juniper.net/feature-explorer/

YANG Metadata Annotations for Junos Devices

SUMMARY

Junos devices support YANG extensions that define
metadata annotations, which you can use to perform
specific operations on the Junos configuration.

IN THIS SECTION

junos-configuration-metadata Module
Overview | 504

Using junos-configuration-metadata Annotations
in Configuration Data | 506

Add Comments in the Configuration | 507

Activate or Deactivate Configuration
Statements | 509

Protect or Unprotect Configuration
Statements | 513

openconfig-metadata Module Overview | 516

View Metadata Annotations in Configuration
Data | 518

Junos devices support YANG extensions to annotate instances of YANG data nodes with metadata. You
can use the following extensions on supported devices:

• junos-configuration-metadata—Juniper annotations that you can use to perform specific configuration
operations.

• openconfig-metadata—Annotations defined by the OpenConfig working group.

YANG metadata annotations and their corresponding JSON and XML encoding are defined in RFC 7952,
Defining and Using Metadata with YANG. The ietf-yang-metadata module defines the YANG extension
annotation.

NOTE: YANG metadata annotations should not be confused with Junos configuration
annotations, which are comments that are included in the configuration, for example, by
using the annotate configuration mode command.

503

junos-configuration-metadata Module Overview

The Juniper Networks junos-configuration-metadata module defines metadata annotations that enable you
to perform specific operations on the Junos configuration.

user@host> show system schema module junos-configuration-metadata output-directory /var/tmp
user@host> file show /var/tmp/junos-configuration-metadata.yang
/*
 * junos-configuration-metadata.yang -- Defines annotations (RFC 7952) for
 * Junos configuration metadata operations.
 *
 * Copyright (c) 2021, Juniper Networks, Inc.
 * All rights reserved.
 */
module junos-configuration-metadata {
 namespace "http://yang.juniper.net/junos/jcmd";
 prefix "jcmd";

 import ietf-yang-metadata {
 prefix "md";
 }

 organization
 "Juniper Networks, Inc.";

 contact
 "yang-support@juniper.net";

 description
 "This Yang module defines annotations (RFC 7951) for Junos configuration
 metadata operations.";

 revision 2021-09-01 {
 description
 "Initial version.";
 }

 md:annotation active {
 type boolean;
 description
 "This annotation can be used in configuration XML/JSON to
 deactivate/activate a configuration element. Specifying the value

504

 'false' deactivates the configuration element. Specifying the
 value 'true' activates the configuration element. When the
 configuration element is deactivated and committed, the element
 remains in the configuration, but the element does not affect the
 functioning of the device.";
 }

 md:annotation protect {
 type boolean;
 description
 "This annotation can be used in configuration XML/JSON to
 protect/unprotect the configuration hierarchies and statements.
 Specifying the value 'true' protects the configuration
 hierarchy/statement. Specifying the value 'false' unprotects the
 configuration hiearchy/statement. The protect operation
 prevents changes to selected (protected) configuration hierarchies
 and statements.";
 }

 md:annotation comment {
 type string;
 description
 "This annotation must be used in configuration XML/JSON to
 add comments to a configuration element. To remove the existing
 comment, empty string has to be supplied as a value for this
 annotation.";
 }
}

Devices that support the junos-configuration-metadata annotations advertise the following capabilities in
the NETCONF capabilities exchange:

<capability>http://yang.juniper.net/junos/jcmd?module=junos-configuration-
metadata&revision=2021-09-01</capability>
<capability>urn:ietf:params:xml:ns:yang:ietf-yang-metadata?module=ietf-yang-
metadata&revision=2016-08-05</capability>

Table 27 on page 506 outlines the junos-configuration-metadata annotations. The annotations use the
http://yang.juniper.net/junos/jcmd namespace URI and the jcmd namespace prefix.

505

Table 27: junos-configuration-metdata Annotations

Annotation Value Description

active false Deactivate the specified configuration statement. The statement remains in the
configuration but does not affect the device's operation.

true Activate the specified configuration statement. Use this annotation to activate a
statement that was previously deactivated.

comment string Add a comment with additional information about the specified configuration statement,
or remove an existing comment by setting the value to an empty string ("").

protect false Remove any previously applied protect state from the specified configuration statement
and allow changes to that statement.

true Prevent future modifications to the specified statement, until such time that the protect
state is removed.

Using junos-configuration-metadata Annotations in Configuration Data

You can use the junos-configuration-metadata annotations in a YANG-compliant NETCONF session to
perform specific metadata operations on the configuration. Supported operations include adding
comments to the configuration, deactivating or activating configuration hierarchies and statements, and
protecting configuration hierarchies and statements, as described in the following sections:

• "Add Comments in the Configuration" on page 507

• "Activate or Deactivate Configuration Statements" on page 509

• "Protect or Unprotect Configuration Statements" on page 513

You can apply junos-configuration-metadata annotations on a container (statement hierarchy), leaf-list, leaf
statement, or a list item (statement with an identifier). When you apply the annotations on leaf-list
statements, you can only apply them at the leaf-list level, not on individual leaf-list entries.

You can use the YANG annotations in JSON or XML configuration data, as outlined in Table 28 on page
507. You can use the NETCONF <edit-config> operation to load XML configuration data, and you can
use the Junos XML protocol <load-configuration> operation to load JSON or XML configuration data on a
device.

506

Table 28: Using Configuration Metadata Annotations

Encoding Syntax Example

JSON (metadata object) "module-name:annotation" : "value" "junos-configuration-metadata:comment" :
"comment string"

XML (XML attributes) xmlns:prefix=namespace-uri

prefix:annotation="value"

<element-name xmlns:jcmd="http://
yang.juniper.net/junos/jcmd"
jcmd:comment="comment string">

Add Comments in the Configuration

IN THIS SECTION

JSON | 507

XML | 508

You can use the comment annotation to add comments to a configuration statement. The following
sections outline how to add a comment when loading JSON or XML configuration data.

JSON

To add a comment when loading JSON configuration data, include the junos-configuration-metadata:comment
annotation in the metadata object for that statement and specify the comment as a string. To remove a
comment, include an empty string ("").

The following example associates one comment with a hierarchy, another comment with a list entry that
requires an identifier, and a third comment with an existing leaf statement.

<rpc>
<load-configuration format="json">
<configuration-json>
{
 "configuration" : {
 "protocols" : {
 "ospf" : {

507

 "@" : {
 "junos-configuration-metadata:comment" : "/* OSPF comment */"
 },
 "area" : [
 {
 "name" : "0.0.0.0",
 "interface" : [
 {
 "@" : {
 "junos-configuration-metadata:comment" : "/* From jnpr1 \n to jnpr2 */"
 },
 "name" : "et-0/0/1.0",
 "@hello-interval" : {
 "junos-configuration-metadata:comment" : "# set by admin"
 }
 }
]
 }
]
 }
 }
 }
}
</configuration-json>
</load-configuration>
</rpc>
]]>]]>

XML

To add a comment when loading XML configuration data, include the jcmd:comment annotation as an XML
attribute in the opening tag of that configuration element and specify the comment as a string. To
remove a comment, include an empty string ("").

The following example associates one comment with a hierarchy, another comment with a list entry that
requires an identifier, and a third comment with a leaf statement.

<rpc>
 <edit-config>
 <target>
 <candidate/>
 </target>

508

 <config>
 <configuration>
 <protocols>
 <ospf xmlns:jcmd="http://yang.juniper.net/junos/jcmd" jcmd:comment="/* OSPF comment
*/">
 <area>
 <name>0.0.0.0</name>
 <interface xmlns:jcmd="http://yang.juniper.net/junos/jcmd" jcmd:comment="/* From
jnpr1 \n to jnpr2 */">
 <name>et-0/0/1.0</name>
 <hello-interval xmlns:jcmd="http://yang.juniper.net/junos/jcmd" jcmd:comment="#
set by admin">5</hello-interval>
 </interface>
 </area>
 </ospf>
 </protocols>
 </configuration>
 </config>
 </edit-config>
</rpc>

Activate or Deactivate Configuration Statements

IN THIS SECTION

JSON | 510

XML | 512

You can use the active annotation to deactivate a configuration statement or to activate a configuration
statement that was previously deactivated. To deactivate a statement, set active to false. To activate a
statement, set active to true.

The following sections outline how to deactivate and activate configuration statements in JSON and
XML configuration data.

509

JSON

To deactivate or reactivate a configuration object in JSON, include the "junos-configuration-
metadata:active" : (false | true) annotation in the metadata object for that statement.

<configuration-json>
{
 "configuration" : {
 /* JSON objects for parent levels */
 "@leaf-list-statement-name" : {
 "junos-configuration-metadata:comment" : "/* activate or deactivate a leaf-list
*/",
 "junos-configuration-metadata:active" : (false | true)
 },
 "level-or-container" : {
 "@" : {
 "junos-configuration-metadata:comment" : "/* activate or deactivate a
hierarchy */",
 "junos-configuration-metadata:active" : (false | true)
 },
 "object" : [
 {
 "@" : {
 "junos-configuration-metadata:comment" : "/* activate or deactivate an
object with an identifier */",
 "junos-configuration-metadata:active" : (false | true)
 },
 "name" : "identifier",
 "@statement-name" : {
 "junos-configuration-metadata:comment" : "/* activate or deactivate a
statement */",
 "junos-configuration-metadata:active" : (false | true)
 }
 }
]
 }
 /* closing braces for parent levels */
 }
}
</configuration-json>

510

For example, the following RPC deactivates the [edit protocols isis] hierarchy, activates the apply-groups
leaf-list statement, and modifies the specified event policy to deactivate the event-script action and
reactivate the raise-trap action.

<rpc>
<load-configuration format="json">
<configuration-json>
{
 "configuration" : {
 "@apply-groups" : {
 "junos-configuration-metadata:active" : true
 },
 "protocols" : {
 "isis" : {
 "@" : {
 "junos-configuration-metadata:active" : false
 }
 }
 },
 "event-options" : {
 "policy" : [
 {
 "name" : "raise-trap-on-ospf-nbrdown",
 "then" : {
 "event-script" : [
 {
 "@" : {
 "junos-configuration-metadata:active" : false
 },
 "name" : "ospf.xsl"
 }
],
 "@raise-trap" : {
 "junos-configuration-metadata:active" : true
 }
 }
 }
]
 }
 }
}
</configuration-json>

511

</load-configuration>
</rpc>

XML

To deactivate or reactivate a configuration object, include the jcmd:active="false" or jcmd:active="true"
annotation, respectively, as an XML attribute in the opening tag of that configuration element.

The following RPC deactivates the [edit protocols isis] hierarchy, activates the apply-groups leaf-list
statement, and modifies the specified event policy to deactivate the event-script action and reactivate
the raise-trap action.

<rpc>
 <edit-config>
 <target>
 <candidate/>
 </target>
 <config>
 <configuration>
 <apply-groups xmlns:jcmd="http://yang.juniper.net/junos/jcmd" jcmd:active="true"/>
 <protocols>
 <isis xmlns:jcmd="http://yang.juniper.net/junos/jcmd" jcmd:active="false"/>
 </protocols>
 <event-options>
 <policy>
 <name>raise-trap-on-ospf-nbrdown</name>
 <then>
 <event-script xmlns:jcmd="http://yang.juniper.net/junos/jcmd" jcmd:active="false">
 <name>ospf.xsl</name>
 </event-script>
 <raise-trap xmlns:jcmd="http://yang.juniper.net/junos/jcmd" jcmd:active="true"/>
 </then>
 </policy>
 </event-options>
 </configuration>
 </config>
 </edit-config>
</rpc>

512

Protect or Unprotect Configuration Statements

IN THIS SECTION

JSON | 513

XML | 515

You can protect selected Junos configuration hierarchies and statements to prevent changes to those
statements until such time that the protect attribute is removed.

The following sections outline how to protect or unprotect configuration statements in JSON and XML
configuration data.

JSON

To protect or unprotect a configuration object in JSON, include the "junos-configuration-metadata:protect" :
(true | false) annotation in the metadata object for that statement.

<configuration-json>
{
 "configuration" : {
 /* JSON objects for parent hierarchies */
 "@leaf-list-statement-name" : {
 "junos-configuration-metadata:comment" : "/* protect a leaf-list */",
 "junos-configuration-metadata:protect" : (false | true)
 },
 "hierarchy" : {
 "@" : {
 "junos-configuration-metadata:comment" : "/* protect a hierarchy */",
 "junos-configuration-metadata:protect" : (false | true)
 },
 "object" : [
 {
 "@" : {
 "junos-configuration-metadata:comment" : "/* protect an object with an
identifier */",
 "junos-configuration-metadata:protect" : (false | true)
 },
 "name" : "identifier",

513

 "@statement-name" : {
 "junos-configuration-metadata:comment" : "/* protect a statement */",
 "junos-configuration-metadata:protect" : (false | true)
 }
 }
]
 }
 /* closing braces for parent hierarchies */
 }
}
</configuration-json>

For example, the following RPC protects the [edit protocols isis] hierarchy level, the apply-groups leaf-list
statement, and the host-name leaf statement, and it removes the protect attribute for the specified event
policy.

<rpc>
<load-configuration format="json">
<configuration-json>
{
 "configuration" : {
 "@apply-groups" : {
 "junos-configuration-metadata:protect" : true
 },
 "system" : {
 "@host-name" : {
 "junos-configuration-metadata:protect" : true
 }

 },
 "event-options" : {
 "policy" : [
 {
 "@" : {
 "junos-configuration-metadata:protect" : false
 },
 "name" : "raise-trap-on-ospf-nbrdown"
 }
]
 },
 "protocols" : {
 "isis" : {

514

 "@" : {
 "junos-configuration-metadata:protect" : true
 }
 }
 }
 }
}
</configuration-json>
</load-configuration>
</rpc>

XML

To protect or unprotect a configuration object, include the jcmd:protect="true" or jcmd:protect="false"
annotation, respectively, as an XML attribute in the opening tag of that configuration element.

The following RPC protects the [edit protocols isis] hierarchy level, the apply-groups leaf-list statement,
and the host-name leaf statement, and it removes the protect attribute for the specified event policy.

<rpc>
 <edit-config>
 <target>
 <candidate/>
 </target>
 <config>
 <configuration>
 <apply-groups xmlns:jcmd="http://yang.juniper.net/junos/jcmd" jcmd:protect="true"/>
 <system>
 <host-name xmlns:jcmd="http://yang.juniper.net/junos/jcmd" jcmd:protect="true"/>
 </system>
 <protocols>
 <isis xmlns:jcmd="http://yang.juniper.net/junos/jcmd" jcmd:protect="true"/>
 </protocols>
 <event-options>
 <policy xmlns:jcmd="http://yang.juniper.net/junos/jcmd" jcmd:protect="false">
 <name>raise-trap-on-ospf-nbrdown</name>
 </policy>
 </event-options>
 </configuration>
 </config>

515

 </edit-config>
</rpc>

openconfig-metadata Module Overview

The openconfig-metadata YANG module includes metadata annotations defined by the OpenConfig
working group. The module defines the protobuf-metadata annotation, which enables you to store
metadata about the configuration directly within the configuration for easy reference.

Junos devices support the openconfig-metadata:protobuf-metadata annotation with the following constraints:

• You can configure only one protobuf-metadata annotation and only at the root level of the configuration
hierarchy.

• You can only configure and view the annotation in JSON configuration data.

• The annotation is of type binary, but you must encode the binary value in the base64 encoding
scheme before loading the annotation on the device.

Junos devices support configuring the openconfig-metadata:protobuf-metadata annotation by default.
However, to enable the device to emit the capability in the NETCONF capabilities exchange and emit
the annotation in the configuration data, you must configure the device as follows:

1. Require the NETCONF server to advertise standard YANG modules, such as OpenConfig modules, in
the capabilities exchange.

[edit]
user@host# set system services netconf hello-message yang-module-capabilities advertise-
standard-yang-modules

2. Configure the device to enforce YANG-compliant NETCONF sessions.

[edit]
user@host# set system services netconf yang-compliant

3. (Optional) Unhide the OpenConfig schema, if you intend to view OpenConfig statements, including
the annotation, in the CLI.

[edit]
user@host# set system schema openconfig unhide

516

https://github.com/openconfig/public/blob/master/release/models/extensions/openconfig-metadata.yang

4. Commit the configuration.

[edit]
user@host# commit

After you configure the device to advertise standard YANG modules in the NETCONF capabilities
exchange, devices that support openconfig-metadata annotations advertise the following capability in the
hello message:

<capability>http://openconfig.net/yang/openconfig-metadata?module=openconfig-
metadata&revision=2020-08-06</capability>

You use the gNMI set() operation to load the openconfig-metadata:protobuf-metadata annotation as part of
your JSON configuration data.

{
 "configuration" : {
 "@" : {
 "openconfig-metadata:protobuf-metadata": "dGhpcyBpcyB0ZXN0IGRhdGEK" // base64
encoded string per RFC 7951 encoding rules.
 },
 // configuration statements
 }
}

When you request JSON configuration data, as described in "View Metadata Annotations in
Configuration Data" on page 518, the output displays the OpenConfig configuration, including the
annotation, after the Junos configuration data. For example:

<rpc><get-configuration format="json"/></rpc>

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns:junos="http://xml.juniper.net/
junos/22.3R1/junos">
{
 "configuration" : {
 "@" : {
 "xmlns" : "http://xml.juniper.net/xnm/1.1/xnm",
 "junos:changed-seconds" : "1658526284",
 "junos:changed-localtime" : "2022-07-22 14:44:44 PDT"
 },

517

 "version" : "22.3R1-EVO",
 ...
 },
 "@" : {
 "openconfig-metadata:protobuf-metadata" : "dGhpcyBpcyB0ZXN0IGRhdGEK"
 },
 "openconfig-interfaces:interfaces" : {
 "interface" : [
 {
 "name" : "et-1/0/1",
 "config" : {
 "type" : "IF_ETHERNET",
 "description" : "CE1"
 }
 }
]
 }
}
</rpc-reply>

View Metadata Annotations in Configuration Data

The Junos device emits YANG metadata annotations in the Junos configuration within YANG-compliant
NETCONF sessions. When you configure NETCONF sessions to be YANG-compliant and retrieve the
configuration using the <get-config/> or <get-configuration/> RPC, the device encodes the annotations as
per RFC 7952, Defining and Using Metadata with YANG.

To view the configuration with the YANG annotations encoded as per RFC 7952:

1. Configure the device to enforce YANG-compliant NETCONF sessions.

[edit]
user@host# set system services netconf yang-compliant
user@host# commit

2. Retrieve the configuration using the <get-config> or <get-configuration> RPC.

• Use the NETCONF <get-config> operation to retrieve XML configuration data.

<rpc>
 <get-config>
 <source>
 <running/>

518

 </source>
 </get-config>
</rpc>

• Use the Junos XML protocol <get-configuration> operation to retrieve JSON or XML configuration
data.

<rpc><get-configuration format="json"/></rpc>

<rpc><get-configuration format="xml"/></rpc>

NOTE: Junos devices only support the openconfig-metadata:protobuf-metadata annotation for
JSON encoding. Thus, you can only use the gNMI get() operation or the Junos XML
protocol <get-configuration format="json"> RPC to view the annotation in JSON
configuration data.

Use Juniper Networks YANG Modules

SUMMARY

Learn how to obtain Juniper Networks YANG
modules and how to import a module into another
module.

IN THIS SECTION

Obtain Juniper Networks YANG Data
Models | 520

Download YANG Modules from Juniper
Networks | 520

Generate YANG Modules on Junos
Devices | 521

Generate YANG Modules from a Remote
Session | 522

Importing Juniper Networks YANG
Modules | 522

Platform-Specific YANG Module
Behavior | 523

519

Juniper Networks publishes YANG modules that define the configuration hierarchies, RPCs, state data,
and YANG extensions for Junos devices. This topic details how to download the YANG modules or
generate them on a device as well as how to import a module into another module.

Obtain Juniper Networks YANG Data Models

You can retrieve the Juniper Networks YANG data models by:

• Downloading the modules from the Juniper Networks website at https://www.juniper.net/support/
downloads

• Downloading the modules from the Juniper/yang GitHub repository

• Generating the modules on a Junos device either through a local or remote session

Junos OS YANG modules are specific to a device family. For a given OS and release, the YANG modules
download file and GitHub repository include a separate directory for each device family as well as a
common directory. Each family-specific directory contains the modules that are supported on the
platforms in that family. The common directory contains the modules that are common to all device
families. For more information about the device families, see "Understanding Junos YANG Modules" on
page 471.

When you generate YANG modules on a local device, the modules include both native Junos modules as
well as any standard or custom modules that have been added to the device. The native YANG modules
generated on a local device, by default, contain family-specific schemas. The family-specific schemas are
identical across all devices in the given device family.

Starting in Junos OS Release 23.4R1 and Junos OS Evolved Release 23.4R1, we provide all YANG data
models for a given OS and release in a single download package and GitHub repository folder. The
package and repository include:

• Native configuration, state, and RPC data models

• OpenConfig configuration and state models supported by that OS

• IETF models supported by that OS

Download YANG Modules from Juniper Networks

To download the YANG modules from the Juniper Networks site:

1. Access the downloads page at https://support.juniper.net/support/downloads.

2. Select your product.

3. In the drop-down menus, select the appropriate OS and version.

4. Expand the Tools section to display the available downloads.

5. In the Downloads column, click the link for the YANG modules package you want to download.

520

https://www.juniper.net/support/downloads
https://www.juniper.net/support/downloads
https://github.com/Juniper/yang
https://support.juniper.net/support/downloads

6. Review and accept the End User License Agreement.

7. Follow the instructions on the download page to download the file.

NOTE: If your particular product page does not have the YANG modules available for
download, you can download the modules from the Juniper/yang GitHub repository or
generate the modules on the Junos device.

Generate YANG Modules on Junos Devices

To generate the YANG modules from the Junos OS or Junos OS Evolved CLI:

1. Log in to the Junos device.

2. (Optional) By default, Junos devices emit YANG modules with family-specific schemas. To generate
modules with device-specific schemas instead, configure the device-specific statement.

[edit system services netconf]
user@host# set yang-modules device-specific
user@host# commit and-quit

3. Create the directory where the device will store the output files, if it does not exist.

user@host> file make-directory /var/tmp/yang

4. (Optional) To see a list of available Junos YANG modules, invoke the context-sensitive help.

user@host> show system schema module ?

5. Execute the show system schema operational mode command. Specify which modules to generate and
the directory for storing the output files.

user@host> show system schema format yang module module-name output-directory file-path

For example:

user@host> show system schema format yang module all output-directory /var/tmp/yang

The device generates the YANG modules in the specified output directory.

521

https://github.com/Juniper/yang

Generate YANG Modules from a Remote Session

To generate the YANG modules from a remote session:

1. Connect to the Junos device. For example:

user@server$ ssh user@host.example.net -p 830 -s netconf

2. Execute the <get-yang-schema> RPC. Specify the module or collection name and the output directory.

<rpc>
 <get-yang-schema>
 <format>yang</format>
 <identifier>all-rpc</identifier>
 <output-directory>/var/home/user</output-directory>
 </get-yang-schema>
</rpc>

The device generates the YANG modules in the specified output directory.

TIP: You can also use the <get-schema> Network Configuration Protocol (NETCONF)
operation to retrieve a YANG module from the device. For additional information, see
"Retrieve Schemas" on page 159.

Importing Juniper Networks YANG Modules

You can use YANG-based tools to leverage the Juniper Networks YANG modules. If you are developing
custom YANG modules, you can reference definitions in the Juniper Networks YANG modules by
importing the modules into your custom module.

To import a Juniper Networks YANG module into an existing module:

1. Include the import statement, specify the module name, and assign the prefix to use with the
definitions from the imported module.

module acme-system {
 namespace "http://acme.example.com/system";
 prefix "acme";

 import junos-conf-root {
 prefix "jc";

522

 }
 import junos-extension {
 prefix "junos";
 }
…
}

2. Reference definitions in the module by using the locally defined prefix, a colon, and the node
identifier or keyword.

Platform-Specific YANG Module Behavior

Use Feature Explorer to confirm platform and release support for specific features.

Use the following table to review platform-specific behaviors for your platform:

Table 29: Platform-Specific Behavior

Platform Difference

QFX Series • In Junos OS Evolved Release 23.4R2 and later,
native YANG modules use the junos device family
identifier instead of junos-qfx. To emit device-
specific schemas that use the junos-qfx family
identifier instead, configure the device-specific and
emit-family-ns-and-module-name statements at the
[edit system services netconf yang-modules]
hierarchy level.

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

23.4R1 and
23.4R1-EVO

Starting in Junos OS Release 23.4R1 and Junos OS Evolved Release 23.4R1, we provide all
YANG data models for a given OS and release in a single download package and GitHub
repository folder.

23.4R1-EVO Starting in Junos OS Evolved Release 23.4R1, we publish the Junos OS Evolved native YANG
modules on the Juniper Networks download site and on GitHub. In earlier releases, you must
generate the modules on the device.

523

https://apps.juniper.net/feature-explorer/feature/530?fn=YANG
https://apps.juniper.net/feature-explorer/

19.1R2 and
19.2R1

Starting in Junos OS Release 19.1R2 and 19.2R1, the show system schema command and get-yang-
schema RPC must include the output-directory option to specify the directory in which to
generate the output files. In earlier releases, you can omit the output-directory option when
requesting a single module to display the module in standard output.

RELATED DOCUMENTATION

Understanding YANG on Devices Running Junos OS | 470

Understanding Junos YANG Modules | 471

Understanding the Junos DDL Extensions YANG Module | 500

Understanding the YANG Modules for Junos Operational Commands | 484

show system schema

524

CHAPTER 18

Create and Use Non-Native YANG Modules

IN THIS CHAPTER

Understanding the Management of Nonnative YANG Modules on Devices Running Junos OS | 525

Manage YANG Packages, Modules, and Scripts on Junos Devices | 527

Managing YANG Packages and Configurations During a Software Upgrade or Downgrade | 533

Create Translation Scripts for YANG Configuration Models | 536

Disable and Enable YANG Translation Scripts on Devices Running Junos OS | 541

Commit and Display Configuration Data for Nonnative YANG Modules | 543

Create Custom RPCs in YANG for Devices Running Junos OS | 549

Create Action Scripts for YANG RPCs on Junos Devices | 556

Use Custom YANG RPCs on Devices Running Junos OS | 569

Example: Use a Custom YANG RPC to Retrieve Operational Information from Junos Devices | 571

Understanding Junos OS YANG Extensions for Formatting RPC Output | 590

Customize YANG RPC Output on Devices Running Junos OS | 594

Define Different Levels of Output in Custom YANG RPCs for Junos Devices | 614

Display Valid Command Option and Configuration Statement Values in the CLI for Custom YANG
Modules | 630

Configure a NETCONF Proxy Telemetry Sensor in Junos | 649

Understanding the Management of Nonnative YANG Modules on
Devices Running Junos OS

YANG is a standards-based, extensible data modeling language that is used to model the configuration
and operational state data, remote procedure calls (RPCs), and server event notifications of network
devices. You can load standard or custom YANG models onto Junos devices to add data models that are
not natively supported by Junos OS. Adding YANG models enables you to create device-agnostic and
vendor-neutral operational and configuration models for managing devices from multiple vendors.

525

When you add custom YANG data models to Junos devices, you must supply a script that handles the
translation logic between the YANG data model and Junos OS on that device. There are two types of
scripts:

• Action scripts are Stylesheet Language Alternative SyntaX (SLAX) or Python scripts that act as
handlers for your custom YANG RPCs. The YANG RPC definition uses a Junos OS YANG extension
to reference the appropriate action script, which is invoked when you execute the RPC.

• Translation scripts are SLAX or Python scripts that map your custom configuration syntax (defined by
your YANG model) to Junos OS syntax and then load the translated data into the configuration as a
transient change during the commit operation. When you load and commit configuration data in the
nonnative hierarchies, Junos OS invokes the script to perform the translation and emit the transient
change.

To use custom YANG data models on Junos devices, you must add the YANG modules and associated
scripts to the device by issuing the request system yang add command. Junos OS validates the syntax of the
modules and scripts, rebuilds its schema to include the new data models, and then validates the active
configuration against this schema. The device validates the modules and scripts as you add them.
However, we recommend that you use the request system yang validate command first to validate the
syntax before adding the modules.

NOTE: In multichassis systems, you must download and add the modules and scripts to
each node in the system.

NOTE: To install OpenConfig modules that are packaged as a compressed tar file, use the
request system software add command.

When you add YANG modules and scripts to Junos devices, you must associate them with a package.
Packages have a unique identifier and represent a collection of related modules, translation scripts, and
action scripts. You reference the package identifier if you later update modules and scripts in that
package, enable or disable translation scripts associated with the package, or delete that group of
modules and scripts from the device.

When you add, update, or remove YANG modules and scripts on the device by issuing the appropriate
operational commands, you do not need to reboot the device in order for the changes to take effect.
Newly added RPCs and configuration hierarchies are immediately available for use, and installed
translation scripts are enabled by default. You can disable translation scripts in a package at any time
without removing the package and associated files from the device, which can be useful for
troubleshooting translation issues. When you disable translation for a package, you can still configure
and commit the statements and hierarchies added by the YANG modules in that package. However, the
device does not translate and commit the corresponding Junos OS configuration as a transient
configuration change during the commit operation.

526

Before installing software on a device that has one or more custom YANG data models added to it, you
must remove all configuration data corresponding to the custom YANG data models from the active
configuration. After the software installation is complete, add the YANG packages and corresponding
configuration data back to the device, if appropriate. For more information see "Managing YANG
Packages and Configurations During a Software Upgrade or Downgrade" on page 533.

RELATED DOCUMENTATION

Manage YANG Packages, Modules, and Scripts on Junos Devices | 527

Disable and Enable YANG Translation Scripts on Devices Running Junos OS | 541

Create Translation Scripts for YANG Configuration Models | 536

Create Custom RPCs in YANG for Devices Running Junos OS | 549

Manage YANG Packages, Modules, and Scripts on Junos Devices

SUMMARY

Load custom YANG packages on Junos devices to
add your own remote procedure calls (RPCs) and
data models to the device.

IN THIS SECTION

Create a YANG Package and Add Modules
and Scripts | 528

Update a YANG Package with New or
Modified Modules and Scripts | 530

Delete a YANG Package | 531

You can load custom YANG modules on Junos devices to add RPCs and data models that the device
does not support natively but can support through translation. When you load nonnative YANG data
models onto the device, you must also load any translation scripts, action scripts, and deviation modules
required by those data models.

Junos devices use packages to identify a collection of related YANG modules, translation scripts, and
action scripts. Each package has a unique identifier. When you add YANG modules and scripts to the
device, you must associate them with a new or existing package. This topic discusses how to create,
update, or delete YANG packages and add or update their associated modules and scripts.

Before you add, update, or delete YANG packages on a device, you should understand the following
points for working with YANG packages:

527

• To prevent CLI-related errors or configuration database errors, we recommend that you do not
perform any CLI operations, change the configuration, or terminate the operation while a device is in
the process of adding, updating, or deleting a YANG package and modifying the schema.

• You cannot use the run command in configuration mode to add, delete, or update YANG packages.

• When you load custom YANG data models onto the device, you do not need to explicitly load any
required Junos OS extension modules.

• After you add, update, or delete YANG packages, the device rebuilds the schema. Devices that use
the ephemeral configuration database will delete all ephemeral configuration data in the process of
rebuilding the schema.

• Junos OS does not support using configure private mode to configure statements corresponding to
third-party YANG data models, for example, OpenConfig or custom YANG data models.

Create a YANG Package and Add Modules and Scripts

To validate YANG modules and scripts and add them to a new package:

1. Download the YANG modules and any necessary scripts to any directory on the device.

2. Ensure that any unsigned Python action scripts are owned by either root or a user in the Junos OS
super-user login class and that only the file owner has write permission for the file.

NOTE: Users can only execute unsigned Python scripts on Junos devices when the
script's file permissions include read permission for the first class that the user falls
within, in the order of user, group, or others.

3. (Optional) Validate the syntax of the modules and scripts.

user@host> request system yang validate action-script [scripts] module [modules] translation-
script [scripts]

4. Create a YANG package with a unique identifier, and specify the file paths for the modules and
scripts that are part of that package. Additionally, include any deviation modules that identify
deviations for the modules in that package.

user@host> request system yang add package package-name module [modules] deviation-
module [modules] translation-script [scripts] action-script [scripts]

528

NOTE: You can specify the absolute or relative path to a single file, or you can add
multiple files by specifying a space-delimited list of file paths enclosed in brackets.

NOTE: To install OpenConfig modules that are packaged as a compressed tar file, use
the request system software add command. OpenConfig modules and scripts that are
installed by issuing the request system software add command are always associated with
the package identifier openconfig.

5. When the system prompts you to restart the Junos OS CLI, press Enter to accept the default value of
yes.

...
WARNING: cli has been replaced by an updated version:
...
Restart cli using the new version ? [yes,no] (yes)

Restarting cli ...

6. Verify that the device created the package and that it contains the correct modules and scripts.

user@host> show system yang package package-name
Package ID :package-name
YANG Module(s) :modules
Action Script(s) :action scripts
Translation Script(s) :translation scripts
Translation script status is enabled

7. If the package includes Python translation scripts or Python action scripts, enable the device to
execute unsigned Python scripts. Configure the language python or language python3 statement, as
appropriate for the Junos OS release.

[edit]
user@host# set system scripts language (python | python3)
user@host# commit

529

NOTE: Starting in Junos OS Release 20.2R1 and Junos OS Evolved Release 22.3R1, the
device uses Python 3 to execute YANG action and translation scripts. In earlier releases,
Junos OS only uses Python 2.7 to execute these scripts, and Junos OS Evolved uses
Python 2.7 by default to execute the scripts.

8. On multichassis systems, repeat steps 1 through 7 on each node in the system.

When you create a package, the device stores copies of the module and script files in a new location.
The device also stores copies of the action script and translation script files under the /var/db/scripts/
action and /var/db/scripts/translation directories, respectively. After the modules and scripts are
validated and added to the device, Junos OS rebuilds its schema to include the new data models. The
device then validates the active configuration against this schema. Newly added RPCs and configuration
hierarchies are immediately available for use.

Update a YANG Package with New or Modified Modules and Scripts

You create a YANG package by executing the request system yang add command. To update an existing
package to either add new modules and scripts to the package or update existing modules and scripts in
the package, you must use the request system yang update command.

To update a YANG package with new or modified modules and scripts:

1. Download the modules and scripts to any directory on the device.

2. Ensure that any unsigned Python action scripts are owned by either root or a user in the Junos OS
super-user login class and that only the file owner has write permission for the file.

NOTE: Users can only execute unsigned Python scripts on Junos devices when the
script's file permissions include read permission for the first class that the user falls
within, in the order of user, group, or others.

3. (Optional) Validate the syntax of the modules and scripts.

user@host> request system yang validate action-script [scripts] module [modules] translation-
script [scripts]

4. Update the YANG package by issuing the request system yang update command, and specify the file
paths for the new and modified modules and scripts.

user@host> request system yang update package-name module [modules] deviation-
module [modules] translation-script [scripts] action-script [scripts]

530

NOTE: You can specify the absolute or relative path to a single file, or you can update
multiple files by specifying a space-delimited list of file paths enclosed in brackets.

5. When the system prompts you to restart the Junos OS CLI, press Enter to accept the default value of
yes.

...
WARNING: cli has been replaced by an updated version:
...
Restart cli using the new version ? [yes,no] (yes)

Restarting cli ...

6. If the package includes Python translation scripts or Python action scripts, enable the device to
execute unsigned Python scripts. Configure the language python or language python3 statement, as
appropriate for the Junos OS release, if it is not already configured.

[edit]
user@host# set system scripts language (python | python3)
user@host# commit

NOTE: Starting in Junos OS Release 20.2R1 and Junos OS Evolved Release 22.3R1, the
device uses Python 3 to execute YANG action and translation scripts. In earlier releases,
Junos OS only uses Python 2.7 to execute these scripts, and Junos OS Evolved uses
Python 2.7 by default to execute the scripts.

7. On multichassis systems, repeat steps 1 through 6 on each node in the system.

When you update a package, the device stores copies of the new and modified module and script files.
Junos OS rebuilds its schema to include any changes to the data models associated with that package.
The device then validates the active configuration against this schema.

Delete a YANG Package

CAUTION: Before you delete a YANG package from a Junos device, ensure that the
active configuration does not contain configuration data that has dependencies on the
data models added by that package.

531

To delete a YANG package and all modules and scripts associated with that package from a Junos
device:

1. Review the active configuration to determine if there are any dependencies on the YANG modules
that will be deleted.

2. If the configuration contains dependencies on the modules, update the configuration to remove the
dependencies.

3. Delete the package and associated modules and scripts by issuing the request system yang delete
command with the appropriate package identifier.

user@host> request system yang delete package-name
Building schema and reloading /config/juniper.conf.gz ...
Activating /config/juniper.conf.gz ...
mgd: commit complete
Restarting mgd ...

NOTE: You must use the request system software delete command to remove OpenConfig
packages that were installed from a compressed tar file by issuing the request system
software add command.

4. If the system prompts you to restart the Junos OS CLI, press Enter to accept the default value of yes.

Building schema and reloading /config/juniper.conf.gz ...
Activating /config/juniper.conf.gz ...
mgd: commit complete
Restarting mgd ...

WARNING: cli has been replaced by an updated version:
...
Restart cli using the new version ? [yes,no] (yes)

Restarting cli ...

When you delete a package, Junos OS rebuilds its schema to remove the data models associated with
that package. The device then validates the active configuration against this schema. The device
removes the copies of the module and script files that it generated when you created the package. The
device also removes the copies of the package’s action script and translation script files that reside
under the /var/db/scripts/action and /var/db/scripts/translation directories. If you downloaded the
original module and script files to a different location, the original files remain unchanged.

532

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

22.3R1-EVO Starting in Junos OS Evolved Release 22.3R1, Junos OS Evolved uses Python 3 to execute YANG
action and translation scripts.

20.2R1 Starting in Junos OS Release 20.2R1, Junos OS uses Python 3 to execute YANG action and
translation scripts. In earlier releases, Junos OS uses Python 2.7 to execute these scripts.

18.3R1 Starting in Junos OS Release 18.3R1, adding, deleting, or updating YANG packages in configuration
mode with the run command is not supported.

RELATED DOCUMENTATION

Understanding the Management of Nonnative YANG Modules on Devices Running Junos OS | 525

Managing YANG Packages and Configurations During a Software Upgrade or Downgrade | 533

request system yang add

request system yang delete

request system yang update

show system yang package

Managing YANG Packages and Configurations During a Software
Upgrade or Downgrade

IN THIS SECTION

Backing up and Deleting the Configuration Data | 534

Restoring the YANG Packages and Configuration Data | 535

Certain devices running Junos OS enable you to load custom YANG modules on the device to add data
models that are not natively supported by Junos OS. When you add, update, or delete a YANG data

533

https://apps.juniper.net/feature-explorer/

model, Junos OS rebuilds its schema and then validates the active configuration against the updated
schema.

When you upgrade or downgrade Junos OS, by default, the system validates the software package or
bundle against the current configuration. During the installation, the schema for custom YANG data
models is not available. As a result, if the active configuration contains dependencies on these models,
the software validation fails, which causes the upgrade or downgrade to fail.

In addition, devices that are running Junos OS based on FreeBSD version 6 remove custom YANG
packages from the device during the software installation process. For this Junos OS variant, if the
active configuration contains dependencies on custom YANG data models, the software installation fails
even if you do not validate the software against the configuration, because the configuration data
cannot be validated during the initial boot-time commit.

For these reasons, before you upgrade or downgrade the Junos OS image on a device that has one or
more custom YANG modules added to it, you must remove all configuration data corresponding to the
custom YANG data models from the active configuration. After the software installation is complete, add
the YANG packages and corresponding configuration data back to the device, if appropriate. The tasks
are outlined in this topic.

NOTE: You do not need to delete configuration data corresponding to OpenConfig
packages before upgrading or downgrading Junos OS.

Backing up and Deleting the Configuration Data

If the configuration contains dependencies on custom YANG data models:

1. If you plan to restore the configuration data that corresponds to the nonnative YANG data models
after the software is updated, save a copy of either the entire configuration or the configuration data
corresponding to the YANG data models, as appropriate.

• To save the entire configuration:

user@host> show configuration | save (filename | url)

• To save configuration data under a specific hierarchy level:

user@host> show configuration path-to-yang-statement-hierarchy | save (filename | url)

534

2. In configuration mode, delete the portions of the configuration that depend on the custom YANG
data models.

[edit]
user@host# delete path-to-yang-statement-hierarchy

3. Commit the changes.

[edit]
user@host# commit

4. Prior to performing the software installation, ensure that the saved configuration data and the YANG
module and script files are saved to a local or remote location that will preserve the files during the
installation and that will be accessible after the installation is complete.

Restoring the YANG Packages and Configuration Data

After the software installation is complete, load the YANG packages onto the device (where required),
and restore the configuration data associated with the packages, if appropriate. During a software
upgrade or downgrade, devices running Junos OS with upgraded FreeBSD preserve custom YANG
packages, whereas devices running Junos OS based on FreeBSD version 6 delete the packages.

1. Load the YANG packages (devices running Junos OS based on FreeBSD version 6 only).

user@host> request system yang add package package-name module [modules] deviation-
module [modules] translation-script [scripts] action-script [scripts]

2. When the system prompts you to restart the Junos OS CLI, press Enter to accept the default value of
yes.

...
WARNING: cli has been replaced by an updated version:
...
Restart cli using the new version ? [yes,no] (yes)

Restarting cli ...

535

NOTE: To prevent CLI-related or configuration database errors, we recommend that you
do not perform any CLI operations, change the configuration, or terminate the
operation while a device is in the process of adding, updating, or deleting a YANG
package and modifying the schema.

3. In configuration mode, load the configuration data associated with the YANG packages.

For example, to load the configuration data from a file relative to the top level of the configuration
statement hierarchy:

[edit]
user@host# load merge (filename | url)

NOTE: For more information about loading configuration data, see the CLI User Guide.

4. Commit the changes.

[edit]
user@host# commit

RELATED DOCUMENTATION

Manage YANG Packages, Modules, and Scripts on Junos Devices | 527

Create Translation Scripts for YANG Configuration Models

You can load YANG modules on Junos devices to add data models that are not natively supported by the
OS but can be supported by translation. When you extend the configuration hierarchy with nonnative
YANG data models, you must also supply one or more translation scripts that provide the logic to map
the nonnative configuration syntax to the corresponding Junos OS syntax.

Translation scripts perform two main functions:

• Convert the configuration data corresponding to the nonnative YANG data models into Junos OS
syntax

536

• Add the translated configuration data as a transient change in the checkout configuration during the
commit operation

Translation scripts can be written in either Python or SLAX and are similar to commit scripts in structure.
For information about creating SLAX and Python scripts that generate transient changes in the
configuration, see the Automation Scripting User Guide.

You use the request system yang add or request system yang update commands to add YANG modules and their
associated translation scripts to a new or existing YANG package on the device. After you add the
modules and translation scripts to the device, you can configure the statements and hierarchies in the
data model added by those modules. When you load and commit the configuration data, the device calls
the script to perform the translation and generate the transient configuration change.

This topic discusses the general structure for translation scripts. The specific translation logic required in
the actual script depends on the custom hierarchies added to the schema and is beyond the scope of
this topic.

To create the framework for translation scripts that are used on Junos devices:

1. In your favorite editor, create a new file that uses the .slax or .py file extension, as appropriate.

2. Include the necessary boilerplate required for that script’s language, which is identical to the
boilerplate for commit scripts, and also include any required namespace declarations for your data
models.

• SLAX code:

version 1.0;
ns junos = "http://xml.juniper.net/junos/*/junos";
ns xnm = "http://xml.juniper.net/xnm/1.1/xnm";
ns jcs = "http://xml.juniper.net/junos/commit-scripts/1.0";
ns prefix = "namespace";
import "../import/junos.xsl";

match configuration {
 /*
 * insert your code here
 */
}

• Python code:

from junos import Junos_Context
from junos import Junos_Configuration

537

https://www.juniper.net/documentation/us/en/software/junos/automation-scripting/index.html

import jcs

if __name__ == '__main__':
 /*
 * insert your code here
 */

NOTE: Translation scripts must fully qualify identifiers for nonnative YANG data models
in the translation code.

NOTE: For information about commit script boilerplate code, see Required Boilerplate
for Commit Scripts and the Automation Scripting User Guide.

3. Add code that maps the nonnative configuration data into the equivalent Junos OS syntax and stores
the translated configuration data in a variable.

• SLAX sample code:

match configuration {

 /* translation code */

 var $final = {
 /*
 * translated configuration
 */
 }
}

• Python sample code:

if __name__ == '__main__':

 /* translation code */

 final = """
 /*
 * Junos XML elements representing translated configuration

538

https://www.juniper.net/documentation/us/en/software/junos/automation-scripting/index.html

 */
 """

4. Add the translated content to the checkout configuration as a transient configuration change by
calling the jcs:emit-change() template in SLAX scripts or the jcs.emit_change() function in Python scripts
with the translated configuration and transient-change tag as arguments.

• SLAX sample code:

match configuration {

 /* translation code */

 var $final = {
 /*
 * translated configuration
 */
 }
 call jcs:emit-change($content=$final, $tag='transient-change');
}

• Python sample code:

if __name__ == '__main__':

 /* translation code */

 final = """
 /*
 * Junos XML elements representing translated configuration
 */
 """
 jcs.emit_change(final, "transient-change", "xml")

NOTE: In SLAX scripts, you can also generate the transient change by emitting the
translated configuration inside of a <transient-change> element instead of calling the
jcs:emit-change() template.

On the device, perform the following tasks before adding the translation script to a YANG package:

539

1. If the translation script is written in Python, enable the device to execute unsigned Python scripts by
configuring the language python or language python3 statement, as appropriate for the Junos OS release.

[edit]
user@host# set system scripts language (python | python3)

NOTE: Starting in Junos OS Release 20.2R1 and Junos OS Evolved Release 22.3R1, the
device uses Python 3 to execute YANG action and translation scripts. In earlier releases,
Junos OS only uses Python 2.7 to execute these scripts, and Junos OS Evolved uses
Python 2.7 by default to execute the scripts.

2. Download the script to the device, and optionally validate the syntax.

user@host> request system yang validate translation-script script

Before you can use translation scripts on a device, you must add the scripts and associated modules to a
new or existing YANG package by issuing the request system yang add or request system yang update
command. After the modules and scripts are added, the translation scripts are automatically invoked
when you commit configuration data in the corresponding data models.

When you configure statements that correspond to third-party YANG data models, for example,
OpenConfig or custom YANG data models, the following features are not supported:

• Using configure batch or configure private mode

• Configuring statements under the [edit groups] hierarchy

The active and candidate configurations contain the configuration data for the nonnative YANG data
models in the syntax defined by those models. However, because the translated configuration data is
committed as a transient change, the active and candidate configurations do not explicitly display the
translated data in the Junos OS syntax when you issue the show or show configuration commands. To apply
YANG translation scripts when you view the configuration, use the | display translation-scripts filter.

To view the complete post-inheritance configuration with the translated data (transient changes)
explicitly included, append the | display translation-scripts filter to the show configuration command in
operational mode or the show command in configuration mode. To view just the nonnative configuration
data after translation, use the | display translation-scripts translated-config filter.

In configuration mode, to display just the changes to the configuration data corresponding to nonnative
YANG data models before or after translation scripts are applied, append the configured-delta or

540

translated-delta keyword, respectively, to the show | display translation-scripts command. In both cases,
the XML output displays the deleted configuration data, followed by the new configuration data.

For more information about the | display translation-scripts filter, see "Commit and Display Configuration
Data for Nonnative YANG Modules" on page 543.

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

22.3R1 Starting in Junos OS Evolved Release 22.3R1, Junos OS Evolved uses Python 3 to execute YANG action
and translation scripts.

20.2R1 Starting in Junos OS Release 20.2R1, Junos OS uses Python 3 to execute YANG action and translation
scripts.

RELATED DOCUMENTATION

Disable and Enable YANG Translation Scripts on Devices Running Junos OS | 541

Understanding the Management of Nonnative YANG Modules on Devices Running Junos OS | 525

Disable and Enable YANG Translation Scripts on Devices Running Junos
OS

You can load standard (IETF, OpenConfig) or custom YANG data models on devices running Junos OS to
add data models that are not natively supported by Junos OS but can be supported by translation.
When you extend the configuration hierarchy with nonnative data models, you must also supply one or
more translation scripts. Tranlation scripts perform two main functions:

• Map the custom configuration syntax defined by the YANG data model to the corresponding Junos
OS syntax

• Add the translated data to the checkout configuration as a transient change during the commit
operation

When you add translation scripts to the device with a new or existing YANG package, they are enabled
by default. You can disable the translation scripts in a YANG package at any time without removing the
package and associated files from the device, which can be useful for troubleshooting translation issues.
After you disable translation for a package and commit the configuration, the configuration data

541

https://apps.juniper.net/feature-explorer/

associated with the YANG data models in that package can be present in the active configuration, but
the configuration has no impact on the functioning of the device.

When translation is disabled, you can still configure and commit the statements and hierarchies in the
data models added by that package. However, the device does not commit the corresponding Junos OS
configuration statements as transient changes during the commit operation for any statements in the
data models added by that package, even for those statements that were committed prior to disabling
translation.

To disable translation scripts for a given YANG package that is installed on a device running Junos OS:

1. Issue the request system yang disable command, and specify the package identifier.

user@host> request system yang disable package-name

2. Verify that the status of the translation scripts in the package is disabled.

user@host> show system yang package package-name
Package ID :package-name
YANG Module(s) :modules
Translation Script(s) :translation scripts
Translation script status is disabled

NOTE: When you disable translation for a package, the device retains any transient
configuration changes that were committed prior to disabling translation until the next
commit operation.

NOTE: In configuration mode, you can issue the show | display translation-
scripts translated-config command to verify which configured statements from nonnative
YANG data models will be translated and committed during a commit operation. The
command output does not include (and the device does not commit) the corresponding
Junos OS configuration for those data models for which translation has been disabled.

To enable translation scripts for a given YANG package that is installed on a device running Junos OS:

1. Issue the request system yang enable command, and provide the package identifier.

user@host> request system yang enable package-name

542

2. Verify that the status of the translation scripts in the package is enabled.

user@host> show system yang package package-name
Package ID :package-name
YANG Module(s) :modules
Translation Script(s) :translation scripts
Translation script status is enabled

RELATED DOCUMENTATION

Understanding the Management of Nonnative YANG Modules on Devices Running Junos OS | 525

request system yang disable

request system yang enable

show system yang package

Commit and Display Configuration Data for Nonnative YANG Modules

You can load standardized or custom YANG modules on Junos devices to add data models that the
device does not support natively but can support through translation. When you extend the
configuration hierarchy with new data models, you must also supply one or more translation scripts.
Translation scripts provide the translation logic to map the nonnative configuration syntax to Junos OS
syntax. The device enables translation scripts as soon as you issue the request system yang add or request
system yang update command to add them to the device.

You configure nonnative data models in the candidate configuration using the syntax defined for those
models. When you configure statements that correspond to third-party YANG data models, for example,
OpenConfig or custom YANG data models, the following features are not supported:

• Using configure batch or configure private mode

• Configuring statements under the [edit groups] hierarchy

When you commit the configuration, the translation scripts translate the data for those models and
commit the corresponding Junos OS configuration as a transient change in the checkout configuration.

NOTE: XPath expression evaluations for the following YANG keywords are disabled by
default during commit operations: leafref, must, and when.

543

The candidate and active configurations contain the configuration data for nonnative YANG data models
in the syntax defined by those models. The translated configuration data is committed as a transient
change. As a result, the candidate and active configurations do not explicitly display the translated data
in the Junos OS syntax when you view the configuration by using commands such as show or show
configuration.

You can explicitly display the translated data in Junos OS syntax in the candidate or active configuration.
You append the | display translation-scripts filter to the show command in configuration mode or to the
show configuration command in operational mode. Applying the filter displays the post-inheritance
configuration with the translated configuration data from all enabled translation scripts included.

NOTE: You can only apply the | display translation-scripts filter to the complete Junos OS
configuration. You cannot filter subsections of the configuration hierarchy.

In operational mode, issue the following command to view the committed configuration with translation
scripts applied:

user@host> show configuration | display translation-scripts

Similarly, in configuration mode, issue the following command to view the candidate configuration with
translation scripts applied. You must be at the top of the configuration hierarchy to use the filter.

[edit]
user@host# show | display translation-scripts

The output, which is truncated in this example, displays the complete post-inheritance configuration and
includes the nonnative configuration data as well as the translation of that data.

 ## Last changed: 2025-09-13 16:37:42 PDT
 version 25.2R1.9;
 system {
 host-name host;
 domain-name example.com;
 ...
 /* Translated data */
 scripts {
 op {
 file test.slax;
 }
 }

544

 ...
 }
 ...
 /* Nonnative configuration data */
 myconfig:myscript {
 op {
 filename test.slax;
 }
 }

Alternatively, you can view just the translated portions of the hierarchy corresponding to nonnative
YANG data models by appending the translated-config keyword to the | display translation-scripts filter. In
operational mode, the translated-config keyword returns the translated data for nonnative YANG data
models present in the committed configuration. In configuration mode, the translated-config keyword
returns the translated data for nonnative YANG data models present in the candidate configuration,
which includes both committed and uncommitted configuration data.

user@host> show | display translation-scripts translated-config

 system {
 scripts {
 op {
 file test.slax;
 }
 }
 }

The candidate configuration reflects the configuration data that has been configured, but not necessarily
committed, on the device. In configuration mode, you can display just the configuration differences in
the hierarchies corresponding to nonnative YANG data models before or after translation scripts are
applied. To display the differences, append the configured-delta or translated-delta keyword to the show |
display translation-scripts command. In both cases, the XML output displays the deleted configuration
data, followed by the new configuration data.

For example, to view the uncommitted configuration changes for the nonnative data models in the
syntax defined by those data models, use the show | display translation-scripts configured-delta
configuration mode command.

[edit]
user@host# show | display translation-scripts configured-delta

545

<rpc-reply xmlns:junos="http://xml.juniper.net/junos/25.2R1.9/junos">
 <configuration operation="delete">
 </configuration>
 <configuration operation="create">
 <myscript xmlns="http://jnpr.net/yang/myscript" operation="create">
 <op>
 <filename>test2.slax</filename>
 </op>
 </myscript>
 </configuration>
 <cli>
 <banner>[edit]</banner>
 </cli>
</rpc-reply>

To view the uncommitted configuration changes for the nonnative data models after translation into
Junos OS syntax, use the show | display translation-scripts translated-delta configuration mode command.
For example:

[edit]
user@host# show | display translation-scripts translated-delta
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/R1/junos">
 <configuration xmlns:junos="http://xml.juniper.net/junos/*/junos">
 <system>
 <scripts>
 <op>
 <file>
 <name>test2.slax</name>
 </file>
 </op>
 </scripts>
 </system>
 </configuration>
 <!-- EOF -->
 <cli>
 <banner>[edit]</banner>
 </cli>
</rpc-reply>

In configuration mode, you can use the various filters to better understand which transient changes the
device will commit for nonnative data models. To verify all Junos OS statements that will be committed
as transient changes by translation scripts during the commit operation, issue the show | display translation-

546

scripts translated-config command before committing the candidate configuration. To verify the Junos OS
statements that will be committed for just the changed configuration data, issue the show | display
translation-scripts translated-delta command. If you disable translation scripts for a package, the output
for these commands does not include (and the device does not commit) the corresponding Junos OS
configuration for those data models in the package.

NOTE: The presence of nonnative configuration data in the active configuration does
not guarantee that the corresponding translated configuration is present as a transient
change. If you disable translation and then commit nonnative configuration data, the
nonnative data is present in the committed configuration. However, the device does not
commit the corresponding Junos OS configuration statements as transient changes for
any statements in the data models added by that package. This even includes statements
you already committed prior to disabling translation.

Table 30 on page 547 summarizes the different filters you can apply to the committed and candidate
configurations to view configuration data corresponding to nonnative YANG data models. The table
indicates the CLI mode for each filter, and the scope and syntax of the output. By selecting different
filters, you can view the entire configuration, the translated portions of the configuration, or the
uncommitted configuration changes. You can also view the configuration data both before and after
processing by translation scripts. In configuration mode, this enables you to better determine the Junos
OS changes that the device will commit for the nonnative hierarchies.

Table 30: | display translation-scripts Command

Filter Mode Description Syntax and Format of
Output

| display translation-
scripts

Operational Return the complete,
post-inheritance
committed configuration
and include the
translation of the
nonnative data into Junos
OS syntax.

YANG data model and
Junos OS syntax as ASCII
text

547

Table 30: | display translation-scripts Command (Continued)

Filter Mode Description Syntax and Format of
Output

Configuration Return the complete,
post-inheritance
candidate configuration
and include the
translation of the
nonnative data into Junos
OS syntax.

YANG data model and
Junos OS syntax as ASCII
text

| display translation-
scripts translated-config

Operational Return the translated data
corresponding to all
nonnative YANG data
models in the committed
configuration.

Junos OS ASCII text

Configuration Return the translated data
corresponding to all
nonnative YANG data
models in the candidate
configuration.

Junos OS ASCII text

| display translation-
scripts configured-delta

Configuration Return the uncommitted
changes in the candidate
configuration
corresponding to
nonnative YANG data
models in the syntax
defined by that model.

YANG data model XML

| display translation-
scripts translated-delta

Configuration Return the uncommitted
changes in the candidate
configuration
corresponding to
nonnative YANG data
models after translation
into Junos OS syntax.

Junos OS XML

548

Create Custom RPCs in YANG for Devices Running Junos OS

SUMMARY

You can also create YANG data models that define custom RPCs for devices running Junos OS or
devices running Junos OS Evolved.

Juniper Networks provides YANG modules that define the remote procedure calls (RPCs) for operational
commands on devices running Junos OS and devices running Junos OS Evolved. You can also create
YANG data models that define custom RPCs for supported devices. Creating custom RPCs enables you
to precisely define the input parameters and operations and the output fields and formatting for your
specific operational tasks on those devices. When you extend the operational command hierarchy with a
custom YANG RPC, you must also supply an action script that serves as the handler for the RPC. The
RPC definition references the action script; when you execute the RPC, the device invokes the script.

This topic outlines the general steps for creating a YANG module that defines a custom RPC for devices
running Junos OS or devices running Junos OS Evolved. For information about creating an RPC action
script and customizing the RPC’s CLI output see "Create Action Scripts for YANG RPCs on Junos
Devices" on page 556 and "Understanding Junos OS YANG Extensions for Formatting RPC Output" on
page 590.

This section presents a generic template for a YANG module that defines an RPC for Junos devices. The
template is followed by a detailed explanation of the different sections and statements in the template.

module module-name {
 namespace "namespace";
 prefix prefix;

 import junos-extension {
 prefix junos;
 }
 import junos-extension-odl {
 prefix junos-odl;
 }

 organization
 "organization";
 description
 "module-description";

549

 rpc rpc-name {
 description "RPC-description";

 junos:command "cli-command" {
 junos:action-execute {
 junos:script "action-script-filename";
 }
 }

 input {
 leaf input-param1 {
 type type;
 description description;
 }
 leaf input-param2 {
 type type;
 description description;
 }
 // additional leaf definitions
 }
 output {
 container output-container-name {

 container container-name {
 leaf output-param1 {
 type type;
 description description;
 // optional formatting statements
 }
 // additional leaf definitions

 junos-odl:format container-name-format {
 // CLI formatting for the parent container
 }
 }

 // Additional containers
 }
 }
 }
}

550

You define RPCs within modules. The module name should be descriptive and indicate the general
purpose of the RPCs defined in that module. The module namespace must be unique.

module module-name {
 namespace "namespace";
 prefix prefix;

}

NOTE: As per RFC 6020, YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF), the module name and the base name of the file in
which the module resides must be identical. For example, if the module name is get-if-
info, the module’s filename must be get-if-info.yang.

The module must import the Junos OS DDL extensions module and define a prefix. The extensions
module includes YANG extensions that are required in the definition of RPCs executed on devices
running Junos OS or devices running Junos OS Evolved.

 import junos-extension {
 prefix junos;
 }

If any of the RPCs in the module render formatted ASCII output, the module must import the Junos OS
ODL extensions module and define a prefix. The ODL extensions module defines YANG extensions that
you use to precisely specify how to render text output. The device emits text output when you execute
the operational command for that RPC in the CLI or when you request the RPC output in text format.

 import junos-extension-odl {
 prefix junos-odl;
 }

Include the organization responsible for the module as well as a description of the module.

 organization
 "organization";
 description
 "module-description";

551

https://datatracker.ietf.org/doc/html/rfc6020

Within the module, you can define one or more RPCs, each with a unique name. The RPC name is used
to remotely execute the RPC, and thus should clearly indicate the RPC’s purpose. The RPC purpose can
be further clarified in the description statement. If you also define a CLI command for the RPC, the CLI
displays the RPC description in the context-sensitive help for that command listing.

 rpc rpc-name {
 description "RPC-description";

 }

Within the RPC definition, define the command, action-execute, and script statements, which are Junos OS
DDL extension statements. The command statement defines the operational command that you use to
execute the RPC in the Junos OS CLI. To execute the RPC remotely, use the RPC name for the request
tag.

Every RPC must define the action-execute statement and script substatement. The script substatement
defines the name of the action script that is invoked when you execute the RPC. You must define one
and only one action script for each RPC.

 junos:command "cli-command" {
 junos:action-execute {
 junos:script "action-script-filename";
 }
 }

NOTE: You must add the YANG module and action script to the device as part of a new
or existing YANG package. Thus, you only need to provide the name and not the path of
the action script for the junos:script statement.

NOTE: If your action script is written in Python, you must enable the device to execute
unsigned Python scripts by configuring the language python or language python3 statement
under the [edit system scripts] hierarchy level on each device where you will execute the
script.

552

Input parameters to the RPC operation are defined within the optional input statement. When you
execute the RPC, Junos OS invokes the RPC’s action script and passes all of the input parameters to the
script.

 input {
 leaf input-param1 {
 type type;
 description description;
 }
 leaf input-param2 {
 type type;
 description description;
 }
 // additional leaf definitions
 }

NOTE: Starting in Junos OS Release 19.2R1, custom YANG RPCs support input
parameters of type empty when executing the RPC’s command in the Junos OS CLI. In
earlier releases, input parameters of type empty are only supported when executing the
RPC in a NETCONF or Junos XML protocol session.

The optional output statement encloses the output parameters to the RPC operation. The output
statement can include one top-level root container. It is a good practice to correlate the name of the
root container and the RPC name. For example, if the RPC name is get-xyz-information, the container
name might be xyz-information. Substatements to the output statement define nodes under the RPC’s
output node. In the XML output, this would translate into XML elements under the <rpc-reply> element.

 output {
 container output-container-name {
 ...
 }
 }

Within the root container, you can include leaf and container statements. Leaf statements describe the
data included in the RPC output for that container.

 output {
 container output-container-name {
 container container-name {

553

 leaf output-param1 {
 type type;
 description description;
 }
 // additional leaf definitions
 }
 }
 }

By default, the format for RPC output is XML. You can also define formatted ASCII output that is
displayed when you execute the operational command for that RPC in the CLI or when you request the
RPC output in text format.

You define the CLI formatting by defining a junos-odl:format statement, which is a Junos OS ODL
extension statement.

 output {
 container output-container-name {
 container container-name {
 leaf output-param1 {
 type type;
 description description;
 // optional formatting statements
 }
 // additional leaf definitions
 junos-odl:format container-name-format {
 // CLI formatting for the parent container
 }
 }
 // Additional containers
 }
 }

Within the container that defines the CLI formatting, you can customize the RPC’s CLI output by using
statements defined in the Junos OS ODL extensions module. For more information about rendering
formatted ASCII output, see "Customize YANG RPC Output on Devices Running Junos OS" on page
594. You can also stipulate when the data in a particular container is emitted in an RPC's CLI output.
For information about constructing different levels of output for the same RPC, see "Define Different
Levels of Output in Custom YANG RPCs for Junos Devices" on page 614.

To use the RPC on a device running Junos OS:

• Download the module and action script to the device.

554

• Add the files to a new or existing YANG package by issuing the request system yang add or request system
yang update operational command.

• Execute the RPC.

• To execute the RPC in the CLI, issue the command defined by the junos:command statement.

• To execute the RPC remotely, use the RPC name in an RPC request operation.

You execute the RPC in the CLI by issuing the command defined by the junos:command statement. The
device displays the RPC output in the CLI format defined by the RPC. If the RPC does not define CLI
formatting, by default, no output is displayed for that RPC in the CLI. However, you can still display the
XML output for that RPC in the CLI by appending the | display xml filter to the command.

For more information about YANG RPCs, see RFC 6020, YANG - A Data Modeling Language for the
Network Configuration Protocol (NETCONF), and related RFCs.

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

19.2R1 Starting in Junos OS Release 19.2R1, custom YANG RPCs support input parameters of type empty when
executing the RPC’s command in the Junos OS CLI.

RELATED DOCUMENTATION

Create Action Scripts for YANG RPCs on Junos Devices | 556

Use Custom YANG RPCs on Devices Running Junos OS | 569

Example: Use a Custom YANG RPC to Retrieve Operational Information from Junos Devices | 571

Understanding Junos OS YANG Extensions for Formatting RPC Output | 590

555

https://datatracker.ietf.org/doc/html/rfc6020
https://apps.juniper.net/feature-explorer/

Create Action Scripts for YANG RPCs on Junos Devices

SUMMARY

Create a Python or SLAX action script that
implements the logic for your custom YANG RPCs.

IN THIS SECTION

Action Script Boilerplate | 556

Parsing RPC Input Arguments | 558

Retrieving Operational and Configuration
Data | 563

Emitting the RPC XML Output | 564

Validating and Loading Action Scripts on a
Device | 566

Troubleshooting Action Scripts | 567

You can add YANG data models that define custom remote procedure calls (RPCs) on supported Junos
devices. When you add a nonnative YANG RPC to a device, you must also supply an action script that
serves as the RPC’s handler. The RPC definition references the action script, which is invoked when you
execute the RPC. The action script performs the operations and retrieves the information required by
the RPC and returns any necessary XML output elements as defined in the RPC output statement.

You can write action scripts in Stylesheet Language Alternative SyntaX (SLAX) or Python. SLAX action
scripts are similar to SLAX op scripts. They can perform any function available through the RPCs
supported by the Junos XML management protocol and the Junos XML API. Python action scripts can
leverage all of the features and constructs in the Python language, which provides increased flexibility
over SLAX scripts. In addition, Python action scripts support Junos PyEZ APIs, which facilitate executing
RPCs and performing operational and configuration tasks on Junos devices. Python scripts can also
leverage the lxml library, which simplifies XPath handling.

This topic discusses how to create an action script, including how to parse the RPC input arguments,
access operational and configuration data in the script, emit the XML output, and validate and load the
script on a device.

Action Script Boilerplate

IN THIS SECTION

SLAX Script Boilerplate | 557

Python Script Boilerplate | 557

556

https://www.juniper.net/documentation/en_US/release-independent/junos-pyez/information-products/pathway-pages/index.html

SLAX Script Boilerplate

SLAX action scripts must include the necessary boilerplate for both basic script functionality as well as
any optional functionality used within the script such as the Junos OS extension functions and named
templates. In addition, the script must declare all RPC input parameters using the param statement. The
SLAX action script boilerplate is as follows:

version 1.0;

ns junos = "http://xml.juniper.net/junos/*/junos";
ns xnm = "http://xml.juniper.net/xnm/1.1/xnm";
ns jcs = "http://xml.juniper.net/junos/commit-scripts/1.0";

import "/var/db/scripts/import/junos.xsl";

param $input-param1;
param $input-param2;

match / {
 <action-script-results> {
 /* insert your code here */
 }
}

Python Script Boilerplate

Python action scripts must include an interpreter directive line that specifies the Python version used to
execute the script. Table 31 on page 557 outlines the interpreter directive lines you can use in the
different releases.

Table 31: Python Action Script Interpreter Directive Lines

Python Version Interpreter Directive Lines Supported Releases

Python 3 #!/usr/bin/python3
or
#!/usr/bin/env python3

Junos OS Release 20.2R1 and later

Junos OS Evolved Release 21.1R1 and later

557

Table 31: Python Action Script Interpreter Directive Lines (Continued)

Python Version Interpreter Directive Lines Supported Releases

Python 2.7 #!/usr/bin/python
or
#!/usr/bin/env python

Junos OS Release 20.1 and earlier

Junos OS Evolved Release 22.2 and earlier

NOTE: Starting in Junos OS Release 20.2R1 and Junos OS Evolved Release 22.3R1, the
device uses Python 3 to execute YANG action and translation scripts. In earlier releases,
Junos OS only uses Python 2.7 to execute these scripts, and Junos OS Evolved uses
Python 2.7 by default to execute the scripts.

In addition, Python action scripts should import any libraries, modules, or objects that are used in the
script. For example, in addition to standard Python libraries, Python action scripts might import the
following:

• jcs library—Enables the script to use Junos OS extension functions and Junos OS named template
functionality in the script.

• jnpr.junos module and classes—Enables the script to use Junos PyEZ.

• lxml library—Simplifies XPath handling.

For example:

#!/usr/bin/python3
import jcs
from jnpr.junos import Device
from lxml import etree

Parsing RPC Input Arguments

IN THIS SECTION

Input Argument Overview | 559

SLAX Script Input Arguments | 560

Python Script Input Arguments | 561

558

Input Argument Overview

An RPC can define input parameters using the optional input statement. When you execute an RPC and
provide input arguments, Junos OS invokes the RPC’s action script and passes those arguments to the
script. In a Python or SLAX action script, you can access the RPC input arguments in the same manner as
you would access command-line arguments for a normal Python script or a Junos OS SLAX op script,
respectively.

Consider the following input statement for the get-host-status RPC:

 rpc get-host-status {
 description "RPC example to retrieve host status";

 junos:command "show host-status" {
 junos:action-execute {
 junos:script "rpc-host-status.py";
 }
 }

 input {
 leaf hostip {
 description "IP address of the target host";
 type string;
 }
 leaf level {
 type enumeration {
 enum brief {
 description "Display brief output";
 }
 enum detail {
 description "Display detailed output";
 }
 }
 }
 leaf test {
 description "empty argument";
 type empty;
 }
 }
 ...

559

You can execute an RPC in the CLI or through a NETCONF or Junos XML protocol session. For example,
you might execute the following command in the CLI:

user@host> show host-status hostip 198.51.100.1 level detail test

Similarly, you might execute the following RPC in a remote session:

<rpc>
 <get-host-status>
 <hostip>198.51.100.1</hostip>
 <level>detail</level>
 <test/>
 </get-host-status>
</rpc>

When you execute the command or RPC, the device invokes the action script and passes in the
arguments. The following sections discuss how to process the arguments in the SLAX or Python action
script.

NOTE: Starting in Junos OS Release 19.2R1, custom YANG RPCs support input
parameters of type empty when executing the RPC’s command in the Junos OS CLI, and
the value passed to the action script is the parameter name. In earlier releases, input
parameters of type empty are only supported when executing the RPC in a NETCONF or
Junos XML protocol session, and the value passed to the action script is the string 'none'.

SLAX Script Input Arguments

In SLAX action scripts, you must declare input parameters using the param statement. The parameter
names must be identical to the parameter names defined in the YANG module.

When invoked, the script assigns the value for each argument to the corresponding parameter, which
you can then reference throughout the script. You must include the dollar sign ($) symbol both when you
declare the parameter and when you access its value. If a parameter is type empty, the parameter name is
passed in as its value.

param $hostip;
param $level;
param $test;

560

NOTE: For more information about SLAX parameters, see SLAX Parameters Overview in
the Automation Scripting User Guide.

Python Script Input Arguments

For Python action scripts, the arguments are passed to the script as follows:

• The first argument is always the action script's file path.

• The next arguments in the list are the name and value for each input parameter supplied by the user.

The argument name is passed in as follows:

• In Junos OS Release 21.1 and earlier, the device passes in the name of the argument.

• In Junos OS Release 21.2R1 and later, the device prefixes a single hyphen (-) to single-character
argument names and prefixes two hyphens (--) to multi-character argument names.

NOTE: When you execute the RPC’s command in the CLI, the arguments are passed to
the script in the order given on the command line. In a NETCONF or Junos XML
protocol session, the order of arguments in the XML is arbitrary, so the arguments are
passed to the script in the order that they are declared in the RPC input statement.

• The last two arguments in the list, which are supplied by the system and not the user, are 'rpc_name'
and the name of the RPC.

The following sections discuss how to handle the arguments that are passed to Python action scripts in
the different releases.

Python Action Scripts (21.2R1 or later)

Starting in Junos OS Release 21.2R1 and Junos OS Evolved Release 21.2R1, when the device passes the
input argument names to the Python action script, it prefixes a single hyphen (-) to single-character
argument names and prefixes two hyphens (--) to multi-character argument names. This syntax enables
you to use standard command-line parsing libraries to handle the arguments.

For the previous YANG RPC example, the action script's sys.argv input argument list is:

['/var/db/scripts/action/rpc-host-status.py', '--hostip', '198.51.100.1', '--level', 'detail',
'--test', 'test', '--rpc_name', 'get-host-status']

561

https://www.juniper.net/documentation/us/en/software/junos/automation-scripting/index.html

The following sample Python code uses the argparse library to handle the arguments. In this case, the
parser must also account for the rpc_name argument that the system passes to the script.

#!/usr/bin/python3
import argparse

parser = argparse.ArgumentParser(description='This is a demo script.')
parser.add_argument('--hostip', required=True)
parser.add_argument('--level', required=False, default='brief')
parser.add_argument('--test', required=False)
parser.add_argument('--rpc_name', required=True)
args = parser.parse_args()

access argument values by using args.hostip, args.level, and args.test

Python Action Scripts (21.1 and earlier)

In Junos OS Release 21.1 and earlier, the device passes the input argument names to the Python action
script exactly as they are given in the command or RPC. You can access the input arguments through the
sys.argv list.

For the previous YANG RPC example, the action script's sys.argv input argument list is:

['/var/db/scripts/action/rpc-host-status.py', 'hostip', '198.51.100.1', 'level', 'detail',
'test', 'test', 'rpc_name', 'get-host-status']

The following sample Python code demonstrates one way to extract the value for each argument from
the sys.arv list for the example RPC. The example first defines a dictionary containing the possible
argument names as keys and a default value for each argument. The code then checks for each key in
the sys.argv list and retrieves the index of the argument name in the list, if it is present. The code then
extracts the argument’s value at the adjacent index position, and stores it in the dictionary for the
appropriate key. This method ensures that if the arguments are passed to the script in a different order
during execution, the correct value is retrieved for a given argument.

import sys

Define default values for arguments
args = {'hostip': None, 'level': 'brief', 'test': None}

Retrieve user input and store the values in the args dictionary

562

for arg in args.keys():
 if arg in sys.argv:
 index = sys.argv.index(arg)
 args[arg] = sys.argv[index+1]

Retrieving Operational and Configuration Data

Action scripts can retrieve operational and configuration data from a device running Junos OS and then
parse the data for necessary information. SLAX action scripts can retrieve information from the device
by executing RPCs supported by the Junos XML protocol and the Junos XML API. Python action scripts
can retrieve operational and configuration information by using Junos PyEZ APIs or by using the cli -c
'command' to execute CLI commands in the action script as you would from the shell. To retrieve
operational information with the cli -c method, include the desired operational command. To retrieve
configuration information, use the show configuration command.

The following SLAX snippet executes the show interfaces command on the local device by using the
equivalent <get-interface-information> request tag:

var $rpc = <get-interface-information>;
var $out = jcs:invoke($rpc);
/* parse for relevant information and return as XML tree for RPC output */

The following Python code uses Junos PyEZ to execute the get_interface_information RPC, which is
equivalent to the show interfaces CLI command:

#!/usr/bin/python3
from jnpr.junos import Device
from lxml import etree

with Device() as dev:
 res = dev.rpc.get_interface_information()
 # parse for relevant information and return as XML tree for RPC output

NOTE: For information about using Junos PyEZ to execute RPCs on devices running
Junos OS, see Use Junos PyEZ to Execute RPCs on Junos Devices.

563

https://www.juniper.net/documentation/us/en/software/junos-pyez/junos-pyez-developer/topics/task/junos-pyez-rpcs-executing.html

The following Python code executes the show interfaces | display xml command and converts the string
output into an XML tree that can be parsed for the required data using XPath constructs:

#!/usr/bin/python3
import subprocess
from lxml import etree

cmd = ['cli', '-c', 'show interfaces | display xml']
proc = subprocess.Popen(cmd, stdout=subprocess.PIPE)
tmp = proc.stdout.read()
root = etree.fromstring(tmp.strip())
parse for relevant information and return as XML tree for RPC output

Emitting the RPC XML Output

An RPC can define output elements using the optional output statement. The action script must define
and emit any necessary XML elements for the RPC output. The XML hierarchy emitted by the script
should reflect the tree defined by the containers and leaf statements in the definition of the RPC output
statement. To return the XML output, the action script must emit the RPC output hierarchy, and only the
output hierarchy. SLAX scripts must use the copy-of statement to emit the XML, and Python scripts can
use print statements.

For example, consider the following YANG RPC output statement:

 output {
 container host-status-information {
 container host-status-info {
 leaf host {
 type string;
 description "Host IP";
 }
 leaf status {
 type string;
 description "Host status";
 }
 leaf date {
 type string;
 description "Date and time";
 }
 }

564

 }
 }

The action script must generate and emit the corresponding XML output, for example:

<host-status-information>
 <host-status-info>
 <host>198.51.100.1</host>
 <status>Active</status>
 <date>2016-10-10</date>
 </host-status-info>
 <host-status-info>
 <host>198.51.100.2</host>
 <status>Inactive</status>
 <date>2016-10-10</date>
 </host-status-info>
</host-status-information>

After retrieving the values for the required output elements, a Python script might emit the XML output
hierarchy by using the following code:

from lxml import etree
...

xml = '''
<host-status-information>
 <host-status-info>
 <host>{0}</host>
 <status>{1}</status>
 <date>{2}</date>
 </host-status-info>
</host-status-information>
'''.format(hostip, pingstatus, now)

tree = etree.fromstring(xml)
print (etree.tostring(tree))

Similarly, a SLAX action script might use the following:

var $node = {
 <host-status-information> {

565

 <host-status-info> {
 <host> $ip;
 <status> $pingstatus;
 <date> $date;
 }
 }
}
copy-of $node;

Validating and Loading Action Scripts on a Device

In your YANG RPC definition, you specify the RPC’s action script by including the junos:command and
junos:action-execute statements and the junos:script substatement. The junos:script statement takes the
action script’s filename as its value. You must define one and only one action script for each RPC. For
example:

rpc rpc-name {
 ...
 junos:command "show sw-info" {
 junos:action-execute {
 junos:script "sw-info.py";
 }
 }
 ...
}

NOTE: YANG modules that define RPCs for Junos devices must import the Junos OS
DDL extensions module.

Python action scripts must meet the following requirements before you can execute the scripts on the
device:

• File owner is either root or a user in the Junos OS super-user login class.

• Only the file owner has write permission for the file.

• Script includes an interpreter directive line as outlined in "Action Script Boilerplate" on page 556.

• The device configuration includes the language python or language python3 statement at the [edit system
scripts] hierarchy level to enable the execution of unsigned Python scripts.

566

NOTE: Starting in Junos OS Release 20.2R1 and Junos OS Evolved Release 22.3R1, the
device uses Python 3 to execute YANG action and translation scripts. In earlier releases,
Junos OS only uses Python 2.7 to execute these scripts, and Junos OS Evolved uses
Python 2.7 by default to execute the scripts.

NOTE: Users can only execute unsigned Python scripts on devices running Junos OS
when the script's file permissions include read permission for the first class that the user
falls within, in the order of user, group, or others.

You can validate the syntax of an action script in the CLI by issuing the request system yang validate action-
script command and providing the path to the script. For example:

user@host> request system yang validate action-script /var/tmp/sw-info.py
Scripts syntax validation : START
Scripts syntax validation : SUCCESS

To use an action script, you must load it onto the device with the YANG module that contains the
corresponding RPC. You use the request system yang add or request system yang update commands to add
YANG modules and their action scripts to a new or existing YANG package on the device. After you add
the modules and action scripts to the device, you can execute your custom RPCs. When you execute an
RPC, the device invokes the referenced script.

Troubleshooting Action Scripts

By default, action scripts log informational trace messages when the script executes. You can view the
trace messages to verify that the RPC invoked the script and that the script executed correctly. If the
script fails for any reason, the trace file logs the errors.

Junos OS

To view action script trace messages on devices running Junos OS, view the contents of the action.log
trace file.

user@host> show log action.log

Junos OS Evolved

567

To view action script trace messages on devices running Junos OS Evolved, view the cscript application
trace messages, which include trace data for all script types.

user@host> show trace application cscript

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

22.3R1-EVO Starting in Junos OS Evolved Release 22.3R1, Junos OS Evolved uses Python 3 to execute
YANG action and translation scripts.

21.2R1 and
21.2R1-EVO

Starting in Junos OS Release 21.2R1 and Junos OS Evolved Release 21.2R1, when the device
passes command-line arguments to a Python action script, it prefixes a single hyphen (-) to
single-character argument names and prefixes two hyphens (--) to multi-character argument
names.

20.2R1 Starting in Junos OS Release 20.2R1, Junos OS uses Python 3 to execute YANG action and
translation scripts.

19.3R1 Starting in Junos OS Release 19.3R1, devices running Junos OS with Upgraded FreeBSD
support using IPv6 in Python action scripts.

19.2R1 Starting in Junos OS Release 19.2R1, custom YANG RPCs support input parameters of type
empty when executing the RPC’s command in the Junos OS CLI, and the value passed to the
action script is the parameter name.

RELATED DOCUMENTATION

Create Custom RPCs in YANG for Devices Running Junos OS | 549

Use Custom YANG RPCs on Devices Running Junos OS | 569

Example: Use a Custom YANG RPC to Retrieve Operational Information from Junos Devices | 571

568

https://apps.juniper.net/feature-explorer/

Use Custom YANG RPCs on Devices Running Junos OS

You can add YANG data models that define custom RPCs on supported devices running Junos OS or
Junos OS Evolved. Creating custom RPCs enables you to precisely define the input parameters and
operations and the output fields and formatting for your specific operational tasks on those devices.

To add an RPC to a device, download the YANG module that defines the RPC, along with any required
action scripts to the device. Add the files to a new or existing YANG package by issuing the request system
yang add or request system yang update operational command. For detailed information about adding YANG
modules to Junos devices, see "Manage YANG Packages, Modules, and Scripts on Junos Devices" on
page 527.

NOTE: When you load custom YANG data models onto the device, you do not need to
explicitly load any required Junos OS extension modules.

After you add the modules and action scripts to the device, you can execute the RPC either locally,
provided that the RPC definition includes the junos:command statement, or remotely. To execute an RPC in
the Junos OS CLI, issue the command defined by the RPC’s junos:command statement. To execute an RPC
remotely, use the RPC name in an RPC request operation.

Consider the following YANG module and RPC definition:

module sw-info {
 namespace "http://yang.juniper.net/examples/rpc-cli";
 prefix rpc-cli;

 import junos-extension {
 prefix junos;
 }

 rpc get-sw-info {
 description "Show software information";
 junos:command "show sw-info" {
 junos:action-execute {
 junos:script "sw-info.py";
 }
 }
 input {
 leaf routing-engine {
 type string;
 description "Routing engine for which to display information";

569

 }
 ...
 }
 output {
 ...
 }
 }
}

To execute this RPC in the Junos OS CLI, issue the show sw-info command defined by the junos:command
statement, and include any required or optional input parameters. For example:

user@host> show sw-info routing-engine re0

To execute this RPC remotely, send an RPC request that uses the RPC name for the request tag, and
include any required or optional input parameters.

<rpc>
 <get-sw-info>
 <routing-engine>re0</routing-engine>
 </get-sw-info>
</rpc>

When you execute a custom RPC, the device invokes the action script that you defined in the
junos:script statement, which in this example is the sw-info.py script. An RPC’s action script should emit
any necessary XML elements for that RPC’s output.

You execute an RPC in the Junos OS CLI by issuing the command defined by the junos:command statement.
By default, the CLI displays the RPC output, if there is any, using the CLI formatting defined by the RPC.
If the RPC does not define CLI formatting, the device does not display any output for that RPC in the
CLI. However, you can still display the RPC’s XML output in the CLI by appending | display xml to the
command.

user@host> show sw-info routing-engine re0 | display xml

When you execute an RPC remotely, the RPC output defaults to XML. However, you can specify a
different output format by including the format attribute in the opening request tag of the RPC. To display

570

CLI formatting, provided that the RPC defines this format, set the format attribute to text or ascii. To
display the output in JavaScript Object Notation (JSON), set the format attribute to json. For example:

<rpc>
 <get-sw-info format="text">
 <routing-engine>re0</routing-engine>
 </get-sw-info>
</rpc>

RELATED DOCUMENTATION

Create Custom RPCs in YANG for Devices Running Junos OS | 549

Create Action Scripts for YANG RPCs on Junos Devices | 556

Example: Use a Custom YANG RPC to Retrieve Operational Information from Junos Devices | 571

Example: Use a Custom YANG RPC to Retrieve Operational Information
from Junos Devices

IN THIS SECTION

Requirements | 572

Overview of the RPC and Action Script | 572

YANG Module | 574

Action Script | 576

Enable the Execution of Python Scripts | 584

Load the RPC on the Device | 585

Verify the RPC | 586

Troubleshoot RPC Execution Errors | 588

You can add YANG data models that define custom RPCs on Junos devices. Creating custom RPCs
enables you to precisely define the input parameters and operations and the output fields and

571

formatting for your specific operational tasks on those devices. This example presents a custom RPC and
action script that retrieve operational information from the device and display customized CLI output.

The example adds the RPC to the Junos OS schema on the device. When you execute the RPC in the
CLI, it prints the name and operational status for the requested physical interfaces.

Requirements

This example uses the following hardware and software components:

• Device running Junos OS or device running Junos OS Evolved

• Device supports loading custom YANG data models

Overview of the RPC and Action Script

The YANG module in this example defines a custom RPC to return the name and operational status of
certain physical interfaces. The YANG module rpc-interface-status is saved in the rpc-interface-
status.yang file. The module imports the Junos OS extension modules, which provide the extensions
required to execute custom RPCs on the device and to customize the CLI output.

The module defines the get-interface-status RPC. The <get-interface-status> request tag is used to
remotely execute the RPC on the device. In the RPC definition, the junos:command statement defines the
command that is used to execute the RPC in the CLI, which in this case is show intf status.

The junos:action-execute and junos:script statements define the action script that is invoked when you
execute the RPC. This example uses a Python action script named rpc-interface-status.py to retrieve the
information required by the RPC and return the XML output elements as defined in the RPC output
statement.

 rpc get-interface-status {
 description "RPC example to retrieve interface status";

 junos:command "show intf status" {
 junos:action-execute {
 junos:script "rpc-interface-status.py";
 }
 }
 ...

The RPC has one input parameter named match, which determines the interfaces to include in the output.
When you execute the RPC, you include a string that matches on the required interfaces, for example

572

ge-0*. An empty string ("") matches on all interfaces. The action script defines the default value for match
as an empty string, so if the user omits this argument, the output includes information for all interfaces.

 input {
 leaf match {
 description "Requested interface match condition";
 type string;
 }
 }

The RPC also defines the output nodes that the corresponding action script must emit. The root node is
the <interface-status-info> element, which contains zero or more <status-info> elements that enclose the
<interface> and <status> nodes for a matched interface. The junos-odl:format interface-status-info-format
statement defines the formatting for the CLI text output. The output XML tree does not include this
node.

 output {
 container interface-status-info {
 list status-info {
 leaf interface {
 type string;
 description "Physical interface name";
 }
 leaf status {
 type string;
 description "Operational status";
 }
 junos-odl:format interface-status-info-format {
 ...
 }
 }
 }
 }

This example presents two versions of the Python action script. The scripts demonstrate different
means to retrieve the operational command output, but both scripts emit identical RPC output. The first
action script uses the Python subprocess module to execute the show interfaces match-value | display xml
command and then converts the string output into XML. The second action script uses Junos PyEZ to
execute the RPC equivalent of the show interfaces match-value command. Both scripts use identical code to
parse the command output and extract the name and operational status for each physical interface. The

573

https://www.juniper.net/documentation/product/us/en/junos-pyez

scripts construct the XML for the RPC output and then print the output, which returns the information
back to the device. The XML tree must exactly match the hierarchy defined in the RPC.

NOTE: Junos devices define release-dependent namespaces for many of the elements in
the operational output, including the <interface-information> element. In order to make the
RPC release independent, the code uses the local-name() function in the XPath
expressions for these elements. You might choose to include the namespace mapping as
an argument to xpath() and qualify the elements with the appropriate namespace.

You add the module containing the RPC and the action script file to the device as part of a new YANG
package named intf-rpc.

YANG Module

IN THIS SECTION

YANG Module | 574

YANG Module

The YANG module, rpc-interface-status.yang, defines: the RPC, the command that you use to execute
the RPC in the CLI, and the name of the action script to invoke when you execute the RPC. The base
name of the file must match the module name.

/*
* Copyright (c) 2024 Juniper Networks, Inc.
* All rights reserved.
*/

module rpc-interface-status {
 namespace "http://yang.juniper.net/examples/rpc-cli";
 prefix rpc-cli;

 import junos-extension-odl {
 prefix junos-odl;
 }
 import junos-extension {
 prefix junos;

574

 }

 organization
 "Juniper Networks, Inc.";

 description
 "Junos OS YANG module for RPC example";

 rpc get-interface-status {
 description "RPC example to retrieve interface status";

 junos:command "show intf status" {
 junos:action-execute {
 junos:script "rpc-interface-status.py";
 }
 }

 input {
 leaf match {
 description "Requested interface match condition";
 type string;
 }
 }
 output {
 container interface-status-info {
 list status-info {
 leaf interface {
 type string;
 description "Physical interface name";
 }
 leaf status {
 type string;
 description "Operational status";
 }
 junos-odl:format interface-status-info-format {
 junos-odl:header "Physical Interface - Status\n";
 junos-odl:indent 5;
 junos-odl:comma;
 junos-odl:space;
 junos-odl:line {
 junos-odl:field "interface";
 junos-odl:field "status";
 }

575

 }
 }
 }
 }
 }
}

Action Script

IN THIS SECTION

Action Script (Using subprocess) | 576

Action Script (Using Junos PyEZ) | 580

The corresponding action script is rpc-interface-status.py. This example presents two action scripts that
use different means to retrieve the data. One script uses the Python subprocess module. The other script
uses the Junos PyEZ library. Both scripts emit the same RPC XML output.

NOTE: Starting in Junos OS Release 21.2R1 and Junos OS Evolved Release 21.2R1,
when the device passes command-line arguments to a Python action script, it prefixes a
single hyphen (-) to single-character argument names and prefixes two hyphens (--) to
multi-character argument names.

Action Script (Using subprocess)

The following action script uses the Python subprocess module to execute the operational command and
retrieve the data. This example provides two versions of the script, which appropriately handle the
script's command-line arguments for the different releases.

Junos OS Release 21.1 and earlier

#!/usr/bin/python
Junos OS Release 21.1 and earlier

import sys
import subprocess
from lxml import etree

576

def get_device_info(cmd):
 """
 Execute Junos OS operational command and parse output
 :param: str cmd: operational command to execute
 :returns: List containing the XML data for each interface
 """

 # execute Junos OS operational command and retrieve output
 proc = subprocess.Popen(cmd, stdout=subprocess.PIPE)
 tmp = proc.stdout.read()
 root = etree.fromstring(tmp.strip())

 xml_items = []

 # parse output for required data
 for intf in root.xpath("/rpc-reply \
 /*[local-name()='interface-information'] \
 /*[local-name()='physical-interface']"):

 # retrieve data for the interface name and operational status
 name = intf.xpath("*[local-name()='name']")[0].text
 oper_status = intf.xpath("*[local-name()='oper-status']")[0].text

 # append the XML for each interface to a list
 xml_item = etree.Element('status-info')
 interface = etree.SubElement(xml_item, 'interface')
 interface.text = name
 status = etree.SubElement(xml_item, 'status')
 status.text = oper_status
 xml_items.append(xml_item)

 return xml_items

def generate_xml(cmd):
 """
 Generate the XML tree for the RPC output
 :param: str cmd: operational command from which to retrieve data
 :returns: XML tree for the RPC output
 """

 xml = etree.Element('interface-status-info')

577

 intf_list_xml = get_device_info(cmd)
 for intf in intf_list_xml:
 xml.append(intf)
 return xml

def main():

 args = {'match': ""}
 for arg in args.keys():
 if arg in sys.argv:
 index = sys.argv.index(arg)
 args[arg] = sys.argv[index+1]

 # define the operational command from which to retrieve information
 cli_command = 'show interfaces ' + args['match'] + ' | display xml'
 cmd = ['cli', '-c', cli_command]

 # generate the XML for the RPC output
 rpc_output_xml = generate_xml(cmd)

 # print RPC output
 print (etree.tostring(rpc_output_xml, pretty_print=True, encoding='unicode'))

if __name__ == '__main__':

 main()

Junos OS Release 21.2R1 and later

#!/usr/bin/python3
Junos OS Release 21.2R1 and later

import subprocess
import argparse
from lxml import etree

def get_device_info(cmd):
 """

578

 Execute Junos OS operational command and parse output
 :param: str cmd: operational command to execute
 :returns: List containing the XML data for each interface
 """

 # execute Junos OS operational command and retrieve output
 proc = subprocess.Popen(cmd, stdout=subprocess.PIPE)
 tmp = proc.stdout.read()
 root = etree.fromstring(tmp.strip())

 xml_items = []

 # parse output for required data
 for intf in root.xpath("/rpc-reply \
 /*[local-name()='interface-information'] \
 /*[local-name()='physical-interface']"):

 # retrieve data for the interface name and operational status
 name = intf.xpath("*[local-name()='name']")[0].text
 oper_status = intf.xpath("*[local-name()='oper-status']")[0].text

 # append the XML for each interface to a list
 xml_item = etree.Element('status-info')
 interface = etree.SubElement(xml_item, 'interface')
 interface.text = name
 status = etree.SubElement(xml_item, 'status')
 status.text = oper_status
 xml_items.append(xml_item)

 return xml_items

def generate_xml(cmd):
 """
 Generate the XML tree for the RPC output
 :param: str cmd: operational command from which to retrieve data
 :returns: XML tree for the RPC output
 """

 xml = etree.Element('interface-status-info')

 intf_list_xml = get_device_info(cmd)
 for intf in intf_list_xml:

579

 xml.append(intf)
 return xml

def main():

 parser = argparse.ArgumentParser(description='This is a demo script.')
 parser.add_argument('--match', required=False, default='')
 parser.add_argument('--rpc_name', required=True)
 args = parser.parse_args()

 # define the operational command from which to retrieve information
 cli_command = 'show interfaces ' + args.match + ' | display xml'
 cmd = ['cli', '-c', cli_command]

 # generate the XML for the RPC output
 rpc_output_xml = generate_xml(cmd)

 # print RPC output
 print (etree.tostring(rpc_output_xml, pretty_print=True, encoding='unicode'))

if __name__ == '__main__':

 main()

Action Script (Using Junos PyEZ)

The following action script uses Junos PyEZ to execute the operational command and retrieve the data.
This example provides two versions of the script, which appropriately handle the script's command-line
arguments for the different releases.

Junos OS Release 21.1 and earlier

#!/usr/bin/python
Junos OS Release 21.1 and earlier

import sys
from jnpr.junos import Device
from jnpr.junos.exception import *
from lxml import etree

580

def get_device_info(match):
 """
 Execute Junos OS operational command and parse output
 :param: str match: interface match condition
 :returns: List containing the XML data for each interface
 """

 # execute Junos OS operational command and retrieve output
 try:
 with Device() as dev:
 if (match == ""):
 root = dev.rpc.get_interface_information()
 else:
 root = dev.rpc.get_interface_information(interface_name=match)
 except Exception:
 sys.exit()

 xml_items = []

 # parse output for required data
 for intf in root.xpath("/rpc-reply \
 /*[local-name()='interface-information'] \
 /*[local-name()='physical-interface']"):

 # retrieve data for the interface name and operational status
 name = intf.xpath("*[local-name()='name']")[0].text
 oper_status = intf.xpath("*[local-name()='oper-status']")[0].text

 # append the XML for each interface to a list
 xml_item = etree.Element('status-info')
 interface = etree.SubElement(xml_item, 'interface')
 interface.text = name
 status = etree.SubElement(xml_item, 'status')
 status.text = oper_status
 xml_items.append(xml_item)

 return xml_items

def generate_xml(match):
 """
 Generate the XML tree for the RPC output

581

 :param: str match: interface match condition
 :returns: XML tree for the RPC output
 """

 xml = etree.Element('interface-status-info')

 intf_list_xml = get_device_info(match)
 for intf in intf_list_xml:
 xml.append(intf)
 return xml

def main():

 args = {'match': ""}

 for arg in args.keys():
 if arg in sys.argv:
 index = sys.argv.index(arg)
 args[arg] = sys.argv[index+1]

 # generate the XML for the RPC output
 rpc_output_xml = generate_xml(args['match'])

 # print RPC output
 print (etree.tostring(rpc_output_xml, pretty_print=True, encoding='unicode'))

if __name__ == '__main__':

 main()

Junos OS Release 21.2R1 and later

#!/usr/bin/python3
Junos OS Release 21.2R1 and later

import sys
import argparse
from jnpr.junos import Device
from jnpr.junos.exception import *
from lxml import etree

582

def get_device_info(match):
 """
 Execute Junos OS operational command and parse output
 :param: str match: interface match condition
 :returns: List containing the XML data for each interface
 """

 # execute Junos OS operational command and retrieve output
 try:
 with Device() as dev:
 if (match == ""):
 root = dev.rpc.get_interface_information()
 else:
 root = dev.rpc.get_interface_information(interface_name=match)
 except Exception:
 sys.exit()

 xml_items = []

 # parse output for required data
 for intf in root.xpath("/rpc-reply \
 /*[local-name()='interface-information'] \
 /*[local-name()='physical-interface']"):

 # retrieve data for the interface name and operational status
 name = intf.xpath("*[local-name()='name']")[0].text
 oper_status = intf.xpath("*[local-name()='oper-status']")[0].text

 # append the XML for each interface to a list
 xml_item = etree.Element('status-info')
 interface = etree.SubElement(xml_item, 'interface')
 interface.text = name
 status = etree.SubElement(xml_item, 'status')
 status.text = oper_status
 xml_items.append(xml_item)

 return xml_items

def generate_xml(match):
 """
 Generate the XML tree for the RPC output

583

 :param: str match: interface match condition
 :returns: XML tree for the RPC output
 """

 xml = etree.Element('interface-status-info')

 intf_list_xml = get_device_info(match)
 for intf in intf_list_xml:
 xml.append(intf)
 return xml

def main():

 parser = argparse.ArgumentParser(description='This is a demo script.')
 parser.add_argument('--match', required=False, default='')
 parser.add_argument('--rpc_name', required=True)
 args = parser.parse_args()

 # generate the XML for the RPC output
 rpc_output_xml = generate_xml(args.match)

 # print RPC output
 print (etree.tostring(rpc_output_xml, pretty_print=True, encoding='unicode'))

if __name__ == '__main__':

 main()

Enable the Execution of Python Scripts

To enable the device to execute unsigned Python scripts:

1. Configure the language python or language python3 statement, as appropriate for the Junos OS release.

[edit]
user@host# set system scripts language (python | python3)

NOTE: Starting in Junos OS Release 20.2R1 and Junos OS Evolved Release 22.3R1, the
device uses Python 3 to execute YANG action and translation scripts. In earlier releases,

584

Junos OS only uses Python 2.7 to execute these scripts, and Junos OS Evolved uses
Python 2.7 by default to execute the scripts.

2. Commit the configuration.

[edit]
user@host# commit and-quit

Load the RPC on the Device

To add the RPC and action script to the Junos schema:

1. Download the YANG module and action script to the Junos device.

2. Ensure that the Python action script meets the following requirements:

• File owner is either root or a user in the Junos OS super-user login class.

• Only the file owner has write permission for the file.

• Script includes the appropriate interpreter directive line as outlined in "Create Action Scripts for
YANG RPCs on Junos Devices" on page 556.

3. (Optional) Validate the syntax for the YANG module and action script.

user@host> request system yang validate module /var/tmp/rpc-interface-status.yang action-
script /var/tmp/rpc-interface-status.py
YANG modules validation : START
YANG modules validation : SUCCESS
Scripts syntax validation : START
Scripts syntax validation : SUCCESS

4. Add the YANG module and action script to a new YANG package.

user@host> request system yang add package intf-rpc module /var/tmp/rpc-interface-status.yang
action-script /var/tmp/rpc-interface-status.py
YANG modules validation : START
YANG modules validation : SUCCESS
Scripts syntax validation : START
Scripts syntax validation : SUCCESS
TLV generation: START
TLV generation: SUCCESS
Building schema and reloading /config/juniper.conf.gz ...

585

Restarting mgd ...

5. The system prompts you to restart the Junos OS CLI. Press Enter to accept the default value of yes, or
type yes and press Enter.

WARNING: cli has been replaced by an updated version:
...
Restart cli using the new version ? [yes,no] (yes) yes

Restarting cli ...

Verify the RPC

IN THIS SECTION

Purpose | 586

Action | 586

Meaning | 588

Purpose

Verify that the RPC works as expected.

Action

From operational mode, execute the RPC in the CLI by issuing the command defined by the junos:command
statement in the RPC definition, and include the match input argument. In this example, the match
argument is used to match on all interfaces that start with ge-0.

user@host> show intf status match ge-0*
Physical Interface - Status
 ge-0/0/0, up
 ge-0/0/1, up
 ge-0/0/2, up
 ge-0/0/3, up
 ge-0/0/4, up

586

 ge-0/0/5, up
 ge-0/0/6, up
 ge-0/0/7, up
 ge-0/0/8, up
 ge-0/0/9, up
 ge-0/1/0, up
 ge-0/1/1, up
 ge-0/1/2, up
 ge-0/1/3, up
 ge-0/1/4, up
 ge-0/1/5, up
 ge-0/1/6, up
 ge-0/1/7, up
 ge-0/1/8, up
 ge-0/1/9, up

You can also adjust the match condition to return different sets of interfaces. For example:

user@host> show intf status match *e-0/*/0
Physical Interface - Status
 ge-0/0/0, up
 pfe-0/0/0, up
 ge-0/1/0, up
 xe-0/2/0, up
 xe-0/3/0, up

To return the same output in XML format, append the | display xml filter to the command.

user@host> show intf status match *e-0/*/0 | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/24.4R1/junos">
 <interface-status-info>
 <status-info>
 <interface>ge-0/0/0</interface>
 <status>up</status>
 </status-info>
 <status-info>
 <interface>pfe-0/0/0</interface>
 <status>up</status>
 </status-info>
 <status-info>
 <interface>ge-0/1/0</interface>

587

 <status>up</status>
 </status-info>
 <status-info>
 <interface>xe-0/2/0</interface>
 <status>up</status>
 </status-info>
 <status-info>
 <interface>xe-0/3/0</interface>
 <status>up</status>
 </status-info>
 </interface-status-info>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

NOTE: To match on all interfaces, either omit the match argument or set the value of the
argument to an empty string ("").

Meaning

When you execute the RPC, the device invokes the action script. The action script executes the
operational command to retrieve the interface information from the device and parses the output for
the required information. The script then prints the XML hierarchy for the RPC output as defined in the
RPC output statement. When you execute the RPC in the CLI, the device uses the CLI formatting defined
in the RPC to convert the XML output into the displayed CLI output. To return the original XML output,
append the | display xml filter to the command.

NOTE: When you execute the RPC remotely using the RPC request tag, the default
format for the output is XML.

Troubleshoot RPC Execution Errors

IN THIS SECTION

Problem | 589

Cause | 589

Solution | 589

588

Problem

Description

When you execute the RPC, the device generates the following error:

error: open failed: /var/db/scripts/action/rpc-interface-status.py: Permission denied

Cause

The user who invoked the RPC does not have the necessary permissions to execute the corresponding
Python action script.

Solution

Users can only execute unsigned Python scripts on Junos devices when the script's file permissions
include read permission for the first class that the user falls within, in the order of user, group, or others.

Verify whether the script has the necessary permissions for that user to execute the script, and adjust
the permissions, if appropriate. If you update the permissions, you must also update the YANG package
in order for this change to take effect. For example:

admin@host> file list ~ detail
-rw------- 1 admin wheel 2215 Apr 20 11:36 rpc-interface-status.py

admin@host> file change-permission rpc-interface-status.py permission 644
admin@host> file list ~ detail
-rw-r--r-- 1 admin wheel 2215 Apr 20 11:36 rpc-interface-status.py

admin@host> request system yang update intf-rpc action-script /var/tmp/rpc-interface-status.py
Scripts syntax validation : START
Scripts syntax validation : SUCCESS

Change History Table

589

Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

21.2R1 and
21.2R1-EVO

Starting in Junos OS Release 21.2R1 and Junos OS Evolved Release 21.2R1, when the device
passes command-line arguments to a Python action script, it prefixes a single hyphen (-) to
single-character argument names and prefixes two hyphens (--) to multi-character argument
names.

RELATED DOCUMENTATION

Create Custom RPCs in YANG for Devices Running Junos OS | 549

Create Action Scripts for YANG RPCs on Junos Devices | 556

Use Custom YANG RPCs on Devices Running Junos OS | 569

Manage YANG Packages, Modules, and Scripts on Junos Devices | 527

Understanding Junos OS YANG Extensions for Formatting RPC Output

Junos OS natively supports XML for the operation and configuration of devices running Junos OS and
devices running Junos OS Evolved. The Junos OS infrastructure and CLI communicate using XML. When
you issue an operational command in the CLI, the CLI converts the command into XML for processing.
After processing, Junos OS returns the output in the form of an XML document, which the CLI converts
back into text format for display. Remote client applications also use XML-based data encoding for
operational and configuration requests on devices running Junos OS.

The Junos OS Output Definition Language (ODL) defines the transformation of XML-tagged data into
the formatted ASCII output that the device displays when you execute a command in the CLI or request
RPC output in text format. The Junos OS ODL extensions module defines YANG extensions for the
ODL, which you can include in custom YANG RPCs to translate the XML RPC reply into formatted ASCII
output.

The YANG RPC output statement defines output parameters to the RPC operation. Within the RPC output
statement, you can include ODL extension statements to customize the RPC’s output. Table 32 on page
591 outlines the available statements, provides a brief description of each statement’s formatting
impact, and specifies the locations where you can define the statement within the RPC output statement.

You include some ODL extension statements under the leaf statement that defines the data. You include
other ODL extension statements within the output container or at various levels within the format

590

https://apps.juniper.net/feature-explorer/

statement, which defines the CLI formatting. The placement of a statement within the format statement
determines the statement’s scope. The scope might apply to a single field, all fields in a line, or all fields
in all lines of output. Statements that you can define at any level in the format statement can be included
in the following locations:

• At the top level as a direct child of the format statement

• Directly under the line statement

• Within a field statement

Table 32: Statements in the Junos OS ODL Extensions Module

Statement Description Placement Within RPC output
Statement

blank-line Insert a blank line between each repetition of data when
the RPC reply returns the same set of information for
multiple entities.

format statement (top level)

capitalize Capitalize the first word of a node’s value in an output field. format statement (any level)

colon Insert a colon following the node’s label in an output field.

This statement is only used in conjunction with the leading
statement to insert the formal name of the node, as
defined by the formal-name statement, and a colon before
the value of the node in the output field.

format statement (any level)

comma Insert a comma after a node’s value in an output field. format statement (any level)

default-text Specify the text to display when the node corresponding to
an output field is missing.

field statement

explicit Direct the renderer to display a value that is unrelated to
the node name or its contents. This statement is used in
Junos OS RPCs only and cannot be included in custom
RPCs.

–

field Map a leaf node in the output tree to a field in the
formatted ASCII output.

line statement

591

Table 32: Statements in the Junos OS ODL Extensions Module (Continued)

Statement Description Placement Within RPC output
Statement

fieldwrap Wrap a field’s complete contents to the following line when
the current line is wider than the screen. Omitting this
statement causes the output to wrap without regard for
appropriate word breaks or the prevailing margin.

field statement

float Enable the value in a field to move to the left into an empty
field.

Use this statement to indicate subsequent mutually
exclusive values for a set of adjacent fields so that only the
leftmost field includes one of these possible values. If the
leftmost field is not populated by the first value, a value
mapped to a subsequent field that includes the float
statement can move into the empty field.

field statement

formal-name Define the label that precedes a node’s value in an output
field whenever the field for that node includes the leading
statement in the formatting instructions.

leaf node

format Define the CLI formatting for the parent container within
the RPC output statement.

output container or as a
substatement to the style
statement.

header Define a header row in the CLI output. format statement (top level)

header-group Require that only the first header string as defined by the
header statement be emitted in the CLI output for that
header group.

format statement (top level)

indent Indent all lines other than the header row by the specified
number of spaces in the CLI output.

format statement (top level)

leading Insert a label, which is defined by the formal-name statement
in the definition of a leaf node, before the node’s value in
an output field.

format statement (any level)

592

Table 32: Statements in the Junos OS ODL Extensions Module (Continued)

Statement Description Placement Within RPC output
Statement

line Define the group of fields that comprises a single line of
output.

format statement (top level)

no-line-break Display multiple values on the same line in the case where
multiple entities with the same tag names are emitted.

format statement (top level)

picture Graphically specify the placement, justification, and width
of the columns in a table in the RPC’s formatted ASCII
output.

format statement (top level)

space Insert a space after the node’s value in an output field.

If the space statement is used in conjunction with the comma
statement, the output inserts a comma and then a space
after the node’s value, in that order.

format statement (any level)

style Define a format, or style, for the RPC output.

Use this statement in conjunction with an enumerated
input parameter that defines the names for each style.
Define this statement with the appropriate style name to
specify the CLI formatting for that style.

output container

template Explicitly define the format for an output field, including
the output string and the placement of the node’s value
within that string. Use %s or %d to indicate the placement of
the node’s string or integer value, respectively, within the
output string.

If a leaf statement defines both a template and a formal-name
statement, and the corresponding field’s formatting
instructions include the leading statement, the output
displays the text defined for the formal-name statement and
not the text defined for the template statement.

leaf node

593

Table 32: Statements in the Junos OS ODL Extensions Module (Continued)

Statement Description Placement Within RPC output
Statement

truncate Truncate a node’s value to fit the field width defined by the
picture statement if the node’s contents would otherwise
exceed the width of the field.

field statement

wordwrap Wrap some of the field to the following line when the
current line is wider than the screen. This statement should
only be used for fields in the rightmost column of a table.

field statement

For more information about the structure of YANG RPCs, see "Create Custom RPCs in YANG for
Devices Running Junos OS" on page 549.

RELATED DOCUMENTATION

Customize YANG RPC Output on Devices Running Junos OS | 594

Create Custom RPCs in YANG for Devices Running Junos OS | 549

Define Different Levels of Output in Custom YANG RPCs for Junos Devices | 614

Customize YANG RPC Output on Devices Running Junos OS

SUMMARY

Learn about the Junos OS ODL extension statements
that you can include in custom YANG RPCs to define
the CLI format for RPC output.

IN THIS SECTION

blank-line | 595

capitalize | 596

colon, formal-name, and leading | 597

comma | 598

default-text | 599

explicit | 600

594

field and line | 600

fieldwrap and wordwrap | 601

float, header, picture, and truncate | 603

format | 606

header and header-group | 606

indent | 609

no-line-break | 610

space | 611

style | 612

template | 612

You can create custom RPCs in YANG for devices running Junos OS or devices running Junos OS
Evolved. Creating custom RPCs enables you to precisely define the input parameters and operations and
the output fields and formatting for specific operational tasks on your devices.

When you execute an RPC on a device running Junos OS, it returns the RPC reply as an XML document.
The Junos OS Output Definition Language (ODL) defines the transformation of XML data into formatted
ASCII output. The device displays this text output when you execute a command in the CLI or request
RPC output in text format. The Junos OS ODL extensions module defines YANG extensions for the
Junos OS ODL, which you can include in custom RPCs to specify the CLI formatting for the output. For a
summary of all the statements and their placement within the RPC output statement, see "Understanding
Junos OS YANG Extensions for Formatting RPC Output" on page 590.

The following sections outline how to use the Junos OS ODL extension statements. Closely related
statements are presented in the same section, and in some instances, a statement might be included in
more than one section. The examples assume that the enclosing YANG module imports the Junos OS
ODL extensions module and binds it to the junos-odl prefix.

blank-line

The blank-line statement inserts a line between each repetition of data when the RPC reply returns the
same set of information for multiple entities. For example, if the RPC reply returns data for multiple
interfaces, the formatted ASCII output inserts a blank line between each interface’s set of data.

Physical interface: ge-0/0/0, Enabled, Physical link is Up
 Interface index: 150, SNMP ifIndex: 528
 ...

595

Physical interface: ge-0/0/1, Enabled, Physical link is Up
 Interface index: 151, SNMP ifIndex: 529
 ...

To insert a blank line between each entity’s data set, include the blank-line statement directly under the
format statement.

rpc get-xyz-information {
 output {
 container xyz-information {
 // leaf definitions
 junos-odl:format xyz-information-format {
 junos-odl:blank-line;
 // CLI formatting
 }
 }
 }
}

capitalize

The capitalize statement capitalizes the first word of a node’s value in an output field. It does not affect
the capitalization of a node’s formal name. For example, if the RPC output includes a state node with the
value online, the capitalize statement capitalizes the value in the output.

State: Online

To capitalize the first word of the node’s value, include the capitalize statement within the format
statement. The placement of the statement determines the statement’s scope and whether it affects a
single field, all fields in a single line, or all lines.

rpc get-xyz-information {
 output {
 container xyz-information {
 leaf state {
 junos-odl:formal-name "State";
 type string;
 description "Interface state";
 }
 junos-odl:format xyz-information-format {

596

 junos-odl:header "xyz information\n";
 junos-odl:line {
 junos-odl:field "state" {
 junos-odl:leading;
 junos-odl:colon;
 junos-odl:capitalize;
 }
 }
 }
 }
 }
}

colon, formal-name, and leading

A node’s formal name, or label, is the text that precedes a node’s contents in the output. To create a
label for a node, you must include the formal-name statement in the definition of the leaf node.
Additionally, you must include the leading statement in the formatting instructions for that node’s output
field.

In the following example, the version node has the formal name Version:

rpc get-xyz-information {
 output {
 container xyz-information {
 leaf version {
 junos-odl:formal-name "Version";
 type string;
 description "Version";
 }
 ...
 }
 }
}

The colon statement inserts a colon after the node’s label in an output field. If the formatting instructions
include both the colon and leading statements, the output inserts the node’s label and a colon before the
node’s value. For example:

Version: value

597

To insert the label and a colon in the output field, include the leading and colon statements within the
format statement. The placement of the statements determines the scope and whether the statements
affect a single field, all fields in a single line, or all lines.

rpc get-xyz-information {
 output {
 container xyz-information {
 leaf version {
 junos-odl:formal-name "Version";
 type string;
 description "Version";
 }
 junos-odl:format xyz-information-format {
 junos-odl:line {
 junos-odl:field "version" {
 junos-odl:colon;
 junos-odl:leading;
 }
 }
 }
 }
 }
}

When you execute the RPC, the output for that field includes the label and a colon.

Version: value

comma

The comma statement appends a comma to the node’s value in the output. It is used with the space
statement to create comma-delimited fields in a line of output. For example:

value1, Label2: value2, value3

To generate a comma and a space after a node’s value in the output field, include the comma and space
statements within the format statement. The placement of the statements within the format statement

598

determines the scope. Placing the statements within a single field generates a comma and space for that
field only. Placing the statements directly under the format statement applies the formatting to all fields.

rpc get-xyz-information {
 output {
 container xyz-information {
 leaf version {
 type string;
 description "Version";
 }
 // additional leaf definitions
 junos-odl:format xyz-information-format {
 junos-odl:comma;
 junos-odl:space;
 junos-odl:line {
 junos-odl:field "version";
 // additional fields
 }
 }
 }
 }
}

If you omit the comma statement in the formatting instructions in this example, the fields are separated
using only a space. Junos OS automatically omits the comma and space after the last field in a line of
output.

default-text

The default-text statement specifies the text to display in the formatted ASCII output when the node
corresponding to an output field is missing.

To define the string to display when the node mapped to a field is missing, include the default-text
statement and string within the field statement for that node.

rpc get-xyz-information {
 output {
 container xyz-information {
 leaf my-model {
 type string;
 description "Model";
 }

599

 junos-odl:format xyz-information-format {
 junos-odl:line {
 junos-odl:field "my-model" {
 junos-odl:default-text "Model number not available.";
 }
 }
 }
 }
 }
}

When the node is missing in the RPC reply, the CLI output displays the default text.

Model number not available.

NOTE: The device only displays the default text when the node is missing. It does not
display the text for nodes that are present but empty.

explicit

The explicit statement is only used in Junos OS RPCs. You cannot include this statement in custom
RPCs.

field and line

The line and field statements define lines in the RPC’s formatted ASCII output and the fields within
those lines. You can also use these statements with the picture statement to create a more structured
table that defines strict column widths and text justification.

To define a line in the formatted ASCII output, include the line statement within the format statement.
Within the line statement, include field statements that map the leaf nodes in the output tree to fields in
the line. The field statement’s argument is the leaf identifier. Fields must be emitted in the same order as
you defined the leaf statements.

The CLI output for the following RPC is a single line with three values. Note that you can include other
ODL statements within the field and line statements to customize the formatting for either a single field
or all fields within that line, respectively.

rpc get-xyz-information {
 output {
 container xyz-information {

600

 leaf my-version {
 type string;
 description "Version";
 }
 leaf my-model {
 type string;
 description "Model";
 }
 leaf comment {
 type string;
 description "Comment";
 }
 junos-odl:format xyz-information-format {
 junos-odl:comma;
 junos-odl:space;
 junos-odl:line {
 junos-odl:field "my-version" {
 junos-odl:capitalize;
 }
 junos-odl:field "my-model";
 junos-odl:field "comment";
 }
 }
 }
 }
}

fieldwrap and wordwrap

The fieldwrap and wordwrap statements enable you to more logically wrap content when a line’s width is
greater than the width of the display. By default, content that extends past the edge of the display
wraps at the point where it meets the right margin, without concern for word boundaries.

The fieldwrap statement wraps a field’s complete contents to the next line when the current line is so
long that it extends past the right edge of the display. If you do not use this statement, the string wraps
automatically but without regard for appropriate word breaks or the prevailing margin.

Consider the following lines of output:

Output errors:
Carrier transitions: 1, Errors: 0, Collisions: 0, Drops: 0, Aged packets: 0

601

If the display is narrower than usual, the line could wrap in the middle of a word as shown in the
following sample output:

Output errors:
Carrier transitions: 1, Errors: 0, Collisions: 0, Dro
ps: 0, Aged packets: 0

When you include the fieldwrap statement for a field, the entire field is moved to the next line.

Output errors:
Carrier transitions: 1, Errors: 0, Collisions: 0,
Drops: 0, Aged packets: 0

You should only use the wordwrap statement on the rightmost column in a table to wrap sections of a
multiword value to subsequent lines when the current line is too long. This statement effectively creates
a column of text. In the following example, the wordwrap statement divides the description string at word
boundaries:

Packet type Total Last 5 seconds Description
 Sent Received Sent Received
 Hello 0 0 4 5 Establish and maintain
 neighbor relationships.
 DbD 20 25 0 0 (Database description packets)
 Describe the contents of
 the topological database.
 LSReq 6 5 0 0 (Link-State Request packets)
 Request a precise instance
 of the database.

To improve the wrapping behavior in the RPC’s formatted ASCII output, include the fieldwrap statement
in each field’s formatting instructions. To wrap the rightmost column in a table, include the wordwrap
statement in the rightmost field’s formatting instructions.

rpc get-xyz-information {
 output {
 container xyz-information {
 leaf version {
 type string;
 description "Version";

602

 }
 leaf desc {
 type string;
 description "Description";
 }
 junos-odl:format xyz-information-format {
 junos-odl:picture "@<<<<<<<<<<<<<<@<<<<<<<<<<<<<<";
 junos-odl:line {
 junos-odl:field "version" {
 junos-odl:fieldwrap;
 }
 junos-odl:field "desc" {
 junos-odl:wordwrap;
 }
 }
 }
 }
 }
}

float, header, picture, and truncate

You can create tables in the RPC’s formatted ASCII output by defining a header statement, a picture
statement, and one or more line statements. The optional header statement defines the column headings
for a table, but it can also just define general text. The picture statement graphically depicts the
placement, justification, and width of the columns in a table. The line and field statements define the
table rows and their fields.

The argument for the picture statement is a string that includes the at (@), less than (<), greater than (>),
and vertical bar (|) symbols to define the placement, justification, and width of the table columns. The @
symbol defines the leftmost position in a column that a value in a field can occupy. The <, >, and |
symbols indicate left, right, and center justification, respectively. Repeating the <, >, or | symbol defines
the column width. Table 33 on page 603 summarizes the symbols. You can also insert one or more
blank spaces between columns.

Table 33: picture Statement Symbols

Symbol Description

@ Defines the leftmost position in a column that a value in a field can occupy.

603

Table 33: picture Statement Symbols (Continued)

Symbol Description

| Centers the contents of the field. Repeated symbols define the column width.

< Left justifies the contents of the field. Repeated symbols define the column width.

> Right justifies the contents of the field. Repeated symbols define the column width.

The following picture statement defines a left-justified column, a centered column, and a right-justified
column that are each six characters wide and separated by a single space:

junos-odl:picture " @<<<<< @||||| @>>>>>";

To define a table row, include the line statement, and map leaf nodes to fields in the line. The field
statement’s argument is the leaf identifier.

 junos-odl:line {
 junos-odl:field "slot";
 junos-odl:field "state";
 junos-odl:field "comment";
 }

Sometimes a table field must include one of several mutually exclusive values. In the picture statement,
you can repeat the @ symbol for each potential value. Then you include the float statement within the
field statement for each mutually exclusive value after the first value. Then if the first element does not
have a value, subsequent possible elements with the float statement are tested until a value is returned.
The value floats into the position defined by the first @ symbol instead of leaving a blank field.

For example, the following picture statement causes the output to include one of two mutually exclusive
values in the second column:

 junos-odl:picture " @<<<<< @@<<<<<";
 junos-odl:line {
 junos-odl:field "slot";
 junos-odl:field "state";
 junos-odl:field "comment"{
 junos-odl:float;

604

 }
 }

You can also use the float statement when you know a tag corresponding to a specific table field might
be missing in certain situations, and you want to eliminate the extra blank space.

The truncate statement guarantees that a field’s value does not exceed the width of the column defined
by the picture statement. The truncate statement causes the output to omit any characters in the node’s
value that would cause it to exceed the width of the field. If you omit the truncate statement, and the
output exceeds the width of the field, the complete contents are displayed, which might distort the
table. You should use this statement with care, particularly with numbers, because the output does not
indicate when it truncates a value.

The CLI formatting for the following RPC defines a small table with two columns. The comment field
includes the float and truncate statements. If the state output element contains a value, the output places
the value in the second column. However, if the state output element is empty, the output places the
value for the comment node, if one exists, in the table's second column. If the comment exceeds the width
of that column, the output truncates it to fit the column width.

rpc get-xyz-information {
 output {
 container xyz-information {
 leaf slot {
 type string;
 description "Slot number";
 }
 leaf state {
 type string;
 description "State";
 }
 leaf comment {
 type string;
 }
 junos-odl:format xyz-information-format {
 junos-odl:header "Slot State \n";
 junos-odl:picture "@<<<<< @@|||||||||||||||||||";
 junos-odl:line {
 junos-odl:field "slot";
 junos-odl:field "state";
 junos-odl:field "comment"{
 junos-odl:float;
 junos-odl:truncate;
 }

605

 }
 }
 }
 }
}

format

When you execute an RPC on a device running Junos OS or a device running Junos OS Evolved, it
returns the RPC reply as an XML document. Container and leaf nodes under the RPC output statement
translate into XML elements in the RPC reply. In YANG RPCs for Junos devices, you can also define
custom formatted ASCII output. The device displays the formatted ASCII output when you execute the
RPC in the CLI or when you request RPC output in text format.

To create custom command output for a specific RPC output container, define the format statement. The
format statement defines the CLI formatting for the parent container. The RPC reply does not include it
as a node in the XML data. Within the format statement, map the data for the parent container to output
fields, and use statements from the Junos OS ODL extensions module to specify how to display the
output for that parent container.

rpc get-xyz-information {
 output {
 container xyz-information {
 // leaf definitions
 junos-odl:format xyz-information-format {
 // CLI formatting for the parent container
 }
 }
 }
}

header and header-group

The header statement enables you to define a header string that precedes a set of fields in the RPC’s
formatted ASCII output. The header-group statement emits only the first header string when the output
would include two or more headers in the same header group.

To define a header string and associate it with a header group, include the header and header-group
statements, respectively, within the format statement. The header-group argument is a user-defined string
that identifies a particular header group. Every format statement that includes the header-group statement

606

with the same identifier belongs to the same header group. The following example defines a format
statement associated with the header group color-tags.

junos-odl:format red-format {
 junos-odl:header-group "color-tags";
 junos-odl:header "Color tags\n";
 ...
}

When multiple format statements are associated with the same header group, and the tags emitted by
two or more of those statements are present in the output, the CLI output only emits the first header it
encounters. The output suppresses any subsequent headers belonging to that header group.

To emit only the first header string for a header group, include the header-group statement and identifier in
all format statements belonging to that header group. The following sample RPC output statement
associates two containers and their format statements with the header group color-tags.

output {
 container red-group {
 container red {
 leaf redtag1 {
 type string;
 }
 leaf redtag2 {
 type string;
 }
 junos-odl:format red-format {
 junos-odl:header-group "color-tags";
 junos-odl:header "Color tags\n";
 junos-odl:picture "@<<<<<<<<<<<< @<<<<<<<<<<<<";
 junos-odl:indent 5;
 junos-odl:line {
 junos-odl:field "redtag1";
 junos-odl:field "redtag2";
 }
 }
 }
 }
 container blue-group {
 container blue {
 leaf bluetag1 {
 type string;

607

 }
 leaf bluetag2 {
 type string;
 }
 junos-odl:format blue-format {
 junos-odl:header-group "color-tags";
 junos-odl:header "Color tags\n";
 junos-odl:picture "@<<<<<<<<<<<< @<<<<<<<<<<<<";
 junos-odl:indent 5;
 junos-odl:line {
 junos-odl:field "bluetag1";
 junos-odl:field "bluetag2";
 }
 }
 }
 }
}

Consider an RPC reply with the following XML tags:

<rpc-reply>
 <red-group>
 <red>
 <redtag1>red-1</redtag1>
 <redtag2>red-2</redtag2>
 </red>
 </red-group>
 <blue-group>
 <blue>
 <bluetag1>blue-1</bluetag1>
 <bluetag2>blue-2</bluetag2>
 </blue>
 </blue-group>
</rpc-reply>

608

When the device renders the output and the same header-group statement is present in each format
statement, it emits only the first header string in the output. In this case, the format statement with the
identifier red-format defines the first header string.

Color tags
 red-1 red-2
 blue-1 blue-2

If you omit the header-group statement from the format statement, the output includes the header string
defined for each set of fields.

Color tags
 red-1 red-2
Color tags
 blue-1 blue-2

indent

The indent statement causes all of the lines in the scope of the statement other than the header row to
be indented by the specified number of characters.

To indent lines, include the indent statement and the number of spaces to indent the lines at the top level
of the format statement. The formatted ASCII output for the following RPC indents the line by 10 spaces.

rpc get-xyz-information {
 output {
 container xyz-information {
 leaf version {
 type string;
 description "Version";
 }
 leaf model {
 type string;
 description "Model";
 }
 junos-odl:format xyz-information-format {
 junos-odl:header "xyz information\n";
 junos-odl:indent 10;
 junos-odl:line {
 junos-odl:field "version";
 junos-odl:field "model";

609

 }
 }
 }
 }
}

When you execute the RPC, the output left justifies the header and indents the line containing the two
fields by ten spaces.

xyz information
 version model

no-line-break

The no-line-break statement displays multiple values on the same line in the case where the output emits
multiple entities with the same tag names. When you include the no-line-break statement, the output
places repeated formats on the same line. If you omit the statement, the output places repeated formats
on separate lines.

For example, you might want to display all interface errors together on the same line.

Interface errors:
BPI-B1 0 BIP-B2 0 REI-L 0 BIP-B3 0 REI-P 0

To place the tags for multiple entities within the same line of output, include the no-line-break statement
in the format statement for that container.

rpc get-if-errors {
 output {
 container if-error-information {
 container if-errors {
 leaf if-error-name {
 type string;
 description "Interface error name";
 }
 leaf if-error-count {
 type integer;
 description "Interface error count";
 }
 junos-odl:format if-errors-format {
 junos-odl:no-line-break;

610

 junos-odl:space;
 junos-odl:header "Interface errors:\n";
 junos-odl:line {
 junos-odl:field "if-error-name";
 junos-odl:field "if-error-count";
 }
 }
 }
 }
 }
}

If the RPC output returns multiple entities, the output places each repeated set of fields on the same
line.

Interface errors:
BPI-B1 0 BIP-B2 0 REI-L 0 BIP-B3 0 REI-P 0

If you omit the no-line-break statement, the output places each repeated set of fields on its own line.

Interface errors:
BPI-B1 0
BIP-B2 0
REI-L 0
BIP-B3 0
REI-P 0

space

The space statement appends a space to the node’s value in the RPC’s formatted ASCII output. For
example:

value1 value2 Label3: value3

The space statement is often used with the comma statement to delimit fields in a line of output with a
comma followed by a space.

611

To generate a space after a value in the output field, include the space statement within the format
statement. The placement of a statement determines the statement’s scope. Placing the statement
within a single field generates a space after that field only.

rpc get-xyz-information {
 output {
 container xyz-information {
 leaf version {
 type string;
 description "Version";
 }
 // additional leaf definitions
 junos-odl:format xyz-information-format {
 junos-odl:space;
 junos-odl:line {
 junos-odl:field "version";
 // additional fields
 }
 }
 }
 }
}

style

The style statement defines one of several formats for the RPC output. For detailed information about
using the style statement to create different levels of output, see "Define Different Levels of Output in
Custom YANG RPCs for Junos Devices" on page 614.

template

The template statement explicitly defines the format for an output field for a given node. The definition
includes the output string and placement of the node’s value within the string. If you define the template
statement for a leaf node, the corresponding output field automatically uses the template string.

To create a template string for a node, you must include the template statement in the definition of the
node, and define the string. The placeholders %s and %d within the string define the type and placement
of the node’s value. Use %s to insert a string value, and %d to insert an integer value. For example:

rpc get-xyz-information {
 output {
 container xyz-information {

612

 leaf version {
 junos-odl:template " Version: %s";
 type string;
 description "Version";
 }
 }
 }
}

If you define a template statement for a node, the output field for that node automatically uses the
template text.

rpc get-xyz-information {
 output {
 container xyz-information {
 leaf version {
 junos-odl:template " Version: %s";
 type string;
 description "Version";
 }
 junos-odl:format xyz-information-format {
 junos-odl:line {
 junos-odl:field "version";
 // additional fields
 }
 }
 }
 }
}

When you execute the RPC, the template is used in the output for that field.

 Version: value

NOTE: If a leaf statement defines both a template and a formal-name statement, and the
leading statement is included in the formatting instructions for that field, the output uses
the text defined for the formal-name statement and not the text defined for the template
statement.

613

RELATED DOCUMENTATION

Understanding the YANG Modules for Junos Operational Commands | 484

Create Custom RPCs in YANG for Devices Running Junos OS | 549

Define Different Levels of Output in Custom YANG RPCs for Junos Devices | 614

Understanding Junos OS YANG Extensions for Formatting RPC Output | 590

Define Different Levels of Output in Custom YANG RPCs for Junos
Devices

IN THIS SECTION

Defining Different Levels of Output in Custom YANG RPCs | 614

Example: Defining Different Levels of Output | 618

Defining Different Levels of Output in Custom YANG RPCs

You can define custom RPCs for Junos devices using YANG. You can customize the RPC output to emit
different data and CLI formatting depending on the RPC input. Thus, you can create different styles, or
levels of output, for the same RPC.

You can request the output style by including the appropriate value for the input argument when you
invoke the RPC. The action script must process this argument and emit the XML output for the
requested style. Junos OS then translates the XML into the corresponding CLI output defined for that
style in the YANG module. The RPC template presented in this topic creates two styles: brief and detail.

To create different styles for the output of an RPC:

1. In the YANG module that includes the RPC, import the Junos OS ODL extensions module. The
module defines YANG extensions that you use to precisely specify how to render the text output.

 import junos-extension-odl {
 prefix junos-odl;
 }

614

2. In the RPC's input parameters, define a leaf statement with type enumeration. Include enum statements
that define names for each style.

 rpc rpc-name {
 description "RPC description";
 junos:command "cli-command" {
 junos:action-execute {
 junos:script "action-script-filename";
 }
 }

 input {
 leaf level {
 type enumeration {
 enum brief {
 description "Display brief output";
 }
 enum detail {
 description "Display detailed output";
 }
 }
 }
 }
 }

3. In the RPC output statement, create separate junos-odl:style statements that define the CLI formatting
for each style. The identifier for each style statement should match one of the style names defined
within the enumerated leaf statement.

 output {
 container output-container {

 // leaf definitions

 junos-odl:style brief {
 junos-odl:format output-container-format-brief {
 // formatting for brief output
 }
 }
 junos-odl:style detail {
 junos-odl:format output-container-format-detail {

615

 // formatting for detailed output
 }
 }

 }
 }

4. In the RPC’s action script, first process the input argument. Then emit the XML output for the
requested style enclosed in a parent element that has a tag name identical to the style name.

NOTE: Starting in Junos OS Release 21.2R1 and Junos OS Evolved Release 21.2R1,
when the device passes command-line arguments to a Python action script, it prefixes a
single hyphen (-) to single-character argument names and prefixes two hyphens (--) to
multi-character argument names.

#!/usr/bin/python3
Junos OS Release 21.2R1 and later

import argparse

parser = argparse.ArgumentParser(description='This is a demo script.')
parser.add_argument('--level', required=False, default='brief')
parser.add_argument('--rpc_name', required=True)
args = parser.parse_args()

print ("<output-container>")
print ("<{}>".format(args.level)) # tag name is brief or detail

if args.level == "brief":
 # print statements for brief output

if args.level == "detail":
 # print statements for detailed output

print ("</{}>".format(args.level))
print ("</output-container>")

See "Example: Defining Different Levels of Output" on page 618 for full script examples that work
in the various releases.

616

The following code outlines the general structure of the RPC and enclosing module. When you invoke
the RPC in the CLI, include the input argument level, and specify either brief or detail, Junos OS renders
the output defined for that style.

module module-name {
 namespace "http://yang.juniper.net/yang/1.1/jrpc";
 prefix jrpc;

 import junos-extension {
 prefix junos;
 }
 import junos-extension-odl {
 prefix junos-odl;
 }

 organization
 "Juniper Networks, Inc.";
 description
 "Junos OS YANG module for custom RPCs";

 rpc rpc-name {
 description "RPC description";

 junos:command "cli-command" {
 junos:action-execute {
 junos:script "action-script-filename";
 }
 }

 input {
 leaf level {
 type enumeration {
 enum brief {
 description "Display brief output";
 }
 enum detail {
 description "Display detailed output";
 }
 }
 }
 }
 output {

617

 container output-container {

 // leaf definitions

 junos-odl:style brief {
 junos-odl:format output-container-format-brief {
 // formatting for brief output
 }
 }

 junos-odl:style detail {
 junos-odl:format output-container-format-detail {
 // formatting for detailed output
 }
 }

 }
 }
 }
}

To execute the RPC in the CLI, issue the command defined by the junos:command statement. Specify the
style by including the appropriate command-line argument, which in this example is level. The
corresponding action script processes the input argument and emits the output for the requested style.

user@host> cli-command level brief

Example: Defining Different Levels of Output

IN THIS SECTION

Requirements | 619

Overview of the RPC and Action Script | 619

YANG Module and Action Script | 621

Configuration | 625

Verify the RPC | 627

618

This example presents a simple custom YANG RPC and action script that determine if a host is reachable
and print different levels of output depending on the user input.

Requirements

This example uses the following hardware and software components:

• Device running Junos OS or device running Junos OS Evolved that supports loading custom YANG
data models.

Overview of the RPC and Action Script

The YANG module in this example defines a custom RPC to ping the specified host and return the result
using different levels of output based on the user’s input. The YANG module rpc-style-test is saved in the
rpc-style-test.yang file. The module imports the Junos OS extension modules, which provide the
extensions required to execute custom RPCs on the device and to customize the CLI output.

The module defines the get-host-status RPC. The <get-host-status> request tag is used to remotely execute
the RPC on the device. In the RPC definition, the junos:command statement defines the command that you
use to execute the RPC in the CLI, which in this case is show host-status.

 rpc get-host-status {
 description "RPC example to retrieve host status";

 junos:command "show host-status" {
 junos:action-execute {
 junos:script "rpc-style-test.py";
 }
 }
 ...

The junos:action-execute and junos:script statements define the action script that is invoked when you
execute the RPC. This example uses a Python action script named rpc-style-test.py to retrieve the
information required by the RPC. The script returns the XML output elements for each level of output as
defined in the RPC's output statement.

The RPC has two input parameters, hostip and level. The hostip parameter is the host to check for
reachability. The level parameter selects the style for the RPC's output. When you execute the RPC, you
include the target host’s IP address and a level, brief or detail. The action script defines the default value

619

for level as 'brief', so if you omit this argument, the RPC prints the output corresponding to the brief
style.

 input {
 leaf hostip {
 description "Host IP address";
 type string;
 }
 leaf level {
 type enumeration {
 enum brief {
 description "Display brief output";
 }
 enum detail {
 description "Display detailed output";
 }
 }
 }
 }

The RPC also defines the output nodes that must be emitted by the corresponding action script. The
root node is the <host-status-information> element. This root node encloses either the <brief> or the
<detail> element, depending on the user input. It also includes the child output nodes specified for each
level of output. Both levels of output include the <hostip> and <status> child elements, but the <detail>
element also includes the <date> child element. The junos-odl:format statements define the formatting for
the text output. The output XML tree does not include this node.

 output {
 container host-status-information {
 ...
 junos-odl:style brief {
 junos-odl:format host-status-information-format-brief {
 ...
 }
 }
 junos-odl:style detail {
 junos-odl:format host-status-information-format-detail {
 ...
 }
 }

620

 }
 }

The action script pings the host to determine if it is reachable and sets the status based on the results.
The script then constructs and prints the XML for the RPC output based on the specified level
argument. The XML tree must exactly match the hierarchy defined in the RPC.

You add the module containing the RPC and the action script file to the device as part of a new YANG
package named rpc-style-test.

YANG Module and Action Script

IN THIS SECTION

YANG Module | 621

Action Script | 623

YANG Module

The YANG module, rpc-style-test.yang, defines the RPC, the command used to execute the RPC in the
CLI, and the name of the action script to invoke when you execute the RPC. The base name of the file
must match the module name.

/*
* Copyright (c) 2024 Juniper Networks, Inc.
* All rights reserved.
*/

module rpc-style-test {
 namespace "http://yang.juniper.net/yang/1.1/jrpc";
 prefix jrpc;

 import junos-extension-odl {
 prefix junos-odl;
 }
 import junos-extension {
 prefix junos;
 }

621

 organization
 "Juniper Networks, Inc.";

 description
 "Junos OS YANG module for RPC example";

 rpc get-host-status {
 description "RPC example to retrieve host status";

 junos:command "show host-status" {
 junos:action-execute {
 junos:script "rpc-style-test.py";
 }
 }

 input {
 leaf hostip {
 description "Host IP address";
 type string;
 }
 leaf level {
 type enumeration {
 enum brief {
 description "Display brief output";
 }
 enum detail {
 description "Display detailed output";
 }
 }
 }
 }
 output {
 container host-status-information {
 leaf hostip {
 type string;
 description "Host IP";
 }
 leaf status {
 type string;
 description "Operational status";
 }
 leaf date {
 type string;

622

 description "Date information";
 }
 junos-odl:style brief {
 junos-odl:format host-status-information-format-brief {
 junos-odl:header "Brief output\n";
 junos-odl:picture "@<<<<<<<<<<<< @";
 junos-odl:space;
 junos-odl:line {
 junos-odl:field "hostip";
 junos-odl:field "status";
 }
 }
 }
 junos-odl:style detail {
 junos-odl:format host-status-information-format-detail {
 junos-odl:header "Detail output\n";
 junos-odl:picture "@<<<<<<<<<<<< @<<<<<<<<<<<< @";
 junos-odl:space;
 junos-odl:line {
 junos-odl:field "hostip";
 junos-odl:field "status";
 junos-odl:field "date";
 }
 }
 }
 }
 }
 }
}

Action Script

The corresponding action script is rpc-style-test.py. The action script prints different levels of output
based on the value of the level argument provided by the user. The script defines a default value of
'brief' for the level argument so that if the user omits the argument, the script returns the brief style of
output. This example provides two versions of the action script, which appropriately handle the script's
command-line arguments for the different releases.

623

Action Script (Junos OS Release 21.2R1 and later)

#!/usr/bin/python3
Junos OS Release 21.2R1 and later

import os
import argparse

parser = argparse.ArgumentParser(description='This is a demo script.')
parser.add_argument('--hostip', required=True)
parser.add_argument('--level', required=False, default='brief')
parser.add_argument('--rpc_name', required=True)
args = parser.parse_args()

f = os.popen('date')
now = f.read()

Ping target host and set the status
response = os.system('ping -c 1 ' + args.hostip + ' > /dev/null')
if response == 0:
 pingstatus = "Host is Active"
else:
 pingstatus = "Host is Inactive"

Print RPC XML for the given style
print ("<host-status-information>")
print ("<{}>".format(args.level))
print ("<hostip>{}</hostip>".format(args.hostip))
print ("<status>{}</status>".format(pingstatus))
if args.level == "detail":
 print ("<date>{}</date>".format(now))
print ("</{}>".format(args.level))
print ("</host-status-information>")

Action Script (Junos OS Release 21.1 and earlier)

#!/usr/bin/python
Junos OS Release 21.1 and earlier

import sys

624

import os

args = {'hostip': None, 'level': 'brief'}

Retrieve user input and store the values in the args dictionary
for arg in args.keys():
 if arg in sys.argv:
 index = sys.argv.index(arg)
 args[arg] = sys.argv[index+1]

f = os.popen('date')
now = f.read()

Ping target host and set the status
if args['hostip'] is not None:
 response = os.system('ping -c 1 ' + args['hostip'] + ' > /dev/null')
 if response == 0:
 pingstatus = "Host is Active"
 else:
 pingstatus = "Host is Inactive"
else:
 pingstatus = "Invalid host"

Print RPC XML for the given style
print ("<host-status-information>")
print ("<{}>".format(args['level']))
print ("<hostip>{}</hostip>".format(args['hostip']))
print ("<status>{}</status>".format(pingstatus))
if args['level'] == "detail":
 print ("<date>{}</date>".format(now))
print ("</{}>".format(args['level']))
print ("</host-status-information>")

Configuration

IN THIS SECTION

Enable Execution of Python Scripts | 626

Load the RPC on the Device | 626

625

Enable Execution of Python Scripts

To enable the device to execute unsigned Python scripts:

1. Configure the language python or language python3 statement, as appropriate for the Junos OS release.

[edit]
user@host# set system scripts language (python | python3)

NOTE: Starting in Junos OS Release 20.2R1 and Junos OS Evolved Release 22.3R1, the
device uses Python 3 to execute YANG action and translation scripts. In earlier releases,
Junos OS only uses Python 2.7 to execute these scripts, and Junos OS Evolved uses
Python 2.7 by default to execute the scripts.

2. Commit the configuration.

[edit]
user@host# commit and-quit

Load the RPC on the Device

To add the RPC and action script to the Junos schema on the device:

1. Download the YANG module and action script to the Junos device.

2. Ensure that the Python action script meets the following requirements:

• File owner is either root or a user in the Junos OS super-user login class.

• Only the file owner has write permission for the file.

• Script includes the appropriate interpreter directive line as outlined in "Create Action Scripts for
YANG RPCs on Junos Devices" on page 556.

3. (Optional) Validate the syntax for the YANG module and action script.

user@host> request system yang validate module /var/tmp/rpc-style-test.yang action-
script /var/tmp/rpc-style-test.py
YANG modules validation : START
YANG modules validation : SUCCESS

626

Scripts syntax validation : START
Scripts syntax validation : SUCCESS

4. Add the YANG module and action script to a new YANG package.

user@host> request system yang add package rpc-style-test module /var/tmp/rpc-style-test.yang
action-script /var/tmp/rpc-style-test.py
YANG modules validation : START
YANG modules validation : SUCCESS
Scripts syntax validation : START
Scripts syntax validation : SUCCESS
TLV generation: START
TLV generation: SUCCESS
Building schema and reloading /config/juniper.conf.gz ...
Restarting mgd ...

5. When the system prompts you to restart the Junos OS CLI, press Enter to accept the default value of
yes, or type yes and press Enter.

WARNING: cli has been replaced by an updated version:
...
Restart cli using the new version ? [yes,no] (yes) yes

Restarting cli ...

Verify the RPC

IN THIS SECTION

Purpose | 627

Action | 628

Meaning | 629

Purpose

Verify that the RPC works as expected.

627

Action

From operational mode, execute the RPC in the CLI by issuing the command defined by the junos:command
statement in the RPC definition. Include the hostip input argument, and include the level argument for
each different level of output.

user@host> show host-status hostip 198.51.100.1 level brief
Brief output
198.51.100.1 Host is Active

You can view the corresponding XML by appending | display xml to the command.

user@host> show host-status hostip 198.51.100.1 level brief | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/18.3R1/junos">
 <host-status-information>
 <brief>
 <hostip>
 198.51.100.1
 </hostip>
 <status>
 Host is Active
 </status>
 </brief>
 </host-status-information>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

Similarly, for the detailed output:

user@host> show host-status hostip 198.51.100.10 level detail
Detail output
198.51.100.10 Host is Inactive Fri Feb 8 11:55:54 PST 2019

user@host> show host-status hostip 198.51.100.10 level detail | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/18.3R1/junos">
 <host-status-information>
 <detail>

628

 <hostip>
 198.51.100.10
 </hostip>
 <status>
 Host is Inactive
 </status>
 <date>
 Fri Feb 8 16:03:35 PST 2019
 </date>
 </detail>
 </host-status-information>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

Meaning

When you execute the RPC, the device invokes the action script. The action script prints the XML
hierarchy for the given level of output as defined in the RPC output statement. When you execute the
RPC in the CLI, the device uses the CLI formatting defined in the RPC to convert the XML output into
the displayed CLI output.

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

21.2R1 and
21.2R1-EVO

Starting in Junos OS Release 21.2R1 and Junos OS Evolved Release 21.2R1, when the device
passes command-line arguments to a Python action script, it prefixes a single hyphen (-) to
single-character argument names and prefixes two hyphens (--) to multi-character argument
names.

RELATED DOCUMENTATION

Create Custom RPCs in YANG for Devices Running Junos OS | 549

Understanding Junos OS YANG Extensions for Formatting RPC Output | 590

Customize YANG RPC Output on Devices Running Junos OS | 594

629

https://apps.juniper.net/feature-explorer/

Display Valid Command Option and Configuration Statement Values in
the CLI for Custom YANG Modules

IN THIS SECTION

Understanding Context-Sensitive Help for Custom YANG Modules | 630

Defining the YANG Module | 631

Creating the CLI Expansion Script | 633

Loading the YANG Package | 636

Example: Displaying Context-Sensitive Help for a Command Option | 638

Certain Junos devices enable you to load custom YANG modules on the device to add data models that
are not natively supported by Junos OS. When you add custom YANG data models to a device, you
must also supply an action or translation script that handles the translation logic between the YANG
data model and Junos OS. Although the script logic can ensure that a user supplies valid values for a
given command option or configuration statement, that logic is not always transparent to the user.
Starting in Junos OS Release 19.2R1, the CLI displays the set of possible values for certain command
options or configuration statements in a custom YANG data model when you include the action-expand
extension statement in the option or statement definition and reference a script that handles the logic.

Understanding Context-Sensitive Help for Custom YANG Modules

The Junos CLI provides context-sensitive help whenever you type a question mark (?) in operational or
configuration mode. When you execute a command or configure a statement, the CLI’s context-sensitive
help displays the valid options and option values for a command or the valid configuration statements
and leaf statement values in the configuration statement hierarchy. Additionally, context-sensitive help
shows the possible completions for incomplete option names, statement names, and their values.

The CLI can also display the values that are valid for certain command options or configuration
statements in a custom YANG data model. The CLI can display all possible values or a subset of values
that match on partial input from the user. For example:

user@host> show host-status hostip ?
Possible completions:
 <hostip> Host IP address
 10.10.10.1 IPv4 address
 10.10.10.2 IPv4 address

630

 172.16.0.1 IPv4 address
 198.51.100.1 IPv4 address
 198.51.100.10 IPv4 address
 2001:db8::1 IPv6 address (DC 1...128)
 2001:db8::fdd2 IPv6 address (DC 1...128)

user@host> show host-status hostip 198?
Possible completions:
 <hostip> Host IP address
 198.51.100.1 IPv4 address
 198.51.100.10 IPv4 address

To display the set of valid values for a given command option or configuration statement in a custom
YANG module:

1. Define the action-expand and script extension statements under the appropriate input parameter or
configuration statement in the YANG module as described in "Defining the YANG Module" on page
631.

2. Create a Python script that checks for user input, calculates the possible values of the command
option or configuration statement, and sends the appropriate output to the CLI, as described in
"Creating the CLI Expansion Script" on page 633.

NOTE: The CLI expansion script only displays the valid values in the CLI. The module’s
translation script or action script must still include the logic that ensures that only valid
values are accepted and processed.

3. Load the YANG module, any translation or action scripts, and the CLI expansion script as part of a
custom YANG package on the device as described in "Loading the YANG Package" on page 636.

NOTE: Junos devices process CLI expansion scripts as another kind of action script, but
we refer to CLI expansion script to avoid any confusion.

Defining the YANG Module

To define a custom YANG module that displays the set of valid values for a given command option or
configuration statement when the user requests context-sensitive help in the CLI, your module must:

1. Import the Junos OS DDL extensions module.

631

2. Include the action-expand extension statement and script substatement in the corresponding command
option or configuration statement definition.

• You can include the action-expand statement within a leaf statement in modules that define custom
RPCs and within a leaf or leaf-list statement in modules that define custom configuration
hierarchies.

• You can only define a single action-expand statement for a given node.

• The script statement should reference the Python script that defines your custom logic.

For example, in the following module, the RPC defines the hostip input parameter, which calls the hostip-
expand.py Python script when the user requests context-sensitive help for the hostip argument in the CLI.
The script implements the custom logic that displays the valid values for that argument in the CLI.

module rpc-host-status {
 namespace "http://yang.juniper.net/examples/rpc-cli";
 prefix jrpc;

 import junos-extension-odl {
 prefix junos-odl;
 }
 import junos-extension {
 prefix junos;
 }

 rpc get-host-status {
 description "RPC example to retrieve host status";

 junos:command "show host-status" {
 junos:action-execute {
 junos:script "rpc-host-status.py";
 }
 }

 input {
 leaf hostip {
 description "Host IP address";
 type string;
 junos:action-expand {
 junos:script "hostip-expand.py";
 }
 }
 leaf level {

632

 type enumeration {
 enum brief {
 description "Display brief output";
 }
 enum detail {
 description "Display detailed output";
 }
 }
 }
 }
 output {
 ...
 }
 }
}

Creating the CLI Expansion Script

When you define the action-expand statement and script substatement for a command option or
configuration statement in a custom YANG module and you request context-sensitive help for that
option or statement value in the CLI, the device invokes the referenced Python script. The script must
contain the custom logic that calculates and displays all possible values for that parameter or displays a
subset of values that match on partial input from the user.

For example, the following command should display all valid values for the hostip argument:

user@host> show host-status hostip ?

And the following command should display all valid values that start with "198":

user@host> show host-status hostip 198?

To display the valid values for a command option or configuration statement in the CLI, the Python
script should perform the following functions:

1. Import the jcs library along with any other required Python libraries.

2. Retrieve and process any user input.

If you specify partial input for an option or statement value in the CLI, the script’s command-line
arguments include the symbol argument, which is a string containing the user input.

633

NOTE: Starting in Junos OS Release 21.2R1 and Junos OS Evolved Release 21.2R1, the
script's command-line arguments include the --symbol argument instead of the symbol
argument.

3. Define or calculate the valid values for the parameter.

4. Call the jcs.expand() function for each value to display on the command line.

The script must call the jcs:expand() function for each option or statement value to display in the CLI. The
syntax for the jcs:expand() function is:

jcs.expand(value, description, <units>, <range>)

Where:

value String defining a valid value for the given command option or configuration statement.

description String that describes the value.

units (Optional) String that defines the units for the corresponding value.

range (Optional) String that defines the range for the corresponding value.

For each call to the jcs.expand() function, the script emits the value, description, units, and range that are
provided in the function arguments in the CLI. For example, given the following call to jcs.expand() in the
script:

jcs.expand("2001:db8:4136::fdd2", "IPv6 address", "DC", "1...128")

The corresponding CLI output is:

Possible completions:
 <hostip> Host IP address
 2001:db8:4136::fdd2 IPv6 address (DC 1...128)

The following sample scripts first check for the presence of symbol in the script’s command-line
arguments, and if present, set the corresponding variable equal to the user’s input. The scripts then
calculate the set of valid values for the parameter based on the user’s input. Finally, the scripts call the
jcs.expand() function for each value to display in the CLI.

634

We provide two versions of the script, which appropriately handle the script's symbol argument for the
different releases. The following sample script, which is valid on devices running Junos OS Release
21.2R1 or later, uses the argparse library to parse the --symbol argument.

#!/usr/bin/python3
Junos OS Release 21.2R1 and later

import jcs
import argparse

parser = argparse.ArgumentParser(description='This is a demo script.')
parser.add_argument('--symbol', required=False, default='')
args = parser.parse_args()

description_ipv4 = "IPv4 address"
description_ipv6 = "IPv6 address"
expand_colon = ":"
expand_units = "DC"
expand_range = "1...128"

item = ["10.10.10.1", "10.10.10.2", "2001:db8::1",
 "172.16.0.1", "198.51.100.1", "198.51.100.10", "2001:db8::fdd2"]

for ip in item:
 if ip.startswith(args.symbol) or not args.symbol:
 if not expand_colon in ip:
 jcs.expand(ip, description_ipv4)
 else:
 jcs.expand(ip, description_ipv6,
 expand_units, expand_range)

Similarly, the following sample script, which is valid on devices running Junos OS Release 21.1 or earlier,
checks for symbol in the sys.argv list.

#!/usr/bin/python
Junos OS Release 21.1 and earlier

import sys
import jcs

symbol = ""

635

Retrieve user input in symbol argument and store the value
if "symbol" in sys.argv:
 index = sys.argv.index("symbol")
 symbol = sys.argv[index+1]

description_ipv4 = "IPv4 address"
description_ipv6 = "IPv6 address"
expand_colon = ":"
expand_units = "DC"
expand_range = "1...128"

item = ["10.10.10.1", "10.10.10.2", "2001:db8::1",
 "172.16.0.1", "198.51.100.1", "198.51.100.10", "2001:db8::fdd2"]

for ip in item:
 if ip.startswith(symbol) or not symbol:
 if not expand_colon in ip:
 jcs.expand(ip, description_ipv4)
 else:
 jcs.expand(ip, description_ipv6,
 expand_units, expand_range)

The CLI expansion script only displays the valid values, units, and ranges for the command option or
configuration statement in the CLI. The module’s translation script or action script must ensure that only
valid values are accepted and processed.

Loading the YANG Package

When you load a YANG package on a Junos device, include any CLI expansion scripts in the list of action
scripts for that package. Junos OS automatically copies the script to the /var/db/scripts/action
directory.

To load a new package and include custom CLI expansion scripts:

1. Ensure that the Python scripts meet the following requirements:

• File owner is either root or a user in the Junos OS super-user login class.

• Only the file owner has write permission for the file.

• Script includes an interpreter directive line as outlined in "Create Action Scripts for YANG RPCs
on Junos Devices" on page 556.

636

2. In configuration mode, enable the device to execute unsigned Python scripts by configuring the
language python or language python3 statement, as appropriate for the Junos OS release.

[edit]
user@host# set system scripts language (python | python3)
user@host# commit and-quit

NOTE: Starting in Junos OS Release 20.2R1 and Junos OS Evolved Release 22.3R1, the
device uses Python 3 to execute YANG action and translation scripts. In earlier releases,
Junos OS only uses Python 2.7 to execute these scripts, and Junos OS Evolved uses
Python 2.7 by default to execute the scripts.

3. In operational mode, load the YANG package, and include the CLI expansion script in the action-script
list.

user@host> request system yang add package rpc-host-status module /var/tmp/rpc-host-
status.yang action-script [/var/tmp/rpc-host-status.py /var/tmp/hostip-expand.py]
YANG modules validation : START
YANG modules validation : SUCCESS
Scripts syntax validation : START
Scripts syntax validation : SUCCESS
TLV generation: START
TLV generation: SUCCESS
Building schema and reloading /config/juniper.conf.gz ...
Activating /config/juniper.conf.gz ...
mgd: commit complete
Restarting mgd ...

NOTE: To prevent CLI-related or configuration database errors, we recommend that you
do not perform any CLI operations, change the configuration, or terminate the
operation while a device is in the process of adding, updating, or deleting a YANG
package and modifying the schema.

4. When the system prompts you to restart the Junos OS CLI, press Enter to accept the default value of
yes.

...
WARNING: cli has been replaced by an updated version:

637

...
Restart cli using the new version ? [yes,no] (yes)

Restarting cli ...

Example: Displaying Context-Sensitive Help for a Command Option

IN THIS SECTION

Requirements | 638

Overview | 638

YANG Module and Action Scripts | 639

Configuration | 646

Verifying the Context-Sensitive Help | 648

This example presents a custom YANG module that uses the action-expand extension statement and a
custom script to display the set of possible values for one of the command options when a user requests
context-sensitive help in the CLI for that option.

Requirements

This example uses the following hardware and software components:

• Device running Junos OS Release 19.2R1 or later that supports loading custom YANG data models.

Overview

The YANG module in this example defines a custom RPC to ping the specified host and return the result.
The YANG module rpc-host-status is saved in the rpc-host-status.yang file. The module imports the Junos
OS extension modules, which provide the extensions required to execute custom RPCs on the device
and to customize the output and context-sensitive help in the CLI.

The module defines the get-host-status RPC. The junos:command statement defines the command that is
used to execute the RPC in the CLI, which in this case is show host-status. The junos:action-execute and
junos:script statements define the action script that is invoked when you execute the RPC.

 rpc get-host-status {
 description "RPC example to retrieve host status";

638

 junos:command "show host-status" {
 junos:action-execute {
 junos:script "rpc-host-status.py";
 }
 }

The hostip input parameter includes the junos:action-expand and junos:script statements, which define the
script that is invoked when the user requests context-sensitive help in the CLI for that input parameter.

 input {
 leaf hostip {
 description "Host IP address";
 type string;
 junos:action-expand {
 junos:script "hostip-expand.py";
 }
 }
 ...
 }

The hostip-expand.py script processes the user’s input, which is passed to the script as the argument
symbol or --symbol, depending on the release. The script then calculates and displays the set of values that
the user can enter for that command option.

NOTE: Starting in Junos OS Release 21.2R1 and Junos OS Evolved Release 21.2R1,
when the device passes command-line arguments to a Python action script (including
CLI expansion scripts), it prefixes a single hyphen (-) to single-character argument names
and prefixes two hyphens (--) to multi-character argument names.

The expansion script displays the valid values for hostip in the CLI. The action script implements the logic
that determines if the provided value is valid. This example adds the YANG module and the action
scripts to the device as part of a new YANG package named rpc-host-status.

YANG Module and Action Scripts

IN THIS SECTION

YANG Module | 640

639

Action Script | 642

CLI Expansion Script | 644

YANG Module

The YANG module, rpc-host-status.yang, defines the RPC, the command used to execute the RPC in the
CLI, the name of the action script to invoke when you execute the RPC, and the name of the CLI
expansion script to invoke when the user requests context-sensitive help for the corresponding input
parameter.

/*
* Copyright (c) 2019 Juniper Networks, Inc.
* All rights reserved.
*/

module rpc-host-status {
 namespace "http://yang.juniper.net/examples/rpc-cli";
 prefix jrpc;

 import junos-extension-odl {
 prefix junos-odl;
 }
 import junos-extension {
 prefix junos;
 }

 organization
 "Juniper Networks, Inc.";

 description
 "Junos OS YANG module for RPC example";

 rpc get-host-status {
 description "RPC example to retrieve host status";

 junos:command "show host-status" {
 junos:action-execute {
 junos:script "rpc-host-status.py";
 }

640

 }

 input {
 leaf hostip {
 description "Host IP address";
 type string;
 junos:action-expand {
 junos:script "hostip-expand.py";
 }
 }
 leaf level {
 type enumeration {
 enum brief {
 description "Display brief output";
 }
 enum detail {
 description "Display detailed output";
 }
 }
 }
 }
 output {
 container host-status-information {
 leaf hostip {
 type string;
 description "Host IP";
 }
 leaf status {
 type string;
 description "Operational status";
 }
 leaf date {
 type string;
 description "Date information";
 }
 junos-odl:style brief {
 junos-odl:format host-status-information-format-brief {
 junos-odl:header "Brief output\n";
 junos-odl:picture "@<<<<<<<<<<<< @";
 junos-odl:space;
 junos-odl:line {
 junos-odl:field "hostip";
 junos-odl:field "status";

641

 }
 }
 }
 junos-odl:style detail {
 junos-odl:format host-status-information-format-detail {
 junos-odl:header "Detail output\n";
 junos-odl:picture "@<<<<<<<<<<<< @<<<<<<<<<<<< @";
 junos-odl:space;
 junos-odl:line {
 junos-odl:field "hostip";
 junos-odl:field "status";
 junos-odl:field "date";
 }
 }
 }
 }
 }
 }
}

Action Script

The corresponding action script is rpc-host-status.py. This example provides two versions of the action
script, which appropriately handle the script's command-line arguments for the different releases.

Action Script (Junos OS Release 21.2R1 and later)

#!/usr/bin/python3
Junos OS Release 21.2R1 and later

import os
import argparse

parser = argparse.ArgumentParser(description='This is a demo script.')
parser.add_argument('--hostip', required=True)
parser.add_argument('--level', required=False, default='brief')
parser.add_argument('--rpc_name', required=True)
args = parser.parse_args()

valid_addresses = ["10.10.10.1", "10.10.10.2", "2001:db8::1",
 "172.16.0.1", "198.51.100.1", "198.51.100.10", "2001:db8::fdd2"]

642

f = os.popen('date')
now = f.read()

Ping target host and set the status
if args.hostip in valid_addresses:
 response = os.system('ping -c 1 ' + args.hostip + ' > /dev/null')
 if response == 0:
 pingstatus = "Host is Active"
 else:
 pingstatus = "Host is Inactive"
else:
 pingstatus = "Invalid host"

Print RPC XML for the given style
print ("<host-status-information>")
print ("<{}>".format(args.level))
print ("<hostip>{}</hostip>".format(args.hostip))
print ("<status>{}</status>".format(pingstatus))
if args.level == "detail":
 print ("<date>{}</date>".format(now))
print ("</{}>".format(args.level))
print ("</host-status-information>")

Action Script (Junos OS Release 21.1 and earlier)

#!/usr/bin/python
Junos OS Release 21.1 and earlier

import sys
import os

args = {'hostip': None, 'level': 'brief'}
valid_addresses = ["10.10.10.1", "10.10.10.2", "2001:db8::1",
 "172.16.0.1", "198.51.100.1", "198.51.100.10", "2001:db8::fdd2"]

Retrieve user input and store the values in the args dictionary
for arg in args.keys():
 if arg in sys.argv:
 index = sys.argv.index(arg)

643

 args[arg] = sys.argv[index+1]

f = os.popen('date')
now = f.read()

Ping target host and set the status
if args['hostip'] in valid_addresses:
 response = os.system('ping -c 1 ' + args['hostip'] + ' > /dev/null')
 if response == 0:
 pingstatus = "Host is Active"
 else:
 pingstatus = "Host is Inactive"
else:
 pingstatus = "Invalid host"

Print RPC XML for the given style
print ("<host-status-information>")
print ("<{}>".format(args['level']))
print ("<hostip>{}</hostip>".format(args['hostip']))
print ("<status>{}</status>".format(pingstatus))
if args['level'] == "detail":
 print ("<date>{}</date>".format(now))
print ("</{}>".format(args['level']))
print ("</host-status-information>")

CLI Expansion Script

The action script that handles the logic to display the valid values for hostip in the CLI is hostip-
expand.py. This example provides two versions of the script, which appropriately handle the script's
arguments for the different releases.

CLI expansion script (Junos OS Release 21.2R1 and later)

#!/usr/bin/python3
Junos OS Release 21.2R1 and later

import jcs
import argparse

parser = argparse.ArgumentParser(description='This is a demo script.')
parser.add_argument('--symbol', required=False, default='')

644

args = parser.parse_args()

description_ipv4 = "IPv4 address"
description_ipv6 = "IPv6 address"
expand_colon = ":"
expand_units = "DC"
expand_range = "1...128"

item = ["10.10.10.1", "10.10.10.2", "2001:db8::1",
 "172.16.0.1", "198.51.100.1", "198.51.100.10", "2001:db8::fdd2"]

for ip in item:
 if ip.startswith(args.symbol) or not args.symbol:
 if not expand_colon in ip:
 jcs.expand(ip, description_ipv4)
 else:
 jcs.expand(ip, description_ipv6,
 expand_units, expand_range)

CLI expansion script (Junos OS Release 21.1 and earlier)

#!/usr/bin/python
Junos OS Release 21.1 and earlier

import sys
import jcs

symbol = ""

Retrieve user input in symbol argument and store the value
if "symbol" in sys.argv:
 index = sys.argv.index("symbol")
 symbol = sys.argv[index+1]

description_ipv4 = "IPv4 address"
description_ipv6 = "IPv6 address"
expand_colon = ":"
expand_units = "DC"
expand_range = "1...128"

item = ["10.10.10.1", "10.10.10.2", "2001:db8::1",

645

 "172.16.0.1", "198.51.100.1", "198.51.100.10", "2001:db8::fdd2"]

for ip in item:
 if ip.startswith(symbol) or not symbol:
 if not expand_colon in ip:
 jcs.expand(ip, description_ipv4)
 else:
 jcs.expand(ip, description_ipv6,
 expand_units, expand_range)

Configuration

IN THIS SECTION

Enable Execution of Python Scripts | 646

Load the YANG Module and Scripts on the Device | 647

Enable Execution of Python Scripts

To enable the device to execute unsigned Python scripts:

1. Configure the language python or language python3 statement, as appropriate for the Junos OS release.

[edit]
user@host# set system scripts language (python | python3)

NOTE: Starting in Junos OS Release 20.2R1 and Junos OS Evolved Release 22.3R1, the
device uses Python 3 to execute YANG action and translation scripts. In earlier releases,
Junos OS only uses Python 2.7 to execute these scripts, and Junos OS Evolved uses
Python 2.7 by default to execute the scripts.

646

2. Commit the configuration.

[edit]
user@host# commit and-quit

Load the YANG Module and Scripts on the Device

To add the YANG module and scripts to the Junos device:

1. Download the YANG module and scripts to the Junos device.

2. Ensure that the Python scripts meet the following requirements:

• File owner is either root or a user in the Junos OS super-user login class.

• Only the file owner has write permission for the file.

• Script includes the appropriate interpreter directive line as outlined in "Create Action Scripts for
YANG RPCs on Junos Devices" on page 556.

3. (Optional) Validate the syntax for the YANG module and action scripts.

user@host> request system yang validate module /var/tmp/rpc-host-status.yang action-
script [/var/tmp/rpc-host-status.py /var/tmp/hostip-expand.py]
YANG modules validation : START
YANG modules validation : SUCCESS
Scripts syntax validation : START
Scripts syntax validation : SUCCESS

4. Add the YANG module and scripts to a new YANG package.

user@host> request system yang add package rpc-host-status module /var/tmp/rpc-host-
status.yang action-script [/var/tmp/rpc-host-status.py /var/tmp/hostip-expand.py]
YANG modules validation : START
YANG modules validation : SUCCESS
Scripts syntax validation : START
Scripts syntax validation : SUCCESS
TLV generation: START
TLV generation: SUCCESS
Building schema and reloading /config/juniper.conf.gz ...

647

mgd: commit complete
Restarting mgd ...

5. When the system prompts you to restart the Junos OS CLI, press Enter to accept the default value of
yes, or type yes and press Enter.

WARNING: cli has been replaced by an updated version:
...
Restart cli using the new version ? [yes,no] (yes) yes

Restarting cli ...

Verifying the Context-Sensitive Help

IN THIS SECTION

Purpose | 648

Action | 648

Meaning | 649

Purpose

Verify that the CLI expansion script works as expected.

Action

From operational mode, request context-sensitive help in the CLI by issuing the command defined by
the junos:command statement in the RPC definition, and include the hostip input argument and a question
mark (?).

user@host> show host-status hostip ?
Possible completions:
 <hostip> Host IP address
 10.10.10.1 IPv4 address
 10.10.10.2 IPv4 address
 172.16.0.1 IPv4 address

648

 198.51.100.1 IPv4 address
 198.51.100.10 IPv4 address
 2001:db8::1 IPv6 address (DC 1...128)
 2001:db8::fdd2 IPv6 address (DC 1...128)

Perform the same operation with partial user input and verify that the displayed values correctly match
the input.

user@host> show host-status hostip 198?
Possible completions:
 <hostip> Host IP address
 198.51.100.1 IPv4 address
 198.51.100.10 IPv4 address

Meaning

When context-sensitive help is requested for the hostip value, the device invokes the hostip-expand.py
script. The script processes the user’s input, if provided, and prints the valid completions in the CLI. If no
user input is given, the script prints all possible values. When user input is provided, the script prints
only matching values.

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

21.2R1 and
21.2R1-EVO

Starting in Junos OS Release 21.2R1 and Junos OS Evolved Release 21.2R1, when the device
passes command-line arguments to a Python action script, it prefixes a single hyphen (-) to
single-character argument names and prefixes two hyphens (--) to multi-character argument
names.

Configure a NETCONF Proxy Telemetry Sensor in Junos

IN THIS SECTION

Create a User-Defined YANG File | 654

649

https://apps.juniper.net/feature-explorer/

Load the Yang File in Junos | 658

Collect Sensor Data | 659

Installing a User-Defined YANG File | 662

Troubleshoot Telemetry Sensors | 664

Using Junos telemetry streaming, you can turn any available state information into a telemetry sensor by
means of the XML Proxy functionality. The NETCONF XML management protocol and Junos XML API
fully document all options for every supported Junos OS operational request. After you configure XML
proxy sensors, you can access data over NETCONF “get” remote procedure calls (RPCs).

This task shows you how to stream the output of a Junos OS operational mode command.

BEST PRACTICE: We recommend not to use YANG files that map to a Junos OS
operational command with extensive or verbose output or one that is slow in producing
output. Commands with a noticeable delay should be avoided in YANG files. Including
such commands can affect other xmlproxyd sensors as well as the performance of
xmlproxyd.

The output from some operational mode commands is dynamic and the level of their
verbosity depends on factors such as the configuration and hardware. Examples of such
commands include any variation of show interfaces, show route, show arp, show bfd, show bgp,
and show ddos-protection.

To check the verbosity level of a command, issue the command-name| display xml |
count command. If the line count exceeds a value of 4000 lines, then the command is
not recommended for XML proxy streaming. This value is more of an approximation
based on internal base-lining. It can be less depending upon various factors such as
device type, processing power of the device, and the existing CPU load. Consequently,
this feature needs to be used judiciously based on how the device is performing.

You can issue the command command-name| display xml before using a YANG file that
maps to a Junos OS or Junos OS Evolved operational mode command to verify that the
command produces valid XML output and does not contain invalid tags, data, or
formatting.

Using a YANG file that maps to a verbose command results in one or more of following:

650

• The xmlproxyd process CPU utilization remains high. If xmlproxyd has tracing
enabled, the CPU utilization is even higher.

• An increase in the xmlproxyd process memory utilization.

• The xmlproxyd process state may show sbwait, indicating that the command output is
verbose and that xmlproxyd is spending significant time reading the command's
remote procedure call’s (RPC’s) output.

• The xmlproxyd sensor data does not complete the wrap.

• The xmlproxyd streams partial or no data for the sensors.

• The xmlproxyd misses reporting-interval cycles. The intervals start to overlap because
of a command’s verbose output, resulting in the xmlproxyd's sensor streaming data
that is slow or delayed.

• The process or application that serves the verbose command's RPC may show high
CPU numbers or delays in performing main tasks. This behavior is caused when the
process or application is busy serving the RPC that has verbose output.

This task requires the following:

• An MX Series, vMX Series, or PTX Series router operating Junos OS Release 18.1R1 or later.

• A telemetry data receiver, such as OpenNTI, to verify proper operation of your telemetry sensor.

In this task, you will stream the contents of the Junos OS command show system users.

show system users (vMX Series)

user@switch> show system users
USER TTY FROM LOGIN@ IDLE WHAT
user1 pts/0 172.31.12.36 12:40PM 39 -cli (cli)
user2 pts/1 172,16.03.25 3:01AM - -cli (cli)

In addition to the expected list of currently logged-in users, the show system users output also provides the
average system load as 1, 5 and 15 minutes. You can find the load averages by using the show system users
| display xml command to view the XML tagging for the output fields. See <load-average-1>, <load-average-5>,
and <load-average-15> in the XML tagging output below.

user@switch> show system users | display xml

<rpc-reply xmlns:junos="http://xml.juniper.net/junos/17.4R1/junos">

651

 <system-users-information xmlns="http://xml.juniper.net/junos/17.4R1/junos">
 <uptime-information>
 <date-time junos:seconds="1520170982">1:43PM</date-time>
 <up-time junos:seconds="86460">1 day, 40 mins</up-time>
 <active-user-count junos:format="2 users">2</active-user-count>
 <load-average-1>0.70</load-average-1>
 <load-average-5>0.58</load-average-5>
 <load-average-15>0.55</load-average-15>
 <user-table>
 <user-entry>
 <user>root</user>
 <tty>pts/0</tty>
 <from>172.21.0.1</from>
 <login-time junos:seconds="1520167202">12:40PM</login-time>
 <idle-time junos:seconds="0">-</idle-time>
 <command>cli</command>
 </user-entry>
 <user-entry>
 <user>mwiget</user>
 <tty>pts/1</tty>
 <from>66.129.241.10</from>
 <login-time junos:seconds="1520170862">1:41PM</login-time>
 <idle-time junos:seconds="60">1</idle-time>
 <command>cli</command>
 </user-entry>
 </user-table>
 </uptime-information>
 </system-users-information>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

TIP: The uptime-information tag shown in the preceding output is a container that contains
leafs, such as date-time, up-time, active-user-count. and load-average-1. Below is a sample
YANG file for this container:

container uptime-information {
 dr:source "uptime-information"; // Exact name of the XML tag
 leaf date-time { // YANG model leaf

652

 type string; // Type of value
 dr:source date-time; // Exact name of the XML tag
 }
 leaf up-time { // YANG model leaf
 type string; // Type of value
 dr:source up-time; // Exact name of the XML tag
 }
 leaf active-user-count { // YANG model leaf
 type int32; // Type of value
 dr:source active-user-count; // Exact name of the XML tag
 }
 leaf load-average-1 { // YANG model leaf
 type string; // Type of value
 dr:source load-average-1; // Exact name of the XML tag
 }
 ...

TIP: The uptime-information tag also has another container named user-table that contains a
list of user entries.

Below is a sample YANG file for this container:

container user-table { // "user-table" container which contains list of user-entry
 dr:source "user-table"; // Exact name of the XML tag
 list user-entry { // "user-entry" list which contains the users' details in form of leafs
 key "user"; // Key for the list "user-entry" which is a leaf in the list "user-entry"
 dr:source "user-entry"; // Source of the list "user-entry" which is the exact name of
the XML tag
 leaf user { // YANG model leaf
 dr:source user; // A leaf in the list "user-entry", exact name of the XML tag
 type string; // Type of value
 }
 leaf tty { // YANG model leaf
 dr:source tty; // A leaf in the list "user-entry", exact name of the XML tag
 type string; // Type of value
 }
 leaf from { // YANG model leaf
 dr:source from; // A leaf in the list "user-entry", exact name of the XML tag
 type string; // Type of value
 }
 leaf login-time { // YANG model leaf

653

 dr:source login-time; // A leaf in the list "user-entry", exact name of the XML tag
 type string; // Type of value
 }
 leaf idle-time { // YANG model leaf
 dr:source idle-time; // A leaf in the list "user-entry", exact name of the XML tag
 type string; // Type of value
 }
 leaf command { // YANG model leaf
 dr:source command; // A leaf in the list "user-entry", exact name of the XML tag
 type string; // Type of value
 }
 }
 }

Create a User-Defined YANG File

The YANG file defines the Junos CLI command to be executed, the resource path the sensors are placed
under, and the key value pairs taken from the matching XML tags.

Custom YANG files for Junos OS conform to the YANG language syntax defined in RFC 6020 YANG 1.0
YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF) and RFC 7950
The YANG 1.1 Data Modeling Language. Certain directives need to be present in the file that configure
XML proxy.

To use the xmlproxyd process to translate telemetry data, create a render.yang file. In this file, the dr:command-
app is set to xmlproxyd.

The XML proxy YANG filename and module name must start with xmlproxyd_:

• For the XML proxy YANG filename, add the extension .yang, for example, xmlproxyd_sysusers.yang

• For the module name, use the filename without the extension .yang, for example, xmlproxyd_sysusers

To simplify creating a YANG file, it’s easiest to start by modifying a working example.

1. Provide a name for the module. The module name must start with xmlproxyd_ and be the same name as
the XML proxy YANG file name.

For example, for an XML proxy YANG file called sysusers.yang, drop the .yang extension and name the
module xmlproxyd_sysusers:

module xmlproxyd_sysusers {

2. For the Junos telemetry interface include the process name xmlproxyd:

dr:command-app "xmlproxyd";

654

3. Include the following RPC for the NETCONF get request:

rpc juniper-netconf-get {

4. Specify the location of the output of the RPC, where company-name is the name you give to the
location:

dr:command-top-of-output "/company-name";

5. Include the following command to execute the RPC:

dr:command-full-name "drend juniper-netconf-get";

6. Specify the CLI command from which to retrieve data. The Junos OS CLI command that gets
executed at the requested sample frequency is defined under dr:cli-command and executed by the
xmlproxyd process.

To retrieve command output for the Junos OS command show system users:

dr:cli-command "show system users";

7. Escalate privileges, logon as “root”, connect to the internal management socket via Telnet, and specify
help for an RPC:

dr: command-help “default <get> rpc”;

When this is included in the YANG file, output that is helpful for debugging is displayed in the help
drend output on the internal management socket:

telnet /var/run/xmlproxyd_mgmt
Trying /var/run/xmlproxyd_mgmt...
Connected to /var/run/xmlproxyd_mgmt.
Escape character is '^]'.
220 XMLPROXYD release 18.2I20180412_0904_bijchand built by bijchand on 2018-04-12 14:48:48 UTC
help drend

200-juniper-netconf-get-0 system users <get> RPC

8. Specify the hierarchy and use the dr:source command to map to a container, a list, or a specific leaf.
The absolute path under which the sensors will be reported is built from the output group junos plus
system-users-information, concatenated by /’. The path /junos/system-users-information/ is the path to
query for information about this custom sensor.

WARNING: You should not create a custom YANG model that conflicts or overlaps with
predefined native paths (Juniper defined paths) and OpenConfig paths (resources).
Doing so can result in undefined behavior.

For example, do not create a model that defines new leafs at or augments nodes for
resource paths such as /junos/system/linecard/firewallor /interfaces.

655

A one-to-one mapping between container, leafs and the XML tag or value from the CLI command
output is defined in the grouping referenced by uses within the output container. A grouping can be
referred to multiple times in different container outputs. The container system-users-information below
uses the grouping system-users-information. However, it is defined without the aforementioned one-
to-one mapping for every container, list and leaf to an output XML tag from the CLI command XML
output.

output {
 container junos {
 container system-users-information {
 dr:source "/system-users-information“;
 uses system-users-information-grouping;
 }
 }
}

9. The following YANG file shows how to include these commands to enable the xmlproxyd process to
retrieve the full operational state and map it to the leafs in Juniper’s own data model:

*/

/*
 * Example yang for generating OpenConfig equivalent of show system users
 */

module xmlproxyd_sysusers {
 yang-version 1;

 namespace "http://juniper.net/yang/software";

 import drend {
 prefix dr;
 }

 grouping system-users-information-grouping {
 container uptime-information {
 dr:source "uptime-information";
 leaf date-time {
 type string;
 dr:source date-time;

656

 }
 leaf up-time {
 type string;
 dr:source up-time;
 }
 leaf active-user-count {
 type int32;
 dr:source active-user-count;
 }
 leaf load-average-1 {
 type string;
 dr:source load-average-1;
 }
 leaf load-average-5 {
 type string;
 dr:source load-average-5;
 }
 leaf load-average-15 {
 type string;
 dr:source load-average-15;
 }
 container user-table {
 dr:source "user-table";
 list user-entry {
 key "user";
 dr:source "user-entry";
 leaf user {
 dr:source user;
 type string;
 }
 leaf tty {
 dr:source tty;
 type string;
 }
 leaf from {
 dr:source from;
 type string;
 }
 leaf login-time {
 dr:source login-time;
 type string;
 }
 leaf idle-time {

657

 dr:source idle-time;
 type string;
 }
 leaf command {
 dr:source command;
 type string;
 }
 }
 }
 }
 }

 dr:command-app "xmlproxyd";
 rpc juniper-netconf-get {
 dr:command-top-of-output "/company-name";
 dr:command-full-name "drend juniper-netconf-get";
 dr:cli-command "show system users";
 dr:command-help "default <get> rpc”;
output {
 container company-name {
 container system-users-information {
 dr:source "/system-users-information";
 uses system-users-information-grouping;
 }
 }
 }
 }
}

Load the Yang File in Junos

After the YANG file is complete, upload the YANG file and verify that the module is created.

1. Upload the YANG file to the router.

2. Register the YANG file using the request system yang add package command.

user@switch> request system yang add package sysusers proxy-xml module xmlproxyd_sysusers.yang
XML proxy YANG module validation for xmlproxyd_sysusers.yang : START
XML proxy YANG module validation for xmlproxyd_sysusers.yang : SUCCESS
JSON generation for xmlproxyd_sysusers.yang : START

658

JSON generation for xmlproxyd_sysusers.yang: SUCCESS

NOTE: Starting in Junos OS Release 18.3R1, adding, deleting, or updating YANG
packages in configuration mode with the run command is not supported.

3. Verify that the module (sensor) is registered using the show system yang package sysusers command,
where sysusers is the name of the package:

user@switch> show system yang package sysusers
Package ID :sysusers
XML Proxy YANG Module(s) :xmlproxyd_sysusers.yang

4. Enable gRPC in the Junos OS configuration:

user@switch> set system services extension-service request-response grpc port 32767

Collect Sensor Data

IN THIS SECTION

Platform-Specific Collecting Sensor Data Behavior | 659

Use your favorite collector to pull the newly created telemetry sensor data from the device.

Consider resource constraints before initiating sensors:

• Avoid specifying the same reporting interval for multiple XML proxy sensors.

• Because xmlproxyd performs XML and text processing, a device should only contain XML proxy
sensors that execute within the CPU utilization range.

Platform-Specific Collecting Sensor Data Behavior

Use Feature Explorer to confirm platform and release support for specific features.

Use the following table to review platform-specific behaviors for your platforms:

659

https://apps.juniper.net/feature-explorer/

Table 34: Collecting Sensor Data Behavior

Platform Difference

PTX10008 For PTX10008 routers operating Junos OS Evolved, do
not connect more than 10 collectors per router for
telemetry RPCs.

The following instructions use the collector jtimon. For information about jtimon setup, see Junos
Telemetry Interface client.

NOTE: If a subscription already exists for a sensor and a duplicate subscription is
configured, the connection between the collector and the device will close with the error
message AlreadyExists.

1. Create a simple configuration file, here named vmx1.json. Adjust the host IP address and the port, as
needed. The path /junos/system-users-information is specified. The freq field is defined in MicroSoft,
streaming a new set of key value pairs every 5 seconds. Optionally, you can add multiple paths.

$ cat vmx1.json
{
 "host": "172.16.122.182
 "port": 32767
 "cid": "my-client-id",
 "grpc" : {
 "ws" : 524289
 },
 "paths": {
 {
 "path": "/junos/system-users-information/",
 "freq": 5000
 },
 {
 "path": "/junos/additional-path/", <-OPTIONAL
 "freq": 5000
 }
 }
}

660

https://github.com/nileshsimaria/jtimon
https://github.com/nileshsimaria/jtimon

2. Launch the collector, using either your own compiled file or an automatically built image from Docker
Hub. The sample query output below shows the sensor report by path. Every key is sent in human-
readable form as an absolute path. In case of lists, the absolute path contains an index in the form of
XPATH which is ideal to group values from a (time series) database, such as InfluxDB. For example,
the output below shows the path /junos/system-users-information/uptime-information/user-table/user-
entry[user='ab']/.

You can terminate the stream of sensor data using Ctrl-C.

$ docker run -tu --rm -v $(PWD):/u mw/jtimon --config vmx1.json --print
gRPC headers from Junos:
 init-response: [response { subscription_id 1} path_list {path: "junos/system-users-
information/" sample-frequency: 5000 }]
 content-type: [application/grpc]
 grpc-accept-encoding: [identity,deflate,gzip]
2018/03/04 17:13:19 system-id vmxdockerlight_vmx1_1
2018/03/04 17:13:19 component_id 65535
2018/03/04 17:13:19 sub_component_id: 0
2018/03/04 17:13:19 path: sensor_1000:/junos/system-users-information/:/junos/system-users-
information/
2018/03/04 17:13:19 sequence_number: 16689
2018/03/04 17:13:19 timestamp: 1520183589391
2018/03/04 17:13:19 sync_response: %!d(bool=false)
2018/03/04 17:13:19 key: __timestamp__
2018/03/04 17:13:19 uint_value: 1520183589391
2018/03/04 17:13:19 key: __junos_re_stream_creation_timestamp--
2018/03/04 17:13:19 uint value: 1520183589372
2018/03/04 17:13:19 key: __junos_re_payload-get_timestamp__
2018/03/04 17:13:19 uint_value: 1520183589390
2018/03/04 17:13:19 key: /junos/system-users-information/uptime-information/date-time
2018/03/04 17:13:19 str-value: 5:13PM
2018/03/04 17:13:19 key: /junos/system-users-inforamtion/uptime-information/up-time
2018/03/04 17:13:19 str-value: 1 day, 4:10
2018/03/04 17:13:19 key: /junos/system-users-information/uptime-information/active-user-count
2018/03/04 17:13:19 int_value: 2
2018/03/04 17:13:19 key: /junos/system-users-inforamtion/uptime-information/load-average-1
2018/03/04 17:13:19 str_value: 0.62
2018/03/04 17:13:19 key: /junos/system-users-information/uptime-information/load-average-5
2018/03/04 17:13:19 str_value: 0.56
2018/03/04 17:13:19 key: /junos/system-users-inforamtion/uptime-information/load-average-15
2018/03/04 17:13:19 str_value: 0.53
2018/03/04 17:13:19 key: __prefix__
2018/03/04 17:13:19 str_value: /junos/system-users-information/uptime-information/user-table/

661

user-entry[user='ab']/
2018/03/04 17:13:19 key: tty
2018/03/04 17:13:19 str_value: pts/1
2018/03/04 17:13:19 key: from
2018/03/04 17:13:19 str-value: 172,16.04.25
2018/03/04 17:13:19 key: login-time
2018/03/04 17:13:19 str_value: 5:12PM
2018/03/04 17:13:19 key: idle-time
2018/03/04 17:13:19 str-value: -
2018/03/04 17:13:19 key: command
2018/03/04 17:13:19 str_value: -cl
2018/03/04 17:13:19 system_id: vmxdockerlight_vmx1_1
2018/03/04 17:13:19 component_id: 65535
2018/03/04 17:13:19 sub_component_id: 0
2018/03/04 17:13:19 <output truncated>

The sample query shown below shows two sensor reports per path, then I terminated it with Ctrl-C.
Every key is sent in human readable form as an absolute path and in case of lists, contains an index in
form of XPATH, ideal to group values from a (time series) database like InfluxDB e.g. /junos/system-
users-information/uptime-information/user-table/user-entry[user='ab']/

3. Verify that the module (sensor) is loaded using the show system yang package sysusers command, where
sysusers is the name of the package:

user@switch> show system yang package sysusers
Package ID :sysusers
XML Proxy YANG Module(s) :xmlproxyd_sysusers.yang

4. Enable gRPC in the Junos OS configuration:

user@switch> set system services extension-service request-response grpc port 32767

Installing a User-Defined YANG File

To add, validate, modify, or delete a user-defined YANG file for XML proxy for the Junos telemetry
interface, use the request system yang set of commands from the operational mode:

662

1. Specify the name of the XML proxy YANG file and the file path to install it. This command creates
a .json file in the /opt/lib/render directory.

user@switch> request system yang add package package-name proxy-xml module file-path-name

NOTE: This command can be performed only on the current routing engine.

To add multiple YANG modules with the request system yang add package package-name proxy-
xml module command, enclose the file-path-name in brackets: [file-path-name 1 file-path-
name 2]

2. (Optional) Validate an module before adding it to the router using the request system yang validate
proxy-xml module module-name command. .

user@switch> request system yang validate proxy-xml module module-name

The output XML proxy YANG module validation for xmlproxyd_<module-name> : SUCCESS indicates successful
module validation.

Mismatch error sometimes occur. If the command returns the error below, you can eliminate the
error by using Junos OS Release 18.1R1 or later:

user@switch> request system yang validate proxy-xml module xmlproxyd_sysusers.yang
error: illegal identifier <identifier> , must not start with [xX][mM][lL]

3. (Optional) Update an existing XML proxy YANG file that was previously added.

user@switch> request system yang update package-name proxy-xml module file-path-name

4. Delete an existing XML proxy YANG file.

user@switch> request system yang delete package-name

5. Verify that the YANG file has been installed by entering the show system yang package command.

user@switch> show system yang package package-name

663

Troubleshoot Telemetry Sensors

IN THIS SECTION

Problem | 664

Problem

Description

Use the following methods to troubleshoot user-define telemetry sensors:

• Execute a tcpdump for the interface your gRPC requests came from (for this task, interface fxp0 was
used).

user@switch>monitor traffic interface fxp0 no-resolve matching "tcp port 32767"

• Enable traceoptions using the set services analytics traceoptions flag xmlproxy command. Check the
xmlproxyd log file for confirmation of whether the CLI command’s RPC was sent and if a response was
received:

1. Issue the show log xmlproxyd command to show the xmlproxyd log. The value for the field
xmlproxy_execute_cli_command: indicates if the RPC was sent or not. The value for the field
xmlproxy_build_context indicates the command.

user@switch>show log xmlproxyd
Mar 4 18:52:46 vmxdockerlight_vmx1_1 clear-log[52495]: logfile cleared
Mar 4 18:52:51 xmlproxy_telemetry_start_streaming: sensor /junos/system-users-information/
Mar 4 18:52:51 xmlproxy_build_context: command show system users merge-tag:
Mar 4 18:52:51 <command format="xml">show system users</command>
Mar 4 18:52:51 xmlproxy_execute_cli_command: Sent RPC..
Mar 4 18:52:51 <system-users-information xmlns="http://xml.juniper.net/junos/17.4R1/junos"
xmlns:junos="http://xml.juniper.net/junos/*/junos">
<uptime-information>
<date-time junos:seconds="1520189571">
6:52PM
</date-time>
<up-time junos:seconds="107400">

664

1 day, 5:50
</up-time>
<active-user-count junos:format="1 users">
1
</active-user-count>
<load-average-1>
0.94
</load-average-1>
<load-average-5>
0.73
</load-average-5>
<load-average-15>
0.65

RELATED DOCUMENTATION

Understanding YANG on Devices Running Junos OS | 470

Guidelines for gRPC and gNMI Sensors (Junos Telemetry Interface)

Send Requests to the NETCONF Server | 124

665

https://www.juniper.net/documentation/en_US/junos/topics/reference/general/junos-telemetry-interface-grpc-sensors.html

7
PART

OpenDaylight Integration

Configure OpenDaylight Integration | 667

CHAPTER 19

Configure OpenDaylight Integration

IN THIS CHAPTER

Configure Interoperability Between MX Series Routers and OpenDaylight | 667

Configure Interoperability Between MX Series Routers and OpenDaylight

IN THIS SECTION

Configuring NETCONF on the MX Series Router | 667

Configuring NETCONF Trace Options | 668

Connecting ODL to MX Series Router | 669

OpenDaylight (ODL), hosted by the Linux Foundation, is an open-source platform for network
programmability aimed at enhancing software-defined networking (SDN).

You can configure interoperability between MX Series routers and the ODL controller. ODL provides a
southbound Network Configuration Protocol (NETCONF) connector API, which uses NETCONF and
YANG models, to interact with a network device. A southbound interface, an OpenFlow (or alternative)
protocol specification, enables communication between ODL and routers or switches. After you
configure interoperability between the ODL controller and the router, you can use the ODL platform to
change the router configuration, orchestrate and provision the router, and execute remote procedure
calls (RPCs) on the router to get state information.

Setting up interoperability between ODL and an MX Series router involves the following tasks:

Configuring NETCONF on the MX Series Router

As a prerequisite for configuring interoperability between ODL and an MX Series router, you must
configure NETCONF on the router. NETCONF is used by the ODL controller to interact with
southbound devices.

667

To configure NETCONF on the router:

1. Enable access to the NETCONF SSH subsystem.

[edit]
user@host# set system services netconf ssh

2. Configure the NETCONF server to enforce certain behaviors that are compliant with RFC 4741,
NETCONF Configuration Protocol, during NETCONF sessions.

[edit]
user@host# set system services netconf rfc-compliant

3. Configure the yang-compliant statement to require that the NETCONF server return YANG-compatible
configuration data for the <get-config> and <get-configuration format="xml"> RPCs.

[edit]
user@host# set system services netconf yang-compliant

4. Commit the changes.

[edit]
user@host# commit

Configuring NETCONF Trace Options

After you configure NETCONF on the router, you must configure NETCONF trace options. For more
information about NETCONF and Junos XML protocol tracing operations, see "NETCONF and Junos
XML Protocol Tracing Operations Overview" on page 175.

To configure NETCONF trace options:

Configure the details of the file to receive the output of the tracing operation. You can configure the file
name, maximum file size, and flags to indicate tracing operations, by using the following statements:

[edit]
user@host# set system services netconf traceoptions file file name
user@host# set system services netconf traceoptions file size size
user@host# set system services netconf traceoptions flag flag
user@host# commit

668

To know more about configuring tracing operations for NETCONF and Junos XML protocol sessions, see
this example.

Connecting ODL to MX Series Router

After NETCONF is configured on the MX Series router, you need to connect the ODL controller to the
router to complete the process. For more details on this, see this ODL documentation.

RELATED DOCUMENTATION

NETCONF and Junos XML Protocol Tracing Operations Overview | 175

NETCONF Session Overview | 35

669

https://www.juniper.net/documentation/en_US/junos/topics/example/netconf-traceoptions-configuring.html
http://docs.opendaylight.org/en/stable-boron/user-guide/netconf-user-guide.html#netconf-connector-configuration-with-md-sal

8
PART

Configuration Statements and
Operational Commands

Junos CLI Reference Overview | 671

Junos CLI Reference Overview

We've consolidated all Junos CLI commands and configuration statements in one place. Read this guide
to learn about the syntax and options that make up the statements and commands. Also understand the
contexts in which you’ll use these CLI elements in your network configurations and operations.

• Junos CLI Reference

Click the links to access Junos OS and Junos OS Evolved configuration statement and command
summary topics.

• Configuration Statements

• Operational Commands

671

https://www.juniper.net/documentation/us/en/software/junos/cli-reference/index.html
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/topic-map/configuration-statements.html
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/topic-map/operational-commands.html

	Table of Contents
	About This Guide
	Overview
	NETCONF XML Management Protocol Overview
	Understanding the NETCONF XML Management Protocol
	Benefits of NETCONF
	NETCONF XML Management Protocol Overview
	NETCONF and the Junos XML API Overview
	Advantages of Using NETCONF and the Junos XML API

	NETCONF and Junos XML Tags Overview
	XML and Junos OS Overview
	XML Overview
	XML and NETCONF XML Management Protocol Conventions Overview
	Map Junos OS Commands and Command Output to Junos XML Tag Elements
	Mapping Command Output to Junos XML Elements
	Mapping Commands to Junos XML Request Tag Elements
	Mapping for Command Options with Variable Values
	Mapping for Fixed-Form Command Options

	Map Configuration Statements to Junos XML Tag Elements
	Using NETCONF Configuration Response Tag Elements in NETCONF Requests and Configuration Changes

	Manage NETCONF Sessions
	NETCONF Session Overview
	NETCONF Session Overview
	Understanding the Client Application’s Role in a NETCONF Session
	Generate Well-Formed XML Documents
	Understanding the Request Procedure in a NETCONF Session

	Manage NETCONF Sessions
	Establish an SSH Connection for a NETCONF Session
	Understanding NETCONF Sessions over SSH
	Common Prerequisites for NETCONF Sessions over SSH or Outbound SSH
	Install SSH Software on the Configuration Management Server
	Enable NETCONF Service over SSH

	Prerequisites for Establishing an SSH Connection for NETCONF Sessions
	Configure a User Account for the Client Application on Junos Devices
	Configure a Public/Private Keypair or Password for the Junos OS User Account
	Access the Keys or Password with the Client Application

	Prerequisites for Establishing an Outbound SSH Connection for NETCONF Sessions
	Configure the Junos Device for Outbound SSH
	Receive and Manage the Outbound SSH Initiation Sequence on the Client

	NETCONF Sessions over Transport Layer Security (TLS)
	Understanding NETCONF-over-TLS Connections
	How to Establish a NETCONF Session over TLS
	Install TLS Client Software on the Network Management System
	Obtain X.509 Certificates for the Server and Client
	Install the Server’s Local Certificate in the Junos PKI
	Install the CA Certificates in the Junos PKI
	Enable the NETCONF Service over TLS
	Configure the TLS Client-to-NETCONF Username Mapping
	Configure the Default NETCONF Username Mapping
	Configure the User Account for the NETCONF User
	Start the NETCONF-over-TLS Session

	NETCONF and Shell Sessions over Enhanced Outbound HTTPS
	Understanding NETCONF and Shell Sessions over Enhanced Outbound HTTPS
	How to Establish NETCONF and Shell Sessions over Enhanced Outbound HTTPS
	Obtain an X.509 Certificate for the gRPC Server
	Set Up the gRPC Server
	Configure the User Account for the NETCONF or Shell User
	Configure the Outbound HTTPS Clients
	Configure the Outbound HTTPS Extension Service on Junos Devices
	Start the NETCONF or Shell Session

	NETCONF Sessions over Outbound HTTPS
	Understanding NETCONF Sessions over Outbound HTTPS
	How to Establish a NETCONF Session over Outbound HTTPS
	Obtain an X.509 Certificate for the gRPC Server
	Set Up the gRPC Server
	Configure the User Account for the NETCONF User
	Configure the Outbound HTTPS Client
	Configure the Outbound HTTPS Extension Service on Junos Devices
	Start the NETCONF Session

	NETCONF Call Home Sessions
	Understanding NETCONF Call Home
	How to Set Up NETCONF Call Home
	Configure the Junos User Account
	Configure SSH Authentication
	Enable the NETCONF Service
	Configure the Junos Device to Connect to the NETCONF Call Home Client

	NETCONF Sessions
	Connect to the NETCONF Server Using SSH
	Start a NETCONF Session
	Send Requests to the NETCONF Server
	Parse the NETCONF Server Response
	Parse Response Tag Elements Using a Standard API in NETCONF and Junos XML Protocol Sessions
	Handle an Error or Warning in a NETCONF Session
	Lock and Unlock the Candidate Configuration
	Terminate a NETCONF Session
	End a NETCONF Session and Close the Connection

	Sample NETCONF Session
	Exchanging Initialization Tag Elements
	Sending an Operational Request
	Locking the Configuration
	Changing the Configuration
	Committing the Configuration
	Unlocking the Configuration
	Closing the NETCONF Session

	How Character Encoding Works on Juniper Networks Devices
	Configure RFC-Compliant NETCONF Sessions
	NETCONF Monitoring
	NETCONF State Information Overview
	Retrieve NETCONF Capabilities
	Retrieve Configuration Datastores
	Retrieve Schemas
	Retrieve NETCONF Session Information
	Retrieve NETCONF Server Statistics

	NETCONF Event Notifications
	NETCONF Event Notifications Overview
	NETCONF Event Notification Format
	Interleave Capability
	Filtering Capability
	How to Enable and Subscribe to NETCONF Event Notifications
	Enable the NETCONF Event Notification Service
	Subscribe to Receive Event Notifications
	Terminate the Subscription

	NETCONF Tracing Operations
	NETCONF and Junos XML Protocol Tracing Operations Overview
	Example: Trace NETCONF and Junos XML Protocol Session Operations
	Requirements
	Overview
	Configuration
	Verification

	NETCONF Protocol Operations and Attributes
	<close-session/>
	<commit>
	<copy-config>
	<delete-config>
	<discard-changes/>
	<edit-config>
	<get>
	<get-config>
	<kill-session>
	<lock>
	operation
	<unlock>
	<validate>

	NETCONF Request and Response Tags
	End-of-document Character Sequence
	<data>
	<error-info>
	<hello>
	<ok/>
	<rpc>
	<rpc-error>
	<rpc-reply>
	<target>

	Junos XML Protocol Elements Supported in NETCONF Sessions
	<abort/>
	<abort-acknowledgement/>
	<checksum-information>
	<close-configuration/>
	<commit-configuration>
	<commit-results>
	<commit-revision-information>
	<database-status>
	<database-status-information>
	<end-session/>
	<get-checksum-information>
	<get-configuration>
	<load-configuration>
	<load-configuration-results>
	<lock-configuration/>
	<open-configuration>
	<reason>
	<request-end-session/>
	<routing-engine>
	<unlock-configuration/>
	<xnm:error>
	<xnm:warning>

	Junos XML Protocol Element Attributes Supported in NETCONF Sessions
	junos:changed-localtime
	junos:changed-seconds
	junos:commit-localtime
	junos:commit-seconds
	junos:commit-user
	replace-pattern
	xmlns

	Manage Configurations Using NETCONF
	Change the Configuration Using NETCONF
	Edit the Configuration Using NETCONF
	Upload and Format Configuration Data in a NETCONF Session
	Referencing Configuration Data Files
	Streaming Configuration Data
	Formatting Data: Junos XML versus CLI Configuration Statements

	Set the Edit Configuration Mode in a NETCONF Session
	Specifying the merge Data Mode
	Specifying the replace Data Mode
	Specifying the none (no-change) Data Mode

	Handle Errors While Editing the Candidate Configuration in a NETCONF Session
	Replace the Candidate Configuration Using NETCONF
	Using <copy-config> to Replace the Configuration
	Using <edit-config> to Replace the Configuration
	Rolling Back to a Previously Committed Configuration
	Replacing the Candidate Configuration with the Rescue Configuration

	Roll Back Uncommitted Changes in the Candidate Configuration Using NETCONF
	Delete the Configuration Using NETCONF
	Change Individual Configuration Elements Using NETCONF
	Merge Configuration Elements Using NETCONF
	Create Configuration Elements Using NETCONF
	Delete Configuration Elements Using NETCONF
	Deleting a Hierarchy Level or Container Object
	Deleting a Configuration Object That Has an Identifier
	Deleting a Single-Value or Fixed-Form Option from a Configuration Object
	Deleting Values from a Multi-value Option of a Configuration Object

	Replace Configuration Elements Using NETCONF
	Replace Patterns in Configuration Data Using the NETCONF or Junos XML Protocol
	Replace Patterns Globally Within the Configuration
	Replace Patterns Within a Hierarchy Level or Container Object That Has No Identifier
	Replace Patterns for a Configuration Object That Has an Identifier

	Commit the Configuration Using NETCONF
	Verify the Candidate Configuration Syntax Using NETCONF
	Commit the Candidate Configuration Using NETCONF
	Commit the Candidate Configuration Only After Confirmation Using NETCONF

	Ephemeral Configuration Database
	Understanding the Ephemeral Configuration Database
	Unsupported Configuration Statements in the Ephemeral Configuration Database
	Enable and Configure Instances of the Ephemeral Configuration Database
	Enable Ephemeral Database Instances
	Configure Ephemeral Database Options
	Enable MSTP, RSTP, and VSTP Configuration
	Open Ephemeral Database Instances
	Configure Ephemeral Database Instances
	Display Ephemeral Configuration Data in the CLI
	Deactivate Ephemeral Database Instances
	Delete Ephemeral Database Instances

	Commit and Synchronize Ephemeral Configuration Data Using the NETCONF or Junos XML Protocol
	Commit an Ephemeral Instance Overview
	How to Commit an Ephemeral Instance
	Overview of Synchronizing an Ephemeral Instance
	How to Configure GRES-Enabled Devices to Synchronize Ephemeral Configuration Data
	How to Synchronize an Ephemeral Instance on a Per-Commit Basis
	How to Synchronize an Ephemeral Instance on a Per-Session Basis
	How to Automatically Synchronize an Ephemeral Instance upon Commit
	How to Configure Failover Configuration Synchronization for the Ephemeral Database

	Managing Ephemeral Configuration Database Space
	Understanding Cyclic Versioning
	Understanding Ephemeral Database Resizing
	Configure Cyclic Versioning
	Resize an Ephemeral Database Instance

	Example: Configure the Ephemeral Configuration Database Using NETCONF
	Requirements
	Overview
	Configuration
	Verification
	Troubleshooting

	Request Operational and Configuration Information Using NETCONF
	Request Operational Information Using NETCONF
	Request Operational Information Using NETCONF
	Specify the Output Format for Operational Information Requests in a NETCONF Session

	Request Configuration Information Using NETCONF
	Request the Committed Configuration and Device State Using NETCONF
	Request Configuration Data Using NETCONF
	Specify the Source for Configuration Information Requests Using NETCONF
	Specify the Scope of Configuration Information to Return in a NETCONF Response
	Request the Complete Configuration Using NETCONF
	Request a Configuration Hierarchy Level or Container Object Without an Identifier Using NETCONF
	Request All Configuration Objects of a Specified Type Using NETCONF
	Request Identifiers for Configuration Objects of a Specified Type Using NETCONF
	Request A Specific Configuration Object Using NETCONF
	Request Specific Child Tags for a Configuration Object Using NETCONF
	Request Multiple Configuration Elements Simultaneously Using NETCONF
	Retrieve a Previous (Rollback) Configuration Using NETCONF
	Compare Two Previous (Rollback) Configurations Using NETCONF
	Retrieve the Rescue Configuration Using NETCONF
	Request an XML Schema for the Configuration Hierarchy Using NETCONF
	Request an XML Schema for the Configuration Hierarchy
	Create the junos.xsd File
	Example: Request an XML Schema

	NETCONF Utilities
	NETCONF Perl Client
	Understanding the NETCONF Perl Client and Sample Scripts
	Install the NETCONF Perl Client

	Develop NETCONF Perl Client Applications
	Write NETCONF Perl Client Applications
	Import Perl Modules and Declare Constants in NETCONF Perl Client Applications
	Connect to the NETCONF Server in Perl Client Applications
	Satisfy Protocol Prerequisites
	Group Requests
	Obtain and Record Parameters Required by the NET::Netconf::Manager Object
	Obtaining Application-Specific Parameters
	Establishing the Connection

	Collect Parameters Interactively in NETCONF Perl Client Applications
	Submit a Request to the NETCONF Server in Perl Client Applications
	Mapping Junos OS Commands and NETCONF Operations to Perl Methods
	Providing Method Options
	Submitting a Request

	Example: Request an Inventory of Hardware Components Using a NETCONF Perl Client Application
	Example: Change the Configuration Using a NETCONF Perl Client Application
	Handling Error Conditions
	Locking the Configuration
	Reading In the Configuration Data
	Editing the Configuration Data
	Committing the Configuration

	Parse the NETCONF Server Response in Perl Client Applications
	Close the Connection to the NETCONF Server in Perl Client Applications

	YANG
	YANG Overview
	Understanding YANG on Devices Running Junos OS
	Understanding Junos YANG Modules
	YANG Modules Overview
	Understanding the YANG Modules That Define the Junos OS Configuration
	Understanding the YANG Modules for Junos Operational Commands
	Junos Genstate YANG Data Models
	Genstate YANG Data Models Overview
	Genstate Modules Overview
	How to Construct genstate Resource Paths
	Map Genstate Model Resource Paths to CLI Commands
	How to Obtain the genstate YANG Modules

	Understanding the Junos DDL Extensions YANG Module
	YANG Metadata Annotations for Junos Devices
	junos-configuration-metadata Module Overview
	Using junos-configuration-metadata Annotations in Configuration Data
	Add Comments in the Configuration
	Activate or Deactivate Configuration Statements
	Protect or Unprotect Configuration Statements
	openconfig-metadata Module Overview
	View Metadata Annotations in Configuration Data

	Use Juniper Networks YANG Modules
	Obtain Juniper Networks YANG Data Models
	Download YANG Modules from Juniper Networks
	Generate YANG Modules on Junos Devices
	Generate YANG Modules from a Remote Session
	Importing Juniper Networks YANG Modules
	Platform-Specific YANG Module Behavior

	Create and Use Non-Native YANG Modules
	Understanding the Management of Nonnative YANG Modules on Devices Running Junos OS
	Manage YANG Packages, Modules, and Scripts on Junos Devices
	Create a YANG Package and Add Modules and Scripts
	Update a YANG Package with New or Modified Modules and Scripts
	Delete a YANG Package

	Managing YANG Packages and Configurations During a Software Upgrade or Downgrade
	Backing up and Deleting the Configuration Data
	Restoring the YANG Packages and Configuration Data

	Create Translation Scripts for YANG Configuration Models
	Disable and Enable YANG Translation Scripts on Devices Running Junos OS
	Commit and Display Configuration Data for Nonnative YANG Modules
	Create Custom RPCs in YANG for Devices Running Junos OS
	Create Action Scripts for YANG RPCs on Junos Devices
	Action Script Boilerplate
	Parsing RPC Input Arguments
	Retrieving Operational and Configuration Data
	Emitting the RPC XML Output
	Validating and Loading Action Scripts on a Device
	Troubleshooting Action Scripts

	Use Custom YANG RPCs on Devices Running Junos OS
	Example: Use a Custom YANG RPC to Retrieve Operational Information from Junos Devices
	Requirements
	Overview of the RPC and Action Script
	YANG Module
	Action Script
	Enable the Execution of Python Scripts
	Load the RPC on the Device
	Verify the RPC
	Troubleshoot RPC Execution Errors

	Understanding Junos OS YANG Extensions for Formatting RPC Output
	Customize YANG RPC Output on Devices Running Junos OS
	blank-line
	capitalize
	colon, formal-name, and leading
	comma
	default-text
	explicit
	field and line
	fieldwrap and wordwrap
	float, header, picture, and truncate
	format
	header and header-group
	indent
	no-line-break
	space
	style
	template

	Define Different Levels of Output in Custom YANG RPCs for Junos Devices
	Defining Different Levels of Output in Custom YANG RPCs
	Example: Defining Different Levels of Output
	Requirements
	Overview of the RPC and Action Script
	YANG Module and Action Script
	Configuration
	Verify the RPC

	Display Valid Command Option and Configuration Statement Values in the CLI for Custom YANG Modules
	Understanding Context-Sensitive Help for Custom YANG Modules
	Defining the YANG Module
	Creating the CLI Expansion Script
	Loading the YANG Package
	Example: Displaying Context-Sensitive Help for a Command Option
	Requirements
	Overview
	YANG Module and Action Scripts
	Configuration
	Verifying the Context-Sensitive Help

	Configure a NETCONF Proxy Telemetry Sensor in Junos
	Create a User-Defined YANG File
	Load the Yang File in Junos
	Collect Sensor Data
	Installing a User-Defined YANG File
	Troubleshoot Telemetry Sensors

	OpenDaylight Integration
	Configure OpenDaylight Integration
	Configure Interoperability Between MX Series Routers and OpenDaylight
	Configuring NETCONF on the MX Series Router
	Configuring NETCONF Trace Options
	Connecting ODL to MX Series Router

	Configuration Statements and Operational Commands
	Junos CLI Reference Overview

