Help us improve your experience.

Let us know what you think.

Do you have time for a two-minute survey?


Graceful Restart and MPLS-Related Protocols

This section contains the following topics:


LDP graceful restart enables a router whose LDP control plane is undergoing a restart to continue to forward traffic while recovering its state from neighboring routers. It also enables a router on which helper mode is enabled to assist a neighboring router that is attempting to restart LDP.

During session initialization, a router advertises its ability to perform LDP graceful restart or to take advantage of a neighbor performing LDP graceful restart by sending the graceful restart TLV. This TLV contains two fields relevant to LDP graceful restart: the reconnect time and the recovery time. The values of the reconnect and recovery times indicate the graceful restart capabilities supported by the router.

The default reconnect time is configured in Junos OS as 60 seconds and is user-configurable. The reconnect time is how long the helper router waits for the restarting router to establish a connection. If the connection is not established within the reconnect interval, graceful restart for the LDP session is terminated. The default maximum reconnect time is 120 seconds and is user-configurable. The maximum reconnect time is the maximum value that a helper router accepts from its restarting neighbor.

When a router discovers that a neighboring router is restarting, it waits until the end of the recovery time before attempting to reconnect. The recovery time is the length of time a router waits for LDP to restart gracefully. The recovery time period begins when an initialization message is sent or received. This time period is also typically the length of time that a neighboring router maintains its information about the restarting router, so it can continue to forward traffic.

You can configure LDP graceful restart both in the master instance for the LDP protocol and for a specific routing instance. You can disable graceful restart at the global level for all protocols, at the protocol level for LDP only, and for a specific routing instance only.


RSVP graceful restart enables a router undergoing a restart to inform its adjacent neighbors of its condition. The restarting router requests a grace period from the neighbor or peer, which can then cooperate with the restarting router. The restarting router can still forward MPLS traffic during the restart period; convergence in the network is not disrupted. The restart is not visible to the rest of the network, and the restarting router is not removed from the network topology. RSVP graceful restart can be enabled on both transit routers and ingress routers. It is available for both point-to-point LSPs and point-to-multipoint LSPs.


CCC and TCC graceful restart enables Layer 2 connections between customer edge (CE) routers to restart gracefully. These Layer 2 connections are configured with the remote-interface-switch or lsp-switch statements. Because these CCC and TCC connections have an implicit dependency on RSVP LSPs, graceful restart for CCC and TCC uses the RSVP graceful restart capabilities.

RSVP graceful restart must be enabled on the provider edge (PE) routers and provider (P) routers to enable graceful restart for CCC and TCC. Also, because RSVP is used as the signaling protocol for signaling label information, the neighboring router must use helper mode to assist with the RSVP restart procedures.