JUDLR@! | Engineering

Simplicity

Junos® OS

Junos PyEZ Developer Guide

Published
2026-02-04

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA

408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

Junos® OS Junos PyEZ Developer Guide
Copyright © 2026 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

https://support.juniper.net/support/eula/

Table of Contents

About This Guide | xii

1 Disclaimer

Junos PyEZ Disclaimer | 2

2 Junos PyEZ Overview

Understanding Junos PyEZ | 4

Junos PyEZ Modules Overview | 8

3 Install Junos PyEZ

Install Junos PyEZ | 12

Install Prerequisite Software | 13
Install Junos PyEZ on the Configuration Management Server | 15
Install Junos PyEZ in a Python Virtual Environment | 16

Use the Junos PyEZ Docker Image | 17

Set Up Junos PyEZ Managed Nodes | 19

Enable NETCONF over SSH | 19
Satisfy Requirements for SSHv2 Connections | 20
Configure Telnet Service | 21
4 Connect to and Retrieve Facts From a Device Using Junos PyEZ

Connect to Junos Devices Using Junos PyEZ | 24

Connection Methods Overview | 24

Understanding Junos PyEZ Connection Properties | 26
Connect to a Device Using SSH | 28

Connect to a Device Using Outbound SSH | 32

Connect to a Device Using Telnet | 35

Connect to a Device Using a Serial Console Connection | 38

Authenticate Junos PyEZ Users | 41

Junos PyEZ User Authentication Overview | 41
Authenticate Junos PyEZ Users Using a Password | 42

Authenticate Junos PyEZ Users Using SSH Keys | 44
Generate and Configure SSH Keys | 45
Reference SSH Keys in Junos PyEZ Applications | 45

Use Junos PyEZ to Retrieve Facts from Junos Devices | 50

Understanding Junos PyEZ Device Facts | 50
Example: Retrieve Facts from a Junos Device | 52

Use Junos PyEZ to Access the Shell on Junos Devices | 56

StartShell Overview | 56

Execute Commands from the Shell | 57
How to Specify the Shell Type | 58
How to Specify a Timeout | 59

How to Stagger Command Execution | 59

Execute Nonreturning Shell Commands | 60
Use Junos PyEZ to Manage Device Operations

Use Junos PyEZ to Execute RPCs on Junos Devices | 63

Map Junos OS Commands to Junos PyEZ RPCs | 63
Execute RPCs as a Property of the Device Instance | 64
Specify the Format of the RPC Output | 66

Specify the Scope of Data to Return | 68

Specify the RPC Timeout | 69

Normalize the XML RPC Reply | 69

Suppress RpcError Exceptions Raised for Warnings in Junos PyEZ Applications | 72

Use Junos PyEZ to Halt, Reboot, or Shut Down Junos Devices | 74

Perform a System Halt, Reboot, or Shut Down | 74

How to Halt, Reboot, or Shut Down the System with a Delay or at a Specified Time | 77
How to Specify the Target Routing Engines, Nodes, or Virtual Chassis Members | 78
How to Reboot a VM Host | 80

Use Junos PyEZ to Install Software on Junos Devices | 81

Supported Deployment Scenarios | 81

How to Specify the Software Image Location | 82

Installation Process Overview | 84

How to Specify Installation and Checksum Timeouts | 86

How to Log the Installation Process | 86

How to Perform a VM Host Upgrade | 88

How to Perform a Unified ISSU or NSSU | 89

How to Install Software on an EX Series Virtual Chassis Member | 90

Example: Use Junos PyEZ to Install Software on a Junos Device | 92
Requirements | 92

Overview | 92

Configuration | 93

Execute the Junos PyEZ Application | 98

Verification | 99

Troubleshooting | 100

Use Junos PyEZ to Perform File System Operations | 102

Perform File Operations | 102
Manage File System Storage | 106
Transfer Files Using Junos PyEZ | 110
Specify the XML Parser for a Junos PyEZ Session | 114

Use Junos PyEZ to Manage the Configuration

Use Junos PyEZ to Retrieve a Configuration | 117

Retrieve the Complete Candidate Configuration | 118

Specify the Source Database for the Configuration Data | 118

Specify the Scope of Configuration Data to Return | 120
Specify the Format for Configuration Data to Return | 123
Retrieve Configuration Data for Standard or Custom YANG Data Models | 124

Specify Additional RPC Options | 126

How to Handle Namespaces in Configuration Data | 127

Use Junos PyEZ to Compare the Candidate Configuration and a Previously Committed
Configuration | 128

Use Junos PyEZ to Configure Junos Devices | 132

Use the Junos PyEZ Config Utility to Configure Junos Devices | 140

Configuration Process Overview | 141

Specify the Configuration Mode | 142

Specify the Load Operation | 143

Specify the Format of the Configuration Data to Load | 145
Specify the Location of the Configuration Data | 146

Load Configuration Data from a Local or Remote File | 147
Load Configuration Data from a String | 149

Load Configuration Data Formatted as an XML Object | 151
Load Configuration Data Using Jinja2 Templates | 152

Roll Back the Configuration | 155

Load the Rescue Configuration | 156

Commit the Configuration | 157

Use Junos PyEZ to Commit the Configuration | 158

How to Commit the Candidate Configuration | 158
How to Specify Commit Options | 160

Example: Use Junos PyEZ to Load Configuration Data from a File | 163

Requirements | 164

Overview | 164

Vi

Configuration | 165
Execute the Junos PyEZ Application | 170

Verification | 171

Troubleshooting | 172

Example: Use Junos PyEZ to Roll Back the Configuration | 174

Requirements | 175
Overview | 175
Configuration | 176

Execute the Junos PyEZ Code | 180

Verification | 180

Use Junos PyEZ to Manage the Rescue Configuration on Junos Devices | 182
How to Manage the Rescue Configuration | 182

Save a Rescue Configuration | 183
Retrieve the Rescue Configuration | 183
Load and Commit the Rescue Configuration | 184

Delete the Rescue Configuration | 184

Example: Use Junos PyEZ to Save a Rescue Configuration | 185
Requirements | 185

Overview | 185

Configuration | 186

Execute the Junos PyEZ Code | 189

Verification | 190

Troubleshooting | 190

Create and Use Junos PyEZ Tables and Views

Understanding Junos PyEZ Tables and Views | 194
Predefined Junos PyEZ Operational Tables (Structured Output) | 196

Load Inline or External Tables and Views in Junos PyEZ Applications | 200

Import Junos PyEZ’s Predefined Tables and Views | 201

Load Inline Tables and Views | 202

vii

viii

Import External Tables and Views | 203
Use Tables and Views | 204

Define Junos PyEZ Operational Tables for Parsing Structured Output | 206

Table Name | 208

RPC Command (rpc) | 208

RPC Default Arguments (args) | 209

RPC Optional Argument Key (args_key) | 209
Table Item (item) | 210

Table Item Key (key) | 211

Table View (view) | 215

Define Views for Junos PyEZ Operational Tables that Parse Structured Output | 215

View Name | 217
Fields (fields) | 217
Groups (groups) and Field Groups (fields_) | 220

Use Junos PyEZ Operational Tables and Views that Parse Structured Output | 221

Retrieve Table Items | 222
Access Table Items | 224
How to Iterate Through a Table | 225

Define Junos PyEZ Operational Tables for Parsing Unstructured Output | 226

Summary of Parameters in Op Tables for Parsing Unstructured Output | 227
Table Name | 229

Command | 229

Command Arguments (args) | 230

Target FPC (fpc) | 231

Table Item (item) | 232

Table Item Key (key) | 236

Selected Keys (key_items) | 237
Section Title (title) | 239

Field Delimiter (delimiter) | 240
Eval Expression (eval) | 241

Table View (view) | 243

TextFSM Templates (platform and use_textfsm) | 243

Define Views for Junos PyEZ Operational Tables that Parse Unstructured Output | 244

Summary of Parameters in Views for Parsing Unstructured Output | 245
View Name | 246

columns | 246

Eval Expression (eval) | 250

exists | 251

fields | 252

filters | 257

regex | 259

Use Junos PyEZ Tables with TextFSM Templates | 266
Use Junos PyEZ Operational Tables and Views that Parse Unstructured Output | 278

Define Junos PyEZ Configuration Tables | 280

Table Name | 283
Configuration Scope (get or set) | 283
Key Field (key-field) | 285

Required Keys (required_keys) | 286

Table View (view) | 287

Define Views for Junos PyEZ Configuration Tables | 288

View Name | 290

Fields (fields) | 291

Field Options ('get' Tables) | 293
Field Options ('set' Tables) | 294
Groups (groups) and Field Groups (fields_) | 296

Use Junos PyEZ Configuration Tables to Retrieve Configuration Data | 298

Retrieve Configuration Items | 299
Specify the Configuration Database | 301
Specify Inheritance and Group Options | 301

Access Table Items | 303

Iterate Through a Table | 304

Overview of Using Junos PyEZ Configuration Tables to Define and Configure Structured
Resources | 306

Create the Structured Resource | 306
Use the Resource in a Junos PyEZ Application | 307

Use Junos PyEZ Configuration Tables to Configure Structured Resources on Junos
Devices | 309

General Configuration Process | 310

Configure Statements Consisting of a Fixed-Form Keyword | 314
Configure Multiple Values for the Same Statement | 315

Configure Multiple Instances of the Same Statement | 316
Configure Multiple Instances of the Same Resource | 318

Delete Containers or Leaf Statements | 320

Configure Properties Corresponding to Junos XML Attributes | 322
Use append() to Generate the Junos XML Configuration Data | 325

View Your Configuration Changes | 326

How to Control the RPC Timeout Interval | 328

Save and Load Junos PyEZ Table XML to and from Files | 329

Troubleshoot Junos PyEZ

Troubleshoot jnpr.junos Import Errors | 333

Troubleshoot Junos PyEZ Connection Errors | 334

Troubleshoot Refused Connection Errors | 334
Troubleshoot Junos PyEZ Connection Errors in Onbox Event Scripts | 336
Troubleshoot Junos PyEZ Authentication Errors When Managing Junos Devices | 337

Troubleshoot Junos PyEZ Errors When Configuring Junos Devices | 339

Troubleshoot Timeout Errors | 339
Troubleshoot Configuration Lock Errors | 341

Troubleshoot Configuration Change Errors | 342

Xi

About This Guide

Use this guide to develop Python scripts that remotely automate and manage Junos devices using the
Juniper Networks Junos PyEZ Python library.

RELATED DOCUMENTATION

Junos PyEZ APl documentation

Xii

https://junos-pyez.readthedocs.io/en/latest/

CHAPTER

Disclaimer

IN THIS CHAPTER

Junos PyEZ Disclaimer | 2

Junos PyEZ Disclaimer

Use of the Junos PyEZ software implies acceptance of the terms of this disclaimer, in addition to any
other licenses and terms required by Juniper Networks.

Juniper Networks is willing to make the Junos PyEZ software available to you only on the condition that
you accept all of the terms contained in this disclaimer. Please read the terms and conditions of this
disclaimer carefully.

The Junos PyEZ software is provided as /s. Juniper Networks makes no warranties of any kind
whatsoever with respect to this software. All express or implied conditions, representations and
warranties, including any warranty of non-infringement or warranty of merchantability or fitness for a
particular purpose, are hereby disclaimed and excluded to the extent allowed by applicable law.

In no event will Juniper Networks be liable for any direct or indirect damages, including but not limited
to lost revenue, profit or data, or for direct, special, indirect, consequential, incidental or punitive
damages however caused and regardless of the theory of liability arising out of the use of or inability to
use the software, even if Juniper Networks has been advised of the possibility of such damages.

CHAPTER

Junos PyEZ Overview

IN THIS CHAPTER

Understanding Junos PyEZ | 4
Junos PyEZ Modules Overview | 8

Understanding Junos PyEZ

SUMMARY IN THIS SECTION
Use the Junos PyEZ Python library to develop Junos PyEZ Overview | 4
Python scripts that remotely manage Junos devices. Benefits of Junos PyEZ | 5

Using Junos PyEZ in Automation
Scripts | 6

Junos PyEZ Resources | 6

Junos PyEZ Overview

Junos PyEZ is a microframework for Python that enables you to manage and automate Junos devices.
Junos PyEZ is designed to provide the capabilities that a user would have on the Junos OS CLI in an
environment built for automation tasks. Junos PyEZ does not require extensive knowledge of Junos OS
or the Junos XML APIs.

Junos PyEZ enables you to manage Junos devices using the familiarity of Python. However, you do not
have to be an experienced programmer to use Junos PyEZ. Non-programmers can quickly execute
simple commands in Python interactive mode, and more experienced programmers can opt to create
more complex, robust, and reusable programs to perform tasks.

Junos PyEZ enables you to directly connect to a device using a serial console connection, telnet, or a
NETCONF session over SSH. In addition, Junos PyEZ also supports connecting to the device through a
telnet or SSH connection to a console server that is connected to the device’s CONSOLE port. You can use
Junos PyEZ to initially configure a new or zeroized device that is not yet configured for remote access by
using either a serial console connection when you are directly connected to the device or by using telnet
or SSH through a console server that is directly connected to the device.

Junos PyEZ provides device, software, and file system utilities that enable you to perform common
operational tasks on Junos devices. You can use Junos PyEZ to:

e Retrieve facts or operational information from a device
e Execute remote procedure calls (RPC) available through the Junos XML API

e Install or upgrade the Junos OS software

e Reboot or shut down the device
e Perform common administrative tasks such as copying files and calculating checksums

Junos PyEZ also enables you to manage Junos device configurations. Junos PyEZ configuration
management utilities enable you to:

e Retrieve configuration data

e Compare configurations

¢ Upload and commit configuration changes
¢ Roll back the configuration

e Manage the rescue configuration

Junos PyEZ supports standard formats for configuration data including ASCII text, Junos XML elements,
Junos OS set commands, and JavaScript Object Notation (JSON). You can also use Jinja2 templates and
template files for added flexibility and customization. In addition, you can use Tables and Views to
define structured resources that you can use to programmatically configure a device.

Junos PyEZ Tables and Views enable you to both configure Junos devices and extract specific
operational information or configuration data from the devices. You define Tables and Views using
simple YAML files that contain key-value pair mappings, so no complex coding is required to use them.
You can use Tables and Views to retrieve the device configuration or the output for any Junos command
or RPC and then extract a customized subset of information. This is useful when you need to retrieve
information from a few specific fields that are embedded in extensive command output such as for the
show route or show interfaces command. In addition, you can use Tables and Views to define structured
configuration resources. Junos PyEZ dynamically creates a configuration class for the resource, which
enables you to programmatically configure the resource on a device.

Benefits of Junos PyEZ
e Provides an abstraction layer that enables Python programmers as well as non-programmers to easily
manage and automate Junos devices.

¢ Increases operational efficiency by enabling operators to automate common tasks thereby reducing
the manual configuration and management of devices.

e Minimizes errors and risks by enabling structured configuration changes of targeted resources.

Using Junos PyEZ in Automation Scripts

Junos OS and Junos OS Evolved include the Python extensions package and the Junos PyEZ library in
the software image on supported devices. These extensions enable you to create on-box Python scripts
that use Junos PyEZ to execute RPCs and perform operational and configuration tasks on the device.
Junos PyEZ is supported in commit, event, op, and SNMP scripts; Juniper Extension Toolkit (JET) scripts;
and YANG action and translation scripts.

Table 1 on page 6 summarizes the Junos PyEZ version that is available on supported devices running
the given Junos OS release. For example, starting in Junos OS Release 17.4R1, an on-box Python script
can leverage features in Junos PyEZ Release 2.1.4 and earlier releases.

Table 1: Junos PyEZ Version on Supported Junos Devices

Junos OS Release Junos PyEZ Version
16.1R3 through 17.3 1.31
17.4R1 through 19.3 214
19.4R1 and later 220

For more information about creating onbox Python automation scripts, see Understanding Python
Automation Scripts for Devices Running Junos OS in the Junos OS Automation Scripting User Guide.

Junos PyEZ Resources

Juniper Networks provides a number of Junos PyEZ resources, which are described in Table 2 on page
6.

Table 2: Junos PyEZ Resources

Resource Description URL

API Reference Detailed documentation for the Junos PyEZ https:/junos-
modules. pyez.readthedocs.io/en/latest/

https://www.juniper.net/documentation/us/en/software/junos/automation-scripting/topics/concept/junos-script-automation-python-scripts-overview.html
https://www.juniper.net/documentation/us/en/software/junos/automation-scripting/topics/concept/junos-script-automation-python-scripts-overview.html
https://www.juniper.net/documentation/us/en/software/junos/automation-scripting/index.html
https://junos-pyez.readthedocs.io/en/latest/
https://junos-pyez.readthedocs.io/en/latest/

Table 2: Junos PyEZ Resources (Continued)

Resource

Day One: Junos
PyEZ Cookbook and
script repository

Documentation

GitHub repository

Google Groups
forum

Sample scripts

Stack Overflow
forum

Description

Junos PyEZ network automation cookbook with
a setup guide, a start-up sandbox, and a complete
showcase of automation scripts that are available
on GitHub.

Junos PyEZ documentation containing detailed
information about installing Junos PyEZ and
using Junos PyEZ to perform operational and
configuration tasks on Junos devices.

Public repository for the Junos PyEZ project. This
repository includes the most current source code,
installation instructions, and release note
summaries for all releases.

Forum that addresses questions and provides
general support for Junos PyEZ.

Junos PyEZ sample scripts to get you started.

Forum that addresses questions and provides
general support for Junos PyEZ.

RELATED DOCUMENTATION

Junos PyEZ Modules Overview | 8
Install Junos PyEZ | 12
Connect to Junos Devices Using Junos PyEZ | 24

Use Junos PyEZ to Configure Junos Devices | 132

URL

https:/www.juniper.net/
documentation/en_US/day-one-
books/DO_PyEZ_Cookbook.pdf

https:/github.com/Juniper/
junosautomation/tree/master/pyez/
PyEZ_Cookbook_2017

https:/www.juniper.net/
documentation/product/us/en/

junos-pyez

https:/github.com/Juniper/py-
junos-eznc/

https:/groups.google.com/group/
junos-python-ez

https:/github.com/Juniper/
junosautomation/tree/master/pyez

https://stackoverflow.com/
questions/tagged/pyez

https://www.juniper.net/documentation/en_US/day-one-books/DO_PyEZ_Cookbook.pdf
https://www.juniper.net/documentation/en_US/day-one-books/DO_PyEZ_Cookbook.pdf
https://www.juniper.net/documentation/en_US/day-one-books/DO_PyEZ_Cookbook.pdf
https://github.com/Juniper/junosautomation/tree/master/pyez/PyEZ_Cookbook_2017
https://github.com/Juniper/junosautomation/tree/master/pyez/PyEZ_Cookbook_2017
https://github.com/Juniper/junosautomation/tree/master/pyez/PyEZ_Cookbook_2017
https://www.juniper.net/documentation/product/us/en/junos-pyez
https://www.juniper.net/documentation/product/us/en/junos-pyez
https://www.juniper.net/documentation/product/us/en/junos-pyez
https://github.com/Juniper/py-junos-eznc/
https://github.com/Juniper/py-junos-eznc/
https://groups.google.com/group/junos-python-ez
https://groups.google.com/group/junos-python-ez
https://github.com/Juniper/junosautomation/tree/master/pyez
https://github.com/Juniper/junosautomation/tree/master/pyez
https://stackoverflow.com/questions/tagged/pyez
https://stackoverflow.com/questions/tagged/pyez

Junos PyEZ Modules Overview

SUMMARY

The Junos PyEZ Python library provides modules that you can use to connect to and perform
operations on Junos devices.

Junos PyEZ is a microframework for Python that enables you to manage and automate Junos devices.
Junos PyEZ consists of the jnpr. junos package, which contains modules that handle device connectivity
and provide operational and configuration utilities.

Table 3 on page 8 outlines the primary Junos PyEZ modules that are used to manage Junos devices.
For detailed information about each module, see the Junos PyEZ API Reference at https:/junos-
pyez.readthedocs.io/en/latest/.

Table 3: Junos PYyEZ Modules

jnpr.junos Description
Modules
device Defines the Device class, which represents the Junos device and enables you to connect to

and retrieve facts from the device.

command Includes predefined operational Tables and Views that can be used to filter unstructured
output returned from CLI and vty commands and convert it to JSON.

exception Defines exceptions encountered when accessing, configuring, and managing Junos devices.

factory Contains code pertaining to Tables and Views, including the loadyaml () function, which is
used to load custom Tables and Views.

facts A dictionary-like object of read-only facts about the device. These facts are accessed using
the facts attribute of a Device object instance.

https://junos-pyez.readthedocs.io/en/latest/
https://junos-pyez.readthedocs.io/en/latest/

Table 3: Junos PYEZ Modules (Continued)

jnpr.junos Description
Modules
op Includes predefined operational Tables and Views that can be used to filter structured (XML)

output returned from RPCs.

resources Includes predefined configuration Tables and Views representing specific configuration
resources, which can be used to programmatically configure Junos devices.

transport Contains code used by the Device class to support the different connection types.

utils Includes configuration utilities, file system utilities, shell utilities, software installation
utilities, and secure copy utilities.

In Junos PyEZ, each device is modeled as an instance of the jnpr.junos.device.Device class. The device
module provides access to Junos devices through a serial console connection, telnet, or SSH and also
supports connecting to the device through a telnet or SSH connection to a console server that is
connected to the device's CONSOLE port. All connection methods support retrieving device facts,
performing operations, and executing RPCs on demand. Support for serial console connections and for
telnet and SSH connections through a console server enables you to connect to and initially configure
new or zeroized devices that are not yet configured for remote access. Facts about the device are
accessed using the facts attribute of the Device object instance.

The utils module defines submodules and classes that handle software installation, file system and copy
operations, and configuration management. The exception module defines exceptions encountered when
managing Junos devices.

The command, op, resources, and factory modules pertain to Tables and Views. The command and op modules
contain predefined operational Tables and Views that can be used to extract specific information from
the output of common operational commands and RPCs on Junos devices. The resources module
contains predefined configuration Tables and Views that can be used to configure specific resources on
Junos devices. The factory module contains methods that enable you to load your own custom Tables
and Views in Junos PyEZ applications.

Understanding Junos PyEZ | 4

Understanding Junos PyEZ Tables and Views | 194

Use Junos PyEZ to Retrieve Facts from Junos Devices | 50

10

CHAPTER

Install Junos PyEZ

IN THIS CHAPTER

Install Junos PyEZ | 12
Set Up Junos PyEZ Managed Nodes | 19

Install Junos PyEZ

SUMMARY IN THIS SECTION

You can install Junos PyEZ on a network Install Prerequisite Software | 13
management system, in a Python virtual

Install Junos PyEZ on the Configuration
environment, or as a Docker container.

Management Server | 15

Install Junos PyEZ in a Python Virtual
Environment | 16

Use the Junos PyEZ Docker Image | 17

Junos PyEZ is a Python library that enables you to manage and automate Junos devices. You can install
Junos PyEZ on a UNIX-like operating system or on Windows. You have the option to install and run
Junos PyEZ in one of the following ways:

e Directly on the configuration management server
e Within a Python virtual environment
e As a Docker container

As an alternative to installing Junos PyEZ directly on the server, you can install it in a virtual
environment. A Python virtual environment isolates a project’s Python installation and packages from
those installed on the system or in other virtual environments, which prevents breaking the
dependencies of other projects. You can create virtual environments when you have projects that
require different versions of Python or Python packages or as an alternative to installing packages
globally on the system.

Juniper Networks also provides a Junos PyEZ Docker image that enables you to run Junos PyEZ as a
Docker container. The Docker container is a lightweight, self-contained system that bundles Junos PyEZ,
its dependencies, and Python into a single portable container. The Docker image enables you to quickly
run Junos PyEZ in interactive mode, as an executable package, or as a terminal on any platform that
supports Docker.

To install Junos PyEZ on the configuration management server, see the following sections:

o '"Install Prerequisite Software" on page 13
e '"Install Junos PyEZ on the Configuration Management Server" on page 15

To install Junos PyEZ in a Python virtual environment, see the following sections:

e '"Install Prerequisite Software" on page 13
e '"Install Junos PyEZ in a Python Virtual Environment" on page 16

To use the Junos PyEZ Docker image, see the following section:

e "Use the Junos PyEZ Docker Image" on page 17

Install Prerequisite Software

Before you install the Junos PyEZ library on the configuration management server or in a virtual
environment, ensure that the configuration management server has the following software installed:
e Python—Junos PyEZ supports Python 3.8 through Python 3.12

o All prerequisite software for the given operating system, which is outlined in Table 4 on page 13

@ NOTE: Python 3.x is supported starting in Junos PyEZ Release 2.0.
Python 2.7 support is removed starting in Junos PyEZ Release 2.6.0.

Python 3.10 is supported starting in Junos PyEZ Release 2.7.0.

Python 3.12 is supported starting in Junos PyEZ Release 2.7.2.

Table 4: Junos PyEZ Prerequisite Software

Operating System Package or Library
CentOS o gcc
o libffi-devel

o [ibxml2-devel
e |ibxslt-devel

e openssl-devel
* pip

e python-devel

e redhat-rpm-config

Table 4: Junos PyEZ Prerequisite Software (Continued)

Operating System

Debian

Fedora

FreeBSD

OSX

NOTE: If Junos PyEZ does not successfully install using pip, try
using easy_install to install the 1xml library and then Junos PyEZ.

Package or Library

e |ibxml2-dev

e libxsltl-dev
e libssl-dev
* pip

e python3-devel (required for Python 3)

e gcc

e libffi-devel

e libxml2-devel

e Jibxslt-devel

e openssl-devel

e pip

e python3-devel (required for Python 3)

o redhat-rpm-config

o |ibxml2
o Jibxslt

® py27-pip

® pip

e xcode

Table 4: Junos PyEZ Prerequisite Software (Continued)

Operating System Package or Library

Ubuntu e libffi-dev
e libssl-dev
e |ibxml2-dev
e libxsltl-dev
e python3-dev (required for Python 3)

® pip

Windows e ecdsa

® pip

Install Junos PyEZ on the Configuration Management Server

After you install the prerequisite software on the configuration management server, you can install the
latest release of Junos PyEZ from the Python Package Index (PyPl) site. You can also download the latest
version of the code from the Junos PyEZ GitHub repository. To install Junos PyEZ from GitHub, you
must have Git installed on the configuration management server.

¢ To install the current release of Junos PyEZ from PyPlI, execute the following command (use sudo
where appropriate):

user@server:~$ sudo pip3 install junos-eznc

@ NOTE: To upgrade an existing version of Junos PyEZ, include the -U or --upgrade option
in the command.

https://pypi.org/project/junos-eznc/
https://pypi.python.org/pypi

e To install Junos PyEZ from the GitHub project master branch, execute the following command (use
sudo where appropriate):

user@server:~$ sudo pip3 install git+https://github.com/Juniper/py-junos-eznc.git

@ NOTE: The latest code in the GitHub source repository is under active development
and might not be stable.

For additional information about installing Junos PyEZ, including additional installation options, see the
INSTALL file for your specific operating system in the Junos PyEZ GitHub repository.

Install Junos PyEZ in a Python Virtual Environment

As an alternative to installing Python packages globally on a system, you can install the required
packages and dependencies for a specific project in an isolated Python virtual environment. We
recommend that you use Python 3 for your virtual environment.

To create a virtual Python 3 installation with Junos PyEZ on a Linux or macQOS server:

1. Install the prerequisite software on the configuration management server, as outlined in "Install
Prerequisite Software" on page 13.

2. Move into your existing project directory or create a new one, if none exists.

user@host:~$ mkdir junos-pyez

user@host:~$ cd junos-pyez

3. Create a virtual Python installation and specify its name, which in this case is venv.

user@host:~/junos-pyez$ python3 -m venv venv

@ NOTE: Ubuntu and Debian systems might require you to install the python3-venv package
before you can create the virtual environment.

https://github.com/Juniper/py-junos-eznc

4. Activate the virtual environment by executing the script in the virtual environment’s bin directory
that is appropriate for your platform and shell.

user@host:~/junos-pyez$ source venv/bin/activate
(venv) user@host:~/junos-pyez$
5. Install Junos PyEZ.

e To install the current release of Junos PyEZ from PyPI, execute the following command:

(venv) user@host:~/junos-pyez$ pip install junos-eznc

e To install Junos PyEZ from the GitHub project master branch, execute the following command,
which requires that Git is installed:

(venv) user@host:~/junos-pyez$ pip install git+https://github.com/Juniper/py-junos-eznc.git

@ NOTE: The latest code in the GitHub source repository is under active development
and might not be stable.

6. Execute your Junos PyEZ commands or scripts within the virtual environment.

7. When you are finished working in the virtual environment, deactivate it to return to the main shell
prompt.

(venv) user@host:~/junos-pyez$ deactivate

user@host:~/junos-pyez$

Use the Junos PyEZ Docker Image

Docker is a software container platform that is used to package and run an application and its
dependencies in an isolated container. Juniper Networks provides a Junos PyEZ Dockerfile as well as
Junos PyEZ Docker images, which are automatically built for every Junos PyEZ release. Starting in Junos
PyEZ Release 2.1.8, the Docker images include Python 3.6.

You can customize and use the Dockerfile to build your own Junos PyEZ Docker image, or you can use
one of the prebuilt Docker images, which are stored on Docker Hub, to run Junos PyEZ as a Docker
container. You can run the container in interactive mode, as an executable package, or as a terminal.

https://github.com/Juniper/py-junos-eznc/blob/master/Dockerfile
https://hub.docker.com/r/juniper/pyez/tags/
https://hub.docker.com/

To use a prebuilt Junos PyEZ Docker image on your configuration management server:

1.

Install Docker.

See the Docker website at https:/www.docker.com for instructions on installing and configuring
Docker on your specific operating system.

Download the juniper/pyez Docker image from Docker Hub.

e To download the latest image, issue the following command:

user@server:~$ docker pull juniper/pyez

@ NOTE: The latest Junos PyEZ Docker image is built using the most recently
committed code in the Junos PyEZ source repository, which is under active
development and might not be stable.

e To download a specific image, append the appropriate release tag to the image name, for example,
2.1.2.

user@server:~$ docker pull juniper/pyez: tag

. Move to the local directory that contains your scripts.

When you run the Docker container, the local scripts are mounted to /scripts in the container.

. Run the container.

For instructions on running the container, see the official usage examples at DOCKER-
EXAMPLES.md.

Set Up Junos PyEZ Managed Nodes | 19
Understanding Junos PyEZ | 4

Junos PyEZ Modules Overview | 8
Authenticate Junos PyEZ Users | 41

Use Junos PyEZ to Retrieve Facts from Junos Devices | 50

https://www.docker.com
https://hub.docker.com/r/juniper/pyez/tags/
https://github.com/Juniper/py-junos-eznc/blob/master/DOCKER-EXAMPLES.md
https://github.com/Juniper/py-junos-eznc/blob/master/DOCKER-EXAMPLES.md

Set Up Junos PyEZ Managed Nodes

IN THIS SECTION

Enable NETCONF over SSH | 19
Satisfy Requirements for SSHv2 Connections | 20

Configure Telnet Service | 21

Junos PyEZ is a Python library that enables you to manage and automate Junos devices. You do not
need to install any client software on the nodes in order to use Junos PyEZ to manage the devices. Also,
Python is not required on the managed devices, because Junos PyEZ utilizes NETCONF and the Junos
XML APIs to perform operations on a device.

You can use Junos PyEZ to manage Junos devices using any user account that has access to the device.
You can explicitly define the user when creating a new instance of the jnpr.junos.device.Device class, or if
you do not specify a user in the parameter list, the user defaults to $USER. When you use Junos PyEZ to
access and manage Junos devices, Junos OS user account access privileges are enforced. The class
configured for the Junos OS user account determines the permissions. Thus, if you use Junos PyEZ to
load configuration changes on a device, the user must have permissions to change the relevant portions
of the configuration.

Junos PyEZ enables you to connect directly to a Junos device using a serial console connection, telnet,
or a NETCONF session over SSH. To telnet directly to a device, you must first configure the Telnet
service on the managed device. To manage devices through a NETCONF session over SSH, you must
enable the SSH or NETCONF-over-SSH service on the managed device and ensure that the device
meets requirements for SSHv2 connections. You do not need to configure these services if the client
application connects to the device through a separate console server.

This topic outlines the requirements and required configuration on Junos devices when using Junos
PyEZ to access the device using the different connection protocols.

Enable NETCONF over SSH

To enable the NETCONF-over-SSH service on the default port (830) on a Junos device:

1. Configure the NETCONF-over-SSH service.

[edit system services]
user@host# set netconf ssh

@ NOTE: It is also possible to reach the NETCONF-over-SSH service on TCP port 22 by
configuring both the netconf ssh and ssh statements at the [edit system services] hierarchy
level. The ssh statement enables SSH access to the device for all users and applications.
However, we recommend using the default NETCONF port for NETCONF operations so
you can more easily identify and filter NETCONF traffic.

2. Commit the configuration.

[edit]
user@host# commit

Satisfy Requirements for SSHv2 Connections

The NETCONF server communicates with client applications within the context of a NETCONF session.
The server and client explicitly establish a connection and session before exchanging data, and close the
session and connection when they are finished. Junos PyEZ accesses the NETCONF server using the
SSH protocol and standard SSH authentication mechanisms. When you use Junos PyEZ to manage
Junos devices, the most convenient way to access the devices is to configure SSH keys.

To establish an SSHv2 connection with a Junos device, you must ensure that the following requirements
are met:

e The NETCONEF service over SSH is enabled on each device where a NETCONF session will be
established.

e The client application has a user account and can log in to each device where a NETCONF session
will be established.

e The login account used by the client application has an SSH public/private key pair or a text-based
password configured.

e The client application can access the public/private keys or text-based password.

For additional information about enabling NETCONF on a Junos device and satisfying the requirements
for establishing an SSH session, see the NETCONF XML Management Protocol Developer Guide.

Configure Telnet Service

Junos PyEZ applications can telnet to a Junos device, provided that the Telnet service is configured on
the device. Configuring Telnet service for a device enables unencrypted, remote access to the device.

@ NOTE: Because telnet uses clear-text passwords (therefore creating a potential security
vulnerability), we recommend that you use SSH.

To enable Telnet service:

1. Configure the service.

[edit system services]
user@host# set telnet

2. (Optional) Configure the connection limit, rate limit, and order of authentication, as necessary.

[edit system services]
user@host# set telnet connection-limit connection-1limit
user@host# set telnet rate-limit rate-limit

user@host# set telnet authentication-order [radius tacplus password]
3. Commit the configuration.

[edit]

user@host# commit

Install Junos PyEZ | 12
Understanding Junos PyEZ | 4

Junos PyEZ Modules Overview | 8

https://www.juniper.net/documentation/us/en/software/junos/netconf/index.html

Authenticate Junos PyEZ Users | 41

22

CHAPTER

Connect to and Retrieve Facts From a
Device Using Junos PyEZ

IN THIS CHAPTER

Connect to Junos Devices Using Junos PyEZ | 24
Authenticate Junos PyEZ Users | 41
Use Junos PyEZ to Retrieve Facts from Junos Devices | 50

Use Junos PyEZ to Access the Shell on Junos Devices | 56

Connect to Junos Devices Using Junos PyEZ

SUMMARY IN THIS SECTION
Connect to a Junos device or to an attached console Connection Methods Overview | 24
server using different connection methods and

Understanding Junos PyEZ Connection
protocols in a Junos PyEZ application. Properties | 26

Connect to a Device Using SSH | 28

Connect to a Device Using Outbound
SSH | 32

Connect to a Device Using Telnet | 35

Connect to a Device Using a Serial Console
Connection | 38

Junos PyEZ is a microframework for Python that enables you to manage Junos devices. Junos PyEZ
models each device as an instance of the jnpr.junos.device.Device class. The Device class enables you to
connect to a Junos device using a serial console connection, telnet, or by establishing a NETCONF
session over SSH. In addition, Junos PyEZ also supports connecting to the device through a telnet or
SSH connection to a console server. A console server, also known as a terminal server, is a specialized
device that provides a network connection to a device’s out-of-band management console port.

This topic provides an overview of the connection methods supported by Junos PyEZ and explains how
to use the different methods to connect to a Junos device. The Junos PyEZ examples use various
authentication methods, but for detailed information about authenticating a user, see "Authenticate
Junos PyEZ Users" on page 41.

Connection Methods Overview

Junos PyEZ enables you to connect to a Junos device using a serial console connection, telnet, or a
NETCONEF session over SSH. You must use a serial console connection when you are physically
connected to the CONSOLE port on a device. You can use telnet or SSH to connect to the device's
management interface or to a console server that is connected to the device’'s CONSOLE port. In
addition, Junos PyEZ supports outbound SSH connections, in which the Junos device initiates the
connection with the client management application.

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.html#module-jnpr.junos.device

New or zeroized devices that have factory default configurations require access through a console
connection. Thus, you can use Junos PyEZ to initially configure a device that is not yet configured for
remote access by using either a serial console connection when you are directly connected to the device
or by using telnet or SSH through a console server that is connected to the device.

By default, Junos PyEZ uses SSH to connect to a device . To specify a different connection type, you
must include the mode parameter in the Device argument list. To telnet to a device, include the mode="telnet'
argument. To connect to a device using a serial console connection, include the mode='serial' argument.
Table 5 on page 25 summarizes the Junos PyEZ connection methods, their default values for certain
parameters, any required Junos OS configuration, and the Junos PyEZ release in which support for that
connection method was first introduced.

Table 5: Junos PyEZ Connection Modes

Connection Mode Value of mode Default Port = Required Junos OS First Supported
Argument Configuration Junos PyEZ Release

NETCONF over - 830 1.0.0
SSH (default) [edit system services]

netconf {

ssh;

}
Serial console serial /dev/ - 2.0.0 (*nix)
connection ttyUSBO

2.4.0 (Windows)

Telnet to Junos telnet 23 2.0.0
device [edit system services]

telnet;
Telnet through a telnet 23 - 2.0.0

console server

SSH through a - 22 - 2.2.0
console server

Table 5: Junos PyEZ Connection Modes (Continued)

Connection Mode Value of mode Default Port = Required Junos OS First Supported
Argument Configuration Junos PyEZ Release
Outbound SSH - - 2.2.0

[edit system services]
outbound-ssh {

@ NOTE: Before you can access a device’'s management interface using telnet or
NETCONF over SSH, you must first enable the appropriate service at the [edit system
services] hierarchy level. For more information, see "Set Up Junos PyEZ Managed Nodes"
on page 19. Because telnet uses clear-text passwords (therefore creating a potential
security vulnerability), we recommend that you use SSH.

@ NOTE: It is the user's responsibility to obtain the username and password authentication
credentials in a secure manner appropriate for their environment. It is best practice to
prompt for these authentication credentials during each invocation of the script, rather
than storing the credentials in an unencrypted format.

Junos PyEZ supports using context managers (with ... as syntax) for all connection methods. When you
use a context manager, Junos PyEZ automatically calls the open() and close() methods to connect to and
disconnect from the device. If you do not use a context manager, you must explicitly call the open() and
close() methods in your application. We recommend that you use a context manager for console
connections, because the context manager automatically handles closing the connection, and failure to
close the connection can lead to unpredictable results.

Understanding Junos PyEZ Connection Properties

When you connect to a Junos device, Junos PyEZ stores information about the current connection as
properties of the Device instance. Table 6 on page 27 outlines the available connection properties.

Table 6: Device Properties

Property = Description

connected = Boolean specifying the current state of the connection. Returns True when connected.

hostname | String specifying the hostname of the device to which the application is connected.

master Boolean returning True if the Routing Engine to which the application is connected is the primary
Routing Engine.

port Integer or string specifying the port used for the connection.

re_name String specifying the Routing Engine name to which the application is connected.

timeout Integer specifying the RPC timeout value in seconds.

uptime Integer representing the number of seconds since the current Routing Engine was booted. This
property is available starting in Junos PyEZ Release 2.1.5.

user String specifying the user accessing the Junos device.

For example, after connecting to a device, you can query the connected property to return the current
state of the connection. A SessionListener monitors the session and responds to transport errors by
raising a TransportError exception and setting the Device.connected property to False.

The following sample code prints the value of the connected property after connecting to a Junos device
and again after closing the session.

from jnpr.junos import Device
dev = Device(host='router.example.net')

dev.open()
print (dev.connected)

dev.close()

print (dev.connected)

When you execute the program, the connected property returns True while the application is connected to
the device and returns False after the connection is closed.

user@host:~$ python connect.py
True

False

Connect to a Device Using SSH

The Junos PyEZ Device class supports using SSH to connect to a Junos device. You can establish a
NETCONF session over SSH with the device’'s management interface or you can establish an SSH
connection with a console server that is directly connected to the device’s CONSOLE port. The SSH
server must be able to authenticate the user using standard SSH authentication mechanisms, as
described in "Authenticate Junos PyEZ Users" on page 41. To establish a NETCONF session over SSH,
you must also satisfy the requirements outlined in "Set Up Junos PyEZ Managed Nodes" on page 19.

Junos PyEZ automatically queries the default SSH configuration file at ~/.ssh/config, if one exists. When
using SSH to connect to a Junos device or to a console server connected to the device, Junos PyEZ first
attempts SSH public key-based authentication and then tries password-based authentication. When
password-based authentication is used, the supplied password is used as the device password. When
SSH keys are in use, the supplied password is used as the passphrase for unlocking the private key. If the
SSH private key has an empty passphrase, then a password is not required. However, SSH private keys
with empty passphrases are not recommended.

To establish a NETCONF session over SSH with a Junos device and print the device facts in a Junos
PyEZ application using Python 3:

1. Import the Device class and any other modules or objects required for your tasks.

import sys
from getpass import getpass
from jnpr.junos import Device

from jnpr.junos.exception import ConnectError

2. Create the device instance, and provide the hostname, any parameters required for authentication,
and any optional parameters.

hostname = input("Device hostname: ")
junos_username = input("Junos 0S username: ")
junos_password = getpass("Junos 0S or SSH key password: ")

dev = Device(host=hostname, user=junos_username, passwd=junos_password)

3. Connect to the device by calling the open() method, for example:

try:
dev.open()
except ConnectError as err:
print ("Cannot connect to device: {0}".format(err))
sys.exit(1)
except Exception as err:
print (err)
sys.exit(1)

4. Print the device facts.

print (dev.facts)

5. After performing any necessary tasks, close the connection to the device.

dev.close()

The sample program in its entirety is presented here:

import sys

from getpass import getpass

from jnpr.junos import Device

from jnpr.junos.exception import ConnectError

hostname = input("Device hostname: ")
junos_username = input("Junos 0S username: ")

junos_password = getpass("Junos 0S or SSH key password: ")

dev = Device(host=hostname, user=junos_username, passwd=junos_password)
try:
dev.open()
except ConnectError as err:
print ("Cannot connect to device: {0}".format(err))
sys.exit(1)
except Exception as err:
print (err)

sys.exit(1)

print (dev.facts)

dev.close()

Alternatively, you can use a context manager when connecting to the device, which automatically calls
the open() and close() methods. For example:

import sys
from getpass import getpass
from jnpr.junos import Device

from jnpr.junos.exception import ConnectError

hostname = input("Device hostname: ")

junos_username = input("Junos OS username: ")

junos_password = getpass("Junos 0S or SSH key password: ")

try:
with Device(host=hostname, user=junos_username, passwd=junos_password) as dev:
print (dev.facts)
except ConnectError as err:
print ("Cannot connect to device: {0}".format(err))
sys.exit(1)
except Exception as err:
print (err)
sys.exit(1)

Junos PyEZ also enables a client to connect to a Junos device through an SSH connection to a console
server. In this case, you must specify the login credentials for the console server by including the cs_user
and cs_passwd arguments in the Device argument list. When SSH keys are in use, set the cs_passwd argument
to the variable containing the passphrase for the private key.

The console server connects to the Junos device through a serial connection, which can be slow. Junos
PyEZ connections through a console server have a default connection timeout value of 0.5 seconds. As

a result, you might need to increase the connection timeout interval by including the Device
timeout=seconds argument to allow sufficient time for the client application to establish the connection.

The following Python 3 example authenticates with the console server and then the Junos device. The
connection timeout is set to six seconds so that the client has sufficient time to establish the
connection.

import sys
from getpass import getpass
from jnpr.junos import Device

from jnpr.junos.exception import ConnectError

hostname = input("Console server hostname: ")
cs_username = input("Console server username: ")

cs_password = getpass("Console server or SSH key password: ")

junos_username = input("Junos 0S username: ")

junos_password = getpass("Junos 0S password: ")

try:
with Device(host=hostname, user=junos_username, passwd=junos_password,
cs_user=cs_username, cs_passwd=cs_password, timeout=6) as dev:
print (dev.facts)
except ConnectError as err:
print ("Cannot connect to device: {0}".format(err))
sys.exit(1)
except Exception as err:
print (err)
sys.exit(1)

Junos PyEZ automatically queries the default SSH configuration file at ~/.ssh/config, if one exists.
However, you can specify a different SSH configuration file when you create the device instance by
including the ssh_config parameter in the Device argument list. For example:

ssh_config_file = "~/.ssh/config_dc"

dev = Device(host='198.51.100.1"', ssh_config=ssh_config_file)

Junos PyEZ also provides support for ProxyCommand, which enables you to access a target device
through an intermediary host that supports netcat. This is useful when you can only log in to the target
device through the intermediate host.

To configure ProxyCommand, add the appropriate information to the SSH configuration file. For
example:

[useri@server ~1$ cat ~/.ssh/config

Host 198.51.100.1

User user1

ProxyCommand ssh -1 user1l 198.51.100.2 nc %h 22 2>/dev/null

Connect to a Device Using Outbound SSH

You can configure a Junos device to initiate a TCP/IP connection with a client management application
that would be blocked if the client attempted to initiate the connection (for example, if the device is
behind a firewall). The outbound-ssh configuration instructs the device to create a TCP/IP connection with
the client management application and to forward the identity of the device. Once the connection is
established, the management application acts as the client and initiates the SSH sequence, and the
Junos device acts as the server and authenticates the client.

@ NOTE: Once you configure and commit outbound SSH on the Junos device, the device
begins to initiate an outbound SSH connection based on the committed configuration.
The device repeatedly attempts to create this connection until successful. If the
connection between the device and the client management application is dropped, the
device again attempts to create a new outbound SSH connection until successful. This
connection is maintained until the outbound SSH configuration is deleted or deactivated.

To configure the Junos device for outbound SSH connections, include the outbound-ssh statement at the
[edit system services] hierarchy level. In the following example, the Junos device attempts to initiate a
connection with the host at 198.51.100.101 on port 2200:

user@router1> show configuration system services outbound-ssh
client nms1 {
device-id routert;
secret "$9%h1/ceWbs4UDkGD/CpulI-Vb"; ## SECRET-DATA
services netconf’;
198.51.100.101 port 2200;

To establish a connection with the Junos device using outbound SSH, the Junos PyEZ application sets
the sock_fd argument in the Device constructor equal to the file descriptor of an existing socket and either
omits the host argument or sets it to None.

The following Junos PyEZ example listens on the configured TCP port for incoming SSH sessions from
Junos devices. The application accepts an incoming connection and retrieves the socket’s file descriptor
for that connection, which is used for the value of the sock_fd argument. The client application
establishes the SSH connection with the device, collects and prints the device facts, disconnects from
the device, and waits for more connections.

import socket

from jnpr.junos import Device

from jnpr.junos.exception import ConnectError
from getpass import getpass

from pprint import pprint

Listen on TCP port 2200 for incoming SSH session with a Junos device.
Upon connecting, collect and print the devices facts,
then disconnect from that device and wait for more connections.

def launch_junos_proxy(client, addr):

val = {
'MSG-ID': None,
'"MSG-VER': None,
'DEVICE-ID': None,
"HOST-KEY': None,
'"HMAC': None
}

msg = "'

count = 0

while count < 5:

client.recv(1)
c.decode("utf-8")
msg += str(c)

C

C

if ¢ == "\n":

count += 1

for line in msg.splitlines():

(key, value) = line.split(': ")
val[key] = value
print("{}: {3".format(key, vallkeyl))

return client.fileno()

def main():

PORT = 2200

junos_username = input('Junos OS username: ')

junos_password = getpass('Junos 0S password: ')

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.setsockopt (socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

s.bind(('', PORT))
s.listen(5)

print('\nListening on port %d for incoming sessions ...' % (PORT))

sock_fd = 0

while True:
client, addr = s.accept()
print('\nGot a connection from %s:%d' % (addr[0], addr[11))
sock_fd = launch_junos_proxy(client, addr)

print('Logging in ...")

try:
with Device(host=None, sock_fd=sock_fd, user=junos_username, passwd=junos_password)
as dev:
pprint(dev.facts)
except ConnectError as err:
print ("Cannot connect to device: {0}".format(err))
if __name__ == "__main__":
main()

user@nms1:~$ python3 junos-pyez-outbound-ssh.py
Junos OS username: user

Junos 0S password:

Listening on port 2200 for incoming sessions ...

Got a connection from 10.10.0.5:57881
MSG-ID : DEVICE-CONN-INFO
MSG-VER : V1
DEVICE-ID : routerl
HOST-KEY : ssh-rsa AAAAB...0aF4Mk=
HMAC : 4e61201ec27a8312104f63bfaf77a4478a892¢c82
Logging in ...
{'2RE': True,
"HOME': '/var/home/user',
'REQ': {'last_reboot_reason': 'Router rebooted after a normal shutdown.',
'mastership_state': 'master',
'model': 'RE-MX-104',
'status': 'OK',
'up_time': '2 days, 6 hours, 22 minutes, 22 seconds'},
'RE1': {'last_reboot_reason': 'Router rebooted after a normal shutdown.',
'mastership_state': 'backup',
'model': 'RE-MX-104',
'status': 'OK',
'up_time': '2 days, 6 hours, 22 minutes, 12 seconds'},
'RE_hw_mi': False,
"current_re': ['re@', 'master', 'node', 'fwdd', 'member', 'pfem'],
"domain': 'example.com',
'fgdn': 'router?l.example.com',

'"hostname': 'routerl',

For detailed information about configuring outbound SSH on Junos devices, see Configure Outbound
SSH Service.

Connect to a Device Using Telnet

The Junos PyEZ Device class supports connecting to a Junos device using telnet, which provides
unencrypted access to the network device. You can telnet to the device’s management interface or to a
console server that is directly connected to the device's CONSOLE port. You must configure the Telnet
service at the [edit system services] hierarchy level on all devices that require access to the management
interface. Accessing the device through a console server enables you to initially configure a new or
zeroized device that is not yet configured for remote access.

https://www.juniper.net/documentation/us/en/software/junos/user-access/topics/topic-map/junos-software-remote-access-overview.html#id-configuring-outbound-ssh-service
https://www.juniper.net/documentation/us/en/software/junos/user-access/topics/topic-map/junos-software-remote-access-overview.html#id-configuring-outbound-ssh-service

To use Junos PyEZ to telnet to a Junos device, you must include mode="telnet"' in the Device argument list,
and optionally include the port parameter to specify a port. When you specify mode="'telnet' but omit the
port parameter, the value for port defaults to 23. When the application connects through a console
server, specify the port through which the console server connects to the Junos device.

To use Junos PyEZ to telnet to a Junos device and print the device facts in a Junos PyEZ application
using Python 3:

1. Import the Device class and any other modules or objects required for your tasks.

import sys
from getpass import getpass
from jnpr.junos import Device

2. Create the device instance with the mode="telnet' argument, specify the connection port if different
from the default, and provide the hostname, any parameters required for authentication, and any
optional parameters.

hostname = input("Device hostname: ")
junos_username = input("Junos 0S username: ")

junos_password = getpass("Junos 0S password: ")

dev = Device(host=hostname, user=junos_username, passwd=junos_password, mode='telnet',
port='23")

3. Connect to the device by calling the open() method.
try:
dev.open()
except Exception as err:

print (err)

sys.exit(1)

4. Print the device facts.

print (dev.facts)

5. After performing any necessary tasks, close the connection to the device.

dev.close()

The sample program in its entirety is presented here:

import sys
from getpass import getpass
from jnpr.junos import Device

hostname = input("Device hostname: ")

junos_username = input("Junos 0S username: ")

junos_password = getpass("Junos 0S password: ")

dev = Device(host=hostname, user=junos_username, passwd=junos_password, mode='telnet', port='23")

try:
dev.open()

except Exception as err:
print (err)
sys.exit(1)

print (dev.facts)

dev.close()

Alternatively, you can use a context manager when connecting to the device, which handles opening
and closing the connection. For example:

import sys
from getpass import getpass
from jnpr.junos import Device

hostname = input("Device hostname: ")
junos_username = input("Junos 0S username: ")

junos_password = getpass("Junos 0S password: ")

try:
with Device(host=hostname, user=junos_username, passwd=junos_password, mode='telnet',
port='23") as dev:
print (dev.facts)
except Exception as err:
print (err)

sys.exit(1)

In some cases, when you connect to a console server that emits a banner message, you might be
required to press Enter after the message to reach the login prompt. If a Junos PyEZ application opens a
Telnet session with a console server that requires the user to press Enter after a banner message, the
application might fail to receive the login prompt, which can cause the connection to hang.

Starting in Junos PyEZ Release 2.6.2, Junos PyEZ automatically handles the console server banner. In
Junos PyEZ Releases 2.1.0 through 2.6.1, a Junos PyEZ application can include console_has_banner=True in
the Device argument list to telnet to a console server that emits a banner message.

dev = Device(host=hostname, user=username, passwd=password, mode='telnet',

console_has_banner=True)

When you include the console_has_banner=True argument and the application does not receive a login
prompt upon initial connection, the application waits for 5 seconds and then emits a newline (\n)
character so that the console server issues the login prompt. If you omit the argument and the
connection hangs, the application instead emits the <close-session/> RPC to terminate the connection.

Connect to a Device Using a Serial Console Connection

The Junos PyEZ Device class enables you to connect to a Junos device using a serial console connection,
which is useful when you must initially configure a new or zeroized device that is not yet configured for
remote access. To use this connection method, you must be physically connected to the device through
the CONSOLE port. For detailed instructions about connecting to the CONSOLE port on your device,
see the hardware documentation for your specific device.

@ NOTE: Junos PyEZ supports using context managers for serial console connections. We
recommend that you use a context manager for console connections, because the
context manager automatically handles opening and closing the connection. Failure to
close the connection can lead to unpredictable results.

To use Junos PyEZ to connect to a Junos device through a serial console connection, you must include
mode='serial' in the Device argument list, and optionally include the port parameter to specify a port. When
you specify mode="serial' but omit the port parameter, the value for port defaults to /dev/ttyUsBe.

To connect to a Junos device using a serial console connection and also load and commit a configuration
on the device in a Junos PyEZ application using Python 3:

1. Import the Device class and any other modules or objects required for your tasks.

import sys
from getpass import getpass
from jnpr.junos import Device

from jnpr.junos.utils.config import Config

2. Create the device instance with the mode="'serial' argument, specify the connection port if different
from the default, and provide any parameters required for authentication and any optional
parameters.

junos_username = input("Junos 0S username: ")

junos_password = getpass("Junos 0S password: ")

try:
with Device(mode='serial', port='port', user=junos_username, passwd=junos_password) as
dev:
print (dev.facts)

@ NOTE: All platforms running Junos OS have only the root user configured by default,
without any password. For new or zeroized devices, use user='root' and omit the passwd
parameter.

3. Load and commit the configuration on the device.

cu = Config(dev)

cu.lock()
cu.load(path="/tmp/config_mx.conf"')
cu.commit()

cu.unlock()
4. Include any necessary error handing.
except Exception as err:

print (err)
sys.exit(1)

The sample program in its entirety is presented here:

import sys
from getpass import getpass
from jnpr.junos import Device

from jnpr.junos.utils.config import Config

junos_username = input("Junos 0S username: ")

junos_password = getpass("Junos 0S password: ")

try:
with Device(mode='serial', port='port', user=junos_username, passwd=junos_password) as dev:
print (dev.facts)
cu = Config(dev)
cu.lock()
cu.load(path="/tmp/config_mx.conf")
cu.commit()

cu.unlock()

except Exception as err:
print (err)

sys.exit(1)

RELATED DOCUMENTATION

Set Up Junos PyEZ Managed Nodes | 19
Authenticate Junos PyEZ Users | 41

Use Junos PyEZ to Retrieve Facts from Junos Devices | 50

Troubleshoot Junos PyEZ Connection Errors | 334

40

Authenticate Junos PyEZ Users

SUMMARY IN THIS SECTION
Junos PyEZ applications can authenticate users using Junos PyEZ User Authentication
standard SSH authentication mechanisms, including Overview | 41

passwords and SSH keys. Authenticate Junos PyEZ Users Using a

Password | 42

Authenticate Junos PyEZ Users Using SSH
Keys | 44

Junos PyEZ User Authentication Overview

Junos PyEZ enables you to directly connect to and manage Junos devices using a serial console
connection, telnet, or a NETCONF session over SSH. In addition, Junos PyEZ also supports connecting
to the device through a telnet or SSH connection to a console server that is connected to the device’s
CONSOLE port. The device must be able to authenticate the user using either a password or other standard
SSH authentication mechanisms, depending on the connection method. When you manage Junos
devices through an SSH connection, the most convenient and secure way to access a device is to
configure SSH keys. SSH keys enable the remote device to identify trusted users.

You can perform device operations using any user account that has access to the managed Junos device.
You can explicitly define the user when creating a new instance of the jnpr.junos.device.Device class, or if
you do not specify a user in the parameter list, the user defaults to $USER.

For SSH connections, Junos PyEZ automatically queries the default SSH configuration file at ~/.ssh/
config, if one exists, unless the Device argument list includes the ssh_config argument to specify a different
configuration file. Junos PyEZ uses any relevant settings in the SSH configuration file for the given
connection that are not overridden by the arguments in the Device argument list, such as the user or the
identity file.

When the Junos PyEZ client uses SSH to connect to either the Junos device or to a console server
connected to the device, Junos PyEZ first attempts SSH public key-based authentication and then tries
password-based authentication. When SSH keys are in use, the supplied password is used as the
passphrase for unlocking the private key. When password-based authentication is used, the supplied
password is used as the device password. If SSH public key-based authentication is being used and the
SSH private key has an empty passphrase, then a password is not required. However, SSH private keys
with empty passphrases are not recommended.

It is the user's responsibility to obtain the username and password authentication credentials in a secure
manner appropriate for their environment. It is best practice to prompt for these authentication
credentials during each invocation of the script rather than storing the credentials in an unencrypted
format.

Authenticate Junos PyEZ Users Using a Password

To authenticate a Junos PyEZ user using a password:

1. Inyour favorite editor, create a new file that uses the .py file extension.
This example uses the filename junos-pyez-pw.py.

2. Include code that prompts for the hostname to which to connect and the username and password for
the Junos device and stores each value in a variable.

Python 3
from jnpr.junos import Device
from getpass import getpass

import sys

hostname = input("Hostname: ")
junos_username = input("Junos 0S username: ")
junos_password = getpass("Junos 0S password: ")

3. If the Junos PyEZ client connects to the device through an SSH connection to a console server,
include code that prompts for the console server username and password and stores each value in a
variable.

login credentials required for SSH connection to console server

cs_username = input("Console server username: ")

cs_password = getpass("Console server password: ")

4. In the Device constructor argument list:

e Set the host argument to the variable containing the hostname
e Set the user and passwd arguments to the variables containing the Junos OS login credentials

e If the Junos PyEZ client connects through a console server using SSH, set the cs_user and cs_passwd
arguments to the variables containing the console server login credentials.

¢ Include any additional arguments required for the connection method

The following example provides sample code for each of the different connection methods:

Python 3
from jnpr.junos import Device

from getpass import getpass

import sys

hostname = input("Device hostname: ")

junos_username = input("Junos OS username: ")

junos_password = getpass("Junos 0S password: ")

login credentials required for SSH connection to console server

cs_username = input("Console server username: ")

cs_password = getpass("Console server password: ")

try:

NETCONF session over SSH
with Device(host=hostname, user=junos_username, passwd=junos_password) as dev:

Telnet connection to device or console server connected to device

#with Device(host=hostname, user=junos_username, passwd=junos_password, mode='telnet’,

port='23") as dev:

Serial console connection to device

#with Device(host=hostname, user=junos_username, passwa=junos_password, mode='serial’,

port="/dev/ttylUSBo’') as dev:

SSH connection to console server connected to device

#with Device(host=hostname, user=junos_username, passwa=junos._password,

CS_user=cs_username, cs_passwa=cs_password, timeout=5) as dev:

print (dev.facts)

except Exception as err:

print (err)

sys.exit(1)

@ NOTE: All platforms running Junos OS have only the root user configured by default,

without any password. When using Junos PyEZ to initially configure a new or zeroized
device through a console connection, use user='root', and omit the passwd parameter.

43

5. Execute the Junos PyEZ code, which prompts for the hostname, the Junos OS username and

password, and the console server username and password (when requested) and does not echo the
password on the command line.

bsmith@server:~$ python3 junos-pyez-pw.py

Device hostname: dcla.example.com

Junos 0S username: bsmith

Junos 0S password:

Console server username: bsmith

Console server password:

{'domain': 'example.com', 'serialnumber': 'JNXXXXXXXXXX', 'ifd_style': 'CLASSIC',
'version_info': junos.version_info(major=(13, 3), type=R, minor=1, build=8), '2RE': True,
'hostname': 'dcla', 'fqdn': 'dcla.example.com', 'switch_style': 'NONE', 'version':
'13.3R1.8"', 'HOME': '/var/home/bsmith', 'model': 'MX240', 'REQ': {'status': 'OK',
'last_reboot_reason': 'Router rebooted after a normal shutdown.', 'model': 'RE-S-1300',

'up_time': '14 days, 17 hours, 45 minutes, 8 seconds'}, 'personality': 'MX'}

Authenticate Junos PyEZ Users Using SSH Keys

IN THIS SECTION

Generate and Configure SSH Keys | 45

Reference SSH Keys in Junos PyEZ Applications | 45

To use SSH keys in a Junos PyEZ application, you must first generate the keys on the configuration
management server and configure the public key on each device to which the Junos PyEZ client will
connect. To directly connect to the Junos device, configure the key on that device. To connect to a Junos
device through a console server, configure the key on the console server. To use the keys, you must
include the appropriate arguments in the Device argument list.

Junos PyEZ can utilize SSH keys that are actively loaded into an SSH key agent, keys that are generated
in either the default location or a user-defined location, and keys that either use or forgo password
protection. When connecting directly to a Junos device, if the Device arguments do not specify a
password or SSH key file, Junos PyEZ first checks the SSH keys that are actively loaded in the SSH key
agent and then checks for SSH keys in the default location. When connecting to a console server, only
password-protected keys are supported.

The following sections outline the steps for generating the SSH keys, configuring the keys on Junos
devices, and using the keys to connect to the managed device:

Generate and Configure SSH Keys

To generate SSH keys on the configuration management server and configure the public key on Junos
devices:

1. On the server, generate the public and private SSH key pair for the desired user, and provide any
required or desired options, for example:

user@server:~$ cd ~/.ssh

user@server:~/.ssh$ ssh-keygen -t rsa -b 2048

Generating public/private rsa key pair.

Enter file in which to save the key (/home/user/.ssh/id_rsa): id_rsa_dc
Enter passphrase (empty for no passphrase): xxxxx

Enter same passphrase again: *x**x

2. (Optional) Load the key into the native SSH key agent.

3. Configure the public key on each device to which the Junos PyEZ application will connect, which
could include Junos devices or a console server connected to the Junos device.

One method to configure the public key under the appropriate user account on a Junos device is to
load the public key from a file.

[edit]
user@router# set system login user wusername authentication load-key-file URL
user@router# commit

4. Verify that the key works by logging in to the device using the key.

user@server:~$ ssh -i ~/.ssh/id_rsa_dc router.example.com
Enter passphrase for key '/home/user/.ssh/id_rsa_dc':

user@router>

Reference SSH Keys in Junos PyEZ Applications

IN THIS SECTION

Authenticate the User Using an SSH Key Agent with Actively Loaded Keys | 46

Authenticate the User Using SSH Keys Without Password Protection | 46

Authenticate the User Using Password-Protected SSH Key Files | 47

After generating the SSH key pair and configuring the public key on the remote device, you can use the
key to connect to the device by including the appropriate arguments in the Device constructor code. The
Device arguments are determined by the location of the key, whether the key is password-protected,
whether the key is actively loaded into an SSH key agent, such as ssh-agent, and whether the user’'s SSH
configuration file already defines settings for that host. The following sections outline the various
scenarios:

Authenticate the User Using an SSH Key Agent with Actively Loaded Keys

You can use an SSH key agent to securely store private keys and avoid repeatedly retyping the
passphrase for password-protected keys. Junos PyEZ enables a client to connect directly to a Junos
device using SSH keys that are actively loaded into an SSH key agent. When connecting to a Junos
device, if the Device arguments do not specify a password or SSH key file, Junos PyEZ first checks the
SSH keys that are actively loaded in the SSH key agent and then checks for SSH keys in the default
location.

To use SSH keys that are actively loaded into the native SSH key agent to connect directly to a Junos
device:

e In the Device argument list, you need only supply the required hostname and any desired variables.

dev = Device(host="'router.example.com')

Authenticate the User Using SSH Keys Without Password Protection

Junos PyEZ enables a client to connect directly to a Junos device using SSH private keys that do not
have password protection, although we do not recommend using SSH private keys with an empty
passphrase. Junos PyEZ does not support connecting to a console server using SSH private keys with an
empty passphrase.

To connect to a Junos device using SSH keys that are in the default location and do not have password
protection:

e In the Device argument list, you need only supply the required hostname and any desired variables.

dev = Device(host='router.example.com')
Junos PyEZ first checks the SSH keys that are loaded in any active SSH key agent and then checks the
SSH keys in the default location.

To connect to a Junos device using SSH keys that are not in the default location and do not have
password protection:

e In the Device argument list, set the ssh_private_key_file argument to the path of the SSH private key.

dev = Device(host='router.example.com', ssh_private_key_file='/home/user/.ssh/id_rsa_dc"')

@ NOTE: If the user’s SSH configuration file already specifies the local SSH private key file
path for a given host, you can omit the ssh_private_key_file argument in the Device
argument list. Including the ssh_private_key_file argument overrides any existing
IdentityFile value defined for a host in the user’s SSH configuration file.

Authenticate the User Using Password-Protected SSH Key Files

Junos PyEZ clients can use password-protected SSH key files to connect directly to a Junos device or to
connect to a console server connected to the device.

To connect directly to a Junos device using a password-protected SSH key file:

1. Include code that prompts for the SSH private key password and stores the value in a variable.

from jnpr.junos import Device
from getpass import getpass

key_password = getpass('Password for SSH private key file: ')

2. In the Device argument list, set the passwd argument to reference the variable containing the SSH key
file password.

If the key is not in the default location and the file path is not already defined in the user’'s SSH
configuration file, set the ssh_private_key_file argument to the path of the private key.

from jnpr.junos import Device
from getpass import getpass

key_password = getpass('Password for SSH private key file: ')

dev = Device(host='router.example.com', passwd=key_password, ssh_private_key_file='/home/
user/.ssh/id_rsa_dc')
dev.open()

dev.close()

To connect to a Junos device through a console server using a password-protected SSH key file:

1. Include code that prompts for the login credentials for the Junos device and stores each value in a
variable.

from jnpr.junos import Device

from getpass import getpass

junos_username = input('Junos 0S username: ')

junos_password = getpass('Junos 0S password: ')

2. Include code that prompts for the console server username and the SSH private key password and
stores each value in a variable.

from jnpr.junos import Device

from getpass import getpass

junos_username = input('Junos 0S username: ')

junos_password = getpass('Junos 0S password: ')

cs_username = input('Console server username: ')

key_password = getpass('Password for SSH private key file: ')

3. In the Device constructor argument list:

e Set the host argument to the console server hostname or IP address

49

e Set the user and passwd arguments to the variables containing the Junos OS login credentials
e Set the cs_user argument to the variable containing the console server username
o Set the cs_passwd argument to the variable containing the SSH key file password

e Set the ssh_private_key_file argument to the path of the private key, if the key is not in the default
location and the file path is not already defined in the user’s SSH configuration file

from jnpr.junos import Device

from getpass import getpass

junos_username = input('Junos 0S username: ')

junos_password = getpass('Junos 0S password: ')

cs_username = input('Console server username: ')

key_password = getpass('Password for SSH private key file: ')

with Device(host='router.example.com', user=junos_username, passwd=junos_password,
cs_user=cs_username, cs_passwd=key_password, ssh_private_key_file="'/home/user/.ssh/
id_rsa_dc') as dev:

print (dev.facts)

RELATED DOCUMENTATION

Connect to Junos Devices Using Junos PyEZ | 24

Troubleshoot Junos PyEZ Authentication Errors When Managing Junos Devices | 337

Use Junos PyEZ to Retrieve Facts from Junos Devices | 50

Use Junos PyEZ to Retrieve Facts from Junos
Devices

IN THIS SECTION

Understanding Junos PyEZ Device Facts | 50

Example: Retrieve Facts from a Junos Device | 52

Understanding Junos PyEZ Device Facts

Junos PyEZ is a microframework for Python that enables you to manage and automate Junos devices.

Junos PyEZ models each device as an instance of the jnpr. junos.device.Device class. After connecting to a
Junos device, Junos PyEZ applications can retrieve facts about the device. The device facts are accessed
as the facts attribute of the Device object. For detailed information about the keys that are included in the

returned device facts, see jnpr.junos.facts.

The following example establishes a NETCONF session over SSH with the device and prints the device
facts. The device uses SSH keys to authenticate the user.

from jnpr.junos import Device

from pprint import pprint

with Device(host='router1.example.net') as dev:
pprint (dev.facts['hostname'])
pprint (dev.facts)

useri@server:~$ python3 get-facts.py
"routerl’
{'"2RE": True,
"HOME': '/var/home/user1',
'REQ': {'last_reboot_reason': '0x200:normal shutdown',
'mastership_state': 'master',
'model': 'RE-MX-104',
'status': 'OK',

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.html#jnpr.junos.device.Device
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.facts.html

'up_time': '25 days, 8 hours, 22 minutes, 40 seconds'},
'RE1': {'last_reboot_reason': '0x200:normal shutdown',

'mastership_state': 'backup',

'model': 'RE-MX-104',

'status': 'OK',

'up_time': '25 days, 8 hours, 23 minutes, 55 seconds'},

In Junos PyEZ Release 2.0.0 and earlier releases, when the application calls the Device open() method to
connect to a device, Junos PyEZ automatically gathers the device facts for NETCONF-over-SSH
connections and gathers the device facts for Telnet and serial console connections when you explicitly
include gather_facts=True in the Device argument list.

Starting in Junos PyEZ Release 2.1.0, device facts are gathered on demand for all connection types. Each
fact is gathered and cached the first time the application accesses its value or the value of a dependent
fact. When you print or use device facts, previously accessed facts are served from the cache, and facts
that have not yet been accessed are retrieved from the device. If a fact is not supported on a given
platform, or if the application encounters an issue gathering the value of a specific fact, then the value of
that fact is None.

Junos PyEZ caches a device fact when it first accesses the fact or a dependent fact, but it does not
update the cached value upon subsequent access. To refresh the device facts, call the facts_refresh()
method. The facts_refresh() method empties the cache of all facts, such that when the application next
accesses a fact, it retrieves it from the device and stores the current value in the cache.

from jnpr.junos import Device

from pprint import pprint

with Device(host="'router1.example.net') as dev:
pprint (dev.facts)
dev.facts_refresh()
pprint (dev.facts)

To refresh only a single fact or a set of facts, include the keys argument in the facts_refresh() method, and
specify the keys to clear from the cache. For example:

dev.facts_refresh(keys="hostname")
dev.facts_refresh(keys=("hostname"', 'domain', 'master"'))

@ NOTE: Starting in Junos PyEZ Release 2.0.0, exceptions that occur when gathering facts
raise a warning instead of an error, which enables the script to continue running.

By default, Junos PyEZ returns the device facts as a dictionary-like object. Starting in Junos PyEZ
Release 2.2.1, you can view the device facts in JavaScript Object Notation (JSON). To view a JSON
representation of the facts, import the json module, and call the json.dumps() function.

from jnpr.junos import Device

import json

with Device(host="'router1.example.net') as dev:
print (json.dumps(dev.facts))

Example: Retrieve Facts from a Junos Device

With Junos PyEZ, you can quickly execute commands in Python interactive mode, or you can create
programs to perform tasks. The following example establishes a NETCONF session over SSH with a
Junos device and retrieves and prints facts for the device using both a simple Python program and
Python interactive mode. The examples use existing SSH keys for authentication.

To create a Junos PyEZ application that establishes a NETCONF session over SSH with a Junos device
and prints the device facts:

1. In your favorite editor, create a new file with a descriptive name that uses the .py file extension.

2. Import the Device class and any other modules or objects required for your tasks.

import sys
from jnpr.junos import Device
from jnpr.junos.exception import ConnectError

from pprint import pprint

3. Create the device instance and provide the hostname, any parameters required for authentication,
and any optional parameters.

dev = Device(host='router1.example.net")

4. Connect to the device by calling the open() method.

try:
dev.open()
except ConnectError as err:
print ("Cannot connect to device: {0}".format(err))

sys.exit(1)

5. Print the device facts.

pprint (dev.facts['hostname'])
pprint (dev.facts)

TIP: To refresh the facts for a device, call the facts_refresh() method, for example,

dev.facts_refresh().

6. Close the connection to the device.

dev.close()

7. Save and execute the program.

useri@server:~$ python junos-pyez-device-facts.py
'router?’
{'2RE": True,
'"HOME': '/var/home/userl’,
'REQ': {'last_reboot_reason': '0x200:normal shutdown',
'mastership_state': 'master',
'model': 'RE-MX-104',
'status': 'OK',
'up_time': '25 days, 8 hours, 22 minutes, 40 seconds'},
'RE1': {'last_reboot_reason': '0x200:normal shutdown',
'mastership_state': 'backup',
'model': 'RE-MX-104',
'status': 'OK',

'up_time': '25 days, 8 hours, 23 minutes, 55 seconds'},

The entire program is presented here:

import sys
from jnpr.junos import Device
from jnpr.junos.exception import ConnectError

from pprint import pprint

dev = Device(host='router1.example.net")
try:
dev.open()
except ConnectError as err:
print ("Cannot connect to device: {0}".format(err))

sys.exit(1)

pprint (dev.facts['hostname'])
pprint (dev.facts)

dev.close()

You can also quickly perform the same operations in Python interactive mode.

useri@server:~$ python
Python 3.6.9 (default, Jan 26 2021, 15:33:00)
[GCC 8.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> from jnpr.junos import Device
>>> from pprint import pprint
>>>
>>> dev = Device('routerl.example.net')
>>> dev.open()
Device(routerl.example.net)
>>>
>>> pprint (dev.facts)
{'2RE": True,
"HOME': '/var/home/userl',
'REQ': {'last_reboot_reason': '0x200:normal shutdown',
'mastership_state': 'master’',
'model': 'RE-MX-104',
'status': 'OK',

'up_time': '25 days, 8 hours, 22 minutes, 40 seconds'},

'RE1': {'last_reboot_reason': '0x200:normal shutdown',
'mastership_state': 'backup',
'model': 'RE-MX-104',
'status': 'OK',
'up_time': '25 days, 8 hours, 23 minutes, 55 seconds'},
Lo
>>> dev.close()
>>> quit()

The following video presents a short Python session that demonstrates how to use Junos PyEZ to
connect to and retrieve facts from a Junos device.

Change History Table

Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release = Description

2.1.0 Starting in Junos PyEZ Release 2.1.0, device facts are gathered on demand for all connection types.

2.0.0 Starting in Junos PyEZ Release 2.0.0, exceptions that occur when gathering facts raise a warning instead
of an error, which enables the script to continue running.

Connect to Junos Devices Using Junos PyEZ | 24
Authenticate Junos PyEZ Users | 41

Troubleshoot Junos PyEZ Connection Errors | 334

https://www.youtube.com/embed/71n2DhB7yeM
https://apps.juniper.net/feature-explorer/

Use Junos PyEZ to Access the Shell on Junos
Devices

SUMMARY IN THIS SECTION

Use Junos PyEZ to connect to the shell on Junos StartShell Overview | 56
devices and execute commands.

Execute Commands from the Shell | 57
How to Specify the Shell Type | 58
How to Specify a Timeout | 59

How to Stagger Command Execution | 59

Execute Nonreturning Shell Commands | 60

StartShell Overview

The Junos CLI has many operational mode commands that return information that is similar to the
information returned by many shell commands. Thus, access to the UNIX-level shell on Junos devices
usually is not required. However in some cases, a user or application might need to access the shell and
execute shell commands or execute CLI commands from the shell.

The Junos PyEZ jnpr.junos.utils.start_shell module defines the StartShell class, which enables Junos
PyEZ applications to initiate an SSH connection to a Junos device and access the shell. The StartShell
methods enable the application to then execute commands over the connection and retrieve the
response.

The StartShell open() and close() methods establish and terminate an SSH connection with the device. As
a result, if the client application requires access to just the shell, it can omit the calls to the Device open()
and close() methods.

In Junos PyEZ Release 2.6.7 and earlier, the StartShell instance connects to the default SSH port 22.
Starting in Junos PyEZ Release 2.6.8, the StartShell instance connects to the same port that is defined in
the Device instance, except in the following cases, where the shell connection still uses port 22:

e Device host is set to 'localhost'

e Device port is set to 830.

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#module-jnpr.junos.utils.start_shell
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.start_shell.StartShell

e Device port is undefined.

Execute Commands from the Shell

The StartShell run() method executes a shell command and waits for the response. By default, the
method waits for one of the default shell prompts (%, #, >, or $) before returning the command output.
Alternatively, you can set the this="s¢ring" argument to a specific string, and the method waits for the
expected string or pattern before returning the command output.

The return value is a tuple. The first item is True if the exit code is 0, and False otherwise. The second
item is the output of the command.

The following example connects to a host and executes two operational mode commands from the shell.
The script first executes the request support information command and saves the output to a file. The script
then executes the show version command, stores the output in the version variable, and then prints the
contents of the variable.

from jnpr.junos import Device
from jnpr.junos.utils.start_shell import StartShell

dev = Device(host='router1.example.net")

ss = StartShell(dev)

ss.open()

ss.run('cli -c "request support information | save /var/tmp/information.txt"')
version = ss.run('cli -c "show version"')

print (version)

ss.close()

The returned tuple includes the Boolean corresponding to the exit code for the command and the
command output for the show version command. The output in this example is truncated for brevity.

(False, '\r \rHostname: router1\r\nModel: mx104\r\nJunos: 17.1R8\r\nJUNOS Base 0S
boot [17.1R1.81\r\n ...)

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.start_shell.StartShell.run

Instances of the StartShell class can also be used as context managers. In this case, you do not need to
explicitly call the StartShell open() and close() methods. For example:

from jnpr.junos import Device
from jnpr.junos.utils.start_shell import StartShell

dev = Device(host='router1.example.net")

with StartShell(dev) as ss:
ss.run('cli -c "request support information | save /var/tmp/information.txt"')
version = ss.run('cli -c "show version"')

print (version)

How to Specify the Shell Type

Starting in Junos PyEZ Release 2.6.4, StartShell supports the shell_type argument within remote scripts to
specify the shell type. StartShell supports the following shell types:

e C Shell (csh)
e Bourne-style shell (ash)

By default, StartShell instances are type C Shell (csh). You can also specify shell_type="sh" to start a
Bourne-style shell (ash). For example:

from jnpr.junos import Device
from jnpr.junos.utils.start_shell import StartShell

dev = Device(host='router1.example.net')
with StartShell(dev, shell_type="sh") as ss:

version = ss.run('cli -c "show version"')

print (version)

How to Specify a Timeout

You can include the StartShell timeout argument to specify the duration of time in seconds that the utility
must wait for the expected string or pattern before timing out. If you do not specify a timeout, the
default is 30 seconds.

The expected string is the value defined in the this argument. If you do not define this, the expected
string is one of the default shell prompts. If you instead set the special value this=None, the device waits
for the duration of the timeout before capturing the command output, as described in "Execute
Nonreturning Shell Commands" on page 60.

from jnpr.junos import Device
from jnpr.junos.utils.start_shell import StartShell

dev = Device(host='router1.example.net')

with StartShell(dev) as ss:
ss.run('cli -c "request support information | save /var/tmp/information.txt"', timeout=60)
version = ss.run('cli -c "show version"')

print (version)

How to Stagger Command Execution

At times, you might want to execute or loop multiple calls to the run() method. To help stabilize the
output, you can specify the sleep argument. The sleep argument instructs the device to wait for the
specified number of seconds before receiving data from the buffer. You can define sleep as a floating
point number for sub-second precision.

from jnpr.junos import Device
from jnpr.junos.utils.start_shell import StartShell

dev = Device(host='router1.example.net')

tables = ['inet.0', 'inet.6']
with StartShell(dev) as ss:
for table in tables:

command = 'cli -c "show route table ' + table + '"'

rsp = ss.run(command, sleep=5)

pprint (rsp)

Execute Nonreturning Shell Commands

In certain cases, you might need to execute nonreturning shell commands, such as the monitor traffic
command, which displays traffic that originates or terminates on the local Routing Engine. In the Junos
CLI, the monitor traffic command displays the information in real time until the user sends a Ctrl+c
keyboard sequence to stop the packet capture.

You can execute nonreturning shell commands using the StartShell run() method by including the
argument this=None. When you include the this=None argument, the method waits until the specified
timeout value to retrieve and return all command output from the shell. In this case, the first item of the
returned tuple is True when the result of the executed shell command returns content, and the second
item is the command output. If you omit the this argument or set it equal to a specific string or pattern,
the method might return partial output for a nonreturning command if it encounters a default prompt or
the specified string pattern within the command output.

The following sample code executes the monitor traffic interface fxpé command, waits for 15 seconds,
and then retrieves and returns the command output.

from jnpr.junos import Device
from jnpr.junos.utils.start_shell import StartShell
from pprint import pprint

dev = Device(host='router1.example.net')

with StartShell(dev) as ss:
pprint(ss.run('cli -c "monitor traffic interface fxp@"', this=None, timeout=15))

Change History Table

Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release = Description

2.6.8 Starting in Junos PyEZ Release 2.6.8, the StartShell instance connects to the same port that is defined in

the Device instance, except when the host is set to localhost or the port is 830 or undefined.

https://apps.juniper.net/feature-explorer/

RELATED DOCUMENTATION
Use Junos PyEZ to Execute RPCs on Junos Devices | 63

Connect to Junos Devices Using Junos PyEZ | 24

61

CHAPTER

Use Junos PyEZ to Manage Device

Operations

IN THIS CHAPTER

Use Junos PyEZ to Execute RPCs on Junos Devices | 63

Suppress RpcError Exceptions Raised for Warnings in Junos PyEZ
Applications | 72

Use Junos PyEZ to Halt, Reboot, or Shut Down Junos Devices | 74
Use Junos PyEZ to Install Software on Junos Devices | 81

Use Junos PyEZ to Perform File System Operations | 102

Transfer Files Using Junos PyEZ | 110

Specify the XML Parser for a Junos PyEZ Session | 114

Use Junos PyEZ to Execute RPCs on Junos Devices

SUMMARY IN THIS SECTION

Map Junos OS Commands to Junos PyEZ
RPCs | 63

Use the Device rpc property to execute operational
RPCs on Junos devices.

Execute RPCs as a Property of the Device
Instance | 64

Specify the Format of the RPC Qutput | 66
Specify the Scope of Data to Return | 68
Specify the RPC Timeout | 69

Normalize the XML RPC Reply | 69

You can use Junos PyEZ to execute remote procedure calls (RPCs) on demand on Junos devices. After
creating an instance of the Device class, you can execute RPCs as a property of the Device instance. You
can perform most of the same operational commands using Junos PyEZ that you can execute in the CLI.

The Junos XML APl is an XML representation of Junos OS configuration statements and operational
mode commands. It defines an XML equivalent for all statements in the Junos OS configuration
hierarchy and many of the commands that you issue in CLI operational mode. Each operational mode
command with a Junos XML counterpart maps to a request tag element and, if necessary, a response tag
element. Request tags are used in RPCs within NETCONF or Junos XML protocol sessions to request
information from a Junos device. The server returns the response using Junos XML elements enclosed
within the response tag element.

When you use Junos PyEZ to execute RPCs, you map the request tag name to a method name. This
topic outlines how to map CLI commands to Junos PyEZ RPCs, how to execute RPCs using Junos PyEZ,
and how to customize the data returned in the RPC reply.

Map Junos OS Commands to Junos PyEZ RPCs

All operational commands that have Junos XML counterparts are listed in the Junos XML API Explorer.
You can also display the Junos XML request tag element for any operational mode command that has a
Junos XML counterpart either on the CLI or using Junos PyEZ. Once you obtain the request tag, you can
map it to the Junos PyEZ RPC method name.

https://apps.juniper.net/xmlapi/operational/

To display the Junos XML request tag for a command in the CLI, include the | display xml rpc option after
the command. The following example displays the request tag for the show route command:

user@router> show route | display xml rpc
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/15.1R1/junos">
<rpc>
<get-route-information>
</get-route-information>
</rpc>
</rpc-reply>

You can also display the Junos XML request tag for a command using Junos PyEZ. To display the request

tag, call the Device instance display_xml_rpc() method, and include the command string and format="text" as
arguments. For example:

from jnpr.junos import Device

with Device(host='router.example.com') as dev:

print (dev.display_xml_rpc('show route', format='text'))

Executing the program returns the request tag for the show route command.

<get-route-information>
</get-route-information>

You can map the request tags for an operational command to a Junos PyEZ RPC method name. To
derive the RPC method name, replace any hyphens in the request tag with underscores (_) and remove
the enclosing angle brackets. For example, the <get-route-information> request tag maps to the
get_route_information() method name.

Execute RPCs as a Property of the Device Instance

Each instance of Device has an rpc property that enables you to execute any RPC available through the
Junos XML APL. In a Junos PyEZ application, after establishing a connection with the device, you can

execute the RPC by appending the rpc property and RPC method name to the device instance as shown
in the following example:

from jnpr.junos import Device
from 1xml import etree

with Device(host="dcla.example.com') as dev:
#invoke the RPC equivalent to "show version"
sw = dev.rpc.get_software_information()

print(etree.tostring(sw, encoding="unicode'))

The return value is an XML object starting at the first element under the <rpc-reply> tag. In this case, the
get_software_information() RPC returns the <software-information> element.

<software-information>
<host-name>dc1a</host-name>

</software-information>

Junos OS commands can have fixed-form options that do not have a value. For example, the Junos XML
equivalent for the show interfaces terse command indicates that terse is an empty element.

user@router> show interfaces terse | display xml rpc
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/14.1R1/junos">
<rpc>
<get-interface-information>
<terse/>
</get-interface-information>
</rpc>
</rpc-reply>

To execute an RPC and include a command option that does not take a value, add the option to the RPC

method’s argument list, change any dashes in the option name to underscores, and set it equal to True.
The following code executes the Junos PyEZ RPC equivalent of the show interfaces terse command:

rsp = dev.rpc.get_interface_information(terse=True)

Junos OS commands can also have options that require a value. For example, in the following output,
the interface-name element requires a value, which is the name of the interface for which you want to
return information:

user@router> show interfaces ge-0/0/0 | display xml rpc
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/14.1R1/junos">
<rpc>
<get-interface-information>
<interface-name>ge-0/0/0</interface-name>
</get-interface-information>
</rpc>
</rpc-reply>

To execute an RPC and include a command option that requires a value, add the option to the RPC
method’s argument list, change any dashes in the option name to underscores, and then set it equal to

the appropriate value. The following example executes the Junos PyEZ RPC equivalent of the show
interfaces ge-0/6/0 command:

rsp = dev.rpc.get_interface_information(interface_name='ge-0/0/0")

Specify the Format of the RPC Output

By default, the RPC return value is an XML object starting at the first element under the <rpc-reply> tag.
You can also return the RPC output in text or JavaScript Object Notation (JSON) format by including
either the {'format': 'text'} or {'format':'json'} dictionary as the RPC method’s first argument.

@ NOTE: RPC output in JSON format is supported starting in Junos OS Release 14.2R1.

The following example returns the output of the get_software_information() RPC in text format, which is
identical to the output emitted for the show version command in the CLI, except that the RPC output is
enclosed within an <output> element.

from jnpr.junos import Device
from 1xml import etree

with Device(host="'router1.example.com') as dev:

sw_info_text = dev.rpc.get_software_information({'format':'text'})

print(etree.tostring(sw_info_text))

user@server:~$ python3 junos-pyez-rpc-text-format.py

<output>

Hostname: router

Model: mx104

Junos: 18.3R1.9

JUNOS Base 0S boot [18.3R1.9]

JUNOS Base 0S Software Suite [18.3R1.9]

JUNOS Crypto Software Suite [18.3R1.9]

JUNOS Packet Forwarding Engine Support (TRIO) [18.3R1.9]
JUNOS Web Management [18.3R1.9]

JUNOS Online Documentation [18.3R1.9]

JUNOS SDN Software Suite [18.3R1.9]

JUNOS Services Application Level Gateways [18.3R1.9]
JUNOS Services COS [18.3R1.9]

JUNOS Services Jflow Container package [18.3R1.9]
JUNOS Services Stateful Firewall [18.3R1.9]

JUNOS Services NAT [18.3R1.9]

JUNOS Services RPM [18.3R1.9]

JUNOS Services Captive Portal and Content Delivery Container package [18.3R1.9]
JUNOS Macsec Software Suite [18.3R1.9]

JUNOS Services Crypto [18.3R1.9]

JUNOS Services IPSec [18.3R1.9]

JUNOS DP Crypto Software Software Suite [18.3R1.9]
JUNOS py-base-powerpc [18.3R1.9]

JUNOS py-extensions-powerpc [18.3R1.9]

JUNOS jsd [powerpc-18.3R1.9-jet-1]

JUNOS Kernel Software Suite [18.3R1.9]

JUNOS Routing Software Suite [18.3R1.9]

<output>

The following example returns the output of the get_software_information() RPC in JSON format.

from jnpr.junos import Device

from pprint import pprint

with Device(host="'router1.example.com') as dev:

sw_info_json = dev.rpc.get_software_information({'format':'json'})
pprint(sw_info_json)

user@server:~$ python3 junos-pyez-rpc-json-format.py
{u'software-information': [{u'host-name': [{u'data': u'router1'}],
u'junos-version': [{u'data': u'18.3R1.9'}],
u'package-information': [{u'comment': [{u'data': u'JUNOS Base 0S
boot [18.3R1.91'}1,
u'name': [{u'data': u'junos'}1},
{u'comment': [{u'data': u'JUNOS Base 0S
Software Suite [18.3R1.9]'}],

u'name': [{u'data': u'jbase'}]},

Specify the Scope of Data to Return

You can use Junos PyEZ to execute an RPC to retrieve operational information from Junos devices.
Starting in Junos PyEZ Release 2.3.0, when you request XML output, you can filter the reply to return
only specific elements. Filtering the output is beneficial when you have extensive operational output,
but you only need to work with a subset of the data.

To filter the RPC reply to return only specific tags, include the RPC method’s filter_xml argument. The
filter_xml parameter takes a string containing the subtree filter that selects the elements to return. The
subtree filter returns the data that matches the selection criteria.

The following Junos PyEZ example executes the <get-interface-information> RPC and filters the output to
retrieve just the <name> element for each <physical-interface> element in the reply:

from jnpr.junos import Device
from 1xml import etree

with Device(host="'router.example.com', use_filter=True) as dev:

filter = '<interface-information><physical-interface><name/></physical-interface></interface-
information>'

result = dev.rpc.get_interface_information(filter_xml=filter)

print (etree.tostring(result, encoding='unicode'))

When you execute the script, it displays each physical interface’s name element.

user@server:~$ python3 junos-pyez-get-interface-names.py
<interface-information style="normal"><physical-interface><name>
1c-0/0/0
</name></physical-interface><physical-interface><name>
pfe-0/0/0
</name></physical-interface><physical-interface><name>
pfh-0/0/0
</name></physical-interface><physical-interface><name>
xe-0/0/0
</name></physical-interface><physical-interface><name>
xe-0/1/0
</name></physical-interface><physical-interface><name>
ge-1/0/0

</name></physical-interface>

</interface-information>

Specify the RPC Timeout

RPC execution time can vary considerably depending on the RPC and the device. By default, NETCONF
RPCs time out after 30 seconds. You can extend the timeout value by including the dev_timeout=seconds
argument when you execute the RPC to ensure that the RPC does not time out during execution.
dev_timeout adjusts the device timeout only for that single RPC operation.

dev.rpc.get_route_information(table="inet.0', dev_timeout=55)

Normalize the XML RPC Reply

When you execute an RPC, the RPC reply can include data that is wrapped in newlines or contains other
superfluous whitespace. Unnecessary whitespace can make it difficult to parse the XML and find
information using text-based searches. You can normalize an RPC reply, which strips out all leading and
trailing whitespace and replaces sequences of internal whitespace characters with a single space.

Table 7 on page 70 compares a default RPC reply to the normalized version. The default RPC reply
includes many newlines that are not present in the normalized reply.

Table 7: Comparison of a Default and Normalized RPC Reply

Default RPC Reply

<interface-information style="terse">
<logical-interface>

<name>\nge-0/0/0.0\n</name>
<admin-status>\nup\n</admin-status>
<oper-status>\nup\n</oper-status>
<filter-information>\n</filter-information>
<address-family>
<address-family-name>\ninet\n</address-family-name>
<interface-address>

<ifa-local emit="emit">\n198.51.100.1/24\n</ifa-
local>

</interface-address>

</address-family>

</logical-interface>

</interface-information>

Normalized RPC Reply

<interface-information style="terse">
<logical-interface>

<name>ge-0/0/0.0</name>
<admin-status>up</admin-status>
<oper-status>up</oper-status>
<filter-information/>

<address-family>
<address-family-name>inet</address-family-name>
<interface-address>

<ifa-local emit="emit">198.51.100.1/24</ifa-local>
</interface-address>

</address-family>

</logical-interface>

</interface-information>

You can enable normalization for the duration of a session with a device, or you can normalize an
individual RPC reply when you execute the RPC. To enable normalization for the entire device session,

include normalize=True in the argument list either when you create the device instance or when you

connect to the device using the open() method.

dev = Device(host='router1.example.com', user='root', normalize=True)

or

dev.open(normalize=True)

To normalize an individual RPC reply, include normalize=True in the argument list for that RPC method.

dev.rpc. rpoc_method(normalize=True)

71

For example:

rsp = dev.rpc.get_interface_information(interface_name='ge-0/0/0.0", terse=True, normalize=True)

If you do not normalize the RPC reply, you must account for any whitespace when using XPath
expressions that reference a specific node or value. The following example selects the IPv4 address for a
logical interface. In the XPath expression, the predicate specifying the inet family must account for the
additional whitespace in order for the search to succeed. The resulting value includes leading and trailing
newlines.

rsp = dev.rpc.get_interface_information(interface_name="'ge-0/0/0.0", terse=True)

print (rsp.xpath('.// \
address-family[normalize-space(address-family-name)="inet"]/ \
interface-address/ifa-local')[0]. text)

'\n198.51.100.1/24\n'

When you normalize the RPC reply, any leading and trailing whitespace is removed, which makes text-
based searches much more straightforward.

rsp = dev.rpc.get_interface_information(interface_name='ge-0/0/0.0', terse=True, normalize=True)
print (rsp.xpath('.//address-family[address-family-name="inet"1/ \
interface-address/ifa-local')[0].text)

'198.51.100.1/24'

RELATED DOCUMENTATION

Suppress RpcError Exceptions Raised for Warnings in Junos PyEZ Applications | 72
Use Junos PyEZ to Access the Shell on Junos Devices | 56

Use Junos PyEZ to Retrieve Facts from Junos Devices | 50

Suppress RpcError Exceptions Raised for Warnings
in Junos PyEZ Applications

SUMMARY

For certain operations in a Junos PyEZ application, you can suppress RpcError exceptions that are
raised in response to <rpc-error> elements that have a severity of warning.

Junos PyEZ enables you to perform operational and configuration tasks on Junos devices. In a Junos
PyEZ application, when you call specific methods or execute on-demand RPCs, Junos PyEZ sends the
appropriate RPCs to the device to perform the operation or retrieve the requested information. If the
RPC reply contains <rpc-error> elements with a severity of warning or higher, the Junos PyEZ application
raises an RpcError exception.

In certain cases, it might be necessary or desirable to suppress the RpcError exceptions that are raised in
response to warnings. You can instruct a Junos PyEZ application to suppress RpcError exceptions that are
raised for warnings by including the ignore_warning argument in the method call or RPC invocation. The
ignore_warning argument takes a Boolean, a string, or a list of strings. You can instruct the device to ignore
all warnings or one or more specific warnings.

You can use the ignore_warning argument in the following jnpr.junos.utils.config.Config class methods:

commit()

diff()

load()

pdiff ()

rollback()

You can also use ignore_warning when you retrieve the configuration and state data with the get() RPC.

Ignore All Warnings

To instruct the application to ignore all warnings for an operation or RPC, include the ignore_warning=True
argument in the method call or RPC invocation. The following example ignores all warnings for the load()
and commit() methods:

from jnpr.junos import Device
from jnpr.junos.utils.config import Config

dev = Device(host='router1.example.com')

dev.open()

with Config(dev, mode='exclusive') as cu:
cu.load(path="mx-config.conf', ignore_warning=True)

cu.commit(ignore_warning=True)

data = dev.rpc.get_configuration()
print(etree.tostring(data, encoding='unicode'))

dev.close()

If you include ignore_warning=True and all of the <rpc-error> elements have a severity of warning, the
application ignores all warnings and does not raise an RpcError exception. However, any <rpc-error>
elements with higher severity levels will still raise exceptions.

Ignore Specific Warnings

To instruct the application to ignore specific warnings, set the ignore_warning argument to a string or a list
of strings containing the warnings to ignore. When ignore_warning is set to a string or list of strings, the
string is used as a case-insensitive regular expression. If a string contains only alphanumeric characters,
it results in a case-insensitive substring match. However, you can include any regular expression pattern
supported by the re library to match warnings.

The following Junos PyEZ application ignores two specific warnings during the commit operation. The
application suppresses RpcError exceptions if all of the <rpc-error> elements have a severity of warning
and each warning in the response matches one or more of the specified strings.

from jnpr.junos import Device

from jnpr.junos.utils.config import Config

commit_warnings = ['Advertisement-interval is less than four times',

'Chassis configuration for network services has been changed.']

dev = Device(host='router1.example.com')

dev.open()
with Config(dev, mode='exclusive') as cu:
cu.load(path="mx-config.conf")

cu.commit(ignore_warning=commit_warnings)

dev.close()

Use Junos PyEZ to Execute RPCs on Junos Devices | 63

Troubleshoot Junos PyEZ Errors When Configuring Junos Devices | 339

Use Junos PyEZ to Halt, Reboot, or Shut Down
Junos Devices

SUMMARY IN THIS SECTION
Use Junos PyEZ to halt, reboot, or shut down Junos Perform a System Halt, Reboot, or Shut
devices, either immediately or at a specific time. Down | 74

How to Halt, Reboot, or Shut Down the
System with a Delay or at a Specified
Time | 77

How to Specify the Target Routing Engines,
Nodes, or Virtual Chassis Members | 78

How to Reboot a VM Host | 80

Perform a System Halt, Reboot, or Shut Down

The Junos PyEZ jnpr.junos.utils.sw.SW utility provides methods that enable you to perform the following
operations on Junos devices:

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#module-jnpr.junos.utils.sw

¢ An immediate system halt, reboot, or shutdown
e A halt, reboot, or shutdown operation with an optional delay
e A halt, reboot, or shutdown operation scheduled at a specific date and time

Table 8 on page 75 outlines the available methods. By default, the methods immediately execute the
requested operation on all Routing Engines or nodes in the setup. You can include additional arguments
to execute the operation at a later time as well as specify the affected Routing Engines or nodes.

Table 8: Junos PyEZ Halt, Reboot, and Power Off Methods

Method Description

halt() Gracefully shut down the Junos OS software but maintain system power
poweroff() Gracefully shut down the Junos OS software and power off the Routing Engines
reboot () Reboot the Junos OS software

@ NOTE: Starting in Junos PyEZ Release 2.1.0, the reboot() and poweroff() methods perform
the requested operation on all Routing Engines in a dual Routing Engine or Virtual
Chassis setup. In earlier releases, the methods perform the operation only on the
Routing Engine to which the application is connected.

@ NOTE: If a Junos PyEZ application reboots a device from a NETCONF-over-SSH session
or from a Telnet session through the management interface, the application loses
connectivity to the device when it reboots. If the application requires access to the
device after the reboot, it must issue the Junos PyEZ open() method to restore

connectivity.

The following Junos PyEZ application establishes a NETCONF session over SSH with a Junos device and
reboots all Routing Engines, effective immediately.

#Python 3

from jnpr.junos import Device

from jnpr.junos.utils.sw import SW

from jnpr.junos.exception import ConnectError

from getpass import getpass

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.sw.SW.halt
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.sw.SW.poweroff
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.sw.SW.reboot

hostname = input("Device hostname: ")

username = input("Device username: ")

password = getpass("Device password: ")

try:
with Device(host=hostname, user=username, passwd=password) as dev:
sw = SW(dev)
print(sw.reboot())
except ConnectError as err:
print (err)

The application prompts for the device hostname and user credentials. After requesting the system
reboot, the application displays the reboot message and the process ID for the process on the
connected Routing Engine.

userl@server:~$ python3 junos-pyez-reboot.py
Device hostname: dcla.example.com

Device username: userl

Device password:

Shutdown NOW!

[pid 2358]

The following Junos PyEZ example shuts down all Routing Engines on the device, effective immediately.

#Python 3

from jnpr.junos import Device

from jnpr.junos.utils.sw import SW

from jnpr.junos.exception import ConnectError

from getpass import getpass

hostname = input("Device hostname: ")
username = input("Device username: ")

password = getpass("Device password: ")

try:
with Device(host=hostname, user=username, passwd=password) as dev:
sw = SW(dev)
print(sw.poweroff())
except ConnectError as err:

print (err)

How to Halt, Reboot, or Shut Down the System with a Delay or at a
Specified Time

By default, the halt(), reboot(), and poweroff() methods immediately execute the requested operation. You
can also delay the operation or schedule it at a particular date and time.

To delay the operation by a specified number of minutes, set the optional in_min parameter to the
amount of time in minutes that the system should wait before executing the operation. The following
example requests a reboot of all Routing Engines in 2 minutes:

from jnpr.junos import Device

from jnpr.junos.utils.sw import SW

with Device(host="dcla.example.com') as dev:
sw = SW(dev)

sw. reboot(in_min=2)

The target device issues messages about the impending reboot to any users logged into the system.
After the specified amount of time has passed, the system reboots.

*%% System shutdown message from userl@dcla ***
System going down in 2 minutes

To schedule the operation at a specific time, include the at parameter, which takes a string that can be
specified in one of the following ways:

¢ now—Immediately initiate the halt, reboot, or shut down of the software.
o +minutes—Number of minutes from now when the requested operation is initiated.

o yymmaahhmm—Absolute time at which to perform the operation, specified as year, month, day, hour, and
minute.

o ph:mm—Absolute time on the current day at which to perform the operation, specified in 24-hour time.

The following example schedules a system reboot of all Routing Engines at 22:30 on the current day:

from jnpr.junos import Device

from jnpr.junos.utils.sw import SW

with Device(host="dcla.example.com') as dev:

sw = SW(dev)
sw.reboot(at='22:30")

Similarly, the following example schedules all Routing Engines to power off at 22:30 on the current day:

from jnpr.junos import Device

from jnpr.junos.utils.sw import SW

with Device(host="dcla.example.com') as dev:
sw = SW(dev)
sw.poweroff(at='22:30")

How to Specify the Target Routing Engines, Nodes, or Virtual Chassis
Members

By default, the halt(), reboot(), and poweroff() methods perform the requested operation on all Routing
Engines in a dual Routing Engine or Virtual Chassis setup, on all nodes on devices running Junos OS
Evolved, and on all members of a Virtual Chassis. You can also perform the operation on specific Routing
Engines, nodes, or Virtual Chassis members.

To specify the target Routing Engines, you use the all_re and other_re parameters. Table 9 on page 78
summarizes the all_re and other_re values that are required to execute the requested operation on
specific Routing Engines.

Table 9: Parameters to Specify the Target Routing Engines

Affected Routing Engines all_re Parameter other_re Parameter
All Routing Engines (default) Omit or set to True = -

Only the connected Routing Engine Set to False -

All Routing Engines except the Routing Engine to which the - Set to True

application is connected

To explicitly indicate that the operation should be performed on all Routing Engines in a dual Routing
Engine or Virtual Chassis setup, include the all_re=True argument, which is the default.

from jnpr.junos import Device
from jnpr.junos.utils.sw import SW

with Device(host="dcla.example.com') as dev:
sw = SW(dev)
sw.reboot(all_re=True)

To perform the requested operation on only the Routing Engine to which the application is connected,
include the all_re=False argument.

from jnpr.junos import Device
from jnpr.junos.utils.sw import SW

with Device(host="dcla.example.com') as dev:
sw = SW(dev)
sw.reboot(all_re=False)

To perform the requested operation on all Routing Engines in the system except for the Routing Engine
to which the application is connected, include the other_re=True argument.

from jnpr.junos import Device
from jnpr.junos.utils.sw import SW

with Device(host="dcla.example.com') as dev:
sw = SW(dev)
sw. reboot(other_re=True)

To reboot or shut down a specific node of a device running Junos OS Evolved, include the on_node
argument, and specify the node. For example:

from jnpr.junos import Device

from jnpr.junos.utils.sw import SW

with Device(host="'router1.example.com') as dev:
sw = SW(dev)
sw. reboot(on_node="red")

To reboot or shut down specific members in a Virtual Chassis, set the member_id argument to a list of
strings of the member IDs on which to perform the operation.

from jnpr.junos import Device
from jnpr.junos.utils.sw import SW

with Device(host="switch1.example.com') as dev:
sw = SW(dev)
sw.reboot(all_re=False, member_id=['0', '1'1)

How to Reboot a VM Host

On devices that have Routing Engines with VM host support, Junos OS runs as a virtual machine (VM)
over a Linux-based host (VM host). The Junos PyEZ reboot() method supports the vmhost argument, which
enables you to reboot a VM Host. When you include the vmhost=True argument, the system reboots the
host OS and compatible Junos OS on all Routing Engines by executing the <request-vmhost-reboot> RPC,
which corresponds to the request vmhost reboot operational mode command.

The following example reboots the Routing Engines on the VM Host, which reboots both the guest
Junos OS and the host OS.

from jnpr.junos import Device
from jnpr.junos.utils.sw import SW

with Device(host="switchl.example.net') as dev:
sw = SW(dev)
sw. reboot(vmhost=True)

Change History Table

Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release = Description

210 Starting in Junos PyEZ Release 2.1.0, the reboot() and poweroff() methods perform the requested
operation on all Routing Engines in a dual Routing Engine or Virtual Chassis setup.

https://apps.juniper.net/feature-explorer/

‘ Use Junos PyEZ to Install Software on Junos Devices | 81

Use Junos PyEZ to Install Software on Junos Devices

IN THIS SECTION

Supported Deployment Scenarios | 81

How to Specify the Software Image Location | 82

Installation Process Overview | 84

How to Specify Installation and Checksum Timeouts | 86

How to Log the Installation Process | 86

How to Perform a VM Host Upgrade | 88

How to Perform a Unified ISSU or NSSU | 89

How to Install Software on an EX Series Virtual Chassis Member | 90

Example: Use Junos PyEZ to Install Software on a Junos Device | 92

The Junos PyEZ jnpr.junos.utils.sw.SW utility enables you to install or upgrade the software image on
Junos devices. The install() method installs the specified software package.

This topic discusses the supported deployment scenarios, how to specify the software image location,
and the general installation process and options when using Junos PyEZ to upgrade a device. It also
discusses how to use Junos PyEZ to perform more specialized upgrade scenarios such as a VM host
upgrade, a unified in-service software upgrade (unified ISSU), or a nonstop software upgrade (NSSU) on
devices that support these features.

Supported Deployment Scenarios

The Junos PyEZ jnpr.junos.utils.sw.SW utility enables you to install or upgrade the software image on an
individual Junos device or on the members in a mixed or non-mixed Virtual Chassis. The following
scenarios are supported:

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.sw.SW
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.sw.SW.install
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.sw.SW

e Standalone devices with a single Routing Engine

e Standalone devices equipped with dual Routing Engines

o EX Series Virtual Chassis in mixed and non-mixed-mode configurations
e QFX Series Virtual Chassis in mixed and non-mixed-mode configurations
e Mixed EX Series and QFX Series Virtual Chassis

e VM host upgrades on Routing Engines with VM Host Support

e Deployment configurations that have some form of /n-service features enabled, such as unified ISSU
or NSSU

@ NOTE: Starting in Junos PyEZ Release 2.6.8, you can use the member_id argument to install
a package on a specific member of an EX Series Virtual Chassis.

@ NOTE: The jnpr.junos.utils.sw.SW utility does not support upgrading devices in an MX
Series Virtual Chassis, an SRX Series chassis cluster, or a Virtual Chassis Fabric (VCF).

How to Specify the Software Image Location

When you use Junos PyEZ to install software on Junos devices, you can download the software image to
the configuration management server, and the install() method, by default, copies it to the target device
before performing the installation. You can also instruct the install() method to install an image that
already resides on the target device or resides at a URL that is reachable from the target device.

Table 10 on page 83 outlines the install() method parameters that you must set depending on the
software package location. You must always include either the package or pkg_set parameter in the
install() method invocation.

Table 10: install() Method Parameter Settings for Software Package Location

Software Package
Location

Configuration
management
server

Target device

URL

no_copy
Parameter

Omit or set to
False

Set to True

package or pkg_set Parameter

File path including the filename of
the software package or packages
on the local server running Junos
PyEZ.

Filename of the software package
or packages.

URL from the perspective of the
target Junos device from which
the software package is installed.

remote_path Parameter

(Optional) Path to the directory
on the target device to which the
package or packages will be
copied. Default is /var/tmp.

(Optional) Path to the directory
on the target device where the
package or packages must
already reside. Default is /var/
tmp.

The package argument is used to install software on a single Junos device or on members in a non-mixed

Virtual Chassis. The package argument is a string that specifies a single software image. For example:

package = 'jinstall-13.3R1.8-domestic-signed.tgz'

The pkg_set argument is used to install software on the members in a mixed Virtual Chassis. It contains a

list or tuple of strings that specify the necessary software images, in no particular order, for the various

Virtual Chassis members. For example:

pkg_set=['jinstall-qfx-5-13.2X51-D35.3-domestic-signed.tgz"', 'jinstall-ex-4300-13.2X51-D35.3-

domestic-signed.tgz']

For packages residing on the local server running Junos PyEZ, when you omit the no_copy argument or set
it to False, the server copies the specified software package to the device. Including the package argument
causes the server to copy the package to the target device (individual device or primary router or switch
in a non-mixed Virtual Chassis), and including the pkg_set argument causes the server to copy all
packages in the list to the primary router or switch in a mixed Virtual Chassis. By default, software
images are placed in the /var/tmp directory unless the remote_path argument specifies a different
directory.

If you set the no_copy argument to True, the necessary software packages must already exist on the target
device or Virtual Chassis primary device before the installation begins. The packages must reside either
in the directory specified by the remote_path argument, or if remote_path is omitted, in the default /var/tmp
directory.

Junos PyEZ also supports installing software images from a URL. In this case, the package or pkg_set value
must be a URL from the perspective of the target Junos device. The package is copied over and installed
from the specified URL, and the no-copy and remote_path arguments are ignored. For information about
specifying the format of the URL, see Format for Specifying Filenames and URLs in Junos OS CLI
Commands.

Installation Process Overview

To install a software image on a Junos device, a Junos PyEZ application connects to the individual device
or to the primary device in a Virtual Chassis, creates an instance of the SW utility, and calls the install()
method with any required or optional arguments. For example:

from jnpr.junos import Device
from jnpr.junos.utils.sw import SW

pkg = 'junos-install-mx-x86-64-17.2R1.13.tgz’

with Device(host='router1.example.net') as dev:
sw = SW(dev)

In Junos PyEZ Release 2.4.1 and earlier, install() returns a Boolean

ok = sw.install(package=pkg, validate=True, checksum_algorithm="'sha256")

In Junos PyEZ Release 2.5.0 and later, install() returns a tuple
ok, msg = sw.install(package=pkg, validate=True, checksum_algorithm="'sha256"')

print("Status: " + str(ok) + ", Message: " + msg)
if ok:

sw. reboot ()

For the current list of install() method parameters, see install().

If the software package is located on the configuration management server, and the no_copy parameter is
omitted or set to False, the install() method performs the following operations before installing the
software:

https://www.juniper.net/documentation/us/en/software/junos/junos-overview/topics/concept/junos-software-formats-filenames-urls.html
https://www.juniper.net/documentation/us/en/software/junos/junos-overview/topics/concept/junos-software-formats-filenames-urls.html
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.sw.SW.install

e Computes the checksum of the local software package or packages using the algorithm specified in
the checksum_algorithm argument, if the checksum is not already provided through the checksum
argument. Acceptable checksum_algorithm values are "md5", "shal", and "sha256". The default is "md5".

e Performs a storage cleanup on the target device to create space for the software package, unless
cleanfs is set to False.

e SCP or FTP copies the package to the remote_path directory, or if remote_path is not specified, to
the /var/tmp directory, if a file with the same name and checksum does not already reside in the
target location on the device.

e Computes the checksum of the remote file and compares it to the value of the local file.

After the software package is on the target device, whether downloaded there initially, copied over from
the configuration management server by the install() method, or copied from a URL by the target
device, the install() method performs the following operations:

e Validates the configuration against the new package if the validate parameter is set to True

¢ Installs the package on all Routing Engines unless all_re is set to False

@ NOTE: Starting in Release 2.1.5, Junos PyEZ, by default, upgrades all Routing Engines on
individual devices and members in a Virtual Chassis. In earlier releases, or if all_re=False,
Junos PyEZ only upgrades the Routing Engine to which it is connected.

Starting in Junos PyEZ Release 2.5.0, the install() method returns a tuple that contains the status of the
installation and a message string. In earlier releases, the method returns only the status of the
installation. The status is True if the installation is successful and False otherwise. The message string
provides additional information about the success or failure of the installation and can include
informational messages or error messages that are generated by Junos PyEZ or the device. For example:

Package junos-install-mx-x86-64-17.2R1.13.tgz couldn't be copied

The install() method does not automatically reboot the device. To reboot or shut down the device after
the installation is complete, call the reboot() or shutdown() method, respectively.

The following video presents a short Python session that demonstrates how to use Junos PyEZ to install
Junos OS.

https://www.youtube.com/embed/0ejSXQMX3YM

How to Specify Installation and Checksum Timeouts

Junos PyEZ performs operations over a NETCONF session. The default time for a NETCONF RPC to
time out is 30 seconds. During the installation process, Junos PyEZ increases the RPC timeout interval
to 1800 seconds (30 minutes) when copying and installing the package on the device and to 300
seconds (5 minutes) when computing the checksum. In some cases, the installation process or checksum
calculation might exceed these time intervals.

To increase the timeout value for the installation process and the checksum calculation, include the
timeout and checksum_timeout parameters, respectively, in the call to the install() method, and set them to
appropriate values. For example:

from jnpr.junos import Device
from jnpr.junos.utils.sw import SW

pkg = 'junos-install-mx-x86-64-17.2R1.13.tgz"

with Device(host='router1.example.net') as dev:
sw = SW(dev)

Starting in Release 2.5.0, install() returns a tuple instead of a Boolean
ok, msg = sw.install(package=pkg, validate=True, timeout=2400, checksum_timeout=400)
if ok:

sw. reboot ()

How to Log the Installation Process

The Junos PyEZ install process enables you to display or log the progress of the installation by including
the progress argument in the install() method call. The argument is set to a callback function, which must
have a function prototype defined that includes the Device instance and report string arguments. You can
also set progress=True to use sw.progress() for basic reporting.

The following example prints the installation progress using the myprogress function.

from jnpr.junos import Device

from jnpr.junos.utils.sw import SW

def myprogress(dev, report):

print("host: %s, report: %s" % (dev.hostname, report))

pkg = 'junos-install-mx-x86-64-17.2R1.13.tgz'

with Device(host='routerl.example.net') as dev:
sw = SW(dev)

Starting in Release 2.5.0, install() returns a tuple instead of a Boolean
ok, msg = sw.install(package=pkg, validate=True, progress=myprogress)
if ok:

sw. reboot ()

The progress output is in the user-defined format.

user@server:~$ python3 junos-pyez-install.py

Found package. Installing: junos-install-mx-x86-64-17.2R1.13.tgz

host: routerl.example.net, report: computing checksum on local package: junos-install-mx-
x86-64-17.2R1.13.tgz

host: routerl.example.net, report: cleaning filesystem ...

host: routerl.example.net, report: before copy, computing checksum on remote package: /var/tmp/
junos-install-mx-x86-64-17.2R1.13.tgz

host: routerl.example.net, report: junos-install-mx-x86-64-17.2R1.13.tgz: 38682624 / 386795750
(10%)

host: routerl.example.net, report: junos-install-mx-x86-64-17.2R1.13.tgz: 77365248 / 386795750
(20%)

host: routerl.example.net, report: junos-install-mx-x86-64-17.2R1.13.tgz: 116047872 / 386795750
(30%)

host: routerl.example.net, report: junos-install-mx-x86-64-17.2R1.13.tgz: 154730496 / 386795750
(40%)

host: routerl.example.net, report: junos-install-mx-x86-64-17.2R1.13.tgz: 193413120 / 386795750
(50%)

host: routerl.example.net, report: junos-install-mx-x86-64-17.2R1.13.tgz: 232079360 / 386795750
(60%)

host: routerl.example.net, report: junos-install-mx-x86-64-17.2R1.13.tgz: 270761984 / 386795750
(70%)

host: routerl.example.net, report: junos-install-mx-x86-64-17.2R1.13.tgz: 309444608 / 386795750
(80%)

host: routerl.example.net, report: junos-install-mx-x86-64-17.2R1.13.tgz: 348127232 / 386795750
(90%)

host: routerl.example.net, report: junos-install-mx-x86-64-17.2R1.13.tgz: 386795750 / 386795750
(100%)

host: routerl.example.net, report: after copy, computing checksum on remote package: /var/tmp/
junos-install-mx-x86-64-17.2R1.13.tgz

host: routerl.example.net, report: checksum check passed.

host: routerl.example.net, report: installing software ... please be patient ...

host: routerl.example.net, report: software pkgadd package-result: 0

Output:

Installing package '/var/tmp/junos-install-mx-x86-64-17.2R1.13.tgz" ...

How to Perform a VM Host Upgrade

On devices that have Routing Engines with VM host support, Junos OS runs as a virtual machine (VM)
over a Linux-based host (VM host). A VM host upgrade requires a VM Host Installation Package (junos-
vmhost-install-x.tgz) and upgrades the host OS and compatible Junos OS. The upgrade is performed
using the request vmhost software add operational mode command, which corresponds to the <request-
vmhost-package-add> RPC.

Starting in Junos PyEZ Release 2.1.6, the sw.install() method supports the vmhost=True argument for
performing a VM host upgrade. When the vmhost=True argument is present, the sw.install() method
performs the installation using the <request-vmhost-package-add> RPC instead of the <request-package-add>
RPC.

The following example upgrades and reboots both the Junos OS and host OS on a single Routing Engine
device:

from jnpr.junos import Device

from jnpr.junos.utils.sw import SW

with Device(host="'switchl.example.net') as dev:
sw = SW(dev)

Starting in Release 2.5.0, install() returns a tuple instead of a Boolean

ok, msg = sw.install(package="'junos-vmhost-install-qfx-x86-64-18.1R1.9.tgz', vmhost=True,
no_copy=True)

if ok:

sw. reboot (vmhost=True)

To reboot just the Junos OS software, call the sw.reboot() method without the vmhost argument.

How to Perform a Unified ISSU or NSSU

Junos PyEZ provides support for performing a unified in-service software upgrade (unified ISSU) or a
nonstop software upgrade (NSSU) on devices that support the feature and meet the necessary
requirements. Table 11 on page 89 outlines the Junos PyEZ release in which the unified ISSU and

NSSU features are first supported. For more information about unified ISSU and NSSU, see the software

documentation for your product.

Table 11: Junos PyEZ Unified ISSU and NSSU Support

Junos PyEZ Feature Support

Release

2.1.0 Support for unified ISSU and NSSU on dual-Routing Engine Junos devices.

2.1.6 Support for unified ISSU during a VM host upgrade for those devices with VM host support

that use the request vmhost software in-service-upgrade command to perform a unified in-
service software upgrade of the host OS and Junos OS.

The unified ISSU feature enables you to upgrade between two different Junos OS releases with no
disruption on the control plane and with minimal disruption of traffic. To perform a unified in-service
software upgrade on devices that support this feature, include the issu=True argument in the install()
method.

In the the following example, the install() method upgrades Junos OS on both Routing Engines and
reboots the new primary Routing Engine (previously the old backup Routing Engine) as part of the
installation process. If the installation is successful, the reboot() method then reboots the connected
Routing Engine, which is the new backup Routing Engine (previously the old primary Routing Engine).

from jnpr.junos import Device
from jnpr.junos.utils.sw import SW

pkg = 'junos-install-mx-x86-64-17.2R1.13.tgz"
with Device(host='routerl.example.net') as dev:
sw = SW(dev)

Starting in Release 2.5.0, install() returns a tuple instead of a Boolean
ok, msg = sw.install(package=pkg, issu=True, progress=True)
if ok:

sw.reboot(all_re=False)

To perform a unified in-service software upgrade on a Routing Engine with VM host support that meets
the necessary requirements and supports unified ISSU, include the vnhost=True and issu=True arguments in
the install() method. The device upgrades from one host OS and Junos OS release to the requested
release using the <request-vmhost-package-in-service-upgrade> RPC.

sw.install(package="'junos-vmhost-install-qfx-x86-64-18.1R1.9.tgz', vmhost=True, issu=True,

progress=True)

The NSSU feature enables you to upgrade the Junos OS software running on a switch or Virtual Chassis
with redundant Routing Engines with minimal disruption to network traffic. To perform a nonstop
software upgrade on devices that support this feature, include the nssu=True argument in the install()
method. For example:

from jnpr.junos import Device

from jnpr.junos.utils.sw import SW

pkg = 'jinstall-ex-4300-14.1X53-D44.3-domestic-signed.tgz'
with Device(host="'switchl.example.net') as dev:
sw = SW(dev)

Starting in Release 2.5.0, install() returns a tuple instead of a Boolean
ok, msg = sw.install(package=pkg, nssu=True, progress=True)
if ok:

sw.reboot(all_re=False)

How to Install Software on an EX Series Virtual Chassis Member

Generally, when you upgrade a non-mixed EX Series Virtual Chassis, you follow the installation process
outlined in "Installation Process Overview" on page 84 to upgrade the entire Virtual Chassis. However,
there might be times when you need to install software on specific member switches in a Virtual
Chassis. Starting in Junos PyEZ Release 2.6.8, you can install a software package on individual member
switches in an EX Series Virtual Chassis by using the member_id argument. The member_id argument is a list
of strings specifying the member IDs on which to install the software.

For example, the following Junos PyEZ application upgrades the software on member O and member 1
in the EX Series Virtual Chassis:

from jnpr.junos import Device

from jnpr.junos.utils.sw import SW

pkg = 'junos-install-ex-x86-64-23.2R1.13.tgz'

def myprogress(dev, report):
print("host: {3}, report: {}".format(dev.hostname, report))

with Device(host="switch2.example.net') as dev:

sw = SW(dev)

ok, msg = sw.install(package=pkg, member_id=['0', '1'],
progress=myprogress, no_copy=True,
reboot=False, cleanfs=False,
force_host=False, timeout=4000)

if ok:

sw.reboot(all_re=False, member_id=['0', '1'1)

user@server:~$ python3 junos-pyez-install-on-members.py

host: switch2.example.net, report: request-package-checks-pending-install rpc is not supported
on given device

host: switch2.example.net, report: installing software on VC member: @ ... please be patient ...
host: switch2.example.net, report: software pkgadd package-result: 0

Output:

Verified junos-install-ex-x86-64-23.2R1.13 signed by PackageProductionECP256_2023 method
ECDSA256+SHA256

Verified auto-snapshot signed by PackageProductionECP256_2023 method ECDSA256+SHA256

Example: Use Junos PyEZ to Install Software on a Junos Device

IN THIS SECTION

Requirements | 92

Overview | 92

Configuration | 93

Execute the Junos PyEZ Application | 98
Verification | 99

Troubleshooting | 100

The Junos PyEZ library provides methods to perform operational and configuration tasks on Junos
devices. This example outlines how to use the Junos PyEZ jnpr.junos.utils.sw.SW utility to install or
upgrade the software image on a Junos device.

Requirements

This example uses the following hardware and software components:

e Configuration management server running Python 3.5 or later and Junos PyEZ Release 2.5 or later
e Junos device with NETCONF enabled and a user account configured with appropriate permissions

e SSH public/private key pair configured for the appropriate user on the Junos PyEZ server and Junos
device

Overview

This example presents a Python application that uses the Junos PyEZ Sw utility to upgrade Junos OS on
the specified device. This example assumes that the software image resides on the local server.

The application imports the Junos PyEZ Device class, which handles the connection with the Junos
device; the SW class, which is used to perform the software installation operations on the target device;
and required exceptions from the jnpr. junos.exception module, which contains exceptions encountered
when managing Junos devices. The application also imports the os, sys, and logging Python modules for
verifying the existence of the software package and performing basic logging functions.

The application defines the update_progress() method, which is used by the install() method to report on
the progress of the installation. By logging the installation process, you can more readily identify the

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.sw.SW

point where any failures occur. In this example, progress messages are sent to standard output and also
logged in a separate file.

Before connecting to the device and proceeding with the installation, the application first verifies that
the software package exists. If the file cannot be found, the application exits with an error message. If
the file exists, the application creates the Device instance for the target device and calls the open() method
to establish a connection and NETCONF session with the device.

The application creates an instance of the S utility and uses the install() method to install the Junos OS
software image on the target device. The package variable defines the path on the local server to the new
Junos OS image. Because the no_copy parameter defaults to False, the installation process copies the
software image from the local server to the target device. The remote_path variable defines the path on
the target device to which the software package is copied. The default is /var/tmp. Although not
required, this example explicitly configures the parameter for clarity.

When the install() method is called, the application:

e Calculates the local MD5 checksum for the software image

Performs a storage cleanup on the target device

o Copies the software image to the target device

e Computes the remote MD5 checksum and compares it to the local value
e Validates the configuration against the new image

e Installs the package

If the installation is successful, the application then calls the reboot() method to reboot the device. After
performing the installation, the application calls the close() method to terminate the NETCONF session
and connection. The application includes code for handling any exceptions that might occur when
connecting to the device or performing the installation.

Configuration

IN THIS SECTION

Create the Junos PyEZ Application | 94

Results | 96

Create the Junos PyEZ Application

Step-by-Step Procedure

To create a Python application that uses Junos PyEZ to install a software image on a Junos device:

1. Import any required modules, classes, and objects.

import os, sys, logging

from jnpr.junos import Device

from jnpr.junos.utils.sw import SW

from jnpr.junos.exception import ConnectError

2. Include any required variables, which for this example includes the hostname of the managed
device, the software package path, and the log file.

host = 'dcla.example.com'

package = '/var/tmp/junos-install/jinstall-13.3R1.8-domestic-signed.tgz'
remote_path = '/var/tmp'

validate = True

logfile = '/var/log/junos-pyez/install.log'

3. Define the logging method used within the application and by the install() method.

def update_progress(dev, report):
log the progress of the installing process
logging.info(report)

4. Create amain() function definition and function call, and place the remaining statements within the
definition.

def main():

if __name__ == "__main_

main()

5. Initialize the logger instance.

initialize logging

logging.basicConfig(filename=logfile, level=logging.INFO,
format='%(asctime)s:%(name)s: %(message)s')

logging.getLogger().name = host

logging.getLogger().addHandler(logging.StreamHandler())

logging.info('Information logged in {03}'.format(logfile))

6. (Optional) Add code that verifies the existence of the software package.

verify package exists

if not (os.path.isfile(package)):
msg = 'Software package does not exist: {0}. '.format(package)
logging.error(msg)
sys.exit()

7. Create an instance of the Device class, and supply the hostname and any parameters required for
that specific connection.

Then open a connection and establish a NETCONF session with the device.

open a connection with the device and start a NETCONF session
dev = Device(host=host)
try:
dev.open()
except ConnectError as err:
logging.error('Cannot connect to device: {0}\n'.format(err))

return

8. Create an instance of the SW utility.

Create an instance of SW
sw = SW(dev)

9. Include code to install the software package and to reboot the device if the installation succeeds.

try:
logging.info('Starting the software upgrade process: {0}' \
.format(package))

Starting in Release 2.5.0, install() returns a tuple instead of a Boolean
ok, msg = sw.install(package=package, remote_path=remote_path,
progress=update_progress, validate=validate)
except Exception as err:
msg = 'Unable to install software, {0}'.format(err)
logging.error(msg)
ok = False

if ok is True:
logging.info('Software installation complete. Rebooting')
rsp = sw.reboot()
logging.info('Upgrade pending reboot cycle, please be patient.')
logging.info(rsp)
else:
msg = 'Unable to install software, {0}'.format(ok)

logging.error(msg)

10. End the NETCONF session and close the connection with the device.

End the NETCONF session and close the connection

dev.close()

Results

On the configuration management server, review the completed application. If the application does not

display the intended code, repeat the instructions in this example to correct the application.

import os, sys, logging

from jnpr.junos import Device

from jnpr.junos.utils.sw import SW

from jnpr.junos.exception import ConnectError

host = 'dcla.example.com'
package = '/var/tmp/junos-install/jinstall-13.3R1.8-domestic-signed.tgz'

96

remote_path = '/var/tmp'
validate = True
logfile = '/var/log/junos-pyez/install.log’

def update_progress(dev, report):
log the progress of the installing process

logging.info(report)

def main():

initialize logging

logging.basicConfig(filename=1logfile, level=logging.INFO,
format="'%(asctime)s:%(name)s: %(message)s')

logging.getLogger().name = host

logging.getLogger().addHandler(logging.StreamHandler())

logging.info('Information logged in {0}'.format(logfile))

verify package exists

if not (os.path.isfile(package)):
msg = 'Software package does not exist: {0}. '.format(package)
logging.error(msg)
sys.exit()

dev = Device(host=host)
try:
dev.open()
except ConnectError as err:
logging.error('Cannot connect to device: {0}\n'.format(err))

return

Create an instance of SW
sw = SW(dev)

try:
logging.info('Starting the software upgrade process: {0}' \
.format(package))

Starting in Release 2.5.0, install() returns a tuple instead of a Boolean
ok, msg = sw.install(package=package, remote_path=remote_path,
progress=update_progress, validate=validate)

except Exception as err:

97

msg = 'Unable to install software, {0}'.format(err)
logging.error(msg)
ok = False

if ok is True:
logging.info('Software installation complete. Rebooting')
rsp = sw.reboot()
logging.info('Upgrade pending reboot cycle, please be patient.')
logging.info(rsp)

else:
msg = 'Unable to install software, {0}'.format(ok)
logging.error(msg)

End the NETCONF session and close the connection

dev.close()

if __name__ == "__main_

main()

Execute the Junos PyEZ Application

IN THIS SECTION

Execute the Application | 98

Execute the Application

e On the configuration management server, execute the application.

user@server:~$ python3 junos-pyez-install.py

Information logged in /var/log/junos-pyez/install.log

Starting the software upgrade process: /var/tmp/junos-install/jinstall-13.3R1.8-domestic-
signed.tgz

computing local checksum on: /var/tmp/junos-install/jinstall-13.3R1.8-domestic-signed.tgz
cleaning filesystem ...

starting thread (client mode): 0x282d4110L

Connected (version 2.0, client OpenSSH_6.7)

Verification

IN THIS SECTION

Verify the Installation | 99

Verify the Installation

Purpose

Verify that the software installation was successful.

Action

Review the progress messages, which are sent to both standard output and the log file that is defined in
the application, for details about the installation. Sample log file output is shown here. Some output has
been omitted for brevity.

user@server:~$ cat /var/log/junos-pyez/install.log

2015-09-03 21:29:20,795:dc1a.example.com: Information logged in /var/log/junos-pyez/install.log
2015-09-03 21:29:35,257:dcla.example.com: Starting the software upgrade process: /var/tmp/junos-
install/jinstall-13.3R1.8-domestic-signed. tgz

2015-09-03 21:29:35,257:dcla.example.com: computing local checksum on: /var/tmp/junos-install/
jinstall-13.3R1.8-domestic-signed.tgz

2015-09-03 21:29:47,025:dcla.example.com: cleaning filesystem ...

2015-09-03 21:30:00,870:paramiko. transport: starting thread (client mode): 0x282d4110L
2015-09-03 21:30:01,006:paramiko.transport: Connected (version 2.0, client OpenSSH_6.7)

2015-09-03 21:30:01,533:paramiko. transport: userauth is OK

2015-09-03 21:30:04,002:paramiko. transport: Authentication (public key) successful!
2015-09-03 21:30:04,003:paramiko.transport: [chan @] Max packet in: 32768 bytes

2015-09-03 21:30:04,029:paramiko.transport: [chan 0] Max packet out: 32768 bytes

2015-09-03 21:30:04,029:paramiko. transport: Secsh channel @ opened.

2015-09-03 21:30:04,076:paramiko.transport: [chan @] Sesch channel @ request ok

2015-09-03 21:32:23,684:dcla.example.com: jinstall-13.3R1.8-domestic-signed.tgz: 94437376 /
944211851 (10%)

2015-09-03 21:34:43,828:dcla.example.com: jinstall-13.3R1.8-domestic-signed.tgz: 188858368 /
944211851 (20%)

2015-09-03 21:37:04,180:dcla.example.com: jinstall-13.3R1.8-domestic-signed.tgz: 283279360 /

944211851 (30%)

2015-09-03 21:39:24,020:dcla.example.com: jinstall-13.3R1.8-domestic-signed.tgz: 377700352 /
944211851 (40%)

2015-09-03 21:41:43,906:dcl1a.example.com: jinstall-13.3R1.8-domestic-signed.tgz: 472121344 /
944211851 (50%)

2015-09-03 21:44:04,079:dcla.example.com: jinstall-13.3R1.8-domestic-signed.tgz: 566542336 /
944211851 (60%)

2015-09-03 21:46:23,968:dcla.example.com: jinstall-13.3R1.8-domestic-signed.tgz: 660963328 /
944211851 (70%)

2015-09-03 21:48:44,045:dcl1a.example.com: jinstall-13.3R1.8-domestic-signed.tgz: 755384320 /
944211851 (80%)

2015-09-03 21:51:04,016:dcla.example.com: jinstall-13.3R1.8-domestic-signed.tgz: 849805312 /
944211851 (90%)

2015-09-03 21:53:24,058:dcl1a.example.com: jinstall-13.3R1.8-domestic-signed.tgz: 944211851 /
944211851 (100%)

2015-09-03 21:53:24,389:paramiko. transport: [chan 0] EOF sent (@)

2015-09-03 21:53:24,466:paramiko.transport: EOF in transport thread

2015-09-03 21:53:24,514:dcla.example.com: computing remote checksum on: /var/tmp/
jinstall-13.3R1.8-domestic-signed.tgz

2015-09-03 21:56:01,692:dcla.example.com: checksum check passed.

2015-09-03 21:56:01,692:dcla.example.com: validating software against current config, please be
patient ...

2015-09-03 22:47:57,205:dcla.example.com: installing software ... please be patient ...
2015-09-03 23:28:10,415:dcla.example.com: Software installation complete. Rebooting
2015-09-03 23:28:11,525:dcl1a.example.com: Upgrade pending reboot cycle, please be patient.
2015-09-03 23:28:11,525:dcla.example.com: Shutdown NOW!

[pid 55494]

Meaning

The log file contents indicate that the image was successfully copied to and installed on the target
device.

Troubleshooting

IN THIS SECTION

Troubleshoot Timeout Errors | 101

Troubleshoot Timeout Errors

Problem

The application generates an RpcTimeoutError message or a TimeoutExpiredError message and the
installation fails.

RpcTimeoutError(host: dcla.example.com, cmd: request-package-validate, timeout: 1800)

Long operations might exceed the RPC timeout interval, particularly on slower devices, causing the RPC
to time out before the operation can be completed. The default time for a NETCONF RPC to time out is
30 seconds. During the installation process, Junos PyEZ increases the RPC timeout interval to 300
seconds (5 minutes) when computing the checksum and to 1800 seconds (30 minutes) when copying
and installing the package on the device.

Solution

To accommodate install or checksum operations that might require a longer time than the default
installation and checksum timeout intervals, set the install method timeout and checksum_timeout
parameters to appropriate values and re-run the application. For example:

sw.install(package=package, remote_path=remote_path, progress=update_progress, validate=True,
timeout=2400, checksum_timeout=400)

Change History Table

Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release = Description

251 Starting in Junos PyEZ Release 2.5.0, the install() method returns a tuple that contains the status of
the installation and a message string.

2.15 Starting in Release 2.1.5, Junos PyEZ, by default, upgrades all Routing Engines on individual devices and
members in a Virtual Chassis.

Use Junos PyEZ to Halt, Reboot, or Shut Down Junos Devices | 74

https://apps.juniper.net/feature-explorer/

‘ Junos PyEZ Modules Overview | 8

Use Junos PyEZ to Perform File System Operations

SUMMARY IN THIS SECTION

Use Junos PyEZ to manage files and directories, Perform File Operations | 102
calculate checksums, and view and clean up system
storage on Junos devices.

Manage File System Storage | 106

Junos PyEZ applications can use the jnpr.junos.utils.fs utility to perform file system operations on Junos
devices, including:

e Managing files
e Managing directories
e Managing disk space

This topic discusses how to use the utility to perform some common file system operations.

Perform File Operations

IN THIS SECTION

View File Listings | 103
Manage Files | 104
Calculate Checksums | 105

You can use the jnpr.junos.utils.fs utility to perform common file and directory operations. For example,
you can:

e View file and directory information

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#module-jnpr.junos.utils.fs
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#module-jnpr.junos.utils.fs

e Create and delete directories
e View, delete, and move or copy files
e Calculate a file's checksum

This section discusses some common operations. For the full list of supported operations, see the
jnpr.junos.utils.fs documentation.

View File Listings

You can use the 1s() method to view the list of files and directories at a given path. For example:

from jnpr.junos import Device
from jnpr.junos.utils.fs import FS
from pprint import pprint

with Device(host='router1.example.net') as dev:
fs = FS(dev)
pprint (fs.ls(path='/var/db/scripts/commit'))

user@server:~$ python3 junos-pyez-file-ls.py
{'file_count': 3,
'files': {'filter_type_check.py': {'owner': 'root',
'path': 'filter_type_check.py',
'permissions': 771,
'permissions_text': '-rwxrwx--x',
'size': 30070,
'ts_date': 'Oct 25 03:24',
'ts_epoc': '1698229487',
"type': 'file'},
'services': {'owner': 'root',
'path': 'services',
'permissions': 771,
'permissions_text': 'drwxrwx--x',
'size': 4096,
'ts_date': 'Oct 25 03:25',
'ts_epoc': '1698229535',
"type': 'dir'},
'services_evpn_commit_script.py': {'owner': 'root',

'path': 'services_evpn_commit_script.py',

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#module-jnpr.junos.utils.fs

'permissions': 771,
'permissions_text': '-rwxrwx--x',
'size': 698,
'ts_date': 'Oct 25 03:25',
"ts_epoc': '1698229535',
"type': 'file'}},

'path': '/var/db/scripts/commit',

'size': 34864,

"type': 'dir'}

Manage Files

The jnpr.junos.utils. fs utility enables you to perform common file operations on the target device. Table
12 on page 104 outlines the methods. The method name is identical to the corresponding command on
Unix-like operating systems.

Table 12: Junos PyEZ File Operation Methods

Method Description
cat() View a file.
cp() Copy a file.
mv() Rename a file
rm() Delete a file.

The following Junos PyEZ application connects to a Junos device and uses the cat() method to view the
contents of a file. If the file does not exist, the application prints None.

from jnpr.junos import Device

from jnpr.junos.utils.fs import FS

with Device(host='router1.example.net') as dev:
fs = FS(dev)
filepath = '/var/db/scripts/commit/filter_type_check.py'
print(fs.cat(path=filepath))

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#module-jnpr.junos.utils.fs

The following application connects to a Junos device and copies a file from the /var/tmp directory to
the /var/db/scripts/op directory. The application prints True if the operation is successful or False if there
is an error.

from jnpr.junos import Device

from jnpr.junos.utils.fs import FS

src="/var/tmp/bgp-neighbors.slax’
dest="/var/db/scripts/op'

with Device(host='routerl.example.net') as dev:
fs = FS(dev)
print(fs.cp(from_path=src, to_path=dest))

Starting in Junos PyEZ Release 2.6.8, you can specify a routing instance for the file copy operation.
Include the routing_instance argument, and specify the name of the instance. For example:

fs.cp(from_path=src, to_path=dest, routing_instance="mgmt_junos')

Calculate Checksums

You can use the checksum() method to calculate the checksum of a file. By default, checksum() calculates the
MD5 checksum. To explicitly specify the algorithm, include the calc argument and specify one of the
following values:

e md5
e sha256
e shal

The following Junos PyEZ application connects to a Junos device, uses the cat() method to verify the
existence of a file, and if the file exists, calculates the SHA256 checksum:

from jnpr.junos import Device

from jnpr.junos.utils.fs import FS

with Device(host='routerl.example.net') as dev:
fs = FS(dev)

1f file exists, calculate checksum

filepath = '/var/db/scripts/commit/filter_type_check.py'
if fs.cat(path=filepath) is not None:
print(fs.checksum(path=filepath, calc='sha256'))
else:
print('File not found.')

user@server:~$ python3 junos-pyez-file-checksum.py
d5e28ddde10a38b247d491b524b59c022297b012a9d3200b83b11be5eb7b81be3

Manage File System Storage

IN THIS SECTION

View File System Disk Space Usage | 106
View Directory Usage | 107

Clean Up System Storage | 108

You can use the jnpr.junos.utils.fs utility to manage file system storage as described in the following
sections.

View File System Disk Space Usage

You can use the storage_usage() method to return information about a file system's used and available
space. The method returns the output of the show system storage command. The information is similar to
the Unix df command output.

The following Junos PyEZ application retrieves and prints the disk space usage for the connected device:

from jnpr.junos import Device
from jnpr.junos.utils.fs import FS

from pprint import pprint

with Device(host='router1.example.net') as dev:

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#module-jnpr.junos.utils.fs

fs = FS(dev)
pprint(fs.storage_usage())

user@server:~$ python3 junos-pyez-storage-usage.py
{'/dev/adalp2': {'avail': '406M',
"avail_block': 831176,

'mount': '/.mount/var/log',

"total': '475M',
"total_blocks': 973368,
'used': '31M',

'used_blocks': 64328,

'used_pct': '7'},
'/dev/adalp3': {'avail': '833M',

"avail_block': 1705144,

'mount': '/.mount/var/tmp',

"total': '2.7G',
"total_blocks': 5586168,
'used': '1.6G',

'used_blocks': 3434136,
'used_pct': '67'},
"/dev/gpt/junos': {'avail': '4.3G',
'avail_block': 8989740,

'mount': '/.mount',

"total': '6.0G',
"total_blocks': 12540924,
'used': '1.2G',

'used_blocks': 2547912,
'used_pct': '22'},

View Directory Usage

You can use the directory_usage() method to view the disk space usage for a given directory, and
optionally, its subdirectories. This method executes the show system directory-usage path command on the
device and returns the information. If you do not specify a depth, Junos PyEZ uses the default depth of
zero. The information is similar to the statistics returned by the Unix du command.

The following Junos PyEZ application prints the disk space usage for the /var/tmp directory.

from jnpr.junos import Device

from jnpr.junos.utils.fs import FS

with Device(host="'router1.example.net') as dev:
fs = FS(dev)
print(fs.directory_usage(path="/var/tmp/"))

user@server:~$ python3 junos-pyez-directory-usage.py
{"/var/tmp/': {'size': '16K', 'blocks': 32, 'bytes': 16384}}

Clean Up System Storage

You can use the storage_cleanup() method to free up disk space on a Junos device. The method executes
the request system storage cleanup command, which rotates log files and removes temporary files.

To only view the list of files that would be removed in the cleanup operation, use the
storage_cleanup_check() method instead. This method executes the request system storage cleanup dry-run
command on the device and returns the list of candidate files without deleting them.

The following Junos PyEZ application first executes the storage_cleanup_check operation and prints the list
of files that are proposed for deletion. The application then queries if the user wants to proceed with
the storage cleanup and delete the files. If the user confirms the cleanup operation, the application
executes the storage_cleanup() operation to delete the files and then prints the list of deleted files.

from jnpr.junos.utils.fs import FS

from pprint import pprint

with Device(host='router1.example.net') as dev:

fs = FS(dev)

print('\nxxx Cleanup Check - files to delete xx*\n')

pprint(fs.storage_cleanup_check())

cleanup = input('\nProceed with storage cleanup '

'and delete these files [yes,no] (no) ? ').lower()

if cleanup in ['yes', 'y'l:

print('Cleaning up storage.')

files = fs.storage_cleanup()

pprint(files)

elif cleanup in ['no', 'n', ''I:
print('Cleanup operation canceled.')
else:
print('Please enter a valid response.')

user@server:~$ python3 junos-pyez-storage-cleanup.py

*%% Cleanup Check - files to delete #***

{'/var/log/ifstraced.0.gz': {'size': 8474516, 'ts_date': 'Feb 7 09:12'},
"/var/log/ifstraced.1.gz': {'size': 8464409, 'ts_date': 'Feb 6 19:17'},
"/var/log/ifstraced.2.gz': {'size': 8476558, 'ts_date': 'Feb 6 05:19'},
"/var/log/ifstraced.3.gz': {'size': 8477741, 'ts_date': 'Feb 5 15:20'},
"/var/log/license.0.gz': {'size': 27591, 'ts_date': 'Feb 7 17:03'},
"/var/log/license.1.gz': {'size': 27802, 'ts_date': 'Feb 7 15:11'},

'/var/log/messages.0.gz': {'size': 189, 'ts_date': 'Feb 7 17:53'},
"/var/log/messages.1.gz': {'size': 173, 'ts_date': 'Feb 7 17:52'},
'/var/log/messages.2.gz': {'size': 128, 'ts_date': 'Feb 7 17:52'},
"/var/log/messages.3.gz': {'size': 190, 'ts_date': 'Feb 7 17:52'},
'/var/log/messages.4.gz': {'size': 173, 'ts_date': 'Feb 7 17:48'},
"/var/log/security.0.gz': {'size': 499, 'ts_date': 'Feb 7 17:53'},
'/var/log/security.1.gz': {'size': 358, 'ts_date': 'Feb 7 17:52'},
"/var/log/security.2.gz': {'size': 305, 'ts_date': 'Feb 7 17:52'},
'/var/log/security.3.gz': {'size': 536, 'ts_date': 'Feb 7 17:52'},

"/var/log/wtmp.0.gz"': {'size': 27, 'ts_date': 'Feb 7 17:52'},
'/var/log/wtmp.1.gz": {'size': 27, 'ts_date': 'Feb 7 17:52'},
'/var/tmp/LOCK_FILE': {'size': 0, 'ts_date': 'Jan 2 11:08'},
'/var/tmp/appidd_cust_app_trace': {'size': 0, 'ts_date': 'Jan 2 11:08'},
"/var/tmp/appidd_trace_debug': {'size': 198, 'ts_date': 'Jan 2 11:08'},
"/var/tmp/krt_rpf_filter.txt': {'size': 57, 'ts_date': 'Jan 2 11:08'},
"/var/tmp/netproxy': {'size': 0, 'ts_date': 'Jan 2 11:11'},
"/var/tmp/pfe_debug_commands': {'size': 111, 'ts_date': 'Jan 2 11:08'},
"/var/tmp/planeDb.log': {'size': 524, 'ts_date': 'Jan 2 11:08'},
"/var/tmp/rtsdb/if-rtsdb': {'size': @, 'ts_date': 'Jan 2 11:08'}}

Proceed with storage cleanup and delete these files [yes,no] (no) ? yes

Cleaning up storage.

{'/var/log/ifstraced.0.gz': {'size': 8474516, 'ts_date': 'Feb 7 09:12'},
"/var/log/ifstraced.1.gz': {'size': 8464409, 'ts_date': 'Feb 6 19:17'},
"/var/log/ifstraced.2.gz': {'size': 8476558, 'ts_date': 'Feb 6 05:19'},
"/var/log/ifstraced.3.gz': {'size': 8477741, 'ts_date': 'Feb 5 15:20'},

'/var/log/license.0.gz': {'size': 27591, 'ts_date': 'Feb 7 17:03'},
"/var/log/license.1.gz': {'size': 27802, 'ts_date': 'Feb 7 15:11'},

'/var/log/messages.0.gz': {'size': 130, 'ts_date': 'Feb 7 17:54'},
"/var/log/messages.1.gz': {'size': 189, 'ts_date': 'Feb 7 17:53'},
'/var/log/messages.2.gz': {'size': 173, 'ts_date': 'Feb 7 17:52'},
"/var/log/messages.3.gz': {'size': 128, 'ts_date': 'Feb 7 17:52'},
'/var/log/messages.4.gz': {'size': 190, 'ts_date': 'Feb 7 17:52'},
"/var/log/security.1.gz': {'size': 499, 'ts_date': 'Feb 7 17:53'},
"/var/log/security.2.gz': {'size': 358, 'ts_date': 'Feb 7 17:52'},
"/var/log/security.3.gz': {'size': 305, 'ts_date': 'Feb 7 17:52'},

"/var/log/wtmp.0.gz': {'size': 27, 'ts_date': 'Feb 7 17:53'},
"/var/log/wtmp.1.gz": {'size': 27, 'ts_date': 'Feb 7 17:52'},
"/var/tmp/LOCK_FILE': {'size': @, 'ts_date': 'Jan 2 11:08'},
"/var/tmp/appidd_cust_app_trace': {'size': 0, 'ts_date': 'Jan 2 11:08'},
'/var/tmp/appidd_trace_debug': {'size': 198, 'ts_date': 'Jan 2 11:08'},
"/var/tmp/krt_rpf_filter.txt': {'size': 57, 'ts_date': 'Jan 2 11:08'},
'/var/tmp/netproxy': {'size': 0, 'ts_date': 'Jan 2 11:11'},
"/var/tmp/pfe_debug_commands': {'size': 111, 'ts_date': 'Jan 2 11:08'},
"/var/tmp/planeDb.log': {'size': 524, 'ts_date': 'Jan 2 11:08'},
"/var/tmp/rtsdb/if-rtsdb': {'size': @, 'ts_date': 'Jan 2 11:08'}}

Transfer Files Using Junos PyEZ

SUMMARY

Use Junos PyEZ to secure copy (SCP) files between the local host and a Junos device.

Junos PyEZ provides utilities that enable you to perform file management tasks on Junos devices. You
can use the Junos PyEZ jnpr.junos.utils.scp.SCP class to secure copy (SCP) files between the local host
and a Junos device.

The SCP open() and close() methods establish and terminate the connection with the device. As a result, if
the client application only performs file copy operations, it can omit calls to the Device open() and close()

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.scp.SCP

methods. Instances of the scp class can be used as context managers, which automatically call the open()
and close() methods. For example:

from jnpr.junos import Device
from jnpr.junos.utils.scp import SCP

dev = Device('routerl.example.com')

with SCP(dev) as scp:
scp.put(' Jocal-file', remote_path="'path')
scp.get(' remote-file', local_path="'path")

SCP enables you to track the progress of transfers using the progress parameter. By default, SCP does not
print progress messages. Set progress=True to print default progress messages at transfer completion
intervals of 10 percent or greater.

with SCP(dev, progress=True) as scp:

Alternatively, you can define a custom function to print progress messages, and then set the progress
parameter equal to the name of the function. The function definition should include two parameters
corresponding to the device instance and the progress message. For example:

def log(dev, report):

print (dev.hostname + ': ' + report)
def main():
with SCP(dev, progress=log) as scp:

The following sample program transfers the scp-testl.txt and scp-test2.txt files from the local host to
the /var/tmp directory on the target device, and then transfers the messages log file from the target
device to a logs directory on the local host. The messages log is renamed to append the device
hostname to the filename. The example uses SSH keys, which are already configured on the local host
and the device, for authentication.

For comparison purposes, the program uses both the default progress messages as well as custom
messages, which are defined in the function named log, to track the progress of the transfers.

from jnpr.junos import Device

from jnpr.junos.utils.scp import SCP

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.scp.SCP

def log(dev, report):

print (dev.hostname + ': ' + report)

def main():

dev = Device('routerl.example.com')

msgfile = 'logs/'+dev.hostname+'-messages'

try:

#Default progress messages

with SCP(dev, progress=True) as scpl:
scpl.put('scp-testl.txt', remote_path='/var/tmp/')
scpl.get('/var/log/messages', local_path=msgfile)

#Custom progress messages

with SCP(dev, progress=log) as scp2:
scp2.put('scp-test2.txt', remote_path="'/var/tmp/")
scp2.get('/var/log/messages', local_path=msgfile)

except Exception as err:
print (err)
return

if __name__ == "__main_

main()

The progress of the transfers is sent to standard output. The default output (progress=True) includes the
device name, the file being transferred, and the progress of the transfer in both bytes and as a
percentage.

routerl.example.com: scp-testl.txt: 8 / 8 (100%)

routeri.example.com: logs/routerl.example.com-messages: @ / 229513 (0%)
routerl.example.com: logs/routerl.example.com-messages: 24576 / 229513 (10%)
routeri.example.com: logs/routeri.example.com-messages: 139264 / 229513 (60%)
routerl.example.com: logs/routerl.example.com-messages: 229513 / 229513 (100%)

The custom function produces similar output in this case.

routerl.example.com : scp-test2.txt: 1 / 1 (100%)

routerl.example.com : logs/routerl.example.com-messages: 0 / 526493 (0%)

router1.example.com : logs/routerl.example.com-messages: 57344 / 526493 (10%)

526493 (20%)
526493 (40%)
526493 (60%)
526493 (70%)
526493 (90%)
526493 (100%)

routerl.example.com : logs/routerl.example.com-messages: 106496 /
routerl.example.com : logs/routerl.example.com-messages: 212992 /
routerl.example.com : logs/routerl.example.com-messages: 319488 /
routerl.example.com : logs/routerl.example.com-messages: 368640 /
routerl.example.com : logs/routerl.example.com-messages: 475136 /
routerl.example.com : logs/routerl.example.com-messages: 526493 /

After executing the program, issue the file list command on the target device to verify that the scp-
testl.txt and scp-test2.txt files were copied to the correct directory.

userl@router1> file list /var/tmp/scp-test*
/var/tmp/scp-testl.txt
/var/tmp/scp-test2.txt

On the local host, the messages log file, which is renamed to include the device hostname, should be
present in the logs directory.

useri@server:~$ 1s logs

router1.example.com-messages

By default, Junos PyEZ queries the default SSH configuration file at ~/.ssh/config, if one exists.
However, you can specify a different SSH configuration file when you create the device instance by
including the ssh_config parameter in the Device argument list. For example:

ssh_config_file = '~/.ssh/config_dc'
dev = Device('198.51.100.1", ssh_config=ssh_config_file)

Additionally, when you include the ssh_private_key_file parameter in the Device argument list to define a
specific SSH private key file for authentication, the SCP instance uses the same key file for authentication
when transferring files.

key_file="'/home/user1/.ssh/id_rsa_dc'
dev = Device('198.51.100.1", ssh_private_key_file=key_file)

with SCP(dev) as scp:
scp.put('scp-test.txt', remote_path='/var/tmp/")

The SCP class also provides support for ProxyCommand, which enables you to transfer files from the local
host to the target device through an intermediary host that supports netcat. This is useful when you can

only log in to the target device through the intermediate host. To configure ProxyCommand, add the
appropriate information to the SSH configuration file. For example:

useri@server:~$ cat ~/.ssh/config

Host 198.51.100.1

User user1

ProxyCommand ssh -1 user1l 198.51.100.2 nc %h 22 2>/dev/null

‘ Use Junos PyEZ to Retrieve Facts from Junos Devices | 50

Specify the XML Parser for a Junos PyEZ Session

SUMMARY

Learn how Junos PyEZ uses different XML parsers for certain operations to optimize memory use and
processing speed.

Extensible Markup Language (XML) is a standard for representing and communicating information. It is a
metalanguage for defining customized tags that are applied to a data set or document to describe the
function of individual elements and codify the hierarchical relationships between them. Junos OS
natively supports XML for the operation and configuration of Junos devices.

Client applications use XML parsers to read and work with XML documents, for example, the command
output or configuration data returned as XML in the RPC reply of a Junos device. XML parsers can use
different approaches to parse an XML document. Document Object Model (DOM) parsers create a tree
representation of the whole XML document, which is loaded in its entirety into memory. By contrast, a
Simple API for XML (SAX) parser performs event-based parsing and parses each part of the XML
document sequentially. As a result, SAX parsers only load a small portion of the XML data in memory at
any time.

SAX parsers do not require a lot of memory to perform operations, but DOM parser memory
requirements increase with the document size. In general DOM parsing is faster than SAX parsing,

because the application can access the entire XML document in memory. However, as the XML
document size increases, DOM parsers require more memory, and SAX parsing becomes more efficient.

Junos PyEZ uses the ncclient Python library, which defaults to using DOM parsing for XML processing.
In this case, the parser converts the entire XML document into an 1xml object and loads it into memory.
Junos devices can return large XML documents for show command output and configuration data. If you
only need to retrieve a small subset of values from the XML in these cases, DOM parsing can be
inefficient.

Starting in Junos PyEZ Release 2.3.0, Junos PyEZ uses SAX parsing when possible in the following cases:

e When you use operational Tables and Views to retrieve structured output

¢ When you include the use_filter=True argument in the Device() instance for a given session and
perform operations that request a subset of tag values from XML output

For example, the following script executes the get_interface_information RPC and filters the XML output to
return only the <name> element for each physical interface. In this case, SAX parsing is used, because only
a subset of the XML is requested.

from jnpr.junos import Device

from 1xml import etree

with Device(host="router.example.com', use_filter=True) as dev:

sax_input = '<interface-information><physical-interface><name/></physical-interface></
interface-information>'

result = dev.rpc.get_interface_information(filter_xml=sax_input)

print (etree.tostring(result, encoding='unicode'))

CHAPTER

Use Junos PyEZ to Manage the

Configuration

IN THIS CHAPTER

Use Junos PyEZ to Retrieve a Configuration | 117

Use Junos PyEZ to Compare the Candidate Configuration and a Previously
Committed Configuration | 128

Use Junos PyEZ to Configure Junos Devices | 132

Use the Junos PyEZ Config Utility to Configure Junos Devices | 140
Use Junos PyEZ to Commit the Configuration | 158

Example: Use Junos PyEZ to Load Configuration Data from a File | 163
Example: Use Junos PyEZ to Roll Back the Configuration | 174

Use Junos PyEZ to Manage the Rescue Configuration on Junos Devices |
182

Use Junos PyEZ to Retrieve a Configuration

SUMMARY IN THIS SECTION
You can create Junos PyEZ applications that retrieve Retrieve the Complete Candidate
configuration data from the specified configuration Configuration | 118

database on a Junos device. Specify the Source Database for the

Configuration Data | 118

Specify the Scope of Configuration Data to
Return | 120

Specify the Format for Configuration Data to
Return | 123

Retrieve Configuration Data for Standard or
Custom YANG Data Models | 124

Specify Additional RPC Options | 126

How to Handle Namespaces in Configuration
Data | 127

Junos PyEZ applications can execute Remote Procedure Calls (RPCs) on demand on Junos devices. After
creating an instance of the Device class, an application can execute RPCs as a property of the Device
instance. Junos PyEZ applications can use the get_config() RPC to request the complete configuration or
selected portions of the configuration for both the native Junos OS configuration as well as for
configuration data corresponding to standard (IETF, OpenConfig) or custom YANG data models that
have been added to the device.

@ NOTE: The Junos PyEZ get_config RPC invokes the Junos XML protocol <get-configuration>
operation. For more information about the <get-configuration> operation and its options,
see <get-configuration>.

This topic discuss how to retrieve the configuration by using the Junos PyEZ get_config() RPC. For
information about using Tables and Views to retrieve configuration data, see "Define Junos PyEZ
Configuration Tables" on page 280 and "Use Junos PyEZ Configuration Tables to Retrieve Configuration
Data" on page 298.

https://www.juniper.net/documentation/us/en/software/junos/junos-xml-protocol/topics/ref/tag/junos-xml-protocol-get-configuration.html

Retrieve the Complete Candidate Configuration

To retrieve the complete candidate configuration from a Junos device, execute the get_config() RPC. The
default output format is XML. For example:

from jnpr.junos import Device

from 1xml import etree

with Device(host="'router1.example.net') as dev:
data = dev.rpc.get_config()

print (etree.tostring(data, encoding='unicode', pretty_print=True))

Specify the Source Database for the Configuration Data

When a Junos PyEZ application uses the get_config() RPC to retrieve configuration information from a
Junos device, by default, the server returns data from the candidate configuration database. A Junos
PyEZ application can also retrieve configuration data from the committed configuration database or the
ephemeral configuration database.

Candidate Configuration Database

To retrieve data from the candidate configuration database, execute the get_config() RPC, and optionally
include any additional arguments.

from jnpr.junos import Device

from 1xml import etree

with Device(host="'router1.example.net') as dev:
data = dev.rpc.get_config()

print (etree.tostring(data, encoding='unicode', pretty_print=True))

Committed Configuration Database

To retrieve data from the committed configuration database, include the options argument with
'database': 'committed' in the get_config() RPC call.

from jnpr.junos import Device
from 1xml import etree

with Device(host="'router1.example.net') as dev:
data = dev.rpc.get_config(options={'database' : 'committed'})
print (etree.tostring(data, encoding='unicode', pretty_print=True))

Ephemeral Configuration Database

Junos PyEZ supports operations on the ephemeral configuration database on devices that support this
database. When you retrieve configuration data from the shared configuration database, by default, the
results do not include data from the ephemeral configuration database.

@ NOTE: The ephemeral database is an alternate configuration database that provides a
fast programmatic interface for performing configuration updates on Junos devices. The
ephemeral configuration database is an advanced feature which if used incorrectly can
have a serious negative impact on the operation of the device. For more information, see
Understanding the Ephemeral Configuration Database.

To retrieve data from the default instance of the ephemeral configuration database, first open the
default ephemeral instance and then request the data. To open the default instance, use a context
manager to create the Config instance, and include the mode="ephemeral' argument. For example:

from jnpr.junos import Device
from jnpr.junos.utils.config import Config
from jnpr.junos.exception import ConnectError

from 1xml import etree
dev = Device(host='router1.example.net')

try:
dev.open()
with Config(dev, mode='ephemeral') as cu:
data = dev.rpc.get_config(options={'format':'text'})
print(etree.tostring(data, encoding="'unicode'))

dev.close()

except ConnectError as err:
print ("Cannot connect to device: {0}".format(err))
except Exception as err:

print (err)

To retrieve data from a specific instance of the ephemeral configuration database, first open the
ephemeral instance and then request the data. To open a user-defined instance of the ephemeral

https://www.juniper.net/documentation/us/en/software/junos/junos-xml-protocol/topics/concept/ephemeral-configuration-database-overview.html

configuration database, use a context manager to create the Config instance, include the mode="ephemeral'
argument, and set the ephemeral _instance argument to the name of the ephemeral instance.

from jnpr.junos import Device
from jnpr.junos.utils.config import Config
from jnpr.junos.exception import ConnectError

from 1xml import etree
dev = Device(host='router1.example.net")

try:
dev.open()
with Config(dev, mode='ephemeral', ephemeral_instance='ephl') as cu:
data = dev.rpc.get_config(options={'format':'text'})
print(etree.tostring(data, encoding='unicode'))

dev.close()

except ConnectError as err:
print ("Cannot connect to device: {0}".format(err))
except Exception as err:

print (err)

Specify the Scope of Configuration Data to Return

In addition to retrieving the complete Junos OS configuration, a Junos PyEZ application can retrieve
specific portions of the configuration by invoking the get_config() RPC with the filter_xml argument. The
filter_xml parameter takes a string containing the subtree filter that selects the configuration statements
to return. The subtree filter returns the configuration data that matches the selection criteria.

To request multiple hierarchies, the filter_xml string must include the <configuration> root element.
Otherwise, the value of filter_xml must represent all levels of the configuration hierarchy starting just
under the root <configuration> element down to the hierarchy to display. To select a subtree, include the
empty tag for that hierarchy level. To return a specific object, include a content match node that defines
the element and value to match.

The following Junos PyEZ application retrieves and prints the configuration at the [edit interfaces] and
[edit protocols] hierarchy levels in the candidate configuration:

from jnpr.junos import Device

from 1xml import etree

with Device(host="'router1.example.net') as dev:
filter = '<configuration><interfaces/><protocols/></configuration>'
data = dev.rpc.get_config(filter_xml=filter)

print (etree.tostring(data, encoding='unicode', pretty_print=True))

The following example retrieves and prints the configuration at the [edit system services] hierarchy level
using different but equivalent values for the filter_xml argument:

from jnpr.junos import Device
from 1xml import etree

with Device(host="'router1.example.net') as dev:

data = dev.rpc.get_config(filter_xml='<system><services/></system>')

print (etree.tostring(data, encoding='unicode', pretty_print=True))

data = dev.rpc.get_config(filter_xml='system/services")

print (etree.tostring(data, encoding='unicode', pretty_print=True))
filter = etree.XML('<system><services/></system>')
data = dev.rpc.get_config(filter_xml=filter)

print (etree.tostring(data, encoding='unicode', pretty_print=True))

The following example retrieves the <name> element for each <interface> element under the <interfaces>
hierarchy in the post-inheritance candidate configuration:

from jnpr.junos import Device
from 1xml import etree

with Device(host="'router1.example.net') as dev:

filter = '<interfaces><interface><name/></interface></interfaces>'

data = dev.rpc.get_config(filter_xml=filter, options={'inherit':'inherit'})

print (etree.tostring(data, encoding='unicode', pretty_print=True))

user@server:~$ python3 junos-pyez-get-interface-names.py
<configuration changed-seconds="1544032801" changed-localtime="2018-12-05 10:00:01 PST">
<interfaces>
<interface>
<name>ge-1/0/0</name>
</interface>
<interface>
<name>ge-1/0/1</name>
</interface>
<interface>
<name>100</name>
</interface>
<interface>
<name>fxp0@</name>
</interface>
</interfaces>

</configuration>

The following example retrieves the subtree for the ge-1/0/1 interface:

from jnpr.junos import Device

from 1xml import etree

with Device(host="'router1.example.net') as dev:

filter = '<interfaces><interface><name>ge-1/0/1</name></interface></interfaces>'
data = dev.rpc.get_config(filter_xml=filter, options={'inherit':'inherit'})

print (etree.tostring(data, encoding='unicode', pretty_print=True))

user@server:~$ python3 junos-pyez-get-single-interface.py
<configuration changed-seconds="1544032801" changed-localtime="2018-12-05 10:00:01 PST">
<interfaces>
<interface>
<name>ge-1/0/1</name>
<description>customerA</description>
<disable/>

<unit>
<name>0</name>
<family>
<inet>
<address>
<name>198.51.100.1/24</name>
</address>
</inet>
</family>
</unit>
</interface>
</interfaces>

</configuration>

Specify the Format for Configuration Data to Return

The Junos PyEZ get_config() RPC invokes the Junos XML protocol <get-configuration> operation, which
can return Junos OS configuration data as Junos XML elements, CLI configuration statements, Junos OS
set commands, or JavaScript Object Notation (JSON). By default, the get_config() RPC returns
configuration data as XML.

To specify the format in which to return the configuration data, the Junos PyEZ application includes the
options dictionary with 'format':"' format' in the get_config() argument list. To request CLI configuration
statements, Junos OS set commands, or JSON format, set the format value to text, set, or json,
respectively.

As in NETCONF and Junos XML protocol sessions, Junos PyEZ returns the configuration data in the
expected format enclosed within the appropriate XML element for that format. The RPC reply encloses
configuration data in XML, text, or set command formats in <configuration>, <configuration-text>, and
<configuration-set> elements, respectively.

from jnpr.junos import Device
from 1xml import etree

from pprint import pprint
with Device(host="'router1.example.net') as dev:
XML format (default)

data = dev.rpc.get_config()
print (etree.tostring(data, encoding='unicode', pretty_print=True))

Text format
data = dev.rpc.get_config(options={'format': 'text'})

print (etree.tostring(data, encoding='unicode', pretty_print=True))

Junos 0S set format
data = dev.rpc.get_config(options={'format':'set'})

print (etree.tostring(data, encoding='unicode', pretty_print=True))

JSON format
data = dev.rpc.get_config(options={'format':'json'})
pprint (data)

@ NOTE: Depending on the version of Python and the format of the output, you might
need to modify the print statement to display more human-readable output.

Retrieve Configuration Data for Standard or Custom YANG Data Models

You can load standardized or custom YANG modules onto Junos devices to add data models that are not
natively supported by Junos OS but can be supported by translation. You configure nonnative data
models in the candidate configuration using the syntax defined for those models. When you commit the
configuration, the data model’s translation scripts translate that data and commit the corresponding
Junos OS configuration as a transient change in the checkout configuration.

The candidate and active configurations contain the configuration data for nonnative YANG data models
in the syntax defined by those models. Junos PyEZ applications can retrieve configuration data for
standard and custom YANG data models in addition to retrieving the native Junos OS configuration by
including the appropriate arguments in the get_config() RPC. By default, nonnative configuration data is
not included in the get_config() RPC reply.

To retrieve configuration data that is defined by a nonnative YANG data model in addition to retrieving
the Junos OS configuration, execute the get_config() RPC with the model argument, and include the
namespace argument when appropriate. The model argument takes one of the following values:

o custom—Retrieve configuration data that is defined by custom YANG data models. You must include
the namespace argument when retrieving data for custom YANG data models.

e ietf—Retrieve configuration data that is defined by IETF YANG data models.

e openconfig—Retrieve configuration data that is defined by OpenConfig YANG data models.

e True—Retrieve all configuration data, including the complete Junos OS configuration and data from
any YANG data models.

If you specify the ietf or openconfig value for the model argument, Junos PyEZ automatically uses the
appropriate namespace. If you retrieve data for a custom YANG data model by using model="custom', you
must also include the namespace argument with the corresponding namespace.

If you include the model argument with the value custom, ietf, or openconfig and also include the filter_xml
argument to return a specific XML subtree, Junos OS only returns the matching hierarchy from the
nonnative data model. If the Junos OS configuration contains a hierarchy of the same name, for example
"interfaces", it is not included in the reply. The filter_xml option is not supported when using model=True.

In the following example, the get_config() RPC retrieves the OpenConfig bgp configuration hierarchy from
the candidate configuration on the device. If you omit the filter_xml argument, the RPC returns the
complete Junos OS and OpenConfig candidate configurations.

from jnpr.junos import Device

from 1xml import etree

with Device(host="'router1.example.net') as dev:
data = dev.rpc.get_config(filter_xml="'bgp', model='openconfig')

print (etree.tostring(data, encoding='unicode', pretty_print=True))

The following RPC retrieves the interfaces configuration hierarchy from the candidate configuration for
an IETF YANG data model:

data = dev.rpc.get_config(filter_xml='interfaces', model='ietf")

print (etree.tostring(data, encoding='unicode', pretty_print=True))

The following RPC retrieves the 12vpn configuration hierarchy from the candidate configuration for a
custom YANG data model with the given namespace:

data = dev.rpc.get_config(filter_xml='12vpn', model='custom', namespace='http://
yang.juniper.net/customyang/demo/12vpn')
print (etree.tostring(data, encoding='unicode', pretty_print=True))

The following RPC retrieves the complete Junos OS candidate configuration as well as the configuration
data for other YANG data models that have been added to the device:

data = dev.rpc.get_config(model=True)

print (etree.tostring(data, encoding='unicode', pretty_print=True))

Specify Additional RPC Options

When you use the Junos PyEZ get_config() RPC to retrieve the configuration, it invokes the Junos XML
protocol <get-configuration> operation. The RPC supports the options argument, which enables you to
include a dictionary of key/value pairs of any attributes supported by the <get-configuration> operation.
For the complete list of attributes supported by the Junos XML protocol <get-configuration> operation,
see <get-configuration>.

For example, the get_config() RPC retrieves data from the pre-inheritance configuration, in which the
<groups>, <apply-groups>, <apply-groups-except>, and <interface-range> tags are separate elements in the
configuration output. To retrieve data from the post-inheritance configuration, which displays
statements that are inherited from user-defined groups and ranges as children of the inheriting
statements, you can include the options argument with 'inherit':'inherit'.

For example, the following code retrieves the configuration at the [edit system services] hierarchy level
from the post-inheritance candidate configuration. In this case, if the configuration also contains
statements configured at the [edit groups global system services] hierarchy level, those statements would
be inherited under the [edit system services] hierarchy in the post-inheritance configuration and returned
in the retrieved configuration data.

from jnpr.junos import Device
from 1xml import etree

with Device(host="'router1.example.net') as dev:
data = dev.rpc.get_config(filter_xml='system/services', options={'inherit':'inherit'})

print (etree.tostring(data, encoding='unicode', pretty_print=True))

https://www.juniper.net/documentation/us/en/software/junos/junos-xml-protocol/topics/ref/tag/junos-xml-protocol-get-configuration.html

How to Handle Namespaces in Configuration Data

The Junos PyEZ get_config() RPC, by default, strips out any namespaces in the returned configuration
data. Junos PyEZ applications can retain the namespace in the returned configuration data, which
enables you to load the data back onto a device, such as when you want to quickly modify the existing
configuration.

To retain namespaces in the configuration data, include the remove_ns=False argument in the get_config()
argument list. For example:

from jnpr.junos import Device

from 1xml import etree

with Device(host="'router1.example.net') as dev:
data = dev.rpc.get_config(filter_xml='bgp', model='openconfig', remove_ns=False)

print (etree.tostring(data, encoding='unicode', pretty_print=True))

In the following truncated output, the <bgp> element retains the xmlns attribute that defines the
namespace:

<bgp xmlns="http://openconfig.net/yang/bgp">
<neighbors>
<neighbor>
<neighbor-address>198.51.100.1</neighbor-address>
<config>
<peer-group>0C</peer-group>
<neighbor-address>198.51.100.1</neighbor-address>
<enabled>true</enabled>
<peer-as>64496</peer-as>
</config>
</neighbor>
</neighbors>

If the get_config() remove_ns=False argument is omitted, the namespace is not included in the output.

<bgp>
<neighbors>
<neighbor>
<neighbor-address>198.51.100.1</neighbor-address>

<config>
<peer-group>0C</peer-group>
<neighbor-address>198.51.100.1</neighbor-address>
<enabled>true</enabled>
<peer-as>64496</peer-as>

</config>

</neighbor>
</neighbors>

Use Junos PyEZ to Configure Junos Devices | 132

Use Junos PyEZ to Compare the Candidate Configuration and a Previously Committed
Configuration | 128

Use Junos PyEZ to Compare the Candidate

Configuration and a Previously Committed
Configuration

SUMMARY

Use the Junos PyEZ diff() and pdiff() methods to compare the candidate configuration to a
previously committed configuration.

Junos devices store a copy of the most recently committed configuration and up to 49 previous
configurations. The Junos PyEZ jnpr.junos.utils.config.Config utility enables you to compare the
candidate configuration to a previously committed configuration and print or return the difference. Table

13 on page 129 outlines the methods, which are equivalent to issuing the show | compare rollback »
configuration mode command in the Junos OS CLI.

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config

Table 13: Junos PYEZ Methods to Compare Configurations

Method Description

diff() Compare the candidate configuration to the specified rollback configuration and return the
difference as an object.

pdiff() Compare the candidate configuration to the specified rollback configuration and print the difference
directly to standard output.

@ NOTE: The ephemeral configuration database stores only the current version of the
committed ephemeral configuration data, and as a result, it does not support comparing
the modified ephemeral configuration to previously committed configurations.

The diff() and pdiff() methods retrieve the difference between the candidate configuration and a
previously committed configuration, which is referenced by the rollback ID parameter, rb_id, in the
method call. If the parameter is omitted, the rollback ID defaults to O, which corresponds to the active
configuration.

The difference is returned in patch format, where:
e Statements that exist only in the candidate configuration are prefixed with a plus sign (+)

e Statements that exist only in the comparison configuration and not in the candidate configuration are
prefixed with a minus sign (-)

e The methods return or print None if there is no difference between the configurations.

In a Junos PyEZ application, after establishing a connection with the device, you can call the diff() or
pdiff() method for a Config or Table object to compare the candidate and rollback configurations. The
following example uses the Config class to load configuration changes into the candidate configuration,
and then calls the pdiff() method to print the differences between the modified candidate configuration
and the active configuration before committing the changes.

from jnpr.junos import Device
from jnpr.junos.utils.config import Config

with Device(host="'router1.example.com') as dev:
with Config(dev, mode='exclusive') as cu:
cu.load(path="configs/junos-config-mx.conf', merge=True)

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.diff
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.pdiff

cu.pdiff()
cu.commit()

When you execute the code, it prints the differences to standard output. For example:

[edit system scripts op]
+ file bgp-neighbors.slax;

[edit interfaces]

+ ge-1/0/0 {

+ unit 0 {

+ family inet {

+ address 198.51.100.1/26;
+ }

+ }

+

- ge-1/1/0 {

= unit @ {

= family inet {
= address 198.51.100.65/26;

To retrieve the difference between the configurations as an object for further manipulation, call the
diff() method instead of the pdiff() method, and store the output in a variable. For example:

cdiff = cu.diff(rb_id=2)
print (cdiff)

When you use Junos PyEZ configuration Tables and Views to make structured configuration changes on
a device, you can load and commit the configuration data either by calling the lock(), load(), commit() and
unlock() methods individually, or by calling the set() method, which calls all of these methods
automatically. If you use configuration Tables to configure a device, and you want to compare the
updated candidate configuration to a previously committed configuration using the diff() or pdiff()
methods in your application, you must use the load() and commit() methods instead of the set() method.
Doing this enables you to retrieve the differences after the configuration data is loaded into the
candidate configuration but before it is committed. For example:

from jnpr.junos import Device
from myTables.ConfigTables import UserConfigTable

131

with Device(host="'router1.example.com') as dev:
with UserConfigTable(dev, mode='exclusive') as userconf:
userconf.user = 'userl’
userconf.class_name = 'read-only'

userconf . append()

userconf . load(merge=True)
userconf.pdiff()
userconf.commit()

The following example compares the candidate configuration to the configuration with rollback ID 5 but
does not make any changes to the configuration:

from jnpr.junos import Device

from jnpr.junos.utils.config import Config

with Device(host="'router1.example.com') as dev:
cu = Config(dev)
cu.pdiff(rb_id=5)

RELATED DOCUMENTATION
Use Junos PyEZ to Configure Junos Devices | 132

Example: Use Junos PyEZ to Roll Back the Configuration | 174
Junos PyEZ Modules Overview | 8

Use Junos PyEZ to Configure Junos Devices

SUMMARY IN THIS SECTION
You can use the Junos PyEZ Config utility or Junos Understanding Structured and Unstructured
PyEZ Tables and Views to configure Junos devices. Configuration Changes | 132

Understanding the General Configuration
Process | 134

How to Specify the Configuration
Mode | 136

How to Specify the Load Operation | 138

How to Create the Config or Table Object as a
Property of the Device Instance | 139

Junos PyEZ enables you to make structured and unstructured configuration changes on Junos devices.
The user account that is used to make configuration changes must have permissions to change the
relevant portions of the configuration on each device. If you do not define a user, the user defaults to
$USER.

The following sections compare structured and unstructured configuration changes and provide details
about the Junos PyEZ configuration process when making unstructured configuration changes using the
Config utility or structured configuration changes using Tables and Views.

Understanding Structured and Unstructured Configuration Changes

Unstructured configuration changes, which consist of loading static or templatized configuration data
that is formatted as ASCII text, Junos XML elements, Junos OS set commands, or JavaScript Object
Notation (JSON), are performed using the jnpr.junos.utils.config.Config utility. In contrast, structured
configuration changes use Junos PyEZ configuration Tables and Views to define specific resources to
configure, for example, a Junos OS user account. When you add the Table to the Junos PyEZ framework,
Junos PyEZ dynamically creates a configuration class for the resource, which enables you to
programmatically configure that resource on a device.

When you use the Config utility to make unstructured configuration changes on Junos devices, you can
change any portion of the configuration, but you must use one of the accepted formats for the
configuration data as well as the correct syntax for that format. Users who are familiar with the

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config

supported configuration formats and want the option to modify any portion of the configuration might
favor this method for configuration changes. The Config utility also enables you to roll back to a
previously committed configuration or load the existing rescue configuration.

Structured configuration changes, on the other hand, require that you create Tables and Views to define
specific resources and only enable you to configure the defined resources on the device. When you
define a structured resource, you can specify which configuration statements a user can configure for
the resource, and you can also define type and constraint checks to ensure that the users supply
acceptable values for the data in their Junos PyEZ application. Once a Table and View have been
created, they can easily be shared and reused. A Table user can programmatically configure the resource
on a device, and the user does not require any knowledge of supported configuration formats or their
syntax.

Table 14 on page 133 summarizes the two methods that Junos PyEZ supports for making configuration
changes.

Table 14: Junos PyEZ Structured and Unstructured Configuration Changes

Configuration Utility Scope Configuration Additional Information

Change Type Data Format

Structured Tables and Views Limited to the - Used to make targeted
configuration configuration changes
statements
defined in the Does not require
Table and View knowledge of

configuration formats
or their syntax

Unstructured jnpr.junos.utils.config.Config | Anypartofthe | o Text Supports:
class configuration
e JSON e |oading
configuration data
e Junos OS from strings, XML
set objects, local or
commands remote files, or
Jinja2 Templates
e Junos XML

e J|oading the rescue
configuration

e rolling back the
configuration to a
previous version

This topic discusses the general configuration process and the operations and elements that are
common to both configuration methods. For detailed information about performing configuration
updates using either the Config utility or Tables and Views, see the documentation specific to that
configuration method.

For more information about using the Config utility to make unstructured configuration changes, see the
following topics:

"Use the Junos PyEZ Config Utility to Configure Junos Devices" on page 140

"Use Junos PyEZ to Commit the Configuration" on page 158

"Example: Use Junos PyEZ to Load Configuration Data from a File" on page 163

jnpr.junos.utils.config.Config Class

For more information about using configuration Tables and Views to make structured configuration
changes, see the following topics:

"Define Junos PyEZ Configuration Tables" on page 280
e "Define Views for Junos PyEZ Configuration Tables" on page 288

e "Overview of Using Junos PyEZ Configuration Tables to Define and Configure Structured Resources"
on page 306

e "Use Junos PyEZ Configuration Tables to Configure Structured Resources on Junos Devices" on page
309

e "Use Junos PyEZ to Commit the Configuration" on page 158

Understanding the General Configuration Process

Junos PyEZ enables you to make configuration changes on Junos devices. After successfully connecting
to the device, you create a Config or Table object, depending on your preferred configuration method,
and associate it with the Device object. For example:

Config Object

from jnpr.junos import Device

from jnpr.junos.utils.config import Config

134

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config

with Device(host="dcla.example.com') as dev:

cu = Config(dev)

Table Object

from jnpr.junos import Device
from myTables.ConfigTables import ServicesConfigTable

with Device(host="dcla.example.com') as dev:

sct = ServicesConfigTable(dev)

By default, Junos PyEZ updates the candidate global configuration (also known as the shared
configuration database). The basic process for making configuration changes is to lock the configuration
database, load the configuration changes, commit the configuration to make it active, and then unlock
the configuration database. When you use the Junos PyEZ Config utility to make unstructured
configuration changes in the shared configuration database, you can perform these actions by calling the
appropriate instance methods outlined here:

1. Lock the configuration using lock()
2. Modify the configuration by performing one of the following actions:

e Call 10ad() when loading a new complete configuration or modifying specific portions of the
configuration

e Call rollback() to revert to a previously committed configuration, as described in "Roll Back the
Configuration" on page 155

e Call rescue() to load the rescue configuration, as described in "Load the Rescue Configuration" on
page 156

3. Commit the configuration using commit() , as described in "Commit the Configuration" on page 157
and "Use Junos PyEZ to Commit the Configuration" on page 158

4. Unlock the configuration using unlock()

If you use Tables and Views to make structured configuration changes on a device, you can choose to
call the lock(), load(), conmit(), and unlock() methods individually, or you can call the set() method, which
calls all of these methods automatically.

@ NOTE: The load() method performs the same function for Table objects and Config
objects, but you supply different parameters depending on which object type calls the
method.

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.lock
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.load
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.rollback
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.rescue
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.commit
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.unlock

How to Specify the Configuration Mode

By default, Junos PyEZ updates the candidate global configuration. You can also specify a different
configuration mode to use when modifying the configuration database. To specify a mode other than
the default, you must create the Config or Table object using a context manager (with ... as syntax) and
set the mode argument to the desired mode. Supported modes include private, exclusive, dynamic, batch, and

ephemeral.

When you specify a mode other than the default, the context manager handles opening and locking and
closing and unlocking the database. This ensures that you do not unintentionally leave the database in a
locked state. In these cases, you only need to call the load() and commit() methods to configure the
device.

The following examples make configuration changes using the configure private mode:

from jnpr.junos import Device
from jnpr.junos.utils.config import Config

with Device(host="dclal.example.com') as dev:
with Config(dev, mode='private') as cu:
cu.load('set system services netconf traceoptions file test.log', format='set')
cu.pdiff()
cu.commit()

from jnpr.junos import Device
from myTables.ConfigTables import ServicesConfigTable

with Device(host="dcla.example.com') as dev:
with ServicesConfigTable(dev, mode='private') as sct:

sct.ftp = True
sct.ssh = True
sct.telnet = True
sct.append()
sct.load()
sct.pdiff()

sct.commit()

@ NOTE: The context manager handles opening and locking the configuration database in
private, exclusive, dynamic, batch, or ephemeral mode. Thus, calling the lock() or set() methods
in one of these modes results in a LockError exception.

Junos PyEZ enables you to update the ephemeral configuration database on devices that support this
database. The ephemeral database is an alternate configuration database that provides a fast
programmatic interface for performing configuration updates on Junos devices.

@ NOTE: The ephemeral configuration database is an advanced feature which if used
incorrectly can have a serious negative impact on the operation of the device. For more
information, see Understanding the Ephemeral Configuration Database.

To open and configure the default instance of the ephemeral configuration database, include the
mode="'ephemeral' argument. For example:

from jnpr.junos import Device

from jnpr.junos.utils.config import Config

with Device(host="'router1.example.com') as dev:
with Config(dev, mode='ephemeral') as cu:
cu.load('set protocols mpls label-switched-path to-hastings to 192.0.2.1', format='set')
cu.commit()

To open and configure a user-defined instance of the ephemeral configuration database, include the
mode="ephemeral' argument, and set the ephemeral_instance argument to the name of the instance.

from jnpr.junos import Device

from jnpr.junos.utils.config import Config

with Device(host="'router1.example.com') as dev:
with Config(dev, mode='ephemeral', ephemeral_instance='ephl') as cu:
cu.load('set protocols mpls label-switched-path to-hastings to 192.0.2.1', format='set')
cu.commit()

https://www.juniper.net/documentation/us/en/software/junos/junos-xml-protocol/topics/concept/ephemeral-configuration-database-overview.html

How to Specify the Load Operation

In Junos PyEZ, you can load configuration changes using many of the same load operations that are
supported in the Junos OS CLI. You specify the desired load operation by including or omitting the
appropriate parameters in the set() method when making structured configuration changes using Tables
and Views, or in the load() method for either structured or unstructured configuration changes. Table 15
on page 138 summarizes the parameter settings required for each type of load operation.

@ NOTE: Because the load override and load update operations require a complete
configuration, the overwrite=True and update=True arguments must not be used when
making configuration changes using Tables, which only modify specific statements in the
configuration.

Table 15: Parameters for Specifying the Load Operation Type in the load() and set() Methods

Load Operation Argument Description First Supported
Junos PyEZ
Release
load merge merge=True Merge the loaded configuration with the existing 1.0
configuration.
load override overwrite=True | Replace the entire configuration with the loaded 1.0
configuration.
load patch patch=True Load configuration data from a patch file. 24.0
load replace - Merge the loaded configuration with the existing 1.0
(Default) configuration, but replace statements in the existing

configuration with those that specify the replace: tagin
the loaded configuration. If there is no statement in the
existing configuration, the statement in the loaded
configuration is added.

Table 15: Parameters for Specifying the Load Operation Type in the load() and set() Methods
(Continued)

Load Operation Argument Description First Supported
Junos PyEZ
Release

load update update=True Load a complete configuration and compare it against 2.1.0

the existing configuration. Each configuration element
that is different in the loaded configuration replaces its
corresponding element in the existing configuration.
During the commit operation, only system processes
that are affected by changed configuration elements
parse the new configuration.

How to Create the Config or Table Object as a Property of the Device
Instance

The Device class bind() method enables you to attach various instances and methods to the Device
instance. In your Junos PyEZ application, you have the option to bind the Config or Table object to the
Device instance. The functionality of the methods does not change, but the method execution differs

slightly. For example:

As a standalone variable:

with Device(host="dcla.example.com') as dev:
cu = Config(dev)
cu.lock()

As a bound property:

with Device(host="dcla.example.com') as dev:
dev.bind(cu=Config)
dev.cu.lock()

RELATED DOCUMENTATION

Use the Junos PyEZ Config Utility to Configure Junos Devices | 140
Example: Use Junos PyEZ to Load Configuration Data from a File | 163

Overview of Using Junos PyEZ Configuration Tables to Define and Configure Structured Resources |
306

Use Junos PyEZ Configuration Tables to Configure Structured Resources on Junos Devices | 309

Troubleshoot Junos PyEZ Errors When Configuring Junos Devices | 339

Use the Junos PyEZ Config Utility to Configure
Junos Devices

IN THIS SECTION

Configuration Process Overview | 141

Specify the Configuration Mode | 142

Specify the Load Operation | 143

Specify the Format of the Configuration Data to Load | 145
Specify the Location of the Configuration Data | 146

Load Configuration Data from a Local or Remote File | 147
Load Configuration Data from a String | 149

Load Configuration Data Formatted as an XML Object | 151
Load Configuration Data Using Jinja2 Templates | 152

Roll Back the Configuration | 155

Load the Rescue Configuration | 156

Commit the Configuration | 157

Junos PyEZ enables you to make structured and unstructured configuration changes on Junos devices.

This topic discuss how to use the jnpr.junos.utils.config.Config utility to make unstructured configuration

changes, which consist of static or templatized configuration data that is formatted as ASCII text, Junos
XML elements, Junos OS set commands, or JavaScript Object Notation (JSON). The Config utility also
enables you to roll back to a previously committed configuration or revert to a rescue configuration.

140

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config

Configuration Process Overview

After successfully connecting to a Junos device, to configure the device using the Config utility, first
create a Config object and associate it with the Device instance. For example:

from jnpr.junos import Device

from jnpr.junos.utils.config import Config

dev = Device(host="'dc1a.example.com').open()

cu = Config(dev)

By default, Junos PyEZ updates the candidate global configuration (also known as the shared
configuration database). The basic process for making configuration changes is to lock the configuration
database, load the configuration changes, commit the configuration to make it active, and then unlock
the configuration database. When you use the Junos PyEZ Config utility to make unstructured
configuration changes in the shared configuration database, you can perform these actions by calling the
appropriate instance methods outlined here:

1. Lock the configuration using lock()
2. Modify the configuration by performing one of the following actions:

e Call 1oad() when loading a new complete configuration or modifying specific portions of the
configuration

e Call rollback() to revert to a previously committed configuration, as described in "Roll Back the
Configuration" on page 155

e Call rescue() to load the rescue configuration, as described in "Load the Rescue Configuration" on
page 156

3. Commit the configuration using commit() , as described in "Commit the Configuration" on page 157
and "Use Junos PyEZ to Commit the Configuration" on page 158

4. Unlock the configuration using unlock()

You can also use a context manager (with ... as syntax) to create a Config object instance, and certain
configuration modes require that you use one. For these modes, Junos PyEZ automatically locks and
unlocks the configuration. For more information, see "Specify the Configuration Mode" on page 142.

When you use the load() method to modify the configuration, in addition to specifying the configuration
mode, you can also specify the type of load operation, the format of the configuration changes, and the
source of the configuration data. The Config utility supports many of the same load operations and
formats that are available in the Junos CLI. For more information, see:

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.lock
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.load
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.rollback
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.rescue
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.commit
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.unlock

e "Specify the Load Operation" on page 143
e "Specify the Format of the Configuration Data to Load" on page 145

You can specify the source of the configuration data as a file on the local server, a file on the target
device, or a file at a URL that is reachable from the target device, or as a string, an XML object, or a
Jinja2 template. For information about specifying the configuration data source, see the following
sections:

"Specify the Location of the Configuration Data" on page 146

e "Load Configuration Data from a Local or Remote File" on page 147
e "Load Configuration Data from a String" on page 149

e '"Load Configuration Data Formatted as an XML Object" on page 151

e "Load Configuration Data Using Jinja2 Templates" on page 152

Specify the Configuration Mode

By default, when you create a Config object and do not explicitly specify a configuration mode, Junos
PyEZ updates the candidate global configuration. You can also specify a different configuration mode to
use when modifying the configuration database. To specify a mode other than the default, you must
create the Config object using a context manager and set the mode argument to the desired mode.
Supported modes include private, exclusive, dynamic, batch, and ephemeral.

@ NOTE: You can use Junos PyEZ to update the ephemeral configuration database on
devices that support this database. The ephemeral database is an alternate configuration
database that provides a fast programmatic interface for performing configuration
updates on Junos devices. It is an advanced feature which if used incorrectly can have a
serious negative impact on the operation of the device. For more information, see
Understanding the Ephemeral Configuration Database.

When you specify a mode other than the default, the context manager handles opening and locking and
closing and unlocking the database. This ensures that you do not unintentionally leave the database in a
locked state. In these cases, you only need to call the load() and commit() methods to configure the
device.

https://www.juniper.net/documentation/us/en/software/junos/junos-xml-protocol/topics/concept/ephemeral-configuration-database-overview.html

For example, the following code makes configuration changes using the configure private mode, which
opens a private copy of the candidate configuration:

from jnpr.junos import Device
from jnpr.junos.utils.config import Config

dev = Device(host="'dc1a.example.com').open()

with Config(dev, mode='private') as cu:
cu.load('set system services netconf traceoptions file test.log', format='set')
cu.pdiff()

cu.commit()
dev.close()

For more information about the different configuration modes, see the CLI User Guide and "Use Junos
PyEZ to Configure Junos Devices" on page 132.

Specify the Load Operation

Junos PyEZ supports loading configuration changes using using many of the same load operations that
are supported in the Junos CLI. You specify the desired load operation by including or omitting the
appropriate parameters in the Config load() method.

Table 16 on page 143 outlines the supported load operations and the corresponding load() method
argument. By default, Junos PyEZ performs a load replace operation. To use a different load operation,
set the corresponding parameter to True in the load() method.

Table 16: Parameters for Specifying the Load Operation Type in the load() and set() Methods

Load Operation Argument Description First Supported
Junos PyEZ
Release
load merge merge=True Merge the loaded configuration with the existing 1.0
configuration.
load override overwrite=True | Replace the entire configuration with the loaded 1.0

configuration.

https://www.juniper.net/documentation/us/en/software/junos/cli/index.html
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.load

Table 16: Parameters for Specifying the Load Operation Type in the load() and set() Methods

(Continued)

Load Operation Argument

load patch patch=True

load replace -
(Default)

load update update=True

Description

Load configuration data from a patch file.

Merge the loaded configuration with the existing
configuration, but replace statements in the existing
configuration with those that specify the replace: tagin
the loaded configuration. If there is no statement in the
existing configuration, the statement in the loaded
configuration is added.

Load a complete configuration and compare it against
the existing configuration. Each configuration element
that is different in the loaded configuration replaces its
corresponding element in the existing configuration.
During the commit operation, only system processes
that are affected by changed configuration elements
parse the new configuration.

First Supported
Junos PyEZ
Release

240

1.0

21.0

The following example performs a load override operation, which replaces the entire candidate
configuration with the loaded configuration, and then commits the candidate configuration to make it

active.

from jnpr.junos import Device

from jnpr.junos.utils.config import Config

config_mx = 'configs/junos-config-mx.conf"'

dev = Device(host="'router1.example.com').open()

with Config(dev, mode='exclusive') as cu:

cu.load(path=config_mx, overwrite=True)

cu.commit()

dev.close()

Specify the Format of the Configuration Data to Load

The Junos PyEZ config utility enables you to configure Junos devices using one of the standard,
supported formats. You can provide configuration data as strings, files, XML objects, or Jinja2 Template
objects. Files can contain either configuration data snippets or Jinja2 templates. When providing
configuration data within a string, file, or Jinja2 template, supported formats for the data include ASCII
text, Junos XML elements, Junos OS set commands, and JSON. You can specify the format of the
configuration data either by explicitly including the format parameter in the Config utility load() method or
by adding the appropriate extension to the configuration data file. If you do not specify a format, the
default is XML.

@ NOTE: Starting in Junos PyEZ Release 1.2, Junos PyEZ automatically detects the format
when you supply the configuration data as a string.

Table 17 on page 145 summarizes the supported formats for the configuration data and the
corresponding value for the file extension and format parameter. When using Junos XML formatting for
the configuration data, you must enclose the data in the top-level <configuration> tag.

@ NOTE: You do not need to enclose configuration data that is formatted as ASCII text,
Junos OS set commands, or JSON in <configuration-text>, <configuration-set>, or

<configuration-json> tags as required when configuring the device directly within a
NETCONF session.

Table 17: Specify the Format for Configuration Data

Configuration Data Format File Extension format Parameter
ASCII text .conf, .text, .txt text

JavaScript Object Notation (JSON) Jjson json

Junos OS set commands set set

Junos XML elements xml xml

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.load

@ NOTE: When the overwrite or update parameter is set to True, you cannot use the Junos OS
set command format.

@ NOTE: Devices running Junos OS Release 16.1R1 or later support loading configuration
data in JSON format.

Specify the Location of the Configuration Data

Junos PyEZ enables you to load configuration data as strings, files, XML objects, or Jinja2 Template
objects. Files can contain either configuration data snippets or Jinja2 templates.

Table 18 on page 146 summarizes the 1oad() method parameters that you use to pass in the
configuration data or reference its location. You must always specify the format of the data by including
the format parameter in the method call except when using strings, XML objects, or files that have the
format indicated by the file extension. When using Jinja2 templates, include the template_vars parameter
to pass in the dictionary of required template variables.

Table 18: Referencing Configuration Data in the load() Method

Parameter Configuration Description format Parameter Requirements
Data Source

path Local file Path to a file on the local configuration You must include the format
management server containing parameter when the file
configuration data formatted as ASCII extension does not indicate the

text, Junos XML elements, Junos OS set format of the data.
commands, or JSON.

template Jinja2 Template Pre-loaded Jinja2 Template object. You must include the format
object parameter when the file

Include the template_vars parameter in extension does not indicate the

the load() method argument list to format of the data.
reference a dictionary containing any
required Jinja2 template variables.

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.load

Table 18: Referencing Configuration Data in the load() Method (Continued)

Parameter Configuration

Data Source

template_path = Local Jinja2
template file

url Remote file

vargs[0] XML object
String

Description

Path to a file on the local configuration
management server containing a Jinja2
template formatted as ASCII text, Junos
XML elements, Junos OS set commands,
or JSON.

Include the template_vars parameter in
the load() method argument list to
reference a dictionary containing any
required Jinja2 template variables.

Path to a file located on the Junos device
or at a remote URL that is reachable from
the Junos device using an FTP or

Hypertext Transfer Protocol (HTTP) URL.

XML object or a string that contains
configuration data formatted as ASCII
text, Junos XML elements, Junos OS set
commands, or JSON.

format Parameter Requirements

You must include the format
parameter when the file
extension does not indicate the
format of the data.

You must include the format
parameter when the file
extension does not indicate the
format of the data.

Junos PyEZ automatically
detects the format of the
configuration data in this case,
and the format parameter is not
required.

Load Configuration Data from a Local or Remote File

Junos PyEZ enables you to load configuration data formatted as ASCII text, Junos XML elements, Junos

OS set commands, or JSON from a local or remote file.

To load configuration data from a local file on the configuration management server, set the 1oad()

method’s path parameter to the absolute or relative path of the file. For example:

from jnpr.junos import Device

from jnpr.junos.utils.config import Config

dev = Device(host="'dc1a.example.com').open()

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.load

conf_file = 'configs/junos-config-interfaces.conf"
with Config(dev, mode='exclusive') as cu:
cu.load(path=conf_file, merge=True)

cu.commit()

dev.close()

You can also load configuration data from a file located on the Junos device or at a URL that is reachable
from the Junos device. To load configuration data from a file on the Junos device, set the url parameter
to the absolute or relative path of the file on the target device, and include any other parameters
required for the load operation. For example:

cu.load(url="/var/home/user/golden.conf"')

To load configuration data from a file at a remote URL, set the url parameter to the FTP location or
Hypertext Transfer Protocol (HTTP) URL of a remote file, and include any other parameters required for
the load operation. For example:

cu.load(url="'ftp://username@ftp.hostname.net/path/filename")

cu.load(url="http://username:password@example.com/path/filename")

For detailed information about specifying the URL, see the url attribute for the Junos XML protocol
<load-configuration> operation.

If the file does not indicate the format of the configuration data by using one of the accepted file
extensions as listed in "Specify the Format of the Configuration Data to Load" on page 145, then you
must specify the format by including the format parameter in the load() method parameter list. For
example:

conf_file = 'configs/junos-config-interfaces'

cu.load(path=conf_file, format='text', merge=True)

For information about loading configuration data from Jinja2 templates or template files, see "Load
Configuration Data Using Jinja2 Templates" on page 152.

https://www.juniper.net/documentation/us/en/software/junos/junos-xml-protocol/topics/ref/tag/junos-xml-protocol-load-configuration.html

Load Configuration Data from a String

To load configuration data that is formatted as ASCII text, Junos XML elements, Junos OS set
commands, or JSON from a string, include the string as the first argument in the 1oad() method
argument list. Junos PyEZ automatically detects the format of the configuration data in strings, so the
format parameter is optional in this case.

The following code snippets present sample multiline strings containing configuration data in the
different formats and the corresponding calls to the load() method. The optional format parameter is
explicitly included in each example for clarity. In the examples, cu is an instance of the Config utility,
which operates on the target Junos device.

from jnpr.junos import Device

from jnpr.junos.utils.config import Config

dev = Device(host="'dc1a.example.com').open()
cu = Config(dev)

e For configuration data formatted as ASCII text:

config_text =

system {
scripts {
op {
file test.slax;
}
}
}

Load the configuration data by supplying the string as the first argument in the list, and optionally
specify format="text".

cu.load(config_text, format='text', merge=True)

e For configuration data formatted as Junos XML.:

config_xml =

<configuration>

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.load

<system>
<scripts>
<op>
<file>
<name>test.slax</name>
</file>
</op>
</scripts>
</system>

</configuration>

Load the configuration data by supplying the string as the first argument in the list, and optionally
specify format="xml".

cu.load(config_xml, format='xml', merge=True)

For configuration data formatted as Junos OS set commands:

config_set = """
set system scripts op file test.slax

Load the configuration data by supplying the string as the first argument in the list, and optionally
specify format="set".

cu.load(config_set, format='set', merge=True)

For configuration data formatted using JSON:

config_json = """{
"configuration" : {
"system" : {
"scripts" : {
"op" : {
"file" : [
{

"name" : "test.slax"

}
}II nn

Load the configuration data by supplying the string as the first argument in the list, and optionally
specify format="json".

cu.load(config_json, format='json', merge=True)

Load Configuration Data Formatted as an XML Object

To load configuration data formatted as an XML object, include the object as the first argument in the
load() method argument list, and supply any other required parameters. Because the default format for
configuration data is XML, you do not need to explicitly include the format parameter in the method call.

The following code presents an XML object and the corresponding call to the load() method:

from jnpr.junos import Device
from jnpr.junos.utils.config import Config
from 1xml.builder import E

config_xml_obj = (
E.configuration(# create an Element called "configuration”
E.system(
E.scripts(
E.op (
E.file (

E.name("test.slax"),

with Device(host="dcla.example.com') as dev:

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.load

with Config(dev, mode='exclusive') as cu:
cu.load(config_xml_obj, merge=True)

cu.commit()

Load Configuration Data Using Jinja2 Templates

Junos PyEZ supports using Jinja2 templates to render Junos configuration data. Jinja is a template
engine for Python that enables you to generate documents from predefined templates. The templates,
which are text files in the desired language, provide flexibility through the use of expressions and
variables. You can create Junos configuration data using Jinja2 templates in one of the supported
configuration formats, which includes ASCII text, Junos XML elements, Junos OS set commands, and
JSON. Junos PyEZ uses the Jinja2 template and a supplied dictionary of variables to render the
configuration data.

Jinja2 templates provide a powerful method to generate configuration data, particularly for similar
configuration stanzas. For example, rather than manually adding the same configuration statements for
each interface on a device, you can create a template that iterates over a list of interfaces and creates
the required configuration statements for each one. In Jinja, blocks are delimited by '{%' and '%}' and
variables are enclosed within '{{' and '}}".

The following sample Jinja2 template generates configuration data that enables MPLS on logical unit O
for each interface in a given list and also configures the interface under the MPLS and RSVP protocols.

interfaces {
{% for item in interfaces %}
{{ item }} {
description "{{ description }}";
unit @ {
family {{ family }};
}
} {% endfor %}
}
protocols {
mpls {
{% for item in interfaces %}
interface {{ item }};
{% endfor %}
}
rsvp {
{% for item in interfaces %}

interface {{ item }};
{% endfor %}

In the Junos PyEZ code, the corresponding dictionary of Jinja2 template variables is:

config_vars = {
'interfaces': ['ge-1/0/1', 'ge-1/0/2', 'ge-1/0/3'1,
'description': 'MPLS interface',

"family': 'mpls’

To load the Jinja2 template in the Junos PyEZ code, set the template_path parameter to the path of the
template file, and set the template_vars parameter to the dictionary of template variables. If you do not
use one of the accepted file extensions to indicate the format of the configuration data, then you must
include the format parameter in the load() method parameter list.

from jnpr.junos import Device

from jnpr.junos.utils.config import Config

conf_file = 'configs/junos-config-interfaces-mpls.conf"
config_vars = {
'interfaces': ['ge-1/0/1', 'ge-1/0/2', 'ge-1/0/3'1,
'description': 'MPLS interface',

'family': 'mpls'

with Device(host="'router1.example.com') as dev:
with Config(dev, mode='exclusive') as cu:
cu.load(template_path=conf_file, template_vars=config_vars, merge=True)
cu.commit()

@ NOTE: If you are supplying a pre-loaded Jinja2 Template object, you must use the
template parameter instead of the template_path parameter in the load() method argument
list.

Junos PyEZ uses the Jinja2 template and dictionary of variables to render the following configuration
data, which is then loaded into the candidate configuration and committed on the device:

interfaces {

ge-1/0/1 {
description "MPLS interface";
unit @ {
family mpls;
}
}
ge-1/0/2 {
description "MPLS interface";
unit @ {
family mpls;
}
}
ge-1/0/3 {
description "MPLS interface";
unit @ {
family mpls;
}
}

}
protocols {
mpls {
interface ge-1/0/1;
interface ge-1/0/2;
interface ge-1/0/3;

}

rsvp {
interface ge-1/0/1;
interface ge-1/0/2;
interface ge-1/0/3;

}

The following video presents a short Python session that demonstrates how to use a Jinja2 template to
configure a Junos device.

https://www.youtube.com/embed/PSgSjTeqRX0

For additional information about Jinja2, see the Jinja2 documentation at https:/
jinja.palletsprojects.com/en/stable/.

Roll Back the Configuration

Junos devices store a copy of the most recently committed configuration and up to 49 previous
configurations, depending on the platform. You can roll back to any of the stored configurations. This is
useful when configuration changes cause undesirable results, and you want to revert back to a known
working configuration. Rolling back the configuration is similar to the process for making configuration
changes on the device, but instead of loading configuration data, you perform a rollback, which replaces
the entire candidate configuration with a previously committed configuration.

The Junos PYyEZ jnpr.junos.utils.config.Config class rollback() method enables you to roll back the
configuration on a Junos device. To roll back the configuration, call the rollback() method and and set the
rb_id argument to the ID of the rollback configuration. Valid ID values are O (zero, for the most recently
committed configuration) through one less than the number of stored previous configurations (maximum
is 49). If you omit this parameter in the method call, it defaults to O.

The following example prompts for the rollback ID of the configuration to restore, rolls back the
configuration, prints the configuration differences, and then commits the configuration to make it the
active configuration on the device.

from jnpr.junos import Device

from jnpr.junos.utils.config import Config
rollback_id = int(input('Rollback ID of the configuration to restore: '))
with Device(host="dcla.example.com') as dev:
with Config(dev, mode='exclusive') as cu:
cu.rollback(rb_id=rollback_id)

cu.pdiff()
cu.commit()

user@server:~$ python3 junos-pyez-rollback.py
Rollback ID of the configuration to restore: 1

[edit interfaces]
- ge-0/0/1 {

https://jinja.palletsprojects.com/en/stable/
https://jinja.palletsprojects.com/en/stable/
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.rollback

= unit 0 {
= family inet {
= address 198.51.100.1/24;

For a more extensive example that includes error handling, see "Example: Use Junos PyEZ to Roll Back
the Configuration" on page 174.

Load the Rescue Configuration

A rescue configuration allows you to define a known working configuration or a configuration with a
known state that you can restore at any time. You use the rescue configuration when you need to revert
to a known configuration or as a last resort if your router or switch configuration and the backup
configuration files become damaged beyond repair. When you create a rescue configuration, the device
saves the most recently committed configuration as the rescue configuration.

The Junos PyEZ jnpr.junos.utils.config.Config utility enables you to manage the rescue configuration on
Junos devices. After creating an instance of the Config class, you use the rescue() method to mange the
rescue configuration. You specify the action to perform on the rescue configuration by setting the
rescue() method action parameter to the desired operation.

To load the existing rescue configuration into the candidate configuration, specify action="reload". If no
rescue configuration exists, the load operation returns False. After loading the rescue configuration, you
must commit the configuration to make it the active configuration on the device.

The following example loads and commits the rescue configuration, if one exists:

from jnpr.junos import Device

from jnpr.junos.utils.config import Config

with Device(host="dcla.example.com') as dev:
with Config(dev, mode='exclusive') as cu:
rescue = cu.rescue(action="'reload")
if rescue is False:
print ('No existing rescue configuration.')
else:
cu.pdiff()
cu.commit()

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.rescue

157

For information about creating, retrieving, or deleting the rescue configuration and for additional
examples, see "Use Junos PyEZ to Manage the Rescue Configuration on Junos Devices" on page 182.

Commit the Configuration

After modifying the configuration, you must commit the configuration to make it the active
configuration on the device. When you use the Config utility to make unstructured configuration changes
on a device, you commit the candidate configuration by calling the commit() method.

from jnpr.junos import Device

from jnpr.junos.utils.config import Config
conf_file = 'configs/junos-config-interfaces.conf"

with Device(host="dcla.example.com') as dev:
with Config(dev, mode='exclusive') as cu:
cu.load(path=conf_file, merge=True)

cu.commit()

For more information about the commit operation and supported commit options in Junos PyEZ scripts,
see "Use Junos PyEZ to Commit the Configuration" on page 158.

Change History Table

Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release = Description

1.2 Starting in Junos PyEZ Release 1.2, Junos PyEZ automatically detects the format when you supply the
configuration data as a string.

RELATED DOCUMENTATION
Use Junos PyEZ to Configure Junos Devices | 132

Example: Use Junos PyEZ to Load Configuration Data from a File | 163
Troubleshoot Junos PyEZ Errors When Configuring Junos Devices | 339

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.commit
https://apps.juniper.net/feature-explorer/

Use Junos PyEZ to Commit the Configuration

IN THIS SECTION

How to Commit the Candidate Configuration | 158

How to Specify Commit Options | 160

Junos PyEZ enables you to make structured and unstructured configuration changes on Junos devices.
After connecting to the device and modifying the configuration, you must commit the configuration to
make it active. This topic discusses how to commit the configuration and which commit options are
supported in Junos PyEZ applications.

How to Commit the Candidate Configuration

When you use the Junos PYEZ jnpr.junos.utils.config.Config utility to make unstructured configuration
changes on a device, you commit the candidate configuration by calling the Config instance commit()
method. For example:

from jnpr.junos import Device
from jnpr.junos.utils.config import Config

from jnpr.junos.exception import ConfigloadError, CommitError
with Device(host="'router1.example.com') as dev:

with Config(dev, mode='exclusive') as cu:
try:
cu.load(path="'configs/mx_config.conf"', merge=True)
cu.commit()
except (ConfiglLoadError, CommitError) as err:
print (err)

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.commit

To verify the syntax of the configuration without committing it, call the commit_check() method in place of
the commit() method.

cu.commit_check()

When you use Junos PyEZ configuration Tables and Views to make structured configuration changes on
a device, you commit the candidate configuration by calling either the set() method, which automatically
calls the lock(), load(), commit() and unlock() methods, or by calling the various methods individually. For
example:

from jnpr.junos import Device
from myTables.UserConfigTable import UserConfigTable

with Device(host="'router1.example.com') as dev:

userconfig = UserConfigTable(dev)

...set the values for the configuration data. ..
userconfig.append()

userconfig.set(merge=True)

Similarly, you can call the individual methods, as in the following example:

from jnpr.junos import Device
from myTables.UserConfigTable import UserConfigTable

with Device(host="'router1.example.com') as dev:

userconfig = UserConfigTable(dev)

...set the values for the configuration data. ..
userconfig.append()

userconfig.lock()

userconfig.load(merge=True)

userconfig.commit()

userconfig.unlock()

@ NOTE: If you use a context manager to create the Config or Table object and set the mode
argument to private, exclusive, dynamic, batch, or ephemeral, you only call the load() and
commit() methods to configure the device. The context manager handles opening and

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.commit_check
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.commit
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.factory.html#jnpr.junos.factory.cfgtable.CfgTable.set

locking and closing and unlocking the database, so calls to the lock(), unlock(), or set()
methods in one of these modes results in a LockError exception.

How to Specify Commit Options

The Junos CLI provides options for the commit operation, such as adding a commit comment or
synchronizing the configuration on multiple Routing Engines. Junos PyEZ supports many of these same
commit options and some additional options, which you can use in your Junos PyEZ application by
including the appropriate arguments in the commit() or set() method argument list. Table 19 on page 160
outlines the supported commit options and provides the corresponding CLI command.

Table 19: Junos PyEZ Supported Commit Options

Commit Option Argument Description CLI command
comment="comment" Log a comment for that commit operationin | commit comment "comment"
the system log file and in the device's commit
history.
confirm=(True | minutes) Require that a commit operation be commit confirmed <minutes>

confirmed within a specified amount of time
after the initial commit. Otherwise, roll back
to the previously committed configuration.

Set the argument to True to use the default
time of 10 minutes.

detail=True Return an XML object with detailed commit | display detail |
information about the commit process. display xml
force_sync=True Synchronize and commit the configuration on | commit synchronize force

both Routing Engines, even if there are open
configuration sessions or uncommitted
configuration changes on the other Routing
Engine.

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.commit
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.factory.html#jnpr.junos.factory.cfgtable.CfgTable.set

Table 19: Junos PyEZ Supported Commit Options (Continued)

Commit Option Argument Description CLI command

ignore_warning=True Ignore warnings that are raised during the -
commit operation.

ignore_warning="string"
Set the argument to True to ignore all

ignore_warning=["string7", warnings, or set the argument to a string or
"string?"] list of strings specifying which warnings to
ignore.
sync=True Synchronize and commit the configuration on | commit synchronize

both Routing Engines.

timeout=seconds Wait for completion of the operation using -
the specified value as the timeout.

Commit Comment

When you commit the configuration, you can include a brief comment to describe the purpose of the
committed changes. To log a comment describing the changes, include the comment parameter and a
message string in the commit() or set() method argument list, as appropriate. For example:

cu. commit(comment="'Configuring ge-0/0/0 interface')

Including the comment argument is equivalent to issuing the commit comment configuration mode command in
the CLI. The comment is logged to the system log file and included in the device's commit history, which
you can view by issuing the show system commit command in the CLI.

Commit Confirm

To require that a commit operation be confirmed within a specified amount of time after the initial
commit, include the confirm=minutes argument in the commit() or set() method argument list, as appropriate.

cu.commit(confirm=15)

If the commit is not confirmed within the given time limit, the device automatically rolls back to the
previously committed configuration and sends a broadcast message to all logged-in users. The allowed
range is 1 through 65,535 minutes. You can also specify confirm=True to use the default rollback time of
10 minutes. To confirm the commit operation, call either the commit() or commit_check() method.

The confirmed commit operation is useful for verifying that a configuration change works correctly and
does not prevent management access to the device. If the change prevents access or causes other
errors, the automatic rollback to the previous configuration enables access to the device after the
rollback deadline passes. If you lose connectivity to the device, you must issue the Junos PyEZ open()
method to restore connectivity.

Commit Detail

You can review the details of the entire commit operation by including the detail=True argument in the
comnit() or set() method argument list. When you include this argument, the method returns an XML
object with detailed information about the commit process. The return value is equivalent to the
contents enclosed by the <commit-results> element in the output of the commit | display detail | display xml
command in the CLL.

from 1xml import etree

commit_detail = cu.commit(detail=True)

print (etree.tostring(commit_detail, encoding='unicode'))

Commit Synchronize

If the device has dual Routing Engines, you can synchronize and commit the configuration on both
Routing Engines by including the sync=True argument in the commit() or set() method argument list.

cu.commit(sync=True)

When you include the sync=True argument, the device copies the candidate configuration stored on the
local Routing Engine to the other Routing Engine, verifies the candidate’s syntactic correctness, and
commits it on both Routing Engines. To force the commit synchronize operation to succeed even if there are
open configuration sessions or uncommitted configuration changes on the other Routing Engine, use the
force_sync=True argument, which causes the device to terminate any configuration sessions on the other
Routing Engine before synchronizing and committing the configuration.

cu.commit(force_sync=True)

Commit and Commit Check Timeout

The default time for an RPC to time out is 30 seconds. Large configuration changes might exceed this
value causing a commit or commit check operation to time out before the configuration can be
uploaded, checked, and committed. To accommodate configuration changes that might require a commit
check or commit time that is longer than the default timeout interval, include the timeout=seconds

argument in the commit_check(), commit() or set() method argument list, and set the timeout interval to an
appropriate value. For example:

cu.commit_check(timeout=60)

cu.commit(timeout=360)

Ignore Warnings

Junos PyEZ raises an RpcError exception when the RPC reply contains <rpc-error> elements with a severity
of warning or higher. In cases where it is necessary or desirable to suppress the RpcError exceptions that
are raised in response to warnings, you can include the commit() method’s ignore_warning parameter. For
example:

cu.commit(ignore_warning=True)

For more information about using the ignore_warning parameter, see "Suppress RpcError Exceptions
Raised for Warnings in Junos PyEZ Applications" on page 72.

Use Junos PyEZ to Configure Junos Devices | 132

Use the Junos PyEZ Config Utility to Configure Junos Devices | 140
Example: Use Junos PyEZ to Load Configuration Data from a File | 163

Example: Use Junos PyEZ to Load Configuration
Data from a File

IN THIS SECTION

Requirements | 164

Overview | 164

Configuration | 165

Execute the Junos PyEZ Application | 170

Verification | 171
Troubleshooting | 172

The Junos PyEZ library enables you to perform operational and configuration tasks on Junos devices.
This example uses the Junos PyEZ jnpr.junos.utils.config.Config utility to load configuration data from a
local file on the configuration management server onto a Junos device.

Requirements

This example uses the following hardware and software components:
e Configuration management server running Python 3.5 or later and Junos PyEZ Release 2.0 or later
e Junos device with NETCONF enabled and a user account configured with appropriate permissions

e SSH public/private key pair configured for the appropriate user on the server and Junos device

Overview

This example presents a Python application that uses the Junos PyEZ Config utility to enable a new op
script in the configuration of the specified device. The junos-config-add-op-script.conf file, which is
located on the configuration management server, contains the relevant configuration data formatted as
ASCII text.

The Python application imports the Device class, which handles the connection with the Junos device;
the Config class, which is used to make unstructured configuration changes on the target device; and
required exceptions from the jnpr. junos.exception module, which contains exceptions encountered when
managing Junos devices. This example binds the Config instance to the Device instance rather than
creating a standalone variable for the instance of the Config class.

After creating the Device instance for the target device, the open() method establishes a connection and
NETCONEF session with the device. The Config utility methods then lock the candidate configuration,
load the configuration changes into the candidate configuration as a load merge operation, commit the
candidate configuration, and then unlock it.

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.html#jnpr.junos.device.Device.open

The 1load() method path parameter is set to the path of the configuration file. Because the configuration
file extension indicates the format of the configuration data, the format parameter is omitted from the
argument list. Setting merge=True indicates that the device should perform a load merge operation.

After the configuration operations are complete, the application calls the close() method to terminate
the NETCONF session and connection. The application includes code for handling exceptions such as
Lockrror for errors that occur when locking the configuration and CommitError for errors that occur during
the commit operation. The application also includes code to handle any additional exceptions that might
occur.

Configuration

IN THIS SECTION

Create the Configuration Data File | 165
Create the Junos PyEZ Application | 166

Results | 168

Create the Configuration Data File

Step-by-Step Procedure

To create the configuration data file that is used by the Junos PyEZ application:

1. Create a new file with the appropriate extension based on the format of the configuration data,
which in this example is ASCII text.

2. Include the desired configuration changes in the file, for example:

system {
scripts {
op {
file bgp-neighbors.slax;

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.load
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.html#jnpr.junos.device.Device.close

Create the Junos PyEZ Application

Step-by-Step Procedure

To create a Python application that uses Junos PyEZ to make configuration changes on a Junos device:

1. Import any required modules, classes, and objects.

from
from
from
from
from
from

from

Jnpr
jnpr
Jnpr
jnpr
Jnpr
jnpr
Jnpr

.junos

.junos.
.junos.
.junos.
.junos.
.junos.

.junos.

import Device

utils.config import Config
exception import ConnectError
exception import LockError
exception import UnlockError
exception import ConfigloadError

exception import CommitError

2. Include any required variables, which for this example includes the hostname of the managed
device and the path to the file containing the configuration data.

host = 'dcla.example.com'

conf_file = 'configs/junos-config-add-op-script.conf"'

3. Create amain() function definition and function call, and place the remaining statements within the
definition.

def main():

if __name__

main()

__main__":

4. Create an instance of the Device class, and supply the hostname and any parameters required for
that specific connection.

Then open a connection and establish a NETCONF session with the device.

try:

open a connection with the device and start a NETCONF session

dev = Device(host=host)

dev.open()

except ConnectError as err:
print ("Cannot connect to device: {0}".format(err))

return

5. Bind the Config instance to the Device instance.

dev.bind(cu=Config)

6. Lock the configuration.

Lock the configuration, load configuration changes, and commit
print ("Locking the configuration")
try:
dev.cu.lock()
except LockError as err:
print ("Unable to lock configuration: {0}".format(err))
dev.close()

return

7. Load the configuration changes and handle any errors.

print ("Loading configuration changes")
try:
dev.cu.load(path=conf_file, merge=True)
except (ConfiglLoadError, Exception) as err:
print ("Unable to load configuration changes: {0}".format(err))
print ("Unlocking the configuration")
try:
dev.cu.unlock()
except UnlockError:
print ("Unable to unlock configuration: {0}".format(err))
dev.close()

return

8. Commit the configuration.

print ("Committing the configuration")

try:

dev.cu.commit(comment="'Loaded by example."')
except CommitError as err:
print ("Unable to commit configuration: {0}".format(err))
print ("Unlocking the configuration")
try:
dev.cu.unlock()
except UnlockError as err:
print ("Unable to unlock configuration: {0}".format(err))
dev.close()
return

9. Unlock the configuration.

print ("Unlocking the configuration")
try:

dev.cu.unlock()
except UnlockError as err:

print ("Unable to unlock configuration: {0}".format(err))

10. End the NETCONF session and close the connection with the device.

End the NETCONF session and close the connection

dev.close()

Results

On the configuration management server, review the completed application. If the application does not
display the intended code, repeat the instructions in this example to correct the application.

from jnpr.junos import Device

from jnpr.junos.utils.config import Config

from jnpr.junos.exception import ConnectError
from jnpr.junos.exception import LockError

from jnpr.junos.exception import UnlockError
from jnpr.junos.exception import ConfiglLoadError

from jnpr.junos.exception import CommitError

host = 'dcla.example.com'

conf_file = 'configs/junos-config-add-op-script.conf

def main():
open a connection with the device and start a NETCONF session
try:
dev = Device(host=host)
dev.open()
except ConnectError as err:
print ("Cannot connect to device: {0}".format(err))
return

dev.bind(cu=Config)

Lock the configuration, load configuration changes, and commit
print ("Locking the configuration")
try:
dev.cu.lock()
except LockError as err:
print ("Unable to lock configuration: {0}".format(err))
dev.close()
return

print ("Loading configuration changes")
try:
dev.cu.load(path=conf_file, merge=True)
except (ConfiglLoadError, Exception) as err:
print ("Unable to load configuration changes: {0}".format(err))
print ("Unlocking the configuration")
try:
dev.cu.unlock()
except UnlockError:
print ("Unable to unlock configuration: {0}".format(err))
dev.close()
return

print ("Committing the configuration")
try:
dev.cu.commit(comment="Loaded by example.')
except CommitError as err:
print ("Unable to commit configuration: {0}".format(err))
print ("Unlocking the configuration")
try:
dev.cu.unlock()

except UnlockError as err:

print ("Unable to unlock configuration: {0}".format(err))
dev.close()
return

print ("Unlocking the configuration")
try:
dev.cu.unlock()
except UnlockError as err:
print ("Unable to unlock configuration: {0}".format(err))

End the NETCONF session and close the connection

dev.close()

if __name__ == "__main__

main()

Execute the Junos PyEZ Application

IN THIS SECTION

Execute the Application | 170

Execute the Application

¢ On the configuration management server, execute the application.

user@server:~$ python3 junos-pyez-config.py
Locking the configuration

Loading configuration changes

Committing the configuration

Unlocking the configuration

Verification

IN THIS SECTION

Verify the Configuration | 171

Verify the

Purpose

Configuration

Verify that the configuration was correctly updated on the Junos device.

Action

Log in to the Junos device and view the configuration, commit history, and log files to verify the

configuration and commit. For example:

user@dcla> show configuration system scripts

op {

file bgp-neighbors.slax;

user@dcla> show system commit
0 2014-07-29 14:40:50 PDT by user via netconf

user@dcla> show log messages

Jul 29 14:
ssh2: RSA
Jul 29 14:
Jul 29 14:
Loaded by
Jul 29 14:
Jul 29 14:
Jul 29 14:

40:36 dcla sshd[75843]: Accepted publickey for user from 198.51.100.1 port 54811
02:dd:53:3e:f9:97:dd:1f:d9:31:€9:7f:82:06:aa:67
40:36 dcla sshd[75843]: subsystem request for netconf by user user

40:42 dcla file[75846]: UI_COMMIT: User 'user' requested 'commit' operation (comment:
example.)
40:45 dcla mspd[75888]: mspd: No member config

40:45 dcla mspd[758881: mspd: Building package info
40:51 dcla mspd[1687]: mspd: No member config

Jul 29 14:40:51 dcla mspd[1687]: mspd: Building package info
Jul 29 14:40:51 dcla file[75846]: UI_COMMIT_COMPLETED: commit complete

Meaning

The configuration and the log file contents indicate that the correct configuration statements were
successfully configured and committed on the device.

Troubleshooting

IN THIS SECTION

Troubleshoot Timeout Errors | 172
Troubleshoot Configuration Lock Errors | 173

Troubleshoot Configuration Change Errors | 174

Troubleshoot Timeout Errors

Problem

The Junos PyEZ code generates an RpcTimeoutError message or a TimeoutExpiredError message and
fails to update the device configuration.

RpcTimeoutError(host: dcla.example.com, cmd: commit-configuration, timeout: 30)
The default time for a NETCONF RPC to time out is 30 seconds. Large configuration changes might

exceed this value causing the operation to time out before the configuration can be uploaded and
committed.

Solution

To accommodate configuration changes that might require a commit time that is longer than the default
timeout interval, set the timeout interval to an appropriate value and rerun the code. To configure the

interval, either set the Device timeout property to an appropriate value, or include the timeout=seconds
argument when you call the commit() method to commit the configuration data on a device. For example:

dev = Device(host="host")
dev.open()
dev.timeout = 300

dev.cu.commit(timeout=360)

Troubleshoot Configuration Lock Errors

Problem

The Junos PyEZ code generates a LockError message indicating that the configuration cannot be locked.
For example:

LockError(severity: error, bad_element: None, message: configuration database modified)

A configuration lock error can occur for the following reasons:
e Another user has an exclusive lock on the configuration.
e The shared configuration database has uncommitted changes.

e The user executing the Junos PyEZ code does not have permissions to configure the device.

Solution

If another user has an exclusive lock on the configuration or has modified the configuration, wait until
the lock is released or the changes are committed, and execute the code again. If the cause of the issue
is that the user does not have permissions to configure the device, either execute the application with a
user who has the necessary permissions, or if appropriate, configure the Junos device to give the current
user the necessary permissions to make the changes.

Troubleshoot Configuration Change Errors

Problem

The Junos PyEZ code generates a ConfigloadError message indicating that the configuration cannot be
modified due to a permissions issue.

ConfigloadError(severity: error, bad_element: scripts, message: permission denied)

This error message might be generated when the user executing the Junos PyEZ code has permission to
alter the configuration, but does not have permission to alter the desired portion of the configuration.

Solution

Either execute the application with a user who has the necessary permissions, or if appropriate,
configure the Junos device to give the current user the necessary permissions to make the changes.

Use Junos PyEZ to Configure Junos Devices | 132

Use the Junos PyEZ Config Utility to Configure Junos Devices | 140

Example: Use Junos PyEZ to Roll Back the
Configuration

IN THIS SECTION

Requirements | 175

Overview | 175

Configuration | 176

Execute the Junos PyEZ Code | 180
Verification | 180

The Junos PyEZ library enables you to perform operational and configuration tasks on Junos devices.
This example uses the Junos PYEZ jnpr.junos.utils.config.Config utility to roll back the configuration on a
Junos device.

Requirements

This example uses the following hardware and software components:
e Configuration management server running Python 3.5 or later and Junos PyEZ Release 2.0 or later
e Junos device with NETCONF enabled and a user account configured with appropriate permissions

e SSH public/private key pair configured for the appropriate user on the server and Junos device

Overview

This example presents a Python application that uses the Junos PyEZ Config utility to roll back the
configuration on the specified device. Junos devices store a copy of the most recently committed
configuration and up to 49 previous configurations. You can roll back to any of the stored configurations.
This is useful when configuration changes cause undesirable results, and you want to revert back to a
known working configuration. Rolling back the configuration is similar to the process for making
configuration changes on the device, but instead of loading configuration data, you perform a rollback,
which replaces the entire candidate configuration with a previously committed configuration.

The Python application imports the Device class, which handles the connection with the Junos device;
the Config class, which is used to perform configuration mode commands on the target device; and
required exceptions from the jnpr.junos.exception module, which contains exceptions encountered when
managing Junos devices.

After creating the Device instance for the target device, the open() method establishes a connection and
NETCONF session with the device. The Config utility methods then lock, roll back, commit, and unlock
the candidate configuration.

The rollback() method has a single parameter, rb_id, which is the rollback ID specifying the stored
configuration to load. Valid values are O (zero, for the most recently committed configuration) through
one less than the number of stored previous configurations (maximum is 49). If you omit this parameter
in the method call, it defaults to O. This example loads the configuration with rollback ID 1, which is the
configuration committed just prior to the active configuration. The rollback() method loads the
configuration into the candidate configuration, which is then committed to make it active by calling the
commit() method.

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.html#jnpr.junos.device.Device.open
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.rollback
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.commit

After rolling back and committing the configuration, the application calls the close() method to
terminate the NETCONF session and connection. The application includes code for handling exceptions
such as LockError for errors that occur when locking the configuration and CommitError for errors that occur
during the commit operation. The application also includes code to handle any additional exceptions
that might occur.

Configuration

IN THIS SECTION

Create the Junos PyEZ Application | 176
Results | 178

Create the Junos PyEZ Application

Step-by-Step Procedure

To create a Python application that uses Junos PyEZ to roll back the configuration on a Junos device:

1. Import any required modules, classes, and objects.

from jnpr.junos import Device

from jnpr.junos.utils.config import Config
from jnpr.junos.exception import ConnectError
from jnpr.junos.exception import LockError
from jnpr.junos.exception import RpcError
from jnpr.junos.exception import CommitError

from jnpr.junos.exception import UnlockError

2. Include any required variables, which for this example includes the hostname of the managed device.

host = 'dcla.example.com'

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.html#jnpr.junos.device.Device.close

3. Create amain() function definition and function call, and place the remaining statements within the
definition.

def main():

if __name__ == "__main__":

main()

4. Create an instance of the Device class, and supply the hostname and any parameters required for that

specific connection.

dev = Device(host=host)

5. Open a connection and establish a NETCONF session with the device.

open a connection with the device and start a NETCONF session
try:

dev.open()
except ConnectError as err:

print ("Cannot connect to device: {0}".format(err))

return

6. Create an instance of the Config utility.

Set up config object
cu = Config(dev)

7. Lock the configuration.

Lock the configuration

print ("Locking the configuration")

try:
cu.lock()

except LockError as err:
print ("Unable to lock configuration: {0}".format(err))
dev.close()

return

8. Roll back and commit the configuration, and handle any errors.

Roll back and commit configuration
try:
print ("Rolling back the configuration")
cu.rollback(rb_id=1)
print ("Committing the configuration")
cu.commit()
except CommitError as err:
print ("Error: Unable to commit configuration: {0}".format(err))
except RpcError as err:

print ("Unable to roll back configuration changes: {0}".format(err))

9. Unlock the configuration, and then end the NETCONF session and close the connection with the
device.

finally:
print ("Unlocking the configuration")
try:
cu.unlock()
except UnlockError as err:
print ("Unable to unlock configuration: {0}".format(err))
dev.close()
return

Results

On the configuration management server, review the completed application. If the application does not
display the intended code, repeat the instructions in this example to correct the application.

from jnpr.junos import Device

from jnpr.junos.utils.config import Config
from jnpr.junos.exception import ConnectError
from jnpr.junos.exception import LockError
from jnpr.junos.exception import RpcError
from jnpr.junos.exception import CommitError

from jnpr.junos.exception import UnlockError

host = 'dcla.example.com'

179

def main():
dev = Device(host=host)
open a connection with the device and start a NETCONF session
try:
dev.open()
except ConnectError as err:
print ("Cannot connect to device: {0}".format(err))
return

Set up config object
cu = Config(dev)

Lock the configuration
print ("Locking the configuration")
try:
cu.lock()
except LockError as err:
print ("Unable to lock configuration: {0}".format(err))
dev.close()
return

Roll back and commit configuration
try:
print ("Rolling back the configuration")
cu.rollback(rb_id=1)
print ("Committing the configuration")
cu.commit()
except CommitError as err:
print ("Error: Unable to commit configuration: {0}".format(err))
except RpcError as err:

print ("Unable to roll back configuration changes: {0}".format(err))

finally:
print ("Unlocking the configuration")
try:
cu.unlock()
except UnlockError as err:
print ("Unable to unlock configuration: {0}".format(err))
dev.close()
return

if __name__ == "__main_

main()

Execute the Junos PyEZ Code

IN THIS SECTION

Execute the Application | 180

Execute the Application

To execute the Junos PyEZ code:

¢ On the configuration management server, execute the application.

user@server:~$ python3 junos-pyez-config-rollback.py
Locking the configuration

Rolling back the configuration

Committing the configuration

Unlocking the configuration

Verification

IN THIS SECTION

Verify the Configuration | 181

Verify the Configuration

Purpose

Verify that the configuration was correctly rolled back on the Junos device.

Action

Log in to the Junos device and view the configuration or configuration differences and the log file. For
example:

user@dcla> show configuration | compare rollback 1
[edit system scripts op]

= file bgp-neighbors.slax;

[edit interfaces]

- ge-1/0/0 {

- unit @ {

= family inet {

= address 198.51.100.1/26;

- }

- }

-}

+ ge-1/1/0 {

+ unit 0 {

+ family inet {

+ address 198.51.100.65/26;
+ }

+ }

+ 3

user@dcla> show log messages

Sep 19 12:42:06 dcla sshd[5838]: Accepted publickey for user from 198.51.100.1 port 58663 ssh2:
RSA 02:dd:53:3e:f9:97:dd:1f:d9:31:€9:7f:82:06:aa:67

Sep 19 12:42:10 dcla file[5841]: UI_LOAD_EVENT: User 'user' is performing a 'rollback 1'

Sep 19 12:42:11 dcla file[5841]: UI_COMMIT: User 'user' requested 'commit' operation (comment:
none)

Sep 19 12:42:26 dcla file[5841]: UI_COMMIT_COMPLETED: commit complete

Meaning

The configuration differences and the log file contents indicate that the configuration was successfully
rolled back and committed on the device.

Use the Junos PyEZ Config Utility to Configure Junos Devices | 140
Troubleshoot Junos PyEZ Errors When Configuring Junos Devices | 339

Use Junos PyEZ to Manage the Rescue
Configuration on Junos Devices

IN THIS SECTION

How to Manage the Rescue Configuration | 182

Example: Use Junos PyEZ to Save a Rescue Configuration | 185

The Junos PyEZ jnpr.junos.utils.config.Config utility enables you to manage the rescue configuration on
Junos devices. A rescue configuration allows you to define a known working configuration or a
configuration with a known state that you can restore at any time. You use the rescue configuration
when you need to revert to a known configuration or as a last resort if your router or switch
configuration and the backup configuration files become damaged beyond repair.

How to Manage the Rescue Configuration

IN THIS SECTION

Save a Rescue Configuration | 183

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config

Retrieve the Rescue Configuration | 183
Load and Commit the Rescue Configuration | 184

Delete the Rescue Configuration | 184

The jnpr.junos.utils.config.Config utility enables you to save, retrieve, load, and delete the rescue
configuration on a Junos device. After creating an instance of the Config class, you use the rescue()
method to mange the rescue configuration. Specify the action to perform on the rescue configuration by
setting the rescue() method action parameter to the desired operation. Valid action values include "save",
"get", "reload", and "delete". The following examples illustrate the method call for each rescue() method
action.

Save a Rescue Configuration

When you create a rescue configuration, the device saves the most recently committed configuration as
the rescue configuration. To save the active configuration as the rescue configuration, specify
action="save" in the rescue() method argument list. This operation overwrites any existing rescue
configuration. For example:

from jnpr.junos import Device

from jnpr.junos.utils.config import Config

with Device(host="dcla.example.com') as dev:
cu = Config(dev)

cu.rescue(action="'save')

Retrieve the Rescue Configuration

To retrieve an existing rescue configuration, specify action="get", and optionally specify the format as
"json", "text" or "xml". If you do not specify a format, the default format is text. If the device does not
have an existing rescue configuration, the rescue() method returns None.

The following example retrieves and prints the rescue configuration, if one exists.

from jnpr.junos import Device
from jnpr.junos.utils.config import Config
from 1xml import etree

with Device(host="dcla.example.com') as dev:

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.rescue

cu = Config(dev)
rescue = cu.rescue(action='get', format="'xml')
if rescue is None:

print ('No existing rescue configuration.')

else:
print (etree.tostring(rescue, encoding='unicode'))

Load and Commit the Rescue Configuration

To load the existing rescue configuration into the candidate configuration, specify action="reload". If no
rescue configuration exists, the load operation returns False. After loading the rescue configuration, you
must commit the configuration to make it the active configuration on the device.

The following example attempts to load the rescue configuration, and if one exists, commits it to make it

the active configuration.

from jnpr.junos import Device
from jnpr.junos.utils.config import Config

with Device(host="dcla.example.com') as dev:

with Config(dev, mode='exclusive') as cu:
rescue = cu.rescue(action="'reload"')
if rescue is False:
print ('No existing rescue configuration.')
else:
cu.pdiff()
cu.commit()

Delete the Rescue Configuration

To delete the existing rescue configuration, specify action="delete".

from jnpr.junos import Device
from jnpr.junos.utils.config import Config

with Device(host="dcla.example.com') as dev:
cu = Config(dev)
cu.rescue(action="delete")

Example: Use Junos PyEZ to Save a Rescue Configuration

IN THIS SECTION

Requirements | 185

Overview | 185

Configuration | 186

Execute the Junos PyEZ Code | 189
Verification | 190

Troubleshooting | 190

This example uses the Junos PyEZ jnpr.junos.utils.config.Config utility to save a rescue configuration on
a Junos device, if one does not already exist.

Requirements

This example uses the following hardware and software components:

e Configuration management server running Python 3.5 or later and Junos PyEZ Release 2.0 or later
e Junos device with NETCONF enabled and a user account configured with appropriate permissions

e SSH public/private key pair configured for the appropriate user on the server and Junos device

Overview

This example presents a Python application that uses the Junos PyEZ Config utility to save a rescue
configuration on the specified device. A rescue configuration allows you to define a known working
configuration or a configuration with a known state that you can restore at any time. When you create a
rescue configuration, the device saves the most recently committed configuration as the rescue
configuration.

The Python application imports the Device class, which handles the connection with the Junos device;
the Config class, which is used to perform the rescue configuration operations on the target device; and
required exceptions from the jnpr.junos.exception module, which contains exceptions encountered when
managing Junos devices. After creating the Device instance for the target device, the open() method
establishes a connection and NETCONF session with the device.

The application first determines if there is an existing rescue configuration on the target device. If a
rescue configuration exists, it is printed to standard output. If there is no existing rescue configuration,

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.html#jnpr.junos.device.Device.open

the application instructs the device to create one. The rescue() method action parameter is set to "get" to
retrieve the existing rescue configuration and to "save" to create a rescue configuration if one does not
exist.

After performing the rescue configuration operations, the application calls the close() method to
terminate the NETCONF session and connection. The application includes code for handling exceptions
such as ConnectError for errors that occur when connecting to the device. The application also includes
code to handle any additional exceptions that might occur.

Configuration

IN THIS SECTION

Create the Junos PyEZ Application | 186
Results | 188

Create the Junos PyEZ Application

Step-by-Step Procedure

To create a Python application that uses Junos PyEZ to save a rescue configuration, if one does not
already exist on the Junos device:

1. Import any required modules, classes, and objects.

from jnpr.junos import Device
from jnpr.junos.utils.config import Config

from jnpr.junos.exception import ConnectError

2. Include any required variables, which for this example includes the hostname of the managed device.

host = 'dcla.example.com'

https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.utils.html#jnpr.junos.utils.config.Config.rescue
https://junos-pyez.readthedocs.io/en/latest/jnpr.junos.html#jnpr.junos.device.Device.close

3. Create amain() function definition and function call, and place the remaining statements within the
definition.

def main():

if __name__ == "__main__":

main()

4. Create an instance of the Device class, and supply the hostname and any parameters required for that
specific connection.

dev = Device(host=host)

5. Open a connection and establish a NETCONF session with the device.

open a connection with the device and start a NETCONF session
try:

dev.open()
except ConnectError as err:

print ("Cannot connect to device: {0}".format(err))

return

6. Create an instance of the Config utility.

Create an instance of Config

cu = Config(dev)

7. Print the existing rescue configuration or save one if none exists.

Print existing rescue configuration or save one If none exists
try:
rescue = cu.rescue(action="get', format='text')
if rescue is None:
print ('No existing rescue configuration.')
print ('Saving rescue configuration.')
cu.rescue(action="'save")
else:

print ('Rescue configuration found:"')

188

print (rescue)
except Exception as err:

print (err)

8. End the NETCONTF session and close the connection with the device.

End the NETCONF session and close the connection

dev.close()

Results

On the configuration management server, review the completed application. If the application does not
display the intended code, repeat the instructions in this example to correct the application.

from jnpr.junos import Device
from jnpr.junos.utils.config import Config

from jnpr.junos.exception import ConnectError

host = 'dcla.example.com'

def main():

dev = Device(host=host)

open a connection with the device and start a NETCONF session
try:

dev.open()
except ConnectError as err:

print ("Cannot connect to device: {0}".format(err))

return

Create an instance of Config
cu = Config(dev)

Print existing rescue configuration or save one if none exists
try:
rescue = cu.rescue(action="get', format='text')
if rescue is None:
print ('No existing rescue configuration.')
print ('Saving rescue configuration.')

cu.rescue(action="save')
else:
print ('Rescue configuration found:')
print (rescue)
except Exception as err:

print (err)

End the NETCONF session and close the connection

dev.close()

if __name__ == "__main_

main()

Execute the Junos PyEZ Code

IN THIS SECTION

Execute the Application | 189

Execute the Application

To execute the Junos PyEZ code:

e On the configuration management server, execute the application.

user@server:~$ python3 junos-pyez-config-rescue-create.py
No existing rescue configuration.

Saving rescue configuration.

In this example, the target device does not have an existing rescue configuration, so the device saves
one. If you execute the application a second time, it outputs the rescue configuration that was saved
during the initial execution

Verification

IN THIS SECTION

Verify the Configuration | 190

Verify the Configuration

Purpose

Verify that the rescue configuration exists on the Junos device.

Action

Log in to the Junos device and view the rescue configuration. For example:

user@dcla> show system configuration rescue
Last changed: 2014-07-31 17:59:04 PDT
version 13.3R1.8;
groups {
red {
system {

host-name dcla;

[output truncated]

Troubleshooting

IN THIS SECTION

Troubleshoot Unsupported Action Errors | 191

191

Troubleshoot Unsupported Action Errors

Problem

The Junos PyEZ code generates an error message indicating an unsupported action.

unsupported action:

This error message is generated when the rescue() method action argument contains an invalid value.

Solution

Set the rescue() method action argument to a valid action, which includes "save", "get", "reload", and
"delete".

RELATED DOCUMENTATION

Use the Junos PyEZ Config Utility to Configure Junos Devices | 140
Troubleshoot Junos PyEZ Errors When Configuring Junos Devices | 339

CHAPTER

Create and Use Junos PyEZ Tables
and Views

IN THIS CHAPTER

Understanding Junos PyEZ Tables and Views | 194

Predefined Junos PyEZ Operational Tables (Structured Output) | 196

Load Inline or External Tables and Views in Junos PyEZ Applications | 200
Define Junos PyEZ Operational Tables for Parsing Structured Output | 206
Define Views for Junos PyEZ Operational Tables that Parse Structured

Output | 215

Use Junos PyEZ Operational Tables and Views that Parse Structured

Output | 221

Define Junos PyEZ Operational Tables for Parsing Unstructured Output |
226

Define Views for Junos PyEZ Operational Tables that Parse Unstructured

Output | 244

Use Junos PyEZ Tables with TextFSM Templates | 266

Use Junos PyEZ Operational Tables and Views that Parse Unstructured
Output | 278

Define Junos PyEZ Configuration Tables | 280
Define Views for Junos PyEZ Configuration Tables | 288
Use Junos PyEZ Configuration Tables to Retrieve Configuration Data | 298

Overview of Using Junos PyEZ Configuration Tables to Define and
Configure Structured Resources | 306

Use Junos PyEZ Configuration Tables to Configure Structured Resources on
Junos Devices | 309

Save and Load Junos PyEZ Table XML to and from Files | 329

Understanding Junos PyEZ Tables and Views

SUMMARY

Use Junos PyEZ Tables and Views to extract operational or configuration data from Junos devices or
to programmatically configure specific resources on Junos devices.

Junos PyEZ Tables and Views are simple YAML definitions that enable you to:
e extract operational information from Junos devices

¢ retrieve configuration data from Junos devices

e configure Junos devices

Tables and Views provide a simple and efficient way to extract information from complex operational
command output or configuration data and map it to a Python data structure. Tables and Views are
defined using YAML, so no complex coding is required to create your own. To extract information, you
use predefined or custom Tables to map command output or configuration data to a table, which
consists of a collection of items. Each Table item represents a record of data and has a unique key. A
Table also references a specific View, which is used to map the tag names or fields in the data to the
variable names in the Python data structure.

Table 20 on page 195 outlines the different types of Tables and notes the Junos PyEZ release in which
each type was first supported. Junos PyEZ operational (op) Tables select items from operational
command output. Op Tables can execute RPCs and parse structured output (XML), or they can execute
commands and parse unstructured output (CLI-formatted text). Junos PyEZ configuration Tables define
structured configuration resources that select or configure statements in specified hierarchies of the
given configuration database.

Configuration tables that define the get property can only retrieve configuration data. Configuration
Tables that define the set property can both retrieve as well as modify the configuration statements
defined in the corresponding View. When you add the configuration Table to the Junos PyEZ
framework, Junos PyEZ dynamically creates a configuration class for the resource, which enables you to
programmatically configure the resource on a device.

Table 20: Junos PyEZ Table Types

Table Type Subset

RPC with structured
output

Operational Table

Command with
unstructured output

Configuration Table | get

set

Description

Execute an RPC on a device and return
structured XML output

Execute a CLI command on a device or execute
a vty command on an FPC and return
unstructured CLI-formatted output

Retrieve configuration data

Retrieve configuration data or configure
statements defined in the corresponding View

Junos PyEZ
Release

1.0

23

1.2

20

For example, the following op Table retrieves output for the get-arp-table-information RPC with the no-

resolve option, which corresponds to the show arp no-resolve command in the Junos OS CLI. The Table
extracts arp-table-entry elements from the XML output. The corresponding View selects three fields from
each arp-table-entry item by mapping the user-defined field name to the XPath expression that

corresponds to the location of that data in the Junos XML output. In this case, mac-address, ip-address, and

interface-name are child elements of arp-table-entry.

ArpTable:
rpc: get-arp-table-information
args:
no-resolve: True
item: arp-table-entry
key: mac-address

view: ArpView

ArpView:
fields:
mac_address: mac-address
ip_address: ip-address
interface_name: interface-name

For information about creating and using operational Tables and Views, see the following topics:

"Predefined Junos PyEZ Operational Tables (Structured Output)" on page 196

"Define Junos PyEZ Operational Tables for Parsing Structured Output" on page 206

"Define Views for Junos PyEZ Operational Tables that Parse Structured Output” on page 215
"Use Junos PyEZ Operational Tables and Views that Parse Structured Output” on page 221
"Define Junos PyEZ Operational Tables for Parsing Unstructured Output” on page 226

"Define Views for Junos PyEZ Operational Tables that Parse Unstructured Output" on page 244

"Use Junos PyEZ Operational Tables and Views that Parse Unstructured Output" on page 278

For information about creating and using configuration Tables and Views, see the following topics:

"Define Junos PyEZ Configuration Tables" on page 280
"Define Views for Junos PyEZ Configuration Tables" on page 288
"Use Junos PyEZ Configuration Tables to Retrieve Configuration Data" on page 298

"Overview of Using Junos PyEZ Configuration Tables to Define and Configure Structured Resources"
on page 306

"Use Junos PyEZ Configuration Tables to Configure Structured Resources on Junos Devices" on page
309

For information about loading or importing custom Tables and Views in your Junos PyEZ application or
about saving data to files, see the following topics:

"Load Inline or External Tables and Views in Junos PyEZ Applications" on page 200

"Save and Load Junos PyEZ Table XML to and from Files" on page 329

Predefined Junos PyEZ Operational Tables
(Structured Output)

SUMMARY

Extract operational information from a Junos device by using predefined Junos PyEZ Tables and
Views to select specific items from RPC XML output.

196

Junos PyEZ operational (op) Tables for structured output provide a simple and efficient way to extract

information from the XML output of an RPC. The Junos PyEZ jnpr.junos.op module provides predefined
Table and View definitions for RPCs corresponding to some common operational commands. Table 21
on page 197 lists each of the modules, the Table names defined in that module, and the general RPC and
corresponding CLI command for each Table. For information about the command options provided to
the RPC, the key for each item, and the fields selected by the corresponding View, review the Table and
View definitions in the .yml file for that module.

For the most current list of Table and View definitions, see the Junos PyEZ GitHub repository at https://
github.com/Juniper/py-junos-eznc/. You can also create your own custom Table and View definitions.

Table 21: jnpr.junos.op Modules

Module

arp

bfd

bgp

ccc

elsethernetswitchingtable

ethernetswitchingtable

ethport

fpc

Table

ArpTable

BfdSessionTable

bgpTable

CCCTable

ElsEthernetSwitchingTable

EthernetSwitchingTable

EthPortTable

FpcHwTable

FpcMiReHwTable

RPC

get-arp-table-information

get-bfd-session-information

get-bgp-neighbor-information

get-ccc-information

get-ethernet-switching-table-

information

get-ethernet-switching-table-
information

get-interface-information

(filtered for Ethernet
interfaces)

get-chassis-inventory

CLI Command

show arp

show bfd session

extensive

show bgp neighbor

show connections

show ethernet-switching
table

show ethernet-switching
table

show interfaces media

show chassis hardware

https://github.com/Juniper/py-junos-eznc/
https://github.com/Juniper/py-junos-eznc/

Table 21: jnpr.junos.op Modules (Continued)

Module

idpattacks

intopticdiag

inventory

isis

12circuit

lacp

1dp

11dp

nd

ospf

Table

FpcInfoTable

FpcMiReInfoTable

IDPAttackTable

PhyPortDiagTable

ModuleTable

IsisAdjacencyTable

L2CircuitConnectionTable

LacpPortTable

LdpNeighborTable

LLDPNeighborTable

NdTable

OspfNeighborTable

RPC

get-fpc-information

get-idp-attack-table-

information

get-interface-optics-

diagnostics-information

get-chassis-inventory

get-isis-adjacency-

information

get-12ckt-connection-
information

get-lacp-interface-

information

get-1dp-neighbor-information

get-11dp-neighbors-

information

get-ipv6-nd-information

get-ospf-neighbor-information

CLI Command

show chassis fpc

show security idp attack

table

show interfaces
diagnostics optics

show chassis hardware

show isis adjacency

show 12circuit
connections

show lacp interfaces

show ldp neighbor

extensive

show 11ldp neighbors

show ipv6 neighbors

show ospf neighbor

Table 21: jnpr.junos.op Modules (Continued)

Module

phyport

routes

securityzone

teddb

vlan

Table

OspfInterfaceTable

ospfTable

OspfRoutesTable

PhyPortTable

PhyPortStatsTable

PhyPortErrorTable

RouteTable

RouteSummaryTable

SecurityZoneTable

TedTable

TedSummaryTable

VlanTable

RPC

get-ospf-interface-
information

get-ospf-overview-information

get-ospf-route-information

get-interface-information

(filtered for Ethernet
interfaces)

get-interface-information

(filtered for Ethernet
interfaces)

get-interface-information

(filtered for Ethernet
interfaces)

get-route-information

get-route-summary-information

get-zones-information

get-ted-database-information

get-vlan-information

CLI Command

show ospf interface

show ospf overview

show ospf route

show interfaces

show interfaces

extensive

show interfaces

extensive

show route

show route summary

show security zones

show ted database

show vlans

Table 21: jnpr.junos.op Modules (Continued)

Module Table RPC CLI Command

xcvr XcvrTable get-chassis-inventory show chassis hardware

The following video demonstrates how to use the RouteTable Table.

Load Inline or External Tables and Views in Junos PyEZ Applications | 200

Use Junos PyEZ Operational Tables and Views that Parse Structured Output | 221

Load Inline or External Tables and Views in Junos
PyEZ Applications

SUMMARY IN THIS SECTION
Import predefined Tables or inline or external custom Import Junos PyEZ'’s Predefined Tables and
Tables into your Junos PyEZ application. Views | 201

Load Inline Tables and Views | 202
Import External Tables and Views | 203
Use Tables and Views | 204

Junos PyEZ Tables and Views provide a simple and efficient way to configure Junos devices or extract
specific information from operational command output or configuration data. Junos PyEZ provides a set
of predefined operational Tables and Views that you can use in applications, or you can create your own
custom operational or configuration Tables and Views.

https://www.youtube.com/embed/53rEwb7Va6g

You can create quick inline Tables and Views as a multiline string directly in the Python application, or
you can create one or more Table and View definitions in external files and import the Tables into your
Python application. Inline Tables and Views are simpler to use, but using external files enables you to
create a central, reusable library.

To use Junos PyEZ's predefined Tables and Views in your Python application, you must import the Table
into your application. To use custom Tables and Views, you must create the Table and View definitions,
and then either load or import the definitions into the application, depending on whether they are
internal or external to the module. The following sections outline this process for Tables and Views that
are both internal and external to the module.

Import Junos PyEZ’s Predefined Tables and Views

The Junos PyEZ jnpr. junos.op module and jnpr. junos.command module provide predefined Table and View
definitions for some common operational RPCs and commands. To use Junos PyEZ's predefined Tables
and Views in your Python application, you must include the appropriate import statements in your
application. Along with importing the Junos PyEZ Device class, you must also import any required Tables.

The following example imports a predefined operational Table, EthPortTable, from the jnpr.junos.op.ethport
module:

from jnpr.junos import Device
from jnpr.junos.op.ethport import EthPortTable

After you import the Table and View definitions, you can use them as described in "Use Tables and
Views" on page 204. The following example retrieves the data for the RPC defined in the Table and then
prints the interface name and operational status.

from jnpr.junos import Device
from jnpr.junos.op.ethport import EthPortTable

with Device(host="'router1.example.net') as dev:
eth = EthPortTable(dev)
eth.get()

for item in eth:

print ("{3}: {3".format(item.name, item.oper))

For more information about Junos PyEZ's predefined Tables and Views, see "Predefined Junos PyEZ
Operational Tables (Structured Output)" on page 196.

Load Inline Tables and Views

To create, load, and use custom inline Tables and Views in your Junos PyEZ application:

1. Import the following classes and libraries in your module:

from jnpr.junos import Device
from jnpr.junos.factory.factory_loader import FactorylLoader

import yaml

2. Define one or more Tables and Views in YAML as a multiline string.

myYAML = """
UserTable:
get: system/login/user
view: UserView
UserView:
fields:
username: name

userclass: class

3. Load the Table and View definitions by including the following statement, where string-nameis the

identifier for the multiline string that contains the Table/View definition:

globals().update(FactoryLoader().load(yaml.load(string-name, Loader=yaml.FullLoader)))
4. Connect to the device and use the Table to retrieve information, configure the device, or both,

depending on the type of Table, for example:

with Device(host='router.example.com') as dev:
users = UserTable(dev)

users.get()

for account in users:

print("Username is {}\nUser class is {}".format(account.username, account.userclass))

After the Table and View definitions are loaded, there is no difference in how you use inline or external

Tables in your module. For additional information, see "Use Tables and Views" on page 204.

Import External Tables and Views

External Table and View definitions are placed in files that are external to your Junos PyEZ application.
To create external custom Tables and Views and import them into your Junos PyEZ application:

1. Define one or more Tables and Views in YAML, and save them to a file that has a .yml extension.

[user@server]$ cat myTables/ConfigTables.yml
UserTable:
get: system/login/user

view: UserView

UserView:
fields:
username: name

userclass: class

ExtendedUserTable:
get: system/login/user
view: ExtendedUserView

ExtendedUserView:
fields:
username: name
userclass: class
userid: uid

2. Create a file that has the same base name as your Table file but uses a .py extension, and include the

following four lines of code in the file.

[user@server]$ cat myTables/ConfigTables.py
from jnpr.junos.factory import loadyaml
from os.path import splitext

YMML = splitext(__file__)[0] + '.yml'
globals().update(loadyaml (_YAML_))

3. If the .yml and .py files are located in a subdirectory, include an __init__.py file in that subdirectory, so
that Python checks this directory when it processes the Table import statements in your application.

[user@server]$ 1s myTables
__init__.py ConfigTables.py ConfigTables.yml
4. In the Junos PyEZ application, import the Device class and any required Tables.
from jnpr.junos import Device
from myTables.ConfigTables import UserTable
5. Connect to the device and use the Table to retrieve information, configure the device, or both,

depending on the type of Table, for example:

with Device(host="'router.example.com') as dev:
users = UserTable(dev)
users.get()

for account in users:

print("Username is {}\nUser class is {}".format(account.username, account.userclass))

After the Table and View definitions are loaded, there is no difference in how you use inline or external
Tables in your module. For additional information, see "Use Tables and Views" on page 204.

Use Tables and Views

After you load or import the Table and View definitions, you can use the predefined, custom inline, or
custom external Tables in the same manner.

To use a Table:

1. Create the Device instance and open a connection to the target device:

with Device(host='router.example.com') as dev:

205

2. Create the Table instance and associate it with the Device instance.

users = UserTable(dev)

3. Use the Table to retrieve information, configure the device, or both, depending on the type of Table.

users.get()

4, lterate over and manipulate the resulting object to extract the required information.

for account in users:

print("Username is {}\nUser class is {}".format(account.username, account.userclass))

The following example imports a custom external Table, UserTable. The application connects to the device
and calls the Tables's get() method to retrieve user objects from the [edit system login] hierarchy level. The
application then prints each username and its corresponding login class.

from jnpr.junos import Device
from myTables.ConfigTables import UserTable

with Device(host='router.example.com') as dev:
users = UserTable(dev)

users.get()

for account in users:

print("Username is {}\nUser class is {}".format(account.username, account.userclass))

For more information about using Junos PyEZ Tables, see the following topics:

e "Use Junos PyEZ Operational Tables and Views that Parse Structured Output" on page 221

e "Use Junos PyEZ Operational Tables and Views that Parse Unstructured Output" on page 278
e "Use Junos PyEZ Configuration Tables to Retrieve Configuration Data" on page 298

e "Use Junos PyEZ Configuration Tables to Configure Structured Resources on Junos Devices" on page
309

Understanding Junos PyEZ Tables and Views | 194

Predefined Junos PyEZ Operational Tables (Structured Output) | 196

Define Junos PyEZ Operational Tables for Parsing
Structured Output

SUMMARY IN THIS SECTION

Create custom Tables that select specific items from Table Name | 208
RPC XML output to extract operational information

RPC Command (rpc) | 208
from a Junos device.

RPC Default Arguments (args) | 209

RPC Optional Argument Key (args_key) | 209
Table Item (item) | 210

Table Item Key (key) | 211

Table View (view) | 215

Junos PyEZ operational (op) Tables for structured output extract data from the XML output of an RPC
executed on a Junos device. This enables you to quickly retrieve and review the relevant operational
state information for the device.

Junos PyEZ Tables are formatted using YAML. Op Table definitions can include a number of required and
optional parameters, which are summarized in Table 22 on page 206.

Table 22: Parameters in Junos PyEZ Op Tables for Structured Output

Table Parameter Table Description
Name Parameter

Table name - User-defined identifier for the Table.

Table 22: Parameters in Junos PyEZ Op Tables for Structured Output (Continued))

Table Parameter
Name

RPC command

RPC default
arguments

RPC optional
argument key

Table item

Table item key

Table View

Table
Parameter

rpc

args

args_key

item

key

view

Description

Request tag name of the RPC to execute.

(Optional) Default command options and arguments for the RPC.

(Optional) Reference to a command’s optional first argument when that
argument does not require a specific keyword.

If you do not include this property, you must specify the keyword, or
option name, for optional arguments that are included in the get()
method argument list when you retrieve the operational data.

XPath expression relative to the top-level element within the <rpc-

reply> element that selects the items to extract from the data.

These items become the reference for the associated View.

(Optional) XPath expression or a list of XPath expressions that selects
the tag or tags whose values uniquely identify the Table item for items
that do not use the <name> element as an identifier or for cases where
composite keys are required.

If the item uses the <name> element for the identifier, you can omit this
property.

View that is used to extract field data from the Table items.

Consider the following Junos PyEZ op Table, EthPortTable, which is included with the Junos PyEZ
distribution. The Table extracts operational state information for Ethernet interfaces on the target

device:

EthPortTable:

rpc: get-interface-information

args:
media: True

interface_name: '[afgxel[et]-*'
args_key: interface_name
item: physical-interface
view: EthPortView

The following sections discuss the different components of the Table.

Table Name

The Table name is a user-defined identifier for the Table. The YAML file or string can contain one or
more Tables. The start of the YAML document must be left justified. For example:

EthPortTable:
Table definition

RPC Command (rpc)

Junos PyEZ op Tables for structured output extract specific information from the XML output of an RPC.
You must include the rpc property in the op Table definition to specify the RPC to execute on a device.

The rpc value is the Junos XML request tag for a command. For example, the request tag name for the
show interfaces command is get-interface-information.

rpc: get-interface-information

The request tag can be found by using one the following methods:
e Appending the | display xml rpc option after the command in the Junos OS CLI
e Executing the Junos PyEZ Device instance display_xml_rpc(' command' , format='text') method

e Finding the command and corresponding tag in the Junos XML API Explorer

https://apps.juniper.net/xmlapi/operational/

RPC Default Arguments (args)

The optional args property defines the default command options and arguments for the RPC. These are
listed as key-value pairs that are indented under args. A default argument is used when you call the get()
method in your script and do not provide an argument that overrides that default.

If an option is just a flag that does not require a specific value, you can include it in the argument list by
setting the option value to True in the Table definition. For example, the show interfaces media command
maps to the get-interface-information request tag with the argument media: True. If an option requires a
value, set the argument value to the value you want to use as the default.

rpc: get-interface-information
args:
media: True

interface_name: '[afgxe][et]-*'

@ NOTE: If the option name in the Junos OS command-line interface (CLI) is hyphenated,
you must change any dashes in the name to underscores.

By default, Junos PyEZ normalizes all Table keys and values, which strips out all leading and trailing
whitespace and replaces sequences of internal whitespace characters with a single space. To disable
normalization for a Table, include normalize: False in the argument list.

args:

normalize: False

RPC Optional Argument Key (args_key)

You use the optional args_key property in cases where a CLI command takes an optional first argument
that does not require you to explicitly specify an option name or keyword. In the following example, the
show interfaces command takes an interface name as an optional argument:

user@router> show interfaces ?
Possible completions:
<[Enter]> Execute this command

<interface-name> Name of physical or logical interface

ge-0/0/0
ge-0/0/0.0

The args_key property enables you to use this optional argument when retrieving operational data
without having to explicitly specify the keyword or option name.

args_key: interface_name

If you include the args_key property in your Table definition, you can specify the argument value but omit
the option name when you retrieve the data.

eths = EthPortTable(dev).get('ge-0/3/0")

If you omit the args_key property in your Table definition, you must explicitly specify the option name if
you want to include this parameter when you retrieve the data.

eths = EthPortTable(dev).get(interface_name='ge-0/3/0")

Table Item (item)

The Table item property, which is required in all op Table definitions, identifies the data to extract from
the RPC output. The item value is an XPath expression relative to the top-level element within the <rpc-
reply> tag that selects the desired elements. These items become the reference for the associated View.

The following example shows sample, truncated CLI command output:

user@router> show interfaces media "[afgxe][et]-*" | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/15.1R1/junos">
<interface-information xmlns="http://xml.juniper.net/junos/15.1R1/junos-interface"
junos:style="normal">
<physical-interface>
<name>ge-0/0/0</name>
<admin-status junos:format="Enabled">up</admin-status>

<oper-status>up</oper-status>

</physical-interface>

<physical-interface>

<name>ge-0/0/1</name>
<admin-status junos:format="Enabled">up</admin-status>

<oper-status>up</oper-status>

</physical-interface>
</interface-information>
</rpc-reply>

To select the <physical-interface> elements from this output, include the item property and specify the
XPath that selects the element. In this case, the <physical-interface> element is a direct child of the top-
level <interface-information> element, and the XPath expression for the item value is just the element
name.

item: physical-interface

These items become the reference for the associated View.

Different devices can emit different output elements for the same RPC. As a result, the item’s XPath
could vary depending on the system. The item property supports using the pipe (|) operator to specify
an implicit "or" to select from multiple possible nodes. When the item property includes this operator, the
key property must use a list. For example:

UTMStatusTable:
rpc: show-utmd-status
item: //multi-routing-engine-item/utmd-status | //utmd-status
view: UTMStatusView
key:

- re-name | Null

Table Item Key (key)

The optional key property is an XPath expression or a list of XPath expressions that selects which tag or
tags are used to uniquely identify a Table item for those items that do not use the <name> element as an
identifier or for cases where you want to use composite keys.

In the following command output, each <physical-interface> element is uniquely identified by its <name>
child element:

user@router> show interfaces media "[afgxel[et]-*" | display xml
<rpc-reply>
<interface-information>
<physical-interface>
<name>ge-0/0/0</name>

</physical-interface>
<physical-interface>

<name>ge-0/0/1</name>

</physical-interface>
</interface-information>

</rpc-reply>

If the Table item property selects the <physical-interface> elements, you can omit the key property from the
Table definition if you want to use the <name> element as the key by default.

In contrast, consider the following show route brief command output:

<rpc-reply>
<route-information>
<route-table>

<rt junos:style="brief">
<rt-destination>10.0.0.0/24</rt-destination>
<rt-entry>
<active-tag>*</active-tag>
<current-active/>
<last-active/>
<protocol-name>Static</protocol-name>
<preference>5</preference>
<age junos:seconds="9450374">15w4d 09:06:14</age>

</rt-entry>

</rt>

<rt junos:style="brief">
<rt-destination>10.0.10.0/24</rt-destination>
<rt-entry>

<active-tag>*</active-tag>

<current-active/>

<last-active/>
<protocol-name>Direct</protocol-name>
<preference>0</preference>

<age junos:seconds="9450380">15w4d 09:06:20</age>

</rt-entry>
</rt>
</route-table>
</route-information>
</rpc-reply>

When selecting the route-table/rt elements, there is no corresponding <name> element to uniquely identify
each route entry. When the <name> identifier is absent, the key property can specify which tag or tags
uniquely identify each item. In this case, you can uniquely identify each route-table/rt item by using <rt-
destination> as the key.

item: route-table/rt

key: rt-destination

In addition, starting in Junos PyEZ Release 2.3.0, a Table can define key: Null to indicate that a key is not
required. In this case, the Table and View return the data as a simple dictionary rather than a nested one
with keys.

Table items can be defined by a key consisting of a single element or multiple elements. Single-element
keys use a simple XPath expression for the value of the key property. Composite keys are defined by a
list of XPath expressions. Consider the following Table definition:

PicHwTable:
rpc: get-chassis-inventory
item: .//name[starts-with(.,'PIC')]/parent::*
key:
- ancestor::x[starts-with(name, 'FPC')]1/name
- ancestor: :x[starts-with(name, 'MIC')]1/name
- name

view: PicHwView

The composite key for this Table definition might be similar to the following:

('FPC 2", 'MIC @', 'PIC 0')

If a composite key references a missing element, Junos PyEZ replaces the value in the key with None.

('FPC @', None, 'PIC 0')

@ NOTE: The key property must use a list when the item property includes the pipe (|)
operator.

The key property also supports the pipe (|) operator, which enables the Table to select from multiple
possible nodes. The operator enables you to use the same Table even in cases where different systems
emit different output elements for the same RPC. For example, the LLDPNeighborTable, which is shown
here for reference, can select the 11dp-local-interface or 11dp-local-port-id element as its key:

LLDPNeighborTable:
rpc: get-lldp-neighbors-information
item: 1ldp-neighbor-information
key: 1lldp-local-interface | 1ldp-local-port-id
view: LLDPNeighborView

LLDPNeighborView:
fields:
local_int: 1ldp-local-interface | 1ldp-local-port-id
local_parent: 1lldp-local-parent-interface-name
remote_type: 1lldp-remote-chassis-id-subtype
remote_chassis_id: 1lldp-remote-chassis-id
remote_port_desc: 1ldp-remote-port-description

remote_sysname: lldp-remote-system-name

When the key property uses the | operator, each key present in the RPC reply is added to the list of keys.
The operator can be used to specify an implicit "or" and is useful in situations where different tag names
are present for different types of configurations or releases. For example, if the RPC returns 11dp-local-
interface as the identifier for one device, and the same RPC returns 11dp-local-port-id as the identifier for
another device, the Table automatically selects the appropriate key.

Table View (view)

The view property associates the Table definition with a particular View. A View maps your user-defined
field names to elements in the selected Table items using XPath expressions. You can customize the
View to only select the necessary elements from the Table items.

Define Views for Junos PyEZ Operational Tables that Parse Structured Output | 215
Use Junos PyEZ Operational Tables and Views that Parse Structured Output | 221
Load Inline or External Tables and Views in Junos PyEZ Applications | 200

Define Junos PyEZ Configuration Tables | 280

Define Views for Junos PyEZ Operational Tables
that Parse Structured Output

IN THIS SECTION

View Name | 217
Fields (fields) | 217

Groups (groups) and Field Groups (fields_) | 220

Junos PyEZ operational (op) Tables for structured output select specific data from the XML output of an
RPC executed on a Junos device. A Table is associated with a View, which is used to access fields in the
Table items and map them to user-defined Python variables. You associate a Table with a particular View
by including the view property in the Table definition, which takes the View name as its argument.

A View maps your user-defined variables to XML elements in the selected Table items. A View enables
you to access specific fields in the output as variables with properties that can be manipulated in
Python. Junos PyEZ handles the extraction of the data into Python as well as any type conversion or
data normalization. The keys defined in the View must be valid Python variable names.

Junos PyEZ Views, like Tables, are formatted using YAML. Views that parse structured output can
include a number of parameters, which are summarized in Table 23 on page 216.

Table 23: Parameters in Views for Junos PyEZ Op Tables for Structured Output

View Parameter
Name

View name

Field items

Field groups

Groups

View Parameter

fields

fields_group

groups

Description

User-defined identifier for the View.

Associative array, or dictionary, of key-value pairs that map user-defined
field names to XPath expressions that select elements in the Table items.
The field names must be valid Python variable names.

Associative array, or dictionary, of key-value pairs that map user-defined
field names to XPath expressions that select elements in the Table items.
The XPath expressions are relative to the context set by the corresponding
groups parameter. The field names must be valid Python variable names.

Associative array, or dictionary, of key-value pairs that map a user-defined
group name to an XPath expression (relative to the Table item context)
that sets the XPath context for fields in that group.

Consider the following Junos PyEZ op Table and View, which are included with the Junos PyEZ
distribution. The Table extracts operational state information for Ethernet interfaces on the target

device.

EthPortTable:

rpc: get-interface-information

args:
media: True

interface_name: '[afgxe][et]-*'

args_key: interface_name

item: physical-interface

view: EthPortView

EthPortView:

groups:

mac_stats: ethernet-mac-statistics

flags: if-device-flags

fields:
oper: oper-status
admin: admin-status
description: description
mtu: { mtu : int }
link_mode: link-mode
macaddr: current-physical-address
fields_mac_stats:
rx_bytes: input-bytes
rx_packets: input-packets
tx_bytes: output-bytes
tx_packets: output-packets
fields_flags:
running: { ifdf-running: flag }
present: { ifdf-present: flag }

The following sections discuss the different components of the View:

View Name

The View name is a user-defined identifier for the View. You associate a Table with a particular View by
including the view property in the Table definition and providing the View name as its argument. For

example:

EthPortTable:
Table definition
view: EthPortView

EthPortView:
View definition

Fields (fields)

You customize Views so that they only reference the necessary elements from the selected Table items.
To do this you include the fields property and an associative array containing the mapping of user-
defined field names to XPath expressions that select the desired elements from the Table item. The field

names must be valid Python variable names. The XPath expressions are relative to the Table item
context.

Consider the following sample RPC output:

<rpc-reply>
<interface-information>
<physical-interface>

<name>ge-0/3/0</name>
<admin-status junos:format="Enabled">up</admin-status>
<oper-status>down</oper-status>
<local-index>135</local-index>
<snmp-index>530</snmp-index>
<link-level-type>Ethernet</link-level-type>
<mtu>1514</mtu>

</physical-interface>
</interface-information>
</rpc-reply>

If the Table item parameter selects <physical-interface> elements from the output, the XPath expression
for each field in the View definition is relative to that context. The following View definition maps each
user-defined field name to a child element of the <physical-interface> element:

EthPortView:
fields:
oper: oper-status
admin: admin-status
mtu: { mtu : int }

In the Python script, you can then access a View item as a variable property. By default, each View item
has a name property that references the key that uniquely identifies that item.

from jnpr.junos import Device
from jnpr.junos.op.ethport import EthPortTable

with Device(host='router.example.com') as dev:
eths = EthPortTable(dev)
eths.get()
for item in eths:

print (item.name)

print (item.oper)
print (item.admin)

print (item.mtu)

The field format determines the type for a field’s value. By default, field values are stored as strings. You
can specify a different type for the field value in the field mapping. The following example defines the
value of the mtu element to be an integer:

EthPortView:
fields:
mtu: { mtu : int }

In the RPC output, some Junos XML elements are just empty elements that act as flags. You can
explicitly indicate that a field is a flag in the field mapping. The field item value for a flag is True if the
element is present in the output and False if the element is absent. The following example defines the
ifdf-running element as a flag:

EthPortView:
fields:
mtu: { mtu : int }
running: { if-device-flags/ifdf-running : flag }

You can also set the field item value to a Boolean by using the following syntax:

fieldname: { element-name: (True | False)=regex(expression) }
The element’s value is evaluated against the regular expression passed to regex(). If the element’s value

matches the expression, the field item value is set to the Boolean defined in the format. In the following
example, the oper_status_down field is set to True if the value of the oper-status element contains 'down":

oper_status_down: { oper-status: True=regex(down) }

You can also use more complex regular expressions and match against multiple values. The following
field item is set to True if the address in the rt-destination element starts with '198.51.":

dcl_route: { rt-destination: True=regex(#198\.51\.) 1}

The following field item is set to True if the no-refresh element contains either value in the regular
expression.

no_refresh: { no-refresh: 'True=regex(Session ID: 0x@|no-refresh)' }

Groups (groups) and Field Groups (fields_)

Groups provide a shortcut method to select and reference elements within a specific node-set in a Table
item.

In the following RPC output, the <if-device-flags> element contains multiple child elements
corresponding to values displayed in the Device flags field in the CLI output:

<rpc-reply>
<interface-information>
<physical-interface>

<name>ge-0/3/0</name>

<if-device-flags>
<ifdf-present/>
<ifdf-running/>

</if-device-flags>

</physical-interface>
</interface-information>
</rpc-reply>

Within the View definition, you can use the fields property to access the child elements by providing the
full XPath expression to each element relative to the selected Table item. For example, if the
EthPortTable definition selects <physical-interface> items, the field item mapping would use the following
XPath expressions:

EthPortView:
fields:
present: if-device-flags/ifdf-present
running: if-device-flags/ifdf-running

Alternatively, you can create a group that sets the context to the <if-device-flags> element and then
define field group items that just provide the XPath expression relative to that context. You can define
any number of groups within a View definition.

To create a group, include the groups property and map a user-defined group name to the XPath
expression that defines the new context. Then define a field group whose name is fields_ followed by
the group name. The field group is an associative array containing the mapping of user-defined field
names to XPath expressions that now are relative to the context set within groups. The field names must
be valid Python variable names.

The following example defines the group flags and the corresponding field group fields_flags. The flags
group sets the context to the physical-interface/if-device-flags hierarchy level, and the present and running
fields access the values of the ifdf-present and ifdf-running elements, respectively.

EthPortView:
groups:
flags: if-device-flags
fields_flags:
present: ifdf-present

running: ifdf-running

Whether you use fields or field groups, you access the value in the same manner within the Junos PyEZ
script by using the user-defined field names.

Define Junos PyEZ Operational Tables for Parsing Structured Output | 206

Use Junos PyEZ Operational Tables and Views that Parse Structured Output | 221

Use Junos PyEZ Operational Tables and Views that
Parse Structured Output

IN THIS SECTION

Retrieve Table Items | 222

Access Table Items | 224

How to Iterate Through a Table | 225

Junos PyEZ operational (op) Tables for structured output extract specific data from the XML output of
an RPC executed on a Junos device. After loading or importing the Table definition into your Python
module, you can retrieve the Table items and extract and manipulate the data.

To retrieve information from a specific device, you must create a Table instance and associate it with the
Device object representing the target device. For example:

from jnpr.junos import Device
from jnpr.junos.op.ethport import EthPortTable

with Device(host="'router.example.com') as dev:
eths = EthPortTable(dev)

The following sections discuss how to then retrieve and manipulate the data:

Retrieve Table Items

The Table item property determines which items are extracted from the operational command output.
For example, the Junos PyEZ EthPortTable definition, which is included here for reference, executes the
show interfaces "[afgxel[et]-*" media command by default and extracts the physical-interface items from the
output.

EthPortTable:
rpc: get-interface-information
args:
media: True
interface_name: '[afgxe][et]-*'
args_key: interface_name
item: physical-interface
view: EthPortView

You retrieve the Table items in your Python script by calling the get() method and supplying any desired
arguments. If the Table definition includes default arguments in the args property, the executed RPC
automatically includes these arguments when you call get() unless you override them in your argument
list.

To retrieve all Table items, call the get() method with an empty argument list.

from jnpr.junos import Device
from jnpr.junos.op.ethport import EthPortTable

with Device(host='router.example.com') as dev:
eths = EthPortTable(dev)
eths.get()

You can also retrieve specific Table items by passing command options as arguments to the get()
method. If the command option is a flag that does not take a value, set the option equal to True in the
argument list. Otherwise, include the argument and desired value as a key-value pair in the argument
list. You can review the possible arguments for operational commands in the Junos CLI.

By default, EthPortTable returns information for Ethernet interfaces that have names matching the
expression "[afgxe][et]-*". To retrieve the Table item for the ge-0/3/0 interface only, include
interface_name='ge-0/3/0' as an argument to get().

eths = EthPortTable(dev)
eths.get(interface_name="'ge-0/3/0")

@ NOTE: If the option name in the Junos OS command-line interface (CLI) is hyphenated,
you must change any dashes in the name to underscores. The argument value, however,
is a string and as such can contain hyphens.

If the CLI command takes an optional first argument that does not require you to explicitly specify an
option name or keyword, you can omit the option name in the get() method argument list provided that
the Table args_key property references this argument. In the following example, the show interfaces
command takes an interface name as an optional argument:

user@router> show interfaces ?
Possible completions:
<[Enter]> Execute this command

<interface-name> Name of physical or logical interface

ge-0/0/0
ge-0/0/0.0

The EthPortTable definition args_key property defines the optional argument as interface_name, which

enables you to use this argument without having to explicitly specify the option name in the get()
method argument list.

eths = EthPortTable(dev)
eths.get('ge-0/3/0")

By default, Junos PyEZ normalizes all op Table keys and values, which strips out all leading and trailing
whitespace and replaces sequences of internal whitespace characters with a single space. To disable
normalization, include normalize=False as an argument to the get() method.

eths = EthPortTable(dev)

eths.get(interface_name="'ge-0/3/0", normalize=False)

Access Table Items

After you retrieve the Table items, you can treat them like a Python dictionary, which enables you to use
methods in the standard Python library to access and manipulate the items.

To view the list of dictionary keys corresponding to the Table item names, call the keys() method.

eths = EthPortTable(dev).get(interface_name='ge-0/3/0")
print (eths.keys())

In this case, there is only a single key.

['ge-0/3/0']

You can verify that a specific key is present in the Table items by using the Python in operator.

if 'ge-0/3/0' in eths:

To view a list of the fields, or values, associated with each key, call the values() method. The values()
method returns a list of tuples with the name-value pairs for each field that was defined in the View.

print (eths.values())

[[('oper", 'down'), ('rx_packets', '0'), ('macaddr', '00:00:5E:00:53:01'), ('description',
None), ('rx_bytes', '0'), ('admin', 'up'), ('mtu', 1514), ('running', True), ('link_mode",
None), ('tx_bytes', '0'), ('tx_packets', '0'), ('present', True)]]

To view the complete list of items, including both keys and values, call the items() method.

print (eths.items())

[('ge-0/3/0"', [('oper', 'down'), ('rx_packets', '0'), ('macaddr', '00:00:5E:00:53:01'),
('description', None), ('rx_bytes', '0'), ('admin', 'up'), ('mtu', 1514), ('running', True),
('link_mode', None), ('tx_bytes', '0'), ('tx_packets', '0'), ('present', True)1)]

How to Iterate Through a Table

Tables support iteration, which enables you to loop through each Table item in the same way that you
would loop through a list or dictionary. This makes it easy to quickly format and print desired fields.

The EthPortTable definition, which is included in the jnpr.junos.op module, executes the show interfaces
"[afgxe]let]-*" media command and extracts the physical-interface items from the output. The following
code loops through the physical-interface items and prints the name and operational status of each
Ethernet port:

from jnpr.junos import Device
from jnpr.junos.op.ethport import EthPortTable

with Device(host='router.example.com') as dev:
eths = EthPortTable(dev)
eths.get()
for port in eths:

print ("{3}: {3".format(port.name, port.oper))

The oper field, which is defined in EthPortView, corresponds to the value of the oper-status element in the
output. The EthPortView definition does not define a name field. By default, each View item has a name
property that references the key that uniquely identifies that item.

The output includes the interface name and operational status.

ge-0/3/0: up
ge-0/3/1: up
ge-0/3/2: up
ge-0/3/3: up

Define Junos PyEZ Operational Tables for Parsing Structured Output | 206

Define Views for Junos PyEZ Operational Tables that Parse Structured Output | 215

Define Junos PyEZ Operational Tables for Parsing
Unstructured Output

SUMMARY IN THIS SECTION

Create custom Tables that select data from CLI or vty Summary of Parameters in Op Tables for
command output to extract operational information Parsing Unstructured Output | 227
from a Junos device. Table Name | 229

Command | 229

Command Arguments (args) | 230
Target FPC (fpc) | 231

Table Item (item) | 232

Table Item Key (key) | 236

Selected Keys (key_items) | 237

Section Title (title) | 239

Field Delimiter (delimiter) | 240
Eval Expression (eval) | 241
Table View (view) | 243

TextFSM Templates (platform and
use_textfsm) | 243

Junos PyEZ operational (op) Tables for unstructured output extract data from the text output of a CLI
command executed on a Junos device or a vty command executed on a given Flexible PIC Concentrator
(FPC). The extracted data is then converted to JSON. This enables you to quickly retrieve and analyze
operational state information for the device. Junos PyEZ op Tables for unstructured output are
particularly useful when you need to parse command output that cannot be returned in a structured
format such as XML.

This topic discusses the different components of the Table.

Summary of Parameters in Op Tables for Parsing Unstructured Output

Junos PyEZ Tables are formatted using YAML. Op Table definitions can include a number of required and
optional parameters, which are summarized in Table 24 on page 227.

Table 24: Parameters in Junos PyEZ Op Tables for Unstructured Output

Table Parameter Table Parameter = Description

Name

Table name - User-defined identifier for the Table.

Command command CLI or vty command to execute.

Command args (Optional) When you define the command as a Jinja template, args is an
arguments associative array, or dictionary, of key-value pairs that map the variables

in the command template to the default values used when the template
is rendered.

Table 24: Parameters in Junos PYEZ Op Tables for Unstructured Output (Continued)

Table Parameter
Name

Target FPC

Table item

Table item key

Selected keys

Section title

Field delimiter

Eval expression

Table View

TextFSM template

Table Parameter

target

item

key

key_items

title

delimiter

eval

view

use_textfsm

Description

(Optional) Flexible PIC Concentrator (FPC) on which to execute a vty
command.

(Optional) String or regular expression that defines how to split the
output into sections. These sections become the iterable reference for
the associated View.

Specify "' to extract and match against the whole string rather than
each line.

(Optional) String or list of strings that define one or more keys that
uniquely identify each Table item.

(Optional) List of one or more Table item keys for which to return data.

(Optional) String that selects the section of output containing the data
to parse.

(Optional) Delimiter that defines how to split the data in command
output comprised of key-value pairs. The extracted data is stored as
key-value pairs in a dictionary.

(Optional) Associative array, or dictionary, of one or more key-value
pairs that map a user-defined key to a string containing a mathematical
expression. When you retrieve the data, the expression is evaluated
using the Python eval function. The key and the calculated value are
added to the final data returned by the Table and View.

(Optional) View that is used to extract field data from the Table items.

(Optional) Boolean that specifies whether a TextFSM template is used
to parse the data.

Table 24: Parameters in Junos PYEZ Op Tables for Unstructured Output (Continued)

Table Parameter Table Parameter = Description
Name
TextFSM template platform (Optional) When a TextFSM template is used, specify the platform for
platform identifier the template.
Table Name

The Table name is a user-defined identifier for the Table. The YAML file or string can contain one or
more Tables. The start of the YAML document must be left justified. The following example defines a
Table named ChassisFanTable:

ChassisFanTable:
command: show chassis fan
key: fan-name

view: ChassisFanView

Command

A Junos PyEZ op Table for unstructured output extracts data from the text output of a CLI or vty
command. You must include the command property in the Table definition to specify the CLI command to
execute on a device or the vty command to execute on a given FPC. You can define the command as a
simple string or a Jinja template.

For example, the following Table executes the show chassis fan command on the device.

ChassisFanTable:
command: show chassis fan
key: fan-name

view: ChassisFanView

The following Table executes the show cmerror module brief vty command on the target FPC.

CMErrorTable:
command: show cmerror module brief
target: fpcil
key: module

view: CMErrorView

When you define the command as a Jinja template, you must also supply the args parameter with a
dictionary of key-value pairs that map the variables in the template to the values used when the
template is rendered. For information about defining the command as a Jinja template, see "Command
Arguments (args)" on page 230.

Command Arguments (args)

You can define the CLI or vty command for the command parameter using a Jinja template and substitute
variables for the command arguments. When you use a Jinja template, you must also define the args
parameter, which is a dictionary of key-value pairs that map the variable names in the Jinja template to
the values used when the template is rendered. You can provide default values for the template
variables in the Table definition, and you can also define the values in the Junos PyEZ application.

To define default values for the template variables, include the args parameter in the Table definition and
map each template variable to its default value. The following Table defines a command using a Jinja
template that has one variable, protocol. The args parameter defines the default value for protocol, which
is used when you call the get() method in your script and do not provide an argument that overrides that
default.

DdosPolicerStatsTable:
command: show ddos policer stats {{ protocol }}
args:
protocol: ospf
target: Null
title: "DDOS Policer Statistics:"
key: location

view: DdosPolicerStatsView

Additionally, you can define the args argument as a dictionary in the Table's get() method to:

e define a value for any template variable that does not have a default value defined in the Table
e override the default value defined in the Table for one or more template variables

The following example executes the command in the previous Table using protocol 'bgp' instead of the
default value of 'ospf".

from jnpr.junos import Device

from jnpr.junos.command.pfe_ddos_policer import DdosPolicerStatsTable
from pprint import pprint

import json

with Device(host="'router1.example.com') as dev:
stats = DdosPolicerStatsTable(dev)
stats.get(target="'fpco', args={'protocol':'bgp'})
pprint(json.loads(stats.to_json()))

Target FPC (fpc)

Junos PyEZ op Tables can execute vty commands on a specific Flexible PIC Concentrator (FPC). When
you use a vty command, the Table must include the target parameter to define the target FPC. You can
set target to Null and force the user to specify the target FPC in the application, or you can set target to a
default FPC, and the user can optionally override this value in the application.

The following Table executes the show memory vty command, but sets target: Null, which requires that the
user supply the target FPC in the Junos PyEZ application:

FpcMemory:
command: show memory
target: Null
key: ID
key_items:
-0
-1

view: FPCMemoryView

The following Table executes the show memory vty command on FPC 1, unless the user overrides this value
in the Junos PyEZ application.

FpcMemory:
command: show memory
target: fpci
key: ID
key_items:
-0
-1

view: FPCMemoryView

In the Junos PyEZ application, to define the target FPC or override the default FPC defined in the Table,
set the target argument in the Table's get() method to the desired FPC, for example:

from jnpr.junos import Device
from jnpr.junos.command.fpc_memory import FpcMemory
from pprint import pprint

import json

with Device(host='router.example.com') as dev:
stats = FpcMemory(dev)
stats.get(target="'fpc0')
pprint(json.loads(stats.to_json()))

Table Item (item)

The optional Table item property is a string or regular expression that defines how to split the command
output for parsing. If the output has similar, repeating sets of data, you can define item to match on and
extract each iteration of the data. For example, show interfaces returns a similar set of data for many
interfaces. Alternatively, you can define item: '*' when you need to extract the data as a single block of
text.

Consider the following output for the show devices local vty command:

TSEC Ethernet Device Driver: .lel, Control 0x4296c218, (1000Mbit)
HW reg base 0xff724000

[0]: TxBD base 0x7853ce20, RxBD Base 0x7853d640
[1]: TxBD base 0x7853d860, RxBD Base 0x7853e080
[2]: TxBD base 0x7853e2a0, RxBD Base 0x785422c0
[3]: TxBD base 0x785426e0, RxBD Base 0x78544700
Receive:
185584608 bytes, 2250212 packets, @ FCS errors, @ multicast packets
107271 broadcast packets, @ control frame packets
0 PAUSE frame packets, @ unknown OP codes
0 alignment errors, @ frame length errors
0 code errors, @ carrier sense errors
0 undersize packets, @ oversize packets
0 fragments, @ jabbers, @ drops
Receive per queue:
[0]: 0 bytes, 0 packets, 0 dropped
0 jumbo, 0 truncated jumbo
[1]: 0 bytes, 0 packets, 0 dropped
0 jumbo, 0 truncated jumbo
[2]: 0 bytes, 0 packets, 0 dropped
0 jumbo, 0 truncated jumbo
[3]: 203586808 bytes, 2250219 packets, @ dropped
0 jumbo, 0 truncated jumbo
Transmit:
288184646 bytes, 2038370 packets, @ multicast packets
106531 broadcast packets, @ PAUSE control frames
0 deferral packets, 0 excessive deferral packets
0 single collision packets, @ multiple collision packets
0 late collision packets, 0 excessive collision packets
0 total collisions, @ drop frames, @ jabber frames
0 FCS errors, @ control frames, @ oversize frames
0 undersize frames, 0 fragments frames

Transmit per queue:

[0]: 10300254 bytes, 72537 packets

0 dropped, 0 fifo errors
[11: 4474302 bytes, 106531 packets

0 dropped, 0 fifo errors
[2]: 260203538 bytes, 1857137 packets

0 dropped, 0 fifo errors
[31: 199334 bytes, 2179 packets

0 dropped, 0 fifo errors

TSEC status counters:
kernel_dropped:0, rx_large:0 rx_short: 0
rx_nonoctet: @, rx_crcerr: 0, rx_overrun: 0

rx_bsy: 0,rx_babr:@, rx_trunc: @

rx_length_errors: @, rx_frame_errors: @ rx_crc_errors: 0
rx_errors: 0, rx_ints: 2250110, collisions: 0

eberr:0, tx_babt: 0, tx_underrun: @

tx_timeout: 0, tx_timeout: @,tx_window_errors: 0

tx_aborted_errors: 0, tx_ints: 2038385, resets: 1

TSEC Ethernet Device Driver: .le3, Control 0x42979220, (1000Mbit)
HW reg base 0xff726000
[0]: TxBD base 0x78545720, RxBD Base 0x78545f40
[1]: TxBD base 0x78546160, RxBD Base 0x78546980
[2]: TxBD base 0x78546ba@d, RxBD Base 0x7854abc@
[3]: TxBD base 0x7854afed, RxBD Base 0x7854d000
Receive:
0 bytes, 0 packets, @ FCS errors, @ multicast packets
0 broadcast packets, @ control frame packets
0 PAUSE frame packets, @ unknown OP codes
0 alignment errors, @ frame length errors
@ code errors, @ carrier sense errors
0 undersize packets, @ oversize packets
0 fragments, @ jabbers, 0 drops
Receive per queue:
[0]: 0 bytes, 0 packets, @ dropped
0 jumbo, 0 truncated jumbo
[1]: 0 bytes, 0 packets, @ dropped
0 jumbo, 0 truncated jumbo
[2]: 0 bytes, 0 packets, @ dropped
0 jumbo, 0 truncated jumbo
[3]: 0 bytes, 0 packets, @ dropped
0 jumbo, 0 truncated jumbo
Transmit:
6817984 bytes, 106531 packets, @ multicast packets
106531 broadcast packets, @ PAUSE control frames
0 deferral packets, 0 excessive deferral packets
0 single collision packets, @ multiple collision packets
0 late collision packets, @ excessive collision packets
0 total collisions, @ drop frames, @ jabber frames
0 FCS errors, 0 control frames, @ oversize frames
0 undersize frames, 0 fragments frames
Transmit per queue:
[0]: 0 bytes, 0 packets
0 dropped, 0 fifo errors
[11: 4474302 bytes, 106531 packets

0 dropped, 0 fifo errors

[2]: 0 bytes, 0 packets

0 dropped, 0 fifo errors
[31: 0 bytes, 0 packets

0 dropped, 0 fifo errors

TSEC status counters:

kernel_dropped:@, rx_large:0 rx_short: 0

rx_nonoctet: @, rx_crcerr: 0, rx_overrun: 0

rx_bsy: 0,rx_babr:@, rx_trunc: @

rx_length_errors: @, rx_frame_errors: @ rx_crc_errors: 0
rx_errors: @, rx_ints: @, collisions: @

eberr:0, tx_babt: 0, tx_underrun: @

tx_timeout: @, tx_timeout: 0,tx_window_errors: 0

tx_aborted_errors: 0, tx_ints: 106531, resets: 1

The following Table extracts each section of the output that starts with TSEC Ethernet Device Driver:. In this
case, the value for key: name is derived from the capturing group in the regular expression defined in item.

DevicesLocalTable:
command: show devices local
target: fpcl
item: 'TSEC Ethernet Device Driver: (\.?\w+),'
key: name

view: DeviceslLocalView

DevicesLocalView:
fields:
TSEC_status_counters: _TSECStatusCountersTable
receive_counters: _ReceiveTable

transmit_per_queue: _TransmitQueueTable

You can also define item as an asterisk ("*') if you want to match against the entire section of output
instead of matching each line. When you include item: '*', in most cases, you must also include the title
parameter to specify the heading for the section of output to extract. Extracting the output using item:
'x' is useful when you include the regex parameter in a View and want each expression to match against
the entire text string. Otherwise, the regex expressions are combined and matched against each line.

The following Table extracts the text block under the heading Receive: and matches each regular
expression against the entire text string:

_ReceiveTable:
item: '*'
title: 'Receive:'

view: _ReceiveView

_ReceiveView:
regex:
bytes: '(\d+) bytes'
packets: '(\d+) packets'
FCS_errors: '(\d+) FCS errors'
broadcast_packets: '(\d+) broadcast packets'

Table Item Key (key)

The optional key property defines the output fields that are used to uniquely identify a Table item. You
can identify a Table item using a single key or a list of keys. If the Table and View return iterative data,
the key value must reference a variable or field name defined in the View.

Consider the following show chassis fan output:

Item Status RPM Measurement

Fan 1 0K 5280 Spinning at normal speed
Fan 2 0K 5280 Spinning at normal speed
Fan 3 0K 5280 Spinning at normal speed
Fan 4 0K 5280 Spinning at normal speed
Fan 5 0K 5280 Spinning at normal speed

The following Table defines the Table item key as fan-name, which maps to the value under the Item
column in the output.

ChassisFanTable:
command: show chassis fan
key: fan-name
view: ChassisFanView
ChassisFanView:

columns:
fan-name: Item
fan-status: Status
fan-rpm: RPM

fan-measurement: Measurement

When you retrieve and print the data in the Junos PyEZ application, each item in the resulting dictionary
uses this field’s value as its key.

dict_keys(['Fan 1', 'Fan 2', 'Fan 3', 'Fan 4', 'Fan 5'1)

You can also define key as a list to identify a Table item using a composite key. For example:

FPCIPV4AddressTable:
command: show ipv4 address
target: fpcl
key:

- name
- addr
view: FPCIPV4AddressView

FPCIPV4AddressView:
columns:
index: Index
addr: Address

name: Name

Selected Keys (key_items)

The key parameter defines the output fields that uniquely identify a Table item. When you include the key
parameter in a Table, you can use the optional key_items parameter to only return data for certain key
values. key_items defines the key or list of keys of the Table items for which to retrieve data. You can
define the key_items parameter in the Table definition or in the Junos PyEZ application.

Consider the following show chassis fan output:

Item Status RPM Measurement

Fan 1 0K 5280 Spinning at normal speed
Fan 2 OK 5280 Spinning at normal speed
Fan 3 0K 5280 Spinning at normal speed
Fan 4 OK 5280 Spinning at normal speed
Fan 5 0K 5280 Spinning at normal speed

The following Table defines the Table item key as fan-name and only retrieves the data for the Table item
with a key value equal to Fan 1.

ChassisFanTable:
command: show chassis fan
key: fan-name
key_items:
- Fan 1
view: ChassisFanView
ChassisFanView:
columns:
fan-name: Item
fan-status: Status
fan-rpm: RPM
fan-measurement: Measurement

In the Junos PyEZ application, to define the key_items to return or to override the key_items defined in the
Table, set the key_items argument in the Table’s get() method to a list or tuple of the desired items, for
example:

from jnpr.junos import Device
from jnpr.junos.command.chassis_fan import ChassisFanTable
from pprint import pprint

import json

with Device(host='router.example.com') as dev:
fans = ChassisFanTable(dev)

fans.get(key_items=['Fan 1', 'Fan 2'])
pprint(json.loads(fans.to_json()))

user@host:~$ python3 junos-pyez-get-fan-data.py

{'Fan 1': {'fan-measurement': 'Spinning at normal speed',
‘fan-name': 'Fan 1',
'fan-rpm': 5280,
'fan-status': 'OK'},

'Fan 2': {'fan-measurement': 'Spinning at normal speed',

‘fan-name': 'Fan 2',
'fan-rpm': 5280,
'fan-status': 'OK'}}

Section Title (title)

Tables can include the optional title parameter to define the starting point for a section in the command
output from which to extract and parse the data. When the Table defines item: '*', you must include
title to specify the heading for the section of output to extract

For example, consider the following command output, which is enclosed within a larger set of output:

TSEC status counters:

kernel _dropped:@, rx_large:0 rx_short: @

rx_nonoctet: @, rx_crcerr: @, rx_overrun: 0

rx_bsy: 0,rx_babr:0, rx_trunc: @

rx_length_errors: 0, rx_frame_errors: @ rx_crc_errors: 0
rx_errors: 0, rx_ints: 2250110, collisions: @

eberr:0, tx_babt: 0, tx_underrun: @

tx_timeout: 0, tx_timeout: @,tx_window_errors: 0

tx_aborted_errors: 0, tx_ints: 2038385, resets: 1

The following Table uses the title parameter to extract and parse data from the TSEC status counters
section of the output. In this case, the Table defines item as '*', which considers the data as a single text
string.

_TSECStatusCountersTable:
item: 'x'
title: 'TSEC status counters:'
view: _TSECStatusCountersView

_TSECStatusCountersView:
regex:
kernel_dropped: 'kernel_dropped: (\d+)'
rx_large: 'rx_large:(\d+)'

Field Delimiter (delimiter)

Some operational commands return output comprised of only key-value pairs. If you want to simply
retrieve the entire set of data and extract each key-value pair, you can use the delimiter parameter to
define how to split each data pair instead of defining a separate View. Junos PyEZ uses the delimiter to
split the data at the specified boundary and stores each key-value pair in a dictionary.

Consider the following output for the show link stats vty command.

PPP LCP/NCP: @
HDLC keepalives: 0
RSVP: 0

ISIS: @

OSPF Hello: 539156
0AM: @

BFD: 15

UBFD: @

LMI: ©

LACP: @

ETHOAM: @

SYNCE: @

PTP: @

L2TP: 0

LNS-PPP: 0@

ARP: 4292

ELMI: 0
VXLAN MRESOLVE: 0
Unknown protocol: 42

The following Table defines the delimiter as the colon (:) character:

FPCLinkStatTable:
command: show link stats
target: fpcl
delimiter: ":"

When you retrieve the data in the Junos PyEZ application, the Table splits each line of output at the
delimiter and stores the key-value pairs in a dictionary.

{'ARP': 4292, 'ELMI': @, 'SYNCE': @, 'ISIS': @, 'BFD': 15, 'PPP LCP/NCP': 0,
'OAM': 0, 'ETHOAM': @, 'LACP': @, 'LMI': 0@, 'Unknown protocol': 42,

'"UBFD': @, 'L2TP': @, 'HDLC keepalives': @, 'LNS-PPP': 0,

'"OSPF Hello': 539156, 'RSVP': @, 'VXLAN MRESOLVE': @, 'PTP': @}

Eval Expression (eval)

You can use the optional eval parameter to add or modify key-value pairs in the final data returned by
the Table and View. The eval parameter maps a key name to a string containing a mathematical
expression that gets evaluated by the Python eval function. You can include the eval parameter in both
Tables and Views, and eval can define and calculate multiple values.

When you use eval in a Table, it references the full data dictionary for the calculation, and the key and
calculated value are added as a single additional item to the dictionary. When you use eval in a View, the
expression is calculated on each iteration of the data, and the calculated value is added to the data for
that iteration. If the eval key name matches a key defined in the View, eval replaces the value of that key
with the calculated value. If the eval key name does not match a key defined in the View, eval adds the
new key and calculated value to the data.

The eval expression can reference the data dictionary returned by the View. The expression must
reference data using a Jinja template variable, so that Junos PyEZ can replace the variable with the
dictionary when the expression is evaluated.

The following example uses eval in the Table definition to include a single additional entry in the data
dictionary. The added item’s key is cchip_errors_from_lkup_chip, and its value is the sum of the number of
interrupts.

CChipLiInterruptStatsTable:
command: show xmchip {{ chip_instance }} 1li interrupt-stats
target: NULL
args:
chip_instance: 0
key:
- 1li_block
- name
eval:
cchip_errors_from_lkup_chip: "reduce(lambda x,y: x+y, [v['interrupts'] for k,v in
{{ data }}.items()D"
view: CChipLiInterruptStatsView

CChipLiInterruptStatsView:
columns:
1i_block: LI Block
name: Interrupt Name
interrupts: Number of Interrupts

last_occurance: Last Occurrence

You can also define eval in the Table to calculate and add multiple key-values pairs, for example:

CChipDRDErrTable:
command: show xmchip {{ instance }} drd error-stats
args:
instance: 0
target: NULL
key: Interrupt Name
item: 'x'
eval:
cchip_drd_wan_errors: sum([v['interrupt_count'] for k, v in {{ data }}.items() if
k.endswith('_0')1)
cchip_drd_fab_errors: sum([v['interrupt_count'] for k, v in {{ data }}.items() if
k.endswith('_1')1)
view: CChipDRDErrView

CChipDRDErrView:
regex:
cchip_drd_wan_timeouts: 'Total WAN reorder ID timeout errors:\s+(\d+)'
cchip_drd_fab_timeouts: 'Total fabric reorder ID timeout errors:\s+(\d+)'
columns:
interrupt_name: Interrupt Name
interrupt_count: Number of Interrupts
filters:

- interrupt_count

For information about using eval in a View, see "Eval Expression (eval)" on page 250.

Table View (view)

The view property associates the Table definition with a particular View. A View defines how the Table
output should be parsed and maps your user-defined Python variable names to output fields in the
selected Table items. You can customize the View to only select certain fields from the Table items.

If the output consists of only key-value pairs, you can use the Table's delimiter parameter to extract the
data and store the key-value pairs in a dictionary. In this case, you do not need to define a separate
View.

TextFSM Templates (platform and use_textfsm)

Junos PyEZ Tables can reference a TextFSM template to parse command output from Juniper Networks
devices or other vendors’ devices. You must install the ntc-templates library on your Junos PyEZ server or
virtual environment in order to use TextFSM templates in your Tables.

To use a TextFSM template to parse the command output, include use_textfsm: True in the Table. You can
use a TextFSM template by itself or in conjunction with a Junos PyEZ View. Junos PyEZ uses the platform
and command values to determine the template’s filename.

For example, the following Table uses the juniper_junos_show_arp_no-resolve.textfsm template to
parse command output from a Juniper Networks Junos device:

ArpTableTextFSM:

command: show arp no-resolve

https://pypi.org/project/ntc-templates/

platform: juniper_junos
key: MAC
use_textfsm: True

For detailed information about using Junos PyEZ Tables with TextFSM templates, see "Use Junos PyEZ
Tables with TextFSM Templates" on page 266.

Define Views for Junos PyEZ Operational Tables that Parse Unstructured Output | 244

Load Inline or External Tables and Views in Junos PyEZ Applications | 200

Use Junos PyEZ Operational Tables and Views that Parse Unstructured Output | 278

Define Views for Junos PyEZ Operational Tables
that Parse Unstructured Output

IN THIS SECTION

Summary of Parameters in Views for Parsing Unstructured Output | 245
View Name | 246

columns | 246

Eval Expression (eval) | 250

exists | 251

fields | 252

filters | 257

regex | 259

Junos PyEZ operational (op) Tables for unstructured output extract data from the text output of a CLI
command executed on a Junos device or a vty command executed on a given Flexible PIC Concentrator
(FPC). A Table is associated with a View, which is used to access fields in the Table items and map them

to user-defined Python variables. You associate a Table with a particular View by including the view
property in the Table definition, which takes the View name as its argument.

A View maps your user-defined variables to data in the selected Table items. A View enables you to
access specific fields in the output as variables with properties that can be manipulated in Python. Junos
PyEZ handles the extraction of the data into Python as well as any type conversion or data
normalization. The keys defined in the View must be valid Python variable names.

This topic discusses the different components of the View.

Summary of Parameters in Views for Parsing Unstructured Output

Junos PyEZ Views, like Tables, are formatted using YAML. Views that parse unstructured output can
include a number of parameters, which are summarized in Table 25 on page 245.

Table 25: Parameters in Views for Junos PyEZ Op Tables for Unstructured Output

View Parameter = Description

View Name User-defined identifier for the View.
columns (Optional) List of column titles in the command output.
eval (Optional) Associative array, or dictionary, of one or more key-value pairs that map a user-

defined key to a string containing a mathematical expression. For each iteration of the data,
the expression is evaluated using the Python eval function. The key and the calculated value
are added to the data corresponding to that iteration.

exists (Optional) Associative array, or dictionary, of key-value pairs that map a user-defined key to a
string. If the string is present in the output, the variable is set to True, otherwise, the variable is
set to False.

fields (Optional) Associative array, or dictionary, of key-value pairs that map a user-defined key to

the name of a nested Table that parses a specific section of the command output.

filters (Optional) List of one or more keys defined under columns. The final set of data includes only
data from the selected columns.

Table 25: Parameters in Views for Junos PyEZ Op Tables for Unstructured Output (Continued)

View Parameter = Description

regex (Optional) List of regular expressions to match desired content.

View Name

The View name is a user-defined identifier for the View. You associate a Table with a particular View by
including the view property in the Table definition and providing the View name as its argument.

The following example defines a View named ChassisFanView, which is referenced by the Table's view
parameter:

ChassisFanTable:
command: show chassis fan
key: fan-name
view: ChassisFanView
ChassisFanView:
columns:
fan-name: Item
fan-status: Status
fan-rpm: RPM

fan-measurement: Measurement

columns

You can use the columns parameter in a View to extract and parse command output that is formatted in
rows and columns.

Consider the following show ospf neighbor command output:

Address Interface State 1D Pri Dead
198.51.100.2 ge-0/0/0.0 Full 192.168.0.2 128 37
198.51.100.6 ge-0/0/1.0 Full 192.168.0.3 128 34

To extract the data, include the columns parameter in the View, and map your Python variable name to
the column name. The application stores the key and the value extracted from the command output for
that column as a key-value pair in the dictionary for the given item.

The following View extracts the data from each column in the show ospf neighbor command output:

OspfNeighborTable:
command: show ospf neighbor
key: Address
view: OspfNeighborView
OspfNeighborView:
columns:
neighbor_address: Address
interface: Interface
neighbor_state: State
neighbor_id: ID
neighbor_priority: Pri

activity_timer: Dead

When you retrieve and print the data in the Junos PyEZ application, the data for each neighbor includes
the column keys and corresponding data.

from jnpr.junos import Device
from jnpr.junos.command.ospf_neighbor import OspfNeighborTable
from pprint import pprint

import json

with Device(host="'router1.example.com') as dev:
stats = OspfNeighborTable(dev)

stats.get()
pprint(json.loads(stats.to_json()))

user@host:~$ python3 junos-pyez-ospf-neighbors.py
{'198.51.100.2"': {'activity_timer': 39,
"interface': 'ge-0/0/0.0',
"neighbor_address': '198.51.100.2',
"neighbor_id': '192.168.0.2',
"neighbor_priority': 128,
'neighbor_state': 'Full'},
'198.51.100.6"': {'activity_timer': 36,
"interface': 'ge-0/0/1.0',
'neighbor_address': '198.51.100.6',
"neighbor_id': '192.168.0.3",
"neighbor_priority': 128,
"neighbor_state': 'Full'}}

To filter the data to include only data from selected columns, include the filters parameter in the View.
For more information, see "filters" on page 257.

Some command output includes column titles that span multiple lines, for example:

FI interrupt statistics

Stream Total RLIM Total Cell timeout Total Reorder Total cell Total number

request PT/MALLOC Ignored cell timeout drops in of times
counter Usemeter errors secure mode entered into
saturation Drops secure mode
36 0 0 1 1 0 0
128 0 0 1 49 0 0

To define a multiline column title in a View, set the column key element equal to a list of the words in
each row for that title. The following View defines the columns for the previous command output:

CChipFiStatsTable:
command: show mgss {{ chip_instance }} fi interrupt-stats
target: fpc8
args:
chip_instance: @
key: Stream
view: CChipFiStatsView

CChipFiStatsView:
columns:

stream: Stream
reg_sat:

- Total RLIM

- request

- counter

- saturation
cchip_fi_malloc_drops:

- Total

- PT/MALLOC

- Usemeter

- Drops
cell_timeout_ignored:

- Cell timeout

- Ignored
cchip_fi_cell_timeout:

- Total Reorder

- cell timeout

- errors
drops_in_secure:

- Total cell

- drops in

- secure mode
times_in_secure:

- Total number

- of times

- entered into

- secure mode

Eval Expression (eval)

You can use the optional eval parameter to add or modify key-value pairs in the final data returned by
the Table and View. The eval parameter maps a key name to a string containing a mathematical
expression that gets evaluated by the Python eval function. You can include the eval parameter in both
Tables and Views, and eval can define and calculate multiple values.

When you use eval in a Table, it references the full data dictionary for the calculation, and the key and
calculated value are added as a single additional item to the dictionary. When you use eval in a View, the
expression is calculated on each iteration of the data, and the calculated value is added to the data for
that iteration. If the eval key name matches a key defined in the View, eval replaces the value of that key
with the calculated value. If the eval key name does not match a key defined in the View, eval adds the
new key and calculated value to the data.

The eval expression can reference the data dictionary returned by the View. The expression must
reference data using a Jinja template variable, so that Junos PyEZ can replace the variable with the
dictionary when the expression is evaluated.

The following example uses eval in the View definition. The cpu entry modifies the existing value of the
cpu field for each item in the data dictionary, and the max entry creates a new key-value pair for each item
in the data dictionary.

FPCThread:
command: show threads
target: Null
key: Name

view: FPCThreadView

FPCThreadView:

columns:
pid-pr: PID PR
state: State
name: Name
stack: Stack Use
time: Time (Last/Max/Total)
cpu: cpu

eval:
cpu: "'{{ cpu }}'[:-1]"
max: "C'{{ time }}'.split('/')[1]1"

Consider the following sample output for the show threads vty command:

PID PR State Name Stack Use Time (Last/Max/Total) cpu
1 H asleep Maintenance 680/32768 0/5/5 ms 0%
2 L running Idle 1452/32768 ©0/22/565623960 ms 80%
3 H asleep Timer Services 1452/32768 0/7/1966 ms 0%

The View's eval parameter modifies each cpu entry to omit the percent sign (%). As a result, the data
includes '0' instead of '0%". In addition, it adds a new key, max, and its calculated value for each item.

'"Maintenance': {'cpu': 'Q',
'max': '5',
'name': 'Maintenance',
'pid-pr': '1 H',
"stack': '680/32768',
'state': 'asleep',
"time': '0/5/5 ms'},
'Timer Services': {'cpu': '0’',
'max': '7',
'name': 'Timer Services',
'pid-pr': '3 H',
'stack': '1452/32768',
'state': 'asleep',
"time': '0/7/1966 ms'},

For examples that use eval in the Table definition, see "Eval Expression (eval)" on page 241.

exists

You can use the optional exists parameter in a View to indicate if a string is present in the command
output. exists is a dictionary of key-value pairs that map a user-defined Python variable name to the
string to match in the command output. If the string is present in the output, the variable is set to True.
Otherwise, the variable is set to False.

Consider the show host_loopback status-summary vty command output.

SENT: Ukern command: show host_loopback status-summary
Host Loopback Toolkit Status Summary:

No detected wedges

No toolkit errors

The following Table defines exists to test if the command output includes a No detected wedges string or a
No toolkit errors string:

HostlbStatusSummaryTable:
command: show host_loopback status-summary
target: fpcl

view: HostlbStatusSummaryView

HostlbStatusSummaryView:
exists:
no_detected_wedges: No detected wedges
no_toolkit_errors: No toolkit errors

When you use the Table and View to test for the strings and print the resulting values in your Junos
PyEZ application, both variables are set to True in this case.

{'no_detected_wedges': True, 'no_toolkit_errors': True}

fields

Command output can be lengthy and complex, and you might need different logic to parse different
sections of the output. In some cases, you cannot adequately parse the command output using a single
Table and View. To parse this type of output, you can include the optional fields parameter in the View.
fields is a dictionary of key-value pairs that map a user-defined key to the name of a nested Table that
selects a specific section of the command output. Each nested Table can reference its own View, which
is used to parse the data selected by that Table.

Consider the show xmchip 0 pt stats vty command output, which has two different sections of data:

SENT: Ukern command: show xmchip @ pt stats

WAN PT statistics (Index 0)

PCT entries used by all WI-1 streams

PCT entries used by all WI-0 streams

PCT entries used by all LI streams

CPT entries used by all multicast packets
CPT entries used by all WI-1 streams

CPT entries used by all WI-0 streams

S © © ©O O o

CPT entries used by all LI streams

Fabric PT statistics (Index 1)

PCT entries used by all FI streams

PCT entries used by all WI (Unused) streams
PCT entries used by all LI streams

CPT entries used by all multicast packets
CPT entries used by all FI streams

CPT entries used by all WI (Unused) streams

S © O ©O O O o

CPT entries used by all LI streams

The following XMChipStatsView View uses the fields parameter to define two additional Tables, which are
used to parse the two different sections of the command output. The _WANPTStatTable and
_FabricPTStatTable Tables extract the data from the WAN PT statistics and the Fabric PT statistics sections,
respectively. In this case, the Tables use the delimiter parameter to extract and split the data, so they do
not need to reference a separate View.

XMChipStatsTable:
command: show xmchip @ pt stats
target: fpcil
view: XMChipStatsView

XMChipStatsView:
fields:

wan_pt_stats: _WANPTStatTable
fabric_pt_stats: _FabricPTStatTable

_WANPTStatTable:
title: WAN PT statistics (Index)

delimiter:

_FabricPTStatTable:
title: Fabric PT statistics (Index 1)

delimiter:

When you retrieve and print the data in the Junos PyEZ application, each key defined under fields
contains the data selected and parsed by the corresponding Table.

{'fabric_pt_stats': {'CPT entries used by all FI streams': 0,

'CPT entries used by
'CPT entries used by
'CPT entries used by
'PCT entries used by
'PCT entries used by
'PCT entries used by

all LI streams': 0,

all WI (Unused) streams': @,
all multicast packets': 0,
all FI streams': @,

all LI streams': 0,

all WI (Unused) streams': 0},

'wan_pt_stats': {'CPT entries used by all LI streams': 0,
"CPT entries used by all WI-@ streams': 0,
"CPT entries used by all WI-1 streams': 0,

'CPT entries used by all multicast packets': 0,

'PCT entries used by all LI streams': 0,
'"PCT entries used by all WI-@ streams': 0,
'"PCT entries used by all WI-1 streams': 0}}

As another example, consider the show ttp statistics vty command output:

TTP Statistics:

Receive Transmit

L2 Packets 4292 1093544
L3 Packets 542638 0
Drops 0 0
Netwk Fail 0 0
Queue Drops 0 0
Unknown 0 0
Coalesce 0 0

Coalesce Fail 0 0

TTP Transmit Statistics:

Queue 0 Queue 1 Queue 2 Queue 3
L2 Packets 1093544 0 0 0
L3 Packets 0 0 0 0

TTP Receive Statistics:

Control High Medium Low Discard
L2 Packets 0 0 4292 0 0
L3 Packets 0 539172 3466 0 0
Drops 0 0 0 0 0
Queue Drops 0 0 0 0 0
Unknown 0 0 0 0 0
Coalesce 0 0 0 0 0
Coalesce Fail 0 0 0 0 0

TTP Receive Queue Sizes:
Control Plane : @ (max is 4473)

High : 0 (max is 4473)
Medium : 0 (max is 4473)
Low : 0 (max is 2236)

TTP Transmit Queue Size: @ (max is 6710)

The FPCTTPStatsView View uses the fields parameter to reference multiple nested Tables, which extract the
data in the different sections of the output. Each Table references its own View or uses the delimiter
parameter to parse the data in that section.

FPCTTPStatsTable:
command: show ttp statistics
target: fpc2
view: FPCTTPStatsView

FPCTTPStatsView:
fields:
TTPStatistics: _FPCTTPStatisticsTable
TTPTransmitStatistics: _FPCTTPTransmitStatisticsTable
TTPReceiveStatistics: _FPCTTPReceiveStatisticsTable

TTPQueueSizes: _FPCTTPQueueSizesTable

_FPCTTPStatisticsTable:
title: TTP Statistics
view: _FPCTTPStatisticsView
_FPCTTPStatisticsView:
columns:
rcvd: Receive

tras: Transmit

_FPCTTPTransmitStatisticsTable:
title: TTP Transmit Statistics
view: _FPCTTPTransmitStatisticsView

_FPCTTPTransmitStatisticsView:
columns:

queued: Queue 0

queuel: Queue 1

queue2: Queue 2

queue3: Queue 3
filters:

- queue?

_FPCTTPReceiveStatisticsTable:
title: TTP Receive Statistics
key: name
key_items:

- Coalesce
view: _FPCTTPReceiveStatisticsView

_FPCTTPReceiveStatisticsView:

columns:
control: Control
high: High
medium: Medium
low: Low

discard: Discard

_FPCTTPQueueSizesTable:
title: TTP Receive Queue Sizes

delimiter:

When you retrieve and print the data in the Junos PyEZ application, each fields key contains the data
that was extracted and parsed by the corresponding Table.

{'TTPQueueSizes': {'Control Plane': '@ (max is 4473)',
'High': '0 (max is 4473)',
"Low': '0 (max is 2236)',
'Medium': 'Q (max is 4473)'},
'TTPReceiveStatistics': {'Coalesce': {'control': 9,
'discard': @,
'high': 0,
'low': 0,
'medium': 0,
'name': 'Coalesce'}},
'"TTPStatistics': {'Coalesce': {'name': 'Coalesce', 'rcvd': @, 'tras': 0},
'Coalesce Fail': {'name': 'Coalesce Fail',
"rcvd': 0,
"tras': 0},
'Drops': {'name': 'Drops', 'rcvd': @, 'tras': 0},
'L2 Packets': {'name': 'L2 Packets',
"rcvd': 4292,
"tras': 1093544},
'L3 Packets': {'name': 'L3 Packets',
"rcvd': 542638,

"tras': 03,

'Netwk Fail': {'name': 'Netwk Fail',
'rcvd': 0,
"tras': 173},

'Queue Drops': {'name': 'Queue Drops',
'rcvd': 0,
"tras': 03,

'Unknown': {'name': 'Unknown', 'rcvd': @, 'tras': 0}},
'"TTPTransmitStatistics': {'L2 Packets': {'queue2': 0},
'L3 Packets': {'queue2': 0}}}

filters

The columns parameter extracts data from command output that is formatted in rows and columns. When
you include the columns parameter in a View, you can optionally include the filters parameter to filter
which column data is included in the final output. The filters parameter defines a list of one or more

keys defined under columns. The final set of data includes only data from the selected columns. You can
provide default filters in the View definition, and you can also define or override filter values in the
Junos PyEZ application.

Consider the show ospf neighbor command output:

Address Interface State ID Pri Dead
198.51.100.2 ge-0/0/0.0 Full 192.168.0.2 128 37
198.51.100.6 ge-0/0/1.90 Full 192.168.0.3 128 34

In the following View, the colunns parameter defines keys for all of the columns in the corresponding
command output, but the filters parameter only includes the data from the Address and State columns in
the data dictionary.

OspfNeighborFiltersTable:
command: show ospf neighbor
key: Address
view: OspfNeighborFiltersView

OspfNeighborFiltersView:
columns:

neighbor_address: Address

interface: Interface

neighbor_state: State

neighbor_id: ID

neighbor_priority: Pri

activity_timer: Dead
filters:

- neighbor_address

- neighbor_state

The following Junos PyEZ code first calls get() without any arguments, which retrieves the data using
the default list of filters defined in the View. The second call to get() includes the filters argument,
which overrides the filter list defined in the View.

from jnpr.junos import Device
from Tables.show_ospf_neighbor_filter import OspfNeighborFiltersTable
from pprint import pprint

import json

with Device(host="'router1.example.com') as dev:

stats = OspfNeighborFiltersTable(dev)

stats.get()
pprint(json.loads(stats.to_json()))
print('\n')

stats.get(filters=['neighbor_address', 'neighbor_id', 'neighbor_state'])
pprint(json.loads(stats.to_json()))

When you execute the application, the first call to get() uses the filters defined in the View, and the
second call uses the filters defined in the call, which override those defined in the View.

user@host:~$ python3 junos-pyez-ospf-filters.py
{'198.51.100.2"': {'neighbor_address': '198.51.100.2', 'neighbor_state': 'Full'},
'198.51.100.6"': {'neighbor_address': '198.51.100.6', 'neighbor_state': 'Full'}}

{'198.51.100.2"': {'neighbor_address': '198.51.100.2",
"'neighbor_id': '192.168.0.2"',
"neighbor_state': 'Full'},
'198.51.100.6": {'neighbor_address': '198.51.100.6",
"neighbor_id': '192.168.0.3",
"neighbor_state': 'Full'}}

regex

You can use the optional regex parameter in a View to match and extract specific fields in the command
output. regex is a dictionary that maps keys to regular expressions. If the corresponding Table does not

define item: 'x', Junos PyEZ combines the regular expressions and matches the result against each line
of output. However, if the Table defines item: 'x' to extract the data as a single text string, Junos PyEZ

instead matches each individual regular expression against the entire text string.

The capturing group defined in the regular expression determines the data that is extracted from the
field and stored in the data dictionary. If you define a capturing group, only the value for that group is
stored in the data. Otherwise, Junos PyEZ stores the value that matches the full expression. For
example, (d+.d+) retrieves and stores a float value from the string search expression, whereas (d+).d+ only
stores the integer portion of the data. If you define multiple groups, only the value for the first group is
stored.

Junos PyEZ leverages the pyparsing module to define a number of built-in keywords that you can use in
place of a regular expression. Table 26 on page 260 lists the keyword, a brief description, and the

corresponding expression, where pp is derived from import pyparsing as pp.

Table 26: regex Parameter Keywords

Keyword

hex_numbers

numbers

percentage

printables

word

words

Description

Word containing only
hexadecimal characters

Word consisting of an
integer or float value

Word composed of digits
and a trailing percentage
sign (%)

One or more words
composed of printable
characters (any non-
whitespace characters)

Word composed of alpha or

alphanumeric characters

One or more word strings

Expression

hex_numbers = pp.OneOrMore(pp.Word(pp.nums, min=1))
& pp.OneOrMore(pp.Word('abcdefABCDEF', min=1))

numbers = (pp.Word(pp.nums) + pp.Optional(pp.Literal('.') +

pp.Word(pp.nums))).setParseAction(lambda i: ''.join(i))

percentage = pp.Word(pp.nums) + pp.Literal('%")

printables = pp.0OneOrMore(pp.Word(pp.printables))

word = pp.Word(pp.alphanums) | pp.Word(pp.alphas)

words = (pp.OneOrMore(word)).setParseAction(lambda i: ' '.join(i))

Consider the following show icmp statistics command output. Each section of output is under a specific
section title, and the data consists of a number and one or more words.

ICMP Statistics:

0 requests

0 throttled

0 network unreachables
0 ttl expired

0 redirects

S © © © © O o o o <«

ICMP Errors:

S © © © © O O o o <«

mtu exceeded

source route denials
filter prohibited
other unreachables
parameter problems
ttl captured
icmp/option handoffs
igmp v1 handoffs

tag te requests

tag te to RE

unknown unreachables
unsupported ICMP type
unprocessed redirects
invalid ICMP type
invalid protocol

bad input interface
bad route lookup

bad nh lookup

bad cf mtu

runts

ICMP Discards:

0
0
0
0
0
0

multicasts

bad source addresses
bad dest addresses
IP fragments

ICMP errors

unknown originators

ICMP Debug Messages:

0

throttled

ICMP Rate Limit Settings:

500

pps per iff

1000 pps total

To parse the previous output, the main View defines fields, which references nested Tables and Views
that parse each section of output. The nested Views define the regex parameter to match against the
data extracted by the corresponding Table.

ICMPStatsTable:
command: show icmp statistics
target: fpci
view: ICMPStatsView

ICMPStatsView:
fields:
discards: _ICMPDiscardsTable
errors: _ICMPErrorsTable
rate: _ICMPRateTable

_ICMPDiscardsTable:
title: ICMP Discards
key: name
view: _ICMPDiscardsView

_ICMPDiscardsView:
regex:
value: \d+

name: ' (\w+(\s\w+)*x)'

_ICMPErrorsTable:
title: ICMP Errors
key: name
view: _ICMPErrorsView

_ICMPErrorsView:
regex:
error: numbers

name: words

_ICMPRateTable:
title: ICMP Rate Limit Settings
key: name
view: _ICMPRateView

_ICMPRateView:

regex:
rate: numbers

name: words

For example, the _ICMPDiscardsTable Table selects the data under the ICMP Discards section in the command
output. The _ICMPDiscardsView View defines two keys, value and name, which map to regular expressions.
value matches one or more digits, and name matches one or more words. Because the Table does not
define item: '*', the regular expressions are combined and matched against each line of data in that

section.

_ICMPDiscardsTable:
title: ICMP Discards
key: name
view: _ICMPDiscardsView

_ICMPDiscardsView:
regex:
value: \d+
name: '(\w+(\s\w+)*)'

The _ICMPErrorsTable Table selects the data under the ICMP Errors section in the command output. The
_ICMPErrorsView View defines the error and name keys and uses the built-in keywords numbers and words in

place of explicitly defining regular expressions.

_ICMPErrorsTable:
title: ICMP Errors
key: name
view: _ICMPErrorsView

_ICMPErrorsView:
regex:
error: numbers

name: words

If the Table defines item: '*', the extracted data is considered to be one text string. In this case, each
regular expression in the corresponding view matches against the entire string.

Consider the show ithrottle id @ command output.

SENT: Ukern command: show ithrottle id @

ID Usage % Cfg State Oper State Name

0 50.0 1 1 TOE ithrottle
Throttle Times: In hptime ticks In ms
Timer Interval 333333 5.000
Allowed time 166666 2.500
Allowed excess 8333 0.125
Start time 488655082 n/a
Run time this interval 0 0.000
Deficit 0 0.000
Run time max 17712 0.266
Run time total 144154525761 2162317

Min Usage Perc: 25.0
Max Usage Perc: 50.0
AdjustUsageEnable: 1

Throttle Stats:

Starts : 65708652
Stops : 65708652
Checks 1 124149442
Enables : 0
Disables 0
AdjUp : 6
AdjDown 4

The following Table uses item: '*' to extract the data as a single string. The View’s regex parameter
defines three regular expressions. Each regex pattern is matched against the entire string. Because the
regular expressions define capturing groups, Junos PyEZ only stores the data that matches the group.

IthrottleIDTable:
command: show ithrottle id {{ id }}
args:
id: 0
item: 'x'
target: fpci
view: IthrottleIDView

IthrottleIDView:

regex:

265

min_usage: 'Min Usage Perc: (\d+\.\d+)"

max_usage: 'Max Usage Perc: (\d+\ . \d+)'
usg_enable: 'AdjustUsageEnable: (\d)'
fields:

throttle_stats: _ThrottleStatsTable

_ThrottleStatsTable:

title: Throttle Stats
delimiter: ":"

When you retrieve and print the data in the Junos PyEZ application, the data includes the three regex
items, which contain the value matched by the capturing group for that expression.

{'max_usage': 50.0,
'min_usage': 25.0,

"throttle_stats': {'AdjDown': 4,

"AdjUp': 6,
'Checks': 124149442,
'Disables': 0,
'Enables': 0@,

'Starts': 65708652,

'Stops': 65708652},
'usg_enable': 13}

RELATED DOCUMENTATION
Define Junos PyEZ Operational Tables for Parsing Unstructured Output | 226
Load Inline or External Tables and Views in Junos PyEZ Applications | 200

Use Junos PyEZ Operational Tables and Views that Parse Unstructured Output | 278

Use Junos PyEZ Tables with TextFSM Templates

SUMMARY IN THIS SECTION
Junos PyEZ op Tables can reference a TextFSM Understanding TextFSM Templates | 266
template, by itself or in conjunction with a Junos

How to Use TextFSM Templates to Parse
PyEZ View, to parse CLI or VTY command output Command Output | 268

from any network device.
How to Use TextFSM Templates with Junos

PyEZ Views to Parse Command Output | 270

How to Use Custom TextFSM
Templates | 272

How to Use Junos PyEZ Tables with TextFSM
Templates to Parse Any Vendor’'s Command
Output | 274

Understanding TextFSM Templates

Junos PyEZ op Tables can extract data from CLI or VTY command output. The Table can reference a
View to map fields in the command output to Python objects. Starting in Junos PyEZ Release 2.4.0,
Junos PyEZ op Tables can also reference a TextFSM template, by itself or in conjunction with a View, to
parse the command output. Junos PyEZ op Tables can use TextFSM templates to parse command output
from any network device, regardless of the vendor, network operating system, or command.

TextFSM is a Python library that parses semi-formatted CLI output, such as show command output, from
network devices. It was developed by Google and later released under the Apache 2.0 licence. The
module requires a template and some input text. The template uses regular expressions to describe how
to parse the data, and you can define and apply multiple templates to the same data.

TextFSM's CliTable class enables users to map a command on a given platform to the template that parses
the command output. Network to Code, a network automation company, has developed a Python
wrapper for CliTable along with a repository of TextFSM templates for network devices. You can install
the ntc-templates library on your Junos PyEZ server or virtual environment, as appropriate, and then
reference the NTC templates and other TextFSM templates in your Junos PyEZ Tables.

The NTC templates parse show command output from network devices. Each NTC template defines the
expected output fields for a given command, and for each item, maps the data to a header. The NTC

https://github.com/google/textfsm
https://networktocode.com/
https://github.com/networktocode/ntc-templates
https://pypi.org/project/ntc-templates/

template filename identifies the vendor, network operating system, and command (with underscores), so
the system can easily determine which template to use for a given platform and command.

vendor_os_command. textfsm

For example, consider the juniper_junos_show_arp_no-resolve.textfsm template.

Value Required MAC ([A-Fa-f@-9\:1{17})
Value Required IP_ADDRESS ([A-Fa-f@-9:\.1+)
Value Required INTERFACE (\S+)

Value FLAGS (\S+)

Start
MAC\s+Address\s+Address\s+Interface\s+Flags\s$$
A${MACI\s+${IP_ADDRESS}\s+${INTERFACE}\s+${FLAGS} -> Record
Total.
"\sx$$
*{master:\d+}
*. -> Error

The template parses the show arp no-resolve command output from Juniper Networks Junos devices.

user@host> show arp no-resolve

MAC Address Address Interface Flags
02:01:00:00:00:05 10.0.0.5 emd.o none
30:7c:5e:48:4b:40 198.51.100.77 fxp0.0 none
f8:¢c0:01:18:8b:67 198.51.100.254 fxp0.0 none
02:00:00:00:00:10 128.0.0.50 emo. 0 none

Total entries: 4

Junos PyEZ op Tables can use an NTC template or other TextFSM template to parse unstructured
command output. The Table uses a TextFSM template by defining the following fields. Junos PyEZ uses
the platform and command values to determine the template’s filename.

e command: command—Command that generates the output to parse. The command must map to the
command string in the filename of an NTC template or other TextFSM template.

e key: key—Field defined in the TextFSM template or Junos PyEZ View that is used to uniquely identify
the record item.

e platform: platform—Vendor and operating system for the TextFSM template, for example, juniper_junos.
The platform value must match the platform string in the filename of an NTC template or other
TextFSM template.

e use_textfsm: True—Indicate that the Junos PyEZ Table should parse the command output by using the
TextFSM template for the given platform and command.

How to Use TextFSM Templates to Parse Command Output

Junos PyEZ Tables can use TextFSM templates, including the predefined NTC templates, to parse show
command output from Junos devices.

To use TextFSM templates in a Junos PyEZ Table:

1. Install the ntc-templates library on your Junos PyEZ server or virtual environment.

user@host:~$ pip3 install ntc_templates

2. Create a custom Junos PyEZ Table that includes the command, key, platform, and use_textfsm arguments, as
well as any additional arguments required for your operations.

ArpTableTextFSM:
command: show arp no-resolve
platform: juniper_junos
key: MAC

use_textfsm: True

The Junos PyEZ application uses the platform and command values to determine the template’s filename,
which in this case is juniper_junos_show_arp_no-resolve.textfsm.

3. Create a Junos PyEZ application that uses the Table to retrieve the data.

from jnpr.junos import Device

from jnpr.junos.factory.factory_loader import FactorylLoader
from pprint import pprint

import json

import yaml

import yamlordereddictloader

yaml_table =
ArpTableTextFSM:
command: show arp no-resolve
platform: juniper_junos
key: MAC
use_textfsm: True

globals().update(FactoryLoader().load(yaml.load(yaml_table,
Loader=yamlordereddictloader.Loader)))

with Device(host='router1.example.net') as dev:
arp_stats = ArpTableTextFSM(dev).get()
pprint(json.loads(arp_stats.to_json()))

. Execute the application.

user@host:~$ python3 junos-pyez-arptable-textfsm.py
{'02:00:00:00:00:10"': {'FLAGS': 'none',
"INTERFACE': 'em0.0',
"IP_ADDRESS': '128.0.0.50'},
'02:01:00:00:00:05': {'FLAGS': 'none',
"INTERFACE': 'em0.0',
"IP_ADDRESS': '10.0.0.5'},
'30:7c:5e:48:4b:40"': {'FLAGS': 'none',
"INTERFACE': 'fxp0.0',
"IP_ADDRESS': '198.51.100.77'},
'f8:c0:01:18:8b:67': {'FLAGS': 'none',
"INTERFACE': 'fxp0.0',
"IP_ADDRESS': '198.51.100.254'}}

The Table uses the NTC template to extract the output fields. For each Table item, the application
returns the defined key and the data for each field.

How to Use TextFSM Templates with Junos PyEZ Views to Parse
Command Output

Junos PyEZ Tables can combine a TextFSM template and a Junos PyEZ View to parse command output.
The TextFSM template maps the data to a header. In the View, you can map your variable names to the
headings defined in the template for the fields you want to return. This is useful, for example, when you
want to use different variable names than the ones defined in the template or when you want to return
different fields. Junos PyEZ only returns the fields that are common to both the TextFSM template and
the Junos PyEZ View.

The following example uses the juniper_junos_show_arp_no-resolve.textfsm template to parse the
command output. The Junos PyEZ View maps the data to new variable names and only returns a subset
of the fields. To review the template, see "Understanding TextFSM Templates" on page 266.

To use a TextFSM template and a View in a Junos PyEZ Table:

1. Create a custom Junos PyEZ Table that includes the command, key, platform, use_textfsm, and view
arguments, as well as any additional arguments required for your operations.

ArpTableTextFSM2:
command: show arp no-resolve
platform: juniper_junos
key:
_lp
- mac
use_textfsm: True

view: ArpViewTextFSM2

2. Create the Junos PyEZ View that defines which template fields to return and the corresponding
variable name for each field.

ArpViewTextFSM2:
fields:
mac: MAC
ip: IP_ADDRESS
interface: INTERFACE

In this case, the View does not map the FLAGS field defined in the TextFSM template, and the parsed
data does not include this value.

3. Create a Junos PyEZ application that uses the Table to retrieve the data.

from jnpr.junos import Device

from jnpr.junos.factory.factory_loader import FactorylLoader
from pprint import pprint

import json

import yaml

import yamlordereddictloader

yaml_table =
ArpTableTextFSM2:
command: show arp no-resolve
platform: juniper_junos
key:
- ip
- mac
use_textfsm: True
view: ArpViewTextFSM2

ArpViewTextFSM2:
fields:
mac: MAC
ip: IP_ADDRESS
interface: INTERFACE

globals().update(FactorylLoader().load(yaml.load(yaml_table,
Loader=yamlordereddictloader.Loader)))

with Device(host='router1.example.net') as dev:
arp_stats = ArpTableTextFSM2(dev).get()
pprint(json.loads(arp_stats.to_json()))

4. Execute the application.

user@host:~$ python3 junos-pyez-arptable-textfsm2.py
{"('"10.0.0.5', '02:01:00:00:00:05')": {'interface': 'em@.0',
'ip': '10.0.0.5',
'mac': '02:01:00:00:00:05'},
"('128.0.0.50", '02:00:00:00:00:10')": {'interface': 'em0.0',

'ip': '128.0.0.50',
'mac': '02:00:00:00:00:10'},
"('198.51.100.254', 'f8:c0:01:18:8b:67')": {'interface': 'fxp0.0"',
"ip': '198.51.100.254",
'mac': 'f8:c0:01:18:8b:67'},
"('198.51.100.77", '30:7c:5e:48:4b:40')": {'interface': 'fxp0.0',
'ip': '198.51.100.77"',
'mac': '30:7c:5e:48:4b:40'}}
The Table uses the NTC template and View to extract the output fields. For each Table item, the
application returns the defined key and the data for the fields mapped to the variable names defined

in the View.

How to Use Custom TextFSM Templates

Junos PyEZ Tables can use the TextFSM templates that are installed as part of the ntc-templates package,
or they can reference custom TextFSM templates. To use custom TextFSM templates in your Junos PyEZ
application, you must stage the template and then specify the absolute path to the template directory
when you define the Table instance.

To use a custom TextFSM template in a Junos PyEZ Table:

1. Create a directory for your custom templates.

user@host:~$ mkdir TextFSMTemplates

2. In the templates directory, create your template and name the file using the
platform_command.textfsm filename convention.

user@host:~$ vi TextFSMTemplates/my_platform_show_arp_no-resolve.textfsm

3. Create a Junos PyEZ Table that defines the same platform and command values as the template filename.

ArpTableTextFSM3:
command: show arp no-resolve
platform: my_platform
key:
- MAC

- IP_ADDRESS
use_textfsm: True

4. In your Junos PyEZ application, specify the absolute path to the custom templates directory when
you define the Table instance.

from jnpr.junos import Device

from jnpr.junos.factory.factory_loader import FactorylLoader
from pprint import pprint

import json

import yaml

import yamlordereddictloader

yaml_table =
ArpTableTextFSM3:
command: show arp no-resolve
platform: my_platform
key:
- MAC
- IP_ADDRESS
use_textfsm: True

globals().update(FactoryLoader().load(yaml.load(yaml_table,
Loader=yamlordereddictloader.Loader)))

with Device(host='router1.example.net') as dev:
arp_stats = ArpTableTextFSM3(dev,

template_dir="'/home/user/TextFSMTemplates').get()
pprint(json.loads(arp_stats.to_json()))

5. Execute the application.

user@host:~$ python3 junos-pyez-arptable-textfsm3.py

How to Use Junos PyEZ Tables with TextFSM Templates to Parse Any
Vendor’'s Command Output

Junos PyEZ Tables can use TextFSM templates to parse command output from any vendor’s network
device. You can retrieve the output in your Python application or read the output from a file. Then, when
you create the Junos PyEZ Table instance, you can pass the command output string to the Table’s raw
argument instead of passing in a Device instance.

For example, consider the following TextFSM template:

user@host:~$ cat TextFSMTemplates/cisco_xr_show_alarms_detail.textfsm
Value Required description (.+?)

Value Required location (\S+)

Value aid (\S+)

Value tag (\S+)

Value module (\S+)

Start
Match the timestamp at beginning of command output
“Active Alarms (Detail) for .+
*-+ -> Continue.Record
“Description:\s+${description}\s*$$
*Location:\s+${location}
AAID:\s+${aid}
*Tag String:\s+${tag}
“Module Name:\s+${module}

The template parses the show alarms detail command output from the given device.

RP/0/RPQ/CPUQ: host#show alarms detail
Wed May 5 12:17:00.187 UTC

Description: hw_optics: RX LOS LANE-@ ALARM
Location: 0/RP@/CPUQ

AID: XR/HW_OPTICS/5

Tag String: DEV_SFP_OPTICS_PORT_RX_LOS_LANE®
Module Name: Optics0/0/0/31

EID: CHASSIS/LCC/1:CONTAINER/CC/1:PORT/OPTICS/31

Reporting Agent ID:
Pending Sync:
Severity:

Status:

Group:

Set Time:

Clear Time:

Service Affecting:

Transport Direction:

Transport Source:
Interface:
Alarm Name:

Description:
Location:
AID:

Tag String:
Module Name:
EID:
Reporting Agent ID:
Pending Sync:
Severity:
Status:
Group:

Set Time:
Clear Time:

Service Affecting:

Transport Direction:

Transport Source:
Interface:

Alarm Name:

196713

false

Major

Set

Sof'tware

04/27/2021 09:47:16 UTC
NotServiceAffecting
NotSpecified
NotSpecified

N/A

OPTICS RX LOS LANE-0

hw_optics: RX LOS LANE-1 ALARM
0/RP@/CPUQ

XR/HW_OPTICS/6
DEV_SFP_OPTICS_PORT_RX_LOS_LANE1
Optics@/0/0/31
CHASSIS/LCC/1:CONTAINER/CC/1:PORT/OPTICS/31
196713

false

Major

Set

Sof'tware

04/27/2021 09:47:16 UTC
NotServiceAffecting
NotSpecified

NotSpecified

N/A

OPTICS RX LOS LANE-1

The following example defines a Junos PyEZ Table that uses the custom TextFSM template,
cisco_xr_show_alarms_detail.textfsm, in conjunction with a View to parse the show alarms detail
command output. The example uses the netmiko library to retrieve the data directly from the device.
When the application creates the Table instance, the raw argument passes in the command output, and
the template_dir argument defines the path to the directory containing the custom template.

from netmiko import ConnectHandler
from jnpr.junos.factory.factory_loader import FactorylLoader

from pprint import pprint

import json
import yaml
import yamlordereddictloader

yaml_table =
XRAlarmsTable:
command: show alarms detail
key:
- description
- location
platform: cisco_xr
use_textfsm: True
view: XRAlarmsView

XRAlarmsView:
fields:

description: description
location: location
aid: aid
tag: tag
module: module
severity: severity
status: status
group: group
time: time
affect: affect

dev_credentials = {
'device_type': 'cisco_xr',
'host': '198.51.100.101",
'username': 'admin',

'password': 'password’,

net_connect = ConnectHandler(x*dev_credentials)

output = net_connect.send_command('show alarms detail')

globals().update(FactoryLoader().load(yaml.load(yaml_table,
Loader=yamlordereddictloader.Loader)))

stats = XRAlarmsTable(raw=output, template_dir='/home/user/TextFSMTemplates').get()
pprint(json.loads(stats.to_json()))

with open('show-alarms-detail.txt', 'w') as fp:

fp.write(output)

When you execute the application, it retrieves the command output from the device and uses the
TextFSM template in the specified directory along with the View to parse the output. Junos PyEZ only
returns the fields that are common to both the TextFSM template and the Junos PyEZ View. The
application also saves the command output to a file, so the output can be processed later, as shown in
the next example.

user@host:~$ python3 junos-pyez-textfsm-alarms.py

{"("hw_optics: RX LOL LANE-@ ALARM', 'Q/RP0/CPUQ')": {'aid': 'XR/HW_OPTICS/29',
'description': 'hw_optics: '
'RX LOL '
'LANE-0Q '
'ALARM'
'location': '@/RPQ/CPUQ',
'module': 'Optics@/0/0/31"',
'tag':
'DEV_SFP_OPTICS_PORT_RX_CDR_LOL_LANEQ'},
"('hw_optics: RX LOL LANE-1 ALARM', '@/RP@/CPU@')": {'aid': 'XR/HW_OPTICS/30',
'description': "hw_optics:
'RX LOL '
"LANE-1 '
"ALARM" |
'location': '0/RPQ/CPUQ',
'module’: 'Optics@/0/0/31',

'tag':

'DEV_SFP_OPTICS_PORT_RX_CDR_LOL_LANE1'},

The following example uses the same TextFSM template and Junos PyEZ View as the previous example,
but in this case, the command output is read from a file.

from jnpr.junos.factory.factory_loader import FactorylLoader
from pprint import pprint

import json

import yaml

import yamlordereddictloader

yaml_table =
XRAlarmsTable:
command: show alarms detail
key:
- description
- location
platform: cisco_xr
use_textfsm: True

view: XRAlarmsView

XRAlarmsView:
fields:

description: description
location: location
aid: aid
tag: tag
module: module
severity: severity
status: status
group: group
time: time
affect: affect

with open('show-alarms-detail.txt') as fp:

output = fp.read()
globals().update(FactoryLoader().load(yaml.load(yaml_table,
Loader=yamlordereddictloader.Loader)))

stats = XRAlarmsTable(raw=output, template_dir='/home/user/TextFSMTemplates').get()
pprint(json.loads(stats.to_json()))

Use Junos PyEZ Operational Tables and Views that
Parse Unstructured Output

Junos PyEZ operational (op) Tables for unstructured output extract data from the text output of a CLI
command executed on a Junos device or a vty command executed on a given Flexible PIC Concentrator

(FPC). After loading or importing the Table definition into your Python module, you can retrieve the
Table items and extract and manipulate the data.

To retrieve information from a specific device, you must create a Table instance and associate it with the
Device object representing the target device. For example:

from jnpr.junos import Device

from jnpr.junos.command.ospf_neighbor import OspfNeighborTable

with Device(host="'router.example.com') as dev:
stats = OspfNeighborTable(dev)

To use the Table in your Junos PyEZ application to execute the command and retrieve the data, call the
Table'’s get() method and supply any required or optional parameters. If the Table defines default
arguments, for example, for the args, filters, key_items, or target parameters, the get() method uses these
defaults unless you override them in the argument list.

from jnpr.junos import Device

from jnpr.junos.command.ospf_neighbor import OspfNeighborTable
from pprint import pprint

import json

with Device(host='router.example.com') as dev:
stats = OspfNeighborTable(dev)
stats.get()
pprint(json.loads(stats.to_json()))

Load Inline or External Tables and Views in Junos PyEZ Applications | 200
Define Junos PyEZ Operational Tables for Parsing Unstructured Output | 226

Define Views for Junos PyEZ Operational Tables that Parse Unstructured Output | 244

Define Junos PyEZ Configuration Tables

SUMMARY IN THIS SECTION

Create custom Tables that configure a specific Table Name | 283
resource on a Junos device or extract configuration
data from the device.

Configuration Scope (get or set) | 283
Key Field (key-field) | 285

Required Keys (required_keys) | 286
Table View (view) | 287

You define Junos PyEZ configuration Tables to extract specific data from the selected configuration
database of a Junos device or to create structured resources that can be used to programmatically
configure a Junos device. Thus, you can quickly retrieve or modify specific configuration objects on the
device.

Junos PyEZ Tables are formatted using YAML. When you define a Junos PyEZ configuration Table, you
must specify the configuration scope using either get or set. Tables that include the get property can only
retrieve the specified configuration data from a device. Tables that include the set property define
configuration resources that you can use to configure the device as well as to retrieve configuration data
from the device. Thus, they are a superset and include all of the functionality of Tables that specify get.

Configuration Table definitions can include a number of required and optional parameters. Table 27 on
page 280 summarizes the parameters and specifies whether the parameter can be used in Tables that
solely retrieve configuration data from the device (get) or in Tables that can also configure the device
(set).

Table 27: Junos PyEZ Configuration Table Parameters

Table Parameter Table Parameter = Table Description
Name Type

Table name - get or set | User-defined Table identifier.

Table 27: Junos PyEZ Configuration Table Parameters (Continued)

Table Parameter
Name

Configuration
scope

Configuration
resource key field

Required keys

Table View

Table Parameter

get or set

key-field

required_keys

view

Table
Type

set

get or set

get or set

Description

XPath expression relative to the top-level <configuration>
element that identifies the configuration hierarchy level at
which to select or configure objects, depending on the Table
type.

Specify get to retrieve configuration objects or specify set to
both configure and retrieve objects.

These objects become the reference for the associated
View.

String or list of strings that references any field names
defined in the View that map to identifier elements and can
be used to uniquely identify the configuration object. For
example, you might specify the field name that corresponds

to the <name> element for an object.

You must always define at least one key field in the Table,
and users must declare values for all keys when configuring
the resource in their application.

(Optional) Associative array, or dictionary, of key-value pairs
that map a hierarchy level in the configuration scope to the

element that uniquely identifies the object at that hierarchy
level, for example, the <name> element.

Users must include all required keys as arguments to the
get() method when retrieving the configuration data in their
application.

View associated with the Table.

Consider the following Junos PyEZ configuration Tables and their associated Views. UserTable, which

includes the get property, extracts configuration data for user accounts on the target device.

UserConfigTable, which includes the set property, defines a structured configuration resource that can be

used to configure user accounts on the target device as well as retrieve configuration data for user
accounts.

UserTable:
get: system/login/user
required_keys:
user: name
view: UserView
UserView:
fields:
username: name
userclass: class

uid: uid

UserConfigTable:
set: system/login/user
key-field:
username
required_keys:
user: name
view: UserConfigView
UserConfigView:
fields:
username: name
userclass: class
uid: uid
password: authentication/encrypted-password
fullname: full-name

The following sections discuss the different components of the Tables:

Table Name

The Table name is a user-defined identifier for the Table. The YAML file or string can contain one or
more Tables. The start of the YAML document must be left justified. For example:

UserTable:
Table definition

Configuration Scope (get or set)

The configuration scope property, which is required in all configuration Table definitions, identifies the
configuration hierarchy level at which to retrieve or configure objects, depending on the Table type.
Junos PyEZ configuration Tables can be used to both retrieve and modify configuration data on a Junos
device. Configuration tables that specify the get property can only retrieve configuration data.
Configuration Tables that specify the set property can both configure and retrieve data.

The value for get or set is an XPath expression relative to the top-level <configuration> element that
identifies the hierarchy level at which to retrieve or set the configuration data. This data becomes the
reference for the associated View.

Consider the following sample configuration hierarchy:

user@router> show configuration system login | display xml
<rpc-reply>
<configuration>
<system>
<login>

<user>
<name>user1</name>
<uid>2001</uid>
<class>super-user</class>
<authentication>
<encrypted-password>...</encrypted-password>
</authentication>
</user>
<user>

<name>readonly</name>

<uid>3001</uid>
<class>read-only</class>
<authentication>
<encrypted-password>...</encrypted-password>
</authentication>
</user>
</login>
</system>
</configuration>
</rpc-reply>

To retrieve or configure the user elements at the [edit system login] hierarchy level, the value for the get or
set property would use the following expression:

system/login/user
@ NOTE: Do not include a slash (/) at the end of the XPath expression, because the script
will generate an error.

For example, to define a Table that can only be used to retrieve user objects, use get.

get: system/login/user

To define a Table that can be used to configure user objects in addition to retrieving them, use set.

set: system/login/user

By default, Junos PyEZ configuration Tables retrieve data from the candidate configuration database.
When you call the get() method in the Python script to retrieve the Table data, you can specify that the
method should instead return data from the committed configuration database by passing in the options
argument and including the 'database': 'committed' item in the options dictionary. For example:

table_object.get(options={'database':'committed'})

Key Field (key-field)

In the Junos OS configuration, each instance of a configuration object, for example, an interface or a
user account, must have a unique identifier. In many cases, the <name> element, which is explicitly
displayed in the Junos XML output, uniquely identifies each instance of the object. However, in some
cases, a different element or a combination of elements is used. For example, a logical interface is
uniquely identified by the combination of the physical interface name and the logical unit number.

Configuration Tables that specify the set property to define a configuration resource must indicate which
element or combination of elements uniquely identifies the resource. The key-field property, which is a
string or list of strings, serves this function and is required for all set configuration Tables.

The View for a set Table must explicitly define fields for all identifier elements for the configuration
resource. The key-field property must then reference all of the field names for the identifier elements in
the Table definition. When using the Table to configure the resource, a Junos PyEZ application must
supply values for all key fields.

For example, the following Table defines a structured resource that can be used to configure user
accounts at the [edit system login] hierarchy level. The View explicitly defines the username field and maps
it to the name element at the [edit system login user] hierarchy level. The key-field property references this
field to indicate that the name element uniquely identifies instances of that object.

UserConfigTable:
set: system/login/user
key-field:
username
required_keys:
user: name
view: UserConfigView
UserConfigView:
fields:
username: name
userclass: class
uid: uid
password: authentication/encrypted-password

fullname: full-name

When the Junos PyEZ application configures instances of the UserConfigTable resource on the device, it
must define a value for the username key for each instance. For example:

from jnpr.junos import Device
from myTables.ConfigTables import UserConfigTable

with Device(host="'router1.example.com') as dev:
users = UserConfigTable(dev)
users.username = 'admin'

users.userclass = 'super-user'

If the configuration Table defines fields for statements in multiple hierarchy levels that have identifiers at
each level, the key-field property must include all of the identifiers. For example, if the Table configures a
logical unit on an interface, the key-field property must include both the interface name and the logical
unit number as keys.

Required Keys (required_keys)

You include the optional required_keys property in your configuration Table definition to require that the
Table users provide values for one or more keys when they retrieve the data in their application. Each
key must map a hierarchy level in the configuration scope defined by the get or set parameter to the
<name> identifier at that level. You can only define one key per hierarchy level.

In the following example, UserTable requires that the Junos PyEZ application specify the value of a name
element at the [edit system login user] hierarchy level when it retrieves the data:

UserTable:
get: system/login/user
required_keys:
user: name

view: UserView

In the corresponding Junos PyEZ script, you must include the required keys in the get() method
argument list. The following example requests the configuration data for the user named 'readonly":

from jnpr.junos import Device
from myTables.ConfigTables import UserTable

with Device(host="'router1.example.com') as dev:
users = UserTable(dev)

users.get(user="'readonly")

You can only require keys at hierarchy levels in the configuration scope defined by the get or set
parameter. Consider the following definition for get:

get: interfaces/interface/unit

In this case, you can request that the user provide values for the interface name and the unit number as
shown in the following sample code, but you cannot define a required key for the interface address,
which is at a lower hierarchy level:

required_keys:
interface: name

unit: name

Table View (view)

The view property associates the Table definition with a particular View. A View maps your user-defined
field names to elements in the selected Table items using XPath expressions. You can customize the
View to only select certain elements to retrieve or configure, depending on the Table type and
operation.

For more information about defining Views for configuration Tables, see "Define Views for Junos PyEZ
Configuration Tables" on page 288.

Define Views for Junos PyEZ Configuration Tables | 288
Use Junos PyEZ Configuration Tables to Retrieve Configuration Data | 298
Load Inline or External Tables and Views in Junos PyEZ Applications | 200

Define Views for Junos PyEZ Configuration Tables

IN THIS SECTION

View Name | 290
Fields (fields) | 291
Field Options ('get' Tables) | 293
Field Options ('set' Tables) | 294

Groups (groups) and Field Groups (fields_) | 296

Junos PyEZ configuration Tables can extract specific data from the selected configuration database of a
Junos device, or they can define structured resources that can be used to programmatically configure a
Junos device. A Table is associated with a View, which is used to select and reference elements in the
Table data. You associate a Table with a particular View by including the view property in the Table
definition, which takes the View name as its argument.

A View maps your user-defined field names to XML elements in the selected Table items. A View
enables you to access specific fields in the data as variables with properties that can be manipulated in
Python. Junos PyEZ handles the extraction of the data into Python as well as any type conversion or
data normalization.

When retrieving configuration data using Tables that have the get or the set property, the View fields
specify which configuration data the application should retrieve for the object. For Tables that include
the set property and define resources that you can configure on a device, the fields defined in the View
restrict which statements that you can configure for that resource.

Junos PyEZ Views, like Tables, are formatted using YAML. View definitions that are associated with

configuration Tables can include a number of parameters, which are summarized in Table 28 on page
289.

Table 28: Junos PyEZ Configuration View Parameters

View
Parameter
Name

View name

Field items

Field groups

Groups

View
Parameter

fields

fields_group

groups

Table
Type

get or set

get or set

get or set

get or set

Description

User-defined View identifier.

Associative array, or dictionary, of key-value pairs that map user-
defined field names to XPath expressions that select elements in
the configuration data. The field names must be valid Python
variable names. The XPath expressions are relative to the context
defined by the get or set property for that Table.

When the Table scope uses get, the fields identify the data to
extract from the configuration. When the Table scope uses set, the
fields identify the elements that you can configure or retrieve,
depending on the operation.

Associative array, or dictionary, of key-value pairs that map user-
defined field names to XPath expressions that select elements in
the configuration data. The field names must be valid Python
variable names. The XPath expressions are relative to the context
set by the corresponding groups parameter.

When the Table scope uses get, the fields identify the data to
extract from the configuration. When the Table scope uses set, the
fields identify the elements that you can configure or retrieve,
depending on the operation.

Associative array, or dictionary, of key-value pairs that map a user-
defined group name to an XPath expression that sets the XPath
context for fields in that group. The Xpath expression is relative to
the context defined by the get or set property for that Table.

Consider the following Junos PyEZ configuration Tables and Views. UserTable, which includes the get
property, extracts configuration data for user accounts on the target device. UserConfigTable, which

includes the set property, defines a structured configuration resource that can be used to configure user
accounts on the target device as well as retrieve configuration data for user accounts.

UserTable:

get: system/login/user
view: UserView
UserView:
groups:
auth: authentication
fields:
username: name
userclass: class
uid: uid
uidgroup: { uid: group }
fullgroup: { full-name: group }
fields_auth:

password: encrypted-password

UserConfigTable:
set: system/login/user
key-field:
username
view: UserConfigView
UserConfigView:
groups:
auth: authentication
fields:
username: name
userclass: class
uid: uid
fields_auth:

password: encrypted-password

The following sections discuss the different components of the View:

View Name

The View name is a user-defined identifier for the View. You associate a Table with a particular View by
including the view property in the Table definition and providing the View name as its argument. For
example:

UserTable:

Table definition

view: UserView

UserView:

View definition

Fields (fields)

You customize Views so that they only reference the necessary elements in the selected configuration
data. To do this you include the fields property and an associative array containing the mapping of user-
defined field names to the XPath expressions that select the desired elements from the configuration
Table items. The field names must be valid Python variable names. The XPath expressions are relative to
the configuration scope defined by the get or set property in the Table definition.

When retrieving configuration data using Tables that include either the get or the set property, the fields
defined in the View identify the statements to extract from the configuration. For Tables that include the
set property and define resources that you can configure on a device, the fields identify the statements
that you can configure for that resource. You must explicitly define fields for all identifier elements for a
configuration resource. These identifier fields are then referenced in the key-field property in the
corresponding Table definition.

Consider the following sample configuration hierarchy:

user@router> show configuration system login | display xml
<rpc-reply>
<configuration>
<system>

<login>

<user>
<name>user1</name>
<uid>2001</uid>
<class>super-user</class>
<authentication>

<encrypted-password>. . .</encrypted-password>

</authentication>

</user>

<user>
<name>readonly</name>
<uid>3001</uid>

<class>read-only</class>
<authentication>
<encrypted-password>. . .</encrypted-password>
</authentication>
</user>
</login>
</system>
</configuration>

</rpc-reply>

If the Table get or set parameter defines the scope as system/login/user, the XPath expression for each field
in the View definition is relative to that context. The following View definition maps the user-defined
field names usernanme, userclass, and uid to child elements of the <user> element:

UserTable:

get: system/login/user

UserView:
fields:
username: name
userclass: class

uid: uid

If the Table definition includes the set property, you must explicitly define fields for any identifier
elements that uniquely identify the object, which in this case is <name>. The Table's key-field property
must reference all View fields that map to identifier elements for an object. You must always define at
least one identifier element in the fields and key-field properties in set Tables.

In the Python script, you can then access a View item as a variable property.

from jnpr.junos import Device
from myTables.ConfigTables import UserTable

with Device(host="router.example.com') as dev:
users = UserTable(dev)
users.get()
for account in users:

print("Username is {}\nUser class is {}".format(account.name, account.userclass))

@ NOTE: When retrieving configuration data, each object that has a <name> element in the
data has a default name property that you can use to access the value for that element.

View fields can include different options depending on the type of the Table that references that View.
Tables that define structured configuration resources (set) can include type and constraint checks for
each field to ensure that the Junos PyEZ application provides valid data when configuring the resource
on a device. Tables that retrieve configuration data (get) can include options that return attribute values
for specific elements or that specify the data type to use in the application. "Field Options ('get' Tables)"
on page 293 and "Field Options ('set' Tables)" on page 294 outline the options that can be included
when using get and set Tables, respectively.

Field Options ('get' Tables)

Tables that include the get property and solely retrieve configuration data from a device can define a
number of options or operators for fields in the associated View. This section outlines the various
options.

The field format determines the type for a field’s value. By default, field values are stored as strings. You
can specify a different type for the value in the field mapping. The following example defines the value
of the uid element to be an integer:

UserView:
fields:
username: name
userclass: class
uid: { uid : int }

You can also set the field item'’s value to a Boolean by using the following syntax:

fieldname: { element-name: (True | False)=regex(expression) }

The element’s value is evaluated against the regular expression passed to regex(). If the element’s value
matches the expression, the field item’s value is set to the Boolean defined in the format. In the
following example, the superuser field is set to True if the value of the class element contains 'super-user":

superuser: { class : True=regex(super-user) }

Junos PyEZ also provides the group operator for fields in configuration Views. The group operator enables
you to access the value of the junos:group attribute for elements that are inherited from Junos
configuration groups. This value indicates the group from which that element was inherited.

For example, in the following configuration, the remote user is inherited from the global configuration
group configured at the [edit groups globall hierarchy level.

<user junos:group="global">
<name junos:group="global">remote</name>
<uid junos:group="global">2000</uid>

</user>

You include the group operator in the field mapping to reference the value of the junos:group attribute
instead of the value of the element. The following example defines the uidgroup and fullgroup fields with
the group operator. When you access these field names in a script, the field references the value of the
junos:group attribute associated with the uid or full-name element.

UserView:
groups:
auth: authentication
fields:
username: name
userclass: class
uid: uid
uidgroup: { uid: group }
fullgroup: { full-name: group }
fields_auth:

password: encrypted-password

Field Options ('set' Tables)

Tables that define structured configuration resources (set) can include type and constraint checks for
each field in the associated View to ensure that the Junos PyEZ application provides valid data when
configuring the resource on a device. Type checks ensure that the Junos PyEZ application supplies the
correct data type when it configures the statements for a specific resource. Constraint checks enable
you to define a default value for statements and ensure that the application supplies values that are in
the correct range for those statements. The supported type and constraint checks, which are included as
options for the fields of the associated View, are outlined in this section.

Table 29 on page 295 and Table 30 on page 295 summarize the type and constraint checks, respectively,
that you can define for fields in the View of a set configuration Table. Type checks are mutually
exclusive, but multiple constraint checks can be defined for each field.

Table 29: Type Checks for 'set’' Configuration Tables

type Value = Description Example

bool Field only accepts Boolean enable: { 'enable' : { "type': 'bool' } }
values of True or False

enum Field only accepts one of the enc : { 'encapsulation' : {'type' : { 'enum' : ['vlan-ccc','vlan-
values defined in the enum list vpls'] 31}

float Field only accepts floating drift : { 'clock-drift' : { 'type' : 'float' } }
point values

int Field only accepts integer uid: { 'uid" : { "type' : 'int' } }
values

str Field only accepts string values | name: { 'name': {'type': 'str' } }

Table 30: Constraint Checks for 'set' Configuration Tables

Constraint Description Example
Check Name
default Default value for a field. native_vlan : { 'native-vlan-
. id" @ { 'type' : 'int', 'default' :
A field uses its default value when the user does not
explicitly configure the field. If the user calls the 501)3
reset() method to reset field values in the
application, fields that have a defined default are set
to that value.
maxValue Maximum value for a field, which is interpreted based | native_vlan : { 'native-vlan-
on the field type. id' : { "type' : 'int', 'minvalue' :

0, 'maxValue' : 4094 } }

Table 30: Constraint Checks for 'set' Configuration Tables (Continued)

Constraint Description Example
Check Name
minValue Minimum value for a field, which is interpreted based | native_vlan : { 'native-vlan-
on the field type. id' : { "type' : 'int', 'minvalue' :

0, 'maxValue' : 4094 } }

You can only define a single type check for a field, but you can define multiple constraint checks. Thus a
field could include a default value, a minimum value (minValue), and a maximum value (maxValue).

native_vlan : { 'native-vlan-id' : { 'type' : 'int'
'maxValue' : 4094 } }

, ‘'default' : 501, 'minValue' : 0,

The minValue and maxValue options are interpreted based on the value for the type option. By default, field
values are strings. For strings, minvalue and maxValue are the minimum and maximum lengths for the string.
For integers and floats, the values are the minimum and maximum values for that type.

If you include type or constraint checks for a field, and the user supplies configuration data that fails the
checks, the Junos PyEZ application raises the appropriate TypeError or ValueError exception with a
message that describes the error.

Groups (groups) and Field Groups (fields_)

Groups provide a shortcut method to select and reference elements within a specific node-set in a Table
item.

In the following configuration data, the <authentication> element contains a child element corresponding
to the user’s authentication method:

<configuration>
<system>
<login>

<user>
<name>user1</name>
<uid>2001</uid>

<class>super-user</class>

<authentication>
<encrypted-password>...</encrypted-password>
</authentication>
</user>
<user>
<name>readonly</name>
<uid>3001</uid>
<class>read-only</class>
<authentication>
<encrypted-password>...</encrypted-password>
</authentication>
</user>
</login>
</system>

</configuration>

Within the View definition, you can use the fields property to access the child elements by providing the
full XPath expression to each element relative to the selected configuration hierarchy. For example, if
the Table get or set property selects <user> elements at the [edit system login] hierarchy level, the field
item mapping would use the following XPath expression:

UserConfigTable:

set: system/login/user

UserConfigView:
fields:

password: authentication/encrypted-password

Alternatively, you can create a group that sets the XPath context to the <authentication> element and
then define field group items that just provide the XPath expression relative to that context. You can
define any number of groups within a View definition.

To create a group, include the groups property and map a user-defined group name to the XPath
expression that defines the new context. Then define a field group whose name is fields_ followed by
the group name. The field group is an associative array containing the mapping of user-defined field
names to XPath expressions that now are relative to the context set within groups. The field names must
be valid Python variable names.

The following example defines the group auth and the corresponding field group fields_auth. The auth
group sets the context to the system/login/user/authentication hierarchy level, and the password field

references the value of the encrypted-password element.

UserConfigTable:
set: system/login/user

UserConfigView:
groups:
auth: authentication
fields_auth:
password: encrypted-password

Whether you use fields or field groups, you access the value in the same manner within the Junos PyEZ
script by using the user-defined field names.

Define Junos PyEZ Configuration Tables | 280

Use Junos PyEZ Configuration Tables to Retrieve Configuration Data | 298

Use Junos PyEZ Configuration Tables to Retrieve
Configuration Data

IN THIS SECTION

Retrieve Configuration Items | 299

Specify the Configuration Database | 301
Specify Inheritance and Group Options | 301
Access Table Items | 303

Iterate Through a Table | 304

Junos PyEZ configuration Tables and Views provide a simple and efficient way to extract specific
information from the selected configuration database of a Junos device. After loading or importing the
Table definition into your Python module, you can retrieve the configuration data.

Junos PyEZ configuration Tables that specify the get property can only retrieve configuration data.
Tables that specify the set property can configure resources on Junos devices as well as retrieve data in
the same manner as Tables that specify the get property.

To retrieve information from a specific device, you must create a Table instance and associate it with the
Device object representing the target device. For example:

from jnpr.junos import Device
from myTables.ConfigTables import UserTable

with Device(host='router.example.com') as dev:

users = UserTable(dev)

The following sections discuss how to then retrieve and manipulate the data:

Retrieve Configuration Items

The configuration Table get or set property identifies the data to extract from the configuration. For
example, the following sample Table definition extracts user elements at the [edit system login]
configuration hierarchy level:

UserTable:
get: system/login/user

view: UserView

UserView:
fields:
username: name

userclass: class

You retrieve the configuration data in your Python script by calling the get() method and supplying any
desired arguments.

from jnpr.junos import Device
from myTables.ConfigTables import UserTable

with Device(host="'router.example.com') as dev:
users = UserTable(dev)

users.get()

If the Table definition includes the required_keys parameter, you must include key-value pairs for each
required key in the get() method argument list. The following Table definition requires that the get()
method argument list include a user argument with a value that corresponds to the value of a name

element at the [edit system login user] hierarchy level:

UserTable:
get: system/login/user
required_keys:
user: name

view: UserView

In the get() method, you must include the required key in the argument list; otherwise, the code throws
a ValueError exception. The following example requests the configuration data for the user named

‘operator':

users = UserTable(dev).get(user="'operator")

@ NOTE: If the argument name is hyphenated, you must change any dashes in the name to
underscores. The argument value, however, is a string and as such can contain hyphens.

You can include the get() method namesonly=True argument to return configuration data that contains only
name keys at the hierarchy level specified in the get or set property of your Table definition.

from jnpr.junos import Device
from myTables.ConfigTables import InterfaceTable

with Device(host='router.example.com') as dev:
interfaces = InterfaceTable(dev)

interfaces.get(namesonly=True)

For example, suppose get is defined to retrieve configuration data at the interfaces/interface hierarchy
level, and you include the namesonly=True argument in the get() method when you retrieve the data in your
Junos PyEZ script. In this case, the method returns only the values in the <name> elements that are direct

children of the interfaces/interface hierarchy level. Information in elements that are siblings of the <name>
element is not returned, and data for <name> elements at lower levels in the hierarchy is not returned.

Specify the Configuration Database

By default, Junos PyEZ configuration Tables retrieve data from the candidate configuration database.
When you call the get() method in the Python script to retrieve the Table data, you can specify that the
method should instead return data from the committed configuration database by passing in the options
argument and including the 'database’:'committed' item in the options dictionary.

table_options = {'inherit':'inherit', 'groups':'groups', 'database':'committed'}

with Device(host="'router.example.com') as dev:
users = UserTable(dev)

users.get(options = table_options)

Specify Inheritance and Group Options

You can control inheritance and group options when you retrieve configuration data by using the options
argument in the get() method argument list. The options argument takes a dictionary, and by default is set
to the following value, which applies inheritance and groups for the returned configuration data:

options = {'inherit': 'inherit', 'groups': 'groups'}

If you do not redefine the options argument in your Python script, it automatically uses the default.

The inherit option specifies how the configuration data displays statements that are defined in
configuration groups and interface ranges. By default, the "inherit':'inherit' option is included, and the
configuration data encloses tag elements inherited from user-defined groups or interface ranges within
the inheriting tag elements rather than display the <groups>, <apply-groups>, <apply-groups-except>, or
<interface-range> elements separately. To apply inheritance but also include tag elements for statements
defined in the junos-defaults group, use 'inherit':'defaults' in the options argument.

To disable inheritance, set the dictionary value to an empty string.

{'inherit':"''}

Including both the 'inherit':'inherit' and 'groups':'groups' options returns configuration data that also
indicates the configuration group from which elements are inherited. An element that is inherited from a
particular group includes the junos:group="source-group" attribute in its opening tag, as shown in the

following example:

<configuration>
<interfaces>
<interface junos:group="re@">
<name junos:group="re@">fxp0</name>
<unit junos:group="re@">
<name junos:group="re@">0</name>
<family junos:group="re0">
<inet junos:group="re@">
<address junos:group="re0">
<name junos:group="re0">198.51.100.1/24</name>
</address>
</inet>
</family>
</unit>
</interface>

</interfaces>

</configuration>

To provide access to the attributes in the View definition, you can include the appropriate XPath syntax
in the field mapping. The following example defines the ifgroup field and maps it to the junos:group

attribute of the interface’s <name> element:

InterfaceTable:
get: interfaces/interface
view: InterfaceView
InterfaceView:
fields:
ifname: name
ifaddress: unit/family/inet/address/name

ifgroup: name/@group

Junos PyEZ also provides the group operator, which is a shortcut method for accessing the junos:group
attribute of an element. The following example defines the ifgroup field, which is mapped to the name

element with the group operator. When you access ifgroup within your script, it references the value for
the junos:group attribute associated with the interface’s <name> element.

InterfaceTable:
get: interfaces/interface
view: InterfaceView
InterfaceView:
fields:
ifname: name
ifaddress: unit/family/inet/address/name

ifgroup: { name : group }

If an element is not inherited from a group, the value of a field that references the group attribute is None.

Access Table Items

After you retrieve the configuration items, you can treat them like a Python dictionary, which enables
you to use methods in the standard Python library to access and manipulate the items.

To view the list of dictionary keys corresponding to the configuration item names, call the keys() method.

users = UserTable(dev).get()
print (users.keys())

['user1', 'readonly']

You can verify that a specific key is present in the Table items by using the Python in operator.

if 'readonly' in users:

To view a list of the fields, or values, associated with each key, call the values() method. The values()
method returns a list of tuples with the name-value pairs for each field that was defined in the View.

print (users.values())

[[('username', 'user1'), ('userclass', 'super-user')], [('username', 'readonly'), ('userclass',
"read-only')1]

To view the complete list of items, including both keys and values, call the items() method.

print (users.items())

[('user1", [('username', 'user1'), ('userclass', 'super-user')]), ('readonly', [('username',

'readonly'), ('userclass', 'read-only')I)]

Iterate Through a Table

Tables support iteration, which enables you to loop through each configuration item in the same way
that you would loop through a list or dictionary. This makes it easy to quickly format and print desired
fields.

The following Table definition extracts the system/login/user items from the configuration data:

UserTable:
get: system/login/user

view: UserView

UserView:
fields:
username: name

userclass: class

The following Junos PyEZ application loops through the user items and prints the name and class of each
user:

from jnpr.junos import Device
from myTables.ConfigTables import UserTable

with Device(host='router.example.com') as dev:
users = UserTable(dev)

users.get()

for user in users:

print("Username is {}\nUser class is {}".format(user.username, user.userclass))

The username and userclass fields, which are defined in UserView, correspond to the values of the name and
class elements, respectively, in the configuration data. The output includes the user’s name and class.

Username is user1
User class is super-user
Username is readonly

User class is read-only

Although UserView defines a username field that maps to the name element, by default, each View item has
a name property that references the key that uniquely identifies that item. Thus, you could also use
user.name in this example to reference the value of the name element.

Define Junos PyEZ Configuration Tables | 280

Define Views for Junos PyEZ Configuration Tables | 288

Overview of Using Junos PyEZ Configuration Tables
to Define and Configure Structured Resources

IN THIS SECTION

Create the Structured Resource | 306

Use the Resource in a Junos PyEZ Application | 307

Junos PyEZ enables you to use Tables and Views to configure Junos devices. Tables and Views are
defined using simple YAML files that contain key and value pair mappings, so no complex coding is
required to create them. You can create Tables and Views that define structured configuration resources.
When you add the Table to the Junos PyEZ framework, Junos PyEZ dynamically creates a configuration
class for the resource, which you can use to programmatically configure the resource on a device.

To configure Junos devices using configuration Tables and Views, you must identify the resource to
model, create the Table and View definitions for that resource, and then use those definitions to
configure the resource in your Junos PyEZ application. The general steps are outlined in this topic.

Create the Structured Resource

To create the structured resource:

1. Identify the configuration for which you want to define a structured resource, for example, a user
object at the [edit system login] hierarchy level.

user@host> show configuration system login | display xml
<rpc-reply>
<configuration>
<system>
<login>
<user>
<name>jsmith</name>
<full-name>J Smith</full-name>
<uid>555</uid>

<class>super-user</class>
<authentication>
<encrypted-password>$ABC123</encrypted-password>
</authentication>
</user>
</login>
</system>

</configuration>
</rpc-reply>

2. Create the Table and View definitions for the structured resource.

For detailed information about creating configuration Tables and Views, see "Define Junos PyEZ
Configuration Tables" on page 280 and "Define Views for Junos PyEZ Configuration Tables" on page
288.

UserConfigTable:
set: system/login/user
key-field:
username

view: UserConfigView

UserConfigView:
groups:
auth: authentication
fields:
username: name
userclass: { class : { 'default' : 'unauthorized' }}
int', 'default':1001, 'minValue':100, 'maxValue':64000 }}

uid: { uid: { "type': '
fullname: full-name
fields_auth:

password: encrypted-password

3. Add the structured resource to the Junos PyEZ framework either as an inline string or as an external
file, as discussed in "Load Inline or External Tables and Views in Junos PyEZ Applications" on page
200.

Use the Resource in a Junos PyEZ Application

To configure the resource in your Junos PyEZ application:

1. Create a Device instance and connect to the device. For example:

from jnpr.junos import Device
from myTables.ConfigTables import UserConfigTable

dev = Device(host="'router.example.com').open()

2. Create a Table object and associate it with the device.

uc = UserConfigTable(dev)

3. Configure the resource by defining values for the necessary fields, including all key fields that are
defined in the Table’s key-field property.

For detailed information about configuring the resource, see "Use Junos PyEZ Configuration Tables
to Configure Structured Resources on Junos Devices" on page 309.

uc.username = 'userl'
uc.userclass = 'operator'
uc.password = '$ABC123'

4. Call the append() method to build the Junos XML configuration that contains the configuration
changes.

uc.append()

@ NOTE: After you call append(), the value for each field is reset to its default value or to
None, if the View does not define a default. If you configure another resource, the initial
values for that resource are the reset values rather than the values that were configured
for the previous resource.

5. Repeat Step 3 and Step 4 for each additional resource to configure.

6. Load and commit the configuration changes to the shared configuration database on the device by
using one of the following approaches:

e Call the set() method, which automatically calls the lock(), load(), commit(), and unlock() methods.

uc.set(merge=True, comment='Junos PyEZ commit')

e Call the individual lock(), load(), commit(), and unlock() methods.

uc.lock()
uc.load(merge=True)
uc. commit(comment="'Junos PyEZ commit')

uc.unlock()

7. Close the device connection.

dev.close()

For more information about the using the different methods to load and commit the configuration data,
see "Use Junos PyEZ to Configure Junos Devices" on page 132 and "Use Junos PyEZ to Commit the
Configuration" on page 158.

Define Junos PyEZ Configuration Tables | 280

Define Views for Junos PyEZ Configuration Tables | 288

Use Junos PyEZ Configuration Tables to Configure Structured Resources on Junos Devices | 309

Use Junos PyEZ Configuration Tables to Configure
Structured Resources on Junos Devices

IN THIS SECTION

General Configuration Process | 310

Configure Statements Consisting of a Fixed-Form Keyword | 314
Configure Multiple Values for the Same Statement | 315
Configure Multiple Instances of the Same Statement | 316
Configure Multiple Instances of the Same Resource | 318

Delete Containers or Leaf Statements | 320

Configure Properties Corresponding to Junos XML Attributes | 322
Use append() to Generate the Junos XML Configuration Data | 325
View Your Configuration Changes | 326

How to Control the RPC Timeout Interval | 328

Junos PyEZ configuration Tables that specify the set property enable you to define structured resources
that can be used to programmatically configure Junos devices. After loading or importing the Table
definition for your structured resource into your Junos PyEZ application, the application can configure
the resource on your devices. This topic discusses the general process and some specific tasks for using
Junos PyEZ configuration Tables and Views to configure structured resources on a device.

General Configuration Process

The configuration Table set property identifies the configuration hierarchy level at which a resource is
configured and sets the XPath context for fields in the View. For example, the following Table defines a
user resource at the [edit system login] hierarchy level:

UserConfigTable:
set: system/login/user
key-field:
username
view: UserConfigView

UserConfigView:

groups:
auth: authentication

fields:
username: name
userclass: { class : { 'default' : 'unauthorized' }}
uid: { uid: { "type': 'int', 'minValue':100, 'maxValue':64000 }}
fullname: full-name

fields_auth:

password: encrypted-password

The fields that are included in the View define which leaf statements the user can configure for that
resource. A field can define a default value as well as type and constraint checks.

To configure a structured resource on a device, you must load or import the Table into your application.
You then create a Table object and associate it with the Device object of the target device. For example:

from jnpr.junos import Device
from myTables.ConfigTables import UserConfigTable

from 1xml import etree

with Device(host="'router.example.com') as dev:
uc = UserConfigTable(dev)

To define values for a resource’s configuration statements, set the corresponding field names (as defined
in the View) equal to the desired values.

table_object. fieldname = value

The default value for a field is None unless the View explicitly defines a default for that field. If the View
defines a type or constraint check for a field, the application must supply the correct data type and value
for that field and ideally handle any errors that might be raised in the event that the check fails. You
must always define values for any key fields that are declared in the Table’s key-field property, which in

this example is username.

The following code imports UserConfigTable and configures values for the username, userclass, and password
fields. The View's password field references the encrypted-password statement in the configuration; thus, the
data must supply a pre-encrypted password.

Python 3

from jnpr.junos import Device

from myTables.ConfigTables import UserConfigTable
from 1xml import etree

with Device(host='router.example.com') as dev:

uc = UserConfigTable(dev)

uc.username = 'userl’
uc.userclass = 'operator'
uc.password = '$ABC123'

For detailed information about more specific configuration tasks, such as configuring statements with
fixed-form keywords or multiple values, configuring multiple instances of a statement or resource,

deleting a leaf or container statement, or configuring an object property that corresponds to a Junos
XML attribute, see the following sections:

e "Configure Statements Consisting of a Fixed-Form Keyword" on page 314

e "Configure Multiple Values for the Same Statement" on page 315

e "Configure Multiple Instances of the Same Resource" on page 318

e "Configure Multiple Instances of the Same Statement" on page 316

e "Delete Containers or Leaf Statements" on page 320

e "Configure Properties Corresponding to Junos XML Attributes" on page 322

After you configure an object, you must call the append() method to build the corresponding Junos XML
configuration and add it to the 1xml object that stores the full set of configuration changes for that Table
object. The configuration changes include only those fields that have either a default value defined in
the View or a user-configured value. Fields that retain their initial value of None are ignored.

uc.append()

After building the XML, the append() method also resets all fields to the their default values or to None if
the View does not define a default for that field. This enables you to configure multiple objects in the
same application and ensures that you do not unintentionally use a value defined for one resource when
you configure subsequent resources. Each time you configure a new resource, you must call append() to
add the configuration changes to the final set of changes. For more information about the append()
method, see "Use append() to Generate the Junos XML Configuration Data" on page 325.

If necessary, you can also manually reset all fields for a Table object by calling the reset() method.

uc.reset()

The reset() method restores all fields back to their default values or to None if the View does not define a
default. The reset() method only resets the current values of the fields. It does not affect the XML
containing the configuration changes that has been constructed up to that point by calls to the append()
method.

You can retrieve the XML configuration representing your changes at any point in the application by
calling the get_table_xml1() method, which is discussed in detail in "View Your Configuration Changes" on
page 326.

configXML = uc.get_table_xml()
if (configXML is not None):

print (etree.tostring(configXML, encoding="unicode', pretty_print=True))

After configuring all necessary objects and calling append(), you can load your configuration changes into
the shared configuration database on the device by using one of two methods:

e Call the set() method, which automatically calls the lock(), load(), commit(), and unlock() methods

e Call the lock(), load(), commit(), and unlock() methods individually

uc.set()

@ NOTE: When you create the Table instance with a context manager (with ... as syntax)
that includes the mode parameter to use a specific configuration mode, the context
manager handles opening and locking and closing and unlocking the database. In this
case, you only need to call the load() and commit() methods to configure the device.
Calling the lock() or set() method results in a LockError exception.

Using the single set() method provides simplicity, but calling the individual methods provides additional
flexibility such as when you need to call other methods after loading the configuration data, but before
committing it. For example, you might want to call the diff() or pdiff() methods to review the
configuration differences after you load the data but before you commit it. Or you might need to call the
rollback() method to reset the candidate configuration back to the active configuration instead of
committing it. For more information about the using the different methods to load and commit the
configuration data, see "Use Junos PyEZ to Configure Junos Devices" on page 132 and "Use Junos PyEZ
to Commit the Configuration" on page 158.

In the case of large load and commit operations that might time out, you can adjust the RPC timeout
interval by including the timeout parameter in the set() or commit() method argument list. For more
information, see "How to Control the RPC Timeout Interval" on page 328.

A configuration table that specifies the set parameter is a superset and has all the features of a
configuration table that specifies the get parameter. You can retrieve configuration data in the same way
in your Junos PyEZ application whether the Table specifies set or get. For information about using
configuration Tables to retrieve configuration data, see "Use Junos PyEZ Configuration Tables to
Retrieve Configuration Data" on page 298.

Configure Statements Consisting of a Fixed-Form Keyword

A /eaf statementis a CLI configuration statement that does not contain any other statements. Most leaf
statements define a value for one characteristic of a configuration object and have the following form:

keyword value;

Some leaf statements consist of a fixed-form keyword only, without an associated variable-form value.

For example, the ftp statement at the [edit system services] hierarchy level is an example of a fixed-form
keyword.

system {
services {
ftp;
}
}

The Junos XML API represents such statements with an empty tag.

<configuration>
<system>
<services>
<ftp>
</ftp>

</services>
</system>
</configuration>

To configure a fixed-form keyword in your Junos PyEZ application, such as the ftp statement under [edit
system services], set the value of the corresponding field name as defined in the View equal to the
Boolean value True.

Consider the following View, which defines the ftp field with a type constraint to ensure that the value
for the field is a Boolean:

ServicesView:
fields:

ftp: { 'ftp' : { 'type': 'bool' } }

To configure the ftp field in your Junos PyEZ application, set the field equal to True.

from jnpr.junos import Device
from myTables.ConfigTables import ServicesConfigTable

with Device(host='router.example.com') as dev:

sc = ServicesConfigTable(dev)

sc.ftp = True
sc.append()
sc.set()

Configure Multiple Values for the Same Statement

Some Junos OS leaf statements accept multiple values, which might be either user defined or drawn
from a set of predefined values. CLI notation uses square brackets to enclose all values in a single
statement, as in the following:

keyword [valuel value2 value3 ...1J,;

For example, you might need to configure a VLAN ID list for a trunk interface, as in the following
configuration:

interfaces {
ge-0/0/1 {
native-vlan-id 510;
unit @ {
family bridge {
interface-mode trunk;
vlan-id-list [510 520 530 1;

To configure a leaf statement with multiple values in your Junos PyEZ application, set the value of the
corresponding field (as defined in the View) equal to a Python list containing the desired values. In the
following example, the vlan_list field maps to the vlan-id-list statement in the CLI. To configure the
statement with multiple VLAN IDs, set the field name equal to the list of IDs.

from jnpr.junos import Device
from myTables.ConfigTables import InterfacesConfigTable

with Device(host='router.example.com') as dev:
intf = InterfacesConfigTable(dev)

intf.name = 'ge-0/0/1'

intf.mode = 'trunk'
intf.native_vlan = 510
intf.vlan_list = [510, 520, 530]

intf.append()
intf.set()

@ NOTE: The Python list that you use for the value of a field in your Junos PyEZ
application is a comma-delimited list of values. This list gets translated to a space-
delimited list in the Junos configuration data.

Configure Multiple Instances of the Same Statement

In certain situations, the Junos OS configuration enables you to configure multiple instances of the same
statement. For example, you might configure multiple addresses under the same protocol family for a
logical interface. In the following configuration snippet, the loopback interface has multiple addresses
configured at the [edit interfaces 100 unit @ family inet] hierarchy level:

interfaces {
100 {
unit @ {
family inet {
address 192.168.100.1/32;
address 192.168.100.2/32;

The Junos XML representation of the configuration is as follows:

<configuration>
<interfaces>
<interface>
<name>100</name>
<unit>
<name>0</name>
<family>
<inet>
<address>
<name>192.168.100.1/32</name>
</address>
<address>
<name>192.168.100.2/32</name>
</address>
</inet>
</family>
</unit>
</interface>
</interfaces>

</configuration>

When you use Junos PyEZ configuration Tables to manage structured resources, you define values for
configuration statements by setting the corresponding field names equal to the desired values. However,
you cannot define the same field twice in your Junos PyEZ application, because the second value will
overwrite the first value. Instead, you must set the field equal to a list of values, and Junos PyEZ handles
the conversion to XML.

Consider the following Table and View:

InterfaceTable:
set: interfaces/interface
key-field:
- name
- unit_name

view: InterfaceView

InterfaceView:

fields:
name: name
desc: description
unit_name: unit/name

ip_address: unit/family/inet/address

The following sample code illustrates how to configure multiple addresses for the loopback interface in a
Junos PyEZ application. In this case, you set the ip_address field equal to a list of addresses.

lo@_addresses = ['192.168.100.1/32"', '192.168.100.2/32"']

intf = InterfaceTable(dev)

intf.name="'100"

intf.unit_name = 0
intf.ip_address = lo@_addresses
intf.append()

intf.set()

The resulting configuration is:

[edit interfaces]

+ 100 {

+ unit 0 {

+ family inet {

+ address 192.168.100.1/32;
+ address 192.168.100.2/32;

Configure Multiple Instances of the Same Resource

When you use Junos PyEZ configuration Tables to configure structured resources, you might need to
configure multiple objects, or records, for the same resource. For example, you might configure multiple
interfaces or users at the same time. To configure multiple objects for the same structured resource in a

Junos PyEZ application, you must define the values for one object’s fields, call the append() method, and
then repeat this process for each subsequent object.

For example, to configure multiple users, define the field values for the first user, and call the append()
method. Then define the field values for the second user and call the append() method. The append()
method builds the Junos XML data for the configuration change and adds it to the 1xml object storing the
full set of configuration changes. The method also automatically resets all of the fields back to their
default values, as defined in the View, or to None if a field does not have a defined default.

The following example configures two user objects and commits the changes:

from jnpr.junos import Device
from myTables.ConfigTables import UserConfigTable
from 1xml import etree

with Device(host="'router.example.com') as dev:
uc = UserConfigTable(dev)

uc.username = 'userl’
uc.userclass = 'operator'
uc.uid = 1005
uc.password = '$ABC123'
uc. append()

uc.username = 'user2'
uc.userclass = 'operator'
uc.uid = 1006
uc.password = '$ABC123'
uc. append()

uc.set()

@ NOTE: If you do not call the append() method after configuring one of multiple objects for
the same resource, the field values for the second object will overwrite the field values
for the first object.

The following sample code configures the same two users using a more compact syntax:

from jnpr.junos import Device
from myTables.ConfigTables import UserConfigTable
from 1xml import etree

users = ['user1', 'user2']
uids = ['1005', '1006']
passwds = ['$ABC123', '$ABC123']

with Device(host='router.example.com') as dev:
uc = UserConfigTable(dev)
for user, uid, passwd in zip(users, uids, passwds):
uc.username = user
uc.userclass = 'operator'
uc.uid = uid
uc.password = passwd

uc. append()

uc.set()

Delete Containers or Leaf Statements

In some cases, you might need to delete containers or leaf statements in the configuration. When you
use Junos PyEZ configuration Tables to manage structured resources, you can perform this operation in
your application by setting the appropriate field value to {'operation' : 'delete'}. You must always define
values for all key fields when deleting a container or leaf statement to indicate to which object the
deletion applies.

Consider the following Junos PyEZ configuration Table and View:

UserConfigTable2:
set: system/login
key-field:

- username

view: UserConfigView2

UserConfigView2:
groups:
auth: user/authentication
fields:
user: user
username: user/name

classname: { user/class : { 'type' : { 'enum' : ['operator', 'read-only', 'super-user'] } } }

uid: { user/uid : { 'type' : 'int', 'minValue' : 100, 'maxValue' : 64000 } }
fields_auth:

password: encrypted-password

To delete a leaf statement for the resource defined in the Table and View, set the value of the field
corresponding to that statement to {'operation' : 'delete'}. The following example deletes the uid
statement for user jsmith:

from jnpr.junos import Device
from myTables.ConfigTables import UserConfigTable2

with Device(host='router.example.com') as dev:
uc = UserConfigTable2(dev)
uc.username = 'jsmith'
uc.uid = { 'operation' : ‘'delete' }
uc.append()

uc.set()

To delete a container from the configuration, the View must define a field for that container. In the
example Table and View, the configuration scope defined by the set property is system/login. The View
defines the field 'user’, which maps to the system/login/user container. This definition enables you to delete
user objects, if necessary. If you do not define a field for the container, you can only delete statements
within the container, but you cannot delete the container itself.

To delete a container in the Junos PyEZ application, set the value of the field corresponding to the
container to {'operation' : 'delete'}, and define the key field to indicate the object to delete. The
following example deletes the user jsmith from the configuration:

from jnpr.junos import Device
from myTables.ConfigTables import UserConfigTable2

from 1xml import etree

with Device(host='router.example.com') as dev:
uc = UserConfigTable2(dev)

uc.user = { 'operation' : 'delete' }

uc.username = 'jsmith'

uc.append()

print (etree.tostring(uc.get_table_xml(), encoding="unicode', pretty_print=True))

uc.set()

The application prints the Junos XML configuration data returned by the get_table_xml() method. The
user element with identifier 'jsmith' includes the operation="delete" attribute to instruct Junos OS to
remove that object from the configuration.

<configuration>
<system>
<login>
<user operation="delete">
<name>jsmith</name>
</user>
</login>
</system>

</configuration>

Configure Properties Corresponding to Junos XML Attributes

Some configuration mode commands, for example deactivate or protect, apply or remove a specific
property, such as the inactive or protect property, to a configuration statement. In the CLI, this property
is indicated by a tag preceding the configuration statement. The Junos XML configuration indicates this
property using an XML attribute for the object.

For example, the following command deactivates the given interface.

[edit]
user@host# deactivate interfaces ge-1/0/2

When you view the configuration in the CLI, the inactive tag precedes the interface name.

[edit]
user@host# show interfaces
inactive: ge-1/0/2 {
description "to CustomerA";
unit @ {
family inet {
address 198.51.100.1/24;

Similarly, in the Junos XML output, the <interface> element for the same interface includes the
inactive="inactive" attribute.

user@host# show interfaces | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/18.3R1/junos">
<configuration junos:changed-seconds="1544581124" junos:changed-localtime="2018-12-11
18:18:44 PST">
<interfaces>
<interface inactive="inactive">
<name>ge-1/0/2</name>
<description>to CustomerA</description>
<unit>
<name>0</name>
<family>
<inet>
<address>
<name>198.51.100.1/24</name>
</address>
</inet>
</family>
</unit>
</interface>
</interfaces>
</configuration>
</rpc-reply>

Junos PyEZ configuration Tables enable you to define supported XML attributes for an object when
configuring structured resources. Consider the following Junos PyEZ configuration Table and View:

InterfaceTable:
set: interfaces
key-field:

- name

view: InterfaceView

InterfaceView:
fields:

interface: interface

name: interface/name
desc: interface/description
unit_name: interface/unit/name

ip_address: interface/unit/family/inet/address

To define the XML attribute for a given configuration object, set its field (as defined by the View) to a
dictionary containing the attribute and its value. For example, to define an interface but immediately
deactivate it, set the field corresponding to the <interface> element to {'inactive': 'inactive'}. The
following example configures and deactivates the given interface:

from jnpr.junos import Device
from myTables.ifConfigTable import InterfaceTable
from 1xml import etree

with Device(host="'router.example.com') as dev:
intf = InterfaceTable(dev)
intf.name = 'ge-1/0/2'
intf.unit_name = 0
intf.ip_address = '198.51.100.1/24'
intf.desc = 'to CustomerA'

intf.interface = {'inactive':'inactive'}
intf.append()

configkML = intf.get_table_xml()
if (configXML is not None):

print (etree.tostring(configXML, encoding="unicode', pretty_print=True))
else:

print (configXML)

intf.set()

The application prints the Junos XML configuration data returned by the get_table_xml() method. The
interface element with identifier 'ge-1/0/2" includes the inactive="inactive" attribute.

<configuration>
<interfaces>
<interface inactive="inactive">
<name>ge-1/0/2</name>

<unit>

<name>0</name>
<family>
<inet>
<address>198.51.100.1/24</address>
</inet>
</family>
</unit>
<description>to CustomerA</description>
</interface>
</interfaces>

</configuration>

To activate an inactive object, set the View field corresponding to the inactive object to

{'active':'active'}

from jnpr.junos import Device
from myTables.ifConfigTable import InterfaceTable

from 1xml import etree

with Device(host='router.example.com') as dev:
intf = InterfaceTable(dev)
intf.name = 'ge-1/0/2'
intf.interface = {'active':'active'}

intf.append()
intf.set()

Similarly, to protect the configuration element or remove the protect attribute from a protected element,
set the appropriate field value to {'protect': 'protect'} or {'unprotect': 'unprotect'}. For more information
about XML attributes in the Junos OS configuration, see the Junos XML Management Protocol
Developer Guide .

Use append() to Generate the Junos XML Configuration Data

When you use Junos PyEZ configuration Tables to configure structured resources, you define the values
for a resource’s fields and then call the append() method. Each call to the append() method generates the

Junos XML configuration data for the current set of changes and adds it to the 1xml object that stores
the full set of configuration changes.

from jnpr.junos import Device
from myTables.ConfigTables import UserConfigTable

with Device(host='router.example.com') as dev:
uc = UserConfigTable(dev)
uc.username = 'userl’
uc.userclass = 'operator'
uc.password = '$ABC123'

uc.append()
uc.set()

Calling the append() method generates the Junos XML configuration data for your resource. The
configuration changes only include those fields that have either a default value defined in the View or a
user-configured value. Fields that retain their initial value of None are ignored.

After building the XML, the append() method also resets all fields back to their default values, as defined
in the View, or to None if a field does not have a defined default. Resetting the fields ensures that when
you configure multiple objects in the same application, you do not set a field value for one object and
then unintentionally use that value in subsequent calls to append() for a different object. Thus, you must
define new values for all key-field fields for each call to append().

@ NOTE: Once you append nodes to the main set of configuration changes, you cannot
undo the operation.

The append() method only adds the new changes to the 1xml object containing the full set of configuration
changes. You must explicitly call the set() method or the load() and commit() methods to load and commit
the changes on the device.

View Your Configuration Changes

When you use Junos PyEZ configuration Tables to configure structured resources, you define the values
for a resource’s fields and then call the append() method. Each call to the append() method generates the
Junos XML configuration data for the current set of changes and adds it to the 1xml object that stores
the full set of configuration changes. At times, you might need to review the configuration data that has
been constructed up to a certain point in the application, or you might want to view the differences

between the candidate and active configurations after you load your configuration changes onto the
device.

To retrieve the Junos XML configuration data containing your changes, call the Table object’s
get_table_xml() method. The get_table_xml() method returns the XML configuration that has been
constructed up to that point in the application. When you call the set() method or the load() and commit()
methods, the application loads and commits this Junos XML configuration data on the device.

The following example calls the get_table_xml() method to retrieve the configuration changes and then
stores them in the configXML variable. Prior to calling the append() method, the get_table_xml() method
returns None. Thus, the application only serializes and prints the XML configuration data if the returned
value is not None.

from jnpr.junos import Device
from myTables.ConfigTables import UserConfigTable

from 1xml import etree

with Device(host='router.example.com') as dev:
uc = UserConfigTable(dev)
uc.username = 'userl’
uc.userclass = 'operator'
uc.password = '$ABC123'
uc. append()

configXML = uc.get_table_xml()
if (configXML is not None):

print (etree.tostring(configXML, encoding="unicode', pretty_print=True))
else:

print (configXML)

uc.set()

The get_table_xml() method only returns the Junos XML data for your configuration changes. You might
also want to compare the candidate and active configurations after loading the configuration changes
onto the device to review the differences before you commit the changes.

To retrieve the differences, you can call the lock(), load(), comnit(), and unlock() methods separately and
view your configuration differences by calling the pdiff() method after you load the data but before you

commit it. The pdiff() method with an empty argument list compares the candidate configuration to the
active configuration and prints the difference in patch format directly to standard output.

uc. append()
uc.lock()
uc.load()
uc.pdiff()

uc.commit()

uc.unlock()

How to Control the RPC Timeout Interval

When you use Junos PyEZ configuration Tables to configure structured resources, you can load and
commit your configuration changes by calling the set() method or the load() and commit() methods. The
set() and commit() methods use the RPC timeout value as defined in the device module. If you do not
configure a new value for the Device timeout property, Junos PyEZ uses the default value of 30 seconds.

Large configuration changes might exceed the default or configured timeout value, causing the
operation to time out before the configuration can be uploaded and committed on the device. To
accommodate certain configuration changes that might require load and commit times that are longer
than the default or configured timeout interval, set the timeout=seconds argument to an appropriate value
when you call the set() or comnit() method in your application. For example:

uc = UserConfigTable(dev)

uc.username = 'userl’
uc.userclass = 'operator'
uc.uid = 1005
uc.password = '$ABC123'
uc. append()

uc.set(timeout=300)

Define Junos PyEZ Configuration Tables | 280

Define Views for Junos PyEZ Configuration Tables | 288

Overview of Using Junos PyEZ Configuration Tables to Define and Configure Structured Resources
306

Save and Load Junos PyEZ Table XML to and from
Files

Junos PyEZ Tables and Views enable you to extract targeted data from operational command output or
the selected configuration database on a Junos device. You can export Table data as XML, which enables
you to retrieve information for one or more devices and process it at a later time. Junos PyEZ provides
the savexml() method for this purpose.

The savexml() method enables you to specify a destination file path for the exported data, and optionally
include the device hostname and activity timestamp in the filename. You can control the format of the
timestamp using the standard strftime format.

For example, suppose that you want to loop through a list of devices and collect transceiver data using
the XcvrTable definition in the jnpr.junos.op.xcvr module. The following code defines a list of device
hostnames, prompts the user for a username and password, and then loops through and makes a
connection to each device:

import sys
from getpass import getpass
from jnpr.junos import Device

from jnpr.junos.op.xcvr import XcvrTable

devlist = ['routerl.example.com', 'router2.example.com']
user = raw_input('username: ')

passwd = getpass('password: ')

for host in devlist:
sys.stdout.write('connecting to %s ... ' % host)
sys.stdout.flush()

dev = Device(host,user=user,password=passwd)
dev.open()

print('ok.")

log data

dev.close()

At this point. the program does not yet retrieve any transceiver data. Running the program results in the
following output:

useri@server:~$ python3 xcvr_demo.py

username: userl

password:
connecting to routerl.example.com ... ok.
connecting to router2.example.com ... ok.

To collect and log the transceiver data, you associate the Table with each target device, retrieve the data,
and save it to a file using the savexml() method. You can include hostname=True and timestamp=True in the
savexml () argument list to append the hostname and timestamp to the output filename. If you retrieve
data for multiple devices in this manner, you must differentiate the output filename for each device with
the hostname, timestamp, or both to prevent the data for one device from overwriting the data for the
previous device in the same file.

log data
xcvrs = XcvrTable(dev).get()
xcvrs. savexml(path="/var/tmp/xcvrs/xcvr.xml', hostname=True, timestamp=True)

@ NOTE: The path argument assumes that the target directory exists on your local file
system.

After adding the additional code to the device loop in the program and then executing the program, you
can examine the contents of the target directory. In this example, the hostname and timestamp values
are embedded in the filenames.

useri@server:~$ 1s /var/tmp/xcvrs
xcvr_routerl.example.com_20131226093921.xml
xcvr_router?2.example.com_20131226093939. xml

331

You can import the XML data at a later time for post processing. To import the data, associate the Table
with the XML file instead of a target device. For example:

from jnpr.junos.op.xcvr import XcvrTable

xmlpath = '/var/tmp/xcvrs/xcvr_routerl.example.com_20131226093921.xml"
xcvrs = XcvrTable(path=xmlpath)
xcvrs. get()

RELATED DOCUMENTATION

Use Junos PyEZ Operational Tables and Views that Parse Structured Output | 221
Use Junos PyEZ Configuration Tables to Retrieve Configuration Data | 298

CHAPTER

Troubleshoot Junos PyEZ

IN THIS CHAPTER

Troubleshoot jnpr.junos Import Errors | 333
Troubleshoot Junos PyEZ Connection Errors | 334

Troubleshoot Junos PyEZ Authentication Errors When Managing Junos
Devices | 337

Troubleshoot Junos PyEZ Errors When Configuring Junos Devices | 339

Troubleshoot jnpr.junos Import Errors

IN THIS SECTION

Problem | 333

Cause | 333

Solution | 333
Problem
Description

Python generates an error message that the jnpr.junos module was not found. For example:

from jnpr.junos import Device
ImportError: No module named junos

Cause

The Juniper Networks Junos PyEZ Python library must be installed before importing the package and
using it to perform operations on Junos devices.

Solution

Install Junos PyEZ on the configuration management server and update any necessary environment
variables. For installation instructions, see "Install Junos PyEZ" on page 12.

To verify that Junos PyEZ is successfully installed, start Python and import the jnpr. junos package.

[user@server ~]$ python
>>> import jnpr.junos

>>> jnpr.junos.__version__
'2.2.0'

If the jnpr.junos package is successfully imported and there is no error message, then Junos PyEZ is

correctly installed.

Install Junos PyEZ | 12

Junos PyEZ Modules Overview | 8

Troubleshoot Junos PYyEZ Connection Errors

IN THIS SECTION

Troubleshoot Refused Connection Errors | 334

Troubleshoot Junos PyEZ Connection Errors in Onbox Event Scripts | 336

Troubleshoot Refused Connection Errors

IN THIS SECTION

Problem | 335
Cause | 335

Solution | 335

Problem

Description

When using Junos PyEZ to manage remote Junos devices, the code generates an error that the
connection was refused. For example:

jnpr. junos.exception.ConnectRefusedError

Cause

NETCONF is not enabled on the device or the number of connections exceeds the limit.

The most likely cause for a refused connection error is that NETCONF over SSH is not enabled on the
Junos device. To quickly test whether NETCONF is enabled, verify that the user account can
successfully start a NETCONF session with the device.

[user@server]$ ssh user@R1.example.com -p 830 -s netconf

Solution

If NETCONF is not enabled on the Junos device, enable NETCONF.
[edit]

user@R1# set system services netconf ssh

user@1# commit

If the number of NETCONF sessions exceeds the limit, increase the maximum number of permitted
sessions up to 250. The default is 75.

[edit]
user@R1# set system services netconf ssh connection-limit Zimit

user@1# commit

Troubleshoot Junos PyEZ Connection Errors in Onbox Event Scripts

IN THIS SECTION

Problem | 336
Cause | 336
Solution | 337
Problem
Description

When using Junos PyEZ in an onbox Python event script, the code generates a ConnectError message
referencing user "nobody". For example:

ConnectError(host: None, msg: user "nobody" does not have access privileges.)

Cause

To prevent the execution of unauthorized Python code, by default, Junos devices execute Python event
scripts using the access privileges of the generic, unprivileged user and group nobody.

Solution
To execute event scripts using the access privileges of a specific user, you must configure the python-

script-user statement for that event script and specify a user. The configured user must have a local user
account on the device.

[edit]
user@host# set event-options event-script file filename python-script-user user
user@host# commit

@ NOTE: You cannot configure Python event scripts to execute with root access privileges.

For example:

[edit]
user@host# set event-options event-script file bgp-neighbors.py python-script-user admin
user@host# commit

‘ Set Up Junos PyEZ Managed Nodes | 19

Troubleshoot Junos PyEZ Authentication Errors
When Managing Junos Devices

IN THIS SECTION

Problem | 338
Cause | 338
Solution | 338

Problem

Description

Junos PyEZ generates an error regarding failed authentication. For example:

unable to connect to dcla.example.com: ConnectAuthError(dcia.example.com)

or

jnpr.junos.tty_ssh:SSH Auth Error

Cause

The Junos device or the console server through which the application connects might fail to
authenticate the user for the following reasons:

e The user does not have an account on the Junos device or on the console server through which the
application connects.

e The user has an account with a text-based password configured on the Junos device and the console
server, if one is used, but the wrong password or no password is supplied for the user when creating
the Device instance.

e The user has an account and authenticates using SSH keys with the Junos device or a console server
connected to the device, but the SSH keys are inaccessible on either the device or the configuration
management server.

@ NOTE: If you do not specify a user when creating the Device instance, the user defaults to
$USER.

Solution

Ensure that the user executing the Junos PyEZ code has a login account on all target Junos devices or
console servers where appropriate and that the SSH public key or text-based password is configured for

the account. If SSH keys are configured, verify that the user can access them. Also, confirm that the
correct parameters are supplied when creating the Device instance.

‘ Authenticate Junos PyEZ Users | 41

Troubleshoot Junos PyEZ Errors When Configuring
Junos Devices

IN THIS SECTION

Troubleshoot Timeout Errors | 339
Troubleshoot Configuration Lock Errors | 341

Troubleshoot Configuration Change Errors | 342

The following sections outline errors that you might encounter when using Junos PyEZ to configure
Junos devices. These sections also present potential causes and solutions for each error.

Troubleshoot Timeout Errors

IN THIS SECTION

Problem | 340
Cause | 340
Solution | 340

Problem

Description

The Junos PyEZ code generates an RpcTimeoutError message or a TimeoutExpiredError message and
fails to update the device configuration.

RpcTimeoutError(host: dcla.example.com, cmd: commit-configuration, timeout: 30)

Cause

The default time for a NETCONF RPC to time out is 30 seconds. Large configuration changes might
exceed this value causing the operation to time out before the configuration can be uploaded and
committed.

Solution

To accommodate configuration changes that might require a commit time that is longer than the default
timeout interval, set the timeout interval to an appropriate value and rerun the code. To configure the
interval, either set the Device timeout property to an appropriate value, or include the timeout=seconds
argument in the commit() or set() method when you load and commit configuration data on a device. For
example:

dev = Device(host="host")
dev.open()
dev.timeout = 300

with Config(dev, mode='exclusive') as cu:
cu.load(path="junos-config.conf', merge=True)

cu.commit(timeout=360)

dev.close()

Troubleshoot Configuration Lock Errors

IN THIS SECTION

Problem | 341
Cause | 341
Solution | 341
Problem
Description

The Junos PyEZ code generates a LockError message indicating that the configuration cannot be locked.

LockError(severity: error, bad_element: None, message: configuration database modified)

Cause

A configuration lock error can occur for the following reasons:
e Another user has an exclusive lock on the configuration.
e The shared configuration database has uncommitted changes.

e The user executing the Junos PyEZ code does not have permissions to configure the device.

Solution

If another user has an exclusive lock on the configuration or has modified the configuration, wait until
the lock is released or the changes are committed, and execute the code again. If the cause of the issue
is that the user does not have permissions to configure the device, either execute the program with a
user who has the necessary permissions, or if appropriate, configure the Junos device to give the current
user the necessary permissions to make the changes.

Troubleshoot Configuration Change Errors

IN THIS SECTION

Problem | 342
Cause | 342
Solution | 342
Problem
Description

The Junos PyEZ code generates a ConfigloadError message indicating that the configuration cannot be
modified due to a permissions issue.

ConfiglLoadError(severity: error, bad_element: scripts, message: permission denied)

Cause

This error message might be generated when the user executing the Junos PyEZ code has permission to
alter the configuration, but does not have permission to alter the desired portion of the configuration.

Solution

Either execute the program with a user who has the necessary permissions, or if appropriate, configure
the Junos device to give the current user the necessary permissions to make the changes.

Use Junos PyEZ to Configure Junos Devices | 132

Use the Junos PyEZ Config Utility to Configure Junos Devices | 140
Example: Use Junos PyEZ to Load Configuration Data from a File | 163

	Table of Contents
	About This Guide
	Disclaimer
	Junos PyEZ Disclaimer

	Junos PyEZ Overview
	Understanding Junos PyEZ
	Junos PyEZ Modules Overview

	Install Junos PyEZ
	Install Junos PyEZ
	Install Prerequisite Software
	Install Junos PyEZ on the Configuration Management Server
	Install Junos PyEZ in a Python Virtual Environment
	Use the Junos PyEZ Docker Image

	Set Up Junos PyEZ Managed Nodes
	Enable NETCONF over SSH
	Satisfy Requirements for SSHv2 Connections
	Configure Telnet Service

	Connect to and Retrieve Facts From a Device Using Junos PyEZ
	Connect to Junos Devices Using Junos PyEZ
	Connection Methods Overview
	Understanding Junos PyEZ Connection Properties
	Connect to a Device Using SSH
	Connect to a Device Using Outbound SSH
	Connect to a Device Using Telnet
	Connect to a Device Using a Serial Console Connection

	Authenticate Junos PyEZ Users
	Junos PyEZ User Authentication Overview
	Authenticate Junos PyEZ Users Using a Password
	Authenticate Junos PyEZ Users Using SSH Keys
	Generate and Configure SSH Keys
	Reference SSH Keys in Junos PyEZ Applications
	Authenticate the User Using an SSH Key Agent with Actively Loaded Keys
	Authenticate the User Using SSH Keys Without Password Protection
	Authenticate the User Using Password-Protected SSH Key Files

	Use Junos PyEZ to Retrieve Facts from Junos Devices
	Understanding Junos PyEZ Device Facts
	Example: Retrieve Facts from a Junos Device

	Use Junos PyEZ to Access the Shell on Junos Devices
	StartShell Overview
	Execute Commands from the Shell
	How to Specify the Shell Type
	How to Specify a Timeout
	How to Stagger Command Execution
	Execute Nonreturning Shell Commands

	Use Junos PyEZ to Manage Device Operations
	Use Junos PyEZ to Execute RPCs on Junos Devices
	Map Junos OS Commands to Junos PyEZ RPCs
	Execute RPCs as a Property of the Device Instance
	Specify the Format of the RPC Output
	Specify the Scope of Data to Return
	Specify the RPC Timeout
	Normalize the XML RPC Reply

	Suppress RpcError Exceptions Raised for Warnings in Junos PyEZ Applications
	Use Junos PyEZ to Halt, Reboot, or Shut Down Junos Devices
	Perform a System Halt, Reboot, or Shut Down
	How to Halt, Reboot, or Shut Down the System with a Delay or at a Specified Time
	How to Specify the Target Routing Engines, Nodes, or Virtual Chassis Members
	How to Reboot a VM Host

	Use Junos PyEZ to Install Software on Junos Devices
	Supported Deployment Scenarios
	How to Specify the Software Image Location
	Installation Process Overview
	How to Specify Installation and Checksum Timeouts
	How to Log the Installation Process
	How to Perform a VM Host Upgrade
	How to Perform a Unified ISSU or NSSU
	How to Install Software on an EX Series Virtual Chassis Member
	Example: Use Junos PyEZ to Install Software on a Junos Device
	Requirements
	Overview
	Configuration
	Execute the Junos PyEZ Application
	Verification
	Troubleshooting

	Use Junos PyEZ to Perform File System Operations
	Perform File Operations
	Manage File System Storage

	Transfer Files Using Junos PyEZ
	Specify the XML Parser for a Junos PyEZ Session

	Use Junos PyEZ to Manage the Configuration
	Use Junos PyEZ to Retrieve a Configuration
	Retrieve the Complete Candidate Configuration
	Specify the Source Database for the Configuration Data
	Specify the Scope of Configuration Data to Return
	Specify the Format for Configuration Data to Return
	Retrieve Configuration Data for Standard or Custom YANG Data Models
	Specify Additional RPC Options
	How to Handle Namespaces in Configuration Data

	Use Junos PyEZ to Compare the Candidate Configuration and a Previously Committed Configuration
	Use Junos PyEZ to Configure Junos Devices
	Use the Junos PyEZ Config Utility to Configure Junos Devices
	Configuration Process Overview
	Specify the Configuration Mode
	Specify the Load Operation
	Specify the Format of the Configuration Data to Load
	Specify the Location of the Configuration Data
	Load Configuration Data from a Local or Remote File
	Load Configuration Data from a String
	Load Configuration Data Formatted as an XML Object
	Load Configuration Data Using Jinja2 Templates
	Roll Back the Configuration
	Load the Rescue Configuration
	Commit the Configuration

	Use Junos PyEZ to Commit the Configuration
	How to Commit the Candidate Configuration
	How to Specify Commit Options

	Example: Use Junos PyEZ to Load Configuration Data from a File
	Requirements
	Overview
	Configuration
	Execute the Junos PyEZ Application
	Verification
	Troubleshooting

	Example: Use Junos PyEZ to Roll Back the Configuration
	Requirements
	Overview
	Configuration
	Execute the Junos PyEZ Code
	Verification

	Use Junos PyEZ to Manage the Rescue Configuration on Junos Devices
	How to Manage the Rescue Configuration
	Save a Rescue Configuration
	Retrieve the Rescue Configuration
	Load and Commit the Rescue Configuration
	Delete the Rescue Configuration

	Example: Use Junos PyEZ to Save a Rescue Configuration
	Requirements
	Overview
	Configuration
	Execute the Junos PyEZ Code
	Verification
	Troubleshooting

	Create and Use Junos PyEZ Tables and Views
	Understanding Junos PyEZ Tables and Views
	Predefined Junos PyEZ Operational Tables (Structured Output)
	Load Inline or External Tables and Views in Junos PyEZ Applications
	Import Junos PyEZ’s Predefined Tables and Views
	Load Inline Tables and Views
	Import External Tables and Views
	Use Tables and Views

	Define Junos PyEZ Operational Tables for Parsing Structured Output
	Table Name
	RPC Command (rpc)
	RPC Default Arguments (args)
	RPC Optional Argument Key (args_key)
	Table Item (item)
	Table Item Key (key)
	Table View (view)

	Define Views for Junos PyEZ Operational Tables that Parse Structured Output
	View Name
	Fields (fields)
	Groups (groups) and Field Groups (fields_)

	Use Junos PyEZ Operational Tables and Views that Parse Structured Output
	Retrieve Table Items
	Access Table Items
	How to Iterate Through a Table

	Define Junos PyEZ Operational Tables for Parsing Unstructured Output
	Summary of Parameters in Op Tables for Parsing Unstructured Output
	Table Name
	Command
	Command Arguments (args)
	Target FPC (fpc)
	Table Item (item)
	Table Item Key (key)
	Selected Keys (key_items)
	Section Title (title)
	Field Delimiter (delimiter)
	Eval Expression (eval)
	Table View (view)
	TextFSM Templates (platform and use_textfsm)

	Define Views for Junos PyEZ Operational Tables that Parse Unstructured Output
	Summary of Parameters in Views for Parsing Unstructured Output
	View Name
	columns
	Eval Expression (eval)
	exists
	fields
	filters
	regex

	Use Junos PyEZ Tables with TextFSM Templates
	Use Junos PyEZ Operational Tables and Views that Parse Unstructured Output
	Define Junos PyEZ Configuration Tables
	Table Name
	Configuration Scope (get or set)
	Key Field (key-field)
	Required Keys (required_keys)
	Table View (view)

	Define Views for Junos PyEZ Configuration Tables
	View Name
	Fields (fields)
	Field Options ('get' Tables)
	Field Options ('set' Tables)
	Groups (groups) and Field Groups (fields_)

	Use Junos PyEZ Configuration Tables to Retrieve Configuration Data
	Retrieve Configuration Items
	Specify the Configuration Database
	Specify Inheritance and Group Options
	Access Table Items
	Iterate Through a Table

	Overview of Using Junos PyEZ Configuration Tables to Define and Configure Structured Resources
	Create the Structured Resource
	Use the Resource in a Junos PyEZ Application

	Use Junos PyEZ Configuration Tables to Configure Structured Resources on Junos Devices
	General Configuration Process
	Configure Statements Consisting of a Fixed-Form Keyword
	Configure Multiple Values for the Same Statement
	Configure Multiple Instances of the Same Statement
	Configure Multiple Instances of the Same Resource
	Delete Containers or Leaf Statements
	Configure Properties Corresponding to Junos XML Attributes
	Use append() to Generate the Junos XML Configuration Data
	View Your Configuration Changes
	How to Control the RPC Timeout Interval

	Save and Load Junos PyEZ Table XML to and from Files

	Troubleshoot Junos PyEZ
	Troubleshoot jnpr.junos Import Errors
	Troubleshoot Junos PyEZ Connection Errors
	Troubleshoot Refused Connection Errors
	Troubleshoot Junos PyEZ Connection Errors in Onbox Event Scripts

	Troubleshoot Junos PyEZ Authentication Errors When Managing Junos Devices
	Troubleshoot Junos PyEZ Errors When Configuring Junos Devices
	Troubleshoot Timeout Errors
	Troubleshoot Configuration Lock Errors
	Troubleshoot Configuration Change Errors

