
cSRX Container Firewall Deployment
Guide Kubernetes

Published

2024-06-16

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

 cSRX Container Firewall Deployment Guide Kubernetes
Copyright © 2024 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

ii

https://support.juniper.net/support/eula/

Table of Contents

About This Guide | v

1 Overview

Understanding cSRX Container Firewall with Kubernetes | 2

Junos OS Features Supported on cSRX Container Firewall | 5

2 cSRX Container Firewall Installation on Kubernetes

Requirements for Deploying cSRX Container Firewall on Kubernetes | 10

cSRX Container Firewall Environment Variables | 11

Downloading cSRX Container Firewall Software | 15

Automate Initial Configuration Load with Kubernetes ConfigMap | 17

Loading Initial Configuration with Kubernetes ConfigMap | 17

cSRX Container Firewall Pod With External Network | 20

Understanding cSRX Container Firewall Pod with External Network | 21

Connecting cSRX Container Firewall to External Network | 21

Configuring Nodeport service for cSRX Container Firewall Pods | 26

cSRX Container Firewall Pod With Internal Network | 26

cSRX Container Firewall Deployment in Kubernetes | 30

cSRX Container Firewall Installation on Kubernetes Linux Server | 30

Deploying cSRX Container Firewall Pod | 31

cSRX Container Firewall Image Upgrade Using Deployment Rollout | 36

cSRX Container Firewall Image Rollback | 36

Scaling cSRX Container Firewall Deployment | 37

3 Managing cSRX Container Firewall

cSRX Container Firewall Service With Load Balancing Support | 39

Understanding cSRX Container Firewall as Kubernetes Service with Load Balancing Support | 39

iii

Configuring Ingress Service for cSRX Container Firewall Pods | 42

4 Configuring cSRX Container Firewall

cSRX Container Firewall Image with Packaged Pre-Installed Signatures | 45

Understanding Pre-Installed Signatures | 45

Repackaging cSRX Container Firewall Image with Signatures | 45

Downloading of Juniper Signature Pack | 47

Downloading Signature Pack through Proxy Server | 48

Configuring cSRX Container Firewall Using the Junos OS CLI | 49

iv

About This Guide

Use this guide to install and configure the cSRX Container Firewall Container Firewall in AWS using
Elastic Kubernetes Service (EKS). This guide also includes basic cSRX Container Firewall container
configuration and management procedures.

After completing the installation, management, and basic configuration procedures covered in this guide,
refer to the Junos OS documentation for information about further security feature configuration.

v

1
CHAPTER

Overview

Understanding cSRX Container Firewall with Kubernetes | 2

Junos OS Features Supported on cSRX Container Firewall | 5

Understanding cSRX Container Firewall with
Kubernetes

IN THIS SECTION

Licensing | 4

Kubernetes Overview | 4

Containerized SRX (cSRX Container Firewall) is a virtual security solution based on Docker container to
deliver agile, elastic and cost-saving security services for comprehensive L7 security protection.

Kubernetes (K8s) is an open-source system for automating deployment, scaling, and management of
containerized applications. With K8s support, cSRX Container Firewall can scale out in a cluster running
as elastic firewall service with smaller footprint when compared to virtual machines. cSRX Container
Firewall running in K8s cluster provides advantages such as:

• Runs services with smaller footprint

• Enables faster Scale out and scale in of cSRX Container Firewall

• Automated management and controlled workflow

2

Figure 1: cSRX Container Firewall Service in Kubernetes Linux

In K8s deployment, you can use Multus with both Flannel and Weave CNI.

To support Kubernetes Node Port/Ingress controller with cSRX Container Firewall, environment variable
CSRX_MGMT_PORT_REORDER allows cSRX Container Firewall to use container management interface.
The Kubernetes Node Port/Ingress controller feature with cSRX Container Firewall is only supported
with Flannel/Weave CNI. With CSRX_MGMT_PORT_REORDER set to "yes", you can explicitly control
the re-configuration of the management port behavior. Like the access to cSRX Container Firewall shell
or SD discovery on to the interface attached to cSRX Container Firewall using Multus CNI.

For example, if cSRX Container Firewall is brought up with eth0/eth1/eth2 with
CSRX_MGMT_PORT_REORDER=yes, you can use eth2 as the new management interface.

NOTE: The traffic forwarding to this eth2 has to be done through the iptables rules defined
explicitly by you.

3

The cSRX Container Firewall Container Firewall is a containerized version of the SRX Series Services
Gateway with a low memory footprint. cSRX Container Firewall provides advanced security services,
including content security, AppSecure, and Content Security in the form of a container. By using a
Docker container the cSRX Container Firewall can substantially reduce overhead as each container
shares the Linux host’s OS kernel. Regardless of how many containers a Linux server hosts, only one OS
instance is in use. Also, because of the containers’ lightweight quality, a server can host many more
container instances than virtual machines (VMs), yielding tremendous improvements in utilization. With
its small footprint and Docker as a container management system, the cSRX Container Firewall
Container Firewall enables deployment of agile, high-density security service.

See "Junos OS Features Supported on cSRX Container Firewall" on page 5 for a summary of the
features supported on cSRX Container Firewall.

Licensing

The cSRX Container Firewall Container Firewall software features require a license to activate the
feature. To understand more about cSRX Container Firewall Container Firewall licenses, see Supported
Features on cSRX, Juniper Agile Licensing Guide, and Managing cSRX Licenses.

Kubernetes Overview

K8s is an open-source system for automating deployment, scaling, and management of containerized
applications. It groups containers that make up an application into logical units for easy management
and discovery.

K8s defines a set of building objects that collectively provide mechanisms that orchestrate containerized
applications across a distributed cluster of nodes, based on system resources (CPU, memory, or other
custom metrics). K8s masks the complexity of managing a group of containers by providing REST APIs
for the required functionalities.

A node refers to a logical unit in a cluster, like a server, which can either be physical or virtual. In context
of Kubernetes clusters, a node usually refers specifically to a worker node. Kubernetes nodes in a cluster
are the machines that run the end user applications.

There are two type of nodes in a Kubernetes cluster, and each one runs a well-defined set of processes:

• head node: also called primary, or primary node, it is the head and brain that does all the thinking and
makes all the decisions; all of the intelligence is located here.

• worker node: also called node, or minion, it’s the hands and feet that conducts the workforce.

4

https://www.juniper.net/documentation/en_US/release-independent/licensing/topics/concept/flex-software-subscription-model-support.html
https://www.juniper.net/documentation/en_US/release-independent/licensing/topics/concept/flex-software-subscription-model-support.html
https://www.juniper.net/documentation/en_US/release-independent/licensing/information-products/pathway-pages/juniper-agile-licensing-guide.html
https://www.juniper.net/documentation/en_US/release-independent/licensing/topics/topic-map/configure-license.html

The nodes are controlled by the primary in most cases.

The interfaces between the cluster and you is the command-line tool kubectl. It is installed as a client
application, either in the same primary node or in a separate machine.

Kubernetes’s objects are:

• Pod

• Service

• Volume

• Namespace

• Replication

• Controller

• ReplicaSet

• Deployment

• StatefulSet

• DaemonSet

• Job

RELATED DOCUMENTATION

What is a Container?

Kubernetes Concepts

Junos OS Features Supported on cSRX Container
Firewall

IN THIS SECTION

Supported SRX Series Features on cSRX Container Firewall | 6

5

https://www.docker.com/what-container
https://kubernetes.io/docs/concepts/

cSRX Container Firewall provides Layer 4 through 7 secure services in a containerized environment.

Supported SRX Series Features on cSRX Container Firewall

Table 1 on page 6 provides a high-level summary of the feature categories supported on cSRX
Container Firewall and any feature considerations.

To determine the Junos OS features supported on cSRX Container Firewall, use the Juniper Networks
Feature Explorer, a Web-based application that helps you to explore and compare Junos OS feature
information to find the right software release and hardware platform for your network. See Feature
Explorer.

Table 1: Security Features Supported on cSRX Container Firewall

Security Features Considerations

Application Tracking (AppTrack) Understanding AppTrack

Application Firewall (AppFW) Application Firewall Overview

Application Identification (AppID) Understanding Application Identification Techniques

Basic Firewall Policy Understanding Security Basics

Brute force attack mitigation

DoS/DDoS protection DoS Attack Overview

DoS Attack Overview

Intrusion Prevention System (IPS) For SRX Series IPS configuration details, see:

Understanding Intrusion Detection and Prevention for SRX
Series

IPv4 and IPv6 Understanding IPv4 Addressing

Understanding IPv6 Address Space

6

https://apps.juniper.net/feature-explorer/
https://apps.juniper.net/feature-explorer/
https://www.juniper.net/documentation/en_US/junos/topics/concept/app-track-understanding.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/application-firewall-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/services-application-identification-techniques-understanding.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-basic-zone-interface.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/denial-of-service-attack-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/denial-of-service-attack-overview.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-idp-policy.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-idp-policy.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/interface-security-logical-property-ipv4-addressing-understanding.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/ipv6-flow-ipv6-address-types.html

Table 1: Security Features Supported on cSRX Container Firewall (Continued)

Security Features Considerations

Jumbo Frames Understanding Jumbo Frames Support for Ethernet Interfaces

SYN cookie protection Understanding SYN Cookie Protection

Malformed packet protection

Content Security Includes support for all Content Security functionality on the
cSRX Container Firewall platform, such as:

• Antispam

• Sophos Antivirus

• Web filtering

• Content filtering

For SRX Series Content Security configuration details, see:

Unified Threat Management Overview

For SRX Series Content Security antispam configuration details,
see:

Antispam Filtering Overview

User Firewall Includes support for all user firewall functionality on the cSRX
Container Firewall platform, such as:

• Policy enforcement with matching source identity criteria

• Logging with source identity information

• Integrated user firewall with active directory

• Local authentication

For SRX Series user firewall configuration details, see:

Overview of Integrated User Firewall

7

https://www.juniper.net/documentation/en_US/junos/topics/concept/jumbo-ethernet-interfaces-security.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/denial-of-service-network-syn-cookie-protection-understanding.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/security/security-utm-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/utm-antispam-filter-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/userfw-ad-overview.html

Table 1: Security Features Supported on cSRX Container Firewall (Continued)

Security Features Considerations

Zones and Zone based IP spoofing Understanding IP Spoofing

8

https://www.juniper.net/documentation/en_US/junos/topics/concept/reconnaissance-deterrence-attack-evasion-ip-spoof-understanding.html

2
CHAPTER

cSRX Container Firewall Installation
on Kubernetes

Requirements for Deploying cSRX Container Firewall on Kubernetes | 10

cSRX Container Firewall Environment Variables | 11

Downloading cSRX Container Firewall Software | 15

Automate Initial Configuration Load with Kubernetes ConfigMap | 17

cSRX Container Firewall Pod With External Network | 20

cSRX Container Firewall Pod With Internal Network | 26

cSRX Container Firewall Deployment in Kubernetes | 30

Requirements for Deploying cSRX Container
Firewall on Kubernetes

IN THIS SECTION

Platform and Server Requirements | 10

This section presents an overview of requirements for deploying a cSRX Container Firewall container on
Kubernetes:

Platform and Server Requirements

Table 2 on page 10 lists the requirements for deploying a cSRX Container Firewall container in a
Kubernetes (Primary and Worker) node.

Table 2: Primary and Worker Node Specifications

Component Specification

Docker Engine Docker Engine 1.9 or later installed on the same compute node as the cSRX Container Firewall

vCPUs 2

Memory 4 GB

Disk space 50 GB hard drive

Interfaces 16

The environment variable CSRX_PORT_NUM is set to=17.

10

Table 2: Primary and Worker Node Specifications (Continued)

Component Specification

Kubernetes 1.16 to 1.18

cSRX Container Firewall Environment Variables

IN THIS SECTION

Adding License key File | 13

Setting Root Password | 14

Docker allows you to store data such as configuration settings as environment variables. At runtime, the
environment variables are exposed to the application inside the container. You can set any number of
parameters to take effect when the cSRX Container Firewall image launches. You can pass configuration
settings in the YAML file or environment variables to the cSRX Container Firewall when it launches at
boot time.

Table 3 on page 11 summarizes the list of available cSRX Container Firewall environment variables.

Table 3: Summary of cSRX Container Firewall Environment Variables

Environment Variable Mandatory Description

CSRX_AUTO_ASSIGN_IP Optional Automatically configure cSRX Container Firewall ge-0/0/x IP
address based on IP address of cSRX Container Firewall
container when the cSRX Container Firewall works in routing
mode.

Multus CNI is supports to create more Pod interfaces in
Kubernetes. If set to yes, the Pod interface IP address is
automatically assigned to cSRX Container Firewall revenue port.

11

Table 3: Summary of cSRX Container Firewall Environment Variables (Continued)

Environment Variable Mandatory Description

CSRX_MGMT_PORT_REORDER Optional If set to yes, the last Pod interface is changed to management
interface. Else, the first Pod interface is management interface.

CSRX_TCP_CKSUM_CALC Optional If set to yes, cSRX Container Firewall re-compute to correct TCP
checksum in packets.

CSRX_LICENSE_FILE Optional If set, license file is loaded through ConfigMap.

CSRX_JUNOS_CONFIG Optional If set, initial configuration of cSRX Container Firewall is loaded
through ConfigMap.

CSRX_SD_HOST Optional It is used to define SD server IP address or FQDN address.

CSRX_SD_USER Optional It is used to define SD server login account name.

CSRX_SD_DEVICE_IP Optional It is used to define cSRX Container Firewall management IP
address, which is used by SD to connect to cSRX Container
Firewall. Else it uses Port IP address.

CSRX_SD_DEVICE_PORT Optional It is used to define cSRX Container Firewall management Port,
which is used by SD to connect to cSRX Container Firewall. Else
it will use default port number 22.

CSRX_FORWARD_MODE Optional It is used in traffic forwarding mode.

"routing" | "wire"

CSRX_PACKET_DRIVER Optional It is used in Packet I/O driver.

"poll" | "interrupt"

12

Table 3: Summary of cSRX Container Firewall Environment Variables (Continued)

Environment Variable Mandatory Description

CSRX_CTRL_CPU Optional CPU mask, indicating which CPU is running the cSRX Container
Firewall control plane daemons (such as nsd, mgd, nstraced,
utmd, and so on).

No CPU affinity

hex value

CSRX_DATA_CPU Optional CPU mask, indicating which CPU is running the cSRX Container
Firewall data plane daemon (srxpfe).

No CPU affinity

hex value

CSRX_ARP_TIMEOUT Optional ARP entry timeout value for the control plane ARP learning or
response.

decimal value

Same as the Linux host

CSRX_NDP_TIMEOUT Optional NDP entry timeout value for the control plane NDP learning or
response.

decimal value

Same as the Linux host

CSRX_PORT_NUM Optional Number of interfaces you need to add to container.

Default is 3, maximum is 17 (which means 1 management
interfaces and 16 data interfaces)

Adding License key File

You can import saved local license key file to cSRX Container Firewall Pod using environment variable
CSRX_LICENSE_FILE using Kubernetes ConfigMaps.

13

1. Save the license key file in a text file.

2. Create ConfigMap in Kubernetes.

root@kubernetes-master:~#kubectl create configmap csrxconfigmap --from-file=<file path>/var/tmp/
csrxlicensing

3. Create cSRX Container Firewall using ConfigMaps to import the user defined configuration

deployment.spec.template.spec.containers.
 env:
 - name: CSRX_LICENSE_FILE
 value: "/var/local/config/.csrxlicense"
 volumeMounts:
 - name: lic
 mountPath: "/var/local/config"
deployment.spec.template.spec.
 volumes:
 - name: lic
 configMap:
 name: csrxconfigmap
 items:
 - key: csrxlicensing
 path: csrxlicensing

4. Run the following command to create cSRX Container Firewall deployment using yaml file.

root@kubernetes-master:~#kubectl apply -f csrx.yaml

5. Login to cSRX Container Firewall pods to verify the license installed

root@kubernetes-master:~#kubectl exec -it csrx bash

root@csrx:~#cli

root@csrx>show system license

Setting Root Password

You can set root password using Kubernetes secrets.

14

1. Create a generic secret in Kubernetes cSRX Container Firewall home namespce.

root@kubernetes-master:~#kubectl create secret generic csrxrootpasswd --fromliteral=
CSRX_ROOT_PASSWORD=XXXXX

2. Run the following command to verify the password is created.

root@kubernetes-master:~#kubectl describe secret csrxrootpasswd

3. Run the following command to use Kubernetes Secrets to save root password in cSRX Container
Firewall deployment yaml file.

deployment.spec.template.spec.containers.
env:
- name: CSRX_ROOT_PASSWORD
valueFrom:
secretKeyRef:
name: csrxrootpasswd
key: CSRX_ROOT_PASSWORD

4. Run the following command to create cSRX Container Firewall deployment using yaml file.

root@kubernetes-master:~#kubectl apply -f csrx.yaml

Downloading cSRX Container Firewall Software

To download the cSRX Container Firewall software:

1. Download the cSRX Container Firewall software image from the Juniper Networks website. The
filename of the downloaded cSRX Container Firewall software image must not be changed to
continue with the installation.

2. You can either download the cSRX Container Firewall image file normally using the browser or use
the URL to download the image directly on your device as in the following example:

Run the following command to downloaded images to a local registry using curl command or any
other http utility. The syntax for curl commands is:

root@csrx-ubuntu3:~csrx# curl -o <file destination path> <Download link url>

15

https://www.juniper.net/support/downloads/?p=csrx#sw

root@csrx-ubuntu3:/var/tmp# curl -o /var/tmp/images/junos-csrx-docker-20.3R1.10.img “https://
cdn.juniper.net/software/csrx/20.2R1.10/junos-csrx-docker-20.3R1.10.img?
SM_USER=user&__gda__=1595350694_5dbf6e62442de6bf14079d05a72464d4”

% Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 160M 100 160M 0 0 1090k 0 0:02:30 0:02:30 --:--:-- 1230k

3. Locate the cSRX Container Firewall image by using the ls Linux shell command.

root@csrx-ubuntu3:/var/tmp/images# ls

4. Load the downloaded cSRX Container Firewall image from the download site to the local registry
using the following command.

root@csrx-ubuntu3:/var/tmp/images# docker image load -i /var/tmp/images/junos-csrx-
docker-20.2R1.10.img

e758932b9168: Loading layer [==>] 263MB/
263MB
23f7a9961879: Loading layer [==>] 14.51MB/
14.51MB
1e4139e6fa81: Loading layer [==>] 270.3MB/
270.3MB
10334b424f86: Loading layer [==>] 16.9kB/
16.9kB
202ebb2f1137: Loading layer [==>] 2.56kB/
2.56kB
bc4a16173327: Loading layer [==>] 1.536kB/
1.536kB
8f9a9945544a: Loading layer [==>] 2.048kB/
2.048kB
Loaded image: csrx:20.2R1.10

5. After the cSRX Container Firewall image loads, confirm that it is listed in the repository of Docker
images.

root@csrx-ubuntu3:/var/tmp/images# docker images

REPOSITORY TAG IMAGE ID CREATED
SIZE
csrx 20.2R1.10 88597d2d4940 2 weeks ago

16

534MB

Automate Initial Configuration Load with
Kubernetes ConfigMap

IN THIS SECTION

Loading Initial Configuration with Kubernetes ConfigMap | 17

Loading Initial Configuration with Kubernetes ConfigMap

ConfigMap is Kubernetes standard specification.

ConfigMaps allow you to decouple configuration artifacts from image content to keep containerized
applications portable. cSRX Container Firewall use ConfigMaps to load initial configuration file at cSRX
Container Firewall container startup.

You can also add license from license key file using the steps similar to loading the initial configuration
file in kubernetes.

To create cSRX Container Firewall ConfigMap according to cSRX Container Firewall initial
configurations:

1. Create the cSRX Container Firewall.yaml file on Kubernetes-master and add the text content to
deploy cSRX Container Firewall Pod with ConfigMap:

apiVersion: v1kind: ConfigMap
metadata:
 name: csrx-config-map
 data: csrx_config: | interfaces { ge-0/0/0 { unit 0; } ge-0/0/1 { unit 0; } } security
{ policies { default-policy { permit-all; } } zones { security-zone trust { host-inbound-
traffic { system-services { all; } protocols { all; } } interfaces { ge-0/0/0.0; } } security-

17

zone untrust { host-inbound-traffic { system-services { all; } protocols { all; } }
interfaces { ge-0/0/1.0; } } } }

root@kubernetes-master:~#kubectl create -f pod_with_configmap.txt

apiVersion: v1
kind: Pod
spec:
 containers:
 - name: csrx
 securityContext:
 privileged: true
 image: csrx-image:20.3
 env:
 - name: CSRX_HUGEPAGES
 value: "no"
 - name: CSRX_PACKET_DRIVER
 value: "interrupt"
 - name: CSRX_FORWARD_MODE
 value: "routing"
 volumeMounts:
 - name: disk
 mountPath: "/dev"
 - name: config
 mountPath: "/var/jail"
 volumes:
 - name: disk
 hostPath:
 path: /dev
 type: Directory
 - name: config
 configMap:
 name: csrx-config-map
 items:
 - key: csrx_config
 path: csrx_config------------------

2. Run the following command to create cSRX Container Firewall using yaml file.

root@kubernetes-master:~#kubectl apply -f csrx.yaml

3. Run the following command to start cSRX Container Firewall in CLI mode

18

root@kubernetes-master:~#kubectl exec -it csrx bash

root@csrx:~#cli

root@csrx#configure

Entering configuration mode

4. After cSRX Container Firewall Pod startup, you can check cSRX Container Firewall initial
configuration from cSRX Container Firewall CLI.

root@csrx> show

Last changed: 2019-10-18 01:53:36 UTC
version "20190926.093332_rbu-builder.r1057567 [rbu-builder]";
interfaces {
 ge-0/0/0 {
 unit 0 {
 family inet {
 address 20.0.0.11/24;
 }
 }
 }
 ge-0/0/1 {
 unit 0 {
 family inet {
 address 30.0.0.11/24;
 }
 }
 }
}
security {
 policies {
 default-policy {
 permit-all;
 }
 }
 zones {
 security-zone trust {
 host-inbound-traffic {
 system-services {
 all;
 }

19

 protocols {
 all;
 }
 }
 interfaces {
 ge-0/0/0.0;
 }
 }
 security-zone untrust {
 host-inbound-traffic {
 system-services {
 all;
 }
 protocols {
 all;
 }
 }
 interfaces {
 ge-0/0/1.0;
 }
 }
 }
}

cSRX Container Firewall Pod With External Network

IN THIS SECTION

Understanding cSRX Container Firewall Pod with External Network | 21

Connecting cSRX Container Firewall to External Network | 21

Configuring Nodeport service for cSRX Container Firewall Pods | 26

20

Understanding cSRX Container Firewall Pod with External Network

You can connect cSRX Container Firewall with external network with two additional interfaces. Both of
those interfaces are attached into srxpfe and handled by FLOW.

cSRX Container Firewall can leverage Linux native CNI to connect to external network.

cSRX Container Firewall use Multus plugin to support multiple interfaces connect to the external
network. Applications which monitor network traffic are directly connected to the physical network. You
can use the macvlan network driver to assign a MAC address to each container’s virtual network interface,
making it appear to be a physical network interface directly connected to the physical network. In this
case, you need to designate a physical interface on your Docker host to use for the macvlan, as well as the
subnet and gateway of the macvlan. You can even isolate your macvlan networks using different physical
network interfaces.

Connecting cSRX Container Firewall to External Network

macvlan functions like a switch that is already connected to the host interface. A host interface gets
enslaved with the virtual interfaces sharing the physical device but having distinct MAC addresses. Since
each macvlan interface has its own MAC address, it makes it easy to use with existing DHCP servers
already present on the network.

To connect cSRX Container Firewall with external network using macvlan:

21

Figure 2: Connecting cSRX Container Firewall to External Network with Macvlan Plugin

Figure 3: cSRX Container Firewall in External Network

1. Create the network-conf-1.yaml file and add the text content.

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: network-conf-1
spec:
 config: '{

22

 "cniVersion": "0.3.0",
 "type": "macvlan",
 "master": "eth1",
 "mode": "bridge",
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "20.0.0.10/24",
 "gateway": "20.0.0.2"
 }
],
 "routes": [
 { "dst": "0.0.0.0/0" },
 { "dst": "30.0.0.0/24", "gw": "20.0.0.11" }
]
 }
 }'

2. Create the network-conf-1-1.yaml file and add the text content. .

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: network-conf-1-1
spec:
 config: '{
 "cniVersion": "0.3.0",
 "type": "macvlan",
 "master": "eth1",
 "mode": "bridge",
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "20.0.0.11/24",
 "gateway": "20.0.0.2"
 }
],
 "routes": [
 { "dst": "0.0.0.0/0" }
]

23

 }
 }'

3. Create the network-conf-2-1.yaml and add the text content. .

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: network-conf-2-1
spec:
 config: '{
 "cniVersion": "0.3.0",
 "type": "macvlan",
 "master": "eth2",
 "mode": "bridge",
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "30.0.0.11/24",
 "gateway": "30.0.0.2"
 }
],
 "routes": [
 { "dst": "0.0.0.0/0" }
]
 }
 }'

4. Create the network-conf-2.yaml file and add the text content.

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: network-conf-2
spec:
 config: '{
 "cniVersion": "0.3.0",
 "type": "macvlan",
 "master": "eth2",
 "mode": "bridge",
 "ipam": {

24

 "type": "static",
 "addresses": [
 {
 "address": "30.0.0.10/24",
 "gateway": "30.0.0.2"
 }
],
 "routes": [
 { "dst": "0.0.0.0/0" },
 { "dst": "20.0.0.0/24", "gw": "30.0.0.11" }
]
 }
 }'

5. Create the cSRX Container Firewall.yaml file and add the text content.

apiVersion: v1
kind: Pod
metadata:
 name: csrx
 annotations:
 k8s.v1.cni.cncf.io/networks: network-conf-1@eth1,network-conf-1-1@eth2
spec:
 containers:
 - name: csrx
 securityContext:
 privileged: true
 image: csrx-images:20.2
 env:
 - name: CSRX_HUGEPAGES
 value: "no"
 - name: CSRX_PACKET_DRIVER
 value: "interrupt"
 - name: CSRX_FORWARD_MODE
 value: "routing"
 volumeMounts:
 - name: disk
 mountPath: "/dev"
 volumes:
 - name: disk
 hostPath:

25

 path: /dev
 type: Directory

Configuring Nodeport service for cSRX Container Firewall Pods

You can deploy cSRX Container Firewall with Nodeport service type. All the traffic will be forward to
worker node by Kubernetes in the external network.

To create a NodePort service:

1. Create the cSRX Container Firewall Pod yaml file and expose it as service on NodePort.

------------------apiVersion: v1
kind: Service
metadata:
 name: csrx1
spec:
 selector:
 app: csrx1
 ports:
 - name: ssh
 port: 22
 nodePort: 30122
 type: NodePort

2. To access cSRX Container Firewall:

root@kubernetes-master:~#ssh -p 30122 root@192.168.42.81

cSRX Container Firewall Pod With Internal Network

With bridge plugin, all containers on the same host are plugged into a bridge (virtual switch) that resides
in the host network name space. The containers receive one end of the veth pair with the other end
connected to the bridge. An IP address is only assigned to one end of the veth pair in the container. The
bridge itself can also be assigned an IP address, turning it into a gateway for the containers.
Alternatively, the bridge can function in L2 mode and would need to be bridged to the host network

26

interface (if other than container-to-container communication on the same host is desired). The network
configuration specifies the name of the bridge to be used.

To connect cSRX Container Firewall with external network using bridge:

Figure 4: Connecting cSRX Container Firewall to Internal Network with Bridge Plugin

1. Create the network-conf-1-1.yaml file and add the text content.

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: network-conf-1-1
spec:
 config: '{
 "cniVersion": "0.3.0",
 "type": "bridge",
 "bridge": "south-bridge",
 "promiscMode": true,
 "ipam": {

27

 "type": "static",
 "addresses": [
 {
 "address": "20.0.0.20/24",
 "gateway": "20.0.0.1"
 }
],
 "routes": [
 { "dst": "0.0.0.0/0" }
]
 }
 }'

2. Create the network-conf-2-1.yaml file and add the text content.

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: network-conf-2-1
spec:
 config: '{
 "cniVersion": "0.3.0",
 "type": "bridge",
 "bridge": "north-bridge",
 "promiscMode": true,
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "20.0.0.30/24",
 "gateway": "20.0.0.1"
 }
],
 "routes": [
 { "dst": "0.0.0.0/0" }
]
 }
 }'

28

3. Create the srv-pod-1.yaml file and add the text content.

apiVersion: v1
kind: Pod
metadata:
 name: srv-pod-1
 annotations:
 k8s.v1.cni.cncf.io/networks: network-conf-1-1@north0
spec:
 containers:
 - name: srv-pod-1
 securityContext:
 privileged: true
 image: docker.io/centos/tools:latest
 command:
 - /sbin/init

4. Create the cSRX Container Firewall.yaml file and add the text content.

apiVersion: v1
kind: Pod
metadata:
 name: csrx
 annotations:
 k8s.v1.cni.cncf.io/networks: network-conf-1-1@eth1,network-conf-2-1@eth2
spec:
 containers:
 - name: csrx
 securityContext:
 privileged: true
 image: csrx-images:20.2
 env:
 - name: CSRX_HUGEPAGES
 value: "no"
 - name: CSRX_PACKET_DRIVER
 value: "interrupt"
 - name: CSRX_FORWARD_MODE
 value: "wire"
 volumeMounts:
 - name: disk
 mountPath: "/dev"
 volumes:

29

 - name: disk
 hostPath:
 path: /dev
 type: Directory

5. Create the srv-pod-3.yaml file and add the text content.

apiVersion: v1
kind: Pod
metadata:
 name: srv-pod-3
 annotations:
 k8s.v1.cni.cncf.io/networks: network-conf-2-1@north0
spec:
 containers:
 - name: srv-pod-3
 image: docker.io/centos/tools:latest
 command:
 - /sbin/init

cSRX Container Firewall Deployment in Kubernetes

IN THIS SECTION

cSRX Container Firewall Installation on Kubernetes Linux Server | 30

Deploying cSRX Container Firewall Pod | 31

cSRX Container Firewall Image Upgrade Using Deployment Rollout | 36

cSRX Container Firewall Image Rollback | 36

Scaling cSRX Container Firewall Deployment | 37

cSRX Container Firewall Installation on Kubernetes Linux Server

Prerequisites

30

Following are the prerequisites required for installing cSRX Container Firewall on one primary node
and ’n’ number of worker nodes. Before you begin the installation:

• Install kubeadm tool on both primary and worker nodes to create a cluster. See Install Kubeadm

• Install and configure Docker on Linux host platform to implement the Linux container environment,
see Install Docker for installation instructions on the supported Linux host operating systems.

• Verify the system requirement specifications for the Linux server to deploy the cSRX Container
Firewall, see "Requirements for Deploying cSRX Container Firewall on Kubernetes" on page 10.

• Download cSRX Container Firewall software, see "Downloading cSRX Container Firewall Software"
on page 15.

Deploying cSRX Container Firewall Pod

You can create cSRX Container Firewall as a Pod in routing mode and secure-wire mode to send traffic
from one virtual machine to another virtual machine. You can define multiple virtual networks and
connect cSRX Container Firewall interfaces to those virtual networks.

The network attachment definition is created with plugin ipam type as host-local which allocates IPv4 and
IPv6 addresses out of a specified address range to ensure the uniqueness of IP addresses on a single
host. The ipam type as static assigns IPv4 and IPv6 addresses statically to container.

To deploy cSRX Container Firewall with Kubernetes:

Figure 5: Deploying cSRX Container Firewall

31

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/
https://docs.docker.com/engine/installation/

1. Create network attachment definition for cSRX Container Firewall-eth1, cSRX Container Firewall-
eth2 with type: bridge . For details on type: bridge and type: macvlan networks, see "cSRX Container
Firewall Pod With External Network" on page 20.

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: network-conf-1
spec:
 config: '{
 "cniVersion": "0.3.0",
 "type": "bridge",
 "bridge": "br-1",
 "isDefaultGateway": true,
 "promiscMode": true,
 "ipam": {
 "type": "host-local",
 "ranges": [
 [
 {
 "subnet": "10.10.0.0/16",
 "rangeStart": "10.10.1.20",
 "rangeEnd": "10.10.3.50"
 }
]
],
 "routes": [
 { "dst": "0.0.0.0/0" }
]
 }
 }'

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: network-conf-1-1
spec:
 config: '{

32

 "cniVersion": "0.3.0",
 "type": "bridge",
 "bridge": "br-2",
 "isDefaultGateway": true,
 "promiscMode": true,
 "ipam": {
 "type": "host-local",
 "ranges": [
 [
 {
 "subnet": "55.0.0.0/16",
 "rangeStart": "55.0.0.11",
 "rangeEnd": "55.0.0.21"
 }
]
],
 "routes": [
 { "dst": "0.0.0.0/0" }
]
 }
 }' ------------------

To create network interfaces with type: macvlan.

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: network-conf-1-1
spec:
 config: '{
 "cniVersion": "0.3.0",
 "type": "macvlan",
 "master": "eth1",
 "mode": "bridge",
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "20.0.0.11/24",
 "gateway": "20.0.0.2"
 }
],

33

 "routes": [
 { "dst": "0.0.0.0/0" }
]
 }
 }'

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: network-conf-2-1
spec:
 config: '{
 "cniVersion": "0.3.0",
 "type": "macvlan",
 "master": "eth2",
 "mode": "bridge",
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "30.0.0.11/24",
 "gateway": "30.0.0.2"
 }
],
 "routes": [
 { "dst": "0.0.0.0/0" }
]
 }
 }'

2. Create the cSRX Container Firewall-deployment.yaml file on Kubernetes-master using kind:
Deployment. cSRX Container Firewall as kind: Deployment is used to create ReplicaSet, Scaling, Rollout,
Rollback in Kubernetes in this topic.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: csrx-deployment
 labels:
 app: firewall

34

spec:
 replicas: 5
 selector:
 matchLabels:
 app: firewall
 template:
metadata:
 labels:
 app: firewall
 annotations:
 k8s.v1.cni.cncf.io/networks:
 network-conf-1@eth1, network-conf-1-1@eth2
spec:
 containers:
 - name: csrx
 securityContext:
 privileged: true
 image: csrx-images:20.2
 env:
 - name: CSRX_SIZE
 value: "large"
 - name: CSRX_HUGEPAGES
 value: "no"
 - name: CSRX_PACKET_DRIVER
 value: "interrupt"
 - name: CSRX_FORWARD_MODE
 value: "routing"
 volumeMounts:
 - name: disk
 mountPath: "/dev"
 volumes:
 - name: disk
 hostPath:
 path: /dev
 type: Directory

3. View the cSRX Container Firewall deployment:

35

root@kubernetes-master:~#kubectl get deployment csrx-deployment

NAME READY UP-TO-DATE AVAILABLE AGE
csrx-deployment 5/5 5 5 119m

cSRX Container Firewall Image Upgrade Using Deployment Rollout

You can upgrade the cSRX Container Firewall software image using Kubernetes Deployment rollout.

1. Run the following command to upgrade cSRX Container Firewall image using Kubernetes
Deployment name in the cSRX Container Firewall Pod:

root@kubernetes-master:~#kubectl set image deployment csrx-deployment csrx=<new-csrx-image>

NAME READY UP-TO-DATE AVAILABLE AGE
csrx-deployment 5/5 5 5 119m

2. Run the following command to monitor rollout status:

root@kubernetes-master:~#kubectl rollout history deployment csrx-deployment

root@kubernetes-master:~#kubectl rollout status -w deployment csrx-deployment

Waiting for deployment "csrx-deployment" rollout to finish: 1 old replicas are pending
termination...

Waiting for deployment "csrx-deployment" rollout to finish: 1 old replicas are pending
termination...
deployment "csrx-deployment" successfully rolled out

You can verify the upgraded image version by logging into the newly created cSRX Container Firewall
Pods.

cSRX Container Firewall Image Rollback

The cSRX Container Firewall image can be rolled back to previous version using Kubernetes Deployment
rollout components.

1. Rollack cSRX Container Firewall image using Kubernetes Deployment rollout undo:

36

root@kubernetes-master:~#kubectl rollout history deployment csrx-deploy

2. Rollback to previous Deployment.

root@kubernetes-master:~#kubectl rollout undo deployment csrx-deploy

3. Rollback to a specified version.

root@kubernetes-master:~#kubectl rollout undo deployment csrx-deploy --to-version=2

4. Monitor the old cSRX Container Firewall Pods are terminated and new cSRX Container Firewall Pods
are created.

root@kubernetes-master:~#kubectl rollout history deployment csrx-deploy

root@kubernetes-master:~#kubectl rollout status -w deployment csrx-deploy

You can verify the image version that has been rolled back by logging into the newly created cSRX
Container Firewall Pod.

Scaling cSRX Container Firewall Deployment

To scale the cSRX Container Firewall deployment:

1. Ensure to have cSRX Container Firewall Pods created in kind: deployment running in Kubernetes
cluster.

root@kubernetes-master:~#kubectl describe deployment csrx-deployment

2. Scale up or down by changing the replicas number:

root@kubernetes-master:~#kubectl scale deployment csrx-deployment --replicas=2

3. View the pods:

root@kubernetes-master:~#kubectl get pod

NAME READY STATUS RESTARTS AGE
csrx-deployment-547fcf68dd-7hl7r 1/1 Running 0 8m8s
csrx-deployment-547fcf68dd-xbg4b 1/1 Running 0 35s

37

3
CHAPTER

Managing cSRX Container Firewall

cSRX Container Firewall Service With Load Balancing Support | 39

cSRX Container Firewall Service With Load
Balancing Support

IN THIS SECTION

Understanding cSRX Container Firewall as Kubernetes Service with Load Balancing Support | 39

Configuring Ingress Service for cSRX Container Firewall Pods | 42

Understanding cSRX Container Firewall as Kubernetes Service with Load
Balancing Support

cSRX Container Firewall Pod is identified with predefined selectors and exposed with supported load
balancer to distribute traffic among different cSRX Container Firewall Pods. The standard load balancer
is ingress controller, external load balancer or cluster IP.

A Service enables network access to a set of Pods in Kubernetes. Services select Pods based on their
labels. When a network request is made to the service, it selects all Pods in the cluster matching the
service's selector, chooses one of them, and forwards the network request to it. A deployment is
responsible for keeping a set of pods running.

39

Figure 6: Services and Labels

Service is to group a set of Pod endpoints into a single resource. By default, clients inside the cluster can
access Pods in the Service using cluster IP address. A client sends a request to the IP address, and the
request is routed to one of the Pods in the Service. The types of Services are ClusterIP (default),
NodePort, LoadBalancer, and ExternalName.

Figure 7: NodePort

When you set a service’s type to NodePort, that service starts to listen on a static port on every node in
the cluster. So, you can reach the service through any node’s IP address and the assigned port.

40

Figure 8: LoadBalancer

When you set a service’s type to Load Balancer, it exposes the service externally. However, to use it, you
need to have an external load balancer. The external load balancer needs to be connected to the internal
Kubernetes network on one end and opened to public-facing traffic on the other in order to route
incoming requests.

Figure 9: Ingress Controller

An Ingress Controller watches for new services within the cluster and is able to dynamically create
routing rules for them. An Ingress object is an independent resource, apart from Service objects, that
configures external access to service’s pods. You can define the Ingress, after the Service has been
deployed, to connect it to external traffic. This way You can isolate service definitions from the logic of
how clients connect to them. L7 routing is one of the core features of Ingress, allowing incoming
requests to be routed to the exact pods that can serve them based on HTTP characteristics such as the
requested URL path. Other features include terminating TLS, using multiple domains, and load balancing
traffic.

41

Nginx ingress controller is supported to view the traffic distribution among different cSRX Container
Firewall Pods. For more details, see Set Up Ingress on Kubernetes Using Nginx Controller.

Configuring Ingress Service for cSRX Container Firewall Pods

Service is used by cSRX Container Firewall to connect application with cSRX Container Firewall Pods.
cSRX Container Firewall Service is standard Kubernetes service, in which, the load is balanced to
different cSRX Container Firewall Pods, and the Pods are located at different work nodes. It also
monitors the backend cSRX Container Firewall Pod and selects working cSRX Container Firewall Pod
according to Kubernetes Pod labels. You can use YAML file to create a cSRX Container Firewall service.

To create a cSRX Container Firewall service:

1. Create the yaml file and add the following text content:

------------------apiVersion: v1
kind: Service
metadata:
 labels:
 app: firewall
 name: firewall
spec:
 selector:
 app:firewall
 ports:
 - name: port-1
 port: 80
 protocol: TCP
 targetPort: 80

2. Define routing for cSRX Container Firewall Pods. Ingress will co-operate with Ingress controller to
route outside traffic into cSRX Container Firewall service, then into cSRX Container Firewall Pods.
Create a file named ingress.yaml.

apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:
 name: web-ingress
 namespace: default
spec:

42

https://devopscube.com/setup-ingress-kubernetes-nginx-controller/

 rules:
 - host: foo.bar
 http:
 paths:
 - path: /
 backend:
 serviceName: firewall
 servicePort: 80

Traffic routes to cSRX Container Firewall interface on ge-0/0/0.

3. View the cSRX Container Firewall service.

root@kubernetes-master:~#kubectl get svc -A

NAMESPACE NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
default csrx-service ClusterIP 10.102.115.211 <none> 80/
TCP 13d
default kubernetes ClusterIP 10.96.0.1 <none> 443/
TCP 75d
default nginx NodePort 10.110.8.221 <none> 80:31454/
TCP 18d
default test-service ClusterIP 10.108.236.26 <none> 80/
TCP 11d
kube-system kube-dns ClusterIP 10.96.0.10 <none> 53/UDP,53/
TCP,9153/TCP 75d

4. View the Pod.

root@kubernetes-master:~#kubectl get pod -A

NAMESPACE NAME READY STATUS
RESTARTS AGE
default csrx-deployment-86f49b8dcf-7zzq9 1/1 Running
0 11d
default csrx-deployment-86f49b8dcf-dm6nv 1/1 Running
0 11d

43

4
CHAPTER

Configuring cSRX Container Firewall

cSRX Container Firewall Image with Packaged Pre-Installed Signatures | 45

Configuring cSRX Container Firewall Using the Junos OS CLI | 49

cSRX Container Firewall Image with Packaged Pre-
Installed Signatures

IN THIS SECTION

Understanding Pre-Installed Signatures | 45

Repackaging cSRX Container Firewall Image with Signatures | 45

Downloading of Juniper Signature Pack | 47

Downloading Signature Pack through Proxy Server | 48

Understanding Pre-Installed Signatures

To support pre-installed signatures package in cSRX Container Firewall image, a Docker file is placed in
localhost repository to help user compile cSRX Container Firewall with installed signatures. With the
new image, you can launch cSRX Container Firewall Pod which protects workload immediately after
container is launched.

The supported functions for signature packaging are:

• Intrusion Detection and Prevention (IDP)

• Application Identification (AppID)

• Content Security

Repackaging cSRX Container Firewall Image with Signatures

• Ensure to have the cSRX Container Firewall image placed in the local repository or any other Docker
registry.

• Ensure to include license file together with Docker file.

To repackage cSRX Container Firewall image with signatures:

1. Create DockerFile.

45

root@host# cat Dockerfile

FROM localhost:5000/csrx
ARG CSRX_BUILD_WITH_SIG=yes
ENV CSRX_LICENSE_FILE=/var/local/.csrx_license
COPY csrx.lic $CSRX_LICENSE_FILE
RUN ["/etc/rc_build.local"]
CMD ["/etc/rc.local","init"]

The ARG CSRX_BUILD_WITH_SIG=yes triggers for APPID and IDP signature auto installation.

The optional ENV CSRX_LICENSE_FILE=/var/local/.csrx_license and COPY csrx.lic $CSRX_LICENSE_FILE commands
are used to install owned license to cSRX Container Firewall container.

2. Repackage image to include APPID and IDP signature.

root@host# docker build -t localhost:5000/csrx-sig

3. Push the image to the registry.

root@host# docker push localhost:5000/csrx-sig

The new cSRX Container Firewall image localhost:5000/csrx-sig:latest is ready for use.

4. Change the mode to CLI.

root@host# ke -it csrx-sig -- bash

root@csrx-sig:/# cli

5. View the APPID status.

root@csrx-sig> show services application-identification status

Application Identification
 Status Enabled
 Sessions under app detection 0
 Max TCP session packet memory 0
 Force packet plugin Disabled
 Force stream plugin Disabled
 Statistics collection interval 1440 (in minutes)

Application System Cache
 Status Enabled
 Cache lookup security-services Disabled
 Cache lookup miscellaneous-services Enabled
 Max Number of entries in cache 0
 Cache timeout 3600 (in seconds)

46

Protocol Bundle
 Download Server https://signatures.juniper.net/cgi-bin/index.cgi
 AutoUpdate Disabled

Proxy Details
 Proxy Profile Not Configured
Slot 1:
 Application package version 0
 Status Free
 PB Version N/A
 Engine version 0
 Micro-App Version 0
 Sessions 0
Rollback version details:
 Application package version 0
 PB Version N/A
 Engine version N/A
 Micro-App Version N/A

6. View IDP package version.

root@csrx-sig> show security idp security-package-version

Attack database version:N/A(N/A)
 Detector version :12.6.130180509
 Policy template version :N/A

Downloading of Juniper Signature Pack

You can download the signature pack from the Juniper Signature Repository directly when cSRX
Container Firewall doesn’t have a preinstalled signature pack.

To download the signature pack from Juniper Signature Repository:

root@host> request services application-identification download

root@host> request security idp security-package download

47

https://signatures.juniper.net/cgi-bin/index.cgi
https://signatures.juniper.net/cgi-bin/index.cgi

Downloading Signature Pack through Proxy Server

You can download the signature pack through a proxy server. AppIDD and IDPD processes first
connects to the configured proxy server. The proxy server then communicates with the signature pack
download server and provides the response to the process running on the device.

To download the signature pack through the proxy server:

1. Configure the proxy server so that the IP address of the proxy server is reachable from cSRX
Container Firewall.

2. Run the following command to enter the configuration mode from the CLI.

root@host> configure

Entering configuration mode

[edit]

root@host#

3. Configure the proxy server profile on cSRX Container Firewall using the IP address and port of the
proxy server.

root@host#set services proxy profile appid_sigpack_proxy protocol http host 4.0.0.1

root@host#set services proxy profile appid_sigpack_proxy protocol http port 3128

4. Attach the profile to AppID and IDP.

root@host#set services application-identification download proxy-profile appid_sigpack_proxy

root@host#set security idp security-package proxy-profile appid_sigpack_proxy

5. Commit the configuration.

root@host#commit and-quit

commit complete
Exiting configuration mode

6. Download the IDP and APPID signature pack through proxy server.

root@host>request services application-identification download

root@host>request security idp security-package download

To verify that the download is happening through the proxy server:

1. Verify the logs in the proxy server.

48

[root@srxdpi-lnx39 squid]# cat /var/log/squid/access.log

1593697174.470 1168 4.0.0.254 TCP_TUNNEL/200 5994 CONNECT signatures.juniper.net:443 -
HIER_DIRECT/66.129.242.156 -
1593697175.704 1225 4.0.0.254 TCP_TUNNEL/200 11125 CONNECT signatures.juniper.net:443 -
HIER_DIRECT/66.129.242.156 -
1593697176.950 1232 4.0.0.254 TCP_TUNNEL/200 5978 CONNECT signatures.juniper.net:443 -
HIER_DIRECT/66.129.242.156 -
1593697178.195 1236 4.0.0.254 TCP_TUNNEL/200 11188 CONNECT signatures.juniper.net:443 -
HIER_DIRECT/66.129.242.156 -
1593697198.337 1243 4.0.0.254 TCP_TUNNEL/200 6125 CONNECT signatures.juniper.net:443 -
HIER_DIRECT/66.129.242.156 -

In cSRX Container Firewall, the TLS protocol is used and traffic the through proxy server is
encrypted.

Configuring cSRX Container Firewall Using the
Junos OS CLI

This section provides basic CLI configurations that can be used for configuring cSRX Container Firewall
containers. For more details see, Introducing the Junos OS Command-Line Interface.

To configure the cSRX Container Firewall container using the Junos OS CLI:

1. Launch the cSRX Container Firewall container. Use the docker run command to launch the cSRX
Container Firewall container. You include the mgt_bridge management bridge to connect the cSRX
Container Firewall to a network.

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e --name=<csrx-
container-name> hub.juniper.net/security/<csrx-image-name>

For example, to launch csrx2 using cSRX Container Firewall software image csrx:18.21R1.9 enter:

root@csrx-ubuntu3:~/csrx# docker run -d --privileged --network=mgt_bridge -e --name=csrx2
hub.juniper.net/security/csrx:18.2R1.9

NOTE: You must include the --privileged flag in the docker run command to enable the cSRX
Container Firewall container to run in privileged mode.

49

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-cli/junos-cli.html

2. Log in to the cSRX Container Firewall container using SSH which is accessed by cSRX Container
Firewall exposed service port.

root@csrx-ubuntu3:~/csrx#ssh -p 30122 root@192.168.42.81

3. Start the CLI as root user.

root#cli
root@>

4. Verify the interfaces.

root@> show interfaces

Physical interface: ge-0/0/1, Enabled, Physical link is Up
 Interface index: 100
 Link-level type: Ethernet, MTU: 1514
 Current address: 02:42:ac:13:00:02, Hardware address: 02:42:ac:13:00:02
Physical interface: ge-0/0/0, Enabled, Physical link is Up
 Interface index: 200
 Link-level type: Ethernet, MTU: 1514
 Current address: 02:42:ac:14:00:02, Hardware address: 02:42:ac:14:00:02

5. Enter configuration mode.

configure
[edit]
root@#

6. Set the root authentication password by entering a cleartext password, an encrypted password, or
an SSH public key string (DSA or RSA).

[edit]
root@# set system root-authentication plain-text-password
New password: password
Retype new password: password

50

7. Configure the hostname.

[edit]
root@# set system host-name host-name

8. Configure the two traffic interfaces.

[edit]
root@# set interfaces ge-0/0/0 unit 0 family inet address 192.168.20.2/24
root@# set interfaces ge-0/0/1 unit 0 family inet address 192.168.10.2/24

9. Configure basic security zones for the public and private interfaces and bind them to traffic
interfaces.

[edit]
root@# set security zones security-zone untrust interfaces ge-0/0/0.0
root@# set security zones security-zone trust interfaces ge-0/0/1.0
root@# set security policies default-policy permit-all

10. Verify the configuration.

[edit]
root@# commit check
configuration check succeeds

11. Commit the configuration to activate it on the cSRX Container Firewall instance.

[edit]
root@# commit
commit complete

12. (Optional) Use the show command to display the configuration for verification.

RELATED DOCUMENTATION

Junos OS for SRX Series

Introducing the Junos OS Command-Line Interface

51

https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/srx-series/index.html
https://www.juniper.net/documentation/en_US/junos/information-products/pathway-pages/junos-cli/junos-cli.html

	Table of Contents
	About This Guide
	Overview
	Understanding cSRX Container Firewall with Kubernetes
	Junos OS Features Supported on cSRX Container Firewall

	cSRX Container Firewall Installation on Kubernetes
	Requirements for Deploying cSRX Container Firewall on Kubernetes
	cSRX Container Firewall Environment Variables
	Downloading cSRX Container Firewall Software
	Automate Initial Configuration Load with Kubernetes ConfigMap
	Loading Initial Configuration with Kubernetes ConfigMap

	cSRX Container Firewall Pod With External Network
	Understanding cSRX Container Firewall Pod with External Network
	Connecting cSRX Container Firewall to External Network
	Configuring Nodeport service for cSRX Container Firewall Pods

	cSRX Container Firewall Pod With Internal Network
	cSRX Container Firewall Deployment in Kubernetes
	cSRX Container Firewall Installation on Kubernetes Linux Server
	Deploying cSRX Container Firewall Pod
	cSRX Container Firewall Image Upgrade Using Deployment Rollout
	cSRX Container Firewall Image Rollback
	Scaling cSRX Container Firewall Deployment

	Managing cSRX Container Firewall
	cSRX Container Firewall Service With Load Balancing Support
	Understanding cSRX Container Firewall as Kubernetes Service with Load Balancing Support
	Configuring Ingress Service for cSRX Container Firewall Pods

	Configuring cSRX Container Firewall
	cSRX Container Firewall Image with Packaged Pre-Installed Signatures
	Understanding Pre-Installed Signatures
	Repackaging cSRX Container Firewall Image with Signatures
	Downloading of Juniper Signature Pack
	Downloading Signature Pack through Proxy Server

	Configuring cSRX Container Firewall Using the Junos OS CLI

