JUDLR@! | Engineering

Simplicity

cRPD Deployment Guide for Linux Server

Published
2025-12-15

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA

408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

cRPD Deployment Guide for Linux Server
Copyright © 2025 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

https://support.juniper.net/support/eula/

Table of Contents

About This Guide | viii
1 Overview

What Is Containerized RPD? | 2

cRPD Resource Requirements | 8

Junos OS Features Supported on cRPD | 9

Use Case: Egress Peer Traffic Engineering Using BGP Add-Path | 15
2 Install and Upgrade cRPD

Requirements to Deploy cRPD on a Linux Server | 19

Install cRPD on Docker | 20

Before You Install | 21

Install and Verify Docker | 21

Download cRPD Software from Docker Registry | 25
Download cRPD Software from Juniper URL | 26
Create Data Volumes | 27

Configure Memory | 28

Configure cRPD Using the CLI | 28

Install cRPD on Kubernetes | 29

Install Kubernetes | 30

Kubernetes Cluster | 32

Download cRPD Docker Image | 33

Create a cRPD Pod Using Deployment | 34

Create a cRPD Pod Using YAML | 37

Create a cRPD Pod Using Job Resource | 40

Create a cRPD Pod Using DaemonSet | 42
Scale cRPD | 46
Roll Update of cRPD Deployment | 49

cRPD Pod Deployment with Allocated Resources | 52

cRPD Pod Deployment Using Mounted Volume | 55

Upgrade cRPD | 58

| Upgrade Software | 58

Install and Configure cRPD on SONIC | 59

Managing cRPD

Syslog Support on cRPD | 66

Manage cRPD | 70

Build Topologies | 70

Network Docker Containers | 71

Remove a Bridge | 71

Create an OVS Bridge | 72

Remove Interfaces and Bridges | 73

View Container Processes | 74

Access cRPD CLI and Bash Shell | 74

Pause and Resume Processes Within a cRPD Container | 75
Remove a cRPD Instance | 75

View Docker Statistics and Logs | 76

View Active Containers | 76

Stop the Container | 78

Establish an SSH Connection for a NETCONF Session and cRPD | 79

Establish an SSH Connection | 79

Enable SSH | 79

Connect to a NETCONF Server on Container | 80
Programmable Routing

JET APIs | 82

Use cRPD

Configure Settings on Host OS | 84

Configure ARP Scaling | 84

IGMP Membership Under Linux | 85

Kernel Modules | 85

Configure MPLS | 85

Hash Field Selection for ECMP Load Balancing on Linux | 86

WECMP Using BGP on Linux | 88

Enable SRv6 on cRPD | 90

Configure Settings on cRPD | 90

Configure OSPF | 91

Configure Bridged Interfaces | 94
Configure Routed VLAN Interfaces | 95
Configure ISO Interfaces | 95
Configure IPv6 Interfaces | 95
Configure IPv4 Interfaces | 96

View Interfaces | 96

Configure MTU | 97

Configure MAC | 98

Configure gRPC Services | 98
Configure TACACS+ Server | 99
Configure Static LSPs for MPLS | 101

Configure Instance Type | 102

Assign an IP Address to the Routing Instance | 104
View Routes for a VRF | 104

Multitopology Routing in cRPD | 105
Multitopology in cRPD | 105

Example: Configure Multitopology Routing with BGP in cRPD | 106
Requirements | 106

Overview | 106

Configuration | 107

Verification | 111

Layer 3 Overlay Supportin cRPD | 114

Overview | 114

Example: Configure Layer 3 VPN (VRF) on cRPD Instance | 116
Requirements | 116

Overview | 116

Configuration | 117

Verification | 126

MPLS Support in cRPD | 131

How MPLS Is Supported on cRPD | 132

Example: Configure Static Label Switched Paths for MPLS in cRPD | 132
Requirements | 133

Overview | 133

Configuration | 134

Verification | 140

Sharding and UpdatelO on cRPD | 147

Sharding | 148
UpdatelO | 149

VRRP with cRPD | 149

Overview | 150
How VRRP Works with cRPD? | 150

Troubleshooting

Vi

Debug cRPD Application | 155

CLI | 155

Fault Handling | 156
Troubleshoot Container | 156
Verify Docker | 157

View Core Files | 158

Display Plain Text Version of Obfuscated (9) or Encrypted (8) Password | 159

Troubleshoot with Kubectl | 159

Kubectl CLI | 160
View Pods | 160
View Container Logs | 161

Debug EVPN VXLAN on RPD and Linux | 161

Configure EVPN over VXLAN | 162
Verify Layer 2 EVPN over VXLAN Support on cRPD | 163

Best Practices

Security Best Practices | 177

vii

About This Guide

Use this guide to install the containerized routing protocol process (cRPD) in the Linux environment. This
guide also includes basic cRPD container configuration and management procedures.

After completing the installation, management, and basic configuration procedures covered in this guide,
refer to the Junos OS documentation for information about further software configuration.

CHAPTER

Overview

IN THIS CHAPTER

What Is Containerized RPD? | 2

cRPD Resource Requirements | 8

Junos OS Features Supported on cRPD | 9

Use Case: Egress Peer Traffic Engineering Using BGP Add-Path | 15

What Is Containerized RPD?

IN THIS SECTION

Benefits of cRPD | 2

Overview of rpd on Linux | 3
Docker Overview | 4

How Does cRPD Work? | 5
Route Reflector | 6

Routing Engine Kernel | 6
Supported Features on cRPD | 7

Licensing | 8

The Junos® containerized routing protocol process (cRPD) is an instance of the Junos OS routing
functionality instantiated inside a Linux containerized environment.

cRPD provides cloud-native routing to the network. We package the cRPD software as a Docker
container image. cRPD supports router functionality using IS-IS, OSPF, and BGP on the device as shown
in Figure 3 on page 6.

Benefits of cRPD

e Reduced deployment time—Speed up deployment by using containers to reduce the service's boot
time from several minutes to a few seconds.

e Seamless upgrade—Upgrade software with minimal service disruption.

¢ Flexibility—Launch multiple cRPD instances with minimum resource requirements to support the
target scale.

e Stability—Provide a stable routing software on Linux.

I Overview of rpd on Linux

The Junos routing protocol process (rpd) is a software process within the Routing Engine software. The

rpd controls the routing protocols that run on the device.
As a software process, the rpd:
e Operates from the center of a routing protocol stack based on Linux.

¢ Maintains one or more routing tables, which consolidate the routing information learned from all
routing protocols.

e Manages all protocol messages, routing table updates, and implements routing policies.

Figure 1: RPD on Linux Architecture

P gRPC N External
show, cmd Apps

config

FIB Agent (FPM)

v

@_.

CFGDB

Linux

userspace

kernel

v

netdev netlink

You can use the rpd application to:

e Run on software containers. The cRPD application enables routing solutions such as containerized
Route Reflector (cRR). The cRR service must work independently.

e Interact with mgd processes for management, CLI for configuration, BFD for detecting liveness of
links, periodic packet management process (PPMD), and update protocol sessions.

8300397

Learn the route state using various routing protocols.

Maintain the complete set of routing information in the routing information base (RIB), also known as
the routing table.

Start all configured routing protocols and handle all routing messages. The rpd maintains one or more
routing tables, which consolidate the routing information that the router learns from all routing
protocols.

Implement a routing policy with which you control the routing information that moves between the
routing protocols and the routing table. Using the routing policy, you can filter and limit the transfer
of information as well as set properties associated with specific routes.

Download the routes that meet the local selection criteria into the forwarding information base (FIB),
also known as the forwarding table.

Determine the active routes for the network destinations from the routing information and program
these routes into the Routing Engine’s forwarding table.

Learn the interface attributes such as names, addresses, maximum transmission unit (MTU) settings,
and link status through Netlink messages.

Docker Overview

cRPD runs on any Linux distribution system that supports Docker.

Docker is an open-source software platform that you can use to create, manage, and disassemble a
virtual container that can run on any Linux server. Docker packages applications in containers. You can
port and use these containers on any Linux OS. A container provides OS-level virtualization for an

application.

Containers aren't virtual machines (VMs). They isolate environments with dedicated CPU, memory, 1/0,

and networking.

Benefits of Containers

Improved efficiency through isolation—Containers use the host OS Linux kernel features, such as the
isolation of groups and namespaces, to enable multiple containers to run in isolation on the same
Linux host OS. An application in a container has less memory because it shares the kernel of its Linux
host's OS.

Increased spin-up (boot) speed—Containers take less time to boot as compared with VMs. Thus, you
can use containers to install, run, and upgrade applications quickly and efficiently.

Figure 2 on page 5 provides an overview of a typical Docker container environment.

Figure 2: Docker Container Environment

Containers are
created using Linux,
but share a kernel
with almost any
type of host OS.

—

App1

Bins /
Libraries

I How Does cRPD Work?

Containers

App 2 App 3 App 3 App 3

Bins /

e Bins /Libraries

Docker Engine

Host Operating System

Server

Containers are
isolated, but share
bins and libraries
where possible to
improve efficiency.

8200100

When you start Docker, a default bridge network (also called bridge) is created automatically, and
containers connect to it unless otherwise specified. You can use this bridge network to run multiple
containers on the same host without having to assign dynamic ports.

A bridge enables containers connected to the same bridge network to communicate, while providing
isolation from containers that are not connected to the bridge network.

In bridge mode:

e Containers connect to the host network stack through bridges.

e Multiple containers connect to the same bridge and communicate with one another.

o The bridges enable external communication by connecting to the host OS network interfaces.

Figure 3: cRPD Overview and Functionality

DevOps Tools Customer Apps

Puppet Labs
Chef

Ansible

Python
Salt Stack

Customer Agents Docker

Linux

Public Cloud Private Cloud Physical

2300437

When you deploy the RPD application using a container, FIB exposes the network interfaces learned by
the underlying OS kernel are sent to the RPD in the Linux container. RPD learns about all the network
interfaces and adds the route state for all the network interfaces. If additional Docker containers are
running in the system, then all the containers and the applications running directly on the host can
access the same set of network interfaces and state. cRPD forwards the routes that meet the local route
selection criteria into the FIB.

Route Reflector

You can deploy cRPD to provide control plane-only services such as BGP route reflection.

cRR is hosted on a different on-network server hardware. Applications use the reachability information
learned by using the route reflection service. The route reflection networking service must work
independently, without depending on the same hardware or the controllers that host the applications.

Routing Engine Kernel

The Routing Engine software consists of several software processes that control router functionality and
a kernel that enables communication among all the processes.

The Routing Engine kernel provides:

e Link between the routing tables and the Routing Engine’s forwarding table.

o Communication with the Packet Forwarding Engine. The kernel synchronizes the Packet Forwarding
Engine’s copy of the forwarding table with the primary copy in the Routing Engine.

The host Linux kernel stores the FIB. It contains all the routes and next-hop information for packet
forwarding.

The rpd runs natively on Linux and uses Netlink to share program route information with the Linux
kernel. Netlink facilitates communication between the kernel and user-space processes, such as cRPD.

You can use Netlink messages to:

e Program or install the FIB state generated by the rpd in the Linux kernel.
e Interact with mgd and CLI for configuration and management.

e Maintain protocol sessions using ppmd.

e Detect liveness using BFD.

Supported Features on cRPD

cRPD supports the following features:

e BGP route reflector in the Linux Containers (LXC)

BGP add-path, multipath, graceful restart helper mode

e BGP, OSPF, OSPFv3, IS-IS, and static protocols

e BMP, BFD, and Linux FIB

¢ Equal-cost multipath (ECMP)

e Juniper extension toolkit (JET) for programmable RPD (PRPD)
e Junos OS CLI

e Management using open-interfaces NETCONF and SSH

e |Pv4 and IPvé routing

e MPLS routing

Licensing

You need a license to activate cRPD software features. To understand more about cRPD licenses, see
Supported Features on cRPD, Flex Licenses for cRPD, and Managing cRPD Licenses.

What is Docker?
Docker

Get Started With Docker

cRPD Resource Requirements

IN THIS SECTION

cRPD Scaling | 9

The software requirements are the requirements to be met in the design of a system or sub-system.
Most software defines two sets of system requirements: minimum and recommended.

Table 1 on page 8 lists the minimum resource requirements for cRPD.

Table 1: cRPD Minimum Resource Requirements

Description Minimum Value
CPU 1 core
Memory 256 MB

Disk space 256 MB

https://www.juniper.net/documentation/en_US/release-independent/licensing/topics/concept/juniper-flex-program-support-for-platforms.html#jd0e288
https://www.juniper.net/documentation/us/en/software/license/licensing/topics/concept/flex-licenses-for-crpd.html
https://www.juniper.net/documentation/en_US/release-independent/licensing/topics/topic-map/configure-license.html#id-managing-crpd-licenses
https://docs.docker.com/get-started/docker-overview/
https://www.docker.com/resources/what-container/
https://docs.docker.com/get-started/

cRPD Scaling

You can scale a cRPD's performance and capacity by increasing memory allocation. Adding more CPU to
the host hardware or VM also boosts scalability.

Table 2 on page 9 lists the cRPD scaling information,

Table 2: cRPD Scaling

Instance RIB/FIB Route Scale Minimum Memory
cRPD 32,000 256MB
64,000 512MB
128,000 1024MB
1,000,000 2048MB

Junos OS Features Supported on cRPD

IN THIS SECTION

Features Supported on cRPD | 9

This topic provides the list of various features that are configured, administered, and monitored using
cRPD (CLI).

Features Supported on cRPD

cRPD inherits most of the routing features with the following considerations shown in Table 3 on page
10.

Table 3: Supported Features on cRPD

Feature

BGP FlowSpec

EVPN-VPWS

EVPN TYPE 5 with MPLS

Segment routing

Layer 2 VPN

MPLS

Description

BGP flow specification method is supported to prevent denial-of-service (DoS)
attacks on the cRPD environment.

[See Understanding BGP Flow Routes for Traffic Filtering.]

EVPN-VPWS is supported to provide VPWS with EVPN signaling mechanisms on
cRPD.

[See Overview of VPWS with EVPN Signaling Mechanisms.]

EVPN Type 5 is supported for EVPN/MPLS.

[See EVPN Type-5 Route with MPLS encapsulation for EVPN-MPLS.]

Segment routing supports OSPF and IS-IS protocols. It provides basic functionality
for Source Packet Routing in Networking (SPRING).

[See Understanding Source Packet Routing in Networking (SPRING).]

Support for Layer 2 circuit to provide Layer 2 VPN and VPWS with LDP signaling.

[See Configuring Ethernet over MPLS (Layer 2 Circuit).]

Support for MPLS to provide LDP signaling protocol configuration with the control
plane functionality.

[See Understanding the LDP Signaling Protocol.]

10

https://www.juniper.net/documentation/us/en/software/junos/bgp/topics/topic-map/multiprotocol-bgp.html#id-understanding-bgp-flow-routes-for-traffic-filtering
https://www.juniper.net/documentation/us/en/software/junos/evpn/topics/concept/evpn-vpws-signaling-mechanisms-overview.html
https://www.juniper.net/documentation/us/en/software/junos/evpn/topics/concept/evpn-mpls-encapsulation.html
https://www.juniper.net/documentation/us/en/software/junos/is-is/ospf/topics/concept/source-packet-routing.html
https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/task/mpls-l2-circuit-cli.html
https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/topic-map/ldp-overview.html#id-understanding-the-ldp-signaling-protocol

Table 3: Supported Features on cRPD (Continued))

Feature

Eventd

Authentication,
authorization, and
accounting

Description

We support only external event policies. You can enable these policies in cRPD. In
cRPD, eventd and rsyslogd run as independent processes. The eventd process
provides an event interface to processes like rpd, auditd, and mgd. It also supports
automated event policy execution.

Use the set event-options policy policy name events [events] then command to

enable an event policy and restart event-processing to restart event processing.

By default, Python 3.x support is enabled with existing on-box Python or SLAX
functions in the cRPD environment.

Use the [edit system scripts language python3] hierarchy level to enable and to
support Python event automation.

[See event-options and event-policy.]

You can configure local authentication, local authorization, Tacplus authentication,
Tacplus authorization and Tacplus accounting at the [edit system] hierarchy level.

We support the following features:

e Local authentication and local authorization

o TACACS+ authentication, authorization and accounting

e User template support

e Support for operational commands and regular expressions

e Local authentication and remote authorization on Tacplus server.

[See password-options and tacplus.]

https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/statement/event-options-edit.html
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/statement/policy-edit-event-options.html
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/statement/password-options-edit-system.html
https://www.juniper.net/documentation/us/en/software/junos/user-access/topics/ref/statement/tacplus-edit-system.html

Table 3: Supported Features on cRPD (Continued))

Feature

SRvé network
programming in IS-IS

Increase ECMP next-hop
limit

Description

You can enable basic segment routing functionalities in a core IPvé network for

both route reflector role and host routing roles.

You can enable SRvé network programming in an IPvé network at the [edit source-

packet-routing] hierarchy level.

A Segment Identifier consists of the following parts:

Locator— Locator is the first part of a SID that consists of the most significant
bits representing the address of a particular SRvé6 node. The locator is very
similar to a network address that provides a route to its parent node. The IS-1S
protocol installs the locator route in the inet6.0 routing table. IS-IS routes the
segment to its parent node, which subsequently performs a function defined in
the other part of the SRvé SID. You can also specify the algorithm associated
with this locator.

Function—The SID's other part defines a function performed locally on the node
specified by the locator. Several functions are outlined in the Internet draft SRvé
Network Programming (draft-ietf-spring-srvé-network-programming-07draft).
However, we have implemented the following functions that are signaled in IS-
IS. IS-IS installs these function SIDs in the inet6.0 routing table.

e End— An endpoint function for SRvé6 instantiates a Prefix SID. It prevents
decapsulation of the outer header and removal of the SRH. Therefore, an
End SID cannot be the last SID of a SID list and cannot be the Destination
Address (DA) of a packet without an SRH.

e End.X— An endpoint X function is an SRvé6 instantiation of an adjacent SID.
It is a variant of the endpoint function with Layer 3 cross-connect to an
array of Layer 3 adjacencies.

NOTE: The support for flavor (specifies end sid behavior) and flexible
algorithm options is not available for configuring end SIDs.

[See source-packet-routing].

You can specify the multipath next-hop limit at the [edit routing-options maximum-

ecmp] hierarchy level. This action helps load-balance traffic over multiple paths. The
default ECMP next-hop limit is 16.

[See routing options max ecmp and "Hash Field Selection for ECMP Load Balancing

on Linux " on page 86].

https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/statement/autogen-protocols-source-packet-routing.html
https://www.juniper.net/documentation/us/en/software/junos/subscriber-mgmt-vlan/topics/ref/statement/routing-options-max-ecmp.html

Table 3: Supported Features on cRPD (Continued))

Feature

EVPN Type 5 with VXLAN

EVPN Over VXLAN
Encapsulation

Support for next-hop
based dynamic tunnels

Description

We support EVPN Type 5 Route over VXLAN for both IPv4 and IPvé prefix
advertisements.

[See EVPN Type-5 Route with VXLAN encapsulation for EVPN-VXLAN].

We support Layer 2 EVPN Over VXLAN functionality.

[See EVPN with VXLAN Data Plane Encapsulation and MAC-VRF L2 services].

cRPD supports to configure next-hop based dynamic IP tunnels in the Linux kernel
to provide private and secure path on a public network. Whenever a tunnel needs
to be installed in the kernel, a tunnel interface is created. Tunnel interfaces are
created in Linux using netlink messages. The ifindex of the tunnel interface is used
to listen and program the routes going over the tunnel composite next-hop. By
default, MPLS-over-UDP tunnel is preferred over GRE tunnels. The following
dynamic tunnels are supported:

o MPLS-over-GRE (Generic Routing Encapsulation)
e MPLS-over-UDP

[For more information about dynamic tunnels overview, see Next-Hop-Based
Dynamic Tunnels, Next-Hop Based Tunnels for Layer 3 VPNs, Configuring Next-
Hop-Based MPLS-Over-UDP Dynamic Tunnels, dynamic-tunnels and Dynamic
Tunnels Overview].

https://www.juniper.net/documentation/us/en/software/junos/evpn/topics/concept/evpn-vxlan-encapsulation.html
https://www.juniper.net/documentation/us/en/software/junos/evpn-vxlan/topics/concept/evpn-vxlan-data-plane-encapsulation.html
https://www.juniper.net/documentation/us/en/software/nce/evpn-vxlan-mac-vrf/EVPN_VxLAN_MAC-VRF.pdf
https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/topic-map/nexthop-based-dynamic-tunnels.html
https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/topic-map/nexthop-based-dynamic-tunnels.html
https://www.juniper.net/documentation/us/en/software/junos/vpn-l3/topics/topic-map/l3-vpns-nh-tunnels.html
https://www.juniper.net/documentation/us/en/software/junos/vpn-l3/topics/topic-map/l3-vpns-nh-tunnels.html
https://www.juniper.net/documentation/us/en/software/junos/vpn-l3/topics/topic-map/l3-vpns-nh-tunnels.html
https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/ref/statement/dynamic-tunnels-edit-routing-options.html
https://www.juniper.net/documentation/us/en/software/junos/interfaces-encryption/topics/topic-map/tunnel-services-overview.html#id-dynamic-tunnels-overview
https://www.juniper.net/documentation/us/en/software/junos/interfaces-encryption/topics/topic-map/tunnel-services-overview.html#id-dynamic-tunnels-overview

Table 3: Supported Features on cRPD (Continued))

Feature

Support for SRvé and
Layer 3 services over
SRvé6 in BGP

Support for Advanced
RISC Machines (ARM64)
(cRPD)

Support for export of BGP
Local RIB through BGP
Monitoring Protocol
(BMP)

Description

You can configure BGP based Layer 3 service over SRvé core on cRPD. You can
enable Layer 3 overlay services with BGP as control plane and SRvé6 as data plane.
SRvé network programming provides flexibility to leverage segment routing without
deploying MPLS. Such networks depend only on the IPvé headers and header
extensions for transmitting data.

Limitations

o When cRPD as the PE is acting as RR, forwarding will not work using SRvé
tunnel for local PE-CE routes

o Global IPv4 over SRv6 core END.DT4 is not supported with Linux kernel
e Duplicate configured SRvé6 SID check within a router is not supported.

e SRvé overlay service requires Service SID for forwarding. When at least one
malformed SRV6 Service TLV is present in the BGP Prefix-SID attribute, instead
of treat-as-withdraw action, the BGP update packet is ignored. On deleting

accept-srv6-service there will not be any impact on already received routes with
SRV6 SID.

[For more information, see advertise-srvé-service, srvé (BGP), Understanding SRvé
Network Programming and Layer 3 Services over SRvé in BGP].

cRPD is packaged as a docker container to run on 64-bit ARM platform.

The following features are not supported by cRPD on ARM:

e Sharding and updatelO. The set system processes routing bgp rib-sharding
number-of-shard and set system processes routing bgp update-threading
number-of-threadscommands are not supported.

e SRvéb

[For more information, see Server Requirements].

BMP is enhanced to support monitoring of local routing information base (RIB) loc-
rib policy on cRPD. The loc-rib policy is added to RIB types under the bmp route-

monitoring statement.

[For more information, see Understanding the BGP Monitoring Protocol, bmp, and
route-monitoring].

https://www.juniper.net/documentation/us/en/software/junos/bgp/topics/ref/statement/advertise-srv6-service-edit-protocols-bgp-family-inet-unicast.html
https://www.juniper.net/documentation/us/en/software/junos/bgp/topics/ref/statement/srv6-edit-protocols-bgp-source-packet-routing.html
https://www.juniper.net/documentation/us/en/software/junos/bgp/topics/topic-map/bgp-egress-traffic-engineering.html#id-understanding-srv6-network-programming-and-layer-3-services-over-srv6-in-bgp
https://www.juniper.net/documentation/us/en/software/junos/bgp/topics/topic-map/bgp-egress-traffic-engineering.html#id-understanding-srv6-network-programming-and-layer-3-services-over-srv6-in-bgp
https://www.juniper.net/documentation/us/en/software/crpd/crpd-deployment/topics/concept/crr-system-requirement-docker.html
https://www.juniper.net/documentation/us/en/software/junos/bgp/topics/topic-map/bgp-monitoring-protocol.html#id-understanding-the-bgp-monitoring-protocol
https://www.juniper.net/documentation/us/en/software/junos/bgp/topics/ref/statement/bmp-edit-routing-options.html
https://www.juniper.net/documentation/us/en/software/junos/bgp/topics/ref/statement/route-monitoring-edit-routing-options-bmp.html

Table 3: Supported Features on cRPD (Continued))

Feature Description

Interoperability of You can use OSPF or IS-IS to enable segment routing devices to operate with the
segment routing with LDP | LDP devices that are not segment routing capable.

[For more information, see LDP Mapping Server for Interoperability of Segment
Routing and source packet routing].

Support for logging using We support eventd process on cRPD to configure logging and forwarding the syslog
eventd and time-zone to remote host and time zone on the system.
(cRPD)

The following support is not available on cRPD:

e help syslog command to view syslog information.
e rsyslogd for logging.
Limitations

e Configuring the management-instance and the routing instance for the Syslog
client is not supported.

e TLS authentication is not supported for syslog transfer on cRPD.

[For more information, see Configure Time Zones, time-zone, and "Syslog Support
on cRPD" on page 66].

Support for RADIUS We provide RADIUS server support to use authentication, authorization and
server (cCRPD) accounting features on cRPD.

[For more information, see RADIUS Authentication, radius (System), and radius-
server (System)].

Use Case: Egress Peer Traffic Engineering Using BGP
Add-Path

Service providers, cloud operators, and enterprises can deploy Junos cRPD in their existing server-based
environments to address their unique requirements.

Egress peer traffic engineering (TE) allows a central controller to instruct an ingress router in a domain.

https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/topic-map/ldp-configuration.html#id-ldp-mapping-server-for-interoperability-of-segment-routing-with-ldp-overview
https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/topic-map/ldp-configuration.html#id-ldp-mapping-server-for-interoperability-of-segment-routing-with-ldp-overview
https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/ref/statement/mapping-server-entry-edit-routing-options-source-packet-routing.html
https://www.juniper.net/documentation/us/en/software/junos/time-mgmt/topics/topic-map/configure-time-zone.html
https://www.juniper.net/documentation/us/en/software/junos/time-mgmt/topics/ref/statement/time-zone-edit-system.html
https://www.juniper.net/documentation/us/en/software/junos/user-access/topics/topic-map/user-access-radius-authentication.html
https://www.juniper.net/documentation/us/en/software/junos/user-access/topics/ref/statement/radius-edit-system.html
https://www.juniper.net/documentation/us/en/software/junos/user-access/topics/ref/statement/radius-server-edit-system.html
https://www.juniper.net/documentation/us/en/software/junos/user-access/topics/ref/statement/radius-server-edit-system.html

16

The Internet - a public global network of networks - is built as system of interconnected networks of
service provider infrastructures. These networks are often represented as Autonomous Systems (AS) as
shown in the figure Figure 4 on page 16 each has globally unique Autonomous System Number (ASN).

The central controller directs traffic toward a specific egress router and an external interface. Thus, the
traffic reaches a particular destination outside the network and optimizes utilization of the advertised
egress routes.

The data plane interconnection link (NNI) and control-plane (eBGP) direct connection between two ASs
allows Internet traffic to travel between the two, usually as part of a formal agreement called peering.

A service provider has multiple peering relationships with multiple other service providers. They are
usually geographically distributed and vary in the number and bandwidth of the NNI link. They also use
different business or cost models.

Figure 4: Peering Among Service Providers

Peer AS 3

Peer AS 2 Peer AS 4

Service Provider
AS1

Peer AS 6 Peer AS 5

2300501

In the context of AS peering, traffic egress assumes that the destination network address is reachable
through a certain peer AS. So, for example, a device in Peer AS#2 can reach a destination IP address in
Peer AS#4 through Service Provider AS#1.

The peer AS using an eBGP Network Layer Reachability Information (NLRI) advertisement provides the
reachability information. An AS typically advertises IP addresses that belong to it, but an AS might also
advertise addresses learned from another AS.

For example, Peer AS#2 can advertise addresses to service provider (AS#1). These addresses come from
Peer AS#3, Peer AS#7, Peer AS#8, Peer AS#9, Peer AS#4 and Peer AS#5.

The reachability information advertisement depends on the BGP routing policies between the
individuals ASs. Therefore, a given destination IP prefix reaches multiple peering ASs and multiple NNIs.

Network administrators in the service provider network select “best” exit interface for each destination
prefix.

The traffic that exits from the service provider AS is critical for ensuring cost efficiency while providing
seamless end user experience at the same time. The definition of “best” exit interface is a combination
of cost as well as latency and traffic loss.

RELATED DOCUMENTATION

Fundamentals of Egress Peering Engineering

BGP Labeled Unicast Egress Peer Engineering Using cRPD as Ingress

17

https://www.juniper.net/documentation/solutions/en_US/service-provider-core
https://www.juniper.net/documentation/en_US/release-independent/nce/information-products/pathway-pages/nce/nce-186-crpd.html

CHAPTER

Install and Upgrade cRPD

IN THIS CHAPTER

Requirements to Deploy cRPD on a Linux Server | 19
Install cRPD on Docker | 20

Install cRPD on Kubernetes | 29

Upgrade cRPD | 58

Install and Configure cRPD on SONiC | 59

Requirements to Deploy cRPD on a Linux Server

IN THIS SECTION

Host Requirements | 19

Interface Naming and Mapping | 20

This section presents an overview of requirements for deploying a cRPD container on a Linux server.

Host Requirements

Table 4 on page 19 lists the Linux host requirement specifications for deploying a cRPD container on a
Linux server.

Table 4: Host Requirements

Component Specification

Linux OS support Ubuntu 18.04 or later, Red Hat Enterprise Linux 8 or later
Linux Kernel 4.8 or later

Docker Engine 18.09.1

CPUs 2 CPU core

Memory 4GB

Disk space 10GB

Host processor type x86_64/ARM64 multicore CPU

Table 4: Host Requirements (Continued))

Component Specification

Network Interface Ethernet

Interface Naming and Mapping

Table 5 on page 20 lists the supported interfaces on cRPD.

Table 5: Interface Naming and Mapping

Interface Number cRPD Interfaces
ethO ethO-mgmt-interface
ethl eth1-data-interface

Install cRPD on Docker

IN THIS SECTION

Before You Install | 21

Install and Verify Docker | 21

Download cRPD Software from Docker Registry | 25
Download cRPD Software from Juniper URL | 26
Create Data Volumes | 27

Configure Memory | 28

Configure cRPD Using the CLI | 28

This section outlines the steps to install the cRPD container in a Linux server environment that is
running Ubuntu or Red Hat Enterprise Linux. The cRPD container is packaged in a Docker image and
runs in the Docker Engine on the Linux host.

This section includes the following topics:

Before You Install

Before you install cRPD as routing service to achieve routing functionality in a Linux container
environment, ensure:

o \Verify the system requirement specifications for the Linux server to deploy the cRPD, see
"Requirements to Deploy cRPD on a Linux Server" on page 19.

Install and Verify Docker

Install and configure Docker on Linux host platform to implement the Linux container environment, see
Install Docker Engine for installation instructions on the supported Linux host operating systems.
Verify the Docker installation. See "Debug cRPD Application" on page 155.

To install the latest Docker:

Add the Docker repository to Advanced Packaging Tool (APT) sources. Log in and download the
software.

root@ubuntu-vmi8:~# curl -fsSL https:/download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

OK

root@ubuntu-vmi8:~# Isb_release -cs

focal

root@ubuntu-vm18: ~# add-apt-repository "deb [arch=amdé4] https:/download.docker.com/linux/ubuntu $
(Isb_release -cs) stable"

Hit:1 http://us.archive.ubuntu.com/ubuntu focal InRelease
Get:2 http://us.archive.ubuntu.com/ubuntu focal-updates InRelease [128 kB]
Get:3 https://download.docker.com/linux/ubuntu focal InRelease [57.7 kB]

https://docs.docker.com/engine/

Hit:4 http://us.archive.ubuntu.com/ubuntu focal-backports InRelease

Get:5 https://download.docker.com/linux/ubuntu focal/stable amd64 Packages [50.2 kB]

Get:6 http://us.archive.ubuntu.com/ubuntu focal-security InRelease [128 kB]

Get:7 http://us.archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages [3,563 kB]

Get:8 http://us.archive.ubuntu.com/ubuntu focal-updates/main Translation-en [550 kB]

Get:9 http://us.archive.ubuntu.com/ubuntu focal-updates/main amd64 c-n-f Metadata [17.7 kB]
Get:10 http://us.archive.ubuntu.com/ubuntu focal-updates/restricted amd64 Packages [3,236 kB]
Get:11 http://us.archive.ubuntu.com/ubuntu focal-updates/restricted Translation-en [453 kB]
Get:12 http://us.archive.ubuntu.com/ubuntu focal-updates/universe amd64 Packages [1,230 kB]
Get:13 http://us.archive.ubuntu.com/ubuntu focal-updates/universe Translation-en [295 kB]
Get:14 http://us.archive.ubuntu.com/ubuntu focal-security/main amd64 Packages [3,195 kB]
Get:15 http://us.archive.ubuntu.com/ubuntu focal-security/main Translation-en [472 kB]

Get:16 http://us.archive.ubuntu.com/ubuntu focal-security/restricted amd64 Packages [3,117 kB]
Get:17 http://us.archive.ubuntu.com/ubuntu focal-security/restricted Translation-en [436 kB]
Fetched 16.9 MB in 8s (2,172 kB/s)

Reading package lists... Done

root@ubuntu-vm18:~# apt update

Hit:1 https://download.docker.com/linux/ubuntu focal InRelease

Hit:2 http://us.archive.ubuntu.com/ubuntu focal InRelease

Get:3 http://us.archive.ubuntu.com/ubuntu focal-updates InRelease [128 kB]
Hit:4 http://us.archive.ubuntu.com/ubuntu focal-backports InRelease

Get:5 http://us.archive.ubuntu.com/ubuntu focal-security InRelease [128 kB]
Get:6 http://us.archive.ubuntu.com/ubuntu focal-security/main amd64 c-n-f Metadata [14.3 kB]
Fetched 270 kB in 1s (198 kB/s)

Reading package lists... Done

Building dependency tree

Reading state information... Done

67 packages can be upgraded. Run 'apt list --upgradable' to see them.

root@ubuntu-vm18:~# apt install docker-ce

Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
containerd.io docker-buildx-plugin docker-ce-cli docker-ce-rootless-extras docker-compose-
plugin pigz slirp4netns
Suggested packages:
aufs-tools cgroupfs-mount | cgroup-lite

The following NEW packages will be installed:
containerd.io docker-buildx-plugin docker-ce docker-ce-cli docker-ce-rootless-extras docker-
compose-plugin pigz slirp4netns
0 upgraded, 8 newly installed, @ to remove and 67 not upgraded.
Need to get 122 MB of archives.
After this operation, 440 MB of additional disk space will be used.
Do you want to continue? [Y/n]y
Get:1 http://us.archive.ubuntu.com/ubuntu focal/universe amd64 pigz amd64 2.4-1 [57.4 kB]
Get:2 http://us.archive.ubuntu.com/ubuntu focal/universe amd64 slirp4netns amd64 0.4.3-1 [74.3
kB1
Get:3 https://download.docker.com/linux/ubuntu focal/stable amd64 containerd.io amd64 1.7.22-1
[29.5 MB]
Get:4 https://download.docker.com/linux/ubuntu focal/stable amd64 docker-buildx-plugin amd64
0.16.2-1~ubuntu.20.04~focal [29.9 MB]
Get:5 https://download.docker.com/linux/ubuntu focal/stable amd64 docker-ce-cli amd64
5:27.2.1-1~ubuntu.20.04~focal [15.0 MB]
Get:6 https://download.docker.com/linux/ubuntu focal/stable amd64 docker-ce amd64
5:27.2.1-1~ubuntu.20.04~focal [25.6 MB]
Get:7 https://download.docker.com/linux/ubuntu focal/stable amd64 docker-ce-rootless-extras
amd64 5:27.2.1-1~ubuntu.20.04~focal [9,577 kB]
Get:8 https://download.docker.com/linux/ubuntu focal/stable amd64 docker-compose-plugin amd64
2.29.2-1~ubuntu.20.04~focal [12.5 MB]
Fetched 122 MB in 4s (29.5 MB/s)
Selecting previously unselected package pigz.
(Reading database ... 71975 files and directories currently installed.)
Preparing to unpack .../@-pigz_2.4-1_amd64.deb ...
Unpacking pigz (2.4-1) ...
Selecting previously unselected package containerd.io.
Preparing to unpack .../1-containerd.io_1.7.22-1_amd64.deb ...
Unpacking containerd.io (1.7.22-1) ...
Selecting previously unselected package docker-buildx-plugin.
Preparing to unpack .../2-docker-buildx-plugin_0.16.2-1~ubuntu.20.04~focal_amd64.deb ...
Unpacking docker-buildx-plugin (0.16.2-1~ubuntu.20.04~focal) ...
Selecting previously unselected package docker-ce-cli.
Preparing to unpack .../3-docker-ce-cli_5%3a27.2.1-1~ubuntu.20.04~focal_amd64.deb ...
Unpacking docker-ce-cli (5:27.2.1-1~ubuntu.20.04~focal) ...
Selecting previously unselected package docker-ce.
Preparing to unpack .../4-docker-ce_5%3a27.2.1-1~ubuntu.20.04~focal_amd64.deb ...
Unpacking docker-ce (5:27.2.1-1~ubuntu.20.04~focal) ...

Selecting previously unselected package docker-ce-rootless-extras.

Preparing to unpack .../5-docker-ce-rootless-extras_5%3a27.2.1-1~ubuntu.20.04~focal_amd64.deb ...

Unpacking docker-ce-rootless-extras (5:27.2.1-1~ubuntu.20.04~focal) ...
Selecting previously unselected package docker-compose-plugin.

Preparing to unpack .../6-docker-compose-plugin_2.29.2-1~ubuntu.20.04~focal_amd64.deb ...
Unpacking docker-compose-plugin (2.29.2-1~ubuntu.20.04~focal) ...

Selecting previously unselected package slirp4netns.

Preparing to unpack .../7-slirp4netns_0.4.3-1_amd64.deb ...

Unpacking slirp4netns (0.4.3-1) ...

Setting up slirp4netns (0.4.3-1) ...

Setting up docker-buildx-plugin (0.16.2-1~ubuntu.20.04~focal) ...

Setting up containerd.io (1.7.22-1) ...

Created symlink /etc/systemd/system/multi-user.target.wants/containerd.service » /lib/systemd/
system/containerd.service.

Setting up docker-compose-plugin (2.29.2-1~ubuntu.20.04~focal) ...

Setting up docker-ce-cli (5:27.2.1-1~ubuntu.20.04~focal) ...

Setting up pigz (2.4-1) ...

Setting up docker-ce-rootless-extras (5:27.2.1-1~ubuntu.20.04~focal) ...

Setting up docker-ce (5:27.2.1-1~ubuntu.20.04~focal) ...

Created symlink /etc/systemd/system/multi-user.target.wants/docker.service » /lib/systemd/system/
docker.service.

Created symlink /etc/systemd/system/sockets.target.wants/docker.socket » /lib/systemd/system/
docker.socket.

Processing triggers for man-db (2.9.1-1) ...

Processing triggers for systemd (245.4-4ubuntu3.20) ...

root@ubuntu-vm18:~# docker version

Client: Docker Engine - Community

Version: 27.2.1

API version: 1.47

Go version: go1.22.7

Git commit: 9e34c9b

Built: Fri Sep 6 12:08:15 2024
0S/Arch: linux/amd64

Context: default

Server: Docker Engine - Community

Engine:

Version: 27.2.1

APT version: 1.47 (minimum version 1.24)
Go version: go1.22.7

Git commit: 8b539h8

Built: Fri Sep 6 12:08:15 2024
0S/Arch: linux/amd64

Experimental: false

containerd:

Version: 1.7.22

GitCommit: 1f7fdf5fed64ebbaicaf99b3el2efcf9Id60e311c
runc:

Version: 1.1.14

GitCommit: v1.1.14-0-g2c9f560

docker-init:

Version: 0.19.0

GitCommit: de40ade

Download cRPD Software from Docker Registry

The cRPD software is available as a cRPD Docker file from the Juniper Docker registry.
You can download the software in two ways:
e Juniper Docker registry

e Juniper software download page

Prerequisites

e Before you import the cRPD software, ensure that Docker is installed on the Linux host and that the
Docker Engine is running.

e Ensure to register with Juniper Support before you download the cRPD software.

Once the Docker Engine has been installed on the host, perform the following to download and start
using the cRPD image:

To download the cRPD software using the Juniper Docker registry:

1. Login to the Juniper Docker registry using the following steps:

a. Create the file -passwd.txt and copy the access token excluding the quotes provided by Juniper
customer care team.

b. Login to enterprise hub using the following command:

root@ubuntu-vm18$ cat passwd.txt | docker login -u"<registered-email-id>" --password-stdin
enterprise-hub.juniper.net:443

For example, root@ubuntu-vmi8$ cat passwd.txt | docker login -u user@domain.com --password-
stdin enterprise-hub.juniper.net:443

2. Pull the docker image from the download site using the following command:

root@ubuntu-vm18:~# docker pull enterprise-hub.juniper.net:443/crpd-docker-prod/crpd:<release tag>

https://www.juniper.net/documentation/us/en/software/junos/junos-install-upgrade/topics/topic-map/prepare-sotware-install-and-upgrade.html#topic-map_x32_sxt_txb

root@ubuntu-vm18:~# docker pull enterprise-hub.juniper.net:443/crpd-docker-prod/crpd:22.3R1
3. Verify images in docker image repository.

root@ubuntu-vm8:~# docker images

REPOSITORY

TAG IMAGE 1ID CREATED SIZE
enterprise-hub. juniper.net:443/crpd-docker-prod/crpd

latest 5d3c29ee4521 3 months ago 550MB
enterprise-hub. juniper.net:443/crpd-docker-prod/crpd

22.3R1 5dfddabea2de 5 months ago 461MB

Download cRPD Software from Juniper URL

To download the cRPD software from the Juniper download URL:

1. Download the cRPD software image from the Juniper Networks website.
root@ubuntu-vm18:~# wget "https:/cdn.juniper.net/software/crpd/24.2R1/junos-routing-crpd-
docker-amdé64-24.2R1.14.tgz?SM_USER=username&__gda__=xxx" -O junos-routing-crpd-docker-
amd64-24.2R1.14.tgz

root@ubuntu-vm18:~# docker load -i junos-routing-crpd-docker-24.2R1.14.tgz

8716c4e476eb: Loading layer [>] 537.7MB/
537.7MB
Loaded image: crpd:24.2R1.14

2. Verify the downloaded images in docker image repository.

root@ubuntu-vm18:~# docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
crpd 24.2R1.14 281363ff6dbf 2 months ago 530MB

https://support.juniper.net/support/downloads/

Create Data Volumes

To create data volumes:

1. Create data volume for configuration and var logs.

root@ubuntu-vm18:~# docker volume create crpd01-config

crpd@1-config

root@ubuntu-vm18:~# docker volume create crpdO1-varlog

crpd@1-varlog

Data volumes remain even after containers are destroyed and can be attached to newer containers.
Data volumes are not shared between multiple containers at the same time unless they are ready-
only volumes.

2. Download and load the cRPD software.

3. Attach the data volumes to create and launch the container to the cRPD instance.
In the bridge mode, containers are connected to host network stack through bridge(s). Multiple

containers can connect to the same bridge and communicate with each other. External devices
communication is possible, if the bridge is connected to the host OS network interfaces.

For routing purposes, it is also possible to assign exclusively assign all or a subset of physical
interfaces for exclusive use by a docker container.

@ NOTE: You must include the --privileged flag in the docker run command to enable the
cRPD container to run in privileged mode.

root@ubuntu-vm18:~# docker run --rm --detach --name crpd01 -h crpd01 --net=bridge --privileged -v
crpd01-config:/config -v crpd01-varlog:/var/log -it enterprise-hub.juniper.net/crpd-docker-prod/
crpd:24.2R1.14

€38724100bdc5e0f8261484315ca70b8d275306291115fb9e45f6aab3e3475ed

Bridge mode is the default working mode of docker. This allows multiple containers to run on same
host without any assignment of dynamic port. Each container runs its own private network
namespace.

To launch cRPD in host networking mode:

1. In the host mode, the network namespace is shared. For example, if an interface is defined inside a
pod, the same interface is visible on the host as well. Docker containers use the host network
namespace. Run the command to launch cRPD in host networking mode:

root@ubuntu-vm18:~# docker run --rm --detach --name crpd01 -h crpd01 --privileged --net=host -v
crpd01-config:/config -v crpd01-varlog:/var/log -it crpd:24.2R1.14

Configure Memory

You can limit the amount of memory allocated to the cRPD by specifying the memory size in the
following command:

e root@ubuntu-vm18:~# docker run --rm --detach --name crpd01 -h crpd01 --privileged -v crpd01-config:/
config -v crpd01-varlog:/var/log -m 2048MB --memory-swap=2048MB -it crpd:24.2R1.14

Configure cRPD Using the CLI

cRPD provides Junos command line configuration and operational commands for routing service. It
provides subsets of routing protocols configuration that enable node participates in topology and
routing.

You can configure interfaces from Linux shell. Interface configuration is available only for the ISO
addresses.

To configure the cRPD container using the CLI:

1. Login to the cRPD container.
root@ubuntu-vm18:~/# docker exec -it crpd01 cli
2. Enter configuration mode.

root@crpdd1> configure
Entering configuration mode
[edit]

3. Set the root authentication password using one of the following: A cleartext password, an encrypted
password, or an SSH public key string (DSA or RSA).

root@crpdol# set system root-authentication plain-text-password

New password: password

Retype new password: password

4. Commit the configuration to activate it on the cRPD instance.

root@crpdo1# commit

commit complete

5. (Optional) Use the show command to display the configuration to verify that it is correct.

root@crpdé1# show

Last changed: 2019-02-13 19:28:26 UTC
version "19.2120190125_1733_rbu-builder [rbu-builder]";
system {

root-authentication {

encrypted-password "6JEc/p

$Q0Upqgi2ew4tVINKXZYiCKT8Cjn1P3SLu16BRIXvtzACYyBMc57WGu20Cyg/1TrO0iR80IMDUmtEKiOHVO2NNFET . "; ##
SECRET-DATA

3

Get Docker
Configure Docker

Install cRPD on Kubernetes

IN THIS SECTION

Install Kubernetes | 30

https://docs.docker.com/get-started/get-docker/
https://docs.docker.com/engine/daemon/

Kubernetes Cluster | 32

Download cRPD Docker Image | 33

Create a cRPD Pod Using Deployment | 34

Create a cRPD Pod Using YAML | 37

Create a cRPD Pod Using Job Resource | 40

Create a cRPD Pod Using DaemonSet | 42

Scale cRPD | 46

Roll Update of cRPD Deployment | 49

cRPD Pod Deployment with Allocated Resources | 52

cRPD Pod Deployment Using Mounted Volume | 55

Kubernetes is an open-source platform for managing containerized workloads and services. Containers
are a good way to bundle and run the applications.

Manage containers running applications in production environments. Ensure there is no downtime. For
example, if a container goes down, another container needs to start. Kubernetes provides you with a
framework to run distributed systems resiliently. Kubernetes provides a platform for deployment
automation, scaling, and operations of application containers across clusters of host containers.

Prerequisite

Install Kubernetes on Linux system and to deploy Kubernetes on a two-node Linux cluster, see
Kubernetes Installation.

When you deploy Kubernetes, you get a cluster. A Kubernetes cluster consists of a set of worker
machines, called nodes, that run containerized applications. Every cluster has at least one worker node.
The worker node(s) host the pods that are the components of the application.

This section outlines the steps to create the cRPD Docker image on Kubernetes.

Install Kubernetes

To install Kubernetes:

1. Login as root user.

https://kubernetes.io/docs/setup/

2. Download and install the software.

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -
echo "deb https://apt.kubernetes.io/ kubernetes-xenial main" | sudo tee -a /etc/apt/sources.list.d/

kubernetes.list

apt-get update

apt-get install -y kubectl

wget https://storage.googleapis.com/minikube/releases/latest/minikube-1inux-amd64

cp minikube-linux-amd64 /usr/local/bin/minikube

chmod 755 /usr/local/bin/minikube

3. Start Kubernetes.

apt install conntrack

root@crpd-01:~# minikube start --driver=none

* minikube v1.15.1 on Ubuntu 18.04
* Automatically selected the docker driver

Kubernetes Cluster

Kubernetes coordinates a cluster of computers that are connected to work as a single unit. Kubernetes
automates the deployment and scheduling of cRPD across a cluster in an efficient way.

A Kubernetes cluster consists of two types of resources:
e The Primary coordinates the cluster
e Nodes are the workers that run applications

The Primary is responsible for managing the cluster. The primary coordinates all activities in your cluster,
such as scheduling applications, maintaining applications' desired state, scaling applications, and rolling
out new updates.

A node is a VM or a physical computer that serves as a worker machine in a Kubernetes cluster. Each
node has a Kubelet, which is an agent for managing the node and communicating with the Kubernetes
master. The node should also have tools for handling container operations, such as Docker or rkt. A
Kubernetes cluster that handles production traffic should have a minimum of three nodes.

When you deploy cRPD on Kubernetes, the primary starts the application containers. The primary
schedules the containers to run on the cluster's nodes. The nodes communicate with the primary using
the Kubernetes API, which the primary exposes. End users can also use the Kubernetes API directly to
interact with the cluster.

A Pod always runs on a Node. A Node is a worker machine in Kubernetes and might be either a virtual
or a physical machine, depending on the cluster. Each Node is managed by the Primary. A Node can
have multiple pods, and the Kubernetes primary automatically handles scheduling the pods across the
Nodes in the cluster.

Every Kubernetes Node runs at least:

e Kubelet, a process responsible for communication between the Kubernetes primary and the Node; it
manages the Pods and the containers running on a machine.

e A container runtime (like Docker, rkt) responsible for pulling the container image from a registry,
unpacking the container, and running the application.

To create minikube cluster:

1. Run the following command to verify the minikube version:

minikube version

2. Run the following command to start the cluster:

minikube start

3. Run the following command to verify if kubectl is installed:

kubectl version

4. Run the following command to view the cluster details:

kubectl cluster-info

5. Run the following command to view the nodes in the cluster:

kubectl get nodes

Download cRPD Docker Image

Prerequisites

e Before you import the cRPD software, ensure that Docker is installed on the Linux host and that the
Docker Engine is running.

e Ensure to register with Juniper Support before you download the cRPD software.
To download the docker image:

1. Login to the Juniper Docker registry using the credentials provided during the sales fulfillment
process for cRPD.

a. Create the file -passwd.txt and copy the access token excluding the quotes provided by Juniper
customer care team.

b. Login to enterprise hub using the following command:

root@ubuntu-vmi8$ cat passwd.txt | docker login -u"<registered-email-id>" --password-stdin
enterprise-hub.juniper.net:443

For example, root@ubuntu-vm18$ cat passwd.txt | docker login -u user@domain.com --password-
stdin enterprise-hub.juniper.net:443

2. Pull the docker image from the download site using the following command:

root@dc-rpd-01# docker pull enterprise-hub.juniper.net:443/crpd-docker-prod/crpd:<release tag>

https://www.juniper.net/documentation/us/en/software/junos/junos-install-upgrade/topics/topic-map/prepare-sotware-install-and-upgrade.html#topic-map_x32_sxt_txb

For example,

root@ubuntu-vm18:~# docker pull enterprise-hub.juniper.net:443/crpd-docker-prod/crpd:22.3R1
3. Verify images in docker image repository.

root@dc-rpd-01# docker images

REPOSITORY

TAG IMAGE 1D CREATED SIZE
enterprise-hub. juniper.net:443/crpd-docker-prod/crpd

latest 5d3c29ee4521 3 months ago 550MB
enterprise-hub. juniper.net:443/crpd-docker-prod/crpd

22.3R1 5dfddabea2de 5 months ago 461MB

Create a cRPD Pod Using Deployment

A Kubernetes Pod is a group of one or more Containers, tied together for the purposes of administration
and networking. A Kubernetes Deployment checks on the health of your Pod and restarts the Pod'’s
Container if it terminates. Deployments are the recommended way to manage the creation and scaling
of Pods.

When you describe a desired state in a Deployment, and the Deployment Controller changes the actual
state to the desired state. You can use Deployments to create new ReplicaSets. Alternatively, you can
remove existing Deployments and adopt their resources with new Deployments.

1. Create the crpd.yaml file on Kubernetes-primary and add the following text content:

apiVersion: apps/vl
kind: Deployment
metadata:
name: crpd
namespace: default
labels:
app: crpd
spec:
selector:
matchLabels:
app: crpd

template:
metadata:
labels:
app: crpd
annotations:
deployment.kubernetes.io/revision: "1"
generation: 2
spec:
containers:
- name: crpd
image: "enterprise-hub.juniper.net/crpd-docker-prod/crpd:20.1R1.11"
imagePullPolicy: ""
imagePullSecrets:

- name: routing-registry

. Save the crpd.yaml file to create the cRPD Pod.

root@kubernetes-master:~# kubectl create -f crpd.yaml

deployment.apps/crpd created

. Run the following command to view the list of existing Pods:

root@kubernetes-master:~# kubectl get pods

NAME READY STATUS RESTARTS AGE
crpd-5fc4fd79df-579cn 1/1 Running 0 11s

. Run the following command to see the containers in the Pod and the images used to build them:

root@kubernetes-master:~# kubectl describe pod crpd

Name: crpd-5fc4fd79df-579cn
Namespace: default

Priority: 0

Node: ix-crpd-01/10.102.70.153

Start Time: Mon, 28 Dec 2020 19:12:33 +0000
Labels: app=crpd

pod-template-hash=5fc4fd79df
Annotations: deployment.kubernetes.io/revision: 1
Status: Running
IP: 172.17.0.3

IPs:

IP: 172.17.0.3
Controlled By: ReplicaSet/crpd-5fc4fd79df
Containers:
crpd:
Container ID: docker://a211f6993f9ab5793c3de5aaef2c97bab00b991bebd8011947f179e8e915a323
Image: enterprise-hub. juniper.net/crpd-docker-prod/crpd:20.1R1.11
Image ID: docker-pullable://enterprise-hub. juniper.net/crpd-docker-prod/
crpd@sha256:1e82c06654caf47aa22e4a020b8bead2562fa25ba7abe80affab998199ae69ab
Port: <none>
Host Port: <none>
State: Running
Started: Mon, 28 Dec 2020 19:12:55 +0000
Ready: True
Restart Count: @
Environment: <none>
Mounts:

/var/run/secrets/kubernetes.io/serviceaccount from default-token-xcpf7 (ro)

Conditions:
Type Status
Initialized True
Ready True
ContainersReady True
PodScheduled True
Volumes:
default-token-xcpf7:
Type: Secret (a volume populated by a Secret)

SecretName: default-token-xcpf7
Optional: false
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute op=Exists for 300s
node.kubernetes.io/unreachable:NoExecute op=Exists for 300s
Events:
Type Reason Age From Message
Normal Scheduled 97s default-scheduler Successfully assigned default/
crpd-5fc4fd79df-579¢cn to ix-crpd-01
Normal Pulled 79s kubelet Container image "enterprise-hub.juniper.net/
crpd-docker-prod/crpd:20.1R1.11" already present on machine
Normal Created 74s kubelet Created container crpd
Normal Started 72s kubelet Started container crpd

Create a cRPD Pod Using YAML

A Pod is the basic execution unit of a Kubernetes application-the smallest and simplest unit in the
Kubernetes object model that you create or deploy. A Pod represents a unit of deployment: a single
instance of an application in Kubernetes, which might consist of either a single container or a small
number of containers that are tightly coupled and that share resources. Docker is the most common
container runtime used in a Kubernetes Pod.

You can directly create a Pod or indirectly use a Controller in Kubernetes. A Controller can create and
manage multiple Pods. Controllers use a Pod template that you provide to create the Pods. Pod
templates are pod specifications which are included in other objects, such as Replication Controllers,
Jobs, and DaemonSets.

To create the cRPD pod using the YAML file

1. Create the crpd.yaml file on Kubernetes-primary add the following text content:

apiVersion: vi
kind: Pod
metadata:
name: crpd
labels:
app: crpd
spec:
containers:
- name: crpd
image: "enterprise-hub. juniper.net/crpd-docker-prod/crpd:20.1R1.11"
imagePullPolicy: ""
ports:
- containerPort: 179
securityContext:

privileged: true

2. Save the crpd.yaml file to create the crpd Pod.

root@kubernetes-master:~# kubectl create -f crpd.yaml

pod/crpd created

3. Run the following command to view the list of existing Pods:

root@kubernetes-master:~# kubectl get pods

NAME READY STATUS RESTARTS AGE
crpd 1/1 Running 0 18h
crpd-5fc4fd79df-xr8f5 1/1 Running 0 19h

4. Run the following command to see the containers in the Pod and the images used to build them:

root@kubernetes-master:~# kubectl describe pod crpd

Name : crpd
Namespace: default
Priority: 0
PriorityClassName: <none>
Node: kubernetes-slave/10.102.183.130
Start Time: Thu, 09 May 2019 13:38:33 -0700
Labels: app=crpd
Annotations: <none>
Status: Running
IP: 10.244.1.9
Containers:
crpd:
Container ID: docker://cc7e9187ad2d482420b3afc90843443a318abb3f354dabbf2dabd4c5f7b791cc
Image: crpd
Image ID: docker://
sha256: 1bc4b1c99f81f7d88b73a04f9426e360ae2ccIead330442e633ab6ebdfecddafod
Ports: 179/TCP
Host Ports: 0/TCP, @/TCP
State: Running
Started: Thu, 09 May 2019 13:38:36 -0700
Ready: True
Restart Count: @
Environment: <none>
Mounts:

/var/run/secrets/kubernetes.io/serviceaccount from default-token-ncktj (ro)

Conditions:
Type Status
Initialized True
Ready True

ContainersReady True

PodScheduled True

Volumes:
default-token-ncktj:
Type: Secret (a volume populated by a Secret)

SecretName: default-token-ncktj
Optional: false
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute for 300s

node.kubernetes.io/unreachable:NoExecute for 300s

Events:
Type Reason Age From Message
Normal Pulled 60s kubelet, kubernetes-slave Container image "crpd-ui32" already

present on machine

Normal Created 60s kubelet, kubernetes-slave Created container crpd

Normal Started 59s kubelet, kubernetes-slave Started container crpd

Normal Scheduled 54s default-scheduler Successfully assigned default/crpd to
kubernetes-slave

. Run the following command to provide an interactive CLI inside the running container:

root@kubernetes-master:~# kubectl exec -it crpd cli

Here you are running a pod with the name crpd and connect to the command line mode.

S==)
Containerized Routing Protocols Daemon (CRPD)
Copyright (C) 2018-19, Juniper Networks, Inc. All rights reserved.
===

. Run the following command to view the routes:

root@crpd: /> show route

inet.0: 2 destinations, 2 routes (2 active, @ holddown, @ hidden)

+ = Active Route, - = Last Active, * = Both
172.17.0.0/16 *[Direct/0] 00:04:31

> via etho
172.17.0.3/32 *[Local/0] 00:04:31

Local via eth@

inet6.0: 3 destinations, 3 routes (3 active, @ holddown, @ hidden)

+ = Active Route, - = Last Active, * = Both

fe80::42:acff:fel1:3/128
*[Local/0] 00:04:31
Local via etho
fe80::5873:acff:feee:fc29/128
*[Local/0] 00:04:31
Local via lsi
ff02::2/128 *[INET6/0] 00:04:31
MultiRecv

Each Pod is meant to run a single instance of a given application. If you want to scale your application
horizontally (such as run multiple instances), you should use multiple Pods, one for each instance. In
Kubernetes, this is generally referred to as replication.

SEE ALSO

‘ Deployments

Create a cRPD Pod Using Job Resource

A Job creates one or more Pods and will continue to retry execution of the Pods until a specified
number of them successfully terminate. When a specified number of successful completions is reached,
the task is complete. You can also use a Job to run multiple Pods in parallel. Deleting a Job will clean up
the Pods it created. Suspending a Job will delete its active Pods until the Job is resumed. To create the
cRPD Pod using the crpd_job.yaml file:

1. Create the crpd_job.yaml file on work nodes and add the following text content:

apiVersion: batch/v1
kind: Job
metadata:

name: crpdjob
spec:

template:

spec:
containers:

- name: crpdjob

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

image: "enterprise-hub.juniper.net/crpd-docker-prod/crpd:20.1R1.11"
imagePullPolicy: ""
command: ["/bin/bash"]
restartPolicy: Never
backoffLimit: 4------------------

2. Save the crpd_job.yaml file to create the crpd Pod.

root@kubernetes-master:~# kubectl create -f crpd_job.yaml

job.batch/crpdjob created

3. Run the following command to view the list of existing Pods:

root@kubernetes-master:~# kubectl get pods

NAME READY STATUS RESTARTS AGE
crpd 11 Running 0 18h
crpd-5fc4fd79df-xr8f5 1/1 Running 0 19h
crpdjob-kdgg4 0/1 Completed 0 19h

4. Run the following command to see the containers in the Pod and the images used to build them:

root@kubernetes-master:~# kubectl describe job/crpdjob

Name : crpdjob

Namespace: default

Selector: controller-uid=5997b1fe-d899-4c59-bffb-4cd9ald72d8b

Labels: controller-uid=5997b1fe-d899-4c59-bffb-4cd9ald72d8b
job-name=crpdjob

Annotations: <none>

Parallelism: 1

Completions: 1

Start Time: Tue, 22 Oct 2019 02:34:25 -0700

Completed At: Tue, 22 Oct 2019 02:34:27 -0700

Duration: 2s

Pods Statuses: @ Running / 1 Succeeded / @ Failed
Pod Template:
Labels: controller-uid=5997b1fe-d899-4c59-bffb-4cd9ald72d8b
job-name=crpdjob
Containers:

crpdjob:

Image: crpd:19.2R1.8
Port: <none>

Host Port: <none>

Command:
/bin/bash
Environment: <none>
Mounts: <none>
Volumes: <none>
Events:
Type Reason Age From Message

Normal SuccessfulCreate 4m36s job-controller Created pod: crpdjob-91spk

Create a cRPD Pod Using DaemonSet

DaemonSet ensures that all (or some) nodes run a copy of a Pod. As nodes are added to the cluster, Pods
are added to them. As nodes are removed from the cluster, those Pods are garbage collected. If the
DaemonSet is deleted, the Pods created are deleted.

Creating the cRPD pod using the crpd_daemonset.yaml file

1. Create the crpd_daemonset.yaml file on work nodes and add the following text content:

apiVersion: apps/vl
kind: DaemonSet
metadata:
name: crpddal
labels:
app: crpdda
spec:
selector:
matchLabels:
app: crpdda
template:
metadata:
labels:
app: crpdda

spec:

hostNetwork: true
nodeSelector:
disktype: ssd
containers:
- name: crpd
image: crpd:19.2R1.8
imagePullPolicy: Never
ports:
- containerPort: 179
- containerPort: 40051

2. Save the dal.yaml file to create the crpd Pod.

root@kubernetes-master:~# kubectl create -f crpd_daemonset.yaml

daemonset.apps/crpddal created

3. Run the following command to view the list of existing Pods:

root@kubernetes-master:~# kubectl get pods

NAME READY STATUS RESTARTS AGE
crpd 1/1 Running 0 18h
crpd-5fc4fd79df-xr8f5 1/1 Running 0 19h
crpdjob-kdgg4 0/1 Completed 0 19h

4. Run the following command to see containers in the Pod and the images used to build them:

root@kubernetes-master:~# kubectl describe pod crpd

Name : crpd

Namespace: default

Priority: 0

PriorityClassName: <none>

Node: kubernetes-slave1/10.49.107.224
Start Time: Wed, 16 Oct 2019 23:20:49 -0700
Labels: app=crpdda

controller-revision-hash=5d88785f7c
pod-template-generation=1

Annotations: <none>

Status: Running
IP: 10.244.1.19
Controlled By: DaemonSet/crpddal
Containers:
crpd:
Container ID: docker://0el13bdaa97c4a6dad6c2fe3008939652031633d44440699ce71f094763a40244
Image: crpd:19.2R1.8
Image ID: docker://
sha256:8e00d0d60309cdddobee63fea865b1e389f803a57b1239386€03b31a01146dbf
Ports: 179/TCP, 40051/TCP
Host Ports: 0/TCP, Q/TCP
State: Running
Started: Wed, 16 Oct 2019 23:20:51 -0700
Ready: True
Restart Count: @
Environment: <none>
Mounts:

/var/run/secrets/kubernetes.io/serviceaccount from default-token-5chxw (ro)

Conditions:
Type Status
Initialized True
Ready True
ContainersReady True
PodScheduled True
Volumes:
default-token-5chxw:
Type: Secret (a volume populated by a Secret)

SecretName: default-token-5chxw
Optional: false
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: node.kubernetes.io/disk-pressure:NoSchedule
node.kubernetes.io/memory-pressure:NoSchedule
node.kubernetes.io/not-ready:NoExecute
node.kubernetes.io/pid-pressure:NoSchedule
node.kubernetes.io/unreachable:NoExecute

node.kubernetes.io/unschedulable:NoSchedule

Events:
Type Reason Age From Message
Normal Scheduled <unknown> default-scheduler Successfully assigned default/

crpddal-tr85h to kubernetes-slavel

Normal Pulled

already present on machine

Normal Created
Normal Started

25s kubelet, kubernetes-slavel Container image "crpd:19.2R1.8"
24s kubelet, kubernetes-slavel Created container crpd
24s kubelet, kubernetes-slavel Started container crpd

root@kubernetes-master:~# kubectl describe pod crpd-5fc4fd79df-xr8f5

Name:

Namespace:
Priority:
PriorityClassName:
Node:

Start Time:
Labels:

Annotations:
Status:
IP:
Controlled By:
Containers:
crpd:
Container ID:
Image:
Image ID:

crpd-5fc4fd79df-xr8f5

default

0

<none>
kubernetes-slave2/10.49.107.220
Wed, 16 Oct 2019 23:20:53 -0700
app=crpdda
controller-revision-hash=5d88785f7c
pod-template-generation=1
<none>

Running

10.244.2.19

DaemonSet/crpddal

docker://296e68358a6b85a92216954b1f703315eebd2b21f3ffacf91dof197ab7da21ee
crpd:19.2R1.8
docker://

sha256:82d848c70c24b225f c2ebfabc39c123153ddde7e3bd5ed408761537c02693047

Ports:

Host Ports:

State:
Started:

Ready:

Restart Count:

Environment:

Mounts:

179/TCP, 40051/TCP

0/TCP, 0/TCP

Running

Wed, 16 Oct 2019 23:20:56 -0700
True

0

<none>

/var/run/secrets/kubernetes.io/serviceaccount from default-token-5chxw (ro)

Conditions:
Type
Initialized
Ready
ContainersReady
PodScheduled

Status
True
True
True
True

Volumes:
default-token-5chxw:

Type: Secret (a volume populated by a Secret)

SecretName: default-token-5chxw

Optional: false
QoS Class: BestEffort
Node-Selectors: <none>

Tolerations: node.kubernetes.
node.kubernetes.
node.kubernetes.
node.kubernetes.
node.kubernetes.

node.kubernetes.

io/disk-pressure:NoSchedule
io/memory-pressure:NoSchedule
io/not-ready:NoExecute
io/pid-pressure:NoSchedule
io/unreachable:NoExecute

io/unschedulable:NoSchedule

Events:
Type Reason Age From Message
Normal Scheduled <unknown> default-scheduler Successfully assigned default/

crpddal-v48lc to kubernetes-slave2

Normal Pulled 30s
already present on machine
Normal Created 30s
Normal Started 29s

kubelet, kubernetes-slave2 Container image "crpd:19.2R1.8"

kubelet, kubernetes-slave2 Created container crpd

kubelet, kubernetes-slave2 Started container crpd

Each Pod is meant to run a single instance of a given application. If you want to scale your application

horizontally (such as run multiple instances), you should use multiple Pods, one for each instance. In

Kubernetes, this is generally referred to as replication.

SEE ALSO

‘ DaemonSet

Scale cRPD

You can create multiple instances of cRPD based on the demand using the -replicas parameter for the

kubectl run command. Deployment is an object which can own and manage their ReplicaSets.

We should have one pod before scaling.

To scale up:

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/

1. Create the Pod.

root@kubernetes-master:~# kubectl create -f crpd_replicatset.yaml

deployment.apps/crpdref created

2. Create the crpd_replicaSet.yaml file on Kubernetes-primary add the following text content:

apiVersion: apps/v1
kind: Deployment
metadata:
annotations:
deployment.kubernetes.io/revision: "1"
generation: 2
labels:
run: reflector
name: crpdref
namespace: default
spec:
replicas: 2
selector:
matchLabels:
run: reflector
template:
metadata:
labels:
run: reflector
spec:
containers:
- name: reflector
image: "enterprise-hub. juniper.net/crpd-docker-prod/crpd:20.1R1.11"

nn

imagePullPolicy:

3. Run the following command to view the Pods:

root@kubernetes-master:~# kubectl get pods

NAME READY STATUS RESTARTS AGE

crpdref-76c5c7b884-hxbtr 1/1 Running 0 10s
crpdref-76c5c7b884-wp55c 1/1 Running @ 10s

4. Run the following command to scale the Deployment to four replicas:

root@kubernetes-master:~# kubectl scale deployments crpdref --replicas=4

deployment.apps/crpdref scaled

5. Run the following command to list the deployments:
root@kubernetes-master:~# kubectl get deployments
6. Run the following command to check the number of pods changed:

root@kubernetes-master:~# kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP
NOMINATED NODE READINESS GATES

crpd 1/1 Running 2 3h35m 172.17.0.2
<none> <none>

crpd-5fc4fd79df-8vxtp 1/1 Running 0 5m43s 172.17.0.9
<none> <none>

crpd-5fc4fd79df-cd5g8 1/1 Running 0 5m43s 172.17.0.8
<none> <none>

crpd-5fc4fd79df-hmm5q 1/1 Running 0 5m43s 172.17.0.7
<none> <none>

crpd-5fc4fd79df-xr8f5 1/1 Running 2 23h 172.17.0.3
<none> <none>

crpdref-76c5c7b884-dbghp 1/1 Running 0 5mi12s 172.17.0.11
<none> <none>

crpdref-76c5c7b884-h8xks 1/1 Running 0 5mi2s 172.17.0.10
<none> <none>

7. Run the following command to check the details of the Pods:

root@kubernetes-master:~# kubectl describe pods
To scale down:
1. Run the following command to scale down the Service to two replicas:

root@kubernetes-master:~# kubectl scale deployments crpdref --replicas=2

deployment.apps/crpdref scaled

NODE

ix-crpd-01

ix-crpd-01

ix-crpd-01

ix-crpd-01

ix-crpd-01

ix-crpd-01

ix-crpd-01

2. Run the following command to list the deployments:
root@kubernetes-master:~# kubectl get deployments
3. Run the following command to list the number of Pods. You can view the two Pods were terminated:

root@kubernetes-master:~# kubectl get pods -o wide

Roll Update of cRPD Deployment

You can update Pod instances with new versions. Rolling updates allow Deployments update to take
place with zero downtime by incrementally updating Pods instances with new ones. The new Pods are
scheduled on Nodes with available resources. Rollback updates promote an application from one
environment to another with continuous integration and continuous delivery of applications with zero
downtime. In Kubernetes, updates are versioned, and any Deployment update can be reverted to
previous stable version.

To update cRPD deployment with new image and preserve the configuration after update:

1. Create the cRPD Pod.
root@crpd-01:~# kubectl kubectl create -f crpd_deploy.yaml

deployment.apps/crpd-deploy created

2. Create the crpd_deploy.yaml file on Kubernetes-primary add the following text content:

apiVersion: apps/vl
kind: Deployment
metadata:
name: crpd-deploy
labels:
app: crpd
spec:
replicas: 2
selector:
matchLabels:
app: crpd
template:
metadata:
labels:

app: crpd
spec:
containers:

- name: crpd

image: "enterprise-hub.juniper.net/crpd-docker-prod/crpd:19.4R1.10"

imagePullPolicy:
ports:
- containerPort: 179

- containerPort: 40051------------------

Run the following command to list the deployments:

root@kubernetes-master:~# kubectl get deployments

Run the following command to list the running pods:

root@kubernetes-master:~# kubectl get pods

NAME READY STATUS

crpd-deploy-6c489b5b8b-4tggn 1/1 Running
crpd-deploy-6c489b5b8b-vp7df 1/1 Running

root@kubernetes-master:~# kubectl get pods -o wide

NAME READY STATUS
NODE NOMINATED NODE READINESS GATES

crpd-deploy-6c489b5b8b-4tagn 1/1 Running

crpd-01 <none> <none>
crpd-deploy-6c489b5b8b-vp7df 1/1 Running
crpd-01 <none> <none>

RESTARTS

RESTARTS

AGE

9m20s
9m21s

AGE IP

6m57s 172.17.0.10 ix-

6m58s 172.17.0.11 ix-

Run the following command to view the current image version of the cRPD:

root@kubernetes-master:~# kubectl exec -it crpd-deploy4-674b4fcfb5-8xc5d -- cli

Containerized Routing Protocols Daemon (CRPD)

Copyright (C) 2018-19, Juniper Networks, Inc. All rights reserved.

6. Run the following command to view the current image version:

root@crpd-deploy4-674b4fcfb5-8xc5d> show version

Hostname: crpd-deploy4-674b4fcfb5-8xc5d

Model: cRPD

Junos: 20.4R1.12

cRPD package version : 20.4R1.12 built by builder on 2020-12-20 13:35:15 UTC

7. Run the following command to update the image of the application to new version:

root@crpd-deploy4-674b4afcfb5-8xchd: ~$ sudo kubectl edit deployment/crpd-deploy4

containers:
- image: enterprise-hub.juniper.net/crpd-docker-prod/crpd:20.1R1.11
imagePullPolicy: Never

8. Run the following command to confirm if the image is updated:

root@crpd-deploy4-674b4afcfh5-8xchd: ~$ sudo kubectl rollout status deployment/crpd-deploy4

deployment "crpd-deploy4" successfully rolled out

9. Run the following command to view the Pods:

root@crpd-deploy4-674b4afcfb5-8xchd> kubectl get pods

NAME READY STATUS RESTARTS AGE
crpd-deploy4-6ff476994d-8z2kr 1/1 Running 0 38s
crpd-deploy4-6ff476994d-gxwrz 1/1 Running 0 41s

10. Run the following command to view the image version of the cRPD:

root@kubernetes-master:~$ sudo kubectl exec -it crpd-deploy4-6ff476994d-8z2kr -- bash

Containerized Routing Protocols Daemon (CRPD)
Copyright (C) 2018-19, Juniper Networks, Inc. All rights reserved.

11. Run the following command to view the current image version:

root@crpd-deploy4-6ff476994d-8z2kr> show version

Hostname: crpd-deploy4-674b4fcfb5-8xc5d

Model: cRPD

Junos: 20.4R1.12

cRPD package version : 20.4R1.12 built by builder on 2020-12-20 13:35:15 UTC

cRPD Pod Deployment with Allocated Resources

Pods provide two kinds of shared resources, namely networking and storage for the containers. When
containers in a Pod communicate with entities outside the Pod, they must coordinate how they use the
shared network resources (such as ports). Within a Pod, containers communicate through localhost using
an IP address and port.

Containers within the Pod view the system hostname as same as the configured name for the Pod.

Any container in a Pod can enable privileged mode, using the privileged flag on the container spec. This is
useful for containers needing operating system administrative capabilities like network stack
manipulation or hardware device access. Processes within a privileged container have almost the same
privileges that are available to processes outside a container.

To view the Pod deployment with resources:

1. Create the crpd_res.yaml file on Kubernetes-primary add the following text content:

apiVersion: v1
kind: Pod
metadata:
name: crpdres
labels:
app: crpd
spec:
containers:
- name: crpd
image: "enterprise-hub. juniper.net/crpd-docker-prod/crpd:20.1R1.11"
imagePullPolicy: ""
ports:
- containerPort: 179
- containerPort: 40051

resources:
limits:
memory: "200Mi"
cpu: "700m"
requests:
memory: "200Mi"
cpu: "700m"
securityContext:

privileged: true

. Save the crpd_res.yaml file to create the crpd Pod.

root@kubernetes-master:~# kubectl create -f crpd_res.yaml

pod/crpdres created

. Run the following command to view the list of existing Pods:

root@kubernetes-master:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
crpdres 1/1 Running 0 1s

. Run the following command to see the containers in the Pod and the images used to build them:

root@kubernetes-master:~# kubectl describe pod crpres

Name: crpdres
Namespace: default
Priority: 0
PriorityClassName: <none>
Node: kubernetes-slave1/10.49.107.224
Start Time: Thu, 17 Oct 2019 00:28:44 -0700
Labels: app=crpd
Annotations: <none>
Status: Running
IP: 10.244.1.22
Containers:
crpd:

Container ID: docker://a1ae9791e593b7caea83907d841519bc47744db372b10d006d556308b2e03dbc
Image: crpd:19.2R1.8

Image ID: docker://
sha256:8e00d0d60309cd0dobee63fead865b1e389f803a57b1239386e€03b31a01146dbf

Ports: 179/TCP, 40051/TCP
Host Ports: 0/TCP, Q/TCP
State: Running

Started: Thu, 17 Oct 2019 00:28:46 -0700
Ready: True
Restart Count: @
Limits:

cpu: 700m

memory: 200Mi
Requests:

cpu: 700m

memory: 200Mi

Environment: <none>
Mounts:
/var/run/secrets/kubernetes.io/serviceaccount from default-token-5chxw (ro)

Conditions:
Type Status
Initialized True
Ready True
ContainersReady True
PodScheduled True
Volumes:
default-token-5chxw:
Type: Secret (a volume populated by a Secret)

SecretName: default-token-5chxw
Optional: false
QoS Class: Guaranteed
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute for 300s

node.kubernetes.io/unreachable:NoExecute for 300s

Events:
Type Reason Age From Message
Normal Scheduled <unknown> default-scheduler Successfully assigned default/

crpdres to kubernetes-slavel

Normal Pulled 13s kubelet, kubernetes-slavel Container image "crpd:19.2R1.8"
already present on machine

Normal Created 13s kubelet, kubernetes-slavel Created container crpd

Normal Started 12s kubelet, kubernetes-slavel Started container crpd

cRPD Pod Deployment Using Mounted Volume

An emptyDir is a type of volume supported on Kubernetes. It is created when a Pod is assigned to a node
and exists as long as the Pod runs on that node. As the name says, the emptyDir volume is initially empty.
All containers in the Pod can read and write the same files in the emptyDir volume, though that volume
can be mounted at the same or different paths in each container. When a Pod is removed from a node
for any reason, the data in the emptyDir is deleted permanently.

To view cRPD Pod deployment by mounting the storage path on Kubernetes:

1. Create the crpd_volume.yaml file on Kubernetes-primary add the following text content:

apiVersion: vi
kind: Pod
metadata:
name: crpd-volume
labels:
app: crpd
spec:
containers:
- name: crpd
image: crpd:19.2R1.8
imagePullPolicy: Never
ports:
- containerPort: 179
- containerPort: 40051
volumeMounts:
- name: crpd-storage
mountPath: /var/log/crpd-storage
volumes:
- name: crpd-storage
emptyDir: {3}

2. Save the crpd_volume.yaml file to create the crpd Pod.

root@kubernetes-master:~# kubectl create -f crpd_volume.yaml

pod/crpd-volume created

3. Run the following command to view the list of existing Pods:

root@kubernetes-master:~# kubectl get pods
NAME READY STATUS RESTARTS AGE
crpd-volume 11 Running 0 5s

4. Run the following command to see the containers in the Pod and the images used to build them:

root@kubernetes-master:~# kubectl describe pod crpd-volume

Name : crpd-volume
Namespace: default
Priority: 0
PriorityClassName: <none>
Node: kubernetes-slave2/10.49.107.220
Start Time: Thu, 17 Oct 2019 00:39:59 -0700
Labels: app=crpd
Annotations: <none>
Status: Running
IP: 10.244.2.20
Containers:
crpd:
Container ID: docker://593aa6f279132cc2e0a0832cff07ad74db2696472c2d72596a177f1e5f912377
Image: crpd:19.2R1.8
Image ID: docker://
sha256:82d848c70c24b225fc2ebfabc39c123153ddde7e3bd5ed408761537c02693047
Ports: 179/TCP, 40051/TCP
Host Ports: 0/TCP, Q/TCP
State: Running
Started: Thu, 17 Oct 2019 00:40:02 -0700
Ready: True
Restart Count: @
Environment: <none>
Mounts:

/var/log/crpd-storage from crpd-storage (rw)
/var/run/secrets/kubernetes.io/serviceaccount from default-token-5chxw (ro)

Conditions:
Type Status
Initialized True
Ready True

ContainersReady True
PodScheduled True

Volumes:

crpd-storage:

Type: EmptyDir (a temporary directory that shares a pod's lifetime)

Medium:
default-token-5chxw:
Type: Secret (a volume populated by a Secret)
SecretName: default-token-5chxw
Optional: false
QoS Class: BestEffort
Node-Selectors: <none>

Tolerations: node.kubernetes.io/not-ready:NoExecute for 300s

node.kubernetes.io/unreachable:NoExecute for 300s

Events:

Type Reason Age From

Normal Scheduled <unknown> default-scheduler
crpd-volume to kubernetes-slave2

Normal Pulled 10s kubelet, kubernetes-slave2
already present on machine

Normal Created 9s kubelet, kubernetes-slave2

Normal Started 9s kubelet, kubernetes-slave2

. Run the following command to execute the cRPD instance:

root@kubernetes-master:~# kubectl exec -it crpd-volume bash

Containerized Routing Protocols Daemon (CRPD)

Message

Successfully assigned default/

Container image "crpd:19.2R1.8"

Created container crpd

Started container crpd

Copyright (C) 2018-19, Juniper Networks, Inc. All rights reserved.

. Run the following command to view the files in the path:

root@crpd-volume:/# Is

bin boot config dev etc home 1lib 1ib64 media mnt opt proc root run sbin srv

sys tmp usr var

. Run the following command to navigate to the storage path:

root@crpd-volume:/# cd var/log/crpd-storage/

root@crpd-volume:/var/log/crpd-storage/#

Upgrade cRPD

IN THIS SECTION

Upgrade Software | 58

A software update is typically a release containing enhancements to the current version. An upgrade is a
whole new version of software that represents a significant change or major improvement.

Upgrade Software

You can upgrade cRPD software by launching a new container using the newer image and attaching the
persistent config volumes. Separate volumes are used to store configs and logs. They are persistent even
after the cRPD is stopped.

To upgrade cRPD:

1. Ensure to import the latest cRPD image. See "Install cRPD on Docker" on page 20.
2. Load the cRPD software image.
root@crpdo1:~# docker load -i junos-routing-crpd-docker-20.4R1.12.tgz
3. Stop the existing container.
docker stop crpd01
4. Run the container using the latest version of cRPD.

docker run --rm --detach --name crpdO1 -h crpd01 --privileged -v crpd01-config:/config -v crpd01-
varlog:/var/log -m 2048MB --memory-swap=2048MB -it crpd:20.4R1.12

5. Enter into the configuration mode.

root@crpdo1:~# docker exec -it crpd01 cli

root@crpdo1> show version

Hostname: crpdo1
Model: cRPD

Junos: 20.4R1.12
cRPD package version : 20.4R1.12 built by builder on 2020-12-20 13:35:15 UTC

‘ Install cRPD on Docker | 20

Install and Configure cRPD on SONIC

IN THIS SECTION

How to Load and Start cRPD on SONIC | 59

This section describes how to load and configure cRPD as a routing stack on Juniper Networks'
QFX5210 and QFX5200 switches running Software for Open Networking in the Cloud (SONIC) network
operating system.

To install SONIC on QFX5210 and QFX5200 switches, see Install and Upgrade SONiC on Juniper
Networks QFX5210 and QFX5200 Switches

How to Load and Start cRPD on SONiIC

To load the cRPD package on SONIC, you need to:

e Download the cRPD package from Juniper's software downloads page at https:/support.juniper.net/
support/downloads/. The cRPD package filename for example is junos-routing-crpd-
docker-20.3R1.8.tgz

Transfer the cRPD package to your QFX5210 or QFX5200 switches using scp or sftp FTP.

The following sections explain how to load and start cRPD on SONIC for QFX5210 or QFX5200
switches:

https://github.com/Azure/sonic-buildimage/blob/master/platform/broadcom/sonic-platform-modules-juniper/README.md
https://github.com/Azure/sonic-buildimage/blob/master/platform/broadcom/sonic-platform-modules-juniper/README.md
https://support.juniper.net/support/downloads/
https://support.juniper.net/support/downloads/

Load the cRPD Image into Docker

To load the cRPD image into docker, use the docker load -i junos-routing-crod-docker-20.3R1.8. tgz command
as shown below:

user@host:~$ docker load -i junos-routing-crpd-docker-20.3R1.8.tgz
b187ff70b2e4: Loading layer
5930c9e5703f: Loading layer
c64c52ea2c16: Loading layer
ddc500d84994: Loading layer
f76668b91ed5: Loading layer
cefbbbf6a84d: Loading layer
19ed2664dd77: Loading layer
2f362bdab81b: Loading layer
0d625ccfad52: Loading layer
75f1d83621fc: Loading layer
bba7d2bacea8: Loading layer
911181312301: Loading layer
98175a8ad5ch: Loading layer
al13daea3487: Loading layer
b224ed0cc92d: Loading layer
48db2eb5713d: Loading layer
1f620dc1de46: Loading layer
b9722b673d30: Loading layer
cc8250623a79: Loading layer
5d3819eaf658: Loading layer
e7ffff983953: Loading layer
4054102bacd4: Loading layer
9479c967844e: Loading layer
91a4575e8d76: Loading layer
d0aba2dd@145: Loading layer
25bb582cc7dc: Loading layer
Loaded image: crpd:20.3R1.8

user@host:~$

>] 65.58MB/65.58MB
>] 991.7kB/991.7kB
>] 15.87kB/15.87kB
>] 3.072kB/3.072kB
>] 40.84MB/40.84MB
>] 7.68kB/7.68kB
>] 134.5MB/134.5MB
>] 13.82kB/13.82kB
>] 3.072kB/3.072kB
>] 3.584kB/3.584kB
>] 3.584kB/3.584kB
>] 3.584kB/3.584kB
>] 3.584kB/3.584kB

3

3

3

2

>] 3.584kB/3.584kB
>] 3.584kB/3.584kB
>] 3.584kB/3.584kB
>] 2.56kB/2.56kB

>] 30.72kB/30.72kB
>] 6.656kB/6.656kB
>] 3.584kB/3.584kB
>] 4.096kB/4.096kB
>] 4.096kB/4.096kB
>] 4.096kB/4.096kB
>] 4.096kB/4.096kB
>] 4.096kB/4.096kB
>] 22.53kB/22.53kB

—m r— /oo ;o

Verify that cRPD Image is Properly Loaded

user@host:~$ docker images

REPOSITORY

CREATED

crpd

second ago 374MB
docker-fpm-frr

second ago 335MB
docker-fpm-frr

second ago 335MB
docker-syncd-brcm

second ago 436MB
docker-syncd-brcm

second ago 436MB
docker-router-advertiser
second ago 289MB
docker-router-advertiser
second ago 289MB
docker-sonic-mgmt-framework
second ago 431MB
docker-sonic-mgmt-framework
second ago 431MB
docker-platform-monitor
second ago 357MB
docker-platform-monitor
second ago 357MB
docker-sflow

second ago 315MB
docker-sflow

second ago 315MB
docker-11dp-sv2

second ago 312MB
docker-11dp-sv2

second ago 312MB
docker-dhcp-relay

second ago 299MB
docker-dhcp-relay

second ago 299MB

docker-database

SIZE

TAG

21.2R1.10

HEAD.0-dirty-20201027

latest

HEAD.0-dirty-20201027

latest

HEAD.0-dirty-20201027

latest

HEAD.0-dirty-20201027

latest

HEAD.Q-dirty-20201027

latest

HEAD.Q-dirty-20201027

latest

HEAD.Q-dirty-20201027

latest

HEAD.0-dirty-20201027

latest

HEAD.0-dirty-20201027

.160709

.160709

.160709

.160709

.160709

.160709

.160709

.160709

.160709

IMAGE ID

f9b634369718

94d35b3d6ff8

94d35b3d6ff8

ef2f75e9156b

ef2f75e9156b

d32efd117a97

d32efd117a97

b6ebafc68f18

b6ebafc68f18

ce3c952de93d

ce3c952de93d

05278fddee19

05278fddee19

7f54d84f2da7

7f54d84f2da7

f86f0bce3b09

f86f0bce3b09

6daabaldf857

Less

Less

Less

Less

Less

Less

Less

Less

Less

Less

Less

Less

Less

Less

Less

Less

Less

Less

To verify if the cRPD image is properly loaded, use the docker images command as shown below:

than

than

than

than

than

than

than

than

than

than

than

than

than

than

than

than

than

than

second ago 289MB

docker-database latest 6daabaldf857 Less than a
second ago 289MB
docker-teamd HEAD.0-dirty-20201027.160709 7596d1a2c302 Less than a
second ago 315MB
docker-teamd latest 7596d1a2c302 Less than a
second ago 315MB
docker-snmp-sv2 HEAD.0-dirty-20201027.160709 c258dfe91775 Less than a
second ago 348MB
docker-snmp-sv2 latest c258dfe91775 Less than a
second ago 348MB
docker-orchagent HEAD.0-dirty-20201027.160709 3d602bee0ech Less than a
second ago 333MB
docker-orchagent latest 3d602beedech Less than a
second ago 333MB
docker-nat HEAD.0-dirty-20201027.160709 0e29ba4560e9 Less than a
second ago 316MB
docker-nat latest 0e29ba4560e9 Less than a
second ago 316MB
docker-sonic-telemetry HEAD.0-dirty-20201027.160709 521590e31e7d Less than a

second ago 353MB
docker-sonic-telemetry latest 521590e31e7d Less than a
second ago 353MB

user@host:~$

Create and Start the cRPD Container

This section describes how to create, start, and access the cRPD container.

To create the cRPD container, use the docker create --name crpd -h crpd --net=host --privileged -it
crpd:20.3R1.8 b7444647abb7977e0b7eaa884ace8b47hab3632f2f3f67091d9734a58fa686b command as shown below

user@host:~$ docker create --name crpd -h crpd --net=host --privileged -it crpd:20.3R1.8
b7444647abb7977e0b7eaa884ace8b47bab3632ff2f3f67091d9734a58fa686b

user@host:~$

You need to stop zebra and bgpd processes on the BGP container by running the docker exec bgp
supervisorctl stop zebra bgpd command as shown below:

user@host:~$ docker exec bgp supervisorctl stop zebra bgpd

zebra: stopped

bgpd: stopped
user@host:~$

To start the cRPD container, use the docker start crpd command as shown below:

user@host:~$ docker start crpd
crpd
user@host:~$

To access the cRPD container, use the docker exec -it crpd command as shown below:

user@host:~$ docker exec -it crpd cli

root@crpd>

Enable RPD connection to fpmsyncd

To enable RPD connection to fpmsyncd, you need to enter the configuration mode and enable fib-agent
at the [edit routing-options forwarding-table] hierarchy level as shown below:

root@crpd> configure

Entering configuration mode

[edit]

root@crpd# set routing-options forwarding-table fib-agent
[edit]

root@crpd# commit and-quit

commit complete

Exiting configuration mode

root@crpd>

Once cRPD is up and running, you can configure BGP from the cRPD CLI. The following is a sample BGP
configuration:

user@host:~$ docker exec -it crpd cli
root@crpd> configure

Entering configuration mode

root@crpd# show protocols

bgp {
group EBGPv4 {

type external;

neighbor 192.168.1.2 {
description <neighbor_description>;
local-address 192.168.1.4;
peer-as 65000;

CHAPTER

Managing cRPD

IN THIS CHAPTER

Syslog Support on cRPD | 66
Manage cRPD | 70
Establish an SSH Connection for a NETCONF Session and cRPD | 79

Syslog Support on cRPD

IN THIS SECTION

Directing System Log Messages to Remote Machine | 68

Configure Server Authentication | 68

Eventd provides event interface to cRPD processes (RPD/AUDITD/MGD) and supports automated

event policies execution.

Eventd is a process that supports forwarding syslog messages to a configured remote host in
containerized RPD (cRPD). You can configure syslog messages using the following options:

Format Option

file filename

match-strings

structured data

host Ipaddress

Description

Eventd writes the syslog messages
to the file. You can create a file and
forward all the syslog messages to
the file based on the priority using
the command set system syslog
file <filename> facility priority.

You can filter the messages based
on particular string message using
the command set system syslog
file test match-strings.

You can log the system messages in
structured format using the
command set system syslog file
test structured data.

Host option allows you to log the
message in remote host using the
command set system syslog host

<ipaddress> <facility> <priority>.

(Continued)

Format Option

match-strings

structured-data

log-prefix

source address

source address Ipaddress

Description

Match string option with host
allows you to filter messages based
on particular match string using the
command set system syslog host
<ipaddress> match-strings.

Structured format option at host
level allows to log the message to
remote host in structured format
using the command set system
syslog host <ipaddress> structured-
data.

Log prefix option at host level allow
you to add text string for every
syslog message that is forwarded to
remote host using the command
set system syslog host <ipaddress>
log-prefix "<string-name>".

Source address option at host level
allows you to log the syslog to the
remote host with the specified valid
source address using the command
set system syslog host <ipaddress>
source address <ipaddress>
<facility> <priority>

Source address option at syslog
level allows you to log the syslog to
the remote host with specified
source address using the command
set system syslog source address
<ipaddress> file <file-name>
<facility> <priority>

Directing System Log Messages to Remote Machine

To direct the system log messages to a remote machine, include the host statement at the [edit system
syslog] hierarchy level:

To send system log messages to a remote machine, use the host Aostname statement. Specify the
machine's IPv4/IPvé address or fully qualified hostname for WAN and data ports. The remote machine
must be running the standard syslogd utility. In each system log message directed to the remote machine,
the hostname of the local Routing Engine appears after the timestamp to indicate that it is the source
for the message.

[edit system syslog]
host (hostname) {
facility severity;
explicit-priority;
facility-override facility;
log-prefix string;
match "regular-expression";
}

source-address source-address;

For the list of logging facilities and severity levels to configure under the host statement, see Specifying
the Facility and Severity of Messages to Include in the Log.

To record facility and severity level information in each message, include the explicit-priority statement.
For more information, see Including Priority Information in System Log Messages.

For information about the match statement, see Using Strings and Regular Expressions to Refine the Set
of Logged Messages.

When directing messages to remote machines, you can include the source-address statement to specify
the IP address of the switch that is reported in the messages as their source. In each host statement, you
can also include the facility-override statement to assign an alternative facility and the log-prefix
statement to add a string to each message.

Configure Server Authentication

To configure the Server Authentication in the device:

1. Specify the syslog server that receives the system log messages. You can specify the IP address of
the syslog server or a fully qualified hostname.

https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/system-logging-on-a-single-chassis-system.html#id-using-strings-and-regular-expressions-to-refine-the-set-of-logged-messages
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/system-logging-on-a-single-chassis-system.html#id-using-strings-and-regular-expressions-to-refine-the-set-of-logged-messages
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/system-logging-on-a-single-chassis-system.html#id-including-priority-information-in-system-log-messages
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/system-logging-on-a-single-chassis-system.html#id-using-strings-and-regular-expressions-to-refine-the-set-of-logged-messages
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/system-logging-on-a-single-chassis-system.html#id-using-strings-and-regular-expressions-to-refine-the-set-of-logged-messages

root@crpd1# set system syslog host 10.102.70.233 any any

. Specify the port number of the syslog server.

root@crpd1# set system syslog host 10.102.70.233 port 10514

. Specify the syslog transport protocol for the device.

root@crpd1# set system syslog host 10.102.70.223 transport udp

. Configure the device to send all log messages.

root@crpd1# set system syslog file filename any any

. In configuration mode, confirm your configuration by using the show system command.

You can view the log messages using the show log messages command.

root@crpd1> show log messages

Sep 19 18:30:21 crpd@1 Kernel: Linux version 5.4.0-196-generic (buildd@lcy@2-amd64-031) (gcc
version 9.4.0 (Ubuntu 9.4.0-1ubuntu1~20.04.2)) #216-Ubuntu SMP Thu Aug 29 13:26:53 UTC 2024
(Ubuntu 5.4.0-196.216-generic 5.4.280)

Sep 19 18:30:21 crpd@1 Kernel: Command line: BOOT_IMAGE=/vmlinuz-5.4.0-196-generic root=/dev/
mapper/ubuntu--vg-ubuntu--1v ro maybe-ubiquity

Sep 19 18:30:21 crpd@1 Kernel: KERNEL supported cpus:

Sep 19 18:30:21 crpd@1 Kernel: Intel Genuinelntel

Sep 19 18:30:21 crpd@1 Kernel: AMD AuthenticAMD

Sep 19 18:30:21 crpd@1 Kernel: Hygon HygonGenuine

Sep 19 18:30:21 crpd@1 Kernel: Centaur CentaurHauls

Sep 19 18:30:21 crpd@1 Kernel: zhaoxin Shanghai

Sep 19 18:30:21 crpd@1 Kernel: Disabled fast string operations

Log File Sample Content

file (System Logging)

syslog (System)

Directing System Log Messages to a Log File
Directing System Log Messages to a User Terminal
Directing System Log Messages to the Console

Specifying an Alternative Source Address for System Log Messages Directed to a Remote Destination

https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/displaying-system-log-files.html#id-log-file-sample-content
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/ref/statement/file-edit-system-syslog.html
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/ref/statement/syslog-edit-system.html
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/directing-system-log-messages-to-a-remote-destination.html#id-directing-system-log-messages-to-a-log-file
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/directing-system-log-messages-to-a-remote-destination.html#id-directing-system-log-messages-to-a-user-terminal
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/directing-system-log-messages-to-a-remote-destination.html#id-directing-system-log-messages-to-the-console
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/directing-system-log-messages-to-a-remote-destination.html#id-specifying-an-alternative-source-address-for-system-log-messages-directed-to-a-remote

Manage cRPD

IN THIS SECTION

Build Topologies | 70

Network Docker Containers | 71
Remove a Bridge | 71

Create an OVS Bridge | 72

Remove Interfaces and Bridges | 73
View Container Processes | 74
Access cRPD CLI and Bash Shell | 74
Pause and Resume Processes Within a cRPD Container | 75
Remove a cRPD Instance | 75

View Docker Statistics and Logs | 76
View Active Containers | 76

Stop the Container | 78

Application management is the life cycle process for software applications to ensure efficient
performance.

Build Topologies

You can use open-vswitch to set up topologies and to connect to docker containers. This controls the
creation of bridges, interface naming, and IP addressing.

To build a topology:

1. Download and install openvswitch-switch utility.
root@ubuntu-vm18:~# apt install openvswitch-switch
2. Navigate to the following path:
root@ubuntu-vm18:~# cd /usr/bin

3. Download ovs-docker with wget:

root@ubuntu-vm18: ~# wget "https:/raw.githubusercontent.com/openvswitch/ovs/master/utilities/ovs-
docker"

4. Change the mode:
root@ubuntu-vm18:~# chmod a+rwx ovs-docker
5. Create the container crpd0O1.

root@ubuntu-vm18:~# docker run --rm --detach --name crpd01 -h crpd01 --net=none --privileged -v
crpd01-config:/config -v crpd01-varlog:/var/log -it enterprise-hub.juniper.net/crpd-docker-prod/
crpd:19.2R1.8

6. Create the container crpd02.

root@ubuntu-vm18:~# docker run --rm --detach --name crpd02 -h crpd02 --net=none --privileged -v
crpd02-config:/config -v crpd02-varlog:/var/log -it enterprise-hub.juniper.net/crpd-docker-prod/
crpd:19.2R1.8

Network Docker Containers

Docker containers are connected using user defined bridges. For detailed documentation on docker
bridge, see .

To create the docker network:

1. Create a bridge my-net.

root@ubuntu-vm18:~# docker network create --internal my-net

The --internal argument prevents the bridge being connected to the host network which is desirable
in some cases. Once a bridge is created, it can be attached or detached to the containers.

2. Connect the two containers using the bridge.

root@ubuntu-vm8:~# docker network connect my-net crpd01
root@ubuntu-vm18:~# docker network connect my-net crpd02

This creates eth1 with a 172.18.0.0/16 subnet on crpd01 and crpd02.

Remove a Bridge

1. Remove a bridge.
root@ubuntu-vm8:~# docker network rm my-net
2. Disconnect the bridge from the containers.

root@ubuntu-vm18:~# docker network disconnect my-net crpd01

root@ubuntu-vm18:~# docker network disconnect my-net crpd02

Create an OVS Bridge

To create an OVS bridge and connect the docker to two containers crpd01 and crpd02:

1. Create a bridge connecting crpd01 and crpd02.
root@ubuntu-vm18:~# ovs-vsctl add-br crpd01-crpd02_1
2. Add interfaces to the bridge.
root@ubuntu-vm18:~# ovs-docker add-port crpd01-crpd02_1 ethl crpd01

root@ubuntu-vm18:~# ovs-docker add-port crpd01-crpd02_1 eth1 crpd02
3. Configure an IP address to the interface.

root@ubuntu-vm8:~# docker exec -d crpd01 ifconfig eth1 10.1.1.1/24

root@ubuntu-vm18:~# docker exec -d crpd02 ifconfig eth1 10.1.1.2/24
4. Configure an IP address to the loopback interface.

root@ubuntu-vm18:~# docker exec -d crpd01 ifconfig lo0 10.255.255.1 netmask 255.255.255.255

root@ubuntu-vm18:~# docker exec -d crpd02 ifconfig lo 10.255.255.2 netmask 255.255.255.255
5. Login to crpdO1.

root@ubuntu-vm18:~# docker exec -it crpd01 bash

Containerized Routing Protocols Daemon (CRPD)
Copyright (C) 2018-19, Juniper Networks, Inc. All rights reserved.
===

6. Verify the interface details.
root@crpdo1:/# ifconfig

eth@: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 172.17.0.2 netmask 255.255.0.0 broadcast 172.17.255.255
inet6 fe80::42:acff:fe11:2 prefixlen 64 scopeid 0x20<link>
ether 02:42:ac:11:00:02 txqueuelen @ (Ethernet)
RX packets 28 bytes 2488 (2.4 KB)
RX errors 0 dropped @ overruns @ frame 0
TX packets 7 bytes 826 (826.0 B)

TX errors @ dropped 0 overruns @ carrier @ collisions 0

eth1l: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.1.1.1 netmask 255.255.255.0 broadcast 10.1.1.255
inet6 fe80::1c2b:50ff:fe9f:6559 prefixlen 64 scopeid 0x20<link>
ether 1e:2b:50:9f:65:59 txqueuelen 1000 (Ethernet)
RX packets 364 bytes 33600 (33.6 KB)
RX errors 0 dropped @ overruns @ frame 0
TX packets 362 bytes 33748 (33.7 KB)
TX errors @ dropped @ overruns @ carrier @ collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 10.255.255.1 netmask 255.255.255.255
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 1000 (Local Loopback)
RX packets @ bytes 0 (0.0 B)
RX errors 0 dropped @ overruns @ frame 0
TX packets @ bytes 0 (0.0 B)
TX errors @ dropped 0 overruns @ carrier @ collisions 0

7. Verify the connection with crpd02 from crpdO1.
root@crpdo1:/# ping 10.1.1.2 -c 2

PING 10.1.1.2 (10.1.1.2) 56(84) bytes of data.

64 bytes from 10.1.1.2: icmp_seq=1 ttl=64 time=0.323 ms

64 bytes from 10.1.1.2: icmp_seq=2 ttl=64 time=0.042 ms

--- 10.1.1.2 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1018ms
rtt min/avg/max/mdev = 0.042/0.182/0.323/0.141 ms

Remove Interfaces and Bridges

To remove interfaces and bridges:

1. Remove the interfaces:

root@ubuntu-vm18:~# ovs-docker del-port crpd01-crpd02_1 ethl R1
2. Remove the bridges:

root@ubuntu-vm18:~# ovs-vsctl del-br crpd01-crpd02_1

View Container Processes

To view container processes in a running cRPD:

Run the docker exec command to view the details about the processes (applications, services, and status)
running on a container.

root@ubuntu-vm18: ~# docker exec crpd01 ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.0 0.0 76996 8060 ? Ss Apr26 0:01 /sbin/init

root 19 0.0 0.2 160392 71520 ? S<s Apr26 0:38 /lib/systemd/systemd-journald
systemd+ 30 0.0 0.0 70616 5236 ? Ss Apr26 0:00 /lib/systemd/systemd-resolved
root 32 0.0 0.0 167404 16324 ? Ssl Apr26 0:00 /usr/bin/python3 /usr/bin/
networkd-dispatcher --run-startup-triggers

syslog 33 0.0 0.0 263036 4164 ? Ssl Apr26 0:05 /usr/sbin/rsyslogd -n
message+ 38 0.0 0.0 49928 4072 ? Ss Apr26 0:00 /usr/bin/dbus-daemon --system --
address=systemd: --nofork --nopidfile --systemd-activation --syslog-only

root 47 0.0 0.0 13020 1852 pts/@ Sst Apr26 0:00 /sbin/agetty -o -p -- \u --
noclear --keep-baud console 115200,38400,9600 xterm

root 52 0.0 0.0 72296 5536 ? Ss Apr26 0:00 /usr/sbin/sshd -D

root 80 0.0 0.0 1453936 13584 ? Ss Apr26 0:01 /usr/sbin/mgd -N

root 86 0.1 0.2 1053572 95040 ? Ssl Apr26 5:58 /usr/sbin/rpd -N

root 87 0.0 0.0 837400 6356 ? Ss Apr26 0:01 /usr/sbin/ppmd -N

root 88 0.0 0.0 842112 6460 ? Ss Apr26 0:01 /usr/sbin/bfdd -N

root 102 0.0 0.0 13244 1832 ttyl Ss+ Apr26 0:00 /sbin/agetty -o -p -- \u --
noclear ttyl linux

root 108 0.0 0.0 18500 3340 pts/1 Ss Apr26 0:00 /bin/bash

root 119 0.0 0.0 739724 11936 pts/1 St Apr26 0:02 cli

root 120 0.0 0.0 1454680 12636 ? Ss Apr26 0:00 /usr/sbin/mgd -N

root 1502 0.0 0.0 34400 2704 ? Rs 09:22 0:00 ps aux

Access cRPD CLI and Bash Shell

To access the cRPD using CLI and bash shell:

1. Run the docker exec -it crpd1 cli to launch the Junos CLI.
root@ubuntu-vm18:~# docker exec -it crpd01 cli
2. Run the docker exec -it crpdl bash to launch the Junos shell.

root@ubuntu-vm8:~# docker exec -it crpd01 bash

Pause and Resume Processes Within a cRPD Container

You can pause or resume all processes within one or more containers.
To pause and restart a cRPD:

1. Run the docker pause command to suspend all the processes in a cRPD container.
root@ubuntu-vm18:~# docker pause crpd-container-name
2. Run the docker unpause command to resume all the processes in the cRPD container.

root@ubuntu-vm18:~# docker unpause crpd-container-name

Remove a cRPD Instance

To remove a cRPD instance or image:

@ NOTE: You must first stop and remove a cRPD instance before you remove a cRPD
image.

1. Run the docker stop command to stop the cRPD.

root@ubuntu-vmi8:~# docker stop crpd-container-name

crpde1i

2. Run the docker rm command to remove the cRPD.

root@ubuntu-vm18:~# docker rm crpd-container-name

@ NOTE: Include --force to force the removal of the running cRPD.

3. Run the docker rmi command to remove one or more cRPD images from the Docker Engine.

@ NOTE: Include --force to force the removal a cRPD image.

root@ubuntu-vm18:~# docker rmi crd-Image-name

View Docker Statistics and Logs

To view the statistics and logs:

1. Run the docker stats command to monitor the resource utilization.

2. Run the docker logs crpd-container-name command for extracting the container logs.

View Active Containers

To view the current active containers and their status:

Run the docker ps or the docker container 1s command to list the active containers.

root@ubuntu-vm18:~# docker container Is

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

c99e2c74a19b bad58561c4be "/storage-provisioner" 12 days ago Up 12

days k8s_storage-provisioner_storage-provisioner_kube-system_14f342e7-fa2e-45d1-
a970-6b698f521d3e_11

89c7c630fce2 5fb9aaddb236 "/etc/rc.local init" 3 weeks ago Up 3

weeks k8s_csrx_csrx_default_c605afd1-d9ff-4fb7-a290-fc8ce3cad1d7_0

3380dafdb@de k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3

weeks k8s_POD_csrx_default_c605afd1-d9ff-4fb7-a290-fc8ce3cad1d7_0

e779780adc12 bfe3a36ebd25 "/coredns -conf /etc." 3 weeks ago Up 3

weeks k8s_coredns_coredns-f9fd979d6-5n16b_kube-system_15cfcff1-dbc1-498a-
bf37-02427d30e603_3

7b9506570dec 635b36f4d89f "/usr/local/bin/kube.." 3 weeks ago Up 3

weeks k8s_kube-proxy_kube-proxy-mg9nj_kube-system_841a45cf-de39-49a8-
2e35-6313286¢25bb_3

760f482b7cb3 k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3

weeks k8s_POD_kube-proxy-mq9nj_kube-system_841a45cf-de39-49a8-ae35-6313286¢25bb_3
eb8258e88c9b k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3

weeks k8s_POD_coredns-f9fd979d6-5n16b_kube-system_15cfcff1-dbc1-498a-
bf37-02427d30e603_3

6d1946fcde75 k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3

weeks k8s_POD_storage-provisioner_kube-system_14f342e7-fa2e-45d1-a970-6b698f521d3e_3
800842e06094 4830ab618586 "kube-controller-man.." 3 weeks ago Up 3

weeks k8s_kube-controller-manager_kube-controller-manager-ix-crpd-01_kube-

system_627d9013c9c4b1cbfb72b4clef6cd100_4
bce233248dda b15c6247777d "kube-apiserver --ad.." 3 weeks ago Up 3

weeks k8s_kube-apiserver_kube-apiserver-ix-crpd-01_kube-
system_a22d3335af147e2c88f1d34b6067€650_7

5f7652ed4adda k8s.gcr.io/etcd "etcd --advertise-cl.." 3 weeks ago Up 3

weeks k8s_etcd_etcd-ix-crpd-01_kube-system_dde4e023d8613808da88a63ff3c86e64_0
8280ab21d826 14cd22f7abe7 "kube-scheduler --au.." 3 weeks ago Up 3

weeks k8s_kube-scheduler_kube-scheduler-ix-crpd-01_kube-
system_38744c90661b22e9ae232b0452¢54538_3

f451a6be@a98 k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3

weeks k8s_POD_etcd-ix-crpd-01_kube-system_dde4e023d8613808da88a63ff3c86e64_0
5c@edfce83be k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3

weeks k8s_POD_kube-scheduler-ix-crpd-01_kube-
system_38744c90661b22e9ae232b0452c54538_0

2d326fedb67c k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3

weeks k8s_POD_kube-controller-manager-ix-crpd-01_kube-
system_627d9013c9c4b1cbfb72b4c0ef6cd100_0

7e3773affc73 k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3

weeks k8s_POD_kube-apiserver-ix-crpd-01_kube-

system_a22d3335af147e2c88f1d34b6067€650_0

root@ubuntu-vm18:~# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

c99e2c74a19b bad58561c4be "/storage-provisioner" 12 days ago Up 12

days k8s_storage-provisioner_storage-provisioner_kube-system_14f342e7-fa2e-45d1-
a970-6b698f521d3e_11

89c7c630fce2 5fb9aaddb236 "/etc/rc.local init" 3 weeks ago Up 3

weeks k8s_csrx_csrx_default_c605afd1-d9ff-4fb7-a290-fc8ce3cad1d7_0

3380dafdb@de k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3

weeks k8s_POD_csrx_default_c605afd1-d9ff-4fb7-a290-fc8ce3cad1d7_0

e779780adc12 bfe3a36ebd25 "/coredns -conf /etc.." 3 weeks ago Up 3

weeks k8s_coredns_coredns-f9fd979d6-5n16b_kube-system_15cfcff1-dbc1-498a-
bf37-02427d30e603_3

7b9506570dec 635b36f4d89f "/usr/local/bin/kube.." 3 weeks ago Up 3

weeks k8s_kube-proxy_kube-proxy-mq9nj_kube-system_841a45cf-de39-49a8-
ae35-6313286¢25bb_3

760f482b7cb3 k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3

weeks k8s_POD_kube-proxy-mq9nj_kube-system_841a45cf-de39-49a8-ae35-6313286¢25bb_3
eb8258e88c9b k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3

weeks k8s_P0OD_coredns-f9fd979d6-5n16b_kube-system_15cfcff1-dbc1-498a-

bf37-02427d30e603_3
6d1946fcde75 k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3

weeks k8s_POD_storage-provisioner_kube-system_14f342e7-fa2e-45d1-a970-60b698f521d3e_3

800842e06094 4830ab618586 "kube-controller-man.." 3 weeks ago Up 3
weeks k8s_kube-controller-manager_kube-controller-manager-ix-crpd-01_kube-
system_627d9013c9c4b1cbfb72b4clef6cd100_4

bce233248dda b15c6247777d "kube-apiserver --ad.." 3 weeks ago Up 3
weeks k8s_kube-apiserver_kube-apiserver-ix-crpd-01_kube-
system_a22d3335af147e2c88f1d34b6067¢650_7

5f7652e4adda k8s.gcr.io/etcd "etcd --advertise-cl.." 3 weeks ago Up 3
weeks k8s_etcd_etcd-ix-crpd-01_kube-system_dde4e023d8613808da88a63ff3c86e64_0
8280ab21d826 14cd22f7abe7 "kube-scheduler --au.." 3 weeks ago Up 3
weeks k8s_kube-scheduler_kube-scheduler-ix-crpd-01_kube-
system_38744c90661b22e9ae232b0452¢c54538_3

f451a6be0a98 k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3
weeks k8s_POD_etcd-ix-crpd-01_kube-system_dde4e023d8613808da88a63ff3c86e64_0
5cOedfce83be k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3
weeks k8s_POD_kube-scheduler-ix-crpd-01_kube-
system_38744c90661b22e9ae232b0452c54538_0

2d326fedb67c k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3
weeks k8s_POD_kube-controller-manager-ix-crpd-01_kube-
system_627d9013c9c4b1cbfb72b4cOef6cd100_0

7e3773affc73 k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3
weeks k8s_POD_kube-apiserver-ix-crpd-01_kube-

system_a22d3335af147e2c88f1d34b6067¢650_0

Stop the Container

To stop the container:

You can stop the container using the following command:

root@ubuntu-vm18:~# docker stop crpd-container-name

Docker CLI

Bridge Network Driver

https://docs.docker.com/reference/cli/docker/
https://docs.docker.com/engine/network/drivers/bridge/

Establish an SSH Connection for a NETCONF
Session and cRPD

IN THIS SECTION

Establish an SSH Connection | 79
Enable SSH | 79

Connect to a NETCONF Server on Container | 80

SSH can be used to establish connections between a configuration management server and a device
running Linux OS with cRPD.

Establish an SSH Connection

A configuration management server, as the name implies, is used to configure the device running Linux
OS remotely. With SSH, the configuration management server initiates an SSH session with the device
running Linux OS.

Enable SSH

To set up remote access using SSH service on a cRPD:

1. Enable SSH access.
[edit groups global]

user@host# set system services ssh
2. Commit the configuration.

user@host# commit

Connect to a NETCONF Server on Container

1. Login to the container for crpd02.
root@crpde1:/usr/bink docker exec -it crpd02 bash
2. Copy the IP address.
root@6918f17c5851:/# ifconfig ethO

eth@: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 172.17.0.14 netmask 255.255.0.0 broadcast 172.17.255.255

3. Configure root-authentication, netconf and ssh, and commit the config.

[edit system]
root@crpdd1# set root-authentication plain-text-password "<password>"
root@crpdo1# set services ssh root-login allow

root@crpdo1# set services netconf ssh port 8034
4. Login to the cRPD container using NETCONF:
root@crpd@1:/usr/bin ssh root@172.17.0.14 -p 8034 netconf

Password:
<!-- No zombies were killed during the creation of this user interface -->
<!-- user root, class super-user -->

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

The 8034 ports on host are mapped to 22 port on container and opens an interactive shell session.

CHAPTER

Programmable Routing

IN THIS CHAPTER

JET APIs | 82

JET APIs

JET is a framework that enables developers to create applications.
cRPD supports JET, which provides gRPC-based routing APIs that are accessed locally from within the
container or remotely over a TCP session. JET APIs supports Programmable RPD. The maximum number

of JET connections supported is 512.

In cRPD, JET service is enabled on TCP port 40051 and binds to loopback address 127.0.0.1 or ::1. To
access JET service remotely, set up the SSH tunneling into the cRPD container using either username

and password or SSH keys.

cRPD supports the following JET Service APIs:

Remote access to JET service is secured using SSH. For more information about enabling SSH using port
forwarding, see "Establish an SSH Connection for a NETCONF Session and cRPD" on page 79.

BFD Service APIs

BGP Route Service API
PRPD Common API
PRPD Service API

RIB Service API

Routing Interface Service API

Download and compile JET IDL
JET Service APIs

https://www.juniper.net/documentation/us/en/software/junos/jet-developer/topics/topic-map/jet-set-up-vm.html#task_jl5_tmn_s5b
https://www.juniper.net/documentation/us/en/software/junos/jet-api/topics/concept/jet-apis.html

CHAPTER

Use cRPD

IN THIS CHAPTER

Configure Settings on Host OS | 84
Configure Settings on cRPD | 90
Multitopology Routing in cRPD | 105
Layer 3 Overlay Support in cRPD | 114
MPLS Support in cRPD | 131

Sharding and UpdatelO on cRPD | 147
VRRP with cRPD | 149

Configure Settings on Host OS

IN THIS SECTION

Configure ARP Scaling | 84

IGMP Membership Under Linux | 85

Kernel Modules | 85

Configure MPLS | 85

Hash Field Selection for ECMP Load Balancing on Linux | 86
WECMP Using BGP on Linux | 88

Enable SRv6 on cRPD | 90

This chapter provides information about how to tune the settings on host OS to enable advanced
features or to increase the scale of cRPD functionality.

Configure ARP Scaling

The maximum ARP entry number is controlled by the Linux host kernel. You can adjust the ARP or NDP
entry limits using the sysctl command on the Linux host.

For example, to adjust the maximum ARP entries using IPv4:

root@host:~# sysctl -w net.ipv4.neigh.default.gc_thresh1=4096

root@host:~# sysctl -w net.ipv4.neigh.default.gc_thresh2=8192

root@host: ~# sysctl -w net.ipv4.neigh.default.gc_thresh3=8192

For example, to adjust the maximum NDP entries using IPvé:

root@host:~# sysctl -w net.ipvé.neigh.default.gc_thresh1=4096

root@host:~# sysctl -w net.ipvé.neigh.default.gc_thresh2=8192

root@host:~# sysctl -w net.ipv6.neigh.default.gc_thresh3=8192

IGMP Membership Under Linux

To allow a greater number of OSPFv2/v3 adjacencies with cRPD, increase the IGMP membership limit:

Increase the IGMP membership limit.

root@host: ~# sysctl -w net.ipv4.igmp_max_memberships=1000

Kernel Modules

You need to load the following kernel modules on the host before you deploy cRPD in Layer 3 mode.
These modules are usually available in linux-modules-extra or kernel-modules-extra packages. Run the
following commands to add the kernel modules.

e modprobe tun

e modprobe fou

e modprobe fou6

e modprobe ipip

e modprobe ip_tunnel

e modprobe ip6_tunnel

e modprobe mpls_gso

e modprobe mpls_router
e modprobe mpls_iptunnel
e modprobe vrf

e modprobe vxlan

Configure MPLS

To configure MPLS in Linux kernel:

1. Load the MPLS modules in the container using modprobe or insmod:

root@crpd-ubuntu3: ~# modprobe mpls_iptunnel

root@crpd-ubuntu3: ~# modprobe mpls_router

root@crpd-ubuntu3: ~# modprobe ip_tunnel
2. Verify the MPLS modules loaded in host OS.

root@host:~# lsmod | grep mpls

mpls_iptunnel 16384
mpls_router 28672
ip_tunnel 24576

0
1 mpls_iptunnel

4 ipip,ip_gre,sit,mpls_router

Hash Field Selection for ECMP Load Balancing on Linux

You can select the ECMP hash policy (fib_multipath_hash_policy) for both forwarded and locally generated
traffic (IPv4/1Pvé).

IPv4 Traffic

1. By default, Linux kernel uses the L3 hash policy to load-balance the IPv4 traffic. L3 hashing uses the
following information:

Source IP address

Destination IP address

root@host: ~# sysctl -n net.ipv4.fib_multipath_hash_policy O

2. Run the following command to load-balance the IPv4 traffic using Layer 4 hash policy. Layer 4
hashing load-balance the traffic based on the following information:

Source IP address
Destination IP address
Source port number
Destination port number

Protocol

root@host:~# sysctl -w net.ipv4.fib_multipath_hash_policy=1

root@host:~# sysctl -n net.ipv4.fib_multipath_hash_policy 1
. Run the following command to use L3 hashing on the inner packet header (IPv4/1Pvé over IPv4 GRE).
root@host: ~# sysctl -w net.ipvé.fib_multipath_hash_policy=2

root@host: ~# sysctl -n net.ipv6.fib_multipath_hash_policy 2

The policy defaults to L3 hashing on the packet forwarded as described in the default approach for
IPv4 traffic.

IPvé6 Traffic

. By default, Linux kernel uses L3 hash policy to load-balance the IPvé traffic. The L3 hash policy load-
balance the traffic based on the following information:

e Source IP address

e Destination IP address
e Flow label

e Next header (Protocol)

root@host: ~# sysctl -n net.ipv6.fib_multipath_hash_policy O

. You can use the Layer 4 hash policy to load-balance the IPvé traffic. The Layer 4 hash policy load-
balance traffic based on the following information:

e Source IP address

e Destination IP address

e Source port number

e Destination port number

¢ Next header (Protocol)

root@host: ~# sysctl -w net.ipvé.fib_multipath_hash_policy=1

root@host: ~# sysctl -n net.ipv6.fib_multipath_hash_policy 1
. Run the following command to use L3 hashing on the inner packet header (IPv4/1Pvé over IPv4 GRE).
root@host:~# sysctl -w net.ipvé.fib_multipath_hash_policy=2

root@host:~# sysctl -n net.ipvé.fib_multipath_hash_policy 2

MPLS

. Linux kernel can select the next hop of a multipath route using the following parameters:

e Label stack up to the limit of MAX_MP_SELECT_LABELS (4)
e Source IP address
e Destination IP address

e Protocol of the inner IPv4/IPvé6 header
Neighbor Detection

8. Run the following command to view the liveness (failed/incomplete/unresolved) of the neighbor
entry.

root@host:~# sysctl -w net.ipv4.fib_multipath_use_neigh=1

By default, the packets are forwarded to next-hops using the rootéhost:~# sysctl -n
net.ipv4.fib_multipath_use_neigh 0 command.

WECMP Using BGP on Linux

Unequal cost load balancing is a way to distribute traffic unequally among different paths (comprising
the multipath next-hop); when the paths have different bandwidth capabilities. BGP protocol tags each
route/path with the bandwidth of the link using the link bandwidth extended community. The
bandwidth of the corresponding link can be encoded as part of this link bandwidth community. RPD
uses this bandwidth information of each path to program the multipath next-hops with appropriate
linux::weights. A next-hop with linux::weight allows linux kernel to load-balance traffic asymmetrically.

BGP forms a multipath next-hop and uses the bandwidth values of individual paths to find out the
proportion of traffic that each of the next-hops that form the ECMP next-hop should receive. The
bandwidth values specified in the link bandwidth need not be the absolute bandwidth of the interface.
These values need to reflect the relative bandwidth of one path from the another. For details, see
Understanding How to Define BGP Communities and Extended Communities and How BGP
Communities and Extended Communities Are Evaluated in Routing Policy Match Conditions.

Consider a network with R1 receiving equal cost paths from R2 and R3 to a destination R4. If you want
to send 90% of the load balanced traffic over the path R1-R2 and the remaining 10% of the traffic over
the path R1-R3 using wECMP. You need to tag routes received from the two BGP peers with link
bandwidth community by configuring policy-options.

1. Configure policy statement.

https://www.juniper.net/documentation/us/en/software/junos/routing-policy/topics/concept/policy-defining-bgp-communities-and-extended-communities-in-routing-policy-match-conditions.html
https://www.juniper.net/documentation/us/en/software/junos/routing-policy/topics/concept/policy-bgp-communities-extended-communities-evaluation-in-routing-policy-match-conditions.html
https://www.juniper.net/documentation/us/en/software/junos/routing-policy/topics/concept/policy-bgp-communities-extended-communities-evaluation-in-routing-policy-match-conditions.html

root@host> show configuration policy-options

policy-statement add-high-bw {
then {

community set high-bw;

accept;
}
}
policy-statement add-low-bw {
then {
community set low-bw;
accept;
}
}

community high-bw members [bandwidth:2:90 I,
community low-bw members [bandwidth:2:10 1;

2. RPD uses the bandwidth values to unequally balance the traffic with the multiple path next-hops.
root@host> show route 100.100.100.100 detail

inet.0: 13 destinations, 16 routes (13 active, @ holddown, @ hidden)
100.100.100.100/32 (2 entries, 1 announced)
*BGP Preference: 170/-101
Next hop type: Router, Next hop index: 0
Address: 0x565535f37a3c
Next-hop reference count: 10
Source: 10.1.1.5
Next hop: 20.1.1.5 via eth2 balance 10%, selected
Session Id: 0x0
Next hop: 10.1.1.5 via ethl balance 90%

3. Linux kernel supports unequal load balancing by assigning linux::weights for each next-hop.

root@host:/# ip route show 100.100.100.100

100.100.100.100 proto 22
nexthop via 20.1.1.5 dev eth2 weight 26
nexthop via 10.1.1.5 dev ethl weight 229

The linux::weights are programmed to linux as divisions of integer 255 (the maximum value of an
unsigned character). Each next-hop in the ECMP next-hop is given a linux::weight proportional to its
share of the bandwidth.

Enable SRv6 on cRPD

You can enable IPv6 SR capability on cRPD using the following sysctl command:

1. Enable SR.

root@host: ~# sysctl net.ipvé.conf.all.segé6_enabled=1

root@host:~# sysctl net.ipvé.conf.all.forwarding=1

2. Configure the following command to enable SRvé on ethO interface.
root@host: ~# sysctl net.ipvé.conf.ethO.seg6_enabled=1

3. Configure the following command to set the DT4 SIDs.

root@host: ~# sysctl -wq net.vrf.strict_mode=1

Example: Configure Static Label Switched Paths for MPLS in cRPD | 132
Example: Configure Layer 3 VPN (VRF) on cRPD Instance | 116

Configure Settings on cRPD

SUMMARY IN THIS SECTION
This chapter provides information about how to tune Configure OSPF | 91
the settings on cRPD to enable advanced features. Configure Bridged Interfaces | 94

Configure Routed VLAN Interfaces | 95
Configure ISO Interfaces | 95

Configure IPvé6 Interfaces | 95

Configure IPv4 Interfaces | 96

View Interfaces | 96

Configure MTU | 97

Configure MAC | 98

Configure gRPC Services | 98
Configure TACACS+ Server | 99
Configure Static LSPs for MPLS | 101
Configure Instance Type | 102

Assign an IP Address to the Routing
Instance | 104

View Routes for a VRF | 104

Configure OSPF

To configure OSPF on a network:
1. Configure crpd01 to set up OSPF protocol.

root@ubuntu-vm18:~# set policy-options policy-statement adv term 1 from route-filter 10.10.10.0/24
exact

root@ubuntu-vm18:~# set policy-options policy-statement adv term 1 then accept
root@ubuntu-vmi8:~# set routing-options router-id 10.255.255.1
root@ubuntu-vm18:~# set routing-options static route 10.10.10.0/24 reject
root@ubuntu-vm18:~# set protocols ospf export adv

root@ubuntu-vm18:~# set protocols ospf area 0.0.0.0 interface ethl

root@ubuntu-vm18:~# set protocols ospf area 0.0.0.0 interface lo.0
2. Configure crpd02 to set up OSPF protocol.

root@ubuntu-vm18:~# set policy-options policy-statement adv term 1 from route-filter 10.20.20.0/24
exact

root@ubuntu-vm18:~# set policy-options policy-statement adv term 1 then accept

root@ubuntu-vm18:~# set routing-options router-id 10.255.255.2

root@ubuntu-vm18:~# set routing-options static route 10.20.20.0/24 reject

root@ubuntu-vm18:~# set protocols ospf export adv

root@ubuntu-vm18:~# set protocols ospf area 0.0.0.0 interface ethl

root@ubuntu-vm18:~# set protocols ospf area 0.0.0.0 interface lo.0

3. Login to crpdO1.

docker exec -it crpd01 bash

S==)

Containerized Routing Protocols Daemon (CRPD)
Copyright (C) 2018-19, Juniper Networks, Inc. All rights reserved.

4. Verify OSPF route details.

root@crpde1:/# cli

root@crpdd1> show ospf neighbor

Address
10.1.1.2

Interface
ethi

root@crpdd1> show ospf route

Topology default Route Table:

Prefix

10.255.255.2
10.1.1.0/24
10.20.20.0/24
10.255.255.1/32
10.255.255.2/32

Path Route
Type Type
Intra AS BR
Intra Network
Ext2 Network
Intra Network

Intra Network

root@crpdd1> show route

inet.0: 9 destinations, 9 routes (9 active, @ holddown, @ hidden)
+ = Active Route, - = Last Active, * = Both

10.1.1.0/24

NH
Type
IP
IP
IP
IP
IP

*[Direct/0] 00:51:32

1D
10.255.255.2

Metric

—_ 0 ® = .

NextHop
Interface
ethi

ethi

ethi

lo.0

ethi

Pri Dead
128 32

Nexthop
Address/LSP
10.1.1.2

10.1.1.2

10.1.1.2

> via ethl

10.1.1.1/32 *[Local/@] 00:51:32
Local via ethl
10.10.10.0/24 *[Static/5] 00:22:21
Reject
10.20.20.0/24 *[OSPF/150] 00:20:01, metric 0, tag 0

> to 10.1.1.2 via ethil
10.255.255.1/32 *[Direct/0] 00:25:43
> via lo.0
10.255.255.2/32 *[OSPF/10] 00:20:01, metric 1
> to 10.1.1.2 via ethil

172.17.0.0/16 *[Direct/0] 01:33:53
> via eth@
172.17.0.2/32 *[Local/@] 01:33:53
Local via etho
224.0.0.5/32 *[OSPF/10] 01:33:53, metric 1
MultiRecv

5. Verify the routes.

root@crpdo1> exit

root@crpdo1:/# ip route

default via 172.17.0.1 dev ethe

10.1.1.0/24 dev ethl proto kernel scope link src 10.1.1.1
10.20.20.0/24 via 10.1.1.2 dev ethl proto 22

10.255.255.2 via 10.1.1.2 dev ethl proto 22

172.17.0.0/16 dev eth® proto kernel scope link src 172.17.0.2

root@crpdél:/# ping 10.255.255.2 -c 2

PING 10.255.255.2 (10.255.255.2) 56(84) bytes of data.
64 bytes from 10.255.255.2: icmp_seq=1 ttl=64 time=0.273 ms
64 bytes from 10.255.255.2: icmp_seq=2 ttl=64 time=0.040 ms

--- 10.255.255.2 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1005ms
rtt min/avg/max/mdev = 0.040/0.156/0.273/0.117 ms

Configure Bridged Interfaces

You can configure a logical interface as a trunk port at the [edit interfaces interface-name unit logical-unit-

number family bridge interface-mode trunk] hierarchy level.

To configure all the VLAN identifiers to associate with a Layer 2 trunk port, include the vlan-id-list /[vian-

Id-numbers J]statement at the [edit interfaces interface-name unit Ilogical-unit-number family bridge] hierarchy

level.

1.

Configure each bridged physical interface with the family type bridge.

[edit interfaces]

user@host# set interface /interface-name unit logical-unit-number family bridge interface-mode access

Configure each logical interface with a VLAN ID. This helps to determine the interface to which a
bridge belongs.

user@host# set interface interface-name unit logical-unit-numberfamily bridge vlan-id v/an-id

. Create a virtual switch instance with a bridge domain and configure logical interfaces.

[edit routing-instances]

user@host# set routing-instance-name instance-type virtual-switch
user@host# set routing-instance-name interface interface-name unit logical-unit-number
user@host# set routing-instance-name bridge-domains bridge-domain-name

Configure a virtual switch with IRB support and associate a routing interface with a bridge domain.

[edit]
routing-instances {
routing-instance-name {
instance-type virtual-switch;
bridge-domains {
bd {
domain-type bridge;
interface etht;
routing-interface irb.0;

vlan-id (none | number);

Configure Routed VLAN Interfaces

You can configure a routed VLAN interface (RVI) for a private VLAN (P-VLAN).

1. Configure an RVI for a P-VLAN.

[edit interfaces]

user@host# set vlan unit /ogical-unit-number family inet address inet-address
2. View RVl interfaces and their current state.

user@host> show interfaces vlan terse

Interface Admin Link Proto Local Remote

vlan up up

Configure ISO Interfaces

Configure the ISO family on loopback interfaces that are supporting the I1S-IS protocol by including the
family iso statement on the interface.

1. Configure a loopback interface using the host IP address and enable the ISO family on the interface.
user@host# set interfaces lo0 unit O family iso address 192.168.0.1

2. Advertise the device interfaces into IS-1S by including the interface interface-name statement in the
protocol configuration.

user@host# set protocols isis interface 100.0

Configure IPvé6 Interfaces

To configure an IPvé6 address on routers and switches, use the interface interface-name unit number family

You can also assign multiple IPvé6 addresses on the same interface.

To specify an IP address for the logical unit using IPvé:

user@host# set interfaces interface-name unit logical-unit-number family inet6é address jp-address

Configure IPv4 Interfaces

To configure an IPv4 address on routers and switches, use the interface interface-name unit number family
inet address a.b.c.d/nnstatement at the [edit interfaces] hierarchy level.

You can also assign multiple IPv4 addresses on the same interface.

To specify an IP address for the logical unit using IPv4:

user@host# set interfaces interface-name unit logical-unit-number family inet address ip-address

View Interfaces

The following example shows the CLI command to view the configured interfaces:
1. From configuration mode, confirm your configuration by entering the show interfaces command.

user@host# show interfaces

eth1{
unit 0 {
family inet {
address 10.100.37.178/24;
}
family inet6 {
address 8d8d:8d01::1/64;
}
}
}

2. From the operational mode, enter the show interfaces terse command.

user@host> show interfaces terse

Interface@link Oper State Addresses
erspan@@NONE DOWN

gre@@NONE UNKNOWN

gretap@@NONE DOWN

ip6tn10@NONE UNKNOWN fe80::200:ff:fe00:0/64 fed0::a8e5:3fff:fe51:d740/64
irb UNKNOWN fe80::1ca8:7cff:fed1:274e/64

lo UNKNOWN 127.0.0.1/8 ::1/128

lo0.0 UNKNOWN fe80::4475:46ff:fe30:383f/64

1si UNKNOWN fe80: :ed4e:b4ff:feab:1920/64
S1t@E@NONE UNKNOWN ::127.0.0.1/96
tunl0@NONE UNKNOWN

user@host> show interfaces routing 100.0

Interface State Addresses
100.0 Up MPLS enabled
ISO enabled
INET6 fe80::89f:9fff:fed5:1f8b

user@host> show interfaces routing irb

Interface State Addresses
irb Up MPLS enabled
ISO enabled
INET6 fe80::bcf1:a4ff:fe68:d413

user@host> show interfaces extensive 100.0

Interface Idx: Interface@link: <>
10: 100.0: <BROADCAST,UP,LOWER_UP> mtu 65535 gdisc noqueue state UNKNOWN group default glen
1000
link/ether 0a:9f:9f:05:1f:8b brd ff:ff.ff.ff:ff:ff promiscuity @ minmtu @ maxmtu @
dummy numtxqueues 1 numrxqueues 1 gso_max_size 65536 gso_max_segs 65535
inet6 fe80::89f:9fff:fe@5:1f8b/64 scope link
valid_1ft forever preferred_1ft forever

RX: bytes packets errors dropped missed mcast

0 0 0 0 0 0
TX: bytes packets errors dropped carrier collsns
440 4 0 0 0 0
Configure MTU

To configure the media maximum transmission unit (MTU):

1. Configure maximum transmit packet size.
user@host# set interfaces interface-name mtu packet size
2. Configure MTU packet size.

user@host# set interfaces interface-name unit logical-unit-number mtu packet size

Configure MAC

To configure the MAC address:
Include the mac statement at the [edit interfaces interface-name] hierarchy level.

user@host# set interfaces interface-name mac mac-address

Specify the MAC address as six hexadecimal bytes in one of the following formats: nnnn.nnnn.nnnn (for
example, 0011.2233.4455) or nn:nn:nn:nn:nn:nn (for example, 00:11:22:33:44:55).

Configure gRPC Services

To configure your network device for gRPC services and specify the local certificate used for server
authentication, see Enable gRPC Services.

1. Navigate to the SSL-based API connection settings for gRPC services.
[edit]
user@host# edit system services extension-service request-response grpc ssl
2. Configure the port to use for gRPC services.
[edit system services extension-service request-response grpc ssl]
user@host# set port port-number
3. Specify a local certificate.

[edit system services extension-service request-response grpc ssl]
user@host# set local-certificate certificate-id

https://www.juniper.net/documentation/us/en/software/junos/grpc-network-services/topics/topic-map/grpc-services-configuring.html#task-enable-grpc-services

4. Enable the device to reload certificates without terminating the gRPC session.
[edit system services extension-service request-response grpc ssl]
user@host# set hot-reloading

5. (Optional) Specify an IP address to listen to incoming connections.

[edit system services extension-service request-response grpc ssl]
user@host# set ip-address address

6. (Optional) Configure tracing for extension services to debug any issues.

[edit]
user@host# top

user@host# set system services extension-service traceoptions file jsd
user@host# set system services extension-service traceoptions flag all

7. Commit the configuration.

[edit]
user@host# commit

Configure TACACS+ Server

To configure the TACACS+ servers.

1. Enable TACACS+ accounting.

[edit]
user@host# set system accounting destination tacplus
2. Configure the address for one or more TACACS+ accounting servers.

[edit system accounting destination tacplus]
user@host# set server server-address

For example:

[edit system accounting destination tacplus]
user@host# set server 192.168.17.28

3. (Optional) Configure the source address for TACACS+ accounting requests.

[edit system accounting destination tacplus server server-address]
user@host# set source-address source-address

For example:

[edit system accounting destination tacplus server 192.168.17.28]
user@host# set source-address 192.168.17.1

The source address is a valid IPv4 address or IPv6 address configured on one of the router interfaces
or switch interfaces.

4. Configure the shared secret password that the network device uses to authenticate the TACACS+
accounting server.

The configured password must match the password that is configured on the TACACS+ server. If the
password contains spaces, enclose it in quotation marks. The device stores the password as an
encrypted value in the configuration database.

[edit system accounting destination tacplus server server-address]

user@host# set secret password

For example:
[edit system accounting destination tacplus server 192.168.17.28]
user@host# set secret Tacplussecretl
5. (Optional) Specify the TACACS+ accounting server port for accounting packets if it differs from the
default (49).
[edit system accounting destination tacplus server server-address]

user@host# set port port-number

6. (Optional) Set the time the device waits for a response from the TACACS+ accounting server.

By default, the device waits for three seconds. You can configure the timeout value from 1 through 90
seconds.

[edit system accounting destination tacplus server server-address]
user@host# set timeout seconds

For example, to wait 15 seconds for a response from the server:

[edit system accounting destination tacplus server 192.168.17.28]

user@host# set timeout 15

7. (Optional) Configure the device to use one open TCP connection for multiple requests. Avoid
opening a new connection for each attempt.

[edit system accounting destination tacplus server server-address]

user@host# set single-connection

8. (Optional) To route TACACS+ accounting packets through a specific routing instance, configure the
routing-instance statement and specify the instance.

[edit system accounting destination tacplus server server-address]
user@host# set routing-instance routing-instance

For example:

[edit system accounting destination tacplus server 192.168.17.28]

user@host# set routing-instance mgmt_junos

Configure Static LSPs for MPLS

MPLS is a protocol that uses labels instead of the forwarding table to route packets instead of using IP
addresses. To configure MPLS, you must create one or more named paths on the ingress and egress
routers. For more information to configure static LSPs on the ingress and an egress router, see Configure
Static LSPs and static-label-switched-path

To configure a static LSP on the ingress, the label properties next-hop, push, and to are required; the other
statements are optional.

https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/topic-map/primary-secondary-static-lsp-configuration.html#id-33210
https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/topic-map/primary-secondary-static-lsp-configuration.html#id-33210
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/statement/static-label-switched-path-edit-protocols-mpls.html

To configure the transit statement, the label properties next-hop and pop | swap are required. The remaining
statements are optional.

To configure a bypass static LSP, the label properties next-hop, push, and to are required; the other
statements are optional.
1. Configure static LSPs on the ingress.

[edit protocols mpls static-label-switched-path static-1sp-name]

user@host# show protocols

mpls {
interface ethi;
static-label-switched-path pathl {
ingress {
next-hop 10.1.23.2;
to 10.1.45.2;
push 1000123;
}
}
}

2. View the state of the MPLS interface.

root@host:~# docker exec -it crpd01 cli

rootehost> show mpls interface
3. Run the following command to view the MPLS LSPs on the router.

root@host> show mpls Isp

Configure Instance Type

To create a virtual routing and forwarding (VRF) device and link it to a VRF table, assign logical interfaces
to the VRF. Include the interface name at the [edit routing-instances routing-instance-name] hierarchy
level. The connected and local routes are automatically moved to the table associated with the VRF
device:

You can configure the following instance type:

e Layer 3 VPNs require that each PE router has a VPN routing and forwarding (VRF) table for
distributing routes within the VPN. To create the VRF table on the router, include the instance-type
statement and specify the value vrf. See Configure Routing Instances.

https://www.juniper.net/documentation/us/en/software/junos/vpn-l3/topics/topic-map/l3-vpns-routing-instances.html

To enable the virtual-router routing instance, include the instance-type statement and specify the
value of virtual-router. See Configure Virtual-Router.

To provide support for Layer 2 bridging with a protocol configuration, include the instance-type
statement and specify the value virtual-switch. See Configure a Layer 2 Virtual Switch.

To configure multiple customer-specific EVPN instances (EVIs) of type, each of which can support a
different EVPN service type, include the instance-type statement and specify the value mac-vrf.

Enable an Ethernet VPN (EVPN) Virtual Private Wire Service (VPWS) on the routing instance, include
the instance-type statement and specify the value evpn-vpws.

. Create an instance type and configure the routing instances on the interface.

[edit routing-instances vpn1]
root@host# set instance-type vrf

root@host# set interface ge-2/0/0.0
. Configure the Layer 3 VPN routing instances.

[edit routing-instances vpn1]
root@host# set vrf-target target:203:100

root@host# set routing-options static route 203.0.113.1/24 discard
. Run the following command to view the list of VRFs in the host OS.

root@host:~# show routing-instances

vpnl {

instance-type vrf;

vrf-target target:203:100;
routing-options {

static {

route 203.0.113.1/24 discard,;
}

}

}

vpn2 {

instance-type vrf;

vrf-target target:203:101;
routing-options {

static {

route 203.0.113.2/24 discard,;
}

https://www.juniper.net/documentation/us/en/software/junos/vpn-l2/topics/concept/vpns-configuring-virtual-router-routing-instances-in-vpns.html
https://www.juniper.net/documentation/us/en/software/junos/bridging-learning/topics/task/layer-2-services-virtual-switch-configuring.html

A VRF instance consists of one or more routing tables, a derived forwarding table, the interfaces that
use the forwarding table, and the policies and routing protocols that determine what goes into the
forwarding table. Because each instance is configured for a particular VPN, each VPN has separate
tables, rules, and policies that control its operation. A separate VRF table is created for each VPN
that has a connection to a router. The VRF table is populated with routes received from directly
connected sites associated with the VRF instance, and with routes received from other routers in the
same VPN.

The VRF table distinguishes the routes for different customers as well as customer routes from
provider routes on the device. For information about configuring policies, see Configure Policies for
the VRF Table.

Assign an IP Address to the Routing Instance

To associate IP address with each VRF or virtual-router routing instance at [edit interfaces 100 unit unit-
number family inet] hierarchy level, see Configure a Logical Unit.

View Routes for a VRF

To view routes for a VRF:

Run the following command to view the IPvé6 routes table associated with the VRF device:

root@host> show route

inet6.0: 8 destinations, 8 routes (8 active, © holddown, © hidden)

+ = Active Route, - = Last Active, * = Both
::/96 *[Direct/0] 4d 23:28:51
> via sit@

::127.0.0.1/128 *[Local/0] 4d 23:28:51
Local via sit@
fe80::1/128 *[Direct/0] 4d 23:28:51
> via lo
fe80::200:ff:fe00:0/128
*[Local/0] 4d 23:28:51
Local via ip6tnl@

https://www.juniper.net/documentation/us/en/software/junos/vpn-l2/topics/concept/vpns-configuring-policies-for-the-vrf-table-on-pe-routers-in-vpns.html#id-configuring-policies-for-the-vrf-table-on-pe-routers-in-vpns__id-10192448
https://www.juniper.net/documentation/us/en/software/junos/vpn-l2/topics/concept/vpns-configuring-policies-for-the-vrf-table-on-pe-routers-in-vpns.html#id-configuring-policies-for-the-vrf-table-on-pe-routers-in-vpns__id-10192448
https://www.juniper.net/documentation/us/en/software/junos/vpn-l3/topics/topic-map/l3-vpns-routing-instances.html#id-10956637

fe80::1ca8:7cff:fed1:274e/128
*x[Local/@] 4d 23:28:49
Local via irb
fe80::4475:46ff:fe30:383f/128
*[Local/@] 4d 23:28:50
Local via 100.0
fe80: :ed4e:b4aff:feab:1920/128
*[Local/@] 4d 23:28:51
Local via 1si
ff02::2/128 *[INET6/0] 4d 23:28:51
MultiRecv

Multitopology Routing in cRPD

IN THIS SECTION

Multitopology in cRPD | 105

Example: Configure Multitopology Routing with BGP in cRPD | 106

Multitopology in cRPD

cRPD enables BGP multiple RIBs functionality to support Multitopology routing (MTR) based on the
routing policy with Linux FIBs (routes in forwarding plane). The applications can select the required
routing table based on the routing policy from the Linux FIB in cRPD for different types of traffic. Each
type of traffic is defined by a topology that is used to create a new routing table for that topology. Each
topology uses the unified control plane to make routing decisions for traffic associated with that
topology. In addition, each topology has a separate forwarding table and, in effect, a dedicated
forwarding plane for each topology.

Service providers and enterprises can use multitopology routing (MTR) to engineer traffic flow across a
network. MTR can be used with direct and static routes, 1S-1S, OSPF, and BGP. In a network carrying
multiple traffic types, you often need to direct different types of application traffic over multiple links
depending on their link characteristics. Communities are used for BGP when exporting routes to
multitopology. OSPFv3 does not support MTR. MTR discovers IGP routes and able to resolve BGP
routes against custom topologies with static and OSPF.

You can configure separate topologies to share the same network links as needed. MTR uses a
combination of control plane (routing) and forwarding plane filters.

MTR provides the ability to generate forwarding tables based on the resolved entries in the routing
tables for the topologies you create. MTR and forwarding is available only on master routing instance. A
dedicated RIB is created for storing the Multitopology routes. BGP multipath is not enabled on
topologies.

When routing topologies are configured under routing-options, a new routing table for each topology is
created. Each routing protocol creates a routing table based on the topology name, the instance name,
and the purpose of the table.

Example: Configure Multitopology Routing with BGP in cRPD

IN THIS SECTION

Requirements | 106
Overview | 106
Configuration | 107

Verification | 111

This example shows how to configure community-based multiple topologies with BGP in cRPD and
unicast the traffic using Multitopology Routing (MTR) over network paths.

Requirements
This example requires following software release:

e cRPD 19.4R1 or later.

Overview

IN THIS SECTION

Topology | 107

Multitopology routing support for BGP is based on the community value in a BGP route. This
configuration determines the association between topology and one or more community values and
populates the topology routing tables. Arriving BGP updates that have a matching community value are
replicated in the associated topology routing table.

Configure the topologies with BGP inet family and verify the BGP import matching route into topology
RIB (also known as routing table). For each topology, a list of community objects must be provided such
that the routing software can set up an internal ribgroup and the corresponding secondary table import

policy.

Topology

Figure 5 on page 107 shows the topology for configuring multitopology routing with BGP.

Figure 5: Multitopology Routing

AS1 R3_LOOP_IP_ADDR
R1_LOOP_IP_.ADDR R1 R3 R3_NAME
R1_NAME ASBR2
P
Server Server
H1 H2
P ASBR1 °
R2_LOOP_IP_ADDR Rr2 R4 R3_LOOP_IP_ADDR §
R2_NAME R3_NAME %

Configuration

IN THIS SECTION

CLI Quick Configuration | 108
Configuring BGP through Multitopology Routing | 109
Results | 110

To configure multitopology routing for BGP:

CLI Quick Configuration

count 6

set

set

set

set

set

set

set

set

set

set

set

set

set

set

set

set

set

routing-options

routing-options

routing-options

routing-options

routing-options

routing-options

routing-options

routing-options

topologies family inet topology red table-id 40

topologies family inet topology blue table-id 41

topologies family inet topology green table-id 42

router-id 10.2.2.2

autonomous-system 65500

rib :red.inet.0® static route 10.1.1.1/32 next-hop 10.15.0.2

rib :green.inet.0 static route 10.1.1.1/32 next-hop 10.13.0.2

rib :blue.inet.0 static route 10.1.1.1/32 next-hop 10.17.0.2

protocols bgp group ibgp-app-rr-ser type internal

protocols bgp group ibgp-app-rr-ser traceoptions file bgp size 100m

protocols bgp group ibgp-app-rr-ser traceoptions flag update

protocols bgp group ibgp-app-rr-ser traceoptions flag state

protocols bgp group ibgp-app-rr-ser local-address 10.77.1.1

protocols bgp group ibgp-app-rr-ser family inet unicast add-path send path-

protocols bgp family inet unicast topology red community 1:1

protocols bgp family inet unicast topology green community 1:2

protocols bgp family inet unicast topology blue community 1:3

Configuring BGP through Multitopology Routing

Step-by-Step Procedure

1. Configure multiple topologies.

[edit routing-options topologies]

user@crpd# set family inet topology red table-id 40
user@crpd# set family inet topology blue table-id 41
user@rpd# set family inet topology green table-id 42

2. Configure static routes.

[edit routing-options]

user@crpd# set router-id 10.2.2.2

user@crpd# set autonomous-system 65500

user@crpd# set rib :red.inet.0 static route 10.1.1.1/32 next-hop 10.15.0.2
user@crpd# set rib :green.inet.@ static route 10.1.1.1/32 next-hop 10.13.0.2
user@crpd# set rib :blue.inet.@ static route 10.1.1.1/32 next-hop 10.17.0.2

3. Configure BGP group parameters to import the matching route into the topology routing tables. BGP
uses the target community identifier to install the routes it learns in the appropriate routing table.

[edit protocols bgp]

user@crpd# set group ibgp-app-rr-ser type internal

user@crpd# set group ibgp-app-rr-ser traceoptions file bgp size 100m

user@crpd# set group ibgp-app-rr-ser traceoptions flag update

user@crpd# set group ibgp-app-rr-ser traceoptions flag state

user@crpd# set group ibgp-app-rr-ser local-address 10.77.1.1

user@crpd# set group ibgp-app-rr-ser family inet unicast add-path send path-count 6
user@crpd# set family inet unicast topology red community 1:1

user@crpd# set family inet unicast topology green community 1:2

user@crpd# set family inet unicast topology blue community 1:3

Results

From configuration mode, confirm your configuration by entering the show protocols bgp and show routing-
options commands. If the output does not display the intended configuration, repeat the instructions in
this example to correct the configuration.

show routing-options
topologies {
family inet {
topology red {

table-id 40;
}
topology blue {
table-id 41;
}
topology green {
table-id 42;
}
}
}
rib :red.inet.0 {
static {
route 10.1.1.1/32 next-hop 10.15.0.2;
}
}
rib :green.inet.0 {
static {
route 10.1.1.1/32 next-hop 10.13.0.2;
}
}
rib :blue.inet.0 {
static {
route 10.1.1.1/32 next-hop 10.17.0.2;
}
}

user@crpd# show protocols bgp
family inet {
unicast {

topology red {

community 1:1;
}
topology green {
community 1:2;
}
topology blue {
community 1:3;

}
group ibgp-app-rr-ser {
type internal;
traceoptions {
file bgp size 100m;
flag update;
}
local-address 10.77.1.1;
family inet {

unicast {
add-path {
send {
path-count 6;
}
}
}

If you are done configuring the device, enter the commit command from configuration mode.

Verification

IN THIS SECTION

Verifying BGP routes | 112

Verifying BGP routes

Purpose

To verify the BGP matched routes:

Action

From operational mode, enter the show route protocol bgp all table command:

user@crpd> show route protocol bgp all table

:red.inet.0: 11 destinations, 11 routes (8 active, @ holddown, 3 hidden)
+ = Active Route, - = Last Active, * = Both

10.99.9.1/32 [BGP/170] 00:05:07, localpref 100, from 10.49.114.118
AS path: I, validation-state: unverified
> to 10.15.0.2 via ens4f1

10.99.9.2/32 [BGP/170] 00:05:07, localpref 100, from 10.49.114.118
AS path: I, validation-state: unverified
> to 10.15.0.2 via ens4f1
10.99.9.5/32 [BGP/170] 00:05:07, localpref 100, from 10.49.114.118
AS path: I, validation-state: unverified
> to 10.15.0.2 via ens4f1

:green.inet.@: 10 destinations, 10 routes (8 active, @ holddown, 2 hidden)
+ = Active Route, - = Last Active, * = Both

10.9.9.1/32 [BGP/170] 00:05:07, localpref 100, from 10.49.114.118
AS path: I, validation-state: unverified
> to 10.13.0.2 via ens4f1

10.9.9.4/32 [BGP/170] 00:05:07, localpref 100, from 10.49.114.118
AS path: I, validation-state: unverified
> to 10.13.0.2 via ens4f1

:blue.inet.0: 11 destinations, 11 routes (8 active, @ holddown, 3 hidden)

+ = Active Route, - = Last Active, * = Both

10.99.9.3/32

> to 10.17.0.2 via ens4f1

[BGP/170] 00:05:07, localpref 100, from 10.49.114.118
AS path: I, validation-state:

unverified

unverified

10.99.9.4/32 [BGP/170] 00:05:07, localpref 100, from 10.49.114.118
AS path: I, validation-state:
> to 10.17.0.2 via ens4f1

10.99.9.5/32

> to 10.17.0.2 via ens4f1

[BGP/170] 00:05:07, localpref 100, from 10.49.114.118
AS path: I, validation-state:

unverified

From operational mode, enter the show route protocol bgp all table inet.@ command:

user@crpd> show route protocol bgp all table inet.0

inet.0: 20 destinations, 20 routes (20 active, @ holddown, @ hidden)

+ = Active Route, - = Last Active, * = Both

10.99.9.1/32 *[BGP/170]
AS path: I, validation-state:
> to 1.15.0.2 via ens4f1
10.99.9.2/32 *[BGP/170]
AS path: I, validation-state:
> to 1.15.0.2 via ens4f1
10.99.9.3/32 *[BGP/170]
AS path: I, validation-state:
> to 1.15.0.2 via ens4f1
10.99.9.4/32 *[BGP/170]
AS path: I, validation-state:
> to 1.15.0.2 via ens4f1
10.99.9.5/32 *[BGP/170]
AS path: I, validation-state:
> to 1.15.0.2 via ens4f1
Meaning

You can view the BGP matching routes installed to routing tables and when the routes without

00:00:14, localpref 100, from 10.49.114.118

unverified

00:00:14, localpref 100, from 10.49.114.118
unverified

00:00:14, localpref 100, from 10.49.114.118

unverified

00:00:14, localpref 100, from 10.49.114.118
unverified

00:00:14, localpref 100, from 10.49.114.118

unverified

community targets are available only in the inet.0 routing table.

SEE ALSO

Understanding Multitopology Routing

Understanding Multitopology Routing for Class-Based Forwarding of Voice, Video, and Data Traffic

Layer 3 Overlay Support in cRPD

IN THIS SECTION

Overview | 114

Example: Configure Layer 3 VPN (VRF) on cRPD Instance | 116

Overview

IN THIS SECTION

Configure Interfaces under a VRF | 115

Virtual routing and forwarding (VRF) instances are supported in cRPD along with the support of MPLS
and Multiprotocol BGP to provide overlay functionality.

A routing instance is a collection of routing tables, interfaces, and routing protocol parameters. To
implement Layer 3 VPNs, you configure one routing instance for each VPN. A VRF is a network device
in the Linux kernel and the device is associated with table-id. You configure the routing instances on PE
routers only. You can create VRFs in the Linux network. VRF device implementation impacts only Layer
3 and above. Each VPN routing instance consists of the following components:

e VRF table—On each PE router, you configure one VRF table for each VPN.
e Policy rules—These control the import of routes into and the export of routes from the VRF table.

e One or more routing protocols that install routes from CE routers into the VRF table—You can use
the BGP, OSPF, and RIP routing protocols, and you can use static routes.

https://www.juniper.net/documentation/us/en/software/junos/multitopology-routing/topics/concept/multitopology-routing-overview.html
https://www.juniper.net/documentation/us/en/software/junos/multitopology-routing/topics/concept/multopology-routing-overview-solutions.html

When a VRF device is created, it is associated with a routing table. Packets that come in through
enslaved devices to the VRF are looked up in the routing table associated with the VRF device. Similarly,
egress routing rules are used to send packets to the VRF driver before sending it out on the actual
interface.

VREF is used to manage routes and to forward traffic based on independent forwarding tables in VRF.
RPD creates multiple routing tables for every routing instance of type vrf. The tables are one for each
family address. You need to configure a routing instance for each VPN on each of the PE routers
participating in the VPN. You can configure routing instances using the [edit routing-instances] hierarchy.
The routing instance of type vrf is only supported on cRPD.

You can create multiple instances of BFD, BGP, IS-IS, OSPF version 2 (referred as OSPF), OSPF version 3
(OSPFv3), and ICMP router discovery under a VRF using the [edit routing-instances routing-instance-name
protocols] hierarchy. You can configure protocol independent routing using the edit routing-instances

instance-name routing-options hierarchy.
Layer-3 Overlay supports the following tunneling protocols in cRPD:

Static routes in inet.3

e BGP labeled unicast

e GRE tunneling

e MPLS static LSPs

e Routes programmed using programmable-rpd APIs

o direct-ebgp-peering on MPLS enabled interface

Configure Interfaces under a VRF

The enslavement of devices is done by RPD that is interfaces configured under the routing instance are
migrated (enslaved) to the vrf-device by RPD using a netlink message sent to the kernel.

When an interface is configured under the routing instance of type vrf, if such a link has been learnt
from the kernel and the link is not associated to the correct table, RPD sends a netlink notification to
enslave the link. If the link does not exist or RPD has not learnt about the link, whenever the link is
created or RPD learns about it then the link will be enslaved correctly based on the configuration.

Example: Configure Layer 3 VPN (VRF) on cRPD Instance

IN THIS SECTION

Requirements | 116
Overview | 116
Configuration | 117
Verification | 126

This example shows the VPNv4 route resolution on PE routers and route reflectors by configuring the
PE routers with specific policies to control the import of routes into and the export of routes from the
VREF table and with next hops learnt using BGP labeled unicast. In this example, the traffic flows from

CE1 to CE2.

Requirements

This example uses the following hardware and software components:

e Ubuntu software version 18.04

e Linux kernel version 4.5 or later

¢ CRPD software Release version 19.4R1 or later

Before you configure a Layer 3 VPN (VRF), you must install the basic components:

o MPLS modules on the host OS on which the cRPD instance is created. For details, see "Configure
Settings on Host OS" on page 84.

e Provider edge router (PE1), a provider router (P), and provider edge router (PE2). For installing, see
"Install cRPD on Docker" on page 20.

Overview

IN THIS SECTION

Topology | 117

To configure the VPNv4 route resolution, you need to configure a routing instance of type VRF for each
VPN on each of the PE routers participating in the VPN and add static routes to it. The static statement
configures the static routes that are installed in the vrfblue.inet.0 routing table. There is no loopback
interface or device for every VRF device created in the Linux kernel. But the loopback host addresses
are directly added to the VRF device which can be learnt by RPD.

Topology

Figure 6 on page 117 shows the Layer 3 VPN (VRF) Topology

Figure 6: Layer 3 VPN (VRF) Topology

(vrfblue) (vrfblue)

300700

CE1l PE1 P PE2 CE2

Configuration

IN THIS SECTION

Configuring PE1 router with BGP LU | 117
Configuring P router with BGP LU | 120
Configuring PE2 router with BGP LU | 123

Configuring PE1 router with BGP LU

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy.

1. Create table mpls.O.

user@crpd1# set routing-options rib mpls.0

2. Configure policy that accepts routes.

[edit policy-options policy-statement]

user@crpd1# set EXPORT_LO term 10 from route-filter 10.2.2.2/32 exact
user@crpdl1# set EXPORT_LO term 10 then accept

user@crpdl1# set NH_SELF term 10 then next-hop self

3. Configure a VRF routing instance on PE1 and other routing instance parameters.

[edit routing-instances vrfblue]

user@crpdi# set
user@crpdl# set
user@crpdl1# set

routing-options static route 10.1.1.1/32 next-hop 10.10.10.1
instance-type vrf
route-distinguisher 100:100

user@rpdl# set vrf-target target:100:100

4. Configure the router ID.

user@crpd1# set

routing-options router-id 10.2.2.2

5. Configure BGP session.

[edit protocols
user@crpdi# set
user@crpdl# set
labeled-unicast
user@crpdl# set
local-as 65001

user@crpdl# set
user@crpdi# set
user@crpdl# set

bgp group]

underlay type external family inet unicast

underlay type external export EXPORT_LO neighbor 10.20.20.3 family inet
resolve-vpn

underlay type external export EXPORT_LO neighbor 10.20.20.3 peer-as 65002

VPN type internal local-address 10.2.2.2 family inet-vpn unicast
VPN local-as 65005
VPN neighbor 10.4.4.4 family inet-vpn unicast

6. Configure the interface on MPLS.

user@crpdl1# set protocols mpls interface all

Results

From configuration mode, confirm your configuration by entering the show protocols bgp and show routing-

instances commands. If the output does not display the intended configuration, repeat the configuration
instructions in this example to correct it.

user@crpd1# show routing-instances
vrfblue {
routing-options {
static {
route 10.1.1.1/32 next-hop 10.10.10.1;

}
instance-type vrf;
route-distinguisher 100:100;
vrf-target target:100:100;
}
user@crpd1# show protocols bgp
group underlay {
type external;
family inet {
unicast;
}
export EXPORT_LO;
neighbor 10.20.20.3 {
family inet {
labeled-unicast {

resolve-vpn;

}
peer-as 65002;
local-as 65001;

}

neighbor 10.20.20.2 {

family inet {
labeled-unicast {

resolve-vpn;

}
peer-as 65001;
local-as 65002;
}
neighbor 10.30.30.4 {
family inet {
labeled-unicast {

resolve-vpn;

}
peer-as 65003;

local-as 65004;

}
group VPN {
type internal;
local-address 10.2.2.2;
family inet-vpn {
unicast;
}
local-as 65005;
neighbor 10.4.4.4 {
family inet-vpn {

unicast;

If you are done configuring the device, enter commit from configuration mode.

Configuring P router with BGP LU

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy.

1. Create table mpls.O.

user@crpd2# set routing-options rib mpls.@

2. Configure policy that accepts routes.

[edit policy-options policy-statement]
user@crpd2# set EXPORT_LO term 10 from route-filter 10.3.3.3/32 exact
user@crpd2# set EXPORT_LO term 10 then accept

user@crpd2# set NH_SELF term 10 then next-hop self

[edit protocols
user@crpd2# set
labeled-unicast
user@crpd2# set
user@crpd2# set
user@crpd2# set
labeled-unicast
user@crpd2# set
user@crpd2# set

3. Configure BGP session.

bgp group]
underlay type
resolve-vpn
underlay type
underlay type
underlay type
resolve-vpn
underlay type
underlay type

4. Configure the router ID.

external

external
external

external

external

external

export EXPORT_LO

export EXPORT_LO
export EXPORT_LO
export EXPORT_LO

export EXPORT_LO
export EXPORT_LO

user@crpd2# set routing-options router-id 10.3.3.3

neighbor

neighbor
neighbor

neighbor

neighbor
neighbor

10.20.20.2 family inet

10.20.20.2 peer-as 65001
10.20.20.2 local-as 65002
10.30.30.4 family inet

10.30.30.4 peer-as 65003
10.30.30.4 local-as 65004

5. Configure the interface on MPLS.

user@crpd2# set protocols mpls interface all

Results

From configuration mode, confirm your configuration by entering the show protocols bgp and show policy-
options commands. If the output does not display the intended configuration, repeat the instructions in
this example to correct the configuration.

user@crpd2# show protocols bgp
group underlay {
type external;
export EXPORT_LO;
neighbor 10.20.20.2 {
family inet {
labeled-unicast {

resolve-vpn;

}
peer-as 65001;
local-as 65002;
}
neighbor 10.30.30.4 {
family inet {
labeled-unicast {

resolve-vpn;

}
peer-as 65003;

local-as 65004;

user@crpd2# show policy-options
policy-statement EXPORT_LO {
term 10 {

from {
route-filter 10.3.3.3/32 exact;

}
then accept;
}
}
policy-statement NH_SELF {
term 10 {
then {
next-hop self;
}
}
}

Configuring PE2 router with BGP LU

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy.

1. Create table mpls.O.

user@crpd3# set routing-options rib mpls.@

2. Configure policy that accepts routes.

[edit policy-options policy-statement]

user@crpd3# set EXPORT_LO term 10 from route-filter 10.4.4.4/32 exact
user@crpd3# set EXPORT_LO term 10 then accept

user@crpd3# set NH_SELF term 10 then next-hop self

3. Configure a VRF routing instance on PE2 and other routing instance parameters.

[edit routing-instances vrfblue]
user@crpd3# set routing-options static route 10.5.5.5/32 next-hop 10.40.40.5

user@crpd3# set instance-type vrf
user@crpd3# set route-distinguisher 100:100
user@crpd3# set vrf-target target:100:100
user@crpd3# set interface all

4. Configure BGP session.

[edit protocols bgp group]

user@crpd3# set underlay type external export EXPORT_LO neighbor 10.30.30.3 family inet
labeled-unicast resolve-vpn

user@crpd3# set underlay type external export EXPORT_LO neighbor 10.30.30.3 peer-as 65004
user@crpd3# set underlay type external export EXPORT_LO neighbor 10.30.30.3 local-as 65003
user@crpd3# set VPN type internal local-address 10.4.4.4 family inet-vpn unicast
user@crpd3# set VPN local-as 65005

user@crpd3# set VPN neighbor 10.2.2.2 family inet-vpn unicast

5. Configure the router ID.

user@crpd3# set routing-options router-id 10.4.4.4

6. Configure the interface on MPLS.

user@crpd3# set protocols mpls interface all

Results

From configuration mode, confirm your configuration by entering the show protocols bgp and show routing-
instances commands. If the output does not display the intended configuration, repeat the instructions in
this example to correct the configuration.

user@crpd3# show protocols bgp
group underlay {
export EXPORT_LO;
neighbor 10.30.30.3 {
family inet {
labeled-unicast {

resolve-vpn;

}
peer-as 65004;

local-as 65003;

}
group VPN {
type internal;
local-address 10.4.4.4;
family inet-vpn {
unicast;
}
local-as 65005;
neighbor 10.2.2.2 {
family inet-vpn {

unicast;

user@crpd3# show routing-instances
vrfblue {
routing-options {
static {
route 10.5.5.5/32 next-hop 10.40.40.5;

}

interface all;

instance-type vrf;
route-distinguisher 100:100;
vrf-target target:100:100;

Verification

IN THIS SECTION

Verifying VPNv4 Resolution on PE1 | 126
Verifying BGP LU on P | 128
Verifying VPNv4 Resolution on PE2 | 129

Verifying VPNv4 Resolution on PE1

Purpose

To verify VPNv4 routes on PE1:

Action

From operational mode, enter the show route table vrfblue.inet.@ 10.5.5.5 command:

user@crpd1> show route table vrfblue.inet.® 10.5.5.5

vrfblue.inet.@: 7 destinations, 7 routes (7 active, @ holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.5.5.5/32 *[BGP/170] 00:00:14, localpref 100, from 10.4.4.4
AS path: I, validation-state: unverified
> to 10.20.20.3 via pel-p, Push 299808, Push 299792(top)

From operational mode, enter the show route table mpls.® command:

user@crpd1> show route table mpls.0

mpls.0: 3 destinations, 3 routes (3 active, @ holddown, @ hidden)

+ = Active Route, - = Last Active, * = Both
299808 *[VPN/170] 00:01:45

> to 10.10.10.1 via pel-cel, Pop
299808(5=0) *[VPN/170] 00:01:45

> to 10.10.10.1 via pel-cel, Pop
299824 *[VPN/170] 00:01:45

receive table vrfblue.inet.@, Pop

From bash mode, enter the ip route list table 5 5.5.5.5 command:

user@crpd1> ip route list table 5 10.5.5.5

10.5.5.5 encap mpls 299792/299808 via 10.20.20.3 dev pel-p proto 22

From bash mode, enter the ip -f mpls route command:

user@crpd1> ip -f mpls route

299808 via inet 10.10.10.1 dev pel-cel proto 22

Meaning

You can view PE1 has a route under vrfblue.inet.0 to CE2 which is learnt from PE2 with nexthop
10.4.4.4, which is resolved using BGP LU from P router.

Verifying BGP LU on P

Purpose

To verify VPNv4 routes on P:

Action

From bash mode, enter the ip -f mpls route show command:

user@crpd2> ip -f mpls route show

299776 via inet 10.20.20.2 dev p-pel proto 22
299792 via inet 10.30.30.4 dev p-pe2 proto 22

From operational mode, enter the show route table mpls.® command:

user@crpd2> show route table mpls.0

mpls.0: 8 destinations, 8 routes (8 active, @ holddown, @ hidden)

+ = Active Route, - = Last Active, * = Both

0 *[MPLS/0] 01:40:42, metric 1
Receive

1 *[MPLS/0] 01:40:42, metric 1
Receive

2 *[MPLS/0] 01:40:42, metric 1
Receive

13 *[MPLS/0] 01:40:42, metric 1
Receive

299776 *[VPN/170] 01:19:24

> to 10.20.20.2 via p-pel, Pop
299776(S=0) *[VPN/170] 01:19:24

> to 10.20.20.2 via p-pel, Pop

299792 *[VPN/170] 01:19:20

> to 10.30.30.4 via p-pe2, Pop
299792(S=0) *[VPN/170] 01:19:20

> to 10.30.30.4 via p-pe2, Pop

Meaning

You can view the MPLS and VPN routes from P to PE1 and P to PE2.
Verifying VPNv4 Resolution on PE2

Purpose

To verify VPNv4 routes on PE2:

Action

From operational mode, enter the show route table vrfblue.inet.@ 10.1.1.1 command:

user@crpd3> show route table vrfblue.inet.0 10.1.1.1

vrfblue.inet.@: 7 destinations, 7 routes (7 active, @ holddown, @ hidden)

+ = Active Route, - = Last Active, * = Both

10.1.1.1/32 *[BGP/170] 00:00:26, localpref 100, from 10.2.2.2
AS path: I, validation-state: unverified
> to 10.30.30.3 via pe2-p, Push 299808, Push 299776(top)

From operational mode, enter the show route table mpls.® command:

user@crpd3> show route table mpls.0

mpls.0: 7 destinations, 7 routes (7 active, @ holddown, @ hidden)

+ = Active Route, - = Last Active, * = Both
0 *[MPLS/0] 01:34:39, metric 1
Receive
1 *[MPLS/0] 01:34:39, metric 1
Receive
2 *[MPLS/0] 01:34:39, metric 1
Receive
13 *[MPLS/0] 01:34:39, metric 1
Receive
299808 *[VPN/170] 00:00:43
> to 10.40.40.5 via pe2-ce2, Pop
299808(5=0) *[VPN/170] 00:00:43
> to 10.40.40.5 via pe2-ce2, Pop
299824 *[VPN/170] 00:00:43

receive table vrfblue.inet.@, Pop

From bash mode, enter the ip route list table 5 10.1.1.1 command:

user@crpd3> ip route list table 5 10.1.1.1

10.1.1.1 encap mpls 299776/299808 via 10.30.30.3 dev pe2-p proto 22

From bash mode, enter the ip -f mpls route command:

user@crpd3> ip -f mpls route

299808 via inet 10.40.40.5 dev pe2-ce2 proto 22

Meaning

On PE2 router, PE1 displays the routes for the VRF table vrfblue.inet.0 using BGP LU about 10.1.1.1 as a
VPNv4 prefix with nexthop as 10.2.2.2.

SEE ALSO

vrf-target
vrf-import
route-distinguisher
vrf-export
vrf-table-label
no-vrf-advertise

Routing Instances in Layer 3 VPNs

MPLS Support in cRPD

IN THIS SECTION

How MPLS Is Supported on cRPD | 132
Example: Configure Static Label Switched Paths for MPLS in cRPD | 132

https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/statement/vrf-target-edit-routing-instances-vp.html
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/statement/vrf-import-edit-routing-instances-vp.html
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/statement/route-distinguisher-edit-routing-instances-vp.html
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/statement/vrf-export-edit-routing-instances-vp.html
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/statement/vrf-table-label-edit-routing-instances-vp.html
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/statement/no-vrf-advertise-edit-routing-instances.html
https://www.juniper.net/documentation/us/en/software/junos/vpn-l3/topics/topic-map/l3-vpns-routing-instances.html

How MPLS Is Supported on cRPD

MPLS configuration is supported on cRPD for forwarding packets to the destination in MPLS network.

With MPLS, only the first device does a routing lookup. Instead of finding the next hop, the device finds
the ultimate destination along with a path to that destination. The path of an MPLS packet is called a
label-switched path (LSP). LSPs are unidirectional routes through a network or an autonomous system
(AS). MPLS routers within an AS determine paths through a network through the exchange of MPLS
traffic engineering information. Using these paths, the routers direct traffic through the network along
an established route. Rather than selecting the next hop along the path as in IP routing, each router is
responsible for forwarding the packet to a predetermined next hop address.

Routers that are part of the LSP are label-switching routers (LSRs). An MPLS LSP is established using
static LSPs. A static LSP requires each router along the path to be configured explicitly. You must
manually configure the path and its associated label values.

cRPD supports only a limited number of Junos OS MPLS features. You can configure MPLS interface,
ipv6-tunneling, label-history, label-range, and static-label-switched-path in cRPD CLI under the edit protocols
mpls hierarchy.

Supported Features
e BGP configuration
e MPLS using PRPD API

o BGP labeled unicast configuration

SEE ALSO

mpls
static-label-switched-path
Configure Settings on Host OS | 84

Example: Configure Static Label Switched Paths for MPLS in cRPD

IN THIS SECTION

Requirements | 133

https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/statement/mpls-edit-protocols-mpls-ex-series.html
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/statement/static-label-switched-path-edit-protocols-mpls.html

Overview | 133
Configuration | 134
Verification | 140

This example shows how the VPN traffic flows through a v4 MPLS tunnel among PEs by configuring
BGP and MPLS static label switched paths.

Requirements

This example uses the following hardware and software components:

e Ubuntu software version 18.04

e Linux kernel version 4.5 or later

¢ CRPD software Release version 19.4R1 or later

Before you configure a static LSP for MPLS forwarding, you must install the basic components:

e MPLS modules on host OS on which cRPD instance is created. For details, see "Configure Settings on
Host OS" on page 84.

e Provider edge router (PE1), provider router (P), and provider edge router (PE2). For installation, see
"Install cRPD on Docker" on page 20.

Overview

IN THIS SECTION

Topology | 134

In this example, PE1 acts as a Label Edge Router or ingress node to the MPLS network, which
encapsulates the packets by attaching labels. P acts as Label Switching Router that transfers MPLS
packets using labels in the MPLS network.

To configure MPLS, you must first create one or more named paths on the ingress and transit routers.
For each path, you can specify some or all transit routers in the path.

Configuring static label-switched paths (LSPs) for MPLS is similar to configuring static routes on

individual routers.

Topology

Figure 7 on page 134 shows the topology used in this example.

Figure 7: MPLS Forwarding in cRPD

10.10.10 20.20.20 30.30.30

40.40.40

CE1 PE1 P
10.1.1.1 20.2.2.2 30.3.3.3

Configuration

IN THIS SECTION

Configuring PE1 Router | 134
Configuring Provider P Router. | 137
Configuring PE2 Router | 138
Results | 139

To configure static LSP for MPLS on cRPD:
Configuring PE1 Router

Step-by-Step Procedure

To configure the static LSP:

1. Create the tables inet.0 and mpls.O.

[edit routing-options]
user@crpdl1# set rib inet.0
user@crpdl1# set rib mpls.@

PE2
40444

CE2
50.5.5.5

2300692

user@crpdl1# set router-id 20.2.2.2

2. Configure BGP session.

[edit protocols bgp group VPN]

user@crpdl1# set type internal local-address 20.2.2.2 family inet-vpn unicast
user@crpdl1# set local-as 5

user@crpdl1# set neighbor 40.4.4.4 family inet-vpn unicast

3. Configure the static label range and ingress static LSP parameters.

[edit protocols mpls]

user@crpdl1# set interface all

user@crpdl1# set label-range static-label-range 1000000 1048575

user@crpdl1# set static-label-switched-path pe2 ingress install 40.4.4.4/32 active
user@rpdl# set static-label-switched-path pe2 ingress to 40.4.4.4 next-hop 20.20.20.2 push
1000001

4. Configure a static route from the ingress PE2.

[edit routing-options static]
user@crpdl1# set route 20.2.2.2/32 next-hop 20.20.20.2
user@crpdl1# set route 40.4.4.4/32 static-1lsp-next-hop pe2

5. Configure a VRF routing instance on PE1 and other routing instance parameters.

[edit routing-instances vrfblue]

user@crpdl1# set routing-options static route 10.1.1.1/32 next-hop 10.10.10.1
user@crpd1# set route-distinguisher 100:100

user@crpd1# set vrf-target target:100:100

user@crpdl1# set interface all

Results

From configuration mode, confirm your configuration by entering the show protocols bgp and run show
configuration protocols mpls commands on PE1. If the output does not display the intended configuration,
repeat the configuration instructions in this example to correct it.

user@crpd1# show protocols bgp
group VPN {
type internal;
local-address 20.2.2.2;
family inet-vpn {
unicast;
}
local-as 5;
neighbor 40.4.4.4 {
family inet-vpn {

unicast;

user@crpd1# run show configuration protocols mpls
interface all;
static-label-switched-path pe2 {

ingress {
next-hop 20.20.20.3;
to 40.4.4.4;

push 1000001,

If you are done configuring the device, enter commit from configuration mode.

Configuring Provider P Router.

Step-by-Step Procedure

To configure the static LSP:

1. Configure router ID for router P.

[edit routing-options]
user@crpd2# set rib mpls.@
user@crpd2# set router-id 30.3.3.3

2. Configure a transit static LSP for swap and pop labels.

[edit protocols mpls]

user@crpd2# set label-range static-label-range 1000000 1048575

user@crpd2# set static-label-switched-path pe2 transit 1000001 next-hop 30.30.30.4 swap
1000002

user@crpd2# set static-label-switched-path pel transit 1000003 next-hop 20.20.20.2 swap
1000004

user@crpd2# set static-label-switched-path pe2 transit 1000001 pop next-hop 30.30.30.4

user@crpd2# set static-label-switched-path pel transit 1000003 pop next-hop 20.20.20.2

Results

From configuration mode, confirm your configuration by entering the show protocols bgp, run show
configuration protocols mpls, and run show mpls interface commands on P. If the output does not display the
intended configuration, repeat the configuration instructions in this example to correct it.

user@crpd2# run show configuration protocols mpls
interface all;
static-label-switched-path pel {
transit 1000003 {
next-hop 20.20.20.2;
swap 1000004;

}
static-label-switched-path pe2 {
transit 1000001 {
next-hop 30.30.30.4;
swap 1000002,

If you are done configuring the device, enter commit from configuration mode.

Configuring PE2 Router

Step-by-Step Procedure

To configure the static LSP for MPLS on PE2:

1. Configure BGP session.

[edit protocols bgp group VPN]

user@crpd3# set type internal local-address 40.4.4.4 family inet-vpn unicast
user@crpd3# set local-as 5

user@crpd3# set neighbor 20.2.2.2 family inet-vpn unicast

2. Configure the ingress static LSP parameters.

[edit protocols mpls]

user@crpd3# set interface all

user@crpd3# set label-range static-label-range 1000000 1048575

user@crpd3# set static-label-switched-path pel ingress install 20.2.2.2/32 active
user@crpd3# set static-label-switched-path pel ingress to 20.2.2.2 next-hop 30.30.30.4 push
1000003

3. Configure router ID and a static route from the ingress PE1.

[edit routing-options]
user@crpd3# set rib inet.0

user@crpd3# set router-id 40.4.4.4
user@crpd3# set static route 40.4.4.4/32 next-hop 30.30.30.4
user@crpd3# set static route 20.2.2.2/32 static-lsp-next-hop pel

4. Configure a VRF routing instance on PE2 and other routing instance parameters.

[edit routing-instances vrfblue]

user@crpd3# set routing-options static route 50.5.5.5/32 next-hop 40.40.40.5
user@crpd3# set route-distinguisher 100:100

user@crpd3# set vrf-target target:100:100

user@crpd3# set interface all

Results

From configuration mode, confirm your configuration by entering the run show configuration protocols mpls
and run show mpls interface commands on PE2. If the output does not display the intended configuration,
repeat the configuration instructions in this example to correct it.

user@crpd3# show protocols bgp
group VPN {
type internal;
local-address 40.4.4.4;
family inet-vpn {
unicast;
}
local-as 5;
neighbor 20.2.2.2 {
family inet-vpn {

unicast;

user@crpd3# run show configuration protocols mpls
interface all;

static-label-switched-path pe2 {

ingress {
next-hop 20.20.20.3;
to 40.4.4.4;

push 1000001;

If you are done configuring the device, enter commit from configuration mode.

Verification

IN THIS SECTION

Verify MPLS forwarding on PE1 | 140
Verify MPLS forwarding on P | 143
Verify MPLS forwarding on PE2 | 145

Verify MPLS forwarding on PE1

Purpose

To verify the configuration for MPLS on PE1.

Action

From operational mode, enter the show route table vrfblue.inet.@ 50.5.5.5 command:

user@crpd1> show route table vrfblue.inet.® 50.5.5.5

vrfblue.inet.@: 5 destinations, 5 routes (5 active, @ holddown, @ hidden)

+ = Active Route, - = Last Active, * = Both

50.5.5.5/32 *[BGP/170] 00:01:03, localpref 100, from 40.4.4.4

AS path: I, validation-state: unverified
> t0 20.20.20.3 via pel-p, Push 299776, Push 1000001(top)

From operational mode, enter the show mpls label usage command:

user@crpd1> show mpls label usage

Label space Total Available Applications

LSI 999984 999983 (100.00%) BGP/LDP VPLS with no-tunnel-services, BGP L3VPN with vrf-
table-label

Block 999984 999983 (100.00%) BGP/LDP VPLS with tunnel-services, BGP L2VPN

Dynamic 999984 999983 (100.00%) RSVP, LDP, PW, L3VPN, RSVP-P2MP, LDP-P2MP, MVPN, EVPN, BGP
Static 48576 48576 (100.00%) Static LSP, Static PW

Effective Ranges

Range name Shared with Start End
Dynamic 16 999999

Static 1000000 1048575
Configured Ranges

Range name Shared with Start End
Dynamic 16 999999

Static 1000000 1048575

From operational mode, enter the show mpls static-1sp command:

user@crpd1> show mpls static-lsp

Ingress LSPs:

LSPname To State
pe2 40.4.4.4 Up
Total 1, displayed 1, Up 1, Down @

Transit LSPs:
Total 0, displayed 0, Up @, Down @

Bypass LSPs:

Total 0, displayed 0, Up 0, Down @

Segment LSPs:
Total 0, displayed @, Up @, Down @

From operational mode, enter the show route table inet.3 command:

user@crpd1> show route table inet.3

inet.3: 1 destinations, 1 routes (1 active, © holddown, © hidden)
+ = Active Route, - = Last Active, * = Both

40.4.4.4/32 *[MPLS/6/1] 00:04:44, metric @
> to 20.20.20.3 via pel-p, Push 1000001

From operational mode, enter the show route table mpls.® command:

user@crpd1> show route table mpls.0

mpls.0: 6 destinations, 6 routes (6 active, @ holddown, @ hidden)

+ = Active Route, - = Last Active, * = Both

0 *[MPLS/0] 00:15:45, metric 1
Receive

1 *[MPLS/0] 00:15:45, metric 1
Receive

2 *[MPLS/0] 00:15:45, metric 1
Receive

13 *[MPLS/0] 00:15:45, metric 1
Receive

299776 *[VPN/170] 00:06:32

> to 10.10.10.1 via pel-cel, Pop
299776(S=0) *[VPN/170] 00:06:32

> to 10.10.10.1 via pel-cel, Pop

From operational mode, enter the ip route list table 5 50.5.5.5 command:

user@crpd1> ip route list table 5 50.5.5.5

50.5.5.5 encap mpls 1000001/299776 via 20.20.20.3 dev pel-p proto 22

From operational mode, enter the ip -f mpls route command:

user@crpd1> ip -f mpls route

299776 via inet 10.10.10.1 dev pel-cel proto 22

Verify MPLS forwarding on P

Purpose

To verify the configuration for MPLS on P.

Action

From shell mode, enter the show route table mpls.0 command:

user@crpd2> show route table mpls.0

mpls.0: 10 destinations, 10 routes (10 active, @ holddown, @ hidden)
+ = Active Route, - = Last Active, * = Both

0 *[MPLS/0] 00:00:11, metric 1

Receive

1 *[MPLS/0] 00:00:11, metric 1

Receive
2 *[MPLS/0] 00:00:11, metric 1
Receive
13 *[MPLS/0] 00:00:11, metric 1
Receive
299776 *[VPN/170] 00:00:05
> to0 20.20.20.2 via p-pel, Pop
299776(S=0) *[VPN/170] 00:00:05
> to0 20.20.20.2 via p-pel, Pop
299792 *[VPN/170] 00:00:05
> to 30.30.30.4 via p-pe2, Pop
299792(S=0) *[VPN/170] 00:00:05
> to 30.30.30.4 via p-pe2, Pop
1000001 *[MPLS/6] 00:00:11, metric 1
> to 30.30.30.4 via p-pe2, Swap 1000002
1000003 *[MPLS/6] 00:00:11, metric 1

> to0 20.20.20.2 via p-pel, Swap 1000004

user@crpd2> show mpls static-lsp

Ingress LSPs:
Total 0, displayed 0, Up @, Down @

Transit LSPs:

LSPname Incoming-label State
peT 1000003 Up
pe2 1000001 Up

Total 2, displayed 2, Up 2, Down @

Bypass LSPs:
Total @, displayed @, Up @, Down @

Segment LSPs:
Total 0, displayed 0, Up @, Down @

From bash shell mode, enter the ip -f mpls route command:

user@crpd2:/# ip -f mpls route

299776 via inet 20.20.20.2 dev p-pel proto 22
299792 via inet 30.30.30.4 dev p-pe2 proto 22
1000001 as to 1000002 via inet 30.30.30.4 dev p-pe2 proto 22
1000003 as to 1000004 via inet 20.20.20.2 dev p-pel proto 22

Verify MPLS forwarding on PE2

Purpose

To verify the configuration for MPLS on P.

Action

From shell mode, enter the show route table vrfblue.inet.® 10.1.1.1 command:

user@crpd3> show route table vrfblue.inet.@ 10.1.1.1

vrfblue.inet.0: 5 destinations, 5 routes (5 active, 0 holddown, @ hidden)

+ = Active Route, - = Last Active, * = Both

10.1.1.1/32 *[BGP/170] 00:03:00, localpref 100, from 2.2.2.2

AS path: I, validation-state: unverified
> to 30.30.30.3 via pe2-p, Push 299776, Push 1000003(top)

user@crpd3> show mpls static-Isp

Ingress LSPs:

LSPname To State
pel 20.2.2.2 Up
Total 1, displayed 1, Up 1, Down @

Transit LSPs:
LSPname Incoming-label State
pe2 1000002 Dn

Total 1, displayed 1, Up @, Down 1

Bypass LSPs:
Total 0, displayed 0, Up @, Down @

Segment LSPs:
Total @, displayed 0, Up @, Down @

user@crpd3> show route table mpls.0

mpls.0: 6 destinations, 6 routes (6 active, @ holddown, @ hidden)

+ = Active Route, - = Last Active, * = Both

0 *[MPLS/0] 00:17:31, metric 1
Receive

1 *[MPLS/0] 00:17:31, metric 1
Receive

2 *[MPLS/0] 00:17:31, metric 1
Receive

13 *[MPLS/0] 00:17:31, metric 1

Receive

299776 *[VPN/170] 00:03:07
> to 40.40.40.5 via pe2-ce2, Pop
299776(S=0) *[VPN/170] 00:03:07

> to 40.40.40.5 via pe2-ce2, Pop

From bash shell mode, enter the ip -f mpls route command:

user@crpd3:/# ip -f mpls route

299776 via inet 40.40.40.5 dev pe2-ce2 proto 22

From bash shell mode, enter the ip route list table 5 10.1.1.1 command:

user@crpd3:/# ip route list table 5 10.1.1.1

10.1.1.1 encap mpls 1000003/299776 via 30.30.30.3 dev pe2-p proto 22

Meaning

You can verify the static LSP between PEs are up on all the devices and the routes are populated in the
corresponding route tables inet.o and inet.3 and in the Linux FIB.

Sharding and UpdatelO on cRPD

IN THIS SECTION

Sharding | 148

UpdatelO | 149

Sharding

The BGP process is split into different threads so that they can run concurrently on a multicore routing
engine through RIB sharding which results in reduced convergence time and faster performance. BGP
RIB sharding splits a BGP RIB into several sub-RIBs and each sub-RIB handles a subset of BGP routes.
Each sub RIB is served by a separate RPD thread to achieve parallel processing.

BGP RIB sharding is disabled by default. This feature is supported only on 64-bit routing protocol
process (rpd) where the Routing Engine has more than one core. We recommend configuring this feature
on a device with at least 4CPU cores and 16GB of memory.

If you configure rib-sharding on a routing engine, RPD will create sharding threads. By default, the
number of sharding threads created is the same as the number of CPU cores on the routing engine.

Optionally, you can specify the number-of-shards you want to create. The range is currently 1 through
31.

BGP RIB sharding on crpd supports the following tables:

e inet.0 and inet6.0
e bgp.13vpn.@ and bgp.13vpn-inet6.0
e bgp.rtarget, inet6-vpn unicast, and route-target

To enable this feature, you can configure rib-sharding at the edit system processes routing bgp hierarchy
level. Sharding depends on the UpdatelO thread feature. Therefore, UpdatelO thread feature is
mandatory when you configure sharding. To enable updatelO, you need to configure update-threading at
the [edit system processes routing bgp] hierarchy level for rib-sharding configuration to pass commit check.

SEE ALSO

rib-sharding

show bgp neighbor
show route summary
show bgp summary

show route

https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/statement/rib-sharding-edit-protocols-bgp.html
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/command/show-bgp-neighbor.html
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/command/show-route-summary.html
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/command/show-bgp-summary.html
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/command/show-route.html

UpdatelO

The BGP protocol works to do Update message generation for peers in a BGP group. The BGP work in
main RPD thread is split into different threads, called BGP UpdatelO threads. Each UpdatelO thread is
responsible for generating updates for one or more BGP peer groups. BGP Update threads construct
updates for groups in parallel and independent of other groups that are being serviced by different
update threads.

This might offer significant convergence improvement in a write-heavy workload that involves
advertising to many peers spreads across many groups. BGP UpdatelO threads can be configured
separately from the RIB sharding feature. However, they are mandatory with RIB sharding as they
improve prefix packing in outbound BGP updates and boost performance.

BGP update thread is disabled by default. If you configure update-threading on a routing engine, RPD
creates update threads. By default, the number of update threads created is the same as the number of
CPU cores on the routing engine. Update threading is only supported on a 64 bit routing protocol
process (RPD). Optionally, you can specify the number-of-threads you want to create by using set update-
threading <number-of-threads> statement at the edit system processes routing bgp hierarchy level. The range is
currently 1 through 128.

SEE ALSO

Understanding BGP Update IO Thread

update-threading

VRRP with cRPD

IN THIS SECTION

Overview | 150
How VRRP Works with cRPD? | 150

https://www.juniper.net/documentation/us/en/software/junos/bgp/topics/topic-map/bgp-overview.html#understanding-bgp-update-io-thread
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/statement/update-threading.html

Overview

IN THIS SECTION

Benefit of VRRP | 150

The Virtual Router Redundancy Protocol (VRRP) in cRPD eliminates the single point of failure in the
static default route environment. VRRP dynamically assigns responsibility for a virtual router to one of
the VRRP routers. The VRRP router that controls the IP address associated with the virtual router is
called Master. Primary forwards the packets to these IP addresses.

When the primary router is unavailable, any of the virtual routers IP address is used as the default first
hop router by end hosts.

Benefit of VRRP

Supports high availability default path without configuring dynamic routing on every end host.

How VRRP Works with cRPD?

This sample provides steps on how to configure active/back up load balancing feature using VRRP in
cRPD. To achieve this support, you must configure VRRP instance with a virtual address in two cRPD
containers. One as a master and other as a backup. When the failover happens, the virtual address is
taken by the backup router from the primary router.

1. Configure VRRP on cRPD instance 1. The virtual address is used as a next hop for the route.

user@crpdl1# set interfaces ens3f1 unit @ family inet address 10.0.0.1/24 vrrp-group 111
virtual-address 10.0.0.254/32 device-name ens3f1

user@crpdl1# set interfaces ens3f1 unit @ family inet address 10.0.0.1/24 vrrp-group 111
priority 200

user@crpdl1# set interfaces ens3f1 unit @ family inet address 10.0.0.1/24 vrrp-group 111
advertise-interval 1

user@crpdl1# set interfaces ens3f1 unit @ family inet address 10.0.0.1/24 vrrp-group 111 mode
master

user@crpdl1# set interfaces ens3f1 unit @ family inet address 10.0.0.1/24 vrrp-group 111
authentication-type simple

user@crpd1# set interfaces ens3f1 unit @ family inet address 10.0.0.1/24 vrrp-group 111
authentication-key 12345

2. Configure VRRP with track and notify script. Notify script is to trigger script execution when the
VRRP state changes to primary/backup. Track script is used to monitor every state transition of
instance.

user@crpdl4# set interfaces ens3f1 unit @ family inet address 10.0.0.1/24 vrrp-group 111 track
interface ens3f2 weight cost 10

user@crpdl# set interfaces ens3f1 unit @ family inet address 10.0.0.1/24 vrrp-group 111 track
track-script keepalived_check script-name /etc/crpd/scripts/track_script_sample.sh
user@crpdl# set interfaces ens3f1 unit @ family inet address 10.0.0.1/24 vrrp-group 111 track
track-script keepalived_check interval 10

user@crpdl# set interfaces ens3f1 unit @ family inet address 10.0.0.1/24 vrrp-group 111 track
track-script keepalived_check time-out 5

user@crpdl# set interfaces ens3f1 unit @ family inet address 10.0.0.1/24 vrrp-group 111 track
track-script keepalived_check rise 3

user@crpdl4# set interfaces ens3f1 unit @ family inet address 10.0.0.1/24 vrrp-group 111 track
track-script keepalived_check fall 3

user@crpdl4# set interfaces ens3f1 unit @ family inet address 10.0.0.1/24 vrrp-group 111 track
track-script keepalived_check weight cost 10

user@crpdl4# set interfaces ens3f1 unit @ family inet address 10.0.0.1/24 vrrp-group 111 track
notify-script /etc/crpd/scripts/keepalived_notify.sh

3. Configure VRRP on cRPD instance 2.

user@crpdl1# set interfaces ens3f1 unit @ family inet address 10.0.0.2/24 vrrp-group 111
virtual-address 10.0.0.254/32 device-name ens3f1

user@crpdl1# set interfaces ens3f1 unit @ family inet address 10.0.0.2/24 vrrp-group 111
priority 200

user@crpdl1# set interfaces ens3f1 unit @ family inet address 10.0.0.2/24 vrrp-group 111
advertise-interval 1

user@crpdl1# set interfaces ens3f1 unit @ family inet address 10.0.0.2/24 vrrp-group 111 mode
backup

user@crpdl1# set interfaces ens3f1 unit @ family inet address 10.0.0.2/24 vrrp-group 111
authentication-type simple

user@crpdl1# set interfaces ens3f1 unit @ family inet address 10.0.0.2/24 vrrp-group 111
authentication-key 12345

4. Configure VRRP with track and notify script.

user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.2/24 vrrp-group 111 track
interface ens3f2 weight cost 10

user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.2/24 vrrp-group 111 track
track-script keepalived_check script-name /etc/crpd/scripts/track_script_sample.sh
user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.2/24 vrrp-group 111 track
track-script keepalived_check interval 10

user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.2/24 vrrp-group 111 track
track-script keepalived_check time-out 5

user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.2/24 vrrp-group 111 track
track-script keepalived_check rise 3

user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.2/24 vrrp-group 111 track
track-script keepalived_check fall 3

user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.2/24 vrrp-group 111 track
track-script keepalived_check weight cost 10

user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.2/24 vrrp-group 111 track
notify-script /etc/crpd/scripts/keepalived_notify.sh

Use the following commands to verify that cRPD1 has transitioned to backup state and that the router
is backup for group ens3f1_v4_111.

user@crpd1> show vrrp
Interface State Group VR-state VR Mode Interface-address Virtual-address
ens3f1 up ens3f1_v4_111 backup Inactive 10.0.0.1/24 10.0.0.254/32

user@crpd1> show vrrp track
Track Int State VRRP int Group VR State Priority
ens3f2 up ens3f1 ens3f1_v4_111 backup 200

Use the following commands to verify that the instance has transitioned to master state and that the
router is primary for group ens3f1_v4_111.

user@crpd1> show vrrp
Interface State Group VR-state VR Mode Interface-address Virtual-address
ens3f1 up ens3f1_v4_111 master Active 10.0.0.2/24 10.0.0.254/32

user@crpd1> show vrrp track

Track Int State VRRP int Group VR State Priority
ens3f2 up ens3f1 ens3f1_v4_111 master 200
Configuring VRRP

track (VRRP)

https://www.juniper.net/documentation/us/en/software/junos/high-availability/topics/topic-map/vrrp-configuring.html
https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/statement/track-edit-interfaces-vrrp.html

CHAPTER

Troubleshooting

IN THIS CHAPTER

Debug cRPD Application | 155
Troubleshoot with Kubectl | 159
Debug EVPN VXLAN on RPD and Linux | 161

Debug cRPD Application

IN THIS SECTION

CLI | 155

Fault Handling | 156
Troubleshoot Container | 156
Verify Docker | 157

View Core Files | 158

Display Plain Text Version of Obfuscated (9) or Encrypted (8) Password | 159

You can use the following commands to debug the cRPD application.

CLI

The Junos OS CLlI is the primary tool for controlling and troubleshooting router hardware, the Junos OS,
routing protocols, and network connectivity. CLI commands display information from routing tables,
information specific to routing protocols, and information about network connectivity derived from the
traceroute utilities. RPD tracelog facilities are supported and enabled through the CLI. Trace log files are
stored /var/log path.

You can use the following Junos CLI commands to troubleshoot cRPD:
o show task: Display the routing protocol tasks on the Routing Engine.

e show task memory detail: Display the memory utilization for routing protocol tasks on the Routing
Engine.

e show route: Display the active entries in the routing tables.

e show bfd: Display information about active Bidirectional Forwarding Detection (BFD) sessions.

o show bgp: Display information about BGP summary information for all routing instances.

e show (ospf | ospf3): Display standard information about all OSPF neighbors for all routing instances.

e show interfaces routing: Perform router diagnostics.

e show log: View system activity logs to monitor and view information for performance monitoring,
troubleshooting, and debugging purposes.

e show krt: Monitor KRT queues and their states.

e show programmable-rpd: List of clients connected to the programmable routing protocol process (prpd)
server. The prpd provides public APIs to program routing systems, making it possible for users to
directly access the APIs to customize, create, and modify the behavior of their network.

e ip monitor: Monitor the installation of routes to Linux FIB and interface events and netlink messages.
e tcpdump: Capture network traffic to/from control plane.
e netstat: Monitor the sockets.

e request support information: Display the support information which is used for troubleshooting.

Fault Handling

When the rpd crashes, it restarts automatically. To recover manually from a fault, you can implement the
following CLI command hierarchies to handle the faults:

e restart routing: Restart the rpd.

e clear bgp: Clear BGP sessions.

e deactivate: Deactivate CLI configuration.

e activate: Activate the CLI configuration.

Troubleshoot Container

You can implement various docker commands to monitor and troubleshoot issues at container level
when cRPD is deployed as a docker container.

e docker ps: List out active containers and their state.

o docker stats: Continuous monitor the resource utilization.

e docker logs: Extract container logs in case the container terminates unexpectedly.

o docker stop: Stop the Docker from the current state.

e docker start: Restart the Docker container.

Verify Docker

1. Verify the installed Docker Engine version by using the docker version command.

root@ubuntu-vm18:~# docker version

Client: Docker Engine - Community

Version: 27.2.1
API version: 1.43 (downgraded from 1.47)
Go version: go1.22.7
Git commit: 9e34c9b
Built: Fri Sep 6 12:08:15 2024
0S/Arch: linux/amd64
Context: default
Server:
Engine:
Version: 24.0.5
API version: 1.43 (minimum version 1.12)
Go version: go1.20.14
Git commit: a6le2b4
Built: Tue Jun 25 22:38:06 2024
0S/Arch: linux/amd64
Experimental: false
containerd:
Version: v1.6.21
GitCommit: 3dce8eb055cbb6872793272b4f20ed 1611734418
runc:
Version: 1.1.12
GitCommit:
docker-init:
Version: 0.19.0
GitCommit: de40ad@

2. View the software and hardware information in the system.

root@ubuntu-vm18:~# uname -a

Linux ubuntu-vm18 4.15.0-43-generic #46-Ubuntu SMP Thu Dec 6 14:45:28 UTC 2018 x86_64 x86_64
x86_64 GNU/Linux

3. View the version of Ubuntu.

root@ubuntu-vm18:~# Isb_release -a

No LSB modules are available.
Distributor ID: Ubuntu
Description: Ubuntu 18.04.1 LTS
Release: 18.04

Codename: bionic

View Core Files

IN THIS SECTION

Purpose | 158
Action | 158

Purpose

When a core file is generated, you can find the output at /var/crash. The core files generated are stored
on the system that hosts the Docker containers.

You can also use ping and pingé to check the reachability at the shell mode.

Action

To list the core files:
1. Exit from the CLI environment to return to the host unix shell.

user@host> start shell

2. Change the directory to /var/crash:
root@ubuntu-vm18$ cd /var/crash
root@ubuntu-vm18$ Is -I

3. Run the command to identify the location of the core files:
root@ubuntu-vm18$ sysctl kernel.core_pattern

4. Verify for any core files created around the time of the crash.

Display Plain Text Version of Obfuscated (9) or Encrypted ($89%)
Password

e You can use the following command to show plain text versions of obfuscated (9) or encrypted
($8%) passwords present in configuration files:

root@crpd1> request system decrypt password

For more information, see request system decrypt password.

Troubleshoot with Kubectl

IN THIS SECTION

Kubectl CLI | 160
View Pods | 160

View Container Logs | 161

Troubleshooting is a systematic approach to solving a problem. The goal of troubleshooting is to
determine why something does not work as expected and how to resolve the problem.

https://www.juniper.net/documentation/us/en/software/junos/cli-reference/topics/ref/command/request-security-decryp-password.html

Kubectl CLI

You can use the following Kubectl commands to troubleshoot cRPD:
e kubectl get: Lists the resources.

e kubectl describe: Display detailed information about a resource.

e kubectl logs: Display the logs from a container in a pod.

e kubectl exec: Execute a command on a container in a pod.

View Pods

A Pod is a Kubernetes abstraction that represents a group of one or more application containers (such as
Docker or rkt), and some shared resources for those containers.

Those resources include:
e Shared storage as Volumes
e Networking as a unique cluster IP address

e Information about how to run each container, such as the container image version or specific ports to
use

When we create a Deployment on Kubernetes, that Deployment creates Pods with containers inside
them (as opposed to creating containers directly). Each Pod is tied to the Node where it is scheduled,
and remains there until termination (according to restart policy) or deletion. In case of a Node failure,
identical Pods are scheduled on other available Nodes in the cluster. Summary: Pods Nodes Kubectl
main commands. A Pod is a group of one or more application containers (such as Docker or rkt) and
include shared storage (volumes), IP address and information about how to run them.

Run the following command to view pods:

root@ubuntu-vm18: ~# kubectl get pods

View Container Logs

IN THIS SECTION

Purpose | 161
Action | 161

Purpose

Anything that the application sends to STDOUT becomes logs for the container within the Pod.

Action

To view the logs:

1. Run the following command to retrieve the logs:

root@ubuntu-vm18$ kubectl logs $POD_NAME

Debug EVPN VXLAN on RPD and Linux

IN THIS SECTION

Configure EVPN over VXLAN | 162
Verify Layer 2 EVPN over VXLAN Support on cRPD | 163

You can debug EVPN type 2 routes by enabling VXLAN encapsulation.
Before you start debugging for EVPN over VXLAN support in cRPD, ensure you have the configuration

created.

Configure EVPN over VXLAN

Configure Layer 2 EVPN over VXLAN with MAC-VRF on cRPD.

routing-instances {
evpn-vxlan {
instance-type mac-vrf;
protocols {
evpn {
encapsulation vxlan;

default-gateway do-not-advertise;

}
service-type vlan-aware;
vtep-source-interface 10.0;
bridge-domains {
bd600 {
vlan-id 600;
interface ens3f2.600;
routing-interface irb.600;
vxlan {
vni 2600;
destination-udp-port 4790;

}
bd601 {
vlan-id 601;
interface ens3f3.601;
routing-interface irb.601;
vxlan {
vni 2601;
destination-udp-port 4790;

}
route-distinguisher 81.1.1.1:1;
vrf-target target:1:1;

b

interfaces {

irb {
unit 600 {
family inet {
address 99.60.0.254/24;
}
family inet6 {
address 1234::99.60.0.254/120;

}
}
unit 601 {
family inet {
address 99.60.1.254/24;
}
family inet6 {
address 1234::99.60.1.254/120;
}
}

Verify Layer 2 EVPN over VXLAN Support on cRPD

1. Verify the bridge device is created in RPD and Linux kernel.

root@E1_CRPD> show evpn instance evpn-vxlan extensive

RPD view

Instance: evpn-vxlan
Route Distinguisher: 81.1.1.1:1
Encapsulation type: VXLAN
Control word enabled
Duplicate MAC detection threshold: 5
Duplicate MAC detection window: 180

MAC database status Local Remote
MAC advertisements: 3 2
MAC+IP advertisements: 9 6
Default gateway MAC advertisements: 2 0

Number of local interfaces: 3 (3 up)

Interface name ESI Mode

.local..2 00:00:00:00:00:00:00:00:00:00 single-homed

ens3f2.600 00:00:00:00:00:00:00:00:00:00 single-homed

ens3f3.601 00:00:00:00:00:00:00:00:00:00 single-homed
Number of IRB interfaces: 2 (2 up)

Interface name VLAN VNI Status L3 context

irb.600 2600 Up evpn-vrf

irb.601 2601 Up evpn-vrf

Number of protect interfaces: 0
Number of bridge domains: 2
VLAN Domain-ID Intfs/up IRB-intf Mode
sync IM-core-NH v6-SG-sync IM-core-NH Trans-ID

600 2600 11 irb.600 Extended
Disabled Disabled 2600
601 2601 11 irb.601 Extended
Disabled Disabled 2601
Number of neighbors: 1
Address MAC MAC+IP AD M
Peer
81.2.2.2 2 6 0 2

Number of ethernet segments: 2
ESI: 05:00:00:00:7b:00:00:0a:28:00
Local interface: irb.600, Status: Up/Forwarding
ESI: 05:00:00:00:7b:00:00:0a:29:00
Local interface: irb.601, Status: Up/Forwarding
Router-ID: 81.1.1.1
Source VTEP interface IP: 81.1.1.1
SMET Forwarding: Disabled

root@PE1_CRPD> show krt table | grep evpn-vxlan

evpn-vxlan.evpn-mac.0 : GF: 11 krt-index: 7

Kernel view
root@PE1_CRPD: /# ip link show __crpd-brd2

__crpd-brd<2> is kernel id from show krt table

Status AC-Role
Up Root
Up Root
Up Root

MAC-sync IM-label MAC-label v4-SG-

Enabled 2600

Enabled 2601

ES Leaf-label Remote-DCI-

ID: 0 kernel-id: 2

148: __crpd-brd2: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group

default glen 1000

link/ether 56:68:a3:1a:07:9c brd ff:ff.ff:.ff.ff.ff
alias evpn-vxlan

root@PE1_CRPD: /# ip -d link show __crpd-brd2

148: __crpd-brd2: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group
default glen 1000

link/ether 56:68:a3:1a:07:9c brd ff:ff.ff:ff:ff:ff promiscuity @

bridge forward_delay 1500 hello_time 200 max_age 2000 ageing_time 30000 stp_state
0 priority 32768 vlan_filtering 1 vlan_protocol 802.1Q bridge_id 8000.56:68:a3:1a:7:9c
designated_root
8000.56:68:a3:1a:7:9c root_port @ root_path_cost @0 topology_change @ topology_change_detected
0 hello_timer 0.00 tcn_timer 0.00 topology_change_timer 0.00 gc_timer 54.32
vlan_default_pvid 0
vlan_stats_enabled @ group_fwd_mask @ group_address 01:80:c2:00:00:00 mcast_snooping 0
mcast_router 1 mcast_query_use_ifaddr @ mcast_querier @ mcast_hash_elasticity 4
mcast_hash_max 512
mcast_last_member_count 2 mcast_startup_query_count 2 mcast_last_member_interval 100
mcast_membership_interval 26000 mcast_querier_interval 25500 mcast_query_interval 12500
mcast_query_response_interval
1000 mcast_startup_query_interval 3124 mcast_stats_enabled @ mcast_igmp_version 2
mcast_mld_version 1 nf_call_iptables @ nf_call_ip6tables @ nf_call_arptables 0 addrgenmode
eui64 numtxqueues 1
numrxqueues 1 gso_max_size 65536 gso_max_segs 65535

alias evpn-vxlan

2. Verify if the VXLAN devices are created corresponding to the VXLAN configuration under bridge
domains.

RPD view

VXLAN configs of interest under routing-instance bridge-domains.

routing-instances {
evpn-vxlan {
bridge-domains {
bd600 {

vxlan {
vni 2600;
destination-udp-port 4790;

}
bd601 {
vxlan {
vni 2601;
destination-udp-port 4790;
}
}
}
}
}
Kernel view

root@PE1_CRPD:/# ip -d link show vxlan2600

16: vx1an2600: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master __crpd-brd2 state
UNKNOWN mode DEFAULT group default glen 1000

link/ether @e:6b:fd:27:a5:63 brd ff:ff.ff.ff:ff:ff promiscuity 1

vxlan id 2600 local 81.1.1.1 srcport @ @ dstport 4790 nolearning tos inherit ttl 100
ageing 300 noudpcsum noudp6zerocsumtx noudp6zerocsumrx

bridge_slave state forwarding priority 32 cost 100 hairpin off guard off root_block off
fastleave off learning off flood
on port_id 0x8003 port_no 0x3 designated_port 32771 designated_cost 0 designated_bridge
8000.e:6b:fd:27:a5:63
designated_root 8000.e:6b:fd:27:a5:63 hold_timer 0.00 message_age_timer 0.00
forward_delay_timer
0.00 topology_change_ack @ config_pending @ proxy_arp off proxy_arp_wifi off mcast_router 1
mcast_fast_leave off mcast_flood on
neigh_suppress on group_fwd_mask 0x@ group_fwd_mask_str 0x@ vlan_tunnel off addrgenmode eui64
numtxqueues 1 numrxqueues 1

gso_max_size 65536 gso_max_segs 65535

root@PE1_CRPD: /# ip -d link show vxlan2601

17: vx1an2601: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master __crpd-brd2 state
UNKNOWN mode DEFAULT group default glen 1000

link/ether 32:82:1d:c2:€9:8b brd ff:ff.ff:ff:ff:ff promiscuity 1

vxlan id 2601 local 81.1.1.1 srcportdstport 4790 @ 0 nolearning tos inherit ttl 100

ageing 300 noudpcsum noudp6zerocsumtx noudp6zerocsumrx

bridge_slave state forwarding priority 32 cost 100 hairpin off guard off root_block off
fastleave off learning off flood on port_id 0x8004 port_no
0x4 designated_port 32772 designated_cost @ designated_bridge 8000.e:6b:fd:27:a5:63
designated_root 8000.e:6b:fd:27:a5:63 hold_timer
0.00 message_age_timer 0.00 forward_delay_timer 0.00 topology_change_ack @
config_pending @ proxy_arp off proxy_arp_wifi off
mcast_router 1 mcast_fast_leave off mcast_flood on neigh_suppress on group_fwd_mask 0x0
group_fwd_mask_str 0x0 vlan_tunnel off addrgenmode eui64

numtxqueues 1 numrxqueues 1 gso_max_size 65536 gso_max_segs 65535

3. Verify all the instance interfaces (bridge domain interfaces including vxlan devices) are enslaved to
bridge device in kernel.

RPD view

Interface configs of interest under routing-instance bridge-domains.

routing-instances {

evpn-vxlan {

bridge-domains {
bd600 {

interface ens3f2.600;
vxlan {
vni 2600; -> vxlan2600

}
}
bd601 {
interface ens3f3.601;
vxlan {
vni 2601; -> vxlan2601
}
}
}
}
}
Kernel view

Ensure all the instance IFL have "primary __crpd-brd2" which means they are enslaved to __crpd-
brd2 bridge device through ip link.

root@E1_CRPD: /# ip link show master __crpd-brd2

12: ens3f2.600@ens3f2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master
brd2 state UP mode DEFAULT group default glen 1000

link/ether 56:68:a3:54:20:b7 brd ff:ff:ff.ff.ff.ff
13: ens3f3.601@ens3f3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master __crpd-
brd2 state UP mode DEFAULT group default glen 1000

link/ether 56:68:a23:54:20:bb brd ff:ff.ff:.ff.ff:ff
16: vx1an2600: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master
UNKNOWN mode DEFAULT group default glen 1000

link/ether 0e:6b:fd:27:a5:63 brd ff:ff:ff.ff.ff.ff
17: vxlan2601: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master __crpd-brd2 state
UNKNOWN mode DEFAULT group default glen 1000

link/ether 32:82:1d:c2:€9:8b brd ff:ff:ff.ff.ff.ff
19: irbbe-brd2@irbve-brd2: <BROADCAST,UP,LOWER_UP> mtu 1500 gqdisc noqueue master
state UP mode DEFAULT group default glen 1000

link/ether fe:72:e9:b0:b5:92 brd ff:ff:ff.ff.ff.ff

_crpd-

_crpd-brd2 state

_crpd-brd2

4. Verify if the instance interfaces in the bridge device have vids matching the bridge-domain on RPD.

RPD view

VLAN/interface configs of interest under routing-instance bridge-domains.

routing-instances {

evpn-vxlan {

bridge-domains {
bd600 {
vlan-id 600; --->bd600/vid
interface ens3f2.600;
vxlan {
vni 2600; -> vx1an2600

}
bd601 {
vlan-id 601; --->bd601/vid
interface ens3f3.601;
vxlan {
vni 2601; -> vxlan2601

Kernel view

root@PE1_CRPD: /# bridge vlan show

port vlan ids

ens3f2.600 600 PVID Egress Untagged
ens3f3.601 601 PVID Egress Untagged
__crpd-brd2 None
vx1an2600 600 PVID Egress Untagged
vx1an2601 601 PVID Egress Untagged
irbbe-brd2 600

601

5. Check if the irb interface, a VLAN sub-interface with bridge-domains VLAN-ID, exists in the kernel. It
should correspond to the routing-interface configuration under bridge-domains.

RPD view

IRB interface configs of interest under routing-instance bridge-domains.

routing-instances {

evpn-vxlan {

bridge-domains {
bd600 {

vlan-id 600;
routing-interface irb.600;

}

bd601 {
vlan-id 601;
routing-interface irb.6071;

Kernel view

root@E1_CRPD: /# ip -d link show irb.600

20: irb.600@irbve-brd2: <BROADCAST,UP,LOWER_UP> mtu 1500 gdisc noqueue master __crpd-vrf1
state UP mode DEFAULT group default glen 1000

link/ether d6:23:f9:94:70:78 brd ff:ff.ff:ff:ff:ff promiscuity @

vlan protocol 802.1Q id 600 <REORDER_HDR>

vrf_slave table 1 addrgenmode eui64 numtxqueues 1 numrxqueues 1 gso_max_size 65536

gso_max_segs 65535

root@PE1_CRPD: /# ip -d link show irb.601

22: irb.601@irbve-brd2: <BROADCAST,UP,LOWER_UP> mtu 1500 gdisc noqueue master __crpd-vrf1
state UP mode DEFAULT group default glen 1000

link/ether d6:23:f9:94:70:78 brd ff:ff.ff:ff:ff:ff promiscuity @

vlan protocol 802.1Q id 601 <REORDER_HDR>

vrf_slave table 1 addrgenmode eui64 numtxqueues 1 numrxqueues 1 gso_max_size 65536

gso_max_segs 65535

6. Ensure if IPv4/IPvé6 addresses are assigned to the irb interfaces.

RPD view

IP address configs of IRB interfaces.

interfaces {

irb {
unit 600 {
family inet {
address 99.60.0.254/24;
3
family inet6 {
address 1234::99.60.0.254/120;
}
}
unit 601 {

family inet {
address 99.60.1.254/24;

}
family inet6 {

address 1234::99.60.1.254/120;

Kernel view

root@PE1_CRPD:/# ip addr show irb.600

20: irb.600@irbve-brd2: <BROADCAST,UP,LOWER_UP> mtu 1500 gdisc noqueue master __crpd-vrf1
state UP group default glen 1000
link/ether d6:a3:f9:94:70:78 brd ff.ff:.ff.ff.ff.ff
inet 99.60.0.254/24 scope global irb.600
valid_1ft forever preferred_1ft forever
inet6 1234::633c:fe/120 scope global
valid_1ft forever preferred_1ft forever
inet6 fe80::d4a3:f9ff:fe94:7078/64 scope link

valid_1ft forever preferred_1ft forever

root@E1_CRPD:/# ip addr show irb.601

22: irb.601@irbve-brd2: <BROADCAST,UP,LOWER_UP> mtu 1500 gdisc noqueue master __crpd-vrf1
state UP group default glen 1000
link/ether d6:a23:f9:94:70:78 brd ff:ff:ff:ff.ff:ff
inet 99.60.1.254/24 scope global irb.601
valid_1ft forever preferred_1ft forever
inet6 1234::633c:1fe/120 scope global
valid_1ft forever preferred_1ft forever
inet6 fe80::d4a3:f9ff:fe94:7078/64 scope link
valid_1ft forever preferred_1ft forever

7. Verify that the kernel creates bridge flood entries matching the IM (inclusive multicast) route entries
received from peers.

RPD view

root@PE1_CRPD> show route table evpn-vxlan.evpn.0 protocol bgp | grep IM

3:81.2.2.2:1::2600::81.2.2.2/248 IM
3:81.2.2.2:1::2601::81.2.2.2/248 IM

Kernel view

root@PE1_CRPD: /# bridge fdb show br __crpd-brd2 state static | grep 00:00:00:00:00:00

00:00:00:00:00:00 dev vx1an2600 dst 81.2.2.2 self static
00:00:00:00:00:00 dev vx1an2601 dst 81.2.2.2 self static

8. Verify local MAC entries are learned and advertised by EVPN to remote peers.
RPD view

root@PE1_CRPD> show evpn database instance evpn-vxlan origin local

Instance: evpn-vxlan

VLAN DomainId MAC address Active source Timestamp IP address
2600 00:11:11:11:60:00 ens3f2.600 May 10 23:49:46 99.60.0.1
1234::633c:1

fe80::5668:2302:5854:1f14
2600 d6:a3:f9:94:70:78 1irb.600 Apr 29 21:08:59 99.60.0.254

1234::633c:fe

fe80::d4a3:f9ff:fe94:7078
2601 00:11:11:11:60:10 ens3f3.601 May 10 23:47:44 99.60.1.1

1234::633c:101

fe80::5668:a2302:5954:1f15
2601 d6:a3:f9:94:70:78 irb.601 Apr 29 21:08:59 99.60.1.254

1234::633c:1fe

fe80::d4a3:f9ff:fe94:7078

root@PE1_CRPD> show route table evpn-vxlan.evpn.O protocol evpn | grep MAC

:81.1.1.1:1::2600::00:11:11:11:60:00/304 MAC/IP
:81.1.1.1:1::2601::00:11:11:11:60:10/304 MAC/IP
:81.1.1.1:1::2600::00:11:11:11:60:00::99.60.0.1/304 MAC/IP
:81.1.1.1:1::2601::00:11:11:11:60:10::99.60.1.1/304 MAC/IP
:81.1.1.1:1::2600::00:11:11:11:60:00::1234::633c:1/304 MAC/IP
:81.1.1.1:1::2600::00:11:11:11:60:00: : fe80: :5668:2302:5854:1f14/304 MAC/IP
:81.1.1.1:1::2601::00:11:11:11:60:10::1234::633c:101/304 MAC/IP
:81.1.1.1:1::2601::00:11:11:11:60:10::fe80: :5668:2302:5954:1f15/304 MAC/IP

N DD NN NN NN NN

Kernel view
Mac entries are learned from bridge fdb table

root@PE1_CRPD: /# bridge fdb show br __crpd-brd2 brport ens3f2.600 state dynamic

00:11:11:11:60:00 vlan 600 master __crpd-brd2

root@E1_CRPD: /# bridge fdb show br __crpd-brd2 brport ens3f3.601 state dynamic

00:11:11:11:60:10 vlan 601 master __crpd-brd2

Mac+ip bindings are learned from ip neigh table

root@PE1_CRPD: /# ip neigh show dev irb.600 | grep -v PERMANENT

99.60.0.1 1laddr 00:11:11:11:60:00 REACHABLE
1234::633c:1 1lladdr 00:11:11:11:60:00 router STALE
fe80::5668:a2302:5854:1f14 1laddr 00:11:11:11:60:00 router STALE

root@PE1_CRPD: /# ip neigh show dev irb.601 | grep -v PERMANENT

99.60.1.1 1laddr 00:11:11:11:60:10 REACHABLE

1234::633c:101 1laddr 00:11:11:11:60:10 router STALE
fe80::5668:a302:5954:1f15 1laddr 00:11:11:11:60:10 router STALE

9. Verify remote MAC entries are learned and programmed to kernel.

RPD view

root@PE1_CRPD> show route table evpn-vxlan.evpn.O protocol bgp | grep MAC

:81.2.
:81.2.
:81.2.
:81.2.
:81.2.
:81.2.
:81.2.
:81.2.

N N NN N NN NN
N N NN NN NN NN
N DD NN NN N DD NN

:1

21
:1

:1:2600::00:22:
1:2601::00:22:
:1:2600::00:22:
1:2601::00:22:
:1:2600::00:22:
:1:2600::00:22:
1:2601::00:22:

::2601::00:22

22:
22:
22:
22:
22:
22:
22:
:22:

22:
22:
22:
22:
22:
22:
22:
22:

60:
60:
60:
60:
60:
60:
60:
60:

00/304 MAC/IP
10/304 MAC/IP

00:
10:
00:
00:
10:
10:

:1234:
:fed0:
:1234:
:fed0:

:99.60.0.2/304 MAC/IP

:99.60.1.2/304 MAC/IP

:633c:2/304 MAC/IP
:5668:2302:5854:1f09/304 MAC/IP
:633c:102/304 MAC/IP
:5668:2302:5954:1f0a/304 MAC/IP

root@E1_CRPD> show evpn database instance evpn-vxlan origin remote

Instance: evpn-vxlan
VLAN DomainId MAC address
00:22:22:22:60:00 81.2.2.2

2600

1234::633c:2

fe80::5668:a302:5854:1f09
00:22:22:22:60:10 81.2.2.2

2601

1234::633c:102

fe80::5668:a2302:5954:1f0a

Kernel view

Active source

Timestamp IP address
Apr 29 23:51:56 99.60.0.2

Apr 29 23:51:56 99.60.1.2

Macs are programmed to bridge fdb table in Linux

root@E1_CRPD: /# bridge fdb show br __crpd-brd2 dev vxlan2600 state static

00:00:00:00:00:00 dst 81.2.2.2 self static
00:22:22:22:60:00 dst 81.2.2.2 self static

00:22:22:22:60:00 vlan 600 master __crpd-brd193 static

root@PE1_CRPD: /# bridge fdb show br __crpd-brd2 dev vxlan2601 state static

00:22:22:22:60:10 vlan 601 master __crpd-brd193 static

00:00:00:00:00:00 dst 81.2.2.2 self static
00:22:22:22:60:10 dst 81.2.2.2 self static

Mac+ip bindings are programmed to ip neigh table

root@PE1_CRPD:/# ip neigh show dev irb.600 | grep PERMANENT

99.60.0.2 1laddr 00:22:22:22:60:00 PERMANENT
fe80::5668:2302:5854:1f09 1laddr 00:22:22:22:60:00 PERMANENT
1234::633c:2 1laddr 00:22:22:22:60:00 PERMANENT

root@PE1_CRPD: /# ip neigh show dev irb.601 | grep PERMANENT

99.60.1.2 1laddr 00:22:22:22:60:10 PERMANENT
fe80::5668:a302:5954:1f0a 1laddr 00:22:22:22:60:10 PERMANENT
1234::633c:102 1laddr 00:22:22:22:60:10 PERMANENT

CHAPTER

Best Practices

IN THIS CHAPTER

Security Best Practices | 177

Security Best Practices

IN THIS SECTION

Host OS Hardening | 177
Patch Management | 178

Security Ports | 178

The best practices required to monitor and secure container environments are:

Host OS Hardening

Hardening an operating system include:
e Ensure that both the host OS and docker software are updated with the latest security patches.
e Download images from downloads.

e Run docker as non-root user without root privileges. This is called Rootless mode. In this mode,
docker and container run within a user namespace. Running both containers and the Docker Engine
services as non-root users improves security in the event of a breach.

e Prevent DoS attacks by configuring specified amount of memory and CPU required to run the
containers.

e Avoid using sshd within containers.
e Avoid using default bridge docker® from ARP spoofing and MAC flooding attacks.
e Set the container's root file system to read-only to prevent from malicious attack.

e Set the process identifier (PID) limit. Each process in the kernel carries a unique PID, and containers
leverage Linux PID namespace to provide a separate view of the PID hierarchy for each container.
Limiting the number of processes in the container prevents excessive spawning of new processes and
potential malicious lateral movement.

https://support.juniper.net/support/downloads/

Patch Management

Patch management involves identifying system features that can be improved or fixed, releasing the
update package, and validating the installation of the updates. Patching with software updates and
system reconfiguration is part of vulnerability management.

For information about latest software and details, see downloads and Upgrade cRPD.

Security Ports

Privileged service ports are available for use are:

e Ensure each system runs only approved ports and protocols. These include BGP (TCP 179), SSH (TCP
22), Netconf over SSH (TCP 830), and gRPC for telemetry (TCP 50051). Validate business needs for
all services. For example, HTTP and HTTPS load balancers must bind (TCP 80) and (TCP 443)
respectively.

e TCP/IP port numbers below 1024 are considered privileged ports. Avoid to map any ports below
1024 within a container as they transmit sensitive data. By default, Docker maps container ports to
one that’s within the 49153-65525 range, but it allows the container to be mapped to a privileged
port.

https://support.juniper.net/support/downloads/
https://www.juniper.net/documentation/us/en/software/crpd/crpd-deployment/topics/task/upgrade-cRPD.html

	Table of Contents
	About This Guide
	Overview
	What Is Containerized RPD?
	cRPD Resource Requirements
	Junos OS Features Supported on cRPD
	Use Case: Egress Peer Traffic Engineering Using BGP Add-Path

	Install and Upgrade cRPD
	Requirements to Deploy cRPD on a Linux Server
	Install cRPD on Docker
	Before You Install
	Install and Verify Docker
	Download cRPD Software from Docker Registry
	Download cRPD Software from Juniper URL
	Create Data Volumes
	Configure Memory
	Configure cRPD Using the CLI

	Install cRPD on Kubernetes
	Install Kubernetes
	Kubernetes Cluster
	Download cRPD Docker Image
	Create a cRPD Pod Using Deployment
	Create a cRPD Pod Using YAML
	Create a cRPD Pod Using Job Resource
	Create a cRPD Pod Using DaemonSet
	Scale cRPD
	Roll Update of cRPD Deployment
	cRPD Pod Deployment with Allocated Resources
	cRPD Pod Deployment Using Mounted Volume

	Upgrade cRPD
	Upgrade Software

	Install and Configure cRPD on SONiC

	Managing cRPD
	Syslog Support on cRPD
	Manage cRPD
	Build Topologies
	Network Docker Containers
	Remove a Bridge
	Create an OVS Bridge
	Remove Interfaces and Bridges
	View Container Processes
	Access cRPD CLI and Bash Shell
	Pause and Resume Processes Within a cRPD Container
	Remove a cRPD Instance
	View Docker Statistics and Logs
	View Active Containers
	Stop the Container

	Establish an SSH Connection for a NETCONF Session and cRPD
	Establish an SSH Connection
	Enable SSH
	Connect to a NETCONF Server on Container

	Programmable Routing
	JET APIs

	Use cRPD
	Configure Settings on Host OS
	Configure ARP Scaling
	IGMP Membership Under Linux
	Kernel Modules
	Configure MPLS
	Hash Field Selection for ECMP Load Balancing on Linux
	wECMP Using BGP on Linux
	Enable SRv6 on cRPD

	Configure Settings on cRPD
	Configure OSPF
	Configure Bridged Interfaces
	Configure Routed VLAN Interfaces
	Configure ISO Interfaces
	Configure IPv6 Interfaces
	Configure IPv4 Interfaces
	View Interfaces
	Configure MTU
	Configure MAC
	Configure gRPC Services
	Configure TACACS+ Server
	Configure Static LSPs for MPLS
	Configure Instance Type
	Assign an IP Address to the Routing Instance
	View Routes for a VRF

	Multitopology Routing in cRPD
	Multitopology in cRPD
	Example: Configure Multitopology Routing with BGP in cRPD
	Requirements
	Overview
	Configuration
	Verification

	Layer 3 Overlay Support in cRPD
	Overview
	Example: Configure Layer 3 VPN (VRF) on cRPD Instance
	Requirements
	Overview
	Configuration
	Verification

	MPLS Support in cRPD
	How MPLS Is Supported on cRPD
	Example: Configure Static Label Switched Paths for MPLS in cRPD
	Requirements
	Overview
	Configuration
	Verification

	Sharding and UpdateIO on cRPD
	Sharding
	UpdateIO

	VRRP with cRPD
	Overview
	How VRRP Works with cRPD?

	Troubleshooting
	Debug cRPD Application
	CLI
	Fault Handling
	Troubleshoot Container
	Verify Docker
	View Core Files
	Display Plain Text Version of Obfuscated (9) or Encrypted (8) Password

	Troubleshoot with Kubectl
	Kubectl CLI
	View Pods
	View Container Logs

	Debug EVPN VXLAN on RPD and Linux
	Configure EVPN over VXLAN
	Verify Layer 2 EVPN over VXLAN Support on cRPD

	Best Practices
	Security Best Practices

