
cRPD Deployment Guide for Linux Server

Published

2023-12-14

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

 cRPD Deployment Guide for Linux Server
Copyright © 2023 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

ii

https://support.juniper.net/support/eula/

Table of Contents

About This Guide | viii

1 Overview

What Is Containerized RPD? | 2

cRPD Resource Requirements | 8

Junos OS Features Supported on cRPD | 9

Use case: Egress Peer Traffic Engineering using BGP Add-Path | 16

2 Installing and Upgrading cRPD

Requirements for Deploying cRPD on a Linux Server | 19

Installing cRPD on Docker | 20

Before You Install | 21

Install and Verify Docker | 21

Download the cRPD Software | 21

Download cRPD Software from Juniper URL | 23

Creating Data Volumes and Running cRPD using Docker | 23

Configuring Memory | 24

Configuring cRPD using the CLI | 24

Installing cRPD on Kubernetes | 26

Installing Kubernetes | 27

Kubernetes Cluster | 28

Download cRPD Docker Image | 29

Creating a cRPD Pod using Deployment | 30

Creating a cRPD Pod using YAML | 33

Creating a cRPD Pod using Job Resource | 36

iii

Creating a cRPD Pod using DaemonSet | 38

Scaling of cRPD | 43

Rolling Update of cRPD Deployment | 45

cRPD Pod Deployment with Allocated Resources | 48

cRPD Pod Deployment using Mounted Volume | 51

Upgrading cRPD | 54

Upgrade Software | 54

Installing and Configuring cRPD on SONiC | 55

3 Managing cRPD

Syslog Support on cRPD | 62

Managing cRPD | 65

Building Topologies | 65

Networking Docker Containers | 66

Removing a Bridge | 66

Creating an OVS Bridge | 67

Configuring OSPF | 68

Removing Interfaces and Bridges | 71

Viewing Container Processes in a Running cRPD | 71

Accessing cRPD CLI and Bash Shell | 72

Pausing and Resuming Processes within a cRPD Container | 72

Removing a cRPD Instance | 73

Viewing Docker Statistics and Logs | 73

Viewing Active Containers | 73

Stopping the Container | 76

Establishing an SSH Connection for a NETCONF Session and cRPD | 76

Establishing an SSH Connection | 77

iv

Enabling SSH | 77

Port Forwarding Mechanism | 77

Connecting to a NETCONF Server on Container | 78

4 Programmable Routing

cRPD Application Development Using JET APIs | 80

Getting Started with JET | 81

Configure JET Interaction with Linux OS | 81

Maximum Number of JET Connections | 81

Compile IDL Files | 82

5 Using cRPD

Configuring Settings on Host OS | 85

Configuring ARP Scaling | 85

Tunning OSPF under cRPD | 86

Configuring MPLS | 86

Adding MPLS Routes | 87

Adding Routes with MPLS label | 87

Creating a VRF device | 88

Assigning a Network Interface to a VRF | 88

Viewing the Devices assigned to VRF | 89

Viewing Neighbor Entries to VRF | 89

Viewing Addresses for a VRF | 89

Viewing Routes for a VRF | 89

Removing Network Interface from a VRF | 90

Hash Field Selection for ECMP Load Balancing on Linux | 90

wECMP using BGP on Linux | 92

Enable SRv6 on cRPD | 94

v

Multitopology Routing in cRPD | 94

Understanding Multitopology in cRPD | 95

Example: Configuring Multitopology Routing with BGP in cRPD | 95

Requirements | 96

Overview | 96

Configuration | 97

Verification | 101

Layer 3 Overlay Support in cRPD | 103

Understanding Layer 3 Overlay VRF support in cRPD | 103

Example: Configuring Layer 3 VPN (VRF) on cRPD Instance | 105

Requirements | 105

Overview | 105

Configuration | 106

Verification | 114

MPLS Support in cRPD | 119

Understanding MPLS support in cRPD | 119

Example: Configuring Static Label Switched Paths for MPLS in cRPD | 120

Requirements | 120

Overview | 121

Configuration | 121

Verification | 127

Sharding and UpdateIO on cRPD | 134

Understanding Sharding | 134

Understanding UpdateIO | 135

VRRP with cRPD | 135

Overview | 136

How VRRP Works with cRPD? | 136

6 Troubleshooting

Debugging cRPD Application | 141

Command-Line Interface | 141

vi

Fault Handling | 142

Troubleshooting Container | 142

Verify Docker | 143

Viewing Core Files | 144

Configuring Syslog | 145

Display Plain Text Version of Obfuscated (9) or Encrypted (8) Password | 145

Troubleshooting with Kubectl | 146

Kubectl Command-Line Interface | 146

Viewing Pods | 146

Viewing Container Logs | 147

Debugging EVPN VXLAN on RPD and Linux | 148

Configuring EVPN Over VXLAN | 148

Verifying Layer 2 EVPN Over VXLAN Support in cRPD | 149

7 Best Practices

Security Best Practices | 164

vii

About This Guide

Use this guide to install the containerized routing protocol process (cRPD) in the Linux environment. This
guide also includes basic cRPD container configuration and management procedures.

After completing the installation, management, and basic configuration procedures covered in this guide,
refer to the Junos OS documentation for information about further software configuration.

viii

1
CHAPTER

Overview

What Is Containerized RPD? | 2

cRPD Resource Requirements | 8

Junos OS Features Supported on cRPD | 9

Use case: Egress Peer Traffic Engineering using BGP Add-Path | 16

What Is Containerized RPD?

IN THIS SECTION

Benefits of cRPD | 2

Overview of rpd on Linux | 3

Docker Overview | 4

How Does cRPD Work? | 5

Route Reflector | 6

Routing Engine Kernel | 6

Supported Features on cRPD | 7

Licensing | 8

The Junos® containerized routing protocol process (cRPD) is an instance of the Junos OS routing
functionality instantiated inside a Linux containerized environment. cRPD provides cloud-native routing
to the network. We package the cRPD software as a Docker container image. cRPD supports router
functionality using IS-IS, OSPF, and BGP on the device as shown in Figure 3 on page 6.

Benefits of cRPD

• Reduced deployment time—Speed up deployment by using containers to reduce the service's boot
time from several minutes to a few seconds.

• Seamless upgrade—Upgrade software with minimal service disruption.

• Flexibility—Launch multiple cRPD instances with minimum resource requirements to support the
target scale.

• Stability—Provide a stable routing software on Linux.

2

Overview of rpd on Linux

The Junos routing protocol process (rpd) is a software process within the Routing Engine software. The
rpd controls the routing protocols that run on the device.

As a software process, the rpd:

• Operates from the center of a routing protocol stack based on Linux.

• Maintains one or more routing tables, which consolidate the routing information learned from all
routing protocols.

• Manages all protocol messages, routing table updates, and implements routing policies.

Figure 1: RPD on Linux Architecture

You can use the rpd application to:

• Run on software containers. The cRPD application enables routing solutions such as containerized
Route Reflector (cRR). The cRR service must work independently.

• Interact with mgd processes for management, CLI for configuration, BFD for detecting liveness of
links, periodic packet management process (PPMD), and update protocol sessions.

3

• Learn the route state using various routing protocols.

• Maintain the complete set of routing information in the routing information base (RIB), also known as
the routing table.

• Start all configured routing protocols and handle all routing messages. The rpd maintains one or more
routing tables, which consolidate the routing information that the router learns from all routing
protocols.

• Implement a routing policy with which you control the routing information that moves between the
routing protocols and the routing table. Using the routing policy, you can filter and limit the transfer
of information as well as set properties associated with specific routes.

• Download the routes that meet the local selection criteria into the forwarding information base (FIB),
also known as the forwarding table.

• Determine the active routes for the network destinations from the routing information and program
these routes into the Routing Engine’s forwarding table.

• Learn the interface attributes such as names, addresses, maximum transmission unit (MTU) settings,
and link status through Netlink messages.

Docker Overview

cRPD runs on any Linux distribution system that supports Docker.

Docker is an open-source software platform that you can use to create, manage, and disassemble a
virtual container that can run on any Linux server. Docker packages applications in containers. You can
port and use these containers on any Linux OS. A container provides OS-level virtualization for an
application.

Containers don't function as virtual machines (VMs); rather they isolate virtual environments by
providing them with dedicated CPU, memory, I/O, and networking capability.

Benefits of Containers

• Improved efficiency through isolation—Containers use the host OS Linux kernel features, such as the
isolation of groups and namespaces, to enable multiple containers to run in isolation on the same
Linux host OS. An application in a container less memory because it shares the kernel of its Linux
host’s OS.

• Increased spin-up (boot) speed—Containers take less time to boot as compared to VMs. Thus, you
can use containers to install, run, and upgrade applications quickly and efficiently.

4

Figure 2 on page 5 provides an overview of a typical Docker container environment.

Figure 2: Docker Container Environment

How Does cRPD Work?

When you start Docker, a default bridge network (also called bridge) is created automatically, and
containers connect to it unless otherwise specified. You can use this bridge network to run multiple
containers on the same host without having to assign dynamic ports.

A bridge enables containers connected to the same bridge network to communicate, while providing
isolation from containers that are not connected to the bridge network.

In bridge mode:

• Containers connect to the host network stack through bridges.

• Multiple containers connect to the same bridge and communicate with one another.

• The bridges enable external communication when they connect to the host OS network interfaces.

5

Figure 3: cRPD Overview and Functionality

When you deploy the RPD application using a container, FIB exposes the network interfaces learned by
the underlying OS kernel are sent to the RPD in the Linux container. RPD learns about all the network
interfaces and adds the route state for all the network interfaces. If additional Docker containers are
running in the system, then all the containers and the applications running directly on the host can
access the same set of network interfaces and state. cRPD forwards the routes that meet the local route
selection criteria into the FIB.

Route Reflector

You can deploy cRPD to provide control plane-only services such as BGP route reflection.

cRR is hosted on a different on-network server hardware. Applications use the reachability information
learned by using the route reflection service. The route reflection networking service must work
independently, without depending on the same hardware or the controllers that host the applications.

Routing Engine Kernel

The Routing Engine software consists of several software processes that control router functionality and
a kernel that enables communication among all the processes.

The Routing Engine kernel provides:

6

• Link between the routing tables and the Routing Engine’s forwarding table.

• Communication with the Packet Forwarding Engine. The kernel synchronizes the Packet Forwarding
Engine’s copy of the forwarding table with the primary copy in the Routing Engine.

The host Linux kernel stores the FIB, where all the routes and the next-hop information are stored for
packet forwarding.

The rpd runs natively on Linux and uses Netlink to share program route information with the Linux
kernel. Netlink is a Linux kernel interface used for communication between the kernel and user-space
processes and between different user-space processes. cRPD is an example of a user-space process.

You can use Netlink messages to:

• Program or install the FIB state generated by the rpd in the Linux kernel.

• Interact with mgd and CLI for configuration and management.

• Maintain protocol sessions using ppmd.

• Detect liveness using BFD.

Supported Features on cRPD

cRPD supports the following features:

• BGP route reflector in the Linux Containers (LXC)

• BGP add-path, multipath, graceful restart helper mode

• BGP, OSPF, OSPFv3, IS-IS, and static protocols

• BMP, BFD, and Linux FIB

• Equal-cost multipath (ECMP)

• Juniper extension toolkit (JET) for programmable RPD (PRPD)

• Junos OS CLI

• Management using open-interfaces NETCONF and SSH

• IPv4 and IPv6 routing

• MPLS routing

7

Licensing

You need a license to activate cRPD software features. To understand more about cRPD licenses, see
Supported Features on cRPD, Flex Licenses for cRPD, and Managing cRPD Licenses.

RELATED DOCUMENTATION

Docker Overview

What is Docker?

What is a Container?

Get Started With Docker

cRPD Resource Requirements

IN THIS SECTION

cRPD Scaling | 9

Table 1 on page 8 lists the minimum resource requirements for cRPD.

Table 1: cRPD Minimum Resource Requirements

Description Minimum Value

CPU 1 core

Memory 256 MB

Disk space 256 MB

8

https://www.juniper.net/documentation/en_US/release-independent/licensing/topics/concept/juniper-flex-program-support-for-platforms.html#jd0e288
https://www.juniper.net/documentation/us/en/software/license/licensing/topics/concept/flex-licenses-for-crpd.html
https://www.juniper.net/documentation/en_US/release-independent/licensing/topics/topic-map/configure-license.html#id-managing-crpd-licenses
https://docs.docker.com/engine/docker-overview/
https://www.docker.com/what-docker
https://www.docker.com/what-container
https://docs.docker.com/get-started/

cRPD Scaling

You can scale the performance and capacity of a cRPD by increasing the allocated amount of memory
and the CPU available on the host hardware or VM resources.

Table 2 on page 9 lists the cRPD scaling information,

Table 2: cRPD Scaling

Instance RIB/FIB Route Scale Minimum Memory

cRPD 32,000 256 MB

64,000 512 MB

128,000 1024 MB

1,000,000 2048 MB

Junos OS Features Supported on cRPD

IN THIS SECTION

Features Supported on cRPD | 9

Features Supported on cRPD

cRPD inherits most of the routing features with the following considerations shown in Table 3 on page
10.

9

Table 3: Supported Features on cRPD

Feature Description

BGP FlowSpec Starting in Junos OS Release 20.3R1, BGP flow specification method is supported
to prevent denial -of-service attacks on the cRPD environment.

[See Understanding BGP Flow Routes for Traffic Filtering.]

EVPN-VPWS Starting in Junos OS Release 20.3R1, EVPN-VPWS is supported to provide VPWS
with EVPN signaling mechanisms on cRPD.

[See Overview of VPWS with EVPN Signaling Mechanisms.]

EVPN TYPE 5 with MPLS Starting in Junos OS Release 20.3R1, EVPN Type 5 is supported for EVPN/MPLS.

[See EVPN Type-5 Route with MPLS encapsulation for EVPN-MPLS.]

Segment routing Starting in Junos OS Release 20.3R1, Segment routing support for OSPF and IS-IS
protocols to provide basic functionality with Source Packet Routing in Networking
(SPRING).

[See Understanding Source Packet Routing in Networking (SPRING).]

Layer 2 VPN Starting in Junos OS Release 20.3R1, support for Layer 2 circuit to provide Layer 2
VPN and VPWS with LDP signaling.

[See Configuring Ethernet over MPLS (Layer 2 Circuit).]

MPLS Starting in Junos OS Release 20.3R1, support for MPLS to provide LDP signaling
protocol configuration with the control plane functionality.

[See Understanding the LDP Signaling Protocol.]

10

https://www.juniper.net/documentation/en_US/junos/topics/concept/flow-routes-understanding.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/evpn-vpws-signaling-mechanisms-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/evpn-mpls-encapsulation.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/source-packet-routing.html
https://www.juniper.net/documentation/en_US/junos/topics/task/configuration/mpls-l2-circuit-cli.html
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/ldp-overview.html#id-understanding-the-ldp-signaling-protocol

Table 3: Supported Features on cRPD (Continued)

Feature Description

Eventd Starting in Junos OS Release 20.4R1, we support only external event policies. You
can enable these policies in cRPD. In cRPD, eventd and rsyslogd run as independent
processes. The eventd process provides eventinterface to processes such as rpd,
auditd, and mgd and supports automated event policy execution.

Use the set event-options policy policy name events [events] then command to
enable an event policy and restart event-processing to restart event processing.

By default, Python 3.x support is enabled with existing on-box Python or SLAX
functions in the cRPD environment.

Use the [edit system scripts language python3] hierarchy level to enable and to
support Python event automation.

[See event-options and event-policy.]

Authentication,
authorization, and
accounting

Starting in cRPD Release 21.1R1, you can configure local authentication, local
authorization, Tacplus authentication, Tacplus authorization and Tacplus accounting
at the [edit system] hierarchy level.

We support the following features:

• Local authentication and local authorization

• TACACS+ authentication, authorization and accounting

• User template support

• Support for operational commands and regular expressions

• Local authentication and remote authorization on Tacplus server.

[See password-options and tacplus.]

11

https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/event-options-edit.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/policy-edit-event-options.html
https://www.juniper.net/documentation/us/en/software/junos/user-access/topics/ref/statement/password-options-edit-system.html
https://www.juniper.net/documentation/us/en/software/junos/user-access/topics/ref/statement/tacplus-edit-system.html

Table 3: Supported Features on cRPD (Continued)

Feature Description

SRv6 network
programming in IS-IS

Starting in cRPD Release 21.1R1, you can configure to enable basic segment routing
functionalities in a core IPv6 network for both route reflector role and host routing
roles.

You can enable SRv6 network programming in an IPv6 network at the [edit source-
packet-routing] hierarchy level.

A Segment Identifier consists of the following parts:

• Locator— Locator is the first part of a SID that consists of the most significant
bits representing the address of a particular SRv6 node. The locator is very
similar to a network address that provides a route to its parent node. The IS-IS
protocol installs the locator route in the inet6.0 routing table. IS-IS routes the
segment to its parent node, which subsequently performs a function defined in
the other part of the SRv6 SID. You can also specify the algorithm associated
with this locator.

• Function—The other part of the SID defines a function that is performed locally
on the node that is specified by the locator. There are several functions that
have already been defined in the Internet draft draft-ietf-spring-srv6-network-
programming-07draft, SRv6 Network Programming. However, we have
implemented the following functions that are signalled in IS-IS. IS-IS installs
these function SIDs in the inet6.0 routing table.

• End— An endpoint function for SRv6 instantiation of a Prefix SID. It does not
allow for decapsulation of an outer header for the removal of an SRH.
Therefore, an End SID cannot be the last SID of a SID list and cannot be the
Destination Address (DA) of a packet without an SRH.

• End.X— An endpoint X function is an SRv6 instantiation of an adjacent SID.
It is a variant of the endpoint function with Layer 3 cross-connect to an
array of Layer 3 adjacencies.

NOTE: The support for flavor (specifies end sid behavior) and flexible algorithm
options is not available for configuring end sids.

[See source-packet-routing].

12

https://www.juniper.net/documentation//en_US/junos/topics/reference/configuration-statement/autogen-protocols-source-packet-routing.html

Table 3: Supported Features on cRPD (Continued)

Feature Description

Increase ECMP next-hop
limit

Starting in cRPD Release 21.1R1, you can specify the multipath next-hop limit at
the [edit routing-options maximum-ecmp] hierarchy level. This helps to load-balance
the traffic over multiple paths. The default ECMP next-hop limit is 16.

[See routing options max ecmp and "Hash Field Selection for ECMP Load Balancing
on Linux " on page 90].

EVPN Type 5 with VXLAN Starting in cRPD Release 21.1R1, we support EVPN Type 5 Route over VXLAN for
both IPv4 and IPv6 prefix advertisements.

[See EVPN Type-5 Route with VXLAN encapsulation for EVPN-VXLAN].

EVPN Over VXLAN
Encapsulation

Starting in cRPD Release 21.2R1, we support Layer 2 EVPN Over VXLAN
functionality.

[See EVPN with VXLAN Data Plane Encapsulation and MAC-VRF L2 services].

Support for next-hop
based dynamic tunnels

Starting in cRPD Release 21.2R1, cRPD supports to configure next-hop based
dynamic IP tunnels in the Linux kernel to provide private and secure path on a
public network. Whenever a tunnel needs to be installed in the kernel, a tunnel
interface is created. Tunnel interfaces are created in Linux using netlink messages.
The ifindex of the tunnel interface is used to listen and program the routes going
over the tunnel composite next-hop. By default, MPLS-over-UDP tunnel is
preferred over GRE tunnels. The following dynamic tunnels are supported:

• MPLS-over-GRE (Generic Routing Encapsulation)

• MPLS-over-UDP

[For more information on dynamic tunnels overview, see Next-Hop-Based Dynamic
Tunnels, Next-Hop Based Tunnels for Layer 3 VPNs, Configuring Next-Hop-Based
MPLS-Over-UDP Dynamic Tunnels, dynamic-tunnels and Dynamic Tunnels
Overview].

13

https://www.juniper.net/documentation/us/en/software/junos/subscriber-mgmt-vlan/topics/ref/statement/routing-options-max-ecmp.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/evpn-vxlan-encapsulation.html
https://www.juniper.net/documentation/us/en/software/junos/evpn-vxlan/topics/concept/evpn-vxlan-data-plane-encapsulation.html
https://www.juniper.net/documentation/en_US/release-independent/nce/information-products/pathway-pages/nce/EVPN_VxLAN_MAC-VRF.pdf
https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/topic-map/nexthop-based-dynamic-tunnels.html
https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/topic-map/nexthop-based-dynamic-tunnels.html
https://www.juniper.net/documentation/us/en/software/junos/vpn-l3/topics/topic-map/l3-vpns-nh-tunnels.html
https://www.juniper.net/documentation/us/en/software/junos/vpn-l3/topics/topic-map/l3-vpns-nh-tunnels.html
https://www.juniper.net/documentation/us/en/software/junos/vpn-l3/topics/topic-map/l3-vpns-nh-tunnels.html
https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/ref/statement/dynamic-tunnels-edit-routing-options.html
https://www.juniper.net/documentation/us/en/software/junos/interfaces-encryption/topics/topic-map/tunnel-services-overview.html#id-dynamic-tunnels-overview
https://www.juniper.net/documentation/us/en/software/junos/interfaces-encryption/topics/topic-map/tunnel-services-overview.html#id-dynamic-tunnels-overview

Table 3: Supported Features on cRPD (Continued)

Feature Description

Support for SRv6 and
Layer 3 services over
SRv6 in BGP

Starting in cRPD Release 21.3R1, you can configure BGP based Layer 3 service over
SRv6 core on cRPD. You can enable Layer 3 overlay services with BGP as control
plane and SRv6 as dataplane. SRv6 network programming provides flexibility to
leverage segment routing without deploying MPLS. Such networks depend only on
the IPv6 headers and header extensions for transmitting data.

Limitations

• When cRPD as the PE is acting as RR, forwarding will not work using SRv6
tunnel for local PE-CE routes

• Global IPv4 over SRv6 core END.DT4 is not supported with Linux kernel

• Duplicate configured SRv6 SID check within a router is not supported.

• SRv6 overlay service requires Service SID for forwarding. When at least one
malformed SRV6 Service TLV is present in the BGP Prefix-SID attribute, instead
of treat-as-withdraw action, the BGP update packet is ignored. On deleting
accept-srv6-service there will not be any impact on already received routes with
SRV6 SID.

[For more information, see advertise-srv6-service, srv6 (BGP), Understanding SRv6
Network Programming and Layer 3 Services over SRv6 in BGP].

Support for Advanced
RISC Machines (ARM64)
(cRPD)

Starting in cRPD Release 21.4R1, cRPD is packaged as a docker container to run on
64-bit ARM platform.

cRPD on ARM doesnot support the following features:

• Sharding and updateIO. The set system processes routing bgp rib-sharding
number-of-shard and set system processes routing bgp update-threading
number-of-threadscommands are not supported.

• SRv6

[For more information, see Server Requirements].

14

https://www.juniper.net/documentation/us/en/software/junos/bgp/topics/ref/statement/advertise-srv6-service-edit-protocols-bgp-family-inet-unicast.html
https://www.juniper.net/documentation/us/en/software/junos/bgp/topics/ref/statement/srv6-edit-protocols-bgp-source-packet-routing.html
https://www.juniper.net/documentation/us/en/software/junos/bgp/topics/topic-map/bgp-egress-traffic-engineering.html#id-understanding-srv6-network-programming-and-layer-3-services-over-srv6-in-bgp
https://www.juniper.net/documentation/us/en/software/junos/bgp/topics/topic-map/bgp-egress-traffic-engineering.html#id-understanding-srv6-network-programming-and-layer-3-services-over-srv6-in-bgp
https://www.juniper.net/documentation/us/en/software/crpd/crpd-deployment/topics/concept/crr-system-requirement-docker.html

Table 3: Supported Features on cRPD (Continued)

Feature Description

Support for export of BGP
Local RIB through BGP
Monitoring Protocol
(BMP)

Starting in cRPD Release 23.2R1, BMP is enhanced to support monitoring of local
routing information base (RIB) loc-rib policy on cRPD. The loc-rib policy is added
to RIB types under the bmp route-monitoring statement.

[For more information, see Understanding the BGP Monitoring Protocol, bmp, and
route-monitoring].

Interoperability of
segment routing with LDP

Starting in cRPD Release 23.2R1, you can use OSPF or ISIS to enable segment
routing devices to operate with the LDP devices that are not segment routing
capable.

[For more information, see LDP Mapping Server for Interoperability of Segment
Routing and source packet routing].

Support for logging using
eventd and time-zone
(cRPD)

We support eventd process on cRPD to configure logging and forwarding the syslog
to remote host and time zone on the system.

The following support is not available on cRPD:

• help command to view syslog information.

• rsyslogd for logging.

Limitations

• Configuring the management-instance and the routing instance for the Syslog
client is not supported.

• TLS authentication is not supported for syslog transfer on cRPD.

[For more information, see Configure Time Zones, time-zone, and "Syslog Support
on cRPD" on page 62].

Support for RADIUS
server (cRPD)

We provide RADIUS server support to use authentication, authorization and
accounting features on cRPD.

[For more information, see RADIUS Authentication, radius (System), and radius-
server (System)].

15

https://www.juniper.net/documentation/us/en/software/junos/bgp/topics/topic-map/bgp-monitoring-protocol.html#id-understanding-the-bgp-monitoring-protocol
https://www.juniper.net/documentation/us/en/software/junos/bgp/topics/ref/statement/bmp-edit-routing-options.html
https://www.juniper.net/documentation/us/en/software/junos/bgp/topics/ref/statement/route-monitoring-edit-routing-options-bmp.html
https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/topic-map/ldp-configuration.html#id-ldp-mapping-server-for-interoperability-of-segment-routing-with-ldp-overview
https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/topic-map/ldp-configuration.html#id-ldp-mapping-server-for-interoperability-of-segment-routing-with-ldp-overview
https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/ref/statement/mapping-server-entry-edit-routing-options-source-packet-routing.html
https://www.juniper.net/documentation/us/en/software/junos/time-mgmt/topics/topic-map/configure-time-zone.html
https://www.juniper.net/documentation/us/en/software/junos/time-mgmt/topics/ref/statement/time-zone-edit-system.html
https://www.juniper.net/documentation/us/en/software/junos/user-access/topics/topic-map/user-access-radius-authentication.html
https://www.juniper.net/documentation/us/en/software/junos/user-access/topics/ref/statement/radius-edit-system.html
https://www.juniper.net/documentation/us/en/software/junos/user-access/topics/ref/statement/radius-server-edit-system.html
https://www.juniper.net/documentation/us/en/software/junos/user-access/topics/ref/statement/radius-server-edit-system.html

Use case: Egress Peer Traffic Engineering using BGP
Add-Path

Service providers, cloud operators, and enterprises can deploy Junos cRPD in their existing server-based
environments to address their unique requirements.

Egress peer traffic engineering (TE) allows a central controller to instruct an ingress router in a domain.

The Internet – a public global network of networks – is built as system of interconnected networks of
Service Provider (SP) infrastructures. These networks are often represented as Autonomous Systems
(ASs) as shown in the figure Figure 4 on page 16 each has globally unique Autonomous System
Number (ASN).

The central controller directs traffic towards a specific egress router and an external interface. Thus, the
traffic reaches a particular destination outside the network and optimizes utilization of the advertised
egress routes.

The data-plane interconnection link (NNI) and control-plane (eBGP) direct connection between two ASs
allows Internet traffic to travel between the two, usually as part of a formal agreement called peering.

A SP has multiple peering relationship with multiple other SPs. They are usually geographically
distributed, differ in number and bandwidth of the NNI link, and use various business or cost models.

Figure 4: Peering Among Service Providers

16

In the context of AS peering, traffic egress assumes that the destination network address is reachable
through a certain peer AS. So, for example, a device in Peer AS#2 can reach a destination IP address in
Peer AS#4 through Service Provider AS#1.

The peer AS using an eBGP Network Layer Reachability Information (NLRI) advertisement provides the
reachability information. An AS typically advertises IP addresses that belong to it, but an AS may also
advertise addresses learned from another AS.

For example, Peer AS#2 can advertise addresses to SP (AS#1) that AS#2 receives from Peer AS#3, Peer
AS#7, Peer AS#8, Peer AS#9, Peer AS#4 and Peer AS#5.

The reachability information advertisement depends on the BGP routing policies between the
individuals ASs. Therefore, a given destination IP prefix reaches multiple peering ASs and multiple NNIs.
Network administrators in the SP network select “best” exit interface for each destination prefix.

The traffic that exits the service provider AS is critical for ensuring cost efficiency while providing
seamless end user experience at the same time. The definition of “best” exit interface is a combination
of cost as well as latency and traffic loss.

RELATED DOCUMENTATION

Fundamentals of Egress Peering Engineering

BGP Labeled Unicast Egress Peer Engineering Using cRPD as Ingress

17

https://www.juniper.net/documentation/solutions/en_US/service-provider-core
https://www.juniper.net/documentation/en_US/release-independent/nce/information-products/pathway-pages/nce/nce-186-crpd.html

2
CHAPTER

Installing and Upgrading cRPD

Requirements for Deploying cRPD on a Linux Server | 19

Installing cRPD on Docker | 20

Installing cRPD on Kubernetes | 26

Upgrading cRPD | 54

Installing and Configuring cRPD on SONiC | 55

Requirements for Deploying cRPD on a Linux Server

IN THIS SECTION

Host Requirements | 19

Interface Naming and Mapping | 20

This section presents an overview of requirements for deploying a cRPD container on a Linux server:

Host Requirements

Table 4 on page 19 lists the Linux host requirement specifications for deploying a cRPD container on a
Linux server.

Table 4: Host Requirements

Component Specification

Linux OS support Ubuntu 18.04 or later, RHEL 8 or later

Linux Kernel 4.8 or later

Docker Engine 18.09.1

CPUs 2 CPU core

Memory 4 GB

Disk space 10 GB

Host processor type x86_64/ARM64 multicore CPU

19

Table 4: Host Requirements (Continued)

Component Specification

Network Interface Ethernet

Interface Naming and Mapping

Table 5 on page 20 lists the supported interfaces on cRPD.

Table 5: Interface Naming and Mapping

Interface Number cRPD Interfaces

eth0 eth0-mgmt-interface

eth1 eth1-data-interface

Installing cRPD on Docker

IN THIS SECTION

Before You Install | 21

Install and Verify Docker | 21

Download the cRPD Software | 21

Download cRPD Software from Juniper URL | 23

Creating Data Volumes and Running cRPD using Docker | 23

Configuring Memory | 24

Configuring cRPD using the CLI | 24

20

This section outlines the steps to install the cRPD container in a Linux server environment that is
running Ubuntu or Red Hat Enterprise Linux (RHEL). The cRPD container is packaged in a Docker image
and runs in the Docker Engine on the Linux host.

This section includes the following topics:

Before You Install

Before you install cRPD as routing service to achieve routing functionality in a Linux container
environment, ensure to:

• Verify the system requirement specifications for the Linux server to deploy the cRPD, see
"Requirements for Deploying cRPD on a Linux Server" on page 19.

Install and Verify Docker

Install and configure Docker on Linux host platform to implement the Linux container environment, see
Install Docker for installation instructions on the supported Linux host operating systems.

Verify the Docker installation. See "Debugging cRPD Application" on page 141.

To install the latest Docker:

Log in and download the software.

root@ubuntu-vm18:~# curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

root@ubuntu-vm18:~# add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $
(lsb_release -cs) stable"

root@ubuntu-vm18:~# apt update

root@ubuntu-vm18:~# apt install docker-ce

Download the cRPD Software

The cRPD software is available as a cRPD Docker file from the Juniper Internal Docker registry.

There are two ways to download the software:

• Juniper Docker Registry

21

https://docs.docker.com/engine/installation/

• Juniper software download page

Prerequisites

• Before you import the cRPD software, ensure that Docker is installed on the Linux host and that the
Docker Engine is running.

• Ensure to register with Juniper Support before you download the cRPD software.

Once the Docker Engine has been installed on the host, perform the following to download and start
using the cRPD image:

To download the cRPD software using the Juniper Docker Registry:

1. Log in to the Juniper Internal Docker registry using the following steps:

a. Create the file -passwd.txt and copy the access token excluding the quotes provided by Juniper
customer care team.

b. Login to enterprise hub using the following command:

root@ubuntu-vm18$ cat passwd.txt | docker login -u"<registered-email-id>" --password-stdin
enterprise-hub.juniper.net:443
For example, root@ubuntu-vm18$ cat passwd.txt | docker login -u user@domain.com --password-
stdin enterprise-hub.juniper.net:443

2. Pull the docker image from the download site using the following command:

root@ubuntu-vm18:~# docker pull enterprise-hub.juniper.net:443/crpd-docker-prod/crpd:<release tag>

root@ubuntu-vm18:~# docker pull enterprise-hub.juniper.net:443/crpd-docker-prod/crpd:22.3R1

3. Verify images in docker image repository.

root@ubuntu-vm18:~# docker images

REPOSITORY
TAG IMAGE ID CREATED SIZE
enterprise-hub.juniper.net:443/crpd-docker-prod/crpd
latest 5d3c29ee4521 3 months ago 550MB
enterprise-hub.juniper.net:443/crpd-docker-prod/crpd
22.3R1 5dfdda6ea2de 5 months ago 461MB

22

https://www.juniper.net/documentation/us/en/software/junos/junos-install-upgrade/topics/topic-map/prepare-sotware-install-and-upgrade.html#topic-map_x32_sxt_txb

Download cRPD Software from Juniper URL

To download the cRPD software from the Juniper download URL:
1. Download the cRPD software image from the Juniper Networks website.root@ubuntu-vm18:~# docker

load -i junos-routing-crpd-docker-19.2R1.8.tgz

2. Verify the downloaded images in docker image repository.root@ubuntu-vm18:~# docker images

REPOSITORY TAG IMAGE ID
CREATED
SIZE

crpd 19.2R1.8 4156a807054a 6 days
ago 278MB

Creating Data Volumes and Running cRPD using Docker

To create data volumes:

1. Create data volume for configuration and var logs.

root@ubuntu-vm18:~# docker volume create crpd01-config

crpd01-config

root@ubuntu-vm18:~# docker volume create crpd01-varlog

crpd01-varlog

Data volumes remain even after containers are destroyed and can be attached to newer containers.
Data volumes are not shared between multiple containers at the same time unless they are ready-
only volumes.

2. Download and load the cRPD software.

3. Attach the data volumes to create and launch the container to the cRPD instance.

In the bridge mode, containers are connected to host network stack through bridge(s). Multiple
containers can connect to the same bridge and communicate with each other. External devices
communication is possible, if the bridge is connected to the host OS network interfaces.

23

https://support.juniper.net/support/downloads/

For routing purposes, it is also possible to assign exclsuively assign all or a subset of physical
interfaces for exclusive use by a docker container.

NOTE: You must include the --privileged flag in the docker run command to enable the cRPD
container to run in privileged mode.

root@ubuntu-vm18:~# docker run --rm --detach --name crpd01 -h crpd01 --net=bridge --privileged -v
crpd01-config:/config -v crpd01-varlog:/var/log -it enterprise-hub.juniper.net/crpd-docker-prod/
crpd:19.2R1.8

Bridge mode is the default working mode of docker. This allows to run multiple containers to run on
same host without any assignment of dynamic port. Each container runs its own private network
namespace.

To launch cRPD in host networking mode:

1. In the host mode, the network namespace is shared. For example, if an interface is defined inside a
pod, the same interface is visible on the host as well. Docker containers uses the host network
namespace. Run the command to launch cRPD in host networking mode:

root@ubuntu-vm18:~# docker run --rm --detach --name crpd01 -h crpd01 --privileged --net=host -v
crpd01-config:/config -v crpd01-varlog:/var/log -it crpd:19.2R1.8

Configuring Memory

To limit the amount of memory allocated to the cRPD:

You can specify the memory size using the following command:

root@ubuntu-vm18:~# docker run --rm --detach --name crpd01 -h crpd01 --privileged -v crpd01-config:/
config -v crpd01-varlog:/var/log -m 2048MB --memory-swap=2048MB -it crpd:19.2R1.8

Configuring cRPD using the CLI

cRPD provides Junos command line configuration and operational commands for routing service. It
provides subset of routing protocols configuration that enable node participates in topology and routing.

You can configure interfaces from Linux shell. Interface configuration is available only for the ISO
addresses.

To configure the cRPD container using the CLI:

24

1. Log in to the cRPD container.

root@ubuntu-vm18:~/# docker exec -it crpd01 cli

2. Enter configuration mode.

root@crpd01> configure

Entering configuration mode
[edit]

3. Set the root authentication password by entering a cleartext password, an encrypted password, or an
SSH public key string (DSA or RSA).

root@crpd01# set system root-authentication plain-text-password

New password: password
Retype new password: password

4. Commit the configuration to activate it on the cRPD instance.

root@crpd01# commit

commit complete

5. (Optional) Use the show command to display the configuration to verify that it is correct.

root@crpd01# show

Last changed: 2019-02-13 19:28:26 UTC
version "19.2I20190125_1733_rbu-builder [rbu-builder]";
system {
 root-authentication {
 encrypted-password "6JEc/p
$QOUpqi2ew4tVJNKXZYiCKT8CjnlP3SLu16BRIxvtz0CyBMc57WGu2oCyg/lTr0iR8oJMDumtEKi0HVo2NNFEJ."; ##
SECRET-DATA
 }
}

RELATED DOCUMENTATION

Docker Engine User Guide

Docker Commands

25

https://docs.docker.com/config/daemon/
https://docs.docker.com/install/

Installing cRPD on Kubernetes

IN THIS SECTION

Installing Kubernetes | 27

Kubernetes Cluster | 28

Download cRPD Docker Image | 29

Creating a cRPD Pod using Deployment | 30

Creating a cRPD Pod using YAML | 33

Creating a cRPD Pod using Job Resource | 36

Creating a cRPD Pod using DaemonSet | 38

Scaling of cRPD | 43

Rolling Update of cRPD Deployment | 45

cRPD Pod Deployment with Allocated Resources | 48

cRPD Pod Deployment using Mounted Volume | 51

Kubernetes is a open-source platform for managing containerized workloads and services. Containers
are a good way to bundle and run the applications. In a production environment, you need to manage
the containers that run the applications and ensure that there is no downtime. For example, if a
container goes down, another container needs to start. Kubernetes provides you with a framework to
run distributed systems resiliently. Kubernetes provides a platform for deployment automation, scaling,
and operations of application containers across clusters of host containers.

Prerequisite

Install Kubernetes on Linux system and also to deploy Kubernetes on a two-node Linux cluster, see
Kubernetes Installation.

When you deploy Kubernetes, you get a cluster. A Kubernetes cluster consists of a set of worker
machines, called nodes, that run containerized applications. Every cluster has at least one worker node.
The worker node(s) host the pods that are the components of the application.

This section outlines the steps to create the cRPD Docker image on Kubernetes.

26

https://kubernetes.io/docs/setup/

Installing Kubernetes

To install Kubernetes:

1. Login as root user.

2. Download and install the software.

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -
echo "deb https://apt.kubernetes.io/ kubernetes-xenial main" | sudo tee -a /etc/apt/sources.list.d/
kubernetes.list

apt-get update

apt-get install -y kubectl

wget https://storage.googleapis.com/minikube/releases/latest/minikube-linux-amd64

cp minikube-linux-amd64 /usr/local/bin/minikube

chmod 755 /usr/local/bin/minikube

3. Start Kubernetes.

apt install conntrack

root@crpd-01:~# minikube start --driver=none

* minikube v1.15.1 on Ubuntu 18.04

27

* Automatically selected the docker driver
...

Kubernetes Cluster

Kubernetes coordinates a cluster of computers that are connected to work as a single unit. Kubernetes
automates the deployment and scheduling of cRPD across a cluster in an efficient way.

A Kubernetes cluster consists of two types of resources:

• The Primary coordinates the cluster

• Nodes are the workers that run applications

The Primary is responsible for managing the cluster. The primary coordinates all activities in your cluster,
such as scheduling applications, maintaining applications' desired state, scaling applications, and rolling
out new updates.

A node is a VM or a physical computer that serves as a worker machine in a Kubernetes cluster. Each
node has a Kubelet, which is an agent for managing the node and communicating with the Kubernetes
master. The node should also have tools for handling container operations, such as Docker or rkt. A
Kubernetes cluster that handles production traffic should have a minimum of three nodes.

When you deploy cRPD on Kubernetes, the primary starts the application containers. The primary
schedules the containers to run on the cluster's nodes. The nodes communicate with the primary using
the Kubernetes API, which the primary exposes. End users can also use the Kubernetes API directly to
interact with the cluster.

A Pod always runs on a Node. A Node is a worker machine in Kubernetes and may be either a virtual or
a physical machine, depending on the cluster. Each Node is managed by the Primary. A Node can have
multiple pods, and the Kubernetes master automatically handles scheduling the pods across the Nodes
in the cluster.

Every Kubernetes Node runs at least:

• Kubelet, a process responsible for communication between the Kubernetes Master and the Node; it
manages the Pods and the containers running on a machine.

• A container runtime (like Docker, rkt) responsible for pulling the container image from a registry,
unpacking the container, and running the application.

To create minikube cluster:

28

1. Run the following command to verify the minikube version:

minikube version

2. Run the following command to start the cluster:

minikube start

3. Run the following command to verify if kubectl is installed:

kubectl version

4. Run the following command to view the cluster details:

kubectl cluster-info

5. Run the following command to view the nodes in the cluster:

kubectl get nodes

Download cRPD Docker Image

Prerequisites

• Before you import the cRPD software, ensure that Docker is installed on the Linux host and that the
Docker Engine is running.

• Ensure to register with Juniper Support before you download the cRPD software.

To download the docker image:

1. Log in to the Juniper Internal Docker registry using the login name and password that you received as
part of the sales fulfillment process when ordering cRPD.

a. Create the file -passwd.txt and copy the access token excluding the quotes provided by Juniper
customer care team.

b. Login to enterprise hub using the following command:

root@ubuntu-vm18$ cat passwd.txt | docker login -u"<registered-email-id>" --password-stdin
enterprise-hub.juniper.net:443

29

https://www.juniper.net/documentation/us/en/software/junos/junos-install-upgrade/topics/topic-map/prepare-sotware-install-and-upgrade.html#topic-map_x32_sxt_txb

For example, root@ubuntu-vm18$ cat passwd.txt | docker login -u user@domain.com --password-
stdin enterprise-hub.juniper.net:443

2. Pull the docker image from the download site using the following command:

root@dc-rpd-01# docker pull enterprise-hub.juniper.net:443/crpd-docker-prod/crpd:<release tag>

For example,

root@ubuntu-vm18:~# docker pull enterprise-hub.juniper.net:443/crpd-docker-prod/crpd:22.3R1

3. Verify images in docker image repository.

root@dc-rpd-01# docker images

REPOSITORY
TAG IMAGE ID CREATED SIZE
enterprise-hub.juniper.net:443/crpd-docker-prod/crpd
latest 5d3c29ee4521 3 months ago 550MB
enterprise-hub.juniper.net:443/crpd-docker-prod/crpd
22.3R1 5dfdda6ea2de 5 months ago 461MB

Creating a cRPD Pod using Deployment

A Kubernetes Pod is a group of one or more Containers, tied together for the purposes of administration
and networking. A Kubernetes Deployment checks on the health of your Pod and restarts the Pod’s
Container if it terminates. Deployments are the recommended way to manage the creation and scaling
of Pods.

When you describe a desired state in a Deployment, and the Deployment Controller changes the actual
state to the desired state. You can define Deployments to create new ReplicaSets, or to remove existing
Deployments and adopt all their resources with new Deployments.

1. Create the crpd.yaml file on Kubernetes-master and add the following text content:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: crpd
 namespace: default
 labels:

30

 app: crpd
spec:
 selector:
 matchLabels:
 app: crpd
 template:
 metadata:
 labels:
 app: crpd
 annotations:
 deployment.kubernetes.io/revision: "1"
 generation: 2
 spec:
 containers:
 - name: crpd
 image: "enterprise-hub.juniper.net/crpd-docker-prod/crpd:20.1R1.11"
 imagePullPolicy: ""
 imagePullSecrets:
 - name: routing-registry

2. Save the crpd.yaml file to create the cRPD Pod.

root@kubernetes-master:~# kubectl create -f crpd.yaml

deployment.apps/crpd created

3. Run the following command to view the list of existing Pods:

root@kubernetes-master:~# kubectl get pods

NAME READY STATUS RESTARTS AGE
crpd-5fc4fd79df-579cn 1/1 Running 0 71s

4. Run the following command to view what containers are inside that Pod and what images are used to
build the containers:

root@kubernetes-master:~# kubectl describe pod crpd

Name: crpd-5fc4fd79df-579cn
Namespace: default
Priority: 0
Node: ix-crpd-01/10.102.70.153

31

Start Time: Mon, 28 Dec 2020 19:12:33 +0000
Labels: app=crpd
 pod-template-hash=5fc4fd79df
Annotations: deployment.kubernetes.io/revision: 1
Status: Running
IP: 172.17.0.3
IPs:
 IP: 172.17.0.3
Controlled By: ReplicaSet/crpd-5fc4fd79df
Containers:
 crpd:
 Container ID: docker://a211f6993f9ab5793c3de5aaef2c97ba600b991bebd801f947f179e8e915a323
 Image: enterprise-hub.juniper.net/crpd-docker-prod/crpd:20.1R1.11
 Image ID: docker-pullable://enterprise-hub.juniper.net/crpd-docker-prod/
crpd@sha256:1e82c06654caf47aa22e4a020b8bea02562fa25ba7abe80affab998199ae69ab
 Port: <none>
 Host Port: <none>
 State: Running
 Started: Mon, 28 Dec 2020 19:12:55 +0000
 Ready: True
 Restart Count: 0
 Environment: <none>
Mounts:
 /var/run/secrets/kubernetes.io/serviceaccount from default-token-xcpf7 (ro)
Conditions:
 Type Status
 Initialized True
 Ready True
 ContainersReady True
 PodScheduled True
Volumes:
 default-token-xcpf7:
 Type: Secret (a volume populated by a Secret)
 SecretName: default-token-xcpf7
 Optional: false
QoS Class: BestEffort
 Node-Selectors: <none>
 Tolerations: node.kubernetes.io/not-ready:NoExecute op=Exists for 300s
 node.kubernetes.io/unreachable:NoExecute op=Exists for 300s
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 97s default-scheduler Successfully assigned default/

32

crpd-5fc4fd79df-579cn to ix-crpd-01
 Normal Pulled 79s kubelet Container image "enterprise-hub.juniper.net/
crpd-docker-prod/crpd:20.1R1.11" already present on machine
 Normal Created 74s kubelet Created container crpd
 Normal Started 72s kubelet Started container crpd

Creating a cRPD Pod using YAML

A Pod is the basic execution unit of a Kubernetes application–the smallest and simplest unit in the
Kubernetes object model that you create or deploy. A Pod represents a unit of deployment: a single
instance of an application in Kubernetes, which might consist of either a single container or a small
number of containers that are tightly coupled and that share resources. Docker is the most common
container runtime used in a Kubernetes Pod.

You can directly create a Pod or indirectly using a Controller in Kubernetes. A Controller can create and
manage multiple Pods. Controllers use a Pod template that you provide to create the Pods. Pod
templates are pod specifications which are included in other objects, such as Replication Controllers,
Jobs, and DaemonSets.

To create the cRPD pod using the YAML file

1. Create the crpd.yaml file on Kubernetes-master add the following text content:

apiVersion: v1
kind: Pod
metadata:
 name: crpd
 labels:
 app: crpd
spec:
 containers:
 - name: crpd
 image: "enterprise-hub.juniper.net/crpd-docker-prod/crpd:20.1R1.11"
 imagePullPolicy: ""
 ports:
 - containerPort: 179
 securityContext:
 privileged: true

33

2. Save the crpd.yaml file to create the crpd Pod.

root@kubernetes-master:~# kubectl create -f crpd.yaml

pod/crpd created

3. Run the following command to view the list of existing Pods:

root@kubernetes-master:~# kubectl get pods

NAME READY STATUS RESTARTS AGE
crpd 1/1 Running 0 18h
crpd-5fc4fd79df-xr8f5 1/1 Running 0 19h

4. Run the following command to view what containers are inside that Pod and what images are used to
build the containers:

root@kubernetes-master:~# kubectl describe pod crpd

Name: crpd
Namespace: default
Priority: 0
PriorityClassName: <none>
Node: kubernetes-slave/10.102.183.130
Start Time: Thu, 09 May 2019 13:38:33 -0700
Labels: app=crpd
Annotations: <none>
Status: Running
IP: 10.244.1.9
Containers:
 crpd:
 Container ID: docker://cc7e9187ad2d482420b3afc90843443a318abb3f354da6bf2da5d4c5f7b791cc
 Image: crpd
 Image ID: docker://
sha256:1bc4b1c99f81f7d88b73a04f9426e360ae2cc9ea0330442e633a6ebdfec00af0
 Ports: 179/TCP
 Host Ports: 0/TCP, 0/TCP
 State: Running

34

 Started: Thu, 09 May 2019 13:38:36 -0700
 Ready: True
 Restart Count: 0
 Environment: <none>
 Mounts:
 /var/run/secrets/kubernetes.io/serviceaccount from default-token-ncktj (ro)
Conditions:
 Type Status
 Initialized True
 Ready True
 ContainersReady True
 PodScheduled True
Volumes:
 default-token-ncktj:
 Type: Secret (a volume populated by a Secret)
 SecretName: default-token-ncktj
 Optional: false
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute for 300s
 node.kubernetes.io/unreachable:NoExecute for 300s
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Pulled 60s kubelet, kubernetes-slave Container image "crpd-ui32" already
present on machine
 Normal Created 60s kubelet, kubernetes-slave Created container crpd
 Normal Started 59s kubelet, kubernetes-slave Started container crpd
 Normal Scheduled 54s default-scheduler Successfully assigned default/crpd to
kubernetes-slave

5. Run the following command to provide an interactive CLI inside the running container:

root@kubernetes-master:~# kubectl exec -it crpd cliHere you are running a pod with the name crpd and
connect to the command line mode.

===>
 Containerized Routing Protocols Daemon (CRPD)
 Copyright (C) 2018-19, Juniper Networks, Inc. All rights reserved.
 <===

6. Run the following command to view the routes:

35

root@crpd:/> show route

inet.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

172.17.0.0/16 *[Direct/0] 00:04:31
 > via eth0
172.17.0.3/32 *[Local/0] 00:04:31
 Local via eth0

inet6.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

fe80::42:acff:fe11:3/128
 *[Local/0] 00:04:31
 Local via eth0
fe80::5873:acff:feee:fc29/128
 *[Local/0] 00:04:31
 Local via lsi
ff02::2/128 *[INET6/0] 00:04:31
 MultiRecv

Each Pod is meant to run a single instance of a given application. If you want to scale your application
horizontally (e.g., run multiple instances), you should use multiple Pods, one for each instance. In
Kubernetes, this is generally referred to as replication.

SEE ALSO

Deployments

Creating a cRPD Pod using Job Resource

A Job creates one or more Pods and will continue to retry execution of the Pods until a specified
number of them successfully terminate. When a specified number of successful completions is reached,
the task is complete. You can also use a Job to run multiple Pods in parallel. Deleting a Job will clean up
the Pods it created. Suspending a Job will delete its active Pods until the Job is resumed again. To create
the cRPD Pod using the crpd_job.yaml file:

36

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

1. Create the crpd_job.yaml file on work nodes and add the following text content:

apiVersion: batch/v1
kind: Job
metadata:
 name: crpdjob
spec:
 template:
 spec:
 containers:
 - name: crpdjob
 image: "enterprise-hub.juniper.net/crpd-docker-prod/crpd:20.1R1.11"
 imagePullPolicy: ""
 command: ["/bin/bash"]
 restartPolicy: Never
 backoffLimit: 4------------------

2. Save the crpd_job.yaml file to create the crpd Pod.

root@kubernetes-master:~# kubectl create -f crpd_job.yaml

job.batch/crpdjob created

3. Run the following command to view the list of existing Pods:

root@kubernetes-master:~# kubectl get pods

NAME READY STATUS RESTARTS AGE
crpd 1/1 Running 0 18h
crpd-5fc4fd79df-xr8f5 1/1 Running 0 19h
crpdjob-kdgg4 0/1 Completed 0 19h

4. Run the following command to view what containers are inside that Pod and what images are used to
build the containers:

root@kubernetes-master:~# kubectl describe job/crpdjob

Name: crpdjob
Namespace: default
Selector: controller-uid=5997b1fe-d899-4c59-bffb-4cd9a1d72d8b

37

Labels: controller-uid=5997b1fe-d899-4c59-bffb-4cd9a1d72d8b
 job-name=crpdjob
Annotations: <none>
Parallelism: 1
Completions: 1
Start Time: Tue, 22 Oct 2019 02:34:25 -0700
Completed At: Tue, 22 Oct 2019 02:34:27 -0700
Duration: 2s
Pods Statuses: 0 Running / 1 Succeeded / 0 Failed
Pod Template:
 Labels: controller-uid=5997b1fe-d899-4c59-bffb-4cd9a1d72d8b
 job-name=crpdjob
 Containers:
 crpdjob:
 Image: crpd:19.2R1.8
 Port: <none>
 Host Port: <none>
 Command:
 /bin/bash
 Environment: <none>
 Mounts: <none>
 Volumes: <none>
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal SuccessfulCreate 4m36s job-controller Created pod: crpdjob-9lspk

Creating a cRPD Pod using DaemonSet

DaemonSet ensures that all (or some) Nodes run a copy of a Pod. As nodes are added to the cluster,
Pods are added to them. As nodes are removed from the cluster, those Pods are garbage collected.
Deleting a DaemonSet will clean up the Pods it created.

Creating the cRPD pod using the crpd_daemonset.yaml file

1. Create the crpd_daemonset.yaml file on work nodes and add the following text content:

apiVersion: apps/v1
kind: DaemonSet

38

metadata:
 name: crpdda1
 labels:
 app: crpdda
spec:
 selector:
 matchLabels:
 app: crpdda
 template:
 metadata:
 labels:
 app: crpdda
 spec:
 hostNetwork: true
 nodeSelector:
 disktype: ssd
 containers:
 - name: crpd
 image: crpd:19.2R1.8
 imagePullPolicy: Never
 ports:
 - containerPort: 179
 - containerPort: 40051

2. Save the da1.yaml file to create the crpd Pod.

root@kubernetes-master:~# kubectl create -f crpd_daemonset.yaml

daemonset.apps/crpdda1 created

3. Run the following command to view the list of existing Pods:

root@kubernetes-master:~# kubectl get pods

NAME READY STATUS RESTARTS AGE
crpd 1/1 Running 0 18h
crpd-5fc4fd79df-xr8f5 1/1 Running 0 19h
crpdjob-kdgg4 0/1 Completed 0 19h

39

4. Run the following command to view what containers are inside that Pod and what images are used to
build the containers:

root@kubernetes-master:~# kubectl describe pod crpd

Name: crpd
Namespace: default
Priority: 0
PriorityClassName: <none>
Node: kubernetes-slave1/10.49.107.224
Start Time: Wed, 16 Oct 2019 23:20:49 -0700
Labels: app=crpdda
 controller-revision-hash=5d88785f7c
 pod-template-generation=1
Annotations: <none>
Status: Running
IP: 10.244.1.19
Controlled By: DaemonSet/crpdda1
Containers:
 crpd:
 Container ID: docker://0e13bdaa97c4a6da46c2fe3008939652031633d44440699ce71f094763a40244
 Image: crpd:19.2R1.8
 Image ID: docker://
sha256:8e00d0d60309cd0d0bee63fea865b1e389f803a57b1239386e03b31a01146dbf
 Ports: 179/TCP, 40051/TCP
 Host Ports: 0/TCP, 0/TCP
 State: Running
 Started: Wed, 16 Oct 2019 23:20:51 -0700
 Ready: True
 Restart Count: 0
 Environment: <none>
 Mounts:
 /var/run/secrets/kubernetes.io/serviceaccount from default-token-5chxw (ro)
Conditions:
 Type Status
 Initialized True
 Ready True
 ContainersReady True
 PodScheduled True
Volumes:
 default-token-5chxw:
 Type: Secret (a volume populated by a Secret)

40

 SecretName: default-token-5chxw
 Optional: false
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: node.kubernetes.io/disk-pressure:NoSchedule
 node.kubernetes.io/memory-pressure:NoSchedule
 node.kubernetes.io/not-ready:NoExecute
 node.kubernetes.io/pid-pressure:NoSchedule
 node.kubernetes.io/unreachable:NoExecute
 node.kubernetes.io/unschedulable:NoSchedule
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled <unknown> default-scheduler Successfully assigned default/
crpdda1-tr85h to kubernetes-slave1
 Normal Pulled 25s kubelet, kubernetes-slave1 Container image "crpd:19.2R1.8"
already present on machine
 Normal Created 24s kubelet, kubernetes-slave1 Created container crpd
 Normal Started 24s kubelet, kubernetes-slave1 Started container crpd

root@kubernetes-master:~# kubectl describe pod crpd-5fc4fd79df-xr8f5

Name: crpd-5fc4fd79df-xr8f5
Namespace: default
Priority: 0
PriorityClassName: <none>
Node: kubernetes-slave2/10.49.107.220
Start Time: Wed, 16 Oct 2019 23:20:53 -0700
Labels: app=crpdda
 controller-revision-hash=5d88785f7c
 pod-template-generation=1
Annotations: <none>
Status: Running
IP: 10.244.2.19
Controlled By: DaemonSet/crpdda1
Containers:
 crpd:
 Container ID: docker://296e68358a6b85a92216954b1f703315eebd2b21f3ffacf91d0f197ab7da21ee
 Image: crpd:19.2R1.8
 Image ID: docker://
sha256:82d848c70c24b225fc2ebfa6c39c123153ddde7e3bd5ed40876f537c02693047

41

 Ports: 179/TCP, 40051/TCP
 Host Ports: 0/TCP, 0/TCP
 State: Running
 Started: Wed, 16 Oct 2019 23:20:56 -0700
 Ready: True
 Restart Count: 0
 Environment: <none>
 Mounts:
 /var/run/secrets/kubernetes.io/serviceaccount from default-token-5chxw (ro)
Conditions:
 Type Status
 Initialized True
 Ready True
 ContainersReady True
 PodScheduled True
Volumes:
 default-token-5chxw:
 Type: Secret (a volume populated by a Secret)
 SecretName: default-token-5chxw
 Optional: false
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: node.kubernetes.io/disk-pressure:NoSchedule
 node.kubernetes.io/memory-pressure:NoSchedule
 node.kubernetes.io/not-ready:NoExecute
 node.kubernetes.io/pid-pressure:NoSchedule
 node.kubernetes.io/unreachable:NoExecute
 node.kubernetes.io/unschedulable:NoSchedule
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled <unknown> default-scheduler Successfully assigned default/
crpdda1-v48lc to kubernetes-slave2
 Normal Pulled 30s kubelet, kubernetes-slave2 Container image "crpd:19.2R1.8"
already present on machine
 Normal Created 30s kubelet, kubernetes-slave2 Created container crpd
 Normal Started 29s kubelet, kubernetes-slave2 Started container crpd

Each Pod is meant to run a single instance of a given application. If you want to scale your application
horizontally (e.g., run multiple instances), you should use multiple Pods, one for each instance. In
Kubernetes, this is generally referred to as replication.

42

SEE ALSO

DaemonSet

Scaling of cRPD

You can create multiple instances of cRPD based on the demand using the –replicas parameter for the
kubectl run command. Deployment is an object which can own and manage their ReplicaSets.

We should have one pod existing before scaling.

To scale up:

1. Create the Pod.

root@kubernetes-master:~# kubectl create -f crpd_replicatset.yaml

deployment.apps/crpdref created

2. Create the crpd_replicaSet.yaml file on Kubernetes-master add the following text content:

apiVersion: apps/v1
kind: Deployment
metadata:
 annotations:
 deployment.kubernetes.io/revision: "1"
 generation: 2
 labels:
 run: reflector
 name: crpdref
 namespace: default
spec:
 replicas: 2
 selector:
 matchLabels:
 run: reflector
 template:
 metadata:
 labels:
 run: reflector
 spec:

43

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/

 containers:
 - name: reflector
 image: "enterprise-hub.juniper.net/crpd-docker-prod/crpd:20.1R1.11"
 imagePullPolicy: ""

3. Run the following command to view the Pods:

root@kubernetes-master:~# kubectl get pods

NAME READY STATUS RESTARTS AGE
crpdref-76c5c7b884-hxbtr 1/1 Running 0 10s
crpdref-76c5c7b884-wp55c 1/1 Running 0 10s

4. Run the following command to scale the Deployment to 4 replicas:

root@kubernetes-master:~# kubectl scale deployments crpdref --replicas=4

deployment.apps/crpdref scaled

5. Run the following command to list the deployments:

root@kubernetes-master:~# kubectl get deployments

6. Run the following command to check the number of pods changed:

root@kubernetes-master:~# kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
crpd 1/1 Running 2 3h35m 172.17.0.2 ix-crpd-01
<none> <none>
crpd-5fc4fd79df-8vxtp 1/1 Running 0 5m43s 172.17.0.9 ix-crpd-01
<none> <none>
crpd-5fc4fd79df-cd5g8 1/1 Running 0 5m43s 172.17.0.8 ix-crpd-01
<none> <none>
crpd-5fc4fd79df-hmm5q 1/1 Running 0 5m43s 172.17.0.7 ix-crpd-01
<none> <none>
crpd-5fc4fd79df-xr8f5 1/1 Running 2 23h 172.17.0.3 ix-crpd-01
<none> <none>
crpdref-76c5c7b884-dbg5p 1/1 Running 0 5m12s 172.17.0.11 ix-crpd-01
<none> <none>

44

crpdref-76c5c7b884-h8xks 1/1 Running 0 5m12s 172.17.0.10 ix-crpd-01
<none> <none>

7. Run the following command to check the details of the Pods:

root@kubernetes-master:~# kubectl describe pods

To scale down:

1. Run the following command to scale down the Service to 2 replicas:

root@kubernetes-master:~# kubectl scale deployments crpdref --replicas=2

deployment.apps/crpdref scaled

2. Run the following command to list the deployments:

root@kubernetes-master:~# kubectl get deployments

3. Run the following command to list the number of Pods. You can view the 2 Pods were terminated:

root@kubernetes-master:~# kubectl get pods -o wide

Rolling Update of cRPD Deployment

You can update Pod instances with new versions. Rolling updates allow Deployments' update to take
place with zero downtime by incrementally updating Pods instances with new ones. The new Pods are
scheduled on Nodes with available resources. Rollback updates promotes an application from one
environment to another with continuous integration and continuous delivery of applications with zero
downtime. In Kubernetes, updates are versioned and any Deployment update can be reverted to
previous stable version.

To update cRPD deployment with new image and preserve the configuration after update:

1. Create the cRPD Pod.

root@crpd-01:~# kubectl kubectl create -f crpd_deploy.yaml

deployment.apps/crpd-deploy created

45

2. Create the crpd_deploy.yaml file on Kubernetes-master add the following text content:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: crpd-deploy
 labels:
 app: crpd
spec:
 replicas: 2
 selector:
 matchLabels:
 app: crpd
 template:
 metadata:
 labels:
 app: crpd
 spec:
 containers:
 - name: crpd
 image: "enterprise-hub.juniper.net/crpd-docker-prod/crpd:19.4R1.10"
 imagePullPolicy: ""
 ports:
 - containerPort: 179
 - containerPort: 40051------------------

3. Run the following command to list the deployments:

root@kubernetes-master:~# kubectl get deployments

4. Run the following command to list the running pods:

root@kubernetes-master:~# kubectl get pods

NAME READY STATUS RESTARTS AGE
...
crpd-deploy-6c489b5b8b-4tqgn 1/1 Running 0 9m20s
crpd-deploy-6c489b5b8b-vp7df 1/1 Running 0 9m21s

46

root@kubernetes-master:~# kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE READINESS GATES
...
crpd-deploy-6c489b5b8b-4tqgn 1/1 Running 0 6m57s 172.17.0.10 ix-
crpd-01 <none> <none>
crpd-deploy-6c489b5b8b-vp7df 1/1 Running 0 6m58s 172.17.0.11 ix-
crpd-01 <none> <none>

5. Run the following command to view the current image version of the cRPD:

root@kubernetes-master:~# kubectl exec -it crpd-deploy4-674b4fcfb5-8xc5d -- cli

===>
 Containerized Routing Protocols Daemon (CRPD)
 Copyright (C) 2018-19, Juniper Networks, Inc. All rights reserved.
 <===

6. Run the following command to view the current image version:

root@crpd-deploy4-674b4fcfb5-8xc5d> show version

Hostname: crpd-deploy4-674b4fcfb5-8xc5d
Model: cRPD
Junos: 20.4R1.12
cRPD package version : 20.4R1.12 built by builder on 2020-12-20 13:35:15 UTC

7. Run the following command to update the image of the application to new version:

root@crpd-deploy4-674b4fcfb5-8xc5d:~$ sudo kubectl edit deployment/crpd-deploy4

containers:
 - image: enterprise-hub.juniper.net/crpd-docker-prod/crpd:20.1R1.11
 imagePullPolicy: Never

8. Run the following command to confirm if the image is updated:

root@crpd-deploy4-674b4fcfb5-8xc5d:~$ sudo kubectl rollout status deployment/crpd-deploy4

deployment "crpd-deploy4" successfully rolled out

47

9. Run the following command to view the Pods:

root@crpd-deploy4-674b4fcfb5-8xc5d> kubectl get pods

NAME READY STATUS RESTARTS AGE
crpd-deploy4-6ff476994d-8z2kr 1/1 Running 0 38s
crpd-deploy4-6ff476994d-qxwrz 1/1 Running 0 41s

10. Run the following command to view the image version of the cRPD:

root@kubernetes-master:~$ sudo kubectl exec -it crpd-deploy4-6ff476994d-8z2kr -- bash

===>
 Containerized Routing Protocols Daemon (CRPD)
 Copyright (C) 2018-19, Juniper Networks, Inc. All rights reserved.
 <===

11. Run the following command to view the current image version:

root@crpd-deploy4-6ff476994d-8z2kr> show version

Hostname: crpd-deploy4-674b4fcfb5-8xc5d
Model: cRPD
Junos: 20.4R1.12
cRPD package version : 20.4R1.12 built by builder on 2020-12-20 13:35:15 UTC

cRPD Pod Deployment with Allocated Resources

Pods provide two kinds of shared resources namely networking and storage for the containers. When
containers in a Pod communicate with entities outside the Pod, they must coordinate how they use the
shared network resources (such as ports). Within a Pod, containers communicate through localhostusing
an IP address and port.

Containers within the Pod view the system hostname as same as the configured name for the Pod.

Any container in a Pod can enable privileged mode, using the privileged flag on the container spec. This is
useful for containers that use operating system administrative capabilities such as manipulating the
network stack or accessing hardware devices. Processes within a privileged container get almost the
same privileges that are available to processes outside a container.

To view the Pod deployment with resources:

48

1. Create the crpd_res.yaml file on Kubernetes-master add the following text content:

apiVersion: v1
kind: Pod
metadata:
 name: crpdres
 labels:
 app: crpd
spec:
 containers:
 - name: crpd
 image: "enterprise-hub.juniper.net/crpd-docker-prod/crpd:20.1R1.11"
 imagePullPolicy: ""
 ports:
 - containerPort: 179
 - containerPort: 40051
 resources:
 limits:
 memory: "200Mi"
 cpu: "700m"
 requests:
 memory: "200Mi"
 cpu: "700m"
 securityContext:
 privileged: true

2. Save the crpd_res.yaml file to create the crpd Pod.

root@kubernetes-master:~# kubectl create -f crpd_res.yaml

pod/crpdres created

3. Run the following command to view the list of existing Pods:

root@kubernetes-master:~# kubectl get pods

NAME READY STATUS RESTARTS AGE
crpdres 1/1 Running 0 7s

49

4. Run the following command to view what containers are inside that Pod and what images are used to
build the containers:

root@kubernetes-master:~# kubectl describe pod crpres

Name: crpdres
Namespace: default
Priority: 0
PriorityClassName: <none>
Node: kubernetes-slave1/10.49.107.224
Start Time: Thu, 17 Oct 2019 00:28:44 -0700
Labels: app=crpd
Annotations: <none>
Status: Running
IP: 10.244.1.22
Containers:
 crpd:
 Container ID: docker://a1ae9791e593b7caea83907d841519bc47744db372b10d006d556308b2e03dbc
 Image: crpd:19.2R1.8
 Image ID: docker://
sha256:8e00d0d60309cd0d0bee63fea865b1e389f803a57b1239386e03b31a01146dbf
 Ports: 179/TCP, 40051/TCP
 Host Ports: 0/TCP, 0/TCP
 State: Running
 Started: Thu, 17 Oct 2019 00:28:46 -0700
 Ready: True
 Restart Count: 0
 Limits:
 cpu: 700m
 memory: 200Mi
 Requests:
 cpu: 700m
 memory: 200Mi
 Environment: <none>
 Mounts:
 /var/run/secrets/kubernetes.io/serviceaccount from default-token-5chxw (ro)
Conditions:
 Type Status
 Initialized True
 Ready True
 ContainersReady True
 PodScheduled True
Volumes:

50

 default-token-5chxw:
 Type: Secret (a volume populated by a Secret)
 SecretName: default-token-5chxw
 Optional: false
QoS Class: Guaranteed
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute for 300s
 node.kubernetes.io/unreachable:NoExecute for 300s
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled <unknown> default-scheduler Successfully assigned default/
crpdres to kubernetes-slave1
 Normal Pulled 13s kubelet, kubernetes-slave1 Container image "crpd:19.2R1.8"
already present on machine
 Normal Created 13s kubelet, kubernetes-slave1 Created container crpd
 Normal Started 12s kubelet, kubernetes-slave1 Started container crpd

cRPD Pod Deployment using Mounted Volume

An emptyDir is one among the several types of volumes supported on K8s and is first created when a Pod
is assigned to a node, and exists as long as that Pod is running on that node. As the name says, the
emptyDir volume is initially empty. All containers in the Pod can read and write the same files in the
emptyDir volume, though that volume can be mounted at the same or different paths in each container.
When a Pod is removed from a node for any reason, the data in the emptyDir is deleted permanently.

To view cRPD Pod deployment by mounting the storage path on Kubernetes:

1. Create the crpd_volume.yaml file on Kubernetes-master add the following text content:

apiVersion: v1
kind: Pod
metadata:
 name: crpd-volume
 labels:
 app: crpd
spec:
 containers:
 - name: crpd

51

 image: crpd:19.2R1.8
 imagePullPolicy: Never
 ports:
 - containerPort: 179
 - containerPort: 40051
 volumeMounts:
 - name: crpd-storage
 mountPath: /var/log/crpd-storage
 volumes:
 - name: crpd-storage
 emptyDir: {}

2. Save the crpd_volume.yaml file to create the crpd Pod.

root@kubernetes-master:~# kubectl create -f crpd_volume.yaml

pod/crpd-volume created

3. Run the following command to view the list of existing Pods:

root@kubernetes-master:~# kubectl get pods

NAME READY STATUS RESTARTS AGE
crpd-volume 1/1 Running 0 5s

4. Run the following command to view what containers are inside that Pod and what images are used to
build the containers:

root@kubernetes-master:~# kubectl describe pod crpd-volume

Name: crpd-volume
Namespace: default
Priority: 0
PriorityClassName: <none>
Node: kubernetes-slave2/10.49.107.220
Start Time: Thu, 17 Oct 2019 00:39:59 -0700
Labels: app=crpd
Annotations: <none>
Status: Running
IP: 10.244.2.20
Containers:
 crpd:

52

 Container ID: docker://593aa6f279132cc2e0a0832cff07ad74db2696472c2d72596a177f1e5f912377
 Image: crpd:19.2R1.8
 Image ID: docker://
sha256:82d848c70c24b225fc2ebfa6c39c123153ddde7e3bd5ed40876f537c02693047
 Ports: 179/TCP, 40051/TCP
 Host Ports: 0/TCP, 0/TCP
 State: Running
 Started: Thu, 17 Oct 2019 00:40:02 -0700
 Ready: True
 Restart Count: 0
 Environment: <none>
 Mounts:
 /var/log/crpd-storage from crpd-storage (rw)
 /var/run/secrets/kubernetes.io/serviceaccount from default-token-5chxw (ro)
Conditions:
 Type Status
 Initialized True
 Ready True
 ContainersReady True
 PodScheduled True
Volumes:
 crpd-storage:
 Type: EmptyDir (a temporary directory that shares a pod's lifetime)
 Medium:
 default-token-5chxw:
 Type: Secret (a volume populated by a Secret)
 SecretName: default-token-5chxw
 Optional: false
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute for 300s
 node.kubernetes.io/unreachable:NoExecute for 300s
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled <unknown> default-scheduler Successfully assigned default/
crpd-volume to kubernetes-slave2
 Normal Pulled 10s kubelet, kubernetes-slave2 Container image "crpd:19.2R1.8"
already present on machine
 Normal Created 9s kubelet, kubernetes-slave2 Created container crpd
 Normal Started 9s kubelet, kubernetes-slave2 Started container crpd

5. Run the following command to execute the cRPD instance:

53

root@kubernetes-master:~# kubectl exec -it crpd-volume bash

===>
 Containerized Routing Protocols Daemon (CRPD)
 Copyright (C) 2018-19, Juniper Networks, Inc. All rights reserved.
 <===

6. Run the following command to view the files in the path:

root@crpd-volume:/# ls

bin boot config dev etc home lib lib64 media mnt opt proc root run sbin srv
sys tmp usr var

7. Run the following command to navigate to the storage path:

root@crpd-volume:/# cd var/log/crpd-storage/

root@crpd-volume:/var/log/crpd-storage/#

Upgrading cRPD

IN THIS SECTION

Upgrade Software | 54

Upgrade Software

You can upgrade cRPD software by launching a new container using the newer image and attaching the
persistent config volumes. Separate volumes are used to store config and logs. They are persistent even
after the cRPD is stopped.

NOTE: cRPD does not support in place software upgrade.

To upgrade cRPD:

54

1. Ensure to import the latest cRPD image. See "Installing cRPD on Docker" on page 20.

2. Load the cRPD software image.

root@crpd01:~# docker load -i junos-routing-crpd-docker-20.4R1.12.tgz

3. Stop the existing container.

docker stop crpd01

4. Run the container using latest version of cRPD.

docker run --rm --detach --name crpd01 -h crpd01 --privileged -v crpd01-config:/config -v crpd01-
varlog:/var/log -m 2048MB --memory-swap=2048MB -it crpd:20.4R1.12

5. Enter in to the configuration mode.

root@crpd01:~# docker exec -it crpd01 cli

root@crpd01> show version

Hostname: crpd01
Model: cRPD
Junos: 20.4R1.12
cRPD package version : 20.4R1.12 built by builder on 2020-12-20 13:35:15 UTC

RELATED DOCUMENTATION

Installing cRPD on Docker | 20

Installing and Configuring cRPD on SONiC

IN THIS SECTION

How to Load and Start cRPD on SONiC | 56

This section describes on how to load and configure cRPD as a routing stack on Juniper Networks'
QFX5210 and QFX5200 switches running Software for Open Networking in the Cloud (SONiC) network
operating system.

55

To install SONiC on QFX5210 and QFX5200 switches, see Install and Upgrade SONiC on Juniper
Networks QFX5210 and QFX5200 Switches

How to Load and Start cRPD on SONiC

To load the cRPD package on SONiC, you need to:

• Download the cRPD package from Juniper’s software downloads page at https://support.juniper.net/
support/downloads/. The cRPD package file name for example is junos-routing-crpd-
docker-20.3R1.8.tgz

Transfer the cRPD package to your QFX5210 or QFX5200 switches using scp or sftp file transfer
protocol.

The following sections explain how to load and start cRPD on SONiC for QFX5210 or QFX5200
switches:

Load the cRPD Image into Docker

To load the cRPD image into docker, use the docker load -i junos-routing-crpd-docker-20.3R1.8.tgz command
as shown below:

user@host:~$ docker load -i junos-routing-crpd-docker-20.3R1.8.tgz
b187ff70b2e4: Loading layer [==>] 65.58MB/65.58MB
5930c9e5703f: Loading layer [==>] 991.7kB/991.7kB
c64c52ea2c16: Loading layer [==>] 15.87kB/15.87kB
ddc500d84994: Loading layer [==>] 3.072kB/3.072kB
f76668b91ed5: Loading layer [==>] 40.84MB/40.84MB
cefbbbf6a84d: Loading layer [==>] 7.68kB/7.68kB
19ed2664dd77: Loading layer [==>] 134.5MB/134.5MB
2f362bdab81b: Loading layer [==>] 13.82kB/13.82kB
0d625ccfa452: Loading layer [==>] 3.072kB/3.072kB
75f1d83621fc: Loading layer [==>] 3.584kB/3.584kB
bba7d2bacea8: Loading layer [==>] 3.584kB/3.584kB
911181312301: Loading layer [==>] 3.584kB/3.584kB
98175a8ad5cb: Loading layer [==>] 3.584kB/3.584kB
a113daea3487: Loading layer [==>] 3.584kB/3.584kB
b224ed0cc92d: Loading layer [==>] 3.584kB/3.584kB
48db2eb5713d: Loading layer [==>] 3.584kB/3.584kB
1f620dc1de46: Loading layer [==>] 2.56kB/2.56kB
b9722b673d30: Loading layer [==>] 30.72kB/30.72kB

56

https://github.com/Azure/sonic-buildimage/blob/master/platform/broadcom/sonic-platform-modules-juniper/README.md
https://github.com/Azure/sonic-buildimage/blob/master/platform/broadcom/sonic-platform-modules-juniper/README.md
https://support.juniper.net/support/downloads/
https://support.juniper.net/support/downloads/

cc8250623a79: Loading layer [==>] 6.656kB/6.656kB
5d3819eaf658: Loading layer [==>] 3.584kB/3.584kB
e7ffff983953: Loading layer [==>] 4.096kB/4.096kB
4054102bacd4: Loading layer [==>] 4.096kB/4.096kB
9479c967844e: Loading layer [==>] 4.096kB/4.096kB
91a4575e8d76: Loading layer [==>] 4.096kB/4.096kB
d0aba2dd0145: Loading layer [==>] 4.096kB/4.096kB
25bb582cc7dc: Loading layer [==>] 22.53kB/22.53kB
Loaded image: crpd:20.3R1.8
user@host:~$

Verify that cRPD Image is Properly Loaded

To verify if the cRPD image is properly loaded, use the docker images command as shown below:

user@host:~$ docker images
REPOSITORY TAG IMAGE ID
CREATED SIZE
crpd 21.2R1.10 f9b634369718 Less than a
second ago 374MB
docker-fpm-frr HEAD.0-dirty-20201027.160709 94d35b3d6ff8 Less than a
second ago 335MB
docker-fpm-frr latest 94d35b3d6ff8 Less than a
second ago 335MB
docker-syncd-brcm HEAD.0-dirty-20201027.160709 ef2f75e9156b Less than a
second ago 436MB
docker-syncd-brcm latest ef2f75e9156b Less than a
second ago 436MB
docker-router-advertiser HEAD.0-dirty-20201027.160709 d32efd117a97 Less than a
second ago 289MB
docker-router-advertiser latest d32efd117a97 Less than a
second ago 289MB
docker-sonic-mgmt-framework HEAD.0-dirty-20201027.160709 b6ebafc68f18 Less than a
second ago 431MB
docker-sonic-mgmt-framework latest b6ebafc68f18 Less than a
second ago 431MB
docker-platform-monitor HEAD.0-dirty-20201027.160709 ce3c952de93d Less than a
second ago 357MB
docker-platform-monitor latest ce3c952de93d Less than a
second ago 357MB
docker-sflow HEAD.0-dirty-20201027.160709 05278fdd0019 Less than a

57

second ago 315MB
docker-sflow latest 05278fdd0019 Less than a
second ago 315MB
docker-lldp-sv2 HEAD.0-dirty-20201027.160709 7f54d84f2da7 Less than a
second ago 312MB
docker-lldp-sv2 latest 7f54d84f2da7 Less than a
second ago 312MB
docker-dhcp-relay HEAD.0-dirty-20201027.160709 f86f0bce3b09 Less than a
second ago 299MB
docker-dhcp-relay latest f86f0bce3b09 Less than a
second ago 299MB
docker-database HEAD.0-dirty-20201027.160709 6daa6a1df857 Less than a
second ago 289MB
docker-database latest 6daa6a1df857 Less than a
second ago 289MB
docker-teamd HEAD.0-dirty-20201027.160709 7596d1a2c302 Less than a
second ago 315MB
docker-teamd latest 7596d1a2c302 Less than a
second ago 315MB
docker-snmp-sv2 HEAD.0-dirty-20201027.160709 c258dfe91775 Less than a
second ago 348MB
docker-snmp-sv2 latest c258dfe91775 Less than a
second ago 348MB
docker-orchagent HEAD.0-dirty-20201027.160709 3d602bee0ecb Less than a
second ago 333MB
docker-orchagent latest 3d602bee0ecb Less than a
second ago 333MB
docker-nat HEAD.0-dirty-20201027.160709 0e29ba4560e9 Less than a
second ago 316MB
docker-nat latest 0e29ba4560e9 Less than a
second ago 316MB
docker-sonic-telemetry HEAD.0-dirty-20201027.160709 521590e31e7d Less than a
second ago 353MB
docker-sonic-telemetry latest 521590e31e7d Less than a
second ago 353MB
user@host:~$

Create and Start the cRPD Container

This section describes how to create, start, and access the cRPD container.

58

To create the cRPD container, use the docker create --name crpd -h crpd --net=host --privileged -it
crpd:20.3R1.8 b7444647abb7977e0b7eaa884ace8b47bab3632ff2f3f67091d9734a58fa686b command as shown below:

user@host:~$ docker create --name crpd -h crpd --net=host --privileged -it crpd:20.3R1.8
b7444647abb7977e0b7eaa884ace8b47bab3632ff2f3f67091d9734a58fa686b
user@host:~$

You need to stop zebra and bgpd daemons on the BGP container by running the docker exec bgp
supervisorctl stop zebra bgpd command as shown below:

user@host:~$ docker exec bgp supervisorctl stop zebra bgpd
zebra: stopped
bgpd: stopped
user@host:~$

To start the cRPD container, use the docker start crpd command as shown below:

user@host:~$ docker start crpd
crpd
user@host:~$

To access the cRPD container, use the docker exec -it crpd command as shown below:

user@host:~$ docker exec -it crpd cli
root@crpd>

Enable RPD connection to fpmsyncd

To enable RPD connection to fpmsyncd, you need to enter the configuration mode and enable fib-agent
at the [edit routing-options forwarding-table] hierarchy level as shown below:

root@crpd> configure
Entering configuration mode
[edit]
root@crpd# set routing-options forwarding-table fib-agent
[edit]
root@crpd# commit and-quit
commit complete

59

Exiting configuration mode
root@crpd>

Once cRPD is up and running, you can configure BGP from the cRPD CLI. The following is a sample BGP
configuration:

user@host:~$ docker exec -it crpd cli
root@crpd> configure
Entering configuration mode

root@crpd# show protocols
bgp {
 group EBGPv4 {
 type external;
 neighbor 192.168.1.2 {
 description <neighbor_description>;
 local-address 192.168.1.4;
 peer-as 65000;
 }
 }
}

60

3
CHAPTER

Managing cRPD

Syslog Support on cRPD | 62

Managing cRPD | 65

Establishing an SSH Connection for a NETCONF Session and cRPD | 76

Syslog Support on cRPD

IN THIS SECTION

Directing System Log Messages to Remote Machine | 64

Eventd is a process that supports forwarding syslog messages to a configured remote host in
containerized RPD (cRPD). You can configure the syslog messages using the following options:

Format Option Description

file filename Eventd writes the syslog messages
to the file. You can create a file and
forward all the syslog messages to
the file based on the priority using
the command set system syslog
file <filename> facility priority.

match-strings You can filter the messages based
on particular string message using
the command set system syslog
file test match-strings.

structured data You can log the system messages in
structured format using the
command set system syslog file
test structured data.

host ipaddress Host option allows you to log the
message in remote host using the
command set system syslog host
<ipaddress> <facility> <priority>.

62

(Continued)

Format Option Description

match-strings Match string option with host
allows you to filter messages based
on particular match string using the
command set system syslog host
<ipaddress> match-strings.

structured-data Structured format option at host
level allows to log the message to
remote host in structured format
using the command set system
syslog host <ipaddress> structured-
data.

log-prefix Log prefix option at host level allow
you to add text string for every
syslog message that is forwarded to
remote host using the command
set system syslog host <ipaddress>
log-prefix "<string-name>".

source address Source address option at host level
allows you to log the syslog to the
remote host with the specified valid
source address using the command
set system syslog host <ipaddress>
source address <ipaddress>
<facility> <priority>

source address ipaddress Source address option at syslog
level allows you to log the syslog to
the remote host with specified
source address using the command
set system syslog source address
<ipaddress> file <file-name>
<facility> <priority>

63

Directing System Log Messages to Remote Machine

To direct system log messages to a remote machine, include the host statement at the [edit system syslog]
hierarchy level:

To direct system log messages to a remote machine, include the host hostname statement to specify the
remote machine’s IPv4 or IPv6 address or fully qualified hostname over WAN port and data port. The
remote machine must be running the standard syslogd utility. In each system log message directed to the
remote machine, the hostname of the local Routing Engine appears after the timestamp to indicate that
it is the source for the message.

[edit system syslog]
host (hostname) {
 facility severity;
 explicit-priority;
 facility-override facility;
 log-prefix string;
 match "regular-expression";
}
source-address source-address;

For the list of logging facilities and severity levels to configure under the host statement, see Specifying
the Facility and Severity of Messages to Include in the Log.

To record facility and severity level information in each message, include the explicit-priority statement.
For more information, see Including Priority Information in System Log Messages.

For information about the match statement, see Using Strings and Regular Expressions to Refine the Set
of Logged Messages.

When directing messages to remote machines, you can include the source-address statement to specify
the IP address of the switch that is reported in the messages as their source. In each host statement, you
can also include the facility-override statement to assign an alternative facility and the log-prefix
statement to add a string to each message.

RELATED DOCUMENTATION

file (System Logging)

syslog (System)

Directing System Log Messages to a Log File

Directing System Log Messages to a User Terminal

64

https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/system-logging-on-a-single-chassis-system.html#id-using-strings-and-regular-expressions-to-refine-the-set-of-logged-messages
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/system-logging-on-a-single-chassis-system.html#id-using-strings-and-regular-expressions-to-refine-the-set-of-logged-messages
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/system-logging-on-a-single-chassis-system.html#id-including-priority-information-in-system-log-messages
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/system-logging-on-a-single-chassis-system.html#id-using-strings-and-regular-expressions-to-refine-the-set-of-logged-messages
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/system-logging-on-a-single-chassis-system.html#id-using-strings-and-regular-expressions-to-refine-the-set-of-logged-messages
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/ref/statement/file-edit-system-syslog.html
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/ref/statement/syslog-edit-system.html
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/directing-system-log-messages-to-a-remote-destination.html#id-directing-system-log-messages-to-a-log-file
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/directing-system-log-messages-to-a-remote-destination.html#id-directing-system-log-messages-to-a-user-terminal

Directing System Log Messages to the Console

Specifying an Alternative Source Address for System Log Messages Directed to a Remote Destination

Managing cRPD

IN THIS SECTION

Building Topologies | 65

Networking Docker Containers | 66

Removing a Bridge | 66

Creating an OVS Bridge | 67

Configuring OSPF | 68

Removing Interfaces and Bridges | 71

Viewing Container Processes in a Running cRPD | 71

Accessing cRPD CLI and Bash Shell | 72

Pausing and Resuming Processes within a cRPD Container | 72

Removing a cRPD Instance | 73

Viewing Docker Statistics and Logs | 73

Viewing Active Containers | 73

Stopping the Container | 76

Building Topologies

You can use open-vswitch to setup topologies and to connect to docker containers. This controls the
creation of the bridges, interface naming, and IP addressing.

To build a topology:

1. Download and install openvswitch-switch utility.

root@ubuntu-vm18:~# apt-get install openvswitch-switch

2. Navigate to the following path:

root@ubuntu-vm18:~# cd /usr/bin

65

https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/directing-system-log-messages-to-a-remote-destination.html#id-directing-system-log-messages-to-the-console
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/directing-system-log-messages-to-a-remote-destination.html#id-specifying-an-alternative-source-address-for-system-log-messages-directed-to-a-remote

3. Download ovs-docker with wget:

root@ubuntu-vm18:~# wget "https://raw.githubusercontent.com/openvswitch/ovs/master/utilities/ovs-
docker"

4. Change the mode:

root@ubuntu-vm18:~# chmod a+rwx ovs-docker

5. Create the container crpd01.

root@ubuntu-vm18:~# docker run --rm --detach --name crpd01 -h crpd01 --net=bridge --privileged -v
crpd01-config:/config -v crpd01-varlog:/var/log -it enterprise-hub.juniper.net/crpd-docker-prod/
crpd:19.2R1.8

6. Create the container crpd02.

root@ubuntu-vm18:~# docker run --rm --detach --name crpd02 -h crpd02 --net=bridge --privileged -v
crpd02-config:/config -v crpd02-varlog:/var/log -it enterprise-hub.juniper.net/crpd-docker-prod/
crpd:19.2R1.8

Networking Docker Containers

Docker containers are connected using user defined bridges. For detailed documentation on docker
bridge, see Use Bridge Networks.

To create the docker network:

1. Create a bridge my-net.

root@ubuntu-vm18:~# docker network create --internal my-net

The --internal argument prevents the bridge being connected to the host network which is desirable
in some cases. Once a bridge is created, it can be attached or detached to the containers.

2. Connect the two containers using the bridge.

root@ubuntu-vm18:~# docker network connect my-net crpd01

root@ubuntu-vm18:~# docker network connect my-net crpd02

This creates eth1 with a 172.18.0.0/16 subnet on crpd01 and crpd02.

Removing a Bridge

1. Remove a bridge.

root@ubuntu-vm18:~# docker network rm my-net

2. Disconnect the bridge from the containers.

66

https://docs.docker.com/network/bridge/

root@ubuntu-vm18:~# docker network disconnect my-net crpd01

root@ubuntu-vm18:~# docker network disconnect my-net crpd02

Creating an OVS Bridge

To create an OVS bridge and connect the docker to two containers crpd01 and crpd02:

1. Create a bridge connecting crpd01 and crpd02.

root@ubuntu-vm18:~# ovs-vsctl add-br crpd01-crpd02_1

2. Add interfaces to the bridge.

root@ubuntu-vm18:~# ovs-docker add-port crpd01-crpd02_1 eth1 crpd01

root@ubuntu-vm18:~# ovs-docker add-port crpd01-crpd02_1 eth1 crpd02

3. Configure an IP address to the interface.

root@ubuntu-vm18:~# docker exec -d crpd01 ifconfig eth1 10.1.1.1/24

root@ubuntu-vm18:~# docker exec -d crpd02 ifconfig eth1 10.1.1.2/24

4. Configure an IP address to the loopback interface.

root@ubuntu-vm18:~# docker exec -d crpd01 ifconfig lo 10.255.255.1 netmask 255.255.255.255

root@ubuntu-vm18:~# docker exec -d crpd02 ifconfig lo 10.255.255.2 netmask 255.255.255.255

5. Login to crpd01.

root@ubuntu-vm18:~# docker exec -it crpd01 bash

===>
 Containerized Routing Protocols Daemon (CRPD)
 Copyright (C) 2018-19, Juniper Networks, Inc. All rights reserved.
 <===

6. Verify the interface details.

root@crpd01:/# ifconfig

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 172.17.0.2 netmask 255.255.0.0 broadcast 172.17.255.255
 inet6 fe80::42:acff:fe11:2 prefixlen 64 scopeid 0x20<link>
 ether 02:42:ac:11:00:02 txqueuelen 0 (Ethernet)
 RX packets 28 bytes 2488 (2.4 KB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 7 bytes 826 (826.0 B)

67

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

eth1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 10.1.1.1 netmask 255.255.255.0 broadcast 10.1.1.255
 inet6 fe80::1c2b:50ff:fe9f:6559 prefixlen 64 scopeid 0x20<link>
 ether 1e:2b:50:9f:65:59 txqueuelen 1000 (Ethernet)
 RX packets 364 bytes 33600 (33.6 KB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 362 bytes 33748 (33.7 KB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
 inet 10.255.255.1 netmask 255.255.255.255
 inet6 ::1 prefixlen 128 scopeid 0x10<host>
 loop txqueuelen 1000 (Local Loopback)
 RX packets 0 bytes 0 (0.0 B)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 0 bytes 0 (0.0 B)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

7. Verify the connection with crpd02

root@crpd01:/# ping 10.1.1.2 -c 2

PING 10.1.1.2 (10.1.1.2) 56(84) bytes of data.
64 bytes from 10.1.1.2: icmp_seq=1 ttl=64 time=0.323 ms
64 bytes from 10.1.1.2: icmp_seq=2 ttl=64 time=0.042 ms
--- 10.1.1.2 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1018ms
rtt min/avg/max/mdev = 0.042/0.182/0.323/0.141 ms

Configuring OSPF

1. Configure crpd01 to setup OSPF protocol.

root@ubuntu-vm18:~# set policy-options policy-statement adv term 1 from route-filter 10.10.10.0/24
exact

root@ubuntu-vm18:~# set policy-options policy-statement adv term 1 then accept

root@ubuntu-vm18:~# set routing-options router-id 10.255.255.1

68

root@ubuntu-vm18:~# set routing-options static route 10.10.10.0/24 reject

root@ubuntu-vm18:~# set protocols ospf export adv

root@ubuntu-vm18:~# set protocols ospf area 0.0.0.0 interface eth1

root@ubuntu-vm18:~# set protocols ospf area 0.0.0.0 interface lo.0

2. Configure crpd02 to setup OSPF protocol.

root@ubuntu-vm18:~# set policy-options policy-statement adv term 1 from route-filter 10.20.20.0/24
exact

root@ubuntu-vm18:~# set policy-options policy-statement adv term 1 then accept

root@ubuntu-vm18:~# set routing-options router-id 10.255.255.2

root@ubuntu-vm18:~# set routing-options static route 10.20.20.0/24 reject

root@ubuntu-vm18:~# set protocols ospf export adv

root@ubuntu-vm18:~# set protocols ospf area 0.0.0.0 interface eth1

root@ubuntu-vm18:~# set protocols ospf area 0.0.0.0 interface lo.0

3. Login to crpd01.

docker exec -it crpd01 bash

===>
 Containerized Routing Protocols Daemon (CRPD)
 Copyright (C) 2018-19, Juniper Networks, Inc. All rights reserved.
 <===

4. Verify OSPF route details.

root@crpd01:/# cli

root@crpd01> show ospf neighbor

Address Interface State ID Pri Dead
10.1.1.2 eth1 Full 10.255.255.2 128 32

root@crpd01> show ospf route

Topology default Route Table:

Prefix Path Route NH Metric NextHop Nexthop

69

 Type Type Type Interface Address/LSP
10.255.255.2 Intra AS BR IP 1 eth1 10.1.1.2
10.1.1.0/24 Intra Network IP 1 eth1
10.20.20.0/24 Ext2 Network IP 0 eth1 10.1.1.2
10.255.255.1/32 Intra Network IP 0 lo.0
10.255.255.2/32 Intra Network IP 1 eth1 10.1.1.2

root@crpd01> show route

inet.0: 9 destinations, 9 routes (9 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.1.1.0/24 *[Direct/0] 00:51:32
 > via eth1
10.1.1.1/32 *[Local/0] 00:51:32
 Local via eth1
10.10.10.0/24 *[Static/5] 00:22:21
 Reject
10.20.20.0/24 *[OSPF/150] 00:20:01, metric 0, tag 0
 > to 10.1.1.2 via eth1
10.255.255.1/32 *[Direct/0] 00:25:43
 > via lo.0
10.255.255.2/32 *[OSPF/10] 00:20:01, metric 1
 > to 10.1.1.2 via eth1
172.17.0.0/16 *[Direct/0] 01:33:53
 > via eth0
172.17.0.2/32 *[Local/0] 01:33:53
 Local via eth0
224.0.0.5/32 *[OSPF/10] 01:33:53, metric 1
 MultiRecv
...

5. Verify the routes.

root@crpd01> exit

root@crpd01:/# ip route

default via 172.17.0.1 dev eth0
10.1.1.0/24 dev eth1 proto kernel scope link src 10.1.1.1
10.20.20.0/24 via 10.1.1.2 dev eth1 proto 22

70

10.255.255.2 via 10.1.1.2 dev eth1 proto 22
172.17.0.0/16 dev eth0 proto kernel scope link src 172.17.0.2

root@crpd01:/# ping 10.255.255.2 -c 2

PING 10.255.255.2 (10.255.255.2) 56(84) bytes of data.
64 bytes from 10.255.255.2: icmp_seq=1 ttl=64 time=0.273 ms
64 bytes from 10.255.255.2: icmp_seq=2 ttl=64 time=0.040 ms

--- 10.255.255.2 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1005ms
rtt min/avg/max/mdev = 0.040/0.156/0.273/0.117 ms

Removing Interfaces and Bridges

To remove interfaces and bridges:

1. Remove the interfaces:

root@ubuntu-vm18:~# ovs-docker del-port crpd01-crpd02_1 eth1 R1

2. Remove the bridges:

root@ubuntu-vm18:~# ovs-vsctl del-br crpd01-crpd02_1

Viewing Container Processes in a Running cRPD

To view container processes:

Run the docker exec command to view the details about the processes (applications, services, and status)
running on a container.

root@ubuntu-vm18:~# docker exec crpd01 ps aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 76996 8060 ? Ss Apr26 0:01 /sbin/init
root 19 0.0 0.2 160392 71520 ? S<s Apr26 0:38 /lib/systemd/systemd-journald
systemd+ 30 0.0 0.0 70616 5236 ? Ss Apr26 0:00 /lib/systemd/systemd-resolved
root 32 0.0 0.0 167404 16324 ? Ssl Apr26 0:00 /usr/bin/python3 /usr/bin/
networkd-dispatcher --run-startup-triggers

71

syslog 33 0.0 0.0 263036 4164 ? Ssl Apr26 0:05 /usr/sbin/rsyslogd -n
message+ 38 0.0 0.0 49928 4072 ? Ss Apr26 0:00 /usr/bin/dbus-daemon --system --
address=systemd: --nofork --nopidfile --systemd-activation --syslog-only
root 47 0.0 0.0 13020 1852 pts/0 Ss+ Apr26 0:00 /sbin/agetty -o -p -- \u --
noclear --keep-baud console 115200,38400,9600 xterm
root 52 0.0 0.0 72296 5536 ? Ss Apr26 0:00 /usr/sbin/sshd -D
root 80 0.0 0.0 1453936 13584 ? Ss Apr26 0:01 /usr/sbin/mgd -N
root 86 0.1 0.2 1053572 95040 ? Ssl Apr26 5:58 /usr/sbin/rpd -N
root 87 0.0 0.0 837400 6356 ? Ss Apr26 0:01 /usr/sbin/ppmd -N
root 88 0.0 0.0 842112 6460 ? Ss Apr26 0:01 /usr/sbin/bfdd -N
root 102 0.0 0.0 13244 1832 tty1 Ss+ Apr26 0:00 /sbin/agetty -o -p -- \u --
noclear tty1 linux
root 108 0.0 0.0 18500 3340 pts/1 Ss Apr26 0:00 /bin/bash
root 119 0.0 0.0 739724 11936 pts/1 S+ Apr26 0:02 cli
root 120 0.0 0.0 1454680 12636 ? Ss Apr26 0:00 /usr/sbin/mgd -N
root 1502 0.0 0.0 34400 2704 ? Rs 09:22 0:00 ps aux

Accessing cRPD CLI and Bash Shell

To access the cRPD using CLI and bash shell:

1. Run the docker exec -it crpd1 cli to launch the Junos CLI.

root@ubuntu-vm18:~# docker exec -it crpd01 cli

2. Run the docker exec -it crpd1 bash to launch the Junos shell.

root@ubuntu-vm18:~# docker exec -it crpd01 bash

Pausing and Resuming Processes within a cRPD Container

You can pause or resume all processes within one or more containers.

To pause and restart a cRPD:

1. Run the docker pause command to suspend all the processes in a cRPD container.

root@ubuntu-vm18:~# docker pause crpd-container-name

2. Run the docker unpause command to resume all the processes in the cRPD container.

root@ubuntu-vm18:~# docker unpause crpd-container-name

72

Removing a cRPD Instance

To remove a cRPD instance or image:

NOTE: You must first stop and remove a cRPD instance before you remove a cRPD image.

1. Run the docker stop command to stop the cRPD.

root@ubuntu-vm18:~# docker stop crpd-container-name

crpd01

2. Run the docker rm command to remove the cRPD.

root@ubuntu-vm18:~# docker rm crpd-container-name

NOTE: Include --force to force the removal of the running cRPD.

3. Run the docker rmi command to remove one or more cRPD images from the Docker Engine.

NOTE: Include --force to force the removal a cRPD image.

root@ubuntu-vm18:~# docker rmi crd-Image-name

Viewing Docker Statistics and Logs

To view the statistics and logs:

1. Run the docker stats command to monitor the resource utilization.

2. Run the docker logs crpd-container-name command for extracting the container logs.

Viewing Active Containers

To view the current active containers and their status:

Run the docker ps or the docker container ls command to list the active containers.

73

root@ubuntu-vm18:~# docker container ls

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
c99e2c74a19b bad58561c4be "/storage-provisioner" 12 days ago Up 12
days k8s_storage-provisioner_storage-provisioner_kube-system_14f342e7-fa2e-45d1-
a970-6b698f521d3e_11
89c7c630fce2 5fb9aaddb236 "/etc/rc.local init" 3 weeks ago Up 3
weeks k8s_csrx_csrx_default_c605afd1-d9ff-4fb7-a290-fc8ce3cad1d7_0
3380dafdb0de k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3
weeks k8s_POD_csrx_default_c605afd1-d9ff-4fb7-a290-fc8ce3cad1d7_0
e779780adc12 bfe3a36ebd25 "/coredns -conf /etc…" 3 weeks ago Up 3
weeks k8s_coredns_coredns-f9fd979d6-5nl6b_kube-system_15cfcff1-dbc1-498a-
bf37-02427d30e603_3
7b9506570dec 635b36f4d89f "/usr/local/bin/kube…" 3 weeks ago Up 3
weeks k8s_kube-proxy_kube-proxy-mq9nj_kube-system_841a45cf-de39-49a8-
ae35-6313286c25bb_3
760f482b7cb3 k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3
weeks k8s_POD_kube-proxy-mq9nj_kube-system_841a45cf-de39-49a8-ae35-6313286c25bb_3
eb8258e88c9b k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3
weeks k8s_POD_coredns-f9fd979d6-5nl6b_kube-system_15cfcff1-dbc1-498a-
bf37-02427d30e603_3
6d1946fcde75 k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3
weeks k8s_POD_storage-provisioner_kube-system_14f342e7-fa2e-45d1-a970-6b698f521d3e_3
8b0842e06094 4830ab618586 "kube-controller-man…" 3 weeks ago Up 3
weeks k8s_kube-controller-manager_kube-controller-manager-ix-crpd-01_kube-
system_627d9013c9c4b1cbfb72b4c0ef6cd100_4
bce233248dda b15c6247777d "kube-apiserver --ad…" 3 weeks ago Up 3
weeks k8s_kube-apiserver_kube-apiserver-ix-crpd-01_kube-
system_a22d3335af147e2c88f1d34b6067e650_7
5f7652e4adda k8s.gcr.io/etcd "etcd --advertise-cl…" 3 weeks ago Up 3
weeks k8s_etcd_etcd-ix-crpd-01_kube-system_dde4e023d8613808da88a63ff3c86e64_0
8280ab21d826 14cd22f7abe7 "kube-scheduler --au…" 3 weeks ago Up 3
weeks k8s_kube-scheduler_kube-scheduler-ix-crpd-01_kube-
system_38744c90661b22e9ae232b0452c54538_3
f451a6be0a98 k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3
weeks k8s_POD_etcd-ix-crpd-01_kube-system_dde4e023d8613808da88a63ff3c86e64_0
5c0edfce83be k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3
weeks k8s_POD_kube-scheduler-ix-crpd-01_kube-
system_38744c90661b22e9ae232b0452c54538_0
2d326fedb67c k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3
weeks k8s_POD_kube-controller-manager-ix-crpd-01_kube-

74

system_627d9013c9c4b1cbfb72b4c0ef6cd100_0
7e3773affc73 k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3
weeks k8s_POD_kube-apiserver-ix-crpd-01_kube-
system_a22d3335af147e2c88f1d34b6067e650_0

root@ubuntu-vm18:~# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES
c99e2c74a19b bad58561c4be "/storage-provisioner" 12 days ago Up 12
days k8s_storage-provisioner_storage-provisioner_kube-system_14f342e7-fa2e-45d1-
a970-6b698f521d3e_11
89c7c630fce2 5fb9aaddb236 "/etc/rc.local init" 3 weeks ago Up 3
weeks k8s_csrx_csrx_default_c605afd1-d9ff-4fb7-a290-fc8ce3cad1d7_0
3380dafdb0de k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3
weeks k8s_POD_csrx_default_c605afd1-d9ff-4fb7-a290-fc8ce3cad1d7_0
e779780adc12 bfe3a36ebd25 "/coredns -conf /etc…" 3 weeks ago Up 3
weeks k8s_coredns_coredns-f9fd979d6-5nl6b_kube-system_15cfcff1-dbc1-498a-
bf37-02427d30e603_3
7b9506570dec 635b36f4d89f "/usr/local/bin/kube…" 3 weeks ago Up 3
weeks k8s_kube-proxy_kube-proxy-mq9nj_kube-system_841a45cf-de39-49a8-
ae35-6313286c25bb_3
760f482b7cb3 k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3
weeks k8s_POD_kube-proxy-mq9nj_kube-system_841a45cf-de39-49a8-ae35-6313286c25bb_3
eb8258e88c9b k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3
weeks k8s_POD_coredns-f9fd979d6-5nl6b_kube-system_15cfcff1-dbc1-498a-
bf37-02427d30e603_3
6d1946fcde75 k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3
weeks k8s_POD_storage-provisioner_kube-system_14f342e7-fa2e-45d1-a970-6b698f521d3e_3
8b0842e06094 4830ab618586 "kube-controller-man…" 3 weeks ago Up 3
weeks k8s_kube-controller-manager_kube-controller-manager-ix-crpd-01_kube-
system_627d9013c9c4b1cbfb72b4c0ef6cd100_4
bce233248dda b15c6247777d "kube-apiserver --ad…" 3 weeks ago Up 3
weeks k8s_kube-apiserver_kube-apiserver-ix-crpd-01_kube-
system_a22d3335af147e2c88f1d34b6067e650_7
5f7652e4adda k8s.gcr.io/etcd "etcd --advertise-cl…" 3 weeks ago Up 3
weeks k8s_etcd_etcd-ix-crpd-01_kube-system_dde4e023d8613808da88a63ff3c86e64_0
8280ab21d826 14cd22f7abe7 "kube-scheduler --au…" 3 weeks ago Up 3
weeks k8s_kube-scheduler_kube-scheduler-ix-crpd-01_kube-
system_38744c90661b22e9ae232b0452c54538_3
f451a6be0a98 k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3
weeks k8s_POD_etcd-ix-crpd-01_kube-system_dde4e023d8613808da88a63ff3c86e64_0

75

5c0edfce83be k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3
weeks k8s_POD_kube-scheduler-ix-crpd-01_kube-
system_38744c90661b22e9ae232b0452c54538_0
2d326fedb67c k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3
weeks k8s_POD_kube-controller-manager-ix-crpd-01_kube-
system_627d9013c9c4b1cbfb72b4c0ef6cd100_0
7e3773affc73 k8s.gcr.io/pause:3.2 "/pause" 3 weeks ago Up 3
weeks k8s_POD_kube-apiserver-ix-crpd-01_kube-
system_a22d3335af147e2c88f1d34b6067e650_0

Stopping the Container

To stop the container:

You can stop the container using the following command:

root@ubuntu-vm18:~# docker stop crpd-container-name

RELATED DOCUMENTATION

Docker commands

Establishing an SSH Connection for a NETCONF
Session and cRPD

IN THIS SECTION

Establishing an SSH Connection | 77

Enabling SSH | 77

Port Forwarding Mechanism | 77

Connecting to a NETCONF Server on Container | 78

76

https://docs.docker.com/engine/reference/commandline/docker/

Establishing an SSH Connection

SSH can be used to establish connections between a configuration management server and a device
running Linux OS with cRPD. A configuration management server, as the name implies, is used to
configure the device running Linux OS remotely. With SSH, the configuration management server
initiates an SSH session with the device running Linux OS.

Enabling SSH

To enable SSH on a cRPD:

1. Log in using the root to enable root access through SSH.

2. In the /etc/ssh/sshd_config file, specify the following setting:

root@crpd01:/usr/bin# vi /etc/ssh/sshd_config

…
Authentication:

#LoginGraceTime 2m
PermitRootLogin yes
...

3. Restart the service.

user@crpd01:/# service ssh restart

* Starting OpenBSD Secure Shell server
sshd

 [OK]

Port Forwarding Mechanism

To map a host port to a container port:

Run the following command to map a port on the host with a port on container.

user@crpd01:/usr/bin# docker run -d --name crpd02 -p 8034:22 crpd:20.4R1.12

77

Connecting to a NETCONF Server on Container

1. Log in to the container for crpd02.

root@crpd01:/usr/bin# docker exec -it crpd02 bash

2. Copy the IP address.

root@6918f17c5851:/# ifconfig eth0

eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 172.17.0.14 netmask 255.255.0.0 broadcast 172.17.255.255

3. Configure root-authentication, netconf and ssh, and commit the config

set system root-authentication plain-text-password "<password>"

set system services ssh root-login allow

set system services netconf ssh port 8034

4. Log in to the cRPD container using NETCONF:

root@crpd01:/usr/bin ssh root@172.17.0.14 -p 8034 netconf

Password:
<!-- No zombies were killed during the creation of this user interface -->
<!-- user root, class super-user -->
<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
...

The 8034 port on host is mapped to 22 port on container and opens an interactive shell session.

78

4
CHAPTER

Programmable Routing

cRPD Application Development Using JET APIs | 80

Getting Started with JET | 81

cRPD Application Development Using JET APIs

IN THIS SECTION

JET APIs | 80

JET is a framework that enables developers to create applications. cRPD supports JET which provides
gRPC based routing APIs that are accessed locally from within the container or remotely over a TCP
session. JET APIs support Programmable RPD.

JET APIs

cRPD supports the following JET Service APIs:

• Routing:

• PRPD Common API

• PRPD Service API

• RIB Service API

• MPLS Service API

• Routing Interface Notification API

• BGP Route Service API

For more information on the APIs, see Juniper Extension Toolkit Developer Guide.

80

https://www.juniper.net/documentation/en_US/jet18.4/information-products/pathway-pages/juniper-extension-toolkit-developer-guide.html

Getting Started with JET

IN THIS SECTION

Configure JET Interaction with Linux OS | 81

Maximum Number of JET Connections | 81

Compile IDL Files | 82

Configure JET Interaction with Linux OS

In cRPD, JET service is enabled on TCP port 40051 and binds to loopback address 127.0.0.1 or ::1. To
access JET service remotely, set up the SSH tunneling into the cRPD container using either username
and password or SSH keys.

Remote access to JET service is secured using SSH. For more information on enabling SSH using port
forwarding, see "Establishing an SSH Connection for a NETCONF Session and cRPD" on page 76.

The maximum number of JET connections supported is 512.

Maximum Number of JET Connections

To setup maximum number of JET connections:

1. Access the cRPD Linux shell.

2. Use the command to add the connections:

root@crpd1:~# ulimit -n 519

3. Restart ssh on cRPD.

/etc/init.d/ssh restart

4. Re-establish ssh tunnel from Host Ubuntu to cRPD.

5. Connect up to 512 simultaneous JET Connections.

81

Compile IDL Files

To download and compile the IDL files:

1. Download the IDL jet-idl-20.4R1.12.tar.gz file from the Juniper Networks website at
www.juniper.net/support/downloads/.

2. Unpack the IDL file.

For example:

ubuntu-16:~ jet$ mkdir proto
ubuntu-16:~ jet$ tar -xzf jet-idl-18.4-20181107.0.tar.gz -C proto/
ubuntu-16:~ jet$ ls proto/

1 2 README

ubuntu-16:~ jet$ ls proto/2

jnx_authentication_service.proto
jnx_routing_base_service.proto
jnx_common_addr_types.proto
jnx_routing_base_types.proto
jnx_common_base_types.proto
jnx_routing_bgp_service.proto
jnx_firewall_service.proto
jnx_routing_flexible_tunnel_profile.proto
jnx_interfaces_service.proto
jnx_routing_flexible_tunnel_service.proto
jnx_management_service.proto
jnx_routing_interface_service.proto
jnx_registration_service.proto
jnx_routing_rib_service.proto

3. Install the grpcio module.

apt-add-repository universe

apt-get update

82

https://www.juniper.net/support/downloads/

apt-get install python-pip

python -m pip install grpcio

python -m pip install grpcio-tools

4. Compile python and gRPC modules for Authentication and Management Service proto files.

For example:

ubuntu-16:~ jet$ python -m grpc_tools.protoc -I./proto/2 --python_out=. --grpc_python_out=.
proto/2/jnx_management_service.proto
ubuntu-16:~ jet$ python -m grpc_tools.protoc -I./proto/2 --python_out=. --grpc_python_out=.
proto/2/jnx_authentication_service.proto
ubuntu-16:~ jet$ python -m grpc_tools.protoc -I./proto/2 --python_out=. --grpc_python_out=.
proto/2/jnx_common_base_types.proto
ubuntu-16:~ jet$ ls -lrt

total 112
-rw-r--r-- 1 vagrant vagrant 52683 Nov 8 16:47 jet-idl-18.4-20181107.0.tar.gz
drwxr-xr-x 1 vagrant vagrant 170 Nov 8 16:49 proto
-rw-r--r-- 1 vagrant vagrant 40924 Nov 8 16:56 jnx_management_service_pb2.py
-rw-r--r-- 1 vagrant vagrant 4719 Nov 8 16:56 jnx_management_service_pb2_grpc.py
-rw-r--r-- 1 vagrant vagrant 5365 Nov 8 2018 jnx_authentication_service_pb2.py
-rw-r--r-- 1 vagrant vagrant 1898 Nov 8 2018 jnx_authentication_service_pb2_grpc.py
-rw-r--r-- 1 vagrant vagrant 6391 Nov 8 2018 jnx_common_base_types_pb2.py
-rw-r--r-- 1 vagrant vagrant 83 Nov 8 2018 jnx_common_base_types_pb2_grpc.py

For details on how to generate code from an IDL file in the language of your choice, see https://
www.grpc.io/docs.

83

https://grpc.io/docs/quickstart/python.html
https://grpc.io/docs/quickstart/python.html

5
CHAPTER

Using cRPD

Configuring Settings on Host OS | 85

Multitopology Routing in cRPD | 94

Layer 3 Overlay Support in cRPD | 103

MPLS Support in cRPD | 119

Sharding and UpdateIO on cRPD | 134

VRRP with cRPD | 135

Configuring Settings on Host OS

IN THIS SECTION

Configuring ARP Scaling | 85

Tunning OSPF under cRPD | 86

Configuring MPLS | 86

Adding MPLS Routes | 87

Adding Routes with MPLS label | 87

Creating a VRF device | 88

Assigning a Network Interface to a VRF | 88

Viewing the Devices assigned to VRF | 89

Viewing Neighbor Entries to VRF | 89

Viewing Addresses for a VRF | 89

Viewing Routes for a VRF | 89

Removing Network Interface from a VRF | 90

Hash Field Selection for ECMP Load Balancing on Linux | 90

wECMP using BGP on Linux | 92

Enable SRv6 on cRPD | 94

This chapter provides information on tuning of settings on host OS to enable advanced features or to
increase the scale of cRPD functionality.

Configuring ARP Scaling

The maximum ARP entry number is controlled by the Linux host kernel. If there are a large number of
neighbors, you might need to adjust the ARP entry limitations on the Linux host. There are options in
the sysctl command on the Linux host to adjust the ARP or NDP entry limits.

For example, to adjust the maximum ARP entries using IPv4:

root@host:~# sysctl -w net.ipv4.neigh.default.gc_thresh1=4096

85

root@host:~# sysctl -w net.ipv4.neigh.default.gc_thresh2=8192

root@host:~# sysctl -w net.ipv4.neigh.default.gc_thresh3=8192

For example, to adjust the maximum ND entries using IPv6:

root@host:~# sysctl -w net.ipv6.neigh.default.gc_thresh1=4096

root@host:~# sysctl -w net.ipv6.neigh.default.gc_thresh2=8192

root@host:~# sysctl -w net.ipv6.neigh.default.gc_thresh3=8192

Tunning OSPF under cRPD

To allow more number of OSPFv2/v3 adjacencies with cRPD, increase the IGMP membership limit:

Increase the IGMP membership limit.

root@host:~# sysctl -w net.ipv4.igmp_max_memberships=1000

Configuring MPLS

To configure MPLS in Linux kernel:

1. Load the MPLS modules in the container using modprobe or insmod :

root@crpd-ubuntu3:~# modprobe mpls_iptunnel

root@crpd-ubuntu3:~# modprobe mpls_router

root@crpd-ubuntu3:~# modprobe ip_tunnel

2. Verify the MPLS modules loaded in host OS.

root@host:~# lsmod | grep mpls

mpls_iptunnel 16384 0
mpls_router 28672 1 mpls_iptunnel
ip_tunnel 24576 4 ipip,ip_gre,sit,mpls_router

3. After loading the mpls_router on the host, configure the following commands to activate MPLS on the
interface.

86

root@host:~# sysctl -w net.mpls.platform_labels=1048575

Adding MPLS Routes

Netlink messages are used to communicate (add/learn) the routes with the Linux kernel. MPLS routes
are added to the kernel using iproute2 utility which internally uses netlink socket to update the kernel. To
add MPLS routes to host using the iproute2 utility:

1. Enable mpls on the network interface.

root@host:/# cli

root@host> show interfaces routing

Interface State Addresses
eth0.0 Up MPLS enabled
 ISO enabled
 INET 172.17.0.2
 INET6 fe80::42:acff:fe11:2
lo.0 Up MPLS enabled
 ISO enabled
 INET 127.0.0.1
 INET6 ::1

2. Run the following command to add the mpls routes to the host OS.

root@host:~# ip -f mpls route add 100 as 200/300 via inet 172.20.0.2 dev br-a3a2fe3ae8e3

3. Run the following command to view the MPLS fib entries on Linux.

root@host:~# ip -f mpls route show

100 as to 200/300 via inet 172.20.0.2 dev br-a3a2fe3ae8e3

Adding Routes with MPLS label

To add routes to host by encapsulating the packets with MPLS label using the iproute2 utility:

1. Run the following command to encapsulate the packets to host OS.

root@host:~# ip route add 172.20.0.0/30 encap mpls 200 via inet 172.20.0.2 dev br-a3a2fe3ae8e3

87

2. Run the following command to view the mpls routes.

root@host:~# ip route show

172.20.0.0/30 encap mpls 200 via 172.20.0.2 dev br-a3a2fe3ae8e3

Creating a VRF device

To instantiate a VRF device and associate it with a table:

1. Run the following command to create a VRF device.

root@host:~# ip link add dev test1 type vrf table 11

2. Run the following command to view the created VRFs.

root@host:~# ip [-d] link show type vrf

91: test1: <NOARP,MASTER> mtu 65536 qdisc noop state DOWN mode DEFAULT group default qlen 1000
 link/ether c6:f6:1f:2b:9f:b9 brd ff:ff:ff:ff:ff:ff

3. Run the following command to view the list of VRFs in the host OS.

root@host:~# ip vrf show

Name Table

test1 11

Assigning a Network Interface to a VRF

Network interfaces are assigned to a VRF by assigning the netdevice to a VRF device. The connected
and local routes are automatically moved to the table associated with the VRF device.

To assign a network interface to a VRF:

Run the following command to assign a interface.

root@host:~# ip link set dev <name> master <name>

root@host:~# ip link set dev eth1 vrf test

88

Viewing the Devices assigned to VRF

To view the devices:

Run the following command to view the devices assigned to a VRF.

root@host:~# ip link show vrf <name>

root@host:~# ip link show vrf red

Viewing Neighbor Entries to VRF

To list the neighbor entries associated with devices enslaved to a VRF device:

Run the following command to add the primary option to the ip command:

root@host:~# ip -6 neigh show vrf <NAME>

root@host:~# ip neigh show vrf red

root@host:~# ip -6 neigh show vrf red

Viewing Addresses for a VRF

To show addresses for interfaces associated with a VRF:

Run the following command to add the primary option to the ip command:

root@host:~# ip addr show vrf <NAME>

root@host:~# ip addr show vrf red

Viewing Routes for a VRF

To view routes for a VRF:

1. Run the following command to view the IPv6 routes table associated with the VRF device:

root@host:~# ip -6 route show vrf NAME

root@host:~# ip -6 route show table ID

2. Run the following command to do a route lookup for a VRF device:

89

root@host:~# ip -6 route get vrf <NAME> <ADDRESS>

root@host:~# ip route get 192.0.2.1 vrf red

root@host:~# ip -6 route get oif <NAME> <ADDRESS>

root@host:~# ip -6 route get 2001:db8::32 vrf red

2001:db8::32 from :: dev eth1 table red proto kernel src 2001:1::2 metric 256 pref medium

3. Run the following command to view the IPv4 routes in a VRF device:

root@host:~# ip route list table <table-id>

Removing Network Interface from a VRF

Network interfaces are removed from a VRF by breaking the enslavement to the VRF device

Run the following command to remove the network interface:

root@host:~# ip link set dev NAME nomaster

After removing the network interface, connected routes are moved to the default table and local entries
are moved to the local table.

Hash Field Selection for ECMP Load Balancing on Linux

You can select the ECMP hash policy (fib_multipath_hash_policy) for both forwarded and locally generated
traffic (IPv4/IPv6).

IPv4 Traffic

1. By default, Linux kernel uses the Layer 3 hash policy to load balance the IPv4 traffic. Layer 3 hashing
uses the following information:

• Source IP address

• Destination IP address

root@host:~# sysctl -n net.ipv4.fib_multipath_hash_policy 0

2. Run the following command to load balance the IPv4 traffic using Layer 4 hash policy. Layer 4
hashing load balances the traffic based on the following information:

• Source IP address

90

• Destination IP address

• Source port number

• Destination port number

• Protocol

root@host:~# sysctl -w net.ipv4.fib_multipath_hash_policy=1

root@host:~# sysctl -n net.ipv4.fib_multipath_hash_policy 1

3. Run the following command to use Layer 3 hashing on the inner packet header (IPv4/IPv6 over IPv4
GRE)

root@host:~# sysctl -w net.ipv6.fib_multipath_hash_policy=2

root@host:~# sysctl -n net.ipv6.fib_multipath_hash_policy 2

The policy defaults to Layer 3 hashing on the packet forwarded as described in the default approach
for IPv4 traffic.

IPv6 Traffic

4. By default, Linux kernel uses Layer 3 hash policy to load balance the IPv6 traffic. The Layer 3 hash
policy load balance the traffic based on the following information:

• Source IP address

• Destination IP address

• Flow label

• Next header (Protocol)

root@host:~# sysctl -n net.ipv6.fib_multipath_hash_policy 0

5. You can use the Layer 4 hash policy to load balance the IPv6 traffic. The Layer 4 hash policy load
balances traffic based on the following information:

• Source IP address

• Destination IP address

• Source port number

• Destination port number

• Next header (Protocol)

root@host:~# sysctl -w net.ipv6.fib_multipath_hash_policy=1

root@host:~# sysctl -n net.ipv6.fib_multipath_hash_policy 1

91

6. Run the following command to use Layer 3 hashing on the inner packet header (IPv4/IPv6 over IPv4
GRE).

root@host:~# sysctl -w net.ipv6.fib_multipath_hash_policy=2

root@host:~# sysctl -n net.ipv6.fib_multipath_hash_policy 2

MPLS

7. Linux kernel can select the next-hop of a multipath route using the following parameters:

• label stack upto the limit of MAX_MP_SELECT_LABELS (4)

• source IP address

• destination IP address

• protocol of the inner IPv4/IPv6 header

Neighbor Detection

8. Run the following command to view the liveness (failed/incomplete/unresolved) of the neighbor
entry, which helps in forwarding the packets to next-hops.

root@host:~# sysctl -w net.ipv4.fib_multipath_use_neigh=1

By default, the packets are forwarded to next-hops using the root@host:~# sysctl -n
net.ipv4.fib_multipath_use_neigh 0 command.

wECMP using BGP on Linux

Unequal cost load balancing is a way to distribute traffic unequally among different paths (comprising
the multipath next-hop); when the paths have different bandwidth capabilities. BGP protocol achieves
this by tagging each route/path with the bandwidth of the link using the link bandwidth extended
community. The bandwidth of the corresponding link can be encoded as part of this link bandwidth
community. RPD uses this bandwidth information of each path to program the multipath next-hops with
appropriate linux::weights. A next-hop with linux::weight allows linux kernel to load balance traffic
asymmetrically.

BGP forms a multipath next-hop and uses the bandwidth values of individual paths to find out the
proportion of traffic that each of the next-hops that form the ECMP next-hop should receive. The
bandwidth values specified in the link bandwidth need not be the absolute bandwidth of the interface.
These values need to reflect the relative bandwidth of one path from the another. For details, see
Understanding How to Define BGP Communities and Extended Communities and How BGP
Communities and Extended Communities Are Evaluated in Routing Policy Match Conditions.

Consider a network with R1 receiving equal cost paths from R2 and R3 to a destination R4; if you want
to send 90% of the load balanced traffic over the path R1-R2 and the remaining 10% of the traffic over

92

https://www.juniper.net/documentation/us/en/software/junos/routing-policy/topics/concept/policy-defining-bgp-communities-and-extended-communities-for-use-in-routing-policy-match-conditions.html
https://www.juniper.net/documentation/us/en/software/junos/routing-policy/topics/concept/policy-bgp-communities-extended-communities-evaluation-in-routing-policy-match-conditions.html
https://www.juniper.net/documentation/us/en/software/junos/routing-policy/topics/concept/policy-bgp-communities-extended-communities-evaluation-in-routing-policy-match-conditions.html

the path R1-R3 using wECMP, you need to tag routes received from the two BGP peers with link
bandwidth community by configuring policy-options.

1. Configure policy statement.

root@host> show configuration policy-options

policy-statement add-high-bw {
 then {
 community set high-bw;
 accept;
 }
}
policy-statement add-low-bw {
 then {
 community set low-bw;
 accept;
 }
}
community high-bw members [bandwidth:2:90];
community low-bw members [bandwidth:2:10];

2. RPD uses the bandwidth values to unequally balance the traffic with the multiple path next-hops.

root@host> show route 100.100.100.100 detail

inet.0: 13 destinations, 16 routes (13 active, 0 holddown, 0 hidden)
100.100.100.100/32 (2 entries, 1 announced)
 *BGP Preference: 170/-101
 Next hop type: Router, Next hop index: 0
 Address: 0x565535f37a3c
 Next-hop reference count: 10
 Source: 10.1.1.5
 Next hop: 20.1.1.5 via eth2 balance 10%, selected
 Session Id: 0x0
 Next hop: 10.1.1.5 via eth1 balance 90%

3. Linux kernel supports unequal load balancing by assigning linux::weights for each next-hop.

root@host:/# ip route show 100.100.100.100

100.100.100.100 proto 22

93

 nexthop via 20.1.1.5 dev eth2 weight 26
 nexthop via 10.1.1.5 dev eth1 weight 229

The linux::weights are programmed to linux as divisions of integer 255 (the maximum value of an
unsigned character). Each next-hop in the ECMP next-hop is given a linux::weight proportional to its
share of the bandwidth.

Enable SRv6 on cRPD

You can enable IPv6 segment routing capability on cRPD using the following sysctl command:

1. To enable segment routing.

root@host:~# sysctl net.ipv6.conf.all.seg6_enabled=1

root@host:~# sysctl net.ipv6.conf.all.forwarding=1

2. Configure the following command to enable SRv6 on eth0 interface.

root@host:~# sysctl net.ipv6.conf.eth0.seg6_enabled=1

3. Configure the following command to set the DT4 SIDs.

root@host:~# sysctl -wq net.vrf.strict_mode=1

RELATED DOCUMENTATION

Example: Configuring Static Label Switched Paths for MPLS in cRPD | 120

Example: Configuring Layer 3 VPN (VRF) on cRPD Instance | 105

Multitopology Routing in cRPD

IN THIS SECTION

Understanding Multitopology in cRPD | 95

Example: Configuring Multitopology Routing with BGP in cRPD | 95

94

Understanding Multitopology in cRPD

cRPD enables BGP multiple RIBs functionality to support Multitopology routing (MTR) based on the
routing policy with Linux FIBs (routes in forwarding plane). The applications can select required routing
table based on the routing policy from the Linux FIB in cRPD for different types of traffic. Each type of
traffic is defined by a topology that is used to create a new routing table for that topology. Each
topology uses the unified control plane to make routing decisions for traffic associated with that
topology. In addition, each topology has a separate forwarding table and, in effect, a dedicated
forwarding plane for each topology.

Service providers and enterprises can use multitopology routing (MTR) to engineer traffic flow across a
network. MTR can be used with direct and static routes, IS-IS, OSPF, and BGP. In a network carrying
multiple traffic types, you often need to direct different types of application traffic over multiple links
depending on their link characteristics. Communities are used for BGP when exporting routes to
multitopology. OSPFv3 does not support MTR. MTR discovers IGP routes and able to resolve BGP
routes against the custom topologies with static and OSPF. .

You can configure separate topologies to share the same network links as needed. MTR uses a
combination of control plane (routing) and forwarding plane filters.

MTR provides the ability to generate forwarding tables based on the resolved entries in the routing
tables for the topologies you create. MTR and forwarding is available only on master routing instance. A
dedicated RIB is created for storing the Multitopology routes. BGP multipath is not enabled on
topologies.

When routing topologies are configured under routing-options, a new routing table for each topology is
created. Each routing protocol creates a routing table based on the topology name, the instance name,
and the purpose of the table.

Example: Configuring Multitopology Routing with BGP in cRPD

IN THIS SECTION

Requirements | 96

Overview | 96

Configuration | 97

Verification | 101

95

This example shows how to configure community-based multiple topologies with BGP in cRPD and
unicast the traffic using Multitopology Routing (MTR) over network paths.

Requirements

This example requires following software release:

• cRPD 19.4R1 or later.

Overview

IN THIS SECTION

Topology | 96

Multitopology routing support for BGP is based on the community value in a BGP route. This
configuration determines the association between a topology and one or more community values and
populates the topology routing tables. Arriving BGP updates that have a matching community value are
replicated in the associated topology routing table.

Configure the topologies with BGP inet family and verify the BGP import matching route into topology
RIB (also known as routing table). For each topology, a list of community objects must be provided such
that the routing software can set up an internal ribgroup and the corresponding secondary table import
policy.

Topology

Figure 5 on page 97 shows the topology for configuring multitopology routing with BGP.

96

Figure 5: Multitopology Routing

Configuration

IN THIS SECTION

CLI Quick Configuration | 97

Configuring BGP through Multitopology Routing | 98

Results | 99

To configure multitopology routing for BGP:

CLI Quick Configuration

set routing-options topologies family inet topology red table-id 40
set routing-options topologies family inet topology blue table-id 41
set routing-options topologies family inet topology green table-id 42
set routing-options router-id 10.2.2.2
set routing-options autonomous-system 65500
set routing-options rib :red.inet.0 static route 10.1.1.1/32 next-hop 10.15.0.2
set routing-options rib :green.inet.0 static route 10.1.1.1/32 next-hop 10.13.0.2
set routing-options rib :blue.inet.0 static route 10.1.1.1/32 next-hop 10.17.0.2
set protocols bgp group ibgp-app-rr-ser type internal
set protocols bgp group ibgp-app-rr-ser traceoptions file bgp size 100m

97

set protocols bgp group ibgp-app-rr-ser traceoptions flag update
set protocols bgp group ibgp-app-rr-ser traceoptions flag state
set protocols bgp group ibgp-app-rr-ser local-address 10.77.1.1
set protocols bgp group ibgp-app-rr-ser family inet unicast add-path send path-count 6
set protocols bgp family inet unicast topology red community 1:1
set protocols bgp family inet unicast topology green community 1:2
set protocols bgp family inet unicast topology blue community 1:3

Configuring BGP through Multitopology Routing

Step-by-Step Procedure

1. Configure multiple topologies.

[edit routing-options topologies]
user@crpd# set family inet topology red table-id 40
user@crpd# set family inet topology blue table-id 41
user@crpd# set family inet topology green table-id 42

2. Configure static routes.

[edit routing-options]
user@crpd# set router-id 10.2.2.2
user@crpd# set autonomous-system 65500
user@crpd# set rib :red.inet.0 static route 10.1.1.1/32 next-hop 10.15.0.2
user@crpd# set rib :green.inet.0 static route 10.1.1.1/32 next-hop 10.13.0.2
user@crpd# set rib :blue.inet.0 static route 10.1.1.1/32 next-hop 10.17.0.2

3. Configure BGP group parameters to import the matching route into the topology routing tables. BGP
uses the target community identifier to install the routes it learns in the appropriate routing table.

[edit protocols bgp]
user@crpd# set group ibgp-app-rr-ser type internal
user@crpd# set group ibgp-app-rr-ser traceoptions file bgp size 100m
user@crpd# set group ibgp-app-rr-ser traceoptions flag update
user@crpd# set group ibgp-app-rr-ser traceoptions flag state
user@crpd# set group ibgp-app-rr-ser local-address 10.77.1.1
user@crpd# set group ibgp-app-rr-ser family inet unicast add-path send path-count 6
user@crpd# set family inet unicast topology red community 1:1

98

user@crpd# set family inet unicast topology green community 1:2
user@crpd# set family inet unicast topology blue community 1:3

Results

From configuration mode, confirm your configuration by entering the show protocols bgp and show routing-
options commands. If the output does not display the intended configuration, repeat the instructions in
this example to correct the configuration.

show routing-options
topologies {
 family inet {
 topology red {
 table-id 40;
 }
 topology blue {
 table-id 41;
 }
 topology green {
 table-id 42;
 }
 }
}
rib :red.inet.0 {
 static {
 route 10.1.1.1/32 next-hop 10.15.0.2;
 }
}
rib :green.inet.0 {
 static {
 route 10.1.1.1/32 next-hop 10.13.0.2;
 }
}
rib :blue.inet.0 {
 static {
 route 10.1.1.1/32 next-hop 10.17.0.2;

99

 }
}

user@crpd# show protocols bgp
family inet {
 unicast {
 topology red {
 community 1:1;
 }
 topology green {
 community 1:2;
 }
 topology blue {
 community 1:3;
 }
 }
 group ibgp-app-rr-ser {
 type internal;
 traceoptions {
 file bgp size 100m;
 flag update;
 }
 local-address 10.77.1.1;
 family inet {
 unicast {
 add-path {
 send {
 path-count 6;
 }
 }
 }
 }
 }
}

If you are done configuring the device, enter the commit command from configuration mode.

100

Verification

IN THIS SECTION

Verifying BGP routes | 101

Verifying BGP routes

Purpose

To verify the BGP matched routes:

Action

From operational mode, enter the show route protocol bgp all table command:

user@crpd> show route protocol bgp all table

:red.inet.0: 11 destinations, 11 routes (8 active, 0 holddown, 3 hidden)
 + = Active Route, - = Last Active, * = Both

 10.99.9.1/32 [BGP/170] 00:05:07, localpref 100, from 10.49.114.118
 AS path: I, validation-state: unverified
 > to 10.15.0.2 via ens4f1

 10.99.9.2/32 [BGP/170] 00:05:07, localpref 100, from 10.49.114.118
 AS path: I, validation-state: unverified
 > to 10.15.0.2 via ens4f1
 10.99.9.5/32 [BGP/170] 00:05:07, localpref 100, from 10.49.114.118
 AS path: I, validation-state: unverified
 > to 10.15.0.2 via ens4f1

 :green.inet.0: 10 destinations, 10 routes (8 active, 0 holddown, 2 hidden)
 + = Active Route, - = Last Active, * = Both

 10.9.9.1/32 [BGP/170] 00:05:07, localpref 100, from 10.49.114.118
 AS path: I, validation-state: unverified

101

 > to 10.13.0.2 via ens4f1
 10.9.9.4/32 [BGP/170] 00:05:07, localpref 100, from 10.49.114.118
 AS path: I, validation-state: unverified
 > to 10.13.0.2 via ens4f1

 :blue.inet.0: 11 destinations, 11 routes (8 active, 0 holddown, 3 hidden)
 + = Active Route, - = Last Active, * = Both

 10.99.9.3/32 [BGP/170] 00:05:07, localpref 100, from 10.49.114.118
 AS path: I, validation-state: unverified
 > to 10.17.0.2 via ens4f1
 10.99.9.4/32 [BGP/170] 00:05:07, localpref 100, from 10.49.114.118
 AS path: I, validation-state: unverified
 > to 10.17.0.2 via ens4f1
 10.99.9.5/32 [BGP/170] 00:05:07, localpref 100, from 10.49.114.118
 AS path: I, validation-state: unverified
 > to 10.17.0.2 via ens4f1

From operational mode, enter the show route protocol bgp all table inet.0 command:

user@crpd> show route protocol bgp all table inet.0

inet.0: 20 destinations, 20 routes (20 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.99.9.1/32 *[BGP/170] 00:00:14, localpref 100, from 10.49.114.118
 AS path: I, validation-state: unverified
 > to 1.15.0.2 via ens4f1
10.99.9.2/32 *[BGP/170] 00:00:14, localpref 100, from 10.49.114.118
 AS path: I, validation-state: unverified
 > to 1.15.0.2 via ens4f1
10.99.9.3/32 *[BGP/170] 00:00:14, localpref 100, from 10.49.114.118
 AS path: I, validation-state: unverified
 > to 1.15.0.2 via ens4f1
10.99.9.4/32 *[BGP/170] 00:00:14, localpref 100, from 10.49.114.118
 AS path: I, validation-state: unverified
 > to 1.15.0.2 via ens4f1
10.99.9.5/32 *[BGP/170] 00:00:14, localpref 100, from 10.49.114.118
 AS path: I, validation-state: unverified
 > to 1.15.0.2 via ens4f1

102

Meaning

You can view the BGP matching routes installed to routing tables and when the routes without
community targets are available only in the inet.0 routing table.

SEE ALSO

Understanding Multitopology Routing

Understanding Multitopology Routing for Class-Based Forwarding of Voice, Video, and Data Traffic

Layer 3 Overlay Support in cRPD

IN THIS SECTION

Understanding Layer 3 Overlay VRF support in cRPD | 103

Example: Configuring Layer 3 VPN (VRF) on cRPD Instance | 105

Understanding Layer 3 Overlay VRF support in cRPD

IN THIS SECTION

Moving the Interfaces under a VRF | 104

Starting in Junos OS Release 19.4R1, virtual routing and forwarding (VRF) instances are supported in
cRPD along with the support of MPLS and Multiprotocol BGP to provide overlay functionality.

A routing instance is a collection of routing tables, interfaces, and routing protocol parameters. To
implement Layer 3 VPNs, you configure one routing instance for each VPN. A VRF is a network device
in the Linux kernel and the device is associated with table-id. You configure the routing instances on PE
routers only. You can create VRFs in the Linux network. VRF device implementation impacts only Layer
3 and above. Each VPN routing instance consists of the following components:

103

https://www.juniper.net/documentation/en_US/junos/topics/concept/multitopology-routing-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/multopology-routing-overview-solutions.html

• VRF table—On each PE router, you configure one VRF table for each VPN.

• Policy rules—These control the import of routes into and the export of routes from the VRF table.

• One or more routing protocols that install routes from CE routers into the VRF table—You can use
the BGP, OSPF, and RIP routing protocols, and you can use static routes.

When a VRF device is created, it is associated with a routing table. Packets that come in through
enslaved devices to the VRF are looked up in the routing table associated with the VRF device. Similarly
egress routing rules are used to send packets to the VRF driver before sending it out on the actual
interface.

VRF is used to manage routes and to forward traffic based on independent forwarding tables in VRF.
RPD creates multiple routing tables for every routing instance of type vrf. The tables are one for each
address family. You need to configure a routing instance for each VPN on each of the PE routers
participating in the VPN. You can configure routing instances using the [edit routing-instances] hierarchy.
The routing instance of type vrf is only supported on cRPD.

You can create multiple instances of BFD, BGP, IS-IS, OSPF version 2 (referred as OSPF), OSPF version 3
(OSPFv3), and ICMP router discovery under a VRF using the [edit routing-instances routing-instance-name
protocols] hierarchy. You can configure protocol independent routing using the edit routing-instances
instance-name routing-options hierarchy.

Layer-3 Overlay supports the following tunneling protocols in cRPD:

• Static routes in inet.3

• BGP labeled unicast

• GRE tunneling

• MPLS static LSPs

• Routes programmed using programmable-rpd APIs

• direct-ebgp-peering on MPLS enabled interface

Moving the Interfaces under a VRF

The enslavement of devices is done by RPD that is interfaces configured under the routing instance are
migrated (enslaved) to the vrf-device by RPD using a netlink message sent to the kernel.

When an interface is configured under the routing instance of type vrf, if such a link has been learnt
from the kernel and the link is not associated to the correct table, RPD sends a netlink notification to
enslave the link. If the link does not exist or RPD has not learnt about the link, whenever the link is
created or RPD learns about it then the link will be enslaved correctly based on the configuration.

104

Example: Configuring Layer 3 VPN (VRF) on cRPD Instance

IN THIS SECTION

Requirements | 105

Overview | 105

Configuration | 106

Verification | 114

This example shows the VPNv4 route resolution on PE routers and route reflectors by configuring the
PE routers with specific policies to control the import of routes into and the export of routes from the
VRF table and with next hops learnt using BGP labeled unicast. In this example, the traffic flows from
CE1 to CE2.

Requirements

This example uses the following hardware and software components:

• Ubuntu software version 18.04

• Linux kernel version 4.5 or later

• cRPD software Release version 19.4R1 or later

Before you configure a Layer 3 VPN (VRF), you must install the basic components:

• MPLS modules on the host OS on which the cRPD instance is created. For details, see "Configuring
Settings on Host OS" on page 85.

• Provider edge router (PE1), a provider router (P), and provider edge router (PE2). For installing, see
"Installing cRPD on Docker" on page 20.

Overview

IN THIS SECTION

Topology | 106

105

To configure the VPNv4 route resolution, you need to configure a routing instance of type VRF for each
VPN on each of the PE routers participating in the VPN and add static routes to it. The static statement
configures the static routes that are installed in the vrfblue.inet.0 routing table. There is no loopback
interface or device for every VRF device created in the Linux kernel. But the loopback host addresses
are directly added to the VRF device which can be learnt by RPD.

Topology

Figure 6 on page 106 shows the Layer 3 VPN (VRF) Topology

Figure 6: Layer 3 VPN (VRF) Topology

Configuration

IN THIS SECTION

Configuring PE1 router with BGP LU | 106

Configuring P router with BGP LU | 109

Configuring PE2 router with BGP LU | 111

Configuring PE1 router with BGP LU

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy.

1. Create the table mpls.0.

user@crpd1# set routing-options rib mpls.0

106

2. Configure policy that accepts routes.

[edit policy-options policy-statement]
user@crpd1# set EXPORT_LO term 10 from route-filter 10.2.2.2/32 exact
user@crpd1# set EXPORT_LO term 10 then accept
user@crpd1# set NH_SELF term 10 then next-hop self

3. Configure a VRF routing instance on PE1 and other routing instance parameters.

[edit routing-instances vrfblue]
user@crpd1# set routing-options static route 10.1.1.1/32 next-hop 10.10.10.1
user@crpd1# set instance-type vrf
user@crpd1# set route-distinguisher 100:100
user@crpd1# set vrf-target target:100:100

4. Configure the router ID.

user@crpd1# set routing-options router-id 10.2.2.2

5. Configure BGP session.

[edit protocols bgp group]
user@crpd1# set underlay type external family inet unicast
user@crpd1# set underlay type external export EXPORT_LO neighbor 10.20.20.3 family inet
labeled-unicast resolve-vpn
user@crpd1# set underlay type external export EXPORT_LO neighbor 10.20.20.3 peer-as 65002
local-as 65001
user@crpd1# set VPN type internal local-address 10.2.2.2 family inet-vpn unicast
user@crpd1# set VPN local-as 65005
user@crpd1# set VPN neighbor 10.4.4.4 family inet-vpn unicast

6. Configure the interface on MPLS.

user@crpd1# set protocols mpls interface all

107

Results

From configuration mode, confirm your configuration by entering the show protocols bgp and show routing-
instances commands. If the output does not display the intended configuration, repeat the configuration
instructions in this example to correct it.

user@crpd1# show routing-instances
vrfblue {
 routing-options {
 static {
 route 10.1.1.1/32 next-hop 10.10.10.1;
 }
 }
 instance-type vrf;
 route-distinguisher 100:100;
 vrf-target target:100:100;
}
user@crpd1# show protocols bgp
group underlay {
 type external;
 family inet {
 unicast;
 }
 export EXPORT_LO;
 neighbor 10.20.20.3 {
 family inet {
 labeled-unicast {
 resolve-vpn;
 }
 }
 peer-as 65002;
 local-as 65001;
 }
 neighbor 10.20.20.2 {
 family inet {
 labeled-unicast {
 resolve-vpn;
 }
 }
 peer-as 65001;
 local-as 65002;
 }

108

 neighbor 10.30.30.4 {
 family inet {
 labeled-unicast {
 resolve-vpn;
 }
 }
 peer-as 65003;
 local-as 65004;
 }
}
group VPN {
 type internal;
 local-address 10.2.2.2;
 family inet-vpn {
 unicast;
 }
 local-as 65005;
 neighbor 10.4.4.4 {
 family inet-vpn {
 unicast;
 }
 }
}

If you are done configuring the device, enter commit from configuration mode.

Configuring P router with BGP LU

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy.

1. Create the table mpls.0.

user@crpd2# set routing-options rib mpls.0

2. Configure policy that accepts routes.

[edit policy-options policy-statement]
user@crpd2# set EXPORT_LO term 10 from route-filter 10.3.3.3/32 exact

109

user@crpd2# set EXPORT_LO term 10 then accept
user@crpd2# set NH_SELF term 10 then next-hop self

3. Configure BGP session.

[edit protocols bgp group]
user@crpd2# set underlay type external export EXPORT_LO neighbor 10.20.20.2 family inet
labeled-unicast resolve-vpn
user@crpd2# set underlay type external export EXPORT_LO neighbor 10.20.20.2 peer-as 65001
user@crpd2# set underlay type external export EXPORT_LO neighbor 10.20.20.2 local-as 65002
user@crpd2# set underlay type external export EXPORT_LO neighbor 10.30.30.4 family inet
labeled-unicast resolve-vpn
user@crpd2# set underlay type external export EXPORT_LO neighbor 10.30.30.4 peer-as 65003
user@crpd2# set underlay type external export EXPORT_LO neighbor 10.30.30.4 local-as 65004

4. Configure the router ID.

user@crpd2# set routing-options router-id 10.3.3.3

5. Configure the interface on MPLS.

user@crpd2# set protocols mpls interface all

Results

From configuration mode, confirm your configuration by entering the show protocols bgp and show policy-
options commands. If the output does not display the intended configuration, repeat the instructions in
this example to correct the configuration.

user@crpd2# show protocols bgp
group underlay {
 type external;
 export EXPORT_LO;
 neighbor 10.20.20.2 {
 family inet {
 labeled-unicast {
 resolve-vpn;
 }

110

 }
 peer-as 65001;
 local-as 65002;
 }
 neighbor 10.30.30.4 {
 family inet {
 labeled-unicast {
 resolve-vpn;
 }
 }
 peer-as 65003;
 local-as 65004;
 }
}

user@crpd2# show policy-options
policy-statement EXPORT_LO {
 term 10 {
 from {
 route-filter 10.3.3.3/32 exact;
 }
 then accept;
 }
}
policy-statement NH_SELF {
 term 10 {
 then {
 next-hop self;
 }
 }
}

Configuring PE2 router with BGP LU

Step-by-Step Procedure

The following example requires you to navigate various levels in the configuration hierarchy.

111

1. Create the table mpls.0.

user@crpd3# set routing-options rib mpls.0

2. Configure policy that accepts routes.

[edit policy-options policy-statement]
user@crpd3# set EXPORT_LO term 10 from route-filter 10.4.4.4/32 exact
user@crpd3# set EXPORT_LO term 10 then accept
user@crpd3# set NH_SELF term 10 then next-hop self

3. Configure a VRF routing instance on PE2 and other routing instance parameters.

[edit routing-instances vrfblue]
user@crpd3# set routing-options static route 10.5.5.5/32 next-hop 10.40.40.5
user@crpd3# set instance-type vrf
user@crpd3# set route-distinguisher 100:100
user@crpd3# set vrf-target target:100:100
user@crpd3# set interface all

4. Configure BGP session.

[edit protocols bgp group]
user@crpd3# set underlay type external export EXPORT_LO neighbor 10.30.30.3 family inet
labeled-unicast resolve-vpn
user@crpd3# set underlay type external export EXPORT_LO neighbor 10.30.30.3 peer-as 65004
user@crpd3# set underlay type external export EXPORT_LO neighbor 10.30.30.3 local-as 65003
user@crpd3# set VPN type internal local-address 10.4.4.4 family inet-vpn unicast
user@crpd3# set VPN local-as 65005
user@crpd3# set VPN neighbor 10.2.2.2 family inet-vpn unicast

5. Configure the router ID.

user@crpd3# set routing-options router-id 10.4.4.4

112

6. Configure the interface on MPLS.

user@crpd3# set protocols mpls interface all

Results

From configuration mode, confirm your configuration by entering the show protocols bgp and show routing-
instances commands. If the output does not display the intended configuration, repeat the instructions in
this example to correct the configuration.

user@crpd3# show protocols bgp
group underlay {
 export EXPORT_LO;
 neighbor 10.30.30.3 {
 family inet {
 labeled-unicast {
 resolve-vpn;
 }
 }
 peer-as 65004;
 local-as 65003;
 }
}
group VPN {
 type internal;
 local-address 10.4.4.4;
 family inet-vpn {
 unicast;
 }
 local-as 65005;
 neighbor 10.2.2.2 {
 family inet-vpn {
 unicast;
 }
 }
}

user@crpd3# show routing-instances
vrfblue {

113

 routing-options {
 static {
 route 10.5.5.5/32 next-hop 10.40.40.5;
 }
 }
 interface all;
 instance-type vrf;
 route-distinguisher 100:100;
 vrf-target target:100:100;
}

Verification

IN THIS SECTION

Verifying VPNv4 Resolution on PE1 | 114

Verifying BGP LU on P | 116

Verifying VPNv4 Resolution on PE2 | 117

Verifying VPNv4 Resolution on PE1

Purpose

To verify VPNv4 routes on PE1:

Action

From operational mode, enter the show route table vrfblue.inet.0 10.5.5.5 command:

user@crpd1> show route table vrfblue.inet.0 10.5.5.5

vrfblue.inet.0: 7 destinations, 7 routes (7 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.5.5.5/32 *[BGP/170] 00:00:14, localpref 100, from 10.4.4.4

114

 AS path: I, validation-state: unverified
 > to 10.20.20.3 via pe1-p, Push 299808, Push 299792(top)

From operational mode, enter the show route table mpls.0 command:

user@crpd1> show route table mpls.0

mpls.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

299808 *[VPN/170] 00:01:45
 > to 10.10.10.1 via pe1-ce1, Pop
299808(S=0) *[VPN/170] 00:01:45
 > to 10.10.10.1 via pe1-ce1, Pop
299824 *[VPN/170] 00:01:45
 receive table vrfblue.inet.0, Pop

From bash mode, enter the ip route list table 5 5.5.5.5 command:

user@crpd1> ip route list table 5 10.5.5.5

10.5.5.5 encap mpls 299792/299808 via 10.20.20.3 dev pe1-p proto 22

From bash mode, enter the ip -f mpls route command:

user@crpd1> ip -f mpls route

299808 via inet 10.10.10.1 dev pe1-ce1 proto 22

Meaning

You can view PE1 has a route under vrfblue.inet.0 to CE2 which is learnt from PE2 with nexthop
10.4.4.4, which is resolved using BGP LU from P router.

115

Verifying BGP LU on P

Purpose

To verify VPNv4 routes on P:

Action

From bash mode, enter the ip -f mpls route show command:

user@crpd2> ip -f mpls route show

299776 via inet 10.20.20.2 dev p-pe1 proto 22
299792 via inet 10.30.30.4 dev p-pe2 proto 22

From operational mode, enter the show route table mpls.0 command:

user@crpd2> show route table mpls.0

mpls.0: 8 destinations, 8 routes (8 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0 *[MPLS/0] 01:40:42, metric 1
 Receive
1 *[MPLS/0] 01:40:42, metric 1
 Receive
2 *[MPLS/0] 01:40:42, metric 1
 Receive
13 *[MPLS/0] 01:40:42, metric 1
 Receive
299776 *[VPN/170] 01:19:24
 > to 10.20.20.2 via p-pe1, Pop
299776(S=0) *[VPN/170] 01:19:24
 > to 10.20.20.2 via p-pe1, Pop
299792 *[VPN/170] 01:19:20
 > to 10.30.30.4 via p-pe2, Pop
299792(S=0) *[VPN/170] 01:19:20
 > to 10.30.30.4 via p-pe2, Pop

116

Meaning

You can view the MPLS and VPN routes from P to PE1 and P to PE2.

Verifying VPNv4 Resolution on PE2

Purpose

To verify VPNv4 routes on PE2:

Action

From operational mode, enter the show route table vrfblue.inet.0 10.1.1.1 command:

user@crpd3> show route table vrfblue.inet.0 10.1.1.1

vrfblue.inet.0: 7 destinations, 7 routes (7 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.1.1.1/32 *[BGP/170] 00:00:26, localpref 100, from 10.2.2.2
 AS path: I, validation-state: unverified
 > to 10.30.30.3 via pe2-p, Push 299808, Push 299776(top)

From operational mode, enter the show route table mpls.0 command:

user@crpd3> show route table mpls.0

mpls.0: 7 destinations, 7 routes (7 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0 *[MPLS/0] 01:34:39, metric 1
 Receive
1 *[MPLS/0] 01:34:39, metric 1
 Receive
2 *[MPLS/0] 01:34:39, metric 1
 Receive
13 *[MPLS/0] 01:34:39, metric 1
 Receive

117

299808 *[VPN/170] 00:00:43
 > to 10.40.40.5 via pe2-ce2, Pop
299808(S=0) *[VPN/170] 00:00:43
 > to 10.40.40.5 via pe2-ce2, Pop
299824 *[VPN/170] 00:00:43
 receive table vrfblue.inet.0, Pop

From bash mode, enter the ip route list table 5 10.1.1.1 command:

user@crpd3> ip route list table 5 10.1.1.1

10.1.1.1 encap mpls 299776/299808 via 10.30.30.3 dev pe2-p proto 22

From bash mode, enter the ip -f mpls route command:

user@crpd3> ip -f mpls route

299808 via inet 10.40.40.5 dev pe2-ce2 proto 22

Meaning

On PE2 router, PE1 displays the routes for the VRF table vrfblue.inet.0 using BGP LU about 10.1.1.1 as a
VPNv4 prefix with nexthop as 10.2.2.2.

SEE ALSO

vrf-target

vrf-import

route-distinguisher

vrf-export

vrf-table-label

no-vrf-advertise

Routing Instances in Layer 3 VPNs

118

https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/vrf-target-edit-routing-instances-vp.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/vrf-import-edit-routing-instances-vp.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/route-distinguisher-edit-routing-instances-vp.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/vrf-export-edit-routing-instances-vp.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/vrf-table-label-edit-routing-instances-vp.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/no-vrf-advertise-edit-routing-instances.html
https://www.juniper.net/documentation/en_US/junos/topics/topic-map/l3-vpns-routing-instances.html

MPLS Support in cRPD

IN THIS SECTION

Understanding MPLS support in cRPD | 119

Example: Configuring Static Label Switched Paths for MPLS in cRPD | 120

Understanding MPLS support in cRPD

Multiprotocol Label Switching (MPLS) configuration is supported in cRPD for forwarding packets to the
destination in MPLS network.

With MPLS, only the first device does a routing lookup. Instead of finding the next hop, the device finds
the ultimate destination along with a path to that destination. The path of an MPLS packet is called a
label-switched path (LSP). LSPs are unidirectional routes through a network or an autonomous system
(AS). MPLS routers within an AS determine paths through a network through the exchange of MPLS
traffic engineering information. Using these paths, the routers direct traffic through the network along
an established route. Rather than selecting the next hop along the path as in IP routing, each router is
responsible for forwarding the packet to a predetermined next hop address.

Routers that are part of the LSP are label-switching routers (LSRs). An MPLS LSP is established using
static LSPs. A static LSP requires each router along the path to be configured explicitly. You must
manually configure the path and its associated label values.

cRPD supports only a limited number of Junos OS MPLS features. You can configure MPLS interface,
ipv6-tunneling, label-history, label-range, and static-label-switched-path in cRPD CLI under the edit protocols
mpls hierarchy.

Supported Features

• BGP configuration

• MPLS using PRPD API

• BGP labeled unicast configuration

119

SEE ALSO

mpls

static-label-switched-path

Example: Configuring Static Label Switched Paths for MPLS in cRPD

Configuring Settings on Host OS | 85

Example: Configuring Static Label Switched Paths for MPLS in cRPD

IN THIS SECTION

Requirements | 120

Overview | 121

Configuration | 121

Verification | 127

This example shows how the VPN traffic flows through a v4 MPLS tunnel among PEs by configuring
BGP and MPLS static label switched paths.

Requirements

This example uses the following hardware and software components:

• Ubuntu software version 18.04

• Linux kernel version 4.5 or later

• cRPD software Release version 19.4R1 or later

Before you configure a static LSP for MPLS forwarding, you must install the basic components:

• MPLS modules on host OS on which cRPD instance is created. For details, see "Configuring Settings
on Host OS" on page 85.

• Provider edge router (PE1), a provider router (P), and provider edge router (PE2). For installing, see
"Installing cRPD on Docker" on page 20.

120

https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/mpls-edit-protocols-mpls-ex-series.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/static-label-switched-path-edit-protocols-mpls.html

Overview

IN THIS SECTION

Topology | 121

In this example, PE1 acts as a Label Edge Router or ingress node to the MPLS network, which
encapsulates the packets by attaching labels. P acts as Label Switching Router that transfers MPLS
packets using labels in the MPLS network.

To configure MPLS, you must first create one or more named paths on the ingress and transit routers.
For each path, you can specify some or all transit routers in the path.

Configuring static label-switched paths (LSPs) for MPLS is similar to configuring static routes on
individual routers.

Topology

Figure 7 on page 121 shows the topology used in this example.

Figure 7: MPLS Forwarding in cRPD

Configuration

IN THIS SECTION

Configuring PE1 Router | 122

Configuring Provider P Router. | 124

Configuring PE2 Router | 125

Results | 126

121

To configure static LSP for MPLS on cRPD:

Configuring PE1 Router

Step-by-Step Procedure

To configure the static LSP:

1. Create the tables inet.0 and mpls.0.

[edit routing-options]
user@crpd1# set rib inet.0
user@crpd1# set rib mpls.0
user@crpd1# set router-id 20.2.2.2

2. Configure BGP session.

[edit protocols bgp group VPN]
user@crpd1# set type internal local-address 20.2.2.2 family inet-vpn unicast
user@crpd1# set local-as 5
user@crpd1# set neighbor 40.4.4.4 family inet-vpn unicast

3. Configure the static label range and ingress static LSP parameters.

[edit protocols mpls]
user@crpd1# set interface all
user@crpd1# set label-range static-label-range 1000000 1048575
user@crpd1# set static-label-switched-path pe2 ingress install 40.4.4.4/32 active
user@crpd1# set static-label-switched-path pe2 ingress to 40.4.4.4 next-hop 20.20.20.2 push
1000001

4. Configure a static route from the ingress PE2.

[edit routing-options static]
user@crpd1# set route 20.2.2.2/32 next-hop 20.20.20.2
user@crpd1# set route 40.4.4.4/32 static-lsp-next-hop pe2

122

5. Configure a VRF routing instance on PE1 and other routing instance parameters.

[edit routing-instances vrfblue]
user@crpd1# set routing-options static route 10.1.1.1/32 next-hop 10.10.10.1
user@crpd1# set route-distinguisher 100:100
user@crpd1# set vrf-target target:100:100
user@crpd1# set interface all

Results

From configuration mode, confirm your configuration by entering the show protocols bgp and run show
configuration protocols mpls commands on PE1. If the output does not display the intended configuration,
repeat the configuration instructions in this example to correct it.

user@crpd1# show protocols bgp
group VPN {
 type internal;
 local-address 20.2.2.2;
 family inet-vpn {
 unicast;
 }
 local-as 5;
 neighbor 40.4.4.4 {
 family inet-vpn {
 unicast;
 }
 }
}

user@crpd1# run show configuration protocols mpls
interface all;
static-label-switched-path pe2 {
 ingress {
 next-hop 20.20.20.3;
 to 40.4.4.4;
 push 1000001;
 }
}

123

If you are done configuring the device, enter commit from configuration mode.

Configuring Provider P Router.

Step-by-Step Procedure

To configure the static LSP:

1. Configure router ID for router P.

[edit routing-options]
user@crpd2# set rib mpls.0
user@crpd2# set router-id 30.3.3.3

2. Configure a transit static LSP for swap and pop labels.

[edit protocols mpls]
user@crpd2# set label-range static-label-range 1000000 1048575
user@crpd2# set static-label-switched-path pe2 transit 1000001 next-hop 30.30.30.4 swap
1000002
user@crpd2# set static-label-switched-path pe1 transit 1000003 next-hop 20.20.20.2 swap
1000004
user@crpd2# set static-label-switched-path pe2 transit 1000001 pop next-hop 30.30.30.4
user@crpd2# set static-label-switched-path pe1 transit 1000003 pop next-hop 20.20.20.2

Results

From configuration mode, confirm your configuration by entering the show protocols bgp, run show
configuration protocols mpls, and run show mpls interface commands on P. If the output does not display the
intended configuration, repeat the configuration instructions in this example to correct it.

user@crpd2# run show configuration protocols mpls
interface all;
static-label-switched-path pe1 {
 transit 1000003 {
 next-hop 20.20.20.2;
 swap 1000004;
 }
}
static-label-switched-path pe2 {

124

 transit 1000001 {
 next-hop 30.30.30.4;
 swap 1000002;
 }
}

If you are done configuring the device, enter commit from configuration mode.

Configuring PE2 Router

Step-by-Step Procedure

To configure the static LSP for MPLS on PE2:

1. Configure BGP session.

[edit protocols bgp group VPN]
user@crpd3# set type internal local-address 40.4.4.4 family inet-vpn unicast
user@crpd3# set local-as 5
user@crpd3# set neighbor 20.2.2.2 family inet-vpn unicast

2. Configure the ingress static LSP parameters.

[edit protocols mpls]
user@crpd3# set interface all
user@crpd3# set label-range static-label-range 1000000 1048575
user@crpd3# set static-label-switched-path pe1 ingress install 20.2.2.2/32 active
user@crpd3# set static-label-switched-path pe1 ingress to 20.2.2.2 next-hop 30.30.30.4 push
1000003

3. Configure router ID and a static route from the ingress PE1.

[edit routing-options]
user@crpd3# set rib inet.0
user@crpd3# set router-id 40.4.4.4
user@crpd3# set static route 40.4.4.4/32 next-hop 30.30.30.4
user@crpd3# set static route 20.2.2.2/32 static-lsp-next-hop pe1

125

4. Configure a VRF routing instance on PE2 and other routing instance parameters.

[edit routing-instances vrfblue]
user@crpd3# set routing-options static route 50.5.5.5/32 next-hop 40.40.40.5
user@crpd3# set route-distinguisher 100:100
user@crpd3# set vrf-target target:100:100
user@crpd3# set interface all

Results

From configuration mode, confirm your configuration by entering the run show configuration protocols mpls
and run show mpls interface commands on PE2. If the output does not display the intended configuration,
repeat the configuration instructions in this example to correct it.

user@crpd3# show protocols bgp
group VPN {
 type internal;
 local-address 40.4.4.4;
 family inet-vpn {
 unicast;
 }
 local-as 5;
 neighbor 20.2.2.2 {
 family inet-vpn {
 unicast;
 }
 }
}

user@crpd3# run show configuration protocols mpls
interface all;
static-label-switched-path pe2 {
 ingress {
 next-hop 20.20.20.3;
 to 40.4.4.4;
 push 1000001;
 }
}

126

If you are done configuring the device, enter commit from configuration mode.

Verification

IN THIS SECTION

Verify MPLS forwarding on PE1 | 127

Verify MPLS forwarding on P | 130

Verify MPLS forwarding on PE2 | 131

Verify MPLS forwarding on PE1

Purpose

To verify the configuration for MPLS on PE1.

Action

From operational mode, enter the show route table vrfblue.inet.0 50.5.5.5 command:

user@crpd1> show route table vrfblue.inet.0 50.5.5.5

vrfblue.inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

50.5.5.5/32 *[BGP/170] 00:01:03, localpref 100, from 40.4.4.4
 AS path: I, validation-state: unverified
 > to 20.20.20.3 via pe1-p, Push 299776, Push 1000001(top)

From operational mode, enter the show mpls label usage command:

user@crpd1> show mpls label usage

Label space Total Available Applications
LSI 999984 999983 (100.00%) BGP/LDP VPLS with no-tunnel-services, BGP L3VPN with vrf-

127

table-label
Block 999984 999983 (100.00%) BGP/LDP VPLS with tunnel-services, BGP L2VPN
Dynamic 999984 999983 (100.00%) RSVP, LDP, PW, L3VPN, RSVP-P2MP, LDP-P2MP, MVPN, EVPN, BGP
Static 48576 48576 (100.00%) Static LSP, Static PW
Effective Ranges
Range name Shared with Start End
Dynamic 16 999999
Static 1000000 1048575
Configured Ranges
Range name Shared with Start End
Dynamic 16 999999
Static 1000000 1048575

From operational mode, enter the show mpls static-lsp command:

user@crpd1> show mpls static-lsp

Ingress LSPs:
LSPname To State
pe2 40.4.4.4 Up
Total 1, displayed 1, Up 1, Down 0

Transit LSPs:
Total 0, displayed 0, Up 0, Down 0

Bypass LSPs:
Total 0, displayed 0, Up 0, Down 0

Segment LSPs:
Total 0, displayed 0, Up 0, Down 0

From operational mode, enter the show route table inet.3 command:

user@crpd1> show route table inet.3

inet.3: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

128

40.4.4.4/32 *[MPLS/6/1] 00:04:44, metric 0
 > to 20.20.20.3 via pe1-p, Push 1000001

From operational mode, enter the show route table mpls.0 command:

user@crpd1> show route table mpls.0

mpls.0: 6 destinations, 6 routes (6 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0 *[MPLS/0] 00:15:45, metric 1
 Receive
1 *[MPLS/0] 00:15:45, metric 1
 Receive
2 *[MPLS/0] 00:15:45, metric 1
 Receive
13 *[MPLS/0] 00:15:45, metric 1
 Receive
299776 *[VPN/170] 00:06:32
 > to 10.10.10.1 via pe1-ce1, Pop
299776(S=0) *[VPN/170] 00:06:32
 > to 10.10.10.1 via pe1-ce1, Pop

From operational mode, enter the ip route list table 5 50.5.5.5 command:

user@crpd1> ip route list table 5 50.5.5.5

50.5.5.5 encap mpls 1000001/299776 via 20.20.20.3 dev pe1-p proto 22

From operational mode, enter the ip -f mpls route command:

user@crpd1> ip -f mpls route

299776 via inet 10.10.10.1 dev pe1-ce1 proto 22

129

Verify MPLS forwarding on P

Purpose

To verify the configuration for MPLS on P.

Action

From shell mode, enter the show route table mpls.0 command:

user@crpd2> show route table mpls.0

mpls.0: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0 *[MPLS/0] 00:00:11, metric 1
 Receive
1 *[MPLS/0] 00:00:11, metric 1
 Receive
2 *[MPLS/0] 00:00:11, metric 1
 Receive
13 *[MPLS/0] 00:00:11, metric 1
 Receive
299776 *[VPN/170] 00:00:05
 > to 20.20.20.2 via p-pe1, Pop
299776(S=0) *[VPN/170] 00:00:05
 > to 20.20.20.2 via p-pe1, Pop
299792 *[VPN/170] 00:00:05
 > to 30.30.30.4 via p-pe2, Pop
299792(S=0) *[VPN/170] 00:00:05
 > to 30.30.30.4 via p-pe2, Pop
1000001 *[MPLS/6] 00:00:11, metric 1
 > to 30.30.30.4 via p-pe2, Swap 1000002

130

1000003 *[MPLS/6] 00:00:11, metric 1
 > to 20.20.20.2 via p-pe1, Swap 1000004

user@crpd2> show mpls static-lsp

Ingress LSPs:
Total 0, displayed 0, Up 0, Down 0

Transit LSPs:
LSPname Incoming-label State
pe1 1000003 Up
pe2 1000001 Up
Total 2, displayed 2, Up 2, Down 0

Bypass LSPs:
Total 0, displayed 0, Up 0, Down 0

Segment LSPs:
Total 0, displayed 0, Up 0, Down 0

From bash shell mode, enter the ip -f mpls route command:

user@crpd2:/# ip -f mpls route

299776 via inet 20.20.20.2 dev p-pe1 proto 22
299792 via inet 30.30.30.4 dev p-pe2 proto 22
1000001 as to 1000002 via inet 30.30.30.4 dev p-pe2 proto 22
1000003 as to 1000004 via inet 20.20.20.2 dev p-pe1 proto 22

Verify MPLS forwarding on PE2

Purpose

To verify the configuration for MPLS on P.

131

Action

From shell mode, enter the show route table vrfblue.inet.0 10.1.1.1 command:

user@crpd3> show route table vrfblue.inet.0 10.1.1.1

vrfblue.inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.1.1.1/32 *[BGP/170] 00:03:00, localpref 100, from 2.2.2.2
 AS path: I, validation-state: unverified
 > to 30.30.30.3 via pe2-p, Push 299776, Push 1000003(top)

user@crpd3> show mpls static-lsp

Ingress LSPs:
LSPname To State
pe1 20.2.2.2 Up
Total 1, displayed 1, Up 1, Down 0

Transit LSPs:
LSPname Incoming-label State
pe2 1000002 Dn
Total 1, displayed 1, Up 0, Down 1

Bypass LSPs:
Total 0, displayed 0, Up 0, Down 0

Segment LSPs:
Total 0, displayed 0, Up 0, Down 0

user@crpd3> show route table mpls.0

mpls.0: 6 destinations, 6 routes (6 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

132

0 *[MPLS/0] 00:17:31, metric 1
 Receive
1 *[MPLS/0] 00:17:31, metric 1
 Receive
2 *[MPLS/0] 00:17:31, metric 1
 Receive
13 *[MPLS/0] 00:17:31, metric 1
 Receive
299776 *[VPN/170] 00:03:07
 > to 40.40.40.5 via pe2-ce2, Pop
299776(S=0) *[VPN/170] 00:03:07
 > to 40.40.40.5 via pe2-ce2, Pop

From bash shell mode, enter the ip -f mpls route command:

user@crpd3:/# ip -f mpls route

299776 via inet 40.40.40.5 dev pe2-ce2 proto 22

From bash shell mode, enter the ip route list table 5 10.1.1.1 command:

user@crpd3:/# ip route list table 5 10.1.1.1

10.1.1.1 encap mpls 1000003/299776 via 30.30.30.3 dev pe2-p proto 22

Meaning

You can verify the static LSP between PEs are up on all the devices and the routes are populated in the
corresponding route tables inet.o and inet.3 and in the Linux FIB.

SEE ALSO

mpls

static-label-switched-path

133

https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/mpls-edit-protocols-mpls-ex-series.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/static-label-switched-path-edit-protocols-mpls.html

Sharding and UpdateIO on cRPD

IN THIS SECTION

Understanding Sharding | 134

Understanding UpdateIO | 135

Understanding Sharding

The BGP process is split into different threads so that they can run concurrently on a multicore routing
engine through RIB sharding which results in reduced convergence time and faster performance. BGP
RIB sharding splits a BGP RIB into several sub RIBs and each sub RIB handles a subset of BGP routes.
Each sub RIB is served by a separate RPD thread to achieve parallel processing.

BGP RIB sharding is disabled by default. This feature is supported only on 64-bit routing protocol
process (rpd) where the Routing Engine has more than one core. We recommend configuring this feature
on a device with atleast 4CPU cores and 16GB of memory.

If you configure rib-sharding on a routing engine, RPD will create sharding threads. By default the
number of sharding threads created is same as the number of CPU cores on the routing engine.
Optionally, you can specify the number-of-shards you want to create. The range is currently 1 through
31.

BGP RIB sharding on crpd is supported for inet.0 and inet6.0 as well as bgp.l3vpn.0, bgp.l3vpn-inet6.0 and
bgp.rtarget, inet-vpn, inet6-vpn unicast, and route-target tables.

To enable this feature, you can configure rib-sharding at the edit system processes routing bgp hierarchy
level. Sharding is dependent on the UpdateIO thread feature. Therefore, UpdateIO thread feature is
mandatory when you configure sharding. To enable updateIO, you need to configure update-threading at
the [edit system processes routing bgp] hierarchy level for rib-sharding configuration to pass commit check.

SEE ALSO

rib-sharding

show bgp neighbor

show route summary

134

https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/rib-sharding-edit-protocols-bgp.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-bgp-neighbor.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-route-summary.html

show bgp summary

show route

Understanding UpdateIO

The BGP protocol work to do Update message generation for peers in a BGP group. The BGP work in
main RPD thread is split into different threads, called BGP UpdateIO threads. Each UpdateIO thread is
responsible for generating updates for one or more BGP peer groups. BGP Update threads construct
updates for groups in parallel and independent of other groups that are being serviced by different
update threads.

This might offer significant convergence improvement in a write-heavy workload that involves
advertising to many peers spread across many groups. BGP UpdateIO threads can be configured
independent of RIB sharding feature but are mandatory to use with RIB sharding as they help improve
packing of prefixes in outbound BGP update messages and thus help improve performance.

BGP update thread is disabled by default. If you configure update-threading on a routing engine, RPD
creates update threads. By default, the number of update threads created is the same as the number of
CPU cores on the routing engine. Update threading is only supported on a 64 bit routing protocol
process (RPD). Optionally, you can specify the number-of-threads you want to create by using set update-
threading <number-of-threads> statement at the edit system processes routing bgp hierarchy level. The range is
currently 1 through 128.

SEE ALSO

Understanding BGP Update IO Thread

update-threading

VRRP with cRPD

IN THIS SECTION

Overview | 136

How VRRP Works with cRPD? | 136

135

https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-bgp-summary.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/command-summary/show-route.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/understanding-bgp-update-io-thread.html
https://www.juniper.net/documentation/en_US/junos/topics/reference/configuration-statement/update-threading.html

Overview

IN THIS SECTION

Benefit of VRRP | 136

The Virtual Router Redundancy Protocol (VRRP) in cRPD eliminates the single point of failure in the
static default route environment. VRRP dynamically assigns responisbility for a virtual router to one of
the VRRP routers. The VRRP router that controls the IP address associated with the virtual router is
called Master. Master forwards the packets to these IP address.

When the master router is unavailable, any of the virtual routers IP address is used as the default first
hop router by end hosts.

Benefit of VRRP

Supports high availability default path without configuring dynamic routing on every end host.

How VRRP Works with cRPD?

SUMMARY

This example configuration provides steps on how to configure active/back up load balancing
feature using VRRP in cRPD. To achieve this support, you must configure VRRP instance with a
virtual address in two cRPD containers. One as a master and other as a backup. When the failover
happens the virtual address is taken by the backup router from the master router.

1. Configure VRRP on cRPD instance 1. The virtual address is used as a next-hop for the route.

user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.1/24 vrrp-group 111
virtual-address 10.0.0.254/32 device-name ens3f1
user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.1/24 vrrp-group 111

136

priority 200
user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.1/24 vrrp-group 111
advertise-interval 1
user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.1/24 vrrp-group 111 mode
master
user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.1/24 vrrp-group 111
authentication-type simple
user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.1/24 vrrp-group 111
authentication-key 12345

2. Configure VRRP with track and notify script. Notify script is to trigger script execution when the
VRRP state changes to master/backup. Track script is used to monitor every state transition of
instance.

user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.1/24 vrrp-group 111 track
interface ens3f2 weight cost 10
user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.1/24 vrrp-group 111 track
track-script keepalived_check script-name /etc/crpd/scripts/track_script_sample.sh
user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.1/24 vrrp-group 111 track
track-script keepalived_check interval 10
user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.1/24 vrrp-group 111 track
track-script keepalived_check time-out 5
user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.1/24 vrrp-group 111 track
track-script keepalived_check rise 3
user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.1/24 vrrp-group 111 track
track-script keepalived_check fall 3
user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.1/24 vrrp-group 111 track
track-script keepalived_check weight cost 10
user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.1/24 vrrp-group 111 track
notify-script /etc/crpd/scripts/keepalived_notify.sh

3. Configure VRRP on cRPD instance 2.

user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.2/24 vrrp-group 111
virtual-address 10.0.0.254/32 device-name ens3f1
user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.2/24 vrrp-group 111
priority 200
user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.2/24 vrrp-group 111
advertise-interval 1
user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.2/24 vrrp-group 111 mode

137

backup
user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.2/24 vrrp-group 111
authentication-type simple
user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.2/24 vrrp-group 111
authentication-key 12345

4. Configure VRRP with track and notify script.

user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.2/24 vrrp-group 111 track
interface ens3f2 weight cost 10
user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.2/24 vrrp-group 111 track
track-script keepalived_check script-name /etc/crpd/scripts/track_script_sample.sh
user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.2/24 vrrp-group 111 track
track-script keepalived_check interval 10
user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.2/24 vrrp-group 111 track
track-script keepalived_check time-out 5
user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.2/24 vrrp-group 111 track
track-script keepalived_check rise 3
user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.2/24 vrrp-group 111 track
track-script keepalived_check fall 3
user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.2/24 vrrp-group 111 track
track-script keepalived_check weight cost 10
user@crpd1# set interfaces ens3f1 unit 0 family inet address 10.0.0.2/24 vrrp-group 111 track
notify-script /etc/crpd/scripts/keepalived_notify.sh

Use the following commands to verify that cRPD1 has transitioned to backup state and that the router
is backup for group ens3f1_v4_111.

user@crpd1> show vrrp
Interface State Group VR-state VR Mode Interface-address Virtual-address
ens3f1 up ens3f1_v4_111 backup Inactive 10.0.0.1/24 10.0.0.254/32

user@crpd1> show vrrp track
Track Int State VRRP int Group VR State Priority
ens3f2 up ens3f1 ens3f1_v4_111 backup 200

138

Use the following commands to verify that the instance has transitioned to master state and that the
router is master for group ens3f1_v4_111.

user@crpd1> show vrrp
Interface State Group VR-state VR Mode Interface-address Virtual-address
ens3f1 up ens3f1_v4_111 master Active 10.0.0.2/24 10.0.0.254/32

user@crpd1> show vrrp track
Track Int State VRRP int Group VR State Priority
ens3f2 up ens3f1 ens3f1_v4_111 master 200

RELATED DOCUMENTATION

No Link Title

No Link Title

139

6
CHAPTER

Troubleshooting

Debugging cRPD Application | 141

Troubleshooting with Kubectl | 146

Debugging EVPN VXLAN on RPD and Linux | 148

Debugging cRPD Application

IN THIS SECTION

Command-Line Interface | 141

Fault Handling | 142

Troubleshooting Container | 142

Verify Docker | 143

Viewing Core Files | 144

Configuring Syslog | 145

Display Plain Text Version of Obfuscated (9) or Encrypted (8) Password | 145

Troubleshooting is a systematic approach to solving a problem. The goal of troubleshooting is to
determine why something does not work as expected and how to resolve the problem.

Command-Line Interface

The Junos OS command-line interface (CLI) is the primary tool for controlling and troubleshooting router
hardware, the Junos OS, routing protocols, and network connectivity. CLI commands display information
from routing tables, information specific to routing protocols, and information about network
connectivity derived from the traceroute utilities. RPD tracelog facilities are supported and enabled
through the CLI. Trace log files are stored /var/log path.

You can use the following Junos CLI commands to troubleshoot cRPD:

• show task: Display the routing protocol tasks on the Routing Engine.

• show task memory detail: Display the memory utilization for routing protocol tasks on the Routing
Engine.

• show route: Display the active entries in the routing tables.

• show bfd: Display information about active Bidirectional Forwarding Detection (BFD) sessions.

• show bgp: Display information about BGP summary information for all routing instances.

141

• show (ospf | ospf3): Display standard information about all OSPF neighbors for all routing instances.

• show interfaces routing: Perform router diagnostics.

• show log: View system activity logs and allows you to monitor and view information for performance
monitoring, troubleshooting, and debugging purposes.

• show krt: Monitor KRT queues and their states.

• show programmable-rpd: List clients connected to the programmable routing protocol process (prpd)
server. The prpd provides public APIs to program routing systems, making it possible for users to
directly access the APIs to customize, create, and modify the behavior of their network.

• ip monitor: Monitor the installation of routes to Linux FIB and interface events and netlink messages.

• tcpdump: Capture network traffic to/from control plane.

• netstat: Monitor the sockets.

• request support information: Display the support information which is used for troubleshooting.

Fault Handling

When the rpd crashes due to some issue, the rpd process is restarted automatically. To recover manually
from a fault, you can implement the following CLI command hierarchies to handle the faults:

• restart routing: Restart the rpd.

• clear bgp: Clear BGP sessions.

• deactivate: Deactivate CLI configuration.

• activate: Activate the CLI configuration.

Troubleshooting Container

You can implement various docker commands to monitor and troubleshoot issues at container level
when cRPD is deployed as a docker container.

• docker ps: List out active containers and their state.

• docker stats: Continuous monitor the resource utilization.

142

• docker logs: Extract container logs in case the container terminates unexpectedly.

• docker stop: Stop the Docker from the current state.

• docker start: Restart the Docker container.

Verify Docker

1. Verify the installed Docker Engine version by using the docker version command.

root@ubuntu-vm18:~# docker version

Client:
 Version: 18.09.1
 API version: 1.39
 Go version: go1.10.6
 Git commit: 4c52b90
 Built: Wed Jan 9 19:35:31 2019
 OS/Arch: linux/amd64
 Experimental: false

 Server: Docker Engine - Community
 Engine:
 Version: 18.09.1
 API version: 1.39 (minimum version 1.12)
 Go version: go1.10.6
 Git commit: 4c52b90
 Built: Wed Jan 9 19:02:44 2019
 OS/Arch: linux/amd64
 Experimental: false

2. View the software and hardware information in the system.

root@ubuntu-vm18:~# uname -a

Linux ubuntu-vm18 4.15.0-43-generic #46-Ubuntu SMP Thu Dec 6 14:45:28 UTC 2018 x86_64 x86_64
x86_64 GNU/Linux

3. View the version of ubuntu.

143

root@ubuntu-vm18:~# lsb_release -a

No LSB modules are available.
Distributor ID: Ubuntu
Description: Ubuntu 18.04.1 LTS
Release: 18.04
Codename: bionic

Viewing Core Files

IN THIS SECTION

Purpose | 144

Action | 144

Purpose

When a core file is generated, you can find the output at /var/crash. The core files generated are stored
on the system that is hosting the Docker containers.

You can also use ping and ping6 to check the reachability at the shell mode.

Action

To list the core files:

1. Exit from the CLI environment to return to the host unix shell.

user@host> start shell

2. Change the directory to /var/crash:

root@ubuntu-vm18$ cd /var/crash

root@ubuntu-vm18$ ls -l

3. Run the command to identify the location of the core files:

144

root@ubuntu-vm18$ sysctl kernel.core_pattern

4. Verify for any core files created around the time of the crash.

Configuring Syslog

Syslog is enabled by default and the messages are stored at /var/log/messages file stored on the local
Routing Engine.

To configure remote syslog:

1. Access the cRPD Linux shell.

2. Open the /etc/rsyslog.conf file.

3. Add the following facility information:

. @<IP address>:<port>

Where: <IP address> is the IP address of the remote syslog server.

4. Save the file.

5. Restart syslog by using the following command:

root@crpd1# service rsyslog restart

To view the log messages:

1. You can view the log messages using the following command:

root@crpd1> show log messages

SEE ALSO

Log File Sample Content

Display Plain Text Version of Obfuscated (9) or Encrypted (8)
Password

You can use the following command to show plain text versions of obfuscated (9) or encrypted (8)
passwords present in configuration files:

root@crpd1> request system decrypt password

For more information, see request system decrypt password.

145

https://www.juniper.net/documentation/en_US/junos/topics/task/operational/syslog-displaying-log-files.html

Troubleshooting with Kubectl

IN THIS SECTION

Kubectl Command-Line Interface | 146

Viewing Pods | 146

Viewing Container Logs | 147

Troubleshooting is a systematic approach to solving a problem. The goal of troubleshooting is to
determine why something does not work as expected and how to resolve the problem.

Kubectl Command-Line Interface

You can use the following Kubectl commands to troubleshoot cRPD:

• kubectl get: Lists the resources.

• kubectl describe : Display detailed information about a resource.

• kubectl logs: Display the logs from a container in a pod.

• kubectl exec: Execute a command on a container in a pod.

Viewing Pods

A Pod is a Kubernetes abstraction that represents a group of one or more application containers (such as
Docker or rkt), and some shared resources for those containers.

Those resources include:

• Shared storage, as Volumes

• Networking, as a unique cluster IP address

• Information about how to run each container, such as the container image version or specific ports to
use

146

When we create a Deployment on Kubernetes, that Deployment creates Pods with containers inside
them (as opposed to creating containers directly). Each Pod is tied to the Node where it is scheduled,
and remains there until termination (according to restart policy) or deletion. In case of a Node failure,
identical Pods are scheduled on other available Nodes in the cluster. Summary: Pods Nodes Kubectl
main commands A Pod is a group of one or more application containers (such as Docker or rkt) and
includes shared storage (volumes), IP address and information about how to run them.

Run the following command to view pods:

root@ubuntu-vm18:~# kubectl get pods

Viewing Container Logs

IN THIS SECTION

Purpose | 147

Action | 147

Purpose

Anything that the application sends to STDOUT becomes logs for the container within the Pod.

Action

To view the logs:

1. Run the following command to retrieve the logs:

root@ubuntu-vm18$ kubectl logs $POD_NAME

147

Debugging EVPN VXLAN on RPD and Linux

SUMMARY IN THIS SECTION

Configuring EVPN Over VXLAN | 148

Verifying Layer 2 EVPN Over VXLAN Support
in cRPD | 149

Before you start debugging for EVPN over VXLAN support in cRPD, ensure you have the configuration
created.

Configuring EVPN Over VXLAN

Configure Layer 2 EVPN over VXLAN with MAC-VRF on cRPD .

routing-instances {
 evpn-vxlan {
 instance-type mac-vrf;
 protocols {
 evpn {
 encapsulation vxlan;
 default-gateway do-not-advertise;
 }
 }
 service-type vlan-aware;
 vtep-source-interface lo.0;
 bridge-domains {
 bd600 {
 vlan-id 600;
 interface ens3f2.600;
 routing-interface irb.600;
 vxlan {
 vni 2600;
 destination-udp-port 4790;

148

 }
 }
 bd601 {
 vlan-id 601;
 interface ens3f3.601;
 routing-interface irb.601;
 vxlan {
 vni 2601;
 destination-udp-port 4790;
 }
 }
 }
 route-distinguisher 81.1.1.1:1;
 vrf-target target:1:1;
 }
}
interfaces {
 irb {
 unit 600 {
 family inet {
 address 99.60.0.254/24;
 }
 family inet6 {
 address 1234::99.60.0.254/120;
 }
 }
 unit 601 {
 family inet {
 address 99.60.1.254/24;
 }
 family inet6 {
 address 1234::99.60.1.254/120;
 }
 }
 }
}

Verifying Layer 2 EVPN Over VXLAN Support in cRPD

1. Verify the bridge device is created in RPD and Linux kernel.

149

root@PE1_CRPD> show evpn instance evpn-vxlan extensive

RPD view

Instance: evpn-vxlan
 Route Distinguisher: 81.1.1.1:1
 Encapsulation type: VXLAN
 Control word enabled
 Duplicate MAC detection threshold: 5
 Duplicate MAC detection window: 180
 MAC database status Local Remote
 MAC advertisements: 3 2
 MAC+IP advertisements: 9 6
 Default gateway MAC advertisements: 2 0
 Number of local interfaces: 3 (3 up)
 Interface name ESI Mode Status AC-Role
 .local..2 00:00:00:00:00:00:00:00:00:00 single-homed Up Root
 ens3f2.600 00:00:00:00:00:00:00:00:00:00 single-homed Up Root
 ens3f3.601 00:00:00:00:00:00:00:00:00:00 single-homed Up Root
 Number of IRB interfaces: 2 (2 up)
 Interface name VLAN VNI Status L3 context
 irb.600 2600 Up evpn-vrf
 irb.601 2601 Up evpn-vrf
 Number of protect interfaces: 0
 Number of bridge domains: 2
 VLAN Domain-ID Intfs/up IRB-intf Mode MAC-sync IM-label MAC-label v4-SG-
sync IM-core-NH v6-SG-sync IM-core-NH Trans-ID
 600 2600 1 1 irb.600 Extended Enabled 2600
Disabled Disabled 2600
 601 2601 1 1 irb.601 Extended Enabled 2601
Disabled Disabled 2601
 Number of neighbors: 1
 Address MAC MAC+IP AD IM ES Leaf-label Remote-DCI-
Peer
 81.2.2.2 2 6 0 2 0
 Number of ethernet segments: 2
 ESI: 05:00:00:00:7b:00:00:0a:28:00
 Local interface: irb.600, Status: Up/Forwarding
 ESI: 05:00:00:00:7b:00:00:0a:29:00
 Local interface: irb.601, Status: Up/Forwarding
 Router-ID: 81.1.1.1

150

 Source VTEP interface IP: 81.1.1.1
 SMET Forwarding: Disabled

root@PE1_CRPD> show krt table | grep evpn-vxlan

evpn-vxlan.evpn-mac.0 : GF: 11 krt-index: 7 ID: 0 kernel-id: 2

Kernel view

root@PE1_CRPD:/# ip link show __crpd-brd2

__crpd-brd<2> is kernel id from show krt table

148: __crpd-brd2: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group
default qlen 1000
 link/ether 56:68:a3:1a:07:9c brd ff:ff:ff:ff:ff:ff
 alias evpn-vxlan

root@PE1_CRPD:/# ip -d link show __crpd-brd2

148: __crpd-brd2: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP mode DEFAULT group
default qlen 1000
 link/ether 56:68:a3:1a:07:9c brd ff:ff:ff:ff:ff:ff promiscuity 0
 bridge forward_delay 1500 hello_time 200 max_age 2000 ageing_time 30000 stp_state
0 priority 32768 vlan_filtering 1 vlan_protocol 802.1Q bridge_id 8000.56:68:a3:1a:7:9c
designated_root
8000.56:68:a3:1a:7:9c root_port 0 root_path_cost 0 topology_change 0 topology_change_detected
0 hello_timer 0.00 tcn_timer 0.00 topology_change_timer 0.00 gc_timer 54.32
vlan_default_pvid 0
vlan_stats_enabled 0 group_fwd_mask 0 group_address 01:80:c2:00:00:00 mcast_snooping 0
mcast_router 1 mcast_query_use_ifaddr 0 mcast_querier 0 mcast_hash_elasticity 4
mcast_hash_max 512
mcast_last_member_count 2 mcast_startup_query_count 2 mcast_last_member_interval 100
mcast_membership_interval 26000 mcast_querier_interval 25500 mcast_query_interval 12500
mcast_query_response_interval
1000 mcast_startup_query_interval 3124 mcast_stats_enabled 0 mcast_igmp_version 2
mcast_mld_version 1 nf_call_iptables 0 nf_call_ip6tables 0 nf_call_arptables 0 addrgenmode
eui64 numtxqueues 1

151

numrxqueues 1 gso_max_size 65536 gso_max_segs 65535
 alias evpn-vxlan

2. Verify if the VXLAN devices are created corresponding to the VXLAN configuration under bridge
domains.

RPD view

VXLAN configs of interest under routing-instance bridge-domains.

routing-instances {
 evpn-vxlan {
 bridge-domains {
 bd600 {
 ...
 vxlan {
 vni 2600;
 destination-udp-port 4790;
 }
 }
 bd601 {
 ...
 vxlan {
 vni 2601;
 destination-udp-port 4790;
 }
 }
 }
 }
}

Kernel view

root@PE1_CRPD:/# ip -d link show vxlan2600

16: vxlan2600: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master __crpd-brd2 state
UNKNOWN mode DEFAULT group default qlen 1000
 link/ether 0e:6b:fd:27:a5:63 brd ff:ff:ff:ff:ff:ff promiscuity 1
 vxlan id 2600 local 81.1.1.1 srcport 0 0 dstport 4790 nolearning tos inherit ttl 100
ageing 300 noudpcsum noudp6zerocsumtx noudp6zerocsumrx
 bridge_slave state forwarding priority 32 cost 100 hairpin off guard off root_block off

152

fastleave off learning off flood
on port_id 0x8003 port_no 0x3 designated_port 32771 designated_cost 0 designated_bridge
8000.e:6b:fd:27:a5:63
designated_root 8000.e:6b:fd:27:a5:63 hold_timer 0.00 message_age_timer 0.00
forward_delay_timer
0.00 topology_change_ack 0 config_pending 0 proxy_arp off proxy_arp_wifi off mcast_router 1
mcast_fast_leave off mcast_flood on
neigh_suppress on group_fwd_mask 0x0 group_fwd_mask_str 0x0 vlan_tunnel off addrgenmode eui64
numtxqueues 1 numrxqueues 1
gso_max_size 65536 gso_max_segs 65535

root@PE1_CRPD:/# ip -d link show vxlan2601

17: vxlan2601: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master __crpd-brd2 state
UNKNOWN mode DEFAULT group default qlen 1000
 link/ether 32:82:1d:c2:e9:8b brd ff:ff:ff:ff:ff:ff promiscuity 1
 vxlan id 2601 local 81.1.1.1 srcportdstport 4790 0 0 nolearning tos inherit ttl 100
ageing 300 noudpcsum noudp6zerocsumtx noudp6zerocsumrx
 bridge_slave state forwarding priority 32 cost 100 hairpin off guard off root_block off
fastleave off learning off flood on port_id 0x8004 port_no
0x4 designated_port 32772 designated_cost 0 designated_bridge 8000.e:6b:fd:27:a5:63
designated_root 8000.e:6b:fd:27:a5:63 hold_timer
0.00 message_age_timer 0.00 forward_delay_timer 0.00 topology_change_ack 0
config_pending 0 proxy_arp off proxy_arp_wifi off
mcast_router 1 mcast_fast_leave off mcast_flood on neigh_suppress on group_fwd_mask 0x0
group_fwd_mask_str 0x0 vlan_tunnel off addrgenmode eui64
numtxqueues 1 numrxqueues 1 gso_max_size 65536 gso_max_segs 65535

3. Verify all the instance interfaces (bridge domain interfaces including vxlan devices) are enslaved to
bridge device in kernel.

RPD view

Interface configs of interest under routing-instance bridge-domains.

routing-instances {
 evpn-vxlan {
 ...
 bridge-domains {
 bd600 {
 ...
 interface ens3f2.600;

153

 vxlan {
 vni 2600; -> vxlan2600
 }
 }
 bd601 {
 ...
 interface ens3f3.601;
 vxlan {
 vni 2601; -> vxlan2601
 }
 }
 }
 }
}

Kernel view

Ensure all the instance IFL have "master __crpd-brd2" which means they are ensalved to __crpd-brd2
bridge device through ip link.

root@PE1_CRPD:/# ip link show master __crpd-brd2

12: ens3f2.600@ens3f2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master __crpd-
brd2 state UP mode DEFAULT group default qlen 1000
 link/ether 56:68:a3:54:20:b7 brd ff:ff:ff:ff:ff:ff
13: ens3f3.601@ens3f3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master __crpd-
brd2 state UP mode DEFAULT group default qlen 1000
 link/ether 56:68:a3:54:20:bb brd ff:ff:ff:ff:ff:ff
16: vxlan2600: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master __crpd-brd2 state
UNKNOWN mode DEFAULT group default qlen 1000
 link/ether 0e:6b:fd:27:a5:63 brd ff:ff:ff:ff:ff:ff
17: vxlan2601: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master __crpd-brd2 state
UNKNOWN mode DEFAULT group default qlen 1000
 link/ether 32:82:1d:c2:e9:8b brd ff:ff:ff:ff:ff:ff
19: irbbe-brd2@irbve-brd2: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master __crpd-brd2
state UP mode DEFAULT group default qlen 1000
 link/ether fe:72:e9:b0:b5:92 brd ff:ff:ff:ff:ff:ff

4. Verify if all the instance interfaces which are part of the bridge device are assigned to vids matching
the bridge-domain on RPD.

RPD view

154

VLAN/interface configs of interest under routing-instance bridge-domains.

routing-instances {
 evpn-vxlan {
 ...
 bridge-domains {
 bd600 {
 vlan-id 600; --->bd600/vid
 interface ens3f2.600;
 vxlan {
 vni 2600; -> vxlan2600
 }
 }
 bd601 {
 vlan-id 601; --->bd601/vid
 interface ens3f3.601;
 vxlan {
 vni 2601; -> vxlan2601
 }
 }
 }
 }
}

Kernel view

root@PE1_CRPD:/# bridge vlan show

port vlan ids
ens3f2.600 600 PVID Egress Untagged
ens3f3.601 601 PVID Egress Untagged
__crpd-brd2 None
vxlan2600 600 PVID Egress Untagged
vxlan2601 601 PVID Egress Untagged
irbbe-brd2 600
 601

5. Verify if irb interface (vlan subinterface with bridge-domains vlan-id) is created in kernel
corresponding to the routing-interface configuration under bridge-domains.

RPD view

155

IRB interface configs of interest under routing-instance bridge-domains.

routing-instances {
 evpn-vxlan {
 ...
 bridge-domains {
 bd600 {
 vlan-id 600;
 routing-interface irb.600;
 }
 bd601 {
 vlan-id 601;
 routing-interface irb.601;
 }
 }
 }
}

Kernel view

root@PE1_CRPD:/# ip -d link show irb.600

20: irb.600@irbve-brd2: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master __crpd-vrf1
state UP mode DEFAULT group default qlen 1000
 link/ether d6:a3:f9:94:70:78 brd ff:ff:ff:ff:ff:ff promiscuity 0
 vlan protocol 802.1Q id 600 <REORDER_HDR>
 vrf_slave table 1 addrgenmode eui64 numtxqueues 1 numrxqueues 1 gso_max_size 65536
gso_max_segs 65535

root@PE1_CRPD:/# ip -d link show irb.601

22: irb.601@irbve-brd2: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master __crpd-vrf1
state UP mode DEFAULT group default qlen 1000
 link/ether d6:a3:f9:94:70:78 brd ff:ff:ff:ff:ff:ff promiscuity 0
 vlan protocol 802.1Q id 601 <REORDER_HDR>
 vrf_slave table 1 addrgenmode eui64 numtxqueues 1 numrxqueues 1 gso_max_size 65536
gso_max_segs 65535

6. Ensure if ipv4/ipv6 addresses are assigned to the irb interfaces.

156

RPD view

IP address configs of IRB interfaces.

interfaces {
 irb {
 unit 600 {
 family inet {
 address 99.60.0.254/24;
 }
 family inet6 {
 address 1234::99.60.0.254/120;
 }
 }
 unit 601 {
 family inet {
 address 99.60.1.254/24;
 }
 family inet6 {
 address 1234::99.60.1.254/120;
 }
 }
 }
}

Kernel view

root@PE1_CRPD:/# ip addr show irb.600

20: irb.600@irbve-brd2: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master __crpd-vrf1
state UP group default qlen 1000
 link/ether d6:a3:f9:94:70:78 brd ff:ff:ff:ff:ff:ff
 inet 99.60.0.254/24 scope global irb.600
 valid_lft forever preferred_lft forever
 inet6 1234::633c:fe/120 scope global
 valid_lft forever preferred_lft forever
 inet6 fe80::d4a3:f9ff:fe94:7078/64 scope link
 valid_lft forever preferred_lft forever

157

root@PE1_CRPD:/# ip addr show irb.601

22: irb.601@irbve-brd2: <BROADCAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master __crpd-vrf1
state UP group default qlen 1000
 link/ether d6:a3:f9:94:70:78 brd ff:ff:ff:ff:ff:ff
 inet 99.60.1.254/24 scope global irb.601
 valid_lft forever preferred_lft forever
 inet6 1234::633c:1fe/120 scope global
 valid_lft forever preferred_lft forever
 inet6 fe80::d4a3:f9ff:fe94:7078/64 scope link
 valid_lft forever preferred_lft forever

7. Verify bridge flood entries are created in kernel, correpsonding to the received IM (inclusive
multicast) route entries received from peers.

RPD view

root@PE1_CRPD> show route table evpn-vxlan.evpn.0 protocol bgp | grep IM

3:81.2.2.2:1::2600::81.2.2.2/248 IM
3:81.2.2.2:1::2601::81.2.2.2/248 IM

Kernel view

root@PE1_CRPD:/# bridge fdb show br __crpd-brd2 state static | grep 00:00:00:00:00:00

00:00:00:00:00:00 dev vxlan2600 dst 81.2.2.2 self static
00:00:00:00:00:00 dev vxlan2601 dst 81.2.2.2 self static

8. Verify local MAC entries are learnt and advertised by EVPN to remote peers.

RPD view

root@PE1_CRPD> show evpn database instance evpn-vxlan origin local

Instance: evpn-vxlan
VLAN DomainId MAC address Active source Timestamp IP address
 2600 00:11:11:11:60:00 ens3f2.600 May 10 23:49:46 99.60.0.1

158

1234::633c:1

fe80::5668:a302:5854:1f14
 2600 d6:a3:f9:94:70:78 irb.600 Apr 29 21:08:59 99.60.0.254

1234::633c:fe

fe80::d4a3:f9ff:fe94:7078
 2601 00:11:11:11:60:10 ens3f3.601 May 10 23:47:44 99.60.1.1

1234::633c:101

fe80::5668:a302:5954:1f15
 2601 d6:a3:f9:94:70:78 irb.601 Apr 29 21:08:59 99.60.1.254

1234::633c:1fe

fe80::d4a3:f9ff:fe94:7078

root@PE1_CRPD> show route table evpn-vxlan.evpn.0 protocol evpn | grep MAC

2:81.1.1.1:1::2600::00:11:11:11:60:00/304 MAC/IP
2:81.1.1.1:1::2601::00:11:11:11:60:10/304 MAC/IP
2:81.1.1.1:1::2600::00:11:11:11:60:00::99.60.0.1/304 MAC/IP
2:81.1.1.1:1::2601::00:11:11:11:60:10::99.60.1.1/304 MAC/IP
2:81.1.1.1:1::2600::00:11:11:11:60:00::1234::633c:1/304 MAC/IP
2:81.1.1.1:1::2600::00:11:11:11:60:00::fe80::5668:a302:5854:1f14/304 MAC/IP
2:81.1.1.1:1::2601::00:11:11:11:60:10::1234::633c:101/304 MAC/IP
2:81.1.1.1:1::2601::00:11:11:11:60:10::fe80::5668:a302:5954:1f15/304 MAC/IP

Kernel view

Mac entries are learnt from bridge fdb table

root@PE1_CRPD:/# bridge fdb show br __crpd-brd2 brport ens3f2.600 state dynamic

00:11:11:11:60:00 vlan 600 master __crpd-brd2

159

root@PE1_CRPD:/# bridge fdb show br __crpd-brd2 brport ens3f3.601 state dynamic

00:11:11:11:60:10 vlan 601 master __crpd-brd2

Mac+ip bindings are learnt from ip neigh table

root@PE1_CRPD:/# ip neigh show dev irb.600 | grep -v PERMANENT

99.60.0.1 lladdr 00:11:11:11:60:00 REACHABLE
1234::633c:1 lladdr 00:11:11:11:60:00 router STALE
fe80::5668:a302:5854:1f14 lladdr 00:11:11:11:60:00 router STALE

root@PE1_CRPD:/# ip neigh show dev irb.601 | grep -v PERMANENT

99.60.1.1 lladdr 00:11:11:11:60:10 REACHABLE
1234::633c:101 lladdr 00:11:11:11:60:10 router STALE
fe80::5668:a302:5954:1f15 lladdr 00:11:11:11:60:10 router STALE

9. Verify remote MAC entries are learnt and programmed to kernel.

RPD view

root@PE1_CRPD> show route table evpn-vxlan.evpn.0 protocol bgp | grep MAC

2:81.2.2.2:1::2600::00:22:22:22:60:00/304 MAC/IP
2:81.2.2.2:1::2601::00:22:22:22:60:10/304 MAC/IP
2:81.2.2.2:1::2600::00:22:22:22:60:00::99.60.0.2/304 MAC/IP
2:81.2.2.2:1::2601::00:22:22:22:60:10::99.60.1.2/304 MAC/IP
2:81.2.2.2:1::2600::00:22:22:22:60:00::1234::633c:2/304 MAC/IP
2:81.2.2.2:1::2600::00:22:22:22:60:00::fe80::5668:a302:5854:1f09/304 MAC/IP
2:81.2.2.2:1::2601::00:22:22:22:60:10::1234::633c:102/304 MAC/IP
2:81.2.2.2:1::2601::00:22:22:22:60:10::fe80::5668:a302:5954:1f0a/304 MAC/IP

root@PE1_CRPD> show evpn database instance evpn-vxlan origin remote

Instance: evpn-vxlan

160

VLAN DomainId MAC address Active source Timestamp IP address
 2600 00:22:22:22:60:00 81.2.2.2 Apr 29 23:51:56 99.60.0.2

1234::633c:2

fe80::5668:a302:5854:1f09
 2601 00:22:22:22:60:10 81.2.2.2 Apr 29 23:51:56 99.60.1.2

1234::633c:102

fe80::5668:a302:5954:1f0a

Kernel view

Macs are programmed to bridge fdb table in Linux

root@PE1_CRPD:/# bridge fdb show br __crpd-brd2 dev vxlan2600 state static

00:22:22:22:60:00 vlan 600 master __crpd-brd193 static
00:00:00:00:00:00 dst 81.2.2.2 self static
00:22:22:22:60:00 dst 81.2.2.2 self static

root@PE1_CRPD:/# bridge fdb show br __crpd-brd2 dev vxlan2601 state static

00:22:22:22:60:10 vlan 601 master __crpd-brd193 static
00:00:00:00:00:00 dst 81.2.2.2 self static
00:22:22:22:60:10 dst 81.2.2.2 self static

Mac+ip bindings are programmed to ip neigh table

root@PE1_CRPD:/# ip neigh show dev irb.600 | grep PERMANENT

99.60.0.2 lladdr 00:22:22:22:60:00 PERMANENT
fe80::5668:a302:5854:1f09 lladdr 00:22:22:22:60:00 PERMANENT
1234::633c:2 lladdr 00:22:22:22:60:00 PERMANENT

161

root@PE1_CRPD:/# ip neigh show dev irb.601 | grep PERMANENT

99.60.1.2 lladdr 00:22:22:22:60:10 PERMANENT
fe80::5668:a302:5954:1f0a lladdr 00:22:22:22:60:10 PERMANENT
1234::633c:102 lladdr 00:22:22:22:60:10 PERMANENT

162

7
CHAPTER

Best Practices

Security Best Practices | 164

Security Best Practices

IN THIS SECTION

Host OS Hardening | 164

Patch Management | 165

Security Ports | 165

Following are the best practices required to monitor and secure container environments:

Host OS Hardening

Hardening an operating system inlcudes:

• Ensure that both the host OS and docker software are updated with the latest security patches.

• Download container images that are verified from downloads.

• Run docker as non-root user without root privileges. This is called Rootless mode. In this mode,
docker and container run within a user namespace. Running both containers and the Docker Engine
services as non-root users improves security in the event of a breach.

• Prevent denial-of-service attacks by configuring specified amount of memory and CPU required to
run the containers.

• Avoid using sshd within containers.

• Avoid using default bridge docker0 from ARP spoofing and MAC flooding attacks.

• Set the container's root filesystem to read-only to prevent from malicious attack.

• Set the process identifier (PID) limit. Each process in the kernel carries a unique PID, and containers
leverage Linux PID namespace to provide a separate view of the PID hierarchy for each container.
Limiting the number of processes in the container prevents excessive spawning of new processes and
potential malicious lateral movement.

164

https://support.juniper.net/support/downloads/

Patch Management

Patch management involves identifying system features that can be improved or fixed, releasing the
update package, and validating the installation of the updates. Patching with software updates and
system reconfiguration is part of vulnerability management.

For information on latest software and details, see downloads and Upgrade cRPD.

Security Ports

Service ports that are priviliged to use are:

• Ensure that only approved BGP port (TCP 179), SSH port (TCP 22), Netconf over SSH (TCP 830) and
gRPC ports for telemetry (TCP 50051), protocols, and services with validated business needs are
running on each system. For example, HTTP and HTTPS load balancers have to bind (TCP 80) and
(TCP 443) respectively.

• TCP/IP port numbers below 1024 are considered privileged ports. Avoid to map any ports below
1024 within a container as they transmit sensitive data. By default, Docker maps container ports to
one that’s within the 49153–65525 range, but it allows the container to be mapped to a privileged
port.

165

https://support.juniper.net/support/downloads/
https://www.juniper.net/documentation/us/en/software/crpd/crpd-deployment/topics/task/upgrade-cRPD.html

	Table of Contents
	About This Guide
	Overview
	What Is Containerized RPD?
	cRPD Resource Requirements
	Junos OS Features Supported on cRPD
	Use case: Egress Peer Traffic Engineering using BGP Add-Path

	Installing and Upgrading cRPD
	Requirements for Deploying cRPD on a Linux Server
	Installing cRPD on Docker
	Before You Install
	Install and Verify Docker
	Download the cRPD Software
	Download cRPD Software from Juniper URL
	Creating Data Volumes and Running cRPD using Docker
	Configuring Memory
	Configuring cRPD using the CLI

	Installing cRPD on Kubernetes
	Installing Kubernetes
	Kubernetes Cluster
	Download cRPD Docker Image
	Creating a cRPD Pod using Deployment
	Creating a cRPD Pod using YAML
	Creating a cRPD Pod using Job Resource
	Creating a cRPD Pod using DaemonSet
	Scaling of cRPD
	Rolling Update of cRPD Deployment
	cRPD Pod Deployment with Allocated Resources
	cRPD Pod Deployment using Mounted Volume

	Upgrading cRPD
	Upgrade Software

	Installing and Configuring cRPD on SONiC

	Managing cRPD
	Syslog Support on cRPD
	Managing cRPD
	Building Topologies
	Networking Docker Containers
	Removing a Bridge
	Creating an OVS Bridge
	Configuring OSPF
	Removing Interfaces and Bridges
	Viewing Container Processes in a Running cRPD
	Accessing cRPD CLI and Bash Shell
	Pausing and Resuming Processes within a cRPD Container
	Removing a cRPD Instance
	Viewing Docker Statistics and Logs
	Viewing Active Containers
	Stopping the Container

	Establishing an SSH Connection for a NETCONF Session and cRPD
	Establishing an SSH Connection
	Enabling SSH
	Port Forwarding Mechanism
	Connecting to a NETCONF Server on Container

	Programmable Routing
	cRPD Application Development Using JET APIs
	Getting Started with JET
	Configure JET Interaction with Linux OS
	Maximum Number of JET Connections
	Compile IDL Files

	Using cRPD
	Configuring Settings on Host OS
	Configuring ARP Scaling
	Tunning OSPF under cRPD
	Configuring MPLS
	Adding MPLS Routes
	Adding Routes with MPLS label
	Creating a VRF device
	Assigning a Network Interface to a VRF
	Viewing the Devices assigned to VRF
	Viewing Neighbor Entries to VRF
	Viewing Addresses for a VRF
	Viewing Routes for a VRF
	Removing Network Interface from a VRF
	Hash Field Selection for ECMP Load Balancing on Linux
	wECMP using BGP on Linux
	Enable SRv6 on cRPD

	Multitopology Routing in cRPD
	Understanding Multitopology in cRPD
	Example: Configuring Multitopology Routing with BGP in cRPD
	Requirements
	Overview
	Configuration
	Verification

	Layer 3 Overlay Support in cRPD
	Understanding Layer 3 Overlay VRF support in cRPD
	Example: Configuring Layer 3 VPN (VRF) on cRPD Instance
	Requirements
	Overview
	Configuration
	Verification

	MPLS Support in cRPD
	Understanding MPLS support in cRPD
	Example: Configuring Static Label Switched Paths for MPLS in cRPD
	Requirements
	Overview
	Configuration
	Verification

	Sharding and UpdateIO on cRPD
	Understanding Sharding
	Understanding UpdateIO

	VRRP with cRPD
	Overview
	How VRRP Works with cRPD?

	Troubleshooting
	Debugging cRPD Application
	Command-Line Interface
	Fault Handling
	Troubleshooting Container
	Verify Docker
	Viewing Core Files
	Configuring Syslog
	Display Plain Text Version of Obfuscated (9) or Encrypted (8) Password

	Troubleshooting with Kubectl
	Kubectl Command-Line Interface
	Viewing Pods
	Viewing Container Logs

	Debugging EVPN VXLAN on RPD and Linux
	Configuring EVPN Over VXLAN
	Verifying Layer 2 EVPN Over VXLAN Support in cRPD

	Best Practices
	Security Best Practices

