
Juniper Cloud-Native Router User Guide

Published

2024-04-12

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

 Juniper Cloud-Native Router User Guide
Copyright © 2024 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

ii

https://support.juniper.net/support/eula/

Table of Contents

1 Introduction

Juniper Cloud-Native Router Overview | 2

Juniper Cloud-Native Router Components | 5

JCNR Deployment Modes | 10

JCNR Interfaces Overview | 11

2 Common Features (All Deployment Modes)

JCNR Common Features | 24

Enabling Dynamic Device Personalization (DDP) on Individual Interfaces | 24

VLAN Sub-Interfaces | 26

3 L2 Features

L2 Features Overview | 30

Access Control Lists (Firewall Filters) | 30

MAC Learning and Aging | 33

Storm Control | 36

APIs and CLI Commands for Bond Interfaces | 38

Quality of Service (QoS) | 41

Native VLAN | 47

Prevent Local Switching | 48

4 L3 Features

L3 Features Overview | 53

JCNR as a Transit Gateway | 53

EVPN Type 5 Routing over VXLAN Tunnels | 54

iii

L3 Routing Protocols | 63

MPLS Support | 67

Bidirectional Forwarding Detection (BFD) | 68

Virtual Router Redundancy Protocol (VRRP) | 68

Virtual Routing Instance (VRF-Lite) | 69

ECMP | 69

BGP Unnumbered | 70

5 JCNR CNI Configuration Examples

JCNR Use-Cases and Configuration Overview | 73

L2 Kernel Access-Mode Interface Configuration Example | 78

Overview | 79

Configuration Example | 79

L2 virtio Trunk-Mode Interface Configuration Example | 83

Overview | 83

Configuration Example | 84

L2 VLAN Sub-Interface Configuration Example | 88

Overview | 88

Configuration Example | 89

L3 VPN Interface Configuration Example | 93

Overview | 93

Configuration Example | 94

L3 VLAN Sub-Interface Configuration Example | 100

Overview | 100

Configuration Example | 101

6 Monitoring and Logging

Monitor JCNR via CLI | 108

iv

Telemetry Capabilities of Cloud-Native Router | 115

Logging and Notifications | 122

7 Troubleshooting

Troubleshoot via the vRouter CLI | 127

Troubleshoot via Introspect | 139

8 Appendix

Access cRPD CLI | 142

Access vRouter CLI | 143

Juniper Technology Previews (Tech Previews) | 145

v

1
CHAPTER

Introduction

Juniper Cloud-Native Router Overview | 2

Juniper Cloud-Native Router Components | 5

JCNR Deployment Modes | 10

JCNR Interfaces Overview | 11

Juniper Cloud-Native Router Overview

IN THIS SECTION

Overview | 2

Use Cases | 2

Architecture and Key Components | 3

Features | 4

Overview

While 5G unleashes higher bandwidth, lower latency and higher capacity, it also brings in new
infrastructure challenges such as increased number of base stations or cell sites, more backhaul links
with larger capacity and more cell site routers and aggregation routers. Service providers are integrating
cloud-native infrastructure in distributed RAN (D-RAN) topologies, which are usually small, leased
spaces, with limited power, space and cooling. The disaggregation of radio access network (RAN) and
the expansion of 5G data centers into cloud hyperscalers has added newer requirements for cloud-
native routing.
The Juniper Cloud-Native Router provides the service providers the flexibility to roll out the expansion
requirements for 5G rollouts, reducing both the CapEx and OpEx.

Juniper Cloud-Native Router (JCNR) is a containerized router that combines Juniper's proven routing
technology with the Junos containerized routing protocol daemon (cRPD) as the controller and a high-
performance Contrail® Data Plane Development Kit (DPDK) vRouter forwarding plane. It is
implemented in Kubernetes and interacts seemlessly with a Kubernetes container network (CNI)
framework.

Use Cases

The Cloud-Native Router has the following use cases:

• Radio Access Network (RAN)

The new 5G-only sites are a mix of centralized RAN (C-RAN) and distributed RAN (D-RAN). The C-
RAN sites are typically large sites owned by the carrier and continue to deploy physical routers. The
D-RAN sites, on the other hand, are tens of thousands of smaller sites, closer to the users.

2

https://www.juniper.net/us/en/products/routers/containerized-routing-protocol-daemon-crpd.html

Optimization of CapEx and OpEx is a huge factor for the large number of D-RAN sites. These sites
are also typically leased, with limited space, power and cooling capacities. There is limited
connectivity over leased lines for transit back to the mobile core. Juniper Cloud-Native Router is
designed to work in the constraints of a D-RAN. It is integrated with the distributed unit (DU) and
installable on an existing 1 U server.

• Telco virtual private cloud (VPC)

The 5G data centers are expanding into cloud hyperscalers to support more radio sites. The cloud-
native routing available in public cloud environments do not support the routing demands of telco
VPCs, such as MPLS, quality of service (QoS), L3 VPN, and more. The Juniper Cloud-Native Router
integrates directly into the cloud as a containerized network function (CNF), managed as a cloud-
native Kubernetes component, while providing advanced routing capabilities.

Architecture and Key Components

The Juniper Cloud-Native Router consists of the Junos containerized routing protocol Daemon (cRPD)
as the control plane (JCNR Controller), providing topology discovery, route advertisement and
forwarding information base (FIB) programming, as well as dynamic underlays and overlays. It uses the
Data Plane Development Kit (DPDK) enabled vRouter as a forwarding plane, providing packet
forwarding for DPDK applications in a pod and host path I/O for protocol sessions. The third component
is the JCNR container network interface (CNI) that interacts with Kubernetes as a secondary CNI to
create pod interfaces, assign addresses and generate the router configuration.

The Data Plane Development Kit (DPDK) is an open source set of libraries and drivers. DPDK enables
fast packet processing by allowing network interface cards (NICs) to send direct memory access (DMA)
packets directly into an application’s address space. The applications poll for packets, to avoid the
overhead of interrupts from the NIC. Integrating with DPDK allows a vRouter to process more packets
per second than is possible when the vRouter runs as a kernel module.

In this integrated solution, the JCNR Controller uses gRPC, a high performance Remote Procedure Call,
based services to exchange messages and to communicate with the vRouter, thus creating the fully
functional Cloud-Native Router. This close communication allows you to:

• Learn about fabric and workload interfaces.

• Provision DPDK- or kernel-based interfaces for Kubernetes pods as needed.

• Configure IPv4 and IPv6 address allocation for Pods.

• Run routing protocols such as ISIS, BGP, and OSPF.

3

https://www.juniper.net/us/en/products/routers/containerized-routing-protocol-daemon-crpd.html

Features

• Easy deployment, removal, and upgrade on general purpose compute devices using Helm.

• Higher packet forwarding performance with DPDK-based JCNR-vRouter.

• Full routing, switching, and forwarding stacks in software.

• Out-of-the-box software-based open radio access network (O-RAN) support.

• Quick spin up with containerized deployment.

• Highly scalable solution.

• L3 features such as transit gateway, support for routing protocols, BFD, VRRP, VRF-Lite, EVPN
Type-5, ECMP and BGP Unnumbered.

• L2 functionality, such as MAC learning, MAC aging, MAC limiting, native VLAN and L2 statistics.

• L2 reachability to Radio Units (RU) for management traffic.

• L2 or L3 reachability to physical distributed units (DU) such as 5G millimeter wave DUs or 4G DUs.

• VLAN tagging and bridge domains.

• Trunk and access ports.

• Support for multiple virtual functions (VF) on Ethernet NICs.

• Support for bonded VF interfaces.

• Configurable L2 access control lists (ACLs).

• Rate limiting of egress broadcast, unknown unicast, and multicast traffic on fabric interfaces.

• IPv4 and IPv6 routing.

4

Juniper Cloud-Native Router Components

SUMMARY

The Juniper Cloud-Native Router solution consists of
several components including the JCNR controller,
JCNR vRouter and the JCNR-CNI. This topic
provides a brief overview of the components of the
Juniper Cloud-Native Router.

IN THIS SECTION

JCNR Components | 5

JCNR Controller | 6

JCNR vRouter | 7

JCNR-CNI | 8

Syslog-NG | 9

JCNR Components

The Juniper Cloud-Native Router has primarily three components—JCNR Controller control plane, the
JCNR vRouter DPDK forwarding plane and JCNR-CNI for Kubernetes integration. All JCNR components
are deployed as containers.

The Figure 1 on page 6 shows the components of the Juniper Cloud-Native Router inside a
Kubernetes cluster

5

Figure 1: Components of Juniper Cloud-Native Router

JCNR Controller

The JCNR Controller is the control-plane of the cloud-native router solution that runs the Junos
containerized routing protocol Daemon (cRPD). It is implemented as a statefulset. The controller
communicates with the other elements of the cloud-native router. Configuration, policies and rules that
you set on the controller at deployment time are communicated to other components, primarily the
JCNR vRouter, for implementation.

For example, firewall filters (ACLs) are supported on the controller to configure L2 access lists with deny
rules. The controller sends the configuration information to the JCNR vRouter through the vRouter
agent.

Juniper Cloud-Native Router Controller Functionality:

• Exposes Junos OS compatible CLI configuration and operation commands that are accessible to
external automation and orchestration systems using the NETCONF protocol.

6

• Supports vRouter as the high-speed forwarding plane. This enables applications that are built using
the DPDK framework to send and receive packets directly to the application and the vRouter
without passing through the kernel.

• Supports configuration of VLAN-tagged sub-interfaces on physical function (PF), virtual function
(VF), virtio, access, and trunk interfaces managed by the DPDK-enabled vRouter.

• Supports configuration of bridge domains, VLANs, and virtual-switches.

• Advertises DPDK application reachability to core network using routing protocols primarily with
BGP, IS-IS and OSPF.

• Distributes L3 network reachability information of the pods inside and outside a cluster.

• Maintains configuration for L2 firewall.

• Passes configuration information to the vRouter through the vRouter-agent.

• Stores license key information.

• Works as a BGP Speaker from Release 23.2, establishing peer relationships with other BGP speakers
to exchange routing information.

Configuration Options

During deployment, you can Customize JCNR Configuration .

After deployment, we recommend that you use the NETCONF protocol with PyEZ to configure the
controller. You can SSH or connect via NETCONF. Finally, you can also configure the cloud-native router
by "accessing the JCNR controller CLI" on page 142 using Kubernetes commands.

JCNR vRouter

The JCNR vRouter is a high-performance datapath component. It is an alternative to the Linux bridge or
the Open vSwitch (OVS) module in the Linux kernel. It runs as a user-space process and is integrated
with the Data Plane Development Kit (DPDK) library. The vRouter pod consists of three containers—
vrouter-agent, vrouter-agent-dpdk and vrouter-telemetry-exporter.

JCNR vRouter Functionality:

• Performs routing with Layer 3 virtual private networks.

• Performs L2 forwarding.

• Supports high-performance DPDK-based forwarding.

7

https://www.juniper.net/documentation/us/en/software/junos-pyez/junos-pyez-developer/index.html
https://www.juniper.net/documentation/us/en/software/crpd/crpd-deployment/topics/topic-map/establishing-ssh-crpd.html#id-enabling-ssh
https://www.juniper.net/documentation/us/en/software/crpd/crpd-deployment/topics/topic-map/establishing-ssh-crpd.html#id-connecting-to-a-netconf-server-on-container

Benefits of vRouter:

• Integration of the DPDK into the JCNR-vRouter.

• Forwarding plane provides faster forwarding capabilities than kernel-based forwarding.

• Forwarding plane is more scalable than kernel-based forwarding.

• Support for the following NICs:

• Intel E810 (Columbiaville) family

• Intel XL710 (Fortville) family

JCNR-CNI

JCNR-CNI is a new container network interface (CNI) developed by Juniper. JCNR-CNI is a Kubernetes
CNI plugin installed on each node to provision network interfaces for application pods. During pod
creation, Kubernetes delegates pod interface creation and configuration to JCNR-CNI. JCNR-CNI
interacts with JCNR controller and the vRouter to setup DPDK interfaces. When a pod is removed,
JCNR-CNI is invoked to de-provision the pod interface, configuration, and associated state in
Kubernetes and cloud-native router components. JCNR-CNI works as a secondary CNI, along with the
Multus CNI to add and configure pod interfaces.

JCNR-CNI Functionality:

• Manages the networking tasks in Kubernetes pods such as:

• assigning IP addresses.

• allocating MAC addresses.

• setting up untagged, access, and other interfaces between the pod and vRouter in a Kubernetes
cluster.

• creating VLAN sub-interfaces.

• creating L3 interfaces.

• Acts on pod events such as add and delete.

• Generates cRPD configuration.

The JCNR-CNI manages the secondary interfaces that the pods use. It creates the required interfaces
based on the configuration in YAML-formatted network attachment definition (NAD) files. The JCNR-
CNI configures some interfaces before passing them to their final location or connection point and
provides an API for further interface configuration options such as:

8

• Instantiating different kinds of pod interfaces.

• Creating virtio-based high performance interfaces for pods that leverage the DPDK data plane.

• Creating veth pair interfaces that allow pods to communicate using the Linux Kernel networking
stack.

• Creating pod interfaces in access or trunk mode.

• Attaching pod interfaces to bridge domains and virtual routers.

• Supporting IPAM plug-in for Dynamic IP address allocation.

• Allocating unique socket interfaces for virtio interfaces.

• Managing the networking tasks in pods such as assigning IP addresses and setting up of interfaces
between the pod and vRouter in a Kubernetes cluster.

• Connecting pod interface to a network including pod-to-pod and pod-to-network.

• Integrating with the vRouter for offloading packet processing.

Benefits of JCNR-CNI:

• Improved pod interface management

• Customizable administrative and monitoring capabilities

• Increased performance through tight integration with the controller and vRouter components

The Role of JCNR-CNI in Pod Creation:

When you create a pod for use in the cloud-native router, the Kubernetes component known as kubelet
calls the Multus CNI to set up pod networking and interfaces. Multus reads the annotations section of
the pod.yaml file to find the NADs. If a NAD points to JCNR-CNI as the CNI plug in, Multus calls the
JCNR-CNI to set up the pod interface. JCNR-CNI creates the interface as specified in the NAD. JCNR-
CNI then generates and pushes a configuration into the controller.

Syslog-NG

Juniper Cloud-Native Router uses a syslog-ng pod to gather event logs from cRPD and vRouter and
transform the logs into JSON-based notifications. The notifications are logged to a file. Syslog-ng runs as
a daemonset.

9

JCNR Deployment Modes

SUMMARY

Read this topic to know about the various modes of
deploying the cloud-native router.

IN THIS SECTION

Deployment Modes | 10

Deployment Modes

Starting with Juniper Cloud-Native Router Release 23.2, you can deploy and operate Juniper Cloud-
Native Router in L2, L3 and L2-L3 modes, auto-derived based on the interface configuration in the
values.yaml file prior to deployment.

NOTE: In the values.yaml file:

• When all the interfaces have an interface_mode key configured, then the mode of deployment
would be L2.

• When one or more interfaces have an interface_mode key configured and some of the interfaces
do not have the interface_mode key configured, then the mode of deployment would be L2-L3.

• When none of the interfaces have the interface_mode key configured, then the mode of
deployment would be L3.

In L2 mode, the cloud-native router behaves like a switch and therefore does not performs any routing
functions and it doesn not run any routing protocols. The pod network uses VLANs to direct traffic to
various destinations.

In L3 mode, the cloud-native router behaves like a router and therefore performs routing functions and
runs routing protocols such as ISIS, BGP, OSPF, and segment routing-MPLS. In L3 mode, the pod
network is divided into an IPv4 or IPv6 underlay network and an IPv4 or IPv6 overlay network. The
underlay network is used for control plane traffic.

The L2-L3 mode provides the functionality of both the switch and the router at the same time. It
enables JCNR to act as both a switch and a router simultaneously by performing switching in a set of
interfaces and routing in the other set of interfaces. Cell site routers in a 5G deployment need to handle
both L2 and L3 traffic. DHCP packets from radio outdoor unit (RU) is an example of L2 traffic and data
packets moving from outdoor unit (ODU) to central unit (CU) is an example of L3 traffic.

10

JCNR Interfaces Overview

SUMMARY

This topic provides information on the network
communication interfaces provided by the JCNR-
Controller. Fabric interfaces are aggregated
interfaces that receive traffic from multiple
interfaces. Interfaces to which different workloads
are connected are called workload interfaces.

IN THIS SECTION

Juniper Cloud-Native Router Interface
Types | 11

Read this topic to understand the network communication interfaces provided by the JCNR-Controller.
We cover interface names, what they connect to, how they communicate. and the services they provide.

Juniper Cloud-Native Router Interface Types

Juniper Cloud-Native Router supports two types of interfaces:

• Fabric interfaces—Aggregated interfaces that receive traffic from multiple interfaces. Fabric interfaces
are always physical interfaces. They can either be a physical function (PF) or a virtual function (VF).
The throughput requirement for these interfaces is higher, hence multiple hardware queues are
allocated to them. Each hardware queue is allocated with a dedicated CPU core . The interfaces are
configured for the cloud-native router using the appropriate values.yaml file in the deployer
helmcharts. You can view the interface mapping using the dpdkinfo -c command. View the
Troubleshoot via the vRouter CLI topic in the Deployment Guide for more details. You also have
fabric workload interfaces that have low throughput requirement. Only one hardware queue is
allocated to the interface, thereby saving precious CPU resources. These interfaces can be configured
using the appropriate values.yaml file in the deployer helmcharts.

• Workload interfaces—Interfaces to which different workloads are connected. They can either be
software-based or hardware-based interfaces. Software-based interfaces are either high-
performance interfaces using the Data Plane Development Kit (DPDK) poll mode driver (PMD) or a
low-performance interfaces using the kernel driver. Typically the DPDK interfaces are used for data
traffic such as the GPRS Tunneling Protocol for user data (GTP-U) traffic and the kernel-based
interfaces are used for control plane data traffic such as TCP. The kernel pod interfaces are typically
for the operations, administration and maintenance (OAM) traffic. The interfaces are configured as a
veth-pair, with one end of the interface in the pod and the other end in the Linux kernel on the host.
JCNR also supports bonded interfaces via the link bonding PMD. These interfaces can be configured
using the appropriate values.yaml file in the deployer helmcharts.

11

JCNR supports different types of VLAN interfaces including trunk, access and sub-interfaces across
fabric and workload interfaces.

JCNR Interface Details

The different JCNR interfaces are provided in detail below:

• Agent interface

vRouter has only one agent interface. The agent interface enables communication between the
vRouter-agent and the vRouter. On the vRouter CLI when you issue the vif --list command, the
agent interface looks like this:

vif0/0 Socket: unix
 Type:Agent HWaddr:00:00:5e:00:01:00
 Vrf:65535 Flags:L2 QOS:-1 Ref:3
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:650 bytes:99307 errors:0
 Drops:0

• DPDK VF workload interfaces

These interfaces connect to the radio units (RUs) or millimeter-wave distributed units (mmWave-
DUs). On the vRouter CLI when you issue the vif --list command, the DPDK VF workload interface
looks like this:

vif0/5 PCI: 0000:ca:19.1 (Speed 10000, Duplex 1)
 Type:Workload HWaddr:9e:52:29:9e:97:9b
 Vrf:0 Flags:L2Vof QOS:-1 Ref:9
 RX queue packets:29087 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: 0000:ca:19.1 Status: UP Driver: net_iavf
 Vlan Mode: Access Vlan Id: 1250 OVlan Id: 1250
 RX packets:29082 bytes:6766212 errors:5
 TX packets:0 bytes:0 errors:0
 Drops:29896

• DPDK VF fabric interfaces (Physical Trunk)

12

DPDK VF fabric interfaces, which are associated with the physical network interface card (NIC) on
the host server, accept traffic from multiple VLANs.

The cRPD interface configuration using the show configuration command looks like this (the output is
trimmed for brevity):

interfaces {
 ens786f0v0 {
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 1001-1100;
 }
 }
 }
}

On the vRouter CLI when you issue the vif --list command, the DPDK VF fabric interface looks like
this:

vif0/1 PCI: 0000:31:01.0 (Speed 10000, Duplex 1)
 Type:Physical HWaddr:d6:22:c5:42:de:c3
 Vrf:65535 Flags:L2Vof QOS:-1 Ref:12
 RX queue packets:11813 errors:1
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 1 0
 Fabric Interface: 0000:31:01.0 Status: UP Driver: net_iavf
 Vlan Mode: Trunk Vlan: 1001-1100
 RX packets:0 bytes:0 errors:49962
 TX packets:18188356 bytes:2037400554 errors:0
 Drops:49963

• Active or standby bond interfaces (Bond Trunk)

Bond interfaces accept traffic from multiple VLANs. A bond interface runs in the active or standby
mode (mode 0). You define the bond interface in the helm chart configuration as follows:

bondInterfaceConfigs:
- name: "bond0"
 mode: 1 # ACTIVE_BACKUP MODE
 slaveInterfaces:

13

 - "ens2f0v1"
 - "ens2f1v1"

 - bond0:
 ddp: "auto"
 interface_mode: trunk
 vlan-id-list: [1001-1100]
 storm-control-profile: rate_limit_pf1
 native-vlan-id: 1001
 no-local-switching: true

The cRPD interface configuration using the show configuration command looks like this (the output is
trimmed for brevity):

interfaces {
 bond0 {
 unit 0 {
 family bridge
 interface-mode trunk;
 vlan-id-list 1001-1100;
 }
 }
}

On the vRouter CLI when you issue the vif --list command, the bond interface looks like this:

vif0/2 PCI: 0000:00:00.0 (Speed 10000, Duplex 1)
 Type:Physical HWaddr:32:f8:ad:8c:d3:bc
 Vrf:65535 Flags:L2Vof QOS:-1 Ref:8
 RX queue packets:1882 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: eth_bond_bond0 Status: UP Driver: net_bonding
 Slave Interface(0): 0000:81:01.0 Status: UP Driver: net_iavf
 Slave Interface(1): 0000:81:03.0 Status: UP Driver: net_iavf
 Vlan Mode: Trunk Vlan: 1001-1100
 RX packets:8108366000 bytes:486501960000 errors:4234
 TX packets:65083776 bytes:4949969408 errors:0
 Drops:8108370394

• Pod interfaces using DPDK data plane (Virtio Trunk) virtio

14

The trunk interfaces accept only tagged packets. Any untagged packets are dropped. These
interfaces can accept a VLAN filter to allow only specific VLAN packets. A trunk interface can be a
part of multiple bridge-domains (BD). A bridge domain is a set of logical ports that share the same
flooding or broadcast characteristics. Like a VLAN, a bridge domain spans one or more ports of
multiple devices. Virtio interfaces are associated with pod interfaces that use virtio on the DPDK
data plane.

The cRPD interface configuration using the show configuration command looks like this (the output is
trimmed for brevity):

interfaces {
 vhost242ip-93883f16-9ebb-4acf-b {
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 1001-1003;
 }
 }
 }
}

On the vRouter CLI when you issue the vif --list command, the virtio with DPDK data plane
interface looks like this:

vif0/3 PMD: vhost242ip-93883f16-9ebb-4acf-b
 Type:Virtual HWaddr:00:16:3e:7e:84:a3
 Vrf:65535 Flags:L2 QOS:-1 Ref:13
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Vlan Mode: Trunk Vlan: 1001-1003
 RX packets:0 bytes:0 errors:0
 TX packets:10604432 bytes:1314930908 errors:0
 Drops:0
 TX port packets:0 errors:10604432

• Pod interfaces using Kernel interface

The access interfaces accept both tagged and untagged packets. Untagged packets are tagged with
the access VLAN or access BD. Any tagged packets other than the ones with access VLAN are
dropped. The access interfaces is a part of a single bridge-domain. It does not have any parent
interface.

15

The cRPD interface configuration using the show configuration command looks like this (the output is
trimmed for brevity):

routing-instances {
 switch {
 instance-type virtual-switch;
 bridge-domains
{

 bd1001 {
 vlan-id 1001;
 interface jvknet1-eed79ff;
 }
 }
 }
}

On the vRouter CLI when you issue the vif --list command, the veth pair interface looks like this:

vif0/4 Ethernet: jvknet1-88c44c3
 Type:Virtual HWaddr:02:00:00:3a:8f:73
 Vrf:0 Flags:L2Vof QOS:-1 Ref:10
 RX queue packets:524 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Vlan Mode: Access Vlan Id: 1001 OVlan Id: 1001
 RX packets:9 bytes:802 errors:515
 TX packets:0 bytes:0 errors:0
 Drops: 525

• L2 VLAN sub-interfaces

You can configure a user pod with a Layer 2 VLAN sub-interface and attach it to the JCNR instance.
VLAN sub-interfaces are like logical interfaces on a physical switch or router. They access only
tagged packets that match the configured VLAN tag. A sub-interface has a parent interface. A parent
interface can have multiple sub-interfaces, each with a VLAN ID. When you run the cloud-native
router, you must associate each sub-interface with a specific VLAN.

The cRPD interface configuration viewed using the show configuration command is as shown below
(the output is trimmed for brevity).

16

For L2:

routing-instances {
 switch {
 instance-type virtual-switch;
 bridge-domains
{

 bd100 {
 vlan-id 100;
 interface vhostnet1-1e555ee1-7d93-40.100;
 }
 }
 }
}

On the vRouter, a VLAN sub-interface configuration is as shown below:

vif0/5 Virtual: vhostnet1-71cd7db1-1a5e-49.3003 Vlan(o/i)(,S): 3003/3003 Parent:vif0/4
 Type:Virtual(Vlan) HWaddr:00:99:99:99:33:09
 Vrf:0 Flags:L2 QOS:-1 Ref:3
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

NOTE: To see the VLAN sub-interfaces on the vRouter, connect to the vRouter agent by
executing the command kubectl exec -it -n contrail contrail-vrouter-<agent container> -- bash
command, and then run the command vif --get.

• L3 Physical Interface

vif0/1 PCI: 0000:17:01.1 (Speed 25000, Duplex 1) NH: 7 MTU: 9000 <- PCI
Address
 Type:Physical HWaddr:d6:93:87:91:45:6c IPaddr: 192.21.2.4 <- Physical interface
 IP6addr:2001:192:21:2::4 <- IPv6 address
 DDP: OFF SwLB: ON
 Vrf:2 Mcast Vrf:2 Flags:L3L2Vof QOS:0 Ref:16 <- L3 (only) interface
 RX port packets:423168341 errors:0

17

 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: 0000:17:01.1 Status: UP Driver: net_iavf
 RX packets:423168341 bytes:29123418594 errors:0
 TX packets:417508247 bytes:417226216530 errors:0
 Drops:8
 TX port packets:417508247 errors:0

vif0/2 PMD: ens2f2 NH: 12 MTU: 9000 <- Tap interface name as seen by cRPD
 Type:Host HWaddr:d6:93:87:91:45:6c IPaddr: 192.21.2.4 <- Tap interface type
 IP6addr:2001:192:21:2::4
 DDP: OFF SwLB: ON
 Vrf:2 Mcast Vrf:65535 Flags:L3DProxyEr QOS:-1 Ref:15 TxXVif:1 <-cross-connected
to vif 1
 RX device packets:306995 bytes:25719830 errors:0
 RX queue packets:306995 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:306995 bytes:25719830 errors:0
 TX packets:307489 bytes:25880250 errors:0
 Drops:0
 TX queue packets:307489 errors:0
 TX device packets:307489 bytes:25880250 errors:0

Corresponding interface state in the cRPD:

show interfaces routing ens2f2
Interface State Addresses
ens2f2 Up MPLS enabled
 ISO enabled
 INET 192.21.2.4
 INET6 2001:192:21:2::4
 INET6 fe80::c5da:7e9c:e168:56d7
 INET6 fe80::a0be:69ff:fe59:8b58

L3 Bond Interface

vif0/3 PCI: 0000:00:00.0 (Speed 25000, Duplex 1) NH: 6 MTU: 1514 <- Bond interface (PCI
id 0)
 Type:Physical HWaddr:50:7c:6f:48:75:74 IPaddr:192.7.7.4 <- Physical interface
 IP6addr:2001:192:7:7::4
 DDP: OFF SwLB: ON

18

 Vrf:1 Mcast Vrf:1 Flags:TcL3L2Vof QOS:0 Ref:18
 RX port packets:402183888 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: eth_bond_bond34 Status: UP Driver: net_bonding <- Bonded
master
 Slave Interface(0): 0000:5e:00.0 Status: UP Driver: net_ice <- Bond slave - 1
 Slave Interface(1): 0000:af:00.0 Status: UP Driver: net_ice <- Bond slave - 2
 RX packets:402183888 bytes:49519387070 errors:0
 TX packets:79226 bytes:7330912 errors:0
 Drops:1393
 TX port packets:79226 errors:0

vif0/4 PMD: bond34 NH: 11 MTU: 9000
 Type:Host HWaddr:50:7c:6f:48:75:74 IPaddr:192.7.7.4 <- Tap interface
 IP6addr:2001:192:7:7::4
 DDP: OFF SwLB: ON
 Vrf:1 Mcast Vrf:65535 Flags:L3DProxyEr QOS:-1 Ref:15 TxXVif:3 <- Tap interface
for bond
 RX device packets:76357 bytes:7101918 errors:0
 RX queue packets:76357 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:76357 bytes:7101918 errors:0
 TX packets:75349 bytes:6946908 errors:0
 Drops:0
 TX queue packets:75349 errors:0
 TX device packets:75349 bytes:6946908 errors:0

Corresponding interface state in the cRPD:

show interfaces routing bond34
Interface State Addresses
bond34 Up INET6 2001:192:7:7::4
 ISO enabled
 INET 192.7.7.4
 INET6 fe80::527c:6fff:fe48:7574

• L3 Pod Vhost-User Interface

vif0/8 PMD: vhostnet1-aa0984c7-0c1d-40a4-87 NH: 35 MTU: 9160 <- vhost-user interface of
CNF

19

 Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:2.51.1.3 <- pod/ workload
 IP6addr:abcd:2:51:1::3 <- IPv6 address of the pod
 DDP: OFF SwLB: ON
 Vrf:3 Mcast Vrf:3 Flags:PL3DProxyEr QOS:-1 Ref:14
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

Corresponding interface state in the cRPD:

show interfaces routing vhostnet1-aa0984c7-0c1d-40a4-87
Interface State Addresses
vhostnet1-aa0984c7-0c1d-40a4-87 Up INET6 enabled
 INET6 abcd:2:51:1::3
 ISO enabled
 INET enabled
 INET 2.51.1.3

• L3 Kernel Interface

vif0/13 Ethernet: jvknet1-0af476e NH: 35 MTU: 9160 <- Kernel interface (jvk) of CNF
 Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:2.51.1.4 <- pod/ workload
 IP6addr:abcd:2:51:1::4
 DDP: OFF SwLB: ON
 Vrf:1 Mcast Vrf:1 Flags:PL3DVofProxyEr QOS:-1 Ref:11
 RX port packets:47 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:47 bytes:13012 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:47

Corresponding interface state in the cRPD:

show interfaces routing jvknet1-0af476e
Interface State Addresses
jvknet1-0af476e Up INET6 enabled
 INET6 abcd:2:51:1::4
 ISO enabled

20

 INET enabled
 INET 2.51.1.4

• L3 VLAN Sub-Interfaces

Starting in Juniper Cloud-Native Router Release 23.2, the cloud-native router supports the use of
VLAN sub-interfaces in L3 mode.

vif0/2 PCI: 0000:17:01.1 (Speed 25000, Duplex 1) NH: 7 MTU: 9000
 Type:Physical HWaddr:d6:93:87:91:45:6c IPaddr:0.0.0.0
 IP6addr:fe80::d493:87ff:fe91:456c <- IPv6 address
 DDP: OFF SwLB: ON
 Vrf:2 Mcast Vrf:2 Flags:L3L2Vof QOS:0 Ref:16 <- L3 (only) interface
 RX port packets:423168341 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: 0000:17:01.1 Status: UP Driver: net_iavf
 RX packets:423168341 bytes:29123418594 errors:0
 TX packets:417508247 bytes:417226216530 errors:0
 Drops:8
 TX port packets:417508247 errors:0

vif0/5 PMD: ens1f0v1 NH: 12 MTU: 9000
 Type:Host HWaddr:d6:93:87:91:45:6c IPaddr:0.0.0.0
 IP6addr:fe80::d493:87ff:fe91:456c
 DDP: OFF SwLB: ON
 Vrf:2 Mcast Vrf:65535 Flags:L3DProxyEr QOS:-1 Ref:15 TxXVif:2 <- L3 (only) tap
interface
 RX device packets:306995 bytes:25719830 errors:0
 RX queue packets:306995 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:306995 bytes:25719830 errors:0
 TX packets:307489 bytes:25880250
errors:0

 Drops:0

21

 TX queue packets:307489 errors:0
 TX device packets:307489 bytes:25880250 errors:0

vif0/9 Virtual: ens1f0v1.201 Vlan(o/i)(,S): 201/201 Parent:vif0/2 NH: 36 MTU: 1514 <-
VLAN fabric sub-intf with parent as vif 2 and VLAN tag as 201
 Type:Virtual(Vlan) HWaddr:d6:93:87:91:45:6c IPaddr:103.1.1.2
 IP6addr:fe80::d493:87ff:fe91:456c
 DDP: OFF SwLB: ON
 Vrf:1 Mcast Vrf:1 Flags:L3DProxyEr QOS:-1 Ref:4
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/10 Virtual: ens1f0v1.201 Vlan(o/i)(,S): 201/201 Parent:vif0/5 NH: 21 MTU: 9000
 Type:Virtual(Vlan) HWaddr:d6:93:87:91:45:6c IPaddr:103.1.1.2
 IP6addr:fe80::d493:87ff:fe91:456c
 DDP: OFF SwLB: ON
 Vrf:1 Mcast Vrf:65535 Flags:L3DProxyEr QOS:-1 Ref:4 TxXVif:9 <- VLAN tap sub-intf
cross connected to fabric sub-intf vif 9 and parent as tap intf vif 5
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

Corresponding interface state in cRPD:

show interfaces routing ens1f0v1.201
Interface State Addresses
ens1f0v1.201 Up MPLS enabled
 ISO enabled
 INET6 fe80::b89c:fff:feab:e2c9

22

2
CHAPTER

Common Features (All Deployment
Modes)

JCNR Common Features | 24

Enabling Dynamic Device Personalization (DDP) on Individual Interfaces | 24

VLAN Sub-Interfaces | 26

JCNR Common Features

SUMMARY

Read this topic to learn about the Juniper Cloud-Native Router common features for all deployment
modes.

The Juniper Cloud-Native Router supports multiple "deployment modes" on page 10.

This chapter explains the common features for all deployment modes.

Enabling Dynamic Device Personalization (DDP) on
Individual Interfaces

SUMMARY

Dynamic Device Personalization (DDP) is a technology that enables programmable packet processing
pipeline provided by Intel as a profile to their NICs. JCNR supports enabling Dynamic Device
Personalization (DDP) on individual interfaces.

Starting with Juniper Cloud-Native Router (JCNR) Release 23.2, JCNR supports enabling Dynamic
Device Personalization (DDP) on individual interfaces. This feature is available on JCNR in L2, L3, and
L2-L3 modes.

Dynamic Device Personalization (DDP) is a technology that enables programmable packet processing
pipeline provided by Intel as a profile to their NICs. Multiple Intel NICs support this technology. The
support varies based on the Intel NIC type. DDP is used in packet classification where the profiles
applied to the NIC can classify multiple packet formats on the NIC enabling speeds and feeds to the
Data Plane Development Kit (DPDK).

Juniper cloud native router (JCNR) provides routing and switching functionality. JCNR supports
interfaces from different NIC cards. Some of the Intel NICs support DDP and some of them don’t

24

support DDP. Therefore, in a deployment scenario, JCNR might have one interface from one NIC that
supports DDP and another interface from a different NIC that does not support DDP. JCNR supports
enabling DDP per interface to overcome such issues.

NOTE: For E810 PF, JCNR loads the DDP package which is bundled with JCNR. However, for
other NICs, ensure you load the DDP package on the NICs before starting JCNR.

A DDP configuration is available per interface. This configuration option overrides global DDP (ddp)
configuration for that interface. If you do not configure an interface DDP, then the global configuration
value serves as the value for that interface. If you do not configure the global DDP configuration, then
the default value for the global configuration which is off takes effect.

NOTE: DDP is supported on the following NICs:

• E810 VF

• E810 PF

• X710 PF

• XXV710 PF

DDP support is not available when interfaces are defined under subnets.

You should configure DDP in the helm chart before deployment. Configuring the DDP configurations in
the helm charts for both global and at interface levels is optional. If you do not configure the DDP keys,
then the default value for global DDP which is off takes effect.

The global DDP configuration is available in the values.yaml file as shown below:

 # Set ddp to enable Dynamic Device Personalization (DDP)
 # Provides datapath optimization at NIC for traffic like GTPU, SCTP etc.
 # Options include auto or on or off; default: off
 ddp: "auto"

You can configure one of the following options for ddp at the interface level:

1. Auto—when set to auto, JCNR checks if the NIC supports DDP or not during deployment and
configures DPDK accordingly. Detecting whether a NIC supports DDP at run time makes is easier to
deploy JCNR in volumes.

25

2. On—option enables DDP on the interface without validating the NIC. Use this option only if you are
sure that the NIC supports DDP.

3. Off—is the default option at the interface level. This option disables DDP on the interface.

For example,

– eth1:
 ddp: "off" ## auto or on or off

NOTE: Each interface can have a different configuration for ddp. DDP is enabled for a bond
interface only if all the slave interface NICs support DDP.

VLAN Sub-Interfaces

IN THIS SECTION

Configuration Example | 26

VLAN sub-interfaces are like logical interfaces on a physical switch or router. They access only tagged
packets that match the configured VLAN tag. A sub-interface has a parent interface. A parent interface
can have multiple sub-interfaces, each with a VLAN ID. When you run the cloud-native router, you must
associate each sub-interface with a specific VLAN. Starting in Juniper Cloud-Native Router Release 23.2,
the cloud-native router supports the use of VLAN sub-interfaces in L3 mode along with the previously
supported L2 mode.

Configuration Example

The VLAN sub-interfaces are configured using the Netowrk Attachment Definition (NAD) and pod
YAML manifests. Please see the "JCNR Use-Cases and Configuration Overview " on page 73 and
relevant configuration examples for more information.

26

The JCNR controller interface configuration viewed using the show configuration command is as shown
below (the output is trimmed for brevity).

For L2 mode:

routing-instances {
 switch {
 instance-type virtual-switch;
 bridge-domains
{

 bd100 {
 vlan-id 100;
 interface vhostnet1-1e555ee1-7d93-40.100;
 }
 }
 }
}

For L3 mode:

enp24s0f0 {
 unit 1 {
 vlan-id 10;
 family inet {
 address 172.168.20.3/24;
 }
 }
}

On the vRouter, a VLAN sub-interface configuration is as shown below:

For L2 mode:

vif0/5 Virtual: vhostnet1-71cd7db1-1a5e-49.100 Vlan(o/i)(,S): 3003/3003 Parent:vif0/4
 Type:Virtual(Vlan) HWaddr:00:99:99:99:33:09
 Vrf:0 Flags:L2 QOS:-1 Ref:3
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

27

For L3 mode:

vif0/9 Virtual: ens1f0v1.201 Vlan(o/i)(,S): 201/201 Parent:vif0/2 NH: 36 MTU: 1514
 Type:Virtual(Vlan) HWaddr:d6:93:87:91:45:6c IPaddr:103.1.1.2
 IP6addr:fe80::d493:87ff:fe91:456c
 DDP: OFF SwLB: ON
 Vrf:1 Mcast Vrf:1 Flags:L3DProxyEr QOS:-1 Ref:4
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/10 Virtual: ens1f0v1.201 Vlan(o/i)(,S): 201/201 Parent:vif0/5 NH: 21 MTU: 9000
 Type:Virtual(Vlan) HWaddr:d6:93:87:91:45:6c IPaddr:103.1.1.2
 IP6addr:fe80::d493:87ff:fe91:456c
 DDP: OFF SwLB: ON
 Vrf:1 Mcast Vrf:65535 Flags:L3DProxyEr QOS:-1 Ref:4 TxXVif:9
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

28

3
CHAPTER

L2 Features

L2 Features Overview | 30

Access Control Lists (Firewall Filters) | 30

MAC Learning and Aging | 33

Storm Control | 36

APIs and CLI Commands for Bond Interfaces | 38

Quality of Service (QoS) | 41

Native VLAN | 47

Prevent Local Switching | 48

L2 Features Overview

SUMMARY

Read this topic to learn about the features available in the Juniper Cloud-Native Router when
deployed in L2 (switch) mode.

The Juniper Cloud-Native Router supports multiple "deployment modes" on page 10.

In L2 mode, the cloud-native router behaves like a switch and so performs no routing functions and runs
no routing protocols. The pod network uses VLANs to direct traffic to various destinations.

This chapter provides information about the various L2 features supported by JCNR.

Access Control Lists (Firewall Filters)

SUMMARY

Read this topic to learn about Layer 2 access control
lists (Firewall filters) in the cloud-native router.

IN THIS SECTION

Access Control Lists (Firewall Filters) | 30

Configuration Example | 31

Troubleshooting | 32

Access Control Lists (Firewall Filters)

Starting with Juniper Cloud-Native Router Release 22.2 we've included a limited firewall filter capability.
You can configure the filters using the Junos OS CLI within the cloud-native router controller, using
NETCONF, or the cloud-native router APIs. Starting with Juniper Cloud-Native Router Release 23.2, you
can also configure firewall filters using node annotations and custom configuration template at the time
of JCNR deployment. Please review the deployment guide for more details.

30

During deployment, the system defines and applies firewall filters to block traffic from passing directly
between the router interfaces. You can dynamically define and apply more filters. Use the firewall filters
to:

• Define firewall filters for bridge family traffic.

• Define filters based on one or more of the following fields: source MAC address, destination MAC
address, or EtherType.

• Define multiple terms within each filter.

• Discard the traffic that matches the filter.

• Apply filters to bridge domains.

Configuration Example

Below you can see an example of a firewall filter configuration from a cloud-native router deployment:

root@jcnr01> show configuration firewall
firewall {
 family {
 bridge {
 filter example {
 term t1 {
 from {
 destination-mac-address 10:10:10:10:10:11;
 source-mac-address 10:10:10:10:10:10;
 ether-type arp;
 }
 then {
 discard;
 }
 }
 }
 }
 }
}

31

NOTE:
thendiscard

After configuration, you must apply your firewall filters to a bridge domain using the set routing-instances
vswitch bridge-domains bd3001 forwarding-options filter input filter1 configuration command. Then you must
commit the configuration for the firewall filter to take effect.
To see how many packets matched the filter (per VLAN), you can issue the show firewall filter filter1
command on the controller CLI. For example:

show firewall filter filter1
 Filter : filter1 vlan-id : 3001
 Term Packet
 t1 0

In the preceding example, we applied the filter to the bridge domain bd3001. The filter has not yet
matched any packets.

Troubleshooting

The following table lists some of the potential problems that you might face when you implement
firewall rules or ACLs in the cloud-native router. You run most of these commands on the host server.

Table 1: L2 Firewall Filter or ACL Troubleshooting

Problem Possible Causes and Resolution Command

Firewall filters or ACLs not working gRPC connection (port 50052) to
the vRouter is down. Check the
gRPC connection.

netstat -antp|grep 50052

The ui-pubd process is not running.
Check whether ui-pubd is running. ps aux|grep ui-pubd

Firewall filter or ACL show
commands not working

The gRPC connection (port 50052)
to the vRouter is down. Check the
gRPC connection.

netstat -antp|grep 50052

32

Table 1: L2 Firewall Filter or ACL Troubleshooting (Continued)

Problem Possible Causes and Resolution Command

The firewall service is not running.
ps aux|grep firewall

show log filter.log

You must run this command in the
JCNR-controller (cRPD) CLI.

MAC Learning and Aging

SUMMARY

Juniper Cloud-Native Router provides automated
learning and aging of MAC addresses. Read this topic
for an overview of the MAC learning and aging
functionality in the cloud-native router.

IN THIS SECTION

MAC Learning | 33

MAC Entry Aging | 35

MAC Learning

MAC learning enables the cloud-native router to efficiently send the received packets to their respective
destinations. The cloud-native router maintains a table of MAC addresses grouped by interface. The
table includes MAC addresses, VLANs, and the interface on which the vRouter learns each MAC address
and VLAN. The MAC table informs the vRouter about the MAC addresses that each interface can reach.

The cloud-native router caches the source MAC address for a new packet flow to record the incoming
interface into the MAC table. The router learns the MAC addresses for each VLAN or bridge domain.
The cloud-native router creates a key in the MAC table from the MAC address and VLAN of the packet.
Queries sent to the MAC table return the interface associated with the key. To enable MAC learning, the
cloud-native router performs these steps:

• Records the incoming interface into the MAC table by caching the source MAC address for a new
packet flow.

33

• Learns the MAC addresses for each VLAN or bridge domain.

• Creates a key in the MAC table from the MAC address and VLAN of the packet.

If the destination MAC address and VLAN are missing (lookup failure), the cloud-native router floods the
packet out all the interfaces (except the incoming interface) in the bridge domain.

By default:

• MAC table entries time out after 60 seconds.

• The MAC table size is limited to 10,240 entries.

We recommend that you do not change the default values. Please contact Juniper Support if you need
to change the default values.

You can see the MAC table entries by using:

• Introspect agent at http://host server IP:8085/mac_learning.xml#Snh_FetchL2MacEntry

• The command show bridge mac-table on the JCNR controller CLI:

show bridge mac-table
Routing Instance : default-domain:default-project:ip-fabric:__default__
Bridging domain VLAN id : 3002
MAC MAC Logical
address flags interface

00:00:5E:00:53:01 D bond0

• The command purel2cli --mac show on the CLI of the vRouter pod:

purel2cli --mac show
==
|| MAC vlan port hit_count||
==
00:01:01:01:01:03 1221 2 1101892
00:01:01:01:01:02 1221 2 1101819
00:01:01:01:01:04 1221 2 1101863

34

00:01:01:01:01:01 1221 2 1101879
5a:4c:4c:75:90:fe 1250 5 12
Total Mac entries 5

If you exceed the MAC address limit, the counter pkt_drop_due_to_mactable_limit increments. You can
see this counter by using the introspect agent at http://host server IP:8085/Snh_AgentStatsReq.

If you delete or disable an interface, the cloud-native router deletes all the MAC entries associated with
that interface from the MAC table.

MAC Entry Aging

The aging timeout for cached MAC entries is 60 seconds. You can configure the aging timeout at
deployment time by editing the values.yaml file. The minimum timeout is 60 seconds and the maximum
timeout is 10,240 seconds. You can see the time that is left for each MAC entry through introspect at
http://host server IP:8085/mac_learning.xml#Snh_FetchL2MacEntry. We show an example of the
output below:

l2_mac_entry_list
vrf_id vlan_id mac index packets
time_since_add last_stats_change
0 1001 00:10:94:00:00:01 5644 615123154
12:55:14.248785 00:00:00.155450
0 1001 00:10:94:00:00:65 6480 615108294
12:55:14.247765 00:00:00.155461
0 1002 01:10:94:00:00:02 5628 615123173
12:55:14.248295 00:00:00.155470

35

Storm Control

SUMMARY

Read this topic to understand how the broadcast rate
limiting feature is implemented by the cloud-native
router when deployed in L2 mode.

IN THIS SECTION

Configuration Example | 36

The storm control or rate limiting feature controls the rate of egress broadcast, unknown unicast, and
multicast (BUM) traffic on fabric interfaces.

Configuration Example

You specify the rate limit in bytes per second by adjusting stormControlProfiles in the values.yaml file
before deployment.

 # rate limit profiles for bum traffic on fabric interfaces in bytes per second
 stormControlProfiles:
 rate_limit_pf1:
 bandwidth:
 level: 0

Once a profile is created, it can be assigned to the interface via the storm-control-profile interface
attribute. For example:

- eth1:
 ddp: on
 interface_mode: trunk
 vlan-id-list: [100, 200, 300, 700-705]
 storm-control-profile: rate_limit_pf1
 native-vlan-id: 100
 no-local-switching: true

The system applies the configured profiles to all specified fabric interfaces in the cloud-native router.
The maximum per-interface rate limit value you can set is 1,000,000 bytes per second.

36

If the unknown unicast, broadcast, or multicast traffic rate exceeds the set limit on a specified fabric
interface, the vRouter drops the traffic. You can see the drop counter values by running the dropstats
command in the vRouter CLI. You can see the per-interface rate limit drop counters by running the
vRouter CLI command vif --get fabric_vif_id --get-drop-stats. For example:

dropstats
L2 untag pkt drop 8832
L2 Src Mac lookup fail 880
Rate limit exceeded 29312474

When you configure a rate limit profile on a fabric interface, you can see the configured limit in bytes per
second when you run either vif --list or vif --get fabric_vif_id.

vif0/2 PCI: 0000: af: 01.1 (Speed 10000, Duplex 1)
 Type: Physical HWaddr: 76:5d: f5: f5: c1:7a
 Vrf:0 Flags: L2Vof QOS:-1 Ref: 8 BUM Rate Limit: 1000000
 RX port packets:1 errors:0
 RX queue packets:1 errors:0
 RX queue errors to lore 000000000000
 Driver: net_iavf
 Fabric Interface: 0000:af:01.1 Status: UP
 Vlan Mode: Trunk Vlan: 300 500 600
 RX packets:0 bytes:0
errors:1
 TX packets:0 bytes:0 errors:0
 Drops: 1

NOTE:

• The rate limit is only configurable on physical interfaces and only during deployment.

• The existing global rate limit configuration fabricBMCastRateLimit is deprecated from release
22.4.

37

APIs and CLI Commands for Bond Interfaces

SUMMARY

Read this topic to learn about the APIs and CLIs
available in the L2 mode of the Juniper Cloud-Native
Router. JCNR supports an API that can be used to
force traffic to switch from the active interface to the
standby interface in a bonded pair. Another JCNR
API and a CLI can be used to view the active node
details in a bond interface.

IN THIS SECTION

APIs for Bond Interfaces | 38

CLI Commands for Bond Interfaces | 39

APIs for Bond Interfaces

When you run cloud-native router in L2 mode with cascaded nodes, you can configure those nodes to
use bond interfaces. You can configure the bond mode in the values.yaml file before deployment. For
example:

bondInterfaceConfigs:
 - name: "bond0"
 mode: 1 # ACTIVE_BACKUP MODE
 slaveInterfaces:
 - "enp59s0f0v0"
 - "enp59s0f0v1"

API to View the Active and Backup Interfaces in a Bond Interface Pair

Starting with JCNR Release 23.3, use the REST API call: curl -X GET http://127.0.0.1:9091/bond-get-active/
bond0 on localhost port 9091 to fetch the active and backup interface details of a bond interface pair.

A sample output is shown below:

root@nodep23:~# curl -X GET http://127.0.0.1:9091/bond-get-active/bond0
{"active": "0000:af:01.0", "backup": "0000:af:01.1"}

38

API to Force Bond Link Switchover

Starting with JCNR Release 22.4, you can force traffic switchover from an active to backup interface in a
bond interface pair using a REST API. If you have configured the bond interface pair in the ACTIVE_BACKUP
mode before deploying JCNR, then the vRouter-agent exposes the REST API call: curl -X POST http://
127.0.0.1:9091/bond-switch/bond0 on localhost port 9091. Use this REST API call to force traffic to switch
from the active interface to the backup interface.

A sample output is shown below:

root@nodep23:~# curl -X GET http://127.0.0.1:9091/bond-get-active/bond0
{"active": "0000:af:01.0", "backup": "0000:af:01.1"}
root@nodep23:~# curl -X POST http://127.0.0.1:9091/bond-switch/bond0
{}
root@nodep23:~# curl -X GET http://127.0.0.1:9091/bond-get-active/bond0
{"active": "0000:af:01.1", "backup": "0000:af:01.0"}

CLI Commands for Bond Interfaces

The vRouter contains the following CLI commands which are related to bond interfaces:

• dpdkinfo -b—displays the active interface in a bonded pair.

[[root@jcnr-01 /]# dpdkinfo -b
No. of bond slaves: 2
Bonding Mode: Active Backup
Transmit Hash Policy: Layer 2 (Ethernet MAC)
MII status: UP
MII Link Speed: 10000 Mbps
Up Delay (ms): 0
Down Delay (ms): 0
Driver: net_bonding

Slave Interface(0): 0000:17:01.0
Slave Interface Driver: net_iavf
Slave Interface (0): Active
Slave Interface Mac : 6E: BD: 45:0F: 4A:02

MII status: UP

39

MII Link Speed: 10000 Mbps

Slave Interface (1): 0000:17:11.0
Slave Interface Driver: net_iavf
Slave Interface Mac 6E: BD: 45:0F: 4A: C2

MII status: UP
MII Link Speed: 25000 Mbps

• dpdkinfo -n—displays the traffic statistics associated with your bond interfaces.

[root@jcnr-01 /]# dpdkinfo -n2
Master Info (eth_bond_bond0):
RX Device Packets: 72019, Bytes: 96419113, Errors:0, Nombufs:0
Dropped RX Packets: 37475
TX Device Packets:0, Bytes:0, Errors:0
Queue Rx:
Tx:
Rx Bytes:
Tx Bytes:
Errors:

Slave Info (0000:17:01.0):
Rx Device Packets: 72019, Bytes:66073908, Errors:0, Nombufs:0
Dropped RX Packets: 588
TX Device Packets:0, Bytes:0, Errors:0
Queue Rx:
Tx:
Rx Bytes:
Tx Bytes:
Errors:

Slave Info (0000:17:11.0):
RX Device Packets:0, Bytes:30345205, Errors:0, Nombufs:0
Dropped R Packets:36887
TX Device Packets:0, Bytes:0, Errors:0
Queue Rx:
Tx:
Rx Bytes:
Tx Bytes:
Errors:

40

Quality of Service (QoS)

SUMMARY

Read this topic to learn about the quality of service
(QoS) feature of the Juniper Cloud-Native Router
when deployed in L2 mode.

IN THIS SECTION

QoS Overview | 41

Configuration Example | 43

Troubleshooting | 44

Starting in Juniper Cloud-Native Router Release 22.4, you can configure quality of service (QoS)
parameters including classification, marking, and queuing. The cloud-native router performs
classification and marking operations in vRouter and queing (scheduling) operations in the physical
network interface card (NIC). Scheduling is only supported on the E810 NIC.

QoS Overview

You enable QoS prior to the deploy time by editing the values.yaml file in Juniper-Cloud-Native-Router-
version-number/helmchart directory and changing the qosEnable value to true. The default value for the
QoS feature is false (disabled). For example:

Set true/false to Enable or Disable QOS, note: QOS is not supported on X710 NIC.
 qosEnable: true

NOTE: You can only enable the QoS feature if the host server on which you install your cloud-
native router contains an Intel E810 NIC that is running lldp.

You enable lldp on the NIC using the lldptool which runs on the host server as a CLI application. Issue
the following command to enable lldp on the E810 NIC. For example, you could use the following
command:

lldptool -T -i INTERFACE -V ETS-CFG willing=no
tsa=0:strict,1:strict,2:strict,3:strict,4:strict,

41

5:strict,6:strict,7:strict
up2tc=0:0,1:1,2:2,3:3,4:0,5:1,6:2,7:3

The details of the above command are:

• ETS–Enhanced Transmission Selection

• willing–The willing attribute determines whether the system uses locally configured packet
forwarding classification (PFC) or not. If you set willing to no(the default setting), the cloud-native
router applies local PFC configuration. If you set willing to yes, and the cloud-native router receives
TLV from the peer router, the cloud-native router applies the received values.

• tsa–The transmission selection algorithm is a comma seperated list of traffic class to selection
algorithm maps. You can choose ets, strict, or vendor as selection algorithms.

• up2tc–Comma-separated list that maps user priorities to traffic classes

The list below provides an overview of the classification, marking, and queueing operations performed
by cloud-native router.

• Classification:

• vRouter classifies packets by examining the priority bits in the packet

• vRouter derives traffic class and loss priority

• vRouter can apply traffic classifiers to fabric, traffic, and workload interface types

• vRouter maintains 16 entries in its classifier map

• Marking (Re-write):

• vRouter performs marking operations

• vRouter performs rewriting of p-bits in the egress path

• vRouter derives new traffic priority based on traffic class and drop priority at egress

• vRouter can apply marking to packets only on fabric interfaces

• vRouter maintains 8 entries in its marking map

• Queueing (Scheduling):

• Cloud-native router performs strict priority scheduling in hardware (E810 NIC)

• Cloud-native router maps each traffic class to one queue

• Cloud-native router limits the maximum number of traffic queue to 4

42

• Cloud-native router maps 8 possible priorities to 4 traffic classes; It also maps each traffic class 1
hardware queue

• Cloud-native router can apply scheduling to fabric interface only

• Virtual functions (VFs) leverage the queues that you configure in the physical functions
(interfaces)

• vRouter maintains 8 entries in its scheduler map

Configuration Example

You configure QoS classifiers, rewrite rules, and schedulers in the controller using Junos set commands
or remotely using NETCONF. We display a Junos-based example configuration below:

set class-of-service classifiers ieee-802.1 class1 forwarding-class assured-forwarding loss-
priority high code-points 011
set class-of-service rewrite-rules ieee-802.1 Rule_1 forwarding-class assured-forwarding loss-
priority high code-point 110
set class-of-service schedulers sch1 priority high
set class-of-service scheduler-maps sch1 forwarding-class assured-forwarding scheduler sch1
set class-of-service interfaces enp175s1 scheduler-map sch1
set class-of-service interfaces enp175s1 unit 0 rewrite-rules ieee-802.1 Rule_1
set class-of-service interfaces vhostnet123-3546aefd-7af8-4fe5 unit 0 classifiers ieee-802.1
class1

You view the QoS configuration by "accessing the JCNR controller CLI" on page 142. Use the show
commands in Junos operation mode. The show commands reveal the configuration of classifiers, rewrite
rules, or scheduler maps individually. For example:

Show Classifier

user@jcnr-01> show class-of-service classifier

Classifier: class1, Code point type: ieee802.1p
Code point Forwarding class Loss priority
011 assured-forwarding high

43

Show Rewrite-Rule

user@jcnr-01> show class-of-service rewrite-rule

Rewrite rule: Rule_1, Code point type: ieee802.1p
Forwarding class Loss priority Code point
assured-forwarding high 110

Show Scheduler-Map

user@jcnr-01> show class-of-service scheduler-map sch1
Scheduler map: sch1
 Scheduler: sch1, Forwarding class: assured-forwarding
 Transmit rate: unspecified, Rate Limit: none, Priority: high

Show Interface

user@jcnr-01> show class-of-service interface vhostnet123-5a1e3079-d45e-4ab5
Physical interface: vhostnet123-5a1e3079-d45e-4ab5
Maximum usable queues: 4, Queues in use: 4

 Logical interface: vhostnet123-5a1e3079-d45e-4ab5.0
Object Name Type
Classifier class1 ieee802.1p

user@jcnr-01> show class-of-service interface enp175s1
Physical interface: enp175s1
Maximum usable queues: 4, Queues in use: 4
 Scheduler map: sch1
 Logical interface: enp175s1.0
Object Name Type
Rewrite-Output Rule_1 ieee802.1p

Troubleshooting

You can troubleshooting the QoS configuration "by accessing the vRouter CLI" on page 143. Use the
purel2cli command and by viewing the interface mapping.

44

Display Classifier Config

purel2cli --qos cla class1
Classifer name: class1 Classifier Index: 0
===
code-points loss priority forwarding-class
===
 000 low best-effort
 001 low best-effort
 010 low best-effort
 011 high assured-forwarding
 100 low best-effort
 101 low best-effort
 110 low best-effort
 111 low best-effort

vif0/2 PMD: vhostnet123-3546aefd-7af8-4fe5
 Type:Virtual HWaddr:aa:bb:cc:dd:ee:12
 Vrf:0 Flags:L2Mon QOS:-1 Ref:13
 RX port packets:20 errors:0
 RX queue packets:20 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Vlan Mode: Trunk Vlan: 100 200 300
 Qos classifier: class1
 RX packets:20 bytes:1200 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:40

Display Re-write Config

purel2cli --qos rw Rule_1
Re-Write name: Rule_1 Re-write Index: 0
===loss priority Forwarding-class re-write prio
===
 low best-effort n/a
 low expedited-forwarding n/a
 low assured-forwarding n/a
 low network-control n/a
 high best-effort n/a
 high expedited-forwarding n/a

45

 high assured-forwarding 110
 high network-control n/a

vif0/1 PCI: 0000:af:01.0 (Speed 10000, Duplex 1)
 Type:Physical HWaddr:46:d5:f3:fc:fc:92
 Vrf:0 Flags:L2Vof QOS:-1 Ref:42
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: 0000:af:01.0 Status: UP Driver: net_iavf
 Vlan Mode: Trunk Vlan: 100 200 300 700-705 2001
 Rewrite: Rule_1
 Scheduler: sch1
 RX packets:0 bytes:0 errors:0
 TX packets:20 bytes:1200 errors:0
 Drops:0
 TX port packets:20 errors:0

Display Scheduler Output

purel2cli --qos sch sch1
Scheduler name: sch1 Scheduler Index: 0
=====================================
 forwarding-class priority_map
=====================================
 best-effort 0
 expedited-forwarding 0
 assured-forwarding 2
 network-control 0

vif0/1 PCI: 0000:af:01.0 (Speed 10000, Duplex 1)
 Type:Physical HWaddr:46:d5:f3:fc:fc:92
 Vrf:0 Flags:L2Vof QOS:-1 Ref:42
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: 0000:af:01.0 Status: UP Driver: net_iavf
 Vlan Mode: Trunk Vlan: 100 200 300 700-705 2001
 Rewrite: Rule_1
 Scheduler: sch1
 RX packets:0 bytes:0 errors:0
 TX packets:20 bytes:1200 errors:0

46

 Drops:0
 TX port packets:20 errors:0

Native VLAN

IN THIS SECTION

Native VLAN | 47

Starting in Juniper Cloud-Native Router Release 23.1, JCNR supports receiving and forwarding untagged
packets on a trunk interface. Typically, trunk ports accept only tagged packets, and the untagged packets
are dropped. You can enable a JCNR fabric trunk port to accept untagged packets by configuring a
native VLAN identifier (ID) on the interface on which you want the untagged packets to be received.
When a JCNR fabric trunk port is enabled to accept untagged packets, such packets are forwarded in
the native VLAN domain.

Native VLAN

Enable the native-vlan-id key in the Helm chart, at the time of deployment, to configure the VLAN
identifier and associate it with untagged data packets received on the fabric trunk interface. Edit the
values.yaml file in Juniper_Cloud_Native_Router_<release-number>/helmchart directory and add the key
native-vlan-id along with a value for it. For example:

fabricInterface:
 - eth1:
 ddp: on
 interface_mode: trunk
 vlan-id-list: [100, 200, 300, 700-705]
 storm-control-profile: rate_limit_pf1
 native-vlan-id: 100
 no-local-switching: true

47

NOTE: After editing the values.yaml file, you have to install or upgrade JCNR using the edited
values.yaml to ensure that the native-vlan-id key is enabled.

To verify, if native VLAN is enabled for an interface, connect to the vRouter agent by executing the
command kubectl exec -it -n contrail contrail-vrouter-<agent container> -- bash command, and then run the
command vif --get <interface index id>. A sample output is shown below:

vif0/1 PCI: 0000:00:00.0 (Speed 10000, Duplex 1)
 Type:Physical HWaddr:6a:45:b2:a8:ce:5c
 Vrf:0 Flags:L2Vof QOS:-1 Ref:11
 RX port packets:36550 errors:0
 RX queue packets:36550 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: eth_bond_bond0 Status: UP Driver: net_bonding
 Slave Interface(0): 0000:3b:02.0 Status: UP Driver: net_iavf
 Vlan Mode: Trunk Vlan: 100 200 300
 Native vlan id: 100
 RX packets:36550 bytes:5875795 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:613

Prevent Local Switching

IN THIS SECTION

Configuration Example | 49

Starting in Juniper Cloud-Native Router Release 23.1, JCNR provides support to prevent interfaces in a
bridge domain that are a part of the same VLAN group, from transmitting ethernet frame copies in
between those interfaces. The noLocalSwitching key provides the option to enable the functionality on
the selected VLAN IDs.

48

To prevent interfaces in a bridge domain from transmitting and receiving ethernet frame copies, enable
the noLocalSwitching key and assign a VLAN ID to it to ensure that the interfaces belonging to the
VLAN ID do not transmit frames to one another. Note that the noLocalSwitching functionality is
enabled only on the access interfaces. To enable noLocalSwitching on a trunk interface that is a part of
the same VLAN ID, you have to separately enable the trunk interface by setting the no-local-switching
key in the trunk interface to true. Use the noLocalSwitching functionality when you want to block
interfaces that are a part of a VLAN group to stop transmitting traffic directly to one another.

NOTE:
no-local-switching

Configuration Example

To prevent local switching, perform the steps below prior to the deploy time:

1. Edit the values.yaml file in Juniper_Cloud_Native_Router_<release-number>/helmchart directory.

2. Enable the noLocalSwitching key and provide the VLAN IDs.

 noLocalSwitching: [700]

NOTE:

a. The value for the noLocalSwitching key can be an indivdual VLAN ID, or multipe comma-
separated VLAN ID values, or a VLAN ID range, or a combination of comma-separated
VLAN ID values and a VLAN ID range. For example, noLocalSwitching: [700, 701,
705-710].

b. With this step the feature is enabled for all access interfaces having the specified VLAN
ID. You can skip the next step if you do not want to enable the feature on the trunk
interface.

3. To enable the feature on a trunk interface, add the key no-local-switching and set it to true under the
trunk interface configuration.

49

. For example:

fabricInterface:
 - bond0:
 ddp: on
 interface_mode: trunk
 vlan-id-list: [100, 200, 300, 700-705]
 storm-control-profile: rate_limit_pf1
 #native-vlan-id: 100
 no-local-switching: true

4. Install or upgrade JCNR using the values.yaml.

Verify Configuration

To verify the configuration, you can use the purel2cli utility available on the vRouter. View the "Access
vRouter CLI" on page 143 topic to access the vRouter shell. You can run the purel2cli commands from
the vRouter CLI. For example:

1. Run the command purel2cli --nolocal show to know all the interfaces that are enabled for
noLocalSwitching functionality on all the VLANs. A sample output is shown below:

[root@jcnr-01 /]# purel2cli --nolocal show
============================
vlan no_local_switch_list
============================
100 1, 2, 4,
200
300
700
701
702
703

2. Run the command purel2cli --nolocal get <VLAN ID> to check if noLocalSwitching functionality is
enabled on a specific VLAN ID. A sample output is shown below:

[root@jcnr-01 /]# purel2cli --nolocal get 100
============================
vlan no_local_switch_list

50

============================
100 1, 2, 4,

51

4
CHAPTER

L3 Features

L3 Features Overview | 53

JCNR as a Transit Gateway | 53

EVPN Type 5 Routing over VXLAN Tunnels | 54

L3 Routing Protocols | 63

MPLS Support | 67

Bidirectional Forwarding Detection (BFD) | 68

Virtual Router Redundancy Protocol (VRRP) | 68

Virtual Routing Instance (VRF-Lite) | 69

ECMP | 69

BGP Unnumbered | 70

L3 Features Overview

SUMMARY

Read this topic to learn about the features available in the Juniper Cloud-Native Router when
deployed in L3 (router) mode.

The Juniper Cloud-Native Router supports multiple "deployment modes" on page 10.

In L3 mode, the cloud-native router behaves like a router and so performs routing functions and runs
routing protocols such as ISIS, BGP, OSPF, and segment routing-MPLS. In L3 mode, the pod network is
divided into an IPv6 underlay network and an IPv4 or IPv6 overlay network. The IPv6 underlay network
is used for control plane traffic.

This chapter provides information about the various L3 features supported by JCNR.

JCNR as a Transit Gateway

JCNR can act as a transit gateway for external traffic. As a transit gateway, JCNR is neither the source
nor the destination for the traffic, but an intermediate hop. It acts as a vanilla router to switch traffic
between multiple physical interfaces.
Starting with Juniper Cloud-Native Router (JCNR) Release 23.2, JCNR can now act as a transit gateway
for external traffic. As a transit gateway, JCNR is neither the source nor the destination for the traffic,
but an intermediate hop. It acts as a vanilla router to switch traffic between multiple physical interfaces.
Depending on the forwarding state, JCNR can encapsulate or decapsulate the traffic between interfaces.

NOTE: Starting with JCNR Release 23.2, JCNR supports multiple fabric interfaces that enable it
to function as a transit gateway.

JCNR has to be deployed in the L3 mode to perform the transit router functionality. Add all physical
interfaces (physical and virtual functions) as fabric interfaces in the helm chart before deploying the
JCNR. The deployed JCNR does not support editing or changing the fabric interfaces during run time.

53

However, you can create or remove pod interfaces during run time. Here are example helm chart
configurations:

fabricInterface:
 - ens2f2:
 ddp: "auto"
 - ens1f1:
 ddp: "auto"

 fabricInterface:
 - subnet: 10.0.3.0/24
 gateway: 10.0.3.1
 ddp: "off"
 - subnet: 10.0.5.0/24
 gateway: 10.0.5.1
 ddp: "off"

You need to configure an IP address on the loopback interface and use it as a tunnel endpoint for each
JCNR instance. The loopback IP address is the next hop address which BGP advertises to its peers. All
data packets with encapsulations like MPLSoUDP will have the outer IP address as this loopback IP
address. The loopback IP address is reachable via any of the physical interfaces. The loopback IP address
should be in a /32 subnet without a MAC address. For example:

set interfaces lo1 unit 1 family inet address 10.0.0.1/32

EVPN Type 5 Routing over VXLAN Tunnels

IN THIS SECTION

Enabling EVPN Type 5 Routing over VXLAN Tunnels | 55

Configuration Example and CLI Commands for EVPN Type 5 Routing over VXLAN Setup | 56

54

Ethernet Virtual Private Network (EVPN) with Virtual Extensible LAN (VXLAN) Type 5 routing is
designed for use in data center and cloud environments to provide efficient and scalable network
connectivity for virtualized workloads. It combines the benefits of EVPN and VXLAN to enable flexible
and seamless communication between virtual machines (VMs) and physical devices across different IP
subnets and locations. Starting with Juniper Cloud-Native Router (JCNR) Release 23.3, JCNR supports
EVPN Type 5 Routing over VXLAN tunnels.

Ethernet Virtual Private Network (EVPN) technology provides a scalable and efficient way to extend
Layer 2 and Layer 3 connectivity across multiple sites. EVPN uses Border Gateway Protocol (BGP) to
exchange information between Provider Edge (PE) routers, allowing them to learn the location of
Ethernet segments and IP prefixes. This allows for the creation of virtual networks that can span
multiple sites, while providing traffic separation and isolation through the use of virtual routing and
forwarding (VRF) instances. EVPN supports several encapsulation methods, including VXLAN and MPLS,
which can be used to transport traffic across the service provider network.

VXLAN is a network overlay technology that allows the creation of virtual Layer 2 networks on top of an
existing Layer 3 network infrastructure. It extends the reach of Layer 2 segments beyond the confines of
a single physical network, which is especially useful in large-scale virtualized environments.

EVPN supports two types of routes: MAC Advertisement Route (Type 2) and IP Prefix Route (Type 5).
Type 2 routes are used to exchange MAC addresses and VLANs between PE routers, while Type 5
routes are used to exchange Layer 3 network routes. In EVPN VXLAN, Type 5 routes are used to
advertise IP prefixes and their associated MAC addresses. To reach a tenant using connectivity provided
by the EVPN VXLAN Type 5 IP prefix route, data packets are sent as Layer 2 Ethernet frames
encapsulated in the VXLAN header over the IP network across the data centers.

EVPN VXLAN Type 5 routing allows for efficient distribution of MAC and IP routing information,
enabling large-scale networks with numerous virtualized workloads to operate seamlessly. The
technology supports secure isolation of tenant traffic in shared environments, providing a virtual
network overlay that maintains separation between tenants.

To learn more about EVPN VXLAN Type 5 routing, see Understanding EVPN Pure Type-5 Routes.

NOTE: Transit router functionality should be enabled for JCNR to support EVPN VXLAN Type 5
routing. See, "JCNR as a Transit Gateway" on page 53.

Enabling EVPN Type 5 Routing over VXLAN Tunnels

Enable EVPN Type 5 Routing over VXLAN tunnels using custom JCNR controller configuration via the
go template. Apply the custom configuration before installing JCNR, or for an existing JCNR installation,
delete the cRPD pod and respawn.

55

Use the following sample to configure EVPN Type 5 Routing over VXLAN tunnels in JCNR using the
jcnr-cni-custom-config-cm.tmpl file located in Juniper_Cloud_Native_Router_<release-number>/
cRPD_examples directory.

groups {
 custom {
 routing-instances {
 EVPN-TYPE5-VXLAN-VRF {
 instance-type vrf;
 protocols {
 evpn {
 ip-prefix-routes {
 advertise direct-nexthop;
 encapsulation vxlan;
 vni 1000;
 export EVPN-TYPE5-VXLAN-VRF-EXPORT-POLICY;
 }
 }
 }
 interface ge-0/0/1.0;
 route-distinguisher 10.255.0.1:100;
 vrf-target target:100:100;
 }
 }
}

To learn more about node annotations and custom configuration, see Customize JCNR Configuration .

To learn about EVPN Type 5 configuration in Junos, see Example: Configuring EVPN with Support for
Virtual Switch.

Configuration Example and CLI Commands for EVPN Type 5 Routing over
VXLAN Setup

56

The topology shown above describes a simple setup with two JCNRs deployed as provider edge routers
PE1 and PE2. The CE1 and CE2 represent hosts behind each of the PEs. As a pre-requisite, a BGP
session must exist between PE1 and PE2. Consider the following EVPN-VXLAN configuration on PE1,
with the interface enp4s0 towards CE1:

groups {
 custom {
 routing-instances {
 orange {
 instance-type vrf;
 routing-options {
 rib orange.inet6.0 {
 multipath;
 }
 multipath;
 }
 protocols {
 evpn {
 ip-prefix-routes {
 advertise direct-nexthop;
 encapsulation vxlan;
 vni 10010;
 }
 }
 }
 interface enp4s0;
 route-distinguisher 1.1.1.1:4;
 vrf-target target:4:4;
 }
 }
}

A VXLAN tunnel is created between routers PE1 and PE2. The 10.10.14.0/24 network routes are locally
learnt on PE1 and are advertised via EVPN Type 5 to the remote PE. Similarly, the 10.10.24.0/24
network routes are locally learnt on PE2 and advertised via EVPN Type 5 to the remote PE. All traffic
between CE1 and CE2 is forwarded between PE1 and PE2 over the VXLAN tunnel.

Use the commands listed in the sections below to troubleshoot a EVPN VXLAN Type 5 routing setup.

57

cRPD CLI Commands

The following CLI commands can be executed on the cRPD CLI. To access the cRPD CLI, see "Access
cRPD CLI" on page 142.

• show bgp <summary | neighbor>: Provides a summary of the EVPN connection to the peer and the status
of the connection.

A sample output is shown below:

host@pe1> show bgp summary
Threading mode: BGP I/0
Default eBGP mode: advertise - accept, receive - accept
Groups: 1 Peers: 2 Down peers: 1
Table Tot Paths Act Paths Suppressed History Damp State Pending
bgp. evpn. 0 2 2 0 0 0 0

Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn
State|#Active/Received/Accepted/Damped…
2.2.2.2 4 10345 10336 0 2 3d 5:32:50
Establ
bgp.evpn.0: 2/2/2/0
orange.evpn.0: 2/2/2/0
3.3.3.3 4 0 0 0 0 4w4d 13:28:22
Connect

• show route <summary | table | prefix>: Displays the active entries in the routing tables.

• show evpn instance: Displays information about the EVPN routing instance.

• show evpn l3-context: Displays the configured L3 context on the local box.

A sample output is shown below:

host@pe1> show evpn l3-context
L3 context Type Adv Encap VNI/Label Router MAC/GW intf
orange Cfg Direct VXLAN 10010 48:5a:0d:78:78:d7

• show evpn ip-prefix-database: Provides a list of exported and imported EVPN route prefixes and the
status of these routes.

58

A sample output is shown below:

root@evpn-pe1-node> show evpn ip-prefix-database
L3 context: orange

IPv4->EVPN Exported Prefixes
Prefix EVPN route status
2.55.1.0/24 Created
4.1.1.4/30 Created
10.10.14.0/24 Created

IPv6->EVPN Exported Prefixes
Prefix EVPN route status
1234::a0a:e00/120 Created
abcd::401:104/126 Created
abcd::2:55:1:0/120 Created

EVPN->IPv4 Imported Prefixes
Prefix Etag
2.55.2.0/24 0
 Route distinguisher VNI/Label Router MAC Nexthop/Overlay GW/ESI Route-Status
Reject-Reason
 2.2.2.2:4 10020 48:5a:0d:49:fc:63 2.2.2.2
Accepted n/a
10.10.24.0/24 0
 Route distinguisher VNI/Label Router MAC Nexthop/Overlay GW/ESI Route-Status
Reject-Reason
 2.2.2.2:4 10020 48:5a:0d:49:fc:63 2.2.2.2
Accepted n/a

EVPN->IPv6 Imported Prefixes
Prefix Etag
1234::a0a:1800/120 0
 Route distinguisher VNI/Label Router MAC Nexthop/Overlay GW/ESI Route-Status
Reject-Reason
 2.2.2.2:4 10020 48:5a:0d:49:fc:63 2.2.2.2
Accepted n/a
abcd::2:55:2:0/120 0
 Route distinguisher VNI/Label Router MAC Nexthop/Overlay GW/ESI Route-Status
Reject-Reason

59

 2.2.2.2:4 10020 48:5a:0d:49:fc:63 2.2.2.2
Accepted n/a

• show route table <VRF>.evpn.0: Displays the route entries in the specified routing table.

A sample output is shown below.

host@pe1> show route table orange. evpn. 0

orange.evpn.0: 4 destinations, 0 routes (4 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

5:1.1.1.1:4::0::10.10.14.0::24/248
 *[EVPN/170] 4W4d 13:29:25
 Fictitious
5:2.2.2.2:4::0::10.10.24.0::24/248
 *[BGP/170] 3d 05:33:52, localpref 100, from 2.2.2.2
 AS path: I, validation-state: unverified
 to 10.10.1.20 via enp2s0
5:1.1.1.1:4::0::1234::00a:000::120/248
 *[EVPN/170] 4w4d 13:29:25
 Fictitious
5:2.2.2.2:4::0::1234::a0a:1800::120/248
 *[BGP/170] 3d 05:33:52, localpref 100, from 2.2.2.2
 AS path: I, validation- state: unverified
 to 10.10.1.20 via enp2s0

• show route table <VRF>.inet.0: Displays the route entries in the specified routing table.

• show route table bgp.evpn.0: Displays the route entries in the specified routing table.

A sample output with a local prefix is shown below.

host@pe1> show route table bgp.evpn.0 match-prefix 5:1.1.1.1:4::0::10.10.14.0::24

bgp.evpn.0: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
5:1.1.1.1:4::0::10.10.14.0::24/248
 *[EVPN/170] 2w1d 05:11:43
 Fictitious

60

A sample output with a remote prefix is shown below.

host@pe1> show route table bgp.evpn.0 match-prefix 5:2.2.2.2:4::0::10.10.24.0::24
bgp.evpn.0: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
5:2.2.2.2:4::0::10.10.24.0::24/248
 *[BGP/170] 2w1d 05:11:48, localpref 100, from 2.2.2.2
 AS path: I, validation-state: unverified
 > to 10.10.1.20 via enp2s0

• show krt next-hop: Displays the configured next hop.

vRouter CLI Commands

The following CLI commands can be executed on the vRouter CLI. To access the vRouter CLI, see
"Access vRouter CLI" on page 143.

• rt --get <prefix> --vrf <vrf-id> --family <inet4/inet6>: Provides the route which is pointing to the
specified IPv4 address.

A sample output is shown below.

[host@pe1 /]# rt --get 10.10.24.0/24 --vrf 1
Match 10.10.24.0/24 in vRouter inet4 table 0/1/unicast
Flags: L=Label Valid, P=Proxy ARP, T=Trap ARP, F=Flood ARP, Ml=MAC-IP learnt route
vRouter inet4 routing table 0/1/unicast
Destination PPL Flags Label Nexthop Stitched MAC(Index)
10.10.24.0/24 0 LPT 10020 30 -

• vxlan --dump: Provides information regarding the VNIs that are configured and the next hop.

A sample output is shown below.

[host@pe1 /]# vxlan --dump
VXLAN Table
VNID NextHop

 10010 25

• nh --get <nh-id>: Provides the next hop details.

61

A sample output is shown below.

[root@evpn-pe1-node /]# nh --get 30
Id:30 Type:Tunnel Fmly: AF_INET Rid:0 Ref_cnt:5 Vrf:0
 Flags:Valid, Policy, Vxlan, Etree Root, l3_vxlan,
 Oif:1 Len:14 Data:52 54 00 78 c8 f2 52 54 00 ee 83 cd 08 00 Sip:1.1.1.1
Dip:2.2.2.2
 L3_Vxlan_SMac:48:5a:0d:78:78:d7 L3_Vxlan_DMac:48:5a:0d:49:fc:63

• vif --list: Provides a list of enterprises configured with the vif.

• flow --l: Displays all the active flows in the system.

Use this command to verify the traffic flowing between CE1 and CE2 on the vRouter. A sample
output is shown below.

[host@pe1 /]# flow -l
Flow table(size 161218560, entries 629760)

Entries: Created 11 Added 11 Deleted 20 Changed 26Processed 11 Used Overflow entries 0
(Created FlOwS/CPU: 0 0 0 0 0 0 0 0 0 0 11 0 (oflows 0)

Action: F-Forward, D=Drop N=NAT(S-SNAT, D=DNAT, PS=SPAT, Pd=DPAT, L=Link Local Port)
 Other: K(nh)=Key Nexthop, S(nh)=RPF Nexthop
 Flags: E-Evicted, Ec-Evict Candidate, N=New Flow, M-Modified Dm=Delete Marked
TCP(r=reverse): S-SYN, F=FIN, R=RST, C-HalfClose, E-Established, D=Dead
 Stats: Packets/Bytes

Index Source: Port/Destination: Port Proto(V)
--
95644<=>443840 10.10.24.21:30 1 (1)
 10.10.14.11:0
 (Gen: 1, K(nh): 8, Action:F, Flags:, 005: -1, S(nh):30, Stats: 16/1344,
 SPort 56932, TTL 0. Sinfo 2.2.2.2)

443840<=>95644 10.10.14.11:30 1 (1)
 10.10.24.21:0
 (Gen: 1, K(nh):8, Action:F, Flags:, Q0S: -1, S(nh):41, Stats: 16/1344,
 SPort 53983, TTL 0, Sinfo 0.0.0.0)

• vifdump <vif-number>: Displays all the packet details for the specified vif.

62

A sample output is shown below.

[host@pe1 /]# vifdump 3 -nevv
vif0/3 PCI: 0000:04:00.0 NH: 8 MTU: 9000
dropped privs to tcpdump
tcpdump: listening on mon3, link-type EN10MB (Ethernet), snapshot length 262144 bytes
20:15:15.611827 52:54:00:2c:f6:16 > 52:54:00:ef:3c:4d, ethertype IPv4 (0x0800), length 98:
(tos 0x0, ttl 64, id 1764, offset 0, flags [DF], proto ICMP (1), length 84)
 10.10.14.11 > 10.10.24.21: ICMP echo request, id 16, seq 25, length 64
20:15:15.612472 52:54:00:ef:3c:4d > 52:54:00:2c:f6:16, ethertype IPv4 (0x0800), length 98:
(tos 0x0, ttl 62, id 14142, offset 0, flags [none], proto ICMP (1), length 84)
 10.10.24.21 > 10.10.14.11: ICMP echo reply, id 16, seq 25, length 64
20:15:16.626773 52:54:00:2c:f6:16 > 52:54:00:ef:3c:4d, ethertype IPv4 (0x0800), length 98:
(tos 0x0, ttl 64, id 1863, offset 0, flags [DF], proto ICMP (1), length 84)
 10.10.14.11 > 10.10.24.21: ICMP echo request, id 16, seq 26, length 64
20:15:16.627404 52:54:00:ef:3c:4d > 52:54:00:2c:f6:16, ethertype IPv4 (0x0800), length 98:
(tos 0x0, ttl 62, id 14187, offset 0, flags [none], proto ICMP (1), length 84)
 10.10.24.21 > 10.10.14.11: ICMP echo reply, id 16, seq 26, length 64

L3 Routing Protocols

SUMMARY

Read this topic to know about the L3 routing
protocols that are supported by the Juniper Cloud
Native Router, including BGP, IS-IS, and OSPF.

IN THIS SECTION

Supported L3 protocols | 63

BGP | 64

IS-IS | 65

OSPF | 66

Supported L3 protocols

The Juniper Cloud-Native router supports the following L3 routing protocols, each of which can be
configured via node annotations at the time of deployment or via the "cRPD CLI" on page 142 for a

63

running cRPD pod. Here is an example configuration snippet from the go template with node
annotations:

protocols {
 isis {
 interface all;
 {{if and .Env.SRGB_START_LABEL .Env.SRGB_INDEX_RANGE}}
 source-packet-routing {
 srgb start-label {{.Env.SRGB_START_LABEL}} index-range {{.Env.SRGB_INDEX_RANGE}};
 node-segment {
 {{if .Node.srIPv4NodeIndex}}
 ipv4-index {{.Node.srIPv4NodeIndex}};
 {{end}}
 {{if .Node.srIPv6NodeIndex}}
 ipv6-index {{.Node.srIPv6NodeIndex}};
 {{end}}
 }
 }
 {{end}}
 level 1 disable;
 }
}

BGP

BGP is an exterior gateway protocol (EGP) that is used to exchange routing information among routers
in different autonomous systems (ASs). BGP routing information includes the complete route to each
destination. BGP uses the routing information to maintain a database of network reachability
information, which it exchanges with other BGP systems. BGP uses the network reachability information
to construct a graph of AS connectivity, which enables BGP to remove routing loops and enforce policy
decisions at the AS level. The cloud-native router supports BGP version 4. Here is an example to
configure BGP protocol on the cloud-native router "via the cRPD shell" on page 142:

set protocols bgp group CNI type internal
set protocols bgp group CNI local-address 10.0.0.1
set protocols bgp group CNI family inet-vpn unicast
set protocols bgp group CNI family inet6-vpn unicast
set protocols bgp group CNI neighbor 10.0.1.1 peer-as 64512

64

set protocols bgp group CNI neighbor 10.0.1.1 local-as 64512
set routing-options route-distinguisher-id 10.0.0.1

You can issue the show bgp summary command on the cRPD shell to view the BGP summary information for
all routing instances. For example:

user@host> show bgp summary
Threading mode: BGP I/O
Default eBGP mode: advertise - accept, receive - accept
Groups: 1 Peers: 1 Down peers: 0
Table Tot Paths Act Paths Suppressed History Damp State Pending
bgp.l3vpn.0
 2 2 0 0 0 0
bgp.l3vpn-inet6.0
 2 2 0 0 0 0
Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/
Received/Accepted/Damped...
10.0.1.1 64512 249 211 0 0 1:32:42 Establ
 bgp.l3vpn.0: 2/2/2/0
 bgp.l3vpn-inet6.0: 2/2/2/0
 jcnr-3.inet.0: 2/2/2/0
 jcnr-3.inet6.0: 2/2/2/0

Refer the BGP User Guide for more information.

IS-IS

The IS-IS protocol is an interior gateway protocol (IGP) that uses link-state information to make routing
decisions. IS-IS is a link-state IGP that uses the shortest-path-first (SPF) algorithm to determine routes.
IS-IS evaluates the topology changes and determines whether to perform a full SPF recalculation or a
partial route calculation (PRC). IS-IS uses hello packets that allow network convergence to occur quickly
when network changes are detected. The cloud-native router supports IS-IS.

Here is an example to configure IS-IS protocol on the cloud-native router "via the cRPD shell" on page
142:

set security forwarding-options family iso mode packet-based
set interfaces eno3v0 unit 0 family inet address 10.100.12.1/30
set interfaces eno3v0 unit 0 family iso
set interfaces lo0 unit 0 family inet address 192.168.0.1/32

65

https://www.juniper.net/documentation/us/en/software/junos/bgp/index.html

set interfaces lo0 unit 0 family iso address 49.0002.0192.0168.0001.00
set protocols isis interface eno3v0
set protocols isis interface lo0.0

You can issue the show isis adjacency and show isis interface commands to verify the protocol
configuration. Refer the IS-IS User Guide for information.

OSPF

OSPF is an interior gateway protocol (IGP) that routes packets within a single autonomous system (AS).
OSPF uses link-state information to make routing decisions, making route calculations using the
shortest-path-first (SPF) algorithm (also referred to as the Dijkstra algorithm). Each router running OSPF
floods link-state advertisements throughout the AS or area that contain information about that router’s
attached interfaces and routing metrics. Each router uses the information in these link-state
advertisements to calculate the least cost path to each network and create a routing table for the
protocol. The cloud-native router supports OSPF version 2 (OSPFv2) and OSPF version 3 (OSPFv3).
Here is an example to configure IS-IS protocol on the cloud-native router "via the cRPD shell" on page
142:

set protocols ospf area 0.0.0.0 interface bond0
set protocols ospf area 0.0.0.0 interface lo passive

Once you bring up the pods, verify the OSPF configuration:

show ospf neighbor
Address Interface State ID Pri Dead
192.168.123.254 bond0 Full 123.1.1.254 128 36

show route 1.1.24.24

inet.0: 27 destinations, 29 routes (27 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

1.1.24.24/32 *[OSPF/10] 00:07:08, metric 2
 > to 192.168.123.254 via bond0

Refer the OSPF User Guide for more information.

66

https://www.juniper.net/documentation/us/en/software/junos/is-is/index.html
https://www.juniper.net/documentation/us/en/software/junos/ospf/index.html

MPLS Support

IN THIS SECTION

MPLS Support | 67

The Juniper Cloud-Native Router contains support for MPLS routing protocols. You use the JCNR-
controller, or cRPD, to configure MPLS using the node annotations at the time of deployment or via the
"cRPD CLI" on page 142.

The cRPD then sends the configuration to the vRouter-agent, using gRPC. The vRouter-agent then
converts the configuration to network policies that it imlements in the vRouter. The cloud-native router
supports the following MPLS-based routing protocols:

MPLS Support

• L3 MPLS VPN (MPLS)—L3 MPLS VPNs are also known as BGP/MPLS VPNs because BGP is used to
distribute VPN routing information across the provider’s backbone, and MPLS is used to forward
VPN traffic across the backbone to remote VPN sites. The cloud-native router can particpate as a
sending, receiving or transit router using the MPLS protocol. Review the L3 VPN User Guide for more
information.

• Segment Routing-MPLS (SR-MPLS)—Segment routing is a control-plane architecture that enables an
ingress router to steer a packet through a specific set of nodes and links in the network without
relying on the intermediate nodes in the network to determine the actual path it should take. SR-
MPLS employs segment routing in MPLS. The cloud-native router can participate as a sending or
receiving router in SR-MPLS networks. Review the Junos source packet routing topic for a
configuration example.

• MPLS over UDP (MPLSoUDP)—MPLSoUDP is an overlay technology that encapsulates MPLS
packets within UDP packets to traverse through some networks that do not support native MPLS or
SR-MPLS. The cloud-native router can participate as a sending, receiving or transit router using
MPLSoUDP. Review the Configuring Next-Hop-Based MPLSoUDP Tunnels topic for a configuration
example.

• Label Distribution Protocol (LDP)—The Label Distribution Protocol (LDP) is a protocol for distributing
labels in non-traffic-engineered applications. LDP allows routers to establish label-switched paths

67

https://www.juniper.net/documentation/us/en/software/junos/vpn-l3/index.html
https://www.juniper.net/documentation/us/en/software/junos/is-is/topics/ref/statement/source-packet-routing-edit-protocols-isis.html
https://www.juniper.net/documentation/us/en/software/junos/vpn-l3/topics/topic-map/l3-vpns-nh-tunnels.html#id-example-configuring-nexthopbased-mplsoverudp-dynamic-tunnels

(LSPs) through a network by mapping network-layer routing information directly to data link layer-
switched paths. The cloud-native router can participate as a sending, receiving or transit router using
LDP. Review the LDP Overview topic for more information.

Bidirectional Forwarding Detection (BFD)

SUMMARY

Read this topic to know about the support for Bidirectional Forwarding Detection (BFD) in the
Juniper Cloud-Native router.

The Bidirectional Forwarding Detection (BFD) protocol is a simple hello mechanism that detects failures
in a network. A pair of routing devices exchange BFD packets. The devices send hello packets at a
specified, regular interval. The device detects a neighbor failure when the routing device stops receiving
a reply after a specified interval. The cloud-native router supports BFD. Review the Understanding BFD
topic for more information.

Virtual Router Redundancy Protocol (VRRP)

SUMMARY

Read this topic to learn about the support for the Virtual Router Redundancy Protocol (VRRP) in
Juniper Cloud-Native router.

The Virtual Router Redundancy Protocol (VRRP) enables hosts on a LAN to make use of redundant
routing platforms on that LAN without requiring more than the static configuration of a single default
route on the hosts. The VRRP routing platforms share the IP address corresponding to the default route
configured on the hosts. At any time, one of the VRRP routing platforms is the primary (active) and the
others are backups. If the primary routing platform fails, one of the backup routing platforms becomes
the new primary routing platform, providing a virtual default routing platform and enabling traffic on the

68

https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/topic-map/ldp-overview.html
https://www.juniper.net/documentation/us/en/software/junos/high-availability/topics/topic-map/bfd.html

LAN to be routed without relying on a single routing platform. Using VRRP, a backup device can take
over a failed default device within a few seconds. This is done with minimum VRRP traffic and without
any interaction with the hosts. When JCNR is deployed in the containerized network function (CNF)
mode in cloud deployments, the VRRP unicast can be used to decide between the active and backup
JCNR nodes. Review the Understanding VRRP topic for more information.

NOTE: To enable VRRP for JCNR on an EKS cluster, a ConfigMap must be configured. Please
review JCNR ConfigMap for VRRP topic for more information

Virtual Routing Instance (VRF-Lite)

SUMMARY

Read this topic to understand the implementation of virtual routing instances in JCNR.

Virtual routing instances allow administrators to divide a the cloud-native router into multiple
independent virtual routers, each with its own routing table. Splitting a device into many virtual routing
instances isolates traffic traveling across the network without requiring multiple devices to segment the
network. You can use virtual routing instances to isolate customer traffic on your network and to bind
customer-specific instances to customer-owned interfaces. Virtual routing and forwarding (VRF) is often
used in conjunction with Layer 3 subinterfaces, allowing traffic on a single physical interface to be
differentiated and associated with multiple virtual routers. Each logical Layer 3 subinterface can belong
to only one routing instance. Review the Virtual Router Instances topic for more information.

ECMP

SUMMARY

69

https://www.juniper.net/documentation/us/en/software/junos/high-availability/topics/topic-map/vrrp-understanding.html
https://www.juniper.net/documentation/us/en/software/junos/multicast-l2/topics/topic-map/virtual-routing-instances.html

Read this topic to know about the support for ECMP with flow stickiness in the Juniper Cloud-Native
Router.

Equal-cost multipath (ECMP) is a network routing strategy that allows for traffic of the same session, or
flow—that is, traffic with the same source and destination—to be transmitted across multiple paths of
equal cost. It is a mechanism that allows you to load balance traffic and increase bandwidth by fully
utilizing otherwise unused bandwidth on links to the same destination.

When forwarding a packet, the routing technology must decide which next-hop path to use. In making a
determination, the device takes into account the packet header fields that identify a flow. When ECMP
is used, next-hop paths of equal cost are identified based on routing metric calculations and hash
algorithms. That is, routes of equal cost have the same preference and metric values, and the same cost
to the network. The ECMP process identifies a set of routers, each of which is a legitimate equal cost
next hop towards the destination. The routes that are identified are referred to as an ECMP set. Because
it addresses only the next hop destination, ECMP can be used with most routing protocols.

An equal-cost multipath (ECMP) set is formed when the routing table contains multiple next-hop
addresses for the same destination with equal cost. (Routes of equal cost have the same preference and
metric values.) If there is an ECMP set for the active route, Junos OS uses a hash algorithm to choose
one of the next-hop addresses in the ECMP set to install in the forwarding table.

The cloud-native router supports ECMP for both Container Network Interface (CNI) and transit router
modes. It supports flow stickiness when number of next hops is changed.

BGP Unnumbered

SUMMARY

Read this topic to know about the support for BGP unnumbered in the cloud-native router.

Juniper Cloud-Native Router supports BGP unnumbered peering starting in Release 23.2. This feature
allows BGP to auto-discover and to create peer neighbor sessions using the link-local IPv6 addresses of
directly connected neighbors. Using BGP unnumbered peering, which dynamically discovers IPV6
neighbors, reduces the burden of manually configuring an IPv6 underlay. It is used in N-tier Clos

70

architecture for point-to-point links. BGP unnumbered is supported in the default VRF (VRF-0) and
virtual routing instances (virtual-router). Read the BGP Unnumbered topic for more information.

NOTE: When a BGP unnumbered IPv6 session is established between 2 provider edge routers
(PEs) and IPv4 routes are being exchanged over that session, then the next hop for an IPv4 route
is an IPv6 address. This feature is supported on PEs having Linux kernel version 5 and above. If
the Linux kernel version is below 5, then the IPv4 routes are not added to the routing table.

71

https://www.juniper.net/documentation/us/en/software/nce/nce-225-bgp-unnumbered/index.html

5
CHAPTER

JCNR CNI Configuration Examples

JCNR Use-Cases and Configuration Overview | 73

L2 Kernel Access-Mode Interface Configuration Example | 78

L2 virtio Trunk-Mode Interface Configuration Example | 83

L2 VLAN Sub-Interface Configuration Example | 88

L3 VPN Interface Configuration Example | 93

L3 VLAN Sub-Interface Configuration Example | 100

JCNR Use-Cases and Configuration Overview

SUMMARY

Read this chapter to review configuration examples
for various Juniper Cloud-Native Router use cases
when deployed in the container network interface
(CNI) mode.

IN THIS SECTION

Configuration Example | 73

Troubleshooting | 77

The Juniper Cloud-Native Router can be deployed as a virtual switch or a transit router, either as a pure
container network function (CNF) or as a container network interface (CNI). In the CNF mode, there are
no application pods running on the node and the router only performs packeting switching or
forwarding through various interfaces on the system. In the CNI mode, application pods using software-
based network interfaces such as veth-pairs or DPDK vhost-user based interfaces, attach to the cloud-
native router. This chapter provides configuration examples for attaching different workload interface
types to the cloud-native router CNI instance.

Configuration Example

The JCNR CNI is deployed as a secondary CNI along with Multus as a primary CNI, to create different
types of secondary interfaces for the application pod. Multus uses a network attachment definition
(NAD) file to configure a secondary interface for the application pod. The NAD specifies how to create a
secondary interface, IP address allocation, network instance and more. A pod can have one or more
NADs, typically one per pod interface. The config: field in the NAD file defines the JCNR CNI
configuration. Here is a generic format of the NAD:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: <vrf-name>
spec:
 config: '{
 "cniVersion":"0.4.0",
 "name": "<vrf-name>",
 "plugins": [
 {
 "type": "jcnr",
 "args": {

73

 "key1":"value1",
 "key2","value2",

 },
 "ipam": {
 "type": "<ipam-type>",

 },
 "kubeConfig":"/etc/kubernetes/kubelet.conf"
 }
]
 }'

While configuring the NAD for the JCNR plugin type, the following keys are supported:
Table 2: Supported Keys in NAD

Key Description

instanceName The routing-instance name

instanceType One of:

virtual-router—for non-VPN-related applications

vrf—Layer 3 VPN implementations

virtual-switch—Layer 2 implementations

interfaceType Either "veth" or "virtio"

vlanId A valid vlan id "1-4095"

bridgeVlanId A valid vlan id "1-4095"

vlanIdList A list of command separated vlan-id, e.g: "1, 5, 7, 10-20"

parentInterface Valid interface name as it should appear in the pod. Child/sub-interfaces
have parentInterface as their prefix followed by "." If parentInterface is
specified, sub interface must be explicitly specifiied.

vrfTarget The route-target for vrf routing instance

74

Table 2: Supported Keys in NAD (Continued)

Key Description

bridgeDomain Bridge Domain under which pod interface should be attached in the virtual-
switch instance.

type (ipam) static—assigns same IP to all pods, to assign a unique IP per pod define a
unique NAD per pod per interface

host-local—unique IP address per pod interface on the same host. IP
addresses are not unique across two different nodes

whereabouts—unique IP address per pod across all nodes

(https://github.com/k8snetworkplumbingwg/whereabouts)

Consider the example NAD for a layer 2 kernel access mode interface:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: vswitch-pod1-bd100
spec:
 config: '{
 "cniVersion":"0.4.0",
 "name": "vswitch-pod1-bd100",
 "plugins": [
 {
 "type": "jcnr",
 "args": {
 "instanceName": "vswitch",
 "instanceType": "virtual-switch",
 "interfaceType": "veth",
 "bridgeDomain": "bd100",
 "bridgeVlanId": "100"
 },
 "ipam": {
 "type": "static",
 "addresses":[
 {
 "address":"99.61.0.2/16",
 "gateway":"99.61.0.1"
 },

75

https://github.com/k8snetworkplumbingwg/whereabouts

 {
 "address":"1234::99.61.0.2/120",
 "gateway":"1234::99.61.0.1"
 }
]
 },
 "kubeConfig":"/etc/kubernetes/kubelet.conf"
 }
]
 }'

The pod attaches to the router instance using the k8s.v1.cni.cncf.io/networks annotation. For example:

apiVersion: v1
kind: Pod
metadata:
 name: pod1
 annotations:
 k8s.v1.cni.cncf.io/networks: vswitch-pod1-bd100
spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - kind-worker
 containers:
 - name: pod1
 image: ubuntu:latest
 imagePullPolicy: IfNotPresent
 securityContext:
 privileged: false
 env:
 - name: KUBERNETES_POD_UID
 valueFrom:
 fieldRef:
 fieldPath: metadata.uid
 volumeMounts:
 - name: dpdk

76

 mountPath: /dpdk
 subPathExpr: $(KUBERNETES_POD_UID)
 volumes:
 - name: dpdk
 hostPath:
 path: /var/run/jcnr/containers

The volume mount host path exposes the UNIX domain socket of the vhost-user port to the DPDK
application. The DPDK interface details are stored at /dpdk/dpdk-interfaces.json inside the application
container for the DPDK application to consume. It is also exported into the pod as a pod annotation.
When you create a pod for use in the cloud-native router, the Kubernetes component known as kubelet
calls the Multus CNI to set up pod networking and interfaces. Multus reads the annotations section of
the pod.yaml file to refer the corresponding NAD. If a NAD points to jcnr as the CNI plug in, Multus calls
the JCNR-CNI to set up the pod interface. JCNR-CNI creates the interface as specified in the NAD.
JCNR-CNI then generates and pushes a configuration into cRPD.

Troubleshooting

Pods main fail to come up for various reasons:

• Image not found

• CNI failed to add interfaces

• CNI failed to push configuration into cRPD

• CNI failed to invoke vRouter REST APIs

• The NAD is invalid or undefined

77

The following commands will be useful to troubleshooting pod issues:

 # Check the Pod status
 kubectl get pods –A

 # Check pod state and CNI logs
 kubectl describe pod <pod-name>

 # Check the pod logs
 kubectl logs pod <pod-name>

 # Check the net-attach-def
 kubectl get net-attach-def <net-attach-def-name> -o yaml

 # Check CNI logs
 tail –f /var/log/jcnr/jcnr-cni.log

 # Check the cRPD config added by CNI (on the cRPD CLI)
 cli> show configuration groups cni

L2 Kernel Access-Mode Interface Configuration
Example

SUMMARY

Read this topic to learn how to add a user pod with a
kernel/veth access-mode interface to an instance of
the cloud-native router.

IN THIS SECTION

Overview | 79

78

Configuration Example | 79

Overview

You can configure a user pod with a Layer 2 access-mode kernel interface and attach it to the JCNR
instance. The Juniper Cloud-Native Router must have an L2 interface configured at the time of
deployment. Your high-level tasks are:

• Define and apply a network attachment definition (NAD)—The NAD file defines the required
configuration for Multus to invoke the JCNR-CNI and create a network to attach the pod interface
to.

• Define and apply a pod YAML file to your cloud-native router cluster—The pod YAML contains the
pod specifications and an annotation to the network created by the JCNR-CNI.

NOTE: Please review the "JCNR Use-Cases and Configuration Overview " on page 73 topic
for more information on NAD and pod YAML files.

Configuration Example

1. Here is an example NAD to create a Layer 2 kernel/veth access-mode interface with static IPAM:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: vswitch-pod1-bd100
spec:
 config: '{
 "cniVersion":"0.4.0",
 "name": "vswitch-pod1-bd100",
 "plugins": [
 {
 "type": "jcnr",
 "args": {
 "instanceName": "vswitch",

79

 "instanceType": "virtual-switch",
 "interfaceType": "veth",
 "bridgeDomain": "bd100",
 "bridgeVlanId": "100"
 },
 "ipam": {
 "type": "static",
 "addresses":[
 {
 "address":"99.61.0.2/16",
 "gateway":"99.61.0.1"
 },
 {
 "address":"1234::99.61.0.2/120",
 "gateway":"1234::99.61.0.1"
 }
]
 },
 "kubeConfig":"/etc/kubernetes/kubelet.conf"
 }
]
 }'

The NAD defines a bridge domain bd100 under which a veth type pod interface should be attached in
the virtual-switch instance.

It also defines a static IP address to be assigned to the pod interface.

2. Apply the NAD manifest to create the network.

kubectl apply -f nad-access_mode.yaml
networkattachmentdefinition.k8s.cni.cncf.io/vswitch-pod1-bd100 created

3. Verify the NAD is created.

[root@jcnr-01]# kubectl get net-attach-def
NAME AGE
vswitch-pod1-bd100 59s

80

4. Here is an example yaml to create a pod attached to the vswitch-pod1-bd100 network:

apiVersion: v1
kind: Pod
metadata:
 name: pod1
 annotations:
 k8s.v1.cni.cncf.io/networks: vswitch-pod1-bd100
spec:
 containers:
 - name: pod1
 image: ubuntu:latest
 imagePullPolicy: IfNotPresent
 securityContext:
 privileged: false
 env:
 - name: KUBERNETES_POD_UID
 valueFrom:
 fieldRef:
 fieldPath: metadata.uid
 volumeMounts:
 - name: dpdk
 mountPath: /dpdk
 subPathExpr: $(KUBERNETES_POD_UID)
 volumes:
 - name: dpdk
 hostPath:
 path: /var/run/jcnr/containers

The pod attaches to the router instance using the k8s.v1.cni.cncf.io/networks annotation

.

5. Apply the pod manifest.

[root@jcnr-01]# kubectl apply -f pod_access_mode.yaml
pod/pod1 created

81

6. Verify the pod is running.

[root@jcnr-01 ~]# kubectl get pods
NAME READY STATUS RESTARTS AGE
pod1 1/1 Running 0 2m38s

7. Describe the pod to verify a secondary interface is created and attached to the vswitch-pod1-bd100
network. (The output is trimmed for brevity).

[root@jcnr-01 ~]# kubectl describe pod pod1
Name: pod1
Namespace: default
Priority: 0
Node: jcnr-01/10.100.20.25
Start Time: Mon, 26 Jun 2023 09:36:57 -0400
Labels: <none>
Annotations: cni.projectcalico.org/containerID:
5b92668a6d7580e587de951d660c99969ce98bc239502afab6f9d191653f1e9b
 cni.projectcalico.org/podIP: 10.233.91.79/32
 cni.projectcalico.org/podIPs: 10.233.91.79/32
 k8s.v1.cni.cncf.io/network-status:
 [{
 "name": "k8s-pod-network",
 "ips": [
 "10.233.91.79"
],
 "default": true,
 "dns": {}
 },{
 "name": "default/vswitch-pod1-bd100",
 "interface": "net1",
 "ips": [
 "99.61.0.2",
 "1234::633d:2"
],
 "mac": "02:00:00:5D:74:76",
 "dns": {}
 }]
...

82

8. Verify the vRouter has the corresponding interface created. "Access the vRouter CLI" on page 143
and issue the vif --list command.

vif0/2 Ethernet: jvknet1-7c557fe MTU: 9160
 Type:Virtual HWaddr:02:00:00:66:01:56
 DDP: OFF SwLB: ON
 Vrf:0 Flags:L2Vof QOS:-1 Ref:8
 RX port packets:20 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Vlan Mode: Access Vlan Id: 100 OVlan Id: 100
 RX packets:7 bytes:518 errors:13
 TX packets:31 bytes:2438 errors:0
 Drops:14
 TX port packets:31 errors:0

Note that the interface type is Virtual and the Vlan mode is set to access with the Vlan ID set to 100.
The VRF is always 0 for L2 interfaces.

L2 virtio Trunk-Mode Interface Configuration Example

SUMMARY

Read this topic to learn how to add a user pod with a
virtio trunk-mode interface to an instance of the
cloud-native router.

IN THIS SECTION

Overview | 83

Configuration Example | 84

Overview

You can configure a user pod with a Layer 2 trunk-mode virtio interface and attach it to the JCNR
instance. The Juniper Cloud-Native Router must have an L2 interface configured at the time of
deployment. Your high-level tasks are:

• Define and apply a network attachment definition (NAD)—The NAD file defines the required
configuration for Multus to invoke the JCNR-CNI and create a network to attach the pod interface
to.

83

• Define and apply a pod YAML file to your cloud-native router cluster—The pod YAML contains the
pod specifications and an annotation to the network created by the JCNR-CNI.

NOTE: Please review the "JCNR Use-Cases and Configuration Overview " on page 73 topic
for more information on NAD and pod YAML files.

Configuration Example

1. Here is an example NAD to create a Layer 2 trunk-mode virtio interface interface with static IPAM:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: vswitch
spec:
 config: '{
 "cniVersion":"0.4.0",
 "name": "vswitch",
 "type": "jcnr",
 "args": {
 "instanceName": "vswitch",
 "instanceType": "virtual-switch",
 "vlanIdList":"201, 202, 203"
 },
 "ipam": {
 "type": "static",
 "capabilities":{"ips":true},
 "addresses":[
 {
 "address":"10.2.1.1/24",
 "gateway":"10.2.1.253"
 },
 {
 "address":"2001::10.2.1.1/120",
 "gateway":"2001::10.2.1.253"
 }
]
 },

84

 "kubeConfig":"/etc/kubernetes/kubelet.conf"
 }'

The NAD defines the VLAN IDs for the virtual-switch instance to which the pod's trunk interface will
be attached.

2. Apply the NAD manifest to create the network.

kubectl apply -f nad_trunk_mode.yaml
networkattachmentdefinition.k8s.cni.cncf.io/vswitch created

3. Verify the NAD is created.

[root@jcnr-01]# kubectl get net-attach-def
NAME AGE
vswitch 57s

4. Here is an example yaml to create a pod attached to the vswitch network:

apiVersion: v1
kind: Pod
metadata:
 name: pod1
 annotations:
 k8s.v1.cni.cncf.io/networks: vswitch
spec:
 containers:
 - name: pod1
 image: ubuntu:latest
 imagePullPolicy: IfNotPresent
 securityContext:
 privileged: false
 env:
 - name: KUBERNETES_POD_UID
 valueFrom:
 fieldRef:
 fieldPath: metadata.uid
 volumeMounts:
 - name: dpdk
 mountPath: /dpdk

85

 subPathExpr: $(KUBERNETES_POD_UID)
 volumes:
 - name: dpdk
 hostPath:
 path: /var/run/jcnr/containers

The pod attaches to the router instance using the k8s.v1.cni.cncf.io/networks annotation.

5. Apply the pod manifest.

[root@jcnr-01]# kubectl apply -f pod_trunk_mode.yaml
pod/pod1 created

6. Verify the pod is running.

[root@jcnr-01 ~]# kubectl get pods
NAME READY STATUS RESTARTS AGE
pod1 1/1 Running 0 38s

7. Describe the pod to verify a secondary interface is created and attached to the vswitch network. (The
output is trimmed for brevity).

[root@jcnr-01 ~]# kubectl describe pod pod1
Name: pod1
Namespace: default
Priority: 0
Node: jcnr-01/10.100.20.25
Start Time: Mon, 26 Jun 2023 09:53:31 -0400
Labels: <none>
Annotations: cni.projectcalico.org/containerID:
ac6f0a26ebfe68adf3b020d0def96f09e6b2b5c6303f55c0dde277b1ce7f9d9f
 cni.projectcalico.org/podIP: 10.233.91.81/32
 cni.projectcalico.org/podIPs: 10.233.91.81/32
 jcnr.juniper.net/dpdk-interfaces:
 [
 {
 "name": "net1",
 "vhost-adaptor-path": "/dpdk/vhost-net1.sock",
 "vhost-adaptor-mode": "client",
 "ipv4-address": "10.2.1.1/24",

86

 "ipv6-address": "2001::a02:101/120",
 "mac-address": "02:00:00:5B:C7:9F"
 }
]
 k8s.v1.cni.cncf.io/network-status:
 [{
 "name": "k8s-pod-network",
 "ips": [
 "10.233.91.81"
],
 "default": true,
 "dns": {}
 },{
 "name": "default/vswitch",
 "interface": "net1",
 "ips": [
 "10.2.1.1",
 "2001::a02:101"
],
 "mac": "02:00:00:5B:C7:9F",
 "dns": {}
 }]
...

8. Verify the vRouter has the corresponding interface created. "Access the vRouter CLI" on page 143
and issue the vif --list command.

vif0/2 PMD: vhostnet1-57f38cc0-6555-4bc2-ac MTU: 9160
 Type:Virtual HWaddr:02:00:00:dc:c9:27
 DDP: OFF SwLB: ON
 Vrf:0 Flags:L2 QOS:-1 Ref:11
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Vlan Mode: Trunk Vlan: 201-203
 RX packets:0 bytes:0 errors:0
 TX packets:4 bytes:256 errors:0
 Drops:0
 TX port packets:0 errors:4

Note that the interface type is Virtual and the Vlan mode is set to trunk with the Vlan ID set to 201-203.
The VRF is always 0 for L2 interfaces.

87

L2 VLAN Sub-Interface Configuration Example

SUMMARY

Read this topic to learn how to add a user pod with a
Layer 2 VLAN sub-interface to an instance of the
cloud-native router.

IN THIS SECTION

Overview | 88

Configuration Example | 89

Overview

You can configure a user pod with a Layer 2 VLAN sub-interface and attach it to the JCNR instance. The
Juniper Cloud-Native Router must have an L2 interface configured at the time of deployment. The cRPD
must be configured with the valid VLAN configuration for the fabric interface. For example:

set interfaces eth1 unit 100 vlan-id 100

NOTE: Note that the unit number and the VLAN ID must match.

Your high-level tasks are:

• Define and apply a network attachment definition (NAD)—The NAD file defines the required
configuration for Multus to invoke the JCNR-CNI and create a network to attach the pod interface
to.

• Define and apply a pod YAML file to your cloud-native router cluster—The pod YAML contains the
pod specifications and an annotation to the network created by the JCNR-CNI

NOTE: Please review the "JCNR Use-Cases and Configuration Overview " on page 73 topic
for more information on NAD and pod YAML files.

88

Configuration Example

1. Here is an example NAD to create a Layer 2 VLAN sub-interface:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: vswitch-bd201-sub
spec:
 config: '{
 "cniVersion":"0.4.0",
 "name": "vswitch-bd201-sub",
 "capabilities":{"ips":true},
 "plugins": [
 {
 "type": "jcnr",
 "args": {
 "instanceName": "vswitch",
 "instanceType": "virtual-switch",
 "bridgeDomain": "bd201",
 "bridgeVlanId": "201",
 "parentInterface": "net1",
 "interface": "net1.201"
 },
 "ipam": {
 "type": "static",
 "capabilities":{"ips":true},
 "addresses":[
 {
 "address":"10.3.0.1/24",
 "gateway":"10.3.0.254"
 },
 {
 "address":"2001:db8:3003::10.3.0.1/120",
 "gateway":"2001:db8:3003::10.3.0.1"
 }
]
 },
 "kubeConfig":"/etc/kubernetes/kubelet.conf"
 }

89

]
 }'

The NAD defines a bridge domain bd201 and a sub-interface net1.201 with a parent interface net1. The
pod will be attached in the virtual-switch instance.. It also defines a static IP address to be assigned to
the pod interface.

2. Apply the NAD manifest to create the network.

kubectl apply -f nad_l2_vlan_subinterface.yaml
networkattachmentdefinition.k8s.cni.cncf.io/vswitch-bd201-sub created

3. Verify the NAD is created.

[root@jcnr-01]# kubectl get net-attach-def
NAME AGE
vswitch-bd201-sub 43s

4. Here is an example yaml to create a pod attached to the vswitch-bd201-sub network:

apiVersion: v1
kind: Pod
metadata:
 name: pod1
 annotations:
 k8s.v1.cni.cncf.io/networks: "vswitch-bd201-sub"
spec:
 containers:
 - name: pod1
 image: ubuntu:latest
 imagePullPolicy: IfNotPresent
 securityContext:
 privileged: false
 resources:
 requests:
 memory: 2Gi
 limits:
 hugepages-1Gi: 2Gi
 env:
 - name: KUBERNETES_POD_UID

90

 valueFrom:
 fieldRef:
 fieldPath: metadata.uid
 volumeMounts:
 - name: dpdk
 mountPath: /dpdk
 subPathExpr: $(KUBERNETES_POD_UID)
 - mountPath: /dev/hugepages
 name: hugepage
 volumes:
 - name: dpdk
 hostPath:
 path: /var/run/jcnr/containers
 - name: hugepage
 emptyDir:
 medium: HugePages

The pod attaches to the router instance using the k8s.v1.cni.cncf.io/networks annotation.

5. Apply the pod manifest.

[root@jcnr-01]# kubectl apply -f pod_access_mode.yaml
pod/pod1 created

6. Verify the pod is running.

[root@jcnr-01 ~]# kubectl get pods
NAME READY STATUS RESTARTS AGE
pod1 1/1 Running 0 40s

7. Describe the pod to verify a secondary interface is created and attached to the vswitch-bd201-sub
network. (The output is trimmed for brevity).

[root@jcnr-01 ~]# kubectl describe pod pod1
Name: pod1
Namespace: default
Priority: 0
Node: jcnr-01/10.100.20.25
Start Time: Mon, 26 Jun 2023 09:53:31 -0400
Labels: <none>

91

Annotations: cni.projectcalico.org/containerID:
58642dd26f85769e14d302153357e84e6900398532d1b82b50a845ac1ede051a
 cni.projectcalico.org/podIP:
 cni.projectcalico.org/podIPs:
 jcnr.juniper.net/dpdk-interfaces:
 [
 {
 "name": "net1",
 "vhost-adaptor-path": "/dpdk/vhost-net1.sock",
 "vhost-adaptor-mode": "client",
 "ipv4-address": "10.3.0.1/24",
 "ipv6-address": "2001:db8:3003::a03:1/120",
 "mac-address": "02:00:00:84:DC:42",
 "vlan-id": "201"
 }
]
 k8s.v1.cni.cncf.io/network-status:
 [{
 "name": "k8s-pod-network",
 "ips": [
 "10.233.91.97"
],
 "default": true,
 "dns": {}
 },{
 "name": "default/vswitch-bd201-sub",
 "interface": "net1",
 "ips": [
 "10.3.0.1",
 "2001:db8:3003::a03:1"
],
 "mac": "02:00:00:84:DC:42",
 "dns": {}
 }]
...

8. Verify the vRouter has the corresponding interface created. "Access the vRouter CLI" on page 143
and issue the vif --list command.

vif0/2 PMD: vhostnet1-d5eee4ec-dd7c-4e MTU: 9160
 Type:Virtual HWaddr:02:00:00:84:dc:42
 DDP: OFF SwLB: ON

92

 Vrf:65535 Flags:L2 QOS:-1 Ref:14
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0
 TX port packets:0 errors:293

vif0/3 Virtual: vhostnet1-d5eee4ec-dd7c-4e.201 Vlan(o/i)(,S): 201/201 Parent:vif0/2 MTU:
1514
 Type:Virtual(Vlan) HWaddr:02:00:00:84:dc:42
 DDP: OFF SwLB: ON
 Vrf:0 Flags:L2 QOS:-1 Ref:1
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:208 bytes:17071 errors:0
 Drops:0

Note that the interface type is Virtual and the Vlan ID set to 201. The parent interface is vif0/2. The
VRF is always 0 for L2 sub-interfaces.

L3 VPN Interface Configuration Example

SUMMARY

Read this topic to learn how to add a user pod with a
virtio and kernel interfaces attached to an L3 VPN
instance on the cloud-native router.

IN THIS SECTION

Overview | 93

Configuration Example | 94

Overview

You can configure a user pod with a virtio and kernel interfaces to an L3 VPN instance on the cloud-
native router. The Juniper Cloud-Native Router must have an L3 interface configured at the time of
deployment. Your high-level tasks are:

93

• Define and apply a network attachment definition (NAD)—The NAD file defines the required
configuration for Multus to invoke the JCNR-CNI and create a network to attach the pod interface
to.

• Define and apply a pod YAML file to your cloud-native router cluster—The pod YAML contains the
pod specifications and an annotation to the network created by the JCNR-CNI.

NOTE: Please review the "JCNR Use-Cases and Configuration Overview " on page 73 topic
for more information on NAD and pod YAML files.

Configuration Example

1. Here is an example NAD to create a virtio interface attached to an L3 VPN instance:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: vrf100
spec:
 config: '{
 "cniVersion":"0.4.0",
 "name": "vrf100",
 "plugins": [
 {
 "type": "jcnr",
 "args": {
 "instanceName": "vrf100",
 "instanceType": "vrf",
 "vrfTarget":"100:1"
 },
 "ipam": {
 "type": "static",
 "addresses":[
 {
 "address":"99.61.0.2/16",
 "gateway":"99.61.0.1"
 },
 {

94

 "address":"1234::99.61.0.2/120",
 "gateway":"1234::99.61.0.1"
 }
]
 },
 "kubeConfig":"/etc/kubernetes/kubelet.conf"
 }
]
 }'

The NAD defines a virtual routing and forwarding (VRF) instance vrf100 to which the pod's virtio
interface will be attached. You must use the vrf instance type for Layer 3 VPN implementations.
The NAD also defines a static IP address to be assigned to the pod interface.

2. Apply the NAD manifest to create the network.

kubectl apply -f nad_virtio_L3vpn.yaml
networkattachmentdefinition.k8s.cni.cncf.io/vrf100 created

3. Here is an example NAD to create a kernel interface attached to an L3VPN instance:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: vrf200
spec:
 config: '{
 "cniVersion":"0.4.0",
 "name": "vrf200",
 "plugins": [
 {
 "type": "jcnr",
 "args": {
 "instanceName": "vrf200",
 "instanceType": "vrf",
 "interfaceType": "veth",
 "vrfTarget":"200:1"
 },
 "ipam": {
 "type": "static",
 "addresses":[

95

 {
 "address":"99.62.0.2/16",
 "gateway":"99.62.0.1"
 },
 {
 "address":"1234::99.62.0.2/120",
 "gateway":"1234::99.62.0.1"
 }
]
 },
 "kubeConfig":"/etc/kubernetes/kubelet.conf"
 }
]
 }'

The NAD defines a virtual routing and forwarding (VRF) instance vrf200 with a veth interface type to
which the pod's kernel interface will be attached.

It also defines a static IP address to be assigned to the pod interface.

4. Apply the NAD manifest to create the network.

kubectl apply -f nad_kernel_L3vpn.yaml
networkattachmentdefinition.k8s.cni.cncf.io/vrf200 created

5. Verify the NADs are created.

[root@jcnr-01]# kubectl get net-attach-def
NAME AGE
vrf100 8m40s
vrf200 55s

6. Here is an example yaml to create a pod attached to the vrf100 and vrf200 networks:

apiVersion: v1
kind: Pod
metadata:
 name: pod1
 annotations:
 k8s.v1.cni.cncf.io/networks: vrf100, vrf200
spec:

96

 containers:
 - name: pod1
 image: ubuntu:latest
 imagePullPolicy: IfNotPresent
 securityContext:
 privileged: false
 env:
 - name: KUBERNETES_POD_UID
 valueFrom:
 fieldRef:
 fieldPath: metadata.uid
 volumeMounts:
 - name: dpdk
 mountPath: /dpdk
 subPathExpr: $(KUBERNETES_POD_UID)
 volumes:
 - name: dpdk
 hostPath:
 path: /var/run/jcnr/containers

The pod attaches to the router instance using the k8s.v1.cni.cncf.io/networks annotation.

7. Apply the pod manifest.

[root@jcnr-01]# kubectl apply -f pod_access_mode.yaml
pod/pod1 created

8. Verify the pod is running.

[root@jcnr-01 ~]# kubectl get pods
NAME READY STATUS RESTARTS AGE
pod1 1/1 Running 0 2m38s

9. Describe the pod to verify two secondary interface are created and attached to the vrf100 and vrf200
networks. (The output is trimmed for brevity).

[root@jcnr-01 ~]# kubectl describe pod pod1
Name: pod1
Namespace: default
Priority: 0

97

Node: jcnr-01/10.100.20.25
Start Time: Mon, 26 Jun 2023 09:53:31 -0400
Labels: <none>
Annotations: cni.projectcalico.org/containerID:
6705c204abca5aeaa0241c1791ea911d57bd972336d969ac5d6a482c96348d95
 cni.projectcalico.org/podIP: 10.233.91.100/32
 cni.projectcalico.org/podIPs: 10.233.91.100/32
 jcnr.juniper.net/dpdk-interfaces:
 [
 {
 "name": "net1",
 "vhost-adaptor-path": "/dpdk/vhost-net1.sock",
 "vhost-adaptor-mode": "client",
 "ipv4-address": "99.61.0.2/16",
 "ipv6-address": "1234::633d:2/120",
 "mac-address": "02:00:00:A9:B3:23"
 }
]
 k8s.v1.cni.cncf.io/network-status:
 [{
 "name": "k8s-pod-network",
 "ips": [
 "10.233.91.100"
],
 "default": true,
 "dns": {}
 },{
 "name": "default/vrf100",
 "interface": "net1",
 "ips": [
 "99.61.0.2",
 "1234::633d:2"
],
 "mac": "02:00:00:A9:B3:23",
 "dns": {}
 },{
 "name": "default/vrf200",
 "interface": "net2",
 "ips": [
 "99.62.0.2",
 "1234::633e:2"
],
 "mac": "02:00:00:E0:AC:59",

98

 "dns": {}
 }]
...

10. Verify the vRouter has the corresponding interface created. "Access the vRouter CLI" on page 143
and issue the vif --list command.

vif0/5 PMD: vhostnet1-2464783d-1ddd-4bf5-b7 NH: 16 MTU: 9160
 Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:99.61.0.2
 IP6addr:1234::633d:2
 DDP: OFF SwLB: ON
 Vrf:1 Mcast Vrf:1 Flags:PL3DProxyEr QOS:-1 Ref:14
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/6 Ethernet: jvknet2-2464783 NH: 19 MTU: 9160
 Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:99.62.0.2
 IP6addr:1234::633e:2
 DDP: OFF SwLB: ON
 Vrf:2 Mcast Vrf:2 Flags:PL3DVofProxyEr QOS:-1 Ref:11
 RX port packets:28 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:28 bytes:13612 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:28

Note that the interface type is Virtual and the type of interface is L3. You can see the IP addresses
assigned to the interfaces for the corresponding valid VRF numbers.

99

L3 VLAN Sub-Interface Configuration Example

SUMMARY

Read this topic to learn how to add a user pod with a
Layer 3 VLAN sub-interface to an instance of the
cloud-native router.

IN THIS SECTION

Overview | 100

Configuration Example | 101

Overview

You can configure a user pod with a Layer 3 VLAN sub-interface and attach it to the JCNR instance. The
Juniper Cloud-Native Router must have an L3 interface configured at the time of deployment. The cRPD
must be configured with the valid VLAN configuration for the fabric interface. For example:

set interfaces ens1f1v1 unit 201 vlan-id 201
set interfaces ens1f1v1 unit 201 family inet address 192.168.123.1/24
set interfaces ens1f1v1 unit 201 family inet6 address abcd:192:168:123::1/64
set routing-instance blue interface ens1f1v1.201

Your high-level tasks are:

• Define and apply a network attachment definition (NAD)—The NAD file defines the required
configuration for Multus to invoke the JCNR-CNI and create a network to attach the pod interface
to.

• Define and apply a pod YAML file to your cloud-native router cluster—The pod YAML contains the
pod specifications and an annotation to the network created by the JCNR-CNI

NOTE: Please review the "JCNR Use-Cases and Configuration Overview " on page 73 topic
for more information on NAD and pod YAML files.

100

Configuration Example

1. Here are example NADs to create a Layer 3 VLAN sub-interface:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: vrf201
spec:
 config: '{
 "cniVersion":"0.4.0",
 "name": "vrf201",
 "plugins": [
 {
 "type": "jcnr",
 "args": {
 "instanceName": "vrf201",
 "instanceType": "virtual-router",
 "parentInterface":"net1",
 "vlanId": "201"
 },
 "ipam": {
 "type": "static",
 "addresses":[
 {
 "address":"99.61.0.2/16",
 "gateway":"99.61.0.1"
 },
 {
 "address":"1234::99.61.0.2/120",
 "gateway":"1234::99.61.0.1"
 }
]
 },
 "kubeConfig":"/etc/kubernetes/kubelet.conf"
 }
]
 }'

The NAD defines virtual-router instances vrf201 with the parent interface net1 and VLAN ID 201. A
virtual-router instance type is similar to a VPN routing and forwarding instance type, but used for

101

non-VPN-related applications. There are no virtual routing and forwarding (VRF) import, VRF export,
VRF target, or route distinguisher requirements for this instance type. The pod VLAN sub-interface is
attached to vrf201 instance. The NAD also defines static IP addresses to be assigned to the pod
interface.

2. Apply the NAD manifests to create the networks.

kubectl apply -f nad_l3_vlan_subinterface_201.yaml
networkattachmentdefinition.k8s.cni.cncf.io/vrf201 created

3. Verify the NADs are created.

kubectl get net-attach-def
NAME AGE
vrf201 30s

4. Here is an example yaml to create a pod attached to the vrf201 and vrf202 networks:

apiVersion: v1
kind: Pod
metadata:
 name: pod1
 annotations:
 k8s.v1.cni.cncf.io/networks: |
 [
 {
 "name": "vrf201",
 "interface":"net1.201"
 }
]
spec:
 containers:
 - name: pod1
 image: ubuntu:latest
 imagePullPolicy: IfNotPresent
 securityContext:
 privileged: false
 env:
 - name: KUBERNETES_POD_UID
 valueFrom:

102

 fieldRef:
 fieldPath: metadata.uid
 volumeMounts:
 - name: dpdk
 mountPath: /dpdk
 subPathExpr: $(KUBERNETES_POD_UID)
 volumes:
 - name: dpdk
 hostPath:
 path: /var/run/jcnr/containers

The pod attaches to the router instances using the k8s.v1.cni.cncf.io/networks annotation.

5. Apply the pod manifest.

[root@jcnr-01]# kubectl apply -f pod_l3_subinterface.yaml
pod/pod1 created

6. Verify the pod is running.

[root@jcnr-01 ~]# kubectl get pods
NAME READY STATUS RESTARTS AGE
pod1 1/1 Running 0 38s

7. Describe the pod to verify a secondary interface is created and attached to the vrf201 network. (The
output is trimmed for brevity).

[root@jcnr-01 ~]# kubectl describe pod pod1
Name: pod1
Namespace: default
Priority: 0
Node: jcnr-01/10.100.20.25
Start Time: Mon, 26 Jun 2023 09:53:31 -0400
Labels: <none>
Annotations: cni.projectcalico.org/containerID:
90de252886b3e0a97526ac175544078fb03debf05650946d759e2de0d5179c17
 cni.projectcalico.org/podIP: 10.233.91.126/32
 cni.projectcalico.org/podIPs: 10.233.91.126/32
 jcnr.juniper.net/dpdk-interfaces:
 [

103

 {
 "name": "net1.201",
 "vhost-adaptor-path": "/dpdk/vhost-net1.sock",
 "vhost-adaptor-mode": "client",
 "ipv4-address": "99.61.0.2/16",
 "ipv6-address": "1234::633d:2/120",
 "mac-address": "02:00:00:8C:97:A2",
 "vlan-id": "201"
 }
]
 k8s.v1.cni.cncf.io/network-status:
 [{
 "name": "k8s-pod-network",
 "ips": [
 "10.233.91.126"
],
 "default": true,
 "dns": {}
 },{
 "name": "default/vrf201",
 "interface": "net1.201",
 "ips": [
 "99.61.0.2",
 "1234::633d:2"
],
 "mac": "02:00:00:8C:97:A2",
 "dns": {}
 }]
...

8. Verify the vRouter has the corresponding interface created. "Access the vRouter CLI" on page 127
and issue the vif --list command.

vif0/11 PCI: 0000:b3:11.1 (Speed 10000, Duplex 1) NH: 16 MTU: 9014 ---> fabric
interface
 Type:Physical HWaddr:b2:56:78:5c:af:fa IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:0 Flags:L3L2Vof QOS:0 Ref:42
 RX port packets:10988509 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: 0000:b3:11.1 Status: UP Driver: net_iavf
 RX packets:10988509 bytes:5582067106 errors:0

104

 TX packets:10988484 bytes:5581953776 errors:0
 Drops:0
 TX port packets:10988484 errors:0

vif0/17 PMD: ens1f1v1 NH: 44 MTU: 9000 ---> tap
interface
 Type:Host HWaddr:b2:56:78:5c:af:fa IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:0 Flags:L3L2 QOS:0 Ref:41 TxXVif:11
 RX device packets:2201 bytes:935980 errors:0
 RX queue packets:2201 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:2201 bytes:935980 errors:0
 TX packets:493 bytes:161906 errors:0
 Drops:0
 TX queue packets:493 errors:0
 TX device packets:493 bytes:161906 errors:0

vif0/48 Virtual: ens1f1v1.201 Vlan(o/i)(,S): 201/201 NH: 161 MTU: 1514
 Parent:vif0/11 Sub-type: physical-tap ---> L3 sub-
interface, parent is a physical interface
 Type:Virtual(Vlan) HWaddr:b2:56:78:5c:af:fa IPaddr:192.168.123.1
 IP6addr:abcd:192:168:123::1
 DDP: OFF SwLB: ON
 Vrf:201 Mcast Vrf:201 Flags:L3DProxyEr QOS:-1 Ref:4
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:18 bytes:1836 errors:0
 Drops:0

vif0/49 Virtual: ens1f1v1.201 Vlan(o/i)(,S): 201/201 NH: 156 MTU: 9000
 Parent:vif0/17 Sub-type: Host-tap ---> L3 sub-
interface, parent is a tap interface
 Type:Virtual(Vlan) HWaddr:b2:56:78:5c:af:fa IPaddr:192.168.123.1
 IP6addr:abcd:192:168:123::1
 DDP: OFF SwLB: ON
 Vrf:201 Mcast Vrf:65535 Flags:L3DProxyEr QOS:-1 Ref:4 TxXVif:48
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:18 bytes:1908 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/50 PMD: vhostnet1-9403fd77-648a-47 NH: 177 MTU: 9160 ---> pod

105

interface
 Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:65535 Mcast Vrf:65535 Flags:L3DProxyEr QOS:-1 Ref:20
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/51 Virtual: vhostnet1-9403fd77-648a-47.202 Vlan(o/i)(,S): 202/202 NH: 17 MTU: 1514
 Parent:vif0/50 ---->L3 pod
sub-interface, parent is the pod interface
 Type:Virtual(Vlan) HWaddr:00:00:5e:00:01:00 IPaddr:99.62.0.2
 IP6addr:1234::633e:2
 DDP: OFF SwLB: ON
 Vrf:2 Mcast Vrf:2 Flags:PL3DProxyEr QOS:-1 Ref:4
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

You can see the IP addresses assigned to the sub-interfaces for the corresponding valid VRF
numbers.

106

6
CHAPTER

Monitoring and Logging

Monitor JCNR via CLI | 108

Telemetry Capabilities of Cloud-Native Router | 115

Logging and Notifications | 122

Monitor JCNR via CLI

SUMMARY

This topic contains instructions to access the JCNR
controller (cRPD) CLI and run operational commands.

IN THIS SECTION

Accessing the JCNR Controller (cRPD)
CLI | 108

Example Show Commands | 110

Example Clear Commands | 115

Accessing the JCNR Controller (cRPD) CLI

You can access the command-line interface (CLI) of the cloud-native router controller by accessing the
shell of the running cRPD container.

NOTE: The commands below are provided as an example. The cRPD pod name must be replaced
from your environment. The command outputs may differ based on your environment.

List the K8s Pods Running in the Cluster

kubectl get pods -A

NAMESPACE NAME READY STATUS RESTARTS
AGE
contrail-deploy contrail-k8s-deployer-7b5dd699b9-nd7xf 1/1 Running 0
41m
contrail contrail-vrouter-masters-dfxgm 3/3 Running 0
41m
jcnr kube-crpd-worker-ds-8tnf7 1/1 Running 0
41m
jcnr syslog-ng-54749b7b77-v24hq 1/1 Running 0
41m
kube-system calico-kube-controllers-57b9767bdb-5wbj6 1/1 Running 2 (92d ago)
129d

108

kube-system calico-node-j4m5b 1/1 Running 2 (92d ago)
129d
kube-system coredns-8474476ff8-fpw78 1/1 Running 2 (92d ago)
129d
kube-system dns-autoscaler-7f76f4dd6-q5vdp 1/1 Running 2 (92d ago)
129d
kube-system kube-apiserver-5a5s5-node2 1/1 Running 3 (92d ago)
129d
kube-system kube-controller-manager-5a5s5-node2 1/1 Running 4 (92d ago)
129d
kube-system kube-multus-ds-amd64-4zm5k 1/1 Running 2 (92d ago)
129d
kube-system kube-proxy-l6xm8 1/1 Running 2 (92d ago)
129d
kube-system kube-scheduler-5a5s5-node2 1/1 Running 4 (92d ago)
129d
kube-system nodelocaldns-6kwg5 1/1 Running 2 (92d ago)
129d

Copy the name of the cRPD pod—kube-crpd-worker-ds-8tnf7 in this example output . You will use the pod
name to connect to the running container's shell.

Connect to the cRPD CLI

Issue the kubectl exec command to access the running container's shell:

kubectl exec -n <namespace> -it <pod name> --container <container name> -- bash

where <namespace> identifies the namespace in which the pod is running, <pod name> specificies the
name of the pod and the <container name> specifies the name of the container (to be specified if the
pod has more than one container).

The cRPD pod has only one running container. Here is an example command:

kubectl exec -n jcnr -it kube-crpd-worker-ds-8tnf7 -- bash

The result of the above command should appear similar to:

Defaulted container "kube-crpd-worker" out of: kube-crpd-worker, jcnr-crpd-config (init),
install-cni (init)

===>

109

 Containerized Routing Protocols Daemon (CRPD)
 Copyright (C) 2020-2022, Juniper Networks, Inc. All rights reserved.
 <===
root@jcnr-01:/#

At this point, you have connected to the shell of the cRPD. Just as with other Junos-based shells, you
access the operational mode of the cloud-native router the same way as if you were connected to the
console of a physical Junos OS device.

root@jcnr-01:/# cli
root@jcnr-cni>

Example Show Commands

Here are some example show commands you can execute:

show interfaces terse
Interface@link Oper State Addresses
__crpd-brd1 UNKNOWN fe80::acbf:beff:fe8a:e046/64
cali1b684d67bd4@if3 UP fe80::ecee:eeff:feee:eeee/64
cali34cf41e29bb@if3 UP fe80::ecee:eeff:feee:eeee/64
docker0 DOWN 172.17.0.1/16
eno1 UP 10.102.70.146/24 fe80::a94:efff:fe79:dcae/64
eno2 UP
eno3 UP 10.1.1.1/24 fe80::a94:efff:fe79:dcac/64
eno3v1 UP
eno4 DOWN
enp0s20f0u1u6 UNKNOWN
ens2f0 DOWN
ens2f1 DOWN
erspan0@NONE DOWN
eth0 UNKNOWN 169.254.143.126/32 fe80::b4db:eeff:fe78:9f43/64
gre0@NONE UNKNOWN
gretap0@NONE DOWN
ip6tnl0@NONE UNKNOWN fe80::74b6:2cff:fea7:d850/64
irb DOWN
kube-ipvs0 DOWN 10.233.0.1/32 10.233.0.3/32 10.233.35.229/32
lo UNKNOWN 127.0.0.1/8 ::1/128
lsi UNKNOWN fe80::cc59:6dff:fe9c:4db3/64

110

nodelocaldns DOWN 169.254.25.10/32
sit0@NONE
UNKNOWN ::169.254.143.126/96 ::10.233.91.64/96 ::172.17.0.1/96 ::10.102.70.146/96 ::10.1.1
.1/96 ::127.0.0.1/96
tunl0@NONE UNKNOWN
vxlan.calico UNKNOWN 10.233.91.64/32 fe80::64c6:34ff:fecd:3522/64

show configuration routing-instances
vswitch {
 instance-type virtual-switch;
 bridge-domains {
 bd100 {
 vlan-id 100;
 }
 bd200 {
 vlan-id 200;
 }
 bd300 {
 vlan-id 300;
 }
 bd700 {
 vlan-id 700;
 interface enp59s0f1v0;
 }
 bd701 {
 vlan-id 701;
 }
 bd702 {
 vlan-id 702;
 }
 bd703 {
 vlan-id 703;
 }
 bd704 {
 vlan-id 704;
 }
 bd705 {
 vlan-id 705;
 }
 }

111

 interface bond0;
}

show bridge ?
Possible completions:
mac-table Show media access control table
statistics Show bridge statistics information

show bridge mac-table ?
Possible completions:
 <[Enter]> Execute this command
 count Number of MAC address
 mac-address MAC address in the format XX:XX:XX:XX:XX:XX
 vlan-id Display MAC address learned on a specified VLAN or 'all-vlan'
 | Pipe through a command

show bridge mac-table
Routing Instance : default-domain:default-project:ip-fabric:__default__
Bridging domain VLAN id : 3002
MAC MAC Logical
address flags interface

00:00:5E:00:53:01 D bond0

show bridge statistics ?
Possible completions:
 <[Enter]> Execute this command
 vlan-id Display statistics for a particular vlan (1..4094)
 | Pipe through a command

show bridge statistics
Bridge domain vlan-id: 100
 Local interface: bond0
 Broadcast packets Tx : 0 Rx : 0
 Multicast packets Tx : 0 Rx : 0
 Unicast packets Tx : 0 Rx : 0

112

 Broadcast bytes Tx : 0 Rx : 0
 Multicast bytes Tx : 0 Rx : 0
 Unicast bytes Tx : 0 Rx : 0
 Flooded packets : 0
 Flooded bytes : 0
 Local interface: ens1f0v1
 Broadcast packets Tx : 0 Rx : 0
 Multicast packets Tx : 0 Rx : 0
 Unicast packets Tx : 0 Rx : 0
 Broadcast bytes Tx : 0 Rx : 0
 Multicast bytes Tx : 0 Rx : 0
 Unicast bytes Tx : 0 Rx : 0
 Flooded packets : 0
 Flooded bytes : 0
 Local interface: ens1f3v1
 Broadcast packets Tx : 0 Rx : 0
 Multicast packets Tx : 0 Rx : 0
 Unicast packets Tx : 0 Rx : 0
 Broadcast bytes Tx : 0 Rx : 0
 Multicast bytes Tx : 0 Rx : 0
 Unicast bytes Tx : 0 Rx : 0
 Flooded packets : 0

show firewall filter filter1
Filter : filter1 vlan-id : 3001
 Term Packet
 t1 0

show configuration firewall:firewall
family {
 bridge {
 filter filter1 {
 term t1 {
 from {
 destination-mac-address 10:30:30:30:30:31;
 source-mac-address 10:30:30:30:30:30;
 ether-type oam;
 }
 then {
 discard;

113

 }
 }
 }
 }
}

show route 172.68.20.2/32 table nad1.inet
nad1.inet.0: 11 destinations, 15 routes (11 active, 0 holddown, 0 hidden)
@ = Routing Use Only, # = Forwarding Use Only
+ = Active Route, - = Last Active, * = Both

172.68.20.2/32 @[BGP/170] 00:00:23, localpref 100, from 1.1.1.220
 AS path: I, validation-state: unverified
 > via Tunnel Composite, UDP (src 1.1.1.35 dest 1.1.1.220), Push 48
 [BGP/170] 00:13:18, localpref 100, from 1.1.24.24
 AS path: I, validation-state: unverified
 > via Tunnel Composite, UDP (src 1.1.1.35 dest 1.1.24.24), Push 16
 #[Multipath/255] 00:00:23, metric2 2
 via Tunnel Composite, UDP (src 1.1.1.35 dest 1.1.1.220), Push 48
 > via Tunnel Composite, UDP (src 1.1.1.35 dest 1.1.24.24), Push 16

show interfaces routing enp216s0f0
Interface State Addresses
enp216s0f0 Up MPLS enabled
 ISO enabled
 INET 192.168.123.3
 INET6 2001:192:168:123::3
 INET6 fe80::42a6:b7ff:fe2c:a448

show dynamic-tunnels database
*- Signal Tunnels #- PFE-down
Table: inet.3
Destination-network: 1.1.1.220/32
Destination-network: 1.1.24.24/32
Tunnel to: 1.1.24.24/32
 Reference count: 4
 Next-hop type: UDP (forwarding-nexthop)
 Source address: 1.1.1.35
 Next hop: v6 mapped, tunnel-composite, 0x557917afc91c, nhid 0

114

 VPN Label: Push 16, Reference count: 2
 Ingress Route: [OSPF] 1.1.24.24/32, via metric 2
 Traffic Statistics: Packets 0, Bytes 0
 State: Up
 Aggregate Traffic Statistics:

Example Clear Commands

Here are some example clear commands:

clear bridge mac-table ?
Possible completions:
 <[Enter]> Execute this command
 mac-address Clear specific MAC address
 vlan-id Clear mac-table for a specified vlan-id (1..4094)
 | Pipe through a command

clear bridge statistics ?
Possible completions:
 <[Enter]> Execute this command
 vlan-id Clear L2 interface statistics for a specified vlan-id (1..4094)
 | Pipe through a command

Telemetry Capabilities of Cloud-Native Router

IN THIS SECTION

JCNR Telemetry | 116

Read this topic to learn about the telemetry data available from Juniper Cloud-Native Router.

115

JCNR Telemetry

Juniper Cloud-Native Router comes with telemetry capabilities that enable you to see performance
metrics and telemetry data. The container contrail-vrouter-telemetry-exporter provides you this
visibility. This container runs alongside the other vRouter containers in the contrail-vrouter-masters
pod.
The telemetry exporter periodically queries the Introspect on the vRouter-agent for statistics and
reports metrics information in response to the Prometheus scrape requests. You can directly view the
telemetry data by using the following URL: http://host server IP address:8070. The following table
shows a sample output.

NOTE: We've grouped the output shown in the following table. The cloud-native router does not
group or sort the output on live systems.

116

Table 3: Sample Telemetry Output

Group Sample Output

Memory usage per
vRouter

TYPE virtual_router_system_memory_cached_bytes gauge
HELP virtual_router_system_memory_cached_bytes Virtual router system memory cached
virtual_router_system_memory_cached_bytes{vrouter_name="jcnr.example.com"} 2635970448
TYPE virtual_router_system_memory_buffers gauge
HELP virtual_router_system_memory_buffers Virtual router system memory buffer
virtual_router_system_memory_buffers{vrouter_name="jcnr.example.com"} 32689
TYPE virtual_router_system_memory_bytes gauge
HELP virtual_router_system_memory_bytes Virtual router total system memory
virtual_router_system_memory_bytes{vrouter_name="jcnr.example.com"} 2635970448
TYPE virtual_router_system_memory_free_bytes gauge
HELP virtual_router_system_memory_free_bytes Virtual router system memory free
virtual_router_system_memory_free_bytes{vrouter_name="jcnr.example.com"} 2635969296
TYPE virtual_router_system_memory_used_bytes gauge
HELP virtual_router_system_memory_used_bytes Virtual router system memory used
virtual_router_system_memory_used_bytes{vrouter_name="jcnr.example.com"} 32689
TYPE virtual_router_virtual_memory_kilobytes gauge
HELP virtual_router_virtual_memory_kilobytes Virtual router virtual memory
virtual_router_virtual_memory_kilobytes{vrouter_name="jcnr.example.com"} 0
TYPE virtual_router_resident_memory_kilobytes gauge
HELP virtual_router_resident_memory_kilobytes Virtual router resident memory
virtual_router_resident_memory_kilobytes{vrouter_name="jcnr.example.com"} 32689
TYPE virtual_router_peak_virtual_memory_bytes gauge
HELP virtual_router_peak_virtual_memory_bytes Virtual router peak virtual memory
virtual_router_peak_virtual_memory_bytes{vrouter_name="jcnr.example.com"} 2894328001

117

Table 3: Sample Telemetry Output (Continued)

Group Sample Output

Packet count per
interface

TYPE virtual_router_phys_if_input_packets_total counter
HELP virtual_router_phys_if_input_packets_total Total packets received by physical
interface
virtual_router_phys_if_input_packets_total{vrouter_name="jcnr.example.com",interface_na
me="bond0"} 1483
TYPE virtual_router_phys_if_output_packets_total counter
HELP virtual_router_phys_if_output_packets_total Total packets sent by physical
interface
virtual_router_phys_if_output_packets_total{vrouter_name="jcnr.example.com",interface_n
ame="bond0"} 32969
TYPE virtual_router_phys_if_input_bytes_total counter
HELP virtual_router_phys_if_input_bytes_total Total bytes received by physical
interface
virtual_router_phys_if_input_bytes_total{interface_name="bond0",vrouter_name="jcnr.exam
ple.com"} 125558
TYPE virtual_router_phys_if_output_bytes_total counter
HELP virtual_router_phys_if_output_bytes_total Total bytes sent by physical interface
virtual_router_phys_if_output_bytes_total{vrouter_name="jcnr.example.com",interface_nam
e="bond0"} 4597076
virtual_router_phys_if_input_bytes_total{vrouter_name="jcnr.example.com",interface_name
="bond0"} 228300499320
virtual_router_phys_if_output_bytes_total{interface_name="bond0",vrouter_name="jcnr.exa
mple.com"} 228297889634
virtual_router_phys_if_input_packets_total{interface_name="bond0",vrouter_name="jcnr.ex
ample.com"} 1585421179
virtual_router_phys_if_output_packets_total{vrouter_name="jcnr.example.com",interface_n
ame="bond0"} 1585402623
virtual_router_phys_if_output_packets_total{interface_name="bond0",vrouter_name="jcnr.e
xample.com"} 1585403344

118

Table 3: Sample Telemetry Output (Continued)

Group Sample Output

CPU usage per
vRouter

TYPE virtual_router_cpu_1min_load_avg gauge
HELP virtual_router_cpu_1min_load_avg Virtual router CPU 1 minute load average
virtual_router_cpu_1min_load_avg{vrouter_name="jcnr.example.com"} 0.11625
TYPE virtual_router_cpu_5min_load_avg gauge
HELP virtual_router_cpu_5min_load_avg Virtual router CPU 5 minute load average
virtual_router_cpu_5min_load_avg{vrouter_name="jcnr.example.com"} 0.109687
TYPE virtual_router_cpu_15min_load_avg gauge
HELP virtual_router_cpu_15min_load_avg Virtual router CPU 15 minute load average
virtual_router_cpu_15min_load_avg{vrouter_name="jcnr.example.com"} 0.110156

Drop packet count
per vRouter

TYPE virtual_router_dropped_packets_total counter
HELP virtual_router_dropped_packets_total Total packets dropped
virtual_router_dropped_packets_total{vrouter_name="jcnr.example.com"} 35850

119

Table 3: Sample Telemetry Output (Continued)

Group Sample Output

Packet count per
interface per VLAN

TYPE virtual_router_interface_vlan_multicast_input_packets_total counter
HELP virtual_router_interface_vlan_multicast_input_packets_total Total number of
multicast packets received on interface VLAN
virtual_router_interface_vlan_multicast_input_packets_total{interface_id="1",vlan_id="1
00"} 0
TYPE virtual_router_interface_vlan_broadcast_output_packets_total counter
HELP virtual_router_interface_vlan_broadcast_output_packets_total Total number of
broadcast packets sent on interface VLAN
virtual_router_interface_vlan_broadcast_output_packets_total{interface_id="1",vlan_id="
100"} 0
TYPE virtual_router_interface_vlan_broadcast_input_packets_total counter
HELP virtual_router_interface_vlan_broadcast_input_packets_total Total number of
broadcast packets received on interface VLAN
virtual_router_interface_vlan_broadcast_input_packets_total{interface_id="1",vlan_id="1
00"} 0
TYPE virtual_router_interface_vlan_multicast_output_packets_total counter
HELP virtual_router_interface_vlan_multicast_output_packets_total Total number of
multicast packets sent on interface VLAN
virtual_router_interface_vlan_multicast_output_packets_total{interface_id="1",vlan_id="
100"} 0
TYPE virtual_router_interface_vlan_unicast_input_packets_total counter
HELP virtual_router_interface_vlan_unicast_input_packets_total Total number of
unicast packets received on interface VLAN
virtual_router_interface_vlan_unicast_input_packets_total{interface_id="1",vlan_id="100
"} 0
TYPE virtual_router_interface_vlan_flooded_output_bytes_total counter
HELP virtual_router_interface_vlan_flooded_output_bytes_total Total number of output
bytes flooded to interface VLAN
virtual_router_interface_vlan_flooded_output_bytes_total{interface_id="1",vlan_id="100"
} 0
TYPE virtual_router_interface_vlan_multicast_output_bytes_total counter
HELP virtual_router_interface_vlan_multicast_output_bytes_total Total number of
multicast bytes sent on interface VLAN
virtual_router_interface_vlan_multicast_output_bytes_total{interface_id="1",vlan_id="10
0"} 0
TYPE virtual_router_interface_vlan_unicast_output_packets_total counter
HELP virtual_router_interface_vlan_unicast_output_packets_total Total number of
unicast packets sent on interface VLAN
virtual_router_interface_vlan_unicast_output_packets_total{interface_id="1",vlan_id="10
0"} 0
TYPE virtual_router_interface_vlan_broadcast_input_bytes_total counter

120

Table 3: Sample Telemetry Output (Continued)

Group Sample Output

HELP virtual_router_interface_vlan_broadcast_input_bytes_total Total number of
broadcast bytes received on interface VLAN
virtual_router_interface_vlan_broadcast_input_bytes_total{interface_id="1",vlan_id="100
"} 0
TYPE virtual_router_interface_vlan_multicast_input_bytes_total counter
HELP virtual_router_interface_vlan_multicast_input_bytes_total Total number of
multicast bytes received on interface VLAN
virtual_router_interface_vlan_multicast_input_bytes_total{vlan_id="100",interface_id="1
"} 0
TYPE virtual_router_interface_vlan_unicast_input_bytes_total counter
HELP virtual_router_interface_vlan_unicast_input_bytes_total Total number of unicast
bytes received on interface VLAN
virtual_router_interface_vlan_unicast_input_bytes_total{interface_id="1",vlan_id="100"}
 0
TYPE virtual_router_interface_vlan_flooded_output_packets_total counter
HELP virtual_router_interface_vlan_flooded_output_packets_total Total number of
output packets flooded to interface VLAN
virtual_router_interface_vlan_flooded_output_packets_total{interface_id="1",vlan_id="10
0"} 0
TYPE virtual_router_interface_vlan_broadcast_output_bytes_total counter
HELP virtual_router_interface_vlan_broadcast_output_bytes_total Total number of
broadcast bytes sent on interface VLAN
virtual_router_interface_vlan_broadcast_output_bytes_total{interface_id="1",vlan_id="10
0"} 0
TYPE virtual_router_interface_vlan_unicast_output_bytes_total counter
HELP virtual_router_interface_vlan_unicast_output_bytes_total Total number of
unicast bytes sent on interface VLAN
virtual_router_interface_vlan_unicast_output_bytes_total{interface_id="1",vlan_id="100"
} 0
...

Prometheus is an open-source systems monitoring and alerting toolkit. You can use Prometheus to
retrieve telemetry data from the cloud-native router host servers and view that data in the HTTP
format. A sample of Prometheus configuration looks like this:

- job_name: "prometheus-JCNR-1a2b3c"

metrics_path defaults to '/metrics'
scheme defaults to 'http'.

121

static_configs:
- targets: ["<host-server-IP>:8070"]

Logging and Notifications

IN THIS SECTION

Logging | 122

Notifications | 123

Read this topic to learn about logging and notification functions in Juniper Cloud-Native Router. We
discuss the location of log files, what you can log, and various log levels. You can also learn about the
available notifications and how the notifications are implemented in the cloud-native router.

Logging

The Juniper Cloud-Native Router pods and containers use syslog as their logging mechanism. You can
determine the location of the log files at the deployment time by retaining or changing the value of the
log_path key in the values.yaml file. By default, the location of the log files is /var/log/jcnr. The system
stores log files from all the cloud-native router pods and containers in the log_path directory.

In addition, a syslog-ng pod stores event notification data in JSON format on the host server. The
syslog-ng pod stores the JSON-formatted notifications in the directory specified by the
syslog_notifications key in the values.yaml file. By default, the file location is /var/log/jcnr and the
filename is jcnr_notifications.json. You can change the location and filename by changing the value of
the syslog_notifications key before the cloud-native router deployment.

When you use the default file locations, the /var/log/jcnr directory displays the following files:

[root@jcnr-01 jcnr]# ls
action.log contrail-vrouter-dpdk-init.log filter
l2cos.log __policy_names_rpdc__
contrail-vrouter-agent.log contrail-vrouter-dpdk.log filter.log
license mgd-api

122

__policy_names_rpdn__ cos jcnr-cni.log
messages mosquitto
vrouter-kernel-init.log cscript.log jcnr_notifications.json
messages.0.gz na-grpcd

NOTE:
contrail-vrouter-dpdk.logjcnr-cni.log

Notifications

The syslog-ng pod continuously monitors the preceding log files for notification events such as interface
up, interface down, interface add, and so on. When these events appear in a log file, syslog-ng converts
the log events into notification events and stores the events in JSON format within the
syslog_notifications file configured in the values.yaml file.
Here is a sample of syslog-ng notifications:

Table 4: Supported Notifications

Notification Source Pod

License Near Expiry cRPD

License Expired cRPD

License Invalid cRPD

License OK cRPD

License Grace Period cRPD

License Not Present cRPD

JCNR Init Success Deployer

JCNR Init Failure Deployer

123

Table 4: Supported Notifications (Continued)

Notification Source Pod

JCNR Graceful Shutdown Request Deployer

JCNR Graceful Shutdown Complete Deployer

JCNR Graceful Shutdown Failure Deployer

JCNR Restart Deployer

JCNR Upgrade Success Deployer

JCNR Upgrade Failure Deployer

Upstream Fabric Bond Member Link Up vRouter

Upstream Fabric Bond Member Link Down vRouter

Upstream Fabric Bond Link Up vRouter

Upstream Fabric Bond Link Down vRouter

Upstream Fabric Bond Link Switchover vRouter

Downstream Fabric Link Up vRouter

Downstream Fabric Link Down vRouter

Appliance Link Up vRouter

Appliance Link Down vRouter

Any JCNR Application Critical Errors vRouter

Any JCNR Application Warnings vRouter

Any JCNR Application Info vRouter

124

Table 4: Supported Notifications (Continued)

Notification Source Pod

JCNR Rate Limits Reached vRouter

JCNR MAC Table Limit Reached vRouter

JCNR CLI Start cRPD or vRouter-Agent

JCNR CLI Stop cRPD or vRouter-Agent

JCNR Kernel App Interface Up vRouter

JCNR Kernel App Interface Down vRouter

JCNR Virtio User Interface Up vRouter

JCNR Virtio User Interface Down vRouter

125

7
CHAPTER

Troubleshooting

Troubleshoot via the vRouter CLI | 127

Troubleshoot via Introspect | 139

Troubleshoot via the vRouter CLI

IN THIS SECTION

Accessing the vRouter CLI | 127

Troubleshooting via the vRouter CLI | 129

Read this topic to learn about the various troubleshooting commands available in the vRouter CLI.
The following commands are covered in this topic:

• "Accessing the vRouter CLI" on page 127

• "Verify vRouter Interfaces via the vif Command" on page 129

• "View the running configuration of the vRouter" on page 130

• "View L2 Configuration and Statistics via the purel2cli Command" on page 131

• "The dropstats Command" on page 133

• "The dpdkinfo Command" on page 134

• "The rt and nh Commands" on page 137

• "The flow Command" on page 138

Accessing the vRouter CLI

You can access the command-line interface (CLI) of the vRouter by accessing the shell of the running
vRouter-agent container.

NOTE: The commands below are provided as an example. The vRouter pod name must be
replaced from your environment. The command outputs may differ based on your environment.

127

List the K8s Pods running on the cluster

kubectl get pods -A

NAMESPACE NAME READY STATUS RESTARTS
AGE
contrail-deploy contrail-k8s-deployer-7b5dd699b9-nd7xf 1/1 Running 0
41m
contrail contrail-vrouter-masters-dfxgm 3/3 Running 0
41m
jcnr kube-crpd-worker-ds-8tnf7 1/1 Running 0
41m
jcnr syslog-ng-54749b7b77-v24hq 1/1 Running 0
41m
kube-system calico-kube-controllers-57b9767bdb-5wbj6 1/1 Running 2 (92d ago)
129d
kube-system calico-node-j4m5b 1/1 Running 2 (92d ago)
129d
kube-system coredns-8474476ff8-fpw78 1/1 Running 2 (92d ago)
129d
kube-system dns-autoscaler-7f76f4dd6-q5vdp 1/1 Running 2 (92d ago)
129d
kube-system kube-apiserver-5a5s5-node2 1/1 Running 3 (92d ago)
129d
kube-system kube-controller-manager-5a5s5-node2 1/1 Running 4 (92d ago)
129d
kube-system kube-multus-ds-amd64-4zm5k 1/1 Running 2 (92d ago)
129d
kube-system kube-proxy-l6xm8 1/1 Running 2 (92d ago)
129d
kube-system kube-scheduler-5a5s5-node2 1/1 Running 4 (92d ago)
129d
kube-system nodelocaldns-6kwg5 1/1 Running 2 (92d ago)
129d

Copy the name of the vRouter pod—contrail-vrouter-masters-dfxgm in this example output . You will use the
pod name to connect to the running container's shell.

Connect to the vRouter CLI

128

Issue the kubectl exec command to access the running container's shell:

kubectl exec -n <namespace> -it <pod name> --container <container name> -- bash

where <namespace> identifies the namespace in which the pod is running, <pod name> specificies the
name of the pod and the <container name> specifies the name of the container (to be specified if the
pod has more than one container).

The vRouter pod has three containers. When the container name is not specified, the command will
default to the vrouter-agent container shell. Here is an example:

[root@jcnr-01]# kubectl exec -n contrail -it contrail-vrouter-masters-dfxgm -- bash
Defaulted container "contrail-vrouter-agent" out of: contrail-vrouter-agent, contrail-vrouter-
agent-dpdk,
contrail-vrouter-telemetry-exporter, contrail-init (init), contrail-vrouter-kernel-init-dpdk
(init)
[root@jcnr-01 /]#

At this point, you have connected to the vRouter's CLI.

Troubleshooting via the vRouter CLI

You can run commands in the CLI to learn about the state of the vRouter.

Verify vRouter Interfaces via the vif Command

The command shown below allows you to see which interfaces are present on the vRouter:

vif --list
Vrouter Operation Mode: PureL2
Vrouter Interface Table

Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror
 Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2
 D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged
 Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload, Mon=Interface
is Monitored
 Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled
 Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag, HbsL=HBS

129

Left Intf
 HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, Ml=MAC-IP Learning Enabled, Me=Multicast
Enabled

vif0/0 Socket: unix
 Type:Agent HWaddr:00:00:5e:00:01:00
 Vrf:65535 Flags:L2 QOS:-1 Ref:3
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:11 bytes:4169 errors:0
 Drops:0

vif0/1 PCI: 0000:00:00.0 (Speed 25000, Duplex 1)
 Type:Physical HWaddr:46:37:1f:de:df:bc
 Vrf:65535 Flags:L2Vof QOS:-1 Ref:8
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: eth_bond_bond0 Status: UP Driver: net_bonding
 Slave Interface(0): 0000:3b:02.0 Status: UP Driver: net_iavf
 Slave Interface(1): 0000:3b:02.1 Status: UP Driver: net_iavf
 Vlan Mode: Trunk Vlan: 100 200 300 700-705
 RX packets:0 bytes:0 errors:0
 TX packets:378 bytes:81438 errors:0
 Drops:0

vif0/2 PCI: 0000:3b:0a.0 (Speed 25000, Duplex 1)
 Type:Workload HWaddr:ba:69:c0:b7:1f:ba
 Vrf:0 Flags:L2Vof QOS:-1 Ref:7
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: 0000:3b:0a.0 Status: UP Driver: net_iavf
 Vlan Mode: Access Vlan Id: 700 OVlan Id: 700
 RX packets:378 bytes:81438 errors:2
 TX packets:0 bytes:0 errors:0
 Drops:391

View the running configuration of the vRouter

To see the status of the vRouter, enter the following command in the vRouter CLI:

[root@jcnr-01 /]# ps -eaf | grep vrouter-dpdk
root 116 90 99 Mar30 ? 118-08:05:37 /contrail-vrouter-dpdk --no-daemon --
socket-mem=1024 1024
--allow=0000:5a:02.0 --
vdev=eth_bond_bond0,mode=1,socket_id=0,mac=3a:1a:b7:86:1c:4f,primary=0000:5a:02.0,

130

slave=0000:5a:02.0 --l2_table_size=10240 --yield_option 0 --ddp --l2_mode
root 1134749 1134365 0 16:41 pts/0 00:00:00 grep --color=auto vrouter-dpdk

The output contains several elements.

Table 5: vRouter Status Attributes

Flag Meaning

--l2_mode The vRouter is running in L2 mode.

--l2_table_size The current number of entries in the MAC table. The
default size is 10240 entries.

--allow=<PCI Id> The PCI ID of fabric and fabric workload interfaces.
More than one ID can appear in the output. These IDs
serve as an allowlist.

--ddp Enable Intel DDP support.

We enable DDP by default in the values.yaml file in the
vRouter.

NOTE: The Intel XL710 NIC does not support DDP.

View L2 Configuration and Statistics via the purel2cli Command

The purel2cli command is a useful utility to view the JCNR L2 configuration and statistics. Start by using
the purel2cli --help command.

[root@jcnr-01 /]# purel2cli --help
Usage: purel2cli [--mac show]
 [--vlan show]
 [--vlan get <VLAN_ID>]
 [--acl show <VLAN_ID>]
 [--acl reset-counters <VLAN_ID>]
 [--l2stats get <VIF_ID> <VLAN_ID>]
 [--clear VLAN_ID]
 [--qos classifier/re-write/scheduler <NAME>]
 [--qos cla/rw/sch <NAME>]
 [--nolocal show]
 [--nolocal get <VLAN_ID>]

131

 [--sock-dir <sock dir>]
 [--help]

The purel2cli --mac show command shows the MAC addresses that the vRouter has dynamically learned.

purel2cli --mac show
==
|| MAC vlan port hit_count||
==
00:01:01:01:01:03 1221 2 1101892
00:01:01:01:01:02 1221 2 1101819
00:01:01:01:01:04 1221 2 1101863
00:01:01:01:01:01 1221 2 1101879
5a:4c:4c:75:90:fe 1250 5 12
Total Mac entries 5

The purel2cli --vlan show command shows the VLANs and associated ports.

purel2cli --vlan show
VLAN PORT
===============
1201 1,2,3,4,
1202 1,2,3,4,
1203 1,2,3,4,
1204 1,2,3,4,
1205 1,2,3,4,

You can also issue the purel2cli --vlan get command to get more details about the VLAN.

purel2cli --vlan get <vlan-id>

Issue the purel2cli --l2stats command to view L2 statistics. For example:

purel2cli -- l2stats get <virtual_interface_ID> <VLAN_ID>

purel2cli --l2stats get 2 1221Vlan id count: 1
--
Statistics for vif 2 vlan 1221

132

--
 Rx Pkts Rx Bytes Tx Pkts Tx Bytes
Unicast 245344824 48152682842 835552 1667761792
Broadcast 0 0 0 0
Multicast 0 0 0 0
Flood 0 0 0 0
--

purel2cli --clear '*'

purel2cli --clear 100

Table 6: purel2cli Command Options for L2 Statistics

Sample Command Function

purel2cli --l2stats get '*' '*' Get statistics for all virtual interfaces (vif) and all VLAN
IDs.

purel2cli --l2stats get '*' 100 Get statistics for all vif that are part of VLAN 100

purel2cli --l2stats get 1 '*' Get statistics for all VLANs for which interface 1 is a
member

purel2cli --l2stats get 1 100 Get statistics for interface 1 and VLAN 100

The command shows the VLAN to port mapping in the vRouter.You can use the command to see the
bridge domain table entry for a specific VLAN: There are several variations of the command that allow
you to display and filter L2 statistics in the vRouter. The base form of the command is: . The table below
shows the available command options and what they do. It also provides a sample output using one of
the options:The following command is an example of the L2 statistics for interface 2 and VLAN
1221:You can clear the statistics from the vRouter with the purel2cli command in the form: . Clears all
statistics from all VLANs in the vRouter. Clears all statistics for VLAN id 100.

The dropstats Command
The vRouter tracks the packets that it drops and includes the reason for dropping them. The table below
shows the common reasons for vRouter to drop a packet. When you execute the dropstats command,
the vRouter does not show a counter if the count for that counter is 0.

133

Table 7: Dropstats Counters

Counter Name Meaning

L2 bd table drop No interfaces in bridge domain

L2 untag pkt drop Untagged packet arrives on trunk or sub-interface

L2 Invalid Vlan Packet VLAN does not match interface VLAN

L2 Mac Table Full No more entries available in the MAC table

L2 ACL drop Packet matched firewall filter (ACL) drop rule

L2 Src Mac lookup fail Unable to match (or learn) the source MAC address

Example output from the dropstats command looks like:

dropstats
L2 bd table Drop 43
L2 untag pkt drop 716
L2 Invalid Vlan 7288253
Rate limit exceeded 673179706
L2 Mac Table Full 41398787
L2 ACL drop 8937037
L2 Src Mac lookup fail 247046

The dpdkinfo Command

The dpdkinfo command provides insight into the status and statistics of DPDK. The dpdkinfo command
has many options. The following sections describe the available options and the example output from
the dpdkinfo command. You can run the dpdkinfo command only from within the vRouter-agent CLI.

dpdkinfo --help
Usage: dpdkinfo [--help]
 --version|-v Show DPDK
Version
 --bond|-b Show Master/
Slave bond information
 --lacp|-l <all/conf> Show LACP
information from DPDK

134

 --mempool|-m <all/<mempool-name>> Show Mempool
information
 --stats|-n <vif index value> Show Stats
information
 --xstats|-x <vif index value> Show Extended
Stats information
 --lcore|-c Show Lcore
information
 --app|-a Show App
information
 --ddp|-d <list> <list-flow> Show DDP information
for X710 NIC
 --rx_vlan|-z <value> Show VLan
information
 Optional: --buffsz <value> Send output
buffer size (less than 1000Mb)

The command dpdkinfo -c shows the Lcores assigned to DPDK VF fabric interfaces and the queue ID for
each interface.

dpdkinfo -c
No. of forwarding lcores: 4

Lcore 10:
 Interface: 0000:18:01.1 Queue ID: 0
 Interface: 0000:18:0d.1 Queue ID: 0
 Interface: 0000:86:00.0 Queue ID: 0

Lcore 11:
 Interface: 0000:18:01.1 Queue ID: 1
 Interface: 0000:18:0d.1 Queue ID: 1
 Interface: 0000:86:00.0 Queue ID: 1

Lcore 12:
 Interface: 0000:18:01.1 Queue ID: 2
 Interface: 0000:18:0d.1 Queue ID: 2
 Interface: 0000:86:00.0 Queue ID: 2

Lcore 13:
 Interface: 0000:18:01.1 Queue ID: 3

135

 Interface: 0000:18:0d.1 Queue ID: 3
 Interface: 0000:86:00.0 Queue ID: 3

The command dpdkinfo -m all shows all of the memory pool information.

dpdkinfo -m all

Name Size Used Available

rss_mempool 16384 1549 14835
frag_direct_mempool 4096 0 4096
frag_indirect_mempool 4096 0 4096
packet_mbuf_pool 8192 2 8190

The command dpdkinfo -n 3 displays statistical information for a specific interface.

dpdkinfo -n 3
Interface Info(0000:18:0d.1):
RX Device Packets:6710, Bytes:1367533, Errors:0, Nombufs:0
Dropped RX Packets:0
TX Device Packets:0, Bytes:0, Errors:0
Queue Rx:
 Tx:
 Rx Bytes:
 Tx Bytes:
 Errors:

The command dpdkinfo -x 3 displays extended statistical information for a specific interface.

dpdkinfo -x 3
Driver Name:net_iavf
Interface Info:0000:18:0d.1
Rx Packets:
 rx_good_packets: 6701
 rx_unicast_packets: 0
 rx_multicast_packets: 2987
 rx_broadcast_packets: 3714
 rx_dropped_packets: 0
Tx Packets:
 tx_good_packets: 0

136

 tx_unicast_packets: 0
 tx_multicast_packets: 0
 tx_broadcast_packets: 0
 tx_dropped_packets: 0
Rx Bytes:
 rx_good_bytes: 1365696
Tx Bytes:
 tx_good_bytes: 0
Errors:
 rx_missed_errors: 0
 rx_errors: 0
 tx_errors: 0
 rx_mbuf_allocation_errors: 0
 inline_ipsec_crypto_ierrors: 0
 inline_ipsec_crypto_ierrors_sad_lookup: 0
 inline_ipsec_crypto_ierrors_not_processed: 0
 inline_ipsec_crypto_ierrors_icv_fail: 0
 inline_ipsec_crypto_ierrors_length: 0
Others:
 inline_ipsec_crypto_ipackets: 0

The rt and nh Commands

Use the rt command to display all routes in a VRF. The nh command enables you to inspect the next hops
that are known by the vRouter. Next hops tell the vRouter the next location to send a packet in the path
to its final destination.
For example, for IPv4 traffic:

rt --get 172.68.20.2/32 --vrf 4
Match 172.68.20.2/32 in vRouter inet4 table 0/4/unicast
Flags: L=Label Valid, P=Proxy ARP, T=Trap ARP, F=Flood ARP, Ml=MAC-IP learnt route
vRouter inet4 routing table 0/4/unicast
Destination PPL Flags Label Nexthop Stitched MAC(Index)
172.68.20.2/32 0 LPT 16 193 -

nh --get 193
Id:193 Type:Tunnel Fmly: AF_INET Rid:0 Ref_cnt:264 Vrf:0
 Flags:Valid, Policy, MPLSoUDP, Etree Root,
Oif:4 Len:14 Data:88 e6 4b 09 7d 46 40 a6 b7 2c a4 48 08 00 Sip:1.1.1.35 Dip:1.1.24.24

137

For example, for IPv6 traffic:

rt --get 2001:172:68:20::/64 --vrf 4 --family inet6
Match 2001:172:68:20::/64 in vRouter inet6 table 0/4/unicast
Flags: L=Label Valid, P=Proxy ARP, T=Trap ARP, F=Flood ARP, Ml=MAC-IP learnt route
vRouter inet6 routing table 0/4/unicast
Destination PPL Flags Label Nexthop Stitched MAC(Index)
2001:172:68:20::/64 0 LPT 16 193 -

nh --get 193
Id:193 Type:Tunnel Fmly: AF_INET Rid:0 Ref_cnt:264 Vrf:0
 Flags:Valid, Policy, MPLSoUDP, Etree Root,
Oif:4 Len:14 Data:88 e6 4b 09 7d 46 40 a6 b7 2c a4 48 08 00 Sip:1.1.1.35 Dip:1.1.24.24

The flow Command

Use the flow command to display all active flows in a system. For example:

flow -l --match 169.83.47.170:9398
Flow table(size 161218560, entries 629760)

Entries: Created 162630 Added 162614 Deleted 35136 Changed 35202Processed 162630 Used Overflow
entries 0
(Created Flows/CPU: 0 0 0 0 0 0 0 0 0 0 241 546 15 161828)(oflows 0)

Action:F=Forward, D=Drop N=NAT(S=SNAT, D=DNAT, Ps=SPAT, Pd=DPAT, L=Link Local Port)
 Other:K(nh)=Key_Nexthop, S(nh)=RPF_Nexthop
 Flags:E=Evicted, Ec=Evict Candidate, N=New Flow, M=Modified Dm=Delete Marked
TCP(r=reverse):S=SYN, F=FIN, R=RST, C=HalfClose, E=Established, D=Dead
 Stats:Packets/Bytes

Listing flows matching ([169.83.47.170]:9398)

 Index Source:Port/Destination:Port Proto(V)

 328196<=>524233 169.83.47.170:9398 6 (2)
 172.68.20.20:2159
(Gen: 3, K(nh):206, Action:F, Flags:, TCP:, E:1, QOS:-1, S(nh):206, Stats:6/360,
 SPort 63929, TTL 0, Sinfo 38.0.0.0)

138

 524233<=>328196 172.68.20.20:2159 6 (2)
 169.83.47.170:9398
(Gen: 3, K(nh):206, Action:F, Flags:, TCP:, QOS:-1, S(nh):250, Stats:0/0,
 SPort 60311, TTL 0, Sinfo 0.0.0.0)

Troubleshoot via Introspect

IN THIS SECTION

Introspect | 139

Introspect

For vRouter-agent debugging, we use Introspect. You can access the Introspect data at http://<host
server IP>:8085. Here is a sample of the Introspect data:
Table 8: Modules shown in contrail-vrouter-agent debug output

Link and Description

agent.xml Shows agent operational data. Using this introspect, you can see the
list of interfaces, VMs, VNs, VRFs, security groups, ACLs and mirror
configurations.

agent_ksync.xml Shows agent ksync layer for data objects such as interfaces and
bridge ports.

agent_profile.xml shows agent operdb, tasks, flows, and statistics summary.

agent_stats_interval.xml View and set collection period for statistics.

controller.xml Shows the connection status of the jcnr-controller (cRPD)

139

Table 8: Modules shown in contrail-vrouter-agent debug output (Continued)

Link and Description

cpuinfo.xml Shows the CPU load and memory usage on the compute node.

ifmap_agent.xml Shows the current configuration data received from ifmap.

kstate.xml Shows data configured in the vRouter data path.

mac_learning.xml Shows entries in vRouter-agent MAC learning table.

sandesh_trace.xml Gives the different agent module traces such as oper, ksync, mac
learning, and grpc.

sandesh_uve.xml Lists all the user visible entitities (UVEs) in the vRouter-agent. The
UVEs are used for analytics and telemetry.

stats.xml Shows vRouter-agent slow path statistics such as error packets,
trapped packets, and debug statistics.

task.xml Shows vRouter-agent worker task details.

NOTE: The table shows grouped output. The cloud-native router does not group or sort the
output on live systems.

The http://host server IP address:8085 page displays only a list of HTML links.

140

8
CHAPTER

Appendix

Access cRPD CLI | 142

Access vRouter CLI | 143

Juniper Technology Previews (Tech Previews) | 145

Access cRPD CLI

You can access the command-line interface (CLI) of the cloud-native router controller by accessing the
shell of the running cRPD container.

NOTE: The commands below are provided as an example. The cRPD pod name must be replaced
from your environment. The command outputs may differ based on your environment.

View the running pods in the cluster:

kubectl get pods -A
NAMESPACE NAME READY STATUS RESTARTS
AGE
contrail-deploy contrail-k8s-deployer-7b5dd699b9-nd7xf 1/1 Running 0
41m
contrail contrail-vrouter-masters-dfxgm 3/3 Running 0
41m
jcnr kube-crpd-worker-ds-8tnf7 1/1 Running 0
41m
jcnr syslog-ng-54749b7b77-v24hq 1/1 Running 0
41m
kube-system calico-kube-controllers-57b9767bdb-5wbj6 1/1 Running 2 (92d ago)
129d
kube-system calico-node-j4m5b 1/1 Running 2 (92d ago)
129d
kube-system coredns-8474476ff8-fpw78 1/1 Running 2 (92d ago)
129d
kube-system dns-autoscaler-7f76f4dd6-q5vdp 1/1 Running 2 (92d ago)
129d
kube-system kube-apiserver-5a5s5-node2 1/1 Running 3 (92d ago)
129d
kube-system kube-controller-manager-5a5s5-node2 1/1 Running 4 (92d ago)
129d
kube-system kube-multus-ds-amd64-4zm5k 1/1 Running 2 (92d ago)
129d
kube-system kube-proxy-l6xm8 1/1 Running 2 (92d ago)
129d
kube-system kube-scheduler-5a5s5-node2 1/1 Running 4 (92d ago)
129d

142

kube-system nodelocaldns-6kwg5 1/1 Running 2 (92d ago)
129d

Copy the name of the cRPD pod—kube-crpd-worker-ds-8tnf7 in this example output . You will use the pod
name to connect to the running container's shell.

Connect to the cRPD CLI

Issue the kubectl exec command to access the running container's shell:

kubectl exec -n <namespace> -it <pod name> --container <container name> -- bash

where <namespace> identifies the namespace in which the pod is running, <pod name> specificies the
name of the pod and the <container name> specifies the name of the container (to be specified if the
pod has more than one container).

The cRPD pod has only one running container. Here is an example command:

Defaulted container "kube-crpd-worker" out of: kube-crpd-worker, jcnr-crpd-config (init),
install-cni (init)

===>
 Containerized Routing Protocols Daemon (CRPD)
 Copyright (C) 2020-2022, Juniper Networks, Inc. All rights reserved.
 <===
root@jcnr-01:/#

At this point, you have connected to the shell of the cRPD. Just as with other Junos-based shells, you
access the operational mode of the cloud-native router the same way as if you were connected to the
console of a physical Junos OS device.

root@jcnr-01:/# cli
root@jcnr-cni>

Access vRouter CLI

You can access the command-line interface (CLI) of the vRouter by accessing the shell of the running
vRouter-agent container.

143

NOTE: The commands below are provided as an example. The vRouter pod name must be
replaced from your environment. The command outputs may differ based on your environment.

List the running pods on the K8s Cluster:

kubectl get pods -A
NAMESPACE NAME READY STATUS RESTARTS
AGE
contrail-deploy contrail-k8s-deployer-7b5dd699b9-nd7xf 1/1 Running 0
41m
contrail contrail-vrouter-masters-dfxgm 3/3 Running 0
41m
jcnr kube-crpd-worker-ds-8tnf7 1/1 Running 0
41m
jcnr syslog-ng-54749b7b77-v24hq 1/1 Running 0
41m
kube-system calico-kube-controllers-57b9767bdb-5wbj6 1/1 Running 2 (92d ago)
129d
kube-system calico-node-j4m5b 1/1 Running 2 (92d ago)
129d
kube-system coredns-8474476ff8-fpw78 1/1 Running 2 (92d ago)
129d
kube-system dns-autoscaler-7f76f4dd6-q5vdp 1/1 Running 2 (92d ago)
129d
kube-system kube-apiserver-5a5s5-node2 1/1 Running 3 (92d ago)
129d
kube-system kube-controller-manager-5a5s5-node2 1/1 Running 4 (92d ago)
129d
kube-system kube-multus-ds-amd64-4zm5k 1/1 Running 2 (92d ago)
129d
kube-system kube-proxy-l6xm8 1/1 Running 2 (92d ago)
129d
kube-system kube-scheduler-5a5s5-node2 1/1 Running 4 (92d ago)
129d
kube-system nodelocaldns-6kwg5 1/1 Running 2 (92d ago)
129d

Copy the name of the vRouter pod—contrail-vrouter-masters-dfxgm in this example output . You will use the
pod name to connect to the running container's shell.

144

Issue the kubectl exec command to access the running container's shell:

kubectl exec -n <namespace> -it <pod name> --container <container name> -- bash

where <namespace> identifies the namespace in which the pod is running, <pod name> specificies the
name of the pod and the <container name> specifies the name of the container (to be specified if the
pod has more than one container).

The vRouter pod has three containers. When the container name is not specified, the command will
default to the vrouter-agent container shell. Here is an example:

[root@jcnr-01]# kubectl exec -n contrail -it contrail-vrouter-masters-dfxgm -- bash
Defaulted container "contrail-vrouter-agent" out of: contrail-vrouter-agent, contrail-vrouter-
agent-dpdk,
contrail-vrouter-telemetry-exporter, contrail-init (init), contrail-vrouter-kernel-init-dpdk
(init)
[root@jcnr-01 /]#

At this point, you have connected to the vRouter's CLI.

Juniper Technology Previews (Tech Previews)

Tech Previews enable you to test functionality and provide feedback during the development process of
innovations that are not final production features. The goal of a Tech Preview is for the feature to gain
wider exposure and potential full support in a future release. Customers are encouraged to provide
feedback and functionality suggestions for a Technology Preview feature before it becomes fully
supported.

Tech Previews may not be functionally complete, may have functional alterations in future releases, or
may get dropped under changing markets or unexpected conditions, at Juniper’s sole discretion. Juniper
recommends that you use Tech Preview features in non-production environments only.

Juniper considers feedback to add and improve future iterations of the general availability of the
innovations. Your feedback does not assert any intellectual property claim, and Juniper may implement
your feedback without violating your or any other party's rights.

These features are "as is" and voluntary use. Juniper Support will attempt to resolve any issues that
customers experience when using these features and create bug reports on behalf of support cases.
However, Juniper may not provide comprehensive support services to Tech Preview features. Certain
features may have reduced or modified security, accessibility, availability, and reliability standards

145

relative to General Availability software. Tech Preview features are not eligible for P1/P2 JTAC cases,
and should not be subject to existing SLAs or service agreements.

For additional details, please contact Juniper Support or your local account team.

146

https://support.juniper.net/support/

	Table of Contents
	Introduction
	Juniper Cloud-Native Router Overview
	Juniper Cloud-Native Router Components
	JCNR Deployment Modes
	JCNR Interfaces Overview

	Common Features (All Deployment Modes)
	JCNR Common Features
	Enabling Dynamic Device Personalization (DDP) on Individual Interfaces
	VLAN Sub-Interfaces

	L2 Features
	L2 Features Overview
	Access Control Lists (Firewall Filters)
	MAC Learning and Aging
	Storm Control
	APIs and CLI Commands for Bond Interfaces
	Quality of Service (QoS)
	Native VLAN
	Prevent Local Switching

	L3 Features
	L3 Features Overview
	JCNR as a Transit Gateway
	EVPN Type 5 Routing over VXLAN Tunnels
	L3 Routing Protocols
	MPLS Support
	Bidirectional Forwarding Detection (BFD)
	Virtual Router Redundancy Protocol (VRRP)
	Virtual Routing Instance (VRF-Lite)
	ECMP
	BGP Unnumbered

	JCNR CNI Configuration Examples
	JCNR Use-Cases and Configuration Overview
	L2 Kernel Access-Mode Interface Configuration Example
	Overview
	Configuration Example

	L2 virtio Trunk-Mode Interface Configuration Example
	Overview
	Configuration Example

	L2 VLAN Sub-Interface Configuration Example
	Overview
	Configuration Example

	L3 VPN Interface Configuration Example
	Overview
	Configuration Example

	L3 VLAN Sub-Interface Configuration Example
	Overview
	Configuration Example

	Monitoring and Logging
	Monitor JCNR via CLI
	Telemetry Capabilities of Cloud-Native Router
	Logging and Notifications

	Troubleshooting
	Troubleshoot via the vRouter CLI
	Troubleshoot via Introspect

	Appendix
	Access cRPD CLI
	Access vRouter CLI
	Juniper Technology Previews (Tech Previews)

