JUDLR@! | Engineering

Simplicity

Juniper Cloud-Native Router 23.2
Deployment Guide

Published
2025-07-02

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA

408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

Juniper Cloud-Native Router 23.2 Deployment Guide
Copyright © 2025 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

https://support.juniper.net/support/eula/

Table of Contents

1 Introduction

Juniper® Cloud-Native Router Overview | 2
Juniper® Cloud-Native Router Components | 4
Cloud-Native Router Deployment Modes | 9
System Requirements | 10
2 Install
Before You Install | 21
Customize Cloud-Native Router Helm Chart | 22
Customize Cloud-Native Router Configuration using Node Annotations | 35

Install and Verify Juniper Cloud-Native Router | 42

Install Juniper Cloud-Native Router Using Helm Chart | 42
Verify Installation | 45
3 Monitor

Monitor Cloud-Native Router via CLI | 52
Telemetry Capabilities of Cloud-Native Router | 59
Logging and Notifications | 66

4 Manage

Manage Juniper Cloud-Native Router | 71

£ Troubleshoot

Troubleshoot Deployment Issues | 74

| Troubleshoot Deployment Issues | 74
Troubleshoot via the vRouter CLI | 78

Troubleshoot via Introspect | 91

Appendix
Working Samples for Cloud-Native Router Helm Chart | 94

Kubernetes Overview | 100
Configure Repository Credentials | 102
Deploy Prepackaged Images | 103

Juniper Technology Previews (Tech Previews) | 104

CHAPTER

Introduction

IN THIS CHAPTER

Juniper® Cloud-Native Router Overview | 2
Juniper® Cloud-Native Router Components | 4
Cloud-Native Router Deployment Modes | 9

System Requirements | 10

Juniper® Cloud-Native Router Overview

IN THIS SECTION

Overview | 2
Use Cases | 2
Architecture and Key Components | 3

Features | 4

Overview

While 5G unleashes higher bandwidth, lower latency and higher capacity, it also brings in new
infrastructure challenges such as increased number of base stations or cell sites, more backhaul links
with larger capacity and more cell site routers and aggregation routers. Service providers are integrating
cloud-native infrastructure in distributed RAN (D-RAN) topologies, which are usually small, leased
spaces, with limited power, space and cooling. The disaggregation of radio access network (RAN) and
the expansion of 5G data centers into cloud hyperscalers has added newer requirements for cloud-
native routing.

The Juniper Cloud-Native Router provides the service providers the flexibility to roll out the expansion
requirements for 5G rollouts, reducing both the CapEx and OpEx.

Juniper Cloud-Native Router (JCNR) is a containerized router that combines Juniper's proven routing
technology with the Junos® containerized routing protocol daemon (cRPD) as the controller and a high-
performance Contrail® Data Plane Development Kit (DPDK) vRouter forwarding plane. It is
implemented in Kubernetes and interacts seemlessly with a Kubernetes container network (CNI)
framework.

Use Cases

The Cloud-Native Router has the following use cases:
e Radio Access Network (RAN)

The new 5G-only sites are a mix of centralized RAN (C-RAN) and distributed RAN (D-RAN). The C-
RAN sites are typically large sites owned by the carrier and continue to deploy physical routers. The
D-RAN sites, on the other hand, are tens of thousands of smaller sites, closer to the users.

https://www.juniper.net/us/en/products/routers/containerized-routing-protocol-daemon-crpd.html

Optimization of CapEx and OpEx is a huge factor for the large number of D-RAN sites. These sites
are also typically leased, with limited space, power and cooling capacities. There is limited
connectivity over leased lines for transit back to the mobile core. Juniper Cloud-Native Router is
designed to work in the constraints of a D-RAN. It is integrated with the distributed unit (DU) and
installable on an existing 1 U server.

e Telco virtual private cloud (VPC)

The 5G data centers are expanding into cloud hyperscalers to support more radio sites. The cloud-
native routing available in public cloud environments do not support the routing demands of telco
VPCs, such as MPLS, quality of service (QoS), L3 VPN, and more. The Juniper Cloud-Native Router
integrates directly into the cloud as a containerized network function (CNF), managed as a cloud-
native Kubernetes component, while providing advanced routing capabilities.

Architecture and Key Components

The Juniper Cloud-Native Router consists of the Junos containerized routing protocol Daemon (cRPD)
as the control plane (Cloud-Native Router Controller), providing topology discovery, route advertisement
and forwarding information base (FIB) programming, as well as dynamic underlays and overlays. It uses
the Data Plane Development Kit (DPDK) enabled vRouter as a forwarding plane, providing packet
forwarding for DPDK applications in a pod and host path /O for protocol sessions. The third component
is the Cloud-Native Router container network interface (CNI) that interacts with Kubernetes as a
secondary CNI to create pod interfaces, assign addresses and generate the cRPD configuration.

The Data Plane Development Kit (DPDK) is an open source set of libraries and drivers. DPDK enables
fast packet processing by allowing network interface cards (NICs) to send direct memory access (DMA)
packets directly into an application’s address space. The applications poll for packets, to avoid the
overhead of interrupts from the NIC. Integrating with DPDK allows a vRouter to process more packets
per second than is possible when the vRouter runs as a kernel module.

In this integrated solution, the JCNR Controller uses gRPC, a high performance Remote Procedure Call,
based services to exchange messages and to communicate with the vRouter, thus creating the fully
functional Cloud-Native Router. This close communication allows you to:

e Learn about fabric and workload interfaces

e Provision DPDK- or kernel-based interfaces for Kubernetes pods as needed
e Configure IPv4 and IPvé6 address allocation for Pods

¢ Install routes into routing tables

e Run routing protocols such as ISIS, BGP, and OSPF

https://www.juniper.net/us/en/products/routers/containerized-routing-protocol-daemon-crpd.html

Features

Easy deployment, removal, and upgrade on general purpose compute devices using Helm

e Higher packet forwarding performance with DPDK-based JCNR-vRouter

e Full routing, switching, and forwarding stacks in software

e Basic L2 functionality, such as MAC learning, MAC aging, MAC limiting, and L2 statistics

e L2 reachability to Radio Units (RU) for management traffic

e L2 or L3 reachability to physical distributed units (DU) such as 5G millimeter wave DUs or 4G DUs
¢ VLAN tagging

e Bridge domains

e Trunk and access ports

e Support for multiple virtual functions (VF) on Ethernet NICs

e Support for bonded VF interfaces

e Configurable L2 access control lists (ACLs)

e Rate limiting of egress broadcast, unknown unicast, and multicast traffic on fabric interfaces
e |Pv4 and IPvé6 routing

e Out-of-the-box software-based open radio access network (O-RAN) support

e Quick spin up with containerized deployment

o Highly scalable solution

Juniper® Cloud-Native Router Components

SUMMARY IN THIS SECTION

The Juniper Cloud-Native Router solution consists of Cloud-Native Router Components | 5
several components including the Cloud-Native

Router controller (cRPD), vRouter and the JCNR-CNI.
This topic provides a brief overview of the
components of the Juniper Cloud-Native Router.

Cloud-Native Router Components

Cloud-Native Router Controller | 6

Cloud-Native Router vRouter | 7
JCNR-CNI | 7
Syslog-NG | 9

The Juniper Cloud-Native Router has primarily three components—Cloud-Native Router Controller for
control plane, the vRouter DPDK forwarding plane and a CNI for Kubernetes integration. All Cloud-

Native Router components are deployed as containers.

The Figure 1 on page 5 shows the components of the Juniper Cloud-Native Router inside a

Kubernetes cluster

Figure 1: Components of Juniper Cloud-Native Router

Standalone K8s Cluster

eted Multus
CNI
Control Sened
Plane

Pod

JCNR-CNI

JCNR
Controller

Pod

- JCNR components

Linux Host running Kubernetes

Calico
CNI

Pod

JCNR

vrouter-

agent

Intel E-810
or
Intel XL710

JCNR
vrouter-
agent-dpdk

Pod

Syslog-NG
App

Pod

Telemetry
Portal

i

Data Path

—_—
—

e
—

TOR Switch

jn-000367

Cloud-Native Router Controller

The Cloud-Native Router Controller (cCRPD) is the control-plane of the cloud-native router solution and
runs as a statefulset. The controller communicates with the other elements of the cloud-native router.
Configuration, policies and rules that you set on the controller at deployment time are communicated to
other components, primarily the Cloud-Native Router vRouter, for implementation.

For example, firewall filters (ACLs) are supported on cRPD to configure L2 access lists with deny rules.
cRPD sends the configuration information to the vRouter through the vRouter agent.

Juniper Cloud-Native Router Controller Functionality:

e Exposes Junos OS compatible CLI configuration and operation commands that are accessible to
external automation and orchestration systems using the NETCONF protocol.

e Supports vRouter as the high-speed forwarding plane. This enables applications that are built using
the DPDK framework to send and receive packets directly to the application and the vRouter
without passing through the kernel.

e Supports configuration of VLAN-tagged sub-interfaces on physical function (PF), virtual function
(VF), virtio, access, and trunk interfaces managed by the DPDK-enabled vRouter.

e Supports configuration of bridge domains, VLANs, and virtual-switches.

e Advertises DPDK application reachability to core network using routing protocols primarily with BGP
and IS-IS.

e Distributes L3 network reachability information of the pods inside and outside a cluster.
e Maintains configuration for L2 firewall.

e Passes configuration information to the vRouter through the vRouter-agent.

e Stores license key information.

o Works as a BGP Speaker from release 23.2, establishing peer relationships with other BGP speakers
to exchange routing information.

Configuration Options
During deployment, you can "customize JCNR using node annotations" on page 35 .

After deployment, we recommend that you use the NETCONF protocol with PyEZ to configure cRPD.
Alternatively, you can SSH directly into the cRPD or connect via NETCONF. Finally, you can also
configure the cloud-native router by accessing the JCNR controller (cRPD) CL/using Kubernetes
commands.

https://www.juniper.net/documentation/us/en/software/junos-pyez/junos-pyez-developer/index.html
https://www.juniper.net/documentation/us/en/software/crpd/crpd-deployment/topics/topic-map/establishing-ssh-crpd.html#id-enabling-ssh
https://www.juniper.net/documentation/us/en/software/crpd/crpd-deployment/topics/topic-map/establishing-ssh-crpd.html#id-connecting-to-a-netconf-server-on-container

Cloud-Native Router vRouter

The Cloud-Native Router vRouter is a high-performance datapath component. It is an alternative to the
Linux bridge or the Open vSwitch (OVS) module in the Linux kernel. It runs as a user-space process and
is integrated with the Data Plane Development Kit (DPDK) library. The vRouter pod consists of three
containers—vrouter-agent, vrouter-agent-dpdk and vrouter-telemetry-exporter.

Cloud-Native Router vRouter Functionality:

e Performs routing with Layer 3 virtual private networks
o Performs L2 forwarding

o Allows the use of DPDK-based forwarding

e Enforces L2 access control lists (ACLs)

Benefits of vRouter:

e Integration of the DPDK into the JCNR-vRouter
e Forwarding plane provides faster forwarding capabilities than kernel-based forwarding
e Forwarding plane is more scalable than kernel-based forwarding
e Support for the following NICs:
e Intel E810 (Columbiaville) family

e Intel XL710 (Fortville) family

JCNR-CNI

JCNR-CNI is a new container network interface (CNI) developed by Juniper. JCNR-CNI is a Kubernetes
CNI plugin installed on each node to provision network interfaces for application pods. During pod
creation, Kubernetes delegates pod interface creation and configuration to JCNR-CNI. JCNR-CNI
interacts with Cloud-Native Router control-plane (cRPD) and the vRouter to setup DPDK interfaces.
When a pod is removed, JCNR-CNI is invoked to de-provision the pod interface, configuration, and
associated state in Kubernetes and cloud-native router components. JCNR-CNI works as a secondary
CNI, along with the Multus CNI to add and configure pod interfaces.

JCNR-CNI Functionality:
e Manages the networking tasks in Kubernetes pods such as:

e assigning IP addresses

e allocating MAC addresses

o setting up untagged, access, and other interfaces between the pod and vRouter in a Kubernetes
cluster

e creating VLAN sub-interfaces
e Acts on pod events such as add and delete
o Generates cRPD configuration

The JCNR-CNI manages the secondary interfaces that the pods use. It creates the required interfaces
based on the configuration in YAML-formatted network attachment definition (NAD) files. The JCNR-
CNI configures some interfaces before passing them to their final location or connection point and
provides an API for further interface configuration options such as:

e Instantiating different kinds of pod interfaces.
e Creating virtio-based high performance interfaces for pods that leverage the DPDK data plane.

o Creating veth pair interfaces that allow pods to communicate using the Linux Kernei | networking
stack.

e Creating pod interfaces in access or trunk mode.

e Attaching pod interfaces to bridge domains.

e Supporting IPAM plug-in for Dynamic IP address allocation.
e Allocating unique socket interfaces for virtio interfaces.

e Attaching pod interfaces to a bridge domain.

e Managing the networking tasks in pods such as assigning IP addresses and setting up of interfaces
between the pod and vRouter in ai Kubernetes cluster.

e Connecting pod interface to a network including pod-to-pod and pod-to-network.

Integrating with the vRouter for offloading packet processing.

Benefits of JCNR-CNI:

e Improved pod interface management

e Customizable administrative and monitoring capabilities

¢ Increased performance through tight integration with cRPD and vRouter components

The Role of JCNR-CNI in Pod Creation:

When you create a pod for use in the cloud-native router, the Kubernetes component known as kubelet
calls the Multus CNI to set up pod networking and interfaces. Multus reads the annotations section of
the pod.yaml file to find the NADs. If a NAD points to JCNR-CNI as the CNI plug in, Multus calls the
JCNR-CNI to set up the pod interface. JCNR-CNI creates the interface as specified in the NAD. JCNR-
CNI then generates and pushes a configuration into cRPD.

Syslog-NG

Juniper Cloud-Native Router uses a syslog-ng pod to gather event logs from cRPD and vRouter and
transform the logs into JSON-based notifications. The notifications are logged to a file. Syslog-ng runs as
a daemonset.

Cloud-Native Router Deployment Modes

SUMMARY IN THIS SECTION

Read this topic to know about the various modes of Deployment Modes | 9
deploying the cloud-native router.

Deployment Modes

Starting with Juniper Cloud-Native Router Release 23.2, you can deploy and operate Juniper Cloud-
Native Router in L2, L3 and L2-L3 modes*, auto-derived based on the interface configuration in the
values.yanml file prior to deployment. Please review the "Customize Cloud-Native Router Helm Chart" on
page 22 topic for more information.

@ NOTE: In the values.yaml file:

e When all the interfaces have an interface_mode key configured, then the mode of
deployment would be L2.

e When one or more interfaces have an interface_mode key configured and some of the
interfaces do not have the interface_mode key configured, then the mode of
deployment would be L2-L3*.

e When none of the interfaces have the interface_mode key configured, then the mode of
deployment would be L3.

In L2 mode, the cloud-native router behaves like a switch and therefore does not performs any routing
functions and it doesn not run any routing protocols. The pod network uses VLANSs to direct traffic to
various destinations.

In L3 mode, the cloud-native router behaves like a router and therefore performs routing functions and
runs routing protocols such as ISIS, BGP, OSPF, and segment routing-MPLS. In L3 mode, the pod
network is divided into an IPv4 or IPvé underlay network and an IPv4 or IPvé overlay network. The
underlay network is used for control plane traffic.

The L2-L3 mode* provides the functionality of both the switch and the router at the same time. It
enables Cloud-Native Router to act as both a switch and a router simultaneously by performing
switching in a set of interfaces and routing in the other set of interfaces. Cell site routers in a 5G
deployment need to handle both L2 and L3 traffic. DHCP packets from radio outdoor unit (RU) is an
example of L2 traffic and data packets moving from outdoor unit (ODU) to central unit (CU) is an
example of L3 traffic.

@ NOTE: *The L2-L3 deployment mode is a Juniper Technology Previews (Tech Previews)
feature in the Juniper Cloud-Native Router Release 23.2.

System Requirements

IN THIS SECTION

Host System Requirements | 11
Resource Requirements | 13
Miscellaneous Requirements | 14
Port Requirements | 17

Cloud-Native Router Licensing | 18

Read this section to understand the system, resource, port, and licensing requirements for installing
Juniper Cloud-Native Router.

Host System Requirements

This section lists the host system requirements for installing the cloud-native router.

Table 1: Cloud-Native Router Host System Requirements

CpPU

Host OS

Kernel Version

Component

Release 23.2

Value/Version

Intel x86

RedHat Enterprise Linux

Rocky Linux

RedHat Enterprise Linux
(RHEL): 4.18.X

Rocky Linux: 4.18.X

Notes

The tested CPU is Intel
Xeon Gold 6212U 24-
core @2.4 GHz

Version 8.4, 8.5, 8.6

8.6

The tested kernel
version for RHEL is
4.18.0-305.rt7.72.el8.x
86_64

The tested kernel
version for Rocky Linux
is
4.18.0-372.19.1.rt7.17
6.el8_6.x86_64 and
4.18.0-372.32.1.rt7.18
9.el8_6.x86_64

Table 1: Cloud-Native Router Host System Requirements (Continued)

NIC

IAVF driver

ICE_COMMS

ICE

i40e

Kubernetes (K8s)

Calico

Multus

Component

Release 23.2

Value/Version

e Intel E810 with
Firmware 4.00
0x80014411
1.3236.0

¢ Intel EB10-CQDA2

with Firmware

4.000x800144111.32

36.0

e |ntel XL710 with
Firmware 9.00

0x8000cead 1.3179.0

e Elastic Network
Adapter (ENA)

Version 4.5.3.1

Version 1.3.35.0

Version 1.9.11.9

Version 2.18.9

Version 1.22.x, 1.23.x,
1.25x

Version 3.22.x

Version 3.8

Notes

ICE driver is used only
with the Intel E810
NIC

i40e driver is used only
with the Intel XL710
NIC

The tested K8s version
is 1.22.4, although
1.22.2 will also work.

Table 1: Cloud-Native Router Host System Requirements (Continued)

Release 23.2
Component Value/Version Notes
Helm 3.9.x
Container-RT Docker CE 20.10.11, crio
1.25x
Amazon EKS The K8s version is
1.23.17.
Kernel version is
5.4.235-144.344.amzn
2.x86_64
OS version is Amazon
Linux 2
OpenShift 4120 The K8s version is
1.254.
Resource Requirements
This section lists the resource requirements for installing the cloud-native router.
Table 2: Cloud-Native Router Resource Requirements
Release 23.2
Resource Value Usage Notes
Data plane forwarding cores 2 physical cores (2p)
Service/Control Cores 0

UIO Driver VFIO-PCI

Table 2: Cloud-Native Router Resource Requirements (Continued)

Release 23.2
Resource Value Usage Notes

Hugepages (1G) 6 Gi Add GRUB_CMDLINE_LINUX_DEFAULT
values in /etc/default/grub and
reboot the host. For example:
GRUB_CMDLINE_LINUX_DEFAULT="console
=ttyl console=ttySo
default_hugepagesz=1G hugepagesz=16
hugepages=64 intel_iommu=on
iommu=pt"

Cloud-Native Router Controller .5
cores

Cloud-Native Router vRouter Agent | .5
cores

Miscellaneous Requirements

This section lists additional requirements for installing the cloud-native router.

Table 3: Miscellaneous Requirements

Cloud-Native Router Release 23.2 Miscellaneous Requirements

Enable VLAN driver at system boot using the command:

modprobe 8021q

Verify by executing the command

Ismod | grep 8021q

Enable VFIO-PCI driver at system boot

Table 3: Miscellaneous Requirements (Continued)

Cloud-Native Router Release 23.2 Miscellaneous Requirements

Set IOMMU and IOMMU-PT in /etc/default/grub file. For example:

GRUB_CMDLINE_LINUX_DEFAULT="console=tty1 console=ttyS@ default_hugepagesz=1G hugepagesz=1G hugepages=64

intel_iommu=on iommu=pt"

Update grub and reboot the host. For example:

grub2-mkconfig -o /boot/grub2/grub.cfg

Disable Spoofcheck on VFs allocated to JCNR. For example: ip link set <interfacename> vf 1 spoofcheck off.

NOTE: Applicable only on L2 deployments.

Set trust on VFs allocated to JCNR. For example: ip link set <interfacename> vf 1 trust on

NOTE: Applicable only on L2 deployments.

Additional kernel modules need to be loaded on the host before deploying Cloud-Native Router in L3 mode.
These modules are usually available in 1inux-modules-extra or kernel-modules-extra packages. Run the following
commands to add the kernel modules.

e modprobe tun

e modprobe fou

e modprobe foué

e modprobe ipip

e modprobe ip_tunnel

e modprobe ip6_tunnel

e modprobe mpls_gso

e modprobe mpls_router
e modprobe mpls_iptunnel
e modprobe vrf

o modprobe vxlan

Table 3: Miscellaneous Requirements (Continued)

Cloud-Native Router Release 23.2 Miscellaneous Requirements

Run the ip fou add port 6635 ipproto 137 command on the Linux host to enable kernel based forwarding.

NetworkManager is a tool in some operating systems to make the management of network interfaces easier.
NetworkManager may make the operation and configuration of the default interfaces easier. However, it can
interfere with the Kubernetes management and create problems.

To avoid the NetworkManager from interfering with the interface configurations, perform the following steps:
1. Create the file, /etc/NetworkManager/conf.d/crpd. conf.
2. Add the following content in the file.

[keyfile]
unmanaged-devices+=interface-name:enp*;interface-name:ens*

NOTE: enp* indicates all interfaces starting with enp. For specific interface names, provided a comma-
separated list.

3. Restart the NetworkManager service by running the command, sudo systemctl restart NetworkManager.
4. Edit the sysctl file on the host and paste the following content in it:

net.ipv6.conf.default.addr_gen_mode=0
net.ipv6.conf.all.addr_gen_mode=0
net.ipv6.conf.default.autoconf=0

net.ipv6.conf.all.autoconf=0

5. Run the command sysctl -p /etc/sysctl.conf to load the new sysctl.conf values on the host.

6. Create the bond interface manually. For example:

ifconfig ens2f@ down

ifconfig ens2f1 down

ip link add bond@ type bond mode 802.3ad

ip link set ens2f@ master bondo

ip link set ens2f1 master bondo

ifconfig ens2f@ up ; ifconfig ens2f1 up; ifconfig bondd up

Table 3: Miscellaneous Requirements (Continued)

Cloud-Native Router Release 23.2 Miscellaneous Requirements

Verify the core_pattern value is set on the host before deploying JCNR:

sysctl kernel.core_pattern
kernel.core_pattern = |/usr/lib/systemd/systemd-coredump %P %u %g %s %t %c %h %e

You can update the core_pattern in /etc/sysctl.conf. For example:

kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_%t.gz

Port Requirements

Juniper Cloud-Native Router listens on certain TCP and UDP ports. This section lists the port
requirements for the cloud-native router.

Table 4: Cloud-Native Router Listening Ports
Protocol Port Description

TCP 8085 vRouter introspect-Used to gain
internal statistical information
about vRouter

TCP 8070 Telemetry information-Used to see
telemetry data from cloud-native
router

TCP 9091 vRouter health check-cloud-native

router checks to ensure contrail-
vrouter-dpdk process is running,
etc.

TCP 50052 gRPC port-Cloud-Native Router
listens on both IPv4 and IPvé

TCP 24 cRPD SSH

Table 4: Cloud-Native Router Listening Ports (Continued)

Protocol Port Description

TCP 830 cRPD NETCONF

TCP 666 rpd

TCP 1883 Mosquito mqtt-Publish/subscribe

messaging utility

TCP 9500 agentd on cRPD
TCP 21883 na-mqttd

TCP 50051 jsd on cRPD
TCP 51051 jsd on cRPD
UDP 50055 Syslog-NG

Cloud-Native Router Licensing

Starting with Juniper Cloud-Native Router (JCNR) Release 22.2, we have enabled our Juniper Agile
Licensing (JAL) model. JAL ensures that features are used in compliance with Juniper's end-user license
agreement. You can purchase licenses for the Juniper Cloud-Native Router software through your
Juniper Account Team. You can apply the licenses by using the CLI of the cloud-native router controller.
For details about managing multiple license files for multiple cloud-native router deployments, see
Juniper Agile Licensing Overview.

@ NOTE: Starting with Cloud-Native Router Release 23.2, the Cloud-Native Router license
format has changed. Request a new license key from the JAL portal before deploying or
upgrading to 23.2 or newer releases.

To verify your Cloud-Native Router license:

https://www.juniper.net/documentation/us/en/software/license/licensing/topics/topic-map/jal-overview.html

1. Run the command kubectl get pods -A | grep -i crpd on the host server.

jenr kube-crpd-worker-sts-0 1/1 Running @ 24h

2. ldentify the cRPD pod and issue the command kubectl exec -it -n jcnr kube-crpd-worker-sts-0 -- cli show

system license.

Defaulted container "kube-crpd-worker" out of: kube-crpd-worker, jcnr-crpd-config (init),
install-cni (init)
License usage:

Licensed Licensed Licensed

Feature Feature Feature
Feature name used installed needed Expiry
containerized-rpd-standard 1 1 0 2026-02-04 16:00:00 PST

Licenses installed:
License identifier: JUN0S892191212
License version: 4
Order Type: commercial
Features:
containerized-rpd-standard - Containerized routing protocol daemon with standard features
date-based, 2023-02-05 16:00:00 PST - 2026-02-04 16:00:00 PST

CHAPTER

Install

IN THIS CHAPTER

Before You Install | 21
Customize Cloud-Native Router Helm Chart | 22

Customize Cloud-Native Router Configuration using Node Annotations |
35

Install and Verify Juniper Cloud-Native Router | 42

Before You Install

SUMMARY

This topic provides a list of pre-requisities for installing the Juniper Cloud-Native Router including the
required host configuration and licenses.

The Juniper Cloud-Native Router (JCNR) is a container-based software solution, orchestrated by
Kubernetes(K8s). It combines the containerized routing protocol process (cCRPD) and a Data Plane
Development Kit (DPDK)-enabled virtual router (vRouter). Using the JCNR, you can enable full Junos
routing control plane with enhanced forwarding capabilities.

This section provides a list of pre-requisites for installing JCNR.

Review the JCNR "System Requirements" on page 10 to setup and configure the host machines.

2. Cloud-Native Router supports an all-in-one or multinode Kubernetes cluster, with master and
worker nodes running on virtual machines (VMs) or bare metal servers (BMS). Kubernetes
installation or management instructions are not provided in this documentation. Please see https:/
kubernetes.io for Kubernetes documentation.

@ NOTE: It is not recommended to deploy Juniper Cloud-Native Router if Kubernetes
cpumanager is enabled in your Kubernetes cluster.

3. Ensure the host is enabled with SR-IOV and VT-d in the system's BIOS.

Hugepage and iommu setting is mandatory for the vRouter to come up. You can set them at grub
level with the below options:

a. Add below params by adjusting the no of hugepages (64 here is just an example) in /etc/default/
grub and reboot the host: "

GRUB_CMDLINE_LINUX_DEFAULT="console=tty1 console=ttyS@ default_hugepagesz=1G

hugepagesz=1G hugepages=64 intel_iommu=on iommu=pt

Update grub and reboot the host. For example:

grub2-mkconfig -o /boot/grub2/grub.cfg

https://kubernetes.io
https://kubernetes.io

b. To verify hugepage is set , execute these commands on the host:

cat /proc/cmdline

grep -i hugepages /proc/meminfo

5. Ensure VLAN driver is enabled on the host machine at startup. You can verify it by issuing the 1smod
| grep 8021qg command.

Enable virtual functions (VFs) on host NICs at startup. (Only for L2 deployments)

Enable Trust and Disable Spoofcheck on VF's assigned to vRouter using the commands (Only for L2
deployments):

ip link set <interfacename> vf 1 spoofchk off
ip link set <interfacename> vf 1 trust on

Ensure you have the latest version of helm3 installed.

Download the Cloud-Native Router tarball, Juniper_Cloud_Native_Router_release_nunbertgz from
the Juniper Support Site, to a directory on your host machine. You must perform the file transfer in
binary mode when transferring the file to your server, so that the compressed tar file expands
properly.

10. Ensure you have a valid cRPD license available. The Cloud-Native Router license format has
changed, you must request a new license key before deploying or upgrading to 23.2 release. See
"Cloud-Native Router Licensing" on page 18 for more information.

11. Review the Cloud-Native Router Deployment Modes topic to understand the various deployment
modes supported by JCNR.

Customize Cloud-Native Router Helm Chart

Read this topic to learn about the deployment configuration available for the Juniper Cloud-Native
Router.

You can deploy and operate Juniper Cloud-Native Router in the L2, L3, or L2-L3* mode. You configure
the deployment mode by editing the appropriate attributes in the values.yanl file prior to deployment.

@ NoTE:

https://support.juniper.net/support/downloads/?p=jcnr

e The L2-L3 deployment mode is a "Juniper Technology Previews (Tech Previews)" on
page 104 feature in the Juniper Cloud-Native Router Release 23.2.

e In the fabricInterface key of the values.yaml file:

e When all the interfaces have an interface_mode key configured, then the mode of
deployment would be L2.

e When one or more interfaces have an interface_node key configured along with the
rest of the interfaces not having the interface_mode key, then the mode of
deployment would be L2-L3.

¢ When none of the interfaces have the interface_mode key configured, then the
mode of deployment would be L3.

Customize the helm charts using the Juniper_Cloud_Native_Router_version-number/helmchart/values.yaml file. The
configuration keys of the heml chart are shown in the table below.

Table 5: Helm Chart Attributes and Descriptions

Key Additional Key Description
Configuration

registry Defines the docker registry where the vRouter, cRPD and jcnr-cni
container images are hosted. The default value is enterprise-
hub. juniper.net.

repository (Optional) Defines the repository path for the vRouter, cRPD and
jenr-cni container images. This is a global key and takes
precedence over "repository" paths under "common" section.

imagePullSecret (Optional) Defines the registry authentication credentials. You can
configure credentials to either the Juniper repository or your
private registry.

registryCredentials Base64 representation of your Docker registry credentials. View
the "Configure Repository Credentials" on page 102 topic for more
information.

secretName Name of the Secret object that will be created.

common Defines repsitory paths and tags for the vRouter, cRPD and jcnr-
cni container images.

Table 5: Helm Chart Attributes and Descriptions (Continued)

Key

replicas

storageClass

nolLocalSwitching

Additional Key
Configuration

repository

tag

Description

Defines the repository path. The default value is atom-docker/cn2/
bazel-build/dev/. The global repository key takes precedence if
defined.

Defines the image tag. The default value is configured to the
appropriate tag number for the Cloud-Native Router release
version.

(Optional) Indicates the number of replicas for cRPD. If the value is
not specified, then the default value 1 is considered. The value for
this key must be specified for multi-node clusters.

(Optional) Indicates the name of the storage class for cRPD. This
key must be specified for cloud deployments such as AWS where
gp2 can be used.

(Optional) Prevents interfaces in a bridge domain from transmitting
and receiving ethernet frame copies. Enter one or more comma
separated VLAN IDs to ensure that the interfaces belonging to the
VLAN IDs do not transmit frames to one another. This key is
specific for L2 and L2-L3 deployments. Enabling this key provides
the functionality on all access interfaces. For enabling the
functionality on trunk interfaces, configure the no-local-switching
key in the fabricInterface key.

Table 5: Helm Chart Attributes and Descriptions (Continued)

Key

fabriclnterface

Additional Key

Configuration

Description

Provide a list of interfaces to be bound to the DPDK. You can also

provide subnets instead of interface names. If both the interface

name and the subnet are specified, then the interface name takes

precedence over subnet/gateway combination. The subnet/

gateway combination is useful when the interface names vary in a

multi-node cluster.

NOTE:

When all the interfaces have an interface_mode key
configured, then the mode of deployment would be L2.

When one or more interfaces have an interface_mode key
configured along with the rest of the interfaces not having
the interface_mode key, then the mode of deployment would
be L2-L3.

When none of the interfaces have the interface_mode key
configured, then the mode of deployment would be L3.

For example:

L2 only
- ethl:

ddp: "auto"

interface_mode: trunk

vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1
native-vlan-id: 100
no-local-switching: true

- bondo:

ddp: "auto" # auto/on/off
interface_mode: trunk

vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1
#native-vlan-id: 100

#no-local-switching: true

L3 only
- ethl:

ddp: "off"

Table 5: Helm Chart Attributes and Descriptions (Continued)

Key Additional Key
Configuration

subnet

ddp

Description

- eth2:
ddp: "off"

L2L3

- ethi:
ddp: "auto"

- eth2:
ddp: "auto"
interface_mode: trunk
vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1
native-vlan-id: 100
no-local-switching: true

An alternative mode of input for interface names. For example:

- subnet: 10.40.1.0/24
gateway: 10.40.1.1
ddp: "off"

The subnet option is applicable only for L3 interfaces. With the
subnet mode of input, interfaces are auto-detected in each subnet.
Specify either subnet/gateway or the interface name. Do not
configure both. The subnet/gateway form of input is particularly
helpful in environments where the interface names vary for a
multi-node K8s cluster.

(Optional) Indicates the interface-level Dynamic Device
Personalization (DDP) configuration. DDP provides datapath
optimization at NIC for traffic like GTPU, SCTP, etc. For a bond
interface, all slave interface NICs must support DDP for the DDP
configuration to be enabled.

Setting options include auto, on, or off. The default setting is off.

NOTE: The subnet/interface level ddp takes precedence over the

global ddp configuration.

Table 5: Helm Chart Attributes and Descriptions (Continued)

Key Additional Key
Configuration

interface_mode

vlan-id-list

storm-control-
profile

native-vlan-id

no-local-switching

fabricWorkloadInter
face

log_level

Description

Set to trunk for L2 interfaces and do not configure for L3
interfaces. For example,

interface_mode: trunk

Provide a list of VLAN IDs associated with the interface.

Use storm-control-profile to associate appropriate storm control
profile for the interface. Profiles are defined under jcnr-

vrouter.stormControlProfiles.

Configure native-vlan-id with any of the VLAN IDs in the vlan-id-
list to associate it with untagged data packets received on the
physical interface of a fabric trunk mode interface. For example:

fabricInterface:
- bond@:
interface_mode: trunk
vlan-id-list: [100, 200, 300]
storm-control-profile: rate_limit_pf1
native-vlan-id: 100

Prevents interfaces from communicating directly with each other if
the no-local-switching statement is configured. Allowed values are
true or false.

(Optional) Defines the interfaces to which different workloads are
connected. They can be software-based or hardware-based
interfaces.

Defines the log severity. Available value options are: DEBUG,
INFO, WARN, and ERR.

NOTE: Leave the log_level set to INFO unless instructed to
change it by Juniper support.

Table 5: Helm Chart Attributes and Descriptions (Continued)

Key Additional Key
Configuration

log_path

syslog_notifications

nodeAffinity
key
operator
cni_bin_dir
grpcTelemetryPort
grpcVrouterPort

Description

The defined directory stores various Cloud-Native Router related
descriptive logs such as contrail-vrouter-agent.log, contrail-
vrouter-dpdk.log, etc.

Indicates the absolute path to the file that stores syslog-ng
generated notifications in JSON format.

(Optional) Defines labels on nodes to determine where to place
the cRPD, vRouter and syslog-ng pods. For example:

nodeAffinity:
- key: node-role.kubernetes.io/worker
operator: Exists

NOTE: This key is a global setting.

On an OCP setup node affinity must be configured to bring up
Cloud-Native Router on worker only.

Key-value pair that represents a node label that must be matched
to apply the node affinity.

Defines the relationship between the node label and the set of
values in the matchExpression parameters in the pod specification.
This value can be In, Notln, Exists, DoesNotExist, Lt, or Gt.

(Optional) The default path is /opt/cni/bin. You can override the
default cni path with a path of your choice e.g. /var/opt/cni/bin. In
some deployments like Red Hat OpenShift the default CNI path
may need to be changed. Leaving the path variable (cni_bin_dir)
empty, isn't a viable option in OCP.

(Optional) Enter a value for this parameter to override cRPD
telemetry gRPC server default port of 50051.

(Optional) Enter a value for this parameter to override vRouter
gRPC server default port of 50052.

Table 5: Helm Chart Attributes and Descriptions (Continued)

Key Additional Key
Configuration

restorelnterfaces

bondInterfaceConfi

gs
name
mode
slavelnterfaces
mtu

cpu_core_mask

stormControlProfile

s
rate_limit_pf1
bandwidth
level

ddp

Description

Set the value of this key to true to restore the interfaces back to
their original state in case the vRouter pod crashes or restarts.

(Optional) Enable bond interface configurations only for L2 or L2-
L3 deployments.

(Optional) Name of the bond interface.

(Optional) Default value is 1 (Active_Backup)

(Optional)

Maximum Transmission Unit (MTU) value for all physical interfaces
(VFs and PFs).

Indicates the vRouter forward core mask. If qos is enabled, you will
need to allocate 4 CPU cores (primary and siblings).

Configure the rate limit profiles for BUM traffic on fabric interfaces
in bytes per second.

(Optional) Indicates the global Dynamic Device Personalization
(DDP) configuration. DDP provides datapath optimization at NIC
for traffic like GTPU, SCTP, etc. For a bond interface, all slave
interface NICs must support DDP for the DDP configuration to be
enabled.

Setting options include auto, on, or off. The default setting is off.

NOTE: The subnet/interface level ddp takes precedence over the

global ddp configuration.

Table 5: Helm Chart Attributes and Descriptions (Continued)

Key Additional Key Description
Configuration
qosEnable Set to true or false to enable or disable QoS.

NOTE: QoS is not supported on Intel X710 NIC.

corePattern Indicates the core pattern to denote how the core file is generated.
If this configuration is left blank, then Cloud-Native Router pods
will not overwrite the default pattern.

NOTE: Set the corePattern value on host before deploying
JCNR. You may change the value in /etc/sysctl.conf. For
example, kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_

wt.gz

coreFilePath Indicates the path for the core file. If the value is left blank, then
vRouter considers /var/crashes as the default value.

vrouter_dpdk_uio_d The uio driver can either be vfio-pci or uio_pci_generic.
river

The default helm chart is shown below:

AR R R R R

Common Configuration (global vars)
AR AR AR AR
global:

registry: enterprise-hub.juniper.net/
uncomment below if all images are available in the same path; it will
take precedence over "repository" paths under "common" section below

repository: jcnr-container-prod/

uncomment below if you are using a private registry that needs authentication
registryCredentials - Base64 representation of your Docker registry credentials
secretName - Name of the Secret object that will be created

#imagePullSecret:

registryCredentials: <base64-encoded-credential>

secretName: regcred

common:
vrouter:
repository: atom-docker/cn2/bazel-build/dev/
tag: R23.2-156
crpd:
repository: junos-docker-local/warthog/
tag: 23.2R1.14
jenreni:
repository: junos-docker-local/warthog/
tag: 23.2-20230628-8cf4350

Number of replicas for cRPD; this option must be used for multinode clusters
JCNR will take 1 as default if replicas is not specified
#replicas: "3"

storageClass: Name of the storage class for cRPD. This option is must for
cloud deployments such as AWS where gp2 can be used
#storageClass: gp2

#noLocalSwitching: [700]

fabricInterface: provide a list of interfaces to be bound to dpdk

You can also provide subnets instead of interface names. Interfaces name take precedence over

Subnet/Gateway combination if both specified (although there is no reason to specify both)

Subnet/Gateway combination comes handy when the interface names vary in a multi-node cluster

fabricInterface:

HHHHHHHHHHHR R

L2 only

#- ethi:

ddp: "auto" # ddp parameter is optional; options include auto or on or
off; default: off

interface_mode: trunk

vlan-id-list: [100, 200, 300, 700-705]

storm-control-profile: rate_limit_pf1

native-vlan-id: 100

no-local-switching: true

#- eth2:

ddp: "auto" # ddp parameter is optional; options include auto or on or
off; default: off

interface_mode: trunk

vlan-id-list: [700]

storm-control-profile: rate_limit_pf1

#

native-vlan-id: 100

no-local-switching: true
#- bond@:
ddp: "auto" # auto/on/off # ddp parameter is optional; options include auto or on or
off; default: off
interface_mode: trunk
vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1
#native-vlan-id: 100

H H H =

#no-local-switching: true

HHHHHHEHEHEHHHEHAEEH

L3 only

#- ethi:

ddp: "off" # ddp parameter is optional; options include auto or on or
off; default: off

#- eth2:

ddp: "off" # ddp parameter is optional; options include auto or on or

off; default: off
HHHHHEHEHHEHHEHRAHA

L2L3

#- etht:

ddp: "auto" # ddp parameter is optional; options include auto or on or
off; default: off

#- eth2:

ddp: "auto" # ddp parameter is optional; options include auto or on or

off; default: off

interface_mode: trunk
vlan-id-list: [100, 200, 300, 700-705]
storm-control-profile: rate_limit_pf1

native-vlan-id: 100

H OH H H

no-local-switching: true
R S S S

Provide subnets instead of interface names

Interfaces will be auto-detected in each subnet

Only one of the interfaces or subnet range must

be configured. This form of input is particularly

helpful when the interface names vary in a multi-node

K8s cluster

#- subnet: 10.40.1.0/24

gateway: 10.40.1.1

ddp: "off" # ddp parameter is optional; options include auto or on or

off; default: off

#- subnet: 192.168.1.0/24

gateway: 192.168.1.1

ddp: "off" # ddp parameter is optional; options include auto or on or
off; default: off

R S S S S
fabricWorkloadInterface is applicable only for Pure L2 deployments
#

#fabricWorkloadInterface:

#- enp59s0f1v0:

interface_mode: access

vlan-id-list: [700]

#- enp59s0fivi:

interface_mode: trunk

vlan-id-list: [800, 900]
HHHEHHHEHHHAHHR R

defines the log severity. Possible options: DEBUG, INFO, WARN, ERR
log_level: "INFO"

"log_path": this directory will contain various jcnr related descriptive logs
such as contrail-vrouter-agent.log, contrail-vrouter-dpdk.log etc.

log_path: "/var/log/jcnr/"

"syslog_notifications": absolute path to the file that will contain syslog-ng
generated notifications in json format

syslog_notifications: "/var/log/jcnr/jcnr_notifications.json"

nodeAffinity: Can be used to inject nodeAffinity for vRouter, cRPD and syslog-ng pods
You may label the nodes where we wish to deploy JCNR and inject affinity accodingly
#nodeAffinity:

#- key: node-role.kubernetes.io/worker

operator: Exists

#- key: node-role.kubernetes.io/master

operator: DoesNotExist

#- key: kubernetes.io/hostname

operator: In

values:

- example-host-1

cni_bin_dir: Path where the CNI binary will be put; default: /opt/cni/bin
this may be overriden in distributions other than vanilla
K8s

e.g. OpenShift - you may use /var/lib/cni/bin or /etc/kubernetes/cni/net.d
#cni_bin_dir: /var/lib/cni/bin

grpcTelemetryPort: use this parameter to override cRPD telemetry gRPC server default port of
50051
#grpcTelemetryPort: 50055

grpcVrouterPort: use this parameter to override vRouter gRPC server default port of 50052
#grpcVrouterPort: 50060

jenr-vrouter:
restorelnterfaces: setting this to true will restore the interfaces
back to their original state in case vrouter pod crashes or restarts
restorelnterfaces: false

Enable bond interface configurations L2 only or L2 L3 deployment

#bondInterfaceConfigs:

- name: "bond@"

mode: 1 # ACTIVE_BACKUP MODE
slavelnterfaces:

- "enp59s0fove"

- "enp59s0fov1"

MTU for all physical interfaces(all VF’s and PF’s)
mtu: "9000"

vrouter fwd core mask
if qos is enabled, you will need to allocate 4 CPU cores (primary and siblings)
cpu_core_mask: "2,3,22,23"

rate limit profiles for bum traffic on fabric interfaces in bytes per second
stormControlProfiles:

rate_limit_pf1:

bandwidth:
level: 0

#rate_limit_pf2:

bandwidth:

level: 0

Set ddp to enable Dynamic Device Personalization (DDP)
Provides datapath optimization at NIC for traffic like GTPU, SCTP etc.
Options include auto or on or off; default: off

ddp: "auto"

Set true/false to Enable or Disable QO0S, note: QOS is not supported on X710 NIC.
gosEnable: false

core pattern to denote how the core file will be generated

if left empty, JCNR pods will not overwrite the default pattern

corePattern:

path for the core file; vrouter considers /var/crashes as default value if not specified
coreFilePath: /var/crash

uio driver will be vfio-pci or uio_pci_generic

vrouter_dpdk_uio_driver: "vfio-pci"

@ NOTE: If you are installing Cloud-Native Router on Amazon EKS, then update the
dpdkCommandAdditionalArgs key in the helmchart/charts/jcnr-vrouter/values.yaml file and set
tx and rx descriptors to 256. For example:

dpdkCommandAdditionalArgs: "--yield_option @ --dpdk_txd_sz 256 --dpdk_rxd_sz 256"

Additional working samples for various deployment modes have been provided in the "Working Samples
for Cloud-Native Router Helm Chart" on page 94 topic.

Customize Cloud-Native Router Configuration using
Node Annotations

SUMMARY IN THIS SECTION

Read this topic to understand how to customize Node Annotations | 36
Cloud-Native Router configuration using node
annotations and custom configuration template.

Configuration Example | 36
Troubleshooting | 42

Node Annotations

Starting with Juniper Cloud-Native Router (JCNR) Release 23.2, Cloud-Native Router supports
customizing the Cloud-Native Router configurations using node annotations when deployed in L3 mode.
Node annotations are key-value pairs. The key-value pairs are used to render the cRPD configuration via
a go template. The configured template must be available in the Juniper_Cloud_Native_Router_release_number/
helmchart/charts/jcnr-cni/files/ directory for the configuration to be applied to the cRPD pods.

@ NOTE: You must apply the node annotations before installing Cloud-Native Router to
create cRPD pods with custom configuration. The cRPD pod must be deleted and
respawned should you wish to apply the annotations any time after Cloud-Native Router
installation. cRPD customization via node annotations is optional.

Configuration Example

Sample node annotation and template files are available under Juniper_Cloud_Native_Router_<release-number>/
helmchart/cRPD_examples directory.

You define the key-value pair for each worker node of your cluster. An example of the node-
annotations.yaml file is provided below:

apiVersion: vi1
kind: Node
metadata:
name: 5d8s1-nodel ---> Node name
annotations:
jenr. juniper.net/params: '{
"isolLoopbackAddr": "49.0004.1000.0000.0001.00", ---> Key value pairs
"IPv4LoopbackAddr": "110.1.1.2",
"srIPv4NodeIndex": "2000",
"srIPv6NodeIndex": "3000",
"BGPIPv4Neighbor": "110.1.1.254",
"BGPLocalAsn": "64512"
3
apiVersion: vi1
kind: Node
metadata:
name: 5d8s1-node2

annotations:

jenr. juniper.net/params: '{
"isolLoopbackAddr": "49.0004.1000.0000.0000.00",
"IPv4LoopbackAddr": "110.1.1.3",
"srIPv4NodeIndex": "2001",
"srIPv6NodeIndex": "3002",
"BGPIPv4Neighbor": "110.1.2.254",
"BGPLocalAsn": "64512"

3

The key-value pairs you define in the annotations is used to render the cRPD configuration via a go
template. An example of the jcnr-cni-custom-config. tmpl template file is provided below:

apply-groups [custom];
groups {
custom {
interfaces {
100 {
unit 0 {
{{if .Node.isolLoopbackAddr}} ---> key is replaced by
value, if available for the node
family iso {
address {{.Node.isolLoopbackAddr}};
}
{{end}}
family inet {
address {{.Node.IPv4lLoopbackAddr}};

}
routing-options {
router-id {{.Node.IPv4LoopbackAddr}}
route-distinguisher-id {{.Node.IPv4LoopbackAddr}}
}
protocols {
isis {
interface all;
{{if and .Env.SRGB_START_LABEL .Env.SRGB_INDEX_RANGE}} ---> conditional
statement based on environment variables
source-packet-routing {
srgb start-label {{.Env.SRGB_START_LABEL}} index-range
{{.Env.SRGB_INDEX_RANGE}};

node-segment {
{{if .Node.srIPv4NodeIndex}}
ipv4-index {{.Node.srIPv4NodeIndex}};
{{end}}
{{if .Node.srIPv6NodeIndex}}
ipv6-index {{.Node.srIPv6NodeIndex}};

{{end}}
}
}
{{end}}
level 1 disable;
}
1dp {
interface all;
}
mpls {
interface all;
}
bgp {
interface all;
}

}
policy-options {
policy to signal dynamic UDP tunnel attributes to BGP routes
policy-statement udp-export {
then community add udp;

}

community udp members encapsulation:@L:13;
}
protocols {

bgp {

group jenrbgpl {
type internal;
local-address {{.Node.IPv4lLoopbackAddr}};
local-as {{.Node.BGPLocalAsn}};
neighbor {{.Node.BGPIPv4Neighbor}};
family inet-vpn {

unicast;

}
family inet6-vpn {

unicast;

}
routing-options {
dynamic-tunnels {
dyn-tunnels {
source-address {{.Node.IPv4lLoopbackAddr}};
udp;
destination-networks {{.Node.BGPIPv4Neighbor}}/32;

@ NOTE: You can define additional cRPD configuration hierarchies in the template. The
values to be rendered from the annotations defined in the node-annotations.yaml must be
defined as {{.Node. key}}. Any environment variables, such as variables defined in
values.yaml, must be defined as {{.Env. variable_name}}.

Once the template is configured, you must copy the jcnr-cni-custom-config. tmpl file to the

Juniper_Cloud_Native_Router_release_number/helmchart/charts/jcnr-cni/files/ directory.

cp Juniper_Cloud_Native_Router_release_number/helmchart/cRPD_examples/jcnr-cni-custom-
config.tmpl Juniper_Cloud_Native_Router_release_number/helmchart/charts/jcnr-cni/files/

cp: overwrite 'Juniper_Cloud_Native_Router_release_number/helmchart/charts/jcnr-cni/files/jcnr-
cni-custom-config.tmpl'? yes

#

Apply the node annotations to the cluster nodes using the command provided below:

kubectl apply -f node-annotation.yaml
node/5d8s1-node1 configured
node/5d8s1-node2 configured

Follow the "JCNR installation instructions" on page 42 to deploy the cloud-native router components,
including the cRPD. Once the installation completes, "access the cRPD shell" on page 52 and issue the
show configuration | display set command in the cli mode to view the custom configuration you applied.

root@jcnr-01> show configuration
Last commit: 2023-06-23 08:30:42 EDT by root
version 20230608.143922_builder.r1342735;
groups {
base { /x OMITTED x/ };
custom {
interfaces {

loo {
unit @ {
family inet {
address 110.1.1.2/32;
}
family iso {
address 49.0004.1000.0000.0001.00;
}
}
}

}
policy-options {
policy to signal dynamic UDP tunnel attributes to BGP routes
policy-statement udp-export {
then {
community add udp;

}
community udp members encapsulation:@L:13;
}
routing-options {
route-distinguisher-id 110.1.1.2;
router-id 110.1.1.2;
dynamic-tunnels {
dyn-tunnels {
source-address 110.1.1.2;
udp;
destination-networks {
110.1.1.254/32;

}
protocols {
bgp {
group jenrbgpl {
type internal;
local-address 110.1.1.2;
family inet-vpn {
unicast;
}
family inet6-vpn {
unicast;
}
local-as 64512;
neighbor 110.1.1.254;
}
}
isis {
interface all;
source-packet-routing {
srgb start-label 400000 index-range 4000;
node-segment {
ipv4-index 2000;
ipv6-index 3000;
}
}
level 1 disable;
}
1dp {
interface all;
}
mpls {
interface all;
}
}

3

cni { /* OMITTED %/ };

internal { /x OMITTED %/ };
}

apply-groups [custom base internal J;

Troubleshooting

The cRPD pod continues to remain in Pending state if invalid configuration is rendered and applied via the
go template. The rendered configuration is saved in /etc/crpd directory on the Cloud-Native Router host
as juniper.conf.master. You can apply the rendered configuration manually to a running cRPD pod to
validate the configuration and identify issues. For an AWS EKS deployment you can find the rendered
config within the cRPD pod in the /config directory.

Install and Verify Juniper Cloud-Native Router

SUMMARY IN THIS SECTION

The Juniper Cloud-Native Router (cloud-native Install Juniper Cloud-Native Router Using
router) uses the the JCNR-Controller (cRPD) to Helm Chart | 42

provide control plane capabilities and JCNR-CNI to Verify Installation | 45

provide a container network interface. Juniper
Cloud-Native Router uses the DPDK-enabled
vRouter to provide high-performance data plane
capabilities and Syslog-NG to provide notification
functions. This section explains how you can install
these components of the Cloud-Native Router.

Install Juniper Cloud-Native Router Using Helm Chart

Read this section to learn the steps required to load the cloud-native router image components into
docker and install the cloud-native router components using Helm charts.

1. Review the "Before You Install" on page 21 section to ensure the cluster has all the required
configuration.

2. Download the tarball, Juniper_Cloud_Native_Router_ <release-number>.tgz, to the directory of
your choice. You must perform the file transfer in binary mode when transferring the file to your
server, so that the compressed tar file expands properly.

3. Expand the file Juniper_Cloud_Native_Router_ <release-number>.tgz.

tar xzvf Juniper_Cloud_Native_Router_<release-number>.tgz

4. Change directory to Juniper_Cloud_Native_Router_ <release-number>.

cd Juniper_Cloud_Native_Router_<release-number>

@ NOTE: All remaining steps in the installation assume that your current working
directory is now Juniper_Cloud_Native_Router_ <release-number>.

5. View the contents in the current directory.

1s

contrail-tools helmchart images README.md secrets

6. The Cloud-Native Router container images are required for deployment. Choose one of the
following options:

e Configure your cluster to deploy images from the Juniper Networks enterprise-hub. juniper.net
repository. See "Configure Repository Credentials" on page 102 for instructions on how to
configure repository credentials in the deployment Helm chart.

e Configure your cluster to deploy images from the images tarball included in the downloaded
Cloud-Native Router software package. See "Deploy Prepackaged Images" on page 103 for
instructions on how to import images to the local container runtime.

7. Enter the root password for your host server into the secrets/jcnr-secrets.yaml file at the following
line:

root-password: <add your password in base64 format>

You must enter the password in baseé64-encoded format. Encode your password as follows:

echo -n "password" | base64 -w@

Copy the output of this command into secrets/jcnr-secrets.yaml.

8. Enter your Juniper Cloud-Native Router license into the secrets/jcnr-secrets.yaml file at the
following line.

crpd-license: |

<add your license in base64 format>

You must enter your license in baseé64-encoded format. Encode your license as follows:

base64 -w0 licenseFile

Copy the output of this command into secrets/jcnr-secrets.yaml.

@ NOTE: You must obtain your license file from your account team and install it in the
jenr-secrets.yaml file as instructed above. Without the proper base64-encoded
license key and root password in the jenr-secrets.yaml file, the cRPD Pod does not
enter Running state, but remains in CrashLoopBackOff state.

@ NOTE: Starting with Cloud-Native Router Release 23.2, the Cloud-Native Router
license format has changed. Request a new license key from the JAL portal before
deploying or upgrading to 23.2 or newer releases.

9. Apply secrets/jcnr-secrets.yaml.

kubectl apply -f secrets/jcnr-secrets.yaml
namespace/jcnr created

secret/jcnr-secrets created

10. Customize the helm chart for your deployment using the helmchart/values.yaml file.

See, "Customize Cloud-Native Router Helm Chart" on page 22 for descriptions of the helm chart
configurations.

11. If you are installing Cloud-Native Router on Amazon EKS, then update the dpdkCommandAdditionalArgs
key in the helmchart/charts/jcnr-vrouter/values.yaml file and set tx and rx descriptors to 256, else
skip this step.

For example:

dpdkCommandAdditionalArgs: "--yield_option @ --dpdk_txd_sz 256 --dpdk_rxd_sz 256"

12. Optionally, create cRPD pods with custom configuration.

See, "Customize Cloud-Native Router Configuration using Node Annotations" on page 35 for
creating and applying the cRPD customizations.

13. Deploy the Juniper Cloud-Native Router using the helm chart.

Navigate to the helmchart directory and run the following command:

helm install jcnr

NAME: jcnr

LAST DEPLOYED: Fri Jun 23 06:04:33 2023
NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

14. Confirm Juniper Cloud-Native Router deployment.

helm 1s

Sample output:

NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
jenr default 1 2023-06-23 06:04:33.144611017 -0400 EDT
deployed jcnr-23.2.0 23.2.0
Verify Installation

This section enables you to confirm a successful Cloud-Native Router deployment.

1. Verify the state of the Cloud-Native Router pods by issuing the kubectl get pods -A command.

The output of the kubectl command shows all of the pods in the Kubernetes cluster in all namespaces.
Successful deployment means that all pods are in the running state. In this example we have marked
the Juniper Cloud-Native Router Pods in bold. For example:

kubectl get pods -A

NAMESPACE NAME READY STATUS

RESTARTS AGE

contrail-deploy contrail-k8s-deployer-579cd5bc74-g27gs 1/1 Running

0 103s

contrail contrail-vrouter-masters-1qjgk 3/3 Running

0 87s

jenr kube-crpd-worker-sts-0 1/1 Running

0 103s

jenr syslog-ng-ds5qd 1/1 Running

0 103s

kube-system calico-kube-controllers-5f4fd8666-m78hk 1/1 Running 1 (3h13m
ago) 4h2m

kube-system calico-node-28w98 11 Running 3 (4d1h
ago) 86d

kube-system coredns-54bf8d85c7-vkpgs 1/1 Running

0 3h8m

kube-system dns-autoscaler-7944dc7978-ws9fn 11 Running 3 (4d1h
ago) 86d

kube-system kube-apiserver-ix-esx-06 11 Running 4 (4d1h
ago) 86d

kube-system kube-controller-manager-ix-esx-06 1/1 Running 8 (4d1h
ago) 86d

kube-system kube-multus-ds-amd64-j169w 1/1 Running 3 (4d1h
ago) 86d

kube-system kube-proxy-gm5bl 1/1 Running 3 (4d1h
ago) 86d

kube-system kube-scheduler-ix-esx-06 11 Running 9 (4d1h
ago) 86d

kube-system nodelocaldns-bntfp 11 Running 4 (4d1h
ago) 86d

2. Verify the Cloud-Native Router daemonsets by issuing the kubectl get ds -A command.

Use the kubectl get ds -A command to get a list of daemonsets. The Cloud-Native Router daemonsets
are highlighted in bold text.

kubectl get ds -A

NAMESPACE NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE
NODE SELECTOR AGE

contrail contrail-vrouter-masters 1 1 1 1 1
<none> 90m

contrail contrail-vrouter-nodes 0 0 0 0 0
<none> 90m

jenr syslog-ng 1 1 1 1 1
<none> 90m

kube-system calico-node 1 1 1 1 1
kubernetes.io/os=1inux 86d

kube-system kube-multus-ds-amd64 1 1 1 1 1
kubernetes.io/arch=amd64 86d

kube-system kube-proxy 1 1 1 1 1
kubernetes.io/os=1inux 86d

kube-system nodelocaldns 1 1 1 1 1
kubernetes.io/os=1inux 86d

3. Verify the Cloud-Native Router statefulsets by issuing the kubectl get statefulsets -A command.

The command output provides the statefulsets.

kubectl get statefulsets -A

NAMESPACE NAME READY AGE
jenr kube-crpd-worker-sts 1/1 27m

4. Verify if the cRPD is licensed and has the appropriate configurations

a. View the "Accessing the Cloud-Native Router Controller (cRPD) CLI" on page 52 section to
access the cRPD CLI.

b. Once you have access the cRPD CLI, issue the show system license command in the cli mode to view
the system licenses. For example:

root@jcnr-01:/# cli
root@jcnr-01> show system license

License usage:

Licenses Licenses Licenses Expiry
Feature name used installed needed
containerized-rpd-standard 1 1 0 2024-09-20 16:59:00 PDT

Licenses installed:

License identifier: 85e5229f-0c64-0000-c10e4-a98c09ab34al

License SKU: S-CRPD-10-A1-PF-5

License version: 1

Order Type: commercial

Software Serial Number: 1000098711000-iHpgf

Customer ID: Juniper Networks Inc.

License count: 15000

Features:

containerized-rpd-standard - Containerized routing protocol daemon with standard
features
date-based, 2022-08-21 17:00:00 PDT - 2027-09-20 16:59:00 PDT

c. Issue the show configuration | display set command in the cli mode to view the cRPD default and
custom configuration. The output will be based on the custom configuration and the Cloud-
Native Router deployment mode.

root@jcnr-01# cli

root@jcnr-01> show configuration | display set

d. Type the exit command to exit from the pod shell.

5. Verify the vRouter interfaces configuration

a. View the "Accessing the vRouter CLI" on page 79 section to access the vRouter CLI.

b. Once you have accessed the vRouter CLI, issue the vif --list command to view the vRouter
interfaces . The output will depend upon the Cloud-Native Router deployment mode and

configuration. An example for L3 mode deployment, with one fabric interface configured, is
provided below:

$ vif --list

Vrouter Interface Table

Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror

Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2

D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged

Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload,
Mon=Interface is Monitored

Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled

Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag,
HbsL=HBS Left Intf

HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, MI=MAC-IP Learning Enabled, Me=Multicast
Enabled

vife/e Socket: unix MTU: 1514
Type:Agent HWaddr:00:00:5e:00:01:00
Vrf:65535 Flags:L2 Q0S:-1 Ref:3
RX queue errors to lcore 0 0 0 0 0 000000000
RX packets:Q bytes:0 errors:0
TX packets:@ bytes:0 errors:0
Drops:0

vife/1 PCI: 0000:5a:02.1 (Speed 10000, Duplex 1) NH: 6 MTU: 9000
Type:Physical HWaddr:ba:9c:0f:ab:e2:c9 IPaddr:0.0.0.0
DDP: OFF SwLB: ON
Vrf:0 Mcast Vrf:0 Flags:L3L2Vof Q0S:0 Ref:12
RX port packets:66 errors:0
RX queue errors to lcore 0 0 0 0 0 000000000
Fabric Interface: 0000:5a:02.1 Status: UP Driver: net_iavf
RX packets:66 bytes:5116 errors:0
TX packets:0 bytes:0 errors:0
Drops:0

vifo/2 PMD: eno3vl NH: 9 MTU: 9000
Type:Host HWaddr:ba:9c:0f:ab:e2:c9 IPaddr:0.0.0.0
DDP: OFF SwLB: ON
Vrf:0 Mcast Vrf:65535 Flags:L3L2DProxyEr QO0S:-1 Ref:13 TxXVif:1

RX queue errors to lcore 2 0 0 0 0 0 00000000
RX packets:Q bytes:0 errors:0

TX packets:66 bytes:5116 errors:0

Drops:0

TX queue packets:66 errors:0

TX device packets:66 bytes:5116 errors:@

c. Type the exit command to exit the pod shell.

CHAPTER

Monitor

IN THIS CHAPTER

Monitor Cloud-Native Router via CLI | 52
Telemetry Capabilities of Cloud-Native Router | 59
Logging and Notifications | 66

Monitor Cloud-Native Router via CLI

SUMMARY IN THIS SECTION
This topic contains instructions to access the Cloud- Accessing the Cloud-Native Router Controller
Native Router controller (cRPD) CLI and run (cRPD) CLI | 52

operational commands. Example Show Commands | 54

Example Clear Commands | 59

Accessing the Cloud-Native Router Controller (cRPD) CLI

You can access the command-line interface (CLI) of the cloud-native router controller by accessing the
shell of the running cRPD container.

@ NOTE: The commands below are provided as an example. The cRPD pod name must be
replaced from your environment. The command outputs may differ based on your
environment.

List the K8s Pods Running in the Cluster

kubectl get pods -A

NAMESPACE NAME READY STATUS RESTARTS
AGE

contrail-deploy contrail-k8s-deployer-7b5dd699b9-nd7xf 1/1 Running 0

41m

contrail contrail-vrouter-masters-dfxgm 3/3 Running 0

41m

jenr kube-crpd-worker-ds-8tnf7 1/1 Running 0

41m

jenr syslog-ng-54749b7b77-v24hq 1/1 Running 0

41m

kube-system calico-kube-controllers-57b9767bdb-5wbj6 1/1 Running 2 (92d ago)

129d

kube-system calico-node-j4m5b 1/1 Running 2 (92d ago)
129d

kube-system coredns-8474476ff8-fpw78 1/1 Running 2 (92d ago)
129d
kube-system dns-autoscaler-7f76f4dd6-qg5vdp 1/1 Running 2 (92d ago)
129d
kube-system kube-apiserver-5a5s5-node2 1/1 Running 3 (92d ago)
129d
kube-system kube-controller-manager-5a5s5-node2 1/1 Running 4 (92d ago)
129d
kube-system kube-multus-ds-amd64-4zm5k 1/1 Running 2 (92d ago)
129d
kube-system kube-proxy-16xm8 1/1 Running 2 (92d ago)
129d
kube-system kube-scheduler-5a5s5-node2 1/1 Running 4 (92d ago)
129d
kube-system nodelocaldns-6kwg5 1/1 Running 2 (92d ago)
129d

Copy the name of the cRPD pod—kube-crpd-worker-ds-8tnf7 in this example output . You will use the pod
name to connect to the running container's shell.

Connect to the cRPD CLI

Issue the kubectl exec command to access the running container's shell:

kubectl exec -n <namespace> -it <pod name> --container <container name> -- bash
where <namespace> identifies the namespace in which the pod is running, <pod name> specificies the

name of the pod and the <container name> specifies the name of the container (to be specified if the
pod has more than one container).

The cRPD pod has only one running container. Here is an example command:

kubectl exec -n jcnr -it kube-crpd-worker-ds-8tnf7 -- bash

The result of the above command should appear similar to:

Defaulted container "kube-crpd-worker" out of: kube-crpd-worker, jcnr-crpd-config (init),

install-cni (init)

===

Containerized Routing Protocols Daemon (CRPD)
Copyright (C) 2020-2022, Juniper Networks, Inc. All rights reserved.

root@jcnr-01: /#
At this point, you have connected to the shell of the cRPD. Just as with other Junos-based shells, you

access the operational mode of the cloud-native router the same way as if you were connected to the
console of a physical Junos OS device.

root@jcnr-01:/# cli

root@jcnr-cni>

Example Show Commands

Here are some example show commands you can execute:

show interfaces terse

Interface@link Oper State Addresses

__crpd-brd1 UNKNOWN fe80: :achf:beff:fe8a:e046/64
calilb684d67bd4@if3 UP fe80: :ecee:eeff:feee:eeee/64
cali34cf41e29bb@if3 UP fe80: :ecee:eeff:feee:eeee/64

docker@ DOWN 172.17.0.1/16

enol upP 10.102.70.146/24 fe80::a94:efff:fe79:dcae/64
eno2 uP

eno3 upP 10.1.1.1/24 fe80::a94:efff:fe79:dcac/64
eno3v] uP

eno4 DOWN

enp0s20foulu6 UNKNOWN

ens2f0 DOWN

ens2f1 DOWN

erspan@@NONE DOWN

etho UNKNOWN 169.254.143.126/32 fe80::b4db:eeff:fe78:9f43/64
gre@@NONE UNKNOWN

gretap0@@NONE DOWN

ip6tn10@NONE UNKNOWN fe80::74b6:2cff:fea7:d850/64

irb DOWN

kube-ipvs@ DOWN 10.233.0.1/32 10.233.0.3/32 10.233.35.229/32
lo UNKNOWN 127.0.0.1/8 ::1/128

1si UNKNOWN fe80::cc59:6dff:fe9c:4db3/64

nodelocaldns DOWN 169.254.25.10/32

S1t@@NONE

UNKNOWN ::169.254.143.126/96 ::10.233.91.64/96 ::172.17.0.1/96 ::10.102.70.146/96 ::10.1.1
.1/96 ::127.0.0.1/96

tun10@NONE UNKNOWN

vxlan.calico UNKNOWN 10.233.91.64/32 fe80::64c6:34ff:fecd:3522/64

show configuration routing-instances
vswitch {
instance-type virtual-switch;
bridge-domains {

bd100 {

vlan-id 100;
}
bd200 {

vlan-id 200;
}
bd300 {

vlan-id 300;
}
bd700 {

vlan-id 700;

interface enp59s0f1vo;
}
bd701 {

vlan-id 701;
}
bd702 {

vlan-id 702;
}
bd703 {

vlan-id 703;
}
bd704 {

vlan-id 704;
}
bd705 {

vlan-id 705;

interface bond@;

show bridge ?
Possible completions:
mac-table Show media access control table

statistics Show bridge statistics information

show bridge mac-table ?

Possible completions:

<[Enter]> Execute this command

count Number of MAC address

mac-address MAC address in the format XX:XX:XX:XX:XX:XX

vlan-id Display MAC address learned on a specified VLAN or 'all-vlan'

| Pipe through a command

show bridge mac-table
Routing Instance : default-domain:default-project:ip-fabric:__default__
Bridging domain VLAN id : 3002

MAC MAC Logical
address flags interface
00:00:5E:00:53:01 D bond@

show bridge statistics ?
Possible completions:
<[Enter]> Execute this command
vlan-id Display statistics for a particular vlan (1..4094)

| Pipe through a command

show bridge statistics
Bridge domain vlan-id: 100
Local interface: bond@
Broadcast packets Tx : @ Rx : 0
Multicast packets Tx : @ Rx : 0
Unicast packets Tx : 0 Rx : 0

Broadcast bytes Tx : 0 Rx : 0
Multicast bytes Tx 1 0 Rx : 0
Unicast bytes Tx : 0 Rx : 0
Flooded packets 1 0
Flooded bytes 1 0
Local interface: ensifovi
Broadcast packets Tx : @ Rx : 0
Multicast packets Tx 0 Rx : 0
Unicast packets Tx : 0 Rx : 0
Broadcast bytes Tx 1 0 Rx : 0
Multicast bytes Tx : 0 Rx : 0
Unicast bytes Tx 1 0 Rx : 0
Flooded packets 1 0
Flooded bytes 1 0
Local interface: ensl1f3vi
Broadcast packets Tx 0 Rx : 0
Multicast packets Tx 0 Rx : 0
Unicast packets Tx 0 Rx : 0
Broadcast bytes Tx 1 0 Rx : 0
Multicast bytes Tx 0 Rx : 0
Unicast bytes Tx 0 Rx : 0
Flooded packets 0

show firewall filter filter1
Filter : filterl vlan-id : 3001
Term Packet

t1 0

show configuration firewall:firewall
family {
bridge {
filter filterl {
term t1 {
from {
destination-mac-address 10:30:30:30:30:31;
source-mac-address 10:30:30:30:30:30;
ether-type oam;
}
then {
discard;

show route 172.68.20.2/32 table nadl.inet

nadl.inet.0: 11 destinations, 15 routes (11 active, @ holddown, @ hidden)
@ = Routing Use Only, # = Forwarding Use Only

+ = Active Route, - = Last Active, * = Both

172.68.20.2/32 @[BGP/170] 00:00:23, localpref 100, from 1.1.1.220
AS path: I, validation-state: unverified
> via Tunnel Composite, UDP (src 1.1.1.35 dest 1.1.1.220), Push 48
[BGP/170] 00:13:18, localpref 100, from 1.1.24.24
AS path: I, validation-state: unverified
> via Tunnel Composite, UDP (src 1.1.1.35 dest 1.1.24.24), Push 16
#[Multipath/255] 00:00:23, metric2 2
via Tunnel Composite, UDP (src 1.1.1.35 dest 1.1.1.220), Push 48
> via Tunnel Composite, UDP (src 1.1.1.35 dest 1.1.24.24), Push 16

show interfaces routing enp216s0f0
Interface State Addresses
enp216s0f0 Up MPLS enabled
ISO enabled
INET 192.168.123.3
INET6 2001:192:168:123::3
INET6 fe80::42a6:b7ff:fe2c:a448

show dynamic-tunnels database
*- Signal Tunnels #- PFE-down
Table: inet.3
Destination-network: 1.1.1.220/32
Destination-network: 1.1.24.24/32
Tunnel to: 1.1.24.24/32
Reference count: 4
Next-hop type: UDP (forwarding-nexthop)
Source address: 1.1.1.35
Next hop: v6 mapped, tunnel-composite, 0x557917afc91c, nhid @

VPN Label: Push 16, Reference count: 2
Ingress Route: [OSPF] 1.1.24.24/32, via metric 2
Traffic Statistics: Packets 0, Bytes 0
State: Up
Aggregate Traffic Statistics:

Example Clear Commands

Here are some example clear commands:

clear bridge mac-table ?

Possible completions:

<[Enter]> Execute this command
mac-address Clear specific MAC address
vlan-id Clear mac-table for a specified vlan-id (1..4094)

| Pipe through a command

clear bridge statistics ?
Possible completions:
<[Enter]> Execute this command
vlan-id Clear L2 interface statistics for a specified vlan-id (1..4094)

| Pipe through a command

Telemetry Capabilities of Cloud-Native Router

IN THIS SECTION

Cloud-Native Router Telemetry | 60

Read this topic to learn about the telemetry data available from Juniper Cloud-Native Router.

Cloud-Native Router Telemetry

Juniper Cloud-Native Router comes with telemetry capabilities that enable you to see performance
metrics and telemetry data. The container contrail-vrouter-telemetry-exporter provides you this
visibility. This container runs alongside the other vRouter containers in the contrail-vrouter-masters
pod.

The telemetry exporter periodically queries the Introspect on the vRouter-agent for statistics and
reports metrics information in response to the Prometheus scrape requests. You can directly view the
telemetry data by using the following URL: http:// host server IP address.8070. The following table
shows a sample output.

@ NOTE: We've grouped the output shown in the following table. The cloud-native router
does not group or sort the output on live systems.

Table 6: Sample Telemetry Output

Group Sample Output

Memory usage per

vRouter
TYPE virtual_router_system_memory_cached_bytes gauge

HELP virtual_router_system_memory_cached_bytes Virtual router system memory cached
virtual_router_system_memory_cached_bytes{vrouter_name="jcnr.example.com"} 2635970448
TYPE virtual_router_system_memory_buffers gauge

HELP virtual_router_system_memory_buffers Virtual router system memory buffer
virtual_router_system_memory_buffers{vrouter_name="jcnr.example.com"} 32689

TYPE virtual_router_system_memory_bytes gauge

HELP virtual_router_system_memory_bytes Virtual router total system memory
virtual_router_system_memory_bytes{vrouter_name="jcnr.example.com"} 2635970448

TYPE virtual_router_system_memory_free_bytes gauge

HELP virtual_router_system_memory_free_bytes Virtual router system memory free
virtual_router_system_memory_free_bytes{vrouter_name="jcnr.example.com"} 2635969296
TYPE virtual_router_system_memory_used_bytes gauge

HELP virtual_router_system_memory_used_bytes Virtual router system memory used
virtual_router_system_memory_used_bytes{vrouter_name="jcnr.example.com"} 32689

TYPE virtual_router_virtual_memory_kilobytes gauge

HELP virtual_router_virtual_memory_kilobytes Virtual router virtual memory
virtual_router_virtual_memory_kilobytes{vrouter_name="jcnr.example.com"} 0

TYPE virtual_router_resident_memory_kilobytes gauge

HELP virtual_router_resident_memory_kilobytes Virtual router resident memory
virtual_router_resident_memory_kilobytes{vrouter_name="jcnr.example.com"} 32689

TYPE virtual_router_peak_virtual_memory_bytes gauge

HELP virtual_router_peak_virtual_memory_bytes Virtual router peak virtual memory

virtual_router_peak_virtual_memory_bytes{vrouter_name="jcnr.example.com"} 2894328001

Table 6: Sample Telemetry Output (Continued)

Group

Packet count per
interface

Sample Output

TYPE virtual_router_phys_if_input_packets_total counter

HELP virtual_router_phys_if_input_packets_total Total packets received by physical
interface
virtual_router_phys_if_input_packets_total{vrouter_name="jcnr.example.com",interface_na
me="bond0"} 1483

TYPE virtual_router_phys_if_output_packets_total counter

HELP virtual_router_phys_if_output_packets_total Total packets sent by physical
interface
virtual_router_phys_if_output_packets_total{vrouter_name="jcnr.example.com",interface_n
ame="bond@"} 32969

TYPE virtual_router_phys_if_input_bytes_total counter

HELP virtual_router_phys_if_input_bytes_total Total bytes received by physical
interface
virtual_router_phys_if_input_bytes_total{interface_name="bond@",vrouter_name="jcnr.exam
ple.com"} 125558

TYPE virtual_router_phys_if_output_bytes_total counter

HELP virtual_router_phys_if_output_bytes_total Total bytes sent by physical interface
virtual_router_phys_if_output_bytes_total{vrouter_name="jcnr.example.com",interface_nam
e="bonde"} 4597076
virtual_router_phys_if_input_bytes_total{vrouter_name="jcnr.example.com",interface_name
="bond@"} 228300499320
virtual_router_phys_if_output_bytes_total{interface_name="bond@",vrouter_name="jcnr.exa
mple.com"} 228297889634
virtual_router_phys_if_input_packets_total{interface_name="bond@",vrouter_name="jcnr.ex
ample.com"} 1585421179
virtual_router_phys_if_output_packets_total{vrouter_name="jcnr.example.com",interface_n
ame="bond@"} 1585402623
virtual_router_phys_if_output_packets_total{interface_name="bond@",vrouter_name="jcnr.e
xample.com"} 1585403344

Table 6: Sample Telemetry Output (Continued)

Group

CPU usage per
vRouter

Drop packet count
per vRouter

Sample Output

TYPE virtual_router_cpu_Imin_load_avg gauge

HELP virtual_router_cpu_1min_load_avg Virtual router CPU 1 minute load average
virtual_router_cpu_1min_load_avg{vrouter_name="jcnr.example.com"} 0.11625

TYPE virtual_router_cpu_5min_load_avg gauge

HELP virtual_router_cpu_5min_load_avg Virtual router CPU 5 minute load average
virtual_router_cpu_5min_load_avg{vrouter_name="jcnr.example.com"} 0.109687

TYPE virtual_router_cpu_15min_load_avg gauge

HELP virtual_router_cpu_15min_load_avg Virtual router CPU 15 minute load average

virtual_router_cpu_15min_load_avg{vrouter_name="jcnr.example.com"} 0.110156

TYPE virtual_router_dropped_packets_total counter
HELP virtual_router_dropped_packets_total Total packets dropped
virtual_router_dropped_packets_total{vrouter_name="jcnr.example.com"} 35850

Table 6: Sample Telemetry Output (Continued)

Group

Packet count per
interface per VLAN

Sample Output

TYPE virtual_router_interface_vlan_multicast_input_packets_total counter

HELP virtual_router_interface_vlan_multicast_input_packets_total Total number of
multicast packets received on interface VLAN
virtual_router_interface_vlan_multicast_input_packets_total{interface_id="1",vlan_id="1
00"} 0

TYPE virtual_router_interface_vlan_broadcast_output_packets_total counter

HELP virtual_router_interface_vlan_broadcast_output_packets_total Total number of
broadcast packets sent on interface VLAN
virtual_router_interface_vlan_broadcast_output_packets_total{interface_id="1",6vlan_id="
100"} ©

TYPE virtual_router_interface_vlan_broadcast_input_packets_total counter

HELP virtual_router_interface_vlan_broadcast_input_packets_total Total number of
broadcast packets received on interface VLAN
virtual_router_interface_vlan_broadcast_input_packets_total{interface_id="1",vlan_id="1
00"} 0

TYPE virtual_router_interface_vlan_multicast_output_packets_total counter

HELP virtual_router_interface_vlan_multicast_output_packets_total Total number of
multicast packets sent on interface VLAN
virtual_router_interface_vlan_multicast_output_packets_total{interface_id="1",vlan_id="
100"} 0

TYPE virtual_router_interface_vlan_unicast_input_packets_total counter

HELP virtual_router_interface_vlan_unicast_input_packets_total Total number of
unicast packets received on interface VLAN
virtual_router_interface_vlan_unicast_input_packets_total{interface_id="1",vlan_id="100
"} o

TYPE virtual_router_interface_vlan_flooded_output_bytes_total counter

HELP virtual_router_interface_vlan_flooded_output_bytes_total Total number of output
bytes flooded to interface VLAN
virtual_router_interface_vlan_flooded_output_bytes_total{interface_id="1",vlan_id="100"
ro

TYPE virtual_router_interface_vlan_multicast_output_bytes_total counter

HELP virtual_router_interface_vlan_multicast_output_bytes_total Total number of
multicast bytes sent on interface VLAN
virtual_router_interface_vlan_multicast_output_bytes_total{interface_id="1",vlan_id="10
0"} 0

TYPE virtual_router_interface_vlan_unicast_output_packets_total counter

HELP virtual_router_interface_vlan_unicast_output_packets_total Total number of
unicast packets sent on interface VLAN
virtual_router_interface_vlan_unicast_output_packets_total{interface_id="1",vlan_id="10
0"} 0

TYPE virtual_router_interface_vlan_broadcast_input_bytes_total counter

Table 6: Sample Telemetry Output (Continued)

Group

Sample Output

HELP virtual_router_interface_vlan_broadcast_input_bytes_total Total number of
broadcast bytes received on interface VLAN
virtual_router_interface_vlan_broadcast_input_bytes_total{interface_id="1",vlan_id="100
"} o

TYPE virtual_router_interface_vlan_multicast_input_bytes_total counter

HELP virtual_router_interface_vlan_multicast_input_bytes_total Total number of
multicast bytes received on interface VLAN
virtual_router_interface_vlan_multicast_input_bytes_total{vlan_id="100",interface_id="1
"} o

TYPE virtual_router_interface_vlan_unicast_input_bytes_total counter

HELP virtual_router_interface_vlan_unicast_input_bytes_total Total number of unicast
bytes received on interface VLAN
virtual_router_interface_vlan_unicast_input_bytes_total{interface_id="1",vlan_id="100"}
0

TYPE virtual_router_interface_vlan_flooded_output_packets_total counter

HELP virtual_router_interface_vlan_flooded_output_packets_total Total number of

output packets flooded to interface VLAN

virtual_router_interface_vlan_flooded_output_packets_total{interface_id="1",vlan_id="10

0"} 0

TYPE virtual_router_interface_vlan_broadcast_output_bytes_total counter

HELP virtual_router_interface_vlan_broadcast_output_bytes_total Total number of

broadcast bytes sent on interface VLAN

virtual_router_interface_vlan_broadcast_output_bytes_total{interface_id="1",vlan_id="10

0"} 0

TYPE virtual_router_interface_vlan_unicast_output_bytes_total counter

HELP virtual_router_interface_vlan_unicast_output_bytes_total Total number of

unicast bytes sent on interface VLAN

virtual_router_interface_vlan_unicast_output_bytes_total{interface_id="1",vlan_id="100"

}o

Prometheus is an open-source systems monitoring and alerting toolkit. You can use Prometheus to

retrieve telemetry data from the cloud-native router host servers and view that data in the HTTP

format. A sample of Prometheus configuration looks like this:

- job_name: "prometheus-JCNR-1a2b3c"

metrics_path defaults to '/metrics'
scheme defaults to 'http'.

static_configs:
- targets: ["<host-server-IP>:8070"]

Logging and Notifications

IN THIS SECTION

Logging | 66

Notifications | 67

Read this topic to learn about logging and notification functions in Juniper Cloud-Native Router. We
discuss the location of log files, what you can log, and various log levels. You can also learn about the
available notifications and how the notifications are implemented in the cloud-native router.

Logging

The Juniper Cloud-Native Router pods and containers use syslog as their logging mechanism. You can
determine the location of the log files at the deployment time by retaining or changing the value of the
log_path key in the values.yaml file. By default, the location of the log files is /var/log/jcnr. The system
stores log files from all the cloud-native router pods and containers in the log_path directory.

In addition, a syslog-ng pod stores event notification data in JSON format on the host server. The
syslog-ng pod stores the JSON-formatted notifications in the directory specified by the
syslog_notifications key in the values.yaml file. By default, the file location is /var/log/jcnr and the
filename is jenr_notifications.json. You can change the location and filename by changing the value of
the syslog_notifications key before the cloud-native router deployment.

When you use the default file locations, the /var/log/jcnr directory displays the following files:

[root@jcnr-01 jcnrl# 1s

action.log contrail-vrouter-dpdk-init.log filter
12cos.log __policy_names_rpdc__
contrail-vrouter-agent.log contrail-vrouter-dpdk.log filter.log

license mgd-api

__policy_names_rpdn__ cos
messages mosquitto
vrouter-kernel-init.log cscript.log

messages.0.gz na-grpcd

jenr-cni.log

jenr_notifications. json

@ NOTE: The host server must manage the log rotation for the contrail-vrouter-dpdk.log

and the jenr-cni.log files.

Notifications

The syslog-ng pod continuously monitors the preceding log files for notification events such as interface
up, interface down, interface add, and so on. When these events appear in a log file, syslog-ng converts
the log events into notification events and stores the events in JSON format within the
syslog_notifications file configured in the values.yaml file.

Here is a sample of syslog-ng notifications:

Table 7: Supported Notifications

Notification

License Near Expiry

License Expired

License Invalid

License OK

License Grace Period

License Not Present

Cloud-Native Router Init Success

Cloud-Native Router Init Failure

Cloud-Native Router Graceful Shutdown Request

Source Pod

cRPD

cRPD

cRPD

cRPD

cRPD

cRPD

Deployer

Deployer

Deployer

Table 7: Supported Notifications (Continued)

Notification

Cloud-Native Router Graceful Shutdown Complete
Cloud-Native Router Graceful Shutdown Failure
Cloud-Native Router Restart

Cloud-Native Router Upgrade Success
Cloud-Native Router Upgrade Failure

Upstream Fabric Bond Member Link Up

Upstream Fabric Bond Member Link Down

Upstream Fabric Bond Link Up

Upstream Fabric Bond Link Down

Upstream Fabric Bond Link Switchover

Downstream Fabric Link Up

Downstream Fabric Link Down

Appliance Link Up

Appliance Link Down

Any Cloud-Native Router Application Critical Errors

Any Cloud-Native Router Application Warnings

Any Cloud-Native Router Application Info

Cloud-Native Router Rate Limits Reached

Source Pod

Deployer

Deployer

Deployer

Deployer

Deployer

vRouter

vRouter

vRouter

vRouter

vRouter

vRouter

vRouter

vRouter

vRouter

vRouter

vRouter

vRouter

vRouter

Table 7: Supported Notifications (Continued)

Notification

Cloud-Native Router MAC Table Limit Reached

Cloud-Native Router CLI Start

Cloud-Native Router CLI Stop

Cloud-Native Router Kernel App Interface Up

Cloud-Native Router Kernel App Interface Down

Cloud-Native Router Virtio User Interface Up

Cloud-Native Router Virtio User Interface Down

Source Pod

vRouter

cRPD or vRouter-Agent

cRPD or vRouter-Agent

vRouter

vRouter

vRouter

vRouter

CHAPTER

Manage

IN THIS CHAPTER

Manage Juniper Cloud-Native Router | 71

Manage Juniper Cloud-Native Router

IN THIS SECTION

Upgrading JCNR | 71
Downgrading JCNR | 71
Uninstalling JCNR | 71

This topic provides high-level information about the available upgrade, downgrade and uninstall options
for JCNR.

Upgrading JCNR

Currently, there is no procedure for upgrading to the Cloud-Native Router release 23.2. To change from
a current version to 23.2, you must uninstall the current version and install the newer version.

Downgrading JCNR

Currently, there is no procedure for downgrading to an older version. To change from a current version
to an older version, you must uninstall the current version and install an older version.

Uninstalling JCNR

Cloud-Native Router can be uninstalled by using the following command:

helm uninstall jcnr

Uninstalling Cloud-Native Router restores interfaces to their original state by unbinding from DPDK and
binding back to the original driver. It also delete contents of Cloud-Native Router directories, deletes
cRPD created interfaces and removes any Kubernetes objects created for JCNR.

@ NOTE: The jenr namespace is not deleted as a part of the helm uninstallation and must
be deleted manually.

After the triggering of helm uninstall command, please wait for all Kubernetes resources to be fully
deleted before attempting a re-installation. Premature re-installation can lead to installation stalls and
may require manual steps for recovery. The recovery steps are provided below:

helm uninstall jcnr --no-hooks
kubectl delete <ds/name>
kubectl delete <job/jobname>
kubectl delete ns jcnrops

CHAPTER

Troubleshoot

IN THIS CHAPTER

Troubleshoot Deployment Issues | 74
Troubleshoot via the vRouter CLI | 78

Troubleshoot via Introspect | 91

Troubleshoot Deployment Issues

SUMMARY IN THIS SECTION

This topic provides information about how to Troubleshoot Deployment Issues | 74
troubleshoot deployment issues using Kubernetes

commands and how to view the cloud-native router

configuration files.

Troubleshoot Deployment Issues

IN THIS SECTION
Verify Cloud-Native Router Controller Configuration | 76
View Log Files | 77

Uninstallation Issues | 78

This topic provides information on some of the issues that might be seen during deployment of the
cloud-native router components and provides a number of Kubernetes (K8s) and shell commands that
you run on the host server to help determine the cause of deployment issues.

Table 8: Investigate Deployment Issues

Potential issue What to check Related Commands

Image not found Check if the images are uploaded to
the local docker using the ® kubectl -n jcnr describe pod
command docker images. If not, then <crpd-pod-name>

the registry configured in
values.yaml should be accessible.
Ensure image tags are correct.

Table 8: Investigate Deployment Issues (Continued)

Potential issue

Initialization errors

What to check

Check if jenr-secrets is loaded and
has a valid license key

Related Commands

[root@jcnr-011# kubectl get
secrets -n jcnr
NAME
TYPE

DATA AGE
crpd-token-zp8kc
kubernetes.io/service-account-
token 3 29d
default-token-zn6p9
kubernetes.io/service-account-
token 3 29d
jenr-secrets
Opaque

2 29d

Confirm that root password and
license key are present in /var/run/

jenr/juniper. conf

Table 8: Investigate Deployment Issues (Continued)

Potential issue

cRPD Pod in CrashLoopBackOff
state

vRouter Pod in CrashLoopBackOff
state

What to check

o Check if startup/liveness probe
is failing or vrouter pod not
running

e rpd-vrouter-agent gRPC
connection not UP

e Composed configuration is
invalid or config template is
invalid

Check the contail-k8s-deployer pod
for errors

Verify Cloud-Native Router Controller Configuration

Related Commands

kubectl get pods -A

kubectl -n jcnr describe pod
<crpd-pod-name>

tail -f /var/log/jcnr/jecnr-
cni.log

tail -f /var/log/jcnr/
jenr_notifications.json

See "Monitor Cloud-Native
Router via CLI" on page 52 to
enter the cRPD CLI and run the
following command:

show krt state channel vrouter

cat /var/run/jcnr/juniper.conf

kubectl logs contrail-k8s-
deployer-<pod-hash> -n contrail-
deploy

The cloud-native router deployment process creates a configuration file for the cloud-native router
controller (cRPD) as a result of entries in the values.yaml file for L2 mode and custom configuration via
node annotations in L3 mode. You can view this configuration file to see the details of the cRPD

configuration. To view the cRPD configuration, navigate to the /var/run/jcnr folder to access the
configuration file details and view the contents of the configuration file.

[root@jcnr-011# 1s
cni config containers envars juniper.conf reboot-canary

[root@jcnr-011# cat juniper.conf

The cRPD configuration may be customized using "node annotations" on page 35. The cRPD pod will
stay in pending state if the applied configuration is invalid.

You can view the rendered custom configuration in the /etc/crpd/ directory.

[root@jcnr-011# cat /etc/crpd/juniper.conf.master

In an AWS EKS deployment you can review the rendered custom configuration by "accessing the cRPD
shell" on page 52 and reviewing the contents of the /config directory.

View Log Files

You can view the jenr log files in the default log_path directory, /var/log/jcnr/. You can change the
location of the log files by changing the value of the log_path: or syslog_notifications: keys in the
values.yaml file prior to deployment.

Navigate to the following path and issue the 1s command to list the log files for each of the cloud-native

router components.

cd /var/log/jcnr/

[root@jcnr-01 jenrl# 1s

action.log contrail-vrouter-dpdk-init.log filter

12cos.log __policy_names_rpdc__

contrail-vrouter-agent.log contrail-vrouter-dpdk.log filter.log

license mgd-api

__policy_names_rpdn__ cos jenr-cni.log

messages mosquitto

vrouter-kernel-init.log cscript.log jenr_notifications. json

messages.0.gz na-grpcd

Uninstallation Issues

After the triggering of helm uninstall command, please wait for all Kubernetes resources to be fully
deleted before attempting a re-installation. Premature re-installation can lead to installation stalls and
may require manual steps for recovery. The recovery steps are provided below:

helm uninstall jcnr -no-hooks
kubectl delete <ds/name>
kubectl delete <job/jobname>

kubectl delete ns jcnrops

Troubleshoot via the vRouter CLI

IN THIS SECTION

Accessing the vRouter CLI | 79
Troubleshooting via the vRouter CLI | 80

Read this topic to learn about the various troubleshooting commands available in the vRouter CLI.
The following commands are covered in this topic:

e "Accessing the vRouter CLI" on page 79

e "Verify vRouter Interfaces via the vif Command" on page 80

e "View the running configuration of the vRouter" on page 82

o "View L2 Configuration and Statistics via the purel2cli Command" on page 83
e "The dropstats Command" on page 85

e "The dpdkinfo Command" on page 86

e "The rt and nh Commands" on page 89

e "The flow Command" on page 90

Accessing the vRouter CLI

You can access the command-line interface (CLI) of the vRouter by accessing the shell of the running
vRouter-agent container.

@ NOTE: The commands below are provided as an example. The vRouter pod name must
be replaced from your environment. The command outputs may differ based on your
environment.

List the K8s Pods running on the cluster

kubectl get pods -A

NAMESPACE NAME READY STATUS RESTARTS
AGE

contrail-deploy contrail-k8s-deployer-7b5dd699b9-nd7xf 1/1 Running 0

41m

contrail contrail-vrouter-masters-dfxgm 3/3 Running 0

41m

jenr kube-crpd-worker-ds-8tnf7 1/1 Running 0

41m

jenr syslog-ng-54749b7b77-v24hq 1/1 Running 0

41m

kube-system calico-kube-controllers-57b9767bdb-5wbhj6 1/1 Running 2 (92d ago)
129d

kube-system calico-node-3j4m5b 1/1 Running 2 (92d ago)
129d

kube-system coredns-8474476ff8-fpw78 1/1 Running 2 (92d ago)
129d

kube-system dns-autoscaler-7f76f4dd6-g5vdp 1/1 Running 2 (92d ago)
129d

kube-system kube-apiserver-5a5s5-node2 1/1 Running 3 (92d ago)
129d

kube-system kube-controller-manager-5a5s5-node2 1/1 Running 4 (92d ago)
129d

kube-system kube-multus-ds-amd64-4zm5k 1/1 Running 2 (92d ago)
129d

kube-system kube-proxy-16xm8 1/1 Running 2 (92d ago)
129d

kube-system kube-scheduler-5a5s5-node2 1/1 Running 4 (92d ago)

129d
kube-system nodelocaldns-6kwg5 1/1 Running 2 (92d ago)
129d

Copy the name of the vRouter pod—contrail-vrouter-masters-dfxgm in this example output . You will use the
pod name to connect to the running container's shell.

Connect to the vRouter CLI

Issue the kubectl exec command to access the running container's shell:

kubectl exec -n <namespace> -it <pod name> --container <container name> -- bash

where <namespace> identifies the namespace in which the pod is running, <pod name> specificies the
name of the pod and the <container name> specifies the name of the container (to be specified if the
pod has more than one container).

The vRouter pod has three containers. When the container name is not specified, the command will
default to the vrouter-agent container shell. Here is an example:

[root@jcnr-011# kubectl exec -n contrail -it contrail-vrouter-masters-dfxgm -- bash

Defaulted container "contrail-vrouter-agent" out of: contrail-vrouter-agent, contrail-vrouter-
agent-dpdk,

contrail-vrouter-telemetry-exporter, contrail-init (init), contrail-vrouter-kernel-init-dpdk
(init)

[root@jcnr-01 /J#

At this point, you have connected to the vRouter's CLI.

Troubleshooting via the vRouter CLI

You can run commands in the CLI to learn about the state of the vRouter.

Verify vRouter Interfaces via the vif Command

The command shown below allows you to see which interfaces are present on the vRouter:

vif --list
Vrouter Operation Mode: Purel2

Vrouter Interface Table

Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror

Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2

D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged

Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload, Mon=Interface
is Monitored

Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled

Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag, HbsL=HBS
Left Intf

HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, M1=MAC-IP Learning Enabled, Me=Multicast
Enabled

vifo/0 Socket: unix
Type:Agent HWaddr:00:00:5e:00:01:00
Vrf:65535 Flags:L2 QO0S:-1 Ref:3
RX queue errors to lcore 2 0 0 0 0 0000000
RX packets:0 bytes:0@ errors:0
TX packets:11 bytes:4169 errors:0
Drops:0

vife/1 PCI: 0000:00:00.0 (Speed 25000, Duplex 1)
Type:Physical HWaddr:46:37:1f:de:df:bc
Vrf:65535 Flags:L2Vof Q0S:-1 Ref:8
RX queue errors to lcore 0 0 000000000
Fabric Interface: eth_bond_bondd Status: UP Driver: net_bonding
Slave Interface(9): 0000:3b:02.0 Status: UP Driver: net_iavf
Slave Interface(1): 0000:3b:02.1 Status: UP Driver: net_iavf
Vlan Mode: Trunk Vlan: 100 200 300 700-705
RX packets:0 bytes:0 errors:0
TX packets:378 bytes:81438 errors:0
Drops:0

vife/2 PCI: 0000:3b:0a.0 (Speed 25000, Duplex 1)
Type:Workload HWaddr:ba:69:c0:b7:1f:ba
Vrf:0 Flags:L2Vof Q0S:-1 Ref:7
RX queue errors to lcore 2 0 0 00 0000000
Fabric Interface: 0000:3b:0a.@ Status: UP Driver: net_iavf
Vlan Mode: Access Vlan Id: 700 OVlan Id: 700
RX packets:378 bytes:81438 errors:2
TX packets:0 bytes:0 errors:0
Drops:391

View the running configuration of the vRouter

To see the status of the vRouter, enter the following command in the vRouter CLI:

[root@jcnr-01 /J# ps -eaf | grep vrouter-dpdk

root 116 90 99 Mar30 ? 118-08:05:37 /contrail-vrouter-dpdk --no-daemon --
socket-mem=1024 1024

--allow=0000:5a:02.0 --
vdev=eth_bond_bond@,mode=1,socket_id=0,mac=3a:1a:b7:86:1c:4f,primary=0000:5a:02.0,
slave=0000:5a:02.0 --12_table_size=10240 --yield_option @ --ddp --12_mode

root 1134749 1134365 0 16:41 pts/0 00:00:00 grep --color=auto vrouter-dpdk

The output contains several elements.

Table 9: vRouter Status Attributes

Flag Meaning
--12_mode The vRouter is running in L2 mode.
--12_table_size The current number of entries in the MAC table. The

default size is 10240 entries.

--allow=<PCI Id> The PCI ID of fabric and fabric workload interfaces.
More than one ID can appear in the output. These IDs
serve as an allowlist.

--ddp Enable Intel DDP support.

We enable DDP by default in the values.yaml file in the
vRouter.

NOTE: The Intel XL710 NIC does not support DDP.

View L2 Configuration and Statistics via the purel2cli Command

The purel2cli command is a useful utility to view the Cloud-Native Router L2 configuration and statistics.
Start by using the purel2cli --help command.

[root@jcnr-01 /J# purel2cli --help

Usage: purel2cli [--mac show]
[--vlan show]
[--vlan get <VLAN_ID>]
[--acl show <VLAN_ID>]
[--acl reset-counters <VLAN_ID>]
[--12stats get <VIF_ID> <VLAN_ID>]
[--clear VLAN_ID]
[--gos classifier/re-write/scheduler <NAME>]
[--gos cla/rw/sch <NAME>]
[--nolocal show]
[--nolocal get <VLAN_ID>]
[--sock-dir <sock dir>]
[--help]

The purel2cli --mac show command shows the MAC addresses that the vRouter has dynamically learned.

purel2cli --mac show

|| MAC vlan port hit_count| |
00:01:01:01:01:03 1221 2 1101892
00:01:01:01:01:02 1221 2 1101819
00:01:01:01:01:04 1221 2 1101863
00:01:01:01:01:01 1221 2 1101879
Ba:4c:4c:75:90:fe 1250 5 12

Total Mac entries 5

The purel2cli --vlan show command shows the VLANs and associated ports.

purel2cli --vlan show
VLAN PORT

1201 1,2,3,4,
1202 1,2,3,4,

1203 1,2,3,4,
1204 1,2,3,4,
1205 1,2,3,4,

You can also issue the purel2cli --vlan get command to get more details about the VLAN.

purel2cli --vlan get <vlan-id>

Issue the purel2cli --12stats command to view L2 statistics. For example:

purel2cli -- 12stats get <virtual_interface_ID> <VLAN_ID>

purel2cli --12stats get 2 1221Vlan id count: 1

Rx Pkts Rx Bytes Tx Pkts Tx Bytes
Unicast 245344824 48152682842 835552 1667761792
Broadcast 0 0 0 0
Multicast 0 0 0 0
Flood 0 0 0 0

purel2cli --clear '*'

purel2cli --clear 100

Table 10: purel2cli Command Options for L2 Statistics

Sample Command Function
purel2cli --12stats get 'x' 'x' Get statistics for all virtual interfaces (vif) and all VLAN
IDs.

purel2cli --12stats get '*' 100 Get statistics for all vif that are part of VLAN 100

Table 10: purel2cli Command Options for L2 Statistics (Continued)

Sample Command Function

purel2cli --12stats get 1 '+ Get statistics for all VLANSs for which interface 1is a
member

purel2cli --12stats get 1 100 Get statistics for interface 1 and VLAN 100

The command shows the VLAN to port mapping in the vRouter.You can use the command to see the
bridge domain table entry for a specific VLAN: There are several variations of the command that allow
you to display and filter L2 statistics in the vRouter. The base form of the command is: . The table below
shows the available command options and what they do. It also provides a sample output using one of
the options:The following command is an example of the L2 statistics for interface 2 and VLAN
1221:You can clear the statistics from the vRouter with the purel2cli command in the form: . Clears all
statistics from all VLANSs in the vRouter. Clears all statistics for VLAN id 100.

The dropstats Command

The vRouter tracks the packets that it drops and includes the reason for dropping them. The table below
shows the common reasons for vRouter to drop a packet. When you execute the dropstats command,
the vRouter does not show a counter if the count for that counter is O.

Table 11: Dropstats Counters

Counter Name Meaning

L2 bd table drop No interfaces in bridge domain

L2 untag pkt drop Untagged packet arrives on trunk or sub-interface
L2 Invalid Vlan Packet VLAN does not match interface VLAN

L2 Mac Table Full No more entries available in the MAC table

L2 ACL drop Packet matched firewall filter (ACL) drop rule

L2 Src Mac lookup fail Unable to match (or learn) the source MAC address

Example output from the dropstats command looks like:

dropstats

L2 bd table Drop 43

L2 untag pkt drop 716

L2 Invalid Vlan 7288253

Rate limit exceeded 673179706

L2 Mac Table Full 41398787

L2 ACL drop 8937037

L2 Src Mac lookup fail 247046
The dpdkinfo Command

The dpdkinfo command provides insight into the status and statistics of DPDK. The dpdkinfo command
has many options. The following sections describe the available options and the example output from
the dpdkinfo command. You can run the dpdkinfo command only from within the vRouter-agent CLI.

dpdkinfo --help
Usage: dpdkinfo [--help]

--version|-v Show DPDK
Version

--bond|-b Show Master/
Slave bond information

--lacp|-1 <all/conf> Show LACP
information from DPDK

--mempool |-m <all/<mempool-name>> Show Mempool
information

--stats|-n <vif index value> Show Stats
information

--xstats|-x <vif index value> Show Extended
Stats information

--1core|-c Show Lcore
information

--app|-a Show App
information

--ddp|-d <list> <list-flow> Show DDP information
for X710 NIC

--rx_vlan|-z <value> Show VLan

information

Optional: --buffsz <value> Send output
buffer size (less than 1000Mb)

The command dpdkinfo -c shows the Lcores assigned to DPDK VF fabric interfaces and the queue ID for
each interface.

dpdkinfo -c

No. of forwarding lcores: 4

Lcore 10:
Interface: 0000:18:01.1 Queue ID: @
Interface: 0000:18:0d.1 Queue ID: 0
Interface: 0000:86:00.0 Queue ID: @
Lcore 11:
Interface: 0000:18:01.1 Queue ID: 1
Interface: 0000:18:0d.1 Queue ID: 1
Interface: 0000:86:00.0 Queue ID: 1
Lcore 12:
Interface: 0000:18:01.1 Queue ID: 2
Interface: 0000:18:0d.1 Queue ID: 2
Interface: 0000:86:00.0 Queue ID: 2
Lcore 13:
Interface: 0000:18:01.1 Queue ID: 3
Interface: 0000:18:0d.1 Queue ID: 3
Interface: 0000:86:00.0 Queue ID: 3

The command dpdkinfo -m all shows all of the memory pool information.

dpdkinfo -m all

rss_mempool 16384 1549 14835
frag_direct_mempool 4096 0 4096
frag_indirect_mempool 4096 0 4096
packet_mbuf_pool 8192 2 8190

The command dpdkinfo -n 3 displays statistical information for a specific interface.

dpdkinfo -n 3
Interface Info(0000:18:0d.1):
RX Device Packets:6710, Bytes:1367533, Errors:@, Nombufs:0
Dropped RX Packets:0
TX Device Packets:0, Bytes:0, Errors:0
Queue Rx:
Tx:
Rx Bytes:
Tx Bytes:
Errors:

The command dpdkinfo -x 3 displays extended statistical information for a specific interface.

dpdkinfo -x 3

Driver Name:net_iavf

Interface Info0:0000:18:0d.1

Rx Packets:
rx_good_packets: 6701
rx_unicast_packets: 0
rx_multicast_packets: 2987
rx_broadcast_packets: 3714
rx_dropped_packets: 0

Tx Packets:
tx_good_packets: @
tx_unicast_packets: 0
tx_multicast_packets: @
tx_broadcast_packets: @
tx_dropped_packets: 0

Rx Bytes:
rx_good_bytes: 1365696

Tx Bytes:
tx_good_bytes: 0

Errors:
rx_missed_errors: 0
rx_errors: 0
tx_errors: 0
rx_mbuf_allocation_errors: 0
inline_ipsec_crypto_ierrors: 0
inline_ipsec_crypto_ierrors_sad_lookup: 0

inline_ipsec_crypto_ierrors_not_processed: 0

inline_ipsec_crypto_ierrors_icv_fail: @

inline_ipsec_crypto_ierrors_length: 0
Others:

inline_ipsec_crypto_ipackets: 0

The rt and nh Commands

Use the rt command to display all routes in a VRF. The nh command enables you to inspect the next hops
that are known by the vRouter. Next hops tell the vRouter the next location to send a packet in the path
to its final destination.

For example, for IPv4 traffic:

rt --get 172.68.20.2/32 --vrf 4
Match 172.68.20.2/32 in vRouter inet4 table 0/4/unicast
Flags: L=Label Valid, P=Proxy ARP, T=Trap ARP, F=Flood ARP, M1=MAC-IP learnt route

vRouter inet4 routing table 0/4/unicast

Destination PPL Flags Label Nexthop Stitched MAC(Index)
172.68.20.2/32 0 LPT 16 193 =

nh --get 193

1d:193 Type:Tunnel Fmly: AF_INET Rid:0 Ref_cnt:264 Vrf:0

Flags:Valid, Policy, MPLSoUDP, Etree Root,
0if:4 Len:14 Data:88 e6 4b 09 7d 46 40 a6 b7 2c a4 48 08 00 Sip:1.1.1.35 Dip:1.1.24.24

For example, for IPvé traffic:

rt --get 2001:172:68:20::/64 --vrf 4 --family inet6
Match 2001:172:68:20::/64 in vRouter inet6 table 0/4/unicast
Flags: L=Label Valid, P=Proxy ARP, T=Trap ARP, F=Flood ARP, M1=MAC-IP learnt route

vRouter inet6 routing table @/4/unicast

Destination PPL Flags Label Nexthop Stitched MAC(Index)
2001:172:68:20::/64 0 LPT 16 193 -
nh --get 193

1d:193 Type:Tunnel Fmly: AF_INET Rid:0 Ref_cnt:264 Vrf:o

Flags:Valid, Policy, MPLSoUDP, Etree Root,
0if:4 Len:14 Data:88 e6 4b 09 7d 46 40 a6 b7 2c a4 48 08 00 Sip:1.1.1.35 Dip:1.1.24.24

The flow Command

Use the flow command to display all active flows in a system. For example:

flow -1 --match 169.83.47.170:9398
Flow table(size 161218560, entries 629760)

Entries: Created 162630 Added 162614 Deleted 35136 Changed 35202Processed 162630 Used Overflow
entries 0
(Created Flows/CPU: @ 0 0 0 0 @ 0 @ @ 0 241 546 15 161828)(oflows 0)

Action:F=Forward, D=Drop N=NAT(S=SNAT, D=DNAT, Ps=SPAT, Pd=DPAT, L=Link Local Port)
Other:K(nh)=Key_Nexthop, S(nh)=RPF_Nexthop
Flags:E=Evicted, Ec=Evict Candidate, N=New Flow, M=Modified Dm=Delete Marked
TCP(r=reverse):S=SYN, F=FIN, R=RST, C=HalfClose, E=Established, D=Dead
Stats:Packets/Bytes

Listing flows matching ([169.83.47.1701:9398)

Index Source:Port/Destination:Port Proto(V)
328196<=>524233 169.83.47.170:9398 6 (2)
172.68.20.20:2159
(Gen: 3, K(nh):206, Action:F, Flags:, TCP:, E:1, Q0S:-1, S(nh):206, Stats:6/360,
SPort 63929, TTL @, Sinfo 38.0.0.0)

524233<=>328196 172.68.20.20:2159 6 (2)
169.83.47.170:9398
(Gen: 3, K(nh):206, Action:F, Flags:, TCP:, Q0S:-1, S(nh):250, Stats:0/0,
SPort 60311, TTL @, Sinfo 0.0.0.0)

Troubleshoot via Introspect

IN THIS SECTION

Introspect | 91

Introspect

For vRouter-agent debugging, we use Introspect. You can access the Introspect data at http:/<host
server IP>:8085. Here is a sample of the Introspect data:
Table 12: Modules shown in contrail-vrouter-agent debug output

Link and Description

agent.xml Shows agent operational data. Using this introspect, you can see the
list of interfaces, VMs, VNs, VRFs, security groups, ACLs and mirror
configurations.

agent_ksync.xml Shows agent ksync layer for data objects such as interfaces and

bridge ports.

agent_profile.xml shows agent operdb, tasks, flows, and statistics summary.
agent_stats_interval.xml View and set collection period for statistics.

controller.xml Shows the connection status of the jcnr-controller (cCRPD)
cpuinfo.xml Shows the CPU load and memory usage on the compute node.
ifmap_agent.xml Shows the current configuration data received from ifmap.

kstate.xml Shows data configured in the vRouter data path.

Table 12: Modules shown in contrail-vrouter-agent debug output (Continued)

Link and Description
mac_learning.xml Shows entries in vRouter-agent MAC learning table.
sandesh_trace.xml Gives the different agent module traces such as oper, ksync, mac

learning, and grpc.

sandesh_uve.xml Lists all the user visible entitities (UVESs) in the vRouter-agent. The
UVEs are used for analytics and telemetry.

stats.xml Shows vRouter-agent slow path statistics such as error packets,
trapped packets, and debug statistics.

task.xml Shows vRouter-agent worker task details.

@ NOTE: The table shows grouped output. The cloud-native router does not group or sort
the output on live systems.

The http:// host server IP address.8085 page displays only a list of HTML links.

CHAPTER

Appendix

IN THIS CHAPTER

Working Samples for Cloud-Native Router Helm Chart | 94
Kubernetes Overview | 100

Configure Repository Credentials | 102

Deploy Prepackaged Images | 103

Juniper Technology Previews (Tech Previews) | 104

Working Samples for Cloud-Native Router Helm
Chart

SUMMARY IN THIS SECTION
This topic lists the working samples for the Cloud- L2 Only | 94
Native Router helm chart (values.yaml) for L2, L3, L3 Only | 96

and L2-L3 deployment modes.
L2-L3 | 97

Amazon EKS L3 | 98

L2 Only

A working L2 only helm chart sample is shown below:

global:
registry: enterprise-hub.juniper.net/
common:
vrouter:
repository: atom-docker/cn2/bazel-build/dev/
tag: R23.2-154
crpd:
repository: junos-docker-local/warthog/
tag: 23.2R1.14
jenreni:
repository: junos-docker-local/warthog/
tag: 23.2-20230628-8cf4350
fabricInterface:
- bondo:
interface_mode: trunk
vlan-id-list: [1110-1141]
- ens2f2ve:
interface_mode: trunk
vlan-id-list: [1110-1141]
- ens2f3vo:

interface_mode: trunk
vlan-id-list: [1110-1141]
- ens1fovo:
interface_mode: trunk
vlan-id-list: [1110-1141]
fabricWorkloadInterface:
- ens1f1v0:
interface_mode: access
vlan-id-list: [1110]

log_level: "INFO"
log_path: "/var/log/jcnr/"

syslog_notifications: "/var/log/jcnr/jcnr_notifications.json"

jenr-vrouter:
restorelnterfaces: false
bondInterfaceConfigs:
- name: "bond@"
mode: 1 # ACTIVE_BACKUP MODE
slavelnterfaces:
- "ens2fovo"
- "ens2f1v@"
mtu: "9000"
cpu_core_mask: "2,3,22,23"
stormControlProfiles:
rate_limit_pf1:
bandwidth:
level: 0

ddp: "auto"
gosEnable: false
corePattern: "/var/crash/core-%e.%p.%h.%t"

coreFilePath: /var/crash

vrouter_dpdk_uio_driver: "vfio-pci"

L3 Only

A working L3 only helm chart sample is shown below:

global:
registry: enterprise-hub.juniper.net/
common:
vrouter:
repository: atom-docker/cn2/bazel-build/dev/
tag: R23.2-156
crpd:
repository: junos-docker-local/warthog/
tag: 23.2R1.14
jenreni:
repository: junos-docker-local/warthog/
tag: 23.2-20230628-8cf4350

fabricInterface:
- bond34:

ddp: "auto"
- ens2f2:

ddp: "auto"
- ens1f1:

ddp: "auto"

log_level: "INFO"
log_path: "/var/log/jcnr/"
syslog_notifications: "/var/log/jcnr/jcnr_notifications.json"

jenr-vrouter:
restoreInterfaces: false
mtu: "9000"

cpu_core_mask: "2,3,22,23"

stormControlProfiles:
rate_limit_pf1:
bandwidth:
level: 0
ddp: "auto"
gosEnable: false

corePattern: "/var/crash/core-%e.%p.%h.%t"

coreFilePath: /var/crash

vrouter_dpdk_uio_driver: "vfio-pci"

L2-L3

A working L2-L3 helm chart sample is shown below:

global:
registry: enterprise-hub.juniper.net/
common:
vrouter:
repository: atom-docker/cn2/bazel-build/dev/
tag: R23.2-154
crpd:
repository: junos-docker-local/warthog/
tag: 23.2R1.14
jenreni:
repository: junos-docker-local/warthog/
tag: 23.2-20230628-8cf4350

fabricInterface:
- bond@:
interface_mode: trunk
vlan-id-list: [1110-1141]
storm-control-profile: rate_limit_pf1
ddp: "auto"
ens2fovi:
ddp: "auto"
- enp179s0f1vo:
interface_mode: trunk
vlan-id-list: [1110-1141]

ddp: "auto"
- enp179s0fivi:
ddp: "auto"

log_level: "INFO"
log_path: "/var/log/jcnr/"
syslog_notifications: "/var/log/jcnr/jcnr_notifications.json"

jenr-vrouter:

restorelnterfaces: false
bondInterfaceConfigs:
- name: "bond@"

mode: 1 # ACTIVE_BACKUP MODE

slavelnterfaces:

- "ens2fovo"

- "ens2f1v0"
mtu: "9000"

cpu_core_mask: "2,3,22,23"

stormControlProfiles:
rate_limit_pf1:
bandwidth:
level: 0
ddp: "auto"
gosEnable: false

corePattern: "/var/crash/core-%e.%p.%h.%t"
coreFilePath: /var/crash

vrouter_dpdk_uio_driver: "vfio-pci"

Amazon EKS L3

A working Amazon EKS L3 helm chart sample is shown below:

global:
registry: enterprise-hub.juniper.net/
repository: jcnr/
common :
vrouter:
repository: atom-docker/cn2/bazel-build/dev/
tag: R23.2-139
crpd:
repository: junos-docker-local/warthog/
tag: 23.2R1.14
jenreni:
repository: junos-docker-local/warthog/
tag: master-20230625-7c292ad
replicas: "7"

storageClass: gp2
fabricInterface:
- subnet: 10.0.3.0/24
gateway: 10.0.3.1
- subnet: 10.0.5.0/24
gateway: 10.0.5.1
- subnet: 10.0.7.0/24
gateway: 10.0.7.1
- subnet: 10.0.8.0/24
gateway: 10.0.8.1
- subnet: 10.0.4.0/24
gateway: 10.0.4.1
- subnet: 10.0.10.0/24
gateway: 10.0.170.1
- subnet: 10.0.6.0/24
gateway: 10.0.6.1
log_level: "INFOQ"
log_path: "/var/log/jcnr/"
syslog_notifications: "/var/log/jcnr/jcnr_notifications.json"
nodeAffinity:
- key: key1l
operator: In
values:
- jenr
jenr-vrouter:
restorelnterfaces: false
mtu: "9000"
cpu_core_mask: "2,3"
stormControlProfiles:
rate_limit_pf1:
bandwidth:
level: 0
ddp: "auto"
gosEnable: false
corePattern: ""
coreFilePath: /var/crash

vrouter_dpdk_uio_driver: "vfio-pci"

@ NOTE: For Amazon EKS, you need to additionally update the dpdkCommandAdditionalArgs key
in the helmchart/charts/jcnr-vrouter/values.yaml file and set tx and rx descriptors to
256. For example:

dpdkCommandAdditionalArgs: "--yield_option @ --dpdk_txd_sz 256 --dpdk_rxd_sz 256"

Kubernetes Overview

IN THIS SECTION

Kubernetes Overview | 100

Kubernetes Overview

@ NOTE: Juniper Networks refers to primary nodes and backup nodes. Kubernetes refers
to master nodes and worker nodes. References in this guide to primary and backup
correlate with master and worker in the Kubernetes world.

Kubernetes is an orchestration platform for running containerized applications in a clustered computing
environment. It provides automatic deployment, scaling, networking, and management of containerized
applications.

A Kubernetes pod consists of one or more containers, with each pod representing an instance of the
application. A pod is the smallest unit that Kubernetes can manage. All containers in the pod share the
same network name space.

We rely on Kubernetess to orchestrate the infrastructure that the cloud-native router needs to operate.
However, we do not supply Kubernetes installation or management instructions in this documentation.
See https:/kubernetes.io for Kubernetes documentation. Currently, Juniper Cloud-Native Router
requires that the Kubernetes cluster be a standalone cluster, meaning that the Kubernetes primary and
backup functions both run on a single node.

The major components of a Kubernetes cluster are:

https://kubernetes.io

Nodes

Kubernetes uses two types of nodes: a primary (control) node and a compute (worker) node. A
Kubernetes cluster usually consists of one or more master nodes (in active/standby mode) and one or
more worker nodes. You create a node on a physical computer or a virtual machine (VM).

Pods

Pods live in nodes and provide a space for containerized applications to run. A Kubernetes pod
consists of one or more containers, with each pod representing an instance of the application(s). A
pod is the smallest unit that Kubernetes can manage. All containers in a pod share the same network
namespace.

Namespaces

In Kubernetes, pods operate within a namespace to isolate groups of resources within a cluster. All
Kubernetes clusters have a kube-system namespace, which is for objects created by the Kubernetes
system. Kubernetes also has a default namespace, which holds all objects that don't provide their
own namespace. The last two preconfigured Kubernetes namespaces are kube-public and kube-
node-lease. The kube-public namespace is used to allow authenticated and unauthenticated users to
read some aspects of the cluster. Node leases allow the kubelet to send heartbeats so that the
control plane can detect node failure.

Kubelet

The kubelet is the primary node agent that runs on each node. In the case of Juniper Cloud-Native
Router, only a single kubelet runs on the cluster since we do not support multinode deployments.

Containers

A container is a single package that consists of an entire runtime environment including the
application and its:

e Configuration files
e Dependencies

e Libraries

o Other binaries

Software that runs in containers can, for the most part, ignore the differences in the those binaries,
libraries, and configurations that may exist between the container environment and the environment
that hosts the container. Common container types are docker, containerd, and Container Runtime
Interface using Open Container Initiative compatible runtimes (CRI-O).

Configure Repository Credentials

SUMMARY

Read this topic to understand how to configure the enterprise-hub.juniper.net repository credentials
for Cloud-Native Router installation.

Use this procedure to configure your repository login credentials in your manifests.

1. Install docker if you don't already have docker installed.

2. Login to the Juniper Networks repository where you pull the container images.

docker login enterprise-hub.juniper.net

Enter your login credentials when prompted.

Once you've logged in, your credentials are automatically stored in ~/.docker/config.json. (If you
installed docker using snap, then the credentials are stored in the ~/snap/docker directory hierarchy.)

3. Encode your credentials in base64 and store the resulting string.
ENCODED_CREDS=$(base64 -w @ config.json)

Take a look at the encoded credentials.

echo $ENCODED_CREDS

4. Navigate to Juniper_Cloud_Native_Router_<release-number>/helmchart directory. Replace the credentials
placeholder in the manifest with the encoded credentials.

The manifests have a <base64-encoded-credential> credentials placeholder. Simply replace the
placeholder with the encoded credentials in all manifests.

sed -i s/'<base64-encoded-credential>'/$ENCODED_CREDS/ values.yaml

Double check by searching for the encoded credentials in the manifests.

grep $ENCODED_CREDS values.yaml

You should see the encoded credentials in the manifests.

Deploy Prepackaged Images

Use this procedure to import Cloud-Native Router images to the container runtime from the
downloaded Cloud-Native Router software package .

Your cluster can pull Cloud-Native Router images from the enterprise-hub. juniper.net repository or your
cluster can use the Cloud-Native Router images that are included in the downloaded Cloud-Native
Router software package.

This latter option is useful if your cluster doesn't have access to the Internet or if you want to set up
your own repository.

Setting up your own repository is beyond the scope of this document, but your cluster can still use the
included images if you manually import them to the container runtime on each cluster node running
JCNR. Simply use the respective container runtime commands. We show you how to do this in the
procedure below.

1. Locate the images tarball in the Juniper_Cloud_Native_Router_ <reflease>/images directory.
The images tarball is in a gzipped file (jcnr-images.tar.gz).

2. Copy the gzipped images tarball to every node where you're installing JCNR.

3. SSH to one of the nodes and go to the directory where you copied the gzipped images tarball.

4. Gunzip the gzipped images tarball that you just copied over.

gunzip jcnr-images.tar.gz

1s

jenr-images. tar

5. Import the images to the container runtime.

e containerd: ctr -n k8s.io images import jcnr-images.tar

e docker: docker load -i jcnr-images.tar

6. Check that the images have been imported.

e containerd: ctr -n k8s.io images 1s

e docker: docker images

7. Repeat steps 3 to 6 on each node where you're installing JCNR.

When you install Cloud-Native Router later on, the cluster first searches locally for the required images
before reaching out to enterprise-hub. juniper.net. Since you manually imported the images locally on each
node, the cluster finds the images locally and does not need to download them from an external source.

Juniper Technology Previews (Tech Previews)

Tech Previews enable you to test functionality and provide feedback during the development process of
innovations that are not final production features. The goal of a Tech Preview is for the feature to gain
wider exposure and potential full support in a future release. Customers are encouraged to provide
feedback and functionality suggestions for a Technology Preview feature before it becomes fully
supported.

Tech Previews may not be functionally complete, may have functional alterations in future releases, or
may get dropped under changing markets or unexpected conditions, at Juniper’s sole discretion. Juniper
recommends that you use Tech Preview features in non-production environments only.

Juniper considers feedback to add and improve future iterations of the general availability of the
innovations. Your feedback does not assert any intellectual property claim, and Juniper may implement
your feedback without violating your or any other party's rights.

These features are "as is" and voluntary use. Juniper Support will attempt to resolve any issues that
customers experience when using these features and create bug reports on behalf of support cases.
However, Juniper may not provide comprehensive support services to Tech Preview features. Certain
features may have reduced or modified security, accessibility, availability, and reliability standards
relative to General Availability software. Tech Preview features are not eligible for P1/P2 JTAC cases,
and should not be subject to existing SLAs or service agreements.

For additional details, please contact Juniper Support or your local account team.

https://support.juniper.net/support/

	Table of Contents
	Introduction
	Juniper® Cloud-Native Router Overview
	Juniper® Cloud-Native Router Components
	Cloud-Native Router Deployment Modes
	System Requirements

	Install
	Before You Install
	Customize Cloud-Native Router Helm Chart
	Customize Cloud-Native Router Configuration using Node Annotations
	Install and Verify Juniper Cloud-Native Router
	Install Juniper Cloud-Native Router Using Helm Chart
	Verify Installation

	Monitor
	Monitor Cloud-Native Router via CLI
	Telemetry Capabilities of Cloud-Native Router
	Logging and Notifications

	Manage
	Manage Juniper Cloud-Native Router

	Troubleshoot
	Troubleshoot Deployment Issues
	Troubleshoot Deployment Issues

	Troubleshoot via the vRouter CLI
	Troubleshoot via Introspect

	Appendix
	Working Samples for Cloud-Native Router Helm Chart
	Kubernetes Overview
	Configure Repository Credentials
	Deploy Prepackaged Images
	Juniper Technology Previews (Tech Previews)

