
Juniper Apstra 4.1 User Guide

Published

2023-04-27
RELEASE

Table of Contents

Get Started

Install Apstra Software | 1

Devices | 1

Design | 2

Resources | 2

Blueprints | 2

Next Steps | 3

Apstra GUI

Access Apstra GUI | 3

Reset Apstra GUI Admin Password | 4

Check Apstra GUI Version | 5

Update Apstra GUI Version | 5

Restore Apstra GUI Version | 5

Design

Logical Devices (Datacenter Design) | 7

Logical Device Overview | 7

Create Logical Device | 9

Edit Logical Device | 12

Delete Logical Device | 13

Interface Maps (Datacenter Design) | 13

Interface Map Overview | 13

Create Interface Map | 15

Example: Create Interface Map with Breakout Ports | 16

ii

Example: Inter Port Constraints - Disabled Ports | 19

Edit Interface Map | 22

Delete Interface Map (Design) | 23

Rack Types (Datacenter Design) | 23

Rack Type Overview | 23

Create Rack Type | 30

Example: Create Rack Type | 31

Edit Rack Type in Global Catalog | 34

Edit Rack Type in Template | 34

Edit Rack Type in Blueprint | 35

Delete Rack Type | 35

Templates (Datacenter Design) | 35

Template Overview | 35

Create Rack Based Template | 41

Create Pod Based Template | 41

Create Collapsed Template | 42

Edit Template | 43

Update Rack Type in Rack Based Template | 43

Delete Template | 43

Config Templates (Freeform Design) | 44

Create Config Template | 44

Edit Config Template | 45

Delete Config Template | 45

Configlets (Datacenter Design) | 45

Configlet Overview | 45

Create Configlet | 50

iii

Export / Edit / Delete Configlet (Design) | 51

Export Configlet | 51

Edit Configlet | 52

Delete Configlet | 52

Property Sets (Datacenter Design) | 52

Create Property Set (Datacenter Design) | 54

Edit / Delete Property Set (Datacenter Design) | 55

Edit Property Set | 55

Delete Property Set (Datacenter Design) | 55

TCP/UDP Port Aliases (Datacenter Design) | 55

TCP/UDP Port Alias Overview | 56

Create TCP/UDP Port Alias | 56

Edit TCP/UDP Port Alias | 56

Delete TCP/UDP Port Alias | 56

Tags (Design) | 57

Tags Overview | 57

Create Tag (Design) | 58

Edit Tag (Design) | 58

Delete Tag (Design) | 59

Devices

Device Configuration Lifecycle | 60

Terminology | 61

Configuration Stages: Overview | 62

Configuration Stages: Detail | 64

View Device Config from Blueprint | 67

Configuration Deviations | 70

Device Offline (Unavailable) | 70

Manually Apply Full Config | 70

iv

Deploy Modes | 71

Managed Devices Overview | 73

Add Device to Managed Devices | 77

Remove (Decommission) Device from Managed Devices | 78

Drain Device Traffic | 80

Edit Device | 83

Delete Device | 84

Upgrade Device NOS | 85

NOS Upgrade Overview | 85

Update User-defined Device Profiles | 87

Register / Upload OS Image | 88

Upgrade OS Image | 91

Device AAA | 92

Create Onbox Agent | 94

Create Offbox Agent | 98

Set Device Admin State | 103

Uninstall and Delete Agent | 103

Edit Agent | 105

Edit One Agent | 105

Edit Multiple Agents | 106

Edit Pristine Config | 108

Update Pristine Config from Device | 108

Juniper Device Agent | 109

Juniper ZTP | 109

Disable ZTP | 110

Appy Initial Juniper Junos Configuration | 110

v

Configure super-user User | 111

Configure IP address and Management VRF | 112

Configure SSH and NETCONF | 113

Add Junos License Configuration | 113

SONiC Device Agent | 114

SONiC Device Agent Overview | 114

Configure Management IP Manually (SONiC) | 115

Install Agent Manually (SONiC) | 116

Uninstall Agent Manually (SONiC) | 121

Cisco Device Agent | 121

Cisco NX-OS Device Agent Overview | 122

Device Configuration Requirements | 123

Resize and Enable Guestshell | 123

Download Agent Installer | 124

Install Cisco Device Agent | 125

Update Agent Config File and Start Service | 125

Activate Apstra Devices on Apstra Server | 125

Deploy Device | 126

Reset Apstra Device Agent | 126

Uninstall Apstra Device Agent | 126

Remove Apstra EEM Scripts | 126

Cisco Agent Troubleshooting | 127

Arista Device Agent | 134

Initial Arista EOS Configuration | 135

Decommission Device | 137

Remove Apstra Package from Device | 138

vi

Restart System | 139

Manually Install Arista Device Agent | 140

Device Agent Configuration File | 142

Arista Agent Troubleshooting | 142

Telemetry (Devices) | 154

Services | 155

Service Registry | 158

Service Registry Overview | 158

Import Service Schemas | 160

Delete Service Registry | 160

Telemetry Collection Statistics | 160

Telemetry Streaming | 162

Route Anomalies for a Host - Example | 163

Telemetry Command Reference | 165

Cisco Telemetry | 166

Arista Telemetry Commands | 166

Linux Servers | 167

Debugging Telemetry | 168

Agent Profiles (Devices) | 169

Create Agent Profile | 170

Edit / Delete Agent Profile | 170

Edit Agent Profile | 171

Delete Agent Profile | 171

Packages (Devices) | 171

Packages Overview | 171

Upload Packages | 171

Apstra ZTP (Devices) | 172

Apstra ZTP Overview | 173

vii

Download and Deploy Apstra ZTP VM | 177

Configure Static Management IP Address (Apstra ZTP) | 179

Configure ZTP User | 179

Configure DHCP Server | 180

Configure Controller IP Address for ZTP | 183

Edit Apstra ZTP Configuration File | 183

Apstra ZTP - Juniper | 189

Juniper and ZTP Disk Space | 189

Example: Juniper Junos ztp.json | 190

Example: Juniper Junos OS Evolved ztp.json | 190

Juniper Junos Bootstrap File | 191

Juniper Junos Custom Config File | 191

Restart Juniper Junos ZTP | 193

Troubleshoot Juniper Junos ZTP | 193

Apstra ZTP - SONiC | 193

Enterprise SONiC and ZTP Overview | 193

Example: Enterprise SONiC ztp.json | 194

Enterprise SONiC Custom Config File | 195

Restart Enterprise SONiC ZTP | 195

 | 195

Apstra ZTP - Cisco | 195

Cisco NX-OS and ZTP Disk Space | 196

Example: Cisco NX-OS ztp.json | 196

Cisco NX-OS Custom Config File | 196

Cisco NX-OS Offbox Agent Custom Config File | 197

Restart Cisco NX-OS ZTP | 198

Apstra ZTP - Arista | 198

Arista EOS | 199

Example: Arista EOS ztp.json | 199

Arista EOS Custom Config File | 200

Restart Arista EOS ZTP | 201

viii

Upgrade Apstra ZTP | 201

Device Profiles | 203

Device Profile Overview | 203

Create Device Profile | 210

Edit / Delete Device Profile | 211

Edit Device Profile | 211

Delete Device Profile | 211

Juniper Device Profiles | 212

SONiC Device Profile | 213

Background | 214

Problem Statement | 214

Solution | 214

User Interface | 215

Selector information | 215

Capabilities | 215

Interface naming conventions | 216

Troubleshooting | 216

Example: DP and port_config.ini | 217

Resources

ASN Pools (Resources) | 258

ASN Pool Overview | 259

Create ASN Pool | 259

Edit ASN Pool | 260

Delete ASN Pool | 260

VNI Pools (Resources) | 260

VNI Pool Overview | 260

Create VNI Pool | 261

Edit VNI Pool | 262

Delete VNI Pool | 262

ix

IP Pools (Resources) | 262

IP Pool Overview | 262

Create IPv4 Pool | 264

Edit IPv4 Pool | 264

Delete IPv4 Pool | 264

IPv6 Pools (Resources) | 264

IPv6 Pool Overview | 265

Create IPv6 Pool | 266

Edit IPv6 Pool | 266

Delete IPv6 Pool | 266

Datacenter Reference Design

Create / Delete Datacenter Blueprint | 268

Create Datacenter Blueprint | 268

Delete Datacenter Blueprint | 268

Datacenter Blueprint Summary and Dashboard | 269

Blueprints Summary | 269

Blueprint Dashboard | 271

Assign Physical Resources (Datacenter) | 272

Update Physical Resource Assignments | 273

Reset Physical Resource Group Overrides | 274

Assign Device Profiles | 275

Configlets (Datacenter Blueprint) | 276

Import Configlet | 277

Edit / Delete Configlet (Blueprint) | 280

Edit Configlet Scope | 280

Edit Configlet Generators | 281

Delete Configlet | 281

x

Assign Configlet | 281

Topology (Datacenter) | 282

2D Topology View | 283

3D Topology View | 284

Neighbors Selection View | 286

Links Selection View | 287

Virtual Network Endpoints | 287

Nodes (Datacenter) | 288

Assign Device (Datacenter) | 290

Device Assignment Overview | 290

Assign Device(s) (from Devices Build Panel) | 290

Assign One Device (from Devices Build Panel) | 293

Assign One System ID (from Selection Panel) | 294

Unassign Device (Datacenter) | 295

Unassign Device (from Device Selection Panel) | 295

Unassign Device(s) (from Devices Build Panel) | 298

Set Deploy Mode (Datacenter) | 299

Set Deploy Mode (from Build Panel) | 299

Set Deploy Mode (from Selection Panel) | 300

Set Deploy Mode (from Nodes View) | 300

Generic Systems vs. External Generic Systems | 300

Add Generic System | 301

Add Generic System (from Topology View) | 302

Copy Existing Generic System (from Topology View) | 306

Add External Generic System | 309

Add External Generic System (from Topology View) | 309

Add External Generic System (from Nodes View) | 314

Add Access Switch | 314

Update Node Tags | 319

xi

Update Node Tags (One Node) | 319

Update Node Tags (Multiple Nodes) | 320

Update Port Channel ID Range | 322

Update Port Channel ID Range (from Topology View) | 322

Update Port Channel ID Range (from Nodes view) | 324

Edit Hostname (Datacenter) | 325

Edit Hostname (from Build Panel) | 325

Edit Hostname (from Selection Panel) | 326

Edit Hostname (from Nodes View) | 326

Edit Generic System Name | 327

Edit Generic System Name (from Nodes View) | 328

Edit Device Properties (Datacenter) | 328

View Node's Static Routes | 329

Delete Node | 330

Links (Datacenter) | 333

Add Links to Leaf | 335

Add Links to Spine | 338

Add Links to Generic System | 342

Add Links to External Generic System | 347

Add Leaf Peer Links | 352

Form LAG | 356

Break LAG | 359

Update LAG Mode | 361

Update Link Tags | 364

Update Link Tags (One Link - Topology View) | 364

Update Link Tags (One Link - Links View) | 367

Update Link Tags (Multiple Link - Links View) | 367

Update Link Speed | 369

xii

Update Link Speed (Topology View) | 369

Update Link Speed (Links View) | 371

Update Link Properties | 372

Delete Link (Datacenter) | 374

Delete Link (Neighbors View) | 374

Delete Link (Links View) | 376

Import / Export Cabling Map (Datacenter) | 379

Import Cabling Map | 379

Export Cabling Map | 379

Edit Cabling Map (Datacenter) | 379

Edit Cabling Map (GUI) | 380

Edit Cabling Map (JSON) | 381

Fetch Discovered LLDP Data (Datacenter) | 381

Racks (Datacenter) | 382

Change Rack Name | 383

Add Rack | 383

Export Rack Type | 384

Edit Rack | 384

Delete Rack | 385

Pods (Datacenter) | 386

Add Pod (5-Stage Only) | 387

Change Pod Name | 388

Add Spine per Pod | 388

Add Link per Superspine (5-Stage) | 391

Change Link Speed per Superspine (5-Stage) | 393

Change Spine Logical Device (Pod) | 395

Delete Pod | 398

Planes (Datacenter) | 399

xiii

Add Superspine per Plane | 400

Change Superspine Logical Device (Plane) | 402

Virtual Networks | 403

Assign Virtual Resources | 408

Update Virtual Resources Assignments | 408

Reset Virtual Resource Group Overrides | 409

Create Virtual Networks | 409

Create Virtual Networks (using GUI) | 410

Create Virtual Networks (using CSV File) | 411

Assign / Unassign Virtual Networks | 413

Assign / Unassign One Virtual Network | 413

Assign / Unassign Multiple Virtual Networks | 414

Import / Export Virtual Networks | 416

Import Virtual Networks | 416

Export Virtual Networks | 417

Edit Virtual Networks | 418

Edit One Virtual Network | 418

Edit Multiple Virtual Networks | 419

Delete Virtual Networks | 420

Delete One Virtual Network | 420

Delete Multiple Virtual Networks | 421

Routing Zones | 423

Create Routing Zones | 425

Create Routing Zones (using GUI) | 425

Create Routing Zones (using CSV File) | 426

Assign DHCP Server to Routing Zone | 427

Assign Resources to Routing Zone | 428

Import / Export Routing Zones | 429

Import Routing Zones | 429

Export Routing Zones | 430

xiv

Edit Routing Zones | 431

Edit One Routing Zone | 431

Edit Multiple Routing Zones | 431

Delete Routing Zones | 433

Delete One Routing Zone | 433

Delete Multiple Routing Zones | 433

Static Routes (Virtual) | 433

Protocol Sessions (Virtual) | 434

Data Center Interconnect (DCI) / Remote EVPN Gateways (Virtual) | 435

DCI / EVPN Gateway Overvew | 436

DCI Deployment Options | 437

Implementation | 439

Apstra Workflow | 443

Virtual Infra (Virtual) | 448

vCenter Virtual Infra | 449

VMware vSphere Integration Overview | 449

Enable vCenter Integration | 450

VM Visibility | 452

Validate Virtual Infra Integration | 452

Auto-Remediation Overview | 454

Enable Auto-Remediation | 454

Remediate Probe Anomalies | 455

Disable Virtual Infra Integration | 455

NSX-T Integration | 456

VMware NSX-T Integration Overview | 456

Enable NSX-T Integration | 457

Virtual Infrastructure Visibility | 462

Validate Virtual Infra Integration | 466

Disable Virtual Infra Integration | 468

NSX-T Edge and Connectivity Templates | 468

Overview | 468

xv

Set Up NSX-T Tier-0 Router BGP peering | 468

Set Up NSX-T VRF Lite | 474

Set Up Default Static Route towards NSX-T Edge | 477

Set Up BGP IPv6 towards NSX-T Edge | 478

Un-assign BGP on VXLAN VN towards NSX-T Edge | 479

NSX-T Inventory Mapping to Apstra Virtual Infrastructure | 479

Overview | 479

NSX-T Networking Terminology and correlation | 480

NSX Inventory Model | 488

Model Details and Relationship | 489

Endpoints Overview (Virtual) | 515

Internal Endpoints (Virtual) | 516

Create Internal Endpoint | 517

Edit Internal Endpoint | 517

Delete Internal Endpoint | 517

External Endpoints (Virtual) | 518

Create External Endpoint | 518

Edit External Endpoint | 518

Delete External Endpoint | 519

Enforcement Points (Virtual) | 519

Endpoint Groups (Virtual) | 519

Create Endpoint Group | 519

Edit Endpoint Group | 520

Delete Endpoint Group | 520

Policies (Datacenter) Staged | 521

Security Policies | 521

Security Policy Overview | 521

Security Policy Parameters | 523

Create Security Policy | 525

Policy Errors | 526

Edit Security Policy | 527

Delete Security Policy | 527

xvi

Security Policy Search | 527

Security Policy Conflicts | 528

Security Policy Settings | 529

Interface Policies | 529

Routing Policies | 537

Routing Policy Overview | 537

Create Routing Policy | 542

Edit Routing Policy | 542

Delete Routing Policy | 542

Routing Zone (VRF) Constraints | 543

Create Routing Zone Groups (Optional) | 543

Create Routing Zone Constraint Policy | 543

Edit / Delete Routing Zone Constraint Policy | 545

Apply Routing Zone Constraint | 545

Fabric Addressing Policy | 545

Enable IPv6 Applications | 546

ESI MAC Most Significant Byte | 546

Virtual Network Policy | 547

Virtual Network Policy Overview | 547

Modify Virtual Network Policy | 550

Anti-Affinity Policy | 550

Anti-Affinity Policy Overview | 550

Enable/Disable Anti-Affinity Policy | 551

Validation Policy | 552

Logical Devices (Datacenter Blueprint) | 553

Logical Devices Overview (Blueprint Catalog) | 553

Export Logical Device | 554

Interface Maps (Datacenter Blueprint) | 555

Interface Maps Overview (Blueprint) | 555

Import Interface Map | 555

xvii

Delete Interface Map (Blueprint) | 556

Property Sets (Datacenter Blueprint) | 556

Import / Re-import Property Set (Datacenter Blueprint) | 557

Import Property Set | 557

Re-import Property Set | 557

Delete Property Set (Datacenter Blueprint) | 558

AAA Servers (Datacenter Blueprint) | 558

AAA Servers Overview | 558

Create AAA Server | 560

Edit AAA Server | 560

Delete AAA Server | 560

AAA RADIUS Server Configuration Tasks | 560

Client Supplicant Configuration Tasks | 561

Tags (Datacenter Blueprint) | 562

Tags Overview (Blueprint) | 562

Search Tags (Blueprint) | 563

Find by Tags | 563

Create Tag (Blueprint) | 564

Import Tag | 564

Export Tag | 564

Edit Tag (Blueprint) | 564

Delete Tag (Blueprint) | 564

Tasks (Datacenter) Staged | 565

Connectivity Templates | 565

Primitives | 568

Virtual Network (Single) Primitive | 569

Virtual Network (Multiple) Primitive | 570

xviii

IP Link Primitive | 570

Static Route Primitive | 571

Custom Static Route Primitive | 572

BGP Peering (IP Endpoint) Primitive | 573

BGP Peering (Generic System) Primitive | 574

Dynamic BGP Peering Primitive | 576

Routing Policy Primitive | 577

Routing Zone Constraint Primitive | 578

User-defined | 579

Pre-defined | 580

Create Connectivity Template for Multiple VNs on Same Interface (Example) | 580

Create Connectivity Template for Layer 2 Connected External Router (Example) | 583

Assign Connectivity Template | 586

Assign Connectivity Template Overview | 586

Method 1 | 587

Method 2 | 588

Force Assign VN Templates | 589

Edit Connectivity Template | 590

Delete Connectivity Template | 590

Active (Datacenter Blueprint) | 590

Active Blueprint Overview | 591

Selection Panel | 591

Status Panel | 592

Topology (Active) | 592

2D Topology View (Active) | 593

3D Topology View (Active) | 594

Neighbors View (Active) | 595

Links View (Active Topology) | 598

Virtual Networks Endpoints (Active) | 599

Headroom (Topology) | 599

Nodes (Active) | 601

xix

Active Nodes Overview | 602

Apply Full Config | 602

Links (Active) | 603

Active Links Overview | 603

Export Cabling Map | 603

Racks (Active) | 604

Change Rack Name | 604

Pods (Active) | 605

Query | 606

Anomalies (Service) | 607

Discovery Anomalies | 607

Configuration Deviation | 611

Root Causes | 614

Root Cause Overview | 615

Enable Root Cause Analysis | 615

View Root Cause Analysis | 616

BGP Route Tagging | 617

Freeform Reference Design

Freeform Overview | 620

Freeform Workflow | 622

Create / Delete Freeform Blueprint | 623

Create Freeform Blueprint | 623

Delete Freeform Blueprint | 623

Freeform Blueprint Summary and Dashboard | 624

Blueprints Summary | 624

Blueprint Dashboard | 624

Topology (Freeform) | 625

Systems (Freeform) | 626

xx

Create Internal System (Freeform) | 627

Create Internal System (from Topology Editor) | 628

Create Internal System (from Systems View) | 630

Clone Internal System (from Topology Editor) | 631

Clone Internal System (from Systems View) | 631

Create External System (Freeform) | 632

Create External System (from Topology Editor) | 632

Create External System (from Systems View) | 634

Clone External System (from Topology Editor) | 634

Clone External System (from Systems View) | 635

Edit System Properties (Freeform) | 636

Delete System (Freeform) | 637

Delete System (from Topology Editor) | 637

Delete System (from Systems View) | 638

Assign Config Template | 638

Remove Config Template Assignment | 639

Set Deploy Mode (Freeform) | 640

Set Deploy Mode on One System | 640

Set Deploy Modes on Multiple Systems | 641

Assign System (Freeform) | 643

Assign System(s) (from Systems View) | 643

Assign System (from Topology Editor) | 644

Assign System (from Device Panel) | 644

Unassign System (Freeform) | 645

Unassign System(s) (from Systems View) | 645

Unassign System (from Topology Editor) | 647

Unassign System (from Device Panel) | 649

Device Context (Freeform) | 649

Links (Freeform) | 651

Add Link (Freeform) | 651

xxi

Edit Cabling Map (Freeform) | 653

Fetch Discovered LLDP Data (Freeform) | 654

Manage Link Tags (Freeform) | 655

Delete Link (Freeform) | 655

Config Templates (Freeform Blueprint) | 657

A Simple Config Template | 658

Config Template With Variable | 658

Config Template and Property Sets | 658

Create Config Template (Freeform Blueprint) | 659

Edit / Delete Config Template (Freeform) | 660

Edit Config Template | 660

Delete Config Template | 661

Import / Export Config Template (Freeform) | 661

Import Config Template | 661

Export Config Template | 662

Import Device Profile (Freeform) | 662

Property Sets (Freeform Blueprints) | 663

Create Property Set (Freeform Blueprint) | 664

Create Property Set with Builder | 664

Create Property Set with Editor | 664

Edit / Delete Property Set (Freeform Blueprint) | 665

Edit Property Sets | 665

Delete Property Sets | 665

Tags (Freeform Blueprint) | 666

Create Tag (Freeform Blueprint) | 666

Edit / Delete Tag (Freeform Blueprint) | 667

Edit Tags | 667

Delete Tag | 667

Tasks - Staged (Freeform) | 668

xxii

Active | 668

Traffic Heat (Freeform) | 669

Commit Blueprint

Uncommitted Overview | 670

Review Staged Changes | 672

Commit Staged Changes | 674

Revert Staged Changes | 675

Time Voyager

Time Voyager Overview | 676

Jump to Previous Blueprint Revision | 678

Keep Saved Blueprint Revision | 679

Update Blueprint Revision Description | 679

Delete Kept Blueprint Revision | 679

Analytics

Analytics Overview | 680

Analytics Dashboard | 681

Configure Auto-Enabled Dashboards | 682

Instantiate Predefined Dashboard | 682

Create Analytics Dashboard | 683

Edit / Delete Dashboard | 683

Edit Dashboard | 683

Delete Dashboard | 684

Anomalies (Analytics) | 684

Widgets Overview | 684

Create Anomaly Heat Map Widget | 685

xxiii

Create Stage Widget | 685

Create Stage Widget from Widgets View | 686

Create Stage Widget from Probes View | 686

Edit / Delete Widget | 686

Edit Widget | 686

Delete Widget | 687

Probes | 687

IBA Probes Overview | 687

Instantiate Predefined Probe | 693

Create Probe | 694

Import / Export Probe | 694

Import Probe | 694

Export Probe | 694

Edit / Delete Probe | 695

Edit Probe | 695

Delete Probe | 695

Providers (External Systems)

LDAP Provider | 697

Create LDAP Provider | 697

Configure LDAP Provider | 699

Active Directory Provider | 700

Create Active Directory Provider | 700

TACACS+ Provider | 701

Create TACACS+ Provider | 702

Configure TACACS+ Provider | 702

RADIUS Provider | 703

RADIUS Limitations | 703

xxiv

Create RADIUS Provider | 704

Edit / Delete Provider | 705

Edit Provider | 705

Delete Provider | 706

Provider Role Map Overview | 706

Create Provider Role Map | 707

Edit / Delete Role Map | 707

Edit Role Map | 708

Delete Role Map | 708

Platform

User/Role Management (Platform) | 709

User Profile Management | 709

User Role Management | 710

User Profile Use Cases | 713

Use Case Overview | 713

Create User Profile | 717

Change Apstra GUI User Password | 717

Log Out User | 717

Edit / Delete User Profile | 717

Edit User Profile | 717

Delete User Profile | 718

User Role Use Cases | 718

Use Cases Overview | 718

Create User Role | 723

Edit / Delete User Role | 723

Edit User Role | 724

Delete User Role | 724

xxv

Security (Platform) | 724

Allowed List | 725

Allowed List Overview | 725

Add IP/Subnet to Allowed List | 725

Edit IP/Subnet to Allowed List | 726

Delete IP/Subnet from Allowed List | 726

Banned List | 726

Banned List Overview | 726

Delete IP/Subnet from Banned List | 727

ACL Rules | 727

Overview | 727

Enable / Disable ACL Rules | 728

Add ACL Rule | 728

Edit ACL Rule | 728

Delete ACL Rule | 728

Rate Limit Configuration | 729

Rate Limit Configuration Overview | 729

Edit Rate Limit Configuration | 729

Edit Password Complexity Requirements | 730

Syslog Configuration (Platform) | 732

Syslog Overview | 732

Create Syslog Config | 738

Edit Syslog Config | 738

Delete Syslog Config | 738

Receivers (Platform) | 739

Streaming Receivers Overview | 739

Create Receiver | 740

Delete Receiver | 740

Configure Receivers Using Telegraf Plugin | 740

xxvi

Global Statistics (Platform) | 742

Event Log (Platform) | 743

Event Log Overview | 743

Export Event Log to CSV File | 745

Send Event Log to External System | 745

Apstra VM Clusters | 745

Apstra Cluster Nodes | 746

Nodes Overview | 746

Create Apstra Node | 751

Edit Apstra Node | 752

Delete Apstra Node | 752

Apstra Cluster Management | 753

Change Cluster Application Memory Usage (API) | 755

Developers (Platform) | 756

Authenticate User (API) | 757

Resource Pools (API) | 760

Configlets (API) | 771

Property Sets (API) | 774

Interface Descriptions (API) | 776

Probes (API) | 780

RCI Fault Model (API) | 794

Health Check Apstra VMs (API) | 798

API From Python | 798

REST API Explorer | 801

Juniper Technical Support | 802

Show Tech: Apstra Controller and Device Agents (GUI) | 803

Show Tech: Offbox Agents (CLI) | 806

xxvii

Show Tech: Infra Offbox Agents (CLI) | 807

Show Tech: Apstra Controller (CLI) | 807

Show Tech: Onbox Agents (CLI) | 809

Favorites & User

Manage Favorites | 810

Change Your User Password | 811

Change Your User Name/Email | 811

Log Out | 812

Apstra Server Management

Monitor Apstra Server via CLI | 813

Restart Apstra Server | 814

Reset Apstra Server VM Password | 814

Reinstall Apstra Server | 819

Apstra Database Overview | 820

Back up Apstra Database | 821

Restore Apstra Database | 822

Reset Apstra Database | 827

Migrate Apstra Database | 827

Replace SSL Certificate on Apstra Server with Signed One | 832

Replace SSL Certificate on Apstra Server with Self-Signed One | 834

Change Apstra Server Hostname | 836

Apstra CLI Utility

Install Apstra-CLI | 837

Access Apstra-CLI | 837

Guides

xxviii

Extensible Telemetry Guide | 839

Extensible Telemetry Overview | 839

Set Up Development Environment | 839

Develop Collector | 840

Write Collector | 843

Unit Test Collector | 850

Package Collector | 851

Upload Packages | 852

Use Telemetry Collector | 852

5-Stage Clos Architecture | 854

5-Stage Clos Overview | 854

Create 5-Stage Clos Network | 856

Modify 5-stage Clos Network | 857

Juniper EVPN Support | 857

Overview | 858

EVPN multi-homing Terminology and Concepts | 858

Topology Specification | 860

EVPN Services | 861

Configuration Rendering | 863

Intent-Based Analytics with apstra-cli Utility | 866

IBA with apstra-cli Overview | 866

Install apstra-cli | 867

Install Packages | 867

Create Agent Profiles | 869

Create Agents | 870

Update Agents from apstra-cli | 872

xxix

Install IBA Probes | 873

Apstra IBA Probes Examples | 875

AOSOM-Streaming Guide | 879

AOSOM-Streaming Overview | 879

Configure Aosom-Streaming | 884

Reconfigure Aosom-streaming after Apstra Server Upgrade | 886

Build Aosom-Streaming VM (Optional) | 887

Troubleshooting | 891

Mixed Uplink Speeds between Leaf Devices and Spine Devices | 892

References

Apstra Feature Matrix | 895

Apstra 4.1.2 Feature Matrix | 896

Apstra 4.1.1 Feature Matrix | 916

Apstra 4.1.0 Feature Matrix | 936

Qualified Devices and NOS | 956

Apstra Release 4.1.2 | 958

Apstra Release 4.1.1 | 961

Apstra Release 4.1.0 | 963

NOS Upgrade Paths (Devices) | 965

Predefined Dashboards (Analytics) | 972

Device Environmental Health Summary Dashboard (New in 4.1.2) | 973

Device Health Summary Dashboard | 973

Device Telemetry Health Summary Dashboard (New in 4.1.2) | 974

Drain Validation Dashboard | 974

Throughput Health MLAG Dashboard | 974

Traffic Trends Dashboard | 975

xxx

Virtual Infra Fabric Health Check Dashboard | 975

Virtual Infra Redundancy Check Dashboard | 975

Predefined Probes (Analytics) | 976

BGP Session Flapping Probe | 977

Bandwidth Utilization Probe | 979

Critical Services: Utilization, Trending, Alerting Probe | 982

Device Environmental Checks Probe (New in 4.1.2) | 983

Device System Health Probe | 984

Device Telemetry Health Probe | 986

Device Traffic Probe | 987

Drain Traffic Anomaly Probe | 991

ECMP Imbalance (External Interfaces) Probe | 992

ECMP Imbalance (Fabric Interfaces) Probe | 994

ECMP Imbalance (Spine to Superspine Interfaces) Probe | 997

ESI Imbalance Probe | 999

EVPN Host Flapping Probe | 1001

EVPN VXLAN Type-3 Route Validation Probe | 1002

EVPN VXLAN Type-5 Route Validation Probe | 1004

External Routes Probe | 1006

Hot/Cold Interface Counters (Fabric Interfaces) Probe | 1007

Hot/Cold Interface Counters (Specific Interfaces) Probe | 1011

Hot/Cold Interface Counters (Spine to Superspine Interfaces) Probe | 1013

Hypervisor and Fabric LAG Config Mismatch Probe (Virtual Infra) | 1015

Hypervisor and Fabric VLAN Config Mismatch Probe (Virtual Infra) | 1016

Hypervisor & Fabric VLAN Config Mismatch Probe Overview | 1017

Usage with NSX-T Integration | 1018

Usage with VCenter Integration | 1022

xxxi

Hypervisor MTU Mismatch Probe (Virtual Infra) | 1023

Hypervisor MTU Threshold Check Probe (Virtual Infra) | 1023

Hypervisor Missing LLDP Config Probe (Virtual Infra) | 1024

Hypervisor Redundancy Checks Probe (Virtual Infra) | 1025

Interface Flapping (Fabric Interfaces) Probe | 1026

Interface Flapping (Specific Interfaces) Probe | 1028

Interface Flapping (Specific Interfaces) Probe | 1029

Interface Policy 802.1x Probe | 1031

LAG Imbalance Probe | 1032

Leafs Hosting Critical Services: Utilization, Trending, Alerting Probe | 1034

Link Fault Tolerance in Leaf and Access LAGs Probe | 1035

MLAG Imbalance Probe | 1037

Multiagent Detector Probe | 1041

Optical Transceivers Probe | 1042

Packet Discard Percentage Probe | 1044

Spine Fault Tolerance Probe | 1046

Total East/West Traffic Probe | 1047

VMs without Fabric Configured VLANs Probe (Virtual Infra) | 1049

VXLAN Flood List Validation Probe | 1052

Probe Processors (Analytics) | 1054

Processor: Accumulate | 1055

Processor: Average | 1059

Processor: Comparison | 1060

Processor: EVPN Type 3 | 1062

Processor: EVPN Type 5 | 1062

Processor: Extensible Service Data Collector | 1063

xxxii

Processor: Generic Graph Collector | 1067

Processor: Generic Service Data Collector | 1070

Processor: Interface Counters | 1073

Processor: Logical Operator | 1076

Processor: Match Count | 1077

Processor: Match Percentage | 1079

Processor: Match String | 1081

Processor: Max | 1084

Processor: Min | 1086

Processor: Periodic Average | 1088

Processor: Range | 1091

Processor: Ratio | 1094

Processor: Service Data Collector | 1096

Processor: Set Comparison | 1099

Processor: Set Count | 1101

Processor: Standard Deviation | 1102

Processor: State | 1104

Processor: Subtract | 1107

Processor: Sum | 1108

Processor: System Utilization | 1109

Processor: Time in State | 1110

Processor: Traffic Monitor | 1115

Processor: Union | 1118

Processor: VXLAN Floodlist | 1120

Configlet Examples (Design) | 1120

Apstra-CLI Commands | 1126

xxxiii

Apstra EVPN Support Addendum | 1128

Qualified Vendor and NOS | 1128

Limitations | 1129

TCAM Carving in NX-OS | 1130

Arista EOS VxLAN Routing | 1131

Graph Node VTEP Types | 1133

Apstra Server Configuration File | 1136

Agent Configuration File (Devices) | 1147

Controller Section | 1148

Service Section | 1149

Logrotate Section | 1150

Device Info Section | 1151

Device Profile Section | 1151

Graph | 1152

Graph Overview | 1152

Query Specification | 1153

Change Notification | 1155

Notification Processing | 1155

Putting It All Together | 1157

Convenience Functions | 1158

Apstra Graph Datastore | 1167

Juniper Apstra Technology Preview | 1168

xxxiv

Get Started

IN THIS SECTION

Install Apstra Software | 1

Devices | 1

Design | 2

Resources | 2

Blueprints | 2

Next Steps | 3

Welcome! Juniper Apstra (formerly known as AOS) automates all aspects of the data center network
design, build, deploy, and operation phases. It leverages advanced intent-based analytics to continually
validate the network, thereby eliminating complexity, vulnerabilities, and outages resulting in a secure
and resilient network. To get started, you'll install and configure the Apstra software. Then you'll replace
the SSL certificate and default passwords to increase security. You can then start building the elements
of your physical network. Depending on the complexity of your design, other tasks may be required in
addition to the ones included in this general workflow.

Install Apstra Software

Install and configure Apstra software on one of the supported hypervisors.

Devices

Access the "Apstra GUI" on page 3 and get your devices ready.
1. "Device profiles" on page 203 (Devices > Device Profiles) represent the physical devices in your

network. Many device profiles are predefined for you. Check the list, and if one that you need is not
included, you can create it.

2. "Add devices" on page 77 to be managed by the Apstra environment.

1

https://www.juniper.net/documentation/product/us/en/apstra#cat=install/upgrade_software

Design

1. "Logical devices" on page 7 (Design > Logical Devices) are abstractions of physical devices. They
allow you to specify device capabilities before selecting specific vendor hardware. Check the logical
device design (global) catalog for ones that meet your requirements; create them if needed.

2. "Interface maps" on page 13 (Design > Interface Maps) combine device profiles and logical devices.
Check the interface map design (global) catalog for ones that meet your requirements; create them if
needed.

3. "Rack types" on page 23 (Design > Rack Types) are logical representations of racks. Check the rack
type design (global) catalog for ones that meet your requirements; create them if needed.

4. "Templates" on page 35 (Design > Templates) are used to build rack designs (blueprints). Check the
template design (global) catalog for one that meets your requirements; create it if needed.

Resources

Create resource pools ("ASNs" on page 258, "IPv4 addresses" on page 262, and "IPv6 addresses" on
page 264 if needed) for your network. When you're ready to assign resources to your blueprint, you'll
specify a resource pool, then the resources will automatically be assigned from that pool.

Blueprints

1. Create a "blueprint" on page 269 from one of the templates in the design section.

2. Assign "resources" on page 272, "device profiles" on page 275, and "devices" on page 290 (S/Ns) to
build the network (Blueprints > <your_blueprint_name> > Staged > Physical > Build)

3. Review the calculated cabling map (Blueprints > <blueprint_name> > Staged > Physical > Links), then
cable up the physical devices according to the map. If you have a set of pre-cabled switches, ensure
that you have configured interface maps according to the actual cabling so that calculated cabling
matches actual cabling.

4. When you've finished building your network, "commit" on page 670 the blueprint (Blueprints >
<your_blueprint_name> > Uncommitted). Committing a blueprint initiates work on the intent and
pushes configuration changes on assigned devices to realize it on the network.

5. Review the "blueprint dashboard" on page 269 (Blueprints > Dashboard) for "anomalies" on page
607. If you have cabling anomalies, the likely reason is a mismatch in calculated cabling and actual
cabling. Either re-cable the switches, recreate the blueprint with appropriate interface maps or use
the "Apstra-CLI" on page 836 utility to override the cabling in the blueprint with discovered cabling.

2

Next Steps

After your deployment is running, you can "build" on page 408 the virtual environment with "virtual
networks" on page 403 and "routing zones" on page 423, as needed.

Apstra GUI

IN THIS SECTION

Access Apstra GUI | 3

Reset Apstra GUI Admin Password | 4

Check Apstra GUI Version | 5

Update Apstra GUI Version | 5

Restore Apstra GUI Version | 5

Access Apstra GUI

You can design, build, deploy, operate and validate your network from the Apstra GUI.

1. From the latest web browser version of Google Chrome or Mozilla FireFox, enter the URL https://
<apstra_server_ip> where <apstra_server_ip> is the IP address of the Apstra server (or a DNS name that
resolves to the IP address of the Apstra server).

2. If a security warning appears, click Advanced and Proceed to the site. The warning occurs because
the SSL certificate that was generated during installation is self-signed, and you didn't replace it with
a signed one when you installed the software. We recommend, for security reasons, that you replace
the SSL certificate.

3. From the login page, enter username admin and the secure password that you set when you
configured the Apstra server. (Entering the password incorrectly too many times locks you out for a
few minutes depending on how "password requirements" on page 730 have been configured.) The
main screen appears.

3

Reset Apstra GUI Admin Password

If you reset (a lost) Apstra GUI admin password to the default, we highly recommend that you
immediately change it to a secure one. User admin has full root access. Juniper is not responsible for
security-related incidents because of not changing default passwords.

1. SSH into the Apstra server as user admin (ssh admin@<apstra-server-ip> where <apstra-server-ip> is
the IP address of the Apstra server.)

2. Run the command aos_reset_admin_password as shown in the example below.

admin@aos-server:~$ aos_reset_admin_password
Resetting UI "admin" user password to default "admin"
Successfully reset admin's password
admin@aos-server:~$

3. Log in to the Apstra GUI (default password: admin), then navigate to Platform > User Management >
Users.

4. Click username admin, then click the Change Password button (top-right)

5. Enter a secure password that meets the complexity requirements, then re-enter the new password.

6. Click Change Password to update the password.

4

Check Apstra GUI Version

From the Apstra GUI, from the left navigation menu, navigate to Platform > About to see the Juniper
Apstra UI version.

Update Apstra GUI Version

When it's available, you can install an optional Apstra server GUI update to add web interface
functionality. This is independent of the Apstra server backend and does not affect the state of the
Apstra server or the established configuration.

1. Download the web UI run file from Juniper Support Downloads.

2. Upload the file to the Apstra server. For this example, the file is named aos-web-ui_2.2.0-67.run.

3. From the Apstra server CLI, as root user, run the file as shown in the example below.

admin@aos-server:~$ sudo -s
[sudo] password for admin:
root@aos-server:~# bash aos-web-ui_2.2.0-67.run
Verifying archive integrity... All good.
Uncompressing AOS WebUI installer 100%
Backing up existing AOS WebUI into /opt/aos/frontend/snapshot/2018-02-25_20-34-15 ...
Copying AOS WebUI file into aos_controller_1 ...
Initializing new AOS WebUI ...
Done!
root@aos-server:~#

The current GUI version is copied to the /opt/aos/frontend/snapshot/ directory.

4. From the Apstra GUI, from the left navigation menu, navigate to Platform > About to confirm that
the Juniper Apstra UI version has been updated.

Restore Apstra GUI Version

You can restore a previous Apstra GUI version at any time without affecting the state of the Apstra
server.

5

https://support.juniper.net/support/downloads/?p=afc

1. From the Apstra server CLI, navigate to the snapshot directory and run the command webui_restore as
shown in the example below.

root@aos-server:~# cd /opt/aos/frontend/snapshot/2018-02-25_20-34-15
root@aos-server:/opt/aos/frontend/snapshot/2018-02-25_20-34-15# ls
aos-web-ui.zip webui_restore
root@aos-server:/opt/aos/frontend/snapshot/2018-02-25_20-34-15# ./webui_restore
Copying AOS WebUI file into aos_controller_1...
Initializing AOS WebUI...
Done!
root@aos-server:/opt/aos/frontend/snapshot/2018-02-25_20-34-15#

2. From the Apstra GUI, from the left navigation menu, navigate to Platform > About to confirm that
the Juniper Apstra UI version has been restored.

Design

IN THIS SECTION

Logical Devices (Datacenter Design) | 7

Interface Maps (Datacenter Design) | 13

Rack Types (Datacenter Design) | 23

Templates (Datacenter Design) | 35

Config Templates (Freeform Design) | 44

Configlets (Datacenter Design) | 45

Property Sets (Datacenter Design) | 52

TCP/UDP Port Aliases (Datacenter Design) | 55

Tags (Design) | 57

6

Logical Devices (Datacenter Design)

IN THIS SECTION

Logical Device Overview | 7

Create Logical Device | 9

Edit Logical Device | 12

Delete Logical Device | 13

Logical Device Overview

Logical devices are abstractions of physical devices that specify common device form factors such as
number, speed and roles of ports. Vendor-specific information is not included, which lets you plan your
network before selecting vendors and hardware device models. (After selecting hardware devices,
logical devices are associated with physical devices with interface maps.) Logical devices are used in rack
types and rack-based templates. Some applications of logical devices include:

• Specifying speed and roles for specific ports (For example, the 48th port is always a leaf, or the speed
of the 10th port is always 1 Gbps).

• Preparing for port speed transformations (For example, transforming one - 40 GbE port into four - 10
GbE ports)

• Using non-standard port speeds (For example, for a 1 GbE SFP in a 10 GbE port, the underlying
hardware is automatically configured correctly.)

• Solving for automatic cable map generation that takes into account failure domains on modular
systems (For example, a line card).

Logical devices include the following details:

Table 1: Logical Device Parameters

Name Description

Logical device
name

A unique name to identify the logical device, 64 characters or fewer

7

Table 1: Logical Device Parameters (Continued)

Name Description

Panel Port layout based on IP fabric, forwarding engine, line card (slot) or physical layout. A panel
contains one or more port groups.

Port Group A group of ports with the same speed and role(s)

Number of
ports

Number of ports in the port group

Speed Speed of ports in the port group

Roles Ports are configured to face the following types of devices:

• Superspines (5-stage DC fabric only)

• Spine

• Leaf

• Access (limited support) - Port is configured to face an access device. To learn more about
this feature and its limitations, contact "Juniper Support" on page 802 .

• Peer (link between two leaf devices)

• Unused - not rendered (for example, a dead port)

• Generic - Certain roles are not specified in logical devices (for example, a firewall, external
router, bare metal server, or load balancer).

From the left navigation menu, navigate to Design > Logical Devices to go to logical devices in the global
catalog. Click a logical device name to see its details. You can create, clone, edit, and delete logical

8

devices.

Create Logical Device

IN THIS SECTION

Example: Create Logical Device | 10

1. From the left navigation menu, navigate to Design > Logical Devices and click Create Logical Device.

2. Enter a unique logical device name.

3. The default panel layout consists of 24 ports (2 rows of 12 ports each). For a different layout, select
the number and arrangement of ports to match your requirements by dragging from the bottom-right
corner of the layout.

4. Select the ports for the port group by dragging to select contiguous ports, or by clicking individual
ports. Clicking a port again deselects it.

5. Select port speed, and applicable role(s) for the selected ports.

6. Click Create Port Group (bottom-middle) to create the port group.

9

7. If unassigned ports remain, repeat the previous two steps until all ports are assigned. For any ports
that will not be used, assign them the Unused role.

8. To add a panel, click Add Panel (bottom-middle) and repeat the steps as for the first panel.

9. Click Create (bottom-right) to create the logical device and return to the table view.

Example: Create Logical Device

Let's create a logical device with one panel containing one port group with 96 - 10 GbE ports and a
second panel containing one port group with 8 - 40 GbE ports.

1. From the left navigation menu, navigate to Design > Logical Devices and click Create Logical Device.

2. A descriptive name is helpful when referring to the logical device later. For our example we entered
96x10-8x40-2, which represents the following characteristics:

• 96x10 - one panel with 96 - 10 GbE ports

• 8x40 - one panel with 8 - 40 GbE ports

• 2 - number of panels (rack units)

10

3. For the port group in the first panel, drag the bottom-right corner of the port layout to change the
default 2x12 configuration to a 3x32 configuration. Leave the number of ports (96) and speed (10

11

Gbps) as is, and select the Generic port role (Connected to).

4. Click Create Port Group (bottom-middle), then click Add Panel (bottom-middle).

5. Drag the bottom-right corner of the port layout to change the configuration to 2x4. Leave the
number or ports (8) as is, change the speed to 40 Gbps, and connect them to Superspine, Spine, and
Generic.

6. Click Create Port Group, then click Create (bottom-right). The new logical device appears in the table
view. (In the overview above, it's the first one in the table.)

Edit Logical Device

If a logical device is linked to an "interface map" on page 13, it cannot be changed. When you change a
logical device in the global catalog, rack types and templates that previously embedded that logical
device are not affected. This prevents potentially unintended changes to existing rack types and
templates. If your intent is for a rack type or template to use a modified logical device, then you must re-
import the rack type into the "template" on page 35.
1. Either from the table view (Design > Logical Device) or the details view, click the Edit button for the

logical device to edit.

12

2. Make your changes.

• To change port group details, access the dialog by clicking its description.

• To add or remove ports from a port group, drag from the bottom-right corner of the port group
layout to resize it. If you added ports, enter port speed and role(s).

• To remove a port group, click the delete button (upper-right).

• To add a panel, click Add Panel and enter relevant port group details.

3. Click Update (bottom-right) to update the logical device in the global catalog and return to the table
view.

Delete Logical Device

If a logical device is linked to an "interface map" on page 13, it cannot be deleted.
1. Either from the table view (Design > Logical Devices) or the details view, click the Delete button for

the logical device to delete.

2. Click Delete Logical Device to delete the logical device from the global catalog and return to the
table view.

Interface Maps (Datacenter Design)

IN THIS SECTION

Interface Map Overview | 13

Create Interface Map | 15

Example: Create Interface Map with Breakout Ports | 16

Example: Inter Port Constraints - Disabled Ports | 19

Edit Interface Map | 22

Delete Interface Map (Design) | 23

Interface Map Overview

Interface maps consist of interfaces used for achieving the intended network configuration rendering.
They map interfaces between logical devices and physical hardware devices (represented with device
profiles) while adhering to vendor specifications.

13

Some characteristics and capabilities of interface maps include:

• Precisely select device ports, transformations and interfaces.

• You are not restricted to selecting interfaces in a contiguous manner.

• Provision QSFP+ breakout ports to transform ports, such 40GbE ports to 10GbE, 100GbE ports to
25GbE, and so on.

• Port breakouts and available speeds affect possible values of the mapping fields.

• The logical device enables you to plan port and panel mappings accordingly. For example, you can
assign a network policy that ensures that spine uplink ports on a leaf switch are always the furthest
right ports on a panel.

• If a smaller logical device is mapped to a larger physical device, the unmapped ports in the device
profile are marked as Unused in the interface map.

From the left navigation menu, navigate to Design > Interface Maps to go to interface maps in the global
catalog. You can create, clone, edit and delete interface maps.

14

Click an interface map name to go to its details.

Click a port to go to interface details. Interface maps include the following details:

Logical Device Abstraction of the physical device.

Device Profile Physical device characteristics.

Interfaces Mapping between logical devices and physical devices (device profile)

Create Interface Map

1. From the left navigation menu, navigate to Design > Interface Maps and click Create Interface Map.

15

2. Enter a unique name (64 characters or fewer). This field can be left blank for the name to be created
for you that consists of the concatenation of the names of the selected logical device and device
profile.

3. Select a logical device from the drop-down list. If you don't see a logical device that fits your
requirements, you can "create" on page 7 one.

4. Select a device profile from the drop-down list. If you don't see a device profile that fits your
requirements, you can "create" on page 203 one.

5. Map the logical device to the device profile. See example below for details.

6. Click Create to create the interface map and return to the table view.

Example: Create Interface Map with Breakout Ports

To create dense server connectivity, let's create an interface map that breaks out the twenty-four 40
GbE transformable ports of an Arista DCS-7050QX-32 physical device to ninety-six 10 GbE ports of a
96x10-8x40-2 logical device.

96x10-8x40-2 is not one of the predefined logical devices that ships with Apstra software, so if you
have not created it you won't find it in the drop-down list. If you'd like to follow along with this example,
you can create the "logical device" on page 7 before continuing.

1. From the left navigation menu, navigate to Design > Interface Maps and click Create Interface Map.
Leave the name blank. It will populate automatically as you enter more information.

2. From the Logical Device drop-down list, select 96x10-8x40-2. This logical device has 96-10 GbE
ports for servers and 8-40 GbE ports for uplinks to spine switches or external routers.

3. From the Device Profile drop-down list, select Arista DCS-7050QX-32. This device has 24-40 GbE
QSFP+ ports that are transformable (4x10 GbE or 1x40 GbE) and 8-40 GbE QSFP+ ports that are not
transformable. As soon as both the logical device and device profile are selected, the interface map
name is automatically populated.

16

4. Under Device profile interfaces (middle-right) click Select Interfaces for the 10 GbE logical ports. This
displays the port layout.

5. Drag to select the first 24 ports. As the ports are selected the white numbers turn gray. When all
interfaces are selected the red circle turns green.

17

6. Under Device profile interfaces (middle-right) click Select Interfaces for the 40 GbE ports. This
displays the port layout.

18

7. Drag to select the remaining 8 ports. As the ports are selected the white numbers turn gray. When all
interfaces are selected the red circle turns green.

8. Click Create to create the interface map and return to the table view. The new interface map is
shown in the overview screenshot above.

Example: Inter Port Constraints - Disabled Ports

IN THIS SECTION

Inter Port Constraint Overview | 20

Disable Unused Ports | 21

19

Inter Port Constraint Overview

(Cumulus is no longer supported as of Apstra version 4.1.0, although Cumulus examples remain for
illustrative purposes.) Inter port constraints for Cumulus devices are handled in both the device profile
and the interface map. For Apstra to generate the correct ports.conf file with these constraints, the
unused interfaces must be disabled in the interface map.

For example, if each of the top (odd-numbered) QSFP28 ports in a Mellanox 2700 device are split into
four SFP28 ports, the bottom (even-numbered) QSFP28 ports are blocked. (Source: https://
docs.mellanox.com/display/sn2000pub/Cable+Installation) The blocked interfaces must be disabled.

Using the predefined interface map Mellanox_MSN2700_Cumulus__AOS-48x10_8x100-1 as an
example, ports 1,3,5,7,9,11,13,15,17,19,21, and 23 were used to generate the 4x10G interfaces, and the

20

https://docs.mellanox.com/display/sn2000pub/Cable+Installation
https://docs.mellanox.com/display/sn2000pub/Cable+Installation

5th transformation for ports 2,4,6,8,10,12,14,16,18,20,22, and 24 have been disabled.

Disable Unused Ports

When creating an interface map that requires disabling ports for inter port constraints, the prompt Do
you want to select the disabled interfaces for unused device profile ports? is displayed. To disable the

21

corresponding ports, click OK.

Edit Interface Map

Changes to interface maps in the global catalog do not affect interface maps that have already been
imported into blueprint catalogs, thereby preventing potentially unintended changes to blueprints.

CAUTION: Any changes made to predefined interface maps (the ones that ship with
Apstra software) are discarded when Apstra is upgraded. To retain a customized
interface map through Apstra upgrades, clone the predefined interface map, give it a
unique name, and customize it instead of changing the predefined one directly.

22

1. Either from the table view (Design > Interface Maps) or the details view, click the Edit button for the
interface map to edit.

2. Make your changes.

3. Click Update (bottom-right) to update the interface map and return to the table view.

Delete Interface Map (Design)

1. Either from the table view (Design > Interface Maps) or the details view, click the Delete button for
the interface map to delete.

2. Click Delete Interface Map to delete it from the global catalog and return to the table view.

Rack Types (Datacenter Design)

IN THIS SECTION

Rack Type Overview | 23

Create Rack Type | 30

Example: Create Rack Type | 31

Edit Rack Type in Global Catalog | 34

Edit Rack Type in Template | 34

Edit Rack Type in Blueprint | 35

Delete Rack Type | 35

Rack Type Overview

IN THIS SECTION

Summary | 24

Leaf Devices | 24

Access Switches | 26

Generic Systems | 28

Access Rack Types | 30

23

Rack types define the type and number of leaf devices, access switches and/or generic systems that are
used in rack builds. Since rack types don't define specific vendors or their devices, you can design your
network before choosing hardware. If you need to create a "template" on page 35, you'll use rack types
to build the structure of your network. Rack types include the details in the following sections:

Summary

Summary Description

Name (and optional description) A unique name to identify the rack type, 17 characters
or fewer

Fabric connectivity design • L3 Clos - used in 3-stage and 5-stage fabric
templates with spine devices. The spine level
connects leaf devices to each other.

• L3 Collapsed - (Junos only) - used in collapsed
(spineless) templates. Leaf devices are connected
directly to each other via full mesh.

Leaf Devices

Leaf Devices Description

Name 64 characters or fewer

Leaf Logical Device Used as ToR leaf switch network device(s)

Links per spine,
and Link speed (L3
Clos Only)

Number of leaf-spine links and their speed.

24

(Continued)

Leaf Devices Description

Redundancy
Protocol

CAUTION: Make sure that the intended platform supports the chosen redundancy
protocol. For example, L3 MLAG peers are not supported on SONiC, and ESI is
supported on Junos only.

• None - For single-homed connections

• MLAG - For dual-homed connections. Both switches use the same logical device.

• MLAG Keepalive VLAN ID - If left blank during rack type creation, 2999 is assigned
to the peer link during the build phase. If 2999 conflicts with vendors' reserved
ranges, enter a different ID.

NOTE: Network device vendors have varying requirements for "reserved" VLAN ID
ranges. For example, Cisco NX-OS reserves the VLAN ID range from 3968 to 4094.
Arista, by default, uses a VLAN ID range from 1006 to 4094 for internal VLANs for
routed ports.

• Peer Links, and Link speed - Number of links between the MLAG devices, and their
speed

• Peer Link Port Channel ID

• L3 peer links, and Link speed -Used mainly for BGP peering between border MLAG
leaf devices in non-default routing zones. Mainly used for routed L3 traffic to solve
EVPN blackhole issues or if upstream routers go down. L3 peer-links act as backup
paths for the north-south traffic. Other than border leaf it can be used on any other
ToR leaf devices as well as for avoiding blackholing traffic for a VRF.

• L3 Peer Link Port Channel ID

• ESI (Junos only) - Ethernet Segment ID assigned to the bundled links. Specifying device
platforms other then Juniper Junos (such as Cisco, Arista) results in blueprint build
errors. See "Juniper EVPN Support" on page 857 for information about Juniper ESI
support and "ESI MAC MSB settings" on page 545 for more information about ESI.

Tags User-specified. Select tags from drop-down list generated from global catalog or create
tags on-the-fly (which then become part of the global catalog). Tags used in rack types are
embedded, so any subsequent changes to tags in the global catalog do not affect the rack
type.

25

Access Switches

ESI support at the access layer is supported as a technology preview in Apstra version 4.1.0 and as GA in
Apstra version 4.1.1. Before 4.1.0, you couldn't dual-home generic systems (servers) to access switches.
If you wanted to dual-home a generic system, it had to be up to the leaf layer. In Apstra version 4.1.0,
we extend the concept of switch pairs to the access layer. We're leveraging EVPN at the access layer to
enable ESI-LAG towards the generic system while keeping the L2 only nature of the access switch role.

Supported/Unsupported Topologies for ESI Access:

• Each member of an access switch pair dual-attached to the leaf pair is supported.

• Each member of an access switch pair single-attached to the leaf pair is supported.

• One member of an access switch pair dual-attached to the leaf pair and the other member of an
access switch pair single-attached to the leaf pair is not supported.

This is supported on 3-Stage, 5-Stage, and collapsed fabric blueprints. Day 2 topology changes are
available through Add/Edit/Remove Racks.

Requirements for the switch model acting as Access Switch are:

• EVPN-VxLAN with VTEP support is required on the Access Switches.

• L2 VxLAN only is required, L3 VxLAN (RIOT) is not required, and will continue to be available only at
the leaf layer.

When creating and managing access switches, follow the general workflow for building a network while
taking into account the following options and design considerations.

1. When creating "logical devices" on page 7, on leaf switches facing an access switch, select the port
role access, and configure ports in the access switch logical device.

2. Create an "interface map" on page 13 per standard procedure.

3. "Create a rack type" on page 30 with configured access switches.

4. Create a "template" on page 35 that uses rack types with access switches.

5. Create a blueprint and build it following the general "workflow" on page 2. You can perform the same
tasks as for other blueprints.

Access Switches Description

Name 64 characters or fewer

26

(Continued)

Access Switches Description

Access Switch count Number of access switches. These switches share the
same logical link group.

Logical Device Logical device is applied to this access switch.

Redundancy Protocol • None - For single-homed connections

• ESI (Junos only) - Ethernet Segment ID assigned to
the bundled links. Specifying device platforms
other than Juniper Junos (such as Cisco, Arista)
results in blueprint build errors. For information
about Juniper ESI support, see "Juniper EVPN
Support" on page 857 and for information about
ESI, see "ESI MAC MSB settings" on page 545.

• L3 Peer Links - Number of L3 peer links
between both access switches.

• Link Speed - Link speed on the peer link
interfaces.

Tags User-specified. Select tags from drop-down list
generated from global catalog or create tags on-the-fly
(which then become part of the global catalog). Tags
used in rack types are embedded, so any subsequent
changes to tags in the global catalog do not affect the
rack type.

27

(Continued)

Access Switches Description

Logical Link • Name - 64 characters or fewer

• Leaf - Leaf configured in Leafs section

• Physical link count per individual switch

• Link speed

• Tags - User-specified. Select tags from drop-down
list generated from global catalog or create tags on-
the-fly (which then become part of the global
catalog). Tags used in rack types are embedded, so
any subsequent changes to tags in the global
catalog do not affect the rack type.

Access Layers on Apstra Version 4.1.1

This feature is classified as General Availability as of Apstra version 4.1.1.

Access Layers on Apstra Version 4.1.0

NOTE: This feature has been classified as a Juniper Apstra Technology Preview feature. These
features are "as is" and voluntary use. Juniper Support will attempt to resolve any issues that
customers experience when using these features and create bug reports on behalf of support
cases. However, Juniper may not provide comprehensive support services to Tech Preview
features.

For additional information, refer to the "Juniper Apstra Technology Previews" on page 1168 page or
contact "Juniper Support" on page 802.

Generic Systems

Generic
Systems

Description

Name 64 characters or fewer

28

(Continued)

Generic
Systems

Description

Generic
system count

Number of systems in the set

Port Channel
ID Min, and
Max

Port channel IDs are used when rendering leaf device port-channel configuration towards
generic systems. default: 1-4096. You can customize this field.

Logical Device The generic system network device

Tags User-specified. Select tags from drop-down list generated from global catalog or create tags
on-the-fly (which then become part of the global catalog). Useful for specifying generic systems
as servers or external routers on nodes and links. Tags used in rack types are embedded, so any
subsequent changes to tags in the global catalog do not affect the rack type.

Logical Link • Name - 64 characters or fewer

• Switch - Leaf configured in Leafs section

• LAG Mode

• LACP (Active) - Link Aggregation Control Group (LACP) in active mode - This mode
actively advertises LACP BPDU even when the neighbor does not.

• LACP (Passive) - Link Aggregation Control Group (LACP) in passive mode - This mode
doesn't generate LACP BPDU until it sees one from a neighbor.

• Static LAG (no LACP) - Static LAGs don't participate in LACP and will unconditionally
operate in forwarding mode.

• No LAG - This link is not part of a LAG.

• Physical link count per individual leaf, and Link speed) - Number of links from each generic
system to each leaf and their speed. If using dual leaf switches, this number should be half
of the total links attached to the generic system.

• Tags - User-specified. Select tags from drop-down list generated from global catalog or
create tags on-the-fly (which then become part of the global catalog). Useful for specifying
generic systems as servers or external routers on nodes and links. Tags used in rack types
are embedded, so any subsequent changes to tags in the global catalog do not affect the
rack type.

29

NOTE: You can also add generic systems to blueprints as a Day 2 operation. For more
information, see "Add Generic System" on page 301.

Access Rack Types

From the left navigation menu, navigate to Design > Rack Types to go to rack types in the design (global)
catalog. Click a rack type name to see its details. You can create, clone, edit, and delete rack types.

Create Rack Type

1. From the left navigation menu, navigate to Design > Rack Type and click Create Rack Type.

2. Enter a unique rack type name (17 characters or fewer).

3. Enter a description (optional), then select a fabric connectivity design (L3 Clos, L3 Collapsed).

4. Configure the panel as required for your design.

• See rack type overview above for parameter details and the example below for a specific use
case.

• To clone or delete a logical link or generic system group within a rack type, click the Clone button
or Delete button (top-right of section).

30

Example: Create Rack Type

This example shows how to create a rack type for a dual-connected L2 rack with two
AOS-48x10+6x100-1 logical device leaf switches, each with 4-100 GbE spine links and forty-eight dual-
connected 10 GbE generic systems.

1. From the left navigation menu, navigate to Design > Rack Type and click Create Rack Type.

2. Enter a unique name (RackType1 in this example), then select L3 Clos fabric connectivity design.

3. In the Leafs section, enter a name (MyLeaf1 in this example) and select AOS-48x10+6x100-1 from
the Leaf Logical Device drop-down list.

NOTE: Instead of scrolling through the list in the Leaf Logical Device drop-down list you can
start typing in the field to filter the list based on your input.

31

4. Change the Links per spine to 2. Notice the Topology preview on the right side shows the first leaf.

5. Click Add new leaf and enter a name for the second leaf (MyLeaf2 in this example), select
AOS-48x10+6x100-1 from the Leaf Logical Device drop-down list, then change the Links per spine
to 2. Notice the Topology preview on the right side now shows both leaf devices.

6. Click Generic Systems, click Add new generic system group and enter a name (MySystemGroup1 in
this example), change the Generic system count to 20, then select AOS-2x10-1 from the Logical

32

Device drop-down list. Notice that the Topology preview changes as you configure the rack type.

7. Click Add logical link, enter a name (MyLogicalLink1 in this example), select MyLeaf1 from the
Switch drop-down list, select LACP (Active) for LAG Mode, then change Physical link count per leaf
to 2.

8. Click Add new generic system group, and enter a name (MySystemGroup2 in this example), change
the Generic system count to 20, then from the Logical Device drop-down list, select AOS-2x10-1.

9. Click Add logical link, enter a name (MyLogicalLink2 in this example), select MyLeaf2 from the
Switch drop-down list, select LACP (Active) for LAG Mode then change Physical link count per leaf
to 2.

33

10. If you'd like to see a preview of the logical devices that you've configured in the rack type, click
Logical Devices in the Preview section.

11. Click Create to create the rack type in the global catalog and return to the table view.

Edit Rack Type in Global Catalog

Changes to rack types in the global catalog do not affect rack types that have been embedded into
templates (or blueprints that were created from those templates). See the sections below for more
information.

1. To edit a rack type in the global catalog, either from the table view (Design > Rack Type) or the details
view, click the Edit button for the rack type to edit.

2. Make your changes.

3. Click Update (bottom-right) to update the rack type in the global catalog and return to the table view.

Edit Rack Type in Template

If the intent is for a template to use a modified rack type, then after editing the rack type in the global
catalog it must be imported into the template. For more information, see Update Rack Type in Rack
Based Template on the "Templates" on page 35 page (Design > Templates > Edit Template).

34

Edit Rack Type in Blueprint

You can edit rack types in active running blueprints. For more information, see "Edit Rack" on page 384
(Blueprints > Staged > Physical > Racks).

Delete Rack Type

Deleting a rack type in the global catalog does not affect templates and blueprints that previously
embedded that rack type. For information about deleting racks from blueprints, see "Delete Rack" on
page 385 (Blueprints > Staged > Physical > Racks).

1. To delete a rack type in the global catalog, either from the table view (Design > Rack Type) or the
details view, click the Delete button for the rack type to delete.

2. Click Delete to delete the rack type and return to the table view.

Templates (Datacenter Design)

IN THIS SECTION

Template Overview | 35

Create Rack Based Template | 41

Create Pod Based Template | 41

Create Collapsed Template | 42

Edit Template | 43

Update Rack Type in Rack Based Template | 43

Delete Template | 43

Template Overview

IN THIS SECTION

Rack-based Template | 36

Pod-based Template | 38

Collapsed Template | 40

35

Templates are used to create blueprints. They define a network's policy intent and structure. The global
catalog (Design > Templates) includes predefined templates based on common designs.

From the left navigation menu, navigate to Design > Templates to go to the templates table view. Many
predefined templates are provided for you. Click a template name to see its details. You can create,
clone, edit, and delete templates.

See the sections below for details on each type of template.

Rack-based Template

Rack-based templates define the type and number of racks to connect as top-of-rack (ToR) switches (or
pairs of ToR switches). Rack-based templates include the following details:

Table 2: Rack-based Template Policies

Policy Options

ASN Allocation
Scheme (spine)

• Unique - applies to 3-stage designs. Each spine is assigned a different ASN.

• Single - applies to 5-stage designs. All spine devices in each pod are assigned the same
ASN, and all superspine devices are assigned another ASN.

36

Table 2: Rack-based Template Policies (Continued)

Policy Options

Overlay Control
Protocol

• Defines the inter-rack virtual network overlay protocol in the fabric. Overlay control
protocol on deployed blueprints can't be changed.

• Static VXLAN - uses static VXLAN routing the Head End Replication (HER) flooding to
distribute Layer 2 virtual network traffic between racks.

• MP-EBGP EVPN - uses EVPN family eBGP sessions between device loopbacks to
exchange EVPN routes for hosts (Type 2) and networks (Type 5). Only homogeneous,
single-vendor EVPN fabrics are supported. EVPN-VXLAN capabilities for inter-rack virtual
networks are dependent on the make and model of network devices used. See "Virtual
Networks" on page 403 for more information. External systems must be connected to
racks (not spine devices).

Spine to Leaf
Links Underlay
Type

• IPv4 - uses addresses from "IPv4 resource pools" on page 262.

• IPv6 RFC-5549 - uses addresses from "IPv6 resource pools" on page 264. Not supported
when overlay control protocol is MP-EBGP EVPN.

• IPv6-IPv6 Dual Stack

Table 3: Rack-based Template Structure

Structure Options

Rack Types Type of rack and number of each selected "rack type" on page 23. ESI-based rack types in rack-
based templates without EVPN are invalid.

Spines • Spine Logical Device and Count - Type and number of spine "logical devices" on page 7

• Links per Superspine Count and Speed - Number and speed of links to any superspine devices

• Tags - User-specified. Select "tags" on page 57 from drop-down list generated from global
catalog or create tags on-the-fly (which then become part of the global catalog). Useful for
specifying external routers. Tags used in templates are embedded, so any subsequent changes
to tags in the global catalog do not affect templates.

37

Pod-based Template

Pod-based templates are used to create large, 5-stage Clos networks, essentially combining multiple
rack-based templates using an additional layer of superspine devices. The following images show
examples of 5-stage Clos architectures built using pod-based templates (Superspine links are not shown
for readability purposes). See "5-Stage Clos Architecture" on page 854 for more information.

Single plane, dual superspine

4 x plane, 4 x superspine

Pod-based templates include the following details:

38

Table 4: Pod-based Template Policies

Policy Option

Spine to
Superspine
Links

• IPv4 - uses addresses from "IPv4 resource pools" on page 262.

• IPv6 RFC-5549 - uses addresses from "IPv6 resource pools" on page 264. Not supported
when overlay control protocol is MP-EBGP EVPN.

• IPv4-IPv6 Dual Stack

Overlay Control
Protocol

• Defines inter-rack virtual network overlay protocol used in the fabric. Overlay control
protocol on deployed blueprints can't be changed.

• Static VXLAN - uses static VXLAN routing the Head End Replication (HER) flooding to
distribute Layer 2 virtual network traffic between racks.

• MP-EBGP EVPN - uses EVPN family eBGP sessions between device loopbacks to exchange
EVPN routes for hosts (Type 2) and networks (Type 5). Only homogeneous, single-vendor
EVPN fabrics are supported. EVPN-VXLAN capabilities for inter-rack virtual networks are
dependent on the make and model of network devices used. See "Virtual Networks" on
page 403 for more information. External systems must be connected to racks (not spine
devices).

Table 5: Pod-based Template Structure

Structure Options

Pods Type of rack-based template and number of each selected template

Superspines • Superspine Logical Device and Count

• Plane Count and Per Plane Count - Number of planes and number of superspine devices per
plane

• Tags - User-specified. Select "tags" on page 57 from drop-down list generated from global
catalog or create tags on-the-fly (which then become part of the global catalog). Useful for
specif.ying external routers. Tags used in templates are embedded, so any subsequent changes
to tags in the global catalog do not affect templates.

39

Collapsed Template

Collapsed templates allow you to consolidate leaf, border leaf and spine functions into a single pair of
devices. A full mesh topology is created at the leaf level instead of at leaf-spine connections. This
spineless template uses L3 collapsed rack types. Collapsed templates have the following limitations:

• No support for upgrading collapsed L3 templates to L3 templates with spine devices (To achieve the
same result you could move devices from the collapsed L3 blueprint to an L3 Clos blueprint.)

• Collapsed L3 templates can't be used as pods in 5-stage templates.

• You can't mix vendors inside redundant leaf devices - the two leaf devices must be from the same
vendor and model.

• Leaf-to-leaf links can't be added, edited or deleted.

• Inter-leaf connections are limited to full-mesh.

• IPv6 is not supported.

Collapsed templates include the following details:

Table 6: Collapsed Template Policies

Policy Options

Overlay
Control
Protocol

• Defines the inter-rack virtual network overlay protocol used in the fabric. Overlay control
protocol on deployed blueprints can't be changed.

• Static VXLAN - uses static VXLAN routing the Head End Replication (HER) flooding to
distribute Layer 2 virtual network traffic between racks.

• MP-EBGP EVPN - uses EVPN family eBGP sessions between device loopbacks to exchange
EVPN routes for hosts (Type 2) and networks (Type 5). Only homogeneous, single-vendor
EVPN fabrics are supported. EVPN-VXLAN capabilities for inter-rack virtual networks are
dependent on make and model of network devices used. See "Virtual Networks" on page 403
for more information. External systems must be connected to racks (not spine devices).

Table 7: Collapse Template Structure

Structure Options

Rack Types Type of L3 collapsed rack and number of each selected "rack type" on page 23.

40

Table 7: Collapse Template Structure (Continued)

Structure Options

Mesh Links Count and
Speed

Defines the link set created between every pair of physical devices, including devices in
redundancy groups (MLAG / ESI). These links are always physical L3. No logical links are
needed at the mesh level.

Create Rack Based Template

You can build a multi-rack environment by selecting multiple rack types, but you can't mix Layer 2 and
Layer 3 racks in the same template.

1. If your design requires "rack types" on page 23 and/or "logical devices" on page 7 that are not in the
global catalog, create them before proceeding.

2. From the left navigation menu, navigate to Design > Templates and click Create Template.

3. Enter a unique name (64 characters or fewer).

4. Select RACK BASED.

5. Select applicable policies.

6. Select a rack type from the drop-down list and select the number of that type to include in the
template. Notice that as you enter information, the topology preview on the right changes
accordingly.

• To add another rack, click Add racks.

7. Select the Spine Logical Device from the drop-down list, then select the number of them to include
in the template. Make sure to select one that provides a sufficient number of spine ports for your
design. For 5-stage designs, make sure to select a logical device that includes the Superspine role.

8. For 5-stage designs, enter the number and connection speed of links for Superspine Connectivity.

9. Select tags, as applicable (to specify external routers for example), from the drop-down list or create
them on-the-fly.

10. Click Create to create the template and return to the table view.

Next Steps: Create a "blueprint" on page 269 from the template.

Create Pod Based Template

A pod-based template consists of multiple rack-based templates; it's essentially a "template of
templates" used to build "5-stage Clos networks" on page 854.

1. If your design requires "templates" on page 35, "rack types" on page 23 and/or "logical devices" on
page 7 that are not in the global catalog, create them before proceeding.

2. From the left navigation menu, navigate to Design > Templates and click Create Template.

3. Enter a unique name (64 characters or fewer).

41

4. Select POD BASED.

5. Select applicable policies.

6. Select a pod from the drop-down list and select the number of that type of pod. Notice that as you
enter information, the topology preview on the right changes accordingly.

• To add another type of pod, click Add pods and select another pod from the drop-down list.

7. Select a Superspine Logical Device from the drop-down list.

8. Select the number of planes and the number of superspine devices per plane.

9. Select tags, as applicable (to specify external routers for example), from the drop-down list or create
them on-the-fly.

10. Click Create to create the template.

The example below shows a pod-based template with three pods and two planes, each containing
two superspine devices:

Next Steps: Create a "blueprint" on page 269 from the template.

Create Collapsed Template

1. From the left navigation menu, navigate to Design > Templates and click Create Template.

2. Enter a unique name (64 characters or fewer).

3. Select COLLAPSED.

4. Select applicable policies.

5. Select a "rack type" on page 23 from the drop-down list (only L3 collapsed rack types are available for
selecting) and select the number of that type to include in the template. Notice that as you enter
information, the topology preview on the right changes accordingly.

6. Click Create to create the template and return to the table view.

Next Steps: Create a "blueprint" on page 269 from the template.

42

Edit Template

Changes made to a template in the global catalog do not affect blueprints that were previously created
with that template, thereby preventing potentially unintended changes to those blueprints.

1. From the left navigation menu, navigate to Design > Templates and click the Edit button (top-right)
for the template to update.

2. Make your changes.

• To update a rack type in a rack-based template, delete the original rack type from the template
(click X to the right of the template). Then, before clicking Update, select the same (modified) rack
type from the drop-down list.

3. Click Update (bottom-right) to update the template and return to the table view.

Update Rack Type in Rack Based Template

Changes to a rack type in the global catalog do not affect templates that were previously created with
that rack type, thereby preventing potentially unintended changes to those templates. If your intent is
for the template to use the modified rack type, then you must re-import the rack type into the template.

1. Modify the rack type in the global catalog.

2. From the left navigation menu, navigate to Design > Templates and click the Edit button (top-right)
for the template to update.

3. Click the X to the right of the rack type to remove it. Don't click Update yet.

4. Select the same rack type from the drop-down list.

5. Click Update (bottom-right) to update the template with the modified rack type and return to the
table view.

Delete Template

Do not delete a template if it's referenced by a blueprint.

1. From the left navigation menu, navigate to Design > Templates and click the Delete button for the
template to delete.

2. Click Delete to delete the template and return to the table view.

43

Config Templates (Freeform Design)

IN THIS SECTION

Create Config Template | 44

Edit Config Template | 45

Delete Config Template | 45

Config templates are text files used to configure internal systems in Freeform. You'll assign a config
template to every internal system. You could paste configuration directly from your devices into a config
template to create a static config template, but then you wouldn’t be using the potential of config
templates. With some Jinja2 knowledge (and maybe some Python), you can parametrize config
templates to do powerful things.

For more information about config templates, see "Config Templates (Freeform Blueprint)" on page 657.

Create Config Template

1. From the left navigation menu of the Apstra GUI, navigate to Design > Config Templates and click
Create Config Template.

2. Enter a unique name for the config template including the .jinja extension. (The .jinja extension is
required even if you're not using Jinja.)

3. Enter or paste your content into the Template Text field.

4. Click Create to create the config template and return to the config template table view. Your newly
created config template is available to be imported into any blueprint catalog.

44

NOTE: You can also create config templates directly in the blueprint catalog. If you've already
created your internal systems in your blueprint, you'll have access to its Device Context all in
one place which makes it easier to get device information that you need for config templates.

Edit Config Template

1. From the left navigation menu of the Apstra GUI, navigate to Design > Config Templates to go to the
table view.

2. Either from the table view or the details view, click the Edit button for the config template to edit.

3. Make your changes.

4. Click Update to update the config template and return to the table view.

Delete Config Template

1. From the left navigation menu of the Apstra GUI, navigate to Design > Config Templates to go to the
table view.

2. Either from the table view or the details view, click the Delete button for the config template to
delete.

3. Click Delete to stage the deletion and return to the table view.

Configlets (Datacenter Design)

IN THIS SECTION

Configlet Overview | 45

Create Configlet | 50

Export / Edit / Delete Configlet (Design) | 51

Configlet Overview

IN THIS SECTION

Configlet Applications | 46

45

When Not to Use Configlets | 47

Configlet Parameters | 47

Configuration Rendering Order | 49

View Configlets (Design) | 50

Configlets are configuration templates that augment Apstra’s reference design with non-native device
configuration. They consist of one or more generators. Each generator specifies a NOS type (config
style), when to render the configuration, and CLI commands (and file name as applicable). The section
that you select when creating the configlet determines when the configuration is rendered.

When you want to use a configlet, you import it from the global catalog into a blueprint catalog and
assign it to one or more roles and/or deployed devices. You can edit the roles and/or devices in a
blueprint configlet, but if you want to change the configlet itself, you must export it to the global
catalog, modify it, and re-import it into the blueprint.

You can use the same configlets across the entire enterprise, but we recommend creating and applying
regionally-specific "property sets" on page 52 instead.

NOTE: Improperly configured configlets may not raise warnings or restrictions. Testing and
validating configlets for correctness is the responsibility of the end user. We recommend that you
test configlets on a separate dedicated service to ensure that the configlet performs exactly as
intended.

Passwords and other secret keys are not encrypted in configlets.

Configlet Applications

Some applications for configlets include the following:

• Syslog

• SNMP access policy

• TACACS / RADIUS

• Management ACLs

• Control plane policing

• NTP

46

• Username / password

When Not to Use Configlets

CAUTION: Using configlets to add non-native configuration is not always appropriate
or possible. Configlets are powerful, but if used improperly they pose risks to
deployment stability and reference design feature interactions. Testing and validating
configlets for correctness is the responsibility of the end user.

Don't use configlets to replace reference design configuration, such as for routing or connectivity. If you
change interface configuration, the Apstra-intended interface configuration could be overwritten. For
example, if a configlet creates a network span port, you must apply the configlet to an Unused port, or it
might inadvertently overwrite one that is already in use.

On Cisco NX-OS and Arista EOS devices, do not use configlets to configure multi-line banners (such as
banner motd) because of a problematic extra non-ASCII character that cannot be entered. Instead,
configure multi-line banners with Cisco POAP (Power-on Auto Provisioning) or ZTP (Arista Zero Touch
Provisioning) before installing the device agent. The banner configuration becomes part of the device's
pristine configuration and persists throughout the Apstra configuration. Another option is to manually
configure multi-line banners on the device. This method causes a configuration deviation anomaly that
you can clear by accepting the new configuration as the golden config. For more information, see
"Configuration Deviation" on page 607.

Configlet Parameters

Configlets include the following details. The selected config style (NOS type) and section determine
whether template text, negation template text and filename are required:

Table 8: Configlet Parameters

Name Description

Configlet Name A unique name to identify the configlet, 64 characters or fewer

Config Style (NOS Type) Junos, NX-OS, EOS, SONiC

47

Table 8: Configlet Parameters (Continued)

Name Description

• Section: System (NX-
OS, EOS, SONiC)

• Section: Top-Level:
Hierarchical (previously
called System) (Junos)

• Runs commands as root user. Improper changes could break the functionality
of the reference design and take down a network.

• When a device is unassigned from a node, the negation template text removes
configuration. For example, if the template text is username example privilege 15
secret 0 MyPassword, the negation template text might be

no username example

• Can use in conjunction with File configlets to restart processes or perform
administrative tasks after File configlets render.

• System configlets can nest other configuration.

• For NX-OS and EOS, the appropriate configure terminal context is applied. It
doesn’t need to be part of the configlet.

Section: Top-Level: Set /
Delete (Junos)

Author configlets using Juniper "Set" style rather than structured JSON

• Section: Interface (NX-
OS, EOS)

• Section: Interface-Level:
Hierarchical (Junos)

• For physical devices only.

• You specify the interface when you "import" on page 277 the configlet into a
blueprint (scope).

Section: Interface-Level: Set
(Junos)

Author configlets using Juniper "Set" command rather than structured JSON. Text
is validated to begin with 'set'.

Section: Interface-Level:
Delete (Junos)

Author configlets using Juniper "Delete" command rather than structured JSON.
Text is validated to begin with 'delete'.

48

Table 8: Configlet Parameters (Continued)

Name Description

Section: File (SONiC) • The entire contents of the file must be present within the configlet because the
entire file is overwritten; there is no versioning or storing of the original file
contents, soyou can’t restore it to its original content. Improper use can take
down a network. Do not use on config files of critical processes (such
as /etc/frr/frr.conf or /etc/network/interfaces/).

• Contents are written, as root user, to the /etc directory file (because of Apstra’s
Docker container host mount). To write to a file outside of /etc (/usr for
example) build the File configlet, then use a System configlet to move the file
afterwards.

Section: System Top (NX-
OS, EOS)

Ensures that you can overwrite a setting to implement programmed intent. When
the reference design is applied, any needed features that were “turned off” in this
configlet are reenabled.

Section: FRR (SONiC) • Configlet configuration is appended to the end of the Apstra-
generated /etc/frr/frr.conf file and becomes part of FRR intent. Configuration
is incrementally included in frr-reload.

• Template text is not validated. Errors are likely to cause deployment errors,
unintended configuration and device impact.

Template Text CLI commands to add configuration to devices. Issued directly to devices without
validation.

Negation Template Text CLI commands to disable configlet functionality (when a device is unassigned).
Issued directly to devices without validation.

Filename For File configlets

Configuration Rendering Order

Configuration rendering order is as follows:

1. System Top: negation template text (NX-OS, EOS)

2. System Top: template text (NX-OS, EOS)

3. Apstra reference design

49

4. Interface: negation template text (NX-OS, EOS)

5. System: negation template text (Junos, NX-OS, EOS, SONiC)

6. File (SONiC)

7. System: template text (Junos, NX-OS, EOS, SONiC)

8. Interface: template text (NX-OS, EOS)

To control the order of operations within a section, create configlets with numeric names. For example,
01_syslog renders before 02_ntp. Configlets are then ordered based on the condition of the configlet (for
example the spine or leaf role), and then by the Node ID of the configlet.

View Configlets (Design)

From the left navigation menu, navigate to Design > Configlets to go to configlets in the design (global)
catalog. You can create, clone, import, export, edit and delete configlets.

Create Configlet

To learn how you can access a dictionary of variables (device model) that you can use when you create
configlets, see the "Device Configuration Lifecycle" on page 60.

1. From the left navigation menu, navigate to Design > Configlets and click Create Configlet.

2. If you've created a JSON payload, click Import Configlet and select the file to import it. Otherwise,
continue to the next step.

3. Enter a unique configlet name.

4. Select a NOS type (config style). (Cumulus is no longer supported as of Apstra 4.1.0.)

5. Select the section where you want to render the configlet. Available choices depend on the
selected config style. (OSPF for external routers is no longer supported. While OSPF configlets still
appear in the Apstra GUI, they should not be used.)

50

6. In the Template Text and Negation Template Text fields (as applicable), enter CLI commands. For
Interface-Level Set or Delete configlets, do not include set or delete in the text. See Configlet
examples in the Reference section. Avoid using shortened versions of commands. Jinja syntax is
highlighted with color coding to improve readability, especially for complex configlets with multiple
property set variables or when Jinja control structures (such as loops and conditionals) are used.
Jinja syntax is validated. If Jinja syntax is incorrect, a validation error is raised.

CAUTION: Using a raw text editor (OSX TextEdit, Windows Notepad++) is critical.
Hidden characters can cause unforeseen issues when the configlet is deployed.

NOTE: Instead of hard-coding data into a configlet, you can refer to a "property set" on page
52 (key-value pairs). For an example, see the "Arista NTP example" on page 1120 in the
References section.

7. If Negation Template Text is required, enter the CLI commands to remove the configuration.

8. For File configlets, enter the filename in the Filename field.

9. To add another generator, click Add a style and enter details. (Tip: Configlets can contain syntax for
multiple vendors. Create one single-purpose configlet with a generator for each vendor NOS type
to include its own syntax.)

10. Click Create to add the configlet to the global catalog.

When you’re ready to use the configlet in a blueprint, "import" on page 277 it into the blueprint's
catalog.

Export / Edit / Delete Configlet (Design)

IN THIS SECTION

Export Configlet | 51

Edit Configlet | 52

Delete Configlet | 52

Export Configlet

Exporting configlets makes it easier for SEs to deliver predefined configlets to customers and makes it
easier to copy configlets across Apstra instances. (New in Apstra version 4.1.0.)

51

1. From the table view (Design > Configlets) or the details view, click the Export configlet button for the
configlet to export. Configlet details are displayed.

2. To copy the contents, click Copy, then paste it.

3. To download the JSON file to your local computer, click Save as File.

4. When you've copied and/or downloaded the file, click the X to close the dialog.

Edit Configlet

Changing configlets in the design (global) catalog doesn't affect configlets in blueprint catalogs. If your
intent is for a blueprint to use a modified configlet, see "Edit / Delete Configlet (Blueprint)" on page 280
for the workflow.

1. From the table view (Design > Configlets) or the details view, click the Edit button for the configlet to
edit.

2. Make your changes (name, config style, section, template text, negation template text, filename, as
applicable).

3. Click Update (bottom-right) to update the configlet in the global catalog and return to the table view.

Delete Configlet

Deleting configlets in the design (global) catalog doesn't affect configlets in blueprint catalogs.

1. Either from the table view (Design > Configlets) or the details view, click the Delete button for the
configlet to delete.

2. Click Delete to delete the configlet from the global catalog and return to the table view.

Property Sets (Datacenter Design)

IN THIS SECTION

Create Property Set (Datacenter Design) | 54

Edit / Delete Property Set (Datacenter Design) | 55

Property sets are data sets that define device properties. They work in conjunction with configlets and
Analytics probes. (Config templates in Freeform blueprints also use property sets, but they're not related
to property sets in the Design catalog, as discussed here.) Instead of embedding data directly into

52

configlets or probes, you can store variable values in a property set, then refer to the property set from
the configlet or probe. This gives you flexibility in case you want to change values later. After you create
your blueprint, you'll import your configlets and property sets from the Design (global) catalog into the
blueprint catalog.

But first, you need to write the property set (and the configlet or probe that'll use it). You can write it in
JSON, or starting in Apstra version 4.1.2, you can also write it in YAML. Apstra versions 4.1.1 and earlier,
support key-value pairs only. Starting with Apstra version 4.1.2, you can also use lists, dictionaries, and
any combination of these data structures by nesting them.

Below is an example of a property set and configlet that uses it to change the SNMP location field based
on a provided list of system_name to location mapping.

Property Set

{
 "created_at": "2022-08-26T13:20:04.488463+0000",
 "updated_at": "2022-08-28t18:57:41.169692+0000",
 "values_yaml": "PS_SNMP_Locations:\n leaf1: DC-Room1-Rack32\n leaf2: DC1-room1-Rack34\n
leaf3: DC1-Room1-Rack33\n spine1: DC1-Room1-Rack30\n spine2: DC1-Room1-Rack31\n",
 "values": {
 "PS_SNMP_Locations": {
 "spine1": "DC1-Room1-Rack30",
 "spine2": "DC1-Room1-Rack31",
 "leaf1": "DC1-Room1-Rack32",
 "leaf3": "DC1-Room1-Rack33",
 "leaf2": "DC1-Room1-Rack34"
 }
 },
 "label": "PS_SNMP_Locations",
 "id": "c4006bb8-f8f4-4aa7-82c3-8da5dfc03c43"
}

Configlet

{
 "ref_archs": [
 "two_stage_l3clos"
],
 "generators": [
 {
 "config_style": "junos",
 "section": "system",

53

 "template_text": "{% if PS_SNMP_Locations[hostname] is defined %}\nsnmp {\n location
\"{{PS_SNMP_Locations[hostname]}}\";\n}\n{5 endif %}\n",
 "negation_template_text": ::,
 "filename": ""
 }
],
 "created_at": "2022-08-26T13:23:57.2720142",
 "id": "b2739659-897d-4fa2-a8e9-2060ae1c045f",
 "last_modified_at": "2022-08-26T13:29:40.1924382",
 "display_name": "SNMP_location"
}

From the left navigation menu, navigate to Design > Property Sets to go to property sets in the Design
catalog. You can create, clone, edit and delete property sets.

Create Property Set (Datacenter Design)

1. From the left navigation menu, navigate to Design > Property Sets and click Create Property Set.

2. Enter a unique property set name.

3. Key in the left property field and a value in the right property field. Do not add curly braces {{ }} to the
key; they are added for you. To add another property, click Add a Property.

4. Click Create to create the property set and return to the table view.

54

Edit / Delete Property Set (Datacenter Design)

IN THIS SECTION

Edit Property Set | 55

Delete Property Set (Datacenter Design) | 55

Edit Property Set

To prevent potentially unintended changes to existing blueprints, changes to property sets in the global
catalog do not affect property sets in the blueprint catalog. If your intent is for a blueprint to use a
modified property set, then you must re-import the revised property set into the blueprint.
1. From the left navigation menu, navigate to Design > Property Sets and click the name of the property

set to edit.

2. Click the Edit button (top-right) and make your changes.

3. Click Update (bottom-right) to update the Property Set.

Delete Property Set (Datacenter Design)

If a property set is assigned to a "configlet" on page 45, it cannot be deleted.
1. Either from the table view (Design > Property Sets) or the details view, click the Delete button for the

property set to delete.

2. Click Delete to delete the property set from the global catalog and return to the table view.

TCP/UDP Port Aliases (Datacenter Design)

IN THIS SECTION

TCP/UDP Port Alias Overview | 56

Create TCP/UDP Port Alias | 56

Edit TCP/UDP Port Alias | 56

Delete TCP/UDP Port Alias | 56

55

TCP/UDP Port Alias Overview

When you create a security policy and add rules for TCP or UDP protocols, a source port and
destination port are specified. You can enter port numbers or you can create aliases ahead of time that
can be entered instead of the port numbers. For example, you could create an alias with name SSH and a
value of 22.

From the left navigation menu, navigate to Design > TCP/UDP Ports to go to TCP/UDP ports. You can
create, clone, edit and delete port aliases.

Create TCP/UDP Port Alias

1. From the left navigation menu, navigate to Design > TCP/UDP Ports and click Create Port Alias.

2. Enter a unique alias name.

3. Enter one or more values.

4. Click Create to create the alias and return to the table view. When you add a rule for TCP or UDP
protocols to a security policy, the TCP/UDP port alias appears in the drop-down list.

Edit TCP/UDP Port Alias

1. From the left navigation menu, navigate to Design > TCP/UDP Ports and click the Edit button for the
port alias to edit.

2. Make your changes.

3. Click Update to update the TCP/UDP port alias and return to the table view.

Delete TCP/UDP Port Alias

1. From the left navigation menu, navigate to Design > TCP/UDP Ports and click the Delete button for
the port alias to delete.

56

2. Click Delete to delete the TCP/UDP port alias from the system and return to the table view.

Tags (Design)

IN THIS SECTION

Tags Overview | 57

Create Tag (Design) | 58

Edit Tag (Design) | 58

Delete Tag (Design) | 59

Tags Overview

Tags add user-defined information to nodes and links. You can add tags to the following elements:

• Rack types (Design)

• Templates (Design)

• Connectivity Templates (Blueprints)

• Intent-Based Analytics (IBA) Probes (Blueprints)

• ECMP Imbalance (External Interfaces) probe

• Total East/West Traffic probe

• Critical Services: Utilization, Trending, Alerting probe

• Leafs Hosting Critical Services: Utilization, Trending, Alerting probe

For example, you assign servers and external routers the generic port role in logical devices (new in
version 4.0), and then tag them with their specific roles when you design rack types and templates.
When you create a blueprint, tags from the relevant design elements are embedded into the tag section
of the blueprint catalog.

Changes you may subsequently make to tags in the design elements do not affect the blueprint that had
previously used those tags. If you want a blueprint to use revised tags from a design element, you can
"import " on page 562them.

57

You can "export" on page 562 tags that you created in a blueprint to the global catalog (as long as they
have a unique name) where they can be used in subsequent design elements.

Tags include the following details:

• Name - Case-insensitive. They must be unique across all tags defined in the design.

• Description - Optional field to add any details (for example, server roles, external router roles or
customer name).

From the left navigation menu, navigate to Design > Tags to go to tags in the global catalog. Four tags
(Bare Metal, Firewall, Hypervisor, Router) are predefined for you. You can create, clone, edit and delete
tags in the global catalog.

Create Tag (Design)

1. From the left navigation menu, navigate to Design > Tags and click Create Tag.

2. Enter a unique tag name.

3. Enter a description (optional).

4. Click Create to create the tag and return to the table view.

Edit Tag (Design)

You cannot change tag names directly; You can only change tag descriptions.

58

NOTE: You can change a tag name indirectly by creating a tag with the preferred name, applying
the tag to the rack type or template, then deleting the tag with the original name from the rack
type or template (then deleting the original tag).

To change a tag name indirectly:

1. Create a tag with the preferred name.

2. Apply the tag to the rack type or template.

3. Delete the tag with the original name from the rack type or template.

4. Delete the original tag.

1. Either from the table view (Design > Tags) or the details view, click the Edit button for the tag to
change.

2. Change the description.

3. Click Update to update the tag description and return to the table view.

Delete Tag (Design)

Deleting a tag from the design (global) catalog does not affect rack types and templates that have
previously been assigned the tag.

1. Either from the table view (Design > Tags) or the details view, click the Delete button for the tag to
delete.

2. Click Delete to delete the tag and return to the table view.

Devices

IN THIS SECTION

Device Configuration Lifecycle | 60

Managed Devices Overview | 73

Add Device to Managed Devices | 77

Remove (Decommission) Device from Managed Devices | 78

59

Drain Device Traffic | 80

Edit Device | 83

Delete Device | 84

Upgrade Device NOS | 85

Device AAA | 92

Create Onbox Agent | 94

Create Offbox Agent | 98

Set Device Admin State | 103

Uninstall and Delete Agent | 103

Edit Agent | 105

Edit Pristine Config | 108

Update Pristine Config from Device | 108

Juniper Device Agent | 109

SONiC Device Agent | 114

Cisco Device Agent | 121

Arista Device Agent | 134

Telemetry (Devices) | 154

Agent Profiles (Devices) | 169

Packages (Devices) | 171

Apstra ZTP (Devices) | 172

Device Profiles | 203

Device Configuration Lifecycle

IN THIS SECTION

Terminology | 61

Configuration Stages: Overview | 62

Configuration Stages: Detail | 64

View Device Config from Blueprint | 67

60

Configuration Deviations | 70

Device Offline (Unavailable) | 70

Manually Apply Full Config | 70

Deploy Modes | 71

CAUTION: A good understanding of the Apstra device configuration lifecycle is
essential. Before working with devices in the Apstra environment, we strongly
recommend that you fully understand how devices are configured from the moment
they are on-boarded to the moment they are decommissioned.

Terminology

The following terminology is used to identify configuration stages:

Config Description

Pristine Config When you install a device agent, configuration is added to the pre-existing config on
the device. Normally, the pristine config doesn't change throughout the device's
lifecycle.

Discovery 1 Config When you acknowledge a device, Apstra adds basic configuration, including enabling
LLDP on all interfaces.

Ready Config
(previously known as
Discovery 2 Config)

When you assign a device to a blueprint without deploying it (deploy mode: ready),
Apstra adds basic configuration, including device hostnames, interface descriptions and
port speed / breakout config.

Service Config When you deploy a device (deploy mode: deploy), Apstra adds configuration that's
required in the Apstra environment. Service Config consists of Discovery 1 config,
Ready (Discovery 2) config and this additional config.

Rendered Config Complete Apstra-rendered configuration for the device, per the Apstra Reference
Design.

Incremental Config The configuration that will be applied when you commit changes that you've made.

61

(Continued)

Config Description

Golden Config When you commit config changes, Apstra collects a new running configuration called
Golden Config. Golden config serves as Intent: Apstra continuously compares the
running config against the Golden config. When a deployment fails, Apstra unsets the
Golden Config.

Configuration Stages: Overview

The following table describes the various config events and their resulting device config, Apstra-
managed device state, and blueprint deployment mode:

Event Resulting Device Configuration Resulting Apstra
Managed Device State

Apstra Blueprint
Deployment Mode

New device Factory Default Configuration N/A Not Assigned

Add pre-Apstra [mgmt]
configuration to device

Factory + Pre-Apstra N/A Not Assigned

Install Apstra device
system agent

Pristine Config: Factory + Pre-
Apstra + Agent Install config

OOS-QUARANTINED Not Assigned

Acknowledge device Discovery 1: Pristine, plus
Interfaces Enabled

OOS-READY Not Assigned

Assign device to
blueprint (no deploy)

Ready (Discovery 2): Discovery 1,
plus various basic config

IS-READY Ready

Deploy device Service Config: Ready (Discovery 2)
config plus full Apstra-Rendered
config

IS-ACTIVE Deploy

Add/Commit
incremental
configuration

Delta of resulting config changes
from blueprint modifications

IS-ACTIVE Deploy

Drain device "Drain" Configuration is added IS-READY Drain

Undeploy device Apstra-rendered config is removed IS-READY Undeploy

62

(Continued)

Event Resulting Device Configuration Resulting Apstra
Managed Device State

Apstra Blueprint
Deployment Mode

Unassign device Discovery 1 config is re-applied OOS-READY Not Assigned

CAUTION: When you install an agent on a device, any configuration that was already
there becomes part of the Pristine Config, which means it's included in the device's
entire configuration lifecycle. Any corrections that you make will be service-impacting.

63

Configuration Stages: Detail

IN THIS SECTION

New Device (Factory Default) | 64

Add Pre-Apstra Config (User-required) | 64

Install Agent (Pristine) | 64

Acknowledge Device (Discovery 1 / Ready) | 65

Assign Device (Ready / Ready) | 65

Deploy Device (Rendered / Active) | 66

Stage Device Update (Incremental / Active) | 67

Commit Device Again (Rendered-Updated / Active) | 67

New Device (Factory Default)

The lifecycle of a device begins with the factory default configuration stage.

Add Pre-Apstra Config (User-required)

Certain minimum base configuration is required for the entire configuration lifecycle. This includes
configuration for agent installation and device connectivity. You must configure management IP
connectivity between devices and the Apstra server out-of-band (OOB). Configuring it in-band is not
supported and could cause connectivity issues when changes are made to the blueprint.

You can bootstrap this User-required config with "Apstra ZTP" on page 172, or add it with scripts (or
other methods).

CAUTION: Only add configuration that's required for connectivity, for installing the
device agent, or that's known to be required throughout the device lifecycle (for
example Banners or NTP / SNMP / syslog server IP addresses). You can add required
configuration that's not rendered by Apstra with "configlets" on page 45.

Install Agent (Pristine)

When you install an onbox agent on a device (or an offbox agent on the server) the device connects and
registers with Apstra in the Quarantined state. Apstra applies partial configuration to the pre-Apstra

64

configuration. This configuration is called Pristine configuration. Pristine configuration is the basis for all
subsequent device configuration.

Acknowledge Device (Discovery 1 / Ready)

When you acknowledge a device, you're putting it in the Ready state. This acknowledgment signals your
intent to have Apstra manage the device. To the pristine config, Apstra adds minimal base configuration
that's essential to Apstra agent operation. This configuration is called Discovery 1 config. Discovery 1
applies a complete configuration (Full config push), overwriting all existing configuration to ensure config
integrity.

• All interfaces are rendered with interface speeds for the assigned device profile.

• All interfaces are no shutdown to allow you to view LLDP neighbor information.

• All interfaces are moved to L3 mode (default) to prevent the device from participating in the fabric.

NOTE: Devices that have been acknowledged cannot simply be deleted. Since the device would
still have an active agent installed, the devices would re-appear within seconds. To remove a
device from Apstra management, see "Remove (Decommission) Device from Managed Devices"
on page 78 for the complete workflow.

Assign Device (Ready / Ready)

When you assign a device to a blueprint and set its Deploy Mode to Ready, you're putting it in the Ready
(Discovery 2) state. The device has been staged, but not yet committed (deployed) to the active
blueprint. Ready config applies a complete configuration (Full config push) to ensure config integrity.
Ready configuration brings up network interfaces and configures interface descriptions and validates
telemetry, such as LLDP, to ensure it's properly wired and configured. This configuration is non-
disruptive to other services in the fabric. Links are up, but they are configured in L3-mode to prevent
STP/L2 operations.

• Hostname is configured per blueprint intent.

• All interface descriptions are changed per blueprint intent.

• Interfaces are rendered with blueprint interface speeds.

• No routing or BGP is configured.

• No L3 information is configured on interfaces.

• Fabric MTU is modified for spine devices to 9050 bytes.

65

Deploy Device (Rendered / Active)

CAUTION: The first time you assign a device and deploy it (set deploy mode to Deploy
and commit the blueprint), you're triggering a full configuration push on the device. This
action overwrites the complete running configuration with the pristine configuration,
then adds the full rendered Apstra configuration. Apstra discards any configuration
that's not part of the Apstra-rendered configuration.

When you commit a device, it becomes Active, and Apstra deploys the service configuration, moving the
device into the Rendered configuration stage. Rendered config contents are derived from the pristine
config, selected reference design/topology, NOS, and device model. The first rendered config applies a
complete configuration (removing all existing configuration from the Apstra server per Jinja) to ensure
configuration integrity. This is the full end-state of Apstra. A full configuration has been pushed, all
interfaces are running, and routing within IP fabric is configured. Full configuration rendering, intent-
based telemetry, and standard service operations occur here.

• Hostname is configured per blueprint intent.

• All interface descriptions are changed per blueprint intent.

• Interfaces are rendered with blueprint interface speeds.

• Interface VLANs, LAGS, MLAG, VXLAN, and so on, are managed.

• All L3 information is rendered.

• BGP configuration is fully rendered for all BGP peering information.

• DHCP configuration is configured for any required DHCP relay agents.

• The device is added to the graph database.

After the full configuration is successfully deployed to the device, Apstra takes a snapshot of the device
configuration (for example show running-confg) and stores it as the Golden Configuration.

CAUTION: If you add configuration at this point, you'll raise configuration deviation
anomalies. The deviation is the difference between the current configuration and the
stored Golden configuration. Before you can proceed with deployment tasks, you must
correct any anomalies.

To see the rendered config file after committing the blueprint, select the device in the Active blueprint
and click Config (right-side).

You can modify a running configuration multiple ways. To modify a config that's not part of the reference
design, use "configlets" on page 45.

66

Stage Device Update (Incremental / Active)

When you stage changes to a running blueprint, you're creating an Incremental configuration.

Commit Device Again (Rendered-Updated / Active)

When you commit a change to a blueprint that affects the device's configuration, a partial config
updates the rendered config.

View Device Config from Blueprint

From the blueprint, navigate to Staged > Physical to go to the Topology view of the physical blueprint.

67

Click a node in the topology, then from the Device tab in the panel on the right, you can click links for
rendered, incremental, pristine, or (new in Apstra version 4.1.0) device context in the Config section.

The device model is a nested dictionary of variables that you can leverage when creating configlets.

68

The query tab provides dynamic search capabilities to quickly search through keys or values and identify
the variables of interest. Syntax is case-sensitive. For example, a search of the keyword bgp provides
information on the BGP configuration of the switch as well as the BGP sessions (protocol sessions),
while a search on the key word BGP provides the list of BGP route maps such as "BGP-AOS-Policy". The
use of these variables as built-in property-sets inside a configlet must also respect the case-sensitive
attribute of the device model.

CAUTION: Device models are an internal data model used in the Apstra environment.
They are subject to change without notice or documentation of schema changes.

69

Configuration Deviations

After each successful config deploy the running config is collected and stored internally as the Golden
configuration. Intent is the cornerstone of the Apstra product. As such, any difference between the
actual running config and this golden config results in a config deviation anomaly on the blueprint's
dashboard. The golden config is updated every time config is successfully applied to a device.

Some important points to know:

• Each successful configuration deployment results in an updated Golden Config.

• If configuration deployment fails, Golden Config is not set. This means both a config deviation and
deployment failure anomaly are raised.

• Running configuration telemetry is continuously collected and matched against the Golden Config.
Any difference result in a deviation anomaly.

• Configuration anomalies can be 'suppressed' using the "Accept Changes feature". This does NOT
mean the change is added to golden config or Intent.

See "Anomalies (Service)" on page 607 for details.

Device Offline (Unavailable)

A managed device (one that has been acknowledged) that is not connected to the Apstra server is in the
unavailable state. A device could be offline if the device agent interface is offline, if the service is not
running, or if a network connectivity error occurs.

Manually Apply Full Config

The Discovery 1 and Deploy Device configuration stages initiate full config pushes. In rare cases, you
may need to manually apply a full config push. For example, if the required config is not in place for a
blueprint with NX-OS devices that require TCAM carving, the device config will fail. The TCAM config
error must be corrected, followed by manually pushing a full config.

NOTE: Perform a full configuration push with the utmost caution, as it is very likely to impact all
services running on the box. Exact impact depends on changes being pushed. Also note all Out of
Band changes are overwritten upon a full push.

70

Deploy Modes

IN THIS SECTION

Not Set | 71

Deploy | 71

Ready | 71

Drain | 71

Undeploy | 73

Managed devices in blueprints can be in one of several "modes" on page 299:

Not Set

Initial device state. The device is not active in the fabric.

Deploy

The device is active in the fabric.

Ready

When a device is assigned to a blueprint, it's deploy mode changes to Ready; Apstra renders Ready
(Discovery 2) configuration (hostnames, interface descriptions, port speed / breakout configuration). The
device isn't active in the fabric. Changing from Deploy to Ready removes Apstra-rendered configuration.

Drain

"Draining a device" on page 80 for physical maintenance enables it to be taken out of service without
impacting existing TCP flows. Depending on the device being drained, Apstra uses one of two methods:

For L2 Servers

• MLAG peer-links port channels and bond interfaces on any NOS are not changed.

• For Arista EOS, Cisco NX-OS, all interfaces towards L2 servers in the blueprint are shutdown.

For Network L3 Switches

71

The device uses Inbound/Outbound route-maps 'deny' statements to block any advertisements to
0.0.0.0/0 le 32. This allows existing L3 TCP flows to continue without interruption. After a second or
two, the TCP sessions should be re-established by the src/dst devices, or they should negotiate a new
TCP port. The new TCP port forces the devices to be hashed onto a new ECMP path from the list of
available links. Since no ECMP routes to the destination are available in the presence of a route map, the
traffic does not flow through the device that is in Drain mode. The device is effectively drained of traffic
and can be removed from the fabric (by changing Deploy mode to Undeploy).

While TCP sessions drain (which could take some time, especially for EVPN blueprints) BGP anomalies
are expected. When configuration deployment is complete, the temporary anomalies are resolved.

When you change the deploy mode to Drain on a device, neighboring device configuration may also be
affected, not just the device you're draining. For example, when you drain a spine device, configuration
on all connected leaf devices change. Neighboring leaf devices use Inbound/Outbound route filters
(route-maps) 'reject (deny)' statements to block any advertisements to 0.0.0.0/0 le 32, for both EVPN
(overlay) and FABRIC (underlay).

Similarly, when you drain a leaf device, the configuration on connected spine devices changes.
Neighboring spine devices use Inbound/Outbound route filters (route-maps) 'reject (deny)' statements to
block any advertisements to 0.0.0.0/0 le 32, for both EVPN (overlay) and FABRIC (underlay).

72

In the case of an MLAG-based topology, in addition to the configuration on connected spine devices
changing, the configuration on the paired leaf device also changes.

Undeploy

Undeploying a device removes the complete service configuration. If a device is carrying traffic it is best
to put it in Drain mode first (and commit the change) before undeploying the device.

Managed Devices Overview

IN THIS SECTION

Device | 74

Agent | 75

Pristine Config | 76

Telemetry | 77

Apstra software uses device system agents to manage devices. These agents manage configuration,
device-to-device communication and telemetry collection. You can use" Apstra Zero Touch Provisioning"
on page 172 (ZTP) to install agents and bring devices under Apstra management or you can use the
device installer.

73

CAUTION: A good understanding of the "Apstra device configuration lifecycle" on page
60 is essential. Before working with devices in the Apstra environment, we strongly
recommend that you fully understand how devices are configured from the moment
they are on-boarded to the moment they are decommissioned.

From the left navigation menu in the Apstra GUI, navigate to Devices > Managed Devices to go to
managed devices.

Devices with installed agents appear in the table. The Managed Devices page is the hub for many
device-related tasks, which are described in later sections.

Click a management IP to go to details for its device, agent, pristine config and telemetry as shown
below.

Device

The device detail view shows the user config, the device status and other facts about the device. From
the device detail page you can edit and delete the device. You can also edit or delete a device from the

74

table view or any of the other detail views (Agent, Pristine Config, Telemetry).

Agent

Apstra device system agents handle configuration management, device-to-server communication, and
telemetry collection. If you're not using "Apstra ZTP" on page 172 to bootstrap your devices (or if you
have a one-off installation) you can use this device installer to automatically install and verify devices.
Depending on the device NOS, you can install device agents onbox (agent is installed on the device) or
offbox (agent is installed on the Apstra server and communicates with devices via API). For support
information, see the Device Management section of the "feature matrix" on page 895.

The device agent view shows the agent config, agent status, last job status, jobs history and telemetry
status. From the agent detail page you can perform various tasks similar to tasks in the table view. For
example, you can restore a device's pristine configuration by clicking the Revert to Pristine Config
button (as of Apstra version 4.0.1) as long as the device is not assigned to a blueprint.

75

Pristine Config

The pristine config view shows the pre-Apstra configuration on the device. You can edit the pristine
config manually or update it directly from the device. You can edit and delete the device. You can also
edit or delete the device from the table view or any of the other detail views (Device, Agent, Telemetry).

76

Telemetry

The telemetry view shows telemetry for the device. For more information, see "Telemetry Services" on
page 155.

Add Device to Managed Devices

Before working with devices, it's important to have a good understanding of the "device configuration
lifecycle" on page 60.

NOTE: Each device is expected to have a unique management IP address. If you're replacing a
device (decommissioning for an RMA for example) and you want to use the same management IP
address on the replacement device, you must "remove (decommission) the device from Managed
Devices" on page 78 before adding the new device.

1. If you're using Juniper offbox agents, "increase the application memory usage" on page 755.

2. Create and install your "onbox" on page 94 device agent(s) or "offbox" on page 98 device agent(s)
for the devices to be managed in the Apstra environment. If you have many of the same devices
using the same configuration you might consider creating "agent profiles" on page 169 (Device >
Agent Profiles), which can streamline the task of creating many agents.

3. If you're deploying modular devices, you may need to "change the default device profile" on page 83
that's assigned to your device.

4. Navigate to Devices > Managed Devices to see that the device state is Out of Service Quarantine.
Configuration at this point is called Pristine Config.

77

5. In the left column of the table, select the check box(es) for the device(es) to manage in the Apstra
environment.

6. Above where you just clicked, click the Acknowledge selected systems button (check mark) in the
Device action bar.

7. Click Confirm to acknowledge the device(s) and return to the table view. The device state changes to
Out of Service Ready. Configuration at this point is called Discovery 1 Config and you can now
manage the device(s) from the Apstra environment.

Next Steps:

If you'll be using a Datacenter blueprint, before creating the blueprint make sure you have all your
design elements ready, starting with "logical devices" on page 7.

If you'll be using a Freeform blueprint, you can "create the blueprint" on page 623 right away.

You'll assign your devices to a blueprint during the build phase. For details, see "Assign Device
(Datacenter)" on page 290 or "Assign System (Freeform)" on page 643, as applicable.

Remove (Decommission) Device from Managed Devices

For successful device removal, it's important to follow these steps in the order specified.

1. If the device is assigned to a blueprint, unassign it from your "datacenter blueprint" on page 295 or
"freeform blueprint" on page 645, as applicable.

2. From the left navigation menu, navigate to Devices > Managed Devices and check the box for the
device to remove from Apstra management.

78

3. In the Device Actions panel that appears above the table, click the Set admin state to DECOMM for
selected systems button, then click Confirm to set the admin state and return to the table. (If the
device is assigned to a blueprint, you can't decommission the device.)

4. Check the box for the device again, then in the Agent Actions panel that appears above the table,
click the Uninstall button, click Uninstall selected elements, then click Close.

NOTE: If the device is unreachable, the job will fail. You can force delete the agent (in the next
step), as of Apstra version 4.1.2.

Prior to Apstra version 4.1.2, if the device is unreachable you could "change the agent
operation mode" on page 105 to telemetry only, then uninstall its agent.

5. Check the box for the device again, then in the Agent Actions panel that appears above the table,
click the Delete button, click Delete selected elements, then click Close.

79

If you weren't able to uninstall the agent in the previous step because the device is unreachable, a
dialog opens that gives you the option to force delete the agent. With the Force Delete box checked,
click Delete to force delete the agent and return to the table view.

6. Check the box for the device again, then in the Device Actions panel click the Delete system(s)
button, then in the dialog that opens click Confirm to remove the device(s) from Apstra management
and return to the table view. (If the device is not in STOCKED or DECOMM stage, you can't delete
the device.) Device(s) are disconnected from the Apstra server and removed from the Apstra
database.

If you're replacing the device you just removed, follow the steps to "add" on page 77 the replacement
device to Managed Devices.

Drain Device Traffic

To take a device out-of-service for maintenance (or decommissioning), set its deploy mode to Drain.
Draining a device may impact neighboring devices. For details, see "Device Configuration Lifecycle" on
page 71.

1. From the blueprint, navigate to Staged > Physical > Build > Devices and change the "deploy mode" on
page 299 on the device to Drain.

2. Click Uncommitted to "review staged changes" on page 672. The Logical Diff tab shows the changes
that will be made to the device, and possibly to its neighbors.

80

3. Commit staged changes to activate them. While draining is in progress (which could take some time,
especially for EVPN blueprints) BGP anomalies are expected. You can monitor draining progress from
various locations in the Apstra GUI. When drain configuration is complete, the temporary anomalies
are resolved.

• You can monitor drain status from the Deployment Status section of the blueprint dashboard
(Drain Config).

81

• You can monitor drain status from Active > Physical in the Status panel (Deployment Status:
Drain).

• If you "instantiate" on page 680 the predefined Drain Validation dashboard, you can monitor drain
status from Analytics > Dashboards. (If you set the dashboard as default, you can see it on the
blueprint dashboard as well as on the analytics dashboard). In the image below, traffic is in the

82

process of draining.

After performing device maintenance, change the deploy mode back to Deploy and "commit" on page
670 the change to bring the device back into active service.

Edit Device

NOTE: You can also edit a device from any of the detail views (Device, Agent, Pristine Config,
Telemetry.)

1. From the left navigation menu, navigate to Devices > Managed Devices and select the check box(es)
for the device(s) to edit.

2. Click the Update user config button in the Device action bar (above the table), then change the
device profile, admin state, and/or location, as applicable.

3. Click Confirm to update the device and return to the list view.

83

An example of when you might need to edit a device is when one modular device has multiple
"device profiles" on page 203 associated with it. Device profiles represent different line card
configurations.

The first device profile that matches the device chassis model (based on the selector model field) is
associated with the device (DCS-7504N for example). If you're using a modular device in your
network, check that the correct device profile is associated with it. If it's not, edit the device to
update its device profile to the correct one before acknowledging the device and assigning it to a
blueprint.

Delete Device

If you want to remove a device from Apstra management, see "Remove (Decommission) Device from
Managed Devices" on page 78 for the complete worklow. There are additional steps before deleting the
device.

If the device to be deleted has not been "acknowledged" on page 77, you can delete the device as
shown below.

1. From the left navigation menu, navigate to Devices > Managed Devices and check the box(es) for the
device(s) to delete.

84

2. In the Device Actions panel (above the table) click the Delete system(s) button, then in the dialog that
opens click Confirm to remove the device(s) from Apstra management and return to the table view. (If
the device is not in STOCKED or DECOMM stage, you can't delete the device.) Device(s) are
disconnected from the Apstra server and removed from the Apstra database.

NOTE: You can also delete a single device from the Device detail view by clicking on the
management IP address in the table.

Upgrade Device NOS

IN THIS SECTION

NOS Upgrade Overview | 85

Update User-defined Device Profiles | 87

Register / Upload OS Image | 88

Upgrade OS Image | 91

We highly recommend that you become familiar with this procedure before upgrading a device NOS.

NOS Upgrade Overview

You can upgrade a device NOS within the Apstra environment with a few simple steps. If you've defined
your own device profiles, you may need to update them. Then you'll register the new OS image that you
obtained from the vendor, and click a button to start the upgrade. Apstra takes care of upgrade tasks
and other requirements and ensures that pristine config is updated.

85

NOTE:
can

For information about supported upgrade paths, see "NOS Upgrade Paths" on page 965 in the
References section.

Apstra software ships with built-in device profiles that support specific OS versions. When you upgrade
the Apstra server, device profiles with the OS versions that are supported in the new Apstra version are
also updated. You can then upgrade the NOS to one of the newly supported versions.

For example, Apstra version 4.0.0 supports Arista EOS versions as shown in the OS version selector (4.
(18|20|21|22|23|24)) in the device profile. That is, it supports versions 4.18, 4.20, 4.21, 4.22, 4.23, and
4.24. Whereas, Apstra version 4.0.2 supports EOS versions 4.18, 4.20, 4.21, 4.22, 4.23, 4.24, and 4.25
(4.(18|20|21|22|23|24|25)). 4.25 is a newly supported version. If you upgrade the Apstra server to version
4.0.2, you can upgrade Arista devices to EOS version 4.25.

However, device profiles that you've created (cloned) yourself, are not managed in the Apstra
environment, so when you upgrade the Apstra server those device profiles aren't automatically updated
with newly supported versions. You'll need to follow a few extra steps to add them as described in the
next section.

Before beginning the process, make sure of the following:

• Make sure that you understand the "device configuration lifecycle" on page 60 and that you're
comfortable with managing deploy modes.

• Make sure that Apstra software is managing the device you're upgrading. Navigate to Devices >
Managed Devices and confirm that your device is in the table and that it is acknowledged (with a
green check mark).

• Before upgrading NOS, delete any device AAA/TACACS+ configlets from the blueprint. After the
upgrade is complete, you can reapply them.

• Make sure that the Admin state of the device is set to normal. Navigate to Devices > Managed
Devices, click on the Management IP of the device to confirm the admin state. (Do NOT set the
Admin state to MAINT/DECOMM or the device could enter an unrecoverable state.)

• Make sure that the Apstra version specified is the same on both the Apstra server and the device. If
they are different, you can't upgrade the device. If you attempt to upgrade with different versions,
you will not receive a warning; the task status remains in the IN PROGRESS state indefinitely.

86

Update User-defined Device Profiles

Make sure that your devices are in the appropriate states for upgrading as described in the overview
above.

If you've created (cloned) your own device profiles, you'll need to manually specify OS versions in the
device profile and the blueprint that uses that device profile. (If your devices use built-in device profiles,
then proceed to the next section to register the new OS image.)

1. From the left navigation menu in the Apstra GUI, navigate to Devices > Device Profiles, select your
device and update the OS version in the Selector section.

2. From the left navigation menu, navigate to Platform > Developers > Graph Explorer and find the ID
for the device profile. You can find it with the query variables { device_profile_nodes { id label } }

In this example, the "id" for the label "Clone DCS-7160-48YC6_abc" is "35a376ad-6ba1-42ec-
bfe9-7810c56003d3".

3. Use apstra-cli to update the device profile.

You can use your blueprint ID and the node ID from the previous step, then set the proper model ID
("DCS-7160-48YC6" for example), and execute.

apstra-cli command format:

blueprint set-node-property --blueprint <your blueprint ID> --node_type
device_profile --node <node ID from Step2> --property selector
--value-fn '{"os_version":"4\.(18|20|21|22|23)\..*","model":"<your model>"
,"os": "EOS","manufacturer": "Arista"}'

Example:

apstra-cli> blueprint set-node-property --blueprint
a74906ab-1c7a-42ee-bbea-7a0be2572bc2 --node_type device_profile

87

--node 35a376ad-6ba1-42ec-bfe9-7810c56003d3 --property selector
--value-fn '{"os_version":"4\.(18|20|21|22|23)\..*","model":"DCS-7160-48YC6",
"os": "EOS","manufacturer": "Arista"}'

4. From the Apstra GUI, navigate to your blueprint, click Uncommitted and commit the changes.

5. Proceed to the next section to upgrade the OS in the same manner as for devices using predefined
device profiles.

Register / Upload OS Image

IN THIS SECTION

Method One: Upload Image | 89

Method Two: Provide Image URL | 90

Add Checksum (Optional) | 91

1. Obtain the OS image from the device vendor.

CAUTION: Make sure to select a compatible device operating system image for the
device that you're upgrading. If you use an incompatible image and the upgrade fails,
the deployment lock is not released automatically, even if you recover the device. To
release the deployment lock and activate the device again, remove the device
assignment from the blueprint, decommission and normalize the device (from Devices
> Managed Devices), then reassign the device to the blueprint. For assistance, contact
"Juniper Support" on page 802.

2. From the left navigation menu, navigate to Devices > System Agents > OS Images and click Register
OS Image (top-right). (Starting with Apstra release 4.1.0 you can see how much space is left for
uploading new NOS images, and if the partition has under 5GB of free space a warning appears

88

when you register.)

3. Select the platform from the drop-down list (EOS, NXOS, SONIC, JUNOS) and enter a description.

4. Either upload the image directly to the Apstra server or provide a URL download link pointing to an
image file on an accessible HTTP server (described in sections below).

Method One: Upload Image

1. Select Upload Image, then either click Choose File and navigate to the image on your computer, or
drag and drop the image from your computer into the dialog window and click Open.

89

2. Add a checksum (optional) (described in section below).

3. Click Upload to upload and register the image with the Apstra software. The image appears in the
table view. (As of Apstra version 4.1.1 the size of the image is included.)

4. If the (optional) checksum is not verified, the upgrade process stops, before the device reboots.

Method Two: Provide Image URL

If another HTTP server is accessible to the devices being upgraded via their network management port,
you can register the OS Image instead of uploading it. Only HTTP URLs are supported. (HTTPS, FTP,
SFTP, SCP and others are not supported.)

1. Select Provide Image URL.

2. Enter the URL that points to the image on the other server.

3. Add a checksum (optional) (described in the section below).

4. Click Register to register the image with the Apstra software. The image appears in the table view.
(As of Apstra version 4.1.1 the size of the image is included.)

5. If the (optional) checksum is not verified, the upgrade process stops, before the device reboots.

90

Add Checksum (Optional)

The platform determines the type of checksum that's used:

• Juniper Junos - MD5 (32 characters) or SHA256 (64 characters)

• Enterprise SONiC - MD5 (32 characters)

• Cisco NX-OS - SHA512 (128 characters)

• Arista EOS - SHA512 (128 characters)

If the device vendor provides a checksum file, we recommend that you download the file and copy it to
the Checksum field. If a checksum file is not available, you can generate a checksum with the Linux
md5sum or shasum commands, as applicable, or with equivalent programs.

$ shasum -a 512 EOS-4.20.11M.swi
dbfd28d3597777a6ee5946b52277205fc714e11ab992574b7ef1156ffcd6e379979979f8c009f665fc21212e4d38d1794
a412d79bab149f859aa72be417c0975 EOS-4.20.11M.swi
$

Upgrade OS Image

Make sure that your devices are in the appropriate states for upgrading as described in the overview
above, and that if you're device profiles are user-defined that you've updated them accordingly.

1. From the left navigation menu, navigate to Devices > Managed Devices, and select the check box(es)
for the device(s) to upgrade. (If you have many devices, use the query function to filter selections.) All
selected devices must be of the same type, and they must be upgraded to the same image and
version. To search for specific devices (such as for all EOS devices) enter a query.

2. Click the Upgrade OS Image button (above table in Agent section). The dialog lists the available OS
images that match the selected devices.

3. Select the appropriate image and click Upgrade OS Image. You can monitor the upgrade status from
the Active Jobs section at the bottom of the page.

4. After the image is uploaded, if a checksum is provided with the OS image, the image checksum is
verified. If the MD5/SHA512 checksum is incorrect, or if any other failures occur (such as for
insufficient disk space, incorrect remote URL, or as of Apstra version 4.1.1, when device NOS version
is not changed post upgrade), the job state changes to FAIL and the device does not reboot.

NOTE: If an issue arises with the OS image (such as interrupted download or invalid URL)
during a NOS upgrade, you are informed before any device configuration is changed. You can
then resolve the issue and restart the upgrade process.

91

5. If the job fails, click the agent to view errors. You can also click the Show Log button to view the
detailed Ansible job. If an upgrade fails, you must manually resolve the issue causing the failure. For
example, with a checksum error, you must either correct the invalid checksum or register a new OS
image with a correct checksum, then repeat the upgrade process.

6. If the checksum is correct and no other failures occur, the job state changes to SUCCESS and the
device reboots.

7. When the device has rebooted with the new image and has reestablished its agent connection with
the controller, the upgrade is complete. The Managed Devices page displays the new OS version.

Device AAA

IN THIS SECTION

Overview | 92

Juniper Junos | 93

Cisco NX-OS | 93

Arista EOS | 94

Overview

RADIUS and TACACS+ device AAA (authentication, authorization and accounting) frameworks are
supported on Juniper, Cisco and Arista devices. Device AAA is optional and correct implementation is
the responsibility of the end user. Minimum requirements for correct Apstra AAA implementations are
described below.

CAUTION: When using AAA framework we recommend adding a local Apstra user to
devices. If AAA authentication or authorization fails when Apstra performs a full
configuration push, manual recovery (config push) is required.

You can apply AAA configuration in one of two ways as described below:

92

Configlets (Recommended)

You add configuration to a configlet, then you import it into a blueprint. Local credentials must be
available from the Apstra environment so the device can be added and the configlet can be applied. For
details, see "Configlets" on page 45.

CAUTION: Before you upgrade the Apstra server, device agent, or NOS, you must
delete device AAA/TACACS configlets from blueprints. After the upgrade is complete,
you can re-apply them.

User-required

Instead of using configlets, you can add configuration before acknowledging a device, so it becomes part
of the Pristine Config. For more information, see "Device Configuration Lifecycle" on page 60.

Juniper Junos

CAUTION: Credentials for the Junos offbox system agent user must always be valid and
available. When using the AAA framework we recommend that you add a local user to
devices and use it for Apstra offbox system agents. Always have “password” be first in
Junos config for authentication-order as follows:

authentication-order [password radius]

Cisco NX-OS

CAUTION: A remote user could erratically be removed from NX-OS devices, causing
authentication and authorization failures. The user (role 'network-admin') must exist on
the device in order to manage the device. If not, Apstra functions such as agent
installation, telemetry collection and device configuration may fail. The only known
workaround is to use local authentication.

The example NX-OS configuration below has been tested to work correctly with Apstra software. This
uses both authentication and authorization:

tacacs-server key 7 “<key>“
tacacs-server timeout <timeout>
tacacs-server host <host>

93

aaa group server tacacs+ <group>
 server <host>
 use-vrf management
 source-interface mgmt0

aaa authentication login default group <group>
aaa accounting default group <group> local
aaa authentication login error-enable
aaa authentication login ascii-authentication

Arista EOS

CAUTION: When TACACS+ AAA is configured on EOS devices, device agent upgrades
could fail while files are copied from the Apstra server to the device. This commonly
happens if TACACS+ uses a custom password prompt. To prevent this type of failure,
temporarily disable all TACACS+ AAA where device authentication uses an admin-level
username and password for any device agent operations, including upgrades.

Create Onbox Agent

You need full admin / root privileges to create onbox agents. We recommend creating a dedicated user
on the device using "Apstra ZTP" on page 172 or other means. Make sure that you've:

• Added login credentials for the devices.

• Configured management IP connectivity between devices and the Apstra server. You must do this
before installing agents so it’s out-of-band (OOB). Configuring management connectivity in-band
(through the fabric) is not supported and could cause connectivity issues when changes are made to
the blueprint.

• Uploaded required packages.

Before creating/installing onbox device agents on Cisco NX-OS and Arista EOS, configure the following
minimum configuration on them as shown below. (SONiC Enterprise has no specific configuration
requirements other than Management Network and privileged user access.)

94

Cisco NX-OS Onbox Agent Minimum Configuration

!
copp profile strict
!
username admin password <admin-password> role network-admin
!
vrf context management
 ip route 0.0.0.0/0 <management-default-gateway>
!
interface mgmt0
 ip address <address>/<cidr>
!

Arista EOS Onbox Agent Minimum Configuration

!
service routing protocols model multi-agent
!
aaa authorization exec default local
!
username admin privilege 15 role network-admin secret <admin-password>
!
interface Management1
 ip address <address>/<cidr>
!
ip route vrf management 0.0.0.0/0 <management-default-gateway>
!

Make sure the following configuration is not on the device:

• VLANs other than VLAN 1

• VRFs other than "management"

• Interface IP addresses other than "management"

• Loopback interfaces

• VLAN interfaces

• VXLAN interfaces

• AS-Path access-lists

95

• IP prefix-lists

• Route maps or policies

• BGP configuration

During the agent install process, device configuration is validated, and if the device contains
configuration that could prevent the deployment of service configuration, the agent install process raises
an error (as of Apstra 4.0.1).

In this case, manually remove conflicting configuration and start the agent installation process again.

If you must complete the agent installation with configuration validation errors, you can disable pristine
configuration validation. To do this, from Devices > Managed Devices, click Advanced Settings (top-
right), select Skip Pristine Configuration Validation, then click Update.

For information about retaining pre-existing configuration when bringing devices under Apstra
management, see "Device Configuration Lifecycle" on page 60.

NOTE: On some platforms (Junos for example) you can configure rate-limiting for management
traffic (SSH for example). When the Apstra server interacts directly with devices it can be more
bursty than when it interacts with a user. Rate-limiting configurations that are used for hardening

96

security can impact device management, and lead to deployment failures and other agent-related
issues.

Onbox agents include the following parameters:

Parameter Description

Device addresses Management IP(s) of the device(s)

Operation Mode • Full Control - deploys configuration and collects telemetry

• Telemetry Only - configuration is not deployed

Username / Password If you're not using an agent profile with credentials, check these boxes and add
credentials.

Agent Profile If you don't want to manually enter credentials and packages, use agent profiles that
you previously defined.

Job to run after creation • Install (default) - installs the agent on the device

• Check - creates the agent, but does not install it. It appears in the table view
where you can install it later.

Install Requirements
(servers only)

For servers only: If servers don't have Internet connectivity, uncheck the box.

Packages Before creating the agent, install required packages so they are available. Packages
associated with selected agent profiles are listed here as well.

1. Confirm that you've installed the minimum configuration as described above, and that the device
doesn't contain configuration that would raise validation errors.

2. From the left navigation menu, navigate to Devices > Managed Devices and click Create Onbox
Agent(s).

3. Specify agent details as described in the parameters table above.

4. Click Create. While the task is active you can view its progress at the bottom of the screen in the
Active Jobs section. The job status changes from Initialized to In Progress to Succeeded.

97

Create Offbox Agent

Before installing offbox agents, make sure that you've:

• Added login credentials for the devices.

• Configured management IP connectivity between devices and the Apstra server. You must do this
before installing agents so it’s out-of-band (OOB). Configuring management connectivity in-band
(through the fabric) is not supported and could cause connectivity issues when changes are made to
the blueprint.

• Uploaded required packages.

• If you're using Juniper offbox agents, "increase the application memory usage" on page 755.

• On Juniper devices, add Junos license configuration. (This is not the preferred method for adding
license configuration. For more information, see "Juniper Device Agent" on page 109.)

Before creating/installing offbox device agents on Juniper Junos, Cisco NX-OS and Arista EOS, configure
the following minimum configuration on them as shown below.

Juniper Junos Offbox Agent Minimum Configuration

system {
 login {
 user aosadmin {
 uid 2000;
 class super-user;
 authentication {
 encrypted-password "xxxxx";
 }
 }
 }
 services {
 ssh;
 netconf {
 ssh;
 }
 }
 management-instance;
}
interfaces {
 em0 {
 unit 0 {

98

 family inet {
 address <address>/<cidr>;
 }
 }
 }
}
routing-instances {
 mgmt_junos {
 routing-options {
 static {
 route 0.0.0.0/0 next-hop <management-default-gateway>;
 }
 }
 }
}

For more information, see "Juniper Device Agent" on page 109.

Cisco NX-OS Offbox Agent Minimum Configuration

!
feature nxapi
feature bash-shell
feature scp-server
feature evmed
copp profile strict
nxapi http port 80
!
username admin password <admin-password> role network-admin
!
vrf context management
 ip route 0.0.0.0/0 <management-default-gateway>
!
nxapi http port 80
!
interface mgmt0
 ip address <address>/<cidr>
!

99

Arista EOS Offbox Agent Minimum Configuration

!
service routing protocols model multi-agent
!
aaa authorization exec default local
!
username admin privilege 15 role network-admin secret <admin-password>
!
vrf definition management
 rd 100:100
!
interface Management1
 vrf forwarding management
 ip address <address>/<cidr>
!
ip route vrf management 0.0.0.0/0 <management-default-gateway>
!
management api http-commands
 protocol http
 no shutdown
 !
 vrf management
 no shutdown
!

Make sure the following configuration is not on the device:

• VLANs other than VLAN 1

• VRFs other than "management"

• Interface IP addresses other than "management"

• Loopback interfaces

• VLAN interfaces

• VXLAN interfaces

• AS-Path access-lists

• IP prefix-lists

• Route maps or policies

100

• BGP configuration

During the agent install process, device configuration is validated, and if the device contains
configuration that could prevent the deployment of service configuration, the agent install process raises
an error (as of Apstra 4.0.1).

In this case, manually remove conflicting configuration and start the agent installation process again.

If you must complete the agent installation with configuration validation errors, you can disable pristine
configuration validation. To do this, from Devices > Managed Devices, click Advanced Settings (top-
right), select Skip Pristine Configuration Validation, then click Update.

For information about retaining pre-existing configuration when bringing devices under Apstra
management, see "Device Configuration Lifecycle" on page 60.

NOTE: On some platforms (Junos for example) you can configure rate-limiting for management
traffic (SSH for example). When the Apstra server interacts directly with devices it can be more
bursty than when it interacts with a user. Rate-limiting configurations that are used for hardening
security can impact device management, and lead to deployment failures and other agent-related
issues.

Offbox agents include the following parameters:

101

Parameter Description

Device addresses Management IP(s) of the device(s)

Operation Mode • Full Control - deploys configuration and collects telemetry

• Telemetry Only - configuration is not deployed

Platform (offbox only) For offbox agents only: drop-down list includes supported platforms.

Username / Password If you're not using an agent profile with credentials, check these boxes and add
credentials.

Agent Profile If you don't want to manually enter credentials and packages, use agent profiles that
you previously defined.

Job to run after
creation

• Install (default) - installs the agent on the device

• Check - creates the agent, but does not install it. It appears in the table view where
you can install it later.

Install Requirements
(servers only)

For servers only: If servers don't have Internet connectivity, uncheck the box.

Packages Before creating the agent, install required packages so they are available. Packages
associated with selected agent profiles are listed here as well.

Open Options (offbox
only)

Passes configured parameters to offbox agents. For example, to use HTTPS as the API
connection from offbox agents to devices, use the key-value pair: proto-https -
port-443. The following default values can be overridden with open options:

• commit_timeout - 60 (integer: seconds)

• telemetry_timeout - 100 (integer: seconds)

• probe_timeout: 5 (integer: seconds)

• log_config_diff - True (boolean)

1. Confirm that you've installed the minimum configuration as described above, and that the device
doesn't contain configuration that would raise validation errors.

102

2. From the left navigation menu, navigate to Devices > Managed Devices and click Create Offbox
Agent(s).

3. Specify agent details as described in the parameters table above.

4. Click Create. While the task is active you can view its progress at the bottom of the screen in the
Active Jobs section. The job status changes from Initialized to In Progress to Succeeded.

Set Device Admin State

1. From the left navigation menu, navigate to Devices > Managed Devices and check the box(es) for the
device(s) to update.

2. In the Device action panel that appears above the table, click the button for the state to change the
selection(s) to.

• Set admin state to NORMAL for selected systems - If you're "upgrading a device network
operating system" on page 85, make sure the admin state is set to NORMAL before beginning the
process.

• Set admin state to DECOMM for selected systems - If you are decommissioning a device, setting
the admin state to DECOMM is part of a larger process. See "Remove Device from Managed
Devices" on page 78 for the workflow and more details.

• Set admin state to MAINT for selected items - this state is no longer used.

3. Click Confirm to set the admin state and return to the table view.

Uninstall and Delete Agent

If you want to remove a device from Apstra management, see "Remove (Decommission) Device from
Managed Devices" on page 78 for the complete worklow. There are additional steps before and after
uninstalling and deleting the agent.

1. From the left navigation menu, navigate to Devices > Managed Devices to go to the managed
devices table view.

NOTE: When you uninstall a device agent, the pristine configuration is restored on the device
by default. If you want to retain existing configuration, click Advanced Settings and check the
box to Skip Revert to Pristine on Uninstall.

103

2. Check the box(es) for the device(s), then in the Agent Actions panel that appears above the table,
click the Uninstall button, click Uninstall selected elements, then click Close.

NOTE: If the device is unreachable, the job will fail. You can force delete the agent (in the next
step), as of Apstra version 4.1.2.

Prior to Apstra version 4.1.2, if the device is unreachable. you could "change the agent
operation mode" on page 105 to telemetry only, then uninstall the agent.

3. Check the box for the device(s) again, then in the Agent Actions panel that appears above the table,
click the Delete button, click Delete selected elements, then click Close.

104

If you weren't able to uninstall the agent in the previous step because the device is unreachable, a
dialog opens that gives you the option to force delete the agent. With the Force Delete box checked,
click Delete to force delete the agent and return to the table view.

Edit Agent

IN THIS SECTION

Edit One Agent | 105

Edit Multiple Agents | 106

You can edit individual agent details one at a time, or (as of Apstra version 4.1.0) you can edit details
that are common to multiple agents at the same time.

Edit One Agent

1. From the left navigation menu, navigate to Devices >Managed Devices to go to devices and agents.

2. Click the three dots in the Actions column (right side) for the device that you want to edit, then click
the Edit button in the Agent menu.

105

3. Make your changes (device addresses, operation mode, agent profile, packages, open-options, as
applicable).

CAUTION: Changing a user requires completely re-onboarding the device. Changing
the password involves several steps that are not straightforward (changing the
password on the device, device agents, and pristine config). If you need to change a
password, we recommend contacting "Juniper Support" on page 802.

4. Click Update to update the agent and return to the table view.

Edit Multiple Agents

1. From the left navigation menu, navigate to Devices >Managed Devices and select one or more check
boxes for the device(s) to edit.

106

2. Click the Assign Profile button (in the menu that appears above the table after making a selection).

3. Make your changes (agent profile, clear existing packages, clear open options).

4. Click Assign System Agent Profile to save your changes and return to the table view.

107

Edit Pristine Config

Modifying pristine config is a local operation, and does not lead to a change to the running device
configuration. Changes are applied on the next full config push. If you want to apply persistent changes
to a configuration, use "configlets" on page 45.

CAUTION: Manual modifications to the Pristine Config are not validated. Mistakes can
lead to full erasure of the device, potentially causing a service-impacting outage. Never
modify the pristine config directly unless there is no alternative. For assistance, contact
"Juniper Support" on page 802.

1. From the left navigation menu, navigate to Devices > Managed Devices and click the Management IP
of the device to edit.

2. Click the Pristine Config tab (top-left), then click the Edit pristine config button (under checkpoint on
the left).

3. Make your changes.

4. Click Update to apply the changes.

Update Pristine Config from Device

1. From the blueprint, unassign the device by removing the system ID (Staged > Physical > Build >
Devices). Make sure the device is in the out of service state (OOS-READY or OOS-MAINT).

2. Make any necessary changes to the running device configuration via CLI.

3. From the left navigation menu in the Apstra GUI, navigate to Devices > Managed Devices and click
the Management IP of the device to edit.

4. Click the Pristine Config tab (top-left), then click the Update From Device button (top-right).

108

5. Click Update to update Pristine Config from the device.

Verify the Pristine Config. You have copied the running config of the device in the out of service state,
which should be Discovery 1 config. It may include additional configuration such as interface "speed"
commands. You can edit Pristine Config again and delete the additional configuration manually. Contact
"Juniper Suuport" on page 802 for assistance as needed.

Juniper Device Agent

IN THIS SECTION

Juniper ZTP | 109

Disable ZTP | 110

Appy Initial Juniper Junos Configuration | 110

Configure super-user User | 111

Configure IP address and Management VRF | 112

Configure SSH and NETCONF | 113

Add Junos License Configuration | 113

This document describes how to manually install Juniper device agents.

Juniper ZTP

For an option that's simpler and easier to support at scale, see "Apstra ZTP" on page 172, which shows
you how to automatically boot and install Apstra device agents and prerequisite switch configuration.

109

Disable ZTP

If you want to install agents manually because a previous attempt to install them with Apstra ZTP failed,
you must first delete the ZTP mode (since it remains active) with the command delete chassis auto-image-
upgrade.

If you're going to provision the Juniper switch without ZTP (ZTP Disabled), make sure that the ZTP
process is disabled before proceeding. After logging into the switch for the first time and setting system
root-authentication, configure delete chassis auto-image-upgrade.

{master:0}
root> edit
Entering configuration mode

{master:0}[edit]
root# delete chassis auto-image-upgrade

{master:0}[edit]
root# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

{master:0}
root>

Appy Initial Juniper Junos Configuration

Before installing Apstra device system agents on Juniper Junos devices, apply the minimum
configuration below to the devices.

system {
 login {
 user aosadmin {
 uid 2000;
 class super-user;
 authentication {
 encrypted-password "xxxxx";
 }
 }
 }
 services {

110

 ssh;
 netconf {
 ssh;
 }
 }
 management-instance;
}
interfaces {
 em0 {
 unit 0 {
 family inet {
 address <address>/<cidr>;
 }
 }
 }
}
routing-instances {
 mgmt_junos {
 routing-options {
 static {
 route 0.0.0.0/0 next-hop <management-default-gateway>;
 }
 }
 }
}

Configure super-user User

For the device system agent to connect to the Juniper Junos device, you must configure a local device
user with class super-user.

{master:0}
root> edit
Entering configuration mode

{master:0}[edit]
root# set system login user aosadmin class super-user

{master:0}[edit]
root# set system login user aosadmin authentication plain-text-password
New password:
Retype new password:

111

{master:0}[edit]
root# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

{master:0}
root>

NOTE: If you intend to use a different authentication method for device access (such as
RADIUS), you must use local password authentication first.

system authentication-order [password radius]

Configure IP address and Management VRF

Device system agents use the Junos mgmt_junos management-instance VRF and the management
interface (such as em0).

{master:0}
root> edit
Entering configuration mode

{master:0}[edit]
root# set system management-instance

{master:0}[edit]
root# set interfaces em0.0 family inet address 192.168.59.11/24

{master:0}[edit]
root# set routing-instances mgmt_junos routing-options static route 0.0.0.0/0 next-hop
192.168.59.1

{master:0}[edit]
root# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

112

{master:0}
root>

If the Juniper device uses a different management interface (such as vme.0), configure the management
IP address on it instead.

Configure SSH and NETCONF

Device system agents require Junos SSH and NETCONF access to be configured under system services.

{master:0}
root> edit
Entering configuration mode

{master:0}[edit]
root# set system services ssh

{master:0}[edit]
root# set system services netconf ssh

{master:0}[edit]
root# commit and-quit
configuration check succeeds
commit complete
Exiting configuration mode

{master:0}
root>

Add Junos License Configuration

You can add license configuration before installing the system agent (to make it part of the pristine
configuration), but the preferred method is to add license configuration with "configlets" on page 45.

113

SONiC Device Agent

IN THIS SECTION

SONiC Device Agent Overview | 114

Configure Management IP Manually (SONiC) | 115

Install Agent Manually (SONiC) | 116

Uninstall Agent Manually (SONiC) | 121

SONiC Device Agent Overview

Although the preferred method of installing device system agents is from the Apstra GUI, you can
manually install Apstra agents from the CLI. Only in rare exceptions would you need to manually install
agents, which requires more effort and is error-prone. Before manually installing agents, you should have
an in-depth understanding of the various device states, configuration stages, and agent operations . For
assistance, contact "Juniper Support" on page 802.

NOTE: You can also use "Apstra ZTP" on page 172 to automatically boot and install agents and
prerequisite configuration on switches. Using Apstra ZTP is simpler and easier to support at scale
than manually installing agents.

The SONiC device agent manages the following files in the filesystem:

• /etc/sonic/config_db.json - The main configuration file for SONiC, specifying interfaces, IP addresses,
port breakouts etc.

• /etc/sonic/frr/frr.conf - frr.conf contains all of the routing application configuration for BGP on the
device.

CAUTION: Do not edit the config_db.json or frr.conf files manually at any time, before or
after device system agent installation. The agent overwrites any existing configuration
in these files.

114

Configure Management IP Manually (SONiC)

SONiC automatically creates a management VRF for the "eth0" management interface. By default,
"eth0" gets a DHCP address from the management network. In most cases, no management
configuration should be needed.

However, if you need to manually configure a SONiC device management IP address, you must
configure it using the sonic-cli interface.

admin@sonic:~$ sonic-cli
sonic# show interface Management 0
eth0 is up, line protocol is up
Hardware is MGMT
Description: Management0
Mode of IPV4 address assignment: not-set
Mode of IPV6 address assignment: not-set
IP MTU 1500 bytes
LineSpeed 1GB, Auto-negotiation True
Input statistics:
 11 packets, 1412 octets
 0 Multicasts, 0 error, 4 discarded
Output statistics:
 31 packets, 5290 octets
 0 error, 0 discarded
sonic# configure terminal
sonic(config)# interface Management 0
sonic(conf-if-eth0)# ip address 192.168.59.7/24 gwaddr 192.168.59.1
sonic(conf-if-eth0)# exit
sonic(config)# exit
sonic# write memory
sonic# show interface Management 0
eth0 is up, line protocol is up
Hardware is MGMT
Description: Management0
IPV4 address is 192.168.59.7/24
Mode of IPV4 address assignment: MANUAL
Mode of IPV6 address assignment: not-set
IP MTU 1500 bytes
LineSpeed 1GB, Auto-negotiation True
Input statistics:
 18 packets, 2494 octets
 0 Multicasts, 0 error, 6 discarded
Output statistics:

115

 38 packets, 6455 octets
 0 error, 0 discarded
sonic#

You can check the Managment VRF from the SONiC Linux command line.

admin@leaf1:~$ show mgmt-vrf

ManagementVRF : Enabled

Management VRF interfaces in Linux:
48: mgmt: <NOARP,MASTER,UP,LOWER_UP> mtu 65536 qdisc noqueue state UP mode DEFAULT group default
qlen 1000
 link/ether 8e:32:49:6c:ec:71 brd ff:ff:ff:ff:ff:ff promiscuity 0
 vrf table 5000 addrgenmode eui64 numtxqueues 1 numrxqueues 1 gso_max_size 65536 gso_max_segs
65535
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master mgmt state UP mode
DEFAULT group default qlen 1000
 link/ether 52:54:00:c1:ac:1b brd ff:ff:ff:ff:ff:ff
49: lo-m: <BROADCAST,NOARP,UP,LOWER_UP> mtu 1500 qdisc noqueue master mgmt state UNKNOWN mode
DEFAULT group default qlen 1000
 link/ether c2:39:a7:6c:4b:be brd ff:ff:ff:ff:ff:ff
admin@leaf1:~$ show mgmt-vrf routes

Routes in Management VRF Routing Table:
default via 172.20.9.1 dev eth0 metric 201
broadcast 127.0.0.0 dev lo-m proto kernel scope link src 127.0.0.1
127.0.0.0/8 dev lo-m proto kernel scope link src 127.0.0.1
local 127.0.0.1 dev lo-m proto kernel scope host src 127.0.0.1
broadcast 127.255.255.255 dev lo-m proto kernel scope link src 127.0.0.1
broadcast 172.20.9.0 dev eth0 proto kernel scope link src 172.20.9.7
172.20.9.0/24 dev eth0 proto kernel scope link src 172.20.9.7
local 172.20.9.7 dev eth0 proto kernel scope host src 172.20.9.7
broadcast 172.20.9.255 dev eth0 proto kernel scope link src 172.20.9.7
admin@leaf1:~$

Install Agent Manually (SONiC)

To manually install SONiC device agents you'll download, install and configure the agent software, then
acknowledge it to bring it under Apstra management.

116

1. Download the Apstra agent with the sudo cgexec -g l3mdev:mgmt curl -o /tmp/aos.run -k -O https://{{aos-
ip-address}}/ device_agent_images/aos_device_agent{{aos-version}}-{{aos-build}}.runcurl` command.

admin@sonic:~$ sudo cgexec -g l3mdev:mgmt curl -o /tmp/aos.run -k -O
https://172.20.74.3/device_agent_images/aos_device_agent_3.3.0a-93.run
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 111M 100 111M 0 0 328M 0 --:--:-- --:--:-- --:--:-- 328M
admin@sonic:~$

2. Install the Apstra agent with the sudo /bin/bash /tmp/aos.run -- --no-start command.

admin@sonic:~$ sudo /bin/bash /tmp/aos.run -- --no-start
Verifying archive integrity... All good.
Uncompressing AOS Device Agent installer 100%
+ set -o pipefail
+++ dirname ./agent_installer.sh
++ cd .
++ pwd
+ script_dir=/tmp/selfgz334323135
+ systemd_available=false
++ date
+ echo 'Device Agent Installation : Mon' Oct 19 19:02:01 UTC 2020
Device Agent Installation : Mon Oct 19 19:02:01 UTC 2020
+ echo

+ UNKNOWN_PLATFORM=1
+ WRONG_PLATFORM=1
+ CANNOT_EXECUTE=126
+ '[' 0 -ne 0 ']'
+ arg_parse --no-start
+ start_aos=True
+ [[1 > 0]]
+ key=--no-start
+ case $key in
+ start_aos=False
+ shift
+ [[0 > 0]]
+ supported_platforms=(["centos"]="install_centos" ["eos"]="install_on_arista"
["nxos"]="install_on_nxos" ["opx"]="install_systemd_deb opx"
["trusty"]="install_sysvinit_deb" ["xenial"]="install_sysvinit_deb"

117

["icos"]="install_sysvinit_rpm" ["snaproute"]="install_sysvinit_deb"
["simulation"]="install_sysvinit_deb" ["sonic"]="install_systemd_deb sonic"
["bionic"]="install_sysvinit_deb")
+ declare -A supported_platforms
++ /tmp/selfgz334323135/aos_get_platform
+ current_platform=sonic
+ installer='install_systemd_deb sonic'
+ [[-z install_systemd_deb sonic]]
+++ readlink /sbin/init
++ basename /lib/systemd/systemd
+ [[systemd == systemd]]
+ systemd_available=true
+ [[-x /etc/init.d/aos]]
+ echo 'Stopping AOS'
Stopping AOS
+ true
+ systemctl stop aos
+ install_systemd_deb sonic
++ pwd
+ local pkg_dir=/tmp/selfgz334323135/sonic
+ install_deb /tmp/selfgz334323135/sonic
+ local pkg_dir=/tmp/selfgz334323135/sonic
+ dpkg -s aos-device-agent
+ dpkg --purge aos-device-agent
(Reading database ... 34189 files and directories currently installed.)
Removing aos-device-agent (3.3.0a-93) ...
Purging configuration files for aos-device-agent (3.3.0a-93) ...
Processing triggers for systemd (232-25+deb9u12) ...
+ dpkg -i /tmp/selfgz334323135/sonic/aos-device-agent-3.3.0a-93.amd64.deb
Selecting previously unselected package aos-device-agent.
(Reading database ... 34180 files and directories currently installed.)
Preparing to unpack .../aos-device-agent-3.3.0a-93.amd64.deb ...
Unpacking aos-device-agent (3.3.0a-93) ...
Setting up aos-device-agent (3.3.0a-93) ...
Synchronizing state of aos.service with SysV service script with /lib/systemd/systemd-sysv-
install.
Executing: /lib/systemd/systemd-sysv-install enable aos
/var/lib/dpkg/info/aos-device-agent.postinst: line 7: /usr/sbin/aosconfig: No such file or
directory
Processing triggers for systemd (232-25+deb9u12) ...
+ mkdir -p /opt/aos
+ cp aos_device_agent.img /opt/aos
+ post_install_common

118

+ /etc/init.d/aos config_gen
+ [[False == \T\r\u\e]]
+ true
+ systemctl enable aos
Synchronizing state of aos.service with SysV service script with /lib/systemd/systemd-sysv-
install.
Executing: /lib/systemd/systemd-sysv-install enable aos
admin@sonic:~$

3. Update /etc/aos/aos.conf with the sudo vi /etc/aos/aos.conf command to set the IP of the Apstra server
and enable configuration service.

• For the following, replace "aos-server" with the IP address or valid FQDN of your Apstra server.

[controller]
<metadb> provides directory service for AOS. It must be configured properly
for a device to connect to AOS controller.
metadb = tbt://aos-server:29731

• For example

[controller]
<metadb> provides directory service for AOS. It must be configured properly
for a device to connect to AOS controller.
metadb = tbt://172.20.74.3:29731

• For the following, add the management interface (usually eth0).

<interface> is used to specify the management interface.This is currently
being used only on server devices and the AOS agent on the server device will
not come up unless this is specified.
interface = eth0

• For the following, set "enable_configuration_service" to 1 to enable "full control" mode from
Apstra.

[service]
AOS device agent by default starts in "telemetry-only" mode.Set following
variable to 1 if you want AOS agent to manage the configuration of your

119

device.
enable_configuration_service = 1

• Add the following, "credential" configuration with "username = " and the local Linux user to be
used for the agent (usually "admin").

[credential]
username = admin

4. Start the agent with the sudo service aos start command and check its status with the sudo service aos
status command.

admin@sonic:~$ sudo service aos start
admin@sonic:~$ sudo service aos status
● aos.service - AOS Device Agent
 Loaded: loaded (/etc/systemd/system/aos.service; enabled; vendor preset: enabled)
 Active: active (running) since Mon 2020-10-19 19:22:50 UTC; 19s ago
 Process: 23375 ExecStart=/etc/init.d/aos start (code=exited, status=0/SUCCESS)
 Main PID: 23521 (tacspawner)
 Tasks: 22 (limit: 4915)
 Memory: 367.1M
 CPU: 15.278s
 CGroup: /system.slice/aos.service
 ├─23521 tacspawner --daemonize=/var/log/aos/aos.log --pidfile=/host_var_run/
aos.pid --name=5254001B4A4D --hostname=5254001B4A4D --domainSocket=aos_spawner_sock --hostS
 ├─23528 tacsysdb --sysdbType=leaf --agentName=5254001B4A4D-
LocalTasks-5254001B4A4D-0 --partition= --storage-mode=persistent --eventLogDir=. --
eventLogSev=
 ├─23541 /usr/bin/python /usr/bin/aos_agent --
class=aos.device.common.ProxyCountersAgent.ProxyCountersAgent --name=CounterProxyAgent
device_type=Sonic serial_number=@(S
 ├─23544 /usr/bin/python /usr/bin/aos_agent --
class=aos.device.sonic.SonicTelemetryAgent.SonicTelemetryAgent --name=DeviceTelemetryAgent
serial_number=@(SYSTEM_UNIQUE_I
 ├─23551 /usr/bin/python /usr/bin/aos_agent --
class=aos.device.common.DeviceKeeperAgent.DeviceKeeperAgent --name=DeviceKeeperAgent
serial_number=@(SYSTEM_UNIQUE_ID)
 ├─23617 /usr/bin/python /usr/bin/aos_agent --
class=aos.device.common.ProxyDeploymentAgent.ProxyDeploymentAgent --name=DeploymentProxyAgent
device_type=Sonic serial_num
 ├─25007 sh -c aos_host_exec show interface transceiver eeprom Ethernet12 2>&1

120

 └─25010 /usr/bin/python /usr/bin/show interface transceiver eeprom Ethernet12
admin@sonic:~$

5. From the left navigation menu in the Apstra GUI, navigate to Devices > Managed Devices to
acknowledge the device, then you can assign it to a blueprint.

Uninstall Agent Manually (SONiC)

To manually uninstall SONiC Apstra device agents you'll stop Apstra server, uninstall the agent, and
remove any remaining Apstra files.
1. Stop the Apstra agent with the sudo service aos stop command.

admin@sonic:~$ sudo service aos stop
admin@sonic:~$

2. Uninstall the Apstra agent with the sudo dpkg --purge --force-all aos-device-agent command.

admin@sonic:~$ sudo dpkg --purge --force-all aos-device-agent
(Reading database ... 34189 files and directories currently installed.)
Removing aos-device-agent (3.3.0a-93) ...
Purging configuration files for aos-device-agent (3.3.0a-93) ...
Processing triggers for systemd (232-25+deb9u12) ...
admin@sonic:~$

3. Remove remaining Apstra files with the sudo rm -fr /etc/aos /var/log/aos /mnt/persist/.aos /opt/aos /run/
aos /run/lock/aos /tmp/aos_show_tech /usr/sbin/aos* command.

admin@sonic:~$ sudo rm -fr /etc/aos /var/log/aos /mnt/persist/.aos /opt/aos /run/aos /run/
lock/aos /tmp/aos_show_tech /usr/sbin/aos*
admin@sonic:~$

Cisco Device Agent

IN THIS SECTION

Cisco NX-OS Device Agent Overview | 122

121

Device Configuration Requirements | 123

Resize and Enable Guestshell | 123

Download Agent Installer | 124

Install Cisco Device Agent | 125

Update Agent Config File and Start Service | 125

Activate Apstra Devices on Apstra Server | 125

Deploy Device | 126

Reset Apstra Device Agent | 126

Uninstall Apstra Device Agent | 126

Remove Apstra EEM Scripts | 126

Cisco Agent Troubleshooting | 127

Cisco NX-OS Device Agent Overview

Although the preferred method of installing device system agents is from the Apstra GUI, you can
manually install Apstra agents from the CLI. Only in rare exceptions would you need to manually install
agents, which requires more effort and is error-prone. Before manually installing agents, you should have
an in-depth understanding of the various device states, configuration stages, and agent operations . For
assistance, contact "Juniper Support" on page 802.

NOTE: You can also use "Apstra ZTP" on page 172 to automatically boot and install agents and
prerequisite configuration on switches. Using Apstra ZTP is simpler and easier to support at scale
than manually installing agents.

Manually installing an agent for Cisco devices involves the following steps:

• Update the guestshell disk size, memory and cpu, then enable/reboot the guestshell.

• Install the device agent.

• Update the aos.config file.

• Start service.

122

CAUTION: The Cisco GuestShell is not partitioned to be unique with Apstra. If there
are other applications hosting on the guestshell, any changes in the guestshell could
impact them.

CAUTION: Commands in the "Bootstrap" or "Pristine" configuration may interfere with
Apstra configuration added during fabric deployment.

If you configure NX-OS "system jumbomtu" with a value lower than the MTUs that
Apstra uses, then Apstra MTU commands will fail.

Device Configuration Requirements

Configure the device in the following order: VRF, NXAPI, GuestShell, Create Management VRF. To allow
for agent-server communication Apstra's device agent uses the VRF name management. Ensure these lines
appear in the running configuration.

!
no password strength-check
username admin password admin-password role network-admin
copp profile strict
!
vrf context management
 ip route 0.0.0.0/0 <Management Default Gateway>
!
interface mgmt0
 vrf member management
 ip address <Management CIDR Address>
!

Resize and Enable Guestshell

1. Run the following commands to resize the disk space, memory and CPU:

guestshell resize rootfs 1024
guestshell resize memory 2048
guestshell resize cpu 6

2. If the guestshell is not enabled, run the command guestshell enable to activate the changes.

123

3. If the guestshell was already enabled, run the command guestshell reboot to restart the shell and
activate the changes.

4. Run the command switch# show guestshell detail and verify that the guestshell has been activated.

Download Agent Installer

You can easily copy the installation agents over HTTPS from the Apstra server. After downloading,
confirm the MD5sum of your downloaded copy matches what Apstra stores.

NOTE: To retrieve the agent file, the Cisco device connects to the Apstra server using HTTPS.
Before proceeding, make sure this connectivity is functioning.

Apstra ships with the agent from the Apstra Server. We can copy it to the /volatile, or volatile:
filesystem location. Apstra also ships with an md5sum file in the /home/admin folder on the Apstra Server.

Replace the aos_server_ip variable and aos_version from the run file below. For the Apstra server version
(4.1.0-115 for example), navigate to Platform > About).

switch# guestshell run sudo chvrf management wget --no-check-certificate -o /volatile/
aos_download.log
-O /volatile/aos.run https://<aos_server_ip>/device_agent_images/
aos_device_agent_<aos_version>.run

guestshell run sudo chvrf management wget --no-check-certificate -o /volatile/aos_download.log
-O /volatile/aos.run.md5 https://<aos_server_ip>/device_agent_images/
aos_device_agent_<aos_version>.run.md5

Validate that the file was downloaded correctly.

switch# show file volatile:aos.run md5
a28780880a8d674f6eb6a397509db101

switch# show file volatile:aos.run.md5
a28780880a8d674f6eb6a397509db101 aos_device_agent_<aos_version>.run

124

Install Cisco Device Agent

NOTE: We recommend that you run the command copy running-config startup-config to save your
latest changes, in case any issues arise.

From the Cisco NX-OS switch guestshell, run the command to install the agent as shown below:

switch# guestshell run sudo chmod +x /volatile/aos.run
switch# guestshell run sudo /volatile/aos.run -- --no-start
<omitted output>
created 7855 files
created 1386 directories
created 602 symlinks
created 0 devices
created 0 fifos
+ [[True == \T\r\u\e]]
+ true
+ systemctl enable aos

Update Agent Config File and Start Service

After installing the agent and before starting service, update the aos.conf file so it will connect to the
server.

Configure the Cisco NX-OS device agent configuration file located at /etc/aos/aos.conf. See "Apstra
device agent configuration file" on page 1147 for parameters.

After updating the file, run the command service aos start to start the Apstra device agent.

Activate Apstra Devices on Apstra Server

When the Apstra device agent communicates with Apstra, it uses a ‘device key’ to identify itself. For
Cisco NXOS switches, the device key is the MAC address of the management interface ‘eth0’.

root@Cisco:/etc/aos# ip link show dev eth0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT qlen
1000
link/ether 08:00:27:8a:39:05 brd ff:ff:ff:ff:ff:ff

125

Deploy Device

From the left navigation menu of the Apstra GUI, navigate to Devices > Managed Devices. When the
agent is up and running it appears in this list, and can be acknowledged and assigned to a blueprint using
the GUI per standard procedure.

Reset Apstra Device Agent

If you need to reset the Apstra agent for some reason (changing blueprints, redeploying, restoring device
from backup, etc.) it's best to clear the Apstra agent metadata, re-register the device, and redeploy to
the blueprint.

C9K-172-20-65-5# guestshell
[guestshell@guestshell ~]$ sudo su -
[root@guestshell ~]# systemctl stop aos
[root@guestshell ~]# rm -rf /var/log/aos/*
[root@guestshell ~]# systemctl start aos

Starting AOS Agents...root@guestshell ~]#

Uninstall Apstra Device Agent

To uninstall the agent, first undeploy and unassign it from the blueprint per standard procedures using
the GUI. You can also delete it entirely from the Managed Devices page.

To remove the Apstra package from NX-OS, destroy the guestshell. Do this only if no other applications
are using the guestshell:

C9K-172-20-65-5# guestshell destroy

Remove remaining AOS data from system
Removing the guest-shell deletes most of the data left by AOS. Some files are
still on the bootflash:/.aos folder.

C9K-172-20-65-5# delete bootflash:.aos no-prompt

Remove Apstra EEM Scripts

The Apstra device agent installs some event manager applets to assist with telemetry. These can be
safely removed

C9K-172-20-65-5(config)# no event manager applet AOS_PROTO_VSH_LAUNCH
C9K-172-20-65-5(config)# no event manager applet AOS_STATS_VSH_LAUNCH

126

C9K-172-20-65-5(config)# no event manager applet aos_bgp_applet C9K-172-20-65-5(config)# no
event manager applet aos_ifdown_applet C9K-172-20-65-5(config)# no event manager applet
aos_ifup_applet

Cisco Agent Troubleshooting

IN THIS SECTION

Confirm Network Reachability to Apstra | 128

Confirm Agent Installation | 129

Check that Apstra Agent is Running | 129

Check for Presence of Files in /etc/aos | 130

Check for Apstra Data in /var/log/aos | 131

Determine Apstra Agent Version | 132

DNS Resolution Failure | 132

Apstra Service Takes Long Time to Start on Cisco NX-OS | 133

Apstra Stops and ails Without Errors (MGMT VRF) | 133

Verify MGMT VRF in NX-OS Guest Shell | 133

The Apstra agent runs under the NXOS guestshell to interact with the underlying bash and Linux
environments. This is an internal Linux Container (LXC) in which Apstra operates. Under LXC, Apstra
makes use of the NXAPI and other methods to directly communicate with NXOS. For security reasons,
Cisco partitions much of the LXC interface away from the rest of the NXOS device, so we must drop to
the guest shell bash prompt to perform more troubleshooting commands.

Confirm the Guest Shell is running on NX-OS The Apstra agent runs under the NXOS Guest Shell to
interact with the underlying bash and linux environments. This is an internal Linux Container (LXC) in
which Apstra operates. We are checking to make sure the guest shell is activated and running.

C9K-172-20-65-5# show guestshell detail
Virtual service guestshell+ detail
 State : Activated
 Package information
Name : guestshell.ova
Path : /isanboot/bin/guestshell.ova
Application
 Name : GuestShell

127

 Installed version : 2.1(0.0)
 Description : Cisco Systems Guest Shell
Signing
 Key type : Cisco release key
 Method : SHA-1
Licensing
 Name : None
 Version : None
 Resource reservation
Disk : 1024 MB
Memory : 3072 MB
CPU : 6% system CPU

 Attached devices
Type Name Alias

Disk _rootfs
Disk /cisco/core
Serial/shell
Serial/aux
Serial/Syslog serial2
Serial/Trace serial3

Showing registered services

C9K-172-20-65-5# show virtual-service list

Virtual Service List:

Name Status Package Name

guestshell+ Activated guestshell.ova

Confirm Network Reachability to Apstra

Within the guest shell, ping to the Apstra server to check ICMP Ping. When running commands within
the context of a VRF, use the command chvrf <vrf> In this case, it's management VRF.

[guestshell@guestshell ~]$ chvrf management ping 172.20.65.3
PING 172.20.65.3 (172.20.65.3) 56(84) bytes of data.

128

64 bytes from 172.20.65.3: icmp_seq=1 ttl=64 time=0.239 ms
64 bytes from 172.20.65.3: icmp_seq=2 ttl=64 time=0.215 ms

Confirm Agent Installation

Check if the Apstra device agent package is installed. In NXOS, the Apstra agent installs to /etc/rc.d/
init.d/aos to start when the guestshell instance starts.

[guestshell@guestshell ~]$ systemctl status aos
aos.service - LSB: Start AOS device agents
 Loaded: loaded (/etc/rc.d/init.d/aos)
 Active: active (running) since Tue 2016-11-15 00:10:49 UTC; 3h 54min ago
 Process: 30 ExecStart=/etc/rc.d/init.d/aos start (code=exited, status=0/SUCCESS)
 CGroup: /system.slice/aos.service
 ├─113 tacspawner --daemonize=/var/log/aos/aos.log --pidfile=/var/run/aos.pid --
name=SAL2028T5NE --hostname=localhost --domainSocket=aos_spawner_sock --hostSysdbAddress=tb...
 ├─115 tacleafsysdb --agentName=SAL2028T5NE-LocalTasks-SAL2028T5NE-0 --partition= --
storage-mode=persistent --eventLogDir=. --eventLogSev=TaccSpawner/error,Mounter/error,M...
 ├─116 /usr/bin/python /bin/aos_agent --
class=aos.device.common.ProxyDeploymentAgent.ProxyDeploymentAgent --name=DeploymentProxyAgent
device_type=Cisco serial_number=@(SWI...
 ├─117 /usr/bin/python /bin/aos_agent --
class=aos.device.common.ProxyCountersAgent.ProxyCountersAgent --name=CounterProxyAgent
device_type=Cisco serial_number=@(SWITCH_UNI...
 └─118 /usr/bin/python /bin/aos_agent --
class=aos.device.cisco.CiscoTelemetryAgent.CiscoTelemetryAgent --name=DeviceTelemetryAgent
serial_number=@(SWITCH_UNIQUE_ID)

Check that Apstra Agent is Running

Check the running system state with the ‘service’ command, and check running processes with the ‘ps’
command. We are looking to confirm aos_agent is running properly.

[root@guestshell ~]# service aos status
aos is running

[root@guestshell ~]# ps wax
 PID TTY STAT TIME COMMAND
1 ? Ss 0:00 /sbin/init
9 ? Ss 0:00 /usr/lib/systemd/systemd-journald

129

 19 ? Ss 0:00 /bin/dbus-daemon --system --address=systemd: --nofork --nopidfile --systemd-
activation
 22 ? Ss 0:00 /usr/lib/systemd/systemd-logind
 29 ? Ss 0:00 /usr/sbin/sshd -D -f /etc/ssh/sshd_config-cisco -p 17682 -o
ListenAddress=localhost
 38 ? Ss 0:00 /usr/sbin/crond -n
 55 pts/1Ss+0:00 /sbin/agetty --noclear ttyS1
 56 pts/0Ss+0:00 /sbin/agetty --noclear ttyS0
 113 ? Sl 0:01 tacspawner --daemonize=/var/log/aos/aos.log --pidfile=/var/run/aos.pid --
name=C9K --hostname=localhost --domainSocket=aos_spawner_sock --hostSysdbAdd
 115 ? S 0:03 tacleafsysdb --agentName=C9K-LocalTasks-C9K-0 --partition= --storage-
mode=persistent --eventLogDir=. --eventLogSev=TaccSpawner/error,Mounter/
 116 ? Sl 0:01 /usr/bin/python /bin/aos_agent --
class=aos.device.common.ProxyDeploymentAgent.ProxyDeploymentAgent --name=DeploymentProxyAgent
device_type=Cisco serial_numbe
 117 ? Sl 0:19 /usr/bin/python /bin/aos_agent --
class=aos.device.common.ProxyCountersAgent.ProxyCountersAgent --name=CounterProxyAgent
device_type=Cisco serial_number=@(SWI
 118 ? Sl 0:02 /usr/bin/python /bin/aos_agent --
class=aos.device.cisco.CiscoTelemetryAgent.CiscoTelemetryAgent --name=DeviceTelemetryAgent
serial_number=@(SWITCH_UNIQUE_ID)
 700 ? Ss 0:00 sshd: guestshell [priv]
 702 ? S 0:00 sshd: guestshell@pts/4
 703 pts/4Ss 0:00 bash -li
 732 pts/4S 0:00 sudo su -
 733 pts/4S 0:00 su -
 734 pts/4S 0:00 -bash
 823 pts/4R+ 0:00 ps wax

Check for Presence of Files in /etc/aos

Under the guest shell, Apstra stores a number of configuration files under /etc/aos.

[root@guestshell aos]# ls -lah /etc/aos
total 44K
drwxr-xr-x 2 root root 4.0K Nov 15 00:05 .
drwxr-xr-x 63 root root 4.0K Nov 15 00:09 ..
-rwxr-xr-x 1 root root 1.1K Nov 14 22:26 agent.json
-rw-r--r-- 1 root root 1.1K Nov 15 00:05 aos.conf
-rwxr-xr-x 1 root root 992 Nov 14 22:26 common_functions
-rwxr-xr-x 1 root root 1.4K Nov 14 22:26 health_check_functions

130

-rwxr-xr-x 1 root root 450 Nov 14 22:26 iproute2_functions
-rwxr-xr-x 1 root root 916 Nov 14 22:26 lsb_functions
-rwxr-xr-x 1 root root 4.5K Nov 14 22:26 platform_functions
-rwxr-xr-x 1 root root 156 Nov 14 22:26 version

Check for Apstra Data in /var/log/aos

Apstra writes the internal database to /var/log/aos

[root@guestshell aos]# ls -lah /var/log/aos
total 500K
drwxr-xr-x 2 root root 480 Nov 15 00:10 .
drwxr-xr-x 3 root root 120 Nov 15 00:10 ..
-rw-r--r-- 1 root root 3.2K Nov 15 00:11 CounterProxyAgent.117.1479168658.log
-rw-r--r-- 1 root root 289K Nov 15 02:27 CounterProxyAgent.err
-rw-r--r-- 1 root root0 Nov 15 00:10 CounterProxyAgent.out
-rw------- 1 root root 31K Nov 15 00:11
CounterProxyAgentC9K_2016-11-15--00-10-59_117-2016-11-15--00-10-59.tel
-rw-r--r-- 1 root root 104 Nov 15 00:45 DeploymentProxyAgent.116.1479168650.log
-rw-r--r-- 1 root root 12K Nov 15 00:45 DeploymentProxyAgent.err
-rw-r--r-- 1 root root0 Nov 15 00:10 DeploymentProxyAgent.out
-rw------- 1 root root 31K Nov 15 00:10
DeploymentProxyAgentC9K_2016-11-15--00-10-51_116-2016-11-15--00-10-51.tel
-rw-r--r-- 1 root root 4.1K Nov 15 00:11 DeviceTelemetryAgent.118.1479168657.log
-rw-r--r-- 1 root root 1.4K Nov 15 00:11 DeviceTelemetryAgent.err
-rw-r--r-- 1 root root0 Nov 15 00:10 DeviceTelemetryAgent.out
-rw------- 1 root root 31K Nov 15 00:11
DeviceTelemetryAgentC9K_2016-11-15--00-10-58_118-2016-11-15--00-10-58.tel
-rw-r--r-- 1 root root0 Nov 15 00:10 C9K-0.115.1479168649.log
-rw-r--r-- 1 root root0 Nov 15 00:10 C9K-0.err
-rw-r--r-- 1 root root0 Nov 15 00:10 C9K-0.out
-rw------- 1 root root 39K Nov 15 00:10 C9K-LocalTasks-
C9K-0_2016-11-15--00-10-50_115-2016-11-15--00-10-50.tel
-rw------- 1 root root 36K Nov 15 00:10 Spawner-
C9K_2016-11-15--00-10-49_111-2016-11-15--00-10-49.tel
-rw------- 1 root root 634 Nov 15 00:10 _C9K-00000000582a528a-0001744b-checkpoint
-rw-r--r-- 1 root root0 Nov 15 00:10 _C9K-00000000582a528a-0001744b-checkpoint-valid
-rw------- 1 root root0 Nov 15 00:10 _C9K-00000000582a528a-0001744b-log
-rw-r--r-- 1 root root0 Nov 15 00:10 _C9K-00000000582a528a-0001744b-log-valid
-rw-r--r-- 1 root root0 Nov 15 00:10 aos.log
[root@guestshell aos]#

131

Determine Apstra Agent Version

The Apstra agent version is available in /etc/aos/version. Before executing this command we need to
attach to aos service.

[root@guestshell admin]# service aos attach
aos@guestshell:/# cat /etc/aos/version
VERSION=99.0.0-3874
BUILD_ID=AOS_latest_OB.3874
BRANCH_NAME=master
COMMIT_ID=d3eb2585608f0509a11b95fb9d07aed6e26d6c32
BUILD_DATETIME=2018-05-20_10:22:32_PDT
AOS_DI_RELEASE=2.2.0-169
aos@guestshell:/#

DNS Resolution Failure

Apstra agent is sensitive to the DNS resolution of the metadb connection. Ensure that the IP and/or
DNS from /etc/aos/aos.conf is reachable from the device eth0 management port.

[root@guestshell ~]# aos_show_tech | grep -i dns
[2016/10/20 23:04:20.534538UTC@event-'warning']:(textMsg=Failing outgoing mount to <'tbt://aos-
server:29731/Data/ReplicaStatus?flags=i','/Metadb/ReplicaStatus'>' due to code 'resynchronizing'
and reason 'Dns lookup issue "Temporary failure in name resolution" Unknown error
18446744073709551613)
[2016/10/20 23:04:21.540444UTC@OutgoingMountConnectionError-'warning']:(connectionName=--
NONE--,localPath=/Metadb/ReplicaStatus,remotePath=tbt://aos-server:29731/Data/ReplicaStatus?
flags=i,msg=Tac::ErrnoException: Dns lookup issue "Temporary failure in name resolution" Unknown
error 18446744073709551613)
[2016/10/20 23:04:21.541174UTC@event-'warning']:(textMsg=Failing outgoing mount to <'tbt://aos-
server:29731/Data/ReplicaStatus?flags=i','/Metadb/ReplicaStatus'>' due to code 'resynchronizing'
and reason 'Dns lookup issue "Temporary failure in name resolution" Unknown error
18446744073709551613)

Insufficient Guestshell filesystem size
An error message ‘AOS Agent needs XXMB on the / filesystem’ will occur if the rootfs partition
is not at least 1GB large. Please make sure to resize the guestshell filesystem to 2gb ram, 1gb
disk, and 6% CPU.

<snip>
+ popd

132

/tmp/selfgz18527139
+ rpm -Uvh --nodeps --force /tmp/selfgz18527139/aos-device-agent-1.1.0-0.1.1108.x86_64.rpm
Preparing... ################################# [100%]
installing package aos-device-agent-1.1.0-0.1.1108.x86_64 needs 55MB on the / filesystem

Apstra Service Takes Long Time to Start on Cisco NX-OS

It takes a few minutes for the GuestShell on Cisco NX-OS to initialize the NXAPI within the LXC
container. This is normal. To account for this delay, a wait-delay has been added to the Apstra script
initialization.

Apstra Stops and ails Without Errors (MGMT VRF)

Ensure that the guestshell is properly behind management VRF.

We should not be able to ping the Apstra server when running ‘ping’ command by default:

Below - we expect a ping from global default routing table to Apstra server at 172.20.156.3 to fail, but
succeed under the guest shell.

SAL2028T5PP-172-20-156-5# ping 172.20.156.3
PING 172.20.156.3 (172.20.156.3): 56 data bytes
ping: sendto 172.20.156.3 64 chars, No route to host
^C
--- 172.20.156.3 ping statistics ---
1 packets transmitted, 0 packets received, 100.00% packet loss
SAL2028T5PP-172-20-156-5# ping 172.20.156.3 vrf management
PING 172.20.156.3 (172.20.156.3): 56 data bytes
64 bytes from 172.20.156.3: icmp_seq=0 ttl=63 time=0.649 ms
64 bytes from 172.20.156.3: icmp_seq=1 ttl=63 time=0.449 ms
64 bytes from 172.20.156.3: icmp_seq=2 ttl=63 time=0.428 ms
64 bytes from 172.20.156.3: icmp_seq=3 ttl=63 time=0.423 ms
64 bytes from 172.20.156.3: icmp_seq=4 ttl=63 time=0.404 ms
^C

Verify MGMT VRF in NX-OS Guest Shell

[root@guestshell ~]# ping 172.20.157.3
connect: Network is unreachable

133

[root@guestshell ~]# sudo ip netns exec management ping 172.20.156.3
PING 172.20.156.3 (172.20.156.3) 56(84) bytes of data.
64 bytes from 172.20.156.3: icmp_seq=1 ttl=64 time=0.226 ms
64 bytes from 172.20.156.3: icmp_seq=2 ttl=64 time=0.232 ms
^C

Arista Device Agent

IN THIS SECTION

Initial Arista EOS Configuration | 135

Decommission Device | 137

Remove Apstra Package from Device | 138

Restart System | 139

Manually Install Arista Device Agent | 140

Device Agent Configuration File | 142

Arista Agent Troubleshooting | 142

Although the preferred method of installing device system agents is from the Apstra GUI, you can
manually install Apstra agents from the CLI. Only in rare exceptions would you need to manually install
agents, which requires more effort and is error-prone. Before manually installing agents, you should have
an in-depth understanding of the various device states, configuration stages, and agent operations . For
assistance, contact "Juniper Support" on page 802.

NOTE: You can also use "Apstra ZTP" on page 172 to automatically boot and install agents and
prerequisite configuration on switches. Using Apstra ZTP is simpler and easier to support at scale
than manually installing agents.

134

Initial Arista EOS Configuration

IN THIS SECTION

Disable ZTP | 135

Configure AAA and network-admin User | 135

Configure IP Address and Management VRF | 135

Configure DNS for EOS | 136

Configure HTTP API for EOS | 136

Configure multi-agent for EVPN | 137

Disable ZTP

If you are provisioning the switch without ZTP (ZTP Disabled), ensure that the ZTP process is disabled
before proceeding. After logging into the switch for the first time, run the command zerotouch disable.
This requires a device reload.

localhost login: admin
localhost> zerotouch disable

Configure AAA and network-admin User

To install or manage the agent, a network-admin user must be configured on the device with a known
password.

aaa authorization exec default local
username admin privilege 15 role network-admin secret <admin-password>

Configure IP Address and Management VRF

NOTE: If you are installing an onbox agent, you don't need to configure the management VRF. If
it's needed, the agent installer automatically configures the management VRF.

135

The agent uses the management VRF. Move any management interfaces from the default (none) VRF
into the management VRF.

The agent uses the Management1 interface by default. On modular chassis such as the Arista 7504 or 7508,
the management interface is Management0 - check your platform to see if management interfaces appear as
Management1 or Management1/1, Management1/2, and Management0. Management0 is a shared management interface
between both supervisors.

CAUTION: If you are logging into this switch remotely, make sure you have an out-of-
band connection prior to issuing the vrf forwarding management command under an
interface. This immediately removes the IP address from the NIC and potentially locks
you out of your system.

vrf definition management
 rd 100:100
interface management1
 vrf forwarding management
 ip address <address>/<cidr>
ip route vrf management 0.0.0.0/0 <management-default-gateway>

Configure DNS for EOS

Apstra server discovery supports DNS-based discovery if you are manually configuring the agent. By
default, the aos-config file looks for tbt://aos-server:29731 - accordingly, you can use a DNS nameserver to
resolve aos-server.

ip name-server vrf management <dns-server-ip>
ip name-server vrf management <dns-server-ip>

Configure HTTP API for EOS

NOTE: If you are installing an onbox agent, you don't need to configure HTTP API. If it's needed,
the agent installer automatically configures the HTTP API.

136

HTTP API and Unix sockets are used to connect to the EOS API for configuration rendering and
telemetry commands. The API must be made available for both the default route and the management
VRF. The agent connects using the unix-socket locally on the filesystem.

management api http-commands
 protocol unix-socket
 no shutdown
 vrf management
 no shutdown

Configure multi-agent for EVPN

To run EVPN with Arista devices running EOS 4.22, you must run the service routing protocols model multi-
agent. You must also reboot the device to apply the configuration.

localhost(config)#service routing protocols model multi-agent
! Change will take effect only after switch reboot
localhost(config)#

To ensure that it is added to the pristine configuration of the device, we recommend that you add multi-
agent configuration to the device before installing the agent. After adding the configuration, save the
device configuration and reload the device.

localhost(config)#wr mem
Copy completed successfully.
localhost(config)#reload now

Broadcast message from root@localhost (Mon Sep 21 20:25:03 2020):

The system is going down for reboot NOW!

Decommission Device

1. From the left navigation menu of the Apstra GUI, navigate to Devices > Managed Devices and select
the check box for the device to decommission.

2. Click the DECOMM button (above the table), then click Confirm to change the admin state and
return to the table view.

3. With the device still selected, click the Delete system(s) button, then click Confirm to remove the
device and return to the table view.

137

Remove Apstra Package from Device

IN THIS SECTION

Uninstall Agent using EOS CLI | 138

Uninstall Agent using Bash | 138

Remove Remaining Apstra Data from System | 139

Save Config File | 139

Uninstall Agent using EOS CLI

Erasing the startup-configuration does not delete the installed EOS extension files. You must explicitly
remove the agent. Follow these steps in order.

localhost#no extension aos-device-agent-2.0.0-0.1.210.i386.rpm
localhost#delete extensions:no extension aos-device-agent-2.0.0-0.1.210.i386.rpm
localhost#copy boot-extensions installed-extensions

Uninstall Agent using Bash

To use the Bash CLI you, must edit /mnt/flash/boot-extensions to remove the reference to the extension
and delete the extension from /mnt/flash/.extensions/aos-device-agent.i386.rpm - This filename is unique
depending on the installed Apstra version.

localhost#dir /all flash:.extensions/
Directory of flash:/.extensions

 -rwx 1798948 May 31 02:11 EosSdk-1.8.1-4.16.6M.i686.rpm
 -rwx 36199 May 31 02:25 aos-device-agent-1.2.0-0.1.137.i386.rpm
localhost#more flash:boot-extensions
EosSdk-1.8.1-4.16.6M.i686.rpm
aos-device-agent-1.2.0-0.1.137.i386.rpm

[admin@localhost ~]$ vi /mnt/flash/boot-extensions

138

Remove Remaining Apstra Data from System

Apstra-related data is retained on the filesystem in a few locations. Manually remove these data as
shown below:

CAUTION: If you don't remove Apstra files (especially /mnt/flash/.aos/ which includes
checkpoint files), the next time you install Apstra software, the last configuration that
was rendered (including any quarantine configuration) replaces the existing
configuration which could shut down all interfaces.

When you're removing Apstra data be sure to remove /mnt/flash/.aos/.

root@Arista:~# rm -rf /mnt/flash/aos*
root@Arista:~# rm -rf /mnt/flash/.aos*
root@Arista:~# rm -rf /var/log/aos
root@Arista:~# rm -rf /.aos

Save Config File

For the extension to be removed from bootup, run the command wr mem to ensure the extension no
longer appears in boot-extensions. If the RPM is still installed in available extensions, the agent may
start up again .

Restart System

After uninstalling the Apstra software, reboot the system. To ensure the extension is removed from the
boot extension, select 'yes' to save configuration.

localhost#reload
System configuration has been modified. Save? [yes/no/cancel/diff]:yes
Proceed with reload? [confirm]

Broadcast message from root@localhost (Thu Oct 19 02:03:28 2020):

The system is going down for reboot NOW!

When you remove the agent, configuration that is running on the switch is not modified or changed in
any way; the network is not disrupted.

139

Manually Install Arista Device Agent

IN THIS SECTION

Download Agent Installer | 140

Install Arista Device Agent | 140

CAUTION: Manually installing agents requires an in-depth understanding of various
device states, configuration stages and agent operation. Since it requires more effort
and is error-prone we recommend manual installation in rare cases only. We, instead,
recommend using the Apstra GUI to automatically install agents. To proceed with
manually installation see sections below. For assistance, contact "Juniper Support" on
page 802.

Download Agent Installer

The agent is available over HTTPs from the Apstra server from the base URL https://aos-server/
device_agent_images/aos_device_agent.run

spine1#routing-context vrf management
spine1(vrf:management)#copy https://192.168.25.250/device_agent_images/aos_device_agent.run
flash:
Copy completed successfully.

Install Arista Device Agent

Run the command aos_device_agent.run to install the agent.

localhost#bash sudo /mnt/flash/aos_device_agent.run
Verifying archive integrity... All good.
Uncompressing AOS Device Agent installer 100%
+ set -o pipefail
+++ dirname ./agent_installer.sh
++ cd .
++ pwd
+ script_dir=/tmp/selfgz726322812

140

https://aos-server/device_agent_images/aos_device_agent.run
https://aos-server/device_agent_images/aos_device_agent.run

++ date
+ echo 'Device Agent Installation : Wed' Oct 18 20:34:11 UTC 2017
Device Agent Installation : Wed Oct 18 20:34:11 UTC 2017
+ echo

+ UNKNOWN_PLATFORM=1
+ WRONG_PLATFORM=1
+ CANNOT_EXECUTE=126
+ '[' 0 -ne 0 ']'
+ arg_parse
+ start_aos=True
+ [[0 > 0]]
+ supported_platforms=(["centos"]="install_sysvinit_rpm" ["eos"]="install_on_arista"
["nxos"]="install_on_nxos" ["trusty"]="install_sysvinit_deb" ["icos"]="install_sysvinit_rpm"
["snaproute"]="install_sysvinit_deb" ["simulation"]="install_sysvinit_deb")
+ declare -A supported_platforms
++ /tmp/selfgz726322812/aos_get_platform
+ current_platform=eos
+ installer=install_on_arista
+ [[-z install_on_arista]]
+ [[-x /etc/init.d/aos]]
+ echo 'Stopping AOS'
Stopping AOS
+++ readlink /sbin/init
++ basename upstart
+ [[systemd == upstart]]
+ /etc/init.d/aos stop
+ install_on_arista
++ pwd
+ local pkg_dir=/tmp/selfgz726322812/arista
+ local to_be_installed=
+ local flash_dir_from_bash=/mnt/flash/aos-installer
+ local flash_dir_from_cli=flash:/aos-installer
+ cp aos_device_agent.img /mnt/flash/
+ mkdir -p /mnt/flash/aos-installer
++ ls /mnt/flash/.extensions/aos-device-agent-2.0.0-0.1.138.i386.rpm
+ existing_aos=/mnt/flash/.extensions/aos-device-agent-2.0.0-0.1.138.i386.rpm
+ for aos_rpm in '${existing_aos}'
++ basename /mnt/flash/.extensions/aos-device-agent-2.0.0-0.1.138.i386.rpm
+ ip netns exec default FastCli -p15 -c 'no extension aos-device-agent-2.0.0-0.1.138.i386.rpm'
++ basename /mnt/flash/.extensions/aos-device-agent-2.0.0-0.1.138.i386.rpm
+ ip netns exec default FastCli -p15 -c 'delete extension:aos-device-
agent-2.0.0-0.1.138.i386.rpm'

141

+ pushd /tmp/selfgz726322812/arista
/tmp/selfgz726322812/arista /tmp/selfgz726322812
++ ls aos-device-agent-2.0.0-0.1.138.i386.rpm
+ aos_rpm=aos-device-agent-2.0.0-0.1.138.i386.rpm
+ cp aos-device-agent-2.0.0-0.1.138.i386.rpm /mnt/flash/aos-installer
+ ip netns exec default FastCli -p15 -c 'copy flash:/aos-installer/aos-device-
agent-2.0.0-0.1.138.i386.rpm extension:'
Copy completed successfully.
+ ip netns exec default FastCli -p15 -c 'extension aos-device-agent-2.0.0-0.1.138.i386.rpm force'
+ popd
/tmp/selfgz726322812
+ ip netns exec default FastCli -p15 -c 'copy installed-extensions boot-extensions'
Copy completed successfully.
+ rm -rf /mnt/flash/aos-installer
+ /etc/init.d/aos config_gen
+ [[True == \T\r\u\e]]
+ aos_starter -f

Device Agent Configuration File

The Arista device agent manages the running-configuration file. No other configuration files are
modified throughout the agent lifecycle. You can directly edit the configuration file located at /mnt/flash/
aos-config. See "Agent Configuration file" on page 1147 for parameters. After updating the file, restart the
agent.

localhost# bash sudo systemctl stop aos
localhost# bash sudo systemctl start aos

Arista Agent Troubleshooting

IN THIS SECTION

Apstra Log Files | 143

Verify Agent is Running | 144

DNS Resolution Failure | 145

List Running Processes | 146

‘Unable to Connect’ error during Installation | 154

142

Apstra Log Files

Apstra logs to a number of files in the /var/log/aos directory.

Confirm that the agent package is installed.

-bash-4.1# rpm -q --info aos-device-agent
Name : aos-device-agent Relocations: /
Version : 1.0.1 Vendor: (none)
Release : 0.1.15 Build Date: Thu Oct 6 21:21:08 2016
Install Date: Fri Oct 21 04:14:07 2016 Build Host: 6539ff88c5b0
Group : Unspecified Source RPM: aos-device-agent-1.0.1-0.1.15.src.rpm
Size : 87227369 License: Copyright 2014-present, Apstra, Inc. All
rights reserved.
Signature : (none)
Summary : AOS device agent package for Arista switches
Description :
AOS device agent for Arista switches

localhost#show extension detail
 Name: EosSdk-1.8.1-4.16.6M.i686.rpm
 Version: 1.8.1
 Release: 3206305.idboiseeossdk
 Presence: available
 Status: installed
 Vendor:
 Summary: EOS Software Development Kit
 RPMS: EosSdk-1.8.1-4.16.6M.i686.rpm 1.8.1/3206305.idboiseeossdk
 Total size: 8073886 bytes
Description:
The EOS Software Development Kit provides a set of stable C++ interfaces for
high-performance access to EOS primitives, for onbox programming beyond what
can be done with Python.

 Name: aos-device-agent-1.2.0-0.1.137.i386.rpm
 Version: 1.2.0
 Release: 0.1.137
 Presence: available
 Status: installed
 Vendor:
 Summary: AOS device agent package for Arista switches
 RPMS: aos-device-agent-1.2.0-0.1.137.i386.rpm 1.2.0/0.1.137

143

 Total size: 88651 bytes
Description:
AOS device agent for Arista switches

Verify Agent is Running

localhost#bash sudo service aos status
AOS is running

localhost#dir flash:aos*
Directory of flash:/aos*

 -rwx 2228 May 31 02:26 aos-config
 -rwx 55668736 May 31 02:25 aos_device_agent.img
 -rwx 54889549 May 31 02:10 aos_device_agent_1.2.0-137_eos.run

Directory of flash:/aos

 drwx 4096 May 31 02:25 plugins

4025892864 bytes total (3392516096 bytes free)

localhost#dir file:/var/log/aos
Directory of file:/var/log/aos

 -rw- 0 May 31 02:37 000C29E808A1-0.4602.1496198223.log
 -rw- 0 May 31 02:37 000C29E808A1-0.err
 -rw- 0 May 31 02:37 000C29E808A1-0.out
 -rw- 63643 May 31 02:40 000C29E808A1-
LocalTasks-000C29E808A1-0_2017-05-31--02-37-03_4602-2017-05-31--02-37-03.tel
 -rw- 0 May 31 02:37 CounterProxyAgent.4604.1496198231.log
 -rw- 0 May 31 02:37 CounterProxyAgent.4684.1496198239.log
 -rw- 1490 May 31 02:37 CounterProxyAgent.err
 -rw- 0 May 31 02:37 CounterProxyAgent.out
 -rw- 33589 May 31 02:37
CounterProxyAgent000C29E808A1_2017-05-31--02-37-12_4604-2017-05-31--02-37-12.tel
 -rw- 42562 May 31 02:37
CounterProxyAgent000C29E808A1_2017-05-31--02-37-20_4684-2017-05-31--02-37-20.tel
 -rw- 0 May 31 02:37 DeploymentProxyAgent.4603.1496198226.log

144

 -rw- 0 May 31 02:37 DeploymentProxyAgent.4629.1496198235.log
 -rw- 1569 May 31 02:37 DeploymentProxyAgent.err
 -rw- 0 May 31 02:37 DeploymentProxyAgent.out
 -rw- 33618 May 31 02:37
DeploymentProxyAgent000C29E808A1_2017-05-31--02-37-07_4603-2017-05-31--02-37-07.tel
 -rw- 39585 May 31 02:37
DeploymentProxyAgent000C29E808A1_2017-05-31--02-37-16_4629-2017-05-31--02-37-16.tel
 -rw- 0 May 31 02:37 DeviceKeeperAgent.4606.1496198231.log
 -rw- 510 May 31 02:37 DeviceKeeperAgent.err
 -rw- 0 May 31 02:37 DeviceKeeperAgent.out
 -rw- 38221 May 31 02:37
DeviceKeeperAgent000C29E808A1_2017-05-31--02-37-12_4606-2017-05-31--02-37-12.tel
 -rw- 0 May 31 02:37 DeviceTelemetryAgent.4605.1496198230.log
 -rw- 158 May 31 02:37 DeviceTelemetryAgent.4670.1496198242.log
 -rw- 2580 May 31 02:37 DeviceTelemetryAgent.err
 -rw- 0 May 31 02:37 DeviceTelemetryAgent.out
 -rw- 33597 May 31 02:37
DeviceTelemetryAgent000C29E808A1_2017-05-31--02-37-12_4605-2017-05-31--02-37-12.tel
 -rw- 56620 May 31 02:37
DeviceTelemetryAgent000C29E808A1_2017-05-31--02-37-23_4670-2017-05-31--02-37-23.tel
 -rw- 50737 May 31 02:37
Spawner-000C29E808A1_2017-05-31--02-37-02_4597-2017-05-31--02-37-02.tel
 -rw- 640 May 31 02:37 _000C29E808A1-00000000592e2c4f-00054c50-
checkpoint
 -rw- 0 May 31 02:37 _000C29E808A1-00000000592e2c4f-00054c50-
checkpoint-valid
 -rw- 0 May 31 02:37 _000C29E808A1-00000000592e2c4f-00054c50-log
 -rw- 0 May 31 02:37 _000C29E808A1-00000000592e2c4f-00054c50-log-valid
 -rw- 0 May 31 02:37 aos.log

291463168 bytes total (260136960 bytes free)

DNS Resolution Failure

The agent is sensitive to the DNS resolution of the metadb connection. Ensure that the IP and/or DNS
from the config file is reachable from the device management port.

localhost# bash sudo service aos show_tech | grep -i dns
[2016/10/20 23:04:20.534538UTC@event-'warning']:(textMsg=Failing outgoing mount to <'tbt://aos-
server:29731/Data/ReplicaStatus?flags=i','/Metadb/ReplicaStatus'>' due to code 'resynchronizing'
and reason 'Dns lookup issue "Temporary failure in name resolution" Unknown error

145

18446744073709551613)
[2016/10/20 23:04:21.540444UTC@OutgoingMountConnectionError-'warning']:(connectionName=--
NONE--,localPath=/Metadb/ReplicaStatus,remotePath=tbt://aos-server:29731/Data/ReplicaStatus?
flags=i,msg=Tac::ErrnoException: Dns lookup issue "Temporary failure in name resolution" Unknown
error 18446744073709551613)
[2016/10/20 23:04:21.541174UTC@event-'warning']:(textMsg=Failing outgoing mount to <'tbt://aos-
server:29731/Data/ReplicaStatus?flags=i','/Metadb/ReplicaStatus'>' due to code 'resynchronizing'
and reason 'Dns lookup issue "Temporary failure in name resolution" Unknown error
18446744073709551613)

List Running Processes

List the Apstra agent processes that run alongside other management components on the switch with
the ps wax command.

localhost#bash sudo service aos attach
aos@localhost:/# ps wax
 PID TTY STAT TIME COMMAND
 1 ? Ss 0:03 /sbin/init
 2 ? S 0:00 [kthreadd]
 3 ? S 0:00 [ksoftirqd/0]
 4 ? S 0:00 [kworker/0:0]
 6 ? S 0:00 [migration/0]
 8 ? S< 0:00 [khelper]
 9 ? S< 0:00 [netns]
 10 ? S 0:00 [kworker/u:1]
 168 ? S 0:00 [sync_supers]
 170 ? S 0:00 [bdi-default]
 172 ? S< 0:00 [kblockd]
 179 ? S< 0:00 [ata_sff]
 189 ? S 0:00 [khubd]
 290 ? S 0:00 [dst_gc_task]
 375 ? S 0:00 [arp_cache-prd]
 376 ? S 0:00 [icmp_unreachabl]
 377 ? S< 0:00 [rpciod]
 380 ? S< 0:00 [ecc_log_wq]
 388 ? S 0:00 [khungtaskd]
 389 ? S 0:00 [khungtaskd2]
 394 ? S 0:00 [kswapd0]
 395 ? S 0:00 [fsnotify_mark]
 396 ? S< 0:00 [nfsiod]

146

 397 ? S< 0:00 [crypto]
 467 ? S< 0:00 [pcielwd]
 506 ? S 0:00 [scsi_eh_0]
 509 ? S 0:00 [scsi_eh_1]
 512 ? S 0:00 [kworker/u:2]
 599 ? S< 0:00 [edac-poller]
 631 ? S 0:00 [ndisc_cache-prd]
 635 ? S< 0:00 [deferwq]
 951 ? S< 0:00 [loop0]
 1244 ? S<s 0:00 /sbin/udevd -d
 1374 ? S 0:01 [kworker/0:2]
 1471 ? S< 0:00 /sbin/udevd -d
 1730 ? S 0:00 python /usr/bin/immortalize --daemonize --log=/var/log/agents/ConnMgr
--logpidsuffix --maxcredits=5 --cos
 1732 ? S 0:00 /usr/bin/ConnMgr -p /var/run/ConnMgr.pid
 1750 ? S 0:00 python /usr/bin/immortalize --daemonize --log=/var/log/agents/
TimeAgent --logpidsuffix --maxcredits=5 --c
 1751 ? S< 0:00 /usr/bin/TimeAgent -c /etc/TimeAgent.conf -p /var/run/TimeAgent.pid
 1762 ? S 0:00 watchdog
 1763 ? S< 0:00 wdog-cld
 1786 ? S 0:00 python /usr/bin/inotifyrun -c pax -x sv4cpio -O -w -f /mnt/flash/
persist/local.new . && mv /mnt/flash/per
 1788 ? Ss+ 0:00 inotifywait -m -r -e modify -e create -e delete -e attrib -e move .
 1798 ? S 0:00 python /usr/bin/inotifyrun -c pax -x sv4cpio -O -w -f /mnt/flash/
persist/sys.new . && mv /mnt/flash/persi
 1799 ? Ss+ 0:00 inotifywait -m -r -e modify -e create -e delete -e attrib -e move .
 1811 ? S 0:00 python /usr/bin/inotifyrun -c shred --exact --iterations=1 /mnt/flash/
persist/secure; pax -x sv4cpio -O -
 1813 ? Ss+ 0:00 inotifywait -m -r -e modify -e create -e delete -e attrib -e move .
 1820 ? S 0:00 [watchdog/0]
 1964 ? S 0:00 /usr/bin/EosOomAdjust
 1968 ? Ss 0:00 /usr/sbin/mcelog --daemon --no-syslog --logfile /var/log/mcelog
 1979 ? S 0:00 [kbfd_v4v6_rx]
 1980 ? S 0:00 [kbfd_v4v6_echo]
 1981 ? S< 0:00 [kbfd_tx]
 1982 ? S< 0:00 [kbfd_rx_expire]
 1983 ? S< 0:00 [kbfd_tx_reset]
 1984 ? S< 0:00 [kbfd_echo_tx]
 1985 ? S< 0:00 [kbfd_echo_rx_ex]
 1986 ? S< 0:00 [kbfd_echo_tx_re]
 1987 ? S< 0:00 [kbfd_echo_exp_r]
 2030 ? Ss 0:00 crond
 2079 ? S 0:00 netnsd-watcher -d -i --dlopen -p -f -l libLoadDynamicLibs.so

147

procmgr libProcMgrSetup.so --daemonize
 2081 ? S 0:00 netnsd-server -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2091 ? S 0:00 ProcMgr-mast -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2092 ? S 0:02 ProcMgr-work -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2093 ? S 0:14 Sysdb -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2094 ? S 0:02 /usr/bin/SlabMonitor
 2095 ? S 0:03 FastClid-ser -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2131 ? S 0:01 Fru -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2136 ? S 0:02 Launcher -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2222 ? S 0:01 /usr/bin/EosProxySdkAgent --agenttitle=EosSdk-EosProxySdkAgent --
demuxerOpts=172749640510,172743984283,tb
 2244 ? S 0:00 netns --agenttitle=LacpTxAgent --
demuxerOpts=176938128982,176937081924,tbl://sysdb/+n,Sysdb (pid:2093) --
 2249 ? Ss 0:00 netnsd-session -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2250 ? S 0:00 LacpTxAgent -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2264 ? S 0:00 netns --agenttitle=Ipv6RouterAdvt --
demuxerOpts=177054066724,176993113047,tbl://sysdb/+n,Sysdb (pid:2093)
 2266 ? Ss 0:00 netnsd-session -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2267 ? S 0:00 Ipv6RouterAd --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2286 ? S 0:00 netns --agenttitle=AgentMonitor --
demuxerOpts=180713744050,180503816091,tbl://sysdb/+n,Sysdb (pid:2093) -
 2289 ? Ss 0:00 netnsd-session -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2290 ? S 0:02 AgentMonitor -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2294 ? S 0:00 netns --agenttitle=Mirroring --
demuxerOpts=181173742385,181026608825,tbl://sysdb/+n,Sysdb (pid:2093) --sy
 2295 ? Ss 0:00 netnsd-session -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2296 ? S 0:00 Mirroring -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2315 ? S 0:00 netns --agenttitle=Acl --demuxerOpts=184720501541,181293026506,tbl://

148

sysdb/+n,Sysdb (pid:2093) --sysdbfd=
 2316 ? Ss 0:00 netnsd-session -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2317 ? S 0:00 Acl -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2328 ? S 0:00 IgmpSnooping -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2359 ? S 0:01 SuperServer -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2446 ? S 0:00 netns --agenttitle=Dot1x --
demuxerOpts=193890685273,189430843618,tbl://sysdb/+n,Sysdb (pid:2093) --sysdbf
 2447 ? Ss 0:00 netnsd-session -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2448 ? S 0:00 Dot1x -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2467 ? S 0:00 FastClidCapi -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2503 ? S 0:00 FastClid-ses -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2504 ? Ssl 0:13 FastCapi -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2540 ? S 0:00 netns --agenttitle=EventMgr --
demuxerOpts=198435198068,198381904787,tbl://sysdb/+n,Sysdb (pid:2093) --sys
 2541 ? Ss 0:00 netnsd-session -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2542 ? S 0:00 EventMgr -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2544 ? S 0:00 netns --agenttitle=TopoAgent --
demuxerOpts=207004990826,206854969014,tbl://sysdb/+n,Sysdb (pid:2093) --sy
 2546 ? Ss 0:00 netnsd-session -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2547 ? S 0:00 TopoAgent -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2568 ? S 0:00 netns --agenttitle=PortSec --
demuxerOpts=211114755521,211113859019,tbl://sysdb/+n,Sysdb (pid:2093) --sysd
 2570 ? Ss 0:00 netnsd-session -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2571 ? S 0:00 PortSec -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2573 ? S 0:00 netns --agenttitle=Bfd --demuxerOpts=211236786399,211177838833,tbl://
sysdb/+n,Sysdb (pid:2093) --sysdbfd=
 2576 ? Ss 0:00 netnsd-session -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize

149

 2580 ? S 0:00 Bfd -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2595 ? S 0:00 netns --agenttitle=Ira --demuxerOpts=214768824794,211370899495,tbl://
sysdb/+n,Sysdb (pid:2093) --sysdbfd=
 2596 ? Ss 0:00 netnsd-session -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2598 ? S 0:00 Ira -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2618 ? S 0:00 netns --agenttitle=LedPolicy --
demuxerOpts=215245146330,215100253912,tbl://sysdb/+n,Sysdb (pid:2093) --sy
 2619 ? Ss 0:00 netnsd-session -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2621 ? S 0:00 LedPolicy -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2628 ? Sl 0:00 Aaa -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2648 ? S 0:00 netns --agenttitle=CapiApp-CapiApp --
demuxerOpts=219306529482,219133267319,tbl://sysdb/+n,Sysdb (pid:2093
 2651 ? Ss 0:00 netnsd-session -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2657 ? Sl 0:01 uwsgi -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2661 ? S 0:00 netns --agenttitle=StpTxRx --
demuxerOpts=219560663096,219463089954,tbl://sysdb/+n,Sysdb (pid:2093) --sysd
 2668 ? Ss 0:00 netnsd-session -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2669 ? S 0:00 StpTxRx -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2681 ? S 0:00 netns --agenttitle=Macsec --
demuxerOpts=219852379174,219704155526,tbl://sysdb/+n,Sysdb (pid:2093) --sysdb
 2682 ? Ss 0:00 netnsd-session -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2683 ? S 0:00 Macsec -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2718 ? S 0:00 MplsUtilLsp -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2744 ? Ss 0:00 nginx: master process /usr/sbin/nginx -c /etc/nginx/nginx.conf -g
pid /var/run/nginx.pid;
 2748 ? S 0:00 nginx: worker process
 2910 ? S 0:00 netns --agenttitle=MaintenanceMode --
demuxerOpts=236329384403,223871866307,tbl://sysdb/+n,Sysdb (pid:2093
 2916 ? Ss 0:00 netnsd-session -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize

150

 2920 ? S 0:00 MaintenanceM -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2963 ? S 0:00 netns --agenttitle=Arp --demuxerOpts=236663705062,236485011967,tbl://
sysdb/+n,Sysdb (pid:2093) --sysdbfd=
 2971 ? Ss 0:00 netnsd-session -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2974 ? Sl 0:00 Arp -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 2980 ? Ss 0:00 /usr/sbin/sshd
 2997 ? S 0:00 netns --agenttitle=PowerManager --
demuxerOpts=240546963425,236860990252,tbl://sysdb/+n,Sysdb (pid:2093) -
 3002 ? Ss 0:00 netnsd-session -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 3004 ? S 0:00 PowerManager -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 3007 ? S 0:00 netns --agenttitle=Mpls --demuxerOpts=241249655231,241228647018,tbl://
sysdb/+n,Sysdb (pid:2093) --sysdbfd
 3014 ? Ss 0:00 netnsd-session -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 3015 ? S 0:00 Mpls -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 3031 ? S 0:01 CliSessionMg -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 3040 ? S< 0:00 /sbin/udevd -d
 3070 ? S 0:00 netns --agenttitle=Fhrp --demuxerOpts=245198240050,244921462712,tbl://
sysdb/+n,Sysdb (pid:2093) --sysdbfd
 3075 ? Ss 0:00 netnsd-session -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 3077 ? S 0:00 Fhrp -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 3118 ? Sl 0:00 /sbin/rsyslogd -i /var/run/syslogd.pid -c 5
 3122 ? S 0:00 netns --agenttitle=Qos --demuxerOpts=249452799773,245803103371,tbl://
sysdb/+n,Sysdb (pid:2093) --sysdbfd=
 3131 ? Ss 0:00 netnsd-session -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 3136 ? S 0:00 Qos -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 3184 ? S 0:00 netns --agenttitle=Thermostat --
demuxerOpts=253407320281,249878057576,tbl://sysdb/+n,Sysdb (pid:2093) --s
 3185 ? Ss 0:00 netnsd-session -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 3187 ? S 0:00 Thermostat -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize

151

 3189 ? S 0:00 netns --agenttitle=Lldp --demuxerOpts=254384000160,254383598162,tbl://
sysdb/+n,Sysdb (pid:2093) --sysdbfd
 3190 ? Ss 0:00 netnsd-session -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 3192 ? S 0:00 Lldp -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 3198 ? S 0:00 Lag -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 3217 ? S 0:00 EventMon -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 3220 ? S 0:00 /usr/bin/conlogd
 3222 ? S 0:00 sh -c /usr/bin/tail -n 0 --retry --follow=name --pid=3220 /var/log/
eos-console | sed 's/\(.*\)/\1\r/'
 3223 ? S 0:00 /usr/bin/tail -n 0 --retry --follow=name --pid=3220 /var/log/eos-
console
 3224 ? S 0:00 sed s/\(.*\)/\1\r/
 3233 ? S 0:01 PhyEthtool -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 3264 ? S 0:00 netns --agenttitle=StpTopology --
demuxerOpts=262614958826,262505739622,tbl://sysdb/+n,Sysdb (pid:2093) --
 3269 ? Ss 0:00 netnsd-session -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 3277 ? S 0:00 StpTopology -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 3278 ? S 0:00 netns --agenttitle=Stp --demuxerOpts=262947885263,262802812166,tbl://
sysdb/+n,Sysdb (pid:2093) --sysdbfd=
 3279 ? Ss 0:00 netnsd-session -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 3280 ? S 0:00 Stp -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 3281 ? S 0:07 Etba -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 3289 ? S 0:00 netns --agenttitle=Ebra --demuxerOpts=267068997224,266942848299,tbl://
sysdb/+n,Sysdb (pid:2093) --sysdbfd
 3290 ? Ss 0:00 netnsd-session -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 3291 ? S 0:00 Ebra -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 3295 ? S 0:00 netns --agenttitle=KernelFib --
demuxerOpts=270859722189,270754589714,tbl://sysdb/+n,Sysdb (pid:2093) --sy
 3296 ? Ss 0:00 netnsd-session -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 3297 ? S 0:00 KernelFib -d -i --dlopen -p -f -l libLoadDynamicLibs.so

152

procmgr libProcMgrSetup.so --daemonize
 3298 ? S 0:02 /usr/sbin/ribd -N
 3496 ? Ss 0:00 /usr/sbin/sshd-management -f /etc/ssh/sshd_config-management
 3554 ttyS0 Ss+ 0:00 /sbin/mingetty --noclear /dev/ttyS0
 3564 tty1 Ss+ 0:00 /sbin/mingetty /dev/tty1
 3566 tty2 Ss+ 0:00 /sbin/mingetty /dev/tty2
 3569 tty3 Ss+ 0:00 /sbin/mingetty /dev/tty3
 3571 tty4 Ss+ 0:00 /sbin/mingetty /dev/tty4
 3573 tty5 Ss+ 0:00 /sbin/mingetty /dev/tty5
 3575 tty6 Ss+ 0:00 /sbin/mingetty /dev/tty6
 3618 ? S 0:02 /usr/sbin/ribd -N -z client name management ns-name ns-management
vrfname management servername vre_serve
 4566 ? S< 0:00 [loop1]
 4600 ? Sl 0:00 tacspawner --daemonize=/var/log/aos/aos.log --pidfile=/var/run/
aos.pid --name=000C29E808A1 --hostname=000
 4602 ? S 0:00 tacleafsysdb --agentName=000C29E808A1-LocalTasks-000C29E808A1-0 --
partition= --storage-mode=persistent --
 4606 ? Sl 0:00 /usr/bin/python /usr/bin/aos_agent --
class=aos.device.common.DeviceKeeperAgent.DeviceKeeperAgent --name=D
 4629 ? Sl 0:00 /usr/bin/python /usr/bin/aos_agent --
class=aos.device.common.ProxyDeploymentAgent.ProxyDeploymentAgent --
 4670 ? Sl 0:00 /usr/bin/python /usr/bin/aos_agent --
class=aos.device.arista.AristaTelemetryAgent.AristaTelemetryAgent --
 4684 ? Sl 0:00 /usr/bin/python /usr/bin/aos_agent --
class=aos.device.common.ProxyCountersAgent.ProxyCountersAgent --name
 5366 ? S 0:00 FastClidHelp -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 5371 ? S 0:00 FastClid-ses -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 5372 ? Ssl 0:00 Cli [interac -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 5483 ? S 0:00 FastClidHelp -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 5488 ? S 0:00 FastClid-ses -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 5489 ? Ssl 0:00 Cli [interac -d -i --dlopen -p -f -l libLoadDynamicLibs.so
procmgr libProcMgrSetup.so --daemonize
 5506 ? Ss 0:00 sshd-management: admin [priv]
 5531 ? S 0:00 sshd-management: admin@pts/3
 5534 ? Ssl+ 0:00 FastCli
 5579 ? S 0:00 sudo service aos attach
 5581 ? S 0:00 /bin/sh /sbin/service aos attach
 5589 ? S 0:00 /bin/bash /etc/init.d/aos attach

153

 5616 ? S 0:00 /bin/bash
 5622 ? R+ 0:00 ps wax

‘Unable to Connect’ error during Installation

When you install an Arista EOS device agent, you might receive an Unable to connect: Connection refused
error.

Unable to connect: Connection refused
+ status=
+ [['' =~ .*Status: installed.*]]
+ return 1
+ cp aos-device-agent-1.2.1-0.1.72.i386.rpm /mnt/flash/aos-installer
+ FastCli -p15 -c 'copy flash:/aos-installer/aos-device-agent-1.2.1-0.1.72.i386.rpm extension:'
Unable to connect: Connection refused
'sudo /mnt/flash/aos_device_agent_1.2.1-72_eos.run' returned error code:255

This error could be caused from:

• the SDK not running

• the unix-socket not listening

• attempting to run the device installer in the management VRF.

To resolve this error, switch the routing-contexts to default.

Telemetry (Devices)

IN THIS SECTION

Services | 155

Service Registry | 158

Telemetry Collection Statistics | 160

Telemetry Streaming | 162

Route Anomalies for a Host - Example | 163

Telemetry Command Reference | 165

154

Cisco Telemetry | 166

Arista Telemetry Commands | 166

Linux Servers | 167

Debugging Telemetry | 168

Services

From the left navigation menu, navigate to Devices > Telemetry > Services to go to a summary of
telemetry services.

Telemetry services include the following:

Service Description

ARP ARP telemetry shows an ARP table. You can query this
information via API. Anomalies are not generated.

BGP BGP telemetry shows role(s), VRF name, address
family, source and destination information, expected
and actual states, intent status, last fetched/modified,
and BGP peer state.

155

(Continued)

Service Description

Config This is the running config.

Devices with deviations between the rendered
discovered/service config and the actual config are
flagged with a config deviation error. When
configuration changes are made outside of Apstra
management, alarms are generated immediately. The
risk with a configuration deviation is that it is possible
for Apstra to overwrite the deviated configuration with
a configuration re-write.

The correct way to deal with a config deviation alarm is
to understand the configuration change being made,
and consider setting it up as a "configlet" on page 45
instead.

Counters Counter telemetry provides information about
interface in/out packets, interface errors, statistics, and
so on. This feature is consumed by other advanced
downstream features like telemetry streaming. No
anomalies are generated.

Hostname When you assign a device with deploy mode Ready to
a blueprint, the device enters the Ready stage
(previously known as Discovery 2). Hostname
telemetry is collected that validates the device
hostname against intent. Mismatches result in
anomalies.

Interface When you assign a device with deploy mode Ready to
a blueprint, the device enters the Ready stage
(previously known as Discovery 2). Interface telemetry
is collected that compares intent with the up/down
state of physical interfaces. It does not include LLDP,
LAG or any other attachment information.

LAG LAG telemetry shows the health of all the LACP bonds
facing servers and between MLAG switches.

156

(Continued)

Service Description

LLDP (Cabling) When you assign a device with deploy mode Ready to
a blueprint, the device enters the Ready stage
(previously known as Discovery 2). Every node is part
of intent. On each link, there are expected neighbor
hostnames, interfaces and connections. Physical
cabling and links must match the specified intent. Any
deviations result in anomalies that you must correct by
either recabling to match the blueprint or by modifying
the blueprint to match cabling already in place.

MAC MAC Address-table telemetry shows which MAC
addresses appear on which interfaces, and which
VLANs.

MLAG MLAG telemetry tracks the health status of the MLAG
domain itself - the control-protocols required between
two leaf switches communicating with each other
properly for the MLAG domain state. Implementation
detail differences exist between multiple vendors, but
the intent is the same -the switches should be healthy
among each other. MLAG telemetry is only available
for L2 blueprints that have at least one virtual network
assigned in an MLAG pair.

If an MLAG-attached server is not fully connected, the
state changes from ‘active_full’ to ‘active_partial’.

NOTE: Cisco MLAG (VPC) commands cannot derive
the status of the LAG on the VPC peer switch.
Accordingly, the state dual-active cannot actually
gather the command. This is a limitation from Cisco.

Route Routing telemetry analyzes the routing table on every
managed spine and leaf. Since the entire IP fabric is
managed, you can derive and predict full IP table
information from the network topology. Deviations in
the network routing telemetry (for example, a missing
next-hop IP address for a default route) cause an
alarm.

157

(Continued)

Service Description

Transceivers Transceiver telemetry gives the network operator
statistics on optical interfaces, showing DOM
statistics, light levels, lossy interfaces, and other optical
statistics. No anomalies are generated.

Utilization (Onbox agents only) Utilization telemetry allows the network operator to
view some vital statistics on the device - CPU and
Memory utilization. No anomalies are generated.

Utilization telemetry is not available on devices using
offbox agents (Junos for example). Therefore, the
utilization tab contains the error Network Device not
found.

Service Registry

IN THIS SECTION

Service Registry Overview | 158

Import Service Schemas | 160

Delete Service Registry | 160

Service Registry Overview

From the left navigation menu, navigate to Devices > Service Registry to go to the service registry. You
can view, import and delete telemetry service schemas via the GUI (as of Apstra version 4.0.1). For
information about developing extensible telemetry, see the "Extensible Telemetry Guide" on page 839.

158

To see service registry details, click a service name.

159

Import Service Schemas

1. From the left navigation menu, navigate to Devices > Service Registry and click Import Service
Schemas.

2. Either click Choose File and navigate to the file on your computer, or drag and drop the file from your
computer into the dialog window and click Import.

Delete Service Registry

1. Either from the table view (Devices > Service Registry) or the details view, click the Delete button for
the service to delete.

2. Click Delete Service Schema to remove the schema from the system and return to the service
registry screen.

Telemetry Collection Statistics

To go to collection statistics for devices using a specific service, click a service name. Telemetry
collection statistics include the following details:

Collection Statistics Description

Device The device key

Service Started? Has the service started?

Interval How frequently the service is configured to run on the device (in seconds)

Input The input that is provided to the service for its processing

Run Count The number of times the collector is scheduled to run

Success Count The number of times the collector successfully executed

Failure Count The number of times the collector failed execution

Max Run Count User-specified maximum number of times for the collector to run

Execution Time The time it took for collection during the last iteration (in milliseconds)

Waiting Time A device runs multiple collectors. If some collectors monopolize CPU, other collector
executions are deferred. Waiting time is the amount of time that the collector was
deferred (in milliseconds).

160

(Continued)

Collection Statistics Description

Last Run Timestamp Timestamp at which the collector was scheduled to run

Last Error Timestamp Timestamp at which the collector last reported an error

Error message Error message from the last collector iteration.

From the collection statistics screen, you can see if there are any service errors that were generated
during the telemetry collection process (in the Error message column). Click the Show error link to see
its details.

From this screen you can also go to to all telemetry services for a specific device by clicking the device
name.

To go to collection statistics for all services on a specific device, click Collection Statistics.

161

Telemetry Streaming

The Apstra server transmits the following content to user-defined end-hosts for further processing of
data and for use within your own internal systems:

Data Type Description

Counter Data Performance Monitoring (PM) data is time-series
numerical values such as interface counters, CPU
memory utilization, and CPU usage. This information is
typically stored and graphed for visual analysis. Typical
tools used for this purpose include Graphite and Cacti.

Event Data Event data is a collection of status information that
you may need to refer back for troubleshooting your
network. syslog is the best reference for example
event. You need a general amount of event history so
that you can perform troubleshooting activities over a
period of time. While this is an undefined amount of
time, you generally want as much time as possible,
because you don't get to troubleshoot a problem the
instant that it occurs.

Alert Data Alert data is a collection of information that requires
your attention to resolve an issue. In the best cases,
alerts tell you what is wrong relative to the network
service, and provide the necessary data to allow you to
identify root-cause and resolve the issue as fast as
possible.

Data streams are implemented with Google Protocol Buffers (GPB). GPBs define and implement the
format of data streams. GPBs allow software developers to use a language-agnostic definition of events
and data types.

GPB offers support for C++, Python, Go, and possibly more languages in the future. Example Python
code named "AOSOM Streaming" on page 879 is available for GPBs . The AOSOM Streaming demo
software is open source and you can download it from github: https://github.com/Apstra/aosom-
streaming.

Developers have various language options : C++, Python, Go. This means it integrates nicely with our C+
+ infrastructure. And then Infrastructure Engineers can use Python or Go for the client.

162

https://github.com/Apstra/aosom-streaming
https://github.com/Apstra/aosom-streaming

Route Anomalies for a Host - Example

HTTP GET https://aos-server/api/blueprints/\{blueprint_id}/anomalies (output has been truncated to
only show example of one missing route. Actual GET response will return entire routing table)

{
 "items": [
 {
 "actual": {
 "value": "missing"
 },
 "anomaly_type": "route",
 "expected": {
 "value": "up"
 },
 "id": "547bcbc9-963f-4477-904b-712482aa6428",
 "identity": {
 "anomaly_type": "route",
 "destination_ip": "0.0.0.0/0",
 "system_id": "000C29202526"
 },
 "last_modified_at": "2017-06-09T17:28:13.773324Z",
 "role": "unknown",
 "severity": "critical"
 },
 {
 "actual": {
 "value": "partial"
 },
 "anomaly_type": "route",
 "expected": {
 "value": "up"
 },
 "id": "92a6804a-42ff-4cbd-a52b-5c6acadc1d23",
 "identity": {
 "anomaly_type": "route",
 "destination_ip": "0.0.0.0/0",
 "system_id": "000C29EA59A7"
 },
 "last_modified_at": "2017-06-09T17:28:44.787604Z",
 "role": "unknown",
 "severity": "critical"

163

https://aos-server/api/blueprints//%7Bblueprint_id%7D/anomalies

 },
 {
 "actual": {
 "value": "partial"
 },
 "anomaly_type": "route",
 "expected": {
 "value": "up"
 },
 "id": "25886eb7-e629-4f56-9479-686fe1e53c64",
 "identity": {
 "anomaly_type": "route",
 "destination_ip": "0.0.0.0/0",
 "system_id": "000C29E808A1"
 },
 "last_modified_at": "2017-06-09T17:28:13.773423Z",
 "role": "unknown",
 "severity": "critical"
 },
 {
 "actual": {
 "value": "partial"
 },
 "anomaly_type": "route",
 "expected": {
 "value": "up"
 },
 "id": "2b7a77ac-fd12-41fe-acfc-a53678b177ed",
 "identity": {
 "anomaly_type": "route",
 "destination_ip": "0.0.0.0/0",
 "system_id": "000C2982786A"
 },
 "last_modified_at": "2017-06-09T17:28:13.773389Z",
 "role": "unknown",
 "severity": "critical"
 },
 {
 "actual": {
 "value": "partial"
 },
 "anomaly_type": "route",
 "expected": {

164

 "value": "up"
 },
 "id": "50a1e0d6-e483-4bc4-bed8-cbc5666569f8",
 "identity": {
 "anomaly_type": "route",
 "destination_ip": "0.0.0.0/0",
 "system_id": "000C2998C7E7"
 },
 "last_modified_at": "2017-06-09T17:28:13.773453Z",
 "role": "unknown",
 "severity": "critical"
 },
 {
 "actual": {
 "value": "down"
 },
 "anomaly_type": "bgp",
 "expected": {
 "value": "up"
 },
 "id": "ab9f4273-e86f-456c-8cc7-7115f3aafa45",
 "identity": {
 "anomaly_type": "bgp",
 "destination_asn": "1",
 "destination_ip": "10.1.1.1",
 "source_asn": "65417",
 "source_ip": "10.0.0.5",
 "system_id": "000C29202526"
 },
 "last_modified_at": "2017-06-09T17:28:13.727949Z",
 "role": "to_external_router",
 "severity": "critical"
 }
],
 "count": 6
}

Telemetry Command Reference

This section assists network administrators in understanding why telemetry alarms exist, and how they
are generated. This is not an exhaustive list of interface commands.

165

Cisco Telemetry

Cisco telemetry is derived from the NX-API with 'show' commands and embedded event manager
applets that provide context data to the device agent while it is running. Most commands are run as
their CLI version wrapped into JSON output.

Service Command

Interface counters show interface counters | json

Interface error counters show interface counters errors | json

Interface status show interface status | json

LLDP neighbors show lldp neighbors detail | json

BGP Sessions show bgp session | json

Hostname show hostname | json and show hosts | json

ARP show ip arp vrf default | json

MAC Table show mac address-table | json

Routing table show ip route | json

Port-channel show port-channel summary | json

MLAG show vpc | json

Arista Telemetry Commands

Arista EOS uses a few techniques from the EOS SDK API to directly subscribe to event notifications
from the switch, for example 'interface down' or 'new route' notifications. When using an event-based
notification, you do not have to continually render 'show' commands every few seconds. The EOS SDK
gives you the information immediately as soon as the switch has the status.

CAUTION: Event-based subscription requires the EOSProxySDK agent. For details, see
"Arista Device Agents" on page 134.

166

When the Arista API does not provide information (LLDP statistics), Apstra runs CLI commands at a
regular interval to derive telemetry expectations.

Service Command

Interface counters show interface counters

Interface error counters show interfaces counters errors

Interface status show interfaces status

LLDP neighbors show lldp neighbors detail

BGP Sessions show ip bgp summary

Hostname show hostname

ARP ARP collection is done using an event-monitor for
performance. show event-monitor arp and show ip arp

MAC Table MAC address collection is done using an event-
monitor for performance. show event-monitor mac and
show mac address-table

Routing table show ip route

Port-channel show port-channel summary

MLAG show mlag and show mlag interfaces

Linux Servers

Linux Servers use simple CLI commands and standard Linux sockets for most of the telemetry collection.

Service Command

Interface counters ethtool -m

167

(Continued)

Service Command

Interface error counters ethtool -m

Interface status Interface status is collected using the netlink api
(AF_INET)

LLDP neighbors lldpctl -f xml

BGP Sessions vtysh -c 'show ip bgp summary json'

Hostname hostname

ARP ip -4 neigh

MAC Table brctl showmacs

Routing table show ip route and the AF_INET linux socket

Port-channel netshow bondmems --json

MLAG clagctl -j

Debugging Telemetry

Enable trace options to debug telemetry output. On the Device Agent, in /etc/aos.conf (usually), set these
options and restart the agent.

[DeviceTelemetryAgent]
log_config = aos.infra.core.entity_util:DEBUG,aos.device.DeviceTelemetryAgent:DEBUG
trace_config = MountFacility/0-8,DHT,AgentHeartbeat,TelemetryProxy

Log files containing trace information for telemetry agents will then be viewable in /var/log/aos/
DeviceTelemetryAgent.<pid>.<timestamp>.log. These log files are verbose, but they may point to various
rendering and parsing issues in the environment. When you finish troubleshooting, be sure to disable
logging.

168

Agent Profiles (Devices)

IN THIS SECTION

Create Agent Profile | 170

Edit / Delete Agent Profile | 170

Agent profiles enable the logical link between device credentials, a device configuration key-value store,
and a selection of user-uploaded packages. With agent profiles, you can configure parameters for a
certain class of devices that exist in the network and edit their device agent settings as a group. Agent
profiles include the following details:

Table 9: Agent Profile Parameters

Name Description

Name To identify the device agent profile

Platform OS family (EOS, Junos, NX-OS)

Username /
Password

Admin/root username and password on the device

Open Options
(offbox only)

Passes configured parameters to offbox agents. For example, to use HTTPS as the API
connection from offbox agents to devices, use the key-value pair: proto-https - port-443.
You can override the following default values with open options:

• commit_timeout - 60 (integer: seconds)

• telemetry_timeout - 100 (integer: seconds)

• probe_timeout: 5 (integer: seconds)

• log_config_diff - True (boolean)

Packages Admin-provided software packages stored on the Apstra server that you can apply to each
device agent that you create using the profile.

169

From the left navigation menu, navigate to Devices > System Agents > Agent Profiles to go to the agent
profile table view. You can create, clone, edit, and delete agent profiles.

Create Agent Profile

Before creating an agent profile, upload any "packages" on page 171 that are to be included in the agent
profile.

1. From the left navigation menu, navigate to Devices > System Agents > Agent Profiles and click
Create Agent Profile.

2. Enter a unique agent profile name.

3. Select the platform from the drop-down list (optional).

4. Set a username and password (optional).

5. Add open options (optional).

6. Select package(s) (optional).

7. Click Create to create the agent profile and return to the table view.

Edit / Delete Agent Profile

IN THIS SECTION

Edit Agent Profile | 171

Delete Agent Profile | 171

170

Edit Agent Profile

1. Either from the table view (Devices > System Agents > Agent Profiles) or the details view, click the
Edit button for the profile to edit.

2. Make your changes.

3. Click Update to update the profile and return to the table view.

Delete Agent Profile

1. Either from the table view (Devices > System Agents > Agent Profiles) or the details view, click the
Delete button for the profile to delete.

2. Click Delete to delete the profile and return to the table view.

Packages (Devices)

IN THIS SECTION

Packages Overview | 171

Upload Packages | 171

Packages Overview

You can extend Apstra capabilities by adding support for network operating systems (NOS), new
telemetry collectors, third party software, and more. You upload packages (sometimes referred to as
plugins) to the Apstra server, then include them in device agents and "agent profiles" on page 169. Valid
package types include .egg, .whl (Python wheel package) and .gz. One package can include one or more
collectors for one or more OS platforms.

Upload Packages

1. Download the required package(s) from Juniper Support Downloads.

171

https://support.juniper.net/support/downloads/?p=apstra

2. From the left navigation menu, navigate to Devices > System Agents > Packages and click Upload
Packages.

3. For each package to upload, either click Choose File and navigate to the downloaded file, or drag and
drop the file into the dialog window.

4. Click Upload, then close the dialog to return to the table view.

Apstra ZTP (Devices)

IN THIS SECTION

Apstra ZTP Overview | 173

Download and Deploy Apstra ZTP VM | 177

Configure Static Management IP Address (Apstra ZTP) | 179

Configure ZTP User | 179

Configure DHCP Server | 180

Configure Controller IP Address for ZTP | 183

Edit Apstra ZTP Configuration File | 183

Apstra ZTP - Juniper | 189

Apstra ZTP - SONiC | 193

Apstra ZTP - Cisco | 195

Apstra ZTP - Arista | 198

Upgrade Apstra ZTP | 201

172

Apstra ZTP Overview

NOTE: This document applies to Apstra ZTP 4.1 versions. Use the Apstra ZTP version
corresponding to the Juniper Apstra version you are using. (Apstra versions earlier than 4.0 use
Apstra ZTP versions 1.0.0 or 2.0.0. For more information, see the Juniper Apstra 3.3.0 User
Guide.)

Apstra ZTP is a Zero-Touch-Provisioning server for data center infrastructure systems. (Apstra ZTP
replaces the community-supported Aeon-ZTPS software that was previously used for ZTP
implementation in the Apstra environment.) Apstra ZTP enables you to bootstrap Apstra data center
devices without considering the differences in underlying NOS mechanisms. ZTP, from an Apstra
perspective, is a process that takes a device from initial boot to a point where it is managed by Apstra
via device system agents.

Depending on how ZTP is configured, the process may include (but not always) the following
capabilities:

• A DHCP service

• Setting the device admin/root password

• Creating a device user for device system agent

• Upgrading / downgrading NOS

• Onbox or Offbox Device System Agent installation

See also vendor-specific information:

• "Juniper Junos" on page 189

• "Enterprise SONiC" on page 193

• "Cisco NX-OS" on page 195

• "Arista EOS" on page 198

NOTE: To prevent being locked out of a device when there is a problem during the ZTP process,
ZTP uses default, hard-coded credentials. These credentials are:

• root / admin

• aosadmin / aosadmin

173

You can use an Apstra-provided VM image (.ova, .qcow2.gz, .vhdx.gz) or build your own ZTP server and use
the Apstra-provided device provisioning scripts as part of the existing ZTP/DHCP process to
automatically install agents on devices as part of the boot process. The Apstra ZTP reference
implementation consists of the following three phases:

1. Generic DHCP Phase

• The device requests an IP address via DHCP.

• The device receives the assigned IP address and a pointer to a script to execute (or an OS image
to install if using the Apstra-provided VM image).

2. Initialization Phase

• The device downloads the ZTP script using TFTP.

• The device executes the downloaded script to prepare it to be managed. This includes verifying
that the device is running a supported OS.

3. Agent Installation Phase

• The ZTP script makes an API call to install a device system agent on the device.

Apstra ZTP VM Server Resource Requirements

Apstra ZTP runs as an Ubuntu 18.04 LTS server running a DHCP, HTTP, and TFTP server and includes
Apstra provided ZTP scripts that you must customize for your environment. The table below shows the
minimum server specifications for a production environment:

Resource Setting

Guest OS Type Ubuntu 18.04 LTS 64-bit

Memory 2 GB

CPU 1 vCPU

Disk Storage 64 GB

Network At least 1 network adapter. Configured for DHCP initially

Apstra ZTP Network requirements

174

Source Destination Ports Role

Device agents DHCP Server (renewals) &
Broadcast (requests)

udp/67 -> udp/68 DHCP Client

Device agents Apstra ZTP any -> tcp/80 Bootstrap and API scripts

Arista and Cisco Device
agents

Apstra ZTP any -> udp/69 TFTP for POAP and ZTP

Apstra ZTP Controller any -> tcp/443 Device System Agent Installer
API

In addition to the ZTP-specific network requirements, the Apstra ZTP server and device agents require
connectivity to the controller. Refer to Required Communication Ports in the Juniper Apstra Installation
and Upgrade Guide for more information.

You can monitor device ZTP status from the Apstra GUI. From the left navigation menu, navigate to
Devices > ZTP Status > Devices.

Each device interacting with DHCP and ZTP is listed along with its System ID (serial number) if known,
ZTP Status, ZTP Latest Event and when the device status was last updated.

175

https://www.juniper.net/documentation/product/us/en/apstra/#cat=install/upgrade_software
https://www.juniper.net/documentation/product/us/en/apstra/#cat=install/upgrade_software

To see the full DHCP and ZTP log for the device, click the "Show Log" icon.

Any device that interacts with DHCP or ZTP is listed. If you don't need the logs for a device anymore,
click the Delete button.

Log files for all processes are in the /containers_data/logs directory.

root@apstra-ztp:/containers_data/logs# ls -l
total 7132
-rw-r--r-- 1 root root 6351759 Oct 28 17:47 debug.log
drwxr-xr-x 2 root root 4096 Oct 27 19:20 devices
-rw------- 1 root root 0 Oct 23 20:02 dhcpd.leases
-rw-r--r-- 1 root root 926980 Oct 28 17:39 info.log
-rw------- 1 root root 58 Oct 23 20:02 README
-rw------- 1 root root 469 Oct 27 02:13 rsyslog.log
root@apstra-ztp:/containers_data/logs# tail info.log
2020-10-28 17:16:38,786 root.status INFO Incoming: dhcpd dhcpd[18]: DHCPACK on
192.168.59.9 to 04:f8:f8:6b:36:91 via eth0
2020-10-28 17:18:04,299 root.status INFO Incoming: dhcpd dhcpd[18]: DHCPREQUEST for
192.168.59.9 from 04:f8:f8:6b:36:91 via eth0
2020-10-28 17:18:04,300 root.status INFO Incoming: dhcpd dhcpd[18]: DHCPACK on
192.168.59.9 to 04:f8:f8:6b:36:91 via eth0
2020-10-28 17:19:29,250 root.status INFO Incoming: dhcpd : -- MARK --
2020-10-28 17:19:29,442 root.status ERROR Failed to update status of all

176

containers: /api/ztp/service 404 b'{"errors":"Resource not found"}'
2020-10-28 17:33:29,353 root.status INFO Incoming: tftp : -- MARK --
2020-10-28 17:33:29,538 root.status ERROR Failed to update status of all
containers: /api/ztp/service 404 b'{"errors":"Resource not found"}'
2020-10-28 17:33:34,768 root.status INFO Incoming: status : -- MARK --
2020-10-28 17:39:29,349 root.status INFO Incoming: dhcpd : -- MARK --
2020-10-28 17:39:29,539 root.status ERROR Failed to update status of all
containers: /api/ztp/service 404 b'{"errors":"Resource not found"}'
root@apstra-ztp:/containers_data/logs#

You can monitor the ZTP services on the Apstra ZTP server from the Apstra GUI. From the left
navigation menu, navigate to Devices > ZTP Status > Services.

Each service name includes its Docker IP address, service status and when the service status was last
updated.

Download and Deploy Apstra ZTP VM

Apstra ZTP software is delivered on a standalone Apstra ZTP VM
1. As a registered support user, download the appropriate Apstra VM image from Juniper Support

Downloads.

VMware OVA image apstra-ztp-4.1.*-<build-version>.ova (example: apstra-
ztp-4.1.0-4.ova)

Microsoft Hyper-V apstra-ztp-4.1.*-<build-version>.vhdx.gz (example: apstra-
ztp-4.1.0-115.vhdx.gz)

177

https://support.juniper.net/support/downloads/?p=apstra
https://support.juniper.net/support/downloads/?p=apstra

Linux KVM QCOW2 image apstra-ztp-4.1.*-<build-version>.qcow2.gz (example: apstra-
ztp-4.1.0-115.qcow2.gz)

2. Validate the downloaded file against the SHA512/MD5 checksums provided.

3. Deploy the VM with the appropriate resources.

4. TFTP, NGINX (HTTP), DHCPd, Status. and MySQL Docker containers are enabled and run by default.

admin@apstra-ztp:~$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS
PORTS
NAMES
b0f398b45755 apstra/tftp "sh /init.sh" 2 weeks ago Up 28
minutes 0.0.0.0:69->69/
udp tftp
d93eed5d8dbe apstra/nginx "sh /init.sh" 2 weeks ago Up 28
minutes 0.0.0.0:80->80/tcp, 0.0.0.0:443->443/tcp, 0.0.0.0:8080->8080/tcp, 0.0.0.0:31415-
>31415/tcp nginx
8ed71af7cb2b apstra/status "sh /init.sh" 2 weeks ago Up 28
minutes 8080/
tcp status
e7cf8ecb187f apstra_ztp_dhcpd "sh /init.sh" 2 weeks ago Up 28
minutes
 dhcpd
87ae2a77a1f9 mysql:8 "docker-entrypoint.s…" 2 weeks ago Up 28
minutes 3306/tcp, 33060/
tcp db
admin@apstra-ztp:~$

5. If you do not want to use the Apstra ZTP DHCP server, stop and disable the dhcpd container.

admin@apstra-ztp:~$ docker stop dhcpd
dhcpd
admin@apstra-ztp:~$ docker update --restart=no dhcpd
dhcpd
admin@apstra-ztp:~$

178

Configure Static Management IP Address (Apstra ZTP)

By default, the Apstra ZTP server attempts to assign an IP address for its eth0 interface via DHCP. If
you're using the Apstra ZTP Server as a DHCP server, you must set a static management IP address.

1. SSH into the Apstra server as user admin. (ssh admin@<apstra-server-ip> where <apstra-server-ip> is the IP
address of the Astra server.)

2. Edit the /etc/netplan/01-netcfg.yaml file to configure the static management IP address. See example
below. (For more information about using netplan, see https://netplan.io/examples)

admin@apstra-ztp:~$ sudo vi /etc/netplan/01-netcfg.yaml
[sudo] password for admin:

This file describes the network interfaces available on your system
For more information, see netplan(5).
network:
 version: 2
 renderer: networkd
 ethernets:
 eth0:
 dhcp4: no
 addresses: [192.168.59.4/24]
 gateway4: 192.168.59.1
 nameservers:
 search: [example.com, example.net]
 addresses: [69.16.169.11, 69.16.170.11]

3. Apply the change with one of the following methods:

• Reboot the Apstra server with the command sudo reboot.

• Run the command sudo netplan apply.

Configure ZTP User

You can use any configured Apstra GUI user that has API write access (such as admin), but we
recommend that you create a designated user (for example "ztp") that is assigned the predefined role
device_ztp. The device_ztp role allows users with that role to make API calls to the controller to request

179

https://netplan.io/examples

device system agent installation. For more information, see "User / Role Management" on page 709.

Configure DHCP Server

Apstra software comes with an ISC DHCP server for the device management network. If you use a
different DHCP server, it's your responsibility to configure the same options as described in this guide
for the Apstra-supplied DHCP server.

For example, if you’re using Juniper Junos OS or Junos OS Evolved devices, you must ensure the server
contains the following, so the device loads the proper configuration file.

option space JUNIPER
option JUNIPER.config-file-name code 1 = text
option JUNIPER-encapsulation code 43 = encapsulate JUNIPER
option user-class-information code 77 = text;
class "juniper" { match if (substring(option vendor-class-identifier, 0, 7) = "Juniper") and
 not (suffix(option user-class-information, 4) = "-EVO");
 option JUNIPER.config-file-name "junos_apstra_ztp_bootstrap.sh";
}
class "juniper-evo" {
 match if (substring(option vendor-class-identifier, 0, 7) = "Juniper") and
 (suffix(option user-class-information, 4) = "-EVO");

180

 option JUNIPER.config-file-name "ztp.py";
}

DHCP configuration files are on the Apstra ZTP VM in the /containers_data/dhcp directory.

admin@apstra-ztp:~$ sudo ls -l /containers_data/dhcp
total 16
-rw------- 1 root root 2533 Oct 21 00:35 dhcpd.conf
-rw------- 1 root root 146 Oct 21 00:35 Dockerfile
-rw------- 1 root root 932 Oct 21 00:35 init.sh
-rw------- 1 root root 1896 Oct 21 00:35 rsyslog.conf
admin@apstra-ztp:~$

NOTE: All configuration files are owned by root. You must use sudo to run commands as root
using the sudo command or after becoming root with the sudo -s command.

1. Edit the dhcpd.conf file with vi or nano text editor.

admin@apstra-ztp:~$ sudo nano /containers_data/dhcp/dhcpd.conf

2. Add a "group" corresponding to the management network:

group {
 option tftp-server-name "192.168.59.4";
 subnet 192.168.59.0 netmask 255.255.255.0 {
 range 192.168.59.21 192.168.59.99;
 option routers 192.168.59.1;
 }
 host my-switch {
 hardware ethernet 34:17:eb:1e:41:80;
 fixed-address 192.168.59.100;
 }
}

tftp-server-name IP address of ZTP server (not a URL)

subnet IP management network and netmask

181

range Range of dynamic DHCP IP addresses. Ensure the full range is available and no statically
configured IP addresses from that range are used.

option routers Default gateway router for management network

host Static DHCP IP address

hardware ethernet of the management interface used for DHCP negotiations

fixed-address for device with hardware ethernet MAC. Use the Switch MAC address

3. The following DHCP parameters are optional:

ddns-update-style none;
option domain-search "example.internal";
option domain-name "example.internal";
option domain-name-servers 8.8.8.8, 8.8.4.4;

4. If you're using ZTP with SONiC, you must edit the following:

class "sonic" {
 match if (substring(option host-name, 0, 5) = "sonic");
 option sonic-provision-url "tftp://192.168.59.4/ztp.py";
}

sonic-provision-url: TFTP URL with IP address of ZTP server

5. After modifying any DHCP configuration, restart the Apstra ZTP DHCP process with the sudo docker
restart dhcpd command.

admin@apstra-ztp:~$ docker restart dhcpd
dhcpd
admin@apstra-ztp:~$

182

Configure Controller IP Address for ZTP

Configure the controller IP and Apstra ZTP username in the /containers_data/status/app/aos.conf file on the
Apstra ZTP server.

admin@apstra-ztp:~$ sudo nano /containers_data/status/app/aos.conf
admin@apstra-ztp:~$ sudo nano /containers_data/status/app/aos.conf

{
 "ip": "192.168.59.3",
 "user": "ztp",
 "password": "ztp-user-password"
}

ip IP Address of the controller

user Username of the ZTP or admin user

password User's password

Edit Apstra ZTP Configuration File

Apstra ZTP VM includes a TFTP and nginx HTTP server. These servers do not require configuration.
Both servers serve files out of the /containers_data/tftp directory. (Cumulus is no longer supported as of
Apstra version 4.1.0, although several Cumulus examples remain for illustrative purposes.)

admin@apstra-ztp:~$ sudo ls -l /containers_data/tftp/
total 232
-rwxr-xr-x 1 root root 2448 Apr 24 00:47 config_verifier.py
-rwxr-xr-x 1 root root 393 Apr 24 00:47 container_init.sh
-rwxr-xr-x 1 root root 170 Apr 24 00:47 cumulus_custom.sh
-rwxr-xr-x 1 root root 55 Apr 24 00:47 cumulus_license_file
-rwxr-xr-x 1 root root 192 Apr 24 00:47 Dockerfile
-rwxr-xr-x 1 root root 107 Apr 24 00:47 eos_custom.sh
-rwxr-xr-x 1 root root 5393 Apr 24 00:47 junos_apstra_ztp_bootstrap.sh
-rwxr-xr-x 1 root root 1799 Apr 24 00:47 junos_custom.sh
-rwxr-xr-x 1 root root 86 Apr 24 00:47 nxos_custom.sh
-rwxr-xr-x 1 root root 205 Apr 24 00:47 poap-md5sum
-rwxr-xr-x 1 root root 1843 Apr 24 00:47 rsyslog.conf

183

-rwxr-xr-x 1 root root 170 Apr 24 00:47 sonic_custom.sh
-rwxr-xr-x 1 root root 1910 Apr 24 00:47 ztp.json
-rwxr-xr-x 1 root root 86599 Apr 24 00:48 ztp.py
-rw------- 1 root root 86556 Apr 24 00:48 ztp.py.md5
admin@apstra-ztp:~$

The ztp.json file contains all configuration for the Apstra ZTP script ztp.py.

1. Edit the ztp.json file with vi or nano text editor.

admin@apstra-ztp:~$ sudo nano /containers_data/tftp/ztp.json

2. The ztp.json file is organized by the following:

defaults - Values are used for all devices
unless more specific keys are defined.

"defaults": {
 "device-root-password": "root-password-123",
 "device-user": "admin",
 "device-user-password": "admin-password-123",
 "system-agent-params": {
 "agent_type": "onbox",
 "install_requirements": false
 }
}

platform - Values are used for all devices for
a network platform (“nxos”, “eos”, "junos",
"sonic") unless more specific keys are
defined.

"cumulus": {
 "cumulus-versions": ["3.7.13"],
 "cumulus-image": "http://192.168.59.4/cumulus-linux-3.7.13-
bcm-amd64.bin",
 "license": "cumulus_license_file",
 "custom-config": "cumulus_custom.sh",
}

model - Values are used for all devices for a
specific device model (for example “N9K-
C93180YC-FX”).

"N9K-C93180YC-FXC3396": {
 "custom-config": "93180_cumulus_custom.sh",
}

184

serial number - Values are used for a device
matching a specific device serial number
("525400B3C311" for example).

"525400B3C311": {
 "cumulus-versions": ["3.7.13"],
 "cumulus-image": "http://192.168.59.4/cumulus-linux-3.7.13-
bcm-amd64.bin"
}

More specific data takes precedence over other data. For example, data for a specific serial number
takes precedence over any other data, then model, then platform, then finally default data.

3. The ztp.json file uses the following keys:

junos-versions - Valid versions for Juniper Junos
devices. If a device is not running a version in this
list, ZTP upgrades the device with the junos-image
image.

"junos-versions": ["20.2R2-S3.5"]

junos-image - Filename of the Juniper Junos TGZ
image to load if the running version does not
match a version in the junos-versions list.

• By default, the image name is loaded from the ZTP
server via TFTP from the ZTP server’s /
container_data/tftp/ directory. For example: "junos-
image": "jinstall-host-qfx-5-20.2R2-S3.5-
signed.tgz"

• To use any HTTP server for image transfer, enter a
valid HTTP URL with IP address. For example:
"junos-image": "http://192.168.59.4/jinstall-host-
qfx-5-20.2R2-S3.5-signed.tgz"

This example uses HTTP from the controller to transfer
the Juniper Junos image.

sonic-versions- Valid versions for SONiC devices. If
a device is not running a version in this list, ZTP
upgrades the device with the sonic-image image.

"sonic-versions": ["SONiC-OS-3.1.0a-Enterprise_Base"]

185

sonic-image - Filename of the SONiC ONIE BIN
image to load if the running version does not
match a version in the sonic-versions list.

• By default, the image name is loaded from the ZTP
server via TFTP from the ZTP server’s /
container_data/tftp/ directory. For example: "sonic-
image": "sonic-3.1.0a-bcm.bin"

• To use any HTTP server for image transfer, enter a
valid HTTP URL with IP address. For example:
"sonic-image": "http://192.168.59.3/sonic-3.1.0a-
bcm.bin"

This example uses HTTP from the controller to transfer
the SONiC image.

nxos-versions - Valid versions for NX-OS devices. If
a device is not running a version in this list, ZTP
upgrades the device with the nxos-image image.

"nxos-versions": ["9.2(2)", "9.3(6)"]

nxos-image - Filename of the NX-OS image to load
if the running version does not match a version in
the nxos-versions list.

• By default, the image name is loaded from the ZTP
server via TFTP from the ZTP server’s /
container_data/tftp/ directory. For example: "nxos-
image": "nxos.9.3.6.bin"

• To use any HTTP server for image transfer, enter a
valid HTTP URL with IP address. For example:
"nxos-image": "http://192.168.59.4/nxos.9.3.6.bin"

This example uses HTTP from the ZTP server to
transfer the Cisco NX-OS image.

eos-versions - Valid versions for Arista EOS
devices. If a device is not running a version in this
list, ZTP upgrades the device with the eos-image
image.

"eos-versions": ["4.22.3M", "4.24.5M"]

186

eos-image - Filename of the Arista EOS SWI image
to load if the running version does not match a
version in the eos-versions list.

• By default, the image name is loaded from the ZTP
server via TFTP from the ZTP server’s /
container_data/tftp/ directory. For example: "eos-
image": "EOS-4.24.5M.swi"

• To use any HTTP server for image transfer, enter a
valid HTTP URL with IP address. For example: "eos-
image": "http://192.168.59.3/dos_images/
EOS-4.24.5M.swi"

This example uses HTTP from the controller to transfer
the Arista EOS image.

device-root-password - The ZTP process sets the
device root password to this value. For Arista EOS
and Cisco NX-OS devices, the device-root-password
is used to set the password for the system admin
password.

"device-root-password": "root-admin-password"

device-user / device-user-password - Username and
password that is used for the device system agent.
Also, if necessary, the ZTP process creates a user
on the device with this username and password.

"device-user": "aosadmin",
"device-user-password": "aosadmin-password"

custom-config - The filename of the custom
configuration shell script in the TFTP directory or a
URL pointing to the file on a HTTP server. This
shell script runs during ZTP allowing you to add
custom configuration to the device. See Platform
Specific Information section below for more
information.

"custom-config": "cumulus_custom.sh"

system-agent-params Information that is used to create new users and device
system agents on devices, as described below..

agent_type - Agent type, onbox or offbox "agent_type": "onbox"

install_requirements - Always set to false. Not
currently needed for any supported Network
Operating System.

"install_requirements": false

187

job_on_create - Set to install to install the onbox
agent on the device

"job_on_create": "install"

Junos Example

{
 "junos": {
 "junos-versions": ["21.2R1-S2.2"],
 "junos-image": "http://10.85.24.52/
juniper/21.2R1-S2.2/jinstall-host-qfx-5e-
x86-64-21.2R1-S2.2-secure-signed.tgz",
 "device-root-password": "root123",
 "device-user": "admin",
 "device-user-password": "admin",
 "system-agent-params": {
 "platform": "junos",
 "agent_type": "offbox",
 "job_on_create": "install"
 }
 },
 "QFX10002-36Q": {
 "junos-versions": ["21.2R1-S2.2"],
 "junos-image": "http://10.85.24.52/
juniper/21.2R1-S2.2/jinstall-host-qfx-10-f-
x86-64-21.2R1-S2.2-secure-signed.tgz"
 },
 "JNP10002-60C [QFX10002-60C]": {
 "junos-versions": ["21.2R1-S1.3"],
 "junos-image": "http://10.85.24.52/
juniper/21.2R1-S1.3/junos-vmhost-install-qfx-
x86-64-21.2R1-S1.3.tgz"
 }
}

platform - (Required for offbox agents only) Set to
the device platform ("eos", "nxos", "junos").
Lowercase only.

"platform": "junos"

open_options - (offbox agents only) Set to enable
HTTPS between offbox agent to device API
interface. If open_options is not defined, the
connection defaults to HTTP.

"open_options": {
 "proto": "https",
 "port": "443"
}

188

packages - Set to configure which additional SDK or
extended telemetry packages to upload to the
system agent.

"packages": [
 "aos-deployment-helper-nxos",
 "aosstdcollectors-builtin-nxos",
 "aosstdcollectors-custom-nxos"
]

For REST API documentation for all available system-agent-params options in /api/system-agents, refer to
Swagger.

Apstra ZTP - Juniper

IN THIS SECTION

Juniper and ZTP Disk Space | 189

Example: Juniper Junos ztp.json | 190

Example: Juniper Junos OS Evolved ztp.json | 190

Juniper Junos Bootstrap File | 191

Juniper Junos Custom Config File | 191

Restart Juniper Junos ZTP | 193

Troubleshoot Juniper Junos ZTP | 193

EX switches require Junos OS version 21.2 or higher. The Python module that's required for ZTP is
missing on EX switches using Junos OS versions below 21.2.

Juniper and ZTP Disk Space

Apstra ZTP manages the bootstrap and lifecycle of Juniper Junos devices. It uses a custom script to
create offbox agents, create local users and set other system configuration. The ZTP process copies a
new OS image to the switch. Before installing Apstra ZTP ensure that the switch has sufficient disk
space for the OS image.

root@leaf001-001-2> show system storage
Filesystem Size Used Avail Capacity Mounted on

189

/dev/gpt/junos 6.0G 1.0G 4.5G 18% /.mount
<...>

Example: Juniper Junos ztp.json

Juniper Junos Offbox Agent / Apstra ZTP 4.1

{
 "junos": {
 "junos-versions": ["20.2R2-S3.5"],
 "junos-image": "http://192.168.59.4/jinstall-host-qfx-5-20.2R2-S3.5-signed.tgz",
 "device-root-password": "root-password",
 "device-user": "admin",
 "device-user-password": "admin-password",
 "custom-config": "junos_custom.sh",
 "system-agent-params": {
 "platform": "junos",
 "agent_type": "offbox",
 "job_on_create": "install"
 }
 }
}

Example: Juniper Junos OS Evolved ztp.json

IN THIS SECTION

Juniper Junos OS Evolved Offbox Agent / Apstra ZTP 4.1 | 190

Juniper Junos OS Evolved Offbox Agent / Apstra ZTP 4.1

{
 "junos-evo": {
 "junos-evo-versions": ["20.4R3-S1.3-EVO"],
 "junos-image": "http://192.168.59.4/junos-evo-install-qfx-ms-fixed-x86-64-20.4R3-S1.3-
EVO.iso",

190

 "device-root-password": "root-password",
 "device-user": "admin",
 "device-user-password": "admin-password",
 "custom-config": "junos_custom.sh",
 "system-agent-params": {
 "platform": "junos",
 "agent_type": "offbox",
 "job_on_create": "install"
 }
 }
}

Juniper Junos Bootstrap File

Apstra ZTP uses a Python script to provision the device during ZTP. To allow the Python script (ztp.py) to
run on a device that is not Junos OS Evolved, additional configuration is required. Use the
junos_apstra_ztp_bootstrap.sh script to bootstrap Apstra ZTP on Junos. It downloads and runs the ZTP
script.

Junos OS Evolved devices don't require this bootstrap; they run the Apstra ZTP python script (ztp.py)
directly.

Juniper Junos Custom Config File

When configuring custom-config for Juniper Junos devices, refer to the example junos_custom.sh, a bash
executable file executed during the ZTP process. It can set system configuration (such as Syslog, NTP,
SNMP authentication) prior to device system agent installation.

NOTE: Junos OS and Junos OS Evolved platforms with dual-RE setups require the set system
commit synchronize command. Without this configuration, the ZTP process fails. We recommend
adding the command to the junos_custom.sh file.

#!/bin/sh

SOURCE_IP=$(cli -c "show conf interfaces em0.0" | grep address | sed 's/.*address \([0-9.]*\).*/
\1/')

Syslog
SYSLOG_SERVER="192.168.59.4"
SYSLOG_PORT="514"

191

NTP
NTP_SERVER="192.168.59.4"
SNMP
SNMP_NAME="SAMPLE"
SNMP_SERVER="192.168.59.3"

Syslog
cli -c "configure; \
set system syslog host $SYSLOG_SERVER any notice ; \
set system syslog host $SYSLOG_SERVER authorization any ; \
set system syslog host $SYSLOG_SERVER port $SYSLOG_PORT ; \
set system syslog host $SYSLOG_SERVER routing-instance mgmt_junos ; \
commit and-quit"
cli -c "configure; \
set system syslog file messages any notice ; \
set system syslog file messages authorization any ; \
commit and-quit"

NTP
cli -c "configure; \
set system ntp server $NTP_SERVER routing-instance mgmt_junos ; \
set system ntp source-address $SOURCE_IP routing-instance mgmt_junos ; \
commit and-quit;"

SNMP
cli -c "configure; \
set snmp name $SNMP_NAME; \
set snmp community public clients $SNMP_SERVER/32 ; \
set snmp community public routing-instance mgmt_junos ; \
set snmp routing-instance-access access-list mgmt_junos ; \
commit and-quit"

CAUTION: If you set external AAA authentication (for example authentication-order),
replicate the device system agent device-user and device-user-password in the AAA system.
Otherwise, the device system agent generates an authentication error.

192

Restart Juniper Junos ZTP

To erase (zeroize) the device and restart Juniper Junos ZTP process:

root@leaf3> request system zeroize

Troubleshoot Juniper Junos ZTP

When in ZTP mode, the Juniper switch downloads the ztp.py and ztp.json files to the /var/preserve/apstra
directory. For diagnostics, take note of the /var/preserve/apstra/aosztp.log file.

You can find additional useful messages in /var/log/messages (search for 'ztp').

Apstra ZTP - SONiC

IN THIS SECTION

Enterprise SONiC and ZTP Overview | 193

Example: Enterprise SONiC ztp.json | 194

Enterprise SONiC Custom Config File | 195

Restart Enterprise SONiC ZTP | 195

 | 195

Enterprise SONiC and ZTP Overview

NOTE: Apstra ZTP 4.0 used with Apstra version 4.0 has support for SONiC Enterprise
Distribution devices. There is no support for any SONiC devices with earlier versions of Apstra
ZTP or the software.

Apstra ZTP manages the bootstrap and life-cycle of Enterprise SONiC devices with onbox agents
installed. It uses a custom script to create onbox agents, create local users and set other system
configuration.

As part of the ZTP process a new OS image is copied to the switch. Before installing Apstra ZTP ensure
that the switch has sufficient disk space for the OS image.

193

NOTE: If you are using ONIE to install Enterprise SONiC on a device, you must copy the image to
the /containers_data/tftp directory and rename it to onie-installer or another ONIE download name
(onie-installer-x86_64-dell_z9100_c2538-r0 for example). When rebooting in ONIE, the device
searches for this file on the HTTP then TFTP server. If the file is not found, ZTP fails. Once ONIE
SONiC installation successfully completes, the SONiC device starts ZTP automatically.

Example: Enterprise SONiC ztp.json

SONiC Onbox Agent / Apstra ZTP 4.0

{
 "sonic": {
 "sonic-versions": ["SONiC-OS-3.2.0-Enterprise_Advanced"],
 "sonic-image": "http://192.168.59.4/sonic-3.2.0-GA-adv-bcm.bin",
 "device-root-password": "root-password",
 "device-user": "admin",
 "device-user-password": "admin-password",
 "custom-config": "sonic_custom.sh",
 "system-agent-params": {
 "agent_type": "onbox",
 "job_on_create": "install"
 }
 }
}

NOTE: If you use another device-user besides admin (aosadmin for example) Apstra ZTP creates this
new user, but it does not change the password for the default SONiC admin user (password set to
YourPaSsWoRd by default).

194

Enterprise SONiC Custom Config File

When configuring custom-config for Enterprise SONiC devices, refer to the example sonic_custom.sh, a bash
executable file executed during the ZTP process. It can set system configuration (such as Radius
authentication) prior to device system agent installation.

#!/bin/bash

sed -i s/"#Banner.*"/"Banner \/etc\/issue.net"/ /etc/ssh/sshd_config

cat >& /etc/issue.net << EOF
Provisioned by AOS
Date: $(date)
EOF

service ssh restart

Restart Enterprise SONiC ZTP

To restart the SONiC ZTP process, use the sudo ztp enable and sudo ztp run commands.

admin@sonic:~$ sudo ztp enable
admin@sonic:~$ sudo ztp run
ZTP will be restarted. You may lose switch data and connectivity, continue?[yes/NO] yes
admin@sonic:~$

Apstra ZTP - Cisco

IN THIS SECTION

Cisco NX-OS and ZTP Disk Space | 196

Example: Cisco NX-OS ztp.json | 196

Cisco NX-OS Custom Config File | 196

Cisco NX-OS Offbox Agent Custom Config File | 197

Restart Cisco NX-OS ZTP | 198

195

Cisco NX-OS and ZTP Disk Space

Ensure that sufficient disk space is available on the switch. As part of the ZTP process a new OS image is
copied to the switch. Before installing Apstra ZTP ensure that the switch has sufficient disk space for the
OS image.

switch1# dir bootflash: | include free|total
1296171008 bytes free
3537219584 bytes total

If ZTP is installing Cisco NX-OS image, you must copy the image (nxos.7.0.3.I7.7.bin for example) to
the /containers_data/tftp directory ensuring correct file permissions.

Example: Cisco NX-OS ztp.json

{
 "nxos": {
 "nxos-versions": ["9.2(2)"],
 "nxos-image": "http://192.168.0.6/nxos.9.2.2.bin",
 "device-root-password": "admin-password",
 "custom-config": "nxos_custom.sh",
 "device-user": "admin",
 "device-user-password": "admin-password",
 "system-agent-params": {
 "agent_type": "onbox",
 "job_on_create": "install"
 }
 }
}

This configuration enables secure offbox agent HTTPS (port 443) between the offbox agent on the
server and the device API.

Cisco NX-OS Custom Config File

When configuring custom-config for Cisco NX-OS devices, refer to the example nxos_custom.sh, a bash
executable file executed during the ZTP process. It can execute NX-OS configuration commands that set
system configuration, such as the SSH login banner, before installing the device system agent.

196

NOTE: You must add copp profile strict via the NX-OS custom-config file.

#!/bin/sh

/isan/bin/vsh -c "conf ; copp profile strict ; banner motd ~
##
BANNER BANNER BANNER BANNER BANNER BANNER BANNER BANNER
##
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Donec gravida, arcu vitae tincidunt sagittis, ligula
massa dignissim blah, eu sollicitudin nisl dui at massa.
Aliquam erat volutpat. Vitae pellentesque elit at
pulvinar volutpat. Etiam lacinia derp lacus, non
pellentesque nunc venenatis rhoncus.
##
~"

Cisco NX-OS Offbox Agent Custom Config File

If using Apstra ZTP to prepare a Cisco NX-OS device for use with offbox agents, you must have the
custom-config file enable the following NX-OS configuration commands.

feature nxapi
feature bash-shell
feature scp-server
feature evmed
copp profile strict
nxapi http port 80

You can use the following nxos_custom.sh to add these along with a banner.

#!/bin/sh

/isan/bin/vsh -c "conf ; feature nxapi ; nxapi http port 443 ; feature bash-shell ; feature scp-
server ; feature evmed ; copp profile strict ; banner motd ~
##
BANNER BANNER BANNER BANNER BANNER BANNER BANNER BANNER

197

##
Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Donec gravida, arcu vitae tincidunt sagittis, ligula
massa dignissim blah, eu sollicitudin nisl dui at massa.
Aliquam erat volutpat. Vitae pellentesque elit at
pulvinar volutpat. Etiam lacinia derp lacus, non
pellentesque nunc venenatis rhoncus.
##
~"

Restart Cisco NX-OS ZTP

NOTE: If an agent is already installed on the device, before you restart the device ZTP process
remove the agent either via the UI device agent installer or manually via the device CLI.

C9K-172-20-65-5# guestshell destroy

Remove remaining AOS data from system
Removing the guest-shell deletes most of the data left by AOS. Some files are
still on the bootflash:/.aos folder.

C9K-172-20-65-5# delete bootflash:.aos no-prompt

See "Cisco Device Agents" on page 121 for more information.

To restart Cisco NX-OS ZTP process:

switch# write erase
switch# reload

Apstra ZTP - Arista

IN THIS SECTION

Arista EOS | 199

Example: Arista EOS ztp.json | 199

Arista EOS Custom Config File | 200

198

Restart Arista EOS ZTP | 201

Arista EOS

NOTE: Apstra ZTP has limited support and known issues for virtual Arista EOS (vEOS) devices.

• ZTP EOS upgrades are not supported on vEOS devices. EOS versions for vEOS device must
match eos-versions set in ztp.json file.

• ZTP Logging to the controller does not work for vEOS devices due to the lack of a device
serial number. This will be addressed in a future version.

As part of the ZTP process a new OS image is copied to the switch. Before installing Apstra ZTP ensure
that the switch has sufficient disk space for the OS image.

switch1#dir flash:
Directory of flash:/

<...>

3957878784 bytes total (3074723840 bytes free)

If ZTP is installing Arista EOS image, the image (EOS-4.22.3M.swi for example) you must copy to the /
containers_data/tftp directory.

Example: Arista EOS ztp.json

Arista EOS On-box Agent / Apstra ZTP 4.0

{
 "eos": {
 "eos-versions": ["4.24.5M"],
 "eos-image": "http://192.168.59.3/EOS-4.24.5M.swi",
 "custom-config": "eos_custom.sh",
 "device-root-password": "admin-password",
 "device-user": "admin",
 "device-user-password": "admin-password",

199

 "system-agent-params": {
 "agent_type": "onbox",
 "job_on_create": "install"
 }
 }
}

Arista EOS Custom Config File

When configuring custom-config for Arista EOS devices, refer to the example eos_custom.sh, a bash
executable file executed during the ZTP process. It can execute EOS configuration commands to set the
SSH login banner or other system configuration to be set prior to device system agent installation.

#!/bin/sh

FastCli -p 15 -c $'conf t\n service routing protocols model multi-agent\n hardware tcam\n system
profile vxlan-routing\n banner login\n
##
UNAUTHORIZED ACCESS TO THIS DEVICE IS PROHIBITED
##\n EOF\n'

NOTE: During the ZTP process, the EOS banner login is set to text saying "The device is in Zero
Touch Provisioning mode ...". By default, the ZTP script copies this to the permanent
configuration.

To prevent this, you must configure the custom-config pointing to a script (eos_custom.sh for
example), which configures a different banner login or configure no banner login.

There must be a space after any \n.

NOTE: If you're using EOS 4.22, Apstra recommends adding the service routing protocols model
multi-agent to the device configuration along with any other configuration during ZTP which
requires a device reboot to activate (system profile vxlan-routing for example). This ensures that
this configuration is applied on reboot and added to the device pristine configuration.

200

Restart Arista EOS ZTP

CAUTION: If an agent is already installed on the device, before you restart the device
ZTP process remove the agent extension either via the UI Device Agent Installer or
manually via the device CLI.

l2-virtual-001-leaf1#sho extensions
Name Version/Release Status Extension
--- ------------------ --------- ---------
aos-device-agent-3.1.0-0.1.205.i386.rpm 3.1.0/0.1.205 A, I 1

A: available | NA: not available | I: installed | NI: not installed | F: forced
l2-virtual-001-leaf1#delete extension:aos-device-agent-3.1.0-0.1.205.i386.rpm
l2-virtual-001-leaf1#no extension aos-device-agent-3.1.0-0.1.205.i386.rpm
l2-virtual-001-leaf1#copy installed-extensions boot-extensions
Copy completed successfully.
l2-virtual-001-leaf1#delete /recursive flash:aos*
l2-virtual-001-leaf1#

See "Arista Device Agents" on page 134 for more information.

To restart Arista EOS ZTP process:

localhost# delete flash:zerotouch-config
localhost# write erase
Proceed with erasing startup configuration? [confirm]y
localhost# reload

Upgrade Apstra ZTP

1. As a registered support user, download the Apstra ZTP image for your hypervisor from Juniper
Support Downloads. (This example uses ZTP v1.0.0-33.)

2. Extract the apstra-ztp-1.0.0-33.tar.gz file (for this example) in /home/admin, then run docker-compose with
the docker-compose.yml file:

admin@localhost:~$ tar zxvf apstra-ztp-1.0.0-33.tar.gz
./
./etc/
./etc/apstra_ztp/

201

https://support.juniper.net/support/downloads/?p=apstra
https://support.juniper.net/support/downloads/?p=apstra

./etc/apstra_ztp/docker-compose.yml

./etc/apstra_ztp/docker-compose-nohttp.yml

./containers_data/

./containers_data/dhcp/

./containers_data/dhcp/dhcpd.conf

./containers_data/init

./containers_data/Dockerfile.tftp

./containers_data/tftp/

./containers_data/tftp/eos_custom.sh

./containers_data/tftp/ztp.json

./containers_data/tftp/cumulus_license_file

./containers_data/tftp/nxos_custom.sh

./containers_data/tftp/cumulus_custom.sh

./containers_data/tftp/ztp.py

./containers_data/tftp/poap-md5sum
admin@localhost:~$ cd etc
admin@localhost:~/etc$ ls
apstra_ztp
admin@localhost:~/etc$ cd apstra_ztp/
admin@localhost:~/etc/apstra_ztp$ sudo docker-compose -f ./docker-compose.yml up --detach
WARNING: The CONTAINER_DATA_BASE_DIR variable is not set. Defaulting to a blank string.
Pulling http (nginx:latest)...
latest: Pulling from library/nginx
000eee12ec04: Pull complete
eb22865337de: Pull complete
bee5d581ef8b: Pull complete
Digest: sha256:50cf965a6e08ec5784009d0fccb380fc479826b6e0e65684d9879170a9df8566
Status: Downloaded newer image for nginx:latest
apstra_ztp_tftp_1 is up-to-date
apstra_ztp_dhcpd_1 is up-to-date
Creating apstra_ztp_http_1 ... done
admin@localhost:~/etc/apstra_ztp$

3. Run docker ps to see that the apstra_ztp_http_1 container was created.

admin@localhost:~/etc/apstra_ztp$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
4b879edd355a nginx:latest "nginx -g 'daemon of…" 25 seconds ago Up 21 seconds 0.0.0.0:80->80/
tcp apstra_ztp_http_1
7f753bdc5853 networkboot/dhcpd "/entrypoint.sh eth0" 3 months ago Up 2 minutes
apstra_ztp_dhcpd_1
61bfc64f294d apstra/tftp "sh /init" 3 months ago Up 26 minutes 0.0.0.0:69->69/udp

202

apstra_ztp_tftp_1
admin@localhost:~/etc/apstra_ztp$

4. Copy the updated ztp.py and poap-md5sum files to the /containers_data/tftp/ directory.

admin@localhost:~$ cd ~/containers_data/tftp/
admin@localhost:~/containers_data/tftp$ sudo cp ztp.py /containers_data/tftp/
admin@localhost:~/containers_data/tftp$ sudo cp poap-md5sum /containers_data/tftp/
admin@localhost:~/containers_data/tftp$

5. Update /containers_data/tftp/ztp.json accordingly.

Device Profiles

IN THIS SECTION

Device Profile Overview | 203

Create Device Profile | 210

Edit / Delete Device Profile | 211

Juniper Device Profiles | 212

SONiC Device Profile | 213

Device Profile Overview

IN THIS SECTION

Summary | 204

Selector | 204

Capabilities | 205

Supported Features (Cisco only) | 205

Ports | 207

View Device Profiles | 210

203

Device profiles define capabilities of supported hardware devices. Some feature capabilities have
different behaviors across NOS versions and thus, capabilities are expressed per NOS version. By
default, the version matches all supported versions. As additional hardware models are qualified, they
are added to the "list of qualified devices" on page 956.

Device profiles are associated with "logical devices" on page 7 (abstractions of physical devices) to
create "interface maps" on page 13.

The following sections describe device profile parameters.

Summary

Table 10: Device Profile Summary

Summary Section Description

Name Name of device profile. 64 characters or fewer.

Number of slots Number of slots or modules on the device. Modular switches have multiple slots.

Start from ID

Selector

The Selector section contains device-specific information to match the hardware device to the device
profile as described below:

Table 11: Device Profile Selector

Selector Section Description

Manufacturer Selected from drop-down list

Model Determines whether a device profile can be applied to specific hardware. Selected from drop-
down list or entered as a regular expression (regex).

OS family Defines how configuration is generated, how telemetry commands are rendered, and how
configuration is deployed on a device. Selected from drop-down list.

Version Determines whether a device profile can be applied to specific hardware. Selected from drop-
down list or entered as regex.

204

Capabilities

You can leverage the hardware and software capabilities defined in this section in other parts of the
Apstra environment to adapt the generated configuration, or to prevent an incompatible situation. With
the exception of ECMP, hardware capabilities modify configuration rendering or deployment.
Capabilities include the following details:

Table 12: Device Profile Capabilities

Capabilities Section Description

CPU (cpu:string) Describes the CPU architecture of the device. For example: "x86"

Userland (bits) (userland:integer) Type of userland (application binary/kernel) the device supports. For example:
"32" or "64".

RAM (GB) (ram:integer) Amount of memory on the device. For example: "16"

ECMP limit (ecmp_limit:integer) Maximum number of Equal Cost Multi Path routes. For example: "64". This
field changes BGP configuration on the device (ecmp max-paths).

Form factor (form_factor:string) Number of rack units (RU)s on the device. For example: "1RU", "2RU", "6RU",
"7RU", "11RU","13RU"

ASIC (asic:string) The switch chipset ASIC. For example: "T2", "T2(3)", "T2(6)", "Arad(3)", "Alta",
"TH", "Spectrum", "XPliant XP80", "ASE2", "Jericho". Used to assist telemetry,
configuration rendering and VXLAN routing semantics

LXC (lxc_support: boolean) Selected if the device supports LXC containers.

ONIE (onie: boolean) Selected if the device supports ONIE.

Supported Features (Cisco only)

COPP - When Control Plane Policing is enabled (COPP), strict CoPP profile config is rendered for the
specified NX-OS version resulting in the following configuration rendering:

terminal dont-ask
copp profile strict

205

This terminal dont-ask config is needed only when enabling the CoPP profile strict config, since we do
not want NX-OS to wait for confirmation:

switch(config)# copp profile strict
This operation can cause disruption of control traffic. Proceed (y/n)? [no] ^C
switch(config)#
switch(config)# terminal dont-ask
switch(config)# copp profile strict
switch(config)#

CoPP is enabled by default, except for Cisco 3172PQ NXOS. You can specify multiple versions.

Breakout - Enable breakout to indicate that ports on specified modules can be broken out to lower
speed split ports.

Apstra software first un-breakouts all ports that are breakout-capable, and then applies the proper
breakout commands according to intent. This is based on the assumption that the global negation
command no interface breakout module<module_number> can always be applied successfully to a module with
breakout capable ports. (This is idempotent when applied on ports that are not broken out.) However,
we recognize that this assumption may be broken in future versions of NX-OS, or with a certain
combination of cables / transceivers inserted into breakout-capable ports.

The example below is for the negation command for a module (1) that is set to True:

no interface breakout module 1
!

Since the negation command is always applicable per module, each module is specified individually. The
advantages of this include:

• In modular systems, not all line cards have breakout capable ports.

• In non-modular systems, the breakout capable ports may not always be in module 1.

Breakout is enabled by default except for the following devices with modules incapable of breaking out
ports: 3172PQ NXOS, 9372TX NXOS, C9372PX NXOS, C9396PX NXOS, NXOSv.

Historical Context - With a particular version of NX-OS the POAP stage would apply breakout config on
those ports which are breakout capable. POAP behavior, introduced in 7.0(3)I4(1) POAP, determines
which breakout map (for example, 10gx4, 50gx2, 25gx4, or 10gx2) brings up the link connected to the
DHCP server. If breakout is not supported on any of the ports, POAP skips the dynamic breakout
process. After the breakout loop completes, POAP proceeds with the DHCP discovery phase as normal.
Apstra reverts any such breakout config that might have been rendered during the POAP stage to
ensure that the ports are put back to default speed by applying the negation command.

206

Sequence Numbers Support - Applicable to autonomous system (AS) path. Enable when the device
supports sequence numbers. Apstra sequences into the entry list to resequence and generate config as
follows:

ip as-path access-list MyASN seq 5 permit ^$
ip as-path access-list Rtr seq 5 permit ^3
ip as-path access-list Srvr seq 15 permit _103$

The numbers 5 and 15 are sequence numbers applicable to devices that support AS sequencing.

Sequence numbers support is enabled for all Cisco device profiles by default (except Cisco 3172PQ
NXOS, which does not support sequence numbers). For platforms that do not support sequence
numbers, disabling this feature ensures that the AS sequence numbers are removed from the device
model dictionary to avoid addition and negation in the event that something is resequenced. This
scenario has no requirement to render anything on these platforms, because the entry can't be
sequenced.

Other supported features - not available from the Apstra GUI include "vxlan", "bfd", "vrf_limit",
"vtep_limit", "floodlist_limit", "max_l2_mtu", and "max_l3-mtu". They can be included in the backend using
the following format:

key : value :: feature : feature_properties Example: 32 vtep_limit: 32

Ports

The ports section defines the types of available ports, their capabilities and how they are organized.

Every port contains a collection of supported speed transformations. Each transformation represents the
breakout capability (such as 1-40GBe port breaking out to 4-10GBe ports), and hence contains a
collection of interfaces.

Example: If port 1 is a QSFP28 100->4x10, 100->1x40 breakout capable port, then port 1 has a
collection of three transformations, one each for 4x10, 1x40 and 1x100 breakouts. The transformation
element in the collection which represents the 4x10 has a collection of 4 interfaces, 1x40 and 1x100
has a collection of 1 interface.

Ports parameters include the following details:

Table 13: Device Profile Ports

Ports Section Description

Port Index (port_id: integer) Indicates a unique port in the collection of ports in the Device Profile.

207

Table 13: Device Profile Ports (Continued)

Ports Section Description

Row Index (row_id: integer) Represents the top-to-bottom dimensions of the port panel. Shows where the
port is placed in the device's panel. For instance, in a panel with two rows and
many columns the row index is either "1" or "2".

Column Index (column_id:
integer)

Represents the left-to-right dimensions of the port panel. Shows where the port is
placed in the device's panel. For instance, in a panel with thirty-two ports and two
rows, the column index is in the range of "1" through "16".

Panel Index (panel_id:
integer)

Indicates the panel that the port belongs to given the physical layout of ports in
the device specification

Slot ID (slot_id: integer) Represents the module that the port belongs to. A modular switch has more than
one slot. In fixed function network function devices, Slot ID is usually "0".

Failure Domain
(failure_domain_id: integer)

Indicates if multiple panels are relying on the same hardware components. Used
when creating the cabling plan to ensure that two uplinks are not attached to the
same failure domain.

Connector Type
(connector_type: string)

Port transceiver type. Speed capabilities of the port are directly related to the
connector type, given that certain connector types can run in certain speeds. For
instance, "sfp", "sfp28", "qsfp", "qsfp28".

Transformations
(transformations: list)

Possible breakouts for the port. Every entry is a specific supported speed. Each
transformation has a collection of interfaces.

Number of interfaces
(interfaces:list)

Dependent on the breakout capability of the port. For a transformation
representing a certain breakout speed, the interfaces contain information about
the interface names and interface settings with which the device intends to be
configured. The "setting" information is crucial for configuring the interfaces
correctly on the device.

Based on the OS information entered in the device profile's selector field, the Apstra GUI displays the
applicable settings fields. The fields vary with the vendor OS (as found in examples below). When a
device profile is created or edited, the "setting" is validated from the vendor-specific schema as listed
below.:

eos_port_setting = Dict({
 'interface': Dict({
 'speed': Enum([
 '', '1000full', '10000full', '25gfull', '40gfull',

208

 '50gfull', '100gfull',
])}),
 'global': Dict({
 'port_group': Integer(),
 'select': String()
 })
 })

nxos_port_setting = Dict({
 'interface': Dict({
 'speed': Enum([
 '', '1000', '10000', '25000', '40000', '50000',
 '100000',
])}),
 'global': Dict({
 "port_index": Integer(),
 "speed": String(),
 "module_index": Integer()
 })
 })

junos_port_setting = Dict({
 'interface': Dict({
 'speed': Enum([
 '', 'disabled', '1g', '10g', '25g', '40g', '50g', '100g'
])}),
 'global': Dict({
 'speed': Enum([
 '', '1g', '10g', '25g', '40g', '50g', '100g'
]),
 "port_index": Optional(Integer()),
 "fpc": Optional(Integer()),
 "pic": Optional(Integer())
 })
 })

sonic_port_setting = Dict({
 'interface': Dict({
 "command": Optional(String()),
 "speed": String(),
 "lane_map": Optional(String())
 })

209

 })
})

Apstra does not necessarily use all the information above for modeling. It's made available to other
Apstra API orchestration tools for collection and use.

View Device Profiles

From the left navigation menu in the Apstra GUI, navigate to Devices > Device Profiles to go to the
device profile table view.You can create, clone, edit, and delete device profiles.

Create Device Profile

NOTE: When you upgrade the Apstra server, predefined device profile changes applicable to that
version are also updated and applied to the imported interface maps in blueprints. If you create
(or clone) device profiles, they are not managed or updated when you upgrade the Apstra server.

Device profiles contain extensive hardware model details. Make sure the profile accurately describes all
hardware characteristics. For assistance, contact "Juniper Support" on page 802.

1. From the left navigation menu, navigate to Devices > Device Profiles and click Create Device Profile.

2. If you've created a JSON payload, click Import Device Profile and select the file to import it.
Otherwise, continue to the next step.

3. Enter a unique device profile name.

210

4. Configure the device profile to match the characteristics of the physical device. See "Device Profile
Overview" on page 203 for details.

5. Click Create to create the device profile and return to the table view.

Edit / Delete Device Profile

IN THIS SECTION

Edit Device Profile | 211

Delete Device Profile | 211

Edit Device Profile

If a device profile is used in an "interface map" on page 13, you may not be able to change it if it would
adversely affect that interface map. As of Apstra version 4.1.1, you can't change predefined profiles,
since your changes would be discarded when you upgrade the Apstra server. You could clone and edit a
predefined device profile instead.)

CAUTION: Editing a device profile can lead to a mismatch between the profile's stated
abilities and the device's actual capabilities, potentially leading to unexpected results.

1. Either from the table view (Devices > Device Profiles) or the details view, click the Edit button for the
device profile to edit.

2. Make your changes.

3. Click Update (bottom-right) to update the device profile and return to the table view.

Delete Device Profile

Predefined device profiles can't be deleted. Device profiles used in "interface maps" on page 13 can't be
deleted.

1. Either from the table view (Devices > Device Profiles) or the details view, click the Delete button for
the device profile to delete.

2. Click Delete to delete the device profile and return to the table view.

You can also use REST API to manage device profiles. Navigate to Platform > Developers for REST
API Documentation and tools.

211

Juniper Device Profiles

IN THIS SECTION

Overview | 212

Juniper QFX10002 | 212

Overview

Predefined device profiles for most qualified Juniper devices ship with Apstra software. For a complete
list of qualified and recommended Juniper device series and Junos versions, see "Qualified Device and
NOS" on page 956. Juniper device profile constraints are specified below.

Juniper QFX10002

The 36-port Juniper QFX10002-36Q and 72-port QFX10002-72Q are qualified devices. Both of these
models have a port constraint where only certain ports can be used with QSFP28 100G transceivers.

212

If these ports are used as 100G, then the adjacent QSFP 40G ports can't be used. The device profile
can't automatically disable the adjacent QSFP 40G ports. You must create an interface map with these
ports unused and disabled.

When you select the 100G ports while you're creating the interface map for QFX10002, you are asked if
you want to select the disabled interfaces for unused device profile ports. For 100G ports on the
QFX10002, click OK so the unused QSFP ports are disabled and can't be used.

SONiC Device Profile

IN THIS SECTION

Background | 214

Problem Statement | 214

Solution | 214

User Interface | 215

Selector information | 215

Capabilities | 215

Interface naming conventions | 216

213

Troubleshooting | 216

Example: DP and port_config.ini | 217

Background

Devices are recognized in the Apstra environment with device profiles. They capture device-specific
semantics, which are required for the Apstra software to discover them and to run network configs that
work well for the datapath once inside the blueprint.

Device profiles are REST entities, which enable you to create, edit, delete, and list during the design
phase. Device profiles are used to create interface maps, which get directly used inside the Apstra config
rendering engine when blueprints are deployed.

This document covers the knowledge required to create (and edit) a semantically correct Sonic DP, so
that not only does it pass the validations in place in Apstra which ensure the right DP is created in the
database, but also honors the vendor semantic requirement applicable to the device so that it does not
result in deploy failure when the generated configuration is pushed to the network device.

Problem Statement

Device profiles are vendor semantics-aware data structures. To create a device profile, you need the
device specification from the vendor. To create a valid and config-friendly JSON, you'll need to translate
these specifications into the Apstra device profile data model.

Solution

The high level data model is the same for all DPs. The same keys are used for every device profile. The
way we get the values might differ, or might be loaded with a vendor constraint. The document enlists
the following:

• The schema of the DP and the nested elements inside the DP.

• The meaning of each key value pair in the schema.

• The vendor specific recipe the values are populated.

• List any constraints, corner cases to consider, especially for port configurations for certain (group of)
models.

• Any lessons learnt along the way creating those DPs already in production useful in creating future
ones.

214

User Interface

When you create device profiles from the Apstra GUI, some of your entries are semantically validated.
It's not completely capable of ensuring deep vendor-specific constraints and requirements though. With
the exact vendor specification, the GUI assists you with creating a semantically valid DP which becomes
part of the Apstra database data model.

Alternatively, you can write your own Python code that contains the vendor specifications, normalize it
as per Apstra DP data model and generate the json to then import with the GUI.

Selector information

Entering the correct information in all four of the selector fields is critical for the device to get matched
to the device profile.

Selector Field Value Command to get the information on device

model 0x21 show platform syseeprom

manufacturer If 0x2D in syseeprom, 0x2D else 0x2B show platform syseeprom

OS family SONiC Show version

version .* Show version

Capabilities

If you have the device specification, you can obtain its hardware and software capabilities for entry into
the device profile.

The table below contains commonly found values in SONiC devices (based on qualified devices).

Selector Field Value Command to get the information on device

userland 64 (int) Does not affect config

form_factor ‘1RU’ (string) Does not affect config

ecmp_limit 64 (int) Does not affect config

asic ‘T2’ (string) Does not affect config

215

(Continued)

Selector Field Value Command to get the information on device

cpu ‘x86’ (string) Does not affect config

ram 16 (int) (Note, the unit is in GB) Does not affect config

onie True (bool) (default) Does not affect config

lxc True (bool) (default) Does not affect config

Interface naming conventions

Sonic follows the naming conventions per the sonic port name file as found Azure SONIC on the github
master. https://github.com/Azure/SONiC/blob/master/doc/sonic-port-name.md

To create a SONIC device profile, you must read through the device specific port_config.ini (for example,
sonic-buildimage/device/mellanox/x86_64-mlnx_msn2100-r0/ACS-MSN2100/port_config.ini) file and
follow the instructions in the above link to come up with the right interface names.

The port_congi.ini specifies interface names that SONiC uses. The device profile must match interface
names which will generate the PORT configs in the configuration file (config_db.json) . For this document
purposes, port_config.ini and config_db.json should have the same interface naming standard. Use those
interface names in your DP along with the lane numbers provided in the port_cfg.ini file. Once a device
profile has been generated based on the aforementioned steps, Apstra will use that along with the LD to
generate the Interface Map (IM). Apstra as part of its validation will make sure that the IM (which
describes the port and its speeds) are indeed available and supported under “/usr/share/sonic/device/
x86_64-mlnx_msn2100-r0/ACS-MSN2100/port_config.ini” . This validation is performed to make sure
SONiC NOS stack does not fail due to unsupported port configuration (in config_db.json) getting
wrongly generated in Apstra due to wrong DP. So it is important that the end user makes sure the DP
that is generated for a SONiC platform has the correct interface names and lane maps as reflected in
port_config.ini file for that particular platform. A platform may have a few different port_config.ini files
part of different HWSKUs for that platform. Apstra will try to validate the generated port configs with
any of the available options for that platform. Apstra currently does not use the Dynamic Port breakout
feature which is on-going in the SONiC project.

Troubleshooting

Device mismatch usually occurs at the beginning of a device’s lifecycle. If the device is not selecting the
device profile, check the four selector fields in the device profile.

216

https://github.com/Azure/SONiC/blob/master/doc/sonic-port-name.md

If ports are configured with incorrect speeds or if the OS-specific port constraints were not handled in
the device profile or interface map, then deploy errors could be raised.

A possible flow for root cause would be:

• Check the DP for obvious port capabilities errors. Is the port really capable of the speeds the DP has
configured. The device specific port_config.ini Sonic open source project is a good resource to parse
for ERROR messages.

• Check if the DP has configured autoneg or disabled interfaces correctly. Autoneg and disabled can
both be expressed in the interface setting field.

• When debugging the interface names and lane mapping, please take a look at the corresponding
port_config.ini. As an example for AS5712-54X edgecore/accton box we can get the port_config.ini
file that has the details like lane/name/alias at https://github.com/Azure/sonic-buildimage/tree/
master/device/accton/x86_64-accton_as5712_54x-r0/Accton-AS5712-54X

• You can find the naming constraints in the official SONiC documentation. For example if you want to
generate the interface names for Accton 5712 54X running SONIC, the port_config.ini is the
authority. https://github.com/Azure/sonic-buildimage/blob/master/device/accton/x86_64-
accton_as5712_54x-r0/Accton-AS5712-54X/port_config.ini Sometimes the device might have inter-
port constraints. For SONiC, it's generally laid out in the port_config.ini file. A specific platform could
have multiple port_config.ini files, and a specific manufacturer with each port_config.ini file residing
in their on HWSKU folders in the sonic image (like the one referenced above). The ability to try out
different port speeds on (outside of what is listed in the port_config.ini) will need knowledge of the
chipset and also the physical switch manufacturer to see what can be achieved. This information may
not be available in any white papers unless requested of vendors.

Example: DP and port_config.ini

Port_config.ini from sonic-buildimage is below for Dell_Z9100 (x86_64-dell_z9100_c2538-r0/Force10-
Z9100-C32

name lanes alias index
Ethernet0 49,50,51,52 hundredGigE1/1 1
Ethernet4 53,54,55,56 hundredGigE1/2 2
Ethernet8 57,58,59,60 hundredGigE1/3 3
Ethernet12 61,62,63,64 hundredGigE1/4 4
Ethernet16 65,66,67,68 hundredGigE1/5 5
Ethernet20 69,70,71,72 hundredGigE1/6 6
Ethernet24 73,74,75,76 hundredGigE1/7 7
Ethernet28 77,78,79,80 hundredGigE1/8 8
Ethernet32 37,38,39,40 hundredGigE1/9 9
Ethernet36 33,34,35,36 hundredGigE1/10 10

217

https://github.com/Azure/sonic-buildimage/tree/master/device/accton/x86_64-accton_as5712_54x-r0/Accton-AS5712-54X
https://github.com/Azure/sonic-buildimage/tree/master/device/accton/x86_64-accton_as5712_54x-r0/Accton-AS5712-54X
https://github.com/Azure/sonic-buildimage/blob/master/device/accton/x86_64-accton_as5712_54x-r0/Accton-AS5712-54X/port_config.ini
https://github.com/Azure/sonic-buildimage/blob/master/device/accton/x86_64-accton_as5712_54x-r0/Accton-AS5712-54X/port_config.ini

Ethernet40 45,46,47,48 hundredGigE1/11 11
Ethernet44 41,42,43,44 hundredGigE1/12 12
Ethernet48 81,82,83,84 hundredGigE1/13 13
Ethernet52 85,86,87,88 hundredGigE1/14 14
Ethernet56 89,90,91,92 hundredGigE1/15 15
Ethernet60 93,94,95,96 hundredGigE1/16 16
Ethernet64 97,98,99,100 hundredGigE1/17 17
Ethernet68 101,102,103,104 hundredGigE1/18 18
Ethernet72 105,106,107,108 hundredGigE1/19 19
Ethernet76 109,110,111,112 hundredGigE1/20 20
Ethernet80 21,22,23,24 hundredGigE1/21 21
Ethernet84 17,18,19,20 hundredGigE1/22 22
Ethernet88 29,30,31,32 hundredGigE1/23 23
Ethernet92 25,26,27,28 hundredGigE1/24 24
Ethernet96 117,118,119,120 hundredGigE1/25 25
Ethernet100 113,114,115,116 hundredGigE1/26 26
Ethernet104 125,126,127,128 hundredGigE1/27 27
Ethernet108 121,122,123,124 hundredGigE1/28 28
Ethernet112 5,6,7,8 hundredGigE1/29 29
Ethernet116 1,2,3,4 hundredGigE1/30 30
Ethernet120 13,14,15,16 hundredGigE1/31 31
Ethernet124 9,10,11,12 hundredGigE1/32 32

Translate port_config to a port-to-lane_map data structure using parse.py script:

Parse.py
=========
#!/usr/bin/python
Copyright (c) 2017 Apstrktr, Inc. All rights reserved.
Apstrktr, Inc. Confidential and Proprietary.
#
This source code is licensed under End User License Agreement found in the
LICENSE file at http://apstra.com/eula

pylint: disable=line-too-long

import sys
from pprint import pprint

Run the program as ./parse.py <path_to_sonic_platform_port_config.ini>
ex: ./parse.py sonic-buildimage/device/mellanox/x86_64-mlnx_msn2100-r0/ACS-MSN2100/
port_config.ini

218

def get_lanemap(buf):
 if not buf:
 return None
 d = {}
 interface_indices = []
 for line in buf.split('\n'):
 if line.startswith('#'):
 continue
 words = line.split(' ')
 words = [word for word in words if len(word)]
 if not len(words):
 continue
 intf = words[0][8:]
 lane = words[1].split(',')
 interface_indices.append(intf)
 if len(lane) > 1:
 one = 'Ethernet' + str(intf)
 two = 'Ethernet' + str(int(intf)+1)
 three = 'Ethernet' + str(int(intf)+2)
 four = 'Ethernet' + str(int(intf)+3)
 d.update({one:lane[0]})
 d.update({two:lane[1]})
 d.update({three:lane[2]})
 d.update({four:lane[3]})
 else:
 d.update({words[0]:words[1]})
 return {'interface_names' : interface_indices, 'lane_mapping' : d}

def parse_portconfig(f):
 buf = ''
 with open(f, 'r') as stream:
 buf = stream.read()
 return {'<Platform>': get_lanemap(buf)}

if __name__ == '__main__':
 assert len(sys.argv) > 1, "Missing port_config.ini in cmdline"
 print "Collecting lane information from ", sys.argv[1]
 pprint(parse_portconfig(sys.argv[1]))
 print
"==="
 print " Substitute <Platform> with an identifier for the platform"
 print " Append the dump into sdk/device-profile/sonic.py's sonic_device_info dictionary"

219

 print
"==="

To run parse.py

parse.py <Path to the port_config.ini file from sonic_buildimage>

Example:

parse.py sonic-buildimage/device/dell/x86_64-dell_z9100_c2538-r0/Force10-Z9100-C32/
port_config.ini

Collecting lane information from sonic-buildimage/device/dell/x86_64-dell_z9100_c2538-r0/
Force10-Z9100-C32/port_config.ini
{'<Platform>': {'interface_names': ['0',
 '4',
 '8',
 '12',
 '16',
 '20',
 '24',
 '28',
 '32',
 '36',
 '40',
 '44',
 '48',
 '52',
 '56',
 '60',
 '64',
 '68',
 '72',
 '76',
 '80',
 '84',
 '88',
 '92',
 '96',
 '100',
 '104',
 '108',

220

 '112',
 '116',
 '120',
 '124'],
 'lane_mapping': {'Ethernet0': '49',
 'Ethernet1': '50',
 'Ethernet10': '59',
 'Ethernet100': '113',
 'Ethernet101': '114',
 'Ethernet102': '115',
 'Ethernet103': '116',
 'Ethernet104': '125',
 'Ethernet105': '126',
 'Ethernet106': '127',
 'Ethernet107': '128',
 'Ethernet108': '121',
 'Ethernet109': '122',
 'Ethernet11': '60',
 'Ethernet110': '123',
 'Ethernet111': '124',
 'Ethernet112': '5',
 'Ethernet113': '6',
 'Ethernet114': '7',
 'Ethernet115': '8',
 'Ethernet116': '1',
 'Ethernet117': '2',
 'Ethernet118': '3',
 'Ethernet119': '4',
 'Ethernet12': '61',
 'Ethernet120': '13',
 'Ethernet121': '14',
 'Ethernet122': '15',
 'Ethernet123': '16',
 'Ethernet124': '9',
 'Ethernet125': '10',
 'Ethernet126': '11',
 'Ethernet127': '12',
 'Ethernet13': '62',
 'Ethernet14': '63',
 'Ethernet15': '64',
 'Ethernet16': '65',
 'Ethernet17': '66',
 'Ethernet18': '67',

221

 'Ethernet19': '68',
 'Ethernet2': '51',
 'Ethernet20': '69',
 'Ethernet21': '70',
 'Ethernet22': '71',
 'Ethernet23': '72',
 'Ethernet24': '73',
 'Ethernet25': '74',
 'Ethernet26': '75',
 'Ethernet27': '76',
 'Ethernet28': '77',
 'Ethernet29': '78',
 'Ethernet3': '52',
 'Ethernet30': '79',
 'Ethernet31': '80',
 'Ethernet32': '37',
 'Ethernet33': '38',
 'Ethernet34': '39',
 'Ethernet35': '40',
 'Ethernet36': '33',
 'Ethernet37': '34',
 'Ethernet38': '35',
 'Ethernet39': '36',
 'Ethernet4': '53',
 'Ethernet40': '45',
 'Ethernet41': '46',
 'Ethernet42': '47',
 'Ethernet43': '48',
 'Ethernet44': '41',
 'Ethernet45': '42',
 'Ethernet46': '43',
 'Ethernet47': '44',
 'Ethernet48': '81',
 'Ethernet49': '82',
 'Ethernet5': '54',
 'Ethernet50': '83',
 'Ethernet51': '84',
 'Ethernet52': '85',
 'Ethernet53': '86',
 'Ethernet54': '87',
 'Ethernet55': '88',
 'Ethernet56': '89',
 'Ethernet57': '90',

222

 'Ethernet58': '91',
 'Ethernet59': '92',
 'Ethernet6': '55',
 'Ethernet60': '93',
 'Ethernet61': '94',
 'Ethernet62': '95',
 'Ethernet63': '96',
 'Ethernet64': '97',
 'Ethernet65': '98',
 'Ethernet66': '99',
 'Ethernet67': '100',
 'Ethernet68': '101',
 'Ethernet69': '102',
 'Ethernet7': '56',
 'Ethernet70': '103',
 'Ethernet71': '104',
 'Ethernet72': '105',
 'Ethernet73': '106',
 'Ethernet74': '107',
 'Ethernet75': '108',
 'Ethernet76': '109',
 'Ethernet77': '110',
 'Ethernet78': '111',
 'Ethernet79': '112',
 'Ethernet8': '57',
 'Ethernet80': '21',
 'Ethernet81': '22',
 'Ethernet82': '23',
 'Ethernet83': '24',
 'Ethernet84': '17',
 'Ethernet85': '18',
 'Ethernet86': '19',
 'Ethernet87': '20',
 'Ethernet88': '29',
 'Ethernet89': '30',
 'Ethernet9': '58',
 'Ethernet90': '31',
 'Ethernet91': '32',
 'Ethernet92': '25',
 'Ethernet93': '26',
 'Ethernet94': '27',
 'Ethernet95': '28',
 'Ethernet96': '117',

223

 'Ethernet97': '118',
 'Ethernet98': '119',
 'Ethernet99': '120'}}}
===
 Substitute <Platform> with an identifier for the platform
 Append the dump into sdk/device-profile/sonic.py's sonic_device_info dictionary
===

The output from above will become a dictionary entry in sonic_device_info in the sonic device_profile
generator python file.

Corresponding Device Profile generated in Apstra:

{
 "hardware_capabilities": {
 "asic": "TH",
 "cpu": "x86",
 "ecmp_limit": 64,
 "form_factor": "1RU",
 "ram": 16,
 "userland": 64
 },
 "id": "Force10-Z9100_SONiC",
 "label": "Dell Force10-Z9100_SONiC",
 "ports": [
 {
 "column_id": 1,
 "connector_type": "qsfp28",
 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 0,
 "row_id": 1,
 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet0",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"49,50,51,52\"}}",

224

 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet0",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"49,50,51,52\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 },
 {
 "column_id": 1,
 "connector_type": "qsfp28",
 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 1,
 "row_id": 2,
 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet4",

225

 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"53,54,55,56\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet4",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"53,54,55,56\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 },
 {
 "column_id": 2,
 "connector_type": "qsfp28",
 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 2,
 "row_id": 1,
 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [
 {

226

 "interface_id": 1,
 "name": "Ethernet8",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"57,58,59,60\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet8",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"57,58,59,60\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 },
 {
 "column_id": 2,
 "connector_type": "qsfp28",
 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 3,
 "row_id": 2,
 "slot_id": 0,
 "transformations": [
 {

227

 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet12",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"61,62,63,64\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet12",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"61,62,63,64\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 },
 {
 "column_id": 3,
 "connector_type": "qsfp28",
 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 4,
 "row_id": 1,
 "slot_id": 0,

228

 "transformations": [
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet16",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"65,66,67,68\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet16",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"65,66,67,68\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 },
 {
 "column_id": 3,
 "connector_type": "qsfp28",
 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 5,

229

 "row_id": 2,
 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet20",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"69,70,71,72\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet20",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"69,70,71,72\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 },
 {
 "column_id": 4,
 "connector_type": "qsfp28",
 "failure_domain_id": 1,

230

 "panel_id": 1,
 "port_id": 6,
 "row_id": 1,
 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet24",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"73,74,75,76\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet24",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"73,74,75,76\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 },
 {
 "column_id": 4,

231

 "connector_type": "qsfp28",
 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 7,
 "row_id": 2,
 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet28",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"77,78,79,80\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet28",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"77,78,79,80\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 },

232

 {
 "column_id": 5,
 "connector_type": "qsfp28",
 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 8,
 "row_id": 1,
 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet32",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"37,38,39,40\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet32",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"37,38,39,40\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }

233

]
 },
 {
 "column_id": 5,
 "connector_type": "qsfp28",
 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 9,
 "row_id": 2,
 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet36",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"33,34,35,36\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet36",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"33,34,35,36\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,

234

 "transformation_id": 2
 }
]
 },
 {
 "column_id": 6,
 "connector_type": "qsfp28",
 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 10,
 "row_id": 1,
 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet40",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"45,46,47,48\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet40",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"45,46,47,48\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }

235

],
 "is_default": false,
 "transformation_id": 2
 }
]
 },
 {
 "column_id": 6,
 "connector_type": "qsfp28",
 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 11,
 "row_id": 2,
 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet44",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"41,42,43,44\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet44",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"41,42,43,44\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },

236

 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 },
 {
 "column_id": 7,
 "connector_type": "qsfp28",
 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 12,
 "row_id": 1,
 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet48",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"81,82,83,84\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet48",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"81,82,83,84\"}}",
 "speed": {
 "unit": "G",

237

 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 },
 {
 "column_id": 7,
 "connector_type": "qsfp28",
 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 13,
 "row_id": 2,
 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet52",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"85,86,87,88\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet52",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"85,86,87,88\"}}",

238

 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 },
 {
 "column_id": 8,
 "connector_type": "qsfp28",
 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 14,
 "row_id": 1,
 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet56",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"89,90,91,92\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet56",

239

 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"89,90,91,92\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 },
 {
 "column_id": 8,
 "connector_type": "qsfp28",
 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 15,
 "row_id": 2,
 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet60",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"93,94,95,96\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {

240

 "interface_id": 1,
 "name": "Ethernet60",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"93,94,95,96\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 },
 {
 "column_id": 9,
 "connector_type": "qsfp28",
 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 16,
 "row_id": 1,
 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet64",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"97,98,99,100\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {

241

 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet64",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"97,98,99,100\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 },
 {
 "column_id": 9,
 "connector_type": "qsfp28",
 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 17,
 "row_id": 2,
 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet68",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"101,102,103,104\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1

242

 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet68",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"101,102,103,104\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 },
 {
 "column_id": 10,
 "connector_type": "qsfp28",
 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 18,
 "row_id": 1,
 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet72",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"105,106,107,108\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],

243

 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet72",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"105,106,107,108\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 },
 {
 "column_id": 10,
 "connector_type": "qsfp28",
 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 19,
 "row_id": 2,
 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet76",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"109,110,111,112\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"

244

 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet76",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"109,110,111,112\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 },
 {
 "column_id": 11,
 "connector_type": "qsfp28",
 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 20,
 "row_id": 1,
 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet80",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"21,22,23,24\"}}",
 "speed": {
 "unit": "G",
 "value": 100

245

 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet80",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"21,22,23,24\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 },
 {
 "column_id": 11,
 "connector_type": "qsfp28",
 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 21,
 "row_id": 2,
 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet84",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"17,18,19,20\"}}",
 "speed": {

246

 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet84",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"17,18,19,20\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 },
 {
 "column_id": 12,
 "connector_type": "qsfp28",
 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 22,
 "row_id": 1,
 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet88",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":

247

\"29,30,31,32\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet88",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"29,30,31,32\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 },
 {
 "column_id": 12,
 "connector_type": "qsfp28",
 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 23,
 "row_id": 2,
 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [
 {
 "interface_id": 1,

248

 "name": "Ethernet92",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"25,26,27,28\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet92",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"25,26,27,28\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 },
 {
 "column_id": 13,
 "connector_type": "qsfp28",
 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 24,
 "row_id": 1,
 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [

249

 {
 "interface_id": 1,
 "name": "Ethernet96",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"117,118,119,120\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet96",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"117,118,119,120\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 },
 {
 "column_id": 13,
 "connector_type": "qsfp28",
 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 25,
 "row_id": 2,
 "slot_id": 0,
 "transformations": [

250

 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet100",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"113,114,115,116\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet100",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"113,114,115,116\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 },
 {
 "column_id": 14,
 "connector_type": "qsfp28",
 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 26,
 "row_id": 1,

251

 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet104",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"125,126,127,128\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet104",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"125,126,127,128\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 },
 {
 "column_id": 14,
 "connector_type": "qsfp28",
 "failure_domain_id": 1,
 "panel_id": 1,

252

 "port_id": 27,
 "row_id": 2,
 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet108",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"121,122,123,124\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet108",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"121,122,123,124\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 },
 {
 "column_id": 15,
 "connector_type": "qsfp28",

253

 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 28,
 "row_id": 1,
 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet112",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\": \"5,6,7,8\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet112",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\": \"5,6,7,8\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 },
 {
 "column_id": 15,
 "connector_type": "qsfp28",

254

 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 29,
 "row_id": 2,
 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet116",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\": \"1,2,3,4\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet116",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\": \"1,2,3,4\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 },
 {
 "column_id": 16,
 "connector_type": "qsfp28",

255

 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 30,
 "row_id": 1,
 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet120",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"13,14,15,16\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet120",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\":
\"13,14,15,16\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 },
 {

256

 "column_id": 16,
 "connector_type": "qsfp28",
 "failure_domain_id": 1,
 "panel_id": 1,
 "port_id": 31,
 "row_id": 2,
 "slot_id": 0,
 "transformations": [
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet124",
 "setting": "{\"interface\": {\"speed\": \"100000\", \"lane_map\":
\"9,10,11,12\"}}",
 "speed": {
 "unit": "G",
 "value": 100
 },
 "state": "active"
 }
],
 "is_default": true,
 "transformation_id": 1
 },
 {
 "interfaces": [
 {
 "interface_id": 1,
 "name": "Ethernet124",
 "setting": "{\"interface\": {\"speed\": \"40000\", \"lane_map\": \"9,10,11,12\"}}",
 "speed": {
 "unit": "G",
 "value": 40
 },
 "state": "active"
 }
],
 "is_default": false,
 "transformation_id": 2
 }
]
 }

257

],
 "selector": {
 "manufacturer": "Dell|DELL",
 "model": "Z9100-ON",
 "os": "SONiC",
 "os_version": ".*"
 },
 "slot_count": 0,
 "software_capabilities": {
 "lxc_support": false,
 "onie": true
 }
}

Resources

IN THIS SECTION

ASN Pools (Resources) | 258

VNI Pools (Resources) | 260

IP Pools (Resources) | 262

IPv6 Pools (Resources) | 264

ASN Pools (Resources)

IN THIS SECTION

ASN Pool Overview | 259

Create ASN Pool | 259

Edit ASN Pool | 260

Delete ASN Pool | 260

258

ASN Pool Overview

Autonomous system numbers (ASNs) are used to support BGP in the underlay. When you're building
your blueprint you'll specify which resource pool to use for assigning ASNs.

NOTE: If you need to assign a specific ASN to a specific device, you can assign the ASN
individually from the staged blueprint in the Properties panel of a selection.

ASN pools include the following details:

Name Description

Pool Name A unique name to identify the resource pool

Total Usage Percentage of ASNs in use for all ranges in the resource pool. (Hover over the status bar to see
the number of ASNs in use and the total number of ASNs in the pool.)

Range Usage The ASNs included in the range and the percentage that are in use. (Hover over the status bar to
see the number of ASNs in use and the total number of ASNs in that range.)

Status Indicates if the pool is in use

From the left navigation menu in the Apstra GUI, navigate to Resources > ASN Pools to go to ASN pools
in the design (global) catalog. You can create, clone, edit and delete ASN pools.

Create ASN Pool

1. From the left navigation menu, navigate to Resources > ASN Pools and click Create ASN Pool.

2. Enter a unique name and range. To add another range, click Add a range and enter the range.

3. Click Create to create the pool and return to the table view.

259

When you're building your blueprint, you'll "assign resources" on page 272 from these pools in the
Staged > Physical view of the blueprint.

Edit ASN Pool

1. Either from the table view (Resources > ASN Pools) or the details view, click the Edit button for the
pool to edit.

2. Make your changes. You can add, change and delete ranges, but you cannot remove ASNs that are in
use.

3. Click Update to update the pool and return to the table view.

Delete ASN Pool

You can delete ASN pools as long as none of the ASNs within the pool are in use.
1. Either from the table view (Resources > ASN Pools) or the details view, click the Delete button for

the pool to delete.

2. Click Delete to delete the pool and return to the table view.

VNI Pools (Resources)

IN THIS SECTION

VNI Pool Overview | 260

Create VNI Pool | 261

Edit VNI Pool | 262

Delete VNI Pool | 262

VNI Pool Overview

Virtual network identifiers (VNIs) are used in VXLAN encapsulation to provide Layer 2 separation for the
overlay traffic in your data center fabric. (For more information about VNI usage, see "Virtual Networks"
on page 403. When you're building your blueprint you'll specify which resource pool to use for assigning
VNIs.

NOTE:

260

Properties

VNI pools include the following details:

Name Description

Pool Name A unique name to identify the resource pool

Total Usage Percentage of VNIs in use for all ranges in the resource pool. (Hover over the status bar to see the
number of VNIs in use and the total number of VNIs in the pool.)

Range Usage The VNIs included in the range and the percentage that are in use. (Hover over the status bar to
see the number of VNIs in use and the total number of VNIs in that range.)

Status Indicates if the pool is in use

From the left navigation menu, navigate to Resources > VNI Pools to go to VNI pools in the design
(global) catalog. You can create, clone, edit and delete VNI pools.

Create VNI Pool

1. From the left navigation menu, navigate to Resources > VNI Pools and click Create VNI Pool.

2. Enter a unique name and a valid range (4096 through 16777214). To add another range, click Add a
range and enter the range.

3. Click Create to create the pool and return to the table view.

When you've created your blueprint, you'll "assign resources" on page 272 from these pools in the
Staged > Virtual view of the blueprint.

261

Edit VNI Pool

1. Either from the table view (Resources > VNI Pools) or the details view, click the Edit button for the
pool to edit.

2. Make your changes. You can add, change, and delete ranges, but you cannot remove any VNIs that
are in use.

3. Click Update to update the pool and return to the table view.

Delete VNI Pool

You can delete VNI pools as long as none of the VNIs within the pool are in use.
1. Either from the table view (Resources > VNI Pools) or the details view, click the Delete button for the

pool to delete.

2. Click Delete to delete the pool and return to the table view.

IP Pools (Resources)

IN THIS SECTION

IP Pool Overview | 262

Create IPv4 Pool | 264

Edit IPv4 Pool | 264

Delete IPv4 Pool | 264

IP Pool Overview

IP addresses are used in the following situations:

Loopback IPs - Spines/Leafs/Generics - the loopback IP is used as the BGP router ID.

SVI Subnets - MLAG Domain - A Switch Virtual Interfaces (SVI) subnet for an MLAG domain is used to
allocate an IP address between MLAG leaf switches.

Link IPs - Spines <-> Leafs - Link IPs are used between spine devices and leaf devices to build the L3-
CLOS fabric. These IPs are necessary for BGP peering between spine devices and leaf devices, and
represent the 'fabric' of the network.

262

Link IPs - Generics - IP addresses facing generic systems are used to statically-route the generic system
loopback and route across that link.

When you're building your blueprint you'll specify which resource pool to use for assigning IP addresses.

NOTE: If you need to assign a specific IP address to a specific device, you can assign the IP
address individually from the staged blueprint in the Properties panel of a selection.

IP pools include the following details:

Table 14: IPv4 Pool Parameters

Name Description

Pool Name A unique name to identify the resource pool

Total Usage Percentage of IP addresses in use for all subnets in the resource pool. (Hover over the status
bar to see the number of IP addresses in use and the total number of IP addresses in the
pool.)

Per Subnet
Usage

The IP addresses included in the subnet and the percentage that are in use. (Hover over the
status bar to see the number of IP addresses in use and the total number of IP addresses in
that subnet.)

Status Indicates if the pool is in use

From the left navigation menu, navigate to Resources > IP Pools to go to IP pools in the design (global)
catalog. You can create, clone, edit and delete IPv4 pools.

263

Create IPv4 Pool

CAUTION: IP address ranges are not validated. It is your responsibility to specify valid
IP addresses. If you configure a switch with an invalid IP block you may receive an error
during the deploy phase. For example, specifying the erroneous multicast subnet
224.0.0.0/4 would be accepted, but it would result in an unsuccessful deployment. If
you assign the same range (or overlapping range) of IP addresses to a blueprint, the
duplicate assignment is detected and you'll receive a warning in the blueprint. You can
commit changes to blueprints with warnings without resolving the issues.

1. From the left navigation menu, navigate to Resources > IP Pools and click Create IP Pool.

2. Enter a unique name and valid subnet. To add another subnet, click Add a Subnet and enter a subnet.

3. Click Create to create the pool and return to the table view.

When you've created your blueprint, you'll "assign resources" on page 272 from these pools n the
Staged > Physical view of the blueprint.

Edit IPv4 Pool

1. Either from the table view (Resources > IP Pools) or the details view, click the Edit button for the pool
to edit.

2. Make your changes. You can add, change, and delete subnets, but you cannot delete any subnets if IP
addresses are in use.

3. Click Update to update the pool and return to the table view.

Delete IPv4 Pool

You can delete IP pools as long as none of the IP addresses within the pool are in use.
1. Either from the table view (Resources > IP Pools) or the details view, click the Delete button for the

pool to delete.

2. Click Delete to delete the pool and return to the table view.

IPv6 Pools (Resources)

IN THIS SECTION

IPv6 Pool Overview | 265

Create IPv6 Pool | 266

264

Edit IPv6 Pool | 266

Delete IPv6 Pool | 266

IPv6 Pool Overview

To use IPv6 addressing, you must update the "fabric addressing policy" on page 545 to enable IPv6 in
the blueprint (Staged > Policies > Fabric Addressing Policy). IPv6 is supported on EVPN L2 deployments
and L3 deployments. Full feature parity for IPv6 across vendors is not available. Refer to the Apstra
Feature Matrix for details.

When you're building your blueprint you'll specify which resource pool to use for assigning IP addresses.

NOTE: If you need to assign a specific IP address to a specific device, you can assign the IP
address individually from the staged blueprint in the Properties panel of a selection.

IP pools include the following details:

Table 15: IPv4 Pool Parameters

Name Description

Pool Name A unique name to identify the resource pool

Total Usage Percentage of IPv6 addresses in use for all subnets in the resource pool. (Hover over the
status bar to see the number of IPv6 addresses in use and the total number of IPv6 addresses
in the pool.)

Per Subnet
Usage

The IPv6 addresses included in the subnet and the percentage that are in use. (Hover over the
status bar to see the number of IPv6 addresses in use and the total number of IPv6 addresses
in that subnet.)

Status Indicates if the pool is in use

From the left navigation menu, navigate to Resources > IPv6 Pools to go to IPv6 pools in the design
(global) catalog. The pool fc01:a05:fab::/48 is predefined. You can create, clone, edit and delete IPv6

265

pools.

Create IPv6 Pool

1. From the left navigation menu, navigate to Resources > IPv6 Pools and click Create IPv6 Pool.

2. Enter a unique name and valid subnet. To add another subnet, click Add a Subnet and enter a subnet.

3. Click Create to create the pool and return to the table view.

When you've created the blueprint, you'll "assign resources" on page 272 from these pools in the Staged
> Virtual view of the blueprint.

Edit IPv6 Pool

1. Either from the table view (Resources > IPv6 Pools) or the details view, click the Edit button for the
pool to edit.

2. Make your changes. You can add, change, and delete subnets, but you cannot delete any subnets if IP
addresses are in use.

3. Click Update to update the pool and return to the table view.

Delete IPv6 Pool

You can delete IP pools as long as none of the IP addresses within the pool are in use.
1. Either from the table view (Resources > IPv6 Pools) or the details view, click the Delete button for

the pool to delete.

2. Click Delete to delete the pool and return to the table view.

266

Datacenter Reference Design

IN THIS SECTION

Create / Delete Datacenter Blueprint | 268

Datacenter Blueprint Summary and Dashboard | 269

Assign Physical Resources (Datacenter) | 272

Assign Device Profiles | 275

Configlets (Datacenter Blueprint) | 276

Topology (Datacenter) | 282

Nodes (Datacenter) | 288

Links (Datacenter) | 333

Racks (Datacenter) | 382

Pods (Datacenter) | 386

Planes (Datacenter) | 399

Virtual Networks | 403

Routing Zones | 423

Static Routes (Virtual) | 433

Protocol Sessions (Virtual) | 434

Data Center Interconnect (DCI) / Remote EVPN Gateways (Virtual) | 435

Virtual Infra (Virtual) | 448

Endpoints Overview (Virtual) | 515

Policies (Datacenter) Staged | 521

Logical Devices (Datacenter Blueprint) | 553

Interface Maps (Datacenter Blueprint) | 555

Property Sets (Datacenter Blueprint) | 556

AAA Servers (Datacenter Blueprint) | 558

Tags (Datacenter Blueprint) | 562

Tasks (Datacenter) Staged | 565

Connectivity Templates | 565

Active (Datacenter Blueprint) | 590

BGP Route Tagging | 617

267

Create / Delete Datacenter Blueprint

IN THIS SECTION

Create Datacenter Blueprint | 268

Delete Datacenter Blueprint | 268

Create Datacenter Blueprint

Datacenter blueprints are based on templates. Make sure a suitable "template" on page 35 exists in the
global catalog (Design > Templates).

1. From the left navigation menu in the Apstra GUI, click Blueprints, then click Create Blueprint.

2. Enter a unique name and select a template from the Template drop-down list. A preview shows
template parameters, topology preview, structure, external connectivity, and policies.

3. Click Create to create the blueprint and return to the blueprint summary view.

Next Steps: "Assign Resources" on page 272.

Delete Datacenter Blueprint

To delete a blueprint you must have permission (in the user roles you are assigned).

1. From the blueprint, click Dashboard, then click Delete Blueprint (top-right).

2. Enter the blueprint name, then click Delete to delete the blueprint and go to the blueprint summary
view.

268

Datacenter Blueprint Summary and Dashboard

IN THIS SECTION

Blueprints Summary | 269

Blueprint Dashboard | 271

Blueprints Summary

The blueprint summary page shows a summary of each individual blueprint. At the top of the page, the
different status indicators show various statuses across all blueprints (deployment status, anomalies,
root causes, build errors and warnings, and uncommitted changes. This is useful when you have many
blueprints in your Apstra instance. To quickly filter to show only blueprints that meet a certain criteria,
click a color in one of the indicators. In the example below, clicking the gray part in the Deployment
Status indicator results in displaying only the blueprints that don’t have any nodes deployed yet. If the
red part in the Anomalies indicator were clicked, only the blueprints that have anomalies would display.

269

270

Blueprint Dashboard

From the left navigation menu in the Apstra GUI, click Blueprints, then click the name of a blueprint to
go to its dashboard.

The blueprint dashboard shows the overall health and status of a blueprint. Statuses are indicated by
color: green for succeeded, yellow for pending, and red for failed. The deployment status section
includes deployment statuses for service config, ready config (previously called discovery config), and
drain config. The anomalies section includes statuses for all probes, IP fabric, generic system
connectivity, liveness, deployment status, route verification, leaf peering, and other. You can have
"analytics dashboards" on page 680 appear on the main blueprint dashboard. The nodes status section
includes statuses for deployment, BGP, cabling, config, interface, liveness, route, and hostname.

271

After you create your blueprint, It's time to "build" on page 272 your network in the staging area.

Assign Physical Resources (Datacenter)

IN THIS SECTION

Update Physical Resource Assignments | 273

Reset Physical Resource Group Overrides | 274

272

You can assign resources, release previously used resources and go to resource pool management. The
resource assignment section has a convenient shortcut button, Manage resource pools, that takes you to
resource pool management. From there, you can monitor resource usage and create additional resource
pools, as needed.

Update Physical Resource Assignments

1. From the blueprint, navigate to Staged > Physical > Build > Resources. (The build panel is on the right
side.)

2. Red status indicators mean that resources need to be assigned. Click a red status indicator, then click
the Update assignments button.

3. Select a pool from which to pull the resources, then click the Save button. The required number of
resources are automatically assigned to the resource group. When the red status indicator turns
green, the resource assignment has been successfully staged.

NOTE: You can also assign resources on a per-device basis (especially useful if you have a
predefined resource mapping). Select the device from the Topology view or Nodes view, then
assign the resource from the Properties section of the Selection panel (right-side). Since you'd

273

not be using a resource pool to assign from, the No pools assigned message remains in the
Build panel. (This is also where you can see the specific resource that was assigned from a
resource pool.)

Reset Physical Resource Group Overrides

Certain blueprint operations require resource allocations to be retained even when you've removed a
device from a blueprint. Overridden resource groups re-use previously allocated resources when a
device is re-used. For example, if you've deleted a rack, then you rollback to a version with that rack, the
same resources must be used. Otherwise, the topology would change (for example, it might have
different IP addresses). In the case of a revert operation, the originally assigned resources appear in the
table view to indicate that they have been retained (but the build section shows that no resources are
assigned). Situations like this can (but do not always) result in build errors. Examples of where we want
resources to persist include:

• Particular time voyager rollbacks (rack removal/addition and so on).

• "Revert" on page 670 operations.

• Using the Update Stated Cabling Map from LLDP feature.

If you don't need to re-use the same resources, reset the resource groups by clicking the Reset resource
group overrides button (shown in the overview image above). Then you can unallocate resources, and
allocate new ones, as applicable.

274

Assign Device Profiles

1. From the "blueprint" on page 269, navigate to Staged > Physical > Build > Device Profiles.

2. Click a red status indicator, then click the Change interface maps assignment button (looks like an
edit button). You assign device profiles by assigning interface maps.

3. Select the appropriate interface map from the drop-down list for each node. Or, to assign the same
interface map to multiple nodes, select the ones that use the same interface map (or all of them with
one click), then select the interface map from the drop-down list located above the selections, and

275

click Assign Selected.

4. Click Update Assignments. When the red status indicator turns green, the device profile assignments
have been successfully staged.

Configlets (Datacenter Blueprint)

IN THIS SECTION

Import Configlet | 277

Edit / Delete Configlet (Blueprint) | 280

Assign Configlet | 281

276

From the blueprint, navigate to Staged > Catalog > Configlets to go to blueprint configlets. You can
import, edit, and delete configlets from the blueprint catalog.

NOTE:
service config deployment"Anomalies (Service)" on page 607

NOTE: If an improperly-configured configlet causes the disruption of connectivity between the
device and Apstra controller, the device deployment state remains in PENDING forever and will
never time out and fail.

For example, if a configlet with misconfigured routing engine firewall filter entry blocks the
NETCONF port (tcp 830), the Junos offbox agent can't connect to the device to retrieve the
running config. The device deployment remains in PENDING state forever and will never time
out and fail. Even if you manually change the device config to unblock NETCONF port (tcp 830),
Apstra again re-sends the configuration from the last commit which results in a continuing
failure. To recover, you have to re-onboard the device. For more details and the workaround, see
the Juniper Support Knowledge Base article KB37291.

Import Configlet

1. Make sure the "configlet" on page 45 that you want to import is in the design (global) catalog (Design
> Configlets).

277

https://kb.juniper.net/kb37291

2. From the blueprint, navigate to Staged > Catalog > Configlets and click Import Configlet.

3. From the drop-down list, select a configlet from the design (global) catalog.

CAUTION: Do not import the same configlet more than once into the same blueprint.
If you import the same configlet twice, then remove one of them, the remaining
configlet becomes invalidated.

278

279

4. For interface configlets only - you have the option of selecting specific roles and/or interface names.

5. Enter your scope query (autocomplete assists you) or create queries visually with the interactive
cards. For example, you can apply configlets based on node tags (such as for all generic systems
tagged as firewalls) in addition to applying them on link tags. This allows for more user-friendly
definition of the configlet application scope, where instead of listing all interfaces, you can list a tag.

6. Click Import Configlet to stage the configlet and return to the table view.

Edit / Delete Configlet (Blueprint)

IN THIS SECTION

Edit Configlet Scope | 280

Edit Configlet Generators | 281

Delete Configlet | 281

Edit Configlet Scope

You can change the configlet scope (roles, IDs, hostnames) directly in the blueprint.

1. From the blueprint, navigate to Staged > Catalog > Configlets and click the Edit button for the
configlet to edit.

2. Make your changes to the configlet scope. The options are the same as when importing a configlet.

280

NOTE: To change configlet generators (template text, negation template text, filename, as
applicable) you must change them in the design (global) catalog, then re-import the configlet
into the blueprint catalog. See the Edit Configlet Generators section.

3. Click Update to stage the update and return to the table view.

Edit Configlet Generators

You can't change configlet generators (template text, negation template text, filename, as applicable)
directly in blueprints. If an existing configlet is no longer relevant, you can delete it and import a new or
revised one. If you're changing a configlet in a blueprint catalog because of a configuration deviation, see
also the Configlets and Config Deviation section.

1. "Edit" on page 51 or create a "configlet" on page 50 in the design (global) catalog.

2. Delete the configlet from the blueprint catalog. (See section below.)

3. "Import" on page 277 the configlet into the blueprint catalog from the design (global) catalog.

4. "Commit" on page 670 the changes.

Delete Configlet

When a configlet is deleted, it is removed from all devices within its scope.

1. From the blueprint, navigate to Staged > Catalog > Configlets and click the Delete button for the
configlet to delete.

2. Click Delete to stage the deletion and return to the table view.

Assign Configlet

Configlets are vendor-specific. Apstra software automatically ensures that configlets of a specific vendor
are not assigned to devices from a different vendor.

NOTE: If you're using a version prior to 4.0, refer to version 3.3.0 documentation for information
about staging external routers, which was deprecated in version 4.0.

1. Make sure that the appropriate configlets have been "imported" on page 277 into the blueprint
catalog from the global catalog.

2. From the blueprint, navigate to Staged > Physical > Build > Configlets.

3. If the configlet has not been imported yet, you can click Manage Configlets to import it .

4. Click the status indicator for the configlet. If the configlet uses a property set, click the Import
Property Set button, select the property set from the drop-down list, then click Import Property Set.

281

Topology (Datacenter)

IN THIS SECTION

2D Topology View | 283

3D Topology View | 284

Neighbors Selection View | 286

Links Selection View | 287

Virtual Network Endpoints | 287

Before you push your changes to the active blueprint you can view progressive changes in the staged
blueprint. This staging area allows you to validate that the pending changes are compliant with the
intent, and that they work together with available resources and devices before you deploy the network.

Many node and link operations are performed from the Topology view. See "Nodes" on page 288 and
"Links" on page 333 for more information.

You can view topologies in 2D or 3D view, and selections within topologies as neighbors, links, or virtual
network endpoints, as applicable.

282

2D Topology View

From the blueprint, navigate to Staged > Physical > Topology to go to the 2D topology view.

• To make topology elements larger, click the Expand Nodes check box.

• To display the links between elements, click the Show Links check box.

• To display a different layer, select the layer from the Layer drop-down list. Uncommitted Changes is
an example of one of the layers you could display. The nodes with uncommitted changes are shown
in yellow. The changes that apply to this layer are specific to the nodes themselves, such as ASN,
loopback IP addresses and deploy modes. It doesn't apply to such changes as adding routing zones,
virtual networks or connectivity templates on those nodes.

• To display additional information (node name, hostname, role, link, tags, as applicable), hover over a
node or link.

• To display a different label (name, hostname, S/N), select a different label from the Topology Label
drop-down list.

283

• To display a specific rack topology, click the rack element or select the rack from the Selected Rack
drop-down list.

• To display a specific node topology, click the node element in the topology or select the node from
the Selected Node drop-down list.

3D Topology View

NOTE: This feature is classified as a Juniper Apstra Technology Preview feature. These features
are "as is" and are for voluntary use. Juniper Support will attempt to resolve any issues that
customers experience when using these features and create bug reports on behalf of support
cases. However, Juniper may not provide comprehensive support services to Tech Preview
features.

For additional information, refer to the "Juniper Apstra Technology Previews" on page 1168 page
or contact "JuniperSupport" on page 802.

284

From the blueprint, navigate to Staged > Physical > Topology and click 3D.

• You can zoom in and out, move left and right, and reset to the default size and orientation.

• To display additional information (node name, hostname, role, as applicable) hover over a node.

• To display rack topology (in 2D), click the rack element or selecting the rack from the Selected Rack
drop-down list.

• To display node topology (in 2D), click the node element or select the node from the Selected Node
drop-down list.

285

Neighbors Selection View

To see the neighbors view of a selection, click Neighbors.

• To display aggregate links, click the Show Aggregate Links check box.

• To display unused ports, click the Show Unused Ports check box.

• To display a different label (name, hostname, S/N), select a different label from the Topology Label
drop-down list (right side).

• To display a particular neighbor type (all neighbors, generic, leaf, spine, and so on) select it from the
Show drop-down list.

• To display available operations for a selected node or interface select the check box(es).

• To see details, hover over a node. As of Apstra version 4.1.2 hovering over a generic system shows
applied connectivity templates. (Prior versions don't include these details on generics.)

286

Links Selection View

To see the links view of a selection, click Links.

Virtual Network Endpoints

To see the virtual network endpoints of a selection, click Virtual Networks Endpoints.

287

Nodes (Datacenter)

IN THIS SECTION

Assign Device (Datacenter) | 290

Unassign Device (Datacenter) | 295

Set Deploy Mode (Datacenter) | 299

Generic Systems vs. External Generic Systems | 300

Add Generic System | 301

Add External Generic System | 309

Add Access Switch | 314

Update Node Tags | 319

Update Port Channel ID Range | 322

Edit Hostname (Datacenter) | 325

Edit Generic System Name | 327

Edit Device Properties (Datacenter) | 328

View Node's Static Routes | 329

Delete Node | 330

288

From the blueprint, navigate to Staged > Physical > Nodes to go to the Nodes view.

• You can view nodes in the table view or card view.

• In table view, you can select which details to display (from the drop-down list).

• You can click the name of a node in the table to display information in the right panel (such as
telemetry, properties, and tags).

Many node operations are performed from the Topology view, and some can also be performed directly
in the Nodes view. See the following sections for more information.

289

Assign Device (Datacenter)

IN THIS SECTION

Device Assignment Overview | 290

Assign Device(s) (from Devices Build Panel) | 290

Assign One Device (from Devices Build Panel) | 293

Assign One System ID (from Selection Panel) | 294

Device Assignment Overview

Before devices can be assigned to a blueprint, they must have interface maps assigned to them (from the
Device Profiles tab). When a device is assigned to a blueprint, it performs discovery configuration.
During this phase all interfaces are changed to L3-only mode allowing interfaces to be up. There is no
BGP configuration, no routing expectations, nothing that can influence the network. A device in
discovery mode is benign; it does not participate in the datacenter fabric, and it does not forward any
packets through it. You can then perform critical validations of network health including viewing
statistics for cabling, LLDP, transceivers and more. Any issues, such as miscabling or physical link errors,
cause a telemetry alarm. You can address and correct the anomalies before deploying the device.

It's common to have a committed blueprint without any deployed devices. You can deploy devices as
required, in batches, one by one, or all in one go. If you want to assign devices without deploying them,
set the deploy mode to Ready, which puts devices in the In Service Ready state. This configuration is
called Ready Config (previously known as Discovery 2 Config).

NOTE: When resetting system IDs (serial number) Discovery 1 configuration is re-applied. Before
physically uninstalling the agent, it is good practice to fully erase the device configuration and
uninstall the device agent.

Assign Device(s) (from Devices Build Panel)

NOTE: You can also use apstra-cli to bulk-assign system IDs to devices either with a CSV text file
or the blueprint set-serial-numbers command.

1. From the blueprint, navigate to Staged > Physical > Build > Devices, and click the status indicator for
Assigned System IDs (if the nodes list is not already displayed). Unassigned devices are indicated in

290

yellow.

2. Click the Change System IDs assignments button (below Assigned System IDs) and, for each node,
select system IDs from the drop-down list. (If you don't see an expected serial number (system ID),

291

you may still need to acknowledge the device (Devices > Managed Devices).)

3. When you select a system ID, the deploy mode changes to Deploy by default. If you don't want to
deploy the device yet, change the deploy mode here. When you're ready to deploy the device, return
here to set the deploy mode back to Deploy.

4. Click Update Assignments to stage the changes. Before the task is completed you can click Active
Tasks at the bottom of the screen to see its progress.

5. "Commit" on page 670 changes to the blueprint to deploy device(s) into the active fabric. Device
state changes to In Service Active and the configuration is called Service Config.

As soon as you deploy a device, anomalies may appear on the dashboard. When telemetry data is
verified against Intent, anomalies resolve themselves. This can take a fair amount of time in some
cases, especially for BGP sessions and advertising routes.

Deploying devices can have different implications depending on the device vendor. Juniper Junos
devices, for example, have the following characteristics with regards to raising anomalies:

• show interface commands don't list interfaces on ports that do not have a transceiver plugged in.
This means Interface Down anomalies can't be raised for these interfaces. Such interfaces can be
recognized using the show virtual-chasses vc-port, and have a status of 'Absent'.

• If a virtual network endpoint is configured on a leaf interface, Apstra expects an EVPN type 3
route for that interface. If this interface is down, Junos does not advertise the RT-3, resulting in a

292

"Missing Route" anomaly. If this anomaly is undesirable, we recommend that you remove the
interface from the virtual network until the interface is up.

After deploying devices a new running config is collected, called the Golden Config, which serves as
Intent. Running configuration is continuously collected and compared against this Golden config.
When a deployment fails, Golden Config is unset. Protocol related anomalies like BGP or LLDP are
only raised if devices at both ends are deployed.

Assign One Device (from Devices Build Panel)

1. From the blueprint, navigate to Staged > Physical > Build > Devices; if you don't see the nodes list,
click the status indicator for Assigned System IDs.

2. From the Assigned System IDs list, click the name of the node that you want to assign. Device details
are displayed (deploy mode, serial number, hostname rendered, incremental and pristine config, as

293

applicable).

NOTE: You can also select a node name in the Selected Nodes drop-down list (left-middle) to
go to these device details.

3. To assign a system ID, click the Edit button for S/N, select the system ID from the drop-down list, and
click the Save button to stage the change. (If you don't see the expected serial number (system ID),
you may still need to acknowledge the device (Devices > Managed Devices).

4. To remove an existing S/N instead of assigning one, click the Edit button for S/N, then click the red
square to stage the change.

Assign One System ID (from Selection Panel)

1. From the blueprint, navigate to Staged > Physical > Nodes and select a node name (not the check
box). (You can narrow your search with the drop-down lists for planes, pods, and racks as applicable,
as of Apstra version 4.0.)

294

2. Click the Device tab in the right panel (if it's not already selected).

3. Enter a different S/N. (You can also access configuration files from here: rendered, incremental,
pristine).

4. Click the Save button to stage the changes.

Unassign Device (Datacenter)

IN THIS SECTION

Unassign Device (from Device Selection Panel) | 295

Unassign Device(s) (from Devices Build Panel) | 298

Unassign Device (from Device Selection Panel)

1. From the blueprint, navigate to Staged > Physical > Topology, and click the device to be removed.

295

2. In the Device panel (on the right), click the Edit button for deploy mode, and change it to Undeploy,
then click the Save button.

296

NOTE: Another way to get to the Device selection panel from the Topology view (or Nodes,
Links, Racks, or Pods view) is to click the Devices tab in the Build panel (on the right), click the
status indicator for Assigned System IDs (to display the nodes and assigned system IDs), then
click the node name that you want to unassign.

3. In the S/N section, click the Edit button.

4. Click the red square in the S/N section to unassign the system ID.

5. Click Uncommitted and "commit" on page 670 changes to the blueprint to remove the device from
the fabric.

297

The device is still under Apstra management. It's ready and available to be assigned to any blueprint.

To remove the device completely from Apstra management, "remove the device from Managed Devices"
on page 78.

Unassign Device(s) (from Devices Build Panel)

1. From the blueprint, navigate to Staged > Physical > Topology, click the Devices tab in the Build panel
(on the right), then click the status indicator for Assigned System IDs to display the nodes and
assigned system IDs.

298

2. Click the Change System IDs assignments button (below Assigned System IDs), then in the dialog that
opens click the Remove assignment button for the device to remove. The deploy mode is
automatically unselected.

3. Click Update Assignments (bottom-right in dialog) to stage the change and return to the Topology
view.

4. Click Uncommitted and "commit" on page 670 changes to the blueprint to remove the device from
the fabric.

The device is still under Apstra management. It's ready and available to be assigned to any blueprint.

To remove the device completely from Apstra management, "remove the device from Managed Devices"
on page 78.

Set Deploy Mode (Datacenter)

IN THIS SECTION

Set Deploy Mode (from Build Panel) | 299

Set Deploy Mode (from Selection Panel) | 300

Set Deploy Mode (from Nodes View) | 300

Set Deploy Mode (from Build Panel)

1. From the blueprint, navigate to Staged > Physical, then in the Build panel (on the right) click the
Devices tab.

2. If you don't see the nodes list, click the status indicator for Assigned System IDs.

3. Click a node name to see device details.

4. Click the Edit button for Deploy Mode and select a deploy mode.

• Deploy - Adds service configuration and puts the device fully in service.

299

• Ready - Adds Ready configuration (hostnames, interface descriptions, port speeds / breakouts)
(previously called Discovery 2 config). Changing from deploy to ready removes service
configuration.

• Drain - Takes a device out of service for maintenance. For more information, see "Draining Device
Traffic" on page 80.

• Undeploy - Removes Apstra-rendered configuration. If a device is carrying traffic it is best to first
put the device into drain mode (and commit the change). When the device is completely drained,
proceed to undeploy the device.

5. Click the Save button to stage the change.

When you're ready to activate changes, "Commit" on page 670 them from the Uncommitted tab.

Set Deploy Mode (from Selection Panel)

1. From the blueprint, navigate to Staged > Physical.

2. Either from the Topology view or the Nodes view, select a node.

3. If it's not already selected, click the Device tab in the Selection panel (on the right).

4. Click the Edit button for Deploy Mode and select a deploy mode.

5. Click the Save button to stage the new deploy mode.

Set Deploy Mode (from Nodes View)

You can change the deploy mode for one or more nodes at the same time from the Nodes view.

1. From the blueprint, navigate to Staged > Physical > Nodes and check one or more check boxes for
the node(s) to change. (You can narrow your search with the drop-down lists for planes, pods, and
racks as applicable.)

2. Click the Set Deploy Mode button (fourth of five buttons above the nodes list) and select a deploy
mode. (To filter selection before changing deploy mode, you can use the query.)

3. Click Set Deploy Mode to stage the change and return to the Nodes view.

Generic Systems vs. External Generic Systems

When to use a generic system and when to use an external generic system:

Generic System

• For attaching compute/storage

• Can only be connected to a single rack

• Appears in the topology as part of a rack

300

External Generic System

• For middleware devices, such as firewalls, load balancers, external routers and so on*

• Can be connected to multiple racks

• Appears in the topology outside of racks for easier identification

* In many cases, middleware boxes only connect to a single border leaf pair in a rack, but configuring it
as an external generic system allows it to be visually separated outside of the rack. However, if there is a
requirement such as connecting to an external router (MX) via BGP and you want to provide rack
redundancy, then you would use an external generic system to allow this multi-rack connectivity.

Add Generic System

IN THIS SECTION

Add Generic System (from Topology View) | 302

Copy Existing Generic System (from Topology View) | 306

When you want to connect your Apstra-managed fabric to a system that's not managed in the Apstra
environment, you use generic systems and external generic systems. These systems can be external
routers, firewalls, or whatever else you want; you specify their roles with tags. If the system is part of a
rack topology, we call it a generic system. If the system is not part of a rack topology, we call it an
external generic system. This page shows you a couple ways that you can add generic systems.

As of Apstra version 4.1.2, you can add generic aystems to access switches.

301

NOTE: You can also create generic systems during the Design phase before creating your
blueprint. For more information, see "Rack Types" on page 23.

Add Generic System (from Topology View)

1. From the blueprint, navigate to Staged > Physical > Topology and select the node to add the new
generic system to.

2. Select the node check box to see the operations available for that node (and that you have
permissions for).

302

NOTE: You can also get to the selection page from the Nodes view. From the blueprint,
navigate to Staged > Physical > Nodes, click the node name in the table, then click the node
name that appears at the top of the Selection panel (on the right side of the page).

3. Click Add generic system and enter a unique label and (optional) hostname.

303

4. Select the representation for the new node (none, logical device, or logical device with interface
map), then select the appropriate logical device or interface map from the drop-down list, as
applicable. (Logical devices allow you to define port roles.)

5. Enter the port channel ID min and max.

6. Enter tags (optional) to identify the role(s) of the new generic system, then click Next.

304

7. Select an available port and transformation. The gray Add Link button turns green.

8. Click Add Link. The link is added to the link table.

9. Click Create to stage the change and return to the Topology view.

When you're ready to activate your changes, commit them from the Uncommitted tab.

305

Copy Existing Generic System (from Topology View)

1. From the blueprint, navigate to Staged > Physical > Topology and select a node that has the generic
system that you want to copy.

2. Select the node check box to see the operations available for that node (and that you have
permissions for).

306

NOTE: You can also get to the selection page from the Nodes view. From the blueprint,
navigate to Staged > Physical > Nodes, click the node name in the table, then click the node
name that appears at the top of the Selection panel (on the right side of the page).

3. Click Copy existing generic and select the generic system from the drop-down list. The link table
appear.

307

4. Click Select interface to go to ports.

5. Select a port and transformation, then click Confirm to return to the dialog.

308

6. Click Submit to stage the change and return to the Topology view.

When you're ready to activate your changes, commit them from the Uncommitted tab.

Add External Generic System

IN THIS SECTION

Add External Generic System (from Topology View) | 309

Add External Generic System (from Nodes View) | 314

When you want to connect your Apstra-managed fabric to a system that's not managed in the Apstra
environment, you use generic systems and external generic systems. These systems can be external
routers, firewalls, or whatever else you want; you specify their roles with tags. If the system is part of a
rack topology, we call it a generic system. If the system is not part of a rack topology, we call it an
external generic system. This page shows you a couple ways that you can add external generic systems.

Add External Generic System (from Topology View)

1. From the blueprint, navigate to Staged > Physical > Topology and select the node to add the new
external generic system to.

309

2. Select the node check box to see the operations available for that node (and that you have
permissions for).

310

NOTE: You can also get to the selection page from the Nodes view. From the blueprint,
navigate to Staged > Physical > Nodes, click the node name in the table, then click the node
name that appears at the top of the Selection panel (on the right side of the page).

3. Click Add external generic and enter a unique label and (optional) hostname.

311

4. Select the representation for the new node (none, logical device, or logical device with interface
map), then select it from the drop-down list as applicable. (Selecting a logical device allows you to
define port roles.)

5. Enter tags (optional) to identify the role(s) of the new external generic system, then click Next.

6. Select an available port and transformation. The gray Add Link button turns green.

312

7. Click Add Link. The link is added to the link table.

8. Click Create to stage the change and return to the Topology view.

313

When you're ready to activate your changes, commit them from the Uncommitted tab.

Add External Generic System (from Nodes View)

1. From the blueprint, navigate to Staged > Physical > Nodes and click the Add external generic systems
button to open its dialog.

2. Enter a hostname, and if you want to be able to define port roles select a logical device from the
drop-down list.

3. Enter tags (optional) to identify the role(s) of the new external generic system.

4. Click Create to stage the changes and return to the Nodes view.

Add Access Switch

For more information about access switches, see Rack Types.
1. From the blueprint, navigate to Staged > Physical > Topology and select the node to add an access

switch to.

314

2. Select the node check box to see the operations available for that node (and that you have
permissions for).

315

NOTE: You can also get to the selection page from the Nodes view. From the blueprint,
navigate to Staged > Physical > Nodes, click the node name in the table, then click the node
name that appears at the top of the Selection panel (on the right side of the page).

3. Click Add access switch and enter a unique label and hostname.

316

4. Select the appropriate interface map from the drop-down list.

5. Enter the port channel ID min and max.

6. Enter tags (optional) to identify the role(s) of the new access switch, then click Next.

7. Select available ports and transformations, as applicable. The gray Add Link button turns green.

317

8. Click Add Link. The link is added to the link table.

9. Click Create to stage the change and return to the Topology view.

When you're ready to activate your changes, commit them from the Uncommitted tab.

318

Update Node Tags

IN THIS SECTION

Update Node Tags (One Node) | 319

Update Node Tags (Multiple Nodes) | 320

Update Node Tags (One Node)

1. From the blueprint, navigate to Staged > Physical > Topology and select the node that needs updated
tags.

2. Select the node check box to see the operations available for that node (and that you have
permissions for).

319

3. Click Update node tags and update node tags as needed.

4. Click Update to update the tags and return to the Selection view.

When you're ready to activate your changes, commit them from the Uncommitted tab.

Update Node Tags (Multiple Nodes)

1. From the blueprint, navigate to Staged > Physical > Nodes and select one or more check boxes for
the node(s) that need updated tags. The Add/Remove Tags button appears above the table.

320

2. Click the Add/Remove Tags button and update tags as needed. When you create new tags here they
are added to the blueprint catalog.

3. Click Add/Remove Tags to stage the change and return to the Nodes view.

When you're ready to activate your changes, commit them from the Uncommitted tab.

321

Update Port Channel ID Range

IN THIS SECTION

Update Port Channel ID Range (from Topology View) | 322

Update Port Channel ID Range (from Nodes view) | 324

You can update the port channel ID range for generic systems either from the Topology view (as of
Apstra version 4.1.2) or from the Nodes view.

CAUTION: Changing port channel range is an invasive operation and may lead to
reassigning existing port channel IDs.

Update Port Channel ID Range (from Topology View)

You can update the port channel ID range from the Topology view as of Apstra version 4.1.2.
1. From the blueprint, navigate to Staged > Physical > Topology and select the generic system to

update.

322

2. You can hover over the generic system to see the port channel ID range (and other details).

3. Select the generic system check box to see the operations available for that generic system (and that
you have permissions for).

323

4. Click Update Port Channel ID Range, then edit the min and/or max values, as needed.

5. Click Update to stage your changes and return to the Topology view.

Update Port Channel ID Range (from Nodes view)

1. From the blueprint, navigate to Staged > Physical > Nodes and click the Edit Port Channel ID Range
button (previously called Edit port channel id min max).

324

2. In the table of generic systems, edit the min and/or max port channel ID values, as needed.

3. Click Update to stage your changes and return to the Nodes view.

Edit Hostname (Datacenter)

IN THIS SECTION

Edit Hostname (from Build Panel) | 325

Edit Hostname (from Selection Panel) | 326

Edit Hostname (from Nodes View) | 326

Edit Hostname (from Build Panel)

1. From the blueprint, navigate to Staged > Physical > Build > Devices; if you don't see the nodes list,
click the status indicator for Assigned System IDs.

2. Click a node name to see device details.

325

3. Click the Edit button for Hostname, change the name, and click the Save button to stage the change.

When you're ready to activate changes, "Commit" on page 670 them from the Uncommitted tab.

Edit Hostname (from Selection Panel)

1. From the blueprint, navigate to Staged > Physical > Nodes and select a node name (not the check
box). (You can narrow your search with the drop-down lists for planes, pods, and racks as applicable,
as of Apstra version 4.0.)

2. If it's not already selected, click the Device tab in the Selection panel (on the right). (You can also
access the Selection panel from Staged > Physical > Topology.)

3. Enter a different hostname. (You can also change deploy mode and system ID and access
configuration files from here: rendered, incremental, pristine).

4. Click the Save button to stage the changes.

Edit Hostname (from Nodes View)

You can edit multiple hostnames at the same time, fetch discovered LLDP data (hostnames), and update
names based on hostnames, all from the same dialog.

1. From the blueprint, navigate to Staged > Physical > Nodes and click the Edit server names and
hostnames button (second of three buttons above the nodes view).

326

2. Make your changes.

• To change names, select a name and enter a different unique one.

• To fetch discovered LLDP data (hostnames), click its button.

• To update the names based on hostnames, click its button.

3. Click Update to stage the changes and return to the nodes view.

Any associated link names do not automatically update to match the changed server names and/or
hostnames. You can manually "change the link names" on page 372 to match so when you are reviewing
an updated cabling map the names align.

Edit Generic System Name

IN THIS SECTION

Edit Generic System Name (from Nodes View) | 328

327

Edit Generic System Name (from Nodes View)

You can edit multiple server names and hostnames at the same time, fetch discovered LLDP data
(hostnames), and update names based on hostnames, all from the same dialog.

1. From the blueprint, navigate to Staged > Physical > Nodes and click the Edit generic system names
and hostnames button (second of three buttons above the nodes view). (In versions prior to 4.1.2 the
button was called Edit server names and hostnames.)

2. Make your changes.

• To change names, select a name and enter a different unique one.

• To fetch discovered LLDP data (hostnames), click its button.

• To update the names based on hostnames, click its button.

3. Click Update to stage the changes and return to the nodes view.

Any associated link names do not automatically update to match the changed server names and/or
hostnames. You can manually "change the link names" on page 372 to match so when you are reviewing
an updated cabling map the names align.

Edit Device Properties (Datacenter)

You can change device properties such as name, interface map, ASN, and loopback IP, depending on the
node chosen.

328

1. From the blueprint, navigate to Staged > Physical > Nodes and select a node name (not the check
box). You can narrow your search with the drop-down lists for planes, pods, racks and access groups,
as applicable.

2. Click the Properties tab in the right panel.

3. You can change device properties such as name (must be changed to a unique name), interface map,
ASN, and loopback IP, depending on the node chosen. The attributes that can be edited have an Edit
button associated with them. Change properties as applicable.

NOTE: If you changed leaf names in a leaf pair, the leaf pair name does not change. You can
manually change the leaf pair name to correspond with the new leaf names. This is especially
useful when assigning leaf pairs when you create virtual networks.

4. Click the Save button to stage the changes.

View Node's Static Routes

1. From the blueprint, navigate to Staged > Physical > Nodes and select a node name (not the check
box). (You can narrow your search with the drop-down lists for planes, pods, and racks as applicable,
as of Apstra version 4.0.)

329

2. Click the Nodes tab in the right panel.

3. Click Node's Static Routes to go to Staged > Virtual > Static Routes where you can see that node's
static routes.

Delete Node

1. From the blueprint, navigate to Staged > Physical > Topology and select the node to delete.

330

2. Select the check box to see the operations available for that node (and that you have permissions
for).

331

NOTE: You can also get to the selection page from the Nodes view. From the blueprint,
navigate to Staged > Physical > Nodes, click the node name in the table, then click the node
name that appears at the top of the Selection panel (on the right side of the page).

3. Click Delete node to go to its dialog. All links towards the system will be deleted and connectivity
templates will be unassigned for you.

332

4. Click Delete to stage the deletion and return to the Topology view.

When you're ready to activate your changes, commit them from the Uncommitted tab.

Links (Datacenter)

IN THIS SECTION

Add Links to Leaf | 335

Add Links to Spine | 338

Add Links to Generic System | 342

Add Links to External Generic System | 347

Add Leaf Peer Links | 352

Form LAG | 356

Break LAG | 359

333

Update LAG Mode | 361

Update Link Tags | 364

Update Link Speed | 369

Update Link Properties | 372

Delete Link (Datacenter) | 374

Import / Export Cabling Map (Datacenter) | 379

Edit Cabling Map (Datacenter) | 379

Fetch Discovered LLDP Data (Datacenter) | 381

From the blueprint, navigate to Staged > Physical > Links to go to the Links view.

Many link operations are performed from the Topology view, and some can also be performed directly in
the Links view. See the following sections for more information.

334

Add Links to Leaf

1. From the blueprint, navigate to Staged > Physical > Topology and select a node that can connect to a
leaf.

2. Select the node check box to see the operations available for that node (and that you have
permissions for).

335

NOTE: You can also get to the selection page from the Nodes view. From the blueprint,
navigate to Staged > Physical > Nodes, click the node name in the table, then click the node
name that appears at the top of the Selection panel (on the right side of the page).

3. Click Add links to leaf to go to its dialog.

336

4. Select the leaf to link to from the drop-down menu, then select an available port and transformation.
The gray Add Link button turns green.

5. Click Add Link. The link is added to the link table.

6. Click Create to stage the change and return to the Topology view.

337

When you're ready to activate your changes, commit them from the Uncommitted tab.

Add Links to Spine

1. From the blueprint, navigate to Staged > Physical > Topology and select a node that can connect to a
spine.

338

2. Select the node check box to see the operations available for that node (and that you have
permissions for).

339

NOTE: You can also get to the selection page from the Nodes view. From the blueprint,
navigate to Staged > Physical > Nodes, click the node name in the table, then click the node
name that appears at the top of the Selection panel (on the right side of the page).

3. Click Add links to spine to go to its dialog.

340

4. Select the spine to link to from the drop-down menu, then select an available port and
transformation. The gray Add Link button turns green.

5. Click Add Link. The link is added to the link table.

6. Click Create to stage the change and return to the Topology view.

341

When you're ready to activate your changes, commit them from the Uncommitted tab.

Add Links to Generic System

1. From the blueprint, navigate to Staged > Physical > Topology and select a node that can connect to a
generic system.

342

2. Select the node check box to see the operations available for that node (and that you have
permissions for).

343

NOTE: You can also get to the selection page from the Nodes view. From the blueprint,
navigate to Staged > Physical > Nodes, click the node name in the table, then click the node
name that appears at the top of the Selection panel (on the right side of the page).

3. Click Add links to generic system to go to its dialog.

344

4. Select an available port, transformation, and the generic system to link to. The gray Add Link button
turns green.

5. Click Add Link. The link is added to the link table.

345

6. Click Create to stage the change and return to the Topology view.

346

When you're ready to activate your changes, commit them from the Uncommitted tab.

Add Links to External Generic System

1. From the blueprint, navigate to Staged > Physical > Topology and select a node that can connect to
an external generic system.

347

2. Select the node check box to see the operations available for that node (and that you have
permissions for).

348

NOTE: You can also get to the selection page from the Nodes view. From the blueprint,
navigate to Staged > Physical > Nodes, click the node name in the table, then click the node
name that appears at the top of the Selection panel (on the right side of the page).

3. Click Add links to external generic to go to its dialog.

349

4. Select an available port, transformation, and the external generic system to link to. The gray Add Link
button turns green.

5. Click Add Link. The link is added to the link table.

350

6. Click Create to stage the change and return to the Topology view.

351

When you're ready to activate your changes, commit them from the Uncommitted tab.

Add Leaf Peer Links

If your platform does not support it, do not attempt to create leaf peer links. Currently, Junos devices do
not support any peer links, and SONiC devices do not support L3 peer links.
1. From the blueprint, navigate to Staged > Physical > Topology and select the MLAG member that

needs a peer link.

352

2. Select the node check box to see the operations available for that node (and that you have
permissions for).

353

NOTE: You can also get to the selection page from the Nodes view. From the blueprint,
navigate to Staged > Physical > Nodes, click the node name in the table, then click the node
name that appears at the top of the Selection panel (on the right side of the page).

3. Click Add leaf peer links to go to its dialog.

4. Select the link type (peer link, L3 peer link) and an available port and transformation for each leaf
member. (Only unused ports are selectable.) The gray Add Link button turns green.

354

5. Click Add Link. The link is added to the link table.

6. Click Add to stage the change and return to the Topology view. (BGP session is added as applicable.)

355

When you're ready to activate your changes, commit them from the Uncommitted tab.

Form LAG

It’s common to break a LAG towards a server into individual links, then reform the LAG from individual
links, all while keeping the same VLAN allocation (when re-bootstrapping the server for example). When
you form a LAG, it inherits any connectivity templates assigned on the individual links (as of Apstra
version 4.1.0).
1. From the blueprint, navigate to Staged > Physical > Topology and select the node to add as a member

of a LAG.

356

2. Select the interface check box to see the operations available for that interface (and that you have
permissions for).

357

3. Click Form LAG and select the LAG mode:

• LACP (Active) - actively advertises LACP BPDU even when neighbors do not.

• LACP (Passive) - doesn't generate LACP BPDU until it sees one from a neighbor.

• Static LAG (no LACP) - Static LAGs don't participate in LACP and will conditionally operate in
forwarding mode.

358

4. Click Update to stage your changes and return to the Topology view.
The LAG is created, but LACP configuration won't be pushed to the device until connectivity
templates are applied.

When you're ready to activate your changes, commit them from the Uncommitted tab.

Break LAG

It’s common to break a LAG towards a server into individual links, then reform the LAG from individual
links, all while keeping the same VLAN allocation (when re-bootstrapping the server for example). You
can break a LAG while preserving any assigned connectivity templates (as of Apstra version 4.1.0).
1. From the blueprint, navigate to Staged > Physical > Topology and select the node with the LAG to

break.

359

2. Select the interface check boxes for the LAG (or click the port-channel representation) to see the
operations available for those interfaces (and that you have permissions for).

360

3. Click Break LAG to go to its dialog with details on the LAG to break.

4. Click Break to stage your changes and return to the Topology view.

When you're ready to activate your changes, commit them from the Uncommitted tab.

Update LAG Mode

1. From the blueprint, navigate to Staged > Physical > Topology and select the MLAG member that
needs an updated link LAG mode.

361

2. Select the interface check box to see the operations available for that interface (and that you have
permissions for).

362

3. Click Update LAG mode and select the new LAG mode:

• LACP (Active) - actively advertises LACP BPDU even when neighbors do not.

• LACP (Passive) - doesn't generate LACP BPDU until it sees one from a neighbor.

• Static LAG (no LACP) - Static LAGs don't participate in LACP and will conditionally operate in
forwarding mode.

• No LAG - The link is not part of a LAG.

363

4. Click Update to stage your changes and return to the Topology view.

When you're ready to activate your changes, commit them from the Uncommitted tab.

Update Link Tags

IN THIS SECTION

Update Link Tags (One Link - Topology View) | 364

Update Link Tags (One Link - Links View) | 367

Update Link Tags (Multiple Link - Links View) | 367

Update Link Tags (One Link - Topology View)

1. From the blueprint, navigate to Staged > Physical > Topology and select the node connected to the
link that needs tags updated.

364

2. Select the interface check box to see the operations available for that interface (and that you have
permissions for).

365

3. Click Update link tags and update link tags as needed.

4. Click Update to update link tags and return to the Selection view.

When you're ready to activate your changes, commit them from the Uncommitted tab.

366

Update Link Tags (One Link - Links View)

1. From the blueprint, navigate to Staged > Physical > Links and select the link name (not the check box)
for the link that needs updated tags.

2. Click Add/Remove Tags to see tags that are in the blueprint catalog.

3. Select existing tag(s) or create new one(s) that will be tagged to the link and added to the blueprint
catalog.

4. Click Update Tags to update the tags and return to the Links view.

When you're ready to activate your changes, commit them from the Uncommitted tab.

Update Link Tags (Multiple Link - Links View)

1. From the blueprint, navigate to Staged > Physical > Links and select one or more check boxes for the
link(s) that need updated tags. The Add/Remove Tags button appears above the table.

367

2. Click the Add/Remove Tags button and update tags as needed. When you create new tags here they
are added to the blueprint catalog.

368

3. Click Add/Remove Tags to stage the change and return to the Links view.

When you're ready to activate your changes, commit them from the Uncommitted tab.

Update Link Speed

IN THIS SECTION

Update Link Speed (Topology View) | 369

Update Link Speed (Links View) | 371

To change link speeds between spine-leaf and superspine-spine you must "change the rack" on page
384.

Update Link Speed (Topology View)

From the Topology view, you can update one link speed at a time. (You can update more than one link
speed at a time from the Links view; see the next section.)

1. From the blueprint, navigate to Staged > Physical > Topology and select the node where you want to
change link speed.

369

2. Select the interface check box to see the operations available for that interface (and that you have
permissions for).

370

3. Click Update link speed and select the new link speed from the drop-down list.

4. Click Update to stage your changes and return to the Topology view.

When you're ready to activate your changes, commit them from the Uncommitted tab.

Update Link Speed (Links View)

From the Links view you can update one or more link speeds at the same time.

371

1. From the blueprint, navigate to Staged > Physical > Links and click theChange link speeds button.

2. Select new link speeds for one or more links from the drop-down lists.

3. Click Update to stage the changes and return to the Links view.

When you're ready to activate your changes, commit them from the Uncommitted tab.

Update Link Properties

If you have changed server names and/or hostnames for switches, any associated link names do not
automatically update to match. This may cause confusion when reviewing an updated cabling map in the

372

Uncommitted tab. You can change link names to match your other name changes. You can also change
link IP for endpoints from here.

1. From the blueprint, navigate to Staged > Physical > Links and click the name of the link to change.

2. Go to the Properties tab in the right panel.

3. Depending on the link chosen, you can change link properties such as name and Link IP for
endpoints. The attributes that can be edited have an Edit button associated with them. Change
properties as applicable.

When you change link IP for an endpoint, you must remove link IP from the other endpoint first.
Otherwise you will get validation error “User-specified link IPv4 addresses not in the same subnet”.

When you assign new link IP to an endpoint, the link IP for the other endpoint is automatically
assigned from the same subnet.

373

4. Click the Save button to stage the changes.

Delete Link (Datacenter)

IN THIS SECTION

Delete Link (Neighbors View) | 374

Delete Link (Links View) | 376

You can delete links from the Neighbors view or the Links view of a selection in a blueprint.

Delete Link (Neighbors View)

1. From the blueprint, navigate to Staged > Physical > Topology and select the node where you want to
delete a link.

374

2. From the Neighbors view, select the node check box to see the operations available for that node
(and that you have permissions for).

3. Click Delete Link to go to its dialog and review deletion details. Any connectivity templates that are
applied on the link will be unassigned.

375

4. Click Delete to stage the deletion and return to the Neighbors view of the selected node.

When you're ready to activate your changes, commit them from the Uncommitted tab.

Delete Link (Links View)

From the Links view of your selected node you can delete one or more links at the same time.
1. From the blueprint, navigate to Staged > Physical > Topology and select the node where you want to

delete a link.

376

2. Click Links to go to the Links table.

377

3. Select link(s) to delete in one of the following ways:

• Select one or more links in the left column and click the Delete button above the table.

• Click the Delete button in the right column for the one link to delete.

4. Review deletion details in the dialog that opens. Any connectivity templates that are applied on the
link(s) will be unassigned.

5. Click Delete to stage the deletion and return to the Links view of the selected node.

When you're ready to activate your changes, commit them from the Uncommitted tab.

378

Import / Export Cabling Map (Datacenter)

IN THIS SECTION

Import Cabling Map | 379

Export Cabling Map | 379

Import Cabling Map

1. From the blueprint, navigate to Staged > Physical > Links and click the Import cabling map button
(first of five buttons above the links list).

2. Either click Choose File and navigate to the file on your computer, or drag and drop the file onto the
dialog window.

3. Click Import to import the cabling map and return to the links view.

Export Cabling Map

Data center technicians may find a printed cabling map useful when wiring in switches, or remote
network operators may find it useful for viewing IP assignments. It's available in CSV and JSON formats.
You can copy the contents or download the file to your local computer.

1. From the blueprint, navigate to Staged > Physical > Links and click the Export cabling map button
(second of five buttons above the links list), then select JSON or CSV.

2. Click Copy to copy the contents or click Save As File to download the file.

3. When you've copied or downloaded the cabling map, close the dialog to return to the Links view.

NOTE: You can also export cabling maps from Active > Physical > Links.

Edit Cabling Map (Datacenter)

IN THIS SECTION

Edit Cabling Map (GUI) | 380

Edit Cabling Map (JSON) | 381

379

Situations when you might want to edit the cabling map include:

• to use existing network cabling instead of recabling to the Apstra-prescribed cabling

• to change interface names or IP addresses in the existing network cabling map

• to specify a different port from the one that the Apstra cabling algorithm selected

• to avoid the use of a defective interface

Device profiles must be assigned to blueprint nodes.

CAUTION: Overriding Apstra-generated cabling can be disruptive to the network. Use
with extreme caution. For assistance with production networks, please contact "Juniper
Support" on page 802.

Edit Cabling Map (GUI)

1. From the blueprint, navigate to Staged > Physical > Links and click the Edit cabling map button (third
of five buttons above the links list).

2. In the cabling map editor, change interface names and/or IP addresses, as applicable.

• You can use Batch clear override to clear all Interface and IPv4/IPv6 values for a specific device
type.

• To drop the override for either an interface name or IPv4/IPv6 address, submit an empty value in
the corresponding field.

3. Click Update to stage your changes and return to the Links view.

Next Steps:

380

When you're ready to activate your changes, commit them from the Uncommittedd tab.

Edit Cabling Map (JSON)

To change the cabling map using JSON, you'll export the JSON file, edit the file, then import it back into
the Apstra environment.
1. From the blueprint, navigate to Staged > Physical > Links and click the Export cabling map button to

see the dialog for exporting a cabling map.

2. Select JSON and click Save As File to download the file.

3. Change interface names (if_name) and/or IP addresses (ipv4_addr or ipv6_addr) in the file, as
applicable. Do not change any other fields. If you do, the changes will be ignored or they will result in
an error message.

4. From the cabling map (Staged > Physical > Links) click the Import cabling map button to see the
dialog for importing a cabling map.

5. Either click Choose File and navigate to the revised file on your computer, or drag and drop the file
onto the dialog window.

6. Click Import.

Next Steps:

When you're ready to activate your changes, commit them from the Uncommitted tab.

Fetch Discovered LLDP Data (Datacenter)

If you've already cabled up your devices, you can have Apstra discover your existing cabling instead of
using the cabling map prescribed by Apstra. All system nodes in the blueprint must have system IDs
assigned to them.

CAUTION: This is a disruptive operation. All links can potentially be renumbered.

1. From the blueprint, navigate to Staged > Physical > Links and click the Fetch discovered LLDP data
button (fifth of five buttons above links list).

2. If staged data is identical to LLDP discovery results, you will see a message with that statement. Your
actual cabling matches the Apstra cabling map. No further action is needed.

3. If staged data is different from LLDP discovery results, the message includes the number of links that
are different.

4. Scroll to see details of the diffs (in red), or check the Show only links with LLDP diff? checkbox to see
only the differences.

5. To accept the changes and update the map to match LLDP data, click Update Stated Cabling Map
from LLDP. You might also need to reset resource group overrides.

381

Racks (Datacenter)

IN THIS SECTION

Change Rack Name | 383

Add Rack | 383

Export Rack Type | 384

Edit Rack | 384

Delete Rack | 385

From the blueprint, navigate to Staged > Physical > Racks to go to the Racks view.

• You can view racks in table view or card view.

• You can filter racks to show all, selected only, or unselected only.

You can control the growth of your network by adding, editing and deleting complete racks in a running
blueprint. This flexible fabric expansion (FFE) feature is supported on both 3-stage and 5-stage Clos

382

networks. (In 5-stage topologies, you can also "add and remove pods" on page 386, and (as of version
4.0.1) "increase the number of superpines per plane" on page 400. Although, you cannot add or remove
planes themselves.) You can also "change rack names" on page 383.

Rack types are embedded into blueprints from the global catalog. The rack type in the global catalog and
the blueprint are initially the same. When you use FFE operations (for example to change link speeds,
add generic systems or add/remove links) the rack type is modified and its timestamp is updated. The
rack type name in the global catalog and the blueprint are still the same, but their contents are now
different from each other.

See the following sections for more information on rack operations.

Change Rack Name

You may want to use your own rack naming schema (for example, your rack names could be based on
their physical locations). In these cases you can modify the existing rack names.

1. From the blueprint, navigate to Staged > Physical > Racks and select the rack that you want to
change.

2. In Rack Properties (right panel) click the Edit button for the rack name.

3. Change the name to a unique one and click the Save button to stage the change.

NOTE: You can also change rack names from the active blueprint.

Add Rack

The easiest and fastest way to expand your network is to add a rack.

1. From the blueprint, navigate to Staged > Physical > Racks and click the Add Racks button (+).

2. If your blueprint is for a 5-stage topology, select the pod that needs a rack.

3. From the Rack Type drop-down list, select a rack type to preview and validate. (To go to a different
preview, select a different rack type.)

4. Enter the number of racks to add.

5. If you uncheck Keep existing cabling in the fabric after change, port assignments are re-calculated
and you may need to re-cable. When in doubt, leave this box checked.

6. Click Add to stage the rack addition and return to the table view.

7. "Assign device profiles" on page 275 and "system IDs" on page 290 (serial numbers) to the new
rack(s).

8. Commit the changes to your blueprint to configure the rack(s) and complete the fabric expansion.

Next Steps:

383

To assign virtual networks to your new rack, see "Assign / Unassign Virtual Networks" on page 413. As
of Apstra version 4.1.2 you can assign many VNs at the same time to one or more nodes.

Export Rack Type

If you can't make certain changes directly in the blueprint rack, you can export the rack type to the
global catalog and update it there.

1. From the blueprint, navigate to Staged > Physical > Racks and click the Export rack to global catalog
button (first of three buttons).

NOTE: If the rack type is inconsistent with the same-named one in the global (design) catalog,
you won't be able to export the rack type. Rack types are embedded in blueprints from the
global catalog. When you use Flexible Fabric Expansion (FFE) operations (for example to
change link speeds, add generic systems or add/remove links) the blueprint rack type is
modified. The rack type name in the global catalog and the blueprint are still the same, but
their contents are now different from each other. When rack types are inconsistent, you can
create a rack type in the global catalog that meets your new requirements.

2. Enter a unique Rack Type name.

3. Click Export to export the rack type to the global catalog.

Next Steps: From the left navigation menu, navigate to Design > Rack Types and edit the rack type in
the global catalog. (Or, if you couldn't export the rack type, create one that meets your new
requirements.) Then from the blueprint, "Update the rack" on page 384 to use the revised (or new) rack
type from the global catalog.

Edit Rack

You can change running racks while preserving many rack characteristics (such as leaf/server/link names
and virtual network (VN) endpoints if labels have not changed). To edit a rack, you export its rack type to
the global catalog with a unique name, update that rack type in the global catalog, then, in the blueprint,
select the updated rack type to replace the one in the blueprint.

VN endpoints remain as long as the server and link labels between the old and new rack type are the
same.

CAUTION: If it's not possible to retain VN endpoints, you must re-assign them. Review
pending changes on the Uncommitted tab before committing. If you don't want to
commit the changes, you can revert them.

384

NOTE: If you don't need to retain rack details, we recommend that you "delete the rack" on page
385 and "add a replacement rack" on page 383, instead of editing the rack.

Typically, a rack edit operation involves the following steps:

1. Ensure that the global catalog or the blueprint includes a suitable "rack type" on page 23 for
replacement.

2. From the blueprint, navigate to Staged > Physical > Racks and click the Edit button for the rack to
edit (second of three buttons).

3. From the New Rack Type drop-down list, select the required rack type.

4. If you added new devices, "assign device profiles" on page 275 and "system IDs" on page 290 (serial
numbers) to them.

CAUTION: This action is service-impacting since it requires a full config push.

5. You have the option of reviewing the Incremental Config to see the changes that will be pushed to
the device(s). If devices were assigned, a full config push is performed.

6. Commit the changes to the blueprint to push all required configuration changes to the devices in the
modified rack.

Delete Rack

Before deleting a rack that has live traffic on it, you may want to take its devices out-of-service by
draining them. For information, see "Drain Device Traffic" on page 80.

1. To delete a rack from the blueprint, navigate to Staged > Physical > Racks and click the Delete button
for the rack to delete (third of three buttons).

• If you will be adding a rack back into your system, leave the Keep existing cabling in the fabric
after change box checked.

• If you will not be replacing the rack in your system, uncheck the Keep existing cabling in the fabric
after change box. Otherwise, the intent will not match the actual topology anymore, and you will
encounter anomalies, such as for cabling and BGP.

2. Click Delete Rack to stage the deletion and return to the table view.

3. Commit the changes to the blueprint. Configuration on any running devices will be erased and the
devices will be ready to be decommissioned.

385

Pods (Datacenter)

IN THIS SECTION

Add Pod (5-Stage Only) | 387

Change Pod Name | 388

Add Spine per Pod | 388

Add Link per Superspine (5-Stage) | 391

Change Link Speed per Superspine (5-Stage) | 393

Change Spine Logical Device (Pod) | 395

Delete Pod | 398

From the blueprint, navigate to Staged > Physical > Pods to go to the Pods view.

You can search for specific nodes or links.

386

From the Pods view, you can view pod capacity and change pod names. 3-stage topologies can have
only one pod. If your topology is for 5-stage, you can add and remove entire pods. The ability to add
pods to your running blueprint allows for organic growth of large networks without having to pre-design
every pod. For more information about building 5-stage topologies, see "5-stage Clos Architecture" on
page 854.

See the following sections for more information about adding, editing and deleting pods.

Add Pod (5-Stage Only)

You can add pods to 5-stage topologies, but not to 3-stage topologies.
1. From the blueprint, navigate to Staged > Physical > Pods, and click the Add Pods button (+) (center-
left). (This button is disabled on 3-stage topologies.)

2. From the Pod Type drop-down list, select a pod type to preview and validate. To go to a different
preview, select a different pod type.

3. Enter the number of pods to add.

4. Click Add to stage the pod addition and return to the table view.

5. "Commit" on page 670 the changes to your blueprint to complete the fabric expansion.

387

Change Pod Name

1. From the blueprint, navigate to Staged > Physical > Pods and click the pod name to change.

2. In Pod Properties (right panel) click the Edit button for the name.

3. Change the name and click the Save button to stage the change.

4. "Commit" on page 670 the changes to your blueprint to activate the name change.

Add Spine per Pod

As a Day 2 operation, you can add spines per pod on both 3-stage and 5-stage blueprints (as of Apstra
version 4.1.2).

CAUTION: Plan carefully. After you've added spines, you won't be able to remove them.

Make sure you have enough ports with specific roles and speeds for additional spine(s).

1. From the blueprint, navigate to Staged > Physical > Pods.

2. Click the Update spine config button. The location of the button is different for different Apstra
versions.

388

• On Apstra version 4.1.2, click the Update spine config button on the bottom-right of the card for
the pod to change

• On Apstra versions 4.1.1 and 4.1.0, check the box on the top-left of the card for the pod to
change. Then click the Update spine config button that appears above the card(s).

3. In the Count field, enter the total number of spines you want:

• You can only increase the number of spines.

• On 5-stage blueprints, the number of spines must be a multiplier of the number of superspine
planes.

389

CAUTION: Plan carefully. After you've added spines, you won't be able to remove
them.

4. Click Update to stage your changes and return to the Pods view.

When you're ready to activate changes, commit them from the "Uncommitted" on page 670 tab.

390

Add Link per Superspine (5-Stage)

As a Day 2 operation, you can add links per superspine on 5-stage blueprints (as of Apstra version 4.1.0).
1. From the blueprint, navigate to Staged > Physical > Pods.

2. Click the Update spine config button. The location of the button is different for different Apstra
versions.

• On Apstra version 4.1.2, click the Update spine config button on the bottom-right of the card for
the pod to change

• On Apstra versions 4.1.1 and 4.1.0, check the box on the top-left of the card for the pod to
change. Then click the Update spine config button that appears above the card(s).

391

3. In the Link per superspine field, enter the total number of links you want between spines and
superspines. You can only add links. Plan carefully. After you add links, you won't be able to remove
them later.

392

4. Click Update to stage your changes and return to the Pods view.

When you're ready to activate changes, commit them from the "Uncommitted" on page 670 tab.

Change Link Speed per Superspine (5-Stage)

As a Day 2 operation, you can change the link speed between spines and superspines on 5-stage
blueprints (as of Apstra version 4.1.0).

393

Make sure link speed is supported on the links / ports (speeds must be part of the port transformations).
1. From the blueprint, navigate to Staged > Physical > Pods.

2. Click the Update spine config button. The location of the button is different for different Apstra
versions.

• On Apstra version 4.1.2, click the Update spine config button on the bottom-right of the card for
the pod to change

• On Apstra versions 4.1.1 and 4.1.0, check the box on the top-left of the card for the pod to
change. Then click the Update spine config button that appears above the card(s).

3. In the Link per superspine speed drop-down list, select the new link speed.

394

4. Click Update to stage your changes and return to the Pods view.

When you're ready to activate changes, commit them from the "Uncommitted" on page 670 tab.

Change Spine Logical Device (Pod)

As a Day-2 operation, you can increase capabilities with a different spine logical device on both 3-stage
and 5-stage blueprints (as of Apstra version 4.1.0). (On 5-stage topologies you can also "change the

395

superspine logical device" on page 402.) Changes affect the entire pod, not just a node. Based on the
change, this could be disruptive.

1. From the blueprint, navigate to Staged > Physical > Pods.

2. Click the Update spine config button. The location of the button is different for different Apstra
versions.

• On Apstra version 4.1.2, click the Update spine config button on the bottom-right of the card for
the pod to change

• On Apstra versions 4.1.1 and 4.1.0, check the box on the top-left of the card for the pod to
change. Then click the Update spine config button that appears above the card(s).

396

3. From the Spine Logical Device drop-down list, select a different logical device. (The image below also
shows that you can increase the count to add a spine to your topology. This became available in
Apstra version 4.1.2.)

4. Click Update to stage your changes and return to the Pods view.
Build errors appear because interface maps need to be assigned.

5. Click the Device Profiles tab in the right panel and assign interface maps, as needed.

397

Delete Pod

When you delete a pod, all of its devices are removed from the blueprint; this could be highly impactful.
Before deleting a pod that has live traffic on it, you may want to take its devices out-of-service by
draining them. For more information, see the "Drain Device Traffic" on page 80 page.

1. From the blueprint, navigate to Staged > Physical > Pods.

2. Select the check box(es) for the pod(s) to delete. (You must keep at least one pod.)

3. Click the Delete button (trash can) for the pod(s) to delete.

4. Click Delete Pod to stage the deletion and return to the table view.

5. "Commit " on page 670the changes to your blueprint. Configuration on any running devices is erased
and the devices are ready to be decommissioned.

398

Planes (Datacenter)

IN THIS SECTION

Add Superspine per Plane | 400

Change Superspine Logical Device (Plane) | 402

Planes are groups of superspines in 5-stage blueprints. Every 5-stage topology has at least one plane.

As a Day 2 operation, you can add superspines to planes in 5-stage Clos networks. The maximum
number of superspines is limited by the number of available spine ports of type superspine. When you
add superspines, additional superspine nodes are created with the same logical devices that are used in
the existing blueprint template. You must manually "assign the interface maps for the device profiles" on
page 275 of each new node. When the devices are physically ready, you can "assign" on page 290 each
node with their corresponding system IDs (serial numbers). When you "commit pending changes" on
page 670, the superspines are configured and they become part of the control and data plane, taking
part of forward traffic between pods.

You can also change the superspine logical device on planes to add or update superspine port capacity
on 5-stage blueprints. This change is for all planes (not per plane) which, based on the change, could be
disruptive. Changing the logical device requires that you specify a different interface map, and possibly a
new device profile.

399

From the blueprint, navigate to Staged > Physical > Planes to go to the Planes view.

Add Superspine per Plane

As a Day 2 operation, you can add superspines per plane on 5-stage blueprints (as of Apstra version
4.1.0).

1. From the 5-stage blueprint, navigate to Staged > Physical > Planes and click the Change number of
superspines per plane button.

400

2. In the Superspines per plane field, enter the total number of superspines you want. You can only add
superspines per plane. Plan carefully. After you add superspines, you won't be able to remove them
later.

401

3. Click Update to stage your changes and return to the Planes view.

When you're ready to activate changes, commit them from the "Uncommitted" on page 670 tab.

Change Superspine Logical Device (Plane)

As a Day 2 operation, you can change the superspine logical device on planes to add or update
superspine ports capacity on 5-stage blueprints (as of Apstra version 4.1.0). This change is for all planes
(not per plane) which, based on the change, could be disruptive. Changing the logical device requires
that you specify a different interface map, and possibly a new device profile.
1. From the 5-stage blueprint, navigate to Staged > Physical > Planes and click the Change number of

superspines per plane button.

402

2. Select a diferent logical device from the Superspine Logical Device drop-down list.

3. Click Update to stage your changes and return to the Planes view.
Build errors appear because interface maps need to be assigned.

4. Click the Device Profiles tab in the right panel and assign interface maps, as needed.

Virtual Networks

IN THIS SECTION

Assign Virtual Resources | 408

Create Virtual Networks | 409

Assign / Unassign Virtual Networks | 413

Import / Export Virtual Networks | 416

Edit Virtual Networks | 418

Delete Virtual Networks | 420

You can create an overlay network in an Apstra blueprint by creating virtual networks (VN)s to group
physically separate endpoints into logical groups. These collections of Layer 2 forwarding domains are
either VLANs or VXLANs.

403

VLANs have the following characteristics:

• Single rack (rack-local)

• Single leaf devices or leaf pairs

• Can deploy in Layer 2-only mode (for example, isolated cluster networks for database replication)

• Can deploy with Layer 3 gateway (SVI) IP address on rack leaf, hosted with or without first-hop
redundancy

VXLANs have the following characteristics:

• Fabric-wide for ubiquitous Layer 2 (inter-rack)

• Combination of single rack leaf devices or leaf pairs (MLAG)

• Can deploy in Layer 2-only mode

• Can deploy with Layer 3 gateway functionality

• The control plane selected (Static VXLAN Routing or MP-EBGP EVPN) when configuring the
template for your blueprint determines what is configured in the VN. (MP-EBGP EVPN provides a
control plane for VXLAN routing.)

• VXLAN-EVPN capabilities for VXLAN VNs are dependent on network device makes and models. For
more information see the evpn_support_addendum:Apstra EVPN Support Addendum.

For complete VN feature compatibility for supported Network Operating Systems (NOS), see the Apstra
Feature Matrix for the applicable release (in the Reference section). For detailed capability information
for a device, contact your network device vendor or "Juniper Support" on page 802.

VNs contain the following details:

Table 16: Virtual Network Parameters

Name Description

Type • VLAN (rack-local VN)

• VXLAN (EVPN) (inter-rack VN)

Name 32 characters or fewer. Underscore, dash, and alphanumeric characters only.

404

Table 16: Virtual Network Parameters (Continued)

Name Description

Routing Zone • VLAN - default routing zone only (used for the underlay network)

• VXLAN - default routing zone or user-defined routing zone

Default VLAN ID
(VLAN only)

• Layer 2 VLAN ID on the switch that the VN is assigned to.

• If left blank, it's auto-assigned from static pool (2-4094).

• If you assign it, we don't recommend assigning VLAN ID 1 for active VNs.

• Cisco NX-OS reserves VLAN IDs 3968-4094.

• Arista reserves 1006-4094 for internal VLANs for routed ports. You can modify
"reserved" VLAN ID range with the EOS vlan internal allocation policy
configuration command. You can apply it to all EOS devices using a SYSTEM configlet
before configuring and deploying VNs.

l2-virtual-ext-002-leaf1(config)#vlan internal allocation policy ascending range
3001 3999
l2-virtual-ext-002-leaf1(config)#exit
l2-virtual-ext-002-leaf1#show vlan internal allocation policy
Internal VLAN Allocation Policy: ascending
Internal VLAN Allocation Range: 3001-3999
l2-virtual-ext-002-leaf1#

• Using reserved VLAN IDs may cause deployment errors, but not build errors.

VNI(s) (VXLAN only) Layer 2 VXLAN ID on the switch that the VN is assigned to. If left blank, it's auto-
assigned from resource pools. Create up to 40 VNs at once by entering ranges or
individual VNI IDs separated by commas (for example: 5555-5560, 7777). Commit the
first 40 VNs before creating additional ones.

VLAN ID (on leaf
devices)

VLAN ID

Reserve across
blueprint (VXLAN
only)

Option to use same VLAN ID on all leaf devices

405

Table 16: Virtual Network Parameters (Continued)

Name Description

DHCP server Enabled/Disabled - DHCP relay forwarder configuration on SVI. Implies L3 routing on
SVI

IPv4 Connectivity Enabled/Disabled - for SVI routing

IPv4 subnet (if
connectivity is
enabled)

• IPv4 subnet - (for example: 192.168.100.0/24) (can't use batching VLANs)

• IPv4 CIDR length - automatically assigns a subnet with the specified length (for
example: /26)

• If left blank, it's auto-assigned a /24 subnet network from resource pools

Virtual Gateway IPv4 The IPv4 address, if enabled

IPv6 Connectivity Enabled/Disabled - IPv6 connectivity for SVI routing. You must enable IPv6 in blueprint.
If the template uses IPv4 spine-to-leaf link types, you can't use IPv6 in default routing
zone and for VLAN type VNs.

IPv6 subnet (if
connectivity is
enabled)

• IPv6 subnet (for example: 2001:4de0::/64)

• IPv6 CIDR length - automatically assigns a subnet with the specified length (for
example: /56)

• If left blank, it's auto-assigned a /64 subnet network from resource pools.

• If assigned automatically, the IP is derived from the assigned VNs SVI pools.

• To assign multiple VLAN networks, leave blank or specify CIDR length.

Virtual Gateway IPv6 The IPv6 address, if enabled

Create connectivity
templates for

• Tagged

• Untagged

Assigned to The racks that the VN is assigned to. For more information, see table below.

406

Table 17: Virtual Network Rack (or Pod) Details

Assigned To
Details

Description

Pod Name (5-
stage)

5-stage Clos networks include pods, and you can select leaf devices within each pod to
extend VNs to those devices.

Bound to The racks assigned. For MLAG racks, the leaf pair is shown. For VLANs, if more than one rack
is selected, multiple rack-local VLAN-based VNs are created.

Link Labels Label assigned to rack (for example, ext-link-1, single-link, single-link, ext-link-0)

VLAN ID Can use for batch creating VNs

Secondary IP
Allocation Mode

• Enabled (default) - Apstra decides whether a secondary IP address is needed.

• Automatically allocate if an assigned connectivity template requires an address (BGP,
Static routes).

• VN of type VXLAN:

• Some NOS types automatically allocate unicast IPv4 addresses when an anycast
IPv4 gateway is present: (Junos when in an ESI pair).

• If a NOS type forbids co-existence of an anycast IPv4 address with an unicast IPv4
address, a blueprint error will be raised (Sonic).

• VN of type VLAN - All NOS types require unicast IPv4 addresses when the IPv4
anycast address is enabled.

• Forced - A secondary IP address is rendered irrespective of whether or not a connectivity
template requires it.

• If a NOS type forbids co-existence of an anycast IPv4 address with a unicast IPv4
address, a blueprint error will be raised.

• Permits you to manually create an optional unicast IPv4 address for purposes such as
BGP peering or static routing.

IPv4 Address /
IPv6 Address

You can set the first-hop-redundancy IP address for the SVI (VRRP, VARP and so on). If left
blank, the SVI IP address is assigned from the selected pool. When you bind an EVPN
connectivity template to a Layer 2 application point, the SVI IP address is used as the
source / destination for the BGP session, static routes and so on.

407

From the blueprint, navigate to Staged > Virtual > Virtual Networks to go to the virtual network table
view. You can create, edit and delete virtual networks, and as of Apstra version 4.1.2 you can also import
and export virtual networks.

Assign Virtual Resources

IN THIS SECTION

Update Virtual Resources Assignments | 408

Reset Virtual Resource Group Overrides | 409

You can assign resources, release previously used resources and go to resource pool management from
the virtual build panel. The resource assignment section has a convenient shortcut button, Manage
resource pools, that takes you to resource pool management. From there, you can monitor resource
usage and create additional resource pools, as needed.

Update Virtual Resources Assignments

A red status indicator in the build panel means that resources need to be assigned. Resources may
include virtual network SVI subnets for routing zones, SVI subnets for MLAG domain, SVI subnet for
virtual networks, VNI Virtual Network IDs, and VTEP IPs.
1. From the blueprint, navigate to Staged > Virtual > Virtual Networks > Build. (The build panel is on the

right side.)

408

2. Red status indicators mean that resources need to be assigned. Click a red status indicator, then click
the Update assignments button.

3. Select a pool from which to pull the resources, then click the Save button. The required number of
resources are automatically assigned to the resource group. When the red status indicator turns
green, the resource assignment has been successfully staged.

Reset Virtual Resource Group Overrides

Certain blueprint operations require resource allocations to be retained even when a device has been
removed from a blueprint. For example, if you decide to reuse a device, previously allocated resources
need to be re-used as well. If resources were not retained, build errors may occur because the expected
resources would no longer be available to the device. To minimize build errors, resource allocations
persist by default. If you know that a device won't be re-instated, you don't need to keep its resources
allocated to it. Click the Reset resource group overrides button to reset the resource group and release
the resources.

Create Virtual Networks

IN THIS SECTION

Create Virtual Networks (using GUI) | 410

Create Virtual Networks (using CSV File) | 411

409

Create Virtual Networks (using GUI)

1. From the blueprint, navigate to Staged > Virtual > Virtual Networks and click Create Virtual
Networks.

2. Select the VN type (VLAN, VXLAN) and enter a unique name.

3. Select the "routing zone" on page 423 to associate with the VN(s). (VLANs must use the default
routing zone.)

4. If you're creating VLANs, you can specify the default VLAN ID(s) or leave it blank to automatically
assign it from a resource pool.

5. If you're creating VXLANs, you can specify VNIs or leave it blank to automatically assign it from a
resource pool.

6. If you're creating VXLANs and you enter a VLAN ID (on leaf devices), you can select the check box
to Reserve across blueprint. This enforces the same rule across the fabric and helps you to honor
the same VLAN policy across racks when adding new racks.

7. If you enable DHCP Service, enter a subnet. A DHCP relay forwarder is configured on the SVI. This
option also implies Layer 3 routing on this SVI. (You assign the DHCP server in the routing zone.)

8. If you enable IPv4 Connectivity, enter a subnet, unless you're batch creating VNs. Then enter an
IPv4 CIDR length, or leave subnet blank to allow auto-assignment.

9. If you enable Virtual Gateway IPv4, enter an IPv4 address.

10. If IPv6 is enabled in the blueprint (Policies > Fabric Addressing Policy), and you enable IPv6
Connectivity, enter a subnet, unless you're batch creating VNs. Then enter an IPv6 CIDR length, or
leave subnet blank to allow auto-assignment.

11. If you enable Virtual Gateway IPv6, enter an IPv6 address.

410

12. To create connectivity templates for the VN(s), check the box for Tagged and/or Untagged, as
applicable.

13. Select and configure racks to assign to the VN. See Virtual Networks on page 407 overview for
details.

14. Click Create to stage the VN and return to the table view.

15. Assign IPv4 (IPv6) resources for SVI subnets. Navigate to Staged > Virtual > Virtual Networks and
"assign resources" on page 272 in the Build panel (right-side).

16. For VXLAN only: Assign VTEP IPs. Navigate to Staged > Virtual > Virtual Networks and assign
resources in the Build panel (right-side). (You can display the VTEPs list in the nodes table (Staged >
Physical > Nodes). Select the type of VTEP to display from the Columns drop-down list (above the
table).)

• Single Leaf Nodes require one VTEP IP and an anycast VTEP IP for all switches in the VN.

• MLAG Leaf-pair Nodes require a common VTEP IP for the leaf-pair and an anycast VTEP IP for
all switches in the VN.

17. To deploy changes to the active blueprint, click the "Uncommitted" on page 670 tab to review and
commit (or discard) changes.

Create Virtual Networks (using CSV File)

You can create many virtual networks at once with a CSV file, as of Apstra version 4.1.2. First, you'll
export the virtual network schema from your blueprint, then open and populate the file in a spreadsheet
program. And finally, you'll import the file back into your blueprint.

411

1. From the blueprint, navigate to Staged > Virtual > Virtual Networks and click Export virtual networks.

2. Click Copy to copy the contents or click Save As File to download the file. (Close the dialog to return
to the table view.)

3. Paste the contents, or open the CSV file, in a spreadsheet program (such as Google Sheets or
Microsoft Excel). (Any virtual networks that were previously created are included in the file.)

4. Enter virtual networks details into the spreadsheet leaving the vn_node_id field blank for new VNs,
then save the file.

5. In the Apstra GUI, navigate to Staged > Virtual > Virtual Networks and click Import virtual networks.

6. Either click Choose File and navigate to the file on your computer, drag and drop the file onto the
dialog window, or as shown in the screenshot below, directly paste CSV file contents. Virtual network
details are displayed for your review.

412

7. Click Import to import the virtual networks, stage the changes, and return to the table view.

Next Steps:

Assign virtual resources.

Assign / Unassign Virtual Networks

IN THIS SECTION

Assign / Unassign One Virtual Network | 413

Assign / Unassign Multiple Virtual Networks | 414

You can assign (and unassign) multiple VXLAN virtual networks at the same time from the Apstra GUI (as
of Apstra 4.1.2). (Prior to Apstra version 4.1.2 you could use the Apstra GUI to change one VN at a time
or use a CLI-based script or API client to assign more than one VN at a time.)

Assign / Unassign One Virtual Network

When you create a virtual network, you assign it to one or more nodes. You can edit the VN to assign it
to additional nodes and/or to unassign it from nodes that it's already assigned to.
1. Either from the table view (Staged > Virtual > Virtual Networks) or the details view, click the Edit
button for the virtual network to update.

413

2. In the dialog that opens, scroll past the Virtual Network Parameters section to the Assigned To
section:

• Assign the VN to one or more nodes by selecting the applicable node check box(es).

• Unassign the VN from one or more nodes by deselecting the applicable node check box(es).

3. Click Update to stage the changes and return to the table view.

Assign / Unassign Multiple Virtual Networks

You can assign/unassign many virtual networks at the same time (as of Apstra version 4.1.2). This is
especially useful when you've added a rack as a Day 2 operation and you need to assign a lot of virtual
networks to it.
1. From the table view (Staged > Virtual > Virtual Networks) select one or more check boxes for the

VNs to update.

2. Click the Assign selected VXLAN networks button that becomes available above the table (fourth of
five buttons).

414

3. In the dialog that opens, you can see the associated routing zone, VN type and VN ID by hovering
over the VNs that are already assigned.

4. Your selected VXLANs appear above the table on the left. The table shows the VNs that are already
assigned to nodes in the network. Select the check boxes for one or more nodes. The Bulk assign
VXLANs and Bulk unassign VXLANs buttons become available.

415

5. Assign and unassign virtual networks, as needed:

• To assign your selected VXLANs to the nodes you just selected, click the Bulk assign VXLANs
button. The VNs to be assigned turn green.

• To unassign your selected VXLANs that are already assigned to the nodes you just selected, click
the Bulk unassign VXLANs button. The VNs to be unassigned turn red (as shown in the
screenshot example above).

6. Click Assign to stage your changes and return to the table view.

Import / Export Virtual Networks

IN THIS SECTION

Import Virtual Networks | 416

Export Virtual Networks | 417

Import Virtual Networks

You can import multiple virtual networks (as a CSV file) into your blueprint, as of Apstra version 4.1.2.
(Tip: First export virtual networks so you'll have the schema set up for you in the CSV file.)
1. From the blueprint, navigate to Staged > Virtual > Virtual Networks and click the Import virtual

networks button.

416

2. Either click Choose File and navigate to the file on your computer, drag and drop the file onto the
dialog window, or as shown in the screenshot below, directly paste CSV file contents. Virtual network
details are displayed for your review.

3. Click Import to import the virtual networks, stage the changes, and return to the table view.

Export Virtual Networks

You can export virtual networks (as a CSV file) from your blueprint, as of Apstra version 4.1.2.
1. From the blueprint, navigate to Staged > Virtual > Virtual Networks and click Export virtual networks.

417

2. Click Copy to copy the contents or click Save As File to download the file.

3. When you've copied or downloaded the virtual networks, close the dialog to return to the table view.

Edit Virtual Networks

IN THIS SECTION

Edit One Virtual Network | 418

Edit Multiple Virtual Networks | 419

Edit One Virtual Network

1. From the blueprint, navigate to Staged > Virtual > Virtual Networks and click the Edit button in the
Actions panel for the virtual network to edit.

418

2. Make your changes.

3. Click Update to stage the changes and return to the table view.

Edit Multiple Virtual Networks

As of Apstra version 4.1.2, you can edit multiple virtual networks using the Apstra GUI. You'll export all
virtual networks from your blueprint as a CSV file, edit the file in a spreadsheet program, then import the
file back into your blueprint.
1. From the blueprint, navigate to Staged > Virtual > Virtual Networks and click Export virtual networks.

419

2. Click Copy to copy the contents, or click Save As File to download the file. (Close the dialog to return
to the table view.)

3. Paste the contents, or open the CSV file, in a spreadsheet program (such as Google Sheets or
Microsoft Excel).

4. Update virtual networks as needed, then save the file.

5. In the Apstra GUI, navigate to Staged > Virtual > Virtual Networks and click Import virtual networks.

6. Either click Choose File and navigate to the file on your computer, or drag and drop the file onto the
dialog window. Virtual network details are displayed for your review.

7. Click Import to import the virtual networks, stage the changes, and return to the table view.

Delete Virtual Networks

IN THIS SECTION

Delete One Virtual Network | 420

Delete Multiple Virtual Networks | 421

Delete One Virtual Network

Virtual networks with assigned connectivity templates can't be deleted.

1. From the blueprint, navigate to Staged > Virtual > Virtual Networks and click the Delete button in the
Actions panel for the VN to delete.

420

2. Click Delete to stage the deletion and return to the table view.

Delete Multiple Virtual Networks

Virtual networks with assigned connectivity templates can't be deleted.

You can delete multiple virtual networks from one dialog in the Apstra GUI, as of Apstra version 4.1.2.
1. From the blueprint, navigate to Staged > Virtual > Virtual Networks and select the check boxes for

the virtual networks to delete. (Tip: Use the Query function to filter specific virtual networks.)

421

2. Click the Delete selected virtual networks button that becomes available. Click the drop-down
triangle to show (or hide) selected VN names. The virtual networks that will be deleted are listed. If
you've selected virtual networks that have connectivity templates assigned to them, they are listed
as not being available for deletion. They'll be ignored.

3. Click Delete to stage the deletion and return to the table view.

422

Routing Zones

IN THIS SECTION

Create Routing Zones | 425

Assign DHCP Server to Routing Zone | 427

Assign Resources to Routing Zone | 428

Import / Export Routing Zones | 429

Edit Routing Zones | 431

Delete Routing Zones | 433

A routing zone is an L3 domain, the unit of tenancy in multi-tenant networks. You create routing zones
for tenants to isolate their IP traffic from one another, thus enabling tenants to re-use IP subnets. In
addition to being in its own VRF, each routing zone can be assigned its own DHCP relay server and
external system connections. You can create one or more virtual networks within a routing zone, which
means a tenant can stretch its L2 applications across multiple racks within its routing zone. For virtual
networks with Layer 3 SVI, the SVI is associated with a Virtual Routing and Forwarding (VRF) instance
for each routing zone isolating the virtual network SVI from other virtual network SVIs in other routing
zones. If you're using multiple routing zones, external system connections must be from leaf switches in
the fabric. Routing between routing zones must be accomplished with external systems. All SVIs
configured for virtual networks in this zone are in the default VRF. This is the same VRF used for the
underlay or fabric network routing between network devices. All blueprints include a default routing
policy. The number of routing zones is limited only by the network devices being used.

Routing zones include the following details:

Parameter Description

VRF Name 15 characters or fewer. Underscore, dash and
alphanumeric characters only

Type L3 Fabric or EVPN

VLAN ID Used for VLAN tagged Layer 3 links on external
connections. Leave this field blank to have it
automatically assigned from a static pool in the range
of 2-4094), or enter a specific value.

423

(Continued)

Parameter Description

VNI VxLAN VNI associated with the routing zone. Leave
this field blank to have it automatically assigned from a
resource pool, or enter a specific value.

Route Target Only EVPN routing zones use route targets. The
rendered EVPN L3-VNI route target represents the
built-in, automatic route target that is associated with
the EVPN routing zone VRF. When using EVPN remote
gateway features for Data Center Interconnect, this
route target must be imported by the EVPN fabric
external to this fabric. This route target is composed of
"<VNI_ID>:1" where "1" is hard-coded. If route target
is not assigned, then a VNI must be assigned.

DHCP Servers

Routing Policies Non-EVPN blueprints must use the default policy.
EVPN blueprints can use non-default policies. For
more information, see "Routing Policies" on page 537.

Route Target Policies • Import Route Targets

• Export Route Targets

Resources

Virtual Networks

Interfaces

From the blueprint, navigate to Staged > Virtual > Routing Zones to go to the routing zones table view.
You can create, edit and delete routing zones and assign DHCP servers to them. As of Apstra version

424

4.1.2 you can also import and export routing zones.

Create Routing Zones

IN THIS SECTION

Create Routing Zones (using GUI) | 425

Create Routing Zones (using CSV File) | 426

Create Routing Zones (using GUI)

You can create routing zones if your blueprint is using MP-EBGP EVPN overlay control protocol. If it's
using Static VXLAN, you must use the default routing zone. (Overlay control protocol is specified in
"templates" on page 35.)

1. From the blueprint, navigate to Staged > Virtual > Routing Zones and click Create Routing Zone.

2. Enter a unique VRF name (15 characters or fewer).

425

3. You can leave the remaining fields as is to use default values and have resources assigned from pools,
or you can configure them manually. See the "routing zone" on page 423 overview for details.

4. Click Create to create the routing zone and return to the table view.

Assign resources (leaf loopback IPs, leaf L3 peer links) to the new routing zone.

Create Routing Zones (using CSV File)

You can create many routing zones at once with a CSV file, as of Apstra version 4.1.2. First, you'll export
the routing zone schema from your blueprint, then open and populate the file in a spreadsheet program.
And finally, you'll import the file back into your blueprint.

1. From the blueprint, navigate to Staged > Virtual > Routing Zones and click Export routing zones.

2. Click Copy to copy the contents or click Save As File to download the file.

3. Paste the contents, or open the CSV file, in a spreadsheet program (such as Google Sheets or
Microsoft Excel).

4. Enter routing zones details into the spreadsheet, then save the file.

5. In the Apstra GUI, navigate to Staged > Virtual > Routing Zones and click Import routing zones.

426

6. Either click Choose File and navigate to the file on your computer, drag and drop the file onto the
dialog window, or directly paste CSV file contents into the dialog window. Routing zone details are
displayed for your review.

7. Click Import to import the routing zones, stage the changes, and return to the table view.

Next Steps:

Assign resources. Each leaf network device in each routing zone requires a loopback IP. If IPv6 is
enabled on the blueprint, you must also assign IPv6 addresses to the routing zone. After you've assigned
connectivity templates to your external generic systems, you'll also need to assign IP addresses.

Assign DHCP Server to Routing Zone

1. From the blueprint, navigate to Staged > Virtual > Routing Zones and click the name of the routing
zone that needs a DHCP server assigned to it.

2. Click the Assign DHCP Servers button (upper-right) and enter the IPv4 address (or IPv6 address) for
one or more DHCP servers.

3. Click Update to stage the assignment and return to the routing zone detail view.

427

Assign Resources to Routing Zone

Each leaf network device in each routing zone requires a loopback IP. If IPv6 is enabled on the blueprint,
you must also assign IPv6 addresses to the routing zone. After you've assigned connectivity templates
to your external generic systems, you'll also need to assign IP addresses.

1. From the blueprint, navigate to Staged > Virtual > Routing Zones.

2. Red status indicators in the Build panel (on the right) indicate that resources need to be assigned.
Click a red indicator and click the Update assignments button.

3. Select a pool from which to pull the resources, then click the Save button. (For information about IP
address pools, see "IP Pools" on page 262.) When the red status indicator turns green, the required
resources are successfully assigned.

4. Repeat the steps to assign resources from pools until all required resources have been assigned.

NOTE: You can also assign individual IP addresses to links by clicking the name of the routing
zone in the table view, scrolling down to the Interfaces section, clicking the Edit IP addresses

428

button, and entering them from there.

Import / Export Routing Zones

IN THIS SECTION

Import Routing Zones | 429

Export Routing Zones | 430

Import Routing Zones

You can import multiple routing zones (as a CSV file) into your blueprint, as of Apstra version 4.1.2. (Tip:
First export routing zones so you'll have the schema set up for you in the CSV file.)
1. From the blueprint, navigate to Staged > Virtual > Routing Zones and click the Import routing zones
button.

429

2. Either click Choose File and navigate to the file on your computer, drag and drop the file onto the
dialog window, or directly paste CSV file contents into the dialog window. Routing zone details are
displayed for your review.

3. Click Import to import the routing zones, stage the changes, and return to the table view.

Export Routing Zones

You can export routing zones (as a CSV file) from your blueprint, as of Apstra version 4.1.2.
1. From the blueprint, navigate to Staged > Virtual > Routing Zones and click Export routing zones.

2. Click Copy to copy the contents or click Save As File to download the file.

3. When you've copied or downloaded the routing zones, close the dialog to return to the table view.

430

Edit Routing Zones

IN THIS SECTION

Edit One Routing Zone | 431

Edit Multiple Routing Zones | 431

Edit One Routing Zone

1. From the blueprint, navigate to Staged > Virtual > Routing Zones and click the name of the routing
zone to edit.

2. Click the Edit button (upper-right) and make your changes.

3. Click Update to stage your changes and return to the routing zone details.

Edit Multiple Routing Zones

You can edit multiple routing zones using the Apstra GUI, as of Apstra version 4.1.2. You'll export all
routing zones from your blueprint as a CSV file, edit the file in a spreadsheet program, then import the
file back into your blueprint.
1. From the blueprint, navigate to Staged > Virtual > Routing Zones and click Export routing zones.

431

2. Click Copy to copy the contents, or click Save As File to download the file. (Close the dialog to return
to the table view.)

3. Paste the contents, or open the CSV file, in a spreadsheet program (such as Google Sheets or
Microsoft Excel).

4. Update routing zones as needed, then save the file.

5. In the Apstra GUI, navigate to Staged > Virtual >Routing Zones and click Import routing zones.

6. Either click Choose File and navigate to the file on your computer, or drag and drop the file onto the
dialog window. Routing zone details are displayed for your review.

7. Click Import to import the routing zones, stage the changes, and return to the table view.

432

Delete Routing Zones

IN THIS SECTION

Delete One Routing Zone | 433

Delete Multiple Routing Zones | 433

Delete One Routing Zone

Routing zones with assigned virtual networks with connectivity templates can't be deleted.
1. From the blueprint, navigate to Staged > Virtual > Routing Zones and click the Delete button in the
Actions panel for the routing zone to delete.

2. Click Delete to stage the deletion and return to the table view.

Delete Multiple Routing Zones

Routing zones with assigned virtual networks with connectivity templates can't be deleted.

You can delete multiple routing zones from one dialog in the Apstra GUI, as of Apstra version 4.1.2.

1. From the blueprint, navigate to Staged > Virtual > Routing Zones and select the check boxes for the
routing zones to delete. (Tip: Use the Query function to filter specific routing zones.)

2. Click the Delete selected routing zones button that becomes available.

3. Click Delete to stage the deletion and return to the table view.

Static Routes (Virtual)

When you create connectivity templates, static routes are created. From the blueprint, navigate to
Staged > Virtual > Static Routes to go to static routes.

433

Protocol Sessions (Virtual)

When you create connectivity templates, protocol sessions (BGP sessions) are created. (As of Apstra
version 4.0, protocol sessions replace security zone external connectivity points.) From the blueprint,
navigate to Staged > Virtual > Protocol Sessions to go to protocol sessions.

434

To see details including peer configuration, click the Protocol Session ID.

Data Center Interconnect (DCI) / Remote EVPN Gateways (Virtual)

IN THIS SECTION

DCI / EVPN Gateway Overvew | 436

435

DCI Deployment Options | 437

Implementation | 439

Apstra Workflow | 443

DCI / EVPN Gateway Overvew

Historically, enterprises have leveraged Data Center Interconnect (DCI) technology as a building block
for business continuity, disaster recovery (DR), or Continuity of Operations (COOP). These service
availability use cases primarily relied on the need to connect geographically separated data centers with
Layer 2 connectivity for application availability and performance.

With the rise of highly virtualized Software-Defined Data Centers (SDDC), cloud computing, and more
recently, edge computing, additional use cases have emerged:

• Colocation Expansion: Share compute and storage resources to colocation data center facilities.

• Resource Pooling: Share and shift applications between data centers to increase efficiency or
improved end-user experience.

• Rapid Scalability: Expand capacity from a resource-limited location to another facility or data center.

• Legacy Migration: Move applications and data off older and inefficient equipment and architecture to
more efficient, higher-performing, and cost-effective architecture.

With Apstra software, you can deploy and manage a vendor inclusive DCI solution that is simple,
flexible, and Intent-Based. Apstra utilizes the standards-based MP-BGP EVPN with VXLAN, which has
achieved broad software and hardware adoption in the networking industry. You can choose from a vast
selection of cost-effective commodity hardware from traditional vendors to white-box ODMs and
software options ranging from conventional vendor integrated Network Operating Systems (NOS) to
disaggregated open source options.

EVPN VXLAN is a standards-based (RFC-7432) approach for building modern data centers. It
incorporates both data plane encapsulation (VXLAN) and a routing control plane (MP-BGP EVPN
Address Family) for extending Layer 2 broadcast domains between hosts as well as Layer 3 routed
domains in spine-leaf networks. Relying on a pure Layer 3 underlay for routing of VXLAN tunneled
traffic between VXLAN Tunnel Endpoints (VTEPs), EVPN introduces a new address family to the MP-
BGP protocol family and supports the exchange of MAC/IP addresses between VTEPs. The
advertisement of endpoint MACs and IPs, as well as "ARP/ND-suppression", eliminates the need for a
great majority of Broadcast/Unknown/Multicast (BUM) traffic and relies upon ECMP unicast routing of
VXLAN, from Source VTEP to Destination VTEP. This ensures optimal route selection and efficient load-
sharing of forwarding paths for overlay network traffic.

436

Just as EVPN VXLAN works within a single site for extending Layer 2 between hosts, the DCI feature
enables Layer 2 connectivity between sites. The Apstra DCI feature enables the extension of Layer 2 or
Layer 3 services between data centers for disaster recovery, load balancing of active-active sites, or
even for facilitating the migration of services from one data center to another.

Limitations:

• EVPN-GW (DCI) between different vendors' EVPN fabric is not supported.

• IPv6 is not supported on Remote EVPN Gateways. (Actual EVPN routes can contain IPv6 Type 2 and
Type 5.)

DCI Deployment Options

IN THIS SECTION

Over the Top | 438

Gateway (GW) | 438

Autonomous System Border Router (ASBR) | 439

You can implement Data Center Interconnect using the following methods:

• Over the Top

• Gateways (GW)

• Autonomous System Border Router (ASBR)

For assistance with selecting the best option for your organization, consult your Apstra Solutions
Architect (SA) or Systems Engineer (SE).

The following characteristics apply to all deployment options:

• You can extend Apstra DCI to other Apstra-managed data centers, non-Apstra managed data centers,
or even to legacy non-spine-leaf devices.

• Apstra implementation and behavior is the same in all three cases.

• Whether the remote end is another DCI GW or an ASBR, it is transparent to Apstra.

• Apstra manages neither the GWs nor ASBRs.

437

Over the Top

DCI "Over the Top" is a transparent solution, meaning EVPN routes are encapsulated into standard IP
and hidden from the underlying transport. This makes the extension of services simple and flexible and
is often chosen because data center teams can implement it with little to no coordination with WAN or
Service Provider groups. This reduces the implementation times and internal company friction. However,
the tradeoff is scalability and resilience.

Gateway (GW)

Building upon the Apstra Remote EVPN Gateway capability, you can optionally specify that the Remote
EVPN Gateway is an external generic system (tagged as an external router) in the same site, thus
extending the EVPN attributes to said gateway. This solution creates a fault domain per site, preventing
failures from affecting convergence in remote sites and creating multiple fault domains. IP/MAC
endpoint tables for remote sites are processed and held in state on a generic system (tagged as external
router) gateway. You can also implement WAN QoS and security, along with optimizations that the
transport technology makes available (MPLS TE for example). However, this solution is more
operationally complex, requiring additional hardware and cost.

438

Autonomous System Border Router (ASBR)

Using the Apstra Remote EVPN Gateway capability, you can optionally specify that the Remote EVPN
Gateway is an ASBR WAN Edge Device. This end-to-end EVPN enables uniform encapsulation and
removes the dedicated GW requirement. It is operationally complex but has greater scalability as
compared to both "DCI Using Gateway" and "Over the Top".

Implementation

IN THIS SECTION

EVPN Gateways Use Cases | 439

Over the Top | 440

Data Plane Extension: Layer 3 | 441

Data Plane Extension: Layer 2 | 442

You can extend routing zones and virtual networks (VN) to span across Apstra-managed blueprints
(across pods) or to remote networks (across data centers) that Apstra doesn't manage. This feature
introduces the EVPN Gateway (GW) role, which could be a switch that participates in the fabric or
RouteServer(s) on a generic system (tagged as a server) that is connected to the fabric.

EVPN Gateways Use Cases

• Span Layer 3 isolation domains (VRFs / routing zones) to multiple Apstra-managed pods (blueprints)
or extend to remote EVPN domains.

• Provide Layer 2 domain extensions for L2VNI / virtual networks.

• Help extend EVPN domain from Apstra to Apstra-managed and Apstra to unmanaged pods.

439

• No VXLAN traffic termination on the spine devices - connect external generic systems (tagged as
external routers) on spine devices. This is to support IPv4 (underlay) external connectivity. Here spine
devices don't need to terminate VXLAN traffic, unlike border leaf devices, when connected to
external generic systems (tagged as external routers). In a nutshell, using this can exchange IPv4
routes to remote VTEPs (in the default routing zone/VRF) and only Layer 3 connectivity is required:

Over the Top

When BGP EVPN peering is done "over the top", the Data Center Gateway (DC-GW) is a pure IP
transport function and BGP EVPN peering is established between gateways in different data centers.

The next sections describes the procedures for interconnecting two or more BGP-based Ethernet VPN
(EVPN) sites in a scalable fashion over an IP network. The motivation is to support extension of EVPN
sites without having to rely on typical Data Center Interconnect (DCI) technologies like MPLS/VPLS,
which are often difficult to configure, sometimes proprietary, and likely legacy in nature.

"Over the Top" is a simple solution that only requires IP routing between data centers and an adjusted
MTU to support VXLAN encapsulation between gateway endpoints. In such an implementation, EVPN
routes are extended end-to-end via MP-BGP between sites. Multi-hop BGP is enabled with the
assumption that there will be multiple Layer 3 hops between sites over a WAN. Otherwise the default
TTL decrements to 0 and packets are discarded and don't make it to the remote router. Apstra
automatically renders the needed configuration to address these limitations.

This design merges the separate EVPN-VXLAN domains and VXLAN tunnels between sites. Merging of
previously separate EVPN domains in different sites realizes the benefit of extending Layer 2 and Layer
3 (VRF) services between sites, but also renders the sites as a single fault domain. So a failure in one site
is necessarily propagated. Also, anytime you stretch Layer 2 across the WAN between sites, you are also
extending the flood domain and along with it, all broadcast traffic over your costly WAN links. At this
time, this solution does not offer any filtering or QoS.

NOTE: When separate Apstra blueprints manage individual sites (or when only one site is Apstra-
managed) you must create and manage extended routing zones (VRFs) and virtual networks

440

(Layer 2 and/or Layer 3 defined VLANs/subnets) independently in each site. You must manually
map VRFs and VNs between sites (creating administrative overhead).

NOTE: If you’re setting up P2P connections between two data centers (blueprints) in the same
Apstra controller, each blueprint must pull resources from different IP pools to avoid build errors.
To do this, create two IP pools with the same IP subnet, but with different names.

This "Over the Top" solution is the easiest to deploy, requires no additional hardware and introduces no
additional WAN config other than increasing the MTU. It is the most flexible and has the lowest barrier
to entry. However, the downside is that there is a single EVPN control plane and a routing anomaly in
one site will affect convergence and reachability in the other site(s). The extension of Layer 2 flood
domains also implies that a broadcast storm in one site extends to the other site(s).

With any DCI implementation, careful resource planning and coordination is required. Adding more sites
requires an exponential increase in such planning and coordination. VTEP loopbacks in the underlay
need to be leaked. VNIDs must match between sites and in some cases, additional Route Targets (RTs)
must be imported. This is covered in detail later in this document.

Data Plane Extension: Layer 3

VXLAN Network IDs (VNIDs) are a part of the VXLAN header that identify unique VXLAN tunnels, each
of which are isolated from the other VXLAN tunnels in an IP network. Layer 3 packets can be
encapsulated into a VXLAN packet or Layer 2 MAC frames can be encapsulated directly into a VXLAN
packet. In both cases, a unique VNID is associated with either the Layer 3 subnet, or the Layer 2
domain. When extending either Layer 3 or Layer 2 services between sites, you are essentially stitching
VXLAN tunnels between sites. VNIDs therefore need to match between sites.

It is important to understand that a particular VNID will be associated with only one VRF (or routing
zone in Apstra terminology). VNIDs exist within a VRF. They are tied to a VRF. For Layer 3 services, the
stitching, or extending, of each VNID is done with the export and import of RTs within a routing zone
(VRF). Layer 3 subnets (routes) are identified via RTs. All VNIDs are exported automatically at the EVPN
gateway (edge) towards the WAN. Conversely, RTs of the same value are automatically imported at the
EVPN gateway (edge) coming into the fabric. So if you coordinate the Layer 3 VNIDs at one site to

441

match the other, no additional configuration is needed.

In the image above, no additional export or import is required. Everything is automatically exported
(Export All) and because the RTs match, they are automatically imported.

However, if a VNID in DC1 is different from a VNID in DC2, then you must import the RTs respectively.
Each respective gateway still automatically imports RTs of the same value. In the example below, an
additional step of manually adding the RTs from the other site is required.

Data Plane Extension: Layer 2

A virtual network can be a pure Layer 2 service (Layer 3 anycast gateway is not instantiated). It can be
rack-local (VLAN on server-facing ports contained within a rack) or VXLAN (select the racks to extend
the Layer 2 flood and broadcast domain between racks. This Layer 2 domain has its own VNID, and the

442

MAC frames (as opposed to IP packets) are encapsulated into the VXLAN header with the VNID of the
Layer 2 domain.

The same principles apply in that all VNIDs are exported at the EVPN gateway (in this case Type-2
routes/MAC addresses), and matching RTs are automatically imported. However, the location of
importing and exporting RTs is not at the routing zone level, but instead at the virtual network itself.

Apstra Workflow

IN THIS SECTION

Control Plane Extension: EVPN Gateway | 443

Underlay VTEP Route Advertisements | 444

Create Remote EVPN Gateways | 444

Enhanced Routing Zone | 446

Enhanced Virtual Networks | 447

Remote Gateway Topology Representation | 448

Control Plane Extension: EVPN Gateway

Apstra uses the concept of an an "EVPN Gateway". This device can theoretically be a leaf, spine or
superspine fabric node, as well as the DCI device. EVPN Gateways separate the fabric-side from the
network that interconnects the sites and masks the site-internal VTEPs.

In Apstra, an EVPN Gateway is a device that belongs to and resides at the edge of an EVPN fabric which
is also attached to an external IP network. In an Apstra EVPN blueprint, this is always a border-leaf
device. The EVPN Gateway of one data center, establishes BGP EVPN peering with a reciprocal EVPN
gateway, or gateways, in another data center. The "other" EVPN gateway is the "Remote EVPN
Gateway" in Apstra terminology. The Local EVPN Gateway is assumed to be one of the Apstra-managed
devices in the blueprint, and is selected when creating the "Remote EVPN Gateway". The Local EVPN
Gateway will be the border-leaf switch with one or more external routing connections for traffic in and
out of the EVPN Clos fabric.

Due to this capability, you can configure a Local EVPN Gateway (always an Apstra-managed switch) to
peer with a non Apstra-managed, or even a non Spine-Leaf device, in another DC. The EVPN Gateway
BGP peering is used to carry all EVPN attributes from inside a pod, to outside the pod. In the Apstra
environment, each blueprint represents a data center. If two or more sites are under Apstra
management, you still must configure each site to point to the "Remote EVPN Gateway(s)" in other sites.
We recommend that you create multiple, redundant EVPN Gateways for each data center. There is also

443

currently a full mesh requirement between EVPN gateways, although in future releases this requirement
will be removed.

Underlay VTEP Route Advertisements

The underlay reachability to VTEP IP addresses, or an equivalent summary route, must be established
reciprocally. Each site must advertise these VTEP loopbacks from within the default routing zone into
the exported BGP (IPv4) underlay advertisements. Loopbacks in the routing policy are enabled by
default.

Create Remote EVPN Gateways

Remote EVPN Gateway is a logical function that you could instantiate anywhere and on any device. It
requires BGP support in general, L2VPN/EVPN AFI/SAFI specifically. To establish a BGP session with an
EVPN gateway, IP connectivity, as well as connectivity to TCP port 179 (IANA allocates BGP TCP ports),
should be available.

NOTE: For resilience, we recommend having at least two remote gateways for the same remote
EVPN domain.

1. From the blueprint, navigate to Staged > Virtual > Remote EVPN Gateways and click Create Remote
EVPN Gateway.

444

2. In the dialog that opens, fill in the following information for the remote EVPN gateway.

When extending L2 networks between data center fabrics you have the option (starting with Apstra
version 4.1.0) to exchange only EVPN Route Type RT-5 prefixes (interface-less model). This is useful
when there is no need to exchange all host routes between data center locations. This results in
smaller requirements for the routing information base (RIB), also known as the routing table, and the
forwarding information base (FIB), also known as the forwarding table, on DCI equipment.

3. Select the Local Gateway Nodes. These are the devices in the blueprint that will be configured with a
Local EVPN Gateway. You can select one or more devices to peer with the configured remote EVPN
gateway. You can use the query function to help you locate the appropriate nodes. We recommend
using multiple border-leaf devices which have direct connections to external generic systems (tagged

445

as external routers).

4. Click Create to stage the gateway and return to the table view.

5. When you are ready to deploy the devices in the blueprint, "commit" on page 670 your changes.

We recommend using multiple remote EVPN gateways. To configure additional remote EVPN gateways,
repeat the steps above.

If you are configuring the Remote EVPN Gateway(s) to another Apstra blueprint, you must configure and
deploy the remote EVPN gateway(s) separately in that blueprint.

Once the change is deployed, Apstra monitors the BGP session for the remote EVPN gateways. To see
any anomalies from the blueprint, navigate to Active > Anomalies.

Enhanced Routing Zone

RT (route-target) import/export policies on devices that are part of extended service govern EVPN route
installation. Specify route target policies to add import and export route-targets that Apstra uses for
routing zones/VRFs. You do this when you create routing zones. Navigate to Staged > Virtual > Routing

446

Zones and click Create Routing Zone. For more information, see "Routing Zones" on page 423.

NOTE: The generated default route-target for routing zones is <L3 VNI>:1. You can't change this
default value.

To confirm that correct routes are received at VTEP make sure L3VNIs and route target are identical
between the blueprint and remote EVPN domains.

Enhanced Virtual Networks

You can add additional import and export route-targets that Apstra uses for virtual networks.

447

NOTE: The default route target that Apstra generates for virtual networks is <L2 VNI>:1. You
can’t alter this.

For Intra-VNI communication L2VNI specific RT is used. The import RT is used to determine which
received routes are applicable to a particular VNI. To establish connectivity, Layer 2 VNIs must be the
same between the blueprint and the remote domains. SVI subnets must be identical across domains.

Remote Gateway Topology Representation

Remote EVPN gateways are represented on the topology view as cloud elements with dotted line
connections to the blueprint elements with which BGP sessions are established as shown in the image
below. (Image below is slightly different from more recent versions.)

Virtual Infra (Virtual)

IN THIS SECTION

vCenter Virtual Infra | 449

NSX-T Integration | 456

448

NSX-T Edge and Connectivity Templates | 468

NSX-T Inventory Mapping to Apstra Virtual Infrastructure | 479

vCenter Virtual Infra

IN THIS SECTION

VMware vSphere Integration Overview | 449

Enable vCenter Integration | 450

VM Visibility | 452

Validate Virtual Infra Integration | 452

Auto-Remediation Overview | 454

Enable Auto-Remediation | 454

Remediate Probe Anomalies | 455

Disable Virtual Infra Integration | 455

VMware vSphere Integration Overview

IN THIS SECTION

Supported Versions | 450

Limitations | 450

With Apstra vCenter integration, you have VM visibility of your virtualized environments. This feature
helps to troubleshoot various VM connectivity issues. Inconsistencies between virtual network settings
(VMware Port Groups) and physical networks (Apstra Virtual Networks) that might affect VM
connectivity are flagged.

To accomplish this, the Apstra software identifies the ESX/ESXi hosts and thereby the VMs connected
to Apstra-managed leaf switches. LLDP information transmitted by the ESX/ESXi hosts is used to

449

associate host interfaces with leaf interfaces. For this feature to work, LLDP transmit must be enabled
on the VMware distributed virtual switch.

The Apstra software also connects to vCenter to collect information about VMs, ESX/ESXi hosts, port
groups and VDS. Apstra extensible telemetry collectors collect this information. The collector runs in an
offbox agent and uses pyVmomi to connect to vCenter. On first connect, it downloads all of the
necessary information and thereafter polls vCenter every 60 seconds for new updates. The collector
updates the discovered data into the Apstra Graph Datastore allowing VM queries and alerts to be
raised on physical/virtual network mismatch.

Supported Versions

VMware vSphere/vCenter integration is available for the following versions of VMware:

• vCenter Server/vSphere 7.0U1 (as of Apstra version 4.1.0)

• vCenter Server/vSphere 6.7

• vCenter Server/vSphere 6.5

The specific test and qualification for version 7.0 is three vCenter servers on three different routing
zones: zone 1 supports 3000 VMs, zone 2 supports 1000 VMs, and zone 3 supports 1000 VMs. We
support vCenter managed data center stretched clusters. vCenter segregation is based on workload, not
location.

Limitations

vCenter integration does not support DVS port group with VLAN type Trunking.

Enable vCenter Integration

You only need Read permissions to enable vSphere Integration.

450

1. From the left navigation menu, navigate to External Systems > Virtual Infra Managers and click
Create Virtual Infra Manager.

2. Enter the vCenter IP address (or DNS name), select VMware vCenter Server, then enter a username
and password.

3. Click Create to launch an offbox container running vCenter. While the container is connecting, the
state is DISCONNECTED. When the container successfully connects, the state changes to
CONNECTED.

4. When vCenter is connected, from the blueprint, navigate to Staged > Virtual > Virtual Infra and click
Add Virtual Infra.

5. Select the vCenter Server from the Virtual Infra Manager drop-down list, then click Create to stage
the change.

When you are ready to deploy, commit the changes from the Uncommitted tab.

451

VM Visibility

When Apstra software manages virtual infra, you can query VMs by name. From the blueprint, navigate
to Active > Query > VMs and enter search criteria. VMs include the following details:

Parameter Description

Hosted On The ESX host that the VM is on

VM IP The IP address as reported by vCenter after installation
of VM tools. If the IP address is not available this field
is empty. If the IP address is available, the VM IP
address is displayed.

Leaf:Interface The leaf and the interface ESX host is connected to

Port Group Name:VLAN ID The VNIC’s portgroup and the VLAN ID associated
with the portgroup

MAC Addresses MAC address of the VNIC

Virtual Infra Address IP address of the vCenter the VM is part of

Validate Virtual Infra Integration

You can validate virtual infra with intent-based analytics. Apstra validates BGP session towards NSX-T
Edge. In case BGP neighborship in NSX-T Manager is deleted then respective anomalies can be seen in
Apstra dashboard.

452

Two predefined analytics dashboards (as listed below) are available that instantiate predefined virtual
infra probes.

Virtual Infra Fabric Health Check Dashboard

• "Hypervisor MTU Mismatch Probe" on page 1023

• "Hypervisor MTU Threshold Check Probe" on page 1023

• "Hypervisor & Fabric LAG Config Mismatch Probe" on page 1015

• "Hypervisor & Fabric VLAN Config Mismatch Probe" on page 1016

• "Hypervisor Missing LLDP Config Probe" on page 1024

• "VMs without Fabric Configured VLANs Probe" on page 1049

Virtual Infra Redundancy Check Dashboard

453

• "Hypervisor Redundancy Checks Probe" on page 1025

For more information, see "Analytics Dashboard" on page 680 and "Probes" on page 687.

Auto-Remediation Overview

Automatic remediation of virtual network anomalies is available without user intervention. This can
reduce operational cost when network operators don't need to investigate each anomaly and check for
details and intervene to mitigate anomalies. VxLAN auto-remediation is a policy configured while adding
vCenter/NSX-T to a blueprint. Anomaly remediation is done in accordance with this policy.

A policy-based auto-remediation approach automatically notifies you if there is a mismatch between
vSphere DPG (VMware Port Groups) and VN in a particular blueprint, or if there is a VLAN mismatch
between virtual infra and the Apstra fabric, or if there is a mismatch in LAG configuration on hypervisors
and the corresponding leaf ports. Apstra software provides automatic guided remediation of such
anomalies.

Some of the constraints and validations that take place before the remediation happens are listed below:

• When remediation policy is set to VLAN, that is rack-local, routing zone can only be the default one.

• If VLAN ID for virtual network spanning multiple hypervisors is the same, a single layer 2 broadcast
domain is assumed. For such scenarios, the VLAN remediation policy must be set to VXLAN as for
missing VLAN anomalies it is checked on all the ToR leaf devices connected to different hypervisors
having virtual network with the same VLAN ID. If this is mistakenly chosen as VLAN type, validation
errors are generated.

• Errors are flagged for different types of remediation policies (For example, if one is VXLAN type and
other is VLAN type) are found attached to different virtual infras (such as two different vCenter
servers) having the same VLAN ID in anomalies.

• If two different virtual infra servers are mapped in a blueprint and they have the same VLAN IDs then
it is checked as two separate virtual networks by VXLAN auto-remediation policy.

Enable Auto-Remediation

1. From the blueprint, navigate to Staged > Virtual > Virtual Infra and click Add Virtual Infra.

2. Select the Virtual Infra Manager from the drop-down list.

3. Click VLAN Remediation Policy to see the attributes to configure.

4. Select the VN Type from the drop-down list.

• VXLAN (inter-rack) (default) Assumes VXLAN virtual network and looks for VN mismatch in all of
the related ToRs in the Apstra fabric.

• VLAN (rack-local) Select VLAN if the VLAN footprint on local vSphere does not extend to other
ToR leaf devices in a fabric.

454

5. Select the Routing zone. (If VN type is rack-local only the default routing zone is allowed.)

6. Click Create.

After enabling the VLAN remediation policy as inter-rack, Apstra software searches for matching local
VLANs in all ToRs connecting any member host (hypervisor for example) participating in the virtual infra
virtual network. If such a VN is found, it simply extends that VN to also be bound to the ToR in question
with the same local VLAN. If it's not found, a new inter-rack VN is created in the specified routing zone.

Remediate Probe Anomalies

Apstra policy-based remediation has the following features:

• VLAN mismatch anomalies create one virtual network for one vCenter Distributed Virtual Switch
(vDS) port group that is attached to hypervisors connected to leaf ports of ToRs in Apstra fabric.

• You cannot delete a routing zone that is being referenced in remediation policy.

NOTE: For an EVPN-enabled fabric, we recommend that you have VN type as inter-rack or
VXLAN in a specific routing zone.

1. From the blueprint, navigate to Analytics > Probes and click one of the instantiated predefined probe
names.

2. Click Remediate Anomalies on a given stage. The Apstra software automatically updates the staged
blueprint by adding/removing/updating VN endpoints and VNs to resolve the anomalies.

3. Review the staged configuration in terms of virtual network parameters, then commit the
configuration. The Apstra software indicates if there are no detected changes. This could happen if
you invoke remediation more than once.

4. Review and commit the changes on the Uncommitted tab.

5. Return to the predefined probe to view any remaining anomalies.

Disable Virtual Infra Integration

Virtual infra integrations are disabled by deleting them from the blueprint and external systems.

1. From the blueprint, navigate to Staged > Virtual > Virtual Infra and click the Delete button for the
virtual infra to disable.

2. Click Uncommitted (top menu) and commit the deletion.

3. From the left navigation menu, navigate to External Systems > Virtual Ingra Managers and click the
Delete button for the virtual infra to disable.

455

NSX-T Integration

IN THIS SECTION

VMware NSX-T Integration Overview | 456

Enable NSX-T Integration | 457

Virtual Infrastructure Visibility | 462

Validate Virtual Infra Integration | 466

Disable Virtual Infra Integration | 468

VMware NSX-T Integration Overview

IN THIS SECTION

Supported Versions | 457

Limitations | 457

You can integrate NSX-T with Apstra software to help deploy fabric VLANs that are needed for
deploying NSX-T in the data center or for providing connectivity between NSX-T overlay networks and
fabric underlay networks. You can accelerate NSX-T deployments by making sure the fabric is ready in
terms of LAG, MTU and VLAN configuration as per NSX-T transport node requirements. This feature
also helps network operators with fabric visibility in terms of seeing all the NSX-T VMs, VM ports, and
physical gateway ports. NSX-T integration helps identify issues on the fabric and on the virtual
infrastructure. It eliminates manual config validation tasks between the NSX-T nodes side and the ToR
switches.

When NSX-T VM is attached into VLAN Transport, VM query shows TOR switch/interface information
together. When NSX-T VM is attached into Overlay Transport, VM query doesn't show TOR switch/
interface information. Be sure to add ESXi host in generic systems, not external generic systems.

As of Apstra version 4.1.2, you can create Virtual Infra Managers for NSX-T Manager version 3.2.x using
DVS mode. You can also add multiple Virtual Infra Managers per blueprint. This is useful when you have
multiple NSX-T Managers or multiple vCenter Servers hosted in the same fabric blueprint. You'll need to
provide the vCenter compute managers information (address and credentials) when you add the NSX-T
Virtual Infra.

456

Supported Versions

Apstra version 4.1.2: VMware NSX-T Manager version 3.2.x

Apstra version 4.1.1 and 4.1.0: VMware NSX-T version 3.0.2

Limitations

• NSX-T Edge VM migration is supported only within a rack. Attempting to migrate between racks
results in BGP disruption. You can migrate the NSX-T Edge VM from the ESXi host connected to leaf
pair (that is, ToR-Leaf and ToR-Right) to the other ESXi host which is connected to single leaf with the
rack.

• (Apstra versions 4.1.1 and 4.1.0 only) Having more than one NSX-T virtual infra in a blueprint is not
supported. We recommend only one virtual infra per blueprint.

• (Apstra versions 4.1.1 and 4.1.0 only) NSX-T integration does not support DVS port group with
VLAN-type trunking.

Enable NSX-T Integration

We recommend that you "create a user profile" on page 717 dedicated to managing NSX-T integration
activities.

1. From the left navigation menu, navigate to External Systems > Virtual Infra Managers > Create
Virtual Infra Manager.

2. Enter the NSX-T manager IP address (or DNS name), select VMware NSX-T Manager and enter a
username and password.

457

3. Click Create to create the virtual infra manager and return to the table view. When the connection
is successful, the connection state changes from DISCONNECTED to CONNECTED.

458

4. When NSX-T is connected, from the blueprint, navigate to Staged > Virtual > Virtual Infra > Add
Virtual Infra.

5. Select the NSX-T manager from the Virtual Infra Manager drop-down list, then click VLAN
Remediation Policy to expose additional fields. The information entered here is used in Intent-
based analytics (IBA) probes that can remediate anomalies.

6. Select the VN type and routing zone.

• If VLAN (rack-local) is selected, you must use the default routing zone.

• If VXLAN (inter-rack - when VN extends to different ToRs in the fabric) is selected you can
select a different routing zone.

7. Click Create to stage the virtual infra manager and return to the table view. The new virtual infra
manager appears in the table.

8. Click Uncommitted (top menu) to review changes, then click Commit (top-right) to add the NSX-T
manager to the active blueprint.

459

9. Create a Routing Zone in the blueprint and specify the VLAN ID, VNI and Routing Policies. Routing
Zone maps to a VRF on which BGP peering towards NSX-T Edge node is established.

10. For the GENEVE Tunnels to come up between the Transport Nodes in NSX-T, connectivity must be
established via Juniper Apstra Fabric. This will be ensured by creating VXLAN VN in Apstra and
assigning correct port mapping in ToR leaf devices towards Transport Node. VLAN ID for Overlay
VXLAN VN defined in Apstra must match the one mapped in Overlay Profile in NSX-T for Transport

460

Nodes. Also, the same IP subnet as that of the TEP Pool in NSX will be used.

11. Since we checked the box to Create Connectivity Template for in last step during VXLAN VN
creation in Apstra a Connectivity Template of type Virtual Network is automatically created under
Blueprints > Staged > Connectivity Templates as shown below:

461

12. Assign the interfaces to the Connectivity Template created above towards Transport nodes in NSX-
T side.

13. Once the configuration is rendered towards devices we can observe GENEVE Tunnels between
Transport and Edge nodes are UP in NSX-T Manager.

NOTE: When you install the NSX Edge as a virtual appliance or host Transport Node, use
the default uplink profile. If the Failover teaming policy is configured for an uplink profile,
then you can only configure a single active uplink in the teaming policy. Standby uplinks are
not supported and must not be configured in the failover teaming policy.

Virtual Infrastructure Visibility

When you've successfully integrated NSX-T, you have visibility of NSX-T VMs and transport nodes in the
virtual infrastructure. You can query the status of the VMware fabric health.

462

To see a list of the VMs connected to the hypervisor, navigate to the dashboard and scroll to fabric
health for VMware option.

You can also query VMs that are hosted on hypervisors connected to ToR leaf devices. From the
blueprint, navigate to Active > Query > VMs.

VMs include the following details:

463

Parameter Description

VM Name The Virtual Machine name which is hosted on NSX
managed hypervisor.

Hosted On The ESXi host on which Virtual Machine is hosted.

Hypervisor Hostname The hypervisor hostname on which Virtual Machine is
hosted and is connected to the leaf TORs in a fabric.

Hypervisor Version The software version of OS running on the hypervisor.

VM IP The IP address as reported by NSX-T after the
installation of VM tools. If the IP address is not
available this field is empty. Apstra displays VM IP if
the IP address is available on installation VM tools on
the VM.

Leaf:Interface System ID for the interface on the leaf to which ESXi
host is connected and on which VM resides.

Port Group Name:VLAN ID The VLAN ID which NSX-T port groups are using.
Overlay VM to VM traffic in a NSX-T enabled Data
Center tunnels between transport nodes over this
Virtual network.

MAC Addresses MAC address of the VM connected to the Apstra
Fabric.

Virtual Infra address IP address of the NSX-T infra added to a Blueprint

464

To search for nodes in the physical topology that have VMs, navigate to Active > Physical and select Has
VMs? from the Nodes drop-down list.

465

If the VM is moved from one Transport node to another in NSX-T it can be visualized in Apstra under
Active > Physical > Nodes > Generic System (Node_name). Select the VMs tab as shown below:

Validate Virtual Infra Integration

You can validate virtual infra with intent-based analytics. Apstra validates BGP session towards NSX-T
Edge. If BGP neighborship in NSX-T Manager is deleted, then respective anomalies are displayed in the
Apstra dashboard.

466

Two predefined analytics dashboards (as listed below) are available that instantiate predefined virtual
infra probes.

Virtual Infra Fabric Health Check Dashboard

• "Hypervisor MTU Mismatch Probe" on page 1023

• "Hypervisor MTU Threshold Check Probe" on page 1023

• "Hypervisor & Fabric LAG Config Mismatch Probe" on page 1015

• "Hypervisor & Fabric VLAN Config Mismatch Probe" on page 1016

• "Hypervisor Missing LLDP Config Probe" on page 1024

• "VMs without Fabric Configured VLANs Probe" on page 1049

Virtual Infra Redundancy Check Dashboard

467

• "Hypervisor Redundancy Checks Probe" on page 1025

For more information, see "Analytics dashboard" on page 680 and "Instantiate Predefined Probe" on
page 693.

Disable Virtual Infra Integration

To disable virtual infra integrations, delete them from the blueprint and external systems.

1. From the blueprint, navigate to Staged > Virtual > Virtual Infra and click the Delete button for the
virtual infra to disable.

2. Click Uncommitted (top menu) and commit the deletion.

3. From the left navigation menu, navigate to External Systems > Virtual Infra Managers and click the
Delete button for the virtual infra to disable.

NSX-T Edge and Connectivity Templates

IN THIS SECTION

Overview | 468

Set Up NSX-T Tier-0 Router BGP peering | 468

Set Up NSX-T VRF Lite | 474

Set Up Default Static Route towards NSX-T Edge | 477

Set Up BGP IPv6 towards NSX-T Edge | 478

Un-assign BGP on VXLAN VN towards NSX-T Edge | 479

Overview

Juniper Apstra supports NSX-T Edge connectivity requirements using connectivity templates.
Connectivity templates can be used both where NSX-T Edge is hosted on Bare Metal or when used as a
virtual machine.

We support VRF lite enabled Tier-0 edge Gateway using connectivity templates.

The use cases below relate to connectivity templates for NSX-T 3.0 Edge:

Set Up NSX-T Tier-0 Router BGP peering

Let's say NSX-T Edge VM uplinks are connected to ToR leaf devices via VLAN Transport Zone which
provides uplink network connectivity to physical infrastructure. Then Edge VM will also have vmnics as

468

per below screenshot which will help for tunnelling traffic between Transport Nodes. This is called
Overlay Transport Zone.

• Create three Distributed Port Groups for respective vmnics and VLAN Trunking to be enabled on all
the Nodes as per the networking depicted in previous screenshot.

469

• Create respective Uplink profiles for Overlay and VLAN Transport Zones in NSX Manager(UI).

• After NSX-T is configured on the Transport nodes, a Tunnel endpoint(TEP) IP pool is created in the
NSX UI as below:

• Now create the NSX-T Edge VM in NSX Manager UI as below. It is used as the device for north-south
communication and BGP peering with Juniper Apstra Fabric. Also configure VDS on the Edge Nodes
under NSX Manager(UI) for respective overlay and Uplink interfaces.

470

• Tier-0 Gateway in the NSX-T Edge cluster provides a gateway service between the logical and
physical network. In NSX Manager create T0 Gateway which connects to the ToR Leaf via BGP to

471

communicate with the rest of Juniper Apstra Fabric.

• Add External interfaces to the T0 GW which maps to the Uplink segments

472

• Configure BGP peering on NSX T0 GW towards Juniper Apstra Fabric in NSX Manager.

• For NSX-T integration with Juniper Apstra, see "NSX-T Integration" on page 456

First create a Routing Zone in Juniper Apstra UI which maps to a VRF. Then need to setup IP Link
Primitive based connectivity template to establish BGP peering from the NSX-T Edge node to Fabric
as below:

Specify the routing zone on which the IP link will be added and respective VLAN ID.

473

Set Up NSX-T VRF Lite

With NSX-T VRF Lite we are able to configure per tenant data isolation. Each VLAN can be considered
as a separate channel for data plane under VRF gateways.

BGP peering can be built over these VLANs in VRF gateways for route exchange with the upstream
Juniper Apstra fabric. Inter-VRF traffic is routed through the physical Juniper Apstra fabric.

• In NSX-T Manager create the VLAN Segments for the Uplink networks for the tenants.

• In NSX-T Manager create the VRF-enabled Tier-0 Gateway for the tenants and add the uplink
interfaces on the VRF enabled Gateways. Thereafter add the BGP neighbors.

474

• From the Apstra GUI, setup the Routing Zone and the respective VNs on which BGP session will be
established towards ToR leaf devices as below:

475

• Create connectivity template under Staged option for the VNs created before and assign the
respective interfaces towards NSX-T Edge VM.

476

Set Up Default Static Route towards NSX-T Edge

Static default could be required in NSX-T edge setup to provide Internet connectivity. It can be taken
care of by adding a default route(0/0) with the next hop pointing towards uplink ToR leaf using a
connectivity template.

In the connectivity templates, assign the correct uplink:

477

Navigate to Staged > Connectivity Templates > Add Template > Primitives > Custom Static Route to
inject default route:

Set Up BGP IPv6 towards NSX-T Edge

We can enable IPv6-based BGP neighborship between T0 Gateway and ToR leaf using connectivity
templates.

See "Set up NSX-T VRF Lite" section for details on creating uplink VLAN interfaces on T0 Gateway. This
VLAN should be IPv6-enabled.

Create a connectivity template for each of the VXLAN VN and enable BGP towards IPv6 neighbor on
NSX-T Edge as below:

478

Un-assign BGP on VXLAN VN towards NSX-T Edge

Let's say BGP neighborship from Tier-0 Gateway in NSX-T needs to be torn down towards ToR Leaf. In
this case we need to unassign the interfaces in the Virtual Network based Connectivity Template used
for BGP peering so that it is in the Ready state, and then delete the connectivity template:

NSX-T Inventory Mapping to Apstra Virtual Infrastructure

IN THIS SECTION

Overview | 479

NSX-T Networking Terminology and correlation | 480

NSX Inventory Model | 488

Model Details and Relationship | 489

Overview

Apstra software can connect to the NSX-T API to gather information about the inventory in terms of
hosts, clusters, VMs, portgroups, vDS/N-vDS, and NICs within the NSX-T environment. Apstra can
integrate with NSX-T to provide Apstra admins visibility into the application workloads (aka VMs)
running and alert them about any inconsistencies that would affect workload connectivity. Apstra
Virtual Infrastructure visibility helps provide underlay/overlay correlation visibility and use IBA analytics
for overlay/underlay.

479

You cannot view the NSX Inventory in Apstra until the NSX-T manager is associated to a blueprint.

As per above screenshot inventory collection for NSX-T is done via Apstra extensible telemetry
collector.

NSX-T Networking Terminology and correlation

IN THIS SECTION

Transport Zones | 481

N-VDS | 483

Transport Node | 486

NSX Edge Node | 487

NSX Controller Cluster | 487

NSX Manager | 487

NSX-T uses the following terminology for their control plane and data plane components. Also please
find respective correlation with respect to Apstra.

480

Transport Zones

Transport Zones (TZ) define a group of ESXi hosts that can communicate with one another on a physical
network.

There are two types of Transport Zones:

1. Overlay Transport Zone: This transport zone can be used by both transport nodes or NSX
edges.When an ESXi host or NSX-T Edge transport node is added to an Overlay transport zone, an N-
VDS is installed on the ESXi host or NSX Edge Node.

2. VLAN Transport Zone: It can be used by NSX Edge and host transport nodes for its VLAN uplinks.

Each Hypervisor Hosts can only belong to one Transport Zone at a given point of time.

481

A newly created VLAN VN tagged towards an interface in Apstra fabric corresponds to a VLAN based
transport zone as per the screenshots below:

482

Here tagged VLAN VN is mapped to the respective Transport Zone in NSX-T with traffic type as VLAN.

N-VDS

An NSX-managed virtual distributed switch provides the underlying forwarding and is the data plane of
the transport nodes.

A few notables about N-VDS virtual switches include:

• pnics are physical ports on the ESXi host

• pnics can be bundled to form a link aggregation (LAG)

• uplinks are logical interfaces of an N-VDS

483

• uplinks are assigned pnics or LAGs

Here TEP are Tunnel Endpoints used for the NSX overlay networking (geneve encapsulation/
decapsulation). P1/P2 are pNICs mapped to the uplink profile(U1/U2).

484

N-VDS are instantiated at the Hypervisor level and can be thought of Virtual switch connected to the
ToR physical leaf devices as below:

485

Transport Node

It is a node capable of participating in an NSX-T Data Center overlay or VLAN networking.

VMs hosted on different Transport nodes communicate seamlessly across the overlay network. A
transport node can belong to:

• Multiple VLAN transport zones.

• At most one overlay transport zone with a standard N-VDS.

This can be compared to setting end hosts(servers) in an Apstra blueprint to be part of VLAN (leaf-local)
or VXLAN (inter-leaf) Virtual Network.

486

NSX Edge Node

The NSX Edge provides routing services and connectivity to networks that are external to the NSX-T
deployment. It is required for establishing external connectivity from the NSX-T domain, through a
Tier-0 router via BGP or static routing.

NSX Edge VMs have uplinks towards ToR leaves needing a separate VLAN transport zone. Apstra fabric
must be configured with the corresponding VLAN Virtual Network.

NOTE: NSX-T Edge Bare Metal or VM form factors are Transport nodes and discovered as
hypervisors in Apstra. However, VM edge Transport nodes can't be correlated to the connected
ToR Leaf.

NSX Controller Cluster

It provides control plane functions for NSX-T Data Center logical switching and routing components.

NSX Manager

It is a node that hosts the API services, the management plane, and the agent services.

487

NSX Inventory Model

• In NSX-T Transport nodes are hypervisor hosts and they can be correlated to server nodes in a
Blueprint connected to the ToR leaf devices. In NSX-T Data Center, ESXi hosts are prepared as
Transport Node which allows nodes to exchange traffic for virtual networks on Apstra Fabric or
amongst network on nodes. You must ensure hypervisors (ESXi) networking stack is sending LLDP
packets to aid the correlation of ESXi hosts with server nodes in the blueprint.

• PNIC is the actual physical network adapter on ESXi or hypervisor host. Hypervisor PNICs can be
correlated to the server interface on the Blueprint. LAG or Teaming configuration is done on the links
mapped to these physical NICs. This can be correlated to bond configuration done on the ToR leaf
devices towards the end servers.

• In NSX-T integration with Apstra VM virtual networks are discovered. These can be correlated to
blueprint virtual networks. In case VMs need to communicate with each other over tunnels between
hypervisors VMs are connected to the same logical switch in NSX-T(called N-VDS). Each logical

488

switch has a virtual network identifier (VNI), like a VLAN ID. This corresponds to VXLAN VNIs as in
Apstra fabric physical infrastructure.

• The NSX-T Uplink Profile defines the network interface configuration facing the fabric in terms of
LAG and LACP config on PNIC interfaces. The uplink profile is mapped in Transport node for the links
from the hypervisor/ESXi towards top-of-rack switches in Apstra Fabric.

• VNIC defines Virtual Interface of transport nodes or VMs. N-VDS switch does mapping of physical
NICs to such uplink virtual interfaces. These Virtual Interfaces can be correlated to server interface
ports of Apstra Fabric.

Model Details and Relationship

IN THIS SECTION

Hypervisor | 489

Hypervisor PNIC | 492

VNIC | 499

Port Channel Policy | 505

Vnet | 510

Hypervisor

• Hostname: FQDN attribute of transport node

• Hypervisor_id: Id attribute of transport node

• Label: Display name attribute of transport node

• version: NSX-T version installed on the transport node

489

To obtain NSX-T API response for respective hypervisor hosts and understand the correlation you can
use graph query. To open the GraphQL Explorer, click the “>_” button

After that in the graph explorer we can type a graph query on the left as per the screenshot below using
GraphQL:

To check for respective Label for the transport nodes below query can be used:

Request:

{
 hypervisor_nodes{
 label
 }
 }

490

Response:

{
 "data": {
 "hypervisor_nodes": [
 {
 "label": "zz-karun-nsxt.cvx.2485377892354-357746820-TN-2"
 },
 {
 "label": "zz-AndyF-nsxt.cvx.2485377892354-4240714876-TN-2"
 }
]
 }
}

Hypervisors which act as Transport Nodes can be visualized in Apstra under Active tab with Has
Hypervisor = Yes option as below:

To obtain respective hostname for the transport nodes below query can be used:

491

Request:

{
 hypervisor_nodes {
 hostname
 }
 }

Response:

{
 "data": {
 "hypervisor_nodes": [
 {
 "hostname": "localhost"
 },
 {
 "hostname": "ubuntu-bionic-nsxt"
 }
]
 }
}

Hypervisor PNIC

• MAC address: Physical address attribute of transport node’s interface

• Switch_id: Switch name attribute of transport node’s transport zone

• Label: Interface id attribute of transport node’s interface

• Neighbor_name: System name attribute of transport node’s interface lldp neighbor

• Neighbor_intf: Name attribute of transport node’s interface lldp neighbor

• MTU: MTU attribute of transport node’s interface

Physical NICs are selected for uplink profile dedicated for the Overlay Network. NSX-T Uplink Profile
defines the network interface configuration for the PNIC interfaces facing the Apstra fabric in terms of

492

LAG and LACP config.

So the uplink profile is mapped in Transport node for the links from the NSX-T logical switch of the
hypervisor/ESXi hosts. It points towards top-of-rack switches in Apstra Fabric.

NSX-API Request/Response to check MAC address for the Transport node interfaces.

Request:

{
pnic_nodes {
id mac_address

493

}
}

Response:

{
 "data": {
 "pnic_nodes": [
 {
 "id": "1e2162c3-9ce6-4f35-afc2-217bb48ced49",
 "mac_address": "52:54:00:88:41:28"
 },
 {
 "id": "9752a438-1939-4648-bc8e-0494addf7c7e",
 "mac_address": "52:54:00:04:d5:4f"
 }
]
 }
}

The MAC address shown in above example is learned on a LAG interface in Apstra Fabric towards the
NSX-T Transport Node. It is the MAC address of the ESXi host pNICs having LAG bond towards ToR leaf
devices in Apstra fabric.

The NSX-API Request/Response below checks the switch name attribute of transport node’s transport
zone.

Request:

{
pnic_nodes {
id switch_id
}
}

Response:

{
 "data": {
 "pnic_nodes": [
 {

494

 "id": "82586be7-2998-401f-82ba-11afa5bb9730",
 "switch_id": "zz-cvx-nsxt.cvx.2485377892354-2902673742"
 },
 {
 "id": "0043d742-405a-454f-9e9b-695d5dd14608",
 "switch_id": "zz-cvx-nsxt.cvx.2485377892354-2902673742"
 }
]
 }
}

Switch ID attribute of the respective transport zone are read by NSX-T API from NSX manager as below:

NSX-API Request/Response to check Transport node’s interface.

Request:

{
pnic_nodes {
id label
}
}

Response:

{
 "data": {
 "pnic_nodes": [
 {

495

 "id": "82586be7-2998-401f-82ba-11afa5bb9730",
 "label": "eth2"
 },
 {
 "id": "0043d742-405a-454f-9e9b-695d5dd14608",
 "label": "eth1"
 },
 {
 "id": "b91a5725-7500-489b-a454-e05d7c311525",
 "label": "eth0"
 }
]
 }
}

Transport nodes has the mapping of physical NICs which can be seen returned as labels according to
above NSX-T API response.

Please find below NSX-API Request/Response to check Transport node’s LLDP neighbor System name
attribute.

496

Request:

{
pnic_nodes {
id neighbor_name
}
}

Response:

{
 "data": {
 "pnic_nodes": [
 {
 "id": "82586be7-2998-401f-82ba-11afa5bb9730",
 "neighbor_name": "leaf-2-525400C6DD2B"
 },
 {
 "id": "0043d742-405a-454f-9e9b-695d5dd14608",
 "neighbor_name": "leaf-2-525400C6DD2B"
 },
 {
 "id": "b91a5725-7500-489b-a454-e05d7c311525",
 "neighbor_name": "spine-1"
 },
 {
 "id": "f77575fb-44ea-4ec7-9913-1c75b7af87bc",
 "neighbor_name": "leaf-1-5254004D5560"
 },
 {
 "id": "628d0f86-4bc1-4faf-8f3f-f1deb92ceee2",
 "neighbor_name": "leaf-2-525400C6DD2B"
 },
 {
 "id": "1e2162c3-9ce6-4f35-afc2-217bb48ced49",
 "neighbor_name": "leaf-1-5254004D5560"
 }
]
 }
 }

497

Here Leaf1/2 are LLDP neighbors to the Transport nodes.

To obtain respective transport node’s LLDP neighbor interface name attribute below query can be used:

Request:

{
pnic_nodes {
id neighbor_intf
}
}

Response:

{
 "data": {
 "pnic_nodes": [
 {
 "id": "82586be7-2998-401f-82ba-11afa5bb9730",
 "neighbor_name": "leaf-2-525400C6DD2B"
 },
 {
 "id": "0043d742-405a-454f-9e9b-695d5dd14608",
 "neighbor_name": "leaf-2-525400C6DD2B"
 },
 {
 "id": "b91a5725-7500-489b-a454-e05d7c311525",
 "neighbor_name": "spine-1"
 },
 {
 "id": "f77575fb-44ea-4ec7-9913-1c75b7af87bc",
 "neighbor_name": "leaf-1-5254004D5560"
 },
 {
 "id": "628d0f86-4bc1-4faf-8f3f-f1deb92ceee2",
 "neighbor_name": "leaf-2-525400C6DD2B"
 },
 {
 "id": "1e2162c3-9ce6-4f35-afc2-217bb48ced49",
 "neighbor_name": "leaf-1-5254004D5560"
 }
]

498

 }
 }

NSX-API Request/Response to check the MTU attribute of Transport node’s interface.

Request:

{
pnic_nodes {
id neighbor_intf
}
}

Response:

{
 "data": {
 "pnic_nodes": [
 {
 "id": "82586be7-2998-401f-82ba-11afa5bb9730",
 "neighbor_intf": "swp4"
 },
 {
 "id": "0043d742-405a-454f-9e9b-695d5dd14608",
 "neighbor_intf": "swp3"
 },
 {
 "id": "b91a5725-7500-489b-a454-e05d7c311525",
 "neighbor_intf": "eth0"
 }
]
 }
}

MTU size of 1600 or greater is needed on any network that carries Geneve overlay traffic must. Hence
in the NSX-T reply we can notice MTU value 1600 on network interfaces towards Transport nodes.

VNIC

• MAC address: Physical address attribute of transport node’s or VM's Virtual interface

• Label: VNIC label attribute of transport node

499

• Ipv4_addr: IP address attribute of transport node’s virtual interface

• Traffic_types: It is derived from transport node’s virtual interface type

• MTU: MTU attribute of transport node’s virtual interface

You can check the VNIC mac address attribute with the below NSX-API Request/Response. This can be
of transport node’s interface Virtual Interface or can be for the Virtual Interface of the VMs. For
transport nodes under Host Switches select the Virtual NIC that matches the MAC address of the VM
NIC attached to the uplink port group.

Request:

{
vnic_nodes{
id mac_address
}
}

Response:

{
 "data": {
 "vnic_nodes": [
 {
 "id": "c84d8636-c28b-4db3-8747-37fadca4c7aa",
 "mac_address": "1e:5c:3b:a2:ea:c3"
 },
 {
 "id": "7d5826d8-0622-4a45-88d7-6b1e88bac62f",
 "mac_address": "ca:0f:93:24:24:43"
 }
]
 }
}

NSX-API Request/Response to check VNIC label which signifies interface id attribute of transport
node’s virtual interface or device name attribute of virtual machine’s virtual interface.

500

Request:

{
vnic_nodes{
id label
}
}

Response:

{
 "data": {
 "vnic_nodes": [
 {
 "id": "c84d8636-c28b-4db3-8747-37fadca4c7aa",
 "label": "hyperbus"
 },
 {
 "id": "7d5826d8-0622-4a45-88d7-6b1e88bac62f",
 "label": "nsx-switch.0"
 },
 {
 "id": "473c2b7d-ab2f-41cd-9a4b-fcf2eb248fd6",
 "label": "nsx-switch.0"
 },
 {
 "id": "9553390b-754e-45ef-8976-e63396d554ee",
 "label": "nsx-vtep0.0"
 },
 {
 "id": "a00bb649-5032-462f-97e7-b6c4f5f1ac86",
 "label": "nsx-vtep0.0"
 }
]
 }
}

Below is the NSX-API Request/Response to check VNIC Ipv4 address which signifies ip address
attribute of transport node’s virtual interface or for the virtual interface of logical port.

501

Request:

{
vnic_nodes{
id ipv4_addr
}
}

Response:

{
 "data": {
 "vnic_nodes": [
 {
 "id": "9553390b-754e-45ef-8976-e63396d554ee",
 "ipv4_addr": "192.168.1.13"
 },
 {
 "id": "a00bb649-5032-462f-97e7-b6c4f5f1ac86",
 "ipv4_addr": "192.168.1.12"
 }
]
 }
}

502

Here “192.168.1.13” and “192.168.1.12” are ipv4 addresses for the bridge interface of the host
transport nodes i.e "nsx-vtep0.0" which acts as a virtual tunnel endpoint (VTEP) of the transport node.
Each hypervisor has a Virtual Tunnel Endpoint (VTEP) responsible for encapsulating the VM traffic inside
a VLAN header and routing the packet to a destination VTEP for further processing. This can be
compared to VXLAN Virtual Network anycast GW VTEP IP.

nsx-vtep0.0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1600
 inet 192.168.1.12 netmask 255.255.255.224 broadcast 192.168.1.31
 inet6 fe80::c8ec:50ff:fe69:536 prefixlen 64 scopeid 0x20<link>
 ether ca:ec:50:69:05:36 txqueuelen 1000 (Ethernet)
 RX packets 60312 bytes 3975194 (3.9 MB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 31215 bytes 2675310 (2.6 MB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
admin@localhost:~$

NSX-API Request/Response to check traffic types for the transport node’s virtual interface. Traffic type
for the transport node can be overlay type as per the example below or it can be of VLAN type. One can
add both the VLAN and overlay NSX Transport Zones to the Transport Nodes.

VLAN based Transport zone is mainly for uplink based traffic. In case VMs on different Hypervisor hosts
need to communicate to each other then overlay network should be used. It can be compared to VXLAN
Virtual network in Apstra Fabric.

503

Request:

{
vnic_nodes{
id traffic_types
}
}

Response:

{
 "data": {
 "vnic_nodes": [
 {
 "id": "9553390b-754e-45ef-8976-e63396d554ee",
 "traffic_types": [
 "overlay"
]
 },
 {
 "id": "a00bb649-5032-462f-97e7-b6c4f5f1ac86",
 "traffic_types": [
 "overlay"
]
 }
]
 }
}

NSX-API Request/Response to obtain the mtu size for the transport node. MTU size for networks that
carry overlay traffic must be size of 1600 or greater as it carries Geneve overlay traffic. N-VDS and TEP
kernel interface all should have the same jumbo frame MTU size(i.e 1600 or greater).

Request:

{
vnic_nodes{
id mtu
}
}

504

Response:

{
 "data": {
 "vnic_nodes": [
 {
 "id": "9553390b-754e-45ef-8976-e63396d554ee",
 "mtu": 1600
 },
 {
 "id": "a00bb649-5032-462f-97e7-b6c4f5f1ac86",
 "mtu": 1600
 }
]
 }
}

So Virtual Interface i.e NSX VTEP and vswitch should have mtu of 1600 as per screenshot above.

Port Channel Policy

• Label: Name attribute of the host switch uplink lag profile

505

• Mode: Mode attribute of host switch uplink lag profile

• Hashing_algorithm: Load balance algorithm attribute of host switch uplink lag profile

An uplink profile is mapped in a Transport node on the NSX-T side with policies for the links from the
hypervisor hosts to NSX-T logical switches.

The links from the Hypervisor hosts to NSX-T logical switches can comprise of the LAG or Teaming
configuration which must be tied to physical NICs.

NSX-API Request/Response to check the logical switch uplink LAG profile attribute.

Request:

{
port_channel_nodes {
id label
} id port_channel_policy_nodes {
id label

506

}
}

Response:

{
 "data": {
 "port_channel_nodes": [
 {
 "id": "bd86666b-239d-4baa-8715-d73ca40d7100",
 "label": null
 },
 {
 "id": "ff5a5b6b-a103-471a-bbfd-ee3dc8c6e1c7",
 "label": null
 }
],
 "id": "rack-based-blueprint-9dfa0044",
 "port_channel_policy_nodes": [
 {
 "id": "59f60d47-ca48-441d-a4a4-e570af7bdb72",
 "label": "PTEST-LAG"
 }
]
 }
}

507

Uplink profile label can also be matched with one retrieved from the GUI in NSX-T Manager as below:

Below is NSX-API Request/Response to check the LACP mode attribute for the uplink LAG profile.

Request:

{
port_channel_nodes {
id
} id port_channel_policy_nodes {
id mode
}
}

Response:

{
 "data": {
 "port_channel_nodes": [
 {
 "id": "bd86666b-239d-4baa-8715-d73ca40d7100"
 },

508

 {
 "id": "ff5a5b6b-a103-471a-bbfd-ee3dc8c6e1c7"
 }
],
 "id": "rack-based-blueprint-9dfa0044",
 "port_channel_policy_nodes": [
 {
 "id": "59f60d47-ca48-441d-a4a4-e570af7bdb72",
 "mode": "active"
 }
]
 }
}

NSX-API Request/Response to check load balancing algorithm attribute of host switch uplink profile.

Request:

{
port_channel_nodes {

509

id
} id port_channel_policy_nodes {
id hashing_algorithm
}
}

Response:

{
 "data": {
 "port_channel_nodes": [
 {
 "id": "bd86666b-239d-4baa-8715-d73ca40d7100"
 },
 {
 "id": "ff5a5b6b-a103-471a-bbfd-ee3dc8c6e1c7"
 }
],
 "id": "rack-based-blueprint-9dfa0044",
 "port_channel_policy_nodes": [
 {
 "id": "59f60d47-ca48-441d-a4a4-e570af7bdb72",
 "hashing_algorithm": "srcMac"
 }
]
 }
}

From the LAG profile screenshot above it can be validated that it is using Source MAC Address based
load balancing algorithm.

Vnet

• Vn_type: Transport type attribute of transport zone

• Label: Display name attribute of logical switch

• switch_label: Switch name attribute of transport zone

• Vlan: Vlan attribute of logical switch for vlan transport zone

• Vni: vni attribute of logical switch for overlay transport zone

510

To obtain respective transport type attribute of the transport zone below query can be used. This mainly
signifies the type of traffic for a transport zone which can be Overlay or VLAN type.

Request:

{
vnet_nodes {
id vn_type
} id
}

Response:

{
 "data": {
 "vnet_nodes": [
 {
 "id": "a3320cc6-601e-4a81-abe9-8464ae054f18",
 "vn_type": "overlay"
 },
 {
 "id": "6bdd7cd9-82eb-433d-8360-076d9daddd1b",
 "vn_type": "vlan"
 }
],
 "id": "rack-based-blueprint-9dfa0044"
 }
}

511

Traffic type can also be identified in NSX-T Manager GUI as below:

NSX-API Request/Response to check the display name of the N-VDS logical switch.

Request:

{
vnet_nodes {
id label
} id
}

512

Response:

{
 "data": {
 "vnet_nodes": [
 {
 "id": "241ce8e1-b31d-4093-a1a3-2f99a29ac2f9",
 "label": "mahi-nsxt-kvm-ls"
 },
 {
 "id": "fef41435-ac20-4c4d-81c0-b7f3059d977b",
 "label": "zz-cvx-nsxt.cvx.2485377892354-2902673742_1000"
 },
 {
 "id": "6bdd7cd9-82eb-433d-8360-076d9daddd1b",
 "label": "zz-cvx-nsxt.cvx.2485377892354-2902673742_VLAN-100-UPLINK-PROFILE-LAG"
 }
],
 "id": "rack-based-blueprint-9dfa0044"
 }
}

Here as per API response above “zz-cvx-nsxt.cvx.2485377892354-2902673742_1000” is the
respective logical switch associated with the transport zone.

Below is the NSX-API Request/Response to check VLAN ID attribute of a VLAN based logical switch for
the transport zone.

513

Request:

{
vnet_nodes {
 id vlan
 } id
 }

Response:

{
 "data": {
 "vnet_nodes": [
 {
 "id": "e0b29951-7739-4ecb-8c87-5725a61f669a",
 "vlan": 123
 },
 {
 "id": "cdd0c6d5-fecb-44d8-84c4-06c685e8ef14",
 "vlan": 2000
 },
 {
 "id": "fef41435-ac20-4c4d-81c0-b7f3059d977b",
 "vlan": 1000
 },
 {
 "id": "6bdd7cd9-82eb-433d-8360-076d9daddd1b",
 "vlan": 200
 }
],
 "id": "rack-based-blueprint-9dfa0044"
 }
}

Here in Apstra Fabric VNI IDs 1000 and 2000 represent such VXLAN Virtual network for east-west L2
stretched traffic. Bridge backed logical switch on NSX-T should have the same VLAN IDs defined.

NSX-API Request/Response to check the VNI attribute of logical switch of NSX-T

514

Request:

{
vnet_nodes {
 id vni
 } id
 }

Response:

{
 "data": {
 "vnet_nodes": [
 {
 "id": "a3320cc6-601e-4a81-abe9-8464ae054f18",
 "vni": 67595
 },
 {
 "id": "b7923224-659b-4075-b69b-3edeb5726a32",
 "vni": 67589
 },
 {
 "id": "18b81c81-8ae1-46b1-83ca-05cd5b364a1c",
 "vni": 67584
 }
],
 "id": "rack-based-blueprint-9dfa0044"
 }
}

Endpoints Overview (Virtual)

IN THIS SECTION

Internal Endpoints (Virtual) | 516

External Endpoints (Virtual) | 518

515

Enforcement Points (Virtual) | 519

Endpoint Groups (Virtual) | 519

When you want more granularity in your security policies than virtual networks and routing zones can
provide, you'll use endpoints. Endpoints can be internal or external to the fabric. You can also combine
endpoints into groups.

Endpoints and security policies can be applied to Layer 2 IPv4 blueprints. (Blueprints with IPv6
applications enabled are not supported.) For more information about working with security policies, see
"Security Policies" on page 521.

From the blueprint, navigate to Staged > Virtual > Endpoints to go to endpoints. Click the name of a
section to go to its table view. You can create, clone, edit and delete endpoints. Then, when you create a
security policy you'll select the endpoints that you've created.

Internal Endpoints (Virtual)

IN THIS SECTION

Create Internal Endpoint | 517

Edit Internal Endpoint | 517

Delete Internal Endpoint | 517

516

Create Internal Endpoint

1. From the blueprint, navigate to Staged > Virtual > Endpoints > Internal Endpoints and click Create
Internal Endpoint.

2. Configure the endpoint as described below:

Parameter Description

Name A unique name, 32 characters or fewer.
Alphanumeric characters, underscores and dashes
only.

Virtual Network Select the virtual network where the endpoint is
located.

IPv4 Subnet Enter the IPv4 Subnet/CIDR.

Tags (optional) You can add tags for filtering or grouping beyond
membership custom groups or virtual networks (for
example “web server”, “db” and so on).

3. Click Create to stage the endpoint addition and return to the table view. Validation is performed to
ensure that the IP address is within the L2 subnet of the virtual network and that no endpoint with
the same IP address is within the same routing zone.

Edit Internal Endpoint

1. From the blueprint, navigate to Staged > Virtual > Endpoints > Internal Endpoints and click the Edit
button for the endpoint to edit.

2. Make your changes.

3. Click Update to stage the endpoint change and return to the table view.

Delete Internal Endpoint

1. From the blueprint, navigate to Staged > Virtual > Endpoints > Internal Endpoints and click the
Delete button for the endpoint to delete.

2. Click Delete to stage the endpoint removal and return to the table view.

517

External Endpoints (Virtual)

IN THIS SECTION

Create External Endpoint | 518

Edit External Endpoint | 518

Delete External Endpoint | 519

Create External Endpoint

1. From the blueprint, navigate to Staged > Virtual > Endpoints > External Endpoints and click Create
External Endpoint.

2. Configure the endpoint as described below:

Parameter Description

Name A unique name, 32 characters or fewer.
Alphanumeric characters, underscores and dashes
only.

IPv4 Subnet Enter the IPv4 Subnet/CIDR.

Tags (optional) You can add tags for filtering or grouping beyond
membership custom groups or virtual networks (for
example “web server”, “db” and so on).

Enforcement Points (optional) Enforcement points are supported on external-facing
interfaces on border leaf devices only. They are
external-facing points where access lists that involve
external endpoints are applied. Any external generic
system, external connectivity points and
enforcement groups can be added.

3. Click Create to stage the endpoint addition and return to the table view.

Edit External Endpoint

1. From the blueprint, navigate to Staged > Virtual > Endpoints > External Endpoints and click the Edit
button for the endpoint to edit.

518

2. Make your changes.

3. Click Update to stage the endpoint change and return to the table view.

Delete External Endpoint

1. From the blueprint, navigate to Staged > Virtual > Endpoints > External Endpoints and click the
Delete button for the endpoint to delete.

2. Click Delete to stage the endpoint removal and return to the table view.

Enforcement Points (Virtual)

Enforcement points are supported on external-facing interfaces on border leaf devices only. They are
automatically created when you add external generic systems or external connectivity points to a
blueprint.

From the blueprint, navigate to Staged > Virtual > Endpoints > Enforcement Points to go to enforcement
points.

Endpoint Groups (Virtual)

IN THIS SECTION

Create Endpoint Group | 519

Edit Endpoint Group | 520

Delete Endpoint Group | 520

Create Endpoint Group

1. From the blueprint, navigate to Staged > Virtual > Endpoints > Endpoint Groups and click Create
Endpoint Group.

2. Configure the endpoint group as described below:

Parameter Description

Name A unique name, 32 characters or fewer.
Alphanumeric characters, underscores and dashes
only

519

(Continued)

Parameter Description

Type Select the type of endpoint group to create: Internal
Endpoint Group, External Endpoint Group, or
Enforcement Point Group.

Members Depending on the type of endpoint group you are
creating, options for selecting members are
presented.

• Internal Endpoint Group - Select multiple internal
endpoints or other internal endpoint groups.

• External Endpoint Group - Select multiple
external endpoints or other external endpoint
groups, then select enforcement points or
enforcement point groups to associate with the
external endpoint group.

• Enforcement Points Group - Select multiple
enforcement points or other enforcement point
groups.

3. Click Create to stage the endpoint group addition and return to the table view.

Edit Endpoint Group

1. From the blueprint, navigate to Staged > Virtual > Endpoints > Endpoint Groups and click the Edit
button for the endpoint group to edit.

2. Make your changes.

3. Click Update to stage the endpoint group change and return to the table view.

Delete Endpoint Group

1. From the blueprint, navigate to Staged > Virtual > Endpoints > Endpoint Groups and click the Delete
button for the endpoint group to delete.

2. Click Delete to stage the endpoint group removal and return to the table view.

520

Policies (Datacenter) Staged

IN THIS SECTION

Security Policies | 521

Interface Policies | 529

Routing Policies | 537

Routing Zone (VRF) Constraints | 543

Fabric Addressing Policy | 545

Virtual Network Policy | 547

Anti-Affinity Policy | 550

Validation Policy | 552

Security Policies

IN THIS SECTION

Security Policy Overview | 521

Security Policy Parameters | 523

Create Security Policy | 525

Policy Errors | 526

Edit Security Policy | 527

Delete Security Policy | 527

Security Policy Search | 527

Security Policy Conflicts | 528

Security Policy Settings | 529

Security Policy Overview

Endpoint connectivity is determined by reachability (the correct forwarding state in the network) and
security (connectivity must be permitted). Policies must be specified between L2 and L3 domains and
between more granular L2/L3 IP endpoints. Security policies allow you to permit or deny traffic

521

between the more granular endpoints. They control inter-virtual network traffic (ACLs on SVIs) and
external-to-internal traffic (ACLs in border leaf devices, external endpoints only). ACLs are rendered in
the appropriate device syntax and applied on enforcement points. Adding a new VXLAN Endpoint (for
example, adding a rack or adding a leaf to a virtual network) automatically places the ACL on the virtual
network interface. Adding a new generic system External Connectivity Point (ECP) (enforcement point)
automatically places ACL for external endpoint groups. You can apply security policies to Layer 2 IPv4-
enabled blueprints (IPv6 is not supported). For supported devices, refer to the Connectivity (from Leaf
Layer) table in the Feature Matrix in the Reference section.

Security policies consist of a source point (subnet or IP address), a destination point (subnet or IP
address), and rules to allow or deny traffic between those points based on protocol. Rules are stateless,
meaning responses to allowed inbound traffic are subject to the rules for outbound traffic (and vice
versa).

Rules can include traffic logging. The ACL is configured to log matches using whatever mechanism is
supported on the device. Log configuration is local to the network device; It's not on the Apstra server.
Parsing these logs is outside the scope of this document.

For a bi-directional security policy, you would create two instances of the policy, one for each direction.

You can apply more than one policy to each subnet/endpoint, which means the ordering of rules has an
impact on behavior. An implicit hierarchy exists between routing zones, virtual networks, and IP
endpoints, so you must consider how policies are applied at different levels of hierarchy. When one
rule's match set contains the other's match set (full containment), the rules can conflict. You can set the
rules to execute more specific rules first (“exception” focus/mode) or less specific first (“override” focus/
mode).

Rules can also conflict when there is a full containment situation between the rules but the action is the
same. In this case, there is potential for compression by using the less specific rule, and the more specific
rule becomes a “shadow” rule. When conflicting rules are detected, you are alerted and shown the
resolution.

A few cases where conflicting rules are identified are described below:

• Rules in policies between different pairs of IP endpoints (even if one is common to both pairs) are
non-overlapping given that the pairs of IP addresses are different. This causes a disjoint match set
from a source IP / destination IP perspective (different “IP signature”).

• Rules in policies between the same IP endpoints can overlap fields (such as destination port); Apstra
software checks for this.

• Rules in policies between different pairs of virtual networks (even if one virtual network is common
to both pairs) are non-overlapping given that the pairs of subnets are different. This causes a disjoint
match set from the source IP / destination IP perspective (different “IP signature”).

• Rules in policies between the same virtual networks can overlap fields (such as destination port);
Apstra software checks for this.

522

• When IP endpoint groups are used, they result in a set of IP endpoint pairs so the above discussion
related to IP endpoint pairs applies.

• Rules in policies between a pair of IP endpoints and a pair of parent virtual networks have
containment from an IP signature perspective. Apstra software analyzes destination port / protocol
overlap and classifies it as full-containment or non-full-containment conflict.

• Rules in policies between a pair of IP endpoints and a pair of virtual networks where at least one
virtual network is not parent are non-conflicting (different "IP signature").

• Rules in policies between a pair of IP endpoints and an IP endpoint - virtual network pair where the
virtual network is a parent have full containment from an IP signature perspective; Apstra software
analyzes the remaining fields.

• Rules in policies that contain external IP endpoints or endpoint groups must be analyzed from an IP
signature perspective as external points are not bound by any hierarchical assumptions.

• A routing zone is a set of virtual networks and IP endpoints so the above discussions apply.

Endpoints are not supported in security policies when:

• Source point is an external endpoint or external endpoint group

• Destination point is internal (internal endpoint, internal endpoint group, virtual network, routing
zone)

To make composition tractable, both from an analysis point of view as well as from comprehending the
resulting composition it may be useful to limit the number of security policies that may apply to any
given endpoint/group.

Security Policy Parameters

Security policies include the following details:

Parameter Description

Name 32 characters or fewer, underscore, dash and
alphanumeric characters only

Description optional

Enabled • ON to enable security policy (default)

• OFF to disable security policy

523

(Continued)

Parameter Description

Tags optional

Source Point Type • Internal Endpoint (associated with VNs - contain
IP /32 address)

• External Endpoint (contains /32 or subnet)

• External Endpoint Group

• Internal Endpoint Group

• Virtual Network (contains subnet)

• Routing Zone (logical collection of all virtual
networks and internal IP endpoints)

Source Point • Internal Endpoint

• External Endpoint

• External Endpoint Group

• Internal Endpoint Group

• Virtual Network

• Routing Zone

Destination Point Type Source point (previously created)

Destination Point Destination point (previously created)

Rule Actions • Deny

• Deny & Log

• Permit

• Permit & Log

524

(Continued)

Parameter Description

Rule Protocols • TCP

• UDP

• IP

• ICMP

Source Port For TCP and IP protocols

Destination Port For TCP and IP protocols

From the blueprint, navigate to Staged > Policies > Security Policies > Policies to go to security policies.
You can create, clone, edit and delete security policies.

Create Security Policy

Before creating security policies, create "routing zones" on page 425, "virtual networks" on page 403,
"endpoints and endpoint groups" on page 515, in that order. They are the basis for creating security
policies.

To create security policies:

525

1. From the blueprint, navigate to Staged > Policies > Security Policies > Policies and click Create
Security Policy.

2. Enter a name, and if you want the policy to be enabled leave the default. Otherwise, click the
Enabled toggle to disable it.

3. Select a source point type, and enter the source point.

4. Select a destination point type, and enter the destination point.

5. Click Add Rule, then enter a name and (optional) description.

6. Select an action from the drop-down list (Deny, Deny & Log, Permit, Permit & Log).

7. Select a protocol from the drop-down list (TCP, UDP, IP ICMP).

8. If you selected TCP or UDP, enter a port (or port range) for source and destination. (If you created
"TCP/UDP port aliases" on page 55, they appear in the drop-down list).

9. To add another rule, click Add Rule and configure as above.

NOTE: To the right of the Add Rule button you can automatically create a blocklist-type
policy by clicking Deny All or an allowlist-type policy by clicking Permit All.

10. You can adjust the rule order by clicking the Move up or Move Down buttons in each rule.

11. Click Create to stage the policy and return to the table view.

Policy Errors

1. Check the security policy in the table view for errors, which are highlighted in red.

2. To see details, click the Show errors button.

526

3. When you resolve errors, the policy is no longer highlighted red and the Errors field is blank.

To activate staged changes, "commit" on page 670 them to the blueprint.

Edit Security Policy

1. From the left navigation menu, navigate to Staged > Policies > Security Policies > Policies and click
the Edit button for the policy to edit.

2. Make your changes.

3. Click Edit to stage the changes and return to the table view.

Delete Security Policy

1. From the left navigation menu, navigate to Staged > Policies > Security Policies > Policies and click
the Delete button for the policy to delete.

2. Click Delete to stage the deletion and return to the table view.

Security Policy Search

You can find security policies that are applied to specific subnets or points.

1. From the blueprint, navigate to Staged > Policies > Security Policies > Policy Search.

2. Select a source point type and enter a subnet or source point, as applicable.

3. Select a destination point type and enter a subnet or source point, as applicable.

527

4. Click Search to display associated security policies.

Security Policy Conflicts

From the blueprint, navigate to Staged > Policies > Security Policies > Conflicts to see any conflicts that
have been detected (Rule Conflicts column). Conflicts are resolved automatically whenever possible. By
default, more specific policies are applied before less specific ones, but you can change these security
policy settings. To see conflict details, click the icon in the Rule Conflicts column.

If the conflict was resolved automatically, Resolved by AOS appears in the Status column.

528

Security Policy Settings

You can configure how you want to resolve conflicts and whether to permit or deny traffic.

1. From the blueprint, navigate to Staged > Policies > Security Policies > Settings.

2. Select options as appropriate.

• Conflict resolution

• More specific first - more specific IP policy is used (default)

• More generic first - less specific IP policy is used

• Disabled - disables conflict resolution

• Default action

• Permit - permits traffic (default)

• Permit & Log - permits traffic and logs it

• Deny - denies traffic

• Deny & Log - denies traffic and logs it

3. Click Save Changes to stage the changes.

To activate staged changes, "commit" on page 670 them to the blueprint.

Interface Policies

IN THIS SECTION

802.1X Server Port Authentication | 530

Common Scenarios | 532

802.1X Interface Policy Workflow | 533

Create Virtual Networks for Interfaces | 533

Create AAA Server for Interface Policy | 534

Create 802.1x Interface Policy | 534

Assign Ports and Fallback VNs to Interface Policy | 535

529

802.1X Server Port Authentication

IEEE 802.1X is an IEEE Standard for network port-based Network Access Control. It is part of the IEEE
802.1 group of networking protocols. It provides an authentication mechanism to devices wishing to
attach to a LAN.

IEEE 802.1X defines the encapsulation of the Extensible Authentication Protocol (EAP) over IEEE 802,
which is known as "EAP over LAN" or EAPOL.

802.1X authentication involves three parties: a supplicant, an authenticator, and an authentication
server. The supplicant is a client device (such as a server) that wishes to attach to the LAN. The term
'supplicant' is also used interchangeably to refer to the software running on the client that provides
credentials to the authenticator. The authenticator is a network device which provides a data link
between the client and the network and can allow or block network traffic between the two, such as an
Ethernet switch or wireless access point; and the authentication server is typically a trusted server that
can receive and respond to requests for network access, and can tell the authenticator if the connection
is to be allowed, and various settings that should apply to that client's connection or setting.
Authentication servers typically run software supporting the RADIUS and EAP protocols. In some cases,
the authentication server software may be running on the authenticator hardware.

The authenticator acts as a security guard to a protected network. The supplicant (i.e., client device) is
not allowed access through the authenticator to the protected side of the network until the supplicant’s
identity has been validated and authorized. With 802.1X port-based authentication, the supplicant must
initially provide the required credentials to the authenticator - these will have been specified in advance
by the network administrator and could include a user name/password or a permitted digital certificate.
The authenticator forwards these credentials to the authentication server to decide whether access is to
be granted. If the authentication server determines the credentials are valid, it informs the authenticator,
which in turn allows the supplicant (client device) to access resources located on the protected side of
the network.

Extensions to 802.1X can also allow the authentication server to pass port-configuration options to the
authenticator. An example is using RADIUS value-pair attributes to pass a VLAN ID, allowing the
supplicant access to one of several VLANs.

530

(Source : Wikipedia, revised by Apstra)

You can manage 802.1X configuration on network devices with 802.1X server port authentication, a
collection of interface policy settings.

802.1X interface policy is supported on Junos (as a Tech Preview) and Arista EOS physical network
devices only. Juniper Evolved does not at this time support this feature.

NOTE: 802.1X interface policy on Junos has been classified as a Juniper Apstra Technology
Preview feature. These features are "as is" and voluntary use. Juniper Support will attempt to
resolve any issues that customers experience when using these features and create bug reports
on behalf of support cases. However, Juniper may not provide comprehensive support services
to Tech Preview features.

For additional information, refer to the "Juniper Apstra Technology Previews" on page 1168 page
or contact "Juniper Support" on page 802.

This policy setting enables the network to require L2 servers in a blueprint to authenticate to a RADIUS
server before being provided access to the network.

The network operator may require clients to authenticate using EAP-TLS, Certificates, simple username
& password, or MAC Authentication bypass.

531

NOTE: Support for encryption protocols, certificates, EAP, is negotiated between RADIUS
supplicant and RADIUS server, and is not controlled by the switch.

After authentication occurs, a RADIUS server may optionally set a VLAN ID attribute at authentication
time to move the supplicant into a defined VLAN, known by a leaf-specific VLAN ID.

This section describes the necessary tasks to create Interface Policies to be used with 802.1X server
port authentication and dynamic VLAN allocation.

Common Scenarios

The following are some common scenarios for 802.1X port authentication.

Device supports 802.1X, credentials and VLAN are configured in Radius

1. Device (Supplicant) connects to a port

2. Switch (Authenticator) mediates EAP negotiation between supplicant and Radius (Authentication
Server)

3. Upon authentication, Radius sends an Access-Accept message to the switch which includes the
VLAN number for the device

4. The switch adds the device port to the specified VLAN

Device supports 802.1X, but credentials are not configured in Radius

1. Device (Supplicant) connects to a port

2. Switch (Authenticator) mediates EAP negotiation between supplicant and Radius (Authentication
Server)

3. Finding no credential for the supplicant, Radius sends an Access-Reject message to the switch

4. The switch adds the device port to a designated Fallback (aka AuthFail/Parking) VLAN

Device does not support 802.1X, but the device MAC address is configured in Radius

1. Device (Non-Supplicant) connects to a port

2. Switch (Authenticator) does not receive a reply to its EAP-Request Identity message, indicating no
802.1X support

532

3. Switch authenticates device's MAC address to Radius (Authentication Server)

4. Radius sends an Access-Accept message to the switch which includes the VLAN number for the
device

5. The switch adds the device port to the specified VLAN

Device does not support 802.1X, and device MAC address is not configured in Radius

1. Device (Non-Supplicant) connects to a port

2. Switch (Authenticator) does not receive a reply to its EAP-Request Identity message, indicating no
802.1X support

3. Switch authenticates device's MAC address to Radius (Authentication Server)

4. Radius does not find a record for the MAC address

5. Radius sends an Access-Reject or Access-Accept message to the switch without a VLAN

6. The switch adds the device port to a designated Fallback (aka AuthFail/Parking) VLAN

802.1X Interface Policy Workflow

1. Create virtual networks (e.g. Data VLAN, Fallback VLAN, Dynamic VLAN)

2. Create AAA servers

3. Create 802.1X interface policy

4. Assign ports and fallback VLANs

Create Virtual Networks for Interfaces

Create virtual networks for the interface policy per the table below. We suggest creating these virtual
networks with a consistent VLAN ID among all leaf devices (instead of using a resource pool). For more
information about creating VLANs, see "Virtual Networks" on page 409.

Parameter Description

Data VLAN (assigned to ports) Interfaces will have 802.1X configuration if at least one
VLAN is assigned to the port. If a port does not have
any VLANs assigned, 802.1X configuration will not be
rendered on the interface. The interface will be
configured as a routed port.

533

(Continued)

Parameter Description

Dynamic VLAN (optional, assigned to leaf devices, not
ports)

The RADIUS server itself optionally chooses the VLAN
ID dynamically when the user (supplicant) is
authenticated and authorized. Apstra software does
not have control over Dynamic VLAN assignment. This
decision is made by RADIUS configuration, not by the
switch configuration.

Fallback VLAN (optional, assigned to leaf devices, not
ports)

Fallback VLAN can be assigned to the user (supplicant)
in case of authentication failure. For fallback, the
VLAN is controlled by the switch configuration.

A RADIUS dynamic VLAN or fallback VLAN must exist
on the switch, but there is no requirement to bind any
endpoints to that VLAN. It only needs to exist on the
switch.

Create AAA Server for Interface Policy

Create the AAA server. For more information, see "AAA Servers (Blueprint)" on page 558.

Create 802.1x Interface Policy

You must create the policy before you can assign interfaces or fallback VLANs to it.

1. From the blueprint, navigate to Staged > Polices > Interface Policies and click Create Interface Policy.

2. Enter a name and select 802.1x from the drop-down list.

534

3. Select the Port Control.

• dot1x enabled - Requires ports to authenticate EAPOL before being given access to the network.

• Deny access - Completely blocks the port; no network access is permitted. No other parameters
are needed. Example: as a quarantine configuration to quickly deactivate ports that may be
infected.

4. Select the Host Mode.

• Multi-host** (default) - Allows all MAC addresses on the port to authenticate after the first
successful authorization. After the first host deauthorizes, all MACs on the port are de-
authenticated.

• Single-host - Permits a single host to authenticate; all other MACs are not permitted.

5. If you want to enable MAC Auth Bypass on Arista EOS, check the Enabled? box. Enabling MAC auth
bypass allows a switch to send the MAC address to the RADIUS server if the port does not
authenticate within the authentication timeout period. MAC Auth bypass (MAB) requests are only
sent if the client does not respond to RADIUS requests, or if the client fails authentication.

NOTE: MAC Auth bypass must be configured along with 802.1X port control.

CAUTION: MAC auth bypass failure behavior may be different between switch
vendors and major switch models.

6. Enter Re-auth Timeout (optional) to configure a time period (seconds). Re-authentication timeout
causes the switch to request any clients to re-authenticate to the network after the timeout expires.
This also re-triggers MAC Auth bypass.

If re-authentication timeout is not configured, then no related configuration is rendered on the
switch. This means the switchport will be whatever the OS vendor default is. If a value is configured,
802.1X re-authentication will be enabled on the port, and a time value will be configured.

7. Click Create to create the interface policy and return to the table view.

Assign Ports and Fallback VNs to Interface Policy

This steps adds interfaces or dynamic VLANs to the interface policy.

1. From the blueprint, navigate to Staged > Polices > Interface Policies and scroll down to the Assign To
section.

535

2. Assign ports and interfaces:Click leaf names to expand interfaces, then click ports and interfaces to
assign them. Note that you cannot assign ports that are assigned to conflicting policies.

3. Assign fallback VN:Assigning the fallback virtual network is leaf-specific. To re-use the fallback on
multiple leaf devices, you have to assign it to each leaf. Any VN that is assigned to the leaf may be
used as a fallback virtual network - there are no restrictions.

4. After the policy is configured, the settings are now visible, including interfaces those settings apply
to.

NOTE: AAA, Dot1x, and Dot1x interface configurations are now pushed to the leaf devices.
The following is a part of sample config rendered for Arista EOS switch.

leaf1#sh running-config section dot1x
logging level DOT1X errors
!
aaa group server radius AOS_RADIUS_DOT1X
 server 172.20.191.5 vrf management
!
aaa authentication dot1x default group AOS_RADIUS_DOT1X
aaa accounting dot1x default start-stop group AOS_RADIUS_DOT1X logging
!
interface Ethernet5

536

 switchport trunk allowed vlan 99
 switchport mode trunk
 switchport
 ipv6 enable
 ipv6 address auto-config
 ipv6 nd ra rx accept default-route
 dot1x pae authenticator
 dot1x reauthentication
 dot1x port-control auto
 dot1x timeout reauth-period 30
!
..snip..
!
dot1x system-auth-control
dot1x dynamic-authorization

Routing Policies

IN THIS SECTION

Routing Policy Overview | 537

Create Routing Policy | 542

Edit Routing Policy | 542

Delete Routing Policy | 542

Routing Policy Overview

Routing policies include the following details:

Parameter Description

Name 18 characters or fewer. Alphanumeric, _ and - only.

537

(Continued)

Parameter Description

Import Policy • Default - The default BGP route (0.0.0.0/0, ::/0) is
permitted. If extra import routes are defined, they
are also permitted.

• All - Any BGP route is permitted.

• Extra Only - Only user-defined extra import routes
are permitted (or denied).

Extra Import Routes (user-defined) • Prefix - IPv4 or IPv6 network address (format:
network/prefixlen) or IP address (interpreted as /32
network address).

• GE Mask and LE Mask - GE Mask matches less-
specific prefixes from a parent prefix, up from the
GE mask to the prefix length of the route. (IPv4
range: 0-32. IPv6 range: 0-128). If you don't specify
GE mask, then the prefix-list entry should be an
exact match. You can use this option in
combination with LE Mask. GE mask must be
longer than the subnet prefix length. If both the LE
mask and GE mask are specified, then the LE mask
must be greater than the GE mask.

• Action - Permit or Deny

538

(Continued)

Parameter Description

Export Policy • Spine Leaf Links - Exports all spine-leaf (fabric) links
within a VRF. EVPN routing zones do not have
spine-leaf addressing, so this generated list may be
empty. For routing zones of type Virtual L3 Fabric,
subinterfaces between spine-leaf are included.

• L3 Edge Server Links - Exports all leaf to L3 server
links within a routing zone (VRF). On layer 2
blueprints this is an empty list.

• L2 Edge Subnets - Exports all virtual networks
(VLANs) that have L3 addresses within a routing
zone (VRF).

• Loopbacks - Exports all loopbacks within a routing
zone (VRF) across spine, leaf, and L3 servers.

• Static Routes - Exports all subnets in a VRF
associated with static routes from all fabric systems
to generic systems associated with this routing
policy.

539

(Continued)

Parameter Description

Extra Export Routes (user-defined) User-defined export routes. These policies are additive.
To advertise extra routes only, unselect all export
policies.

NOTE: To enable default route for EVPN host routes,
go to Staged > Settings > Virtual Network Policy and
enable the Generate EVPN host routes option.

• Prefix - IPv4 or IPv6 network address (format:
network/prefixlen) or IP address (interpreted as /32
network address).

• GE Mask and LE Mask - GE Mask matches less-
specific prefixes from a parent prefix, up from the
GE mask to the prefix length of the route. (IPv4
range: 0-32. IPv6 range: 0-128). If you don't specify
GE mask, then the prefix-list entry should be an
exact match. You can use this option in
combination with LE Mask. GE mask must be
longer than the subnet prefix length. If both the LE
mask and GE mask are specified, then the LE mask
must be greater than the GE mask.

• Action - Permit or Deny

Aggregate Prefixes If you have routing zones associated with your routing
policy, and aggregate prefixes are supported on the
platform (see the "Feature Matrix" on page 895) you
can specify aggregate prefixes. These are the BGP
aggregate routes to be imported into the routing zone
(VRF) on all border switches. The aggregated routes
are sent to all generic system peers in a routing zone
(VRF).

CAUTION: Routing policies with aggregate
prefixes are applied to the entire routing zone. You
cannot configure them individually for BGP
sessions (per connectivity point). If you do attempt
to apply them via a connectivity template (CT), you
could receive the error “Protocol endpoint routing
policy aggregate prefixes should be empty”.

540

(Continued)

Parameter Description

Expect Default IPv4 Route To add the expectation that the default route is used in
the default routing zone, check the box when you
create the policy. (This field applies to the default route
in the default routing zone only.) Checking this box
does not change any configuration; it generates the
expectation and raises an anomaly when the default
route is not present.

Expect Default IPv6 Route To add the expectation that the default route is used in
the default routing zone, check the box when you
create the policy. (This field applies to the default route
in the default routing zone only.) Checking this box
does not change any configuration; it generates the
expectation and raises an anomaly when the default
route is not present.

Associated Routing Zones Lists any routing zones that are associated with the
routing policy.

Associated Protocol Endpoints Lists any protocol endpoints that are associated with
the routing policy.

From the blueprint, navigate to Staged > Policies > Routing Policies to go to routing policies in the
blueprint. A default routing policy is associated with the default routing zone. You cannot change the
default routing policy, but you can create, clone, edit, and delete other routing policies as described

541

below.

Create Routing Policy

1. From the blueprint, navigate to Staged > Policies > Routing Policies and click Create Routing Policy.

2. Configure the policy. For parameter details, see the Routing Policy Overview.

3. Click Create to stage the policy addition and return to the table view.

Edit Routing Policy

1. From the blueprint, navigate to Staged > Policies > Routing Policies and click the Edit button for the
policy to edit.

2. Make your changes.

3. Click Update (bottom-right) to stage the policy change and return to the table view.

Delete Routing Policy

1. From the blueprint, navigate to Staged > Policies > Routing Policies and click the Delete button for
the policy to delete.

2. Click Delete to stage the policy removal and return to the table view.

542

Routing Zone (VRF) Constraints

IN THIS SECTION

Create Routing Zone Groups (Optional) | 543

Create Routing Zone Constraint Policy | 543

Edit / Delete Routing Zone Constraint Policy | 545

Apply Routing Zone Constraint | 545

Routing zone constraints allow you to constrain server-facing interfaces that connect to specific routing
zones. Day-2 operators would be prevented from connecting a server to the wrong network, and assure
that a given server never gets added to the wrong network. The constraint can be defined in various
ways such as a list of allowed VRFs, a list of excluded VRFs, a maximum number of VRFs allowed, and so
on. Once the constraint is defined, you can enforce the constraint on server-facing interfaces using
connectivity templates of the type Routing Zone Constraint.

Create Routing Zone Groups (Optional)

If you want to constrain more than one routing zone to a single port, you can group them, then specify
the group as a constraint when you create the routing zone constraint policy.

1. From the blueprint, navigate to Staged > Virtual > Routing Zone Groups and click Create Routing
Zone Group.

2. Enter a group name and (optional) tags.

3. In the Routing Zone drop-down list, select a routing zone to add to the group and click Add. The
routing zone is added to the Members list.

4. Repeat the previous step until you’ve added all the routing zones that you want in the group.

5. Click Create to create the group and return to the table view.

Create Routing Zone Constraint Policy

You can create a routing zone constraint policy, then later when you create a connectivity template you
can apply the policy to an application point. Some examples of how you could constrain VRFs include:

• One VRF maximum

• Any VRF except Management

• Only VRFs Blue and Red

543

• Only VRF Group Orange

1. From the blueprint, navigate to Staged > Policies > Routing Zone Constraints and click Create
Routing Zone Constraints.

2. Enter a name and (optional) maximum number of routing zones that the application point can be part
of.

3. Set the (optional) Routing Zones List Constraint.

a. Allow - only allow the specified routing zones (add specific routing zones to allow)

b. Deny - denies allocation of specified routing zones (add specific routing zones to deny)

c. None - no additional constraints on routing zones (any routing zones)

4. Click Create to create the policy and return to the table view.

544

Edit / Delete Routing Zone Constraint Policy

If you need to, you can change or delete the policy after you've created it.

• If you edit the policy to increase the number of routing zones, you don't need to unassign
participating ports from the restriction.

• If you edit the policy to reduce the number of routing zones, ensure that all participating ports are in
compliance with the new restrictions before you save. Otherwise, you will receive an error.

• You can delete a constraint policy to free up any restrictions on the participating ports. These ports
should behave as if the constraint was never applied.

Apply Routing Zone Constraint

When you want to apply the constraint to an application point, add the Routing Zone Constraint
primitive to the connectivity template and specify the routing zone or routing zone group. For more
information about connectivity templates, see "Connectivity Templates" on page 565.

Fabric Addressing Policy

IN THIS SECTION

Enable IPv6 Applications | 546

ESI MAC Most Significant Byte | 546

545

Enable IPv6 Applications

CAUTION: After IPv6 has been enabled in a blueprint, it cannot be disabled. Although,
you could use Time Voyager to rollback to a revision before IPv6 was enabled.

Enabling support for IPv6 virtual networks on EVPN L2 deployments or L3 deployments adds resource
requirements and device configurations. This includes IPv6 loopback addresses on leaf devices and spine
devices, IPv6 addresses for MLAG SVI subnets and IPv6 addresses for leaf L3 peer links. The following
caveats apply:

• This feature does not include IPv6 support in the fabric.

• IPv6 support is not available on non-EVPN L2 networks.

• When IPv6 is enabled on EVPN L2 deployments, security policy functionality is not available.

1. From the blueprint, navigate to Staged > Policies > Fabric Addressing Policy and click Modify
Settings.

2. Click the toggle on to enable IPv6 applications.

3. Click Save Changes.

"Assign the required IPv6 IP addresses" on page 272. For more information about IPv6 configuration,
see "Virtual Networks" on page 403.

ESI MAC Most Significant Byte

To enable ESI (EVPN) LAG multihoming, an Ethernet segment identifier (ESI) is mandatory. ESIs identify
ESI LAGs. Apstra automatically generates ESI MAC addresses using most significant byte (msb) values.
Configuration of the ESI value is rendered as 10 octets. The first octet is 0. The second octet is the most
significant byte value. To ensure that multicast MACs are not generated, the second octet must be an
even number between 0 and 254. The second through sixth octets are used as the LACP system ID. The
example below is of a rendered ESI value and its respective LACP system id:

set interfaces ae1 esi 00:02:00:00:00:00:01:00:00:01
 set interfaces ae1 esi all-active
 set interfaces ae1 aggregated-ether-options lacp active
 set interfaces ae1 aggregated-ether-options lacp system-id 02:00:00:00:00:01

The msb value in each Apstra blueprint defaults to the value 2. If you aren't connecting blueprints (IP
fabrics) you can leave the value as is. If you're connecting blueprints via data center interconnect (DCI)
and ESI, then each blueprint must have a unique most significant byte. Change the msb values so they
are unique across the multiple blueprints.

546

CAUTION: Updating the Most Significant Byte (MSB) value regenerates all existing ESI
MACs in the blueprint.

1. From the blueprint, navigate to Staged > Policies > Fabric Addressing Policy and click Modify
Settings.

2. Change the ESI MAC msb value to an even number between 0 and 254. Each blueprint in the DCI
must have a unique value.

3. Click Save Changes to save your changes and return to the Fabric Addressing Policy page.

Virtual Network Policy

IN THIS SECTION

Virtual Network Policy Overview | 547

Modify Virtual Network Policy | 550

Virtual Network Policy Overview

Virtual network policies include the following details:

Parameter Description

IP Links to Generic Systems MTU Specifies the MTU for all L3 IP links facing generic
system. A null or empty (default) value implies that any
MTU will not be explicitly rendered; the device default
MTU is used. Custom larger MTU may be required to
provide EVPN DCI functionality or to support fabric
wide Jumbo frame functionality. For EVPN-DCI, we
recommend an MTU of 9050.

547

(Continued)

Parameter Description

Max External Routes Count Maximum number of routes to accept from external
routers. The default (None) does not render any
maximum-route commands on BGP sessions, implying
that vendor defaults are used. An integer between
range 1 to 2**32-1 sets a maximum limit of routes in
BGP config. The value 0 (zero) intends the device to
never apply a limit to number of EVPN routes
(effectively unlimited). We suggest that this value is
effectively unlimited on EVPN blueprints, to permit the
high number of /32 and /128 routes to be advertised
and received between VRFs in the event an external
router is providing a form of route leaking
functionality.

Max MLAG Routes Count Maximum number of routes to accept across MLAG
peer switches. The default (None) does not render any
maximum-route commands on BGP sessions, implying
that vendor defaults are used. An integer between
range 1 to 2**32-1 sets a maximum limit of routes in
BGP config. The value 0 (zero) intends the device to
never apply a limit to number down BGP sessions if
maximums are exceeded on a session. For EVPN
blueprints, this should be combined with
max_evpn_routes to permit routes across the L3 peer
link which may contain many /32 and /128 from EVPN
type-2 routes that convert into BGP route
advertisements.

Max EVPN Routes Count Maximum number of EVPN routes to accept on an
EVPN switch. The default (None) does not render any
maximum-route commands on BGP sessions, implying
that vendor defaults are used. An integer between
range 1 to 2**32-1 sets a maximum limit of routes in
BGP config. The value 0 (zero) intends the device to
never apply a limit to number of EVPN routes
(effectively unlimited). Note: Device vendors typically
shut down BGP sessions if maximums are exceeded on
a session.

548

(Continued)

Parameter Description

Max Fabric Routes Count Maximum number of routes to accept between spine
and leaf in the fabric, and spine-superspine. This
includes the default VRF. You may need to set this
option in the event of leaking EVPN routes from a
routing zone into the default routing zone (VRF) which
could generate a large number of /32 and /128 routes.
We suggest that this value is effectively unlimited on
all blueprints to ensure the network stability of spine-
leaf BGP sessions and EVPN underlay. We also suggest
unlimited for non-EVPN blueprints considering the
impact to traffic if spine-leaf sessions go offline. An
integer between 1-2**32-1 will set a maximum limit of
routes in BGP config. The value 0 (zero) intends the
device to never apply a limit to number of fabric routes
(effectively unlimited).

EVPN Type 5 Routes Default disabled. When enabled all EVPN vteps in the
fabric redistribute ARP/IPV6 ND (when possible on
NOS type) as EVPN type 5 /32 routes in the routing
table. Currently, this option is certified for Juniper
Junos only. FRR (SONiC) does this implicitly and
cannot be disabled. This setting results in a blueprint
warning that it is not supported. This value is disabled
by default, as it generates a very large number of
routes in the BGP routing table and takes large
amounts of TCAM allocation space. When these /32
and /128 routes are generated, it assists in direct
unicast routing to host destinations on VNIs that are
not stretched to the ingress vtep, and avoids a route
lookup to a subnet (such as /24) that may be hosted on
many leaf devices. The directed host route prevents a
double lookup to one of many vteps may hosts the /24
and instead routes the destination directly to the
correct vtep.

Generate EVPN host routes from ARP/IPV6 ND ARP Setting "Generate EVPN host routes from ARP/IPV6
ND ARP" adds a policy-statement to the export policy
used within the fabric.

549

Modify Virtual Network Policy

1. From the blueprint, navigate to Staged > Policies > Virtual Network Policy and click Modify Settings
(right side).

2. Make your changes.

3. Click Save Changes.

Anti-Affinity Policy

IN THIS SECTION

Anti-Affinity Policy Overview | 550

Enable/Disable Anti-Affinity Policy | 551

Anti-Affinity Policy Overview

When designing high availability (HA) systems, you want parallel links between two devices to terminate
on different physical ports, thus avoiding transceiver failures from impacting both links on a device.
Depending on the number of interfaces on a system, manually modifying these links could be time-

550

consuming. With the anti-affinity policy (new in Apstra version 4.0.1) you can apply certain constraints
to the cabling map to control automatic port assignments. When you enable the policy, you can specify
the maximum number of links as follows:

• Max Links Count per Slot - maximum total number of links connected to ports/interfaces of the
specified slot regardless of the system they are targeted to. It controls how many links can be
connected to one slot of one system. Example: A line card slot in a chassis.

• Max Links Count per System per Slot - restricts the number of links to a certain system connected to
the ports/interfaces in a specific slot. It controls how many links can be connected to one system to
one slot of another system.

• Max Links Count per Port - maximum total number of links connected to the interfaces of the
specific port regardless of the system they are targeted to. It controls how many links can be
connected to one port in one system. Example: Several transformations of one port. In this case, it
controls how many transformations can be used in links.

• Max Link Count per System per Port - restricts the number of interfaces on a port used to connect to
a certain system. It controls how many links can be connected from one system to one port of
another system. This is the one that you will most likely use, for port breakouts.

The anti-affinity policy has three modes:

• Disabled (default) - ports selection is based on assigned interface maps and interface names
(provided or auto-assigned). Port breakouts could terminate on the same physical ports.

• Enabled (loose) - controls interface names that were not defined by the user. Does not control or
override user-defined cabling. (If you haven't explicitly assigned any interface names, loose and strict
are effectively the same policy.)

• Enabled (strict) - completely controls port distribution and could override user-defined assignments.
When you enable the strict policy, a statement appears at the top of the cabling map (Staged/Active
> Physical > Links and Staged/Active > Physical > Topology Selection) stating that the anti-affinity
policy is enabled ("forced" for strict).

An example of when you'd want to apply the anti-affinity policy is when you have a QSFP 40G breakout
port that you want to break out into 4-10G ports. You can ensure that any links that go to the same
device use different QSFP ports instead of 2-10G spine links on the same QSFP port. This gives you an
added layer of redundancy if that QSFP port fails.

Enable/Disable Anti-Affinity Policy

Every time you change the policy, port assignments are recalculated.

551

1. From the blueprint, navigate to Staged > Policies > Anti-Affinity Policy and click Modify Settings.

2. Change the policy mode, and if you're enabling the policy, enter a maximum number of links, as
applicable.

3. Click Save Changes to stage the change and return to the policies view.

To activate staged changes, commit them from the Uncommitted tab.

Validation Policy

1. From the blueprint, navigate to Staged > Policies > Validation Policy and click Modify Settings.

2. Change settings, as applicable:

• No Warning - If validation fails, no warning or error will be generated.

• Warning - If validation fails, warnings will be raised; you can commit changes.

• Error (default) - If validation fails, errors will be raised that must be resolved before you can
commit changes.

Generic system Loopback IP overlapping error level and Allow internal route-targets in route-target
policies are new in Apstra version 4.1.1.

552

3. Click Save Changes to stage the changes and return to the Validation Policy page.

To activate staged changes, commit them from the Uncommitted tab.

Logical Devices (Datacenter Blueprint)

IN THIS SECTION

Logical Devices Overview (Blueprint Catalog) | 553

Export Logical Device | 554

Logical Devices Overview (Blueprint Catalog)

The logical devices in the blueprint catalog are determined by the template that was used to create the
blueprint. From the blueprint, navigate to Staged > Catalog > Logical Devices to go to the logical devices

553

catalog. You can export logical devices from the blueprint catalog.

Export Logical Device

1. From the blueprint, navigate to Staged > Catalog > Logical Devices and click the Export to global
catalog button for the logical device to export (in the Actions column on the right side).

2. Select how you want to export the logical device:

• Export as new - to create a new logical device based on the current one in the global catalog. This
option doesn't keep references to interface maps. Even if you already have a logical device with
the same name in the global catalog you can still export it. Exported logical devices with the same
name are identified by the ID instead of by the logical device name.

• Export existing - to create interface maps for this logical device in the global catalog that you can
re-import into the blueprint. If you already have a logical device with the same name in the global
catalog, you can’t use this option. When you export a logical device with this option, the logical
device ID and logical device name are the same.

3. Click Export to export the logical device and return to the table view.

554

Interface Maps (Datacenter Blueprint)

IN THIS SECTION

Interface Maps Overview (Blueprint) | 555

Import Interface Map | 555

Delete Interface Map (Blueprint) | 556

Interface Maps Overview (Blueprint)

From the blueprint, navigate to Staged > Catalog > Interface Maps to go to the interface maps catalog.
You can import and delete interface maps from the blueprint catalog.

Import Interface Map

1. Make sure the "interface map" on page 13 that you want to import is in the global catalog.

2. From the blueprint, navigate to Staged > Catalog > Interface Maps and click Import Interface Map.

3. Select a logical device and an interface map from the drop-down lists. A preview of your selection
appears.

4. Click Import Selected Interface Map to stage the import and return to the table view.

555

Delete Interface Map (Blueprint)

1. From the blueprint, navigate to Staged > Catalog > Interface Maps and click the Delete button for the
interface map to delete (in the Actions column on the right side).

2. Click Delete to stage the deletion and return to the table view.

Property Sets (Datacenter Blueprint)

IN THIS SECTION

Import / Re-import Property Set (Datacenter Blueprint) | 557

Delete Property Set (Datacenter Blueprint) | 558

From the blueprint, navigate to Staged > Catalog > Property Sets to go to the property sets catalog. You
can import, re-import, and delete property sets from the blueprint catalog.

556

Import / Re-import Property Set (Datacenter Blueprint)

IN THIS SECTION

Import Property Set | 557

Re-import Property Set | 557

Import Property Set

1. Make sure the "property set" on page 52 that you want to import is in the design catalog.

2. From the blueprint, navigate to Staged > Catalog > Property Sets and click Import Property Set.

3. From the drop-down list, select a property set from the design catalog, then click Import Property Set
to stage the import and return to the table view.

Re-import Property Set

If a property set that's used in a blueprint is updated in the design (global) catalog, a message appears in
the blueprint catalog stating that the property set in the blueprint catalog is Different from global
catalog. If you want the blueprint to use the updated property set, re-import it.

1. From the blueprint, navigate to Staged > Catalog > Property Sets.

557

2. Click the Re-import button for the "stale" property set, then click Re-import Property Set to stage the
update and return to the table view.

Delete Property Set (Datacenter Blueprint)

As long as a property set is not used in a configlet, you can unassign it from a device at any time. If it is
used in a configlet, a build error occurs and you won't be able to commit the change until you remove
the property set from the configlet which resolves that build error.

1. From the blueprint, navigate to Staged > Catalog > Property Sets and click the Delete button for the
property set to delete.

2. Click Delete to stage the deletion and return to the summary table view.

AAA Servers (Datacenter Blueprint)

IN THIS SECTION

AAA Servers Overview | 558

Create AAA Server | 560

Edit AAA Server | 560

Delete AAA Server | 560

AAA RADIUS Server Configuration Tasks | 560

Client Supplicant Configuration Tasks | 561

AAA Servers Overview

AAA servers are used with "interface policies" on page 529. AAA servers include the following details:

Parameter Description

Label To identify the AAA server

558

(Continued)

Parameter Description

Server Type • RADIUS 802.1x - If an 802.1x policy is bound to at
least one interface on a switch, all defined AAA
RADIUS 802.1x servers will be added to that
switch. The server is not rendered unless it is
needed.

• RADIUS COA (Change of Authorization) - Used by
switches to enable Dynamic Authorization Server
(DAS) requests from RADIUS servers. This enables
the switch to 'trust' the given RADIUS server to do
dynamic VLAN assignment after authentication
instead of during auth. All RADIUS COA
implementations are hard-coded to auth port 3799.

Hostname

Auth Ports

Accounting Port optional

From the blueprint, navigate to Staged > Catalog > AAA Servers to go to the AAA servers catalog. You
can create, clone, edit, and delete AAA servers.

559

Create AAA Server

1. From the blueprint, navigate to Staged > Catalog > AAA Servers and click Create AAA Server.

2. Enter a label, select the server type (RADIUS 802.1x, RADIUS COA), enter a hostname, key, auth
port, and (optional) accounting port.

3. Click Create to stage the server and return to the table view.

Edit AAA Server

1. From the blueprint, navigate to Staged > Catalog > AAA Servers and click the Edit button for the AAA
server to edit.

2. Make your changes, then click Update to stage the update and return to the table view.

Delete AAA Server

1. From the blueprint, navigate to Staged > Catalog > AAA Servers and click the Delete button for the
AAA server to delete.

2. Click Delete to stage the deletion and return to the table view.

AAA RADIUS Server Configuration Tasks

AAA RADIUS server configuration tasks are external to Apstra software. The example below shows the
files to configure for FreeRADIUS.

560

/etc/freeradius/clients.conf -- has credentials for each switch

client Arista-7280SR-48C6-1 {
 shortname = Arista-7280SR-48C6-1
 ipaddr = 172.20.191.10
 secret = testing123
 nastype = other
}

/etc/freeradius/users -- has users and MAC addresses to authenticate. Tunnel-Private-Group-Id shows a
dynamic VLAN ID, which is optional.

leaf1-server1 ClearText-Password := "password"

"52:54:00:37:d5:e1" Cleartext-Password := "52:54:00:37:d5:e1"
 Tunnel-Type = VLAN,
 Tunnel-Medium-Type = IEEE-802,
 Tunnel-Private-Group-Id = "50"

This example shows a simple credential; actual implementations may use any EAP method that both the
client and RADIUS server support.

Client Supplicant Configuration Tasks

Client supplicant configuration tasks are external to Apstra software. The following is an example for
wpa_supplicant.

/etc/wpa_supplicant/aos_wpa_supplicant.conf

Ansible managed
ctrl_interface=/var/run/wpa_supplicant
Default version is 0 - ensure we're using modern protocols.
eapol_version=2
Don't scan for wifi.
ap_scan=0
Hosts will be configured to authenticate with usernames that match their
Slicer DUT name, configured in radius_server playbook.
network={

561

 key_mgmt=IEEE8021X
 eap=TTLS MD5
 identity="leaf1-server1"
 anonymous_identity="leaf1-server1"
 password="password"
 phase1="auth=MD5"
 phase2="auth=PAP password=password"
 eapol_flags=0
}

Tags (Datacenter Blueprint)

IN THIS SECTION

Tags Overview (Blueprint) | 562

Search Tags (Blueprint) | 563

Find by Tags | 563

Create Tag (Blueprint) | 564

Import Tag | 564

Export Tag | 564

Edit Tag (Blueprint) | 564

Delete Tag (Blueprint) | 564

Tags Overview (Blueprint)

You can apply tags to nodes, links and connectivity templates in your blueprint. When you create a
blueprint, if you added tags to the design elements used to create that blueprint (rack types and
templates), those tags are added to the blueprint Tags catalog. From the blueprint, navigate to Staged >
Catalog > Tags to go to the tags blueprint catalog. You can add, clone, edit and delete blueprint tags. You
can also import global catalog tags to the blueprint catalog and export blueprint tags to the global

562

catalog.

Search Tags (Blueprint)

You can filter tagged elements based on tag names and/or element types.

1. From the blueprint, navigate to Staged > Catalog > Tags and click Query to open the dialog.

2. Enter search criteria:

• To see elements associated with tags, enter tag name(s) in the Name field.

• To see tags that elements are associated with, select element type(s) from the drop-down list in
the Applied To field.

• To filter both by tag name and element type, enter details in both fields.

3. Click Apply to see filtered results in the table.

4. To go to the table view for a filtered element type, click the element type in the Applied To column.
From there you can drill down for more details on a specific element.

Find by Tags

With Find by Tags, you can search the entire blueprint for nodes, links, and connectivity templates that
have associated tags.

1. From any page in the staged (or active) blueprint click Find by Tags (right side).

563

2. Either start typing to filter tags for selection, or select one or more check boxes.

3. Click Find tagged objects to display all objects with those tags.

Create Tag (Blueprint)

1. From the blueprint, navigate to Staged > Catalog > Tags and click Create Tag.

2. Select New and enter a name and (optional) description. Names are case-insensitive.

3. Click Create to stage the new tag.

Import Tag

1. From the blueprint, navigate to Staged > Catalog > Tags and click Create Tag.

2. Select Import from Global Catalog, select a tag from the drop-down list and enter an (optional)
description.

3. Click Create to stage the tag import.

Export Tag

1. From the blueprint, navigate to Staged > Catalog > Tags and click the Export button for the tag to
export. If a tag exists in the global catalog with the same name you won't be able to export it. (The
export button will be nonfunctional.)

2. Click Export to export the tag to the global catalog and return to the table view.

Edit Tag (Blueprint)

1. From the blueprint, navigate to Staged > Catalog > Tags and click the Edit button for the tag to edit.

2. Change the description.

3. Click Update to stage the change and return to the table view.

Delete Tag (Blueprint)

1. From the blueprint, navigate to Staged > Catalog > Tags and click the Delete button for the tag to
delete.

564

2. Click Delete to stage the deletion and return to the table view.

Tasks (Datacenter) Staged

From the blueprint, navigate to Staged > Tasks to go to task history. Blueprint task details include type of
task, task status (succeeded, failed, in progress), date/time started, date/time last updated, and the
duration of the task. For any failed tasks, you can click to see error messages.

Connectivity Templates

IN THIS SECTION

Primitives | 568

Create Connectivity Template for Multiple VNs on Same Interface (Example) | 580

Create Connectivity Template for Layer 2 Connected External Router (Example) | 583

Assign Connectivity Template | 586

Edit Connectivity Template | 590

Delete Connectivity Template | 590

Connectivity templates enable you to apply various network configurations to devices connected to
generic systems, as a Day 2 operation. Devices could be leaf devices, spine devices, or in 5-stage Clos
topologies, superspine devices. Some use cases for connectivity templates include the following:

• Assigning Apstra virtual network endpoints (tagging and untagging VLAN ports) to connect Layer 2
servers.

• Creating Layer 3 interfaces and VLAN-tagged sub-interfaces with BGP routing between Apstra fabric
border-leaf devices and external routers.

Connectivity templates consist of combinations of primitives as described in later sections.

As of Apstra version 4.0.0, external router connections to the default routing zone are no longer
required. You can use connectivity templates to configure the required external routing connections to
routing zones. To see static routes and protocol sessions, navigate to Staged > Virtual in the blueprint.

565

From the blueprint, navigate to Staged > Connectivity Templates to go to the connectivity template
table view. You can create, assign, edit, and delete connectivity templates.

With advanced search (new in Apstra version 4.1.0) you can filter based on primitive types, and based
on the types, you can show parameters and filter on those parameters. You can take this search to
multiples levels. For example, you can search for all the logical links in routing zone green or all the static
routes with the same next hop.

566

In Apstra version 4.1.0 and 4.1.1, the advanced search and the status query are two separate search
boxes.

In Apstra version 4.1.2, all search fields are combined into one search box. (The Status query moved into
CT Properties.)

567

Primitives

IN THIS SECTION

Virtual Network (Single) Primitive | 569

Virtual Network (Multiple) Primitive | 570

IP Link Primitive | 570

Static Route Primitive | 571

Custom Static Route Primitive | 572

BGP Peering (IP Endpoint) Primitive | 573

BGP Peering (Generic System) Primitive | 574

Dynamic BGP Peering Primitive | 576

Routing Policy Primitive | 577

Routing Zone Constraint Primitive | 578

User-defined | 579

Pre-defined | 580

The Primitives tab includes the supported configuration functions that can be added to connectivity
templates.

568

Virtual Network (Single) Primitive

The virtual network (single) primitive ends with a vn_endpoint point that can optionally connect to
another compatible primitive, such as BGP peering (generic system).

569

Virtual Network (Multiple) Primitive

Unlike the virtual network (single) primitive, the virtual network (multiple) primitive cannot connect
another primitive.

IP Link Primitive

IP link uses Apstra resource pool Link IPs - To Generics (by default) to dynamically allocate an IP
endpoint (/31) on each side of the link. You can create an IP link for any routing zone including the
default routing zone. You can use an untagged link even if it is for a non-default routing zone. If you
select a tagged interface, the VLAN ID is required.

570

The IP link primitive ends with an ip_link point that can optionally connect to another compatible
primitive, such as BGP peering (generic system).

Static Route Primitive

Next-hop is derived from either the IP link or virtual network endpoint. If the remote peer IP is shared
across the generic system, then share the IP endpoint.

571

The Static Route primitive uses the next available IP address as the next-hop. To use a specific next-hop
IP address, use the Custom Static Route instead.

Custom Static Route Primitive

If the next-hop IP address is not accessible, the static route will not be installed. Apstra software cannot
monitor the next-hop IP and will not alert you if it is not accessible. It is your responsibility to configure
the custom static route primitive correctly.

572

Connectivity templates using this primitive can only be assigned to leaf systems and cannot be
combined with interface primitives.

BGP Peering (IP Endpoint) Primitive

The BGP peering (IP endpoint) primitive creates a BGP peering session with a user-specified BGP
neighbor addressed peer. You can use this to create a BGP peering session to a Layer 3 server running
BGP connected to an Apstra virtual network.

The following parameters must be configured:

• Neighbor ASN type (static, dynamic)

• If the neighbor ASN type is static, the ASN

• IPv4 AFI

• IPv6 AFI

• BGP Time to Live (TTL)

• When you set TTL to 0, nothing is configured and the device defaults are used.

• When you set TTL to 1, Cisco NX-OS and FRR-based BGP (SONiC) render disable-connected-
check. Otherwise, TTL values render ebgp-multihop on specific BGP neighbors.

573

• Single-hop BFD

• This enables BFD for the BGP peering. Multihop BFD is only supported for Junos, which is
activated by default.

• BGP Password

• BGP Keep Alive Timer (seconds)

• BGP Hold Time Timer (seconds)

• IPv4 address of peer (if IPv4 AFI is enabled)

• IPv6 address of peer (if Ipv6 AFI is enabled)

You can connect a routing policy primitive to a BGP peering (IP endpoint)

BGP Peering (Generic System) Primitive

The BGP peering (generic system) primitive creates a BGP peering session with a generic system. The
generic system is inherited from Apstra generic system properties, such as loopback and ASN
(addressed, link-local peer). This primitive connects to a virtual network (single) or IP link connectivity
point primitive.

The following parameters must be configured:

574

• IPv4 AFI

• IPv6 AFI

• BGP Time to Live (TTL)

• When you set TTL to 0, nothing is configured and the device defaults are used.

• When you set TTL to 1, Cisco NX-OS and FRR-based BGP (SONiC) renders disable-connected-
check. Otherwise, TTL values render ebgp-multihop on specific BGP neighbors.

• Single-hop BFD

• This enables BFD for the BGP peering. Multihop BFD is only supported for Junos, which is
activated by default.

• BGP Password

• BGP Keep Alive Timer (seconds)

• BGP Hold Time Timer (seconds)

• IPv4 Addressing Type (none, addressed)

• IPv6 Addressing Type (none, (addressed if IPv6 applications are enabled) link local)

• Local ASN - Configured on a per-peer basis. It allows a router to appear to be a member of a second
autonomous system (AS) by prepending a local-as AS number, in addition to its real AS number,
announced to its eBGP peer, resulting in an AS path length of two.

• Neighbor ASN Type (static, dynamic)

• Peer From (loopback, interface)

• Peer To (loopback, interface/IP endpoint, interface/shared IP endpoint)

• Loopback: use this option to peer with the loopback address of a single remote system.

• Interface/IP endpoint: use this option to peer with the IP address of a single remote system link or
routed vlan interface.

• Interface/Shared IP endpoint: use this option for any scenario where the remote peer IP address
is shared across multiple remote systems.

575

You can connect a routing policy primitive to a BGP peering (generic system).

Dynamic BGP Peering Primitive

The dynamic BGP peering primitive enables dynamic peering on selected devices and virtual networks.

The following parameters must be configured:

• IPv4 AFI

• IPv6 AFI

• BGP Time to Live (TTL)

• When you set TTL to 0, nothing is configured and the device defaults are used.

• When you set TTL to 1, Cisco NX-OS and FRR-based BGP (SONiC) renders disable-connected-
check. Otherwise, TTL values render ebgp-multihop on specific BGP neighbors.

• Single-hop BFD

• This enables BFD for the BGP peering. Multihop BFD is only supported for Junos, which is
activated by default.

• BGP Password

576

• BGP Keep Alive Timer (seconds)

• BGP Hold Time Timer (seconds)

• IPv4

• IPv6

• IPv4 subnet for BGP prefix dynamic neighbors. If you leave this field blank, Apstra derives the subnet
from the application point.

• IPv6 subnet for BGP prefix dynamic neighbors. If you leave this field blank, Apstra derives the subnet
from the application point.

Routing Policy Primitive

The routing policy primitive applies a routing policy to an application endpoint. This overrides the
routing policy configured for the routing zone. You must select the routing policy that was defined in the

577

blueprint (Staged > Policies > Routing Policies).

Routing Zone Constraint Primitive

When you want to apply the routing zone constraint to an application point, add the Routing Zone
Constraint primitive to the connectivity template and specify the routing zone or routing zone group.

578

User-defined

From the User-defined tab, you can add grouped primitives that you previously created as connectivity
templates.

579

Pre-defined

From the Pre-defined tab, you can add grouped primitives that ship with the Apstra software.

Create Connectivity Template for Multiple VNs on Same Interface (Example)

To create connectivity templates you add primitives (either singly or in groups) to a staging area, then
you configure the parameters of those primitives. You can include up to 64 primitives in each
connectivity template (increased from 18 as of Apstra version 4.0.1). We'll use examples to illustrate the
process. First we'll show you how to create multiple virtual networks for the same interface.

1. From the blueprint, navigate to Staged > Connectivity Templates and click Add Template. The staging
area on the right contains the application point.

2. In the Parameters tab, enter a connectivity name in the Title field. You can optionally enter a
description, and tags that you can use during subsequent searches.

3. The tabs Primitives, User-defined, and Pre-defined all contain primitives either singly or in groups.
They are described in more detail in the overview. For this example, we'll add primitives one at a time
from the Primitives tab. Click the Primitives tab, then click Virtual Network (Single). It's added to the

580

staging area, and it's connected to the application point.

4. Click the Parameters tab to see what you need to configure for that primitive. In this example, you
need to select a virtual network and specify whether it is VLAN tagged or untagged.

581

5. When it's successfully configured, the color of the selected primitive changes from red to gray. Click
the Primitives tab.

6. From the Primitives tab, click Virtual Network (Multiple).

7. In the staging area, click Virtual Network (Multiple) (to make sure it's selected), click the Parameters
tab and configure the primitive.

582

8. Click Create to create the connectivity template and return to the table view where you'll see your
newly created connectivity template.

Create Connectivity Template for Layer 2 Connected External Router (Example)

In addition to applying multiple primitives to the application point interface, you can connect compatible
primitives to each other. For example, let's configure a Layer 2 connected external router.

583

1. From the Create Connectivity Template dialog, click Primitives, click Virtual Network (Single), and
configure it on the Parameters tab (similar to the first example).

584

2. Click Primitives. When a primitive is selected, the other primitives that you can add to it are
highlighted (new in Apstra version 4.0).

585

3. With Virtual Network (Single) selected in the staging area, click BGP Peering (Generic System) to add
it to the staging area and connect it to the virtual network.

4. Proceed with configuring the parameters and click Create to create the template.

Assign Connectivity Template

IN THIS SECTION

Assign Connectivity Template Overview | 586

Method 1 | 587

Method 2 | 588

Force Assign VN Templates | 589

Assign Connectivity Template Overview

You can assign connectivity templates that have an active Assign button. These include connectivity
templates in the Ready or Assigned status. (Incomplete status means that more configuration is
required.) You can use one of two methods to assign connectivity points:

586

• Method 1- Select connectivity templates from the table view, and add application endpoints.

• Method 2 - Click Application Endpoints, and assign connectivity templates to them.

Method 1

1. From the blueprint, navigate to Staged > Connectivity Templates and click the Assign button (in the
Actions section on the right) for the connectivity template to assign. (You can select multiple
connectivity templates, to the left of the CT name, then click the Assign button that appears above
the list.)

The available fabric application endpoints appears in a dialog.

2. Click boxes on the connectivity template column to assign the connectivity template to the
application endpoint. The Tags column shows the tags that are applied to each available application
point. You can click the Query dialog to search by tags or labels.

You can use "bulk actions" to select multiple "children" application endpoints.

3. Click Assign to complete the connectivity template assignments.

587

4. You can view application endpoints in Table view. From the table view, you can filter application
endpoints by pod, rack, node, applied connectivity templates, or tags. You can also copy/paste
connectivity template assignments from the table view.

Method 2

1. From the blueprint, navigate to Staged > Connectivity Templates and click Application Endpoints.

2. You can click the + button to add a column for multiple connectivity templates.

3. You can then query and select the desired assignment combination of connectivity templates and
application endpoints.

4. After a connectivity template is applied, its configuration may require additional resources in the
blueprint. For example, if you're adding Layer 3 links to connect a generic system (such as an external
router), you must assign Generic Link IPs.

5. You can view as a Table view. From the table view, you can filter application endpoints by pod, rack,
node, applied connectivity templates, or tags. You can also copy/paste connectivity template

588

assignments from the table view.

Force Assign VN Templates

When a virtual network (single) or virtual network (multiple) template is already assigned to a port and
you want to assign a new VN template, you’ll receive a validation error indicating that the port already
has a VN template assigned to it. As of Apstra version 4.0.1 you can force assign the new VN template,
which automatically unassigns the existing VN template(s) and assigns the new one(s) on the selected
port(s). You don’t need to manually unassign the existing VN template.

To force assign VN templates, from the CT assignment screen, click Remove all conflicts, then click
Assign.

589

Edit Connectivity Template

1. Either from the table view (Staged > Connectivity Templates) or the details view, click the Edit button
for the connectivity template to edit.

2. Make your changes.

3. Click Update to update the connectivity template and return to the table view. (If you decide not to
change the connectivity template, click Revert Changes to discard your changes.)

Delete Connectivity Template

You cannot delete connectivity templates that have been assigned.

1. Either from the table view (Staged > Connectivity Templates) or the details view, click the Delete
button for the connectivity template to delete.

2. Click Delete to delete the connectivity template and return to the table view.

Active (Datacenter Blueprint)

IN THIS SECTION

Active Blueprint Overview | 591

Selection Panel | 591

Status Panel | 592

Topology (Active) | 592

Nodes (Active) | 601

Links (Active) | 603

Racks (Active) | 604

Pods (Active) | 605

Query | 606

Anomalies (Service) | 607

Root Causes | 614

590

Active Blueprint Overview

When you deploy your network (by committing the staged blueprint), network status and other details
are shown in the Active view. From here, you can monitor your network and see any anomalies at-a-
glance. You can filter alerts and anomalies by different layers to conduct root cause analysis of problems.

Selection Panel

When you select a node in the active Topology or Nodes view, information about telemetry, device,
properties, tags, and VMs for that node are available in the right Selection panel.

When you select a link in the active Topology or Links view, properties and tags information for that link
is available in the right Selection panel.

591

Status Panel

From the blueprint, navigate to Active > Physical to go to the statuses for services and deploy modes,
deployment statuses for discovery, drain and service, as well as traffic heat.

Topology (Active)

IN THIS SECTION

2D Topology View (Active) | 593

3D Topology View (Active) | 594

Neighbors View (Active) | 595

Links View (Active Topology) | 598

Virtual Networks Endpoints (Active) | 599

Headroom (Topology) | 599

592

You can look at topologies as 2D views or 3D views. When you select a node from a topology view (by
clicking its element in the topology, or by selecting it from the Selected Nodes drop-down list), details
for the selection are displayed. You can view the selection to show neighbors, links, virtual network
endpoints (as of Apstra version 4.0.1), or headroom. Telemetry and other device properties are displayed
in the selection panel on the right side of the window.

2D Topology View (Active)

From the blueprint, navigate to Active > Physical > Topology. The default view is 2D.

• To make topology elements larger, click the Expand Nodes check box.

• To show the links between elements, click the Show Links check box.

• To show node name, hostname (and role and tags as of Apstra version 4.0.1) as applicable, hover over
an element.

• To display a different label (name, hostname, S/N), select a different label from the Topology Label
drop-down list.

• To show rack details, select a rack by either clicking its element or by selecting it from the Selected
Rack drop-down list.

• To show node details, select the node by either clicking its element in the topology or by selecting it
from the Selected Node drop-down list.

593

3D Topology View (Active)

NOTE: This feature has been classified as a "Juniper Apstra Technology Preview" on page 1168.
These features are "as is" and voluntary use. "Juniper Technical Support" on page 802 will
attempt to resolve any issues that customers experience when using these features and create
bug reports on behalf of support cases. However, Juniper may not provide comprehensive
support services to Tech Preview features.

From the blueprint, navigate to Active > Physical > Topology and click 3D.

• You can zoom in and out, move left and right, and reset to the default size and orientation.

• To show node name (and hostname as applicable) hover over an element.

594

• To show rack details, select a rack by either clicking its element or by selecting it from the Selected
Rack drop-down list.

• To show node details, select a node by either clicking its element or by selecting it from the Selected
Node drop-down list.

Neighbors View (Active)

• To show aggregate links, click the Show Aggregate Links check box.

595

• To show unused ports, click the Show Unused Ports check box.

• To show a different label (name, hostname, S/N), select a different label from the Topology Label
drop-down list (right side).

• To show a different layer, select a different layer from the Layer drop-down list.

• Choose to show all neighbors or only specific ones (generic, leaf, spine, and so on).

The intent layer is shown below.

The traffic heat layer is shown below. The colors represent different available/used capacity based on
the current system level TX/RX, averaged to 2 minutes, by default. If the aggregated TX or RX across all
the device interfaces is < 20% it's green . If it's between 21-40%, it's yellow and so on. For each 20%

596

difference, capacity is shown with a different color. (Server color is calculated based on the interface
counters of the leaf ports facing that server. To see RX/TX per interface for a single node, click the node.

If any of a device's deployed ports are > 81% of its capacity in either RX or TX, a new "Alert" icon is
shown on the device.

Mousing over a node shows exact aggregated values.

597

Links View (Active Topology)

598

Virtual Networks Endpoints (Active)

New in Apstra version 4.0.1.

Headroom (Topology)

NOTE: To see the headroom view, the Device Traffic probe must be enabled. If you disable or
delete the probe, the traffic heat layer in the active topology is not available. For more
information, see "Device Traffic probe" on page 987.

599

To view traffic history on top of the physical topology from the headroom view, select Time Series .

600

Nodes (Active)

IN THIS SECTION

Active Nodes Overview | 602

Apply Full Config | 602

601

Active Nodes Overview

From the blueprint, navigate to Active > Physical > Nodes to go to nodes in the active topology. You can
view nodes in table view or card view. In table view, you can select which details to display (from the
drop-down list). To see additional details (such as telemetry, properties, and tags) for a specific node,
select it, then the right panel displays tabs with more information.

Apply Full Config

CAUTION: Applying a full config is a disruptive operation and results in a temporary
loss of service to the device. For information about when to apply a full config, see
"Anomalies - Configuration Deviation" on page 607.

1. From the blueprint, navigate to Active > Physical > Nodes and select the device.

2. From the selection panel (right-side) click Device, then click Rendered, Incremental, or Pristine to
review the different configurations.

3. Click Apply Full Config.

602

Links (Active)

IN THIS SECTION

Active Links Overview | 603

Export Cabling Map | 603

Active Links Overview

From the blueprint, navigate to Active > Physical > Links to go to nodes in the active topology. To search
for specific nodes or links, click its query box, enter your criteria and click Apply to go to results. To go to
properties of a particular link (in the right panel), click its name.

Export Cabling Map

1. From the blueprint, navigate to Active > Physical > Links, click the Export cabling map button and
select JSON or CSV.

2. Click Copy to copy the contents or click Save As File to download the file.

3. When you've copied or downloaded the cabling map, close the dialog to return to the Links view.

603

NOTE: Cabling maps can also be exported from the Staged >Physical >Links view.

Racks (Active)

IN THIS SECTION

Change Rack Name | 604

To go to rack details in the active blueprint, navigate to Active > Physical > Racks. You can change the
default view from a table to a list. You can search for specific racks by name or rack type.

Change Rack Name

You may want to use your own rack naming schema (for example, your rack names could be based on
their physical locations). In these cases you can modify the existing rack names.

604

1. From the blueprint, navigate to Active > Physical > Racks and select the rack that you want to
change.

2. In Rack Properties (right panel selection) click the Edit button for the rack name.

3. Change the name and click the Save button to stage the change.

NOTE: You can also change rack names from the staged blueprint.

Pods (Active)

From the blueprint, navigate to Active > Physical > Pods to see details about deployed pods. You can
search for specific nodes or links and select a layer to see anomalies, deploy modes, deployment status
and more. 3-stage topologies have one pod, while 5-stage topologies have two or more pods. Click a

605

rack name in a pod to see its rack type preview.

Query

You can search for MAC addresses, IP addresses and VMs by using the query feature in the active
blueprint.

1. From the blueprint, navigate to Active > Query.

2. Click MAC, ARP, or VMs depending on your query.

606

3. Click Query:All, enter search criteria, and click Apply to see results.

Anomalies (Service)

IN THIS SECTION

Discovery Anomalies | 607

Configuration Deviation | 611

This section covers service anomalies. For analytics anomalies see "IBA Anomalies." on page 684

Discovery Anomalies

To demonstrate anomalies during the discovery phase, cabling errors have been deliberately configured
in the example below to trigger alarms.

607

To see the list of the cabling anomalies, click the Cabling gauge on the dashboard.

To see the anomalies in the topology view, click Active.

608

To see the topology view of the anomalies affecting spine1, click Spine1 in the topology.

You can see the cabling violations on spine1. In the right panel, click the red status indicator for All
Services to see a comparison of expectations vs. actual. If other anomalies existed in addition to the

609

cabling anomalies, they would be shown in this list as well.

610

To see additional details specific to LLDP only, click LLDP.

To see how to resolve these cabling issues, see "Fetching Discovered LLDP Data" on page 381.

Configuration Deviation

IN THIS SECTION

Config Deviation and Configlets | 614

Running configurations on devices are continuously compared with the "Golden Config" on page 60. If a
config deviation is found, a configuration anomaly is raised. Typically such deviations are seen when
changes were made outside of Apstra (from the device CLI), or attempting to deploy configuration on a
switch that is not able to take the change. These anomalies remain active until either the anomalous
configuration is removed from the device or the anomaly is suppressed.

611

1. From the blueprint dashboard, any configuration deviations are displayed in the Deployment Status

section.

2. Click Config Dev. to see the list of node(s) with anomalies.

3. Click a node name to see the device telemetry page, then click Config to see a side-by-side
comparison of the actual config to the golden config. (The difference is not shown in the image
below.)

612

4. To keep the configuration difference, click Accept Changes. This suppresses the configuration
anomaly, and does not affect "Intended" or Apstra-rendered config. the primary purpose of "Accept
Changes" is to mitigate cosmetic configuration anomalies.

NOTE: Out-of-band (OOB) changes to the fabric are not supported. Do not Accept Changes
to attempt to add OOB changes. For custom changes, use "configlets" on page 45.

CAUTION:

• Depending on the change, Apstra may overwrite out-of-band changes. There is no
way to avoid this. As such, always avoid OOB changes in the Apstra environment.

• Using Accept Changes does not make the OOB change persistent. In the event of a
full config push or Apstra writing to the same config, all OOB changes are
discarded.

5. To make the actual configuration conform to the intended configuration, click Apply Full Config, then
click Confirm. Applying the full config erases the device's current (unintended) configuration before
re-applying the complete intended configuration. A full configuration push does not include any OOB
changes, and therefore erases them, regardless of their "Accepted" state.

CAUTION: Applying a full config is a disruptive operation and results in a temporary
loss of service to the device.

CAUTION: Never directly modify any Apstra-rendered config that affects routing and
connectivity. Doing so can potentially impact the network's operation. When in doubt,
contact "Juniper Support" on page 802.

613

6. After resolving the config deviation anomaly (accept changes or apply full config) the actual config
matches the golden config and the anomaly is cleared.

Config Deviation and Configlets

If an improperly-configured configlet causes Apstra deployment errors (when the device rejects the
command), a service config deployment failure occurs. In this case, follow the steps below to resolve the
anomaly.

1. From the blueprint, navigate to Staged > Catalog > Configlets and delete the configlet.

2. Click Uncommitted and commit the change. The configuration deviation remains because the golden
config is empty. The golden config is the running config of the device after successful deployment of
Apstra-rendered config. If deployment fails there is no golden config, thus causing the config
deviation.

3. Click Dashboard, then click Config Dev. (in the Deployment Status section).

4. Click the node name, then select Accept Changes to notify Apstra that the failure can be ignored.

Root Causes

IN THIS SECTION

Root Cause Overview | 615

Enable Root Cause Analysis | 615

View Root Cause Analysis | 616

614

Root Cause Overview

Root Cause Identification (RCI) is a technology integrated into Apstra software that automatically
determines root causes of complex network issues. RCI leverages the Apstra datastore for realtime
network status, and automatically correlates telemetry with each active blueprint intent. Root cause use
cases include the following:

Root Cause Description

Link broken Symptoms: Both interfaces are operationally down,
LLDP is missing on both sides, BGP peered across that
link is operationally down.

Link miscabled Symptoms: LLDP indicates wrong neighbors, BGP
peered across that link is operationally down.

Operator shut interface Symptoms: Both interfaces on the link are
operationally down; the interface in question is
administratively down; LLDP missing on both sides,
BGP peered across that link is operationally down.

Disconnection between 2 devices Symptoms: Union of symptoms for link broken / link
miscabled / operator shut interface for all constituent
links between a spine and a leaf

For instance, if there are 3 links between a spine and a
leaf, then 2 could be miscabled and 1 is broken - this
results in a disconnection between that spine and that
leaf.

Enable Root Cause Analysis

1. From the blueprint, navigate to Active > Root Causes and click Enable Root Cause Analysis.

615

2. Enter a Trigger Period or leave the default, and click Create to enable root cause analysis and return
to the table view.

View Root Cause Analysis

From the blueprint, navigate to Active > Root Causes and click the model name connectivity in the list.

Root cause analysis runs periodically and produces zero or more root causes. Any root causes that are
found include a description, a timestamp of when it was detected and a list of symptoms.

616

BGP Route Tagging

IN THIS SECTION

BGP Route Tag Format | 617

Apstra version 4.1.2 introduces a new feature where the following are tagged with BGP communities
(RFC1997 - BGP Communities Attribute):

• All routes (IPv4 and IPv6) generated within the data center fabric

• Routes received from external generic systems

• Routes received from remote EVPN gateways

These communities allow you to identify any BGP route within the data center fabric quickly. They'll be
used for running more sophisticated route telemetry in future releases.

Introducing this new feature results in new lines of configuration on deployed network devices. These
configuration changes won't impact the control or forwarding plane and thus won't be service-
impacting.

BGP Route Tag Format

Each route is tagged with two communities (32-bits each) in the following format:
[<system_index>:<function_id>] [<vrf_id>:<peer_id>]

Field Description Possible Range of
Values

system_index Identifies the device where the route is learned (sourced) in Apstra

A unique blueprint-wide value is generated for every leaf, spine, and
super spine in the data center fabric.

0 - 19999

• 0 - don’t care

• 1 - 19999 usable
values // block of
20.000

617

(Continued)

Field Description Possible Range of
Values

function_id Identifies the route source or a function associated with it

A unique blueprint-wide value is generated for every leaf, spine, and
super spine in the data center fabric.

The base for function_id is 20000. The function_id value will be 20000
+ function_id. Function_id MUST be set in every tagged BGP update.

The following function_id’s have been defined:

• EVPN DCI-GW gateway = 1

• External router generic = 2

• Redistributed from OSPFv2 = 3

• Redistributed from OSPFv3 = 4

• Redistributed from static-v4 = 5

• Redistributed from static-v6 = 6

• Redistributed from connected-v4 = 7

• Redistributed from connected-v6 = 8

• Redistributed from BGP-AFI/SAFI 1/1 = 9

• Redistributed from BGP-AFI/SAFI 2/1 = 10

• BGP preferred exit = 11

The following function ids are not supported in Apstra version 4.1.2

• External router generic = 2

• Redistributed from OSPFv2 = 3

• Redistributed from OSPFv3 = 4

• BGP preferred exit = 11

20000 - 20999

• 20000 - don’t care

• 20001 - 20999
usable values //
block of 1000

618

(Continued)

Field Description Possible Range of
Values

vrf_id Identifies the VRF associated with the route

A unique value is generated for every configured VRF in the blueprint.
The vrf_id value in the BGP community tag will be 21000 + vrf_id.

21000 - 25999

• 25000 - don’t care

• 21001 - 25999
usable values //
block of 5000

peer_id Optional field. Possibly identifying the peer via which the route is
learned. This field is not used in Apstra 4.1.2 and is set to a don’t care
value (26000).

The peer_id is not used and is set to the default value of 26000 in
Apstra version 4.1.2

26000 - 28999

• 26000 - don’t care

• 26001 - 28999
usable values //
block of 3000

Freeform Reference Design

IN THIS SECTION

Freeform Overview | 620

Freeform Workflow | 622

Create / Delete Freeform Blueprint | 623

Freeform Blueprint Summary and Dashboard | 624

Topology (Freeform) | 625

Systems (Freeform) | 626

Device Context (Freeform) | 649

Links (Freeform) | 651

Config Templates (Freeform Blueprint) | 657

Import Device Profile (Freeform) | 662

619

Property Sets (Freeform Blueprints) | 663

Tags (Freeform Blueprint) | 666

Tasks - Staged (Freeform) | 668

Active | 668

Freeform Overview

IN THIS SECTION

Reference Designs | 620

Device Management | 620

Freeform Blueprints and Device Profiles | 621

Systems and Links | 621

Config Templates, Property Sets and Tags | 621

Reference Designs

If your network architecture is comprised of a 3-stage Clos, 5-stage Clos or collapsed fabric, you’ll want
to take advantage of the abstraction and automation that’s included with the Datacenter reference
design. For all other topologies, you can use the Freeform reference design (new in Apstra version 4.1.1)
to leverage any feature, protocol, or architecture.

Blueprints created in the Datacenter reference design use a set of design elements to abstract and
automate many network activities. Blueprints created in the Freeform reference design consist of
systems and links that you add and configure yourself, giving you complete control over your
architecture. In Freeform we use the term system to represent all the types of devices that can be linked
in the Apstra environment: switches, routers, Linux hosts and so on.

Device Management

Device management for Freeform blueprints is the same as for Datacenter blueprints. The process of
installing agents and acknowledging them to bring them under Apstra management is the same in both

620

reference designs. In Apstra version 4.1.1 and 4.1.2, only Juniper devices are supported in Freeform
blueprints.

Freeform Blueprints and Device Profiles

A newly created Freeform blueprint is just an empty blueprint with a name. (Freeform doesn't use
blueprint templates.) You’ll start building your blueprint by importing device profiles from the design
(global) catalog. A device profile represents a device’s capabilities without specifying its system ID (serial
number). This is what enables you to build your entire network ‘offline’ before deploying it.

Systems and Links

You’ll create internal systems and assign device profiles to them. Internal systems are devices that are
managed in the Apstra environment. You can bring your devices under Apstra management at any time.
If you have them ready, you can assign them as you're creating your internal systems. If they're not
ready, that's OK. You can assign them any time before deploying your network.

The other type of system in Freeform blueprints are external systems. These are systems that are linked
to internal systems, and are not under Apstra management.

When you link your systems, you’ll select ports and transformations, as applicable. You can also add IP
addresses and tags as you're creating those links.

Config Templates, Property Sets and Tags

Config templates are text files used to configure internal systems in Freeform. You'll assign a config
template to every internal system. You could paste configuration directly from your devices into a config
template to create a static config template, but then you wouldn’t be using the potential of config
templates. With some Jinja2 knowledge (and maybe some Python), you can parametrize config
templates to do powerful things.

Property sets provide a valuable capability to fully parameterize config templates. Consisting of key-
value pairs, they enable you to separate static portions of config templates from variables. You create
property sets in the blueprint catalog. (Property sets used in Freeform blueprints are not related to
property sets in the design (global) catalog.) You'll include property set names in your config template
and then the values in those property sets will be used when configuration is rendered.

You can also create a property set and assign it directly to one system.

Tags are a way for you to assign metadata to Apstra-managed resources. They can help you identify,
organize, search for, and filter Apstra systems and links. With tags, you can categorize resources by
purpose, owner, environment, or other criteria. Because tags are metadata, they aren't just used for
visual labeling; they are also applied as properties of nodes in the Apstra graph database. This node
property (or device property) is then available for you to reference in Jinja config templates for dynamic

621

variables in config generation and the Apstra real-time analytics via Apstra's Live Query technology and
Apstra Intent-Based Analytics.

An example of when you might want to use tags is if you have bare metal servers with SRIOV interfaces,
and you need to produce specific configuration for those interfaces. You would add the tag sriov to the
links, then specify in the config template that links with that tag are to be configured a certain way.

Freeform Workflow

1. Access the" Apstra GUI" on page 3.

2. "Bring your devices under Apstra management" on page 77 (same procedure as for Datacenter
blueprints). If you don't have your system IDs (serial numbers) yet, that's OK. You can build your
entire network 'offline' in the Apstra environment and bring your devices under Apstra
management any time before deploying your network.

3. "Create Freeform blueprint" on page 623.

4. "Import device profiles" on page 662 for the internal systems you'll create.

5. "Add internal systems" on page 627 for the systems that Apstra will manage.

6. "Add external systems" on page 632 for unmanaged systems, as applicable.

7. "Add links" on page 651 to your systems.

8. "Create config templates" on page 657, and "property sets" on page 664 as needed.

9. "Assign config templates" on page 638 to internal systems. In Apstra version 4.1.2, only internal
systems with deploy mode set to Deploy require an assigned config template. In versions 4.1.0 and
4.1.1, ALL internal systems require an assigned config template regardless of deploy mode.

10. If you haven't brought your "devices under Apstra management" on page 77 yet, it's time to do that
now.

11. "Assign system IDs (if you haven't already) and set the deploy mode on your systems to Deploy" on
page 643.

12. Before deploying your network, you can use the apstra-cli utility to validate config template syntax.
For more information, see Juniper Support Knowledge Base article KB69779.

13. "Deploy" on page 670 blueprint.

622

https://supportportal.juniper.net/s/article/Juniper-Apstra-Using-the-apstra-cli-Junos-config-check-command-to-verify-syntax-in-Freeform?language=en_US

Create / Delete Freeform Blueprint

IN THIS SECTION

Create Freeform Blueprint | 623

Delete Freeform Blueprint | 623

Create Freeform Blueprint

As of Apstra version 4.1.1, you can build any type of architecture in the Apstra environment. You start
by creating a "blank" freeform blueprint. For more information, including the Freeform workflow, see
"Freeform Reference Design" on page 619.

1. From the left navigation menu of the Apstra GUI, click Blueprints, then click Create Blueprint.

2. Enter a blueprint name and select Freeform reference design.

3. Click Create to create the blueprint and return to the blueprint summary view. The newly created
blueprint appears in the summary.

Next Steps:

• "Import device profiles" on page 662 into the blueprint catalog.

• You can "bring your devices under Apstra management" on page 77 anytime before deploying your
network.

Delete Freeform Blueprint

To delete a blueprint you must have permission (in the user roles you are assigned).

1. From the blueprint, click Dashboard, then click Delete Blueprint (top-right).

2. Enter the blueprint name, then click Delete to delete the blueprint and go to the blueprint summary
view.

623

Freeform Blueprint Summary and Dashboard

IN THIS SECTION

Blueprints Summary | 624

Blueprint Dashboard | 624

Blueprints Summary

The blueprints summary page shows a summary of all your blueprints. At the top of the page, different
status indicators show various statuses across all blueprints (deployment status, anomalies, root causes,
build errors and warnings, and uncommitted changes. This is useful to see any issues at a glance when
you have many blueprints in your Apstra instance.

From the left navigation menu of the Apstra GUI, click Blueprints to go to the blueprints summary page.

Blueprint Dashboard

From the left navigation menu of the Apstra GUI, click Blueprints, then click the name of the blueprint
that you want to go to. The blueprint dashboard is the default view, which shows the blueprint's overall

624

health and status.

Topology (Freeform)

The Topology view (Staged > Physical > Topology) shows in a graphical way the collection of devices/
objects that make up the network and the links that connect devices. It self-documents your intended
network state. This is then modeled/created in the Apstra GraphDB for intent based modeling. You can
perform various tasks from the Topology view, via the topology editor, as described in later sections.

625

Systems (Freeform)

IN THIS SECTION

Create Internal System (Freeform) | 627

Create External System (Freeform) | 632

Edit System Properties (Freeform) | 636

Delete System (Freeform) | 637

Assign Config Template | 638

Remove Config Template Assignment | 639

Set Deploy Mode (Freeform) | 640

Assign System (Freeform) | 643

Unassign System (Freeform) | 645

626

The Systems view (Staged > Physical > Systems) shows in a table format the collection of devices/
objects that make up the network (similar to the Nodes view in Datacenter reference designs). The table
includes information about internal and external systems in the blueprint, tags, deploy mode, assigned
device profile, assigned system ID, hostname, operation mode (full control), assigned config template,
and assigned property set. You can see details at a glance and tell if there are any issues with missing
requirements. You can customize what appears in the table by selecting/deselecting elements in the
columns drop-down list. You can perform various tasks from the Systems view as described in later
sections.

Create Internal System (Freeform)

IN THIS SECTION

Create Internal System (from Topology Editor) | 628

Create Internal System (from Systems View) | 630

Clone Internal System (from Topology Editor) | 631

Clone Internal System (from Systems View) | 631

Systems represent switches, routers, Linux hosts and so on. Managed devices that you add to a blueprint
are called internal systems. You can create systems from scratch, or you can clone systems and
customize them to create new ones. You can create (and clone) from the Topology view or from the
Systems view. (Cloning from the Systems view is new in Apstra version 4.1.2).

627

Internal systems must be mapped to device profiles, so before creating systems, "import" on page 662
the relevant device profiles to the blueprint catalog.

Create Internal System (from Topology Editor)

1. From the blueprint, navigate to Staged > Physical > Topology and click Edit. (Images in this section
are from Apstra version 4.1.1.)

CAUTION: Be careful. If you click away from the topology editor without clicking Save,
your changes are discarded.

2. In the topology editor, click the Create internal system button (bottom-left). The system appears as a
gray rectangle with a system-generated name. The red triangle indicates that information is needed
for required fields. In this case, it's the device profile. You can move systems around on the canvas
and when you save your changes in the editor and then reopen it, your systems will still be where
you moved them to.

628

3. Click the gear to open the parameters dialog.

4. You can change the system color that displays in the topology. This is useful for designating different
roles or anything else you'd like to visually differentiate.

5. You can change the system label to customize it for your environment.

6. Select a device profile from the drop-down list. (Device profiles come from the blueprint catalog. If
you don't see the one you need, import it into the blueprint catalog.)

7. You can assign the system ID now or "later" on page 643. To assign it now, select it from the System
drop-down list. (The list includes managed devices that haven't been assigned yet. If you have your
devices ready and they're not appearing in this list, you still need to "bring them under Apstra
management" on page 77.)

8. You can add tags, then later when you want to find systems you can use the Find by Tags feature
(upper-right) to find them. You can also include tags in config templates, then systems with those tags
will be rendered as specified in the config template.

9. Click Save to stage your new system and return to the Topology view. (If you leave the page without
saving, your changes are discarded.)

Next Steps:

• Continue to create internal and "external systems" on page 632 until you've added your devices to
the topology.

• "Add links" on page 651 to systems.

629

• "Assign config templates" on page 638 to your internal systems. In Apstra version 4.1.2, only
internal systems with deploy mode set to Deploy require an assigned config template. In versions
4.1.0 and 4.1.1, ALL internal systems require an assigned config template regardless of deploy mode.

Create Internal System (from Systems View)

1. From the blueprint, navigate to Staged > Physical > Systems and click Create System. (The image
below is from Apstra version 4.1.1.)

2. In the Create System dialog, enter a name and select INTERNAL.

3. Internal systems are associated with device profiles. You can either assign just the device profile now
(and "assign the system ID" on page 643 later), or if you've brought your devices under Apstra
management, you can select the system ID now.

• From Scratch - select a device profile (that was imported into the blueprint catalog.) (You'll assign
the system ID later.)

• From Managed Devices - select a managed device to assign its system ID to the system.

4. Enter a hostname (optional).

5. You can add tags, then later when you want to find systems you can use the Find by Tags feature
(upper-right) to find them. You can also include tags in config templates, then systems with those tags
will be rendered as specified in the config template.

6. Click Create to stage your new system and return to the Systems view. The newly created system
appears in the list.

Next Steps:

• Continue to create internal and "external systems" on page 632 until you've added your devices to
the topology.

• "Add links" on page 651 to systems.

• "Assign config templates" on page 638 to your internal systems. In Apstra version 4.1.2, only
internal systems with deploy mode set to Deploy require an assigned config template. In versions
4.1.0 and 4.1.1, ALL internal systems require an assigned config template regardless of deploy mode.

630

Clone Internal System (from Topology Editor)

You can clone systems and customize them to create new ones from the Topology view.
1. From the blueprint, navigate to Staged > Physical > Topology and click Edit.

2. In the topology editor, select one or more existing internal systems, then click the Clone selected
nodes button. (The image below is from Apstra version 4.1.2.)

3. The new system(s) appear as gray rectangles with system-generated names. You can move systems
around on the canvas and when you save your changes in the editor and then reopen it, your systems
will still be where you moved them to.

4. Click the gear to open the parameters dialog, and change details to customize your new system.

5. Click Save to stage your new system(s) and return to the Topology view. (If you leave the page
without saving, your changes are discarded.)

Clone Internal System (from Systems View)

You can clone systems and customize them to create new ones from the Systems view, as of Apstra
version 4.1.2.
1. From the blueprint, navigate to Staged > Physical > Systems and click Clone System for the system

you want to clone.

631

2. Change details to customize your new system.

3. Click Clone to stage your new system and return to the Systems view.

Create External System (Freeform)

IN THIS SECTION

Create External System (from Topology Editor) | 632

Create External System (from Systems View) | 634

Clone External System (from Topology Editor) | 634

Clone External System (from Systems View) | 635

Systems represent switches, routers, Linux hosts and so on. Unmanaged devices that you add to a
blueprint are called external systems. They link to managed (internal) systems. You can create systems
from scratch, or you can clone systems and customize them to create new ones. You can create (and
clone) from the Topology view or from the Systems view. (Cloning from the Systems view is new in
Apstra version 4.1.2).

Create External System (from Topology Editor)

1. From the blueprint, navigate to Staged > Physical > Topology and click Edit. (Images in this section
are from Apstra version 4.1.1.)

632

CAUTION: Be careful. If you click away from the topology editor without clicking Save,
your changes are discarded.

2. In the topology editor click the Create external system button. The system appears as a rectangle
with a system-generated name. You can move systems around on the canvas and when you save
your changes in the editor and then reopen it, your systems will still be where you moved them to.
You can save the system as is since there are no other required fields, or you can open the
parameters dialog and configure optional fields.

3. Click the gear to open the parameters dialog.

4. You can change the system color that displays in the topology. This is useful for designating different
roles or anything else you'd like to visually differentiate.

5. You can change the system label to customize it to your environment.

633

6. You can add tags, then later when you want to find systems you can use the Find by Tags feature
(upper-right) to find them.

7. Click Save to stage your new system and return to the Topology view. (If you leave the page without
saving, your changes are discarded.)

Next Steps:

Continue to create external systems and "internal systems" on page 627 until you've added your devices
to the topology. Then you can "create links" on page 651 for them.

Create External System (from Systems View)

1. From the blueprint, navigate to Staged > Physical > Systems and click Create System. (The image
below is from Apstra version 4.1.1.)

2. Enter a name and select EXTERNAL.

3. Enter a hostname (optional) and tags (optional). If you add tags, then later when you want to find
systems you can use the Find by Tags feature (upper-right) to find them.

4. Click Create to stage the change and return to the Systems view. The newly created system appears
in the list.

Next Steps:

Continue to create external systems and "internal systems" on page 627 until you've added your
devices. Then you can "create links" on page 651 for them.

Clone External System (from Topology Editor)

You can clone systems and customize them to create new ones from the Topology view.
1. From the blueprint, navigate to Staged > Physical > Topology and click Edit.

2. In the topology editor, select one or more existing external systems, then click the Clone selected
nodes button. (The image below is from Apstra version 4.1.2.)

634

3. The new system(s) appear as gray rectangles with system-generated names. You can move systems
around on the canvas and when you save your changes in the editor and then reopen it, your systems
will still be where you moved them to.

4. Click the gear to open the parameters dialog, and change details to customize your new system.

5. Click Save to stage your new system(s) and return to the Topology view. (If you leave the page
without saving, your changes are discarded.)

Clone External System (from Systems View)

You can clone systems and customize them to create new ones from the Systems view, as of Apstra
version 4.1.2.
1. From the blueprint, navigate to Staged > Physical > Systems and click Clone System for the system

you want to clone.

635

2. Change details to customize your new system.

3. Click Clone to stage your new system and return to the Systems view.

Edit System Properties (Freeform)

1. From the blueprint, navigate to Staged > Physical > Topology and click Edit.

CAUTION: Be careful. If you click away from the topology editor without clicking Save,
your changes are discarded.

2. In the topology editor, click the system to change, then click the Manage selected nodes properties
button.

3. Change the label, device profile, system ID and/or tags, as applicable.

4. To close the dialog, click the Manage selected nodes properties button again.

636

5. Click Save to stage your changes, exit the topology editor and return to the Topology view. (If you
leave the page without saving, your changes are discarded.)

Next Steps:

When you're ready to activate your changes, commit them from the Uncommitted tab.

Delete System (Freeform)

IN THIS SECTION

Delete System (from Topology Editor) | 637

Delete System (from Systems View) | 638

You can delete systems from the Topology view or the Systems view.

Delete System (from Topology Editor)

1. From the blueprint, navigate to Staged > Physical > Topology and click Edit (right-side).

CAUTION: Be careful. If you click away from the topology editor without clicking Save,
your changes are discarded.

2. In the topology editor select the system to delete and click the Delete selected nodes button.

3. Click Save to stage your changes, exit the topology editor and return to the Topology view.

637

When you're ready to activate your changes, commit them from the Uncommitted tab.

Delete System (from Systems View)

1. From the blueprint, navigate to Staged > Physical > Systems and click the Delete button for the
system to delete.

2. Click Delete to stage the deletion and return to the Systems view.

When you're ready to activate your changes, commit them from the Uncommitted tab.

Assign Config Template

In Apstra version 4.1.2, only internal systems with deploy mode set to Deploy require an assigned config
template. In versions 4.1.0 and 4.1.1, ALL internal systems require an assigned config template
regardless of deploy mode.

If you haven't created your "config templates" on page 657 yet, do that now.

1. From the blueprint, navigate to Staged > Physical > Systems to go to the Systems view.

2. Select the check boxes for the system(s) where you want to add a config template.

3. Click the Update Config Template Assignments button that appears above the list after selecting
system(s).

638

4. In the Update Config Template Assignments dialog, leave the default Override Assignment selected
to add or replace a template.

5. Select a config template from the drop-down list. You can preview the template text. Each internal
system is assigned only one config template (but that config template could nest other config
templates within it.)

6. Click Assign Config Template to stage the changes and return to the Systems view.

Next Steps:

When you've assigned all required config templates and all other requirements are met, you can deploy
your blueprint from the Uncommitted tab.

Remove Config Template Assignment

1. From the blueprint, navigate to Staged > Physical > Systems to go to the Systems view.

2. Select the check boxes for the systems where you want to remove config templates.

3. Click the Update Config Template Assignments button that appears above the list after selecting
system(s).

639

4. In the Update Config Template Assignments dialog, select Remove Assignment.

5. Click Remove Config Template Assignments to stage the changes and return to the Systems view.

When you're ready to activate your changes, commit them from the Uncommitted tab.

Set Deploy Mode (Freeform)

IN THIS SECTION

Set Deploy Mode on One System | 640

Set Deploy Modes on Multiple Systems | 641

NOTE: When you set the deploy mode on a system, it appears in its Device Context. But if you
haven’t added deploy_mode (as a Jinja variable) to the config template that’s assigned to that
system, it has no effect on the rendered configuration.

You can set the deploy mode for one system at a time, or for multiple systems at the same time in one
dialog.

Set Deploy Mode on One System

1. From the blueprint, navigate to Staged > Physical > Systems and click the name of the system that
needs its deploy mode set. The details page appears.

NOTE: You can also get to the details page from the Topology view. From the blueprint,
navigate to Staged > Physical > Topology and select the system that needs its deploy mode
set.

2. Click the Edit button for the Deploy Mode field.

640

3. Select the deploy mode (deploy, ready, drain, undeploy), then click the Save button to stage your
changes.

NOTE: You can also assign the system ID in the same device panel.

In Apstra version 4.1.2, internal systems with deploy mode set to Deploy require an assigned config
template. In versions 4.1.0 and 4.1.1, ALL internal systems require an assigned config template
regardless of deploy mode. Make sure the config template assigned to the device includes deploy_mode or
your changes will have no effect on configuration.

Set Deploy Modes on Multiple Systems

1. From the blueprint, navigate to Staged > Physical > Systems and select the check boxes for one or
more systems, then click the Set Deploy Mode button.

641

NOTE: You can also set deploy modes (and system IDs) by clicking the Change System IDs
assignments button (to the left of the Set Deploy Mode button.

2. In the dialog, select the deploy mode (deploy, ready, drain, undeploy) for the selected systems.

NOTE: You can also assign system IDs from the same dialog.

3. Click Set Deploy Mode to stage the changes and return to the Systems view.

In Apstra version 4.1.2, internal systems with deploy mode set to Deploy require an assigned config
template. In versions 4.1.0 and 4.1.1, ALL internal systems require an assigned config template
regardless of deploy mode. Make sure the config template assigned to the device includes deploy_mode or
your changes will have no effect on configuration.

642

Assign System (Freeform)

IN THIS SECTION

Assign System(s) (from Systems View) | 643

Assign System (from Topology Editor) | 644

Assign System (from Device Panel) | 644

You can assign system IDs (serial numbers) to systems from the Systems view, the Topology view or from
the Device panel.

Assign System(s) (from Systems View)

1. From the blueprint, navigate to Staged > Physical > Systems and select the check boxes for one or
more systems, then click the Change System IDs assignments button.

2. In the dialog, select system IDs from the drop-down lists (available managed devices). (If you don't
see your system, you may still need to "acknowledge" on page 77 it.)

NOTE: You can also set the deploy modes from the same dialog.

3. Click Update Assignments to stage your changes and return to the Systems view.

643

Assign System (from Topology Editor)

1. From the blueprint, navigate to Staged > Physical > Topology and click Edit to open the topology
editor.

CAUTION: Be careful. If you click away from the topology editor without clicking Save,
your changes are discarded.

2. In the topology editor, click the system that you want to assign a system ID to, then click the Manage
selected nodes properties button. (The screenshot below is from Apstra version 4.1.1).

3. Select the system ID (serial number) from the System drop-down list (includes available managed
devices). (If you don't see your system, you may still need to acknowledge it.)

4. To close the dialog, click the Manage selected nodes properties button again.

5. Click Save to stage your changes, exit the topology editor and return to the Topology view. (If you
leave the page without saving, your changes are discarded.)

When you're ready to activate your changes, commit them from the Uncommitted tab.

Assign System (from Device Panel)

1. From the blueprint, navigate to Staged > Physical > Systems and click the name of the system that
needs an ID assigned, either from the Topology view or from the Systems view. The Device panel for
that system appears.

2. Click the Edit button for the S/N field.

644

3. Select the system ID from the drop-down list (includes available managed devices). (If you don't see
your system, you may still need to acknowledge it.)

4. If you're going to deploy the device, make sure the deploy mode is set to Deploy, then save it.

5. Click the Save button to stage your changes.

When you're ready to activate your changes, commit them from the Uncommitted tab.

Unassign System (Freeform)

IN THIS SECTION

Unassign System(s) (from Systems View) | 645

Unassign System (from Topology Editor) | 647

Unassign System (from Device Panel) | 649

You can unassign system IDs (serial numbers) from the Systems view, the Topology view, or from the
Device panel.

Unassign System(s) (from Systems View)

1. From the blueprint, navigate to Staged > Physical > Systems and select the check box(es) for one or
more systems to unassign, then click the Change System IDs assignments button.

645

2. In the dialog that opens, click the Remove assignment button (trash can) for the system(s) to unassign
and change the deploy mode to Undeploy.

3. Click Update Assignments to stage your changes and return to the Systems view.

646

4. Click Uncommitted and "commit" on page 670 changes to the blueprint to remove the system from
the fabric.

The device is still under Apstra management. It's ready and available to be assigned to any blueprint.

To remove the device completely from Apstra management, "remove the device from Managed Devices"
on page 78.

Unassign System (from Topology Editor)

1. From the blueprint, navigate to Staged > Physical > Topology and click Edit to open the topology
editor.

CAUTION: Be careful. If you click away from the topology editor without clicking Save,
your changes are discarded.

2. In the topology editor, click the system that you want to unassign, then click the settings button.

647

3. Remove the system ID and change deploy mode to Undeploy, then click the system (or outside the
settings box) to close the settings box.

648

4. Click Save to stage your changes, exit the topology editor and return to the Topology view. (If you
leave the page without saving, your changes are discarded.)

5. Click Uncommitted and "commit" on page 670 changes to the blueprint to remove the system from
the fabric.

The device is still under Apstra management. It's ready and available to be assigned to any blueprint.

To remove the device completely from Apstra management, "remove the device from Managed Devices"
on page 78.

Unassign System (from Device Panel)

1. From the blueprint, navigate to Staged > Physical and click the name of the system to unassign,
either from the Topology view or from the Systems view. The Device panel for that system appears.

[image

2. Click the Edit button for deploy mode, and change it to Undeploy, then click the Save button.

3. In the S/N section, click the Edit button.

4. Click the red square in the S/N section to unassign the system ID.

5. Click Uncommitted and "commit" on page 670 changes to the blueprint to remove the system from
the fabric.

The device is still under Apstra management. It's ready and available to be assigned to any blueprint.

To remove the device completely from Apstra management, "remove the device from Managed Devices"
on page 78.

Device Context (Freeform)

The device context includes all the contextual data that you can use when creating dynamic Jinja config
templates. It includes such data as interfaces, IP addresses, prefix lengths, name, and state. It also shows
you what the neighbor interface is of other devices. You can search for data in a query box to pinpoint
the information you're looking for.

1. From the blueprint, either from the Topology view or the Systems view, click the name of the system
to view. Its details appear in the Systems view.

649

2. At the bottom of the device panel on the right, click Device Context to go to device context for the
device.

650

Links (Freeform)

IN THIS SECTION

Add Link (Freeform) | 651

Edit Cabling Map (Freeform) | 653

Fetch Discovered LLDP Data (Freeform) | 654

Manage Link Tags (Freeform) | 655

Delete Link (Freeform) | 655

The Links view (Staged > Physical > Links) shows all the links that connect your devices together. The
table includes information about endpoint names, link type, tags, speed, role, interface names and IP
addresses. You can customize what appears in the table by selecting/deselecting elements in the
columns drop-down list. You can perform various tasks from the Links view as described in later
sections.

Add Link (Freeform)

After you've created systems you can link them to each other from the Topology view.

1. From the blueprint, navigate to Staged > Physical > Topology and click Edit.

651

CAUTION: Be careful. If you click away from the topology editor without clicking Save,
your changes are discarded.

2. In the topology editor select the two systems that you want to link. You can select them in a couple
of different ways:

• Click and drag across the two systems.

• Hold down the alt key (command key on a Mac) while clicking the two systems.

When you select two systems additional tasks become available in the context-aware menu at the
bottom.

652

3. Click the Manage links between selected nodes button. The Links Management dialog opens showing
the two node names (and device profiles, as applicable).

4. Click Create Link. The port representations appear.

5. Select the check box for the first node.

6. Click the gear (upper-right) to show fields for IPv4, IPv6 and tags.

7. You can enter IP addresses and/or tags to add them to the device model which can be used later
when creating config templates.

8. Select ports (and transformations as applicable), then click Save. (If you're connecting to an external
system as in the example screenshot, you won't select ports.) You're still in the topology editor and if
you click away without saving, your changes are discarded.

9. Click Save in the topology editor to save your changes and leave the topology editor. (Depending on
the size of your topology, you may need to scroll to see the Save button.)

Next Steps:

If you haven't "created config templates" on page 657 yet, create them now. If you have config
templates ready for your devices and haven't assigned them yet, "assign" on page 638 them now. When
you've assigned all required config templates and all other requirements are met, you can deploy your
blueprint from the Uncommitted tab.

Edit Cabling Map (Freeform)

You can change one or more interfaces and IP addresses in the cabling map editor.

1. From the blueprint, navigate to Staged > Physical > Links and click the Edit cabling map button.

653

2. In the cabling map editor, change interface names and/or IP addresses, as applicable.

• You can use Batch clear override to clear all interfaces and IPv4/IPv6 values for selected links.

• To drop the override for either an interface name or IPv4/IPv6 address, submit an empty value in
the corresponding field.

3. Click Update to stage your changes and return to the Links view.

Next Steps:

When you're ready to activate your changes, commit them from the Uncommitted tab.

Fetch Discovered LLDP Data (Freeform)

If you've already cabled up your devices, you can have Apstra discover your existing cabling instead of
using the cabling map prescribed by Apstra. All system nodes in the blueprint must have system IDs
assigned to them.

CAUTION: This is a disruptive operation. All links can potentially be renumbered.

654

1. From the blueprint, navigate to Staged > Physical > Links and click the Fetch discovered LLDP data
button (second of two buttons above links list).

2. If staged data is identical to LLDP discovery results, you will see a message with that statement. Your
actual cabling matches the Apstra cabling map. No further action is needed.

3. If staged data is different from LLDP discovery results, the message includes the number of links that
are different.

4. Scroll to see details of the diffs (in red), or check the Show only links with LLDP diff? check box to see
only the differences.

5. To accept the changes and update the map to match LLDP data, click Update Stated Cabling Map
from LLDP.

Manage Link Tags (Freeform)

1. From the blueprint, navigate to Staged > Physical > Links and select one or more check boxes for the
links to manage.

2. Click the Tag button that appears above the list after selecting link(s).

3. In the dialog, add and/or remove tags, as needed.

4. Click Add/Remove Tags to stage the changes and return to the Links view.

Delete Link (Freeform)

1. From the blueprint, navigate to Staged > Physical > Topology and click Edit.

655

2. In the topology editor select the two systems where the link is that you want to delete. You can
select them in a couple of different ways:

• Click and drag across the two systems.

• Hold down the alt key (cmd key on a Mac) while clicking the two systems.

When you select two systems additional tasks become available in the context-aware menu at the
bottom.

3. Click the Manage links between selected nodes button. The Links Management dialog opens showing
the two node names (and device profiles, as applicable).

656

4. Click the Delete button for the link to delete, then click Save. You're still in the topology editor and if
you click away without saving, your changes are discarded.

5. Click Save (right-side) in the topology editor to stage your changes and return to the Topology view.

When you're ready to activate your changes, commit them from the Uncommitted tab.

Config Templates (Freeform Blueprint)

IN THIS SECTION

A Simple Config Template | 658

Config Template With Variable | 658

Config Template and Property Sets | 658

Create Config Template (Freeform Blueprint) | 659

Edit / Delete Config Template (Freeform) | 660

Import / Export Config Template (Freeform) | 661

We recommend that you familiarize yourself with the Jinja Template Designer before working with
config templates.

Several predefined config templates are included with the Apstra product. To get familiar with the syntax
and how config Jinja is used in config templates. check out the sections below.

657

https://jinja.palletsprojects.com/en/3.1.x/templates/

A Simple Config Template

Let's take a look at the config template junos_protocols.jinja, which ships with Apstra software.

protocols {
 lldp {
 port-id-subtype interface-name;
 port-description-type interface-description;
 neighbour-port-info-display port-id;
 interface all;
 }
}

This straightforward template doesn't include any variables or other conditions. It's nested inside the
config template junos_configuration.jinja, one of the other predefined config templates. You could create
your own config template and nest this basic one in it as well.

Config Template With Variable

Let's look at junos_system.jinja, another predefined config template.

{% if hostname %}
system {
 host-name {{hostname}};
}
{% endif %}

This template includes an if-then statement and the variable hostname. When configuration is rendered, if
the system device context includes a value for hostname, then the rendered configuration includes that
value.

Config Template and Property Sets

An example of using property sets is with NTP servers. Configuration for NTP might be consistent
across all devices in the enterprise except for time sources or strata per geography. You can build a
config template with a variable, named ntp for example, in place of the actual IP address. The
configuration will be generated with the value of the ntp property in a property set. You'd import the
same config template into all blueprints, but for blueprints running in the east region you'd import the
"EAST" property set, and for blueprint running in the west region you'd import the "WEST" property set.
Property sets are global, that is they are blueprint-wide.

658

The config template could look like this.

{% if property_sets.get('ntp') %}
system {
 ntp {
 server {{property_sets['ntp']['ntp_server']}};
 }
}
{% endif %}

The example below shows the syntax for the property set ntp that contains the IP address.

ntp_server = '1.2.3.4'

Create Config Template (Freeform Blueprint)

Creating config templates in the blueprint catalog (instead of the design catalog), gives you access to
device context for systems that you've already added to your blueprint. Device context groups relevant
information into one place, making it easier to get the information you need while creating config
templates.
1. From the blueprint, navigate to Staged > Catalog > Config Templates and click Create Config

Template.

2. In the dialog, enter a name for the config template including the .jinja extension. (The .jinja extension
is required even if you're not using Jinja.)

3. Enter or paste your content into the Template Text field. You can also import a config template that
you created in the design (global) catalog.

• To see device context, click Device Context.

• To see device context for a specific system, select it from the System drop-down list.

• Preview and Preview Mode are available only when you're editing a config template. (Preview
Mode was called Apply Mode before Apstra version 4.1.2.)

659

4. Click Create to create the config template and return to the config template catalog view.

When you're ready you can "assign config templates" on page 638 to internal systems.

Edit / Delete Config Template (Freeform)

IN THIS SECTION

Edit Config Template | 660

Delete Config Template | 661

Edit Config Template

1. From the blueprint, navigate to Staged > Catalog > Config Templates to go to the table view.

2. Either from the table view or the details view click the Edit button for the config template to edit.

660

3. In the dialog, make your changes.

• To see device context, click Device Context.

• To see device context for a specific system, select it from the System drop-down list.

• To see a preview of your changes, click Preview.

• To see the full configuration, including the changes you're making, select Complete from the
Preview Mode drop-down list. (Preview Mode was called Apply Mode before Apstra version
4.1.2.)

• To see only the configuration that you've changed, select Incremental from the Apply Mode
drop-down list.

4. Click Update (bottom-right) to update the config template and return to the table view.

Delete Config Template

1. From the blueprint, navigate to Staged > Catalog > Config Templates to go to the table view.

2. Either from the table view or the details view click the Delete button for the config template to
delete.

3. Click Delete to stage the deletion and return to the table view.

Import / Export Config Template (Freeform)

IN THIS SECTION

Import Config Template | 661

Export Config Template | 662

Import Config Template

You can create config templates in the design (global) catalog, then import them into as many blueprints
as you want. (You can also create config templates directly in your blueprint, which gives you access to
device context making it easier to write config template.)
1. From the blueprint, navigate to Staged > Catalog > Config Templates and click Import Config

Template(s).

661

2. Select the check boxes for the config templates to import from the design (global) catalog.

3. Click Import to stage the import and return to the table view.

Export Config Template

If you create a config template directly in a blueprint, and you want to make it available to other
blueprints, you can export it to the design (global) catalog.
1. From the blueprint, navigate to Staged > Catalog > Config Templates to go to the table view.

2. Either from the table view or the details view click the Export config template button for the config
template to export.

3. Click Copy to copy the contents, Export to Global to export the config template to the design (global)
catalog, or click Save As File to download the file.

4. When you've copied, exported or downloaded the config template, close the dialog to return to the
table view.

Import Device Profile (Freeform)

" Device Profiles" on page 203 define the capabilities of supported hardware devices. They interact with
devices via system agents. They don't include system IDs (serial numbers) which enables you to build
your network in the Apstra environment 'offline' before you have your devices ready. In Freeform
blueprints you import device profiles to provide context for configuring systems with config templates.

1. From the blueprint, navigate to Staged > Catalog > Device Profiles and click Import Device profile(s)
(right-side).

662

2. Select one or more check boxes for the device profile(s) to import into the blueprint. Only device
profiles that are supported in Freeform appear in the list (Juniper devices only in Apstra release
4.1.1).

3. Click Import to stage the change and return to the table view. The newly imported device profile(s)
appear in the list.

Next Steps:

You're ready to "create internal systems" on page 627 and assign your imported device profiles to them.

Property Sets (Freeform Blueprints)

IN THIS SECTION

Create Property Set (Freeform Blueprint) | 664

Edit / Delete Property Set (Freeform Blueprint) | 665

Property sets provide a valuable capability to fully parameterize config templates. Consisting of key-
value pairs, they enable you to separate static portions of config templates from variables. You create
property sets in the blueprint catalog. (Property sets used in Freeform blueprints are not related to
property sets in the design (global) catalog.) You'll include property set names in your config template
and then the values in those property sets will be used when configuration is rendered.

You can also create a property set and assign it directly to one system.

663

Create Property Set (Freeform Blueprint)

IN THIS SECTION

Create Property Set with Builder | 664

Create Property Set with Editor | 664

Create Property Set with Builder

1. From the blueprint, navigate to Staged > Catalog > Property Sets and click Create Property Set.

2. Enter a name for the property set.

3. If you want to assign the property set to a specific system, select it from the System drop-down list.

4. The Builder input type is selected, by default.

5. Use the interactive builder to help you create the content for your property set.

6. Click Create to stage the new property set and return to the property set catalog. The newly created
property set is in the list.

Create Property Set with Editor

1. From the blueprint, navigate to Staged > Catalog > Property Sets and click Create Property Set.

664

2. Enter a name for the property set.

3. If you want to assign the property set to a specific system, select it from the System drop-down list.

4. Select Editor input type.

5. Copy and paste your content in the editor or type it in.

6. Click Create to stage the new property set and return to the property set catalog. The newly created
property set is in the list.

Edit / Delete Property Set (Freeform Blueprint)

IN THIS SECTION

Edit Property Sets | 665

Delete Property Sets | 665

Edit Property Sets

1. From the blueprint, navigate to Staged > Catalog > Property Sets to go to the table view.

2. Either from the table view or the details view, click the Edit button for the property set to edit.

3. Make your changes.

4. Click Update to stage your changes and return to the table view.

Delete Property Sets

1. From the blueprint, navigate to Staged > Catalog > Property Sets and click the Delete button for the
property set to delete.

2. Click Delete to stage the deletion and return to the table view.

665

Tags (Freeform Blueprint)

IN THIS SECTION

Create Tag (Freeform Blueprint) | 666

Edit / Delete Tag (Freeform Blueprint) | 667

You can add tags to systems, then later when you want to find systems you can use the Find by Tags
feature to find them.

You can include Tags in config templates. Systems/links with those tags will be rendered as specified in
the config template. For example, if you have bare metal servers with SRIOV interfaces, and you need to
produce specific configuration for those interfaces, you can add the tag sriov, then specify that links with
that tag to be configured per the config template.

Tags are a way for you to assign metadata to Apstra-managed resources. Tags can help you identify,
organize, search for, and filter Apstra systems and links. With tags, you can categorize resources by
purpose, owner, environment, or other criteria. Because tags are metadata, they are not just used for
visual labeling; they are also applied as properties of nodes in the Apstra graph database. This node
property (or device property) is then available for you to reference in Jinja for dynamic variables in config
generation and the Apstra real-time analytics via Apstra's Live Qurey technology and Apstra Intent-
Based Analytics.

Here is an example of using the tag firewall in a "config template" on page 657 to render a specific
description.

{% if has_tag(interface.link.neighbor_system.id, 'firewall') %}
   description "this is a firewall facing interface";
{% endif %}

Create Tag (Freeform Blueprint)

1. From the blueprint, navigate to Staged > Catalog > Tags and click Create Tag.

666

2. Enter a tag name. Names are case-insensitive.

3. Enter a description (optional).

4. Click Create to stage the tag addition and return to the list view. The newly created tag appears in
the summary table.

Edit / Delete Tag (Freeform Blueprint)

IN THIS SECTION

Edit Tags | 667

Delete Tag | 667

Edit Tags

1. From the blueprint, navigate to Staged > Catalog > Tags and click the Edit button for the tag to edit.

2. Change the description.

3. Click Update to stage the change and return to the table view.

Delete Tag

1. From the blueprint, navigate to Staged > Catalog > Tags and click the Delete button for the tag to
delete.

2. Click Delete to stage the deletion and return to the table view.

667

Tasks - Staged (Freeform)

Tasks that haven been performed in blueprints appear in the Tasks tab. Blueprint task details include
task type, task status (succeeded, failed, in progress), user who performed the task, date/time created/
started/updated, and the duration of the task. For any failed tasks, you can click to see error messages.
From the blueprint, navigate to Staged > Tasks to go to task history.

Active

IN THIS SECTION

Traffic Heat (Freeform) | 669

668

Traffic Heat (Freeform)

Traffic and resource utilization information is available in Freeform blueprints as of Apstra version 4.1.2.

From the blueprint, navigate to Active > Physical > Topology. In the status panel on the right you can
quickly see if your network is having any issues. In this section, we’re looking at Traffic Heat, whose
status indicator is at the bottom of the panel. You can see more details by selecting Traffic Heat from the
Layer drop-down list.

The colors represent different available/used capacity based on the current system level TX/RX,
averaged to 2 minutes, by default. If the aggregated TX or RX across all the device interfaces is < 20%
it's green. If it's between 21-40%, it's yellow and so on. For each 20% difference, capacity is shown with
a different color. (Server color is calculated based on the interface counters of the leaf ports facing that
server.) To see RX/TX per interface for a single node, hover over the node.

669

Commit Blueprint

IN THIS SECTION

Uncommitted Overview | 670

Review Staged Changes | 672

Commit Staged Changes | 674

Revert Staged Changes | 675

Uncommitted Overview

While you're staging your new blueprint (under the Staged tab), the status indicator on the Uncommitted
tab is red. When you've finished staging the blueprint and resolved any build errors, the indicator turns
yellow (or orange if you have warnings, as of Apstra version 4.0.1) and the Commit button turns from
gray to black indicating that the blueprint is ready to be committed. When you commit your pending
changes you are pushing configuration to the Active blueprint. The meaning of the status indicator
colors are shown in the table below:

Table 18: Uncommitted Status Indicators

Status Indicator
Color

Description

Red The blueprint needs staging or has Build Errors that must be resolved before you can commit.

Orange The blueprint has Warnings to notify you of potential issues. The blueprint may or may not
have staged changes. You can commit to a blueprint that has warnings and pending changes.

Yellow The blueprint has pending changes that you can commit to the blueprint.

Green The blueprint does not have any pending changes, warning, or errors. The blueprint is active
and there is nothing to commit.

670

The blueprint below has warnings and pending changes. You can commit these changes.

The blueprint below has warnings and no pending changes. There is nothing to commit.

You can review pending changes, and then decide to commit those changes or discard them. For more
information, see the sections below.

671

Review Staged Changes

1. From the blueprint top menu, click Uncommitted to go to pending changes. You can review Logical
Diff, Full Nodes Diff, Build Errors, and Warnings. Full nodes diff shows all uncommitted changes in
one place, organized by node type, change type and raw data. You can sort and search the diffs, then
preview the changed element. Full nodes diff requires a fair amount of resources and time to
generate.

2. From Logical Diff, click a name from the Name column to see detailed changes, additions or deletions
for that element.

672

In some cases, you have the option of viewing only the differences, as shown below.

673

In Apstra version 4.1.2, the preview for config template changes is color-coded to easily see the
content that has been added (in green) and the content that has been removed (in red).

3. When you are finished reviewing your changes and you've resolved any build errors, proceed to
commit your changes to the blueprint or discard them, as applicable.

Commit Staged Changes

1. From the blueprint top menu, click Uncommitted and review changes as needed.

2. Click Commit and add a description of the changes. We recommend that you enter the optional
revision description to identify changes. These descriptions are displayed in the Revisions section of
"Time Voyager" on page 675. If you don't add a description now you can always add one later. If
you need to roll back to a previous revision, this description helps to determine the appropriate
revision. Specific diffs between revisions are not displayed, so the description is the only change
information available for that revision.

3. Click Commit to push the staged changes to the active blueprint and create a revision. The Apstra
engine validates all commits and makes sure everything works as it pushes configuration. Cabling
anomalies may appear until validation is complete.

4. While the task is active, you can click Active Tasks at the bottom of the screen for information about
task progress. (Additional task history is available in the blueprint at Staged > Tasks.)

674

When a blueprint has been committed and devices have been deployed, the network is up and
running. However, networks are not static and can require modifications as they evolve. Due to
Juniper Apstra's approach of the network as a single entity this is extremely easy; all required device
configurations are generated and pushed to the devices when you commit the change. We call this
Flexible Fabric Expansion (FFE).

Revert Staged Changes

If you decide not to commit staged changes to a blueprint, you can discard them.

From the blueprint top menu, click Uncommitted, then click Revert. In some cases, you might also need
to "reset resource group overrides" on page 274.

Time Voyager

IN THIS SECTION

Time Voyager Overview | 676

Jump to Previous Blueprint Revision | 678

Keep Saved Blueprint Revision | 679

Update Blueprint Revision Description | 679

Delete Kept Blueprint Revision | 679

675

Time Voyager Overview

When you commit a staged blueprint, thereby deploying updates to the network, you may find that the
result is not what you expected. Or maybe you've committed changes to a blueprint by mistake and you
want to undo those changes. Another scenario may be that you've decided to return the network to the
state it was in several revisions ago. Depending on the level of complexity, manually staging and
committing changes to undo what you've done can be difficult and error-prone. In these cases you'll
want to use Time Voyager to automatically restore previous revisions of a blueprint.

A blueprint can be jumped back to any retained revision. The five (5) most recent blueprint commits are
retained. When you commit a sixth time, the first revision is discarded, and the sixth revision becomes
the fifth, the second revision becomes the first, and so on as additional blueprint changes are committed.
You can retain a particular revision indefinitely by keeping it. When you keep a revision it is not included
in the five revisions that cycle out. You can keep up to twenty-five (25) revisions, effectively having
thirty (30) blueprint revisions to choose from. Keep in mind that each revision requires storage space. If
you decide that you no longer want to keep a revision you can simply delete it.

When committing a blueprint you can add a revision description to help identify the changes made in
that revision. These descriptions are displayed in the revision history section of the blueprint as long as
that revision is retained. If you don't add a description when you commit you can always add one later.
When jumping to a revision, this description helps you choose the correct one. Specific differences
between revisions are not displayed, so the description is the only change information available for that
revision.

When jumping to a revision, any previously staged changes that have not been committed are discarded.
If this is an issue, do not jump until you've addressed the uncommitted changes.

Time Voyager is not just an UNDO function. When using Time Voyager you roll back to a previous
commit. This means that anything deleted on the last commit is re-applied when rolling back. There can
be many changes in-between revisions, both additions and removals, all of which would be included in
the rollback. It is important to do a detailed review of changes before committing a rollback. Therefore
Time Voyager is better compared with a Revision Control System (for the whole network!) than an
UNDO function.

Unsupported Time Voyager Scenarios

• After you've upgraded Apstra server, you cannot jump to a blueprint with an older version because
the blueprint revision history is discarded on upgrade. If you need to return to a previous Apstra
version that was taken prior to upgrading Apstra, refer to "Restore Database" on page 822. This
method could cause issues from a device config standpoint.

• It's not supported when the Pristine config has changed between revisions.

• It's not supported when the NOS versions are different between revisions. You could downgrade the
NOS version to the same version using the device manager, then jump to a previous revision.

676

• Devices that were allocated in a previous revision that are no longer available result in the build error
system ID does not exist. (Conversely, adding a device and jumping to a previous revision without
that device will be successful. The added device will be removed.)

• Resources that were assigned in a previous revision that have been reassigned cause the build error
resource already in use. To resolve the build error, you must manually assign resources to each
member in that group or reset the resource group overrides. (Jumping to a previous revision after a
previously assigned global resource pool is modified may be successful, but it could cause an intent
violation.)

• It's not supported if manual device config changes have been accepted.

• It's not supported in any other cases where the resulting device config state is different.

NOTE: Why not use Apstra server backup/restore to jump to a previous revision? Time Voyager
maintains synchronized configuration between the Apstra server and devices (as much as
possible); Apstra backup/restore does not. Effectively, the Apstra backup/restore is an out-of-
band change from a device configuration standpoint. If a backup is restored, you would need to
push a full config to make sure the device configuration reflects what you restored from the
database backup. This would most likely be disruptive.

677

From the blueprint, click Time Voyager to go to the retained blueprint revisions. The first revision in the
list is the active one. Successive revisions are ordered by date from most recent to oldest.

Jump to Previous Blueprint Revision

NOTE: When you rollback to a previous revision, any previously staged changes that have not
been committed are discarded. If this is an issue, do not jump to a different revision until you've
committed the uncommitted changes.

1. From the blueprint, click Time Voyager, then click the Jump to this revision button for the revision to
jump to (first of four buttons in Actions section).

2. Any uncommitted changes in the staged area are discarded. If this is an issue, close the dialog and
address the uncommitted changes before proceeding. To proceed, click Rollback.

3. You can make additional changes to the blueprint before committing. For example, if you've replaced
a device, the device ID (serial number) will change, but the IP won't. You can create the device agent
and update the serial number in your blueprint before committing the revision change.

4. Click Uncommitted, then click the diff tabs to review the changes.

678

5. If you decide that you don't want to jump to this revision, click the Revert button to discard the
changes.

6. To proceed, click the Commit button (top-right) to see the dialog for committing changes and creating
a revision.

7. We recommend that you enter the optional revision description to identify the changes. Specific
differences between revisions are not displayed, so the description is the only change information
available for the revision.

8. Click Commit to commit your changes to the active blueprint and create a revision. In some cased,
you might also need to "reset resource group overrides" on page 272.

9. If you click Time Voyager you'll see the revision as the current one.

Keep Saved Blueprint Revision

1. From the blueprint, click Time Voyager, then click the Keep this revision button for the revision to
keep (second of four buttons in Actions section).

2. Click Save to confirm and proceed. The button turns gray indicating that the revision has been saved
indefinitely. It won't be deleted until you manually delete it.

Update Blueprint Revision Description

1. From the blueprint, click Time Voyager, then click the Update description button for the revision to
keep (third of four buttons in Actions section.)

2. Enter or change the description.

3. Click Update to change the description and return to the table view.

Delete Kept Blueprint Revision

1. From the blueprint, click Time Voyager, then click the Delete button for the revision to delete (fourth
of four buttons in Actions section). You can't delete a revision if there are five (5) or fewer of them in
the list.

2. Click Delete to delete the revision and return to the table view.

679

Analytics

IN THIS SECTION

Analytics Overview | 680

Analytics Dashboard | 681

Configure Auto-Enabled Dashboards | 682

Instantiate Predefined Dashboard | 682

Create Analytics Dashboard | 683

Edit / Delete Dashboard | 683

Anomalies (Analytics) | 684

Widgets Overview | 684

Create Anomaly Heat Map Widget | 685

Create Stage Widget | 685

Edit / Delete Widget | 686

Probes | 687

Instantiate Predefined Probe | 693

Create Probe | 694

Import / Export Probe | 694

Edit / Delete Probe | 695

Analytics Overview

Managed devices generate large amounts of data over time. On their own these data are voluminous
and unhelpful. With Intent-Based Analytics (IBA) you can combine intent from the "graph" on page 1152
with current and historic data from devices to reason about the network at-large.

Agents ingest data that devices generate and send them to the Apstra server. With IBA "probes" on
page 687, you can aggregate data across devices based on how they are configured. Combining probes
with intent from the blueprint graph generates a reduced set of data. You can directly inspect advanced
data from the Apstra GUI or from "REST API" on page 780 to gain real-time insight about the network.
You can stream data out with our existing streaming infrastructure. Also, based on the state of this
advanced data, probes can raise "anomalies" on page 684.

680

While operating IBA at scale, using many probes, disk usage can grow significantly within the Apstra
server VM. This is expected because the system will persist at least enough samples to maintain data for
the requested duration for all time-series for all existing probes. Additionally, the system will create
checkpoint (backup) files up to a configured limit. Settings in the /etc/aos/aos.conf file indicate how often
to rotate logs and remove old checkpoint files. Using IBA can increase disk usage to tens of gigabytes. If
this is an issue, you can adjust the log rotation settings to reduce disk usage.

System snapshots and old images from in-place Apstra server upgrades may use additional space. You
can delete them or move them off the system to increase free disk space.

Analytics Dashboard

Analytics dashboards monitor the network and raise alerts to anomalies. Specific dashboards are
automatically created and enabled based on the state of the "active (operational) blueprint" on page
590. You can also instantiate predefined dashboards and create your own.

Some other characteristics of analytics dashboards include:

• You cannot configure the trigger logic that determines when dashboards are auto-created, but you
can create/instantiate your own dashboards.

• Probes that you've created and not modified are reused instead of creating duplicates of those
probes.

• "Widgets" on page 684 within each dashboard monitor different aspects of the network and raise
alerts to relevant anomalies.

• When you enable a dashboard, the required probes and widgets are instantiated. If you update or
delete associated probes and/or widgets, the dashboard may enter an invalid state. Invalid
dashboards are not automatically repaired.

• You can display analytics dashboards on the "blueprint dashboard" on page 269 to have additional
network information on one screen. To add them, turn ON the analytics dashboards' default toggles.

• When upgrading the controller, the auto-creation behavior of dashboards occurs on preexisting
active blueprints, in the same way as for newly-created blueprints.

From the blueprint, navigate to Analytics > Dashboards to go to the analytics dashboard. You can create,
clone, edit, and delete analytics dashboards. System-generated dashboards are labeled with System and
user-generated (and user-modified) dashboards are labeled with the user's name. Select a Display mode

681

(summary, preview, expanded) to view dashboards in various levels of detail.

Configure Auto-Enabled Dashboards

Certain auto-enabled dashboards generate anomalies that are expected, so you may not want to see
them. To suppress these anomalies, either proactively set the auto-enable toggle for the dashboard to
OFF, or delete the dashboard after it has been enabled. Once a dashboard is disabled it won't be re-
enabled unless the auto-enable toggle is set back to ON and the respective trigger is satisfied.

1. From the blueprint, navigate to Analytics > Dashboards and click Configure Auto-Enabled
Dashboards. Dashboards are listed with their descriptions, widgets used, and toggles for auto-
enablement.

2. Toggle the dashboards ON to auto-enable them or OFF to disable auto-generation.

Instantiate Predefined Dashboard

You can instantiate several predefined dashboards and modify them to show analytics in multiple ways.
You can instantiate more than one instance of any predefined dashboard.

1. From the blueprint, navigate to Analytics > Dashboards, click Create Dashboard, then select
Instantiate Predefined Dashboard from the drop-down list.

682

2. Select a predefined dashboard from the drop-down list. For more information about predefined
dashboards, see "Predefined Dashboards" on page 972 in the References section.

3. Click Create to instantiate the dashboard and return to the list view.

Create Analytics Dashboard

Some probes and dashboards are automatically created to give you immediate value. The probes auto-
adjust based on the state of the blueprint (examples: undeployed or unassigned device, addition or
removal of virtual infra managers). You can also create your own dashboards to display custom
information from IBA probes and stages.

1. From the blueprint, navigate to Analytics > Dashboards, click Create Dashboard, then select New
Dashboard from the drop-down list.

2. Enter a name and (optional) description.

3. Select a layout (one-column, two-column, three-column) and if you want the dashboard to appear on
the blueprint Dashboard tab, toggle on Default.

4. Add and/or create "widgets" on page 684 to include in the dashboard.

5. Click Create Dashboard to create the dashboard and return to the table view.

A large dashboard may take some time to create. You can monitor the status at the bottom of the
screen under Active Tasks.

Edit / Delete Dashboard

IN THIS SECTION

Edit Dashboard | 683

Delete Dashboard | 684

Edit Dashboard

You can modify auto-enabled dashboards, although defaults should work in most cases.

1. From the blueprint, navigate to Analytics > Dashboards and click the Edit button for the dashboard to
edit.

683

2. Make your changes by creating, adding, editing and/or deleting widgets.

3. Click Update to change the dashboard and return to the table view.

Delete Dashboard

If you delete an auto-created dashboard (because it does not apply to your network for example), the
auto-creation feature is disabled so it does not reappear automatically. If you want to re-establish the
dashboard you can instantiate it manually.

1. From the blueprint, navigate to Analytics > Dashboards and click the Delete button for the dashboard
to delete.

2. If you want to delete all widgets and probes that are exclusively used this dashboard, check the
check box. Deleting unnecessary widgets and probes frees up resources.

3. Click Delete Dashboard to delete the dashboard and return to the table view.

Anomalies (Analytics)

From the blueprint, navigate to Analytics > Anomalies to go to the list of anomalies that the IBA probes
have detected. You can search for specific anomalies by filtering Probe Label, Stage Name, and Tags in
the Query box.

To display a condensed view of the anomaly count per probe/stage, check the Group by stage check
box. Example: If three stages of the first of two probes are generating anomalies, and two stages of the
second probe are generating anomalies, Group by Stage shows five entries in a table, each one
representing one stage with anomalies.

NOTE: The "blueprint dashboard" on page 269 shows a summary of all anomalies including those
that IBA probes generated. Clicking the All Probes gauge on the dashboard takes you to a list of
anomalies (Analytics > Anomalies).

Widgets Overview

Widgets generate data that are based on IBA "probes" on page 687. The widget type determines
whether it returns a total count of a particular type of anomaly, or displays outputs generated from
stages and processors in an IBA probe. Some widgets are created automatically (but they are not deleted
automatically). You can view widgets by themselves or you can add them to "analytics dashboards" on
page 680. You can create widgets before you create the dashboard or while you're creating it.

684

From the blueprint, navigate to Analytics > Widgets to go to the widgets table view. You can create,
clone, edit and delete widgets.

Create Anomaly Heat Map Widget

Anomaly heatmap widgets count the anomalies from tagged IBA probes and stages.

1. From the blueprint, navigate to Analytics > Widgets and click Create Widget.

2. Select Anomaly Heat Map from the Type drop-down list and enter a name.

3. Enter row tags, column tags, and (optional) description.

4. Click Create to create the widget and return to the table view.

Creating a large widget may take some time. You can monitor the status under the Active Tasks
section at the bottom of the screen.

Create Stage Widget

IN THIS SECTION

Create Stage Widget from Widgets View | 686

Create Stage Widget from Probes View | 686

685

Create Stage Widget from Widgets View

Stage widgets contain outputs from IBA probe stages.

1. From the blueprint, navigate to Analytics > Widgets and click Create Widget.

2. Select Stage from the Type drop-down list and enter a name.

3. Select a probe and a stage, then customize the output as needed.

4. Click Create to create the widget and return to the table view.

Creating a large widget may take some time. You can monitor the status under the Active Tasks
section at the bottom of the screen.

Create Stage Widget from Probes View

You can create a widget from the details view of a probe.

1. From the blueprint, navigate to Analytics > Probes and select a probe.

2. Select a stage within the probe and click the Create dashboard widget button (right-side). The stage
is preselected for you in the dialog that appears.

3. Configure the parameters as needed.

4. Click Create to create the widget and return to the detail view of the probe. The widget appears in
the widgets table view (Analytics > Widgets) and when you create or update an analytics dashboard,
the new widget appears as an option.

Edit / Delete Widget

IN THIS SECTION

Edit Widget | 686

Delete Widget | 687

Edit Widget

You can modify auto-created widgets, although defaults should work in most cases. Modifying widgets
affects any dashboards that they're used in.

1. From the blueprint, navigate to Analytics > Widgets and click the Edit button for the widget to edit.

2. Make your changes.

686

3. Click Update to stage the changes and return to the table view.

Delete Widget

You can't delete a widget if it's used in a dashboard.
1. From the table view (Analytics > Widgets) or the details view, click the Delete button for the widget

to delete.

2. Click Delete Widget to stage the deletion and return to the table view.

Probes

IN THIS SECTION

IBA Probes Overview | 687

IBA Probes Overview

IN THIS SECTION

Processors | 688

Ingestion Filters | 689

IBA Collection Filter | 689

IBA Filter Format | 689

Probes are the basic unit of abstraction in Intent-Based Analytics. Generally, a given probe consumes
some set of data from the network, does various successive aggregations and calculations on it, and
optionally specifies some conditions of said aggregations and calculations on which anomalies are
raised.

Probes are Directed Acyclic Graphs (DAGs) where the nodes of the graph are processors and stages.
Stages are data, associated with context, that can be inspected by the operator. Processors are sets of
operations that produce and reduce output data from input data. The input to processors are one-or-
many stages, and the output from processors are also one-or-many stages. The directionality of the
edges in a probe DAG represent this input-to-output flow.

687

Importantly, the initial processors in a probe are special and do not have any input stage. They are
notionally generators of data. We shall refer to these as source processors.

IBA works by ingesting raw telemetry from collectors into probes to extract knowledge (ex: anomalies,
aggregations etc.). A given collector publishes telemetry as a collection of metrics, where each metric
has identity (viz, set of key-value pairs) and a value. IBA probes, often with the use of graph queries,
must fully specify the identity of a metric to ingest its value into the probe. With this feature, probes can
ingest metrics with partial specification of identity using ingestion filters, thus enabling ingestion of
metrics with unknown identities.

Some probes are created automatically. These probes will not be deleted automatically. This keeps
things simple operationally and implementation-wise.

Processors

The input processors of a probe handle the required configuration to ingest raw telemetry into the
probe to kickstart the data processing pipeline. For these processors, the number of stage output items
(one or many) is equal to the number of results in the specified graph query(s). If multiple graph queries
are specified, for example. graph_query: [A, B], and query A matches 5 nodes and query B matches 10
nodes, results of query A will be accessible using query_result indices from 0 to 4, and results of query B
using indices from 5 to 14.

If a processor's input type and/or output type is not specified, then the processor takes a single input
called in, and produces a single output called out.

Some processor fields are called expressions. In some cases, they are graph queries and are so noted. In
other cases, they are Python expressions that yield a value. For example, in the Accumulate processor,
duration may be specified as integer with seconds, for example 900, or as an expression, for example 60 *
15. However, expressions could be more useful: there are multiple ways to parametrize them.

Expressions support string values. Processor configuration parameters that are strings and support
expressions should use special quoting when specifying static value. For example, state: "up" is not valid
because it'll refer to the variable "up", not a static string, so it should be: state: '"up"'.

An expression is always associated with a graph query and is run for every resulting match of that query.
The execution context of the expression is such that every variable specified in the query resolves to a
named node in the associated match result. For more information, see "Service Data Collector" on page
1096 example.

Graph-based processors have been extended with query_tag_filter allowing the ability to filter graph
query results by tags (new in version 4.0). In IBA probes, tags are used only as filter criteria for servers
and external routers, specifically for the ECMP Imbalance (External Interfaces) probe and the Total East/
West Traffic probe. For specific processor information, see "Probe Processors" on page 1054 in the
References section.

688

Ingestion Filters

With "ingestion filters" one query result can ingest multiple metrics into a probe. Table data types are
used to store multiple metrics as part of a single stage output item. Table data types include table_ns,
table_dss, table_ts - to correspond to existing types - ns, dss, ts -respectively.

IBA Collection Filter

Collection filters determine the metrics that are collected from the target devices.

A collection filter for a given collector on a given device, is simply a collection of ingestion filters present
in different probes. You can also specify it as part of enabling a service outside the context of IBA or
probes but existing precedence rules for service enablement apply here - only filters at a given
precedence level are aggregated. When multiple probes specify an ingestion filter targeting a specific
service on a specific device, the metrics collected are a union - in other words, a metric is published
when it matches any of the filters. This is why, the data is also filtered by the controller component prior
to ingesting into the IBA probes.

This filter is evaluated by telemetry collectors, often to better control even what subset of available
metrics is fetched from the underlying device operating system. For example, to fetch only a subset of
routes instead of getting all routes which can be a huge number. In any case, only the metrics matching
the collection filter are published as the raw telemetry.

As part of enabling a service on a device, you can now specify collection filters for services. This filter
becomes an additional input provided to collectors as part of "self.service_config.collection_filters".

IBA Filter Format

Following are the design/usability goals for filters (ingestion and collection)

1. Ease of authoring - given probe authors are the ones specifying it

• Most often cases are match any, match against a given list of possible values, equality match,
range check if key has numeric values.

2. Efficient evaluation - given the filters are evaluated in the hot paths of collection or ingestion.

3. Aggregatable - multiple filters are aggregated so this aggregation logic need not become the
responsibility of individual collectors.

4. Programming language neutral - components operating on filters can be in Python or C++ or some
other language in future.

5. Programmable - be amenable to future programmability around the filters, by the controller itself
and/or collectors, to enhance things like usability, performance etc.

689

Considering the above goals, following is a suggested and illustrative schema for filter1. Refer to
ingestion filter sections for specific examples to understand this better.

FILTER_SCHEMA = s.Dict(s.Object(
 'type': s.Enum(['any', 'equals', 'list', 'pattern', 'range', 'prefix']),
 'value': s.OneOf({
 'equals': s.OneOf([s.String(), s.Integer()]),
 'list': s.List(s.String(), validate=s.Length(min=1)),
 'pattern': s.List(s.String(), validate=s.Length(min=1)),
 'range': s.AnomalyRange(), validate=s.Length(min=1),
 'prefix': s.Object({
 'prefixsubnet': s.Ipv6orIpv4NetworkAddress(),
 'ge_mask': s.Optional(s.Integer()),
 'le_mask': s.Optional(s.Integer()),
 'eq_mask': s.Optional(s.Integer())
 })
), key_type=s.String(description=
 'Name of the key in metric identity. Missing metric identity keys are '
 'assumed to match any value'))

One instance of filter specification is interpreted as AND of all specified keys (aka per-key constraints).
Multiple filter specifications coming from multiple probes are considered as OR at the filter level.

NOTE: The schema presented here is only for communicating the requirements and engineering
is free to choose any way that accomplishes stated use cases.

Collector Processors additional_properties specified in collector processors' configuration can be
accessed using the special context. namespace. For example, if a collector defines property system_role, it
could be used this way:

duration: 60 * (15 if context.system_role == "leaf" else 10)

NOTE: Items context is available as long as the items set is unchanged from the original set
derived from the collector processor configuration. After data goes through a processor that
changes this set, for example any grouping processor, it's no longer available.

690

From the blueprint, navigate to Analytics > Probes to go to the probes table view. To go to a probe's
details, click its name. You can instantiate, create, clone, edit, delete, import, and export probes.

You can display stages in some probes in various ways. For example, when you click the probe named
Device Traffic, you'll see the image below. Changing the data source for Average Interface Counters
from Real Time to Time Series gives you the option to view the time series as separate graphs, combined
graphs: linear or combined graphs: stacked (as of Apstra version 4.0). Also, you can see the disk space
used on each probe, as applicable.

CAUTION: If the Apstra controller has insufficient disk space, older telemetry data files
are deleted. To retain older telemetry data, you can increase capacity with "Apstra VM
Clusters" on page 745.

691

The structure and logic of non-linear probes with tens of processors is not easily distinguished in the
standard view. You can click the expand button (top of left panel) to see an expanded representation of
how the processors are inter-related (new in version 4.0). For example, the image below shows the

692

expanded view of the MLAG Imbalance probe.

Instantiate Predefined Probe

1. From the blueprint, navigate to Analytics > Probes, then click Create Probe and select Instantiate
Predefined Probe from the drop-down list. For information on specific "predefined probes" on page
976 see the References section.

2. Select a predefined probe from the drop-down list.

3. Configure the probe to suit your anomaly detection requirements.

4. Click Create to instantiate the probe and return to the list view.

693

Create Probe

1. From the blueprint, navigate to Analytics > Probes, click Create Probe, then select New Probe.

2. Enter a name and (optional) description.

3. To be able to filter by your own defined categories, enter tag(s).

4. Probes are enabled by default. This means that data is collected and processed (potentially creating
anomalies) as soon as the probe is created. To disable the probe, toggle off Enabled. When you are
ready to start collecting and processing data, you can edit the probe to enable it.

5. Click Add Processor, select a processor type, then click Add to add the processor to the probe. For
more information about individual processors, see "Probe Processors" on page 1054 in the
References section.

6. Customize inputs and properties as appropriate, or leave defaults as is.

7. Repeat the previous two steps until you've added all required processors for the new probe.

8. Click Create to create the probe and return to the table view.

Import / Export Probe

IN THIS SECTION

Import Probe | 694

Export Probe | 694

Import Probe

1. From the blueprint, navigate to Analytics > Probes, then click Create Probe and select Import Probes
from the drop-down list.

2. Either click Choose Files and navigate to the file(s) on your computer, or drag and drop the file(s) from
your computer into the dialog window.

3. Click Import to import the probe and return to the table view.

Export Probe

1. From the blueprint, navigate to Analytics > Probes, then click the name of the probe to export.

2. Click the Export button (top-right) to see a preview of the file that will be exported.

3. To copy the contents, click Copy, then paste it.

694

4. To download the JSON file to your local computer, click Save as File.

5. When you've copied and/or downloaded the file, click the X to close the dialog.

Edit / Delete Probe

IN THIS SECTION

Edit Probe | 695

Delete Probe | 695

Edit Probe

If a widget is using a probe, editing the probe affects those widget(s) and related dashboard(s).
1. From the table view (Analytics > Probes) or the details view, click the Edit button for the probe to

edit.

2. Make your changes.

3. Click Update to stage the changes and return to the table view.

Delete Probe

NOTE: You can also use REST API to work with IBA probes. Navigate to Platform > Developers
for REST API documentation and tools.

If a widget is using a probe, you can't delete the probe.

1. From the table view (Analytics > Probes) or the details view, click the Delete button for the probe to
delete.

2. Click Delete Probe to stage the deletion and return to the table view.

695

Providers (External Systems)

IN THIS SECTION

LDAP Provider | 697

Active Directory Provider | 700

TACACS+ Provider | 701

RADIUS Provider | 703

Edit / Delete Provider | 705

Provider Role Map Overview | 706

Create Provider Role Map | 707

Edit / Delete Role Map | 707

You can use Role-Based Access Control (RBAC) for specifying access permissions. RBAC servers are
remote network servers that authenticate and authorize network access based on roles assigned to
individual users within an enterprise (The accounting part of AAA is not included). If a user's group in the
RBAC server is not specified, or if the provider group is not mapped to any user roles, that user cannot
log in. This restriction avoids security issues by ignoring users without mapped groups. You can use the
following protocols to authenticate and authorize users: LDAP, Active Directory, TACACS+, and
RADIUS. Only Active Directory is supported as an external authentication server. No other versions are
supported as external authentication servers, including RedHat IdM and Open LDAP. See the individual
protocol sections for mor information.

696

From the left navigation menu, navigate to External Systems > Providers to go to providers. You can
create, clone, edit and delete providers.

LDAP Provider

IN THIS SECTION

Create LDAP Provider | 697

Configure LDAP Provider | 699

Create LDAP Provider

Lightweight Directory Access Protocol (LDAP)
1. From the left navigation menu, navigate to External Systems > Providers and click Create Provider.

2. Enter a Name (64 characters or fewer), select LDAP, and if you want LDAP to be the active provider,
toggle on Active?.

3. For Connection Settings, enter/select the following:

• Port - The TCP port - LDAP: 389, LDAPS: 636

• Hostname FQDN IP(s) - The fully qualified domain name (FQDN) or IP address of the LDAP
server. For high availability (HA) environments, specify multiple LDAP servers using the same
settings. If the first server cannot be reached, connections to succeeding ones are attempted in
order.

4. For Provider-specific Parameters enter/select the following, as appropriate:

697

• Groups Search DN - The LDAP Distinguished Name (DN) path for the RBAC Groups
Organizational Unit (OU)

• Users Search DN - The LDAP Distinguished Name (DN) path for the RBAC Users Organization
Unit (OU)

• Bind DN - The LDAP Distinguished Name (DN) path for the active server user that the Apstra
server will connect as

• Password - The LDAP server user password for the Apstra server to connect as

• Encryption - None, SSL/TLS or STARTTLS

• Advanced Config

• Timeout (seconds)

• Username Attribute Name - The LDAP attribute from the user entry that Apstra Server uses
for authentication. (usually cn or uid)

• User Search Attribute Name

• User First Name Attribute Name

• User Last Name Attribute Name

• User Email Attribute Name

• User Object Class Attribute Name

• User Member Attribute Name

• Group Name Attribute Name

• Group DN Attribute Name

• Group Search Attribute Name

• Group Member Attribute Name

• Group Member Mapping Attribute Name

• Group Object Class Attribute Name

5. You can Check provider parameters and Check login (to verify authentication with the remote user
credentials) before creating the provider.

6. Click Create to create the provider and return to the table view.

698

Configure LDAP Provider

To authorize Apstra users via a LDAP provider, the LDAP server must be configured to properly return a
provider group attribute. This attribute must be mapped to a defined Apstra Role. The example
configuration below is for the open-source OpenLDAP server.

dn: ou=People,dc=example,dc=com
objectClass: organizationalUnit
ou: People

dn: ou=Groups,dc=example,dc=com
objectClass: organizationalUnit
ou: Groups

dn: cn=user,ou=Groups,dc=example,dc=com
gidNumber: 5000
cn: user
objectClass: posixGroup
memberUid: USER1

dn: cn=USER1,ou=People,dc=example,dc=com
cn: USER1
givenName: USER1
loginShell: /bin/sh
objectClass: inetOrgPerson
objectClass: posixAccount
uid: USER1
userPassword: USER1
uidNumber: 10000
gidNumber: 5000
sn: USER1
homeDirectory: /home/users/USER1
mail: USER1@example.com

The user group must be mapped to a defined Apstra Role.

After configuring and activating a provider, you must "map" on page 706 that provider to one or more
user roles to give access permissions to users with those roles.

699

Active Directory Provider

IN THIS SECTION

Create Active Directory Provider | 700

Active Directory (AD) is a database-based system that provides authentication, directory, policy, and
other services in a Windows environment.

Create Active Directory Provider

1. From the left navigation menu, navigate to External Systems > Providers and click Create Provider.

2. Enter a Name (64 characters or fewer), select Active Directory, and if you want Active Directory to
be the active provider, toggle on Active?.

3. For Connection Settings, enter/select the following:

• Port - The TCP port used by the server

• Hostname FQDN IP(s) - The fully qualified domain name (FQDN) or IP address of the AD server.
For high availability (HA) environments, specify multiple AD servers using the same settings. If the
first server cannot be reached, connections to succeeding ones are attempted in order.

4. For Provider-specific Parameters enter/select the following, as appropriate:

• Groups Search DN - The AD Distinguished Name (DN) path for the RBAC Groups Organizational
Unit (OU)

• Users Search DN - The AD Distinguished Name (DN) path for the RBAC Users Organization Unit
(OU)

• Bind DN - The AD Distinguished Name (DN) path for the active server user that the Apstra server
will connect as

• Password - The AD server user password for Apstra server to connect as

• Encryption - None, SSL/TLS or STARTTLS

• Advanced Config

• Timeout (seconds)

• Username Attribute Name - The AD attribute from the user entry that the Apstra server uses
for authentication. (usually cn or uid)

700

• User Search Attribute Name

• User First Name Attribute Name

• User Last Name Attribute Name

• User Email Attribute Name

• User Object Class Attribute Name

• User Member Attribute Name

• Group Name Attribute Name

• Group DN Attribute Name

• Group Search Attribute Name

• Group Member Attribute Name

• Group Member Mapping Attribute Name

• Group Object Class Attribute Name

5. You can Check provider parameters and Check login (to verify authentication with the remote user
credentials) before creating the provider.

6. Click Create to create the provider and return to the table view.

After configuring and activating a provider, you must "map" on page 706 that provider to one or more
user roles to give access permissions to users with those roles.

TACACS+ Provider

IN THIS SECTION

Create TACACS+ Provider | 702

Configure TACACS+ Provider | 702

Terminal Access Controller Access-Control Systems (TACACS+)

701

Create TACACS+ Provider

1. From the left navigation menu, navigate to External Systems > Providers and click Create Provider.

2. Enter a Name (64 characters or fewer), select TACACS+, and if you want TACACS+ to be the active
provider, toggle on Active?.

3. For Connection Settings, enter/select the following:

• Port - The TCP port used by the server, usually 49

• Hostname FQDN IP(s) - The fully qualified domain name (FQDN) or IP address of the TACACS+
server. For high availability (HA) environments, specify multiple TACACS+ servers using the same
settings. If the first server cannot be reached, connections to succeeding ones are attempted in
order.

4. For Provider-specific Parameters enter/select the following, as appropriate:

• Shared Key - shared key configured on the server

Caution

Shared key is not displayed when editing a configured TACACS+ provider. If you do not change it,
the previously configured shared key is retained. If you test the provider and you have not re-
entered the shared key, a null shared key is used for the test and may not work.

• Auth Mode - Authentication mode - ASCII (clear-text), PAP (Password Authentication Protocol),
or CHAP (Challenge-Handshake Authentication Protocol)

5. You can Check provider parameters and Check login (to verify authentication with the remote user
credentials) before creating the provider.

6. Click Create to create the provider and return to the table view.

Configure TACACS+ Provider

To authorize Apstra users via a TACACS+ provider, the TACACS+ server must be configured to properly
return an aos-group attribute. This attribute must be mapped to a defined Apstra Role. The example
configuration below is for the open-source tac_plus TACACS+ server.

user = jdoe {
 default service = permit
 name = "John Doe"
 member = admin
 login = des LQqpIWvpxDXDw
}

group = admin {
 service = exec {
 priv-lvl = 15

702

 }
 cmd=show {
 permit .*
 }
 service = aos-exec {
 default attribute = permit
 priv-lvl = 15
 aos-group = apstra-admins
 }
}

The apstra-admins group must be mapped to a defined Apstra Role.

After configuring and activating a provider, you must "map" on page 706 that provider to one or more
user roles to give access permissions to users with those roles.

RADIUS Provider

IN THIS SECTION

RADIUS Limitations | 703

Create RADIUS Provider | 704

Remote Authentication Dial-In User Service (RADIUS). See below for limitations.

RADIUS Limitations

• No support for changing the RADIUS user's password on a remote RADIUS server.

• RADIUS authentication does not control Linux user login via SSH.

• No support for group role-mapping changes.

• Nested groups are not allowed. You must explicitly assign each group to a role.

• When a user logs in, only username and password are required for authenticating against the remote
RADIUS server. Log in credentials are not cached. Therefore, when a user logs in, a connection
between Apstra and the remote RADIUS server is required.

703

Create RADIUS Provider

1. From the left navigation menu, navigate to External Systems > Providers and click Create Provider.

2. Enter a Name (64 characters or fewer), select RADIUS, and if you want RADIUS to be the active
provider, toggle on Active?.

3. For Connection Settings, enter/select the following:

• Port - The TCP port used by the server, default is 1812 as specified in RFC 2865.

• Hostname FQDN IP(s) - The fully qualified domain name (FQDN) or IP address of the RADIUS
server. For high availability (HA) environments, specify multiple RADIUS servers using the same
settings. If the first server cannot be reached, connections to succeeding ones are attempted in
order.

4. For Provider-specific Parameters enter/select the following, as appropriate:

• Shared Key (64 characters or fewer) - shared key configured on the server

CAUTION: Shared key is not displayed when editing a configured RADIUS provider.
If you do not change it, the previously configured shared key is retained. If you test
the provider and you have not re-entered the shared key, a null shared key is used
for the test and may not work.

An example of a pre-shared key configuration that tests successfully with Apstra software is from
Ubuntu FreeRADIUS (an open source RADIUS server). The Shared Key as given in the RADIUS
server configuration must be provided in Apstra.

home_server localhost {
ipaddr = 127.0.0.1
port = 1812
type = "auth"
secret = "testing123"
response_window = 20
max_outstanding = 65536

• Advanced Config

• Group Name Attribute Name - To specify a role that a user belongs to, the RADIUS server
must specify the users’ group. The user group information must be specified with Framed-
Filter-ID as the attribute. It is used to assign users to different RADIUS groups.

704

For example, the FreeRADIUS config below specifies the Framed-Filter-ID attribute to be
freerad. In this case, when mapping later, you would enter freerad for the Provider Group.

/etc/freeradius/users
 freerad Cleartext-Password := "testing123"
 Framed-Filter-Id = "freerad"

So that the user can be mapped to an existing group in the Apstra environment, the RADIUS
server must return the Apstra group name as part of the authentication response.

CAUTION: If the group is unmapped, users cannot log in.

• Timeout (seconds) - Defaults to 30 seconds

After configuring and activating a provider, you must "map" on page 706 that provider to one or more
user roles to give permissions to users with those roles.

Edit / Delete Provider

IN THIS SECTION

Edit Provider | 705

Delete Provider | 706

Edit Provider

CAUTION: Any users who are logged into Apstra software when a setting is changed in
an active RBAC provider, are immediately logged out without notification. To continue,
the user must log back into the Apstra server. This does not affect users who are
defined locally on the Apstra server (for example, admin).

1. Either from the table view (External Systems > Providers) or the details view, click the Edit button for
the provider to edit.

2. Make your changes.

705

3. Click Update (bottom-right) to edit the provider and return to the table view.

Delete Provider

1. Either from the table view (External Systems > Providers) or the details view, click the Delete button
for the provider to delete.

2. Click Delete to delete the provider and return to the table view.

Provider Role Map Overview

After configuring an RBAC provider, you must map the provider to one or more user roles to give access
permissions to users with those roles. You can create, edit and delete provider role mappings, as needed.
Other details to be aware of include the following:

• Only one provider can be active at a time.

• You can map more than one Apstra role to the same provider group (new in version 4.0).

• When the same username exists both locally and in the RBAC provider, the local user is used to
authenticate login attempts.

• Changing users with the web-based RBAC feature does not modify accounts on the Apstra server
VM. To change these credentials, use standard Linux CLI commands: "useradd", "usermod", "userdel",
"passwd".

From the left navigation menu, navigate to External Systems > Providers > Provider Role Mapping to go
to provider role mapping.

706

Create Provider Role Map

1. From the left navigation menu, navigate to External Systems > Providers > Provider Role Mapping
and click the Edit button (top-right).

2. Click Add mapping, select a role from the drop-down list, then enter a provider group. The following
is an example for mapping the apstra-admins group that was configured in TACACS+ configuration.

TIP: To see user role details, navigate to Platform > User Management > Roles. From there,
you can also create new roles, as needed.

3. To add another role mapping, click Add mapping and select an Apstra Role and Provider Group. You
can have more than one role associated with the same provider group.

4. Click Update to create the role map. If the provider that you mapped is the active provider, then
users with the mapped roles can log in with their usernames and passwords defined in the RBAC
server.

Edit / Delete Role Map

IN THIS SECTION

Edit Role Map | 708

Delete Role Map | 708

707

Edit Role Map

CAUTION: Changing role mappings for an active provider causes all remotely logged in
users to be logged out (because the session tokens are cleared when changes are
made). Users will need to log back into the system. This includes user admin, if admin is
not logged in locally.

1. From the left navigation menu, navigate to External Systems > Providers > Provider Role Mapping
and click the Edit button (top-right).

2. Edit role mapping as needed.

3. Click Update to update the role map.

Delete Role Map

1. From the left navigation menu, navigate to External Systems > Providers > Provider Role Mapping,
click the Edit button (top-right), then click the X next to the mapping to delete.

2. Click Update to update the role map.

Platform

IN THIS SECTION

User/Role Management (Platform) | 709

Security (Platform) | 724

Syslog Configuration (Platform) | 732

Receivers (Platform) | 739

Global Statistics (Platform) | 742

Event Log (Platform) | 743

Apstra VM Clusters | 745

Developers (Platform) | 756

Juniper Technical Support | 802

708

User/Role Management (Platform)

IN THIS SECTION

User Profile Management | 709

User Role Management | 710

User Profile Use Cases | 713

Create User Profile | 717

Change Apstra GUI User Password | 717

Log Out User | 717

Edit / Delete User Profile | 717

User Role Use Cases | 718

Create User Role | 723

Edit / Delete User Role | 723

User Profile Management

User profiles include the following details and options:

• Username

• First Name (optional)

• Last Name (optional)

• Email (optional)

• Password

• Roles

NOTE: Creating a user in the Apstra GUI does not provide that user access to the Apstra
platform via SSH. To access the Apstra platform via SSH, you must create a local Linux system
user.

709

From the left navigation menu in the Apstra GUI, navigate to Platform > User Management > Users to
go to user profiles.

User Role Management

Users with the administrator role can create, clone, edit and delete user roles (which are assigned to user
profiles). These roles can also be "mapped" on page 706 to external groups used by authentication
providers such as LDAP, Active Directory, TACACS+, and RADIUS.

With Enhanced Role Based Access Control, you can create blueprint-specific roles with very specific
privileges allowing limited control to associated users. This allows you to create more hierarchical roles
and protect against accidental changes to the network.

For example, a user assigned the role Manage generic systems can add generic systems, copy existing
generics, add links to generic systems, add links to leaf devices, and update node tags. A user assigned
the role Manage racks and links can perform all those operations plus they can change rack speeds and
delete links. A user with the Manage racks and links role essentially has permissions for all FE/FFE
operations. If you want to restrict a user to physical server operations only, assign them the Manage
generic systems role, and not the Manage racks and links role.

The blueprint locking feature prevents restricted users (based on their roles) from making changes that
effectively are not permitted. In particular, a restricted user should not be able to commit changes made
by another user.

If a blueprint has no changes to commit, it is unlocked.

If you have permission (based on the your assigned roles) to create/update/delete virtual networks, for
example, and another user has made uncommitted changes to the blueprint, the blueprint is locked. You
can't create/update/delete virtual networks until the changes are committed or reverted by the locking

710

user who made the uncommitted changes, unless you are the locking user.

If you have permission (based on your assigned roles) to see the name of the user who created the
pending changes, the name is displayed.

An admin user who has "Write/Commit Blueprints" permissions can make any changes to, apply changes
for, revert changes for any blueprint.

User roles include the following details and options:

Parameter Description

Name role name

Type global permission or per-blueprint permissions

Global Permissions (read, write, commit, delete, as
applicable)

blueprints, connectivity templates, agents, chassis
profiles, device profiles, devices, linecard profiles,
telemetry service registry, ztp, config templates,
configlets, interface maps, logical devices, port aliases,
property sets, rack types, tags templates, ASN pools,
Integer pools (new in Apstra version 4.1.2), IP pools,
IPv6 pools, VNI pools, audit config, audit events, roles,
security config, users, AAA providers, virtual infra
manager, exempt Juniper Apstra cluster management
read-only mode, Juniper Apstra cluster management,
Juniper Apstra metric logs, streaming, SysDB data, port
setting schema

711

(Continued)

Parameter Description

Per-Blueprint Permissions • Scope

• All blueprints

• Selected blueprints

• Permissions

• Read blueprint

• Make any changes to staging blueprint (includes
managing VNs and their endpoints)

• Commit changes

• Read information about user who locked
blueprint

• Datacenter-specific: Manage racks and links

• Datacenter-specific: Manage generic systems

• Datacenter-specific: Manage virtual networks
(includes managing VN endpoints)

• Datacenter-specific: Manage virtual network
endpoints

• Freeform-specific: Manage property sets (new
in Apstra version 4.1.2)

• Freeform-specific: Manage resources (new in
Apstra version 4.1.2)

From the left navigation menu, navigate to Platform > User Management > Roles to go to user roles. You
can create, clone, edit, and delete user roles, except for the four predefined user roles (administrator,
device_ztp, user, viewer) which can't be modified.

712

User Profile Use Cases

IN THIS SECTION

Use Case Overview | 713

Use Case Overview

IN THIS SECTION

Use Case 1: Create Virtual Networks Only (not Including Allocating Resources) | 715

Use Case 2: Create Virtual Networks and Allocate Resources | 716

713

The following use cases are described below.

714

Use Case 1: Create Virtual Networks Only (not Including Allocating Resources)

To limit a user's role to only create virtual networks and look at blueprint details, assign them the role as
described in "User Role Use Case 3" on page 718.

715

Use Case 2: Create Virtual Networks and Allocate Resources

To allow a user to create virtual networks and allocate resources to them, you must assign them multiple
roles. For more information, see "User Role Use Cases 3A and 4" on page 718.

716

Create User Profile

1. From the left navigation menu, navigate to Platform > User Management > Users and click Create
User.

2. Enter a username.

3. Enter a password that meets password complexity requirements. (For more information, see
"Password Complexity Parameters" on page 730.)

4. Re-enter the password.

5. Select one or more roles. If custom roles have been created, they appear as options along with the
predefined roles that ship with the software. (You can see the permissions specified for each of the
roles at Platform > User Management > Roles.)

6. Click Create to create the user profile and return to the list view.

Change Apstra GUI User Password

1. From the left navigation menu, navigate to Platform > User Management > Users, click the username
to change, then click the Change Password button (top-right).

2. Enter a new password that meets password complexity requirements. (For more information, see
"Password Complexity Parameters" on page 730.)

3. Re-enter the new password.

4. Click Change Password to update the password.

Log Out User

From the left navigation menu, navigate to Platform > User Management > Users and click the Log Out
button for the user.

Edit / Delete User Profile

IN THIS SECTION

Edit User Profile | 717

Delete User Profile | 718

Edit User Profile

1. Either from the table view (Platform > User Management > Users) or the details view, click the Edit
button for the user profile.

2. Change roles and/or other details.

717

3. Click Update to update the user profile and return to the table view.

Delete User Profile

1. From the left navigation menu, navigate to Platform > User Management > Users and click the Delete
button for the user profile.

2. Click Delete to delete the user profile and return to the table view. (User admin cannot be deleted.)

NOTE: You can also use REST API to manage user profiles. Navigate to Platform > Developers
for REST API Documentation and tools. See the aaa section for user-related APIs.

User Role Use Cases

IN THIS SECTION

Use Cases Overview | 718

Use Cases Overview

IN THIS SECTION

Use Case 1: Read, Write and Commit Specific Blueprints | 719

Use Case 2: Manage VN Endpoints on Specific Blueprints | 720

Use Case 3: Create Virtual Networks (not Including Allocating Resources) | 721

Use Case 3A: Create Virtual Networks and Allocate Resources | 722

Use Case 4: Read and Write Resources on All Blueprints | 723

718

The following use cases are described below. (Screenshots are from Apstra version 4.1.1 which look
slightly different from version 4.1.2.)

Use Case 1: Read, Write and Commit Specific Blueprints

To create a role that gives a user permission to read, write, and commit to specific blueprints, select Per-
Blueprint Permissions, select one or more blueprint IDs (or All for all blueprints), then toggle on Read
blueprint, Make any change to staging blueprint, and Commit changes. The changes that can be made
include Manage virtual networks and Manage virtual network endpoints even though those permissions

719

may or may not be toggled on.

Use Case 2: Manage VN Endpoints on Specific Blueprints

To create a role that gives a user permission to only manage virtual network endpoints on specific
blueprints, select Per-Blueprint Permissions, select one or more blueprint IDs (or All for all blueprints),

720

then toggle on Manage virtual network endpoints.

Use Case 3: Create Virtual Networks (not Including Allocating Resources)

To create a role that gives a user permission to only create virtual networks, select Per-Blueprint
Permissions, select one or more blueprint IDs (or toggle on All for all blueprints), then toggle on Read
Blueprint, Commit changes, Manage virtual networks, and Manage virtual network endpoints. By not
selecting Make any change to staging blueprint you are limiting the changes that can be made to virtual

721

networks only.

Use Case 3A: Create Virtual Networks and Allocate Resources

For a user with the role in use case 3 above to be able to allocate resources to the virtual networks that
they create, they must also be assigned two additional roles: one with global permissions to read and
write resources (see use case 4 below) and another one with per-blueprint permissions to Make any
change to staging blueprint, effectively giving them access to make other changes in addition to making
changes to virtual networks. Of course, this second one would not be needed if the role for creating
virtual networks also enabled Make any change to staging blueprints.

722

Use Case 4: Read and Write Resources on All Blueprints

To create a role that gives a user permission to read and write resources on any blueprint, select Global
Permissions, then toggle on Resources for Read and Write, which toggles on all resource types.

Create User Role

1. From the left navigation menu of the Apstra GUI, navigate to Platform > User Management > Roles
and click Create Role.

2. Enter a name and description, then select permission type and one or more permissions.

3. Click Create to create the role and return to the list view.

Edit / Delete User Role

IN THIS SECTION

Edit User Role | 724

Delete User Role | 724

723

Edit User Role

The four predefined user roles (administrator, device_ztp, user, viewer) cannot be modified.

1. Either from the table view (Platform > User Management > Roles) or the details view, click the Edit
button for the user role.

2. Change permissions, as applicable.

3. Click Update to update the role and return to the table view.

Delete User Role

The four predefined user roles (administrator, device_ztp, user, viewer) cannot be deleted.

1. Either from the table view (Platform > User Management > Roles) or the details view, click the Delete
button for the user role to delete.

2. Click Delete to delete the role and return to the table view.

NOTE: You can also use REST API to manage user roles. Navigate to Platform > Developers
for REST API documentation and tools. See the aaa section for role-related APIs.

Security (Platform)

IN THIS SECTION

Allowed List | 725

Banned List | 726

ACL Rules | 727

Rate Limit Configuration | 729

Edit Password Complexity Requirements | 730

724

Allowed List

IN THIS SECTION

Allowed List Overview | 725

Add IP/Subnet to Allowed List | 725

Edit IP/Subnet to Allowed List | 726

Delete IP/Subnet from Allowed List | 726

Allowed List Overview

You can add trusted IP/subnets to the allowed list so they are never locked out, even if they violate rate
limit rules. You can add and change comments about those IP/subnets. Changes to the allowed list are
recorded in the event log (Platform > Event Log).

From the left navigation menu, navigate to Platform > Security > Allowed List. You can search and sort
the list. You can add, edit, and delete IP/subnets.

Add IP/Subnet to Allowed List

1. From the left navigation menu, navigate to Platform > Security > Allowed List and click Add IP/
Subnet.

2. Enter an IP address or subnet, and a comment.

3. To keep the dialog open to add another IP/subnet, check the Create Another check box.

725

4. Click Create to add the IP/subnet and return to the table view (or, if you checked Create Another,
return to the dialog to enter another IP/subnet).

Edit IP/Subnet to Allowed List

1. From the left navigation menu, navigate to Platform > Security > Allowed List and click the Edit
button for the IP/subnet to edit.

2. Change the comment.

3. Click Update to complete the change and return to the table view.

Delete IP/Subnet from Allowed List

1. From the left navigation menu, navigate to Platform > Security > Allowed List.

2. Select the IP/subnet(s) to delete.

• To delete a single IP/subnet, click the Delete button for the IP/subnet (right-side).

• To delete one or more IP/subnets, click the checkbox (left-side) for one or more IP/subnets and
click the Delete button above the list.

3. Click Update to complete the deletion and return to the table view.

Banned List

IN THIS SECTION

Banned List Overview | 726

Delete IP/Subnet from Banned List | 727

Banned List Overview

IP/subnets that violate rate limit rules are automatically added to the banned list and are locked out for
the configured lockout period, or until an admin removes them from the banned list. The banned list has
a lower precedence than the allowed list, so an IP/subnet on the banned list may actually not be banned.
Changes to the banned list are recorded in the event log (Platform > Event Log).

726

From the left navigation menu, navigate to Platform > Security > Banned List to go to IP/subnets on the
banned list. You can search and sort the list. You can remove IP/subnets from the banned list.

Delete IP/Subnet from Banned List

1. From the left navigation menu, navigate to Platform > Security > Banned List and click the Delete
button to the right of the IP/subnet(s) to delete.

2. Click Delete to remove the IP/subnet from the banned list and immediately allow logins from that IP/
subnet.

ACL Rules

IN THIS SECTION

Overview | 727

Enable / Disable ACL Rules | 728

Add ACL Rule | 728

Edit ACL Rule | 728

Delete ACL Rule | 728

Overview

Subnet-based access control for Apstra GUI access (whitelisting) is introduced in Apstra version 4.1.2 as
part of a platform security enhancement. You can configure Access Control List (ACL) rules for IPv4
networks. (IPv6 is not supported on the Apstra web framework.) When you create and enable rules, the
rules are automatically sorted from more specific to less specific, and IP addresses are checked against

727

them in that order. If the rule allows access to a subnet, any IP address within that subnet is allowed
access. If the rule denies access to a subnet, any IP address within that subnet is denied access.

Enable / Disable ACL Rules

Access Control List rules are disabled by default. If you enable rules, make sure you always allow access
to a subnet that your IP address is a part of, so you don't lock yourself out.

1. From the left navigation menu, navigate to Platform > Security > ACL to go to the table view.

2. Click the toggle to enable or disable the rules, as applicable.

Add ACL Rule

1. From the left navigation menu, navigate to Platform > Security > ACL and click Add ACL rule.

2. Enter an IP subnet and select whether to allow or deny access to IP addresses within that subnet.
You also have the option of adding a comment.

3. Click Create to create the rule and return to the table view.

Edit ACL Rule

1. From the left navigation menu, navigate to Platform > Security > ACL and click the Edit button for
the rule to edit.

2. Change the policy, as applicable. You also have the option of adding/editing/deleting a comment.

3. Click Update to change the rule and return to the table view.

Delete ACL Rule

So that an IP address eventually matches to a subnet, 0.0.0.0/0 can't be deleted..

728

1. From the left navigation menu, navigate to Platform > Security > ACL and click the Delete button for
the rule to delete.

2. Click Delete to delete the rule and return to the table view.

Rate Limit Configuration

IN THIS SECTION

Rate Limit Configuration Overview | 729

Edit Rate Limit Configuration | 729

Rate Limit Configuration Overview

Default settings allow 5 login attempts within 60 seconds. After the fifth failed attempt, the IP/subnet is
blocked and added to the banned list for 3 minutes (found at Platform > Security > Banned List), or until
an admin removes it from the list. When you change rate limit configuration, any banned IP/subnets are
immediately affected. For example, if you change the lockout period from 3 minutes to 5 minutes, an IP/
subnet that's already on the banned list would remain on the banned list for an additional 2 minutes.

Edit Rate Limit Configuration

1. From the left navigation menu, navigate to Platform > Security > Ratelimit Configuration and click
the Edit button (top-right).

2. Change parameter values (lockout period, time period, number of attempts).

3. Click Update to complete the change and return to the Rate Limit Configuration page.

729

Edit Password Complexity Requirements

When you update password complexity requirements, the requirements are applied when you
subsequently create or edit passwords. Existing passwords are not affected until you change them.

1. From the left navigation menu, navigate to Platform > Security > Password Complexity Parameters
and click the Edit button (top-right). The screenshot below is for Apstra version 4.1.2. Previous
versions have fewer complexity options.

2. Add, change and/or delete requirements, as applicable. Different Apstra versions have different
options as shown in the list and screenshots below:

• Password History Length (4.1.2 only) - User is not allowed to re-use a certain number of previous
passwords (including the current one). For example, if you don't want the user to use their
previous two passwords, you would enter 3 in this field.

• Must not use adjacent keys on keyboard (4.1.2 only)

• Must not contain consecutive sequential characters (4.1.2 only)

• Must not contain repeat of the same character (4.1.2 only)

• Must not be the same as username (4.1.2 only)

• Length should be at least 9 (default)

• Must contain uppercase letter

• Must contain lowercase letter

• Must contain digit

• Must contain special character

For regular expressions:

730

• To add a rule, click Add and enter a regular expression and error message.

• To change a rule, change values as appropriate and update the error message.

• To delete a rule, click the red X to the right of the rule to delete.

Apstra version 4.1.2 Password Complexity Parameters

Apstra versions 4.1.1 and 4.1.0 Password Complexity Parameters

731

3. Click Update to complete the change and close the dialog. When you create or update passwords,
the new requirements will take effect.

Syslog Configuration (Platform)

IN THIS SECTION

Syslog Overview | 732

Create Syslog Config | 738

Edit Syslog Config | 738

Delete Syslog Config | 738

Syslog Overview

System Log (syslog) is a running list of everything that's going on in your system. You can use these logs
to audit events or review anomalies. You can configure syslog to send messages for specific types of
systems (facilities) to external syslog servers. (You can also "export event logs to a CSV file" on page
745.)

Syslog configuration includes the following details:

732

Name Description

IP Address The remote syslog server IP address or hostname

Port The remote syslog server port

Protocol UDP or TCP

733

(Continued)

Name Description

Facility The type of system that's logging the messages

Facilities are mapped to Apstra syslogs as follows:

• 0 - kern - kernal messages

• 1 - user - user-level messages

• 2 - mail - mail system

• 3 - daemon - system daemons

• 4 - auth - security/authentication messages

• 5 - syslog - messages generated internally by syslogd

• 6 - lpr - line printer subsystem

• 7 - news - network news subsystem

• 8 - uucp - UUCP subsystem

• 10 - authpriv - security/authentication messages

• 11 - ftp - FTP daemon

• 15 - cron - Cron subsystem

• 16 - local0 - locally used facilities

• 17 - local1 - locally used facilities

• 18 - local2 - locally used facilities

• 19 - local3 - locally used facilities

• 20 - local4 - locally used facilities

• 21 - local5 - locally used facilities

• 22 - local6 - locally used facilities

• 23 - local7 - locally used facilities

734

(Continued)

Name Description

Time Zone The syslog message time zone. If you have proper time zone
translation, you won't need to synch the system time zone (or
Docker time zone) with your external syslog server. Rather
than assuming the message time is in Zulu/UTC-0, the time
zone translation needs to append the correct time zone
information to the timestamp. Then, you can better correlate
Apstra events in your external message systems.

Syslog messages follow Common Event Format (CEF) conventions as shown below:

NOTE: {host} is the the Apstra server hostname. If you want to change the hostname, you must
use the procedure on the "Change Apstra Server Hostname" on page 836 page. If you change
the hostname with any other method, the new hostname won't be included in syslog entries.

AOS Log Format:

'{timestamp} {host}'
'CEF:{version}|{device_vendor}|{device_product}|{device_version}|'
'{device_event_class_id}|{name}|{severity}|{extension}

Where:

 {version} : CEF version, currently always "0"
 {device_vendor} : always "Apstra"
 {device_product} : always "AOS"
 {device_version} : current AOS version
 {device_event_class_id} : "100" for audit logs, "101" for anomaly logs
 {name} : "Audit event" for audit logs, "Alert" for anomaly logs
 {severity} : "5" for audit logs, "10" for anomaly logs

And where {extension} is either :

 For anomaly logs : msg=<json payload>
 For audit logs : cat=<activity> src=<src_IP> suser=<username> act=<activity result>
cs1Label=<field1_type> cs1=<field1_value> cs2Label=<field2_type> cs2=<field2_value>
cs3Label=<field3_type> cs3=<field3_value>

735

Anomaly Log JSON Format

 blueprint_label : Name of the blueprint the anomaly was raised in.
 timestamp : Unix timestamp when the Anomaly was raised.
 origin_name : Serial Number of the device the anomaly affects.
 alert : The value is a JSON Payload with the actual anomaly (see Alert JSON Payload
below)
 origin_hostname : Hostname of the device the anomaly affects. It can be AOSHOST, an empty
string if the hostname could not be determined or a valid value.
 device_hostname : Hostname of the device the anomaly affects or <device hostname unknown> if a
hostname could not be determined
 origin_role : Role of the device the anomaly affects.

Alert JSON Payload:
<ALERT TYPE>_alert: Contains a JSON payload with key-value pair of information pertaining to the
alert. Here <ALERT TYPE>_alert can be valid anomaly/alert names such as hostname_alert,
probe_alert, liveness_alert etc.
 id : UUID of the anomaly.
 first_seen : Unix timestamp when the Anomaly was raised for the first time.
 raised : True when anomaly is present, False when it is cleared.
 severity : The severity level of the anomaly. Set to 3 for critical, 2 for high, 1 for
medium and 0 for low.

Audit Log Format:

 cat : Activity performed. Valid values: "Login",
"Logout","BlueprintCommit","BlueprintRevert","BlueprintRollback",
"BlueprintDelete","DeviceConfigChange",

"OperationModeChangeToMaintenance","OperationModeChangeToNormal","OperationModeChangeToReadOnly",
"RatelimitExceptionAdd","RatelimitExceptionDelete",

"RatelimitClear","SystemChangeApiOperationModeToMaintenance","SystemChangeApiOperationModeToNorma
l","UserCrete","UserUpdate","UserDelete",

"SyslogCreate","SyslogUpdate","SyslogDelete","AuthAclEnable","AuthAclDisable","AuthAclRuleAdd","A
uthAclRuleUpdate" and "AuthAclRuleDelete".
 src : Source IP of the client making HTTP requests to perform the activity.
 suser : Who performed the activity.
 act : Outcome of the activity - free-form string. In the case when the activity was
performed successfully, the value stored is “Success“. In case of error, include error string.
Ex: Unauthorized
 cs1Label : The string “Blueprint Name”. Only exists if activity is associated with a

736

blueprint (optional)
 cs1 : Name of the blueprint on which action was taken. Only exists if activity is
associated with a blueprint (optional)
 cs2Label : The string “Blueprint ID”. Only exists if activity is associated with a blueprint
(optional)
 cs2 : Id of the blueprint on which action was taken. Only exists if activity is
associated with a blueprint (optional)
 cs3Label : The string “Commit Message”. Only exists if user has added a commit message
(optional)
 cs3 : Commit Message. Only exists if user has added a commit message (optional)
 deviceExternalId : Id (typically serial number) of the managed device on which action was
taken. Only exists if activity is associated with a device such as for “DeviceConfigChange”
(optional)
 deviceConfig : Config that is pushed and applied on the device where “#012” is used to
indicate a line break to log collectors and parsers. Only exists if activity is associated with
a device such as for “DeviceConfigChange” (optional)

Example of Audit Syslog Message:

Jan 31 03:11:01 aos-server - 2023-01-31T03:11:01.699190+0000 aos-server
CEF:0|Apstra|AOS|4.1.2-269|100|Audit event|5|cat=Logout src=172.24.212.62 suser=admin act=Success

Jan 31 03:11:01 aos-server - 2023-01-31T03:11:01.699190+0000 aos-server
CEF:0|Apstra|AOS|4.1.2-269|100|Audit event|5|cat=BlueprintCommit src=172.24.212.62 suser=admin
act=Success cs1Label=Blueprint Name
cs1=rack-based-blueprint-33ded50f cs2Label=Blueprint ID cs2=rack-based-blueprint-33ded50f

Example of Anomaly Syslog Message:

Jan 31 03:11:01 aos-server - 2023-01-31T03:11:01.699190+0000 aos-server
CEF:0|Apstra|AOS|4.1.2-269|101|Alert|10|msg={u'blueprint_label': u'rack-based-
blueprint-33ded50f', u'timestamp': 1679002758562407, u'origin_name':
u'time_series', u'alert': {u'probe_alert': {u'expected_int_max': 99, u'stage_name':
u'leaf_match_perc_range', u'probe_label': u'leaf_to_spine_interface_statuses',
u'actual_int': 83, u'probe_id': u'60b03bb0-0e22-4a6d-b32d-e15085149b7b', u'key_value_pairs': [],
u'item_id': u'1', u'expected_int': -9223372036854775808},
u'first_seen': 1679002758562121, u'raised': False, u'severity': 3, u'id': u'02a17b60-cc3e-4afb-
baba-733a8c654df6'}, u'origin_hostname': u'AOSHOST',
'device_hostname': '<device hostname unknown>', u'origin_role': u''}

Jan 31 03:11:01 aos-server - 2023-01-31T03:11:01.699190+0000 aos-server

737

CEF:0|Apstra|AOS|4.1.2-269|101|Alert|10|msg={u'blueprint_label': u'rack-based-
blueprint-33ded50f', u'timestamp': 1679002754682990, u'origin_name':
u'50540015FA9D', u'alert': {u'first_seen': 1679002749600167, u'raised': False, u'severity': 3,
u'hostname_alert': {u'expected_hostname': u'leaf-3',
u'actual_hostname': u''}, u'id': u'0457a759-7d3a-4bf8-97e8-e13e518cf267'}, u'origin_hostname':
u'', 'device_hostname': '<device hostname unknown>', u'origin_role': u'leaf'}

From the left navigation menu, navigate to Platform > External Services > Syslog Configuration to see
configurations. You can create, clone, edit and delete syslog configurations.

Create Syslog Config

1. From the left navigation menu, navigate to Platform > External Services > Syslog Configuration and
click Create Syslog Config (top-right).

2. Configure the Syslog server. (See overview above for details.)

3. Click Create to save the configuration and return to the table view.

4. To configure another Syslog server, repeat the steps above.

5. To enable messages to be sent to a configured server, toggle on Use for Audit and/or Forward
Anomalies, as appropriate.

Edit Syslog Config

1. From the left navigation menu, navigate to Platform > External Services > Syslog Configuration and
click the Edit button for the Syslog configuration to edit.

2. Make your changes.

3. Click Update to update the Syslog configuration and return to the table view.

Delete Syslog Config

1. From the left navigation menu, navigate to Platform > External Services > Syslog Configuration and
click the Delete button for the Syslog configuration to delete.

2. Click Delete Syslog Config to delete the Syslog configuration and return to the table view.

738

Receivers (Platform)

IN THIS SECTION

Streaming Receivers Overview | 739

Create Receiver | 740

Delete Receiver | 740

Configure Receivers Using Telegraf Plugin | 740

Streaming Receivers Overview

You can configure the Apstra server to stream alerts, events and perfmon, or any combination thereof.
Each data type is sent to a streaming receiver over its own TCP socket. Even if all three data types are
configured for the same streaming receiver, three (3) connections are created between the Apstra server
and the streaming receiver. This also allows for all three types to be sent to three different streaming
receivers.

Receivers include the following details:

• Hostname - Hostname

• Port - default: 4444

• Message Type - alerts, events, perfmon

• Sequencing Mode - unsequenced, sequenced

739

From the left navigation menu, navigate to Platform > Streaming > Receivers to go to receivers. You can
create and delete receivers.

Create Receiver

1. From the left navigation menu of the Apstra GUI, navigate to Platform > Streaming > Receivers and
click Create Receiver.

2. Enter/select required values.

3. Click Create to create the receiver and return to the table view.

Delete Receiver

1. From the left navigation menu of the Apstra GUI, navigate to Platform > Streaming > Receivers and
click the delete button for the receiver to delete.

2. Click Delete to delete the receiver from the system and return to the table view.

Configure Receivers Using Telegraf Plugin

You can use the Apstra Telegraf input plugin to receive streaming telemetery from Apstra. Telegraf is an
agent for collecting, processing, aggregating, and writing metrics. This is the component of AOSOM-
Streaming that handles the reception of the protobuf messages from the Apstra environment. For more
information, see the "AOSOM Streaming Guide" on page 879. The Telegraf platform consists of input
and output plugins that you can choose from for aggregating and storing metrics to different backend
databases. The Apstra input plugin for Telegraf deserializes the protobuf stream and creates metrics that
can then be sent to a particular backend database, such as Prometheus, InfluxDB, or Elasticsearch.

The configuration described here assumes you are using the Apstra Telegraf input plugin. You can
configure streaming receivers in Apstra with the Telegraf plugin by providing it Apstra credentials. We

740

https://github.com/influxdata/telegraf

recommend that you use a separate Apstra account with only the streaming credentials. If you configure
through the GUI, then there is no need to supply credentials in the Telegraf config file.

The easiest way to run the Telegraf receiver is in a docker container. The docker-compose.yml snippet below
shows the configuration for the Telegraf container. This pulls the latest Apstra supported Telegraf
container from Docker Hub.

Telegraf container config
 telegraf-prom:
 image: apstra/telegraf:latest
 command: telegraf
 volumes:
 - ./config/telegraf-prom.toml:/etc/telegraf/telegraf.conf
 ports:
 - '9999:9999'

The Telegraf configuration file - ./config/telegraf-prom.toml - is mapped to /etc/telegraf/telegraf.conf on the
container. It includes the following parameters:

• address - specifies the IP address of the streaming receiver

• port - specifies the port that the streaming receiver will be listening on

• streaming_type - specifies the type of data to be streamed from Apstra to this receiver

The remaining parameters are only necessary if you want the Apstra Telegraf plugin to configure the
streaming receivers in Apstra via the API.

• aos_server - specifies the IP address of the Apstra server

• aos_port - should always be 443

• aos_login - Apstrs username

• aos_password - Apstra password

The input and output plugin configurations are shown in the snippet below. The output plugin is
configured for the Prometheus client and listens on port 9126. The input plugin is configured for Apstra.

Configuration for Prometheus server to expose metrics
[[outputs.prometheus_client]]
 listen = ":9126"
 expiration_interval = "0"

[[inputs.aos]]

741

 address = "10.1.1.200"
 port = 9999
 streaming_type = ["perfmon", "alerts", "events"]
 aos_server = "$AOS_SERVER"
 aos_port = $AOS_PORT
 aos_login = "$AOS_LOGIN"
 aos_password = "$AOS_PASSWORD"

Global Statistics (Platform)

Global statistics include information that is unrelated to any specific receiver. These statistics provide
crucial information required for better planning of receivers. Whenever you reset the Apstra server,
these global statistics are reset.

From the left navigation menu, navigate to Platform > Streaming > Global Statistics to see global
statistics.

742

Event Log (Platform)

IN THIS SECTION

Event Log Overview | 743

Export Event Log to CSV File | 745

Send Event Log to External System | 745

Event Log Overview

Activity within the Apstra environment is recorded in an event log which you can use for auditing
purposes. Events for the following event types are logged):

• User login (success and failure) (Login)

• User logout (Logout)

• User creation, by creating or cloning (UserCreate) (new in Apstra version 4.1.2)

• User Edit (UserUpdate) (new in Apstra version 4.1.2)

• User Delete (UserDelete) (new in Apstra version 4.1.2)

• Blueprint commit (applies changes from staged to active blueprint)

• Blueprint revert (discards changes in staged blueprint)

• Blueprint rollback (rolls back the staged blueprint to a previous version)

• Blueprint deletion

• Device Config change

• Operation Mode changed by user (maintenance, normal, read-only)

• Operation Mode changed by system (new in Apstra version 4.1.2)

• Normal - when disk usage and memory is under the utilization threshold, the operation mode is in
read/write mode

• Maintenance - when utilization threshold is surpassed, the system moves API layer to read-only
mode

• Changes to login banned/allowed list (new in Apstra version 4.1.1)

743

• Syslog Configuration creation, by creating or cloning (SyslogCreate) (new in Apstra version 4.1.2)

• Syslog Edit (SyslogUpdate) (new in Apstra version 4.1.2)

• Syslog Delete (SyslogDelete) (new in Apstra version 4.1.2)

Each event includes the following information which is searchable and sortable:

• Time - when the event occurred (hover over time field to see date and time)

• User - username of person who performed the activity

• Source IP - The source IP address of the client making the HTTP request

• Type - type of event (listed above)

• Device ID (as applicable) - typically the serial number of the managed device on which the action was
taken

• Device Config (as applicable) - The config that is pushed and applied on the device

• Blueprint ID (as applicable) - The ID of the blueprint on which action was taken

• Blueprint name (as applicable) - The blueprint label on which action was taken

• Result - The outcome of the activity. Success means operation is accepted by the system. In the case
of an error, the error string is included (unauthorized, for example)

From the left navigation menu, navigate to Platform > Event Log to go to the table of events that have
been logged.

You can search recent history for audit events.

744

• To filter the table, click Query:All and enter your query.

• To view device details (info, pristine config, telemetry), click a device ID.

• To view device configuration, click View Config.

Audit events are written to log-rotated files as a second repository. You can configure logrotate
parameters in the Apstra server configuration file (/etc/aos/aos.conf). You can export and ship audit events
to syslog.

Export Event Log to CSV File

1. From the left navigation menu, navigate to Platform > Event Log and click Export to CSV (top-right).

2. To filter the data to export, enter your query.

3. Click Save as CSV File to download the CSV file.

Send Event Log to External System

For details about sending the event log to an external system with the Syslog protocol, see "Syslog
Configuration" on page 732.

Apstra VM Clusters

IN THIS SECTION

Apstra Cluster Nodes | 746

Apstra Cluster Management | 753

Change Cluster Application Memory Usage (API) | 755

You can monitor and manage different aspects of the Apstra environment, such as its configuration,
usage, and containers. If your network includes many devices with offbox agents, or if you are taking
advantage of Apstra’s Intent Based Analytics feature, you might need more resources than can be
provided from just one virtual machine (VM). To increase resource capacity, you can add worker node
VMs to create a cluster with the Apstra controller node VM.

745

Apstra Cluster Nodes

IN THIS SECTION

Nodes Overview | 746

Create Apstra Node | 751

Edit Apstra Node | 752

Delete Apstra Node | 752

Nodes Overview

The Apstra controller acts as the cluster manager. When you add a worker VM to the main Apstra
controller VM, it registers with the Apstra server VM through sysDB. It collects facts about the VM (such
as core/memory/disk configuration and usage), and launches a local VM container. The Apstra controller
VM reacts to REST API requests, configures the worker VM for joining or leaving the cluster, and keeps
track of cluster-wide runtime information. It also reacts to container configuration entities and
schedules them to the worker VM.

Apstra VM nodes include the following details:

Table 19: Apstra VM Nodes Parameters

Name Description

Address IP address or Fully-Qualified Domain Name (FQDN) of the VM

Name Apstra VM name, such as controller (the main Apstra controller node) or worker - iba (a worker
node)

State ACTIVE, MISSING, or FAILED

Roles Controller or worker

Tags The controller node and any worker nodes that you add are tagged with iba and offbox, by
default. If you delete one or both of these tags or delete a worker node with one or both of
these tags, any IBA and/or offbox containers in that node automatically move to a VM with
those tags. Make sure there is another node with the tag(s) you’re deleting or the containers
will be deleted when you delete the tag or node.

746

Table 19: Apstra VM Nodes Parameters (Continued)

Name Description

Capacity Score Apstra uses the capacity score for load balancing new containers across the cluster of available
nodes. It's calculated in relation to the configured application weight of each container based
on allocated memory.

Example calculation - 64GB of memory allocated for the VM and an application weight of
250MB configured for offbox agents:

• Each offbox agent has a capacity score cost of 5

• (64GB / 250MB) * 5 capacity score of each offbox agent = 1280 total capacity score

• Controller nodes have half the capacity score available due to overhead (1280 / 2 = 640 in
above example) but worker nodes have the full capacity score available (1280 in above
example)

The capacity score changes only if the memory allocated to the VM is changed, or if the
application weight is changed.

Containers
Count

Number of containers

CPU Number of CPUs

Errors As applicable. An example of an error is when an agent process has restarted because an agent
has crashed.

Usage* • Memory Usage (percentage)

• CPU Usage (percentage)

• Disk Usage - Current VM disk usage per logical volume (GB and percentage)

• Container Service Usage - derived from the required resources and the size of the
container. For example, if an offbox agent that needs 250 MB is running in a 500MB
worker node, the container service usage is 50%. (An IBA container may require 1GB.) A
controller node begins at 50% usage because it includes its own processing agents that
perform controller-specific processing logic.

Containers The containers running on the node and the resources that each container uses

747

Table 19: Apstra VM Nodes Parameters (Continued)

Name Description

Username/
Password

Apstra Server VM SSH username/password login credentials

* As of Apstra version 4.1.2, if memory utilization exceeds 80%, a warning message appears at the top
of all GUI pages. This lets you know that you need to free up or add disk space and/or memory soon, to
avoid a critical resource shortage.

If memory utilization exceeds 90%, a critical message appears at the top of all GUI pages. Before you
can make any more changes to the fabric, you must address the shortage by adding disk space to the
problematic filesystem(s) or by adding memory, as needed. You can click the link to go to Apstra Cluster
Management for more information.

Click the Nodes tab, then click the IP address of the controller for details.

748

Scroll down to see usage.

749

Some suggestions for recovering resources are as follows:

• Remove the iba tag from the controller VM so that IBA units are rescheduled to worker nodes, thus
reducing both memory and disk space usage.

• Create worker nodes to spread out the load for IBA units and/or offbox device agents.

You can change the default thresholds that trigger warnings and critical messages. In the "Apstra server
configuration file" on page 1136 (/etc/aos/aos.conf) change the options for
system_operation_filesystem_thresholds and/or system_operation_memory_thresholds. Then, send SIGHUP to the
ClusterManager Agent. You can set disk space utilization thresholds on a per-filesystem basis. For
example, you might want to be more conservative with /var/lib/aos/db which contains MainSysdb's
persistence files and Time Voyager revisions, so crossing a lower usage threshold (such as 85%) triggers
the read-only mode.

750

To access Apstra VMs, from the left navigation menu, navigate to Platform > Apstra Cluster. Click a node
address to see its details. You can create, clone, edit and delete Apstra nodes.

At the bottom left section of every page, you have continuous visibility of platform health. Green
indicates the active state. Red indicates an issue, such as missing agent, the disk being in read only
mode, or an agent rebooting (after the agent has rebooted, the status returns to active). If IBA Services
or Offbox Agents is green, all containers are launched. If one of them is red, at least one container has
failed. From any page, click one of the dots, then click a section for details. Clicking Controller, IBA
Services, and Offbox Agents all take you to Nodes details.

Create Apstra Node

The controller node and worker nodes must use the same Apstra version (4.1.2, for example).
1. Install Apstra software on the VMs to cluster.

2. From the left navigation menu, navigate to Platform > Apstra Cluster and click Add Node.

751

3. Enter a name, tags (optional), address (IP or FQDN), and Apstra Server VM SSH username/password
login credentials. (iba and offbox tags are added by default.)

4. Click Create. As the main Apstra controller connects to the new Apstra VM worker node, the state of
the new Apstra VM changes from INIT to ACTIVE.

Edit Apstra Node

1. Either from the table view (Platform > Apstra Cluster) or the details view, click the Edit button for the
VM to edit.

2. Make your changes. If you delete iba and/or offbox tags from the node, the IBA and/or offbox
containers (as applicable) are moved to another node with those tags. Make sure the cluster has
another node with those tags, or the containers will be deleted instead of moved.

CAUTION: To prevent containers from being deleted, don’t delete tags unless another
node in the cluster has the same tags.

3. Click Update to update the Apstra VM worker node.

Delete Apstra Node

When you delete a node that includes iba and/or offbox tags, the IBA and/or offbox containers (as
applicable) are moved to another node with those tags. Make sure the cluster has another node with
those tags, or the containers will be deleted instead of moved.

CAUTION: To prevent containers from being deleted, don’t delete nodes with iba
and/or offbox tags unless another node in the cluster has the same tags.

1. Either from the table view (Platform > Apstra Cluster) or the details view, click the Delete button for
the Apstra VM to delete.

2. Click Delete to delete the Apstra VM.

752

Apstra Cluster Management

From the left navigation menu, navigate to Platform > Apstra Cluster > Cluster Management to go to
Apstra cluster configuration and status.

Apstra admins may want to temporarily block all users (including themselves) from performing design
and blueprint changes in the Apstra environment because they're troubleshooting something, or want to
perform some maintenance operations on the Apstra server (backups, VM migration, VM OS updates
and so on). Admins can change the operation mode (new in Apstra version 4.1.0) from Normal to Read-
only to block users from API and WebUI (PUT/POST). By default, only admins have permission to
enable/disable the read-only mode.

753

At the bottom left section of every page, you have continuous visibility of platform health. Green
indicates the active state. Red indicates some kind of issue, such as a missing agent, the disk being in
read only mode, or an agent rebooting (after the agent has rebooted, the status returns to active). From
any page, click one of the dots, then click the section that you want details for. Clicking Operation Mode
takes you to cluster management details.

754

Change Cluster Application Memory Usage (API)

You can change cluster application memory usage for offbox agents and Intent Based Analytics (IBA) via
API. Make sure you've "authenticated" on page 757 before attempting to make API calls.

If you're using Juniper offbox agents, increase memory allocation to 500 MB (from the 250 MB default).
A single API call applies to all offbox agents.
1. From the left navigation menu in the Apstra GUI, navigate to Platform > Developers and click REST

API Documentation.

The Swagger API developer tool for the Apstra environment appears.

2. Click cluster, click GET /api/cluster/application-weight, then click Execute.

The currrent values for offbox and iba appear in the response body.

3. Click PUT / api/cluster/application-weight, then click Try it out.

The parameters become editable.

4. Enter values for both offbox and iba, then click Execute. (The values must be positive and multiples
of 50.) Juniper offbox agents require 500 MB.

5. To confirm your changes, click cluster, click GET /api/cluster/application-weight, then click Execute.

6. You can close the window at any time to leave the tool.

755

Developers (Platform)

IN THIS SECTION

Authenticate User (API) | 757

Resource Pools (API) | 760

Configlets (API) | 771

Property Sets (API) | 774

Interface Descriptions (API) | 776

Probes (API) | 780

RCI Fault Model (API) | 794

Health Check Apstra VMs (API) | 798

API From Python | 798

REST API Explorer | 801

756

From the left navigation menu, navigate to Platform > Developers to go to developer documentation
and tools.

The Documentation section includes links to Apstra in-product API documentation.

• Platform REST API Documentation includes API documentation for APIs used outside of Apstra
blueprints (such as Apstra global catalog logical devices).

• Reference Designs L3 Clos includes API documentation for APIs used in standard Apstra L3 Clos
blueprints (such as Apstra blueprint virtual networks).

Authenticate User (API)

Let's get you authenticated so you can make API calls.
1. From the left navigation menu, navigate to Platform > Developers, then click Rest API
Documentation.

The Swagger API developer tool for the Apstra environment appears.

757

2. Click aaa, click POST / api/aaa/login, then click Try it out.

The parameters become editable.

3. Enter a username and password, then click Execute.

The response body appears containing a token.

758

4. Copy the token from the response body, scroll to the top, then click Authorize (top-right, shown in
the first step).

The Authorize dialog appears.

5. Paste the token and click Authorize.

The dialog shows that you've been authorized.

6. Click the X in the dialog (top-right) to close the dialog.
The lock in the Authorize button changes to a closed lock, indicating that you're authenticated.

You're ready to make API calls.

759

Resource Pools (API)

IN THIS SECTION

API - ASN Pools | 760

API - IP Pools | 765

This reference demonstrates the resource group API usage with parity to the UI. For full API
documentation, view the REST Platform API reference under the Apstra GUI.

To list resource group slots in a blueprint, perform an authenticated HTTP GET to https://aos-server/api/
blueprints/<blueprint_id>/resource_groups

Both ASN pools and IP pools must be assigned in order for a blueprint to complete the build phase.

API - ASN Pools

Create ASN Pool

An example payload for creating an ASN Pool:

If an ID is not specified, one will be created and returned in the HTTP response.

{
 "id": "RFC6996-Private",
 "display_name": "RFC6996-Private",
 "tags": ["default"],
 "ranges": [
 {
 "last": 65534,
 "first": 64512
 }
]
}

760

https://aos-server/api/blueprints/
https://aos-server/api/blueprints/

To create an ASN pool perform an HTTP POST to https://aos-server/api/resources/asn-pools with a
JSON payload.

curl 'https://192.168.25.250/api/resources/asn-pools?comment=create'
-H 'AuthToken: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmFtZSI6
ImFkbWluIiwiY3JlYXRlZF9hdCI6IjIwMTctMDUtMzFUMDA6MjI6MDcuNTIwMTgzWiIsIn
Nlc3Npb24iOiJjOTliOGVlOS05Y2NjLTRjZTAtYTY5NS0wODI3N2ZkYjA0ZDYifQ.FnJMR3
crPoD0-lQRXnpPOJ8TCsRG9Wr-DaddnAIj6ko' - --data-binary '{"display_name"
:"Example","ranges":[{"first":100,"last":200}],"tags":[]}' --compressed
--insecure

List ASN Pools

curl 'https://192.168.25.250/api/resources/asn-pools' -H 'AuthToken:
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmFtZSI6ImFkbWluIiwiY3JlY
XRlZF9hdCI6IjIwMTctMDUtMzFUMDA6MjI6MDcuNTIwMTgzWiIsInNlc3Npb24iOiJjOTliO
GVlOS05Y2NjLTRjZTAtYTY5NS0wODI3N2ZkYjA0ZDYifQ.FnJMR3crPoD0-lQRXnpPOJ8TCsR
G9Wr-DaddnAIj6ko' --compressed --insecure

{
 "items": [
 {
 "created_at": "2017-05-30T12:56:07.293082Z",
 "display_name": "Private ASN",
 "id": "c23ea447-8f37-419a-9b1c-c48cc55d5b9c",
 "last_modified_at": "2017-05-30T12:56:07.293082Z",
 "ranges": [
 {
 "first": 65412,
 "last": 65534,
 "status": "pool_element_in_use"
 }
],
 "status": "in_use",
 "tags": []
 }
]
}

761

https://aos-server/api/resources/asn-pools

Delete ASN Pool

To delete an ASN Pool perform an HTTP DELETE to https://aos-server/resources/asn-pools/{pool_id}

A successful DELETE returns HTTP 200 OK.

curl
'https://192.168.25.250/api/resources/asn-pools/d0312b4a-017e-4478-8b8d-df0417ce8d3b'
-X DELETE -H 'AuthToken: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2Vybm
FtZSI6ImFkbWluIiwiY3JlYXRlZF9hdCI6IjIwMTctMDUtMzFUMDA6MjI6MDcuNTIwMTgzW
iIsInNlc3Npb24iOiJjOTliOGVlOS05Y2NjLTRjZTAtYTY5NS0wODI3N2ZkYjA0ZDYifQ.FnJ
MR3crPoD0-lQRXnpPOJ8TCsRG9Wr-DaddnAIj6ko' --compressed --insecure

Assign ASN to Blueprint

To assign an IP pool to the blueprint perform an HTTP PUT to https://aos-server/blueprints/
<blueprint_id>/resource_groups/ip/<pool_name>

For instance, to post a resource pool to spine_loopback_ips, first obtain the ID of the resource pool, and
append it to a list for slot assignation. When updating the IP Pool resource group, specify all pools in the
payload at the same time. We cannot add single pools, so PUT them all at once.

Payload:

{"pool_ids": ["pool_id1", "pool_id2", "pool_id3"] }

curl
'https://192.168.25.250/api/blueprints/4c1e69c6-97bd-4c99-9504-7818f138b17f/resource_groups/asn/
spine_asns'
-X PUT -H 'AuthToken: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2Vyb
mFtZSI6ImFkbWluIiwiY3JlYXRlZF9hdCI6IjIwMTctMDUtMzFUMDA6MjI6MDcuNTI
wMTgzWiIsInNlc3Npb24iOiJjOTliOGVlOS05Y2NjLTRjZTAtYTY5NS0wODI3N2ZkYj
A0ZDYifQ.FnJMR3crPoD0-lQRXnpPOJ8TCsRG9Wr-DaddnAIj6ko' --data-binary
'{"pool_ids":["c23ea447-8f37-419a-9b1c-c48cc55d5b9c"]}' --compressed --insecure

A successful ASSIGNMENT returns HTTP 200 OK.

762

https://aos-server/resources/asn-pools/%7Bpool_id%7D
https://aos-server/blueprints/

Unassign ASN from Blueprint

When removing IP pools from a blueprint, PUT an empty pool_id list to the blueprint with the payload
[]:

PUT to the HTTP endpoint https://aos-server/api/blueprints/<blueprint_id> /resource_groups/asn/
<pool_name>

With the payload:

{ "pool_ids": [] }

curl
'https://192.168.25.250/api/blueprints/4c1e69c6-97bd-4c99-9504-7818f138b17f/resource_groups/asn/
spine_asns'
-X PUT -H 'AuthToken: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmFt
ZSI6ImFkbWluIiwiY3JlYXRlZF9hdCI6IjIwMTctMDUtMzFUMDA6MjI6MDcuNTIwMTgzWi
IsInNlc3Npb24iOiJjOTliOGVlOS05Y2NjLTRjZTAtYTY5NS0wODI3N2ZkYjA0ZDYifQ.FnJ
MR3crPoD0-lQRXnpPOJ8TCsRG9Wr-DaddnAIj6ko' --data-binary '{"pool_ids":[]}'
--compressed --insecure

If the request is successful there will be no response.

List ASN assigned to Blueprint

Available ASN Pool resource groups for assignment can be shown with an HTTP GET to https://aos-
server/api/blueprints/<blueprint_id>/resource_groups

curl
'https://192.168.25.250/api/blueprints/4c1e69c6-97bd-4c99-9504-7818f138b17f/resource_groups'
-H 'AuthToken: eyJhbGciOiJIUzI1NwMTctMDUtMzFUMDA6MjI6MDcuNTIwMTgz
WiIsInNlc3Npb24iOiJjOTliOGVlOS05Y2NjLTRjZTAtYTY5NS0wODI3N2ZkYjA0ZD
YifQ.FnJMR3crPoD0-lQRXnpPOJ8TCsRG9Wr-DaddnAIj6ko' --compressed --insecure
| python -m json.tool

{
 "items": [
 {
 "name": "leaf_asns",

763

https://aos-server/api/blueprints/
https://aos-server/api/blueprints/
https://aos-server/api/blueprints/

 "pool_ids": [
 "c23ea447-8f37-419a-9b1c-c48cc55d5b9c"
],
 "type": "asn"
 },
 {
 "name": "spine_asns",
 "pool_ids": [
 "c23ea447-8f37-419a-9b1c-c48cc55d5b9c"
],
 "type": "asn"
 },
 {
 "name": "leaf_loopback_ips",
 "pool_ids": [
 "56e8e0dc-babd-4652-92a5-fc37294a7b26"
],
 "type": "ip"
 },
 {
 "name": "mlag_domain_svi_subnets",
 "pool_ids": [
 "ed7d8830-c703-4ac0-8252-77e0f272a677"
],
 "type": "ip"
 },
 {
 "name": "spine_leaf_link_ips",
 "pool_ids": [
 "ed7d8830-c703-4ac0-8252-77e0f272a677"
],
 "type": "ip"
 },
 {
 "name": "spine_loopback_ips",
 "pool_ids": [
 "56e8e0dc-babd-4652-92a5-fc37294a7b26"
],
 "type": "ip"
 }
]
}

764

API - IP Pools

Create IP Pool

JSON Payload for creating an IP Pool:

{
 "id": "example_ip_pool",
 "display_name": "example_ip_pool",
 "tags": ["default"],
 "subnets": [
 {"network": "10.0.0.0/8"}
]
}

The subnets section requires a list of dictionaries with keyword network and value matching a CIDR
mask. The subnets cannot overlap with each other in the same pool. That is to say, 192.168.10.0/24 and
192.168.0.0/16 cannot be configured in the same pool.

Tags are optional and are not currently used in Apstra. If ID is specified, it will be saved, otherwise an ID
will be returned in the HTTP Response after creating the pool.

An HTTP POST to https://aos-server/api/resources/ip-pools with JSON payload will reply with the ID of
the new IP pool.

curl 'https://192.168.25.250/api/resources/ip-pools' -X
POST -H 'AuthToken: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmF
tZSI6ImFkbWluIiwiY3JlYXRlZF9hdCI6IjIwMTctMDUtMzFUMDA6MjI6MDcuNTIwMTgzWi
IsInNlc3Npb24iOiJjOTliOGVlOS05Y2NjLTRjZTAtYTY5NS0wODI3N2ZkYjA0ZDYifQ.Fn
JMR3crPoD0-lQRXnpPOJ8TCsRG9Wr-DaddnAIj6ko' --data-binary '{"display_name":
"example_ip_pool","subnets":[{"network":"10.0.0.0/8"},{"network":
"192.168.0.0/16"}],"tags":[]}' --compressed --insecure

{"id": "d0312b4a-017e-4478-8b8d-df0417ce8d3b"}

765

https://aos-server/api/resources/ip-pools

List IP Pools

Perform an HTTP GET to https://aos-server/api/resources/ip-pools -

jp@ApstraVM ~ $ curl 'https://192.168.25.250/api/resources/ip-pools' -H
'AuthToken: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmFtZSI6ImFkbW
luIiwiY3JlYXRlZF9hdCI6IjIwMTctMDUtMzFUMDA6MjI6MDcuNTIwMTgzWiIsInNlc3Npb24
iOiJjOTliOGVlOS05Y2NjLTRjZTAtYTY5NS0wODI3N2ZkYjA0ZDYifQ.FnJMR3crPoD0-lQRXnpP
OJ8TCsRG9Wr-DaddnAIj6ko' --compressed --insecure | python -m json.tool

{
 "items": [
 {
 "created_at": "2017-05-31T03:48:38.562331Z",
 "display_name": "example_ip_pool",
 "id": "d5046aa6-eab2-4990-9816-0a519ce1a8db",
 "last_modified_at": "2017-05-31T03:48:38.562331Z",
 "status": "not_in_use",
 "subnets": [
 {
 "network": "10.0.0.0/8",
 "status": "pool_element_available"
 },
 {
 "network": "192.168.0.0/16",
 "status": "pool_element_available"
 }
],
 "tags": []
 },
 {
 "created_at": "2017-05-30T12:56:50.576598Z",
 "display_name": "L3-CLOS",
 "id": "ed7d8830-c703-4ac0-8252-77e0f272a677",
 "last_modified_at": "2017-05-30T12:56:50.576598Z",
 "status": "in_use",
 "subnets": [
 {
 "network": "10.16.0.0/16",
 "status": "pool_element_in_use"
 }

766

https://aos-server/api/resources/ip-pools

],
 "tags": []
 },
 {
 "created_at": "2017-05-30T12:56:24.222906Z",
 "display_name": "Loopbacks",
 "id": "56e8e0dc-babd-4652-92a5-fc37294a7b26",
 "last_modified_at": "2017-05-30T12:56:24.222906Z",
 "status": "in_use",
 "subnets": [
 {
 "network": "10.254.0.0/16",
 "status": "pool_element_in_use"
 }
],
 "tags": []
 },
 {
 "created_at": "2017-05-31T03:49:15.485164Z",
 "display_name": "example_ip_pool",
 "id": "d0312b4a-017e-4478-8b8d-df0417ce8d3b",
 "last_modified_at": "2017-05-31T03:49:15.485164Z",
 "status": "not_in_use",
 "subnets": [
 {
 "network": "10.0.0.0/8",
 "status": "pool_element_available"
 },
 {
 "network": "192.168.0.0/16",
 "status": "pool_element_available"
 }
],
 "tags": []
 }
]
}

Delete IP pool

To delete an IP Pool perform an HTTP DELETE to https://aos-server/resources/ip-pools/{pool_id}

767

https://aos-server/resources/ip-pools/%7Bpool_id%7D

A successful DELETE returns HTTP 200 OK and an empty JSON response {}

curl
'https://192.168.25.250/api/resources/ip-pools/d0312b4a-017e-4478-8b8d-df0417ce8d3b'
-X DELETE -H 'AuthToken: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmFtZS
I6ImFkbWluIiwiY3JlYXRlZF9hdCI6IjIwMTctMDUtMzFUMDA6MjI6MDcuNTIwMTgzWiIsInNl
c3Npb24iOiJjOTliOGVlOS05Y2NjLTRjZTAtYTY5NS0wODI3N2ZkYjA0ZDYifQ.FnJMR3crPoD0
-lQRXnpPOJ8TCsRG9Wr-DaddnAIj6ko' --compressed --insecure

Assign IP to Blueprint

To assign an IP pool to the blueprint perform an HTTP PUT to https://aos-server/blueprints/
<blueprint_id>/resource_groups/ip/<group_name>

For instance, to associate a resource pool spine_loopback_ips with a blueprint first obtain the ID of the
resource pool, and append it to a list for slot assignation. When updating the IP Pool resource group,
specify all pools in the payload at the same time. We cannot add single pools, so PUT them all at once.
Instruct Apstra to associate IP pool with ID ‘ed7d8830-c703-4ac0-8252-77e0f272a677’to the
blueprint. You may have to GET existing pool IDs prior to adding a new one to avoid deleting existing
pools.

Payload:

{"pool_ids": ["pool_id1", "pool_id2", "pool_id3"] }

curl
'https://192.168.25.250/api/blueprints/4c1e69c6-97bd-4c99-9504-7818f138b17f/resource_groups/ip/
spine_loopback_ips'
-X PUT -H 'AuthToken: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmFtZSI6ImF
kbWluIiwiY3JlYXRlZF9hdCI6IjIwMTctMDUtMzFUMDA6MjI6MDcuNTIwMTgzWiIsInNlc3Npb2
4iOiJjOTliOGVlOS05Y2NjLTRjZTAtYTY5NS0wODI3N2ZkYjA0ZDYifQ.FnJMR3crPoD0-lQRXnp
POJ8TCsRG9Wr-DaddnAIj6ko' --data-binary '{"pool_ids":["ed7d8830-c703-4ac0-825
2-77e0f272a677"]}' --compressed --insecure

A successful ASSIGNMENT returns an HTTP 200 OK.

Remove IP from Blueprint

To remove IP pools from the blueprint PUT an empty pool_id list to the blueprint with the payload []:

768

https://aos-server/blueprints/

PUT to the HTTP endpoint https://aos-server/api/blueprints/<blueprint_id>/ resource_groups/ip/
<allocation_group_name>

With the payload:

{ "pool_ids": [] }

CURL Example

curl
'https://192.168.25.250/api/blueprints/4c1e69c6-97bd-4c99-9504-7818f138b17f/resource_groups/ip/
spine_loopback_ips'
-X PUT -H 'AuthToken: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmFtZ
SI6ImFkbWluIiwiY3JlYXRlZF9hdCI6IjIwMTctMDUtMzFUMDA6MjI6MDcuNTIwMTgzWiIsI
nNlc3Npb24iOiJjOTliOGVlOS05Y2NjLTRjZTAtYTY5NS0wODI3N2ZkYjA0ZDYifQ.FnJMR3cr
PoD0-lQRXnpPOJ8TCsRG9Wr-DaddnAIj6ko' --data-binary '{"pool_ids":[]}'
--compressed --insecure

A successful REMOVAL returns an empty response: {}

List IPs Assigned to Blueprint

curl
'https://192.168.25.250/api/blueprints/4c1e69c6-97bd-4c99-9504-7818f138b17f/resource_groups'
-H 'AuthToken: eyJhbGciOiJIUzI1NwMTctMDUtMzFUMDA6MjI6MDcuNTIwMTgzWiIsInNlc3
Npb24iOiJjOTliOGVlOS05Y2NjLTRjZTAtYTY5NS0wODI3N2ZkYjA0ZDYifQ.FnJMR3crPoD
0-lQRXnpPOJ8TCsRG9Wr-DaddnAIj6ko' --compressed --insecure | python -m json.tool

{
 "items": [
 {
 "name": "leaf_asns",
 "pool_ids": [
 "c23ea447-8f37-419a-9b1c-c48cc55d5b9c"
],
 "type": "asn"
 },
 {
 "name": "spine_asns",

769

https://aos-server/api/blueprints/

 "pool_ids": [
 "c23ea447-8f37-419a-9b1c-c48cc55d5b9c"
],
 "type": "asn"
 },
 {
 "name": "leaf_loopback_ips",
 "pool_ids": [
 "56e8e0dc-babd-4652-92a5-fc37294a7b26"
],
 "type": "ip"
 },
 {
 "name": "mlag_domain_svi_subnets",
 "pool_ids": [
 "ed7d8830-c703-4ac0-8252-77e0f272a677"
],
 "type": "ip"
 },
 {
 "name": "spine_leaf_link_ips",
 "pool_ids": [
 "ed7d8830-c703-4ac0-8252-77e0f272a677"
],
 "type": "ip"
 },
 {
 "name": "spine_loopback_ips",
 "pool_ids": [
 "56e8e0dc-babd-4652-92a5-fc37294a7b26"
],
 "type": "ip"
 }
]
}

770

Configlets (API)

IN THIS SECTION

API - Create Configlet | 772

API - Delete Configlet | 772

API - Assign Configlet | 772

CURL Example - HTTP PUT | 773

API - Unassign Configlet | 774

For full API documentation, view the Platform API reference from the web interface. This is a targeted
section to demonstrate configlet API similarly to the UI. The main difference between the Web UI and
REST API is that the Apstra API does not make any use of the configlets stored under api/design/
configlets when working with a blueprint. Design-configlets are meant for consumption under the UI.
When working with configlets on the API, work directly with the blueprint.

Configlets live in http://aos-server/api/design/configlets and are referenced by ID.

{
 "ref_archs": [
 "two_stage_l3clos"
],
 "created_at": "string",
 "last_modified_at": "string",
 "id": "string",
 "generators": [
 {
 "config_style": "string",
 "template_text": "string",
 "negation_template_text": "string"
 }
],
 "display_name": "string",
 "section": "string"
}

771

http://aos-server/api/design/configlets

API - Create Configlet

To create a configlet, POST to https://aos-server/api/design/configlets with a valid JSON structure
representing the configlet. You can assign this configlet from the Apstra GUI. This method is not
required for the REST API to assign to a blueprint. See the assigning a configlet section for more details.

A POST will create a new configlet. A PUT will overwrite an existing configlet. PUT requires the URL of
the configlet. https://aos-server/api/design/configlets/{id}

curl -H "AuthToken: EXAMPLE" -d '{"display_name":"DNS","ref_archs":
["two_stage_l3clos"],"section":"system","generators":[{"config_style":"eos","template_text":"ip
name-server 192.168.1.1","negation_template_text":"no ip name-server 192.168.1.1"}]}' -X POST
"http://aos-server/api/design/configlets"

The response will contain the ID of the newly created configlet {"id": "995446c7-de7d-46bb-
a88a-786839556064"}

API - Delete Configlet

Deleting a configlet requires an HTTP DELETE to the configlet by URL http://aos-server/api/design/
configlets/{id}

curl -H "AuthToken: EXAMPLE" -X DELETE "http://aos-server/api/design/configlets/995446c7-
de7d-46bb-a88a-786839556064"

A successful DELETE has an empty response {}

API - Assign Configlet

Assigning a configlet to a blueprint requires assignation of device conditions as well as embedding the
configlet details. When assigning a configlet to a blueprint, the configlets available as design resources
aren’t necessary. These are only used for UI purposes.

The assigned configlet lives in https://aos-server/api/blueprints/blueprint_id/configlets

JSON Syntax for putting a configlet to a blueprint. Basically, this is just an ‘items’ dictionary element
containing a list of configlet schemas.

{
 "items": [
 {
 "template_params": [

772

https://aos-server/api/design/configlets
https://aos-server/api/design/configlets/%7Bid%7D
http://aos-server/api/design/configlets/%7Bid%7D
http://aos-server/api/design/configlets/%7Bid%7D
https://aos-server/api/blueprints/blueprint_id/configlets

 "string"
],
 "configlet": {
 "generators": [
 {
 "config_style": "string",
 "template_text": "string",
 "negation_template_text": "string"
 }
],
 "section": "string",
 "display_name": "string"
 },
 "condition": "string"
 }
]
}

CURL Example - HTTP PUT

curl "http://aos-server/api/blueprints/e4068e99-813c-4290-b7cc-e145d85a98a8/configlets" -X PUT -
H "AuthToken: EXAMPLE" -H "Content-Type: application/json; charset=utf-8" --data
"[{""configlet"":{""generators"":[{""config_style"":""eos"",""template_text"":""ip name-server
192.168.1.1"",""negation_template_text"":""no ip name-server
192.168.1.1""}],""section"":""system"",""display_name"":""DNS""},""condition"":""role==spine""},
{""configlet"":{""generators"":[{""config_style"":""eos"",""template_text"":""ip name-server
192.168.1.1"",""negation_template_text"":""no ip name-server
192.168.1.1""}],""section"":""system"",""display_name"":""DNS""},""condition"":""role==leaf""}]"

Response

{"items": [{"configlet": {"generators": [{"config_style": "eos", "template_text": "ip name-
server 192.168.1.1", "negation_template_text": "no ip name-server 192.168.1.1"}], "section":
"system", "display_name": "DNS"}, "condition": "role==spine"}, {"configlet": {"generators":
[{"config_style": "eos", "template_text": "ip name-server 192.168.1.1",
"negation_template_text": "no ip name-server 192.168.1.1"}], "section": "system",
"display_name": "DNS"}, "condition": "role==leaf"}]}

773

API - Unassign Configlet

To unassign a configlet, remove it from the items list by PUT with an empty json post.

curl "http://aos-server/api/blueprints/e4068e99-813c-4290-b7cc-e145d85a98a8/configlets" -X PUT -
H "AuthToken: EXAMPLE" -H "Content-Type: application/json; charset=utf-8" --data ""

The response is an empty json set once the configlet is deleted: {"items": []}

Property Sets (API)

IN THIS SECTION

API - Create Property Set | 775

API - Delete Property Set | 775

API - Assign Property Set | 775

CURL Example - API HTTP PUT | 776

API - Unassign Property Set | 776

For full API documentation, view the Platform API reference from the web interface. This is a targeted
section to demonstrate property sets API similarly to the web interface.

Property sets live in http://aos-server:8888/api/property-sets and are referenced by ID.

 {
 "items": [
 {
 "label": "string",
 "values": {
 "additionalProp1": "string",
 "additionalProp2": "string",
 "additionalProp3": "string"
 },
 "id": "string"
 }
]
 }

774

http://aos-server:8888/api/property-sets

API - Create Property Set

To create a property set, POST to https://aos-server/api/property-sets with a valid JSON structure
representing the property set. Creating a property set this way only allows it to be available for
assignation in the web interface - it is not required in this method for the REST API to assign to a
blueprint. See the assigning a property set section for more details.

A POST will create a new property set. A PUT will overwrite an existing property set. PUT requires the
URL of the property set. https://aos-server:8888/api/design/property-sets/{id}

curl -H "AuthToken: EXAMPLE" -d '{"values": {"NTP_SRV1": "192.168.1.1", "NTP_SRV1":
"192.168.1.1"}, "label": "NTP-servers"}' -X POST "http://aos-server:8888/api/design/property-
sets"

The response will contain the ID of the newly created property-set {"id": "73223e81-a451-4e7f-91fb-
fb476f4b9fc8"}

API - Delete Property Set

Deleting a property set requires an HTTP DELETE to the property set by URL http://aos-
server:8888/api/design/property-sets/{id}

curl -H "AuthToken: EXAMPLE" -X DELETE "http://aos-server:8888/api/design/property-sets/73223e81-
a451-4e7f-91fb-fb476f4b9fc8"

A successful DELETE has an empty response {}

API - Assign Property Set

Assigning a property set to a blueprint requires an HTTP POST to the blueprint by URL http://aos-
server:8888/api/blueprints/{blueprint_ID}/property-sets

{
 "id": "73223e81-a451-4e7f-91fb-fb476f4b9fc8"
}

The response will contain the ID of the assigned property-sets {"id": "73223e81-a451-4e7f-91fb-
fb476f4b9fc8"}

775

https://aos-server/api/property-sets
https://aos-server:8888/api/design/property-sets/%7Bid%7D
http://aos-server:8888/api/design/property-sets/%7Bid%7D
http://aos-server:8888/api/design/property-sets/%7Bid%7D
http://aos-server:8888/api/blueprints/%7Bblueprint_ID%7D/property-sets
http://aos-server:8888/api/blueprints/%7Bblueprint_ID%7D/property-sets

CURL Example - API HTTP PUT

curl "http://aos-server:8888/api/blueprints/e4068e99-813c-4290-b7cc-e145d85a98a8/property-sets/
73223e81-a451-4e7f-91fb-fb476f4b9fc8" -X DELETE -H "AuthToken: EXAMPLE"

Response

{"id": "73223e81-a451-4e7f-91fb-fb476f4b9fc8"}

API - Unassign Property Set

Deleting a property set requires an HTTP DELETE to the blueprint property set by URL http://aos-
server:8888/api/blueprints/{blueprint_ID}/property-sets{id}

curl "http://aos-server:8888/api/blueprints/e4068e99-813c-4290-b7cc-e145d85a98a8/property-sets/
73223e81-a451-4e7f-91fb-fb476f4b9fc8" -X DELETE -H "AuthToken: EXAMPLE"

A successful DELETE has an empty response {}

Interface Descriptions (API)

IN THIS SECTION

Apstra REST API - Interface descriptions | 777

Besides main parameters of network interfaces like name, speed and port mode, Apstra also configures a
description for physical interfaces and aggregated logical interfaces (so called port channels). Interface
description is automatically generated if the following conditions are met:

1. The interface is connected to a peer.

2. The interface belongs to leaf, spine or generic system.

3. The peer interface belongs to leaf, spine, or generic system with virtual network endpoint on this
server.

The generated description has the form <facing_|to.><peer-device-label>[:peer-interface-name]. Examples:

• facing_spine2:Ethernet1/2

776

http://aos-server:8888/api/blueprints/%7Bblueprint_ID%7D/property-sets%7Bid%7D
http://aos-server:8888/api/blueprints/%7Bblueprint_ID%7D/property-sets%7Bid%7D

• to.server1:eth0

• to.server2

The prefix of the name is facing_ if the peer is leaf, spine or external router. The prefix is to. in case peer
device is an L2 or L3 server. The peer interface name part is present only when the peer device is
controlled by Apstra.

Apstra REST API - Interface descriptions

The Apstra API is able to change the auto-generated interface description. However, there is no such
functionality in the Apstra UI.

The interface description may contain ASCII characters with codes 33-126 and spaces, except "?", which
is interpreted as a command-completion. The description length is limited to 240 characters, which is
the longest possible length across supported switch models.

Interfaces are stored internally as graph nodes with certain set of properties. Description is one of these
properties. To modify the description, use the generic API to interact with graph nodes.

API - Obtain interface configuration

To obtain interface configuration, send GET request to https://aos-server/api/blueprints/{blueprint-id}/
nodes/{interface-node-id}.

Request:

{
 "description": "facing_dkl-2-leaf:Ethernet1/2",
 "mlag_id": null,
 "tags": null,
 "if_name": "swp2",
 "label": null,
 "port_channel_id": null,
 "ipv4_addr": "203.0.113.10/31",
 "mode": null,
 "if_type": "ip",
 "type": "interface",
 "id": "interface-id-1",
 "protocols": "ebgp"
}

777

https://aos-server/api/blueprints/%7Bblueprint-id%7D/nodes/%7Binterface-node-id%7D
https://aos-server/api/blueprints/%7Bblueprint-id%7D/nodes/%7Binterface-node-id%7D

API - Create or modify interface description

To create or modify interface description, send PATCH request to https://aos-server/api/blueprints/
{blueprint-id}/nodes/{interface-node-id} with a valid JSON. The JSON should contain the "description"
field with a valid data.

curl -X PATCH -H "AuthToken: EXAMPLE" \
 -d '{"description": "New description I want!"}'
 http://aos-server:8888/api/blueprints/id-1/nodes/interface-id-1

Response:

{
 "description": "New description I want!",
 "mlag_id": null,
 "tags": null,
 "if_name": null,
 "label": null,
 "port_channel_id": null,
 "ipv4_addr": null,
 "mode": null,
 "if_type": "ip",
 "type": "interface",
 "id": "interface-id-1",
 "protocols": "ebgp"
}

API - Delete interface description

To delete custom interface description and get back to automatic description generation, set the
description to empty value.

Request:

curl -X PATCH -H "AuthToken: EXAMPLE" \
 -d '{"description": ""}'
 http://aos-server:8888/api/blueprints/id-1/nodes/interface-id-1

778

https://aos-server/api/blueprints/%7Bblueprint-id%7D/nodes/%7Binterface-node-id%7D
https://aos-server/api/blueprints/%7Bblueprint-id%7D/nodes/%7Binterface-node-id%7D

Response:

{
 "description": "",
 "mlag_id": null,
 "tags": null,
 "if_name": null,
 "label": null,
 "port_channel_id": null,
 "ipv4_addr": null,
 "mode": null,
 "if_type": "ip",
 "type": "interface",
 "id": "interface-id-1",
 "protocols": "ebgp"
}

Subsequent GET request will show that the description was automatically generated.

Request:

curl -H "AuthToken: EXAMPLE" \
 http://aos-server:8888/api/blueprints/id-1/nodes/interface-id-1

Response:

{
 "description": "facing_dkl-2-leaf:Ethernet1/2",
 "mlag_id": null,
 "tags": null,
 "if_name": "swp2",
 "label": null,
 "port_channel_id": null,
 "ipv4_addr": "203.0.113.10/31",
 "mode": null,
 "if_type": "ip",
 "type": "interface",
 "id": "interface-id-1",
 "protocols": "ebgp"
}

779

Probes (API)

IN THIS SECTION

Generic Probe REST API | 780

Create Probe | 780

Inspect Probe | 786

Query Probe Anomalies | 789

Introspect Processors | 790

Stream Data | 793

Generic Probe REST API

The information below describes as much of the API as necessary to understand how to use IBA for
someone already familiar with Apstra API conventions. Formal API documenation is reserved for the API
documentation itself.

We will walk through the API as it's used for the example workflow described in the introduction,
demonstrating its general capability by specific example.

Create Probe

To create a probe, the operator POSTs to /api/blueprints/<blueprint_id>/probes with the following form:

{
 "label": "server_tx_bytes",
 "description": "Server traffic imbalance",
 "tags": ["server", "imbalance"],
 "disabled": false,
 "processors": [
 {
 "name": "server_tx_bytes",
 "outputs": {
 "out": "server_tx_bytes_output"
 },
 "properties": {
 "counter_type": "tx_bytes",
 "graph_query": "node('system',

780

name='sys').out('hosted_interfaces').node('interface', name='intf').out('link').node('link',
link_type='ethernet', speed=not_none()).in_('link').node('interface',
name='dst_intf').in_('hosted_interfaces').node('system', name='dst_node',
role='server').ensure_different('intf', 'dst_intf')",
 "interface": "intf.if_name",
 "system_id": "sys.system_id"
 },
 "type": "if_counter"
 },
 {
 "inputs": {
 "in": "server_tx_bytes_output"
 },
 "name": "std",
 "outputs": {
 "out": "std_dev_output"
 },
 "properties": {
 "ddof": 0,
 "group_by": []
 },
 "type": "std_dev"
 },
 {
 "inputs": {
 "in": "std_dev_output"
 },
 "name": "server_imbalance",
 "outputs": {
 "out": "std_dev_output_in_range"
 },
 "properties": {
 "range": {
 "max": 100
 }
 },
 "type": "range_check"
 },
 {
 "inputs": {
 "in": "std_dev_output_in_range"
 },
 "name": "server_imbalance_anomaly",

781

 "outputs": {
 "out": "server_traffic_imbalanced"
 },
 "type": "anomaly"
 }
],
 "stages": [
 {
 "name": "server_tx_bytes_output",
 "description": "Collect server tx_bytes",
 "tags": ["traffic counter"],
 "units": "Bps"
 }
]
}

As seen above, the endpoint is given an input of probe metadata, a processor instance list, and output
stage list.

Probe metadata is composed of the following fields:

label human-readable probe label; required,

description optional description of the probe,

tags list of strings with the probe tags; optional,

disabled optional boolean that tells whether probe should be disabled. Disabled probes don't
provide any data and don't consume any resources. The probe is not disabled by default.

Each processor instance contains an instance name (defined by user), processor type (a selection from a
catalog defined by the platform and the reference design), and inputs and/or outputs. All additional fields
in each processor are specific to that type of processor, are specified in the properties sub-field, and can
be learned by introspection via our introspection API at /api/blueprints/<blueprint_id>/telemetry/processors;
we will go over this API later.

Matching our working example, we will go through each entry we have in the processor list in the above
example.

In the first entry, we have a processor instance of type if_counter that we name server_tx_bytes. It takes as
input a query called graph_query which is a graph query. It then has two other fields named interface and
system_id. These three fields together indicate that we want to collect a (first time-derivative of) counter
for every server-facing port in the system. For every match of the query specified by graph_query, we
extract a system_id by taking the system_id field of the sys node in the resulting path (as specified in the
system_id processor field) and an interface name by taking the if_name field of the intf node in the resulting

782

path (as specified in the interface processor field). The combination of system ID and interface is used to
identify an interface in the network, and its tx_bytes counter (as specified by counter_type) is put into the
output of this processor. The output of this processor is of type "Number Set" (NS); stage types are
discussed exhaustively later. This processor has no inputs, so we do not supply an input field. It has one
output, labeled out (as defined by the if_counter processor type); we map that output to a stage labeled
server_tx_bytes_output.

The second processor is of type std_dev and takes as input the stage we created before called
server_tx_bytes_output; see the processor-specific documentation for the meaning of the ddof field. Also,
see the processor-specific documentation for the full meaning of the group_by field. It will suffice to say
for now that in this case group_by tells us to construct a single output "Number" (N) from the input NS;
that is, this processor outputs a single number-the standard deviation taken across each of the many
input numbers. This output is named "std_dev_output".

The third processor is of type range_check and takes as input std_dev_output. It checks that the input is out
of the expected range specified by range - in this case if the input is ever greater-than 100 (we have
chosen this arbitrary value to indicate when the server-directed traffic is unbalanced). This processor has
a single output we choose to label std_dev_output_in_range. This output (as defined by the range_check
processor type) is of type DS (Discrete State) and can take values either true or false, indicating whether
or not a value is out of the range.

Our final processor is of type anomaly and takes as input std_dev_output_in_range. It raises an Apstra anomaly
when the input is in the true state. This processor has a single output we choose to label
server_traffic_imbalanced. This output (as defined by the anomaly processor type) is of type DS (Discrete
State) and can take values either true or false, indicating whether or not an anomaly is raised. We do not
do any further processing with this anomalous state data in this example, but that does not preclude its
general possibility.

Finally, we have a stages field. This is a list of a subset of output stages, with each stage indicated by the
name field which refers to the stage label. This list is meant to add metadata to each output stage that
cannot be inferred from the DAG itself. Currently, supported fields are:

description string with a stage description,

tags list of strings that make a set of tags for stage,

units string that is meant to describe the units of the stage data.

All these fields are optional.

This stage metadata is returned when fetching data from that stage via the REST API and used by the
GUI in visualization.

HTTP POST can be sent to /api/blueprints/<blueprint_id>/probes. Here, we POST probe configuration, as
exemplified in the "POST for Probe Creation" figure to create a new probe. POSTing to this endpoint will

783

return a UUID, as most of the other creation endpoints in Apstra, which can be used for further
operations.

Changed in version 2.3: To get a predictable probe id instead of a UUID described above, one could
specify it by adding an "id" property to the request body.

{
 "id": "my_tx_bytes_probe",
 "label": "server_tx_bytes",
 "processors": [],
 "rest_of_the": "request_body"
}

Changed in version 2.3: Previously, stage definitions were inlined into processor definitions like this:

{
 "label": "test probe",
 "processors": [
 {
 "name": "testproc",
 "outputs": {"out": "test_stage"},
 "stages": [{"name": "out", "units": "pps"}]
 }
]
}

This no longer works, and stage name should refer to the stage label instead of the internal stage name.
So the example above should look this way:

{
 "stages": [{"name": "test_stage", "units": "pps"}]
}

Additional note: it's recommended not to inline stage definitions into processor definitions, and place
that as a stand-alone element like in POST example above.

HTTP DELETE can be sent to /api/blueprints/<blueprint_id>/probes/<probe_id> where to delete the probe
specified by its probe_id.

HTTP GET can be sent to /api/blueprints/<blueprint_id>/probes/<probe_id> to retrieve the configuration of
the probe as it was POSTed. It will contain more fields than it was specified at probe creation:

784

id with id of the probe (or UUID if it was not specified at creation time),

state with actual state of the probe; possible values are "created" for a probe being configured,
"operational" for a successfully configured probe, and "error" if probe configuration has
failed.

last_error contains detailed error description for the most-recent error for probes in the "error" state. It
has the following sub-fields:

• level: a message level, such as "error" or "info".

• message: text with error details.

• timestamp: when the message was registered.

The complete list of probe messages could be obtained by issuing HTTP GET request to /api/blueprints/
<blueprint_id>/probes/<probe_id>/messages.

Messages are sorted by the 'timestamp' field, oldest come first.

Additionally, HTTP GET can be sent to /api/blueprints/<blueprint_id>/probes to retrieve all the probes for
blueprint <blueprint_id>.

2.3

HTTP PATCH and PUT methods for probes are available since Apstra version 2.3.

HTTP PATCH can be sent to /api/blueprints/<blueprint_id>/probes/<probe_id> to update the probe metadata
or disable or enable the probe.

{
 "label": "new server_tx_bytes",
 "description": "some better probe description",
 "tags": ["production"],
 "stages": [
 {
 "name": "server_tx_bytes",
 "description": "updated stage description",
 "tags": ["server traffic"],
 "units": "bps"
 }
]
}

785

This example updates probe metadata for the probe that was created with the POST request listed
above. All fields here are optional, values that were not specified remain unchanged.

Every stage instance is also optional, that is, only specified stages will be updated, and not specified
stages remain unchanged.

Tags collection is updated entirely, i.e. if it was tags: ["a", "b"] and the PATCH payload specified tags:
["c"], then the resulting collection will look like tags: ["c"] (NOT tags: ["a", "b", "c"]).

With PATCH it's not possible to change probe's set of processor and stages. Please read further for PUT
description which allows to do that.

HTTP PUT can be sent to /api/blueprints/<blueprint_id>/probes/<probe_id> to replace a probe.

This is very similar to POST, with the difference being that it replaces the old configuration for probe
<probe_id> with the new one specified in the payload. Payload format for this request is the same as for
POST, but id is not allowed.

Inspect Probe

Stages are implicitly created by being named in the input and output of various processors. You can
inspect the various stages of a probe. The API for reading a particular stage is /api/blueprints/
<blueprint_id>/probes/<probe_id>/stages/<stage_name>

NOTE: Each stage has a type. This is a function of the generating processor and the input stage(s)
to that processor. The types are: Number (N); Number Time Series (NTS), Number Set (NS);
Number Set Time Series (NSTS); Text (T); Text Time Series (TTS); Text Set (TS); Text Set Time
Series (TSTS); Discrete State (DS); Discrete State Time Series (DSTS); Discrete State Set (DSS);
Discrete Set Time Series (DSSTS)

A NS is exactly that: a set of numbers.

Similarly, a DSS is a set of discrete-state variables. Part of the specification of a DSS (and DSSTS)
stage is the possible values the discrete-state variable can take.

A text set is a set of strings.

A NSTS is a set of time-series with numbers as values. For example, a member of this set would
be: (time=0 seconds, value=3), (time=3 seconds, value=5), (time=6 seconds, value=23), and so-on.

An DSTS is the same as an NSTS except values are discrete-state.

An TSTS is the same as an NSTS except values are strings.

786

Number (N), Discrete-State (DS), and Text (T) are simply Number Sets, Discrete State Sets, and
Text Sets guaranteed to be of length one.

NTS, DSTS, and TS are the same as above, but are time-series instead of single values.

Let's consider the first stage - "server_tx_bytes". This stage contains the tx_bytes counter for every
server-facing port in the system. We can get it from the url /api/blueprints/<blueprint_id>/probes/<probe_id>/
stages/server_tx_bytes_output

The response we get would be of the same form as the following:

{
 "properties": [
 "interface",
 "system_id"
],
 "type": "ns",
 "units": "bytes_per_second",
 "values": [
 {
 "properties": {
 "interface": "intf1",
 "system_id": "spine1"
 },
 "value": 22
 },
 {
 "properties": {
 "interface": "intf2",
 "system_id": "spine1"
 },
 "value": 23
 },
 {
 "properties": {
 "interface": "intf1",
 "system_id": "spine3"
 },
 "value": 24
 }

787

]
}

As we know from our running example, the "server_tx_bytes" stage contains the tx_bytes value for every
server-facing interface in the network. Looking at the above example, we can see that this stage is of
type "ns", indicating NS or Number-Set. As mentioned before, data in stages is associated with context.
This means that every element in the set of a stage is associated with a group of key-value pairs. Per
every stage, the keys are the same for every piece of data (or, equivalently, item in the set). These keys
are listed in the "properties" field of a given stage, and are generally a function of the generating
processor. Each of the items in "values" assigns a value to each of the properties of the stage and
provides a value (the "Number" in the "Number Set"). The meaning of this data in this stage is that
tx_bytes on intf1 of spine1 is 22, on intf2 of spine1 is 23, and on intf1 of spine3 is 24 bytes per second.

Notice that "units" is set for this stage as specified in the running example.

To query the second stage in our probe, send an HTTP GET to the std endpoint /api/blueprints/
<blueprint_id>/probes/<probe_id>/stages/std_dev_output.

{
 "type": "n",
 "units": "",
 "value": 1
}

This stage is a number. It has no context, only a single value. In our example, this is the standard
deviation across all spines.

The penultimate stage in our probe can be queried at the endpoint /api/blueprints/<blueprint_id>/probes/
<probe_id>/stages/server_traffic_imbalanced.

{
 "possible_values": [
 "true",
 "false"
],
 "type": "ds",
 "units": "",
 "value": false
}

788

As shown, this stage indicates whether server traffic is imbalanced ("true") or not ("false") by indicating if
the standard deviation across of tx_bytes across all server-facing ports is greater-than 100. Note the
"possible_values" field describes all values that the discrete-state "value" can take.

All processors of a probe can also be queried via /api/blueprints/<blueprint_id>/probes/<probe_id>/processors/
<processor_name>. By doing such a query, you can discover the configuration used for creation of said
processor.

Query Probe Anomalies

The final stage of our example processor raises an Apstra Anomaly (and sets its output to "true"), when
the standard deviation of tx_bytes across server-facing interfaces is greater-than 100.

You can query probe anomalies via the standard anomaly API at /api/blueprints/<bluprint_id>/anomalies?
type=probe.

Following is the JSON form of an anomaly that would be raised by our example probe (with ellipses for
data we don't care about for this example):

{
 "actual": {
 "value_int": 101
 },
 "anomaly_type": "probe",
 "expected": {
 "value_int": 100
 },
 "id": "...",
 "identity": {
 "anomaly_type": "probe",
 "probe_id": "efb2bf7f-d8cc-4a55-8e9b-9381e4dba61f",
 "properties": {},
 "stage_id": "server_traffic_imbalanced"
 },
 "last_modified_at": "...",
 "severity": "critical"
}

As seen in the above example, the identity contains the probe_id and the name of the stage on which
the anomaly was raised and which requires further inspection by the operator. Within a given stage, if
the type of the stage were a set-based type, the "properties" field of the anomaly would be filled with
the properties of the specific item in the set that caused the anomaly. This brings up the important point

789

that multiple anomalies can be raised on a single stage, as long as each is on a different item in the set.
In our example, since the stage in question is of type NS, the "properties" field is not set.

Introspect Processors

The set of processors available to the operator is a function of the platform and the reference design.
Apstra provides an API for the operator to list all available processors, learn what parameters they take,
and learn what inputs they require and outputs they yield.

The API in question is found at /api/blueprints/<blueprint_id>/telemetry/processors.

It yields a list of processor descriptions. In the following example, we show the description for the
std_dev processor.

{
 "description": "Standard Deviation Processor.\n\n Groups as described by group_by, then
calculates std deviation and\n outputs one standard deviation for each group. Output is NS.\n
Input is an NS or NSTS.\n ",
 "inputs": {
 "in": {
 "required": true,
 "types": [
 {
 "keys": [],
 "possible_values": null,
 "type": "ns"
 },
 {
 "keys": [],
 "possible_values": null,
 "type": "nsts"
 }
]
 }
 },
 "outputs": {
 "out": {
 "required": true,
 "types": [
 {
 "keys": [],
 "possible_values": null,
 "type": "ns"

790

 }
]
 }
 },
 "label": "Standard Deviation",
 "name": "std_dev",
 "schema": {
 "additionalProperties": false,
 "properties": {
 "ddof": {
 "default": 0,
 "description": "Standard deviation correction value, is used to correct divisor
(N - ddof) in calculations, e.g. ddof=0 - uncorrected sample standard deviation, ddof=1 -
corrected sample standard deviation.",
 "title": "ddof",
 "type": "integer"
 },
 "enable_streaming": {
 "default": false,
 "type": "boolean"
 },
 "group_by": {
 "default": [
 "system_id"
],
 "items": {
 "type": "string"
 },
 "type": "array"
 }
 },
 "type": "object"
 }
}

As seen above, there is a string-based description, the name of type processor type (as supplied to the
REST API in probe configuration). The set of parameters specific to a given probe is described in the
"schema".

Special notice must be paid to "inputs" and "outputs". Even though these are in the "schema" section,
they are present on every type of processor. Each processor can take zero-or-more more input stages
and must output one-or-more stages. Optional stages have "required" set to false. The names of the
stages (relative to a particular instance of a processor) they take are described in these variables. We can

791

see that the "std_dev" processor takes a single input named "in" and a single output named "out". This is
reflected in our usage of it in the previous example.

There's one special input name: *. For example:

"inputs": {
 "*": {
 "required": true,
 "types": [
 {
 "keys": [],
 "possible_values": null,
 "type": "ns"
 },
 {
 "keys": [],
 "possible_values": [],
 "type": "dss"
 },
 {
 "keys": [],
 "possible_values": null,
 "type": "ts"
 }
]
 }
}

It means the processor accepts one or more inputs of the specified types with arbitrary names.

Changed in 3.0: Previously, inputs and outputs section didn't specify whether specific inputs or outputs
were required, so the format was changed from the following:

This syntax is deprecated and invalid.

 "inputs": {
 "in": [
 {
 "data_type": "ns",
 "keys": [
 "system_id"
],

792

 "value_map": null,
 "value_type": "int64"
 }
 ...
]
}

Stream Data

Any processor instance in any probe can be configured to have its output stages streamed in the
"perfmon" channel of Apstra streaming output. If the property "enable_streaming" is set to "true" in the
configuration for any processor, its output stages will have all their data streamed.

For Non-Time-Series-based stages, each will generate a message whenever their value changes. For
Time-Series based stages, each will generate a message whenever a new entry is made into the time-
series. For Set-based stages, each item in the set will generate a message according to the two prior
rules.

Each message that is generated has a value, a timestamp, and a set of key-value pairs. The value is self-
explanatory. The timestamp is the time at which the value changed for Non Time-series-based stages
and the timestamp of the new entry for Time-series based stages. The key-value pairs correspond to the
"properties" field we observed earlier in the "values" section of stages, thus providing context.

Below we have the format for messages from IBA which is encapsulated in a PerfMon message (and that
in-turn in an AosMessage). The key-value pairs of context are put into the "property" repeated field (with
"name" as the key and "value" as the value) while the value is put into the "value" field. "probe_id" and
"stage_name" are as they appear. The blueprint_id is put into the "origin_name" of the encapsulated
AosMessage. Similarly the timestamp is put into the generic "timestamp" field.

message ProbeProperty {
 required string name = 5;
 required string value = 6;
}
message ProbeMessage {
 repeated ProbeProperty property = 1;
 oneof value {
 int64 int64_value = 2;
 float float_value = 3;
 string string_value = 4;
 }
required string probe_id = 5;

793

required string stage_name = 6;
}

RCI Fault Model (API)

IN THIS SECTION

Create Root Cause Identification Instance | 794

Update Root Cause Identification Instance | 795

Delete Root Cause Identification Instance | 796

List Root Cause Identification Instances | 797

You can access complete Apstra API documentation from the web interface in the Platform >
Developers section.

• A blueprint is associated with zero or more Root Cause Identification instances.

• Root Cause Identification instances are enabled (created) / disabled (deleted) via CRUD API for Root
Cause Identification sub-resource under the blueprint.

• The instances that can be created depends on the reference design of the blueprint. In this first
phase of Root Cause Identification, only two_stage_l3clos has Root Cause Identification support, and
right now it only allows one Root Cause Identification instance per blueprint.

Create Root Cause Identification Instance

POST /api/blueprints/<blueprint_id>/arca
 Request Payload schema
 {
 "model_name": s.String() # Name of ARCA instance's system fault model (ref
 design specific)
 "trigger_period": s.Float(min=10.0) # ARCA instance runs every <trigger_period>
 seconds.
 }

794

Example for blueprints for ref design two_stage_l3clos:

{
 "model_name": "default",
 "trigger_period": 10.0
}

Return values:
201 - Successfully created the RCI instance. Response payload:

{"id": <RCI instance ID>}

The ID is used in GET, PUT, DELETE

404 - Blueprint does not exist or is not deployed
422 - Validation error. Response payload:

{"error": <message>}

Possible error messages:
Model name is not found for the reference design
An ARCA instance already exists for given model name
trigger_period is too small

Update Root Cause Identification Instance

Using the PUT API, you can tweak the execution frequency of the Root Cause Identification instance.

PUT /api/blueprints/<blueprint_id>/arca/<arca_id>
 Request Payload schema
 {
 "trigger_period": s.Float(min=10.0)
 }

Return values:
200 - Update succeeded.
404 - ARCA instance not found.
422 - Validation error. Response payload:

{"error": <message>}

795

Possible error messages:
trigger_period is too small

Delete Root Cause Identification Instance

Using the GET API, you can obtain the current status (set of root causes) of the Root Cause
Identification instance.

GET /api/blueprints/<blueprint_id>/arca/<arca_id>

Return values:
200 - see response schema below
404 - ARCA instance not found

Response payload schema
{
 "id": String, # ARCA instance ID
 "model_name": String, # see POST payload
 "trigger_period": Float, # see POST payload
 "state": Enum("created", "operational"),
 "config_updated_at": Timestamp # of last update to instance via POST/PUT
 "status_updated_at": Timestamp # of last update to ARCA results
 "root_cause_count": Integer(min=0) # Number of root causes identified
 "root_causes": List(ROOT_CAUSE_OBJ) # Actual root causes
}

Timestamps are in ISO8601 format in UTC timezone, e.g. “2018-10-16T22:12:34+0000” If state ==
“created”, then Status_updated_at == UNIX epoch root_cause_count == 0 “root_causes” key is not
returned

Each ROOT_CAUSE_OBJ has the following schema:

{
 "id": String, # Unique ID for the root cause in the ARCA instance
 "context": String, # Encoded context such as references to graph nodes
 "description": String, # Human-readable text, e.g. "link <blah> broken"
 "timestamp": Timestamp, # of when RC is detected (ISO8601 format)
 "symptoms": List(SYMPTOM_OBJ), # List of symptoms; always non-empty
}

796

Notes on root cause detection and IDs: A root cause may be detected multiple times over the blueprint’s
lifetime. For instance, a root cause is defined for broken cable between spine1 and leaf1. This root cause
can appear at any time, and it may disappear once the problem is fixed. A root cause has a unique ID
scoped in the ARCA instance. This means that the ID may appear and disappear corresponding to
whether the problem occurs or gets fixed, e.g. cable gets broken or reconnected What to expected as
root cause ID: In two_stage_l3clos the root cause ID is a composition of graph node and relationship
IDs, and some immutable but readable name of the root cause. Example: <graph link node id>/broken.

Each SYMPTOM_OBJ has the following schema:

{
 "id": String, # Unique ID for the symptom in the ARCA instance
 "context": String, # Encoded context such as system ID, service name
 "description": String, # Readable, e.g. "interface swp1 on leaf1 is down"
}

Given the same ARCA system fault model, the set of symptom IDs are always the same for given root
cause. However, the context may be different. For instance, the symptom “interface swp1 on leaf1 is
down” is the same, while context of different instances of this symptom may have different system IDs
depending on which system ID is assigned to leaf1 when the root cause for this symptom is detected.
Example symptom ID: <graph interface node id>/down

List Root Cause Identification Instances

GET /api/blueprints/<blueprint_id>/arca

Return values
200 - see response schema below
404 - blueprint not found or blueprint not deployed

Response schema:

{
 "items": List(ARCA_INSTANCE_DIGEST), # list may be empty
}

ARCA_INSTANCE_DIGEST has the same schema as the response payload of GET individual ARCA
instance, except that it does not contain the “root_causes” key.

In this phase, for two_stage_l3clos blueprints, there is at most 1 element in the list, because only 1
ARCA instance is allowed per blueprint.

797

Health Check Apstra VMs (API)

NOTE: You can also check the health of Apstra VMs from the Apstra GUI.

From the left navigation menu of the Apstra GUI, navigate to Platform > Developers to access REST API
documentation. From there you can access cluster APIs.

/api/cluster/nodes/{node_id} .. Get AOS slave node status.
/api/cluster/nodes/{node_id}/errors .. Retrieve error for an AOS cluster node.

Here is an example of REST API with curl command:

curl -X GET "https://172.20.159.3/api/cluster/nodes/AosController/errors" -H "accept:
application/json"

If no error occurs, the output is as follows:

{
 "state": "active",
 "errors": []
}

If the agent process has rebooted, the error is shown as follows:

{
 "state": "active",
 "errors": [
 "agentReboot"
]
}

API From Python

IN THIS SECTION

API User Login | 799

798

API - Blueprints | 799

API - Blueprint Racks | 800

API - Blueprint Routing Zones (Security Zones) | 800

API - Blueprint Virtual Networks | 800

Run Python | 801

Following are examples of Python 3 code using the Apstra API. Python 3 is supported as of Apstra
version 4.1.2.

API User Login

import requests, sys

IP of Cloudlabs AOS Server
aos_server = '172.16.90.3'
username = 'admin'
password = 'aos aos'

authenticate and get a auth token
url = 'https://' + aos_server + '/api/user/login'
headers = { 'Content-Type':"application/json", 'Cache-Control':"no-cache" }
data = '{ \"username\":\"' + username + '\", \"password\":\"' + password + '\" }'
response = requests.request("POST", url, data=data, headers=headers, verify=False)
print('POST',url,response.status_code)
if response.status_code != 201:
 sys.exit('error: authentication failed')
auth_token = response.json()['token']
print(auth_token)
headers = { 'AuthToken':auth_token, 'Content-Type':"application/json", 'Cache-Control':"no-
cache" }

API - Blueprints

get blueprint ID ... assuming there is only one
url = 'https://' + aos_server + '/api/blueprints'
response = requests.request('GET', url, headers=headers, verify=False)

799

print('GET', url, response.status_code)
blueprint_id = response.json()['items'][0]['id']
blueprint_name = response.json()['items'][0]['label']
print(blueprint_name, blueprint_id)

API - Blueprint Racks

get a list of racks
bound_to = ''
url = 'https://' + aos_server + '/api/blueprints/' + blueprint_id + '/racks'
response = requests.request('GET', url, headers=headers, verify=False)
print('GET', url, response.status_code)
for item in response.json()['items']:
 bound_to += '{\"system_id\":\"' + item['leafs'][0]['id'] + '\"},'
bound_to = bound_to[:-1]
print(bound_to)

API - Blueprint Routing Zones (Security Zones)

get routing zone ID ... assuming there is only one
url = 'https://' + aos_server + '/api/blueprints/' + blueprint_id + '/security-zones'
response = requests.request('GET', url, headers=headers, verify=False)
print('GET', url, response.status_code)
for item in response.json()['items']:
 if(response.json()['items'][item]['vrf_name'] != 'default'):
 security_zone_name = response.json()['items'][item]['vrf_name']
 security_zone_id = item
 break
print(security_zone_name, security_zone_id)

API - Blueprint Virtual Networks

create a virtual network
vn_name = "My-VN"
url = 'https://' + aos_server + '/api/blueprints/' + blueprint_id + '/virtual-networks'
data = '{\"label\":\"' + vn_name + '\",\"vn_type\":\"vxlan\",\"bound_to\":[' + bound_to +
'],\"security_zone_id\":\"' + security_zone_id + '\"}'
print(data)

800

response = requests.request('POST', url, data=data, headers=headers, verify=False)
print('POST', url, response.status_code)

Run Python

The proceeding Python3 code can be run on the Cloudlabs AOS Server. Use the python3.6 command to
run the Python script.

admin@aos-server:~$ python3.6 test.py
POST https://192.168.3.3/api/user/login 201
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VybmFtZSI6ImFkbWluIiwiY3JlYXRlZF9hdCI6IjIwMjAtMDItMjFU
MTc6NDM6NTkuNTU1MDQzIiwidXNlcl9zZXNzaW9uIjoiMmU0Y2YwODktNzZmYS00NDg4LTlhNmItYWViYjc3MmQyNDE2IiwiZ
XhwIjoxNTgyMzkzNDM5fQ.GWsy292pfpPVpisbQNKc3EHrDlxh1OUmpQaQ-dF-mwY
GET https://192.168.3.3/api/blueprints 200
neil-blueprint cbfe7a43-4da7-4b2c-90a2-ea0bae4ed79a
GET https://192.168.3.3/api/blueprints/cbfe7a43-4da7-4b2c-90a2-ea0bae4ed79a/racks 200
{"system_id":"2cbb0fc0-5f87-4671-8d8b-e909cbf84fdd"},{"system_id":"98002bb9-
d0a9-484c-86e7-2aac2b926bf7"},{"system_id":"73bd231c-f78e-499f-bf98-fa80c1102a4a"},
{"system_id":"19fb6155-e9eb-4ae7-b5b3-933416f0e3cd"}
GET https://192.168.3.3/api/blueprints/cbfe7a43-4da7-4b2c-90a2-ea0bae4ed79a/security-zones 200
Finance 4aaa4499-3194-4904-a1ae-daabbe3ed329
{"label":"My-VN","vn_type":"vxlan","bound_to":[{"system_id":"2cbb0fc0-5f87-4671-8d8b-
e909cbf84fdd"},{"system_id":"98002bb9-d0a9-484c-86e7-2aac2b926bf7"},{"system_id":"73bd231c-
f78e-499f-bf98-fa80c1102a4a"},{"system_id":"19fb6155-e9eb-4ae7-
b5b3-933416f0e3cd"}],"security_zone_id":"4aaa4499-3194-4904-a1ae-daabbe3ed329"}
POST https://192.168.3.3/api/blueprints/cbfe7a43-4da7-4b2c-90a2-ea0bae4ed79a/virtual-networks 201
admin@aos-server:~$

REST API Explorer

With Apstra's REST API explorer, you can browse and search for specific REST API endpoints relevant to
both the platform and reference designs.

From the left navigation menu, navigate to Platform > Developers > REST API Explorer to see the screen
as shown below. The left column contains a list of API categories from which you can browse. You can
also search for a specific endpoint by entering a query in the Quick Search field. The details view of an
endpoint includes information about the URL, method, summary, parameters and responses. The

801

example below shows the model for checking provider settings by login with username and password.

Juniper Technical Support

IN THIS SECTION

Show Tech: Apstra Controller and Device Agents (GUI) | 803

Show Tech: Offbox Agents (CLI) | 806

Show Tech: Infra Offbox Agents (CLI) | 807

Show Tech: Apstra Controller (CLI) | 807

Show Tech: Onbox Agents (CLI) | 809

Technical Support is available to all customers with a valid and current license for Juniper Apstra
software. This includes customers who have purchased a license directly or via a partner or reseller. This
also includes customers who have obtained an evaluation license. If your purchased or evaluation
license is expired, Juniper Support may not be able to offer support and will refer you to the appropriate
sales team to purchase a current license. For more information about working with Juniper Support,
refer to Guidelines & Policies.

If you require assistance with registration or with opening a technical support case via phone, call
Juniper Customer Care at +1-888-314-5822 (toll free, US & Canada). If you are outside the US or
Canada, call +1-408-745-9500 or a country number listed on the Contact Support page.

802

https://support.juniper.net/support/guidelines/
https://support.juniper.net/support/requesting-support/

To aid the support process, we ask that you provide Juniper Support with diagnostic information from
the Apstra environment. Separate show tech files are needed from the Apstra controller and from each
of the affected device agents. You can obtain show tech files, from the GUI (recommended) or the CLI,
as described in the next sections. You may also be asked for a "backup" on page 821 of your Apstra
database.

Show Tech: Apstra Controller and Device Agents (GUI)

You can collect show tech files for the Apstra controller and connected device agents (onbox and offbox)
from the Apstra GUI.

If you haven't configured local credentials for the Apstra controller, from the left navigation menu,
navigate to Platform > Apstra Cluster and edit the controller to configure credentials. These are the
credentials you use for the VM console or SSH.
1. From the left navigation menu, navigate to Platform > Technical Support and click Collect Show Tech

to see the dialog for selecting and collecting show tech files.

2. To collect show tech from the controller, leave the Apstra Controller check box selected.

NOTE: For Apstra server controllers with large databases, the operation may timeout. If this
happens, you must "collect show tech using the CLI" on page 807.

3. Starting in Apstra version 4.1.0, you can collect a show_tech from the Apstra GUI that includes a
copy of the backup. If Juniper Support requests a backup, check the Include Backup check box. This
backup provides information for Support and Engineering. It doesn't include credentials, so it's not
suitable for restoring your production environment. (Use backups from the "Back Up Apstra
Database" on page 821 procedure instead.)

4. Check the box for Managed Devices to see the list of managed devices (devices with agents that
have been acknowledged).

5. Select the devices that need show tech collected.

NOTE: When device show tech is collected, the configured device system agent username
and password authentication are used. If you've configured the device to use a different
authentication (AAA) method with a different username and password (such as RADIUS and
TACACS) you can't collect show tech from the Apstra GUI. You must "collect show tech with
CLI" on page 809.

803

6. Click Collect to start the collection process.

TIP: If the image below appears, you still need to configure local credentials on the node.
Click the link to go to the controller node screen, click the Edit button (right side), then enter

804

the username and password you use for the VM console or SSH.

7. After the jobs are complete and marked SUCCESS, click the download button for each of the files
(under Logs).

TIP: After the files have been downloaded, you can free up disk space by deleting jobs.

8. From a computer with the ability to upload, upload the show tech files to your customer case.

805

https://supportportal.juniper.net/

Show Tech: Offbox Agents (CLI)

We recommend that you use the Apstra GUI to obtain show tech files, but you have the option of using
CLI instead, as described below. You'll need the device management IP address(es) and a valid device
SSH username and password.

NOTE: If your offbox agents are for infra, you'll collect show tech with a different method. Refer
to "Show-Tech: Infra Offbox Agents (CLI)" on page 807 for details.

1. SSH into the Apstra server that the offbox agent is running on. (ssh admin@<apstra-server-ip> where
<apstra-server-ip> is the IP address of the Apstra server.)

2. To copy the show tech file(s) to your user directory, run the aos_offbox_show_tech_collector command
with the following arguments:

• --ips <ip address of one or more devices> (for example: 11.29.53.7 11.29.53.8 11.29.53.9)

• --aos-ip <ip address of the Apstra server> (for example: 11.29.53.3)

• --os-type <vendor OS type> (for example: junos)

• --user <admin user name> (for example: admin)

• --password <admin password> (for example: xu8&j3d'j1=dHnr)

Example for 3 Devices:

admin@aos-server:~$ sudo aos_offbox_show_tech_collector --ips 11.29.53.7 11.29.53.8
11.29.53.9 --aos-ip 11.29.53.3 --os-type junos --user admin
[sudo] password for admin:
SSH password for remote device:
2022-11-15 22:24:09,947 invoking DI container to collect 11.29.53.9 show tech
2022-11-15 22:25:32,778 AOS offbox show tech generated at /home/admin
2022-11-15 22:25:32,805 invoking DI container to collect 11.29.53.8 show tech
2022-11-15 22:26:45,773 AOS offbox show tech generated at /home/admin
2022-11-15 22:26:45,799 invoking DI container to collect 11.29.53.7 show tech
2022-11-15 22:27:55,811 AOS offbox show tech generated at /home/admin

admin@aos-server:~$ ls -l
total 217440
-rw-r--r-- 1 root root 75958 Nov 15 22:27 11.29.53.7-5254009E6B20-junos-show-tech.tar.gz
-rw-r--r-- 1 root root 76180 Nov 15 22:26 11.29.53.8-52540039A6F3-junos-show-tech.tar.gz
-rw-r--r-- 1 root root 107620 Nov 15 22:25 11.29.53.9-5254001A5CEB-junos-show-tech.tar.gz
-rw------- 1 root root 8737 Nov 15 22:27 aos_di_11.29.53.7_show_tech_run.log

806

-rw------- 1 root root 8614 Nov 15 22:26 aos_di_11.29.53.8_show_tech_run.log
-rw------- 1 root root 8491 Nov 15 22:25 aos_di_11.29.53.9_show_tech_run.log

admin@aos-server:~$

3. Copy the show tech file(s) to a local computer with the ability to upload.

4. Upload the show tech file to your customer case.

Show Tech: Infra Offbox Agents (CLI)

The instructions below are for collecting show tech files for infra offbox agents. If your offbox agents are
not for infra, refer to "Show Tech: Apstra Controller and Device Agents (GUI)" on page 803 or "Show
Tech: Apstra Offbox Agents (CLI)" on page 806.
1. SSH into the Apstra server that the offbox agent is running on. (ssh admin@<apstra-server-ip> where

<apstra-server-ip> is the IP address of the Apstra server.)

2. Run docker ps to get the name of the container (in the NAMES column).

3. Run the docker exec -ti <offbox_container_name> aos_show_tech command where <offbox_container_name> is
the name you retrieved when you ran docker ps. For example:

admin@aos-server:~$ docker exec -ti aos-offbox-172_20_47_6-f aos_show_tech
AOS show tech generated at /tmp/aos_show_tech_20200401_181128.tar.gz
admin@aos-server:~$

4. Using SCP, run the docker cp command to copy the show tech file from the offbox agent Docker
container to the /tmp directory of the Apstra server. For example:

admin@aos-server:~$ docker cp aos-offbox-172_20_47_6-f:/tmp/
aos_show_tech_20200401_181128.tar.gz .
admin@aos-server:~$ ls
aos_show_tech_20200401_181128.tar.gz docker.service.log
admin@aos-server:~$

5. Locate the file archive in the /tmp directory and copy it to a local computer with the ability to upload.
Then upload the show tech file to your customer case.

Show Tech: Apstra Controller (CLI)

We recommend using the "Apstra GUI" on page 803 to obtain Apstra server show tech files, but you
have the option of using the Apstra server Linux CLI instead, as described below.
1. SSH into the Apstra server. (ssh admin@<apstra-server-ip> where <apstra-server-ip> is the IP address of the

Apstra server.)

807

https://supportportal.juniper.net/
https://supportportal.juniper.net/

2. Run the sudo aos_show_tech command to generate and copy the show tech file to the current working
directory of the Apstra server. For example:

admin@aos-server:~$ sudo aos_show_tech
[sudo] password for admin:
Generating technical support data under directory /tmp/tmp.YmjuJDhatJ
--- collecting sysinfo/cpuinfo from /proc/cpuinfo ---
--- collecting network/etc_hosts from /etc/hosts ---
--- collecting aos/aos.conf from /etc/aos/aos.conf ---
--- collecting sysinfo/meminfo from /proc/meminfo ---
--- collecting sysinfo/vmstat from /proc/vmstat ---
--- collecting network/etc_hostname from /etc/hostname ---
--- collecting network/interfaces_config from /etc/network/interfaces ---
--- collecting network/resolv.conf from /etc/resolv.conf ---
--- collecting logs/kern_log from /var/log/kern.log* ---
--- collecting logs/syslog from /var/log/syslog* ---
--- collecting filesystem/aos_cachaca_db_usage with command: du -a /var/lib/aos/cachaca ---
--- collecting sysinfo/uptime with command: uptime ---
--- collecting filesystem/aos_db_usage with command: du -a /var/lib/aos/db ---
--- collecting filesystem/disk_free with command: df -h ---
[snip]
Remaining dump took 8.477 ms
2020-04-01 03:35:39,010 131:INFO:aos.infra.core.entity_util:Create partition mount factory
for partition Anomaly
Dumping entity (anomaly_sysdb_dump/Tac) took 0.389 ms
Dumping entity (anomaly_sysdb_dump/alert_aggregation) took 3.986 ms
Dumping entity (anomaly_sysdb_dump/streaming) took 0.173 ms
Dumping entity (anomaly_sysdb_dump/alerts) took 4.174 ms
Dumping entity (anomaly_sysdb_dump/counters) took 0.160 ms
Dumping entity (anomaly_sysdb_dump/telemetry_adaptor) took 0.156 ms
Dumping entity (anomaly_sysdb_dump/deployment) took 0.214 ms
Dumping entity (anomaly_sysdb_dump/device) took 0.675 ms
Dumping entity (anomaly_sysdb_dump/cachaca) took 0.144 ms
Dumping entity (anomaly_sysdb_dump/var) took 0.201 ms
Skipping SysDB dump
Archiving show tech data into aos_show_tech_20200401_033431.tar.gz
Removing working directory /tmp/tmp.YmjuJDhatJ
All done.
admin@aos-server:~$

3. Locate the file archive in the /tmp directory (for example, aos_show_tech_20200401_033431.tar.gz), and via
SCP, copy the file to a local computer with the ability to upload.

808

4. Upload the show tech file to your customer case.

Show Tech: Onbox Agents (CLI)

We recommend using the "Apstra GUI" on page 803 to obtain onbox agent show tech files, but you have
the option of using the Apstra server Linux CLI instead, as described below.

1. SSH to the device.

2. For Arista only, run bash to go the Arista Networks EOS shell.

3. For Cisco only, run guestshell.

4. From the device, run the sudo aos_show_tech --platform <platform> command where <platform> is the
platform you're using: eos, nxos, or sonic. The file is generated and copied to the /tmp directory. See
below for SONiC example:

admin@l2-virtual-ext-001-leaf1:mgmt-vrf:~$ sudo aos_show_tech --platform sonic
AOS show tech generated at /tmp/aos_show_tech_20200401_034527.tar.gz
admin@l2-virtual-ext-001-leaf1:mgmt-vrf:~$

5. Locate the file archive in the /tmp directory (for example, aos_show_tech_20200401_034527.tar.gz) and copy
it, via SCP, to a local computer with the ability to upload.

6. Upload the show tech file to your customer case.

Favorites & User

IN THIS SECTION

Manage Favorites | 810

Change Your User Password | 811

Change Your User Name/Email | 811

Log Out | 812

You can return quickly to frequently visited pages by saving them as favorites. From your user profile
page, you can manage favorites, change your password, username and email; and log out of the Apstra
software.

809

https://supportportal.juniper.net/
https://supportportal.juniper.net/

Manage Favorites

• To add a favorite - click the star in the upper-left corner of the page to save. Leave the default name
or rename it, then click Add. The outlined star becomes a shaded star to indicate that it is saved as a
favorite.

• To remove a favorite - click the shaded star on the saved page. The star becomes an outline.

• To go to your list of favorites from anywhere in the Apstra GUI, click Favorites in the left navigation
menu.

• To go to a favorite page from the Favorites menu - click its name. Up to five saved pages appear in
the drop-down list.

• To go to to your list of favorites from the Favorites menu - click Show more to go to your profile
page where you can link to all favorite pages and change their names.

• To go to your profile page to see all your favorites, click your user name in the left navigation menu
(bottom), then click Profile.

• To go to a favorite page from your profile page - click its link.

• To change the name of a link from your profile page - click the Edit label button, change the name,
then click Update.

810

• To remove a favorite page from your profile page - click the Remove button (trash can) and click
Delete.

Change Your User Password

1. From any page, click your username in the left navigation menu (bottom) and click Profile to see your
profile page.

2. Click the Change Password button (top-right), enter your current password, then enter your new
password that meets password complexity requirements, twice.

3. Click Change Password to update your password and return to your profile.

Change Your User Name/Email

1. From any page, click your username in the left navigation menu (bottom) and click Profile to go to
your profile page.

2. Click the Edit button (top-right), then change your name and/or email, as applicable.

3. Click Save to update your details and return to your profile.

811

Log Out

From any page, click your username in the left navigation menu (bottom) and click Log Out. Your viewing
preferences are saved so when you log in again, you'll have the same customized views. Preferences can
include visible fields shown in tables, your preferred topology view (2D, 3D), and whether to show links.

Apstra Server Management

IN THIS SECTION

Monitor Apstra Server via CLI | 813

Restart Apstra Server | 814

Reset Apstra Server VM Password | 814

Reinstall Apstra Server | 819

Apstra Database Overview | 820

Back up Apstra Database | 821

Restore Apstra Database | 822

Reset Apstra Database | 827

812

Migrate Apstra Database | 827

Replace SSL Certificate on Apstra Server with Signed One | 832

Replace SSL Certificate on Apstra Server with Self-Signed One | 834

Change Apstra Server Hostname | 836

The following sections include information about managing the Apstra server.

For information about installing and upgrading the Apstra server, see the Juniper Apstra Installation and
Upgrade Guide.

Monitor Apstra Server via CLI

1. To check general status from the Apstra server CLI, run the command sudo service aos status.

admin@aos-server:~$ sudo service aos status
* aos.service - LSB: Start AOS management system
 Loaded: loaded (/etc/init.d/aos; generated)
 Active: active (exited) since Tue 2020-07-28 00:35:38 UTC; 2h 13min ago
 Docs: man:systemd-sysv-generator(8)
 Tasks: 0 (limit: 4915)
 CGroup: /aos.service

Jul 28 00:35:35 aos-server systemd[1]: Starting LSB: Start AOS management system...
Jul 28 00:35:36 aos-server aos[1040]: net.core.wmem_max = 33554432
Jul 28 00:35:37 aos-server aos[1040]: Creating aos_sysdb_1 ...
Jul 28 00:35:37 aos-server aos[1040]: Creating aos_nginx_1 ...
Jul 28 00:35:37 aos-server aos[1040]: Creating aos_auth_1 ...
Jul 28 00:35:37 aos-server aos[1040]: Creating aos_controller_1 ...
Jul 28 00:35:37 aos-server aos[1040]: Creating aos_metadb_1 ...
Jul 28 00:35:38 aos-server aos[1040]: [240B blob data]
Jul 28 00:35:38 aos-server systemd[1]: Started LSB: Start AOS management system.
admin@aos-server:~$

813

https://www.juniper.net/documentation/us/en/software/apstra4.1/apstra-install-upgrade/index.html
https://www.juniper.net/documentation/us/en/software/apstra4.1/apstra-install-upgrade/index.html

2. To troubleshoot, run the aos_controller_health_check script. It searches for known error signatures in the
Apstra server logs (such as agent crashes) and returns the output. If no errors are found, no output is
returned. See below for sample command.

admin@aos-server:~$ docker exec aos_controller_1 aos_controller_health_check
admin@aos-server:~$

Restart Apstra Server

To restart the Apstra server you can reboot the VM or run the following commands.
1. Run the command sudo service aos stop.

When the Apstra server is down, device agents may temporarily log "liveness" telemetry alarms.

2. Run the command sudo service aos start.

admin@aos-server:~$ sudo service aos stop
admin@aos-server:~$ sudo service aos start
admin@aos-server:~$

After services are restored (in a minute or two) the "liveness" telemetry alarm resets.

Reset Apstra Server VM Password

If you lose your admin password for the Apstra server VM, and you still have console access to the
Apstra server VM, you can reset your password.

1. Attach to the Apstra server console and send a "reset" signal to the VM. To access the GRUB menu,
immediately press the esc or shift key in the console on reboot.

814

2. Select Advanced options for Ubuntu.

815

3. Enter username admin and password apstra.

816

4. At the next GRUB menu, select the first (recovery mode) option.

817

5. From the Recovery Menu, select root, then press Enter to enter a root shell prompt.

6. At the root shell prompt run the command mount -o rw,remount /.

7. Run the command passwd admin to reset the default CLI password for admin.

8. Run the command sync.

9. Run the command reboot to reboot the Apstra server VM. (Your deployed fabric is not affected.)

818

After reboot, you can log in to the Apstra server VM Linux CLI as user admin with the new password.

Reinstall Apstra Server

CAUTION: Reinstalling the Apstra server removes ALL Apstra data from the Apstra
server VM and reinstalls a fresh version. Use with care. This is mostly helpful for proof
of concepts or demo installs. If you have problems that require you to reinstall the
software, contact "Juniper Technical Support" on page 802.

1. If you want to retain the Apstra database, "back it up" on page 821 now.

2. Download the "Installer" .run file from Juniper Support Downloads.

3. Run the command service aos stop to stop Apstra service, if possible.

admin@aos-server:~$ sudo service aos stop
admin@aos-server:~$

819

https://support.juniper.net/support/downloads/?p=afc

4. Delete the Apstra server database.

admin@aos-server:~$ sudo rm -rf /var/lib/aos/db/*
admin@aos-server:~$

5. Remove the aos-compose package.

admin@aos-server:~$ sudo dpkg -r aos-compose
(Reading database ... 110457 files and directories currently installed.)
Removing aos-compose (3.3.0-660) ...
Processing triggers for ureadahead (0.100.0-21) ...
Processing triggers for systemd (237-3ubuntu10.41) ...
admin@aos-server:~$

6. Reinstall the Apstra software from the .run file.

admin@aos-server:~$ sudo bash aos_3.3.0-662.run
Verifying archive integrity... All good.
Uncompressing AOS installer 100%
610bd1ae69b7: Loading layer [==>] 52.44MB/
52.44MB
87db235c4ff8: Loading layer [==>] 211.3MB/
211.3MB
668b88b6cd3d: Loading layer [==>] 117.3MB/
117.3MB
b1dd55ca7fd9: Loading layer [==>] 20.63MB/
20.63MB
3f8ebc7f1fae: Loading layer [==>] 4.608kB/
4.608kB
Loaded image: aos:3.3.0-662
AOS[2020-07-28_02:58:36]: Installing AOS 3.3.0-662 package
admin@aos-server:~$

You can now "restore" on page 822 a database backup or build a new blueprint.

Apstra Database Overview

The Apstra server and related databases run in Docker containers. The database is stored in a single
folder in the Apstra server at /var/lib/aos/db. You can copy the database between Apstra servers.

820

Source and Target database versions must be the same version. If versions are different, contact "Juniper
Technical Support" on page 802 for assistance before proceeding.

To ensure that device agents can 'call home' properly after database restoration, Source and Target must
have the same IP address when starting the Apstra server, You can restore the software to a different IP
address, but then you must reconfigure each device agent (/mnt/flash/aos-config, /etc/aos/aos.conf) to point
to the new Apstra server IP address.

CAUTION: Any changes you make within the Apstra server are not stored in the
backup.

Back up Apstra Database

You can back up the database while the Apstra server is running. Device/OS image information is not
included in backups. When restoring a database, any device/OS image information is discarded.

Disable any active IBA probes and wait until any DB "write" tasks have completed before backing up
your database.
1. Run the command aos_backup to back up the database. Backups are saved as dated snapshots

(/var/lib/aos/snapshot/<date>/aos.data.tar.gz) in the Apstra server.

If all IBA probes have been disabled and all "write" tasks have completed, the following message
appears.

admin@aos-server:~$ sudo aos_backup
==
 Backup operation completed successfully.
==
New AOS snapshot: 2021-07-28_20-56-26
admin@aos-server:~$

If many IBA probes are enabled or if any other DB "write" tasks are in progress, they may not be
included in the backup, and the following message appears.

admin@aos-server:~$ sudo aos_backup
===
Warning:
 Backup operation has been completed successfully. However AOS state
has been changed while this script was running, which means some
changes might not have been captured in the snapshot created in this
backup. You may choose to invoke aos_backup script again if you wish

821

to capture these changes right now instead of waiting for the next
backup operation.
===
New AOS snapshot: 2021-12-06_16-15-57
admin@aos-server:~$

If this message appears, disable your IBA probes and run the aos_backup command again.

2. Backups are stored on the Apstra server itself. If the server needs to be restored or if its disk image
becomes corrupt, any backups/restores are lost along with the Apstra server. We recommend that
you periodically move backups/restores off of the Apstra server to a secure location. Also, if you've
scheduled cron jobs to periodically backup the database, make sure to rotate those files off of the
Apstra server to keep the Apstra server VM disk from becoming full. Copy the contents of the
snapshot directory to your backup infrastructure.

admin@aos-server:~$ sudo ls -lah /var/lib/aos/snapshot/
total 20K
drwx------ 5 root root 4.0K Jul 28 20:58 .
drwxr-xr-x 7 root root 4.0K Jul 28 02:43 ..
drwx------ 2 root root 4.0K Jul 28 02:43 2021-07-28_02-43-12
drwx------ 2 root root 4.0K Jul 28 20:56 2021-07-28_20-56-26
drwx------ 2 root root 4.0K Jul 28 20:58 2021-07-28_20-58-54
admin@aos-server:~$

Restore Apstra Database

CAUTION: Always restore a database from a new "backup" on page 821, never from
older backups or from the backup included in a show_tech.

If you make changes after you back up the database, those changes aren't included in
the restore. This could create differences between device configs and the Apstra
environment. If this happens, you must perform a full config push, which is service-
impacting.

Don't restore a database using the backup included in a show_tech. Juniper Support and
Engineering use it for analysis. It doesn't include credentials, so it's not suitable for
restoring your production environment.

822

https://kb.juniper.net/InfoCenter/index?page=content&id=KB37808

NOTE: If you're restoring a backup to a new Apstra server that uses a different network interface
for access (eth1 vs eth0 for example), you must update the metadb variable in the [controller]
section of the /etc/aos/aos.conf configuration file, then restart the Apstra server.

1. Verify that the contents of the snapshot folder are on the filesystem. In the example below, we have
copied the restoration data to /tmp/aos_test_restore.

admin@aos-server:~$ sudo ls -lah /var/lib/aos/snapshot/2021-07-28_20-56-26/
total 21M
drwx------ 2 root root 4.0K Jul 28 20:56 .
drwx------ 5 root root 4.0K Jul 28 20:58 ..
-rw------- 1 root root 21M Jul 28 20:56 aos.data.tar.gz
-rwxr-xr-x 1 root root 1.3K Jul 28 20:56 aos_restore
-rw------- 1 root root 1 Jul 28 20:56 comment.txt
admin@aos-server:~$

2. Run the aos_restore command as illustrated below. The restore process first backs up the current
database.

admin@aos-server:~$ sudo bash /var/lib/aos/snapshot/2021-07-28_20-56-26/aos_restore
==
 Backup operation completed successfully.
==
New AOS snapshot: 2020-07-28_20-58-54
(Reading database ... 110457 files and directories currently installed.)
Removing aos-compose (3.3.0-660) ...
Processing triggers for ureadahead (0.100.0-21) ...
Processing triggers for systemd (237-3ubuntu10.41) ...
tar: Removing leading `/' from member names
/etc/aos/aos.conf
/etc/aos-credential/secret_key
/var/lib/aos/db/
/var/lib/aos/db/_Main-000000005f1f7314-000dd7b1-checkpoint
/var/lib/aos/db/_AosController-000000005f1f7314-00035dd2-checkpoint-valid
/var/lib/aos/db/_Central-000000005f1f7313-000ab5f7-checkpoint-valid
/var/lib/aos/db/_Metadb-000000005f1f7312-000a27e1-checkpoint
/var/lib/aos/db/_AosSysdb-000000005f1f7312-000a31be-checkpoint-valid
/var/lib/aos/db/_Credential-000000005f1f7312-000ea6ba-log
/var/lib/aos/db/_Central-000000005f1f7313-000ab5f7-log

823

/var/lib/aos/db/_Auth-000000005f1f7313-0001e8cf-log-valid
/var/lib/aos/db/_Metadb-000000005f1f7312-000a27e1-log-valid
/var/lib/aos/db/_Auth-000000005f1f7313-0001e8cf-checkpoint-valid
/var/lib/aos/db/_Metadb-000000005f1f7312-000a27e1-checkpoint-valid
/var/lib/aos/db/_Main-000000005f1f7314-000dd7b1-log
/var/lib/aos/db/_Auth-000000005f1f7313-0001e8cf-log
/var/lib/aos/db/_Metadb-000000005f1f7312-000a27e1-log
/var/lib/aos/db/_AosSysdb-000000005f1f7312-000a31be-log-valid
/var/lib/aos/db/_AosAuth-000000005f1f7312-000a0e46-log-valid
/var/lib/aos/db/_AosSysdb-000000005f1f7312-000a31be-log
/var/lib/aos/db/blueprint_backups/
/var/lib/aos/db/blueprint_backups/37321b9c-25b1-4111-849b-522a3852949d/
/var/lib/aos/db/blueprint_backups/37321b9c-25b1-4111-849b-522a3852949d/48/
/var/lib/aos/db/blueprint_backups/37321b9c-25b1-4111-849b-522a3852949d/48/graph.json.zip
/var/lib/aos/db/blueprint_backups/37321b9c-25b1-4111-849b-522a3852949d/48/graph.md5sum
/var/lib/aos/db/_Credential-000000005f1f7312-000ea6ba-log-valid
/var/lib/aos/db/_Credential-000000005f1f7312-000ea6ba-checkpoint
/var/lib/aos/db/_Main-000000005f1f7314-000dd7b1-checkpoint-valid
/var/lib/aos/db/_Central-000000005f1f7313-000ab5f7-log-valid
/var/lib/aos/db/_AosController-000000005f1f7314-00035dd2-log-valid
/var/lib/aos/db/_AosAuth-000000005f1f7312-000a0e46-checkpoint-valid
/var/lib/aos/db/_AosSysdb-000000005f1f7312-000a31be-checkpoint
/var/lib/aos/db/_AosController-000000005f1f7314-00035dd2-checkpoint
/var/lib/aos/db/_AosAuth-000000005f1f7312-000a0e46-checkpoint
/var/lib/aos/db/.devpi/
/var/lib/aos/db/.devpi/server/
/var/lib/aos/db/.devpi/server/.nodeinfo
/var/lib/aos/db/.devpi/server/.secret
/var/lib/aos/db/.devpi/server/.sqlite
/var/lib/aos/db/.devpi/server/.serverversion
/var/lib/aos/db/.devpi/server/.event_serial
/var/lib/aos/db/_AosController-000000005f1f7314-00035dd2-log
/var/lib/aos/db/_Main-000000005f1f7314-000dd7b1-log-valid
/var/lib/aos/db/_Central-000000005f1f7313-000ab5f7-checkpoint
/var/lib/aos/db/_Auth-000000005f1f7313-0001e8cf-checkpoint
/var/lib/aos/db/_Credential-000000005f1f7312-000ea6ba-checkpoint-valid
/var/lib/aos/db/_AosAuth-000000005f1f7312-000a0e46-log
/var/lib/aos/anomaly/
/var/lib/aos/anomaly/_Anomaly-000000005f1f7313-00060aba-log
/var/lib/aos/anomaly/_Anomaly-000000005f1f7313-00060aba-checkpoint-valid
/var/lib/aos/anomaly/_Anomaly-000000005f1f7313-00060aba-log-valid
/var/lib/aos/anomaly/_Anomaly-000000005f1f7313-00060aba-checkpoint
/opt/aos/aos-compose.deb

824

/opt/aos/frontend_images/
/opt/aos/frontend_images/aos-web-ui.zip
Selecting previously unselected package aos-compose.
(Reading database ... 110440 files and directories currently installed.)
Preparing to unpack /opt/aos/aos-compose.deb ...
Unpacking aos-compose (3.3.0-660) ...
Setting up aos-compose (3.3.0-660) ...
Processing triggers for ureadahead (0.100.0-21) ...
Processing triggers for systemd (237-3ubuntu10.41) ...
Starting aos_sysdb_1 ... done
Starting aos_controller_1 ... done
Starting aos_nginx_1 ... done
Starting aos_auth_1 ... done
Starting aos_metadb_1 ... done
admin@aos-server:~$

3. When the database has been restored and migrated to a new server, the entire system state has
been copied from the backed up installation to the new target. Run the command service aos status to
validate the restoration.

admin@aos-server:~$ sudo service aos status
* aos.service - LSB: Start AOS management system
 Loaded: loaded (/etc/init.d/aos; generated)
 Active: inactive (dead)
 Docs: man:systemd-sysv-generator(8)

Jul 28 00:36:32 aos-server aos[1078]: [240B blob data]
Jul 28 00:36:32 aos-server systemd[1]: Started LSB: Start AOS management system.
Jul 28 02:45:45 aos-server systemd[1]: Stopping LSB: Start AOS management system...
Jul 28 02:45:46 aos-server aos[4968]: Stopping aos_controller_1 ...
Jul 28 02:45:46 aos-server aos[4968]: Stopping aos_metadb_1 ...
Jul 28 02:45:46 aos-server aos[4968]: Stopping aos_auth_1 ...
Jul 28 02:45:46 aos-server aos[4968]: Stopping aos_sysdb_1 ...
Jul 28 02:45:46 aos-server aos[4968]: Stopping aos_nginx_1 ...
Jul 28 02:45:58 aos-server aos[4968]: [240B blob data]
Jul 28 02:45:58 aos-server systemd[1]: Stopped LSB: Start AOS management system.
admin@aos-server:~$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
8bc9c1dd7a3a aos:3.3.0-660 "/usr/bin/aos_launch…" About a minute ago
Up About a minute iba141638ea
b0191320d2bd aos:3.3.0-660 "/usr/sbin/aos_launc…" About a minute ago

825

Up About a minute aos-offbox-172_20_34_8-f
136736759f45 aos:3.3.0-660 "/usr/sbin/aos_launc…" About a minute ago
Up About a minute aos-offbox-172_20_34_10-f
00a12eb03ae5 aos:3.3.0-660 "/usr/sbin/aos_launc…" About a minute ago
Up About a minute aos-offbox-172_20_34_11-f
c9b18cd4f55a aos:3.3.0-660 "/usr/sbin/aos_launc…" About a minute ago
Up About a minute aos-offbox-172_20_34_7-f
90f35781d2a0 aos:3.3.0-660 "/usr/sbin/aos_launc…" About a minute ago
Up About a minute aos-offbox-172_20_34_12-f
f5c2d249176b aos:3.3.0-660 "/usr/sbin/aos_launc…" About a minute ago
Up About a minute aos-offbox-172_20_34_9-f
ab6c532a37ad aos:3.3.0-660 "/usr/bin/aos_launch…" 20 hours ago
Up 2 minutes aos_controller_1
8e6fd8ae8f08 aos:3.3.0-660 "/usr/bin/aos_launch…" 20 hours ago
Up 2 minutes aos_metadb_1
5b6359e21386 aos:3.3.0-660 "/usr/bin/aos_launch…" 20 hours ago
Up 2 minutes aos_auth_1
f665ce206f46 aos:3.3.0-660 "/usr/bin/aos_launch…" 20 hours ago
Up 2 minutes aos_sysdb_1
335dec5fba44 nginx:1.14.2-upload-echo "nginx -g 'daemon of…" 20 hours ago
Up 2 minutes aos_nginx_1
admin@aos-server:~$

4. The database is stored on the Apstra server itself. If the server needs to be restored or if its disk
image becomes corrupt, any backups/restores are lost along with the Apstra server. We recommend
that you periodically move backups/restores off of the Apstra server to a secure location. Also, if
you've scheduled cron jobs to periodically backup the database, make sure to rotate those files off of
the Apstra server to keep the Apstra server VM disk from becoming full. Copy the contents of the
snapshot directory to your backup infrastructure.

admin@aos-server:~$ sudo ls -lah /var/lib/aos/snapshot/
total 20K
drwx------ 5 root root 4.0K Jul 28 20:58 .
drwxr-xr-x 7 root root 4.0K Jul 28 02:43 ..
drwx------ 2 root root 4.0K Jul 28 02:43 2021-07-28_02-43-12
drwx------ 2 root root 4.0K Jul 28 20:56 2021-07-28_20-56-26
drwx------ 2 root root 4.0K Jul 28 20:58 2021-07-28_20-58-54
admin@aos-server:~$

826

https://kb.juniper.net/InfoCenter/index?page=content&id=KB37808

Reset Apstra Database

The commands below delete all data on the Apstra server to a fresh state.
1. Run the command service aos stop.

2. Run the command rm -rf /var/lib/aos/db/*.

3. Run the command service aos start.

admin@aos-server:~$ sudo service aos stop
admin@aos-server:~$ sudo rm -rf /var/lib/aos/db/*
admin@aos-server:~$ sudo service aos start
admin@aos-server:~$

Migrate Apstra Database

CAUTION: If you bring up a new Apstra server with the same IP address as your old
Apstra server without any configuration, when the device agents re-register with the
new Apstra server they will revert to an unconfigured "Quarantined" state. You must
isolate the new Apstra server from the network while you change its IP address, restore
the database and restart the Apstra server.

If you want to maintain the same IP address on the new Apstra server, then bring up a new Apstra
server VM (with the same version as the original Apstra server) with a temporary IP address. After
migrating an aos_backup to the new Apstra server, the original Apstra server will be shut down and the IP
address will be changed to the original IP address on the new server. We recommend this process if
you're using onbox device system agents.

If you want to use a new IP address on the new Apstra server, you must manually reconfigure the
aos.conf file for each onbox device system agent. This is not required for offbox device system agents.

To migrate an active instance from one server to another:

1. Run the command sudo aos_backup to back up the original Apstra server.

admin@aos-server:~$ sudo aos_backup
==
 Backup operation completed successfully.
==

827

New AOS snapshot: 2020-07-27_22-49-34
admin@aos-server:~$

2. Copy the snapshot to the new server using a temporary IP address on the new Apstra server.

3. Compress and move the snapshot directory to the new Apstra server. This example uses the scp
command to copy the file to the new Apstra server using a different IP address.

admin@aos-server:~$ sudo tar zcvf aos_backup.tar.gz /var/lib/aos/snapshot/2020-07-27_22-49-3
2020-07-27_22-49-34/
2020-07-27_22-49-34/comment.txt
2020-07-27_22-49-34/aos_restore
2020-07-27_22-49-34/aos.data.tar.gz
admin@aos-server:~$ sudo chown admin:admin aos_backup.tar.gz
admin@aos-server:~$ scp aos_backup.tar.gz admin@172.20.203.4:
Apstra Operating System (AOS) Virtual Appliance

Password:
aos_backup.tar.gz 100% 20MB 140.9MB/s 00:00
admin@aos-server:~$

4. After the snapshot has been removed from the old Apstra server, stop service (or completely shut
down the Apstra server VM) to disconnect the old Apstra server.

admin@aos-server:~$ sudo service aos stop
admin@aos-server:~$

5. If you want to use the same IP address, you must manually reconfigure the eth0 interface on the new
Apstra server to the IP address of the old Apstra server. For more information, see the Configuration
section of the Juniper Apstra Installation and Upgrade guide.

6. On the new Apstra server, uncompress the tar.gz file.

admin@aos-server:~$ tar zxvf aos_backup.tar.gz
2020-07-27_22-49-34/
2020-07-27_22-49-34/comment.txt
2020-07-27_22-49-34/aos_restore
2020-07-27_22-49-34/aos.data.tar.gz
admin@aos-server:~$

828

7. Run the command aos_restore to restore the database on the new Apstra server. This command
automatically starts the service after restoring the database.

admin@aos-server:~$ cd 2020-07-27_22-49-34
admin@aos-server:~/2020-07-27_22-49-34$ sudo bash aos_restore
[sudo] password for admin:
==
 Backup operation completed successfully.
==
New AOS snapshot: 2020-07-27_23-07-13
Stopping aos_sysdb_1 ... done
Stopping aos_auth_1 ... done
Stopping aos_controller_1 ... done
Stopping aos_nginx_1 ... done
Stopping aos_metadb_1 ... done
(Reading database ... 110457 files and directories currently installed.)
Removing aos-compose (3.3.0-658) ...
Processing triggers for ureadahead (0.100.0-21) ...
Processing triggers for systemd (237-3ubuntu10.41) ...
tar: Removing leading `/' from member names
/etc/aos/aos.conf
/etc/aos-credential/secret_key
/var/lib/aos/db/
/var/lib/aos/db/_AosController-000000005f1f376f-0003998b-checkpoint
/var/lib/aos/db/_AosSysdb-000000005f1f376d-000a90ba-log-valid
/var/lib/aos/db/_Main-000000005f1f376f-000569a8-checkpoint
/var/lib/aos/db/_Central-000000005f1f376e-000da3de-checkpoint-valid
/var/lib/aos/db/_Central-000000005f1f376e-000da3de-log
/var/lib/aos/db/_Main-000000005f1f376f-000569a8-log-valid
/var/lib/aos/db/_AosAuth-000000005f1f376d-000a40ff-log
/var/lib/aos/db/_Auth-000000005f1f376e-000f2d35-log-valid
/var/lib/aos/db/_Auth-000000005f1f376e-000f2d35-checkpoint-valid
/var/lib/aos/db/_Metadb-000000005f1f376d-000cb9a9-checkpoint-valid
/var/lib/aos/db/_Central-000000005f1f376e-000da3de-checkpoint
/var/lib/aos/db/_Metadb-000000005f1f376d-000cb9a9-log
/var/lib/aos/db/_Credential-000000005f1f376e-000d740e-log-valid
/var/lib/aos/db/_AosAuth-000000005f1f376d-000a40ff-checkpoint-valid
/var/lib/aos/db/_Metadb-000000005f1f376d-000cb9a9-checkpoint
/var/lib/aos/db/_Main-000000005f1f376f-000569a8-log
/var/lib/aos/db/_AosSysdb-000000005f1f376d-000a90ba-checkpoint-valid
/var/lib/aos/db/_AosController-000000005f1f376f-0003998b-log-valid
/var/lib/aos/db/_Auth-000000005f1f376e-000f2d35-checkpoint

829

/var/lib/aos/db/_AosSysdb-000000005f1f376d-000a90ba-log
/var/lib/aos/db/_AosSysdb-000000005f1f376d-000a90ba-checkpoint
/var/lib/aos/db/_AosAuth-000000005f1f376d-000a40ff-log-valid
/var/lib/aos/db/blueprint_backups/
/var/lib/aos/db/blueprint_backups/6b90ccfd-a1e0-4473-83e7-d62bce24635f/
/var/lib/aos/db/blueprint_backups/6b90ccfd-a1e0-4473-83e7-d62bce24635f/47/
/var/lib/aos/db/blueprint_backups/6b90ccfd-a1e0-4473-83e7-d62bce24635f/47/graph.json.zip
/var/lib/aos/db/blueprint_backups/6b90ccfd-a1e0-4473-83e7-d62bce24635f/47/graph.md5sum
/var/lib/aos/db/_Central-000000005f1f376e-000da3de-log-valid
/var/lib/aos/db/_Auth-000000005f1f376e-000f2d35-log
/var/lib/aos/db/_Credential-000000005f1f376e-000d740e-log
/var/lib/aos/db/_Credential-000000005f1f376e-000d740e-checkpoint
/var/lib/aos/db/_Credential-000000005f1f376e-000d740e-checkpoint-valid
/var/lib/aos/db/.devpi/
/var/lib/aos/db/.devpi/server/
/var/lib/aos/db/.devpi/server/.nodeinfo
/var/lib/aos/db/.devpi/server/.secret
/var/lib/aos/db/.devpi/server/.sqlite
/var/lib/aos/db/.devpi/server/.serverversion
/var/lib/aos/db/.devpi/server/.event_serial
/var/lib/aos/db/_AosController-000000005f1f376f-0003998b-log
/var/lib/aos/db/_Main-000000005f1f376f-000569a8-checkpoint-valid
/var/lib/aos/db/_Metadb-000000005f1f376d-000cb9a9-log-valid
/var/lib/aos/db/_AosAuth-000000005f1f376d-000a40ff-checkpoint
/var/lib/aos/db/_AosController-000000005f1f376f-0003998b-checkpoint-valid
/var/lib/aos/anomaly/
/var/lib/aos/anomaly/_Anomaly-000000005f1f36a4-000aaa68-checkpoint-valid
/var/lib/aos/anomaly/_Anomaly-000000005f1f331b-0000e8eb-checkpoint
/var/lib/aos/anomaly/_Anomaly-000000005f1f376f-00002176-checkpoint
/var/lib/aos/anomaly/_Anomaly-000000005f1f376f-00002176-log
/var/lib/aos/anomaly/_Anomaly-000000005f1f331b-0000e8eb-log
/var/lib/aos/anomaly/_Anomaly-000000005f1f2abc-0000a867-log
/var/lib/aos/anomaly/_Anomaly-000000005f1f331b-0000e8eb-checkpoint-valid
/var/lib/aos/anomaly/_Anomaly-000000005f1f2abc-0000a867-checkpoint
/var/lib/aos/anomaly/_Anomaly-000000005f1f36a4-000aaa68-checkpoint
/var/lib/aos/anomaly/_Anomaly-000000005f1f376f-00002176-log-valid
/var/lib/aos/anomaly/_Anomaly-000000005f1f36a4-000aaa68-log
/var/lib/aos/anomaly/_Anomaly-000000005f1f331b-0000e8eb-log-valid
/var/lib/aos/anomaly/_Anomaly-000000005f1f2abc-0000a867-checkpoint-valid
/var/lib/aos/anomaly/_Anomaly-000000005f1f2abc-0000a867-log-valid
/var/lib/aos/anomaly/_Anomaly-000000005f1f36a4-000aaa68-log-valid
/var/lib/aos/anomaly/_Anomaly-000000005f1f376f-00002176-checkpoint-valid
/opt/aos/aos-compose.deb

830

/opt/aos/frontend_images/
/opt/aos/frontend_images/aos-web-ui.zip
Selecting previously unselected package aos-compose.
(Reading database ... 110440 files and directories currently installed.)
Preparing to unpack /opt/aos/aos-compose.deb ...
Unpacking aos-compose (3.3.0-658) ...
Setting up aos-compose (3.3.0-658) ...
Processing triggers for ureadahead (0.100.0-21) ...
Processing triggers for systemd (237-3ubuntu10.41) ...
Starting aos_nginx_1 ... done
Starting aos_sysdb_1 ... done
Starting aos_controller_1 ... done
Starting aos_metadb_1 ... done
Starting aos_auth_1 ... done
admin@aos-server:~/2020-07-27_22-49-34$

8. Run the command service aos status and verify that the Apstra server is running.

admin@aos-server:~/2020-07-27_22-49-34$ service aos status
* aos.service - LSB: Start AOS management system
 Loaded: loaded (/etc/init.d/aos; generated)
 Active: active (exited) since Mon 2020-07-27 20:23:09 UTC; 2h 45min ago
 Docs: man:systemd-sysv-generator(8)
 Tasks: 0 (limit: 4915)
 CGroup: /aos.service
admin@aos-server:~/2020-07-27_22-49-34$

831

9. From the Apstra GUI, from the left navigation menu, navigate to Devices > Managed Devices to
verify that your devices are online in the "Active" state.

Replace SSL Certificate on Apstra Server with Signed One

When you boot up the Apstra server for the first time, a unique self-signed certificate is automatically
generated and stored on the Apstra server at /etc/aos/nginx.conf.d (nginx.crt is the public key for the
webserver and nginx.key is the private key.) The certificate is used for encrypting the Apstra server and
REST API. It's not for any internal device-server connectivity. Since the HTTPS certificate is not retained
when you back up the system, you must manually back up the etc/aos folder. We recommend replacing
the default SSL certificate. Web server certificate management is the responsibility of the end user.
Juniper support is best effort only.

1. Back up the existing OpenSSL keys.

admin@aos-server:/$ sudo -s
[sudo] password for admin:

root@aos-server:/# cd /etc/aos/nginx.conf.d
root@aos-server:/etc/aos/nginx.conf.d# cp nginx.crt nginx.crt.old
root@aos-server:/etc/aos/nginx.conf.d# cp nginx.key nginx.key.old

832

2. Create a new OpenSSL private key with the built-in openssl command.

root@aos-server:/etc/aos/nginx.conf.d# openssl genrsa -out nginx.key 2048
Generating RSA private key, 2048 bit long modulus
.............+++
......+++
e is 65537 (0x10001)

CAUTION: Don't modify nginx.crt or nginx.key filenames. They're referred to in
nginx.conf. As part of subsequent service upgrades, these files could be replaced, so the
filenames must be predictable.

Also, don't change configuration in nginx.conf, as this file may be replaced during Apstra
server upgrade, and any changes you make would be discarded.

3. Create a certificate signing request. If you want to create a signed SSL certificate with a Subjective
Alternative Name (SAN) for your Apstra server HTTPS service, you must manually create an
OpenSSL template. For details, see Juniper Support Knowledge Base article KB37299.

CAUTION: If you have created custom OpenSSL configuration files for advanced
certificate requests, don't leave them in the Nginx configuration folder. On startup,
Nginx will attempt to load them (*.conf), causing a service failure.

root@aos-server:/etc/aos/nginx.conf.d# openssl req -new -sha256 -key nginx.key -out nginx.csr
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:California
Locality Name (eg, city) []:Menlo Park
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Apstra, Inc
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:aos-server.apstra.com
Email Address []:support@apstra.com

833

https://kb.juniper.net/KB37299

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

4. Submit your Certificate Signing Request (nginx.csr) to your Certificate Authority. The required steps
are outside the scope of this document; CA instructions differ per implementation. Any valid SSL
certificate will work. The example below is for self-signing the certificate.

root@aos-server:/etc/aos/nginx.conf.d# openssl req -x509 -sha256 -days 3650 -key nginx.key -
in nginx.csr -out nginx.crt
root@aos-server:/etc/aos/nginx.conf.d#

5. Verify that the SSL certificates match: private key, public key, and CSR.

root@aos-server:/etc/aos/nginx.conf.d# openssl rsa -noout -modulus -in nginx.key | openssl md5
(stdin)= 60ac4532a708c98d70fee0dbcaab1e75

root@aos-server:/etc/aos/nginx.conf.d# openssl req -noout -modulus -in nginx.csr | openssl md5
(stdin)= 60ac4532a708c98d70fee0dbcaab1e75

root@aos-server:/etc/aos/nginx.conf.d# openssl x509 -noout -modulus -in nginx.crt | openssl
md5
(stdin)= 60ac4532a708c98d70fee0dbcaab1e75

6. To load the new certificate, restart the nginx container.

root@aos-server:/etc/aos/nginx.conf.d# docker restart aos_nginx_1
aos_nginx_1
root@aos-server:/etc/aos/nginx.conf.d

7. Confirm that the new certificate is in your web browser and that the new certificate common name
matches 'aos-server.apstra.com'.

Replace SSL Certificate on Apstra Server with Self-Signed One

When you boot up the Apstra server for the first time, a unique self-signed certificate is automatically
generated and stored on the Apstra server at /etc/aos/nginx.conf.d (nginx.crt is the public key for the

834

webserver and nginx.key is the private key.) The certificate is used for encrypting the Apstra server and
REST API. It's not for any internal device-server connectivity. Since the HTTPS certificate is not retained
when you back up the system, you must manually back up the etc/aos folder. We support and
recommend replacing the default SSL certificate.

1. Back up the existing OpenSSL keys.

admin@aos-server:/$ sudo -s
[sudo] password for admin:

root@aos-server:/# cd /etc/aos/nginx.conf.d
root@aos-server:/etc/aos/nginx.conf.d# cp nginx.crt nginx.crt.old
root@aos-server:/etc/aos/nginx.conf.d# cp nginx.key nginx.key.old

2. If a Random Number Generator seed file .rnd doesn't exist in /home/admin, create one.

root@aos-server:~# touch /home/admin/.rnd
root@aos-server:~#

3. Generate a new OpenSSL private key and self-signed certificate.

root@aos-server:/etc/aos/nginx.conf.d# openssl req -newkey rsa:2048 -nodes -keyout nginx.key -
x509 -days 824 -out nginx.crt -addext extendedKeyUsage=serverAuth -addext
subjectAltName=DNS:apstra.com
Generating a RSA private key
...+++++
...+++++
writing new private key to 'nginx.key'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:California
Locality Name (eg, city) []:Menlo Park
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Apstra, Inc
Organizational Unit Name (eg, section) []:

835

Common Name (e.g. server FQDN or YOUR name) []:aos-server.apstra.com
Email Address []:support@apstra.com
root@aos-server:/etc/aos/nginx.conf.d#

4. To load the new certificate, restart the nginx container.

root@aos-server:/etc/aos/nginx.conf.d# docker restart aos_nginx_1
aos_nginx_1
root@aos-server:/etc/aos/nginx.conf.d

Change Apstra Server Hostname

You have the option of changing the default Apstra server hostname (aos-server).
1. SSH into the Apstra server as user admin (ssh admin@<apstra-server-ip> where <apstra-server-ip> is

the IP address of the Apstra server.)

2. As root user, run the command aos_hostname <hostname> where <hostname> is the new hostname.

admin@aos-server:~$ sudo aos_hostname new-aos-server
[sudo] password for admin:
admin@aos-server:~$

The new hostname will display the next time you log in.

NOTE: Do not use /etc/hostname to change the Apstra server hostname. With this method, if you
configure syslog to be forwarded to an external server, the default hostname will be entered into
the log instead of the new one.

Apstra CLI Utility

IN THIS SECTION

Install Apstra-CLI | 837

836

Access Apstra-CLI | 837

You can augment Apstra GUI functionality with Apstra-CLI (previously known as AOS-CLI), Apstra's
command-line interface utility. The Apstra-CLI Docker container can be used on any system that's
running a compatible version of Docker.

As of Apstra version 4.1.1, Apstra-CLI is GA. Prior versions are considered experimental. For more
information on experimental versions, see Juniper Support Knowledge Base article KB36747.

For steps on installing and accessing apstra-cli, see sections below.

Install Apstra-CLI

1. Download the Apstra-CLI utility for your Apstra version from the Application Tools section of Juniper
Support Downloads.

2. Copy the Apstra-CLI Docker container tar.gz file to the Juniper Apstra Server.

3. Load the provided Docker image into Docker with the docker image load command. For example:

admin@aos-server:~$ ls -l | grep apstracli-release_4.1.0.15.tar.gz
-rw-r--r--@ 1 asardana staff 133682033 1 Jun 12:23 apstracli-release_4.1.0.15.tar.gz
admin@aos-server:~$ docker image load -i apstracli-release_4.1.0.15.tar.gz314a9aa068c0:
Loading layer [==>] 3.263MB/3.263MB

5c6ec133015d: Loading layer [==>] 422.7MB/
422.7MB
Loaded image: apstracli:release_4.1.0.15

Access Apstra-CLI

1. Start the Apstra-CLI Docker container with the docker run command. For example:

admin@aos-server:~$ docker run --rm -ti -v $pwd apstracli:release_4.1.0.15 -s 10.28.159.3
Password [admin]:
--

837

https://kb.juniper.net/KB36747
https://support.juniper.net/support/downloads/?p=afc
https://support.juniper.net/support/downloads/?p=afc

**

 NOTE: This is a Limited Availability tool
 Use it ONLY under the strict supervision of Juniper Apstra personnel
**

--

Welcome to Juniper Apstra CLI! Press TAB for suggestions
Juniper Apstra CLI version: release-4.1.0.15
Juniper Apstra Server URL: https://10.28.159.3:443, Version: 4.1.0-115
apstra-cli>

Replace apstracli:release_4.1.0.15 with the Apstra-CLI "Loaded image" version and replace 10.28.159.3
with the IP address of the Juniper Apstra Server.

2. Apstra-CLI comes with a built-in feature that auto-completes commands. Use the TAB key to learn
about this tool and its functionality.

For examples of how to use apstra-cli, see "Apstra-CLI Commands" on page 1126 in the References
section.

Guides

IN THIS SECTION

Extensible Telemetry Guide | 839

5-Stage Clos Architecture | 854

Juniper EVPN Support | 857

Intent-Based Analytics with apstra-cli Utility | 866

AOSOM-Streaming Guide | 879

Mixed Uplink Speeds between Leaf Devices and Spine Devices | 892

838

Extensible Telemetry Guide

IN THIS SECTION

Extensible Telemetry Overview | 839

Set Up Development Environment | 839

Develop Collector | 840

Write Collector | 843

Unit Test Collector | 850

Package Collector | 851

Upload Packages | 852

Use Telemetry Collector | 852

Extensible Telemetry Overview

Install Apstra device drivers and telemetry collectors to collect additional telemetry that can be used in
"IBA probes" on page 687. The device drivers enable Apstra to connect to a NOS and collect telemetry.
Apstra ships with drivers for EOS, NX-OS, Ubuntu, and CentOS. To add a driver for an operating system
not listed here, contact "Juniper Support" on page 802.

Telemetry collectors are Python modules that help collect extended telemetry. The following sections
describe the pipeline for creating telemetry collectors and extending Apstra with new collectors. You
need familiarity with Python to be able to develop collectors.

Set Up Development Environment

To get access to telemetry collectors (which are housed in the aos_developer_sdk repository) contact
"Juniper Support" on page 802. Contribute any new collectors that you develop to the repository.

To keep your system environment intact, we recommend that you use a virtual environment to isolate
the required Python packages (for development and testing). You can download the base development
environment, aos_developer_sdk.run, from https://support.juniper.net/support/downloads/?p=apstra/.
To load the environment, execute:

aos_developer_sdk$ bash aos_development_sdk.run
4d8bbfb90ba8: Loading layer [==>] 217.6kB/
217.6kB
7d54ea05a373: Loading layer [==>] 4.096kB/

839

https://support.juniper.net/support/downloads/?p=apstra/

4.096kB
e2e40f457231: Loading layer [==>] 1.771MB/
1.771MB
Loaded image: aos-developer-sdk:2.3.1-129

==
Loaded AOS Developer SDK Environment Container Image
aos-developer-sdk:2.3.1-129.

Container can be run by
 docker run -it \
 -v <path to aos developer_sdk cloned repo>:/aos_developer_sdk \
 --name <container name> \
 aos-developer-sdk:2.3.1-129

==

This command loads the aos_developer_sdk Docker image. After the image load is complete, the
command to start the environment is printed. Start the container environment as specified by the
command. To install the dependencies, execute:

root@f2ece48bb2f1:/# cd /aos_developer_sdk/
root@f2ece48bb2f1:/aos_developer_sdk# make setup_env
...

The environment is now set up for developing and testing the collectors. Apstra SDK packages, such as
device drivers and REST client, are also installed in the environment.

Develop Collector

To develop a telemetry collector, specify the following in order.

1. Service for which the collector is developed - Identify what the service is. For example, the service
could be to collect received and transmitted bytes from the switch interfaces. Identify a name for the
service. Using service names that are reserved for built-in services (ARP, BGP, interface, hostname,
route, MAC, XCVR, LAG, MLAG) is prohibited.

2. The schema of the data provided to Apstra - Identify how the collector output is to be structured. A
collection of key-value pairs should be posted to Apstra. Identify what each item is, that is, what is
the key/value syntactically and semantically. For the above mentioned example, key is a string that
identifies the interface name. The value is a JSON string, with the JSON having two keys 'rx' and 'tx'
both having an integer value.

840

3. Network Operating System (NOS) for which the collector is developed - The collector plugins are
NOS-specific. Before writing a collector, identify the NOS(s) for which collector(s) are required.

4. How the required data can be obtained from the device - Identify the commands that can be used in
the device to retrieve the required information. For example, 'show interfaces' command gives
received and transmitted bytes from an Arista EOS device.

5. Storage Schema Path - The type of key and value in each item determines the storage schema path.
The type of collector selected determines the storage schema for the application. The storage
schema defines the high level structure of the data returned by the service. The storage schema path
for your collector can be determined using the following table:

Table 20: Determining Storage Schema Path

Key Type Value Type Storage Schema Path

String String aos.sdk.telemetry.schemas.generic

String Dict aos.sdk.telemetry.schemas.generic

Dict String aos.sdk.telemetry.schemas.iba_string_data

Dict Integer aos.sdk.telemetry.schemas.iba_integer_data

6. Application Schema - Application schema defines the schema for each item posted to the framework.
Application schema is expressed using draft 4 version of json schema. Each item is comprised of a
key and value. The following table specifies two sample items.

Table 21: Sample item with its storage schema path

Storage Schema Path Sample Item

aos.sdk.telemetry.schemas.generic {
 "identity": "eth0",
 "value": "up",
}

841

https://tools.ietf.org/html/draft-zyp-json-schema-04

Table 21: Sample item with its storage schema path (Continued)

Storage Schema Path Sample Item

aos.sdk.telemetry.schemas.iba_string_data {
 "key": {
 "source_ip": "10.1.1.1",
 "dest_ip": "10.1.1.2",
 },
 "value": "up",
}

NOTE: * An item returned by collectors with generic storage schema should specify the key
value using the key 'identity' and the value using the key 'value'.

* An item returned by collectors with IBA-based schemas should specify the key value using
the key 'key' and the value using the key 'value'.

Using this information, you can write the JSON schema. The following table maps the sample
item specified above to its corresponding JSON schema.

Table 22: Sample Application Schema

Sample Item Application Schema

{
 "identity": "eth0",
 "value": "up",
}

{
 "type": "object",
 "properties": {
 "identity": {
 "type": "string",
 },
 "value": {
 "type": "string",
 }
 }
}
{

842

Table 22: Sample Application Schema (Continued)

Sample Item Application Schema

{
 "key": {
 "source_ip": "10.1.1.1",
 "dest_ip": "10.1.1.2",
 },
 "value": "up",
}

{
 "type": "object",
 "properties": {
 "key": {
 "type": "object",
 "properties": {
 "source_ip": {
 "type": "string",
 "format": "ipv4"
 },
 "dest_ip": {
 "type": "string",
 "format": "ipv4"
 },
 "required": ["source_ip", "dest_ip"],
 }
 },
 "value": {
 "type": "string",
 }
 }
}
{

You can specify more complex schema using the constructs available in JSON schema. Update the
schema in the file aos_developer_sdk/aosstdcollectors/aosstdcollectors/json_schemas/<service_name>.json

NOTE: As of Apstra version 4.0.1, you can "import the service schema" on page 158 via the
GUI.

Write Collector

IN THIS SECTION

Collect Data from Device | 844

Parse Data | 845

843

Post Data to Framework | 846

Collector is a class that must derive from
aos.sdk.system_agent.base_telemetry_collector.BaseTelemetryCollector. Override the collect method of
the collector with the logic to:

Collect Data from Device

The device driver instance inside the collector provides methods to execute commands against the
devices. For example, most Apstra device drivers provide methods get_json and get_text to execute
commands and return the output.

NOTE: The device drivers for aos_developer_sdk environment are preinstalled. You can explore
the methods available to collect data. For example:

>>> from aos.sdk.driver.eos import Device
>>> device = Device('172.20.180.10', 'admin', 'admin')
>>> device.open()
>>> pprint.pprint(device.get_json('show version'))
{u'architecture': u'i386',
 u'bootupTimestamp': 1548302664.0,
 u'hardwareRevision': u'',
 u'internalBuildId': u'68f3ae78-65cb-4ed3-8675-0ff2219bf118',
 u'internalVersion': u'4.20.10M-10040268.42010M',
 u'isIntlVersion': False,
 u'memFree': 3003648,
 u'memTotal': 4011060,
 u'modelName': u'vEOS',
 u'serialNumber': u'',
 u'systemMacAddress': u'52:54:00:ce:87:37',
 u'uptime': 62620.55,
 u'version': u'4.20.10M'}
>>> dir(device)
['AOS_VERSION_FILE', '__class__', '__delattr__', '__dict__', '__doc__',
'__format__', '__getattribute__', '__hash__', '__init__', '__module__',
'__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__',
'__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'close',
'device_info', 'driver', 'execute', 'get_aos_server_ip',

844

'get_aos_version_related_info', 'get_device_aos_version',
'get_device_aos_version_number', 'get_device_info', 'get_json',
'get_text', 'ip_address', 'onbox', 'open', 'open_options', 'password',
'probe', 'set_device_info', 'upload_file', 'username']

Parse Data

The collected data needs to be parsed and re-formatted per the Apstra framework and the service
schema identified above. Collectors with generic storage schema follow the following structure:

{
 "items": [
 {
 "identity": <key goes here>,
 "value": <value goes here>,
 },
 {
 "identity": <key goes here>,
 "value": <value goes here>,
 },
 ...
]
}

Collectors with IBA-based schema follow the following structure:

[
 {
 "key": <key goes here>,
 "value": <value goes here>,
 },
 {
 "key": <key goes here>,
 "value": <value goes here>,
 },
 ...
]

845

In the structures above, the data posted has multiple items. Each item has a key and a value. For
example, to post interface specific information, there would be an identity/key-value pair for each
interface you want to post to the framework.

NOTE: In the case when you want to use a third party package to parse data obtained from a
device, list the Python package and version in the path.

<aos_developer_sdk>/aosstdcollectors/requirements_<NOS>.txt. The packages installed by the
dependency do not conflict with packages that Apstra software uses. The Apstra-installed
packages are available at /etc/aos/python_dependency.txt in the development environment.

Post Data to Framework

When data is collected and parsed as per the required schema, post the data to the framework. You can
use the post_data method available in the collector. It accepts one argument, and that is the data that
should be posted to the framework.

The folder aos_developer_sdk/aosstdcollectors/aosstdcollectors in the repository contains folders for each
NOS. Add your collector to the folder that matches the NOS. Cumulus is no longer supported as of
Apstra version 4.1.0, although this example remains for illustrative purposes. For example, to write a
collector for Cumulus, add the collector to aos_developer_sdk/aosstdcollectors/aosstdcollectors/cumulus, and
name the file after the service name. For example, if the service name is interface_in_out_bytes, then name
the file interface_in_out_bytes.py.

In addition to defining the collector class, define the function collector_plugin in the collector file. The
function takes one argument and returns the collector class that is implemented.

For example, a generic storage schema based collector looks like:

"""
 Service Name: interface_in_out_bytes
 Schema:
 Key: String, represents interface name.
 Value: Json String with two possible keys:
 rx: integer value, represents received bytes.
 tx: integer value, represents transmitted bytes.
 DOS: eos
 Data collected using command: 'show interfaces'
 Type of Collector: BaseTelemetryCollector
 Storage Schema Path: aos.sdk.telemetry.schemas.generic
 Application Schema: {
 'type': 'object',

846

 'properties': {
 'identity': {
 'type': 'string',
 },
 'value': {
 'type': 'object',
 'properties': {
 'rx': {
 'type': 'number',
 },
 'tx': {
 'type': 'number',
 }
 },
 'required': ['rx', 'tx'],
 }
 }
 }

"""
import json
from aos.sdk.system_agent.base_telemetry_collector import BaseTelemetryCollector

Inheriting from BaseTelemetryCollector
class InterfaceRxTxCollector(BaseTelemetryCollector):

 # Overriding collect method
 def collect(self):

 # Obtaining the command output using the device instance.
 collected_data = self.device.get_json('show interfaces')

 # Data is in the format
 # "interfaces": {
 # "<interface_name>": {
 #
 # "interfaceCounters": {
 #
 # "inOctets": int
 # "outOctets": int
 #
 # }

847

 # }
 # ...
 # }

 # Parse the data as per the schema and structure required.
 parsed_data = json.dumps({
 'items': [
 {
 'identity': intf_name,
 'value': json.dumps({
 'rx': intf_stats['interfaceCounters'].get('inOctets'),
 'tx': intf_stats['interfaceCounters'].get('outOctets'),
 })
 } for intf_name, intf_stats in collected_data['interfaces'].iteritems()
 if 'interfaceCounters' in intf_stats
]
 })

 # Post the data to the framework
 self.post_data(parsed_data)

Define collector_plugin class to return the Collector
def collector_plugin(_device):
 return InterfaceRxTxCollector

An IBA storage schema based collector looks like:

"""
 Service Name: iba_bgp
 Schema:
 Key: JSON String, specifies local IP and peer IP.
 Value: String. ‘1’ if state is established ‘2’ otherwise
 DOS: eos
 Data collected using command: 'show ip bgp summary vrf all'
 Storage Schema Path: aos.sdk.telemetry.schemas.iba_string_data
 Application Schema: {
 'type': 'object',
 'properties': {
 key: {
 'type': 'object',
 'properties': {

848

 'local_ip': {
 'type': 'string',
 },
 'peer_ip': {
 'type': 'string',
 }
 },
 'required': ['local_ip', 'peer_ip'],
 },
 'value': {
 'type': 'string',
 }
 }
 }
"""

from aos.sdk.system_agent.base_telemetry_collector import IBATelemetryCollector

def parse_text_output(collected):
 result = [
 {'key': {'local_ip': str(vrf_info['routerId']), 'peer_ip': str(peer_ip)},
 'value': str(
 1 if session_info['peerState'] == 'Established' else 2)}
 for vrf_info in collected['vrfs'].itervalues()
 for peer_ip, session_info in vrf_info['peers'].iteritems()]
 return result

Inheriting from BaseTelemetryCollector
class IbaBgpCollector(BaseTelemetryCollector):
 # Overriding collect method
 def collect(self):
 # Obtaining the command output using the device instance.
 collected_data = self.device.get_json('show ip bgp summary vrf all')
 # Parse the data as per the schema and structure required and
 # post to framework.
 self.post_data(parse_text_output(collected_data))

Define collector_plugin class to return the Collector
def collector_plugin(device):
 return IbaBgpCollector

849

Unit Test Collector

The folder aos_developer_sdk/aosstdcollectors/test in the repository contains folders based on the NOS. Add
your test to the folder that matches the NOS. For example, a test to a collector for Cumulus is added to
aos_developer_sdk/aosstdcollectors/test/cumulus. We recommend that you name the unit test with the prefix
test_.

The existing infrastructure implements a Pytest fixture collector_factory that is used to mock the device
driver command response. The general flow for test development is as follows.

1. Use the collector factory to get a collector instance and mocked Apstra framework. The collector
factory takes the collector class that you have written as input.

2. Mock the device response.

3. Invoke collect method.

4. Validate the data posted to the mocked Apstra framework.

For example, a test looks like:

import json
from aosstdcollectors.eos.interface_in_out_bytes import InterfaceRxTxCollector

Test method with prefix 'test_'
def test_sanity(collector_factory):

 # Using collector factory to retrieve the collector instance and mocked
 # Apstra framework.
 collector, mock_framework = collector_factory(InterfaceRxTxCollector)

 command_response = {
 'interfaces': {
 'Ethernet1': {
 'interfaceCounters': {
 'inOctets': 10,
 'outOctets': 20,
 }
 },
 'Ethernet2': {
 'interfaceCounters': {
 'inOctets': 30,
 'outOctets': 40,

850

 }
 }
 }
 }
 # Set the device get_json method to retrieve the command response.
 collector.device.get_json.side_effect = lambda _: command_response

 # Invoke the collect method
 collector.collect()

 expected_data = [
 {
 'identity': 'Ethernet1',
 'value': json.dumps({
 'rx': 10,
 'tx': 20,
 }),
 },
 {
 'identity': 'Ethernet2',
 'value': json.dumps({
 'rx': 30,
 'tx': 40,
 })
 }
]
 # validate the data posted by the collector
 data_posted_by_collector = json.loads(mock_framework.post_data.call_args[0][0])
 assert sorted(expected_data) == sorted(data_posted_by_collector["items"])

To run the test, execute:

root@1df9bf89aeaf:/aos_developer_sdk# make test
root@1df9bf89aeaf:/aos_developer_sdk# make test

This command executes all the tests in the repository.

Package Collector

All the collectors are packaged based on the NOS. To generate all packages, execute make at
aos_develop_sdk. You can find the build packages at aos_developer_sdk/dist. The packages build can be
broadly classified as:

851

Package Description

Built-In
Collector
Packages

These packages have the prefix aosstdcollectors_builtin_. To collect telemetry from a device
per the reference design, Apstra requires services as listed in the <deviceblah> section. Built-In
collector packages contain collectors for these services. The packages are generated on a per
NOS basis.

Custom
Collector
Packages

These package have the prefix aosstdcollectors_custom_ in their names. The packages are
generated on a per NOS basis. The package named aosstdcollectors_custom_<NOS>-0.1.0-
py2-none-any.whl contains the developed collector.

Apstra SDK
Device Driver
Packages

These packages have a prefix apstra_devicedriver_. These packages are generated on a per
NOS basis. Packages are generated for NOS that are not available by default in Apstra.

Upload Packages

If the built-in collector packages and the Apstra SDK Device Driver for your Device Operating System
(NOS) were not provided with the Apstra software, you must upload them to the Apstra server.

If you are using an offbox solution and your NOS is not EOS, you must upload the built-in collector
package.

Upload the package containing your collector(s) and assign them to a Device System Agent or System
Agent Profile.

Use Telemetry Collector

IN THIS SECTION

Set up Telemetry Service Registry | 853

Start Collector | 853

Delete Collector | 853

Get Collected Data | 853

List Running Collector Services | 854

852

Set up Telemetry Service Registry

The registry maps the service to its application schema and the storage schema path. You can manage
the telemetry service registry with the REST endpoint /api/telemetry-service-registry. You can't enable the
collector for a service without adding a registry entry for the particular service. The registry entry for a
service cannot be modified while the service is in use.

NOTE: When executing make, all application schemas are packaged together to a tar file
(json_schemas.tgz) in the dist folder. With apstra-cli, you have the option of importing all the
schemas in the .tgz file.

Start Collector

To start a service, use the POST API /api/systems/<system_id>/services with the following three arguments:

Arguments

Input_data The data provided as input to the collector. Defaults to
None.

Interval Interval at which to run the service. Defaults to 120
seconds.

Name Name of the service.

NOTE: You can also manage collectors via the apstra-cli utility.

Delete Collector

To delete a service, use the DELETE API /api/systems/<system_id>/services/<service_name>.

Get Collected Data

To retrieve collected data, use the GET API /api/systems/<system_id>/services/<service_name>/data. Only the
data collected in the last iteration is saved. Data does not persist over Apstra restart.

853

List Running Collector Services

To retrieve the list of services enabled on a device, use the GET API /api/systems/<system_id>/services.

5-Stage Clos Architecture

IN THIS SECTION

5-Stage Clos Overview | 854

Create 5-Stage Clos Network | 856

Modify 5-stage Clos Network | 857

5-Stage Clos Overview

IN THIS SECTION

5-Stage Clos Limitations | 855

5-Stage Clos and EVPN | 856

5-stage Clos architecture allows for large-scale topologies. With its additional aggregation layer, you can
interconnect multiple pods into a single fabric. Superspine devices provide the additional layer that
interconnects multiple pods. Planes are groups of superspine devices. Each 5-stage topology consists of

854

one or more planes. Each plane consists of one or more superspine devices. See below for an example.

Careful planning and consideration are required to build large 5-stage Clos networks. Refer to the
limitations below when you're designing and validating your 5-stage topology. For assistance, contact
"Juniper Support" on page 802.

5-Stage Clos Limitations

• You cannot change a 3-stage topology to a 5-stage topology.

• You must use the same overlay control protocol (static VXLAN or MP-EBGP-EVPN, specified during
template creation) for all rack types in all pods.

• Root Cause Analysis is not supported.

• IPv6 / IPv4 support:

• IPv6 support in the underlay depends on the NOS. See the "feature matrix" on page 895.

• IPv6 applications are supported as of Apstra version 4.1.0.

• IPv6 virtual networks are supported on EVPN blueprints as of Apstra version 4.1.1.

• The entire fabric across all pods must be either all IPv4, all IPv6 or all dual-stack

• Unsupported external connectivity implementations:

• One generic system connecting to multiple pods

• EVPN with external generic systems on superspine devices

855

• External generic systems on spine devices and leaf devices in the same pod

• Unsupported blueprint modifications:

• Add or remove superspine planes

5-Stage Clos and EVPN

Extending EVPN networks across multiple pods within the same blueprint adds the following value:

• Scaling: provide any-to-any connectivity for applications distributed across multiple pods.

• Redistributing Workloads: To load-balance applications, you can migrate a group of applications from
one pod to another pod while preserving application IP and MAC addresses.

• Performing pod maintenance: Migrate all applications from one pod to another, while preserving the
application IP and MAC addresses.

• Active / Standby applications across sites / pods: Deploy A/S applications across multiple pods to
provide high availability at pod level, or as part of application migration tasks.

• Facilitate external connectivity for a virtual network from a remote pod without external
connectivity.

5-stage Clos networks support the Junos QFX series of switches. You can use the ESI redundancy
protocol, create templates from them, and then use those templates as pods in 5-stage Clos networks.
For more information about working with Juniper devices with EVPN, see "Juniper EVPN Support" on
page 857.

Just like in other Apstra-managed networks, required configuration is rendered to bring up multi-pod
networks, and with proprietary Intent-based Networking technology the networks are validated to
ensure they operate as designed.

The method for creating cross-pod "virtual networks" on page 403 is the same method as for 3-stage
networks.

Create 5-Stage Clos Network

Creating a 5-stage Clos network follows the same workflow as for "3-stage Clos networks" on page 1,
with the addition of creating a pod-based template and adhering to the 5-stage requirements described
in the workflow below:
1. Confirm that the global catalog includes "logical devices" on page 7 (Design > Logical Devices) that

meet the 5-stage requirements below; create them if necessary:

• Make sure that devices have a sufficient number of ports and port groups; the exact number
depends on your design.

856

• Spine logical devices require a leaf-facing port group, and if they will be facing a superspine device
they also require a Superspine port role in that port group.

• Superspine logical devices require a Spine port role in the port group.

2. Confirm that the global catalog includes "interface maps" on page 13 (Design > Interface Maps) that
map the logical devices to the correct "device profiles" on page 203; create them if necessary. The
required number of interface maps depends on your design; each device model used requires its own
interface map. At a minimum, if you are using only one model, you need two interface maps as listed
below:

• Superspine logical device to device profile

• Spine logical device to device profile

3. Create one or more rack-based "templates" on page 35, each including at least one link for
Superspine Connectivity.

4. Create a pod-based template that uses as the pod the rack-based template(s) created in the previous
step. Pod-based templates are essentially templates of templates where one or more rack-based
templates are combined into a larger topology. (If you don't see the rack-based template that you
created in the previous step in the pods drop-down list, it's probably because you didn't include a
superspine-to-spine link.)

5. Create pools for resources ("ASNs" on page 258, "IPv4 addresses" on page 262, "IPv6 addresses" on
page 264) needed in the network.

6. Create a "blueprint" on page 269 using the pod-based template that you created in the previous step.

7. Build the 5-stage Clos network in the same manner as for building a 3-stage Clos network.

Modify 5-stage Clos Network

You can modify 5-stage blueprints in the same manner as for 3-stage networks, provided that you take
into account the limitations described above. For information about rack changes, see Racks. For
information about adding and removing pods, or changing pod names, see "Pods" on page 386, and for
information about adding superspine devices to planes see Planes."Racks (Datacenter)" on page 382

Juniper EVPN Support

IN THIS SECTION

Overview | 858

EVPN multi-homing Terminology and Concepts | 858

Topology Specification | 860

857

EVPN Services | 861

Configuration Rendering | 863

Overview

The Junos EVPN ESI multi-homing feature enables you to directly connect end servers to leaf devices
and provide redundant connectivity via multi-homing. This feature is supported only on LAGs that span
two leaf devices on the fabric. EVPN ESI also removes the need for "peer-link", and hence facilitates
clean leaf-spine design.

Blueprints using the MP-EBGP EVPN Overlay Control Protocol can use Juniper Junos devices. Racks
with leaf-pair redundancy can implement EVPN ESI multi-homing.

EVPN ESI multi-homing helps to maintain EVPN service and traffic forwarding to and from the multi-
homed site in the event of the following types of network failures and avoid single point of failure as per
the scenarios below:

• Link failure from one of the leaf devices to end server device

• Failure of one of the leaf devices

• Fast convergence on the local VTEP by changing next-hop adjacencies and maintaining end host
reachability across multiple remote VTEPs

EVPN multi-homing Terminology and Concepts

The following terminology and concepts are used with EVPN multi-homing:

EVI - EVPN instance that spans between the leaf devices making up the EVPN. It's represented by the
Virtual Network Identifier (VNI). EVI is mapped to VXLAN-type virtual networks (VN).

MAC-VRF - A virtual routing and forwarding (VRF) table to house MAC addresses on the VTEP leaf
device (often called a "MAC table"). A unique route distinguisher and VRF target is configured per MAC-
VRF.

Ethernet Segment (ES) - Ethernet links span from an end host to multiple ToR leaf devices and form ES.
It constitutes a set of bundled links.

Ethernet Segment Identifier (ESI) - Represents each ES uniquely across the network. ESI is only
supported on LAGs that span two leaf devices on the fabric.

ESI helps with end host level redundancy in an EVPN VXLAN-based blueprint. Ethernet links from each
Juniper ToR leaf connected to the server are bundled as an aggregated Ethernet interface. LACP is

858

enabled for each aggregated Ethernet interface of the Juniper devices. Multi-homed interfaces into the
ES are identified using the ESI.

ESI has certain restrictions and requirements as listed below:

• ESI based ToR leaf devices cannot have any L2/L3 peer links as EVPN multi-homing eliminates peer
links used by MLAG/vPC.

• A bond of two physical interfaces towards a single leaf is not supported in the ESI implementation
(version 3.3.0); make sure the server with LAG in that rack type spans two leaf devices.

• ESI and MLAG/vPC-based rack types cannot be mixed in a single blueprint.

• L2 External Connectivity Points (ECPs) with an ESI-based rack type is not supported. Only L3 ECPs
are supported.

• Per-leaf VN assignment - having different VLAN sets among individual leaf devices for an ESI-based
port channel is not supported.

• Connecting a single server to a single leaf using a bond of two physical interfaces cannot use an ESI.

• ESI is supported only on LAGs (port-channels) and not directly on physical interfaces. This has no
functional impact, as leaf local port-channels for multi-home links are automatically generated.

• Only ESI active-active redundancy mode is supported. Active-standby mode is not supported.

• active-active redundancy mode is only supported for Juniper EVPN multi-homing where each
Juniper ToR leaf attached to an ES is allowed to forward traffic to and from a given VLAN.

• More than two leaf devices in one ESI segment using ESI-based rack types is not supported.

• Switching from an ESI to MLAG rack type or vice versa is not supported under Flexible Fabric
Expansion (FFE) operations.

859

Topology Specification

In the example below Leaf1 and Leaf2 are part of the same ES, and Leaf3 is the switch sending traffic
towards the ES.

Juniper EVPN multi-homing uses five route types:

• Type 1 - Ethernet Auto-Discovery (EAD) Route

• Type 2 - MAC advertisement Route

• Type 3 - Inclusive Multicast Route

• Type 4 - Ethernet Segment Route

• Type 5 - IP Prefix Route

BGP EVPN running on Juniper devices use:

• Type 2 to advertise MAC and IP (host) information

• Type 3 to carry VTEP information

• Type 5 to advertise IP prefixes in a Network Layer Reachability Information (NLRI).

NOTE: In Junos MAC/IP Type 2 route type doesn't contain VNI and RT for the IP part of the
route, it is derived from the accompanying Type 5 route type.

860

Type 1 routes are used for per-ES auto-discovery (A-D) to advertise EVPN multi-homing mode. Remote
ToR leaf devices in the EVPN network use the EVPN Type 1 route type functionality to learn the EVPN
Type 2 MAC routes from other leaf devices. In this route type ESI and the Ethernet Tag ID are
considered to be part of the prefix in the NLRI. Upon a link failure between ToR leaf and end server
VTEP withdraws Ethernet Auto-Discovery routes (Type 1) per ES. The Juniper EVPN multi-homing
Ethernet Tag value is set to the VLAN ID for ES auto-discovery/ES route types.

Mass Withdrawal - Used for fast convergence during link failure scenarios between leaf devices to the
end server using Type 1 EAD/ES routes.

DF Election - Used to prevent forwarding of the loops and the duplicates as only a single switch is
allowed to decapsulate and forward the traffic for a given ES. Ethernet Segment Route is exported and
imported when ESI is locally configured under the LAG. Type 4 NLRI is mainly used for designated
forwarder(DF) elections and to apply Split Horizon Filtering.

Split Horizon - It is used to prevent forwarding of the loops and the duplicates for the Broadcast,
Unknown-unicast and Multicast (BUM) traffic. Only the BUM traffic that originates from a remote site is
allowed to be forwarded to a local site.

EVPN Services

IN THIS SECTION

EVPN VLAN-Aware | 861

Create EVPN Network | 862

EVPN VLAN-Aware

At a high level, Ethernet Services can be (1) VLAN-based, (2) VLAN Bundle or (3) VLAN-Aware. Only
VLAN-Aware is supported on Junos. With the EVPN VLAN-Aware Service each VLAN is mapped
directly to its own EVPN instance (EVI). The mapping between VLAN, Bridge Domain (BD) and EVPN
instance (EVI) is N:1:1. For example, N VLANs are mapped into a single BD mapped into a single EVI. In

861

this model all VLAN IDs share the same EVI as shown below:

VLAN-aware Ethernet Services in Junos have a separate Route target for each VLAN (which is Juniper
internal optimization), so each VLAN has a label to mimic VLAN-based implementations.

From the control plane perspective EVPN MAC/IP routes (Type 2) for VLAN-aware services carry VLAN
ID in the Ethernet Tag ID attribute that is used to disambiguate MAC routes received.

From the data plane perspective - every VLAN is tagged with its own VNI that is used during packet
lookup to place it onto the right Bridge Domain(BD)/VLAN.

Create EVPN Network

Creating an EVPN network follows the same workflow as for other networks.

1. Create/Install "offbox device agents" on page 98 for all switches. (Onbox agents are not supported on
Junos.)

2. Confirm that the global catalog includes "logical devices" on page 7 (Design > Logical Devices) that
meet Juniper device requirements; create them if necessary:

3. Confirm that the global catalog includes "interface maps" on page 13 (Design > Interface Maps) that
map the logical devices to the correct "device profiles" on page 203 for the Juniper devices; create
them if necessary.

4. Create a "rack type" on page 23.

• For single leaf racks, specify redundancy protocol None in the Leaf section.

• For dual leaf racks

• Specify redundancy protocol ESI in the Leaf section.

• When specifying the end server in the Server section, specify attachment type as Dual-Homed
towards ESI-based ToR leaf devices. EVPNs using ESs have a link aggregation option. Select
the LAG mode LACP (Active)

862

5. Create a "rack-based template" on page 35.

6. Create a generic system for an external router.

7. Create resource pools for "ASNs" on page 258, "IP addresses" on page 262, and "VNIs" on page 260.

8. Create a "blueprint" on page 269 based on the ESI-based template, then build the EVPN-based
network topology for the Juniper devices by assigning "resources" on page 272, "device profiles" on
page 275, and "device IDs" on page 290.

Configuration Rendering

IN THIS SECTION

Reference Design | 863

Limitations | 865

Reference Design

• Underlay - The underlay in the data center fabric is Layer-3 configured using standard eBGP over the
physical interfaces of Juniper devices.

• Overlay - Overlay is configured eBGP over lo0.0 address. EVPN VXLAN is used as an overlay
protocol. All the ToR devices are enabled with L2 VN. Each one of these L2 VNs can have its default
gateway hosted on connected ToR leaf devices. For the inter-VN traffic VXLAN routing is done in the
fabric using L3 VNIs on the border leaf devices as per standard design.

• VXLAN VTEPs - On Juniper leaf devices one IP address on lo0.0 is rendered which is used as VTEP
address. The VTEP IP address is used to establish the VXLAN tunnel.

• EVPN multi-homing LAG - Unique ESI value and LACP system IDs are used per EVPN LAG. The
multi-homed links are configured with an ESI and a LACP system identifier is specified for each link.
The ESI is used to identify LAG groups and loop prevention. To support Active/Active and multi-
homing for Juniper leaf devices, they are configured with the same LACP parameter for a given ESI

863

so that they appear as a single system.

ESI MAC addresses are auto-generated internally. You can "configure the value of the most
significant byte" on page 545 used in the generated MAC. A new facade API is added to update the
MSB value. A new node is added to the rack based template that contains the MAC MSB value. The
default value of this byte is 2 and you can change it to any even number up to 254. Updating this
value results in regeneration of all ESI MACs in the blueprint. This is exposed to address DCI use
cases where ESIs must be unique across multiple blueprints (IP Fabrics).

• L3VNIs - L3VNI is rendered as a routing zone per VRF. Multi-tenancy functionality is available to
ensure that workloads remain logically separated within a VN (overlay) construct using routing zone.

• Route Target (RT) for L2/L3 VNIs - Auto-generated for L2/L3 VNIs in the format VNI:1. There is 1
(fabric-wide) RT per MAC-VRF (that is, L3VNI). The value must be the same across all switches
participating in one EVI. You can find the RT in the blueprint by navigating to Staged > Virtual >
Virtual Networks and clicking the VN name. RT is in the parameters section.

864

• Route Distinguisher (RD) for L2/L3 VNIs - For Junos VLAN-Aware based model, the RD is per EVI
(switch). There is no RD for each l2 VNI. RD exists only for routing zone VRF in the format
{primary_loopback}:vlan_id.

• Virtual Switch Configuration - Under the switch-options hierarchy for Juniper devices the vtep-
source-interface parameter is rendered, then the VTEP IP address used to establish the VXLAN
tunnel is specified. Reachability to loopback interface (for example, lo0.0) is provided by the underlay.
The RD here defines the EVI specific RD carried by Type 1, Type 2, Type 3 routes. RD for the global
switch options is provided in the format {loopback_id}:65534.

The RT here defines the global RT inherited by EVPN routes. It is used by Type 1 routes. A default RT
value is rendered for it (100:100) for global switch options across all switches.

• MTU - The MTU values that are rendered for Juniper Devices:

• L2 ports: 9100

• L3 ports: 9216

• Integrated Routing and Bridging (IRB) Interfaces: 9000

• Anycast Gateway - The same IP on IRB interfaces of all the leaf devices is configured and no virtual
gateway is set. Every IRB interface that participates in the stretched L2 service has the same IP/MAC
configured as below:

In this model, all default gateway IRB interfaces in an overlay subnet are configured with the same IP
and MAC address. A benefit of this model is that only a single IP address is required per subnet for
default gateway IRB interface addressing, which simplifies gateway configuration on end systems.

Here MAC address of the IRB is auto generated.

Limitations

The following limitations apply to EVPN multi-homing topologies for Juniper devices as of version 3.3.0:

• Only two-way multi-homing is supported. More than two Juniper leaf devices in a multi-homed
group is not supported.

865

• Juniper EVPN with EVPN on other network vendors in the same blueprint is not supported.

• No Static VXLAN support.

• IPv6-based fabrics do not support Junos.

• In Juniper EVPN multi-homing, L3 External Connectivity Points (ECP) towards generic systems are
supported; L2 ECP is not supported.

• BGP routing from Junos leaf devices to Apstra-managed Layer 3 servers is not supported.

Intent-Based Analytics with apstra-cli Utility

IN THIS SECTION

IBA with apstra-cli Overview | 866

Install apstra-cli | 867

Install Packages | 867

Create Agent Profiles | 869

Create Agents | 870

Update Agents from apstra-cli | 872

Install IBA Probes | 873

Apstra IBA Probes Examples | 875

IBA with apstra-cli Overview

You can work with Intent-based analytics (IBA) from the Apstra GUI, or for non-production
environments you can use the experimental apstra-cli utility (formerly called aos-cli). For information
about how to use IBA probes from the GUI, see "Probes" on page 687 in the Analytics section. This
guide shows you how to use apstra-cli.

NOTE: The apstra-cli utility is an experimental tool and has limited support. Do not use it in
production environments unless advised by Juniper Support. Some versions of apstra-cli are not
intended for certain Apstra releases. Some apstra-cli commands may or may not work between
different Apstra releases. It's always best to test a version of apstra-cli with a specific Apstra

866

release in a non-production environment, or contact "Juniper Support" on page 802 for
assistance.

The apstra-cli utility enables you to extract information from the Apstra server for analytics (and other
functionalities). The workflow for IBA probes is as follows:

1. Install apstra-cli.

2. Install packages.

3. Create device agent profiles.

4. Install device agents.

5. Install IBA probes.

After probes are instantiated you can use "Syslog" on page 732 to send messages to Syslog servers.

Install apstra-cli

"Install the apstra-cli utility" on page 836.

Install Packages

1. Download the latest Apstra SDK package from Juniper Support Knowledge Base article KB37156.

2. Custom collector packages enable the collection of telemetry from devices. Extract the collector for
your platform (for example, aosstdcollectors_custom_eos-0.1.0.post10-py2-none-any.whl where eos is the
platform and 10 is the version).

3. Collectors require specific Python library packages. If the Apstra environment has Internet access,
the files are automatically installed. If the environment doesn't have Internet access, download the
following files from the official Python repository. Make sure to download the correct versions:

• netaddr-0.7.17-py2.py3-none-any.whl

• gtextfsm-0.2.1.tar.gz

• pyeapi-0.8.2.tar.gz

4. From the left navigation menu in the Apstra GUI, navigate to Devices > System Agents > Packages
and click Upload Packages.

5. Either click Choose File and navigate to the custom collector package (and if the Internet is
inaccessible, the three (3) Python packages), or drag and drop the file(s) into the dialog window. See
example below for Arista devices in an environment without Internet access:

867

https://kb.juniper.net/KB37156

868

6. Click Upload to upload the packages to the Apstra server, then close the dialog to return to the
summary table view.

Create Agent Profiles

With agent profiles you can specify packages once in the profile, then apply the profile to multiple
agents at the same time. Let's create a profile that contains all four packages. (Remember, if your
environment has Internet access, you only need to include the custom collector package.)

1. From the left navigation menu, navigate to Devices > System Agents > Agent Profiles and click
Create Agent Profile.

2. For this example, select EOS from the platform drop-down list.

869

3. In the Packages section, select the four uploaded packages to associate them with the agent profile.
(If your environment has Internet access, you only need to include the custom collector package.)

4. Click Create to create the agent profile and return to the summary table view.

For more information about agent profiles, see "Agent Profiles" on page 169.

Create Agents

Now let's create agents for Arista devices and use the agent profile to associate the packages to them.
We recommend that you use agent profiles to associate custom collector packages so you can bulk
update agents later, as needed, with a single command.

1. From the left navigation menu, navigate to Devices > System Agents > Agents and click Create
Onbox Agent(s).

870

2. Enter details for the agent and select the agent profile from the drop-down list as shown in the image
below:

3. To verify that packages have been successfully installed on agents, from the left navigation menu,
navigate to Devices > Managed Devices and click the management IP of the device. Click the Agent
tab. The Config section lists any installed packages. If you manually uploaded the Python packages
(netaddr, gtextfsm and pyeapi) they are listed. If the Apstra server has Internet access, they were
automatically uploaded and won't be listed here. (To see all packages installed on the device, log in to

871

the device and check the /tmp/plugins folder.)

Update Agents from apstra-cli

As of apstra-cli build 423, you can update agents with a given agent profile, as needed, based on IP/ID
or OS type (os_type) (for example, EOS).

To update agents by IP range with a specific agent profile, use the command system-agents update-profile
as shown in the example below. When setting the --profile option, apstra-cli shows available agent
profiles. To select, use the up and down arrow keys.

apstra-cli> system-agents update-profile --ip 172.20.120.6-11 --profile
 EOS-IBA EOS

For example.

apstra-cli> system-agents update-profile --ip 172.20.120.6-11 --profile 692bb0bb-c5e0-4d7e-a70c-
c24b0d5650a8
Successfully updated agent 172.20.120.9 with given profile
Successfully updated agent 172.20.120.6 with given profile
Successfully updated agent 172.20.120.11 with given profile
Successfully updated agent 172.20.120.7 with given profile

872

Successfully updated agent 172.20.120.10 with given profile
Successfully updated agent 172.20.120.8 with given profile
apstra-cli>

Install IBA Probes

You can install IBA probes using the Apstra GUI, or for non-production environments you can use
apstra-cli. For information about how to create or instantiate predefined probes from the GUI, see
"Probes" on page 687 in the Analytics section. This section shows you how to use the apstra-cli utility.

All probes described in this document are included in apstra-cli build 412 and later. Probe .j2 files may
be made available if the probe file is not built into the apstra-cli build.

Some of these probes require an updated service registry. Download the latest Apstra SDK and extract
the json-schemas.tar.gz file. Copy the file to the /home/admin directory of the Apstra server so it is available
in the apstra-cli /mytmp directory.

apstra-cli> service-registry import-from --file /mytmp/json-schemas.tar.gz
Successfully imported service registry entry for interface_details
Successfully imported service registry entry for route_count
Successfully imported service registry entry for multicast_groups
Successfully imported service registry entry for sfp
Successfully imported service registry entry for resource_usage
Successfully imported service registry entry for mlag_domain
Successfully imported service registry entry for stp
Successfully imported service registry entry for vtep_counters
Successfully imported service registry entry for vlan
Successfully imported service registry entry for evpn_type5
Successfully imported service registry entry for ping
Successfully imported service registry entry for vxlan_info
Successfully imported service registry entry for pim_neighbor_count
Successfully imported service registry entry for lldp_details
Successfully imported service registry entry for evpn_type3
Successfully imported service registry entry for multicast_info
Successfully imported service registry entry for bgp_vrf
Successfully imported service registry entry for traceroute
Successfully imported service registry entry for vrf
Successfully imported service registry entry for table_usage
Successfully imported service registry entry for vxlan_address_table
Successfully imported service registry entry for acl_stats
Successfully imported service registry entry for device_info
Successfully imported service registry entry for power_supply
Successfully imported service registry entry for interface_buffer

873

Successfully imported service registry entry for pim_rp
Successfully imported service registry entry for anycast_rp
Successfully imported service registry entry for bgp_iba
Successfully imported service registry entry for interface_iba
apstra-cli>

To create probes, use the probe create apstra-cli command. You'll be prompted for additional options.

apstra-cli> probe create
--blueprint Id of the blueprint
--file Filename of json file with probe data. Choose from dropdown or specify
custom path
--skip-service-check [Optional] By default, required telemetry services are checked and enabled
on target
--check-status [Optional] Wait for probe to become operational. Default: False
--service-interval When skip-service-check is False and service is not alreadypresent, this
indicates

To select the blueprint ID, use --blueprint and tab-completion.

apstra-cli> probe create --blueprint 67cd936d-c2de-49f8-8708-df465f0cdc68
 L2 Virtual two_stage_l3clos

To list available probes supplied with apstra-cli, use --file and tab-completion. Scroll through the list
with the up and down arrow keys.

apstra-cli> probe create --blueprint 67cd936d-c2de-49f8-8708-df465f0cdc68 --file
 evpn.j2
 sfp.j2

memory_usage_threshold_anomalies.j2

bandwidth_utilization_history.j2
 power_supply_anomalies.j2

virtual_infra_vlan_mismatch.j2

hardware_vtep_counters_enabled.j2

874

Some probes need additional Probe template variables.

apstra-cli> probe create --blueprint 67cd936d-c2de-49f8-8708-df465f0cdc68 --file /usr/local/lib/
python2.7/site-packages/aos_cli/resources/probes/memory_usage_threshold_anomalies.j2
--skip-service-check [Optional] By default, required telemetry services are checked and enabled
on target
--check-status [Optional] Wait for probe to become operational. Default: False
--service-interval When skip-service-check is False and service is not alreadypresent, this
indicates
--process Probe template variable
--os_family Probe template variable

To see installed IBA probes in the blueprint, navigate to Analytics > Probes.

Apstra IBA Probes Examples

IN THIS SECTION

Packet Drops | 875

Switch Memory Leak (Arista EOS only) | 876

Fault Tolerance | 878

The following section describes how to install some of the most interesting probes which are not
available by default.

Packet Drops

Packet drop IBA probes detect an abnormal amount of packet drops on device interfaces that the Apstra
software manages, based on interface telemetry that device agents collect.

Filename Description

pkt_discard_anomalies.j2 Detect Fabric interfaces having sustained packet discards

875

To install the pkt_discard_anomalies.j2 IBA Probe:

apstra-cli> probe create --blueprint 67cd936d-c2de-49f8-8708-df465f0cdc68 --file /usr/local/lib/
python2.7/site-packages/aos_cli/resources/probes/pkt_discard_anomalies.j2
Ensuring needed telemetry services for probe are enabled...
Successfully created probe f472ba21-d60f-44dc-9f5d-8318c8b9c07b in blueprint 67cd936d-
c2de-49f8-8708-df465f0cdc68
apstra-cli>

Switch Memory Leak (Arista EOS only)

Switch Memory Leak IBA probes detect abnormal memory leaks in specified processes on devices that
the Apstra software manages, based on system telemetry that device agents collect. This probe requires
device user credentials set in the device agent configuration that has login and access to the device
BASH prompt.

Filename Description

memory_usage_threshold_anomalies.j2 Detect memory leaks in specified process on all switches in the
Fabric

system_memory_usage_threshold_anomalies.j2 Detect switches having potential memory leaks in the Fabric

The memory_usage_threshold_anomalies.j2 IBA probe requires additional "Probe template variables" for
os_family and process.

apstra-cli> probe create --blueprint 67cd936d-c2de-49f8-8708-df465f0cdc68 --file /usr/local/lib/
python2.7/site-packages/aos_cli/resources/probes/memory_usage_threshold_anomalies.j2
 --skip-service-check [Optional] By default, required telemetry services are checked and
enabled on target
 --check-status [Optional] Wait for probe to become operational. Default: False
 --service-interval When skip-service-check is False and service is not alreadypresent, this
indicates
 --process Probe template variable
 --os_family Probe template variable

876

The only option for os_family is eos for Arista EOS. The (2) options for process are edac-poller and fastcapi or
configagent.

apstra-cli> probe create --blueprint 67cd936d-c2de-49f8-8708-df465f0cdc68 --file /usr/local/lib/
python2.7/site-packages/aos_cli/resources/probes/memory_usage_threshold_anomalies.j2 --os_family
eos --process fastcapi
Ensuring needed telemetry services for probe are enabled...
Enabled service resource_usage on device l2-virtual-002-leaf1:172.20.60.11
Enabled service resource_usage on device l2-virtual-001-leaf1:172.20.60.9
Enabled service resource_usage on device spine2:172.20.60.8
Enabled service resource_usage on device spine1:172.20.60.6
Enabled service resource_usage on device l2-virtual-003-leaf1:172.20.60.10
Enabled service resource_usage on device l2-virtual-004-leaf1:172.20.60.7
Successfully created probe 6a258d83-1053-42ad-935c-0550cc500b7d in blueprint 67cd936d-
c2de-49f8-8708-df465f0cdc68
apstra-cli>

apstra-cli> probe create --blueprint rack-based-blueprint-10990707 --file /usr/local/lib/
python2.7/site-packages/aos_cli/resources/probes/memory_usage_threshold_anomalies.j2 --os_family
eos --process configagent
Ensuring needed telemetry services for probe are enabled...
Successfully created probe ed2c6be1-b4b1-4e1b-bd07-da431e89eeec in blueprint rack-based-
blueprint-10990707
apstra-cli>

NOTE: "FastCapi" as service process is valid only for EOS version 4.18. For the newer version of
EOS, for example 4.20 and later only ConfigAgent is valid. Take extra care that service name is in
lowercase during probe creation. So it should be configagent instead of ConfigAgent.

To install the IBA probe for a second process, repeat the probe create command for the other process.

You can edit the IBA probe name to include the process name.

To install the system_memory_usage_threshold_anomalies.j2 IBA probe:

apstra-cli> probe create --blueprint 67cd936d-c2de-49f8-8708-df465f0cdc68 --file /usr/local/lib/
python2.7/site-packages/aos_cli/resources/probes/system_memory_usage_threshold_anomalies.j2
Ensuring needed telemetry services for probe are enabled...
Successfully created probe a669ccf8-cba7-414b-ad46-a7d4b4ca3928 in blueprint 67cd936d-

877

c2de-49f8-8708-df465f0cdc68
apstra-cli>

Fault Tolerance

These (2) probes require apstra-cli build 430 or later.

Filename Description

spine_fault_tolerance.j2 Find out if failure of given number of spines in the fabric is going to be tolerated.
Raise anomaly if total traffic on all spines is more than the available spine capacity,
with the specified number of spine failures.

lag_link_fault_tolerance.j2 Find out if failure of one link in a server LAG is going to be tolerated. Monitors total
traffic in each LAG against total available capacity of the bond, with one link failure.
Raise anomaly for racks with more than 50% of such overused bonds, sustained for
certain duration.

To install the spine_fault_tolerance.j2 IBA Probe:

apstra-cli> probe create --blueprint bf7a322c-ee3a-4dcf-aa20-df0560f538da --file /usr/local/lib/
python2.7/site-packages/aos_cli/resources/probes/spine_fault_tolerance.j2 --
number_of_faulty_spines_to_be_tolerated 1
Successfully created probe 0f0e9bf7-d9b3-43d7-906e-a9f0675e68f2 in blueprint bf7a322c-ee3a-4dcf-
aa20-df0560f538da
apstra-cli>

NOTE: number_of_faulty_spines_to_be_tolerated must be specified.

To install the lag_link_fault_tolerance.j2 IBA Probe:

apstra-cli> probe create --blueprint bf7a322c-ee3a-4dcf-aa20-df0560f538da --file /usr/local/lib/
python2.7/site-packages/aos_cli/resources/probes/lag_link_fault_tolerance.j2
Successfully created probe 45ce5fe8-555f-41a9-b0ae-267125669d3f in blueprint bf7a322c-ee3a-4dcf-
aa20-df0560f538da
apstra-cli>

878

AOSOM-Streaming Guide

IN THIS SECTION

AOSOM-Streaming Overview | 879

Configure Aosom-Streaming | 884

Reconfigure Aosom-streaming after Apstra Server Upgrade | 886

Build Aosom-Streaming VM (Optional) | 887

Troubleshooting | 891

AOSOM-Streaming Overview

IN THIS SECTION

Grafana | 880

Prometheus | 881

InfluxDB | 883

NOTE: AOSOM streaming is demonstration software, not intended for production environments.

You can configure Apstra to generate Google Protocol Buffer (protobuf) streams for counter data
(perfmon), alerts, and events. Each data type is sent to a streaming receiver over its own TCP socket.
Even if all three data types are configured for the same streaming receiver, three connections are
created between the Apstra server and the streaming receiver. This also allows for all three types to be
sent to three different streaming receivers. You can choose from the many open-source projects, or
develop your own solutions to capture, store and inspect the protobuf data. Apstra has developed a
project available on GitHub called AOSOM-Streaming to demonstrate how this can be achieved using
several open-source components. The AOSOM-Streaming project is meant to help you understand how
you can consume the AOS protobuf stream. It is for demonstration purposes only, except for the Apstra
Telegraf input plugin. Apstra software fully supports this plug-in for use as part of your streaming
telemetry solution.

879

https://github.com/Apstra/aosom-streaming

The Aosom Streaming project provides a packaged solution to collect and visualize telemetry streaming
information coming from an Apstra server. This provides a web interface experience and example
queries to handle alerts, counters, and Apstra events. This open-source project officially lives on Github
at https://github.com/Apstra/aosom-streaming.

The packaged solution includes:

• A graphical Interface based on Grafana (port 3000)

• Prometheus for Counters and Alerts (port 9090)

• Influxdb for Events (port 8086)

• 2 Collectors, one for each database based on Telegraf.

Grafana

From a web browser enter the URL http://<aosom-streaming>:3000 and enter username admin (default)
and password admin (default).

The grafana GUI includes two main sections (top left). Apstra AOS Blueprint describes overall telemetry
alerts and traffic throughput, as well as individual devices for interface telemetry. Blueprints are learned
automatically using the Apstra ‘telegraf’ Docker container; no further configuration is necessary.

In the screenshot above, we can observe traffic in the demo Apstra environment, and aggregate CPU,
traffic, and errors.

To filter telemetry events based on specific and individual devices, change the dashboard at the top to
Apstra AOS Device. Here we can observe there are two active route anomalies in the blueprint, and

880

https://github.com/Apstra/aosom-streaming

Apstra has received telemetry for two leaf switches.

Scroll down to view device statistics such as CPU and Memory:

Prometheus

Prometheus is used for alerts and device telemetry counter storage in the Aosom-streaming appliance.
From a web browser enter the URL http://<aosom-streaming>:9090 to access the Prometheus GUI.

When incoming events appear, Apstra dynamically builds each of the queries. To see example query
names, begin typing under ‘execute’. Starting with ‘alert’ it tab-completes available alerts that

881

prometheus has received from Apstra.

882

Here is an example of BGP Neighbors being offline.

InfluxDB

InfluxDB is used to store Apstra events from telemetry streaming. From a web browser enter the URL
http://<aosom-streaming>:8083 to access InfluxDB.

We can show the available influxdb keys with queries, such as show field keys or show measurements.

883

Once we know a measurement, we can view the data and keys with select * from <measurement> -- In
this case, we’ll capture the LAG interface status.

NOTE: Developing an influx-db application is beyond the scope of this documentation.

Configure Aosom-Streaming

To configure telemetry streaming as part of this project, you'll edit variables.env, run the make start file and
restart the containers. No Apstra server configuration is required. Documentation for starting, stopping,
and clearing data is available at https://github.com/Apstra/aosom-streaming

The telegraf project connects to the Apstra API and posts an IP:Port that Apstra uses to stream realtime
telemetry data back to.

1. Copy variables.default to variables.env:

aosom@ubuntu:~/aosom-streaming$ cp variables.default variables.env

2. Configure variables.env.

AOS_SERVER=192.168.57.250
LOCAL_IP=192.168.57.128

INPUT_PORT_INFLUX=4444
INPUT_PORT_PROM=6666
AOS_LOGIN=admin
AOS_PASSWORD=admin

884

https://github.com/Apstra/aosom-streaming

AOS_PORT=443

GRAFANA_LOGIN=admin
GRAFANA_PASSWORD=admin

• AOS_SERVER - the IP address of the Apstra server that sends telemetry data to the aosom-streaming
server.

• LOCAL_IP - the IP address assigned to ens33 (first ethernet interface). In this case, it is learned via
DHCP on this VM. See ip addr show dev ens33. GRAFANA configuration options to specify the
username and password for the grafana web interface.

• AOS_LOGIN, AOS_PASSWORD, AOS_PORT - You can customize username, port and password information.

3. Run the command make start to set up the project, or if you're making configuration changes, run make
update.

aosom@ubuntu:~/aosom-streaming$ make start
-- Start all components --
Creating network "aosomstreaming_default" with the default driver
Creating volume "aosomstreaming_grafana_data_2" with default driver
Pulling telegraf-influx (apstra/telegraf:1.2)...
1.2: Pulling from apstra/telegraf
00d19003217b: Pull complete
72dd23d7de04: Pull complete
cf6581f43cce: Pull complete
Digest: sha256:1539d4b84618abb44bdffb1e0a27399a7272814be36535f4a7dfa04661d6e5f6
Status: Downloaded newer image for apstra/telegraf:1.2
Pulling prometheus (prom/prometheus:v1.5.2)...
v1.5.2: Pulling from prom/prometheus
557a0c95bfcd: Pull complete
a3ed95caeb02: Pull complete
caf4d0cf9832: Pull complete
ee054001e2db: Pull complete
b95bf6c4c81b: Pull complete
86503a6ba368: Pull complete
ff27c7b0b50e: Pull complete
534e30a17a42: Pull complete
475d41733562: Pull complete
Digest: sha256:e049c086e35c0426389cd2450ef193f6c18b3d0065b97e5f203fdb254716fa1c
Status: Downloaded newer image for prom/prometheus:v1.5.2
Pulling influxdb (influxdb:1.1.1-alpine)...
1.1.1-alpine: Pulling from library/influxdb

885

0a8490d0dfd3: Pull complete
5f0fd352f87d: Pull complete
873718bcf8aa: Pull complete
3fbaf3e4140e: Pull complete
Digest: sha256:e0184202151b2abb9ceee79e6523d9492fc3c632324eb6f7bf1a672dd130a3bb
Status: Downloaded newer image for influxdb:1.1.1-alpine
Pulling grafana (grafana/grafana:4.1.2)...
4.1.2: Pulling from grafana/grafana
43c265008fae: Pull complete
c2ab838d4052: Pull complete
e8a816c8f505: Pull complete
Digest: sha256:05d925bd64cd3f9d6f56a4353774ccec588586579ab738f933cd002b7f96aca3
Status: Downloaded newer image for grafana/grafana:4.1.2
Creating aosomstreaming_telegraf-influx_1
Creating aosomstreaming_prometheus_1
Creating aosomstreaming_telegraf-prom_1
Creating aosomstreaming_influxdb_1
Creating aosomstreaming_grafana_1

Reconfigure Aosom-streaming after Apstra Server Upgrade

After you upgrade the Apstra server you must reconfigure to ensure a proper streaming connection.
1. If you upgraded the Apstra server onto a different VM (or if the server IP address is different for any

reason), update the variables.env file with the new Apstra IP address.

2. Run the docker ps command to verify that the current Telegraf container image matches the proper
version for the new Apstra release.

admin@aeon-ztps:~$ docker ps
CONTAINER ID IMAGE
4edf204e7be9 apstra/telegraf:latest

You can check the different Telegraf versions in the Apstra Docker Hub.

3. If required, modify the docker-compose.yml file and point to the correct Docker image.

4. Run the command docker-compose up -d to restart the service.

5. Run the docker ps command to verify that the container is running with the new image.

NOTE: For assistance regarding which version to install or if you have any questions about
the procedure, contact "Juniper Support" on page 802.

886

https://hub.docker.com/r/apstra/telegraf/tags

Build Aosom-Streaming VM (Optional)

IN THIS SECTION

Install Ubuntu 16.04.2 | 887

Install Packages | 887

Set Container Restart Policy | 889

Change System Hostname | 890

You can build your own Aosom-streaming VM, which is a Docker container. This steps show you how to
set up a basic Docker server.

Install Ubuntu 16.04.2

Download the Ubuntu 16.04.2 ISO and provision a new VM. The default username is aosom and the
password is admin.

For larger blueprints, we recommend changing RAM to at least 8GB and CPU to at least 2 vCPU. More
disk space may also be required.

Resource Quantity

RAM 8GB

CPU 2 vCPU

Network 1 vNIC

Install Packages

Install required packages, based on Ubuntu 16.04.2.

apt-get update

887

Update the system to ensure all packages are up to date.

apt-get install docker docker-compose git make curl openssh-server

aosom@ubuntu:~$ sudo apt-get install docker docker-compose git make curl openssh-server
[sudo] password for aosom:
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
 bridge-utils cgroupfs-mount containerd dns-root-data dnsmasq-base docker.io
 git-man liberror-perl libnetfilter-conntrack3 libperl5.22 libpython-stdlib
 libpython2.7-minimal libpython2.7-stdlib libyaml-0-2 patch perl
 perl-modules-5.22 python python-backports.ssl-match-hostname
 python-cached-property python-cffi-backend python-chardet
 python-cryptography python-docker python-dockerpty python-docopt
 python-enum34 python-funcsigs python-functools32 python-idna
 python-ipaddress python-jsonschema python-minimal python-mock
 python-ndg-httpsclient python-openssl python-pbr python-pkg-resources
 python-pyasn1 python-requests python-six python-texttable python-urllib3
 python-websocket python-yaml python2.7 python2.7-minimal rename runc
 ubuntu-fan xz-utils
Suggested packages:
 mountall aufs-tools btrfs-tools debootstrap docker-doc rinse zfs-fuse
 | zfsutils git-daemon-run | git-daemon-sysvinit git-doc git-el git-email
 git-gui gitk gitweb git-arch git-cvs git-mediawiki git-svn diffutils-doc
 perl-doc libterm-readline-gnu-perl | libterm-readline-perl-perl make
 python-doc python-tk python-cryptography-doc python-cryptography-vectors
 python-enum34-doc python-funcsigs-doc python-mock-doc python-openssl-doc
 python-openssl-dbg python-setuptools doc-base python-ntlm python2.7-doc
 binutils binfmt-support make
The following NEW packages will be installed:
 bridge-utils cgroupfs-mount containerd dns-root-data dnsmasq-base docker
 docker-compose docker.io git git-man liberror-perl libnetfilter-conntrack3
 libperl5.22 libpython-stdlib libpython2.7-minimal libpython2.7-stdlib
 libyaml-0-2 patch perl perl-modules-5.22 python
 python-backports.ssl-match-hostname python-cached-property
 python-cffi-backend python-chardet python-cryptography python-docker
 python-dockerpty python-docopt python-enum34 python-funcsigs
 python-functools32 python-idna python-ipaddress python-jsonschema
 python-minimal python-mock python-ndg-httpsclient python-openssl python-pbr

888

 python-pkg-resources python-pyasn1 python-requests python-six
 python-texttable python-urllib3 python-websocket python-yaml python2.7
 python2.7-minimal rename runc ubuntu-fan xz-utils make
0 upgraded, 54 newly installed, 0 to remove and 3 not upgraded.
Need to get 32.4 MB of archives.
After this operation, 174 MB of additional disk space will be used.
Do you want to continue? [Y/n] y

Add the aosom user to the Docker group. This allows ‘aosom’ to make Docker configuration changes
without having to escalate to sudo.

aosom@ubuntu:~/aosom-streaming$ sudo usermod -aG docker aosom
Log out and log back in again for ‘aosom’ user to be properly added to the group.

Copy the Aosom-streaming Docker containers over with ‘git clone’.

aosom@ubuntu:~$ git clone https://github.com/Apstra/aosom-streaming.git
Cloning into 'aosom-streaming'...
remote: Counting objects: 303, done.
remote: Total 303 (delta 0), reused 0 (delta 0), pack-reused 303
Receiving objects: 100% (303/303), 64.10 KiB | 0 bytes/s, done.
Resolving deltas: 100% (176/176), done.
Checking connectivity... done.
aosom@ubuntu:~$

Set Container Restart Policy

The AOSOM-Streaming package does not set the Docker restart policy; this is up to your orchestration
toolchain. Open aosom-streaming/docker-compose.yml and add restart: always to each of the service
directives. This ensures that Docker containers are online after a service reboot.

git diff docker-compose.yml

aosom@ubuntu:~/aosom-streaming$ git diff docker-compose.yml
diff --git a/docker-compose.yml b/docker-compose.yml
index 799d4c5..0d0fcc2 100644
--- a/docker-compose.yml
+++ b/docker-compose.yml

889

@@ -16,6 +16,7 @@ services:
 - prometheus
 ports:
 - "3000:3000"
+ restart: always

 # ---
 # Prometheus -
@@ -30,6 +31,7 @@ services:
 - '-config.file=/etc/prometheus/prometheus.yml'
 ports:
 - '9090:9090'
+ restart: always

 # ---
 # influxdb
@@ -43,6 +45,7 @@ services:
 ports:
 - "8083:8083"
 - "8086:8086"
+ restart: always

 # ---
 # Telegraf - Prom
@@ -57,6 +60,7 @@ services:
 - /etc/localtime:/etc/localtime
 ports:
 - '6666:6666'
+ restart: always

 # ---
 # Telegraf - Influx
@@ -71,3 +75,4 @@ services:
 - /etc/localtime:/etc/localtime
 ports:
 - '4444:4444'
+ restart: always

Set up variables.env and start container per Aosom-Streaming application setup section.

Change System Hostname

Modify /etc/hostname to aosom, and change the loopback IP in /etc/hosts to aosom from ubuntu.

890

Troubleshooting

IN THIS SECTION

Check for Logs from Apstra to Aosom-streaming | 891

Ensure Containers are Running | 891

While most troubleshooting information is included in the Github main page at https://github.com/
Apstra/aosom-streaming, you can run some simple commands to make sure the environment is healthy.

Check for Logs from Apstra to Aosom-streaming

Run Docker logs aosomstreaming_telegraf-influx_1

You should see a blueprint ID, and some influxdb ‘write’ events when telemetry events occur on AOS -
BGP, liveness, config deviation, etc.

GetBlueprints() - Id 0033cf3f-41ed-4ddc-91f5-ea68318fba9b
2017-07-31T23:59:13Z D! Finished to Refresh Data, will sleep for 20 sec
2017-07-31T23:59:15Z D! Output [influxdb] buffer fullness: 11 / 10000 metrics.
2017-07-31T23:59:15Z D! Output [influxdb] wrote batch of 11 metrics in 5.612057ms
2017-07-31T23:59:20Z D! Output [influxdb] buffer fullness: 4 / 10000 metrics.
2017-07-31T23:59:20Z D! Output [influxdb] wrote batch of 4 metrics in 5.349171ms
2017-07-31T23:59:25Z D! Output [influxdb] buffer fullness: 11 / 10000 metrics.
2017-07-31T23:59:25Z D! Output [influxdb] wrote batch of 11 metrics in 4.68295ms
2017-07-31T23:59:30Z D! Output [influxdb] buffer fullness: 4 / 10000 metrics.
2017-07-31T23:59:30Z D! Output [influxdb] wrote batch of 4 metrics in 5.007029ms
GetBlueprints() - Id 0033cf3f-41ed-4ddc-91f5-ea68318fba9b
2017-07-31T23:59:33Z D! Finished to Refresh Data, will sleep for 20 sec

Ensure Containers are Running

To see and ensure that all the expected containers are running, run docker ps:

aosom@ubuntu:~/aosom-streaming$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
e03d003a2ef9 grafana/grafana:4.1.2 "/run.sh" 3 minutes ago Up 3

891

https://github.com/Apstra/aosom-streaming
https://github.com/Apstra/aosom-streaming

minutes 0.0.0.0:3000->3000/tcp aosomstreaming_grafana_1
3042d45f1107 prom/prometheus:v1.5.2 "/bin/prometheus -con" 3 minutes ago Up 3
minutes 0.0.0.0:9090->9090/tcp aosomstreaming_prometheus_1
429328fbb5ac apstra/telegraf:1.2 "telegraf -debug" 3 minutes ago Up 3
minutes 0.0.0.0:6666->6666/tcp aosomstreaming_telegraf-prom_1
0a84241e1366 apstra/telegraf:1.2 "telegraf -debug" 3 minutes ago Up 3
minutes 0.0.0.0:4444->4444/tcp aosomstreaming_telegraf-influx_1
f4d2deb0e428 influxdb:1.1.1-alpine "/entrypoint.sh influ" 3 minutes ago Up 3
minutes 0.0.0.0:8083->8083/tcp, 0.0.0.0:8086->8086/tcp aosomstreaming_influxdb_1

Mixed Uplink Speeds between Leaf Devices and Spine Devices

The leaf devices in your racks can have different uplink speeds to a spine. When designing for mixed
speeds, make sure you plan sufficient ports for spine-to-leaf connections with mixed link speeds for Day
0, and for adding racks as a Day 2 operation. The spine logical device must have mixed port speeds
defined that specify the port role as Leaf for the required number of ports. The following limitations
apply:

• Parallel links between the same devices cannot have mixed speeds.

• You can't update spine logical devices if they're used in a blueprint. You could possibly use the AOS-
CLI utility for manual patching. AOS-CLI is an experimental tool and it may not be able to provide a
solution. For assistance, contact "Juniper Support" on page 802.

The example below shows how to design rack types and templates with mixed speeds.

1. Create an L3 Clos rack type with logical devices AOS-7x10-Leaf and AOS-40x10+6x40-1 for two
leaf switches, having 10 GbE and 40GbE, respectively, as uplinks towards spine devices

892

893

2. Create a Rack Based template based on the mixed speed rack type.

3. You can create a Pod Based template based on the above rack based template.

894

4. As a Day 0 operation you can create a "blueprint" on page 269 with one of the above templates; or
as a Day 2 operation you can select a mixed speed rack type when "adding a rack" on page 383 to an
existing blueprint.

References

IN THIS SECTION

Apstra Feature Matrix | 895

Qualified Devices and NOS | 956

NOS Upgrade Paths (Devices) | 965

Predefined Dashboards (Analytics) | 972

Predefined Probes (Analytics) | 976

Probe Processors (Analytics) | 1054

Configlet Examples (Design) | 1120

Apstra-CLI Commands | 1126

Apstra EVPN Support Addendum | 1128

Apstra Server Configuration File | 1136

Agent Configuration File (Devices) | 1147

Graph | 1152

Juniper Apstra Technology Preview | 1168

Apstra Feature Matrix

IN THIS SECTION

Apstra 4.1.2 Feature Matrix | 896

Apstra 4.1.1 Feature Matrix | 916

Apstra 4.1.0 Feature Matrix | 936

895

Apstra 4.1.2 Feature Matrix

IN THIS SECTION

Fabric Roles | 896

Fabric Connectivity | 897

Device Management | 898

Connectivity (from Leaf Layer) | 898

Connectivity (from Access Layer) | 900

Routing Policies | 900

Miscellaneous | 901

Virtual Network CT Type | 901

IP Link CT Type | 902

Static Route CT Type | 903

Custom Static Route CT Type | 904

BGP to Generic CT Type | 905

BGP to IP Endpoint CT Type | 910

Dynamic BGP Peering CT Type | 912

Routing Policy CT Type | 914

BGP Attributes (common to all BGP CTs) | 915

DCI Features | 916

Fabric Roles

Fabric Roles EOS NX-OS SONiC Junos OS Junos OS
Evolved

Access Switch No No No Yes No

Non-EVPN-
VXLAN Leaf (IP
forwarder only)

Yes Yes Yes Yes Yes

896

(Continued)

Fabric Roles EOS NX-OS SONiC Junos OS Junos OS
Evolved

EVPN-VXLAN
Leaf

Yes Yes Yes Yes Yes

Spine or
Superspine

Yes Yes Yes Yes Yes

Fabric Connectivity

Fabric
Connectivity

EOS NX-OS SONiC Junos OS Junos OS
Evolved

3-stage Clos Yes Yes Yes Yes Yes

5-stage Clos Yes Yes Yes Yes Yes

IP fabric (non-
EVPN-VXLAN)

Yes Yes Yes Yes Yes

EVPN-VXLAN
fabric

Yes Yes Yes Yes Yes

IPv6 fabric
RFC-5549 (non-
EVPN)

Yes Yes Yes No No

3-stage Clos
with access
switch layer

No No No Yes Limited

Collapsed fabric No No No Yes Limited

Freeform No No No Yes Yes

897

Device Management

Device
Management

EOS NX-OS SONiC Junos OS Junos OS
Evolved

On-box agent Yes Yes Yes Not Possible No

Off-box agent Yes Yes No Yes Yes

Telemetry
extensibility

Yes Yes Yes Yes Yes

Apstra ZTP Yes Yes Yes Yes Yes

Device OS
upgrade

Yes Yes Yes Yes Yes

Traffic draining
(spine devices/
superspine
devices -
maintenance
mode)

Yes Yes Yes Yes Yes

Traffic draining
(leaf devices)

Yes Yes Yes Yes Yes

Connectivity (from Leaf Layer)

Connectivity
(from Leaf
Layer)

EOS NX-OS SONic Junos OS Junos OS
Evolved

LAG Yes Yes Yes Yes Yes

MLAG/vPC Yes Yes Yes Not possible Not possible

EVPN ESI (with
LACP)

No No Not possible Yes Yes

898

(Continued)

Connectivity
(from Leaf
Layer)

EOS NX-OS SONic Junos OS Junos OS
Evolved

802.1x Yes No Not possible Limited No

VLANs Yes Yes Yes Yes Yes

Overlay
protocol: static
VXLAN

Yes Yes Not possible No No

Overlay
protocol: EVPN
(3-stage and 5-
stage)

Yes Yes Yes Yes Yes

IPv4 DHCP
relay

Yes Yes Yes Yes Yes

IPv6 DHCP
relay

Yes Yes Yes Yes Yes

EVPN DCI Yes Yes Yes Yes Yes

IPv6 for
applications
(with EVPN and
IPv4 fabric)

Yes Yes Yes Yes Yes

Policy
Assurance (L3
ACLs)

Yes Yes No Yes Yes

899

Connectivity (from Access Layer)

Connectivity
(from Access
Layer)

EOS NX-OS SONiC Junos OS Junos OS
Evolved

LAG N/A N/A N/A Yes Yes

ESI LAG N/A N/A N/A Yes Limited

Routing Policies

Routing Policies EOS NX-OS SONiC Junos OS Junos OS
Evolved

Import all routes
or default route
or extra routes
only

Yes Yes Yes Yes Yes

Export
loopback, link
and VN IP.
Export extra
routes

Yes Yes Yes Yes Yes

Export
aggregate
prefixes

Yes Yes Yes Yes Yes

Export L3
server link
subnets

Yes Yes Yes Yes Yes

Route target
import/export
policies

Yes Yes Yes Yes Yes

900

Miscellaneous

Miscellaneous EOS NX-OS SONiC Junos OS Junos OS
Evolved

Configlets Yes Yes Yes Yes Yes

FFE: add
racks/add links/
change speed

Yes Yes Yes Yes Yes

Mixed leaf/
spine link speed

Yes Yes Yes Yes Yes

Virtual Network CT Type

Virtual Network
CT Type

EOS NX-Os SONiC Junos OS Junos OS
Evolved

Single Virtual
Network
(VXLAN-based)

Yes Yes Yes Yes Yes

Multiple Virtual
Network
(VXLAN-based)

Yes Yes Yes Yes Yes

VLAN (default
VRF, non-
VXLAN)

Yes Yes Yes Yes Yes

901

IP Link CT Type

IP Link CT Type EOS NX-OS SONiC Junos OS Junos OS
Evolved

L3 Sub-
interface on
non-LAG
physical
interface
(untagged/vlan
tagged, default/
non-default RZ,
IPv4)

Yes Yes Yes Yes Yes

L3 Sub-
interface on
non-LAG
physical
interface
(untagged/vlan
tagged, default/
non-default RZ,
IPv6)

Yes Yes Yes Yes Yes

L3 Sub-
interface on
LAG interface
(untagged/vlan
tagged, default/
non-default RZ,
IPv4)

Yes Yes Yes Yes Yes

L3 Sub-
interface on
LAG interface
(untagged/vlan
tagged, default/
non-default RZ,
IPv6)

Yes Yes Yes Yes Yes

902

(Continued)

IP Link CT Type EOS NX-OS SONiC Junos OS Junos OS
Evolved

L3 Sub-
interface on
LAG interface
(untagged/vlan
tagged, default
RZ, IPv4) -
spine/sspine

Yes Yes Yes Yes Yes

L3 Sub-
interface on
LAG interface
(untagged/vlan
tagged, default
RZ, IPv6) -
spine/sspine

Yes Yes Yes Yes Yes

Static Route CT Type

Static Route CT
Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

Static Route
(IPv4) applied
on L3 Sub-
interface

Yes Yes Yes Yes Yes

Static Route
(IPv6) applied
on L3 Sub-
interface

Yes Yes Yes Yes Yes

Static Route
(IPv4) applied
on SVI

Yes Yes Yes Yes Yes

903

(Continued)

Static Route CT
Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

Static Route
(IPv6) applied
on SVI

Yes Yes Yes Yes Yes

Static Route
with Share IP
Endpoint
Enabled (IPv4)

Yes Yes Yes Yes Yes

Static Route
with Share IP
Endpoint
Enabled (IPv6)

Yes Yes Yes Yes Yes

Custom Static Route CT Type

Custom Static
Route CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

Custom Static
Route (IPv4,
default/non-
default RZ)

Yes Yes Yes Yes Yes

Custom Static
Route (IPv6,
default/non-
default RZ)

Yes Yes Yes Yes Yes

904

BGP to Generic CT Type

BGP to Generic
CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP session on
L3 Sub-
interface
towards generic
(IPv4, default/
non-default RZ)

Yes Yes Yes Yes Yes

BGP session on
L3 Sub-
interface
towards generic
(IPv6, default/
non-default RZ)

Yes Yes Yes Yes Yes

BGP session on
SVI towards
generic (IPv4,
default RZ)

Yes Yes Yes Yes Yes

BGP session on
SVI towards
generic (IPv4,
non-default RZ)

Yes Yes Yes Yes Yes

BGP session on
SVI towards
generic (IPv6,
non-default RZ)

Yes Yes Yes Yes Yes

BGP session on
SVI towards
generic (IPv6,
default RZ)

Yes Yes Yes Yes Yes

905

(Continued)

BGP to Generic
CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP session on
SVI (mlag)
towards dual-
homed generic
using secondary
IPs (IPv4,
default VRF)

Yes Yes Not possible Not possible Not possible

BGP session on
SVI (mlag)
towards dual-
homed generic
using secondary
IPs (IPv4, non-
default VRF)

Yes Yes Not possible Yes Yes

BGP session on
SVI (mlag)
towards dual-
homed generic
using secondary
IPs (IPv6,
default VRF)

Yes Yes Not possible Not possible Not possible

BGP session on
SVI (mlag)
towards dual-
homed generic
using secondary
IPs (IPv6, non-
default VRF)

Yes Yes Not possible Yes Yes

BGP session to
generic with
Share IP
Endpoint
Enabled (IPv4)

Yes Yes Yes Yes Yes

906

(Continued)

BGP to Generic
CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP session to
generic with
Share IP
Endpoint
Enabled (IPv6)

Yes Yes Yes Yes Yes

BGP session to
generic with
dynamic ASN
(IPv4)

No No No No No

BGP session to
generic with
Static ASN
(IPv4)

Yes Yes Yes Yes Yes

BGP session to
generic with
dynamic ASN
(IPv6)

No No No No No

BGP session to
generic with
static ASN
(IPv6)

Yes Yes Yes Yes Yes

BGP
Unnumbered
session (link-
local peering) on
L3 Sub-
interface (BP
has IPv6 app
enabled, default
VRF)

Yes Yes Yes No No

907

(Continued)

BGP to Generic
CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP
Unnumbered
session (link-
local peering) on
L3 Sub-
interface (BP
has IPv6 app
enabled, non-
default VRF)

No Yes Yes No No

BGP
Unnumbered
session (link-
local peering) on
SVI (BP has IPv6
app enabled,
default VRF)

Yes Yes Yes No No

BGP
Unnumbered
session (link-
local peering) on
SVI (BP has IPv6
app enabled,
non-default
VRF)

No Yes Yes No No

BGP
Unnumbered
session (link-
local peering) on
L3 Sub-
interface
(default VRF, BP
has IPv6 app
disabled)

Yes Yes Yes No No

908

(Continued)

BGP to Generic
CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP
Unnumbered
session (link-
local peering) on
L3 Sub-
interface (non-
default VRF, BP
has IPv6 app
disabled)

No Yes Yes No No

BGP
Unnumbered
session (link-
local peering) on
SVI (BP has IPv6
app disabled,
default VRF
only)

No No No No No

BGP Peering
combinations
(Int to Int, Lo to
Int, Int to Lo, Lo
to Lo)

Yes Yes Yes Yes Yes

BGP session
(IPv6 addressed)
with IPv4 SAFI
(rfc5549) with
static ASN (BP
has IPv6 app
enabled)

No No No No No

BGP session
(IPv6 addressed)
with IPv4 SAFI
(rfc5549) with
dynamic ASN
(BP has IPv6
app enabled)

No No No No No

909

BGP to IP Endpoint CT Type

BGP to IP
Endpoint CT
Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP session
from L3 sub-
interface to any
IP endpoint in
the network
(IPv4, default/
non-default RZ)

Yes Yes Yes Yes Yes

BGP session
from L3 sub-
interface to any
IP endpoint in
the network
(IPv6, default/
non-default RZ)

Yes Yes Yes Yes Yes

BGP session
from SVI to any
IP endpoint in
the network
(IPv4, default/
non-default RZ)

Yes Yes Yes Yes Yes

BGP session
from SVI to any
IP endpoint in
the network
(IPv6, non-
default RZ)

Yes Yes Yes Yes Yes

BGP session
from SVI to any
IP endpoint in
the network
(IPv6, default
RZ)

Yes Yes Yes Yes Yes

910

(Continued)

BGP to IP
Endpoint CT
Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP session
from Loopback
to any IP
endpoint in the
network (IPv4,
default/non-
default RZ)

Yes Yes Yes Yes Yes

BGP session
from Loopback
to any IP
endpoint in the
network (IPv6,
default/non-
default RZ)

Yes Yes Yes Yes Yes

BGP session
with specific
peer IP and and
Static ASN
(IPv4)

Yes Yes Yes Yes Yes

BGP session
with specific
peer IP and and
Static ASN
(IPv6)

Yes Yes Yes Yes Yes

BGP session
with specific
peer IP and and
dynamic ASN
(IPv4)

No No No No No

911

(Continued)

BGP to IP
Endpoint CT
Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP session
with specific
peer IP and and
dynamic ASN
(IPv6)

No No No No No

BGP session
(IPv6 addressed)
with IPv4 SAFI
(rfc5549) with
static ASN (BP
has IPv6 app
enabled)

No No No No No

BGP session
(IPv6 addressed)
with IPv4 SAFI
(rfc5549) with
dynamic ASN
(BP has IPv6
app enabled)

No No No No No

Dynamic BGP Peering CT Type

Dynamic BGP
Peering CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

Dynamic BGP
prefix peering
on SVI (IPv4),
default VRF

Yes Yes Yes Yes No

912

(Continued)

Dynamic BGP
Peering CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

Dynamic BGP
prefix peering
on SVI (IPv4),
non-default
VRF

Yes Yes Yes Yes No

Dynamic BGP
prefix peering
on SVI (IPv6),
default VRF

Yes Yes Yes Yes No

Dynamic BGP
prefix peering
on SVI (IPv6),
non-default
VRF

Yes Yes Yes Yes No

Dynamic BGP
prefix peering
on L3 sub-
interface (IPv4),
default VRF

Yes Yes Yes Yes No

Dynamic BGP
prefix peering
on L3 sub-
interface (IPv4),
non-default
VRF

Yes Yes Yes Yes No

Dynamic BGP
prefix peering
on L3 sub-
interface (IPv6),
default VRF

Yes Yes Yes Yes No

913

(Continued)

Dynamic BGP
Peering CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

Dynamic BGP
prefix peering
on L3 sub-
interface (IPv6),
non-default
VRF

Yes Yes Yes Yes No

Dynamic prefix
peering (link-
local prefix
peering,
rfc5549), (BP
has IPv6 app
disabled)

Yes No No No No

Dynamic prefix
peering (IPv6
peering, IPv4
AFI, rfc5549),
(BP has IPv6
app enabled)

No No No No No

Routing Policy CT Type

Routing Policy
CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

Routing Policy
on a BGP
session with
import/export
IPv4 prefixes

Yes Yes Yes Yes Yes

914

(Continued)

Routing Policy
CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

Routing Policy
on a BGP
session with
import/export
IPv6 prefixes

Yes Yes Yes Yes Yes

Routing Policy
on a BGP
session with
IPv4 aggregate
prefixes

Yes Yes Yes Yes Yes

Routing Policy
on a BGP
session with
IPv6 aggregate
prefixes

Yes Yes Yes Yes Yes

BGP Attributes (common to all BGP CTs)

BGP Attributes
(common to all
BGP CTs)

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP: enable
Password/MD5
based
authentication

Yes Yes Yes Yes Yes

BGP: Custom
BGP timers
(Keep Alive
timer, Hold
timer)

Yes Yes Yes Yes Yes

BGP: Custom
TTL

Yes Yes Yes Yes Yes

915

(Continued)

BGP Attributes
(common to all
BGP CTs)

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP: Enable
Single-hop BFD

Yes Yes Yes Yes Yes

DCI Features

DCI Features EOS NX-OS SONiC Junos OS Junos OS
Evolved

Type 5 route
filtering

No Yes No Yes Yes

Apstra 4.1.1 Feature Matrix

IN THIS SECTION

Fabric Roles | 917

Fabric Connectivity | 917

Device Management | 918

Connectivity (from Leaf Layer) | 919

Connectivity (from Access Layer) | 920

Routing Policies | 920

Miscellaneous | 921

Virtual Network CT Type | 921

IP Link CT Type | 922

Static Route CT Type | 924

Custom Static Route CT Type | 925

BGP to Generic CT Type | 925

BGP to IP Endpoint CT Type | 930

Dynamic BGP Peering CT Type | 933

916

Routing Policy CT Type | 935

BGP Attributes (common to all BGP CTs) | 936

DCI Features | 936

Fabric Roles

Fabric Roles EOS NX-OS SONiC Junos OS Junos OS
Evolved

Access Switch No No No Yes No

Non-EVPN-
VXLAN Leaf (IP
forwarder only)

Yes Yes Yes Yes Yes

EVPN-VXLAN
Leaf

Yes Yes Yes Yes No

Spine or
Superspine

Yes Yes Yes Yes Yes

Fabric Connectivity

Fabric
Connectivity

EOS NX-OS SONiC Junos OS Junos OS
Evolved

3-stage Clos Yes Yes Yes Yes Yes

5-stage Clos Yes Yes Yes Yes Yes

IP fabric (non-
EVPN-VXLAN)

Yes Yes Yes Yes Yes

EVPN-VXLAN
fabric

Yes Yes Yes Yes Limited

917

(Continued)

Fabric
Connectivity

EOS NX-OS SONiC Junos OS Junos OS
Evolved

IPv6 fabric
RFC-5549 (non-
EVPN)

Yes Yes Yes No No

3-stage Clos
with access
switch layer

No No No Yes Limited

Collapsed fabric No No No Yes No

Freeform No No No Yes Yes

Device Management

Device
Management

EOS NX-OS SONiC Junos OS Junos OS
Evolved

On-box agent Yes Yes Yes Not possible No

Off-box agent Yes Yes No Yes Yes

Telemetry
extensibility

Yes Yes Yes Yes No

Apstra ZTP Yes Yes Yes Yes Yes

Device OS
upgrade

Yes Yes Contact Juniper
Support

Yes Yes

Traffic draining
(spine devices/
superspine
devices -
maintenance
mode)

Yes Yes Yes Yes Yes

918

(Continued)

Device
Management

EOS NX-OS SONiC Junos OS Junos OS
Evolved

Traffic draining
(leaf devices)

Limited Limited Limited Limited Limited

Connectivity (from Leaf Layer)

Connectivity
(from Leaf
Layer)

EOS NX-OS SONiC Junos OS Junos OS
Evolved

LAG Yes Yes Yes Yes Yes

MLAG/vPC Yes Yes Yes Not possible Not possible

EVPN ESI (with
LACP)

No No Not possible Yes No

802.1x Yes No Not possible Limited No

VLANs Yes Yes Yes Yes Yes

Overlay
protocol: static
VXLAN

Yes Yes Not possible No No

Overlay
protocol: EVPN
(3-stage and 5-
stage)

Yes Yes Yes Yes No

IPv4 DHCP
relay

Yes Yes Yes Yes Yes

IPv6 DHCP
relay

Yes Yes Yes Yes Yes

EVPN DCI Yes Yes Yes Yes No

919

(Continued)

Connectivity
(from Leaf
Layer)

EOS NX-OS SONiC Junos OS Junos OS
Evolved

IPv6 for
applications
(with EVPN and
IPv4 fabric)

Yes Yes Yes Yes No

Policy
Assurance (L3
ACLs)

Yes Yes No Yes Yes

Connectivity (from Access Layer)

Connectivity
(from Access
Layer)

EOS NX-OS SONiC Junos OS Junos OS
Evolved

LAG N/A N/A N/A Yes N/A

ESI LAG N/A N/A N/A Limited N/A

Routing Policies

Routing Policies EOS NX-OS SONiC Junos OS Junos OS
Evolved

Import all routes
or default route
or extra routes
only

Yes Yes Yes Yes Yes

Export
loopback, link
and VN IP.
Export extra
routes

Yes Yes Yes Yes Yes

920

(Continued)

Routing Policies EOS NX-OS SONiC Junos OS Junos OS
Evolved

Export
aggregate
prefixes

Yes Yes Yes Yes No

Export L3
server link
subnets

Yes Yes Yes Yes Yes

Route target
import/export
policies

Yes Yes Yes Yes No

Miscellaneous

Miscellaneous EOS NX-OS SONiC Junos OS Junos OS
Evolved

Configlets Yes Yes Yes Yes Yes

FFE: add
racks/add links/
change speed

Yes Yes Yes Yes Yes

Mixed leaf/
spine link speed

Yes Yes Yes Yes Yes

Virtual Network CT Type

Virtual Network
CT Type

EOS NX-OS SONiC Juno OS Junos OS
Evolved

Single Virtual
Network
(VXLAN-based)

Yes Yes Yes Yes No

921

(Continued)

Virtual Network
CT Type

EOS NX-OS SONiC Juno OS Junos OS
Evolved

Multiple Virtual
Network
(VXLAN-based)

Yes Yes Yes Yes No

VLAN (default
VRF, non-
VXLAN)

Yes Yes Yes Yes Yes

IP Link CT Type

IP Link CT Type EOS NX-OS SONiC Junos OS Junos OS
Evolved

L3 Sub-
interface on
non-LAG
physical
interface
(untagged/vlan
tagged, default/
non-default RZ,
IPv4)

Yes Yes Yes Yes Yes

L3 Sub-
interface on
non-LAG
physical
interface
(untagged/vlan
tagged, default/
non-default RZ,
IPv6)

Yes Yes Yes Yes No

922

(Continued)

IP Link CT Type EOS NX-OS SONiC Junos OS Junos OS
Evolved

L3 Sub-
interface on
LAG interface
(untagged/vlan
tagged, default/
non-default RZ,
IPv4)

Yes Yes Yes Yes Yes

L3 Sub-
interface on
LAG interface
(untagged/vlan
tagged, default/
non-default RZ,
IPv6)

Yes Yes Yes Yes Yes

L3 Sub-
interface on
LAG interface
(untagged/vlan
tagged, default
RZ, IPv4) -
spine/sspine

Yes Yes Yes Yes Yes

L3 Sub-
interface on
LAG interface
(untagged/vlan
tagged, default
RZ, IPv6) -
spine/sspine

Yes Yes Yes Yes Yes

923

Static Route CT Type

Static Route CT
Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

Static Route
(IPv4) applied
on L3 Sub-
interface

Yes Yes Yes Yes Yes

Static Route
(IPv6) applied
on L3 Sub-
interface

Yes Yes Yes Yes Yes

Static Route
(IPv4) applied
on SVI

Yes Yes Yes Yes No

Static Route
(IPv6) applied
on SVI

Yes Yes Yes Yes No

Static Route
with Share IP
Endpoint
Enabled (IPv4)

Yes Yes Yes Yes No

Static Route
with Share IP
Endpoint
Enabled (IPv6)

Yes Yes Yes Yes No

924

Custom Static Route CT Type

Custom Static
Route CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

Custom Static
Route (IPv4,
default/non-
default RZ)

Yes Yes Yes Yes Yes

Custom Static
Route (IPv6,
default/non-
default RZ)

Yes Yes Yes Yes Yes

BGP to Generic CT Type

BGP to Generic
CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP session on
L3 Sub-
interface
towards generic
(IPv4, default/
non-default RZ)

Yes Yes Yes Yes Yes

BGP session on
L3 Sub-
interface
towards generic
(IPv6, default/
non-default RZ)

Yes Yes Yes Yes No

BGP session on
SVI towards
generic (IPv4,
default RZ)

Yes Yes Yes Yes No

925

(Continued)

BGP to Generic
CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP session on
SVI towards
generic (IPv4,
non-default RZ)

Yes Yes Yes Yes No

BGP session on
SVI towards
generic (IPv6,
non-default RZ)

Yes Yes Yes Yes No

BGP session on
SVI towards
generic (IPv6,
default RZ)

Yes Yes Yes Yes No

BGP session on
SVI (mlag)
towards dual-
homed generic
using secondary
IPs (IPv4,
default VRF)

Yes Yes Not possible Not possible No

BGP session on
SVI (mlag)
towards dual-
homed generic
using secondary
IPs (IPv4, non-
default VRF)

Yes Yes Not possible Yes No

BGP session on
SVI (mlag)
towards dual-
homed generic
using secondary
IPs (IPv6,
default VRF)

Yes Yes Not possible Not possible No

926

(Continued)

BGP to Generic
CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP session on
SVI (mlag)
towards dual-
homed generic
using secondary
IPs (IPv6, non-
default VRF)

Yes Yes Not possible Yes No

BGP session to
generic with
Share IP
Endpoint
Enabled (IPv4)

Yes Yes Yes Yes No

BGP session to
generic with
Share IP
Endpoint
Enabled (IPv6)

Yes Yes Yes Yes No

BGP session to
generic with
dynamic ASN
(IPv4)

No No No No No

BGP session to
generic with
Static ASN
(IPv4)

Yes Yes Yes Yes No

BGP session to
generic with
dynamic ASN
(IPv6)

No No No No No

BGP session to
generic with
static ASN
(IPv6)

Yes Yes Yes Yes No

927

(Continued)

BGP to Generic
CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP
Unnumbered
session (link-
local peering) on
L3 Sub-
interface (BP
has IPv6 app
enabled, default
VRF)

Yes Yes Yes No No

BGP
Unnumbered
session (link-
local peering) on
L3 Sub-
interface (BP
has IPv6 app
enabled, non-
default VRF)

No Yes Yes No No

BGP
Unnumbered
session (link-
local peering) on
SVI (BP has IPv6
app enabled,
default VRF)

Yes Yes Yes No No

BGP
Unnumbered
session (link-
local peering) on
SVI (BP has IPv6
app enabled,
non-default
VRF)

No Yes Yes No No

928

(Continued)

BGP to Generic
CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP
Unnumbered
session (link-
local peering) on
L3 Sub-
interface
(default VRF, BP
has IPv6 app
disabled)

Yes Yes Yes No No

BGP
Unnumbered
session (link-
local peering) on
L3 Sub-
interface (non-
default VRF, BP
has IPv6 app
disabled)

No Yes Yes No No

BGP
Unnumbered
session (link-
local peering) on
SVI (BP has IPv6
app disabled,
default VRF
only)

No No No No No

BGP Peering
combinations
(Int to Int, Lo to
Int, Int to Lo, Lo
to Lo)

Yes Yes Yes Yes Yes

929

(Continued)

BGP to Generic
CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP session
(IPv6 addressed)
with IPv4 SAFI
(rfc5549) with
static ASN (BP
has IPv6 app
enabled)

No No No No No

BGP session
(IPv6 addressed)
with IPv4 SAFI
(rfc5549) with
dynamic ASN
(BP has IPv6
app enabled)

No No No No No

BGP to IP Endpoint CT Type

BGP to IP
Endpoint CT
Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP session
from L3 sub-
interface to any
IP endpoint in
the network
(IPv4, default/
non-default RZ)

Yes Yes Yes Yes Yes

BGP session
from L3 sub-
interface to any
IP endpoint in
the network
(IPv6, default/
non-default RZ)

Yes Yes Yes Yes No

930

(Continued)

BGP to IP
Endpoint CT
Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP session
from SVI to any
IP endpoint in
the network
(IPv4, default/
non-default RZ)

Yes Yes Yes Yes No

BGP session
from SVI to any
IP endpoint in
the network
(IPv6, non-
default RZ)

Yes Yes Yes Yes No

BGP session
from SVI to any
IP endpoint in
the network
(IPv6, default
RZ)

Yes Yes Yes Yes No

BGP session
from Loopback
to any IP
endpoint in the
network (IPv4,
default/non-
default RZ)

Yes Yes Yes Yes Yes

BGP session
from Loopback
to any IP
endpoint in the
network (IPv6,
default/non-
default RZ)

Yes Yes Yes Yes No

931

(Continued)

BGP to IP
Endpoint CT
Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP session
with specific
peer IP and and
Static ASN
(IPv4)

Yes Yes Yes Yes Yes

BGP session
with specific
peer IP and and
Static ASN
(IPv6)

Yes Yes Yes Yes No

BGP session
with specific
peer IP and and
dynamic ASN
(IPv4)

No No No No No

BGP session
with specific
peer IP and and
dynamic ASN
(IPv6)

No No No No No

BGP session
(IPv6 addressed)
with IPv4 SAFI
(rfc5549) with
static ASN (BP
has IPv6 app
enabled)

No No No No No

932

(Continued)

BGP to IP
Endpoint CT
Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP session
(IPv6 addressed)
with IPv4 SAFI
(rfc5549) with
dynamic ASN
(BP has IPv6
app enabled)

No No No No No

Dynamic BGP Peering CT Type

Dynamic BGP
Peering CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

Dynamic BGP
prefix peering
on SVI (IPv4),
default VRF

Yes Yes Yes Yes No

Dynamic BGP
prefix peering
on SVI (IPv4),
non-default
VRF

Yes Yes Yes Yes No

Dynamic BGP
prefix peering
on SVI (IPv6),
default VRF

Yes Yes Yes Yes No

Dynamic BGP
prefix peering
on SVI (IPv6),
non-default
VRF

Yes Yes Yes Yes No

933

(Continued)

Dynamic BGP
Peering CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

Dynamic BGP
prefix peering
on L3 sub-
interface (IPv4),
default VRF

Yes Yes Yes Yes No

Dynamic BGP
prefix peering
on L3 sub-
interface (IPv4),
non-default
VRF

Yes Yes Yes Yes No

Dynamic BGP
prefix peering
on L3 sub-
interface (IPv6),
default VRF

Yes Yes Yes Yes No

Dynamic BGP
prefix peering
on L3 sub-
interface (IPv6),
non-default
VRF

Yes Yes Yes Yes No

Dynamic prefix
peering (link-
local prefix
peering,
rfc5549), (BP
has IPv6 app
disabled)

Yes No No No No

934

(Continued)

Dynamic BGP
Peering CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

Dynamic prefix
peering (IPv6
peering, IPv4
AFI, rfc5549),
(BP has IPv6
app enabled)

No No No No No

Routing Policy CT Type

Routing Policy
CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

Routing Policy
on a BGP
session with
import/export
IPv4 prefixes

Yes Yes Yes Yes Yes

Routing Policy
on a BGP
session with
import/export
IPv6 prefixes

Yes Yes Yes Yes No

Routing Policy
on a BGP
session with
IPv4 aggregate
prefixes

Yes Yes Yes Yes No

Routing Policy
on a BGP
session with
IPv6 aggregate
prefixes

Yes Yes Yes Yes No

935

BGP Attributes (common to all BGP CTs)

BGP Attributes
(common to all
BGP CTs)

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP: enable
Password/MD5
based
authentication

Yes Yes Yes Yes No

BGP: Custom
BGP timers
(Keep Alive
timer, Hold
timer)

Yes Yes Yes Yes Yes

BGP: Custom
TTL

Yes Yes Yes Yes Yes

BGP: Enable
Single-hop BFD

Yes Yes Yes Yes Yes

DCI Features

DCI Features EOS NX-OS SONiC Junos OS Junos OS
Evolved

Type 5 route
filtering

No Yes No Yes No

Apstra 4.1.0 Feature Matrix

IN THIS SECTION

Fabric Roles | 937

Fabric Connectivity | 938

Device Management | 938

936

Connectivity (from Leaf Layer) | 939

Connectivity (from Access Layer) | 940

Routing Policies | 941

Miscellaneous | 941

Virtual Network CT Type | 942

IP Link CT Type | 942

Static Route CT Type | 944

Custom Static Route CT Type | 945

BGP to Generic CT Type | 945

BGP to IP Endpoint CT Type | 950

Dynamic BGP Peering CT Type | 953

Routing Policy CT Type | 955

BGP Attributes (common to all BGP CTs) | 956

DCI Features | 956

Fabric Roles

Fabric Roles EOS NX-OS SONiC Junos OS Junos OS
Evolved

Access Switch No No No Yes No

Non-EVPN-
VXLAN Leaf (IP
forwarder only)

Yes Yes Yes Yes Yes

EVPN-VXLAN
Leaf

Yes Yes Yes Yes No

Spine or
Superspine

Yes Yes Yes Yes Yes

937

Fabric Connectivity

Fabric
Connectivity

EOS NX-OS SONiC Junos OS Junos OS
Evolved

3-stage Clos Yes Yes Yes Yes Yes

5-stage Clos Yes Yes Yes Yes Yes

IP fabric (non-
EVPN-VXLAN)

Yes Yes Yes Yes Yes

EVPN-VXLAN
fabric

Yes Yes Yes Yes Limited

IPv6 fabric
RFC-5549 (non-
EVPN)

Yes Yes Yes No No

3-stage Clos
with access
switch layer

No No No Yes Limited

Collapsed fabric No No No Yes No

Device Management

Device
Management

EOS NX-OS SONiC Junos OS Junos OS
Evolved

On-box agent Yes Yes Yes Not possible No

Off-box agent Yes Yes No Yes Yes

Telemetry
extensibility

Yes Yes Yes Yes No

Apstra ZTP Yes Yes Yes Yes Yes

938

(Continued)

Device
Management

EOS NX-OS SONiC Junos OS Junos OS
Evolved

Device OS
upgrade

Yes Yes Contact Juniper
Support

Yes Yes

Traffic draining
(spine devices/
superspine
devices -
maintenance
mode)

Yes Yes Yes Yes Yes

Traffic draining
(leaf devices)

Limited Limited Limited Limited Limited

Connectivity (from Leaf Layer)

Connectivity
(from Leaf
Layer)

EOS NX-OS SONiC Junos OS Junos OS
Evolved

LAG Yes Yes Yes Yes Yes

MLAG/vPC Yes Yes Yes Not possible Not possible

EVPN ESI (with
LACP)

No No Not possible Yes No

802.1x Yes No Not possible No No

VLANs Yes Yes Yes Yes Yes

Overlay
protocol: static
VXLAN

Yes Yes Not possible No No

939

(Continued)

Connectivity
(from Leaf
Layer)

EOS NX-OS SONiC Junos OS Junos OS
Evolved

Overlay
protocol: EVPN
(3-stage and 5-
stage)

Yes Yes Yes Yes No

IPv4 DHCP
relay

Yes Yes Yes Yes Yes

IPv6 DHCP
relay

Yes Yes Yes Yes Yes

EVPN DCI Yes Yes Yes Yes No

IPv6 for
applications
(with EVPN and
IPv4 fabric)

Yes Yes Yes Yes No

Policy
Assurance (L3
ACLs)

Yes Yes No Yes Yes

Connectivity (from Access Layer)

Connectivity
(from Access
Layer)

EOS NX-OS SONiC Junos OS Junos OS
Evolved

LAG N/A N/A N/A Yes N/A

ESI LAG N/A N/A N/A Limited N/A

940

Routing Policies

Routing Policies EOS NX-OS SONiC Junos OS Junos OS
Evolved

Import all routes
or default route
or extra routes
only

Yes Yes Yes Yes Yes

Export
loopback, link
and VN IP.
Export extra
routes

Yes Yes Yes Yes Yes

Export
aggregate
prefixes

Yes Yes Yes Yes No

Export L3
server link
subnets

Yes Yes Yes Yes Yes

Route target
import/export
policies

Yes Yes Yes Yes No

Miscellaneous

Miscellaneous EOS NX-OS SONiC Junos OS Junos OS
Evolved

Configlets Yes Yes Yes Yes Yes

FFE: add
racks/add links/
change speed

Yes Yes Yes Yes Yes

Mixed leaf/
spine link speed

Yes Yes Yes Yes Yes

941

Virtual Network CT Type

Virtual Network
CT Type

EOS NX-OS SONiC Juno OS Junos OS
Evolved

Single Virtual
Network
(VXLAN-based)

Yes Yes Yes Yes No

Multiple Virtual
Network
(VXLAN-based)

Yes Yes Yes Yes No

VLAN (default
VRF, non-
VXLAN)

Yes Yes Yes Yes Yes

IP Link CT Type

IP Link CT Type EOS NX-OS SONiC Junos OS Junos OS
Evolved

L3 Sub-
interface on
non-LAG
physical
interface
(untagged/vlan
tagged, default/
non-default RZ,
IPv4)

Yes Yes Yes Yes Yes - for default
VRF only

L3 Sub-
interface on
non-LAG
physical
interface
(untagged/vlan
tagged, default/
non-default RZ,
IPv6)

Yes Yes Yes Yes No

942

(Continued)

IP Link CT Type EOS NX-OS SONiC Junos OS Junos OS
Evolved

L3 Sub-
interface on
LAG interface
(untagged/vlan
tagged, default/
non-default RZ,
IPv4)

Yes Yes Yes Yes Yes

L3 Sub-
interface on
LAG interface
(untagged/vlan
tagged, default/
non-default RZ,
IPv6)

Yes Yes Yes Yes Yes

L3 Sub-
interface on
LAG interface
(untagged/vlan
tagged, default
RZ, IPv4) -
spine/sspine

Yes Yes Yes Yes Yes

L3 Sub-
interface on
LAG interface
(untagged/vlan
tagged, default
RZ, IPv6) -
spine/sspine

Yes Yes Yes Yes Yes

943

Static Route CT Type

Static Route CT
Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

Static Route
(IPv4) applied
on L3 Sub-
interface

Yes Yes Yes Yes Yes

Static Route
(IPv6) applied
on L3 Sub-
interface

Yes Yes Yes Yes Yes

Static Route
(IPv4) applied
on SVI

Yes Yes Yes Yes No

Static Route
(IPv6) applied
on SVI

Yes Yes Yes Yes No

Static Route
with Share IP
Endpoint
Enabled (IPv4)

Yes Yes Yes Yes No

Static Route
with Share IP
Endpoint
Enabled (IPv6)

Yes Yes Yes Yes No

944

Custom Static Route CT Type

Custom Static
Route CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

Custom Static
Route (IPv4,
default/non-
default RZ)

Yes Yes Yes Yes Yes - default
VRF only

Custom Static
Route (IPv6,
default/non-
default RZ)

Yes Yes Yes Yes Yes

BGP to Generic CT Type

BGP to Generic
CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP session on
L3 Sub-
interface
towards generic
(IPv4, default/
non-default RZ)

Yes Yes Yes Yes Yes

BGP session on
L3 Sub-
interface
towards generic
(IPv6, default/
non-default RZ)

Yes Yes Yes Yes No

BGP session on
SVI towards
generic (IPv4,
default RZ)

Yes Yes Yes Yes No

945

(Continued)

BGP to Generic
CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP session on
SVI towards
generic (IPv4,
non-default RZ)

Yes Yes Yes Yes No

BGP session on
SVI towards
generic (IPv6,
non-default RZ)

Yes Yes Yes Yes No

BGP session on
SVI towards
generic (IPv6,
default RZ)

Yes Yes Yes Yes No

BGP session on
SVI (mlag)
towards dual-
homed generic
using secondary
IPs (IPv4,
default VRF)

Yes Yes Not possible Not possible No

BGP session on
SVI (mlag)
towards dual-
homed generic
using secondary
IPs (IPv4, non-
default VRF)

Yes Yes Not possible Yes No

BGP session on
SVI (mlag)
towards dual-
homed generic
using secondary
IPs (IPv6,
default VRF)

Yes Yes Not possible Not possible No

946

(Continued)

BGP to Generic
CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP session on
SVI (mlag)
towards dual-
homed generic
using secondary
IPs (IPv6, non-
default VRF)

Yes Yes Not possible Yes No

BGP session to
generic with
Share IP
Endpoint
Enabled (IPv4)

Yes Yes Yes Yes No

BGP session to
generic with
Share IP
Endpoint
Enabled (IPv6)

Yes Yes Yes Yes No

BGP session to
generic with
dynamic ASN
(IPv4)

No No No No No

BGP session to
generic with
Static ASN
(IPv4)

Yes Yes Yes Yes No

BGP session to
generic with
dynamic ASN
(IPv6)

No No No No No

BGP session to
generic with
static ASN
(IPv6)

Yes Yes Yes Yes No

947

(Continued)

BGP to Generic
CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP
Unnumbered
session (link-
local peering) on
L3 Sub-
interface (BP
has IPv6 app
enabled, default
VRF)

Yes Yes Yes No No

BGP
Unnumbered
session (link-
local peering) on
L3 Sub-
interface (BP
has IPv6 app
enabled, non-
default VRF)

No Yes Yes No No

BGP
Unnumbered
session (link-
local peering) on
SVI (BP has IPv6
app enabled,
default VRF)

Yes Yes Yes No No

BGP
Unnumbered
session (link-
local peering) on
SVI (BP has IPv6
app enabled,
non-default
VRF)

No Yes Yes No No

948

(Continued)

BGP to Generic
CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP
Unnumbered
session (link-
local peering) on
L3 Sub-
interface
(default VRF, BP
has IPv6 app
disabled)

Yes Yes Yes No No

BGP
Unnumbered
session (link-
local peering) on
L3 Sub-
interface (non-
default VRF, BP
has IPv6 app
disabled)

No Yes Yes No No

BGP
Unnumbered
session (link-
local peering) on
SVI (BP has IPv6
app disabled,
default VRF
only)

No No No No No

BGP Peering
combinations
(Int to Int, Lo to
Int, Int to Lo, Lo
to Lo)

Yes Yes Yes Yes Yes

949

(Continued)

BGP to Generic
CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP session
(IPv6 addressed)
with IPv4 SAFI
(rfc5549) with
static ASN (BP
has IPv6 app
enabled)

No No No No No

BGP session
(IPv6 addressed)
with IPv4 SAFI
(rfc5549) with
dynamic ASN
(BP has IPv6
app enabled)

No No No No No

BGP to IP Endpoint CT Type

BGP to IP
Endpoint CT
Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP session
from L3 sub-
interface to any
IP endpoint in
the network
(IPv4, default/
non-default RZ)

Yes Yes Yes Yes Yes

BGP session
from L3 sub-
interface to any
IP endpoint in
the network
(IPv6, default/
non-default RZ)

Yes Yes Yes Yes No

950

(Continued)

BGP to IP
Endpoint CT
Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP session
from SVI to any
IP endpoint in
the network
(IPv4, default/
non-default RZ)

Yes Yes Yes Yes No

BGP session
from SVI to any
IP endpoint in
the network
(IPv6, non-
default RZ)

Yes Yes Yes Yes No

BGP session
from SVI to any
IP endpoint in
the network
(IPv6, default
RZ)

Yes Yes Yes Yes No

BGP session
from Loopback
to any IP
endpoint in the
network (IPv4,
default/non-
default RZ)

Yes Yes Yes Yes Yes

BGP session
from Loopback
to any IP
endpoint in the
network (IPv6,
default/non-
default RZ)

Yes Yes Yes Yes No

951

(Continued)

BGP to IP
Endpoint CT
Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP session
with specific
peer IP and and
Static ASN
(IPv4)

Yes Yes Yes Yes Yes

BGP session
with specific
peer IP and and
Static ASN
(IPv6)

Yes Yes Yes Yes No

BGP session
with specific
peer IP and and
dynamic ASN
(IPv4)

No No No No No

BGP session
with specific
peer IP and and
dynamic ASN
(IPv6)

No No No No No

BGP session
(IPv6 addressed)
with IPv4 SAFI
(rfc5549) with
static ASN (BP
has IPv6 app
enabled)

No No No No No

952

(Continued)

BGP to IP
Endpoint CT
Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP session
(IPv6 addressed)
with IPv4 SAFI
(rfc5549) with
dynamic ASN
(BP has IPv6
app enabled)

No No No No No

Dynamic BGP Peering CT Type

Dynamic BGP
Peering CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

Dynamic BGP
prefix peering
on SVI (IPv4),
default VRF

Yes Yes Yes Yes No

Dynamic BGP
prefix peering
on SVI (IPv4),
non-default
VRF

Yes Yes Yes Yes No

Dynamic BGP
prefix peering
on SVI (IPv6),
default VRF

Yes Yes Yes Yes No

Dynamic BGP
prefix peering
on SVI (IPv6),
non-default
VRF

Yes Yes Yes Yes No

953

(Continued)

Dynamic BGP
Peering CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

Dynamic BGP
prefix peering
on L3 sub-
interface (IPv4),
default VRF

Yes Yes Yes Yes No

Dynamic BGP
prefix peering
on L3 sub-
interface (IPv4),
non-default
VRF

Yes Yes Yes Yes No

Dynamic BGP
prefix peering
on L3 sub-
interface (IPv6),
default VRF

Yes Yes Yes Yes No

Dynamic BGP
prefix peering
on L3 sub-
interface (IPv6),
non-default
VRF

Yes Yes Yes Yes No

Dynamic prefix
peering (link-
local prefix
peering,
rfc5549), (BP
has IPv6 app
disabled)

Yes No No No No

954

(Continued)

Dynamic BGP
Peering CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

Dynamic prefix
peering (IPv6
peering, IPv4
AFI, rfc5549),
(BP has IPv6
app enabled)

No No No No No

Routing Policy CT Type

Routing Policy
CT Type

EOS NX-OS SONiC Junos OS Junos OS
Evolved

Routing Policy
on a BGP
session with
import/export
IPv4 prefixes

Yes Yes Yes Yes Yes

Routing Policy
on a BGP
session with
import/export
IPv6 prefixes

Yes Yes Yes Yes No

Routing Policy
on a BGP
session with
IPv4 aggregate
prefixes

Yes Yes Yes Yes No

Routing Policy
on a BGP
session with
IPv6 aggregate
prefixes

Yes Yes Yes Yes No

955

BGP Attributes (common to all BGP CTs)

BGP Attributes
(common to all
BGP CTs)

EOS NX-OS SONiC Junos OS Junos OS
Evolved

BGP: enable
Password/MD5
based
authentication

Yes Yes Yes Yes No

BGP: Custom
BGP timers
(Keep Alive
timer, Hold
timer)

Yes Yes Yes Yes Yes

BGP: Custom
TTL

Yes Yes Yes Yes Yes

BGP: Enable
Single-hop BFD

Yes Yes Yes Yes Yes

DCI Features

DCI Features EOS NX-OS SONiC Junos OS Junos OS
Evolved

Type 5 route
filtering

No Yes No Yes No

Qualified Devices and NOS

IN THIS SECTION

Apstra Release 4.1.2 | 958

956

Apstra Release 4.1.1 | 961

Apstra Release 4.1.0 | 963

Recommended qualified NOS versions and device (series) are listed below. Other versions in the same
code train that contain only bug fixes are also expected to work. This is usually indicated with version
numbers that differ only by the last digit; however, this is not strictly guaranteed by the NOS vendors.

If you plan to use a device or NOS version close to the qualified ones but not listed, it is highly
recommended that you review the NOS release notes to ensure no backward incompatible or breaking
changes are listed. We strongly advise testing the new version thoroughly in a staging environment
before deploying it to production.

To request consideration for qualification for a release train not listed, contact your Juniper Apstra Sales
representative.

Only Bug Fix NOS versions Examples:

• Junos and Junos Evolved

• 20.2R2-S1 > 20.2R2-S3.5 (reason: only service release number change)

• 20.2R2 > 20.2R3 (reason: R2 > R3 expected to contain only bugfixes)

• Arista EOS

• 4.25.4M > 4.25.5M (reason: same code train, last digit change and M indicates Maintenance
release)

• Cisco NXOS

• 10.2(9)M > 10.2(10)M (reason: same code train, last digit change and M indicates Maintenance
release)

Non-Bug Fix Examples:

• Junos and Junos Evolved

• 20.2R1 > 20.2R2 (reason: R1 > R2 can have new features + bugfixes)

• 20.2R2 > 20.4R2 (reason: different release trains)

• Arista EOS

• 4.25.4M > 4.26.5M (reason: different release trains)

• Cisco NXOS

957

• 10.2(1)F > 10.2(3)F (reason: multiple last digit change, F indicates Feature release)

Apstra Release 4.1.2

Device Operating System Qualified NOS Versions Supported Device (Series)

Juniper Junos OS • 22.2R3

• 21.4R3

• 21.2R3-S2

• 20.4R3-S3

• QFX5100 - Don’t use as leaf
with Layer 3 VNI

• QFX5110 - Can't be used as a
border leaf. It can't route
between VXLAN IRB and L3
interface.

• QFX5120

• QFX5200

• QFX5210

• QFX10002

• QFX10008

• QFX10016

• EX4300-48MP - Can't be used
as a border leaf. It can't route
between VXLAN IRB and L3
interface.

• EX4650-48Y

• EX4400-48F

• EX4400-48T

• EX4400-24T

• EX3400-48T - as access switch

958

(Continued)

Device Operating System Qualified NOS Versions Supported Device (Series)

Juniper Junos OS Evolved • IP Forwarder

• 22.2R2-EVO

• 22.2R2-EVO

• 21.4R3-EVO

• 21.2R3-EVO

• 20.4R3-S3-EVO

• EVPN-VXLAN Leaf

• 22.2R2-EVO

• QFX5700 chassis and 3 line
cards

• QFX5220

• QFX5130

• PTX10001-36MR

• PTX10004 chassis (7RU, 4-
slots)

• PTX10008 chassis (13RU, 8-
slots)

• PTX10016 chassis (21RU, 16-
slots)

• ACX7100-32C

• ACX7100-48L

959

(Continued)

Device Operating System Qualified NOS Versions Supported Device (Series)

Enterprise SONiC • SONiC-OS-4.0.5-GA-
Enterprise-Advanced

• SONiC-OS-4.0.5-GA-
Enterprise-Base

• SONiC-OS-3.5.4-GA-
Enterprise-Advanced

• SONiC-OS-3.5.4-GA-
Enterprise-Base

• Dell Z9432F-ON (spine role)

• Dell Z9332F-ON

• Dell Z9264F-ON

• Dell Z9100-ON

• Dell S5296F-ON

• Dell S5248F-ON

• Dell S5232F-ON

• Dell S5212F-ON

• Dell N3248T

• Edgecore/Accton AS7816-64X

• Edgecore/Accton AS7726-32X

• Edgecore/Accton S7712-32X

• Edgecore/Accton AS7326-56X

• Edgecore/Accton AS5712-54X

Cisco NX-OS • 10.1(2)

• 9.3(10)

• 9.3(8)

Nexus 3000 or 9000 Platform

Arista EOS • 4.27.6M

• 4.27.4M

• 4.25.3.1M

• 4.24.5M

DCS-7000 Series

960

Apstra Release 4.1.1

Device
Operating
System

Qualified NOS Versions Supported Device (Series)

Juniper
Junos OS

• 21.4R2

• 21.2R3

• 20.4R3-S3

• QFX5100 - Don’t use as leaf with Layer 3 VNI

• QFX5110 - Can't be used as a border leaf. It can't route between
VXLAN IRB and L3 interface.

• QFX5120

• QFX5200

• QFX5210

• QFX10002

• QFX10008

• EX4300-48MP - Can't be used as a border leaf. It can't route
between VXLAN IRB and L3 interface.

• EX4650-48Y

• EX4400-48F

• EX4400-48T

• EX4400-24T

Juniper
Junos OS
Evolved
(spine,
superspine
and non-
EVPN-
VXLAN
leaf)

• 21.4R2-EVO

• 21.2R3-EVO

• 20.4R3-S3-EVO

• QFX5220

• QFX5130

• PTX10001-36MR

961

(Continued)

Device
Operating
System

Qualified NOS Versions Supported Device (Series)

Enterprise
SONiC

• SONiC-OS-3.5.3-GA-
Enterprise-Advanced

• SONiC-OS-3.5.3-GA-
Enterprise-Base

• SONiC-OS-3.4.1-GA-
Enterprise-Advanced

• SONiC-OS-3.4.1-GA-
Enterprise-Base

• SONiC-OS-3.3.0-GA-
Enterprise-Advanced

• SONiC-OS-3.3.0-GA-
Enterprise-Base

• Dell Z9432F-ON (spine role)

• Dell Z9332F-ON

• Dell Z9264F-ON

• Dell Z9100-ON

• Dell S5296F-ON

• Dell S5248F-ON

• Dell S5232F-ON

• Dell S5212F-ON

• Dell N3248T

• Edgecore/Accton AS7816-64X

• Edgecore/Accton AS7726-32X

• Edgecore/Accton S7712-32X

• Edgecore/Accton AS7326-56X

• Edgecore/Accton AS5712-54X

Cisco NX-
OS

• 10.1(2)

• 9.3(8)

Nexus 3000 or 9000 Platform

Arista EOS • 4.27.4M

• 4.25.3.1M

• 4.24.5M

• 4.23.6M

DCS-7000 Series

962

Apstra Release 4.1.0

Device Operating
System

Qualified NOS Versions Supported Device (Series)

Juniper Junos OS • 21.2R3

• 20.4R3-S2

• 20.4R3-S1.3

• QFX5100 - Don’t use as leaf with Layer 3 VNI

• QFX5110 - Can't be used as a border leaf. It can't route
between a VXLAN IRB and an L3 interface.

• QFX5120

• QFX5200

• QFX5210

• QFX10002

• QFX10008

• EX4300-48MP - Can't be used as a border leaf. It can't
route between a VXLAN IRB and an L3 interface.

• EX4650-48Y

• EX4400-48F

• EX4400-48T

• EX4400-24T

Juniper Junos OS
Evolved (spine,
superspine and
non-EVPN-
VXLAN leaf)

• 21.2R3-EVO

• 20.4R3-S2-EVO

• 20.4R3-S1-EVO

• QFX5220

• QFX5130

• PTX10001-36MR

963

(Continued)

Device Operating
System

Qualified NOS Versions Supported Device (Series)

Enterprise SONiC • SONiC-OS-3.4.1-GA-
Enterprise-Advanced

• SONiC-OS-3.4.1-GA-
Enterprise-Base

• SONiC-OS-3.3.0-GA-
Enterprise-Advanced

• SONiC-OS-3.3.0-GA-
Enterprise-Base

• Dell Z9432F-ON (spine role)

• Dell Z9332F-ON

• Dell Z9264F-ON

• Dell Z9100-ON

• Dell S5296F-ON

• Dell S5248F-ON

• Dell S5232F-ON

• Dell S5212F-ON

• Dell N3248T

• Edgecore/Accton AS7816-64X

• Edgecore/Accton AS7726-32X

• Edgecore/Accton S7712-32X

• Edgecore/Accton AS7326-56X

• Edgecore/Accton AS5712-54X

Cisco NX-OS • 10.1(2)

• 9.3(8)

Nexus 3000 or 9000 Platform

Arista EOS • 4.25.3.1M

• 4.24.5M

• 4.23.6M

• 4.22.9M

DCS-7000 Series

964

NOS Upgrade Paths (Devices)

IN THIS SECTION

Apstra Release 4.1.2 | 965

Apstra Release 4.1.1 | 967

Apstra Release 4.1.0 | 970

Network operating system (NOS) upgrade paths can be from a recommended NOS release in a previous
Apstra release to a recommended NOS release in a newer Apstra release. They can also be between
NOS releases on the same Apstra release. See the sections below for supported paths.

For information about other upgrade paths that may be available, or to request support for a specific
upgrade path, contact "Juniper Support" on page 802.

Apstra Release 4.1.2

Juniper Junos OS & Apstra 4.1.2

From Version To Version

20.4R3-S3.4 • 20.4R3-S2.6

• 22.2R3

21.2R1-S2.2 21.2R3.8

21.2R3-S2.9 • 21.2R1-S2.2

• 21.4R3.16

21.4R3.16 • 21.2R3-S2.9

• 22.2R3

965

(Continued)

From Version To Version

22.2R3 • 21.2R3-S2.9

• 21.4R3.16

Juniper Junos OS Evolved & Apstra 4.1.2

From Version To Version

20.4R3-S3.5 21.2R3.10

21.2R3.10 21.4R3.13

21.4R3.13 • 20.4R3-S3.5

• 22.2R2.12

22.2R2.12 • 20.4R3-S3.5

• 21.4R3.13

Cisco NX-OS & Apstra 4.1.2

From Version To Version

9.3.3 9.3(10)

9.3.8 9.3(10)

9.3.10 • 9.3(8)

• 10.1(2)

966

Arista EOS & Apstra 4.1.2

From Version To Version

4.23.6M • 4.24.5M

• 4.27.6M

4.24.5M • 4.23.6M

• 4.27.4M

4.25.3.1M 4.27.6M

4.27.6M 4.25.3.1M

SONiC & Apstra 4.1.2

From Version To Version

3.3.0 3.5.4

3.5.4 4.0.2

4.0.2 3.5.4

Apstra Release 4.1.1

Juniper Junos OS & Apstra 4.1.1

From Version To Version

21.4R2.10 20.4R3-S3.4

967

(Continued)

From Version To Version

21.2R3.8 • 21.2R1-S2.2

• 21.2R1-S1.3

• 20.4R3-S3.4

21.2R1-S2.2 21.2R3.8

21.2R1-S1.3 21.2R3.8

20.4R3-S3.4 20.4R3-S2.6

20.4R3-S2.6 • 21.4R2.10

• 21.2R3.8

• 20.4R3-S3.4

20.2R3-S2.5 20.4R3-S3.4

Juniper Junos OS Evolved & Apstra 4.1.1

From Release To Release

21.4R2.14-EVO 20.4R3-S3.5-EVO

20.4R3-S3.5-EVO • 21.4R2.14-EVO

• 21.2R3-10-EVO

• 20.4R3-S2.2-EVO

20.4R3-S2.2-EVO 20.4R3-S3.5-EVO

20.4R2-S2.10-EVO 20.4R3-S3.5-EVO

968

Cisco NX-OS & Apstra 4.1.1

From Version To Version

9.3.8 • 10.1(2)

• 9.2(2)

9.3.3 9.3(8)

9.2.3 9.3(8)

7.0.3.I7.9 9.3(8)

Arista EOS & Apstra 4.1.1

From Version To Version

4.27.4M 4.25.3M

4.25.3.1M 4.27.4M

4.24.5M • 4.27.4M

• 4.23.6M

4.23.6M • 4.24.5M

• 4.22.9M

4.22.9M 4.27.4M

SONiC & Apstra 4.1.1

969

From Version To Version

3.4.1 3.3.0

3.3.0 3.4.1

Apstra Release 4.1.0

Table 23: Juniper Junos OS & Apstra 4.1.0

From Version To Version

21.2R3.8 • 21.2R1-S2.2

• 21.2R1-S1.3

• 20.4R3-S2.6

21.2R1-S2.2 21.2R3.8

21.2R1-S1.3 21.2R3.8

20.4R3-S2.6 • 21.2R3.8

• 20.2R3-S2.5

• 20.4R3-S1.3

20.4R3-S1.3 20.4R3-S2.6

20.2R3-S2.5 20.4R3-S2.6

Table 24: Juniper Junos OS Evolved & Apstra 4.1.0

From Release To Release

21.2R3.10 20.4R3-S2.2

970

Table 24: Juniper Junos OS Evolved & Apstra 4.1.0 (Continued)

From Release To Release

20.4R3-S2.2 • 21.2R3.10

• 20.4R3-S1.3

• 20.4R2-S2.10

20.4R3-S1.3 20.4R3-S2.2

20.4R2-S.10 20.4R3.S2.2

Table 25: Cisco NX-OS & Apstra 4.1.0

From Version To Version

9.3.8 • 10.1.2

• 9.2.2

9.3.3 9.3.8

9.2.3 9.3.8

7.0.3.I7.9 9.3.8

Table 26: Arista EOS & Apstra 4.1.0

From Version To Version

4.24.5M 4.22.9M

4.23.6M 4.22.9M

971

Table 26: Arista EOS & Apstra 4.1.0 (Continued)

From Version To Version

4.22.9M • 4.25.3.1M

• 4.24.5M

• 4.23.6M

4.21.14M 4.23.6M

4.20.11M • 4.25.3.1M

• 4.24.5M

• 4.23.6M

Table 27: SONiC & Apstra 4.1.0

From Version To Version

3.4.1 3.3.0

3.3.0 3.4.1

Predefined Dashboards (Analytics)

IN THIS SECTION

Device Environmental Health Summary Dashboard (New in 4.1.2) | 973

Device Health Summary Dashboard | 973

Device Telemetry Health Summary Dashboard (New in 4.1.2) | 974

Drain Validation Dashboard | 974

Throughput Health MLAG Dashboard | 974

972

Traffic Trends Dashboard | 975

Virtual Infra Fabric Health Check Dashboard | 975

Virtual Infra Redundancy Check Dashboard | 975

Device Environmental Health Summary Dashboard (New in 4.1.2)

Goal Show device environmental data

Trigger Presence of at least one assigned system

Widgets / Probes • Systems missing power supplies / Device
Environmental Checks

• Systems missing fans / Device Environmental
Checks

• Switch temperature alarm / Device Environmental
Checks

• Systems with inoperative power supplies / Device
Environmental Checks

• Systems with inoperative fans / Device
Environmental Checks

• Power supply temperature alarm / Device
Environmental Checks

• Systems with faulty power supply fans / Device
Environmental Checks

• Airflow direction mismatch / Device Environmental
Checks

Device Health Summary Dashboard

Ensure that the same metric is not collected twice from the same device.

973

Goal Present utilization data for system CPU, system memory and maximum disk utilization of a
partition on every system present

Trigger Presence of at least one deployed system

Widgets / Probes • Systems with high cpu utilization / Device System Health

• Systems with high memory utilization / Device System Health

• Systems with high disk utilization / Device System Health

Device Telemetry Health Summary Dashboard (New in 4.1.2)

Goal Present sustained service execution anomalies under the device telemetry health probe

Trigger Presence of at least one deployed system

Widgets / Probes • Systems with degraded waiting time per service / Device Telemetry Health

• Systems that sustained telemetry timeouts per service / Device Telemetry Health

• Systems that sustained telemetry failures per service / Device Telemetry Health

• Systems that sustained telemetry underruns per service / Device Telemetry Health

Drain Validation Dashboard

Goal Ensure drained switches are indeed drained of traffic by ensuring total bandwidth is minimal

Trigger Presence of at least one drained switch

Widgets / Probes Drained Switches Excess Traffic / Drain Traffic Anomaly

Throughput Health MLAG Dashboard

Goal Find issues in physical infrastructure that affect the available throughput caused by issues
such as imbalanced traffic over a group of L3 (ECMP) or L2 (LAG) links

974

Trigger Created on blueprints with no redundancy groups or MLAG blueprint

Widgets /
Probes

• LAG Imbalance / LAG Imbalance

• MLAG Imbalance / MLAG Imbalance

• Fabric ECMP Imbalance / ECMP Imbalance (Fabric Interfaces)

Traffic Trends Dashboard

Goal Visualize traffic trends for general insights into fabric usage

Trigger Grouped Ingress Traffic last 1 hour / Bandwidth Utilization

Widgets / Probes Grouped Egress Traffic last 1 hour / Bandwidth Utilization

Virtual Infra Fabric Health Check Dashboard

Goal Find problems in physical or virtual infrastructure that affect workload connectivity

Trigger Presence of at least one virtual infra manager in the blueprint

Widgets / Probes • Hypervisor VLANs missing in Fabric / Hypervisor & Fabric VLAN Config Mismatch

• Hypervisor PNIC LAG Status / Hypervisor & Fabric LAG Config Mismatch

• Hypervisor Low MTU anomalies / Hypervisor MTU Threshold Check

• Critical Services affected by VLAN misconfig / VMs Without Fabric Configured VLANs

• Hypervisor has inconsistent MTU / Hypervisor MTU Mismatch

Virtual Infra Redundancy Check Dashboard

Goal Find single points of failure in physical or virtual infrastructure that affect high availability and
available bandwidth for workloads

Trigger Presence of at least one virtual infra manager in the blueprint

975

Widgets / Probes • Hypervisors without ToR switch redundancy / Hypervisor Redundancy Checks

• Virtual Infra Networks without link redundancy / Hypervisor Redundancy Checks

Predefined Probes (Analytics)

IN THIS SECTION

BGP Session Flapping Probe | 977

Bandwidth Utilization Probe | 979

Critical Services: Utilization, Trending, Alerting Probe | 982

Device Environmental Checks Probe (New in 4.1.2) | 983

Device System Health Probe | 984

Device Telemetry Health Probe | 986

Device Traffic Probe | 987

Drain Traffic Anomaly Probe | 991

ECMP Imbalance (External Interfaces) Probe | 992

ECMP Imbalance (Fabric Interfaces) Probe | 994

ECMP Imbalance (Spine to Superspine Interfaces) Probe | 997

ESI Imbalance Probe | 999

EVPN Host Flapping Probe | 1001

EVPN VXLAN Type-3 Route Validation Probe | 1002

EVPN VXLAN Type-5 Route Validation Probe | 1004

External Routes Probe | 1006

Hot/Cold Interface Counters (Fabric Interfaces) Probe | 1007

Hot/Cold Interface Counters (Specific Interfaces) Probe | 1011

Hot/Cold Interface Counters (Spine to Superspine Interfaces) Probe | 1013

Hypervisor and Fabric LAG Config Mismatch Probe (Virtual Infra) | 1015

Hypervisor and Fabric VLAN Config Mismatch Probe (Virtual Infra) | 1016

Hypervisor MTU Mismatch Probe (Virtual Infra) | 1023

976

Hypervisor MTU Threshold Check Probe (Virtual Infra) | 1023

Hypervisor Missing LLDP Config Probe (Virtual Infra) | 1024

Hypervisor Redundancy Checks Probe (Virtual Infra) | 1025

Interface Flapping (Fabric Interfaces) Probe | 1026

Interface Flapping (Specific Interfaces) Probe | 1028

Interface Flapping (Specific Interfaces) Probe | 1029

Interface Policy 802.1x Probe | 1031

LAG Imbalance Probe | 1032

Leafs Hosting Critical Services: Utilization, Trending, Alerting Probe | 1034

Link Fault Tolerance in Leaf and Access LAGs Probe | 1035

MLAG Imbalance Probe | 1037

Multiagent Detector Probe | 1041

Optical Transceivers Probe | 1042

Packet Discard Percentage Probe | 1044

Spine Fault Tolerance Probe | 1046

Total East/West Traffic Probe | 1047

VMs without Fabric Configured VLANs Probe (Virtual Infra) | 1049

VXLAN Flood List Validation Probe | 1052

Apstra software ships with many predefined probes that you can instantiate (Analytics > Probes >
Create Probe > Instantiate Predefined Probe).

BGP Session Flapping Probe

IN THIS SECTION

BGP Session | 979

BGP Session Flapping | 979

Sustained BGP Session Flapping | 979

977

The BGP Session Flapping probe shows BGP session statuses for all switches and raises anomalies for
flapping BGP sessions.

It contains three stages: BGP Session, BGP Session Flapping, and Sustained BGP Session Flapping as
described below:

978

BGP Session

The BGP Session stage shows a table with all available BGP sessions for switch systems. Each session is
identified by the following parameters: Source IP, Source ASN, Destination IP, Destination ASN, Address
Family and VRF name. The Flap Count column shows total number of BGP session flaps from the device.
The Flap Count Increment column shows the number of new BGP session flaps for the service interval
period. By default, it's two minutes. The FSM State and Status columns show the status of BGP sessions.

BGP Session Flapping

The BGP Session Flapping stage checks the Flap Count Increment value. If it's more than zero, the
output value is 'true'. It only checks whether that BGP session has new flaps.

Sustained BGP Session Flapping

The Sustained BGP Session Flapping stage raises an anomaly for BGP sessions that have new BGP flaps
for the specified time window. To illustrate, assume there are BGP flaps between leaf1 and spine1
nodes. The fabric BGP session between these nodes generates new BGP flaps when the interface status
is changed on spine1 that's connected to leaf1. When shutdown and up interface is performed seven
times on spine 1, it creates seven flaps for fabric BGP sessions between leaf1 and spine1. The seven
new flaps are added and two anomalies are raised.

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

Bandwidth Utilization Probe

The bandwidth utilization probe calculates bandwidth utilization. It captures history of bandwidth
utilization trends at differing levels of aggregation.

979

980

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

981

Critical Services: Utilization, Trending, Alerting Probe

The critical services probe monitors critical services identified by user tags and provides trending data
for interfaces hosting the generic systems tag. Users are proactively notified of issues from potential
bandwidth contention. Additionally, historical data is persisted for trending analysis for troubleshooting
or assisting in right-sizing future deployments. By default, the probe displays 1h/1d/30day average
information and alerts if any individual interface with the specified tag reaches utilization threshold.

982

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

Device Environmental Checks Probe (New in 4.1.2)

The device environmental checks probe monitors critical environmental metrics for managed switches
including power supply, fan and temperature for real-time values of historical data retention over time.

When you instantiate this predefined probe, the instantiation menu displays a list of switch models in
the blueprint. PSU count, fan count and air-flow direction information provide intent for deploying the
switches.

If you have multiple blueprints that use the same switch model, you can set one expectation for the
switch in one blueprint and a different expectation for the switch in a different blueprint.

Within one blueprint, all switches of the same model must have the same expectations. For example,
you can’t differentiate between specific QFX5120-48Y switches.

983

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

Device System Health Probe

The device system health probe alerts if the system health parameters (CPU, memory and disk usage)
exceed their specified thresholds for the specified duration.

984

985

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

Device Telemetry Health Probe

The device telemetry health probe verifies telemetry collector health. It runs analytics on the collection
statistics from available service execution and if the telemetry collection health degrades, anomalies are
raised.

986

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

Device Traffic Probe

The device traffic probe (previously known as headroom probe) provides insights about link capacity
between two points in the network. It provides multiple interface counters (rx, tx, discard, errors and so
on) for all managed devices. It displays all interface counters available for the system, their utilization on
a per-port and aggregated utilization per-system basis. If rules are violated, it raises anomalies.

987

NOTE: You can change probe inputs, but if you change the probe processors then the probe is
not a predefined probe anymore and the traffic layer view is not available in the active topology.
For more information about the traffic layer view, see "Physical Blueprint" on page 282.

988

Source
Processor

Live Interface
Counters
("Traffic
Monitor" on
page 1115)

Purpose: Wires in Interface traffic counters every 5 seconds (by
default) for all managed devices and keeps historical data based on
retention period specified during probe creation.

Output
Stages

Average
Interface
Counters

Set of interface counters samples, for
each port of each managed device, based
on specified average time with historical
data.

Live Interface
Counters

Set of live interface counter samples for
each port of each managed device

Additional
Processor(s)

System
interface
counters
("System
Utilization" on
page 1109)

Purpose: This processor consumes in 'Average Interface Counters' for
calculating interface counters per system with historical data. It uses
properties rx_bps_average, rx_utilization_average, tx_bps_average, and
tx_utilization_average to compute the system TX and RX utilization
and to compute headroom between the specified source and
destination systems.

Input Stage: Average Interface counters

Output
Stage:
System
Interface
Counters

Set of system interface counters samples (for each
device of managed devices) indicating Aggregated
TX/RX, Aggregated TX/RX %, and Max interface TX/RX
utilization %. The system level RX/TX calculation
aggregates the Tx/RX of all the device interfaces that are
"up". The max interface RX/TX calculation is the device
interface with the highest Rx and the device interface
with highest Tx.

To see traffic between a particular source and destination from the device traffic probe, click System
Interface Counters, check the Show Context check box, then select a source and destination from the
drop-down lists. Roll over different sections to display relevant information. Different colors represent
link capacity, where green means plenty of capacity and red means that the link is running out of

989

capacity.

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

990

Drain Traffic Anomaly Probe

The drain traffic anomaly probe raises anomalies when excess traffic is on a node that is being drained.

991

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

ECMP Imbalance (External Interfaces) Probe

Purpose This probe calculates ECMP imbalance on generic system-facing ports. The set of
external-facing links (keyed by common system_id) is determined to be imbalanced if the
standard deviation of the tx_bytes counter (averaged periodically over the specified
period) for the involved interfaces is above "Max Standard Deviation". If such imbalance is
observed for more than "Threshold Duration" over the last "Duration" time period, an
anomaly is raised. The last "Anomaly History Count" anomaly state changes are stored for
observation. If more than "Max Imbalanced Systems" systems are imbalanced,an anomaly
is raised. We maintain for inspection the number of imbalanced systems over the last
"System Imbalance History Count" samples.

When instantiating this probe, external router tag(s) must be specified (new in version
4.0).

Source
Processor

external interface
traffic (Interface
Counters)

Purpose: wires in interface traffic samples (measured in transmitted
bytes per second) from each interface connected to the generic
systems.

Output Stage: external_int_traffic

Additional
Processor(s)

external
interface
traffic avg
(Periodic
Average)

Purpose: Calculate average traffic during period specified by
average_period facade parameter. Unit is bytes per second.

Input Stage: external_int_traffic

Output Stage:
external_int_traffic_avg

Set of traffic average values (for each generic
system-facing interface). Each set member
has the following keys to identify it: label
(human-readable name of the system),
system_id (id of the system, usually serial
number), interface (name of the interface).

external
interface
std-dev
(Standard
Deviation)

Purpose: calculate standard deviation for a set consisting of traffic
averages for each generic system-facing interface on a given system.
Grouping per system is achieved using 'group_by' property set to
'system_id' and 'label'.

Input Stage: external_int_traffic_avg

992

Output Stage:
ext_int_std_dev

Set of values, each indicating standard deviation (as a
measure of ECMP imbalance) for traffic averages for
each generic system-facing interface on a given
system. Each set member has 'system_id' and 'label'
key to identify system whose ECMP imbalance the
value represents.

std-dev
percentage
(Ratio)

Input Stage: ext_int_std_dev

Output Stage: std_dev_percentage

live ecmp
imbalance
(Range)

Purpose: Evaluate if standard deviation between generic system-facing
interfaces on each system is within acceptable range. In this case
acceptable range is between 0 and std_max facade parameter (in bytes
per second unit).

Input Stage: std_dev_percentage

Output Stage:
live_ecmp_imbalance

Set of true/false values, each indicating if
standard deviation (as a measure of ECMP
imbalance) for traffic averages for each external
router-facing interface on a given leaf is within
acceptable range. Each set member has
system_id key to identify system whose ECMP
imbalance the value represents.

links
imbalanced
percentage
(Match
Percentage)

Input Stage: live_ecmp_imbalance

Output Stage: links_imbalanced_percentage

systems
imbalanced
(Range)

Input Stage: links_imbalanced_percentage

Output Stage: systems_imbalanced

sustained
ecmp
imbalance
(Time in
State)

Purpose: Evaluate if standard deviation between generic system-facing
interfaces on each leaf has been outside acceptable range, (as defined by
'live ecmp imbalance' processor) for more than 'threshold_duration'
seconds during last 'total_duration' seconds. These two parameters are
part of facade specification.

Input Stage: systems_imbalanced

993

Output Stage:
sustained_ecmp_imbalance

Set of true/false values, each indicating if
standard deviation (as a measure of ECMP
imbalance) for traffic averages for each
external router-facing interface on a given
system has been outside acceptable range
for more than specified period of time.
Each set member has system_id key to
identify system whose ECMP imbalance
the value represents.

systems
imbalanced
count
(Match
Count)

Purpose: Count how many systems have external ecmp imbalance
anomaly true at any instant in time.

Input Stage: sustained_ecmp_imbalance

Output Stage:
system_tx_imbalance_count

Number of systems with external
ecmp imbalance.

live system
imbalanced
(Range)

Purpose: Evaluate if the number of imbalanced systems is within
acceptable range, which in this instance means less than
'max_systems_imbalanced' value which is a facade parameter

Input Stage: system_tx_imbalance_count

Output Stage:
live_system_imbalance_count

Boolean indicating if the number of
imbalanced systems is within accepted
range, i.e. less than
'max_systems_imbalanced" which is a
facade parameter

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

ECMP Imbalance (Fabric Interfaces) Probe

Purpose This probe calculates ECMP imbalance on fabric ports.

A given set of ECMP links (only calculated on leaf-to-spine links), identified by common
system_id, is determined to be imbalanced if the standard-deviation of the tx_bytes
counter (averaged periodically over the specified period) for the involved leaf-interfaces
is above "Max Standard Deviation".

994

If such imbalance is observed for more-than "Threshold Duration" over the last"Duration"
time period, we raise an anomaly.

The last "Anomaly History Count" anomaly state-changes are stored for observation.

If more-than "Max Imbalanced Systems" systems are imbalanced, we raise a distinct
anomaly.

We maintain for inspection the number of imbalanced systems over the last "System
Imbalance History Count" samples.

Source
Processor

leaf fabric
interface
traffic
(Interface
Counters-)

Purpose: wires in interface traffic samples (measured in bytes per
second) from each spine-facing interface on each leaf.

Output Stage:
leaf_fabric_int_traffic

Set of traffic samples (for each spine-facing
interface on each leaf). Each set member has
the following keys to identify it: label (human-
readable name of the leaf), system_id (id of the
leaf system, usually serial number), interface
(name of the interface).

Additional
Processor(s)

leaf fabric
interface
traffic avg
(Periodic
Average)

Purpose: Calculate average traffic during period specified by
average_period facade parameter. Unit is bytes per second.

Input Stage: leaf_fabric_int_traffic

Output Stage:
leaf_fabric_int_tx_avg

Set of traffic average values (for each spine-
facing interface on each leaf). Each set
member has the following keys to identify it:
label (human-readable name of the leaf),
system_id (id of the leaf system, usually serial
number), interface (name of the interface).

leaf fabric
interface std-
dev (Standard
Deviation)

Purpose: calculate standard deviation for a set consisting of traffic
averages for each spine-facing interface on a given leaf. Grouping per
leaf is achieved using 'group_by' property set to 'system_id'.

Input Stage: leaf_fabric_int_tx_avg

Output Stage:
leaf_fab_int_std_dev

Set of values, each indicating standard
deviation (as a measure of ECMP imbalance)
for traffic averages for each spine-facing
interface on a given leaf. Each set member has

995

system_id key to identify leaf whose ECMP
imbalance the value represents.

std-dev
percentage
(Ratio)

Input Stage: leaf_fab_int_std_dev

Output Stage: std_dev_percentage

live ecmp
imbalance
(Range)

Purpose: Evaluate if standard deviation between spine-facing interfaces
on each leaf is within acceptable range. In this case acceptable range is
between 0 and std_max facade parameter (in bytes per second unit).

Input Stage: std_dev_percentage

Output Stage:
live_ecmp_imbalance

Set of true/false values, each indicating if
standard deviation (as a measure of ECMP
imbalance) for traffic averages for each spine-
facing interface on a given leaf is within
acceptable range. Each set member has
system_id key to identify leaf whose ECMP
imbalance the value represents.

sustained
ecmp
imbalance
(Time in
State)

Purpose: Evaluate if standard deviation between spine-facing interfaces on each leaf
has been outside acceptable range, (as defined by 'live ecmp imbalance' processor) for
more than 'threshold_duration' seconds during last 'total_duration' seconds. These two
parameters are part of facade specification.

Input Stage: live_ecmp_imbalance

Output Stage: system_imbalance

systems
imbalanced
count (Match
Count)

Purpose: Count how many systems have ecmp imbalance anomaly true at any instant in
time.

Input Stage: system_imbalance

Output Stage: system_imbalance_count Number of systems with ecmp imbalance.

imbalanced
system count
out of range
(Range)

Purpose: Evaluate if the number of imbalanced systems is within acceptable range,
which in this instance means less than 'max_systems_imbalanced' value which is a
facade parameter.

Input Stage: system_imbalanced_count

996

Output Stage:
imbalanced_system_count_out_of_range

Boolean indicating if the number of
imbalanced systems is within accepted
range, i.e. less than
'max_systems_imbalanced" which is a
facade parameter.

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

ECMP Imbalance (Spine to Superspine Interfaces) Probe

The ECMP imbalance (spine to superspine interfaces) probe calculates ECMP imbalance on spine-to-
superspine ports. A given set of ECMP links (only calculated on spine-to-superspine links), identified by
common system_id, is determined to be imbalanced if the standard-deviation of the tx_bytes counter
(averaged periodically over the specified period) for the involved spine interfaces is above "Max
Standard Deviation". If such imbalance is observed for more-than "Threshold Duration" the last
"Duration" period, we raise an anomaly. The last "Anomaly History Count" anomaly state-changes are
stored for observation. If more-than "Max Imbalanced Systems" systems are imbalanced, we raise a
distinct anomaly. We maintain for inspection the number of imbalanced systems over the last "System
Imbalance History Count" samples.

997

998

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

ESI Imbalance Probe

The ESI imbalance probe calculate ESI imbalance. It calculates the standard deviation across links for all
ESIs in the network. If any are over the specified threshold in the last specified time period, an anomaly
is raised. It also calculates percentage of ESIs in each rack in this state.

999

1000

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

EVPN Host Flapping Probe

EVPN host flaps occur when an L2 loop is mistakenly created under the leaf devices by connecting a
hub to two different leaf devices.

1001

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

EVPN VXLAN Type-3 Route Validation Probe

The EVPN VXLAN Type-3 route validation probe validates EVPN Type-3 routes on every leaf in the
network. It collects appropriate telemetry data, compares it to the set of Type-3 routes expected to be
present and alerts if expected routes are missing on any device.

You can configure the following parameters:

• Probe Label: Name to identify the probe.

• Anomaly Time Window : Average period duration for interface counters.

• Anomaly Threshold (in %): If routes are missing for more than or equal to percentage of Anomaly
Time Window, an anomaly is raised. If Anomaly Time Window ATW, and Anomaly Threshold is AT. It
calculates Z = (ATW * AT)/100 in seconds. E.g. If ATW = 20 seconds, AT = 5%, then Z = (20 * 5)/100
= 1 second. When the route is in Missing state for Z seconds from total ATW duration, anomaly is
raised.

• Collection period: All these probes are polling-based so they have a polling period.

• Monitored VNs: Specify the virtual networks to be monitored. Either list of desired VN's e.g.
"1-3,6,8,10-13" or " * " to monitor all virtual networks.

The route labels include the following:

• Expected: This route is expected on the device as per service defined.

• Missing: This route is missing on the device when compared to the expected route set.

1002

• Unexpected: There are no expectations rendered (by AOS) for this route.

This probe is created with an empty Monitored VNs (monitored_vn) list, which means that the probe
does not monitor any virtual networks by default. When you instantiate this probe you must specify a
list of virtual networks (up to ten) for which routes are collected, or you can specify " * " in which case all
virtual networks are monitored.

CAUTION: Specifying " * " in the Monitored VNs field may result in high cpu/memory/
network I/O overhead associated with BGP routing table iteration on the device side.

1003

NOTE: Auto-enabling the EVPN VXLAN Route Summary analytics dashboard enables the EVPN
VXLAN Type-3 Route Validation and EVPN Flood List Validation probes automatically (but not
the EVPN VXLAN Type-5 Route Validation probe). See Configuring Auto-Enabled
Dashboards<configure_dashboard> for information about enabling the dashboard.

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

EVPN VXLAN Type-5 Route Validation Probe

The EVPN VXLAN Type-5 route validation probe validates the EVPN Type 5 routes on every leaf. The
collected data is matched against the graph data to ascertain any missing routes on any system.

You can configure the following parameters:

• Probe Label: Name to identify the probe.

• Anomaly Time Window : Average period duration for interface counters.

• Anomaly Threshold (in %): If routes are missing for more than or equal to percentage of Anomaly
Time Window, an anomaly is raised. If Anomaly Time Window ATW, and Anomaly Threshold is AT. It
calculates Z = (ATW * AT)/100 in seconds. E.g. If ATW = 20 seconds, AT = 5%, then Z = (20 * 5)/100
= 1 second. When the route is in Missing state for Z seconds from total ATW duration, anomaly is
raised.

1004

• Collection period: All these probes are polling-based so they have a polling period.

The route labels include the following:

• Expected: This route is expected on the device as per service defined.

• Missing: This route is missing on the device when compared to the expected route set.

• Unexpected: There are no expectations rendered (by AOS) for this route.

If this probe is enabled it monitors all virtual networks from all devices. It does not provide the
“monitored VN list” configuration option like the VXLAN Type-3 probe does.

1005

NOTE: Auto-enabling the EVPN VXLAN Route Summary analytics dashboard enables the EVPN
VXLAN Type-3 Route Validation and EVPN Flood List Validation probes automatically (but not
the EVPN VXLAN Type-5 Route Validation probe). See Configuring Auto-Enabled
Dashboards<configure_dashboard> for information about enabling the dashboard.

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

External Routes Probe

Purpose The External Routes probe automatically activates the collection of received or advertised
routes across all BGP sessions established with generic systems into a single stage output
table (mixing received, used and advertised routes). This probe assists with troubleshooting
external network connectivity problems.

Parameters The External Routes probe parameters below can be configured at time of creation or
anytime afterwards.

AFI: Address Family Identifiers - IPv4 or IPv6

Type: advertised-routes or received-routes

Routing Zone (VRF): All or specific name

Prefix: Only routes matching the prefix

1006

Filter options: exact or longer

More-specific prefixes mask: Match more-specific prefixes from a parent prefix, up until
le_mask prefix length.

Less-specific prefixes mask: Match less-specific prefixes from a parent prefix, up from
ge_mask to the prefix length of the route.

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

Hot/Cold Interface Counters (Fabric Interfaces) Probe

Purpose This probe determines hot/cold interface counters. It determines if interface counters are
hot (too high) or cold (too low). A given interface (considering only leaf fabric interfaces) is
considered to be in a hot state if its average counter value is greater than "Max". A given
interface (considering only leaf fabric interfaces) is considered to be in a cold state if its
average counter value is less than "Min". If such undesired state is observed for more-
than "Threshold Duration" over the last "Duration" period, an anomaly is raised. Distinct
anomalies are raised for hot and cold states. If more than "Max Hot Interface Percentage"
percent of interfaces on a given device are hot, we raise an anomaly. If more than "Max
Cold Interface Percentage" percent of interfaces on a given device are cold, we raise an
anomaly. Finally, the last "Anomaly History Count" anomaly state-changes are stored for
observation.

Source
Processor

leaf interface
traffic
(Interface
Counters)

Purpose: wires in interface traffic samples (measured in bytes per second)
from each spine facing interface on each leaf.

Output Stage:
leaf_int_traffic

Set of traffic samples (for each spine-facing interface
on each leaf). Each set member has the following keys
to identify it: system_id (id of the leaf system, usually
serial number), interface (name of the interface), role
(role of the interface, such as 'fabric').

Additional
Processor(s)

leaf interface
tx avg
(Periodic
Average)

Purpose: Calculate average traffic during period specified by
average_period facade parameter. Unit is bytes per second.

Input Stage: leaf_int_traffic

Output Stage:
leaf_int_tx_avg

Set of traffic average values (for each spine-facing
interface on each leaf). Each set member has the

1007

following keys to identify it: system_id (id of the leaf
system, usually serial number), interface (name of the
interface), role (role of the interface, such as 'fabric').

interface sum
per device
(Sum)

Purpose: Sum average traffic for all interface under consideration per
device.

Input Stage: leaf_int_tx_avg

Output Stage:
if_counter_sum_per_device

Set of numbers, each indicating the total
average traffic for all interface under
consideration per device, expressed in
bytes per second. Each set member has
the following key to identify it: system_id
(id of the leaf system, usually serial
number).

interface sum
per device
per link role
(Sum)

Purpose: Sum average traffic for all interface under consideration per
device, per interface role.

Input Stage: leaf_int_tx_avg

Output Stage:
if_counter_sum_per_device_role

Set of numbers, each indicating the
total average traffic for all interface
under consideration per device,
expressed in bytes per second. Each
set member has the following keys to
identify it: system_id (id of the leaf
system, usually serial number), role
(role of the interface, such as 'fabric').

live leaf
interface
cold (Range)

Purpose: Evaluate if the average traffic on spine facing interfaces on each
leaf is within acceptable range. In this case acceptable range means larger
than min facade parameter (in bytes per second unit).

Input Stage: leaf_int_tx_avg

Output Stage:
live_leaf_int_cold

Set of true/false values, each indicating if traffic
averages for each spine-facing interface on each leaf
is within acceptable range. Each set member has the
following keys to identify it: system_id (id of the leaf
system, usually serial number), interface (name of

1008

the interface) role (role of the interface, such as
'fabric'). Samples unit is bytes per second.

live leaf
interface hot
(Range)

Purpose: Evaluate if the average traffic on spine-facing interfaces on each
leaf is within acceptable range. In this case acceptable range is between 0
and max facade parameter (in bytes per second unit).

Input Stage: leaf_int_tx_avg

Output Stage:
live_leaf_int_hot

Set of true/false values, each indicating if traffic
averages for each spine-facing interface on each leaf
is within acceptable range. Each set member has the
following keys to identify it: system_id (id of the leaf
system, usually serial number), interface (name of the
interface) role (role of the interface, such as 'fabric').
Samples unit is bytes per second.

sustained
cold leaf
interface
(Time in
State)

Purpose: Evaluate if the average traffic spine facing interfaces on each
leaf has been outside acceptable range, (as defined by 'live leaf interface
cold' processor) for more than 'threshold_duration' seconds during the
last 'total_duration' seconds. These two parameters are part of facade
specification.

Input Stage: live_leaf_int_cold

Output Stage:
cold_leaf_int

Set of true/false values, each indicating if the traffic
average for each spine-facing interface on each leaf has
been in 'cold' range for more than specified period of
time. Each set member has the following keys to identify
it: system_id (id of the leaf system, usually serial
number), interface (name of the interface) role (role of
the interface, such as 'fabric'). Samples unit is bytes per
second.

sustained hot
leaf interface
(Time in
State)

Evaluate if the average traffic spine facing interfaces on each leaf has
been outside acceptable range, (as defined by 'live leaf interface hot'
processor) for more than 'threshold_duration' seconds during the last
'total_duration' seconds. These two parameters are part of facade
specification.

Input Stage: live_leaf_int_hot

1009

Output
Stage:
hot_leaf_int

Set of true/false values, each indicating if the traffic
average for each spine-facing interface on each leaf has
been in 'hot' range for more than specified period of time.
Each set member has the following keys to identify it:
system_id (id of the leaf system, usually serial number),
interface (name of the interface) role (role of the
interface, such as 'fabric'). Samples unit is bytes per
second.

system
percent cold
(Match
Percentage)

Purpose: Calculate percentage of interfaces that are cold on any given
device under consideration.

Input Stage: cold_leaf_int

Output Stage:
system_perc_cold

Set of numbers, each indicating the the percentage
of cold interfaces on any given device under
consideration. Each set member has the following
key to identify it: system_id (id of the leaf system,
usually serial number).

system
percent hot
(Match
Percentage)

Purpose: Calculate percentage of interfaces that are hot on any given
device under consideration.

Input Stage: hot_leaf_int

Output Stage:
system_perc_hot

Set of numbers, each indicating the the percentage
of hot interfaces on any given device under
consideration. Each set member has the following
key to identify it: system_id (id of the leaf system,
usually serial number).

device cold
(Range)

Purpose: Evaluate if the percentage of cold interfaces on a specific device
is outside the acceptable range, where acceptable range in his case means
less than 'max_cold_interface_percentage', which is a facade parameter.

Input Stage: system_perc_cold

Output Stage:
device_cold_anomalous

Set of boolean values, each indicating if the
the percentage of cold interfaces on any
given device was out of acceptable range.
Each set member has the following key to

1010

identify it: system_id (id of the leaf system,
usually serial number).

device hot
(Range)

Purpose: Evaluate if the percentage of hot interfaces on a specific device
is outside the acceptable range, where acceptable range in his case means
less than 'max_hot_interface_percentage', which is a facade parameter.

Input Stage: system_perc_hot

Output Stage:
device_hot_anomalous

Set of boolean values, each indicating if the
the percentage of hot interfaces on any given
device was out of acceptable range. Each set
member has the following key to identify it:
system_id (id of the leaf system, usually serial
number).

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

Hot/Cold Interface Counters (Specific Interfaces) Probe

The hot/cold interface counters (specific interfaces) probe determines hot/cold specific interface
counters. It determines if interface counters averaged over "Average Period" are hot (too high) or cold
(too low). A given interface (out of the specified list) is considered to be in a hot state if its average
counter value is greater than "Max". A given interface (out of the specified list) is considered to be in a
cold state if its average counter value is less than "Min". If such undesired state is observed for more-
than "Threshold Duration" over the last "Duration" time period, we raise an anomaly. Distinct anomalies
are raised for hot and cold states. If more than "Max Hot Interface Percentage" percent of interfaces on
a given device are hot, we raise an anomaly. If more than "Max Cold Interface Percentage" percent of
interfaces on a given device are cold, we raise an anomaly. Finally, the last "Anomaly History Count"
anomaly state-changes are stored for observation.

1011

1012

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

Hot/Cold Interface Counters (Spine to Superspine Interfaces) Probe

The hot/cold interface counters (spine-to-superspine interfaces) probe calculates ECMP imbalance on
spine-to-superspine ports. A given set of ECMP links (only calculated on spine-to-superspine links),
identified by common system_id, is determined to be imbalanced if the standard-deviation of the
tx_bytes counter (averaged periodically over the specified period) for the involved spine interfaces is
above "Max Standard Deviation". If such an imbalance is observed for more-than "Threshold Duration"
the last "Duration" period, we raise an anomaly. The last "Anomaly History Count" anomaly state-
changes are stored for observation. If more-than "Max Imbalanced Systems" systems are imbalanced, we
raise a distinct anomaly. We maintain for inspection the number of imbalanced systems over the last
"System Imbalance History Count" samples.

1013

1014

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

Hypervisor and Fabric LAG Config Mismatch Probe (Virtual Infra)

Purpose Detect inconsistent LAG configs between fabric and virtual infra and calculate LAGs
missing on hypervisors and managed leaf devices connected to hypervisors.

Source
Processor

Hypervisor NICs with LAG
(generic graph collector)

output stage: Hypervisor NICs LAG Intent Status
(discrete state set) (generated from graph)

Additional
Processor(s)

Hypervisor NIC LAG
anomalies (state)

input stage: Hypervisor NICs LAG Intent Status

output stage: Hypervisor NIC LAG Mismatch Anomaly
(discrete state set)

Example
Usage

vSphere Integration - This probe detects inconsistent LAG configs between fabric LAG
dual-leaf devices and ESXi hosts. LACP mode information is collected from the fabric
LAG dual-leaf devices and also connects to vCenter API and collects LAG groups and
members per hypervisor.

NOTE: Current validation is done on vCenter virtual Distributed Switches only,
not on virtual Standard Switches. LLDP must be enabled on vCenter vDS
switches.

Anomalies are raised if any of the following occurs:

• LAG member ports on ToR are connected to non-LAG physical ports on ESXi.

• Non-LAG member ports on ToR are connected to LAG physical ports on ESXi.

NSX Integration - Enabling this probe activates a continuous LAG validation between
NSX-T transport nodes and data center fabric. It validate that LAGs are properly
configured between fabric LAG dual-leaf devices and NSX-T transport nodes. The
NSX-T uplink profile defines the network interface configuration facing the fabric in
terms of LAG and LACP config. Network interface misconfiguration between the
transport node and the ToR switch is validated and detected.

Anomalies are raised in the following circumstances:

1015

• NSX-T transport nodes are not configured for LAG but ToR has LAG member ports
in the fabric.

• ESXi hosts are dual-attached to ToR leaf devices but corresponding NSX-T transport
nodes are “single-attached” or they are using “NIC-teaming” using active-standby or
load-balanced config.

1. Add NSX-T API user as a Virtual Infra.

2. Add NSX-T Manager in the blueprint (External Systems > Virtual Infra Managers).

3. Enable this probe (Hypervisor and Fabric LAG config mismatch).

Let’s say in the NSX-T uplink profile, LAG is deleted but the fabric has LAG in terms of
ToR leaf devices having LAG member ports. As a result in a blueprint after enabling this
probe LAG mismatch anomalies are raised.

Since the LAG on the NSX-T transport nodes has been deleted, there is a mismatch
between physical network adapter (pnic) on ESXi host LAG configuration and LAG
configuration on ToR leaf devices.

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

Hypervisor and Fabric VLAN Config Mismatch Probe (Virtual Infra)

IN THIS SECTION

Hypervisor & Fabric VLAN Config Mismatch Probe Overview | 1017

Usage with NSX-T Integration | 1018

Usage with VCenter Integration | 1022

1016

Hypervisor & Fabric VLAN Config Mismatch Probe Overview

Purpose Calculate VLAN mismatch between configured virtual networks on leaf devices and
VLANs needed by VMs running on hypervisors attached to leaf devices. (Formerly
known as Virtual Infra VLAN Match). Detects misconfiguration of hypervisor trunk
logical switches when VLAN tag is configured inside a VM (not on the bridge itself) (as
of Apstra 4.1.0).

Source
Processors

Fabric configured VLAN configs
(generic graph collector)

output stage: Fabric VLAN configs (number set)
(generated from graph)

Hypervisor expected VLAN
configs (generic graph)

output stage: Hypervisor VLAN configs (number
set)

Additional
Processor(s)

Hypervisor unique VLAN
configs (set count)

input stage: Hypervisor VLAN configs

output stage: Hypervisor unique VLAN configs (number set)

Differences between
Hypervisor and Fabric
(set comparison)

input
stages:

Hypervisor unique VLAN configs

Fabric VLAN configs

output
stages:

Common in Fabric and Hypervisor (number
set)

Fabric Only (number set)

Hypervisor Only (number set)

Fabric missing VLAN
configs accumulator
(accumulate)

input stage: Hypervisor Only

output stage: Hypervisor Only TimeSeries (number set time
series)

Hypervisor missing VLAN
configs accumulator
(accumulate)

input stage: Fabric Only

output stage: Fabric Only TimeSeries (number set time
series)

Check for Fabric missing
VLAN configs (range)

input stage: Hypervisor Only TimeSeries

output stage: Fabric missing VLAN configs anomaly
(discrete state set)

1017

Check for Hypervisor
missing VLAN configs
(range)

input stage: Fabric Only TimeSeries

output stage: Hypervisor missing VLAN configs anomaly
(discrete state set)

Usage with NSX-T Integration

1. From the blueprint, navigate to Analytics > Probes and click Hypervisor & Fabric VLAN Config
Mismatch in the probe name list to go to its details. When the VLANs between the data center fabric
and the NSX-T transport nodes match, then the probe looks similar to the image below:

1018

2. Click the Fabric VLAN Configs stage to show the VLANs tagged towards NSX-T transport nodes on
fabric ToR leaf devices as shown below:

3. Click the Common in Fabric and Hypervisor stage to show that VLANs in the NSX-T transport nodes
and the fabric match.

1019

If the VLAN defined in the Uplink Transport Zone used for BGP peering is modified in the NSX-T
Manager, then VLAN mismatch anomalies are raised.

Some other reasons for mismatching include the following:

• If the configured VLAN NSX-T transport node is missing in the fabric.

• If the configured VLAN NSX-T transport node is in the fabric, but the end VMs or servers are not part
of this virtual network or VLAN.

• If a segment is created in NSX-T for either an overlay or VLAN-based transport zone. It could be that
the configured VLAN spanning the logical switch/segment on the transport node is missing on the
fabric.

• If L2 bridging for VMs in different overlay logical segments is broken because one VM exists in one
logical switch/segment and the other VM exists in a separate uplink logical switch/segment.

As an example, a VLAN is missing in NSX-T 3.0 Host Transport node on the Overlay segment connected
to ToR leaf devices and respective VXLAN VN is present in Juniper Apstra Fabric and ports towards

1020

Hypervisors are assigned in a Virtual Network based Connectivity Template as below:

A Hypervisor missing VLAN Configs anomaly is raised as shown below:

In some scenarios, a VLAN mismatch anomaly can be remediated. If so, the Remediate Anomalies button
appears on the probe details page as shown in the screenshot above. Example scenarios include:

• NSX-T transport nodes use an uplink profile to define transport VLAN over which overlay tunnel
comes up. Fabric could be missing the rack-local VN for transport VLAN on hypervisors. One-click
remediation can be provided by creating a new rack-local virtual network with the proper VLAN ID in
the fabric.

1021

• A rack-local virtual network is defined with VLAN ID Y, however, the connected virtual infra nodes
(i.e hypervisors) do not have the VLAN ID in the logical segment/switch. One-click remediation can
be provided by removing the endpoint from the affected VLAN ID.

If the Remediate Anomalies button appears under the stage name, you can click it to automatically stage
the changes required to remediate the anomaly. You can see the staged changes on the Uncommitted
tab.

Review the staged configuration, add any necessary resources (such as IP subnet address, virtual
gateway IP, as so on), then commit the configuration.

Usage with VCenter Integration

Some anomalies, that are raised because of a VLAN config mismatch between vCenter and the fabric,
can automatically be remediated, such as the following.

• If the vCenter Distributed Virtual Switch (vDS) port group does not have a corresponding rack-local
VN (VLAN) for VLAN ID X. With one-click remediation, a new rack-local virtual network (VLAN) with
the proper VLAN ID is created.

• If endpoint X in a rack-local VN with VLAN ID Y, does not have a corresponding dVS port group.
With one-click remediation, the endpoint is removed from the affected VLAN ID.

Note

vCenter vDS must be used with VLAN specific ID allocation on the port group for L2 network
segmentation at the hypervisor level.

A VLAN-based rack-local virtual network is extending each VLAN segment defined on the vDS, across
servers within the same rack. For example, vDS port group VLAN 10 = rack-local virtual network with
VLAN 10.

1022

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

Hypervisor MTU Mismatch Probe (Virtual Infra)

Purpose Detect maximum transmission unit (MTU) value deviations across hypervisor physical
network adapters (pnics).

Source
Processor

Interface MTU (generic
graph collector)

output stage: Interface MTU (number set) (generated
from graph)

Additional
Processor(s)

Check MTU mismatch
between hypervisors
(standard deviation)

input stage: Interface MTU

output stage: Hypervisor MTU Deviation (number set)

MTU Mismatch (range) input stage: Hypervisor MTU Deviation (number set)

output stage: MTU Mismatch (discrete state set)

Example Usage NSX Integration - If validation fails between NSX-T nodes and the controller in terms
of mismatch of minimum configured MTU to support Geneve encapsulation or if the
VLANs defined on NSX-T nodes are not configured on ToR leaf interfaces connecting
an NSX node to the fabric, then anomalies are raised.

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

Hypervisor MTU Threshold Check Probe (Virtual Infra)

Purpose Detect virtual infra interfaces with maximum transmission units (MTU) below a
specified threshold (default: 1600).

Source
Processor

Interface MTU (generic
graph collector)

output stage: Interface MTU (number set) (generated
from graph)

Additional
Processor(s)

MTU below threshold (range) input stage: Interface MTU

output stage: MTU below threshold (discrete state set)

1023

Example Usage NSX Integration - To carry VXLAN-encapsulated overlay traffic, an MTU greater than
1600 is recommended. NSX-T transport nodes connected to ToR leaf devices that are
below the specified threshold are detected.

To support Geneve encapsulation, the MTU configuration on NSX-T nodes involved in
an overlay transport zone must have a valid MTU setting on the ESXi host. The image
(from a previous Apstra version) below shows hypervisors with the MTU above the
threshold.

If any of the hypervisors were below the threshold, the expected value would change
to true and an anomaly would be raised.

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

Hypervisor Missing LLDP Config Probe (Virtual Infra)

Purpose Detect virtual infra hosts that are not configured for LLDP. (Formerly known as
Virtual Infra missing LLDP config).

Source Processor Hypervisor NIC LLDP
Config (generic graph)

output stage: Hypervisor NIC LLDP config (discrete
state set) (generated from graph)

Additional
Processor(s)

LLDP config by switch
(match count)

input stage: Hypervisor NIC LLDP config

output stage: LLDP config by switch (number set)

Switches missing LLDP
config (range)

input stage: LLDP config by switch

1024

output stage: Switches missing LLDP config anomaly
(discrete state set)

Example Usage VMware Integration - If LLDP information is missing on ToR connected to physical
ports on ESXi, an anomaly is raised.

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

Hypervisor Redundancy Checks Probe (Virtual Infra)

Purpose Detect hypervisor redundancy.

Source
Processors

Hypervisor and connected leaf
(generic graph)

output stage: hypervisor_and_leaf (text set)
(generated from graph)

Hypervisor pnic and vnet
(generic graph collector)

output stage: hypervisor_pnic_vnet (text set)
(generated from graph)

Additional
Processor(s)

Hypervisor and leaf
count (set count)

input stage: hypervisor_and_leaf

output stage: hypervisors_leaf_count (number set)

Hypervisor vnet pnic
count (set count)

input stage: hypervisors_pnic_vnet

output stage: hypervisors_vnet_pnic_count (number set)

Hypervisor without ToR
Switch redundancy
(range)

input stage: hypervisors_leaf_count

output stage: hypervisor_single_leaf_anomaly (discrete state
set)

Networks without link
redundancy (range)

input stage: hypervisors_vnet_pnic_count

output stage: hypervisor_vnet_single_pnic_anomaly (discrete
state set)

Example
Usage

NSX-T Integration - an anomaly is raised in cases without redundancy or a single point
of failure (SPOF) in hypervisor connectivity. Examples include:

• NSX-T transport nodes with a single non-LAG uplink towards ToR leaf devices in the
fabric can result in a single point of failure (SPOF) for overlay traffic.

1025

• NSX-T transport nodes with a single LAG uplink with both members going to a single
ToR leaf can result in a single point of failure (SPOF).

• Lack of redundancy between fabric LAG dual-leaf devices and ESXi hosts.

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

Interface Flapping (Fabric Interfaces) Probe

Purpose This probe determines if fabric interfaces are flapping. A given interface (considering only
fabric interfaces) is considered to be flapping if it transitions state more than "Threshold"
times over the last "Duration". Such flapping will cause an anomaly to be raised. If more-
than "Max Flapping Interfaces Percentage" percent of interfaces on a given device are
flapping, an anomaly will be raised for that device. Finally, the last "Anomaly History
Count" anomaly state-changes are stored for observation.

Source
Processor

leaf fab int
status (Service
Data Collector)

Purpose: wires in interface status telemetry for all fabric interfaces on
the leaf devices.

Output Stage:
leaf_if_status

Set of operational states ("up" or "down"). Each set
member corresponds to a leaf fabric interface and
has the following keys to identify it: system_id (id of
the leaf system, usually serial number), interface
(name of the interface).

Additional
Processor(s)

leaf fabric interface
status history
(Accumulate)

Purpose: create recent history time series for each interface
status In terms of the number of samples, the time series will hold
the smaller of: 1024 samples or samples collected during the last
'total_duration' seconds (facade parameter).

1026

Input Stage: leaf_if_status

Output Stage:
leaf_fab_int_status_accumulate

Set of interface status time
series (for each spine facing
interface on each leaf). Each
set member has the following
keys to identify it: system_id
(id of the leaf system, usually
serial number), interface (name
of the interface).

leaf fabric interface
flapping (Range)

Purpose: Count the number of state changes in the
leaf_fab_int_status_accumulate ("up" to "down" and "down" to
"up"). If the count is higher than 'threshold' facade parameter
return "true", otherwise "false".

Input Stage: leaf_fab_int_status_accumulate

Output Stage:
if_status_flapping

Set of statuses (for each spine facing
interface on each leaf), indicating if the
interface has been flapping or not. Each set
member has the following keys to identify
it: system_id (id of the leaf system, usually
serial number), interface (name of the
interface).

percentage flapping
per device interfaces
(MatchPercentage)

Input Stage: if_status_flapping

Output Stage: flapping_fab_int_perc

system anomalous
flapping (Range)

Input Stage: flapping_fab_int_perc

Output Stage:
system_flapping

Set of statuses for each leaf, indicting if the
leaf has higher then acceptable percentage
of flapping interfaces. Each set member has
the following key to identify it: system_id (id
of the leaf system, usually serial number).

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

1027

Interface Flapping (Specific Interfaces) Probe

The interface flapping (specific interfaces) probe determines if specific interfaces are flapping. A given
interface (considering only those specified) is considered to be flapping if it transitions state more than
"Threshold" times over the last "Duration". Such flapping causes an anomaly to be raised. If more-than
"Max Flapping Interfaces Percentage" percent of interfaces on a given device are flapping, an anomaly is
raised for that device. Finally, the last "Anomaly History Count" anomaly state-changes are stored for
observation.

1028

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

Interface Flapping (Specific Interfaces) Probe

The interface flapping (specific interfaces) probe determines if specific interfaces are flapping. A given
interface (considering only those specified) is considered to be flapping if it transitions state more than
"Threshold" times over the last "Duration". Such flapping causes an anomaly to be raised. If more-than
"Max Flapping Interfaces Percentage" percent of interfaces on a given device are flapping, an anomaly is
raised for that device. Finally, the last "Anomaly History Count" anomaly state-changes are stored for

1029

observation.

1030

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

Interface Policy 802.1x Probe

The Interface Policy predefined probe is used to monitor 802.1X supplicants and interface
authentication. You can instantiate this probe to maintain 802.1X networks. The 802.1X hosts probe
gives a fast view of network 802.1X MAC addresses, authorization status, ports, and dynamic VLAN

1031

information.

For more information about interface policies, see Interface Policies <interface_policies>.

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

LAG Imbalance Probe

The LAG imbalance probe calculates LAG imbalance. It calculates the standard deviation across physical
links for all LAGs in the network.

1032

1033

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

Leafs Hosting Critical Services: Utilization, Trending, Alerting Probe

Monitors leaf devices hosting critical services identified by user "tags" and provides trending data for
fabric-facing interfaces and alerts if bandwidth utilization reaches a threshold (80%). Users are
proactively notified of issues from potential bandwidth contention. Additionally, historical data is
persisted for trending analysis for troubleshooting or assisting in right-sizing future deployments. By
default, the probe will display the total fabric interface as well as the total percentage of bandwidth used
for each tagged leaf device for the past one day (1-day). An anomaly will be raised if the used bandwidth
from the tagged leaf reaches 80% of the total available uplink bandwidth.

1034

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

Link Fault Tolerance in Leaf and Access LAGs Probe

The link fault tolerance in leaf and access LAG probe monitors LAG fault tolerance issues from a
capacity viewpoint.

1035

1036

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

MLAG Imbalance Probe

The MLAG Imbalance probe calculates MLAG imbalance. It calculates standard deviation across links for
all MLAGs in the network. If any are over the specified threshold in the last specified time period, an
anomaly is raised. It calculates the percentage of MLAGs in each rack in this state. It calculates standard
deviation across port-channels for all port-channels in all MLAGs in the network. If any are over the
specified threshold in the last specified time period, an anomaly is raised. It also calculates the
percentage of MLAGs in each rack in this state. Finally, it calculates standard deviation of port-channels
across their containing MLAGs. If the standard deviation for any of these MLAGs is over the specified
threshold, an anomaly is raised. Finally, we calculate the percentage of port-channels in each rack in this
state.

Source
Processor

mlag
interface
traffic
(Interface
Counters)

Purpose: wires in interface traffic samples (measured in bytes per second)
all leaf interfaces that are part of an MLAG. Unit is bytes per second.

Output stage:
mlag_int_traffic

Set of traffic samples (for each mlag interface on each
leaf). Each set member has the following keys to
identify it: mlag_id, server (label of the server node),
leaf (label of the leaf node), rack (label of the rack),
system_id (leaf serial number), interface (name of the
interface).

Additional
Processor(s)

mlag
interface
traffic
average
(Periodic
Average)

Purpose: Calculate average traffic during period specified by
average_period facade parameter. Unit is bytes per second.

Input Stage: mlag_int_traffic

Output Stage:
mlag_int_traffic_avg

Set of traffic average values (for each spine-facing
interface on each leaf). Each set member has the
following keys to identify it: mlag_id, server (label
of the server node), leaf (label of the leaf node),
rack (label of the rack), system_id (leaf serial
number), interface (name of the interface). Unit is
bytes per second.

mlag
interface
traffic
imbalance

Purpose: Calculate standard deviation between traffic averages on all
interfaces belonging to a given MLAG. Unit is bytes per second.

Input Stage: mlag_int_traffic_avg

1037

(Standard
Deviation)

Output Stage:
mlag_int_traffic_imbalance

Set of numbers, one for each mlag_id, each
indicating standard deviation of the
average traffic on each interface that is
part of this MLAG. Each set member has
the following keys to identify it: rack,
mlag_id. Unit is bytes per second.

port-channel
interface
std-dev
(Standard
Deviation)

Purpose: Calculate standard deviation between traffic averages on all
interfaces belonging to a port channel. Unit is bytes per second.

Input Stage: mlag_int_traffic_avg

Output Stage:
port_channel_int_std_dev

Set of numbers, one for each port channel
identified by mlag_id, leaf pair. Each number
each indicates standard deviation of the
average traffic on each interface that is part
of this port channel. Each set member has
the following keys to identify it: rack,
mlag_id, leaf. Unit is bytes per second.

port-channel
total traffic
(Sum)

Purpose: Calculate total traffic per port channel. Unit is byte per second.

Input Stage: mlag_int_traffic_avg

Output Stage:
mlag_port_channel_total

Set of numbers, each indicating total traffic
for each port channel. Each set member has
the following key to identify it: rack,
mlag_id, leaf. Unit is byte per second.

mlag port-
channel
traffic std-
dev
(Standard
Deviation)

Purpose: Calculate standard deviation between traffic averages on both
port channels belonging to an MLAG. Unit is bytes per second.

Input Stage: mlag_port_channel_total

Output Stage:
mlag_port_channel_imbalance

Set of numbers, one for each MLAG
identified by mlag_id, rack pair. Each
number indicates standard deviation of
the average traffic on each port channel
that is part of this MLAG. Each set
member has the following keys to
identify it: rack, mlag_id. Unit is bytes
per second.

1038

std-dev
percentage
mlag (Ratio)

Input Stage: mlag_int_traffic_imbalance

Output Stage: std_dev_percentage_mlag

std-dev
percentage
port-channel
(Ratio)

Input Stage: port_channel_int_std_dev

Output Stage: std_dev_percentage_pc

live mlag
imbalance
(Range)

Purpose: Evaluate if the MLAG imbalance as measured by standard
deviation for the average traffic on each member interface is within
acceptable range. In this case acceptable range is between 0 and std_max
facade parameter (in bytes per second unit).

Input Stage: std_dev_percentage_mlag

Output Stage:
live_mlag_imbalance

Set of true/false values, each indicating if MLAG
imbalance for the average traffic on each
member interface is within acceptable range for
each mlag. Each set member has the following
keys to identify it: rack, mlag_id.

live port-
channel
imbalance
(Range)

Purpose: Evaluate if the port channel imbalance as measured by standard
deviation for the average traffic on each member interface is within
acceptable range. In this case acceptable range is between 0 and std_max
facade parameter (in bytes per second unit).

Input Stage: std_dev_percentage_pc

Output Stage:
live_port_channel_imbalance

Set of true/false values, each indicating
if port channel imbalance for the average
traffic on each member interface is
within acceptable range for each mlag.
Each set member has the following keys
to identify it: rack, mlag_id, leaf.

std-dev
percentage
mlag port-
channel
(Ratio)

Input Stage: mlag_port_channel_imbalance

Output Stage: std_dev_percentage_mlag_pc

live mlag
port-channel
imbalance
(Range)

Purpose: Evaluate if the mlag imbalance as measured by standard
deviation for the average traffic on each member port channel is within
acceptable range. In this case acceptable range is between 0 and std_max
facade parameter (in bytes per second unit).

1039

Input Stage: std_dev_percentage_mlag_pc

Output Stage:
mlag_port_channel_imbalance_out_of_range

Set of true/false values,
each indicating if MLAG
imbalance between the
average traffic on each
member port channel is
within acceptable range
for each mlag. Each set
member has the following
keys to identify it: rack,
mlag_id.

mlag
imbalance
per link
count
(Match
Count)

Input Stage: live_mlag_imbalance

Output Stage: mlag_imbalance_link_count

port-channel
imbalance
per rack
(Match
Percentage)

Purpose: Calculate percentage of port channels on a given rack that have
imbalance anomaly. Input Stage: live_port_channel_imbalance

Output Stage:
port_channel_imbalance_per_rack

Set of numbers, each indicating the
percentage of port channels with
imbalance on each rack. Each set
member has the following key to
identify it: rack, mlag_id, leaf.

mlag port-
channel
imbalance
per rack
(Match
Percentage)

Purpose: Calculate percentage of MLAGs on a given rack that have port
channel imbalance anomaly.

Input Stage: mlag_port_channel_imbalance_out_of_range

Output Stage:
mlag_port_channel_imbalance_anomaly_per_rack

Set of numbers, each
indicating the
percentage of port
channels with
imbalance on each
rack. Each set
member has the
following key to

1040

identify it: rack,
mlag_id.

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

Multiagent Detector Probe

The multiagent detector probe raises an anomaly if EOS is not running in multiagent mode, indicating
that a reboot is required.

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

1041

Optical Transceivers Probe

The Optical Transceivers probe (introduced in Apstra version 4.1.0) monitors optical statistics based on
the following telemetry data:

• Temperature C) of the physical port (interface stats)

• Voltage (V) of the physical port (interface stats)

• Transmit Power Level (dBm) of each optical lane (lane stats)

• Receive Power Level (dBm) of each optical lane (lane stats)

• Transmit Bias (mA) of each optical lane (lane stats)

If telemetry data falls outside the specified range for the specified amount of time, a warning or alarm is
raised, as applicable.

In Apstra versions 4.1.0 and 4.1.1, the reason for a warning or alarm is not specified.

In Apstra version 4.1.2, warnings and alarms specify whether the value causing the anomaly was too
high or too low.

1042

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

1043

Packet Discard Percentage Probe

The packet discard percentage probe raises visibility into issues related to physical interfaces.

1044

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

1045

Spine Fault Tolerance Probe

The spine fault tolerance probe monitors spine fault tolerance issues from a capacity viewpoint.

1046

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

Total East/West Traffic Probe

Purpose The Total East/West Traffic probe calculates total east/west traffic. This probe takes the
sum of all traffic to leaf devices from their directly-attached servers and subtracts from
that the sum of all traffic to external routers (all traffic values in this calculation are
averaged periodically over "Average Period"). The result of this is the total east/west
traffic. Time series of length "History Sample Count" is maintained for the sum of server
traffic, the sum of external traffic, and the total east/west traffic.

When instantiating this probe, external router tag(s) must be specified (new in version
4.0).

Source
Processors

external router
south-north
link traffic
(Interface
Counters)

Purpose: wires in interface traffic samples (measured in bytes per
second) for traffic sent to external routers

Output Stage: ext_router_interface_traffic

leaf server
traffic counters
(Interface
Counters)

Purpose: wires in interface traffic samples (measured in bytes per
second) for traffic received on leaf devices from the servers

Output Stage:
server_traffic_counters

Set of traffic samples (for each server-facing
interface on each leaf) in the receive
direction. Each set member has the
following keys to identify it: system_id (id of
the leaf system, usually serial number),
interface (name of the interface).

Additional
Processor(s)

external router south-
north links traffic average
(Periodic Average)

Purpose: Calculate average traffic for each interface-facing
external router traffic during period specified by
average_period facade parameter. Unit is bytes per second.

Input Stage: ext_router_interface_traffic

Output Stage:
ext_router_interface_traffic_avg

Set of traffic average
values (for each external
router-facing interface on
each device). Each set
member has the
following keys to identify

1047

it: system_id (id of the
leaf system, usually serial
number), interface (name
of the interface).

server traffic average
(Periodic Average)

Purpose: Calculate average server traffic during period
specified by average_period facade parameter. Unit is bytes
per second.

Input Stage: server_traffic_counters

Output Stage:
server_traffic_avg

Set of traffic average values (for each
server-facing interface on each leaf) in
the receive direction. Each set member
has the following keys to identify it:
system_id (id of the leaf system,
usually serial number), interface (name
of the interface).

south-north traffic (Sum) Purpose: Calculate total traffic by summing average traffic on
each interface-facing external router. Unit is bytes per
second.

Input Stage: ext_router_interface_traffic_avg

Output Stage:
total_outgoing_traffic

Total south-north traffic
average in bytes per second.

total server traffic (Sum) Purpose: Calculate total server traffic by summing average
traffic on each interface attached to servers in receive
direction. Unit is bytes per second.

Input Stage: server_traffic_avg

Output Stage:
total_server_traffic

Total server traffic average in
bytes per second.

outgoing_traffic_average
(Periodic Average)

Purpose: Calculate total south-north traffic over
average_period seconds, which is a facade parameter. Unit is
bytes per second.

Input Stage: total_outgoing_traffic

1048

Output Stage:
total_outgoing_traffic_average

Total south-north traffic
average in bytes per
second.

server generated traffic
average (Periodic
Average)

Purpose: Purpose: Calculate total average server traffic over
average_period seconds, which is a facade parameter. Unit is
bytes per second.

Input Stage: total_server_traffic

Output Stage:
total_server_traffic_history

Time series showing total
average server traffic over
recent history. Unit is bytes
per second.

east-west traffic
(Subtract)

Purpose: create recent history time series showing how total
average east-west traffic changed over time. In terms of the
number of samples, the time series holds
history_sample_count values (facade parameter). Unit is
bytes per second.

Input Stages: total_outgoing_traffic_average and
total_server_traffic_history

Output Stage:
eastwest_traffic_history

Time series showing how total
average east-west traffic
changed over recent history.
Unit is bytes per second

VMs without Fabric Configured VLANs Probe (Virtual Infra)

Purpose Calculate VMs missing a VLAN and calculate VMs not backed by VLANs on managed
leaf devices connected to hypervisors.

Source
Processors

VMs backed by Fabric VLANs
(generic graph collector)

output stage: VMs backed by Fabric VLANs (number
set) (generated from graph)

VMs on hypervisors connected to
Fabric (generic)

output stage: VMs on hypervisors connected to
Fabric (number set)

1049

Additional
Processor(s)

Differences between Fabric and
Hypervisor (set
comparison<processor_set_comparison>)

input
stage(s):

VMs backed by Fabric VLANs
(number set)

VMs on hypervisors connected to
Fabric (number set)

output stage: VMs not backed by Fabric
VLANs (number set)

Affected VM Anomalies (range
<processor_range>)

input stage: VMs not backed by Fabric VLANs

output stage: Affected VM Anomalies (discrete
state set)

Example
Usage

NSX-T Integration - VMs participating in a particular network are attached to an NSX
logical switch. In NSX transport zone controls to which hypervisors or ESXi host an NSX
logical switch can span. To have VXLAN connectivity for these VMs they need to be part
of the same transport zone. This predefined anomaly helps validate that all VLAN
backend interfaces defined for NSX-T nodes are also configured on the ToR interfaces
connecting that node to the fabric.

VLAN probe anomaly checks for VLAN specification in case of NSX-T via one of the two
methods below:

Method One: When you have VMs that are connected to the NSX-T overlay, you can
configure a bridge-backed logical switch to provide layer 2 connectivity with other
devices or VMs. So via VLAN specification on NSX-T layer 2 bridges and fabric if
respective VXLAN VN is not there, then an anomaly is raised.

Method Two: Edge uplinks go out through VLAN logical switches. So let's say if the
uplink VLAN logical switch has a particular VLAN ID and respective VLAN on ToR port
connected to the hypervisor host is not configured then also this VLAN probe will raise
anomalies and help detect such misconfiguration.

The following is a simple topology where nsxcompute_001_server_001 and
nsxedge_001_server001 are ESXi hosting VMs that are connected to the NSX-T overlay
network.

1050

There is one VM on each ESXi host that needs a VXLAN VN endpoint on each leaf, i.e.
nsxcompute_001_leaf1 and nsxedge_001_leaf1 to communicate on the overlay network.

When VXLAN VNs assigned to ToR leaf devices are deleted, VLAN misconfig anomalies
are raised as below under Fabric Health in the dashboard.

VMs not backed by Fabric VLANs shows VMs with VLAN missing.

Affected VM Anomalies shows VLAN missing in the fabric.

1051

VXLAN Flood List Validation Probe

The VXLAN flood list validation probe validates the VXLAN flood list entries on every leaf in the
network. It collects appropriate telemetry data, compares it to the set of flood list forwarding entries
expected to be present and alerts if expected entries are missing on any device.

You can configure the following parameters:

• Probe Label: Name to identify the probe.

• Anomaly Time Window : Average period duration for interface counters.

• Anomaly Threshold (in %): If routes are missing for more than or equal to percentage of Anomaly
Time Window, an anomaly is raised. If Anomaly Time Window ATW, and Anomaly Threshold is AT. It
calculates Z = (ATW * AT)/100 in seconds. E.g. If ATW = 20 seconds, AT = 5%, then Z = (20 * 5)/100
= 1 second. When the route is in Missing state for Z seconds from total ATW duration, anomaly is
raised.

• Collection period: All these probes are polling-based so they have a polling period.

The route labels include the following:

• Expected: This route is expected on the device as per service defined.

• Missing: This route is missing on the device when compared to the expected route set.

1052

• Unexpected: There are no expectations rendered (by AOS) for this route.

NOTE: Auto-enabling the EVPN VXLAN Route Summary analytics dashboard enables the EVPN
VXLAN Type-3 Route Validation and EVPN Flood List Validation probes automatically (but not
the EVPN VXLAN Type-5 Route Validation probe). See Configuring Auto-Enabled
Dashboards<configure_dashboard> for information about enabling the dashboard.

1053

For more information about this probe, from the blueprint, navigate to Analytics > Probes, click Create
Probe, then select Instantiate Predefined Probe from the drop-down list. Select the probe from the
Predefined Probe drop-down list to see details specific to the probe.

Probe Processors (Analytics)

IN THIS SECTION

Processor: Accumulate | 1055

Processor: Average | 1059

Processor: Comparison | 1060

Processor: EVPN Type 3 | 1062

Processor: EVPN Type 5 | 1062

Processor: Extensible Service Data Collector | 1063

Processor: Generic Graph Collector | 1067

Processor: Generic Service Data Collector | 1070

Processor: Interface Counters | 1073

Processor: Logical Operator | 1076

Processor: Match Count | 1077

Processor: Match Percentage | 1079

Processor: Match String | 1081

Processor: Max | 1084

Processor: Min | 1086

Processor: Periodic Average | 1088

Processor: Range | 1091

Processor: Ratio | 1094

Processor: Service Data Collector | 1096

Processor: Set Comparison | 1099

Processor: Set Count | 1101

Processor: Standard Deviation | 1102

Processor: State | 1104

Processor: Subtract | 1107

1054

Processor: Sum | 1108

Processor: System Utilization | 1109

Processor: Time in State | 1110

Processor: Traffic Monitor | 1115

Processor: Union | 1118

Processor: VXLAN Floodlist | 1120

Processor: Accumulate

IN THIS SECTION

Example: Accumulate | 1057

The Accumulate processor used in IBA probes creates one number or discrete state time-series on
output for each input with the same properties; each time the input changes, it takes its timestamp and
value and appends them to the corresponding output series. If total duration (total_duration) is set and
the length of the output time series in time is greater than duration, it removes old samples from the
time series until this is no longer the case. If max samples (max_samples) is set and the length of the
output time series in terms of number of samples is greater than max_samples, it removes old samples
from the time series until this is no longer the case.

Parameter Description

Input Types Table (number or discrete state)

Output Types Table (number or discrete state, accumulate=True)

Max Samples (max_samples) Limits the maximum number of samples or an
expression that evaluates to number of samples
(default:1024)

Total Duration (total_duration) Limits the number of samples by their total duration.
(in seconds) or an expression that evaluates to number
of seconds (default:0)

1055

(Continued)

Parameter Description

Graph Query (graph_query) One or more queries on graph specified as strings, or a
list of such queries. (String will be deprecated in a
future release.) Multiple queries should provide all the
named nodes referenced by the expression fields
(including additional_properties). Graph query is
executed on the "operation" graph. Results of the
queries can be accessed using the "query_result"
variable with the appropriate index. For example, if
querying property set nodes under name "ps", the
result will be available as "query_result[0]["ps"]".

In collector processors (*_collector, if_counter) it is
used to choose a set of nodes for further processing
(for example, all leaf devices, or all interfaces between
leaf and spine devices)

In other processors it is used for general
parameterization and it is only supported as a list of
queries.

graph_query: "node("system", role="leaf",
name="system").
 out("hosted_interfaces").
 node("interface",
name="iface").out("link").
 node("link", role="spine_leaf")"

graph_query: ["node("system", role="leaf",
name="system")",
 "node("system", role="spine",
name="system")"]

Non-collector processors containing the graph_query
configuration parameter, can be parameterized to use
data from arbitrary nodes in the graph, such as
property set nodes. Property sets allow you to
parameterize macro level SLAs for individual business
units. In the example below, graph_query matches a
node of type property_set with label probe_propset. It's

1056

(Continued)

Parameter Description

accessed using the special query_result variable, where
Index 0 means it's the first node in query results. If a
query returned N nodes, they could be accessed using
indices starting from 0 to N-1. ps is what the actual
node is referred to in the query; the rest depends on
the structure of the node. The int() casting is required
because values of property_set nodes are strings. Here
it's assumed that a property set node has the label
probe_propset and that the value accumulate_duration
was already created.

graph_query: [node("property_set",
label="probe_propset", name="ps")]
duration: int(query_result[0]
["ps"].values["accumulate_duration"])

Another example is a that probes can validate a
compliance requirement; the compliance value may
change over time and/or it can be used by more than
one probe. Also, a probe can validate NOS versions on
devices. In this case, property sets can be used to
define the current NOS version requirement. If it
changes tomorrow: change the property set value,
instead of going under the probe stage.

Enable Streaming (enable_streaming) Makes samples of output stages streamed if enabled.
An optional boolean that defaults to False. If set to
True, all output stages of this processor are streamed in
the generic protobuf schema.

Example: Accumulate

Assume a configuration of

max_samples: 3
total_duration: 0

1057

Assume the following input at time t=1

[if_name=eth0] : "up"
[if_name=eth1] : "down"
[if_name=eth3] : "up"

We have the following output at time t=1

[if_name=eth0] : [{"up", 1 second"}]
[if_name=eth1] : [{"down", 1 second"}]
[if_name=eth3] : [{"up", 1 second"}]

Assume the following input at time t=2

[if_name=eth0] : "down"
[if_name=eth1] : "down"
[if_name=eth3] : "up"

We have the following output at time t=2

[if_name=eth0] : [{"up", 1 second"}, {"down", 2 seconds"}]
[if_name=eth1] : [{"down", 1 second"}]
[if_name=eth3] : [{"up", 1 second"}]

Assume the following input at time t=3

[if_name=eth0] : "up"
[if_name=eth1] : "down"
[if_name=eth3] : "up"

We have the following output at time t=3

[if_name=eth0] : [{"up", 1 second"}, {"down", 2 seconds"}, {"up", 3 seconds"}]
[if_name=eth1] : [{"down", 1 second"}]
[if_name=eth3] : [{"up", 1 second"}]

1058

Assume the following input at time t=4

[if_name=eth0] : "down"
[if_name=eth1] : "down"
[if_name=eth3] : "up"

We have the following output at time t=4

[if_name=eth0] : [{"down", 2 seconds"}, {"up", 3 seconds"}, {"down", 4 seconds"}]
[if_name=eth1] : [{"down", 1 second"}]
[if_name=eth3] : [{"up", 1 second"}]

If the expressions are used for max_samples or total_duration, then they are evaluated for each input
item and the corresponding key is added for each output item.

max_samples: context.ref_max_samples * 2
total_duration: context.ref_duration * 2

Sample input:

[if_name=eth0, ref_max_samples=10, ref_duration=60] : "up"
[if_name=eth1, ref_max_samples=20, ref_duration=120] : "down"

Output

[if_name=eth0, max_samples=20, duration=120] : "up"
[if_name=eth1, max_samples=40, duration=240] : "down"

Processor: Average

The Average processor groups as described by Group by, then calculates averages and outputs one
average for each group.

Parameter Description

Input Types Table (number), Table (number, accumulate=True)

Output Types Table(number)

1059

(Continued)

Parameter Description

Group by (group_by) Accepts a list of property names to group input items into output items, produces only
one output group for the empty list.Most processors take input and produce output.
Many of them produce one output per input (for example, if input is a DSS, output is a
DSS of same size). However, some processors reduce the size of the output relative to
the size of the input. Effectively, they partition the input into groups, run some
calculation on each of the groups that produce a single value per each group, and use
that as output. Clearly, the size of the output set depends on the grouping scheme.
We call such processors grouping processors and they all take the Group by
configuration parameter.

In the case of an empty list, the input is considered to be a single group; thus, the
output is of size 1 and either N, DS, or TS. If a list of property names is specified, for
example ["system_id", "iface_role"], or a single property is specified, for example
["system_id"], we divide the input into groups such that for each group, every item in
the group has the same values for the given list of property names. See the "standard
deviation processor" on page 1102 example for how this works.

The output type of a processor depends on a value of the group_by parameter; for an
empty list, a processor produces a single value result, such as N, DS, or T, and for
grouping by one or more properties it returns a set result, such as NS, DSS, or TS.

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean that
defaults to False. If set to True, all output stages of this processor are streamed in the
generic protobuf schema.

Example: Average

See "standard deviation" on page 1102 example. It's the same except we calculate average instead of
standard deviation.

Processor: Comparison

IN THIS SECTION

Example: Comparison | 1061

1060

The Comparison processor takes two Table(number) inputs: 'A' and 'B'. It then matches corresponding
items from the inputs by their keys, and performs a comparison operation defined by the 'operation'
configuration property. If the inputs have different sets of keys, the 'significant_keys' configuration
property should be set, which is a list of keys used to map items from the inputs. Otherwise, if the inputs
set of keys are different, no items will be matched and an empty result is returned. Also, inputs and
significant_keys (if specified) must allow only 1:1 item mapping from 'A' to 'B'. If it allows to match one
item from 'A' to more than one item from 'B' and vice versa, the probe goes into error state.

Parameters Description

Input Types Tablev(number)

Output Types Table (discrete state): true or false

Comparison Operation
(operation)

Operation for comparing operands. le (less than or equal), ne (not equal), ge (greater
than or equal), gt (greater than), lt (less than), eq (equal)

Significant Keys
(significant_keys)

List of keys to map items from the inputs for applying the specified operation. It is
typically used by processors that take multiple inputs and perform operations on
them. When inputs have the same sets of keys it does not need to be specified.
When inputs have different sets of keys, it must be specified and it must allow only
1:1 items mapping from the given inputs, otherwise the probe will go into error
state.

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean that
defaults to False. If set to True, all output stages of this processor are streamed in
the generic protobuf schema.

Example: Comparison

significant_keys: ["system_id", "interface"]
operation: "ge"

Input A:

[system_id=leaf1,interface=eth0,counter_type=tx_bytes]: 34
[system_id=leaf1,interface=eth1,counter_type=tx_bytes]: 58

1061

Input B:

[system_id=leaf1,interface=eth0,counter_type=rx_bytes]: 15
[system_id=leaf1,interface=eth1,counter_type=rx_bytes]: 73

Output (Discrete-State-Set):

[system_id=leaf1,interface=eth0]: "true"
[system_id=leaf1,interface=eth1]: "false"

Processor: EVPN Type 3

The EVPN Type 3 processor generates a configuration containing expectations of EVPN type 3 routes.

Parameter Description

Input Types Number-Set (NS), Discrete-State-Set (DSS)

Output Types NSTS, DSSTS

Execution count Number of times the data is collected

Monitored VNs The VNs to be monitored. Specify * to monitor all the VNs or list the desired
ones, e.g. "1-3,6,8,10-13".

Service Interval Telemetry collection interval in seconds.

Service name Name of the custom collector service.

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean
that defaults to False. If set to True, all output stages of this processor are
streamed in the generic protobuf schema.

Processor: EVPN Type 5

The EVPN Type 5 processor generates a configuration containing expectations of EVPN type 5 routes.

1062

Parameter Description

Input Types Number-Set (NS), Discrete-State-Set (DSS)

Output Types NSTS, DSSTS

Execution count Number of times the data collection is done.

Service input Data to pass to telemetry collectors, if any.

Service Interval Telemetry collection interval in seconds.

Service name Name of the custom collector service.

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean
that defaults to False. If set to True, all output stages of this processor are
streamed in the generic protobuf schema.

Processor: Extensible Service Data Collector

The Extensible Service Data Collector processor collects data supplied by a custom service that is not
'lldp', 'bgp' or 'interface'.

Parameter Description

Input Types No inputs. This is a source processor.

Output Types NSTS, DSSTS

Data Type Type of data the service collects: numbers (ns) (such as device temperature), discrete
states (dss) (such as device status), text or tables

1063

(Continued)

Parameter Description

Graph Query
(graph_query)

One or more queries on graph specified as strings, or a list of such queries. (String will
be deprecated in a future release.) Multiple queries should provide all the named
nodes referenced by the expression fields (including additional_properties). Graph
query is executed on the "operation" graph. Results of the queries can be accessed
using the "query_result" variable with the appropriate index. For example, if querying
property set nodes under name "ps", the result will be available as "query_result[0]
["ps"]".

In collector processors (*_collector, if_counter) it is used to choose a set of nodes for
further processing (for example, all leaf devices, or all interfaces between leaf and
spine devices)

In other processors it is used for general parameterization and it is only supported as a
list of queries.

graph_query: "node("system", role="leaf", name="system").
 out("hosted_interfaces").
 node("interface", name="iface").out("link").
 node("link", role="spine_leaf")"

graph_query: ["node("system", role="leaf", name="system")",
 "node("system", role="spine", name="system")"]

graph_query: [node("property_set", label="probe_propset", name="ps")]
duration: int(query_result[0]["ps"].values["accumulate_duration"])

1064

(Continued)

Parameter Description

Ingestion filter
(ingestion_filter)

New (reserved) key. Ingestion filter determines what metrics from the collector make it
into the probe. We support a degenerate case of ingestion filter, that is, probe specifies
full identities of all metrics that need to be ingested. With this feature, you can ingest
metrics that satisfy a criterion that is expressed using an ingestion filter.

Ingestion filter is authored by probe authors, evaluated by the controller component
that is responsible for ingesting raw telemetry into stage outputs within the probes. It
is also propagated as a collection filter to the telemetry collector plugins.

Keys available to express in the filter are same as the metric identity keys.

• No metric identity key can exist directly under "properties". If any metric identity
key is mistakenly specified directly under properties, a validation error is raised.

• Any missing metric identity key under "ingestion_filter" is assumed to match.

• Only explicitly specified keys under "ingestion_filter" can be referenced by the rest
of the probe configuration. This is to enhance probe readability and allow better
overall validation.

• The data_type must be one of the table data types.

• Existing reserved key "keys" is now made optional and can be omitted. The key
names should exactly match those specified in the schema of the corresponding
service definition.

Keys (keys) List of keys that are significant for specifying data elements for this service

Query Expansion For every path, originally returned by graph queries, passed to each generator the
latter one produces a set of items and for each item it produces a new path extended
by a corresponding property name which value is set of a value of the produced item.

1065

(Continued)

Parameter Description

Query Group by
(query_group_by)

List (of strings) of node and relationship names used in the graph query to group query
results by. Each element in this list represents a named node or relationship matcher in
the graph_query field.It is not an expression to be consistent with existing group_by field
in grouping processors. Non-expression is simple and more intuitive.

When grouping is active (query_group_by is not null), query results are d by the specified
list of names, where one output item is created per each group. In this case, the
expressions can only access matcher names specified in query_group_by and the query
results for each group are accessed using a new group_items variable. The group_items
variable is a list of query results, where each result has named nodes/relationships, not
present in query_group_by.

The following list describes the behavior for various values of this field:

• Value of query_group_by field - Semantics

• Omitted or provided as json null (ala None in Python) - No grouping is done. This is
equivalent to current behavior of extensible_data_collector. Using ‘group_items’ in
this case is not permitted and results in probe error state.

• Empty list ([]) - Produces one group containing all the query results.

• One or more matcher names - The query results are grouped by the specified
nodes or relationships. If this list covers all available matchers in the query, the
number of groups is equal to the number of query results.

Query Tag Filter
(query_tag_filter)

Filters named nodes in the graph queries by assigned tags.

Value Map A mapping of discrete-state values to human readable strings. A dictionary with all
possible Discrete-State-Set states mapped to human-readable representation;
applicable for Discrete-State-Set data (that is, when data_type is 'dss') only.

{
 "0": "unknown",
 "1": "down",
 "2": "up",
 "3": "missing"
}

1066

(Continued)

Parameter Description

Service name
(service_name)

Name of the custom collector service.

System ID Expression mapping from graph query to a system_id, e.g. "system.system_id" if
"system" is a name in the graph query.

Execution count Number of times the data is collected.

Service input
(service_input)

Data to pass to telemetry collectors, if any. Can be an expression.

Service interval
(service_interval)

Telemetry collection interval in seconds. Can be an expression.

Additional Keys Each additional key/value pair is used to extend properties of output stages where
value is considered as an expression executed in context of the graph query and its
result is used as a property value with respective key. The value of this property is
evaluated for each item to associate items with metrics provided by a corresponding
collector service. The association is done by keys because each collector reports a set
of metrics where each metric is identified by a key in a format that is specific for each
collector.

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean that
defaults to False. If set to True, all output stages of this processor are streamed in the
generic protobuf schema.

Processor: Generic Graph Collector

IN THIS SECTION

Example: Generic Graph Collector | 1070

The Generic Graph Collector processor imports data from the graph into the output stage, depending on
the configuration (a graph query).

1067

'graph query' and 'additional properties' behave as in other source processors. Importantly, the
expression in the 'value' field yields a value per each item. Thus, unique to this source processor, values
come from the graph rather than from device telemetry.

Parameter Description

Input Types No inputs. This is a source processor.

Output Types Table(discrete state or number or text)

Data Type Type of data the service collects: numbers (ns) (such as device temperature), discrete
states (dss) (such as device status), text or tables

Graph Query
(graph_query)

One or more queries on graph specified as strings, or a list of such queries. (String will
be deprecated in a future release.) Multiple queries should provide all the named nodes
referenced by the expression fields (including additional_properties). Graph query is
executed on the "operation" graph. Results of the queries can be accessed using the
"query_result" variable with the appropriate index. For example, if querying property
set nodes under name "ps", the result will be available as "query_result[0]["ps"]".

In collector processors (*_collector, if_counter) it is used to choose a set of nodes for
further processing (for example, all leaf devices, or all interfaces between leaf and spine
devices)

In other processors it is used for general parameterization and it is only supported as a
list of queries.

graph_query: "node("system", role="leaf", name="system").
 out("hosted_interfaces").
 node("interface", name="iface").out("link").
 node("link", role="spine_leaf")"

graph_query: ["node("system", role="leaf", name="system")",
 "node("system", role="spine", name="system")"]

Query Expansion For every path, originally returned by graph queries, passed to each generator the latter
one produces a set of items and for each item it produces a new path extended by a
corresponding property name which value is set of a value of the produced item.

1068

(Continued)

Parameter Description

Query Group by
(query_group_by)

List (of strings) of node and relationship names used in the graph query to group query
results by. Each element in this list represents a named node or relationship matcher in
the graph_query field.It is not an expression to be consistent with existing group_by field
in grouping processors. Non-expression is simple and more intuitive.

When grouping is active (query_group_by is not null), query results are d by the specified
list of names, where one output item is created per each group. In this case, the
expressions can only access matcher names specified in query_group_by and the query
results for each group are accessed using a new group_items variable. The group_items
variable is a list of query results, where each result has named nodes/relationships, not
present in query_group_by.

The following list describes the behavior for various values of this field:

• Value of query_group_by field - Semantics

• Omitted or provided as json null (ala None in Python) - No grouping is done. This is
equivalent to current behavior of extensible_data_collector. Using ‘group_items’ in
this case is not permitted and results in probe error state.

• Empty list ([]) - Produces one group containing all the query results.

• One or more matcher names - The query results are grouped by the specified nodes
or relationships. If this list covers all available matchers in the query, the number of
groups is equal to the number of query results.

Query Tag Filter
(query_tag_filter)

Filters named nodes in the graph queries by assigned tags.

Value Map A mapping of discrete-state values to human readable strings. A dictionary with all
possible Discrete-State-Set states mapped to human-readable representation;
applicable for Discrete-State-Set data (that is, when data_type is 'dss') only.

{
 "0": "unknown",
 "1": "down",
 "2": "up",
 "3": "missing"
}

1069

(Continued)

Parameter Description

Value (value) Expression evaluated per query result to collect value. (integer for NS and string for TS/
DSS)

Additional Keys Each additional key/value pair is used to extend properties of output stages where
value is considered as an expression executed in context of the graph query and its
result is used as a property value with respective key. The value of this property is
evaluated for each item to associate items with metrics provided by a corresponding
collector service. The association is done by keys because each collector reports a set
of metrics where each metric is identified by a key in a format that is specific for each
collector.

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean that defaults
to False. If set to True, all output stages of this processor are streamed in the generic
protobuf schema.

Example: Generic Graph Collector

graph_query: "node("system", role="leaf", name="system").
 out("hosted_interfaces").
 node("interface", name="iface").out("link").
 node("link", role="spine_leaf")"
system_id: "system.system_id"
interface: "iface.if_name"
value: "iface.if_type"
data_type: "dss"
value_map: {0: "ip", 1: "loopback", ...}

Sample output (DSS):

[system_id=leaf1,interface=eth0]: "ip"
[system_id=leaf1,interface=eth1]: "ip"

Processor: Generic Service Data Collector

The Generic Service Data Collector processor collects data supplied by a custom service that is not 'lldp',
'bgp' or 'interface'. Service name is specified as 'service_name', service specific key is specified as 'key',

1070

'data_type' to specifies if the collected data is numbers or discrete state values, and 'value_map' for the
specific data could be specified as well.

Parameter Description

Input Types No inputs. This is a source processor.

Output Types Discrete-State-Set (DSS), Number-Set (NS), TS (based on data_type)

Data Type Type of data the service collects: numbers (ns) (such as device temperature), discrete
states (dss) (such as device status), text or tables

Graph Query
(graph_query)

One or more queries on graph specified as strings, or a list of such queries. (String will
be deprecated in a future release.) Multiple queries should provide all the named
nodes referenced by the expression fields (including additional_properties). Graph
query is executed on the "operation" graph. Results of the queries can be accessed
using the "query_result" variable with the appropriate index. For example, if querying
property set nodes under name "ps", the result will be available as "query_result[0]
["ps"]".

In collector processors (*_collector, if_counter) it is used to choose a set of nodes for
further processing (for example, all leaf devices, or all interfaces between leaf and
spine devices)

In other processors it is used for general parameterization and it is only supported as a
list of queries.

graph_query: "node("system", role="leaf", name="system").
 out("hosted_interfaces").
 node("interface", name="iface").out("link").
 node("link", role="spine_leaf")"

graph_query: ["node("system", role="leaf", name="system")",
 "node("system", role="spine", name="system")"]

Query Expansion For every path, originally returned by graph queries, passed to each generator the
latter one produces a set of items and for each item it produces a new path extended
by a corresponding property name which value is set of a value of the produced item.

1071

(Continued)

Parameter Description

Query Group by
(query_group_by)

List (of strings) of node and relationship names used in the graph query to group query
results by. Each element in this list represents a named node or relationship matcher
in the graph_query field.It is not an expression to be consistent with existing group_by
field in grouping processors. Non-expression is simple and more intuitive.

When grouping is active (query_group_by is not null), query results are d by the
specified list of names, where one output item is created per each group. In this case,
the expressions can only access matcher names specified in query_group_by and the
query results for each group are accessed using a new group_items variable. The
group_items variable is a list of query results, where each result has named nodes/
relationships, not present in query_group_by.

The following list describes the behavior for various values of this field:

• Value of query_group_by field - Semantics

• Omitted or provided as json null (ala None in Python) - No grouping is done. This is
equivalent to current behavior of extensible_data_collector. Using ‘group_items’ in
this case is not permitted and results in probe error state.

• Empty list ([]) - Produces one group containing all the query results.

• One or more matcher names - The query results are grouped by the specified
nodes or relationships. If this list covers all available matchers in the query, the
number of groups is equal to the number of query results.

Query Tag Filter
(query_tag_filter)

Filters named nodes in the graph queries by assigned tags.

Value Map A mapping of discrete-state values to human readable strings. A dictionary with all
possible Discrete-State-Set states mapped to human-readable representation;
applicable for Discrete-State-Set data (that is, when data_type is 'dss') only.

{
 "0": "unknown",
 "1": "down",
 "2": "up",
 "3": "missing"
}

1072

(Continued)

Parameter Description

Key (key) Expression mapping from graph query to whatever key is necessary for the service.

Service name
(service_name)

Name of the custom collector service.

System ID Expression mapping from graph query to a system_id, e.g. "system.system_id" if
"system" is a name in the graph query.

Execution count Number of times the data collection is done.

Service input
(service_input)

Data to pass to telemetry collectors, if any. Can be an expression.

Service interval
(service_interval)

Telemetry collection interval in seconds. Can be an expression.

Additional Keys Each additional key/value pair is used to extend properties of output stages where
value is considered as an expression executed in context of the graph query and its
result is used as a property value with respective key. The value of this property is
evaluated for each item to associate items with metrics provided by a corresponding
collector service. The association is done by keys because each collector reports a set
of metrics where each metric is identified by a key in a format that is specific for each
collector.

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean that
defaults to False. If set to True, all output stages of this processor are streamed in the
generic protobuf schema.

Processor: Interface Counters

IN THIS SECTION

Example: Interface Counter | 1076

The Interface Counters processor selects interfaces according to the configuration and outputs counter
stats of the specified types (such as 'tx_bytes').

1073

Parameter Description

Input Types No inputs. This is a source processor.

Output Types Table(number)

Counter Type
(counter_type)

A type of an interface counter. enum of: tx_unicast_packets, tx_broadcast_packets,
tx_multicast_packets, tx_bytes, tx_error_packets, tx_discard_packets,
rx_unicast_packets, rx_broadcast_packets, rx_multicast_packets, rx_bytes,
rx_error_packets, rx_discard_packets.

Graph Query
(graph_query)

One or more queries on graph specified as strings, or a list of such queries. (String will
be deprecated in a future release.) Multiple queries should provide all the named nodes
referenced by the expression fields (including additional_properties). Graph query is
executed on the "operation" graph. Results of the queries can be accessed using the
"query_result" variable with the appropriate index. For example, if querying property
set nodes under name "ps", the result will be available as "query_result[0]["ps"]".

In collector processors (*_collector, if_counter) it is used to choose a set of nodes for
further processing (for example, all leaf devices, or all interfaces between leaf and
spine devices)

In other processors it is used for general parameterization and it is only supported as a
list of queries.

graph_query: "node("system", role="leaf", name="system").
 out("hosted_interfaces").
 node("interface", name="iface").out("link").
 node("link", role="spine_leaf")"

graph_query: ["node("system", role="leaf", name="system")",
 "node("system", role="spine", name="system")"]

Query Expansion For every path, originally returned by graph queries, passed to each generator the
latter one produces a set of items and for each item it produces a new path extended
by a corresponding property name which value is set of a value of the produced item.

1074

(Continued)

Parameter Description

Query Group by
(query_group_by)

List (of strings) of node and relationship names used in the graph query to group query
results by. Each element in this list represents a named node or relationship matcher in
the graph_query field.It is not an expression to be consistent with existing group_by field
in grouping processors. Non-expression is simple and more intuitive.

When grouping is active (query_group_by is not null), query results are d by the specified
list of names, where one output item is created per each group. In this case, the
expressions can only access matcher names specified in query_group_by and the query
results for each group are accessed using a new group_items variable. The group_items
variable is a list of query results, where each result has named nodes/relationships, not
present in query_group_by.

The following list describes the behavior for various values of this field:

• Value of query_group_by field - Semantics

• Omitted or provided as json null (ala None in Python) - No grouping is done. This is
equivalent to current behavior of extensible_data_collector. Using ‘group_items’ in
this case is not permitted and results in probe error state.

• Empty list ([]) - Produces one group containing all the query results.

• One or more matcher names - The query results are grouped by the specified
nodes or relationships. If this list covers all available matchers in the query, the
number of groups is equal to the number of query results.

Query Tag Filter
(query_tag_filter)

Filters named nodes in the graph queries by assigned tags.

Interface (interface) Expression mapping from graph query to interface name, e.g. "iface.if_name" if "iface"
is a name in the graph query.

System ID Expression mapping from graph query to a system_id, e.g. "system.system_id" if
"system" is a name in the graph query.

Additional Keys Each additional key/value pair is used to extend properties of output stages where
value is considered as an expression executed in context of the graph query and its
result is used as a property value with respective key. The value of this property is
evaluated for each item to associate items with metrics provided by a corresponding
collector service. The association is done by keys because each collector reports a set
of metrics where each metric is identified by a key in a format that is specific for each
collector.

1075

(Continued)

Parameter Description

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean that defaults
to False. If set to True, all output stages of this processor are streamed in the generic
protobuf schema.

Example: Interface Counter

graph_query: "node("system", name="system").out("hosted_interfaces").
 node("interface", name="iface").out("link").
 node("link", role="spine_leaf")"
counter_type: "rx_bytes"
system_id: "system.system_id"
interface: "interface.if_name"
role: "system.role"

In this example, we create a NSS that has an entry for rx_bytes (per second) per every interface in the
system. Each entry is implicitly tagged by "system_id" and "interface". Furthermore, as we have specified
an additional property, each entry is also tagged by role of the system.

[system_id=spine1,role=spine,key=eth0]: 10
[system_id=spine2,role=spine,key=eth1]: 11
[system_id=leaf0,role=leaf, key=swp1]: 12

Processor: Logical Operator

(New in version 4.0) The Logical Operator processor calculates the logical operation of inputs. It takes
two or more inputs that represent boolean values.

The property 'operation' specifies the logical operation. The property 'input_columns' specifies column
names that input items should be taken from.

Parameter Description

Input Types Tables that contain discrete_state type column according to the 'input_columns'
property or Table (discrete_state) if the 'input_columns' is not specified.

1076

(Continued)

Parameter Description

Output Types Table (discrete state)

Operation Logical operation type that is used for processing the input data

Significant Keys
(significant_keys)

List of keys to map items from the inputs for applying the specified operation. It is
typically used by processors that take multiple inputs and perform operations on
them. When inputs have the same sets of keys it does not need to be specified.
When inputs have different sets of keys, it must be specified and it must allow only
1:1 items mapping from the given inputs, otherwise the probe will go into error state.

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean that
defaults to False. If set to True, all output stages of this processor are streamed in the
generic protobuf schema.

Processor: Match Count

IN THIS SECTION

Example: Match Count | 1078

For each input group, the Match Count processor creates a single output that is the number of items in
the input group that are equal to the reference. The 'total_count' key is added into output item keys
where the value is a number of items in an input group.

Parameter Description

Input Types Table(text or discrete state)

Output Types NS

1077

(Continued)

Parameter Description

Group by (group_by) Accepts a list of property names to group input items into output items, produces
only one output group for the empty list.Most processors take input and produce
output. Many of them produce one output per input (for example, if input is a DSS,
output is a DSS of same size). However, some processors reduce the size of the
output relative to the size of the input. Effectively, they partition the input into
groups, run some calculation on each of the groups that produce a single value per
each group, and use that as output. Clearly, the size of the output set depends on
the grouping scheme. We call such processors grouping processors and they all take
the Group by configuration parameter.

In the case of an empty list, the input is considered to be a single group; thus, the
output is of size 1 and either N, DS, or TS. If a list of property names is specified, for
example ["system_id", "iface_role"], or a single property is specified, for example
["system_id"], we divide the input into groups such that for each group, every item in
the group has the same values for the given list of property names. See the standard
deviation processor<processor_standard_deviation> example for how this works.

The output type of a processor depends on a value of the group_by parameter; for
an empty list, a processor produces a single value result, such as N, DS, or T, and for
grouping by one or more properties it returns a set result, such as NS, DSS, or TS.

Reference State
(reference_state)

DS or TS value which is used as a reference state to match input samples. discrete-
state value

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean that
defaults to False. If set to True, all output stages of this processor are streamed in the
generic protobuf schema.

Example: Match Count

Assume a configuration of:

reference_state: "false"
group_by: []

1078

Sample Input:

[if_name=eth0] : "true"
[if_name=eth1] : "true"
[if_name=eth3] : "false"

Sample Output:

[] : 1

In the above example, we have 1 as the output because 1 element of the input group matches the
reference value of "false".

Processor: Match Percentage

IN THIS SECTION

Example: Match Percentage | 1080

For each input group, the Match Percentage processor creates a single output that is the percentage of
items in the input group that are equal to the reference.

Parameter Description

Input Types Table(text or discrete state)

Output Types Table(number)

1079

(Continued)

Parameter Description

Group by (group_by) Accepts a list of property names to group input items into output items, produces
only one output group for the empty list.Most processors take input and produce
output. Many of them produce one output per input (for example, if input is a DSS,
output is a DSS of same size). However, some processors reduce the size of the
output relative to the size of the input. Effectively, they partition the input into
groups, run some calculation on each of the groups that produce a single value per
each group, and use that as output. Clearly, the size of the output set depends on
the grouping scheme. We call such processors grouping processors and they all take
the Group by configuration parameter.

In the case of an empty list, the input is considered to be a single group; thus, the
output is of size 1 and either N, DS, or TS. If a list of property names is specified, for
example ["system_id", "iface_role"], or a single property is specified, for example
["system_id"], we divide the input into groups such that for each group, every item in
the group has the same values for the given list of property names. See the standard
deviation processor <processor_standard_deviation> example for how this works.

The output type of a processor depends on a value of the group_by parameter; for
an empty list, a processor produces a single value result, such as N, DS, or T, and for
grouping by one or more properties it returns a set result, such as NS, DSS, or TS.

Reference State
(reference_state)

DS or TS value which is used as a reference state to match input samples.

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean that
defaults to False. If set to True, all output stages of this processor are streamed in the
generic protobuf schema.

Example: Match Percentage

Assume a configuration of:

reference_state: "false"
group_by: []

1080

Sample Input:

[if_name=eth0] : "true"
[if_name=eth1] : "true"
[if_name=eth3] : "false"

Sample Output:

[] : 33

In the above example, we have 33% as the output because 33% of the input group match the reference
value of "false".

Processor: Match String

IN THIS SECTION

Example: Match String | 1083

The Max String processor checks that a string matches a regular expression. It accepts text series on
input, for each series it configures a check that verifies if the input value matches the configured regular
expression. Regular expression syntax is PCRE-compatible. Note that regexp matching is done in a
partial mode, so if the full match is needed, regular expression needs to be specified accordingly. The
output series contains anomaly values, such as 'false' and 'true'.

Parameter Description

Input Types Time-Series (TS), TSTS

Output Types Table(discrete state)

1081

(Continued)

Parameter Description

Graph Query
(graph_query)

One or more queries on graph specified as strings, or a list of such queries. (String
will be deprecated in a future release.) Multiple queries should provide all the
named nodes referenced by the expression fields (including additional_properties).
Graph query is executed on the "operation" graph. Results of the queries can be
accessed using the "query_result" variable with the appropriate index. For example,
if querying property set nodes under name "ps", the result will be available as
"query_result[0]["ps"]".

In collector processors (*_collector, if_counter) it is used to choose a set of nodes
for further processing (for example, all leaf devices, or all interfaces between leaf
and spine devices)

In other processors it is used for general parameterization and it is only supported
as a list of queries.

graph_query: "node("system", role="leaf", name="system").
 out("hosted_interfaces").
 node("interface", name="iface").out("link").
 node("link", role="spine_leaf")"

graph_query: ["node("system", role="leaf", name="system")",
 "node("system", role="spine", name="system")"]

Non-collector processors containing the graph_query configuration parameter, can
be parameterized to use data from arbitrary nodes in the graph, such as property
set nodes. Property sets allow you to parameterize macro level SLAs for individual
business units. In the example below, graph_query matches a node of type
property_set with label probe_propset. It's accessed using the special query_result
variable, where Index 0 means it's the first node in query results. If a query returned
N nodes, they could be accessed using indices starting from 0 to N-1. ps is what the
actual node is referred to in the query; the rest depends on the structure of the
node. The int() casting is required because values of property_set nodes are
strings. Here it's assumed that a property set node has the label probe_propset and
that the value accumulate_duration was already created.

graph_query: [node("property_set", label="probe_propset", name="ps")]
duration: int(query_result[0]["ps"].values["accumulate_duration"])

1082

(Continued)

Parameter Description

Another example is a that probes can validate a compliance requirement; the
compliance value may change over time and/or it can be used by more than one
probe. Also, a probe can validate NOS versions on devices. In this case, property
sets can be used to define the current NOS version requirement. If it changes
tomorrow: change the property set value, instead of going under the probe stage.

Regular Expression
(regexp)

Expression that evaluates to a PCRE-compatible regular expression.

Anomaly MetricLog
Retention Duration

Retain anomaly metric data in MetricDb for specified duration in seconds

Anomaly MetricLog
Retention Size

Maximum allowed size, in bytes of anomaly metric data to store in MetricDB

Anomaly Metric Logging Enable metric logging for anomalies

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean that
defaults to False. If set to True, all output stages of this processor are streamed in
the generic protobuf schema.

Raise Anomaly
(raise_anomaly)

Outputs “true” and “false” values, “true” meaning an appropriate item is anomalous,
and "false" meaning the item is not anomalous. When Raise Anomaly is set to True,
an actual anomaly is generated in addition to a sample in the output.

Example: Match String

regexp: "os_version_pattern"

Sample Input (TS)

[device=leaf1,os_version_pattern=^4.[7-9].[0-9]+$] : 4.1
[device=leaf2,os_version_pattern=^4.[7-9].[0-9]+$] : 4.7

1083

Sample Output (DSS):

[device=leaf1,os_version_pattern=^4.[7-9].[0-9]+$,regex=^4.[7-9].[0-9]+$] : "true"
[device=leaf2,os_version_pattern=^4.[7-9].[0-9]+$,regex=^4.[7-9].[0-9]+$] : "false"

Processor: Max

IN THIS SECTION

Example: Max | 1085

The Max processor groups as described by Group by, then finds the maximum value and outputs it for
each group.

Parameter Description

Input Types Table (number), Table (number, accumulate=True)

Output Types Table (number)

1084

(Continued)

Parameter Description

Group by (group_by) Accepts a list of property names to group input items into output items, produces only
one output group for the empty list.Most processors take input and produce output.
Many of them produce one output per input (for example, if input is a DSS, output is a
DSS of same size). However, some processors reduce the size of the output relative to
the size of the input. Effectively, they partition the input into groups, run some
calculation on each of the groups that produce a single value per each group, and use
that as output. Clearly, the size of the output set depends on the grouping scheme.
We call such processors grouping processors and they all take the Group by
configuration parameter.

In the case of an empty list, the input is considered to be a single group; thus, the
output is of size 1 and either N, DS, or TS. If a list of property names is specified, for
example ["system_id", "iface_role"], or a single property is specified, for example
["system_id"], we divide the input into groups such that for each group, every item in
the group has the same values for the given list of property names. See the "standard
deviation processor" on page 1102 example for how this works.

The output type of a processor depends on a value of the group_by parameter; for an
empty list, a processor produces a single value result, such as N, DS, or T, and for
grouping by one or more properties it returns a set result, such as NS, DSS, or TS.

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean that
defaults to False. If set to True, all output stages of this processor are streamed in the
generic protobuf schema.

Example: Max

Assume a configuration of:

group_by: ["system_id"]

Sample Input:

[system_id=leaf0,if_name=swp40] : 10
[system_id=leaf0,if_name=swp41] : 11
[system_id=leaf0,if_name=swp42] : 15
[system_id=spine0,if_name=eth15] : 32

1085

[system_id=spine0,if_name=eth16] : 30
[system_id=spine0,if_name=eth17] : 36

Output "out":

[system_id=leaf0] : 15
[system_id=spine0] : 36

Processor: Min

IN THIS SECTION

Example: Min | 1087

The Min processor groups as described in Group by, then finds the minimum value and outputs it for
each group.

Parameter Description

Input Types Table (number), Table (number, accumulate=True)

Output Types Table (number)

1086

(Continued)

Parameter Description

Group by (group_by) Accepts a list of property names to group input items into output items, produces only
one output group for the empty list.Most processors take input and produce output.
Many of them produce one output per input (for example, if input is a DSS, output is a
DSS of same size). However, some processors reduce the size of the output relative to
the size of the input. Effectively, they partition the input into groups, run some
calculation on each of the groups that produce a single value per each group, and use
that as output. Clearly, the size of the output set depends on the grouping scheme.
We call such processors grouping processors and they all take the Group by
configuration parameter.

In the case of an empty list, the input is considered to be a single group; thus, the
output is of size 1 and either N, DS, or TS. If a list of property names is specified, for
example ["system_id", "iface_role"], or a single property is specified, for example
["system_id"], we divide the input into groups such that for each group, every item in
the group has the same values for the given list of property names. See the "standard
deviation processor" on page 1102 example for how this works.

The output type of a processor depends on a value of the group_by parameter; for an
empty list, a processor produces a single value result, such as N, DS, or T, and for
grouping by one or more properties it returns a set result, such as NS, DSS, or TS.

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean that
defaults to False. If set to True, all output stages of this processor are streamed in the
generic protobuf schema.

Example: Min

Assume a configuration of:

group_by: ["system_id"]

Sample Input:

[system_id=leaf0,if_name=swp40] : 10
[system_id=leaf0,if_name=swp41] : 11
[system_id=leaf0,if_name=swp42] : 15
[system_id=spine0,if_name=eth15] : 32

1087

[system_id=spine0,if_name=eth16] : 30
[system_id=spine0,if_name=eth17] : 36

Output "out":

[system_id=leaf0] : 10
[system_id=spine0] : 30

Processor: Periodic Average

IN THIS SECTION

Example: Periodic Average | 1090

One number is created on output for each input. Each <period>, the output is set to the average of the
input over the last <period>. This is not a weighted average.

Parameter Description

Input Types Table (number)

Output Types Table (number)

Period Size of the averaging period. (time in seconds, integer, or an expression that evaluates
to time in seconds integer value)

1088

(Continued)

Parameter Description

Graph Query
(graph_query)

One or more queries on graph specified as strings, or a list of such queries. (String will
be deprecated in a future release.) Multiple queries should provide all the named
nodes referenced by the expression fields (including additional_properties). Graph
query is executed on the "operation" graph. Results of the queries can be accessed
using the "query_result" variable with the appropriate index. For example, if querying
property set nodes under name "ps", the result will be available as "query_result[0]
["ps"]".

In collector processors (*_collector, if_counter) it is used to choose a set of nodes for
further processing (for example, all leaf devices, or all interfaces between leaf and
spine devices)

In other processors it is used for general parameterization and it is only supported as a
list of queries.

graph_query: "node("system", role="leaf", name="system").
 out("hosted_interfaces").
 node("interface", name="iface").out("link").
 node("link", role="spine_leaf")"

graph_query: ["node("system", role="leaf", name="system")",
 "node("system", role="spine", name="system")"]

Non-collector processors containing the graph_query configuration parameter, can be
parameterized to use data from arbitrary nodes in the graph, such as property set
nodes. Property sets allow you to parameterize macro level SLAs for individual
business units. In the example below, graph_query matches a node of type property_set
with label probe_propset. It's accessed using the special query_result variable, where
Index 0 means it's the first node in query results. If a query returned N nodes, they
could be accessed using indices starting from 0 to N-1. ps is what the actual node is
referred to in the query; the rest depends on the structure of the node. The int()
casting is required because values of property_set nodes are strings. Here it's assumed
that a property set node has the label probe_propset and that the value
accumulate_duration was already created.

graph_query: [node("property_set", label="probe_propset", name="ps")]
duration: int(query_result[0]["ps"].values["accumulate_duration"])

1089

(Continued)

Parameter Description

Another example is a that probes can validate a compliance requirement; the
compliance value may change over time and/or it can be used by more than one
probe. Also, a probe can validate NOS versions on devices. In this case, property sets
can be used to define the current NOS version requirement. If it changes tomorrow:
change the property set value, instead of going under the probe stage.

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean that
defaults to False. If set to True, all output stages of this processor are streamed in the
generic protobuf schema.

Example: Periodic Average

period: 2

Assume the following input at time t=1

[if_name=eth0] : 10
[if_name=eth1] : 20
[if_name=eth3] : 30

And following input at time t=1.5

[if_name=eth0] : 20
[if_name=eth1] : 30
[if_name=eth3] : 40

And the following at time t=2.1

[if_name=eth0] : 40
[if_name=eth1] : 50
[if_name=eth3] : 60

1090

We would now have the following output:

[if_name=eth0] : 15
[if_name=eth1] : 25
[if_name=eth3] : 35

This output is the average over the last discrete period of 2 seconds (time=0 to time=2). Notice that the
average is not weighted by time; frequently-occuring closely-spaced samples will bias the average.

The next time the output would be updated would be at time t=4, in which case it would contain the
average of the input over the range [t=2, t=4], a period of the configured two seconds.

Processor: Range

IN THIS SECTION

Example: Range | 1093

The Range processor checks that a value is in a range. According to the specified range, it configures a
check for the input series. This check returns an anomaly value if a series aggregation value, such as a
last value, sum, avg etc., is in the range. This aggregation type is configured by the 'property' attribute,
which is set to 'value' if not specified. The output series contains anomaly values, such as 'true' and
'false'. (Previously called 'not_in_range' and 'range_check'.) The range processor generates the output of
True when the input matches the specified criteria.

Parameter Description

Input Types Table (number), Table (number, accumulate=True)

Output Types Table (discrete state)

Property A property of input items which is used to check against the range. Enum of either
value, sample_count, sum, avg

Anomalous Range (range) Numeric range, either min or max is optional. Float type is acceptable only with
property "std_dev", other property values require integers. Min and max can be
expressions evaluated into numeric values.

1091

(Continued)

Parameter Description

Graph Query
(graph_query)

One or more queries on graph specified as strings, or a list of such queries. (String
will be deprecated in a future release.) Multiple queries should provide all the named
nodes referenced by the expression fields (including additional_properties). Graph
query is executed on the "operation" graph. Results of the queries can be accessed
using the "query_result" variable with the appropriate index. For example, if
querying property set nodes under name "ps", the result will be available as
"query_result[0]["ps"]".

In collector processors (*_collector, if_counter) it is used to choose a set of nodes
for further processing (for example, all leaf devices, or all interfaces between leaf
and spine devices)

In other processors it is used for general parameterization and it is only supported as
a list of queries.

graph_query: "node("system", role="leaf", name="system").
 out("hosted_interfaces").
 node("interface", name="iface").out("link").
 node("link", role="spine_leaf")"

graph_query: ["node("system", role="leaf", name="system")",
 "node("system", role="spine", name="system")"]

Non-collector processors containing the graph_query configuration parameter, can be
parameterized to use data from arbitrary nodes in the graph, such as property set
nodes. Property sets allow you to parameterize macro level SLAs for individual
business units. In the example below, graph_query matches a node of type
property_set with label probe_propset. It's accessed using the special query_result
variable, where Index 0 means it's the first node in query results. If a query returned
N nodes, they could be accessed using indices starting from 0 to N-1. ps is what the
actual node is referred to in the query; the rest depends on the structure of the
node. The int() casting is required because values of property_set nodes are strings.
Here it's assumed that a property set node has the label probe_propset and that the
value accumulate_duration was already created.

graph_query: [node("property_set", label="probe_propset", name="ps")]
duration: int(query_result[0]["ps"].values["accumulate_duration"])

1092

(Continued)

Parameter Description

Another example is a that probes can validate a compliance requirement; the
compliance value may change over time and/or it can be used by more than one
probe. Also, a probe can validate NOS versions on devices. In this case, property
sets can be used to define the current NOS version requirement. If it changes
tomorrow: change the property set value, instead of going under the probe stage.

Anomaly MetricLog
Retention Duration

Retain anomaly metric data in MetricDb for specified duration in seconds

Anomaly MetricLog
Retention Size

Maximum allowed size, in bytes of anomaly metric data to store in MetricDB

Anomaly Metric Logging Enable metric logging for anomalies

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean that
defaults to False. If set to True, all output stages of this processor are streamed in
the generic protobuf schema.

Raise Anomaly
(raise_anomaly)

Outputs “true” and “false” values, “true” meaning an appropriate item is anomalous,
and "false" meaning the item is not anomalous. When Raise Anomaly is set to True,
an actual anomaly is generated in addition to a sample in the output.

Example: Range

range: {"min": 35, "max": 45}
property: "value"

Sample Input (NS)

[if_name=eth0] : 23
[if_name=eth1] : 55
[if_name=eth3] : 37

1093

Sample Output (DSS)

[if_name=eth0] : "false"
[if_name=eth1] : "false"
[if_name=eth3] : "true"

If expressions are used for min or max fields of the range property, then they are evaluated for each
input item which results into item-specific thresholds. Properties of the respective output item are
extended by range_min or range_max properties with calculated values.

range: {"max": "speed * 0.7"}
property: "value"

Sample Input (NS)

[if_name=eth0,speed=10000000000] : 800000000
[if_name=eth1,speed=1000000000] : 800000000

Sample Output (DSS)

if_name=eth0,speed=10000000000,range_max=7000000000] : "false"
[if_name=eth1,speed=1000000000,range_max=700000000] : "true"

Processor: Ratio

IN THIS SECTION

Example: Ratio Output | 1095

The Ratio processor calculates the ratio of inputs. It takes two inputs: numerator and denominator.
Denominator is optional and could be specified as 'denominator' configuration property instead. It could
be either an integer or an expression that evaluates to an integer. It should not be '0'.

When 'denominator' is specified as an input, 'numerator' and 'denominator' input items must allow only
1:1 mapping. If that is not the case, 'significant_keys' configuration property should be specified to list
keys that will allow such mapping.

1094

It also supports 'multiplier' configuration property, which is an integer value greater than one to multiply
numerator by before calculating ratio. This allows it to overcome limitations of dealing with integers.
Default value is 100.

Parameter Description

Input Types Table (number)

Output Types Table (number)

Denominator Integer or an expression that evaluates to integer that is used as denominator.
Optional denominator value if it's not specified as input; should be non-zero integer
or an expression that evaluates to non-zero integer.

Significant Keys
(significant_keys)

List of keys to map items from the inputs for applying the specified operation. It is
typically used by processors that take multiple inputs and perform operations on
them. When inputs have the same sets of keys it does not need to be specified.
When inputs have different sets of keys, it must be specified and it must allow only
1:1 items mapping from the given inputs, otherwise the probe will go into error state.

Multiplier Multiply numerator by a given value before calculating ratio. Optional. Default is
100.

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean that
defaults to False. If set to True, all output stages of this processor are streamed in the
generic protobuf schema.

Example: Ratio Output

Simple scenario with a static denominator.

denominator: 100
multiplier: 1

Input 'numerator':

[system_id=spine1,role=spine,interface=eth0]: 300
[system_id=spine2,role=spine,interface=eth1]: 500

1095

Output:

[system_id=spine1,role=spine,interface=eth0]: 3
[system_id=spine1,role=spine,interface=eth1]: 5

Configuration where numerator and denominator are coming from inputs, and 'multiplier' value is the
default 100:

significant_keys: ['system_id', 'interface']

Input 'numerator':

[system_id=spine1,role=spine,interface=eth0]: 300
[system_id=spine2,role=spine,interface=eth1]: 750

Input 'denominator':

[system_id=spine1,role=spine,interface=eth0]: 150
[system_id=spine2,role=spine,interface=eth1]: 250

Output:

[system_id=spine1,interface=eth0]: 200
[system_id=spine1,interface=eth1]: 300

Processor: Service Data Collector

IN THIS SECTION

Example: Service Data Collector | 1099

The Service Data Collector processor collects data from the specified service. For example, 'bgp' service
would be the status of BGP sessions. Objects to be monitored are configured via the graph query and
key. In the BGP example, key should evaluate to locallp, localAs, remoteIp, or remote As. For interface-
based services such as 'interface' and 'lldp', key is an interface name.

1096

Parameter Description

Input Types No inputs. This is a source processor.

Output Types Table (number or discrete state)

Graph Query
(graph_query)

One or more queries on graph specified as strings, or a list of such queries. (String will
be deprecated in a future release.) Multiple queries should provide all the named nodes
referenced by the expression fields (including additional_properties). Graph query is
executed on the "operation" graph. Results of the queries can be accessed using the
"query_result" variable with the appropriate index. For example, if querying property
set nodes under name "ps", the result will be available as "query_result[0]["ps"]".

In collector processors (*_collector, if_counter) it is used to choose a set of nodes for
further processing (for example, all leaf devices, or all interfaces between leaf and spine
devices)

In other processors it is used for general parameterization and it is only supported as a
list of queries.

graph_query: "node("system", role="leaf", name="system").
 out("hosted_interfaces").
 node("interface", name="iface").out("link").
 node("link", role="spine_leaf")"

graph_query: ["node("system", role="leaf", name="system")",
 "node("system", role="spine", name="system")"]

Service name
(service_name)

Name of the custom collector service.

Keys List of property names which values will be used as a key parameters for the service.
Expression mapping from graph query to whatever key is necessary for the service. For
lldp it's a string with interface name. For bgp it's a tuple like (src_addr, src_asn, dst_addr,
dst_asn, vrf_name, addr_family), where addr_family should be one of ipv4, ipv6, or
evpn. For interface it is a string with interface name.

Query Expansion For every path, originally returned by graph queries, passed to each generator the latter
one produces a set of items and for each item it produces a new path extended by a
corresponding property name which value is set of a value of the produced item.

1097

(Continued)

Parameter Description

Query Group by
(query_group_by)

List (of strings) of node and relationship names used in the graph query to group query
results by. Each element in this list represents a named node or relationship matcher in
the graph_query field.It is not an expression to be consistent with existing group_by field
in grouping processors. Non-expression is simple and more intuitive.

When grouping is active (query_group_by is not null), query results are d by the specified
list of names, where one output item is created per each group. In this case, the
expressions can only access matcher names specified in query_group_by and the query
results for each group are accessed using a new group_items variable. The group_items
variable is a list of query results, where each result has named nodes/relationships, not
present in query_group_by.

The following list describes the behavior for various values of this field:

• Value of query_group_by field - Semantics

• Omitted or provided as json null (ala None in Python) - No grouping is done. This is
equivalent to current behavior of extensible_data_collector. Using ‘group_items’ in
this case is not permitted and results in probe error state.

• Empty list ([]) - Produces one group containing all the query results.

• One or more matcher names - The query results are grouped by the specified nodes
or relationships. If this list covers all available matchers in the query, the number of
groups is equal to the number of query results.

Query Tag Filter
(query_tag_filter)

Filters named nodes in the graph queries by assigned tags.

System ID Expression mapping from graph query to a system_id, e.g. "system.system_id" if
"system" is a name in the graph query.

Additional Keys Each additional key/value pair is used to extend properties of output stages where
value is considered as an expression executed in context of the graph query and its
result is used as a property value with respective key. The value of this property is
evaluated for each item to associate items with metrics provided by a corresponding
collector service. The association is done by keys because each collector reports a set
of metrics where each metric is identified by a key in a format that is specific for each
collector.

1098

(Continued)

Parameter Description

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean that defaults
to False. If set to True, all output stages of this processor are streamed in the generic
protobuf schema.

Example: Service Data Collector

ode("system", name="system").out("hosted_interfaces").
 node("interface", name="iface").out("link").
 node("link", role="spine_leaf")"
system_id: "system.system_id"
key: "interface.if_name"
role: "system.role"

In this example, we create a DSS that has an entry for every fabric interface in the system. Each entry is
implicitly tagged by "system_id" and "key" (where key happens to be the interface name for the interface
service). Furthermore, as we have specified an additional property "role", each entry is also tagged by
system role.

[system_id=spine1,role=spine,key=eth0]: "up"
[system_id=spine2,role=spine,key=eth1]: "down"
[system_id=leaf0,role=leaf, key=swp1]: "up"

Processor: Set Comparison

IN THIS SECTION

Example: Set Comparison | 1100

The Set Comparison processor does a set-comparison of input stages.

Accept two DS or NS inputs, called "A" and "B". There are three outputs: A stage "A - B" that contains
the items that are only in stage "A," a stage "B - A" that contains the items that are only in stage "B," and
a stage "A & B" that contains the items that are in both stage "A" and stage "B."

1099

When conducting the above operations, we first normalize all items in each stage by dropping all the
keys that are not in "significant_keys." It is an error if a key in "significant_keys" is not present in either
stage "A" or "B."

Furthermore, only the keys of each normalized item are considered; values are preserved (and kept from
stage "A" in the intersection output), but not considered in the comparison operations.

Results are undefined if, when normalizing items in either stage_A or stage_B, there is more-than-one
item with a given set of key-value pairs.

Parameter Description

Input Types Table (number or discrete state)

Significant Keys
(significant_keys)

List of keys to map items from the inputs for applying the specified operation. It is
typically used by processors that take multiple inputs and perform operations on
them. When inputs have the same sets of keys it does not need to be specified.
When inputs have different sets of keys, it must be specified and it must allow only
1:1 items mapping from the given inputs, otherwise the probe will go into error state.

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean that
defaults to False. If set to True, all output stages of this processor are streamed in the
generic protobuf schema.

Example: Set Comparison

Consider we have inputs with device temperature information.

Input A:

[system_id=leaf1]: 45
[system_id=leaf2]: 52
[system_id=leaf3]: 61

Input B:

[system_id=leaf2]: 52
[system_id=leaf4]: 64

Outputs will be the following.

1100

A - B:

[system_id=leaf1]: 45
[system_id=leaf3]: 61

B - A:

[system_id=leaf4]: 64

A & B:

[system_id=leaf2]: 52

Processor: Set Count

IN THIS SECTION

Example: Set Count | 1102

The Set Count processor groups as described in Group by, then calculates the number of items in each
group.

Parameter Descripton

Input Types Table (number or text or discrete state)

Output Types Table (number)

1101

(Continued)

Parameter Descripton

Group by (group_by) Accepts a list of property names to group input items into output items, produces
only one output group for the empty list.Most processors take input and produce
output. Many of them produce one output per input (for example, if input is a DSS,
output is a DSS of same size). However, some processors reduce the size of the
output relative to the size of the input. Effectively, they partition the input into
groups, run some calculation on each of the groups that produce a single value per
each group, and use that as output. Clearly, the size of the output set depends on the
grouping scheme. We call such processors grouping processors and they all take the
Group by configuration parameter.

In the case of an empty list, the input is considered to be a single group; thus, the
output is of size 1 and either N, DS, or TS. If a list of property names is specified, for
example ["system_id", "iface_role"], or a single property is specified, for example
["system_id"], we divide the input into groups such that for each group, every item in
the group has the same values for the given list of property names. See the "standard
deviation processor" on page 1102 example for how this works.

The output type of a processor depends on a value of the group_by parameter; for an
empty list, a processor produces a single value result, such as N, DS, or T, and for
grouping by one or more properties it returns a set result, such as NS, DSS, or TS.

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean that
defaults to False. If set to True, all output stages of this processor are streamed in the
generic protobuf schema.

Example: Set Count

See "standard deviation" on page 1102 example. It's the same except we calculate the number of stage
items.

Processor: Standard Deviation

IN THIS SECTION

Example: Standard Deviation | 1103

1102

The Standard Deviation processor groups as described by Group by, calculates the standard deviation,
then outputs one standard deviation per group.

Parameter Description

Input Types Table (number), Table (number, accumluate=True)

Output Types Table (number)

Group by (group_by) Accepts a list of property names to group input items into output items, produces only
one output group for the empty list.Most processors take input and produce output.
Many of them produce one output per input (for example, if input is a DSS, output is a
DSS of same size). However, some processors reduce the size of the output relative to
the size of the input. Effectively, they partition the input into groups, run some
calculation on each of the groups that produce a single value per each group, and use
that as output. Clearly, the size of the output set depends on the grouping scheme.
We call such processors grouping processors and they all take the Group by
configuration parameter.

In the case of an empty list, the input is considered to be a single group; thus, the
output is of size 1 and either N, DS, or TS. If a list of property names is specified, for
example ["system_id", "iface_role"], or a single property is specified, for example
["system_id"], we divide the input into groups such that for each group, every item in
the group has the same values for the given list of property names. See the "standard
deviation processor" on page 1102 example for how this works.

The output type of a processor depends on a value of the group_by parameter; for an
empty list, a processor produces a single value result, such as N, DS, or T, and for
grouping by one or more properties it returns a set result, such as NS, DSS, or TS.

DDoF (ddof) Delta Degrees of Freedom, standard deviation correction value, is used to correct
divisor (N - DDoF) in calculations, e.g. DDoF=0 - uncorrected sample standard
deviation, DDoF=1 - corrected sample standard deviation.

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean that
defaults to False. If set to True, all output stages of this processor are streamed in the
generic protobuf schema.

Example: Standard Deviation

group_by: ["role", "system_id"]
ddof: 1

1103

Also assume an NS input of

[role:fabric, system_id:spine1, if_name=eth0] :10
[role:fabric, system_id:spine1, if_name=eth1] :11
[role:server, system_id:spine1, if_name=eth3] :12
[role:server, system_id:spine1, if_name=eth4] :13
[role:fabric, system_id:spine2, if_name=eth0] :14
[role:fabric, system_id:spine2, if_name=eth1] :15
[role:server, system_id:spine2, if_name=eth3] :16
[role:server, system_id:spine2, if_name=eth4] :17

Given the above, the output would be a number-set of

[role:fabric, system_id:spine1] : stddev([10, 11])
[role:fabric, system_id:spine2] : stddev([14, 15])
[role:server, system_id:spine1] : stddev([12, 13])
[role:server, system_id:spine2] : stddev([16, 17])

Processor: State

IN THIS SECTION

Example: State | 1106

The State processor checks that a value is one of the specified anomalous states. It outputs DSS with
anomaly values, such as 'true' if the value is in the specified states, and otherwise, it returns 'false'.
(previously called 'state_check' and 'in_state'). The State processor supports multiple reference states
and output is 'true' when input is in any of the specified states.

Parameter Description

Input Types Table(discrete state, accumulate=True or False)

Output Types Table (discrete state)

1104

(Continued)

Parameter Description

Graph Query
(graph_query)

One or more queries on graph specified as strings, or a list of such queries. (String
will be deprecated in a future release.) Multiple queries should provide all the named
nodes referenced by the expression fields (including additional_properties). Graph
query is executed on the "operation" graph. Results of the queries can be accessed
using the "query_result" variable with the appropriate index. For example, if querying
property set nodes under name "ps", the result will be available as "query_result[0]
["ps"]".

In collector processors (*_collector, if_counter) it is used to choose a set of nodes
for further processing (for example, all leaf devices, or all interfaces between leaf
and spine devices)

In other processors it is used for general parameterization and it is only supported as
a list of queries.

graph_query: "node("system", role="leaf", name="system").
 out("hosted_interfaces").
 node("interface", name="iface").out("link").
 node("link", role="spine_leaf")"

graph_query: ["node("system", role="leaf", name="system")",
 "node("system", role="spine", name="system")"]

Non-collector processors containing the graph_query configuration parameter, can be
parameterized to use data from arbitrary nodes in the graph, such as property set
nodes. Property sets allow you to parameterize macro level SLAs for individual
business units. In the example below, graph_query matches a node of type
property_set with label probe_propset. It's accessed using the special query_result
variable, where Index 0 means it's the first node in query results. If a query returned
N nodes, they could be accessed using indices starting from 0 to N-1. ps is what the
actual node is referred to in the query; the rest depends on the structure of the
node. The int() casting is required because values of property_set nodes are strings.
Here it's assumed that a property set node has the label probe_propset and that the
value accumulate_duration was already created.

graph_query: [node("property_set", label="probe_propset", name="ps")]
duration: int(query_result[0]["ps"].values["accumulate_duration"])

1105

(Continued)

Parameter Description

Another example is a that probes can validate a compliance requirement; the
compliance value may change over time and/or it can be used by more than one
probe. Also, a probe can validate NOS versions on devices. In this case, property sets
can be used to define the current NOS version requirement. If it changes tomorrow:
change the property set value, instead of going under the probe stage.

Anomalous States Expression that evaluates to DS value or list of DS values which is used for the
check. For example, it can be: "'true'" (expression evaluating to a string) or "['missing',
'unknown', 'down']" (expression evaluating to a list of strings).

Anomaly MetricLog
Retention Duration

Retain anomaly metric data in MetricDb for specified duration in seconds

Anomaly MetricLog
Retention Size

Maximum allowed size, in bytes of anomaly metric data to store in MetricDB

Anomaly Metric Logging Enable metric logging for anomalies

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean that
defaults to False. If set to True, all output stages of this processor are streamed in
the generic protobuf schema.

Raise Anomaly
(raise_anomaly)

Outputs “true” and “false” values, “true” meaning an appropriate item is anomalous,
and "false" meaning the item is not anomalous. When Raise Anomaly is set to True,
an actual anomaly is generated in addition to a sample in the output.

Example: State

state: '"up"'

Sample Input (DS)

[if_name=eth0] : "up"
[if_name=eth1] : "down"
[if_name=eth3] : "up"

1106

Sample Output (DSS)

[if_name=eth0] : "false"
[if_name=eth1] : "true"
[if_name=eth3] : "false"

If expression is used for the state field, then it's evaluated for each input item, and it results into item-
specific state value. Properties of the respective output item are extended by the state property with
value of the evaluated expression.

state: expected_if_state

Sample Input (DS):

[if_name=eth0,expected_if_state=up] : "up"
[if_name=eth1,expected_if_state=down] : "down"
[if_name=eth3,expected_if_state=up] : "down"

Sample Output (DSS)

[if_name=eth0,state=up] : "false"
[if_name=eth1,state=down] : "false"
[if_name=eth3,state=up] : "true"

Processor: Subtract

One number is created on output for each number with the same properties in both inputs. For each
input item the processor leaves only significant keys, drops the others and puts the result. If there is no
common set of properties between both inputs, the output is the empty set.

Parameter Description

Input Types Table (number)

Output Types Table (number)

1107

(Continued)

Parameter Description

Significant Keys
(significant_keys)

List of keys to map items from the inputs for applying the specified operation. It is
typically used by processors that take multiple inputs and perform operations on
them. When inputs have the same sets of keys it does not need to be specified.
When inputs have different sets of keys, it must be specified and it must allow only
1:1 items mapping from the given inputs, otherwise the probe will go into error
state.

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean that
defaults to False. If set to True, all output stages of this processor are streamed in
the generic protobuf schema.

Processor: Sum

IN THIS SECTION

Example: Sum Output | 1109

The Sum processor groups as described by Group by property, then calculates sum and outputs one for
each group.

Parameter Description

Input Types Table (number), Table (number, accumulate=True)

Output Types Table (number)

1108

(Continued)

Parameter Description

Group by (group_by) Accepts a list of property names to group input items into output items, produces only
one output group for the empty list.Most processors take input and produce output.
Many of them produce one output per input (for example, if input is a DSS, output is a
DSS of same size). However, some processors reduce the size of the output relative to
the size of the input. Effectively, they partition the input into groups, run some
calculation on each of the groups that produce a single value per each group, and use
that as output. Clearly, the size of the output set depends on the grouping scheme.
We call such processors grouping processors and they all take the Group by
configuration parameter.

In the case of an empty list, the input is considered to be a single group; thus, the
output is of size 1 and either N, DS, or TS. If a list of property names is specified, for
example ["system_id", "iface_role"], or a single property is specified, for example
["system_id"], we divide the input into groups such that for each group, every item in
the group has the same values for the given list of property names. See the "standard
deviation processor" on page 1102 example for how this works.

The output type of a processor depends on a value of the group_by parameter; for an
empty list, a processor produces a single value result, such as N, DS, or T, and for
grouping by one or more properties it returns a set result, such as NS, DSS, or TS.

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean that
defaults to False. If set to True, all output stages of this processor are streamed in the
generic protobuf schema.

Example: Sum Output

See "standard deviation" on page 1102 example. It's the same except we calculate sum instead of std
deviation.

Processor: System Utilization

Interface Counters Utilization Per System processor groups detailed interface counter data by system ID
and then calculates aggregate TX and RX bits, their aggregate utilization and identifies the highest TX
and RX utilizations among the interfaces.

1109

Parameter Description

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean that
defaults to False. If set to True, all output stages of this processor are streamed in
the generic protobuf schema.

Processor: Time in State

IN THIS SECTION

Example: Time in State | 1112

The Time in State processor measures time when a value is in the range. For each input DS, monitor it
over the last time_window seconds. If at any moment, for the state in state_range, the amount of time
we have been in that state over the last time_window seconds falls into a range specified in the
corresponding state_range entry, we set the corresponding output DS to 'true'. Otherwise, the output
DS for a given input DS is nominally 'false'. (previously called 'time_in_state_check')

Parameter Description

Input Types Discrete-State (DS)

Output Types Discrete-State (DS)

Time Window
(time_window)

How long to monitor state. (seconds or an expression that evaluates to integer)

State Range (state_range) Map state value to its allowed time range in seconds. dict mapping from a single
possible state to a single range of time during the most recent time_window seconds
that the value from input state is allowed to be in that state. At least one of the
range object's two fields must be specified. The omitted field is regarded as "infinity".
The fields are numbers (integers or floats) or expressions evaluated into numbers.
State is a string or an expression that evaluates to string.

1110

(Continued)

Parameter Description

Graph Query
(graph_query)

One or more queries on graph specified as strings, or a list of such queries. (String
will be deprecated in a future release.) Multiple queries should provide all the named
nodes referenced by the expression fields (including additional_properties). Graph
query is executed on the "operation" graph. Results of the queries can be accessed
using the "query_result" variable with the appropriate index. For example, if querying
property set nodes under name "ps", the result will be available as "query_result[0]
["ps"]".

In collector processors (*_collector, if_counter) it is used to choose a set of nodes for
further processing (for example, all leaf devices, or all interfaces between leaf and
spine devices)

In other processors it is used for general parameterization and it is only supported as
a list of queries.

graph_query: "node("system", role="leaf", name="system").
 out("hosted_interfaces").
 node("interface", name="iface").out("link").
 node("link", role="spine_leaf")"

graph_query: ["node("system", role="leaf", name="system")",
 "node("system", role="spine", name="system")"]

Non-collector processors containing the graph_query configuration parameter, can be
parameterized to use data from arbitrary nodes in the graph, such as property set
nodes. Property sets allow you to parameterize macro level SLAs for individual
business units. In the example below, graph_query matches a node of type
property_set with label probe_propset. It's accessed using the special query_result
variable, where Index 0 means it's the first node in query results. If a query returned N
nodes, they could be accessed using indices starting from 0 to N-1. ps is what the
actual node is referred to in the query; the rest depends on the structure of the
node. The int() casting is required because values of property_set nodes are strings.
Here it's assumed that a property set node has the label probe_propset and that the
value accumulate_duration was already created.

graph_query: [node("property_set", label="probe_propset", name="ps")]
duration: int(query_result[0]["ps"].values["accumulate_duration"])

1111

(Continued)

Parameter Description

Another example is a that probes can validate a compliance requirement; the
compliance value may change over time and/or it can be used by more than one
probe. Also, a probe can validate NOS versions on devices. In this case, property sets
can be used to define the current NOS version requirement. If it changes tomorrow:
change the property set value, instead of going under the probe stage.

Anomaly MetricLog
Retention Duration

Retain anomaly metric data in MetricDb for specified time period

Anomaly MetricLog
Retention Size

Maximum allowed size, in bytes of anomaly metric data to store in MetricDB

Anomaly Metric Logging Enable metric logging for anomalies

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean that
defaults to False. If set to True, all output stages of this processor are streamed in the
generic protobuf schema.

Raise Anomaly
(raise_anomaly)

Outputs “true” and “false” values, “true” meaning an appropriate item is anomalous,
and "false" meaning the item is not anomalous. When Raise Anomaly is set to True,
an actual anomaly is generated in addition to a sample in the output.

Example: Time in State

Config is set to:

time_window : 2 seconds
state_range: { "down" : [{"max": 1},] }

The above configuration means that for the input DS, we will set output to True and optionally raise an
anomaly if the input is in the "down" state for more-than one second out of the last two seconds.

In the sample below, certain values are capitalized to indicate what has changed from the previous time.

1112

Sample Input at time t=0

[if_name=eth0] : "up"
[if_name=eth1] : "up"
[if_name=eth3] : "up"

Sample Output at time t=0

[if_name=eth0] : "false"
[if_name=eth1] : "false"
[if_name=eth3] : "false"

Sample Input at time t=1:

[if_name=eth0] : "up"
[if_name=eth1] : "down"
[if_name=eth3] : "up"

Sample Output at time t=1

[if_name=eth0] : "false"
[if_name=eth1] : "false"
[if_name=eth3] : "false"

Sample Input at time t=2:

[if_name=eth0] : "up"
[if_name=eth1] : "down"
[if_name=eth3] : "up"

Sample Output at time t=2

[if_name=eth0] : "false"
[if_name=eth1] : "true"
[if_name=eth3] : "false"

1113

Sample Input at time t=3:

[if_name=eth0] : "up"
[if_name=eth1] : "up"
[if_name=eth3] : "up"

Sample Output at time t=3

[if_name=eth0] : "false"
[if_name=eth1] : "True"
[if_name=eth3] : "false"

Sample Input at time t=4:

[if_name=eth0] : "up"
[if_name=eth1] : "up"
[if_name=eth3] : "up"

Sample Output at time t=4

[if_name=eth0] : "false"
[if_name=eth1] : "false"
[if_name=eth3] : "false"

If expressions are used for min or max fields for states specified in the state property, then they are
evaluated for each input item which results into item-specific thresholds. Properties of the respective
output items are extended by range_min or range_max keys with calculated values.

If state key is an expression, output items are extended with state key. The same applies for
time_window property.

Configuration:

time_window : int(100/context.severity)
state_range: { context.ref_state : [{"max": "int(20*(context.severity/5.0))"}] }

1114

Sample Input at times t=0..6:

[if_name=eth0,severity=1,ref_state=down] : "down"
[if_name=eth1,severity=2,ref_state=down] : "down"

Sample Output at time t=6:

[if_name=eth0,range_max=4,time_window=100,state=down] : "true"
[if_name=eth1,range_max=8,time_window=50,state=down] : "false"

Processor: Traffic Monitor

The Traffic Monitor processor selects interfaces according to the configuration and outputs all available
interface-related counters (e.g tx_bits, rx_bits etc) and interface utilization.

Parameter Description

Input Types No inputs. This is a source processor

1115

(Continued)

Parameter Description

Graph Query
(graph_query)

One or more queries on graph specified as strings, or a list of such queries. (String will be
deprecated in a future release.) Multiple queries should provide all the named nodes
referenced by the expression fields (including additional_properties). Graph query is
executed on the "operation" graph. Results of the queries can be accessed using the
"query_result" variable with the appropriate index. For example, if querying property set
nodes under name "ps", the result will be available as "query_result[0]["ps"]".

In collector processors (*_collector, if_counter) it is used to choose a set of nodes for
further processing (for example, all leaf devices, or all interfaces between leaf and spine
devices)

In other processors it is used for general parameterization and it is only supported as a
list of queries.

graph_query: "node("system", role="leaf", name="system").
 out("hosted_interfaces").
 node("interface", name="iface").out("link").
 node("link", role="spine_leaf")"

graph_query: ["node("system", role="leaf", name="system")",
 "node("system", role="spine", name="system")"]

Query Expansion For every path, originally returned by graph queries, passed to each generator the latter
one produces a set of items and for each item it produces a new path extended by a
corresponding property name which value is set of a value of the produced item.

1116

(Continued)

Parameter Description

Query Group by
(query_group_by)

List (of strings) of node and relationship names used in the graph query to group query
results by. Each element in this list represents a named node or relationship matcher in
the graph_query field.It is not an expression to be consistent with existing group_by field in
grouping processors. Non-expression is simple and more intuitive.

When grouping is active (query_group_by is not null), query results are d by the specified
list of names, where one output item is created per each group. In this case, the
expressions can only access matcher names specified in query_group_by and the query
results for each group are accessed using a new group_items variable. The group_items
variable is a list of query results, where each result has named nodes/relationships, not
present in query_group_by.

The following list describes the behavior for various values of this field:

• Value of query_group_by field - Semantics

• Omitted or provided as json null (ala None in Python) - No grouping is done. This is
equivalent to current behavior of extensible_data_collector. Using ‘group_items’ in
this case is not permitted and results in probe error state.

• Empty list ([]) - Produces one group containing all the query results.

• One or more matcher names - The query results are grouped by the specified nodes
or relationships. If this list covers all available matchers in the query, the number of
groups is equal to the number of query results.

Query Tag Filter
(query_tag_filter)

Filters named nodes in the graph queries by assigned tags.

Interface Expression mapping from graph query to interface name, e.g. “iface.if_name” if “iface” is
a name in the graph query.

Port Speed Expression mapping from graph query to link speed in bits per second, e.g.
"functions.speed_to_bits(link.speed)" if "link" is a name in the graph query.

System ID Expression mapping from graph query to a system_id, e.g. "system.system_id" if "system"
is a name in the graph query.

Period Duration of the averaging period

1117

(Continued)

Parameter Description

Additional Keys Each additional key/value pair is used to extend properties of output stages where value
is considered as an expression executed in context of the graph query and its result is
used as a property value with respective key. The value of this property is evaluated for
each item to associate items with metrics provided by a corresponding collector service.
The association is done by keys because each collector reports a set of metrics where
each metric is identified by a key in a format that is specific for each collector.

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean that defaults
to False. If set to True, all output stages of this processor are streamed in the generic
protobuf schema.

Processor: Union

IN THIS SECTION

Example: Union | 1119

The Union processor merges all input items into one set of items. For each input item the processor
leaves only signification keys, drops the others and puts the result.

Parameter Description

Input Types Table (number or text or discrete state)

Output Types Table (number or text or discrete state)

Significant Keys
(significant_keys)

List of keys to map items from the inputs for applying the specified operation. It is
typically used by processors that take multiple inputs and perform operations on
them. When inputs have the same sets of keys it does not need to be specified.
When inputs have different sets of keys, it must be specified and it must allow only
1:1 items mapping from the given inputs, otherwise the probe will go into error
state.

1118

(Continued)

Parameter Description

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean that
defaults to False. If set to True, all output stages of this processor are streamed in
the generic protobuf schema.

Example: Union

Config is set to:

significant_keys: ["system_id"]

Consider we have inputs with device temperature information.

Input "in_1":

[system_id=leaf1,interface=eth1]: 45
[system_id=leaf2,interface=eth0]: 52
[system_id=leaf3,interface=eth0]: 61

Input "in_2":

[system_id=leaf4,interface=eth2]: 52
[system_id=leaf5,interface=eth3]: 64

Input "in_3":

[system_id=leaf6,interface=eth3]: 41

Output will be the following.

Output "out":

[system_id=leaf1]: 45
[system_id=leaf2]: 52
[system_id=leaf3]: 61
[system_id=leaf4]: 52

1119

[system_id=leaf5]: 64
[system_id=leaf6]: 41

Processor: VXLAN Floodlist

The VXLAN Floodlist processor generates a configuration containing expectations of vxlan floodlist
routes.

Parameter Description

Execution count Number of times the data is collected

Service input (service_input) Data to pass to telemetry collectors, if any. Can be an expression.

Service interval (service_interval) Telemetry collection interval in seconds. Can be an expression.

Service name (service_name) Name of the custom collector service.

Enable Streaming
(enable_streaming)

Makes samples of output stages streamed if enabled. An optional boolean
that defaults to False. If set to True, all output stages of this processor are
streamed in the generic protobuf schema.

Configlet Examples (Design)

IN THIS SECTION

Juniper Junos Configlet Interface-Level Example on 4.0.2: gigether-options | 1121

Juniper Junos Configlet Example on 4.0.2: MTU (section Interface-Level: Delete) | 1122

Juniper Junos Configlet Example on 4.0.2 Example: SNMP (multiple sections) | 1122

Juniper Junos Configlet Example on 4.0.1 and 4.0.0: NTP (section SYSTEM) | 1123

Cisco NX-OS Configlet Example: Syslog (section SYSTEM) | 1123

Arista EOS Configlet Example: NTP (section SYSTEM) | 1124

Arista EOS Configlet Example: Interface Speed (section INTERFACE) | 1124

Enterprise SONiC Configlet Example: NTP (section SYSTEM) | 1124

Enterprise SONiC Configlet Example: SNMP (section SYSTEM) | 1125

1120

Enterprise SONiC Configlet Example: Syslog (section SYSTEM) | 1125

Enterprise SONiC Configlet Example: Static Route (section FRR) | 1125

Enterprise SONiC Configlet Example: sonic-cli Commands (section SYSTEM) | 1126

Juniper Junos Configlet Interface-Level Example on 4.0.2: gigether-options

When you're creating an interface-level configlet during the design phase, you won't know interface
names. It's not until you're working in the blueprint that you'll have that information. Interface-level
configlets for Junos are designed for you to enter details without including the set interface command.
For example, to change Junos interface "gigether-options", you can use a interface-level hierarchical or
set configlet.

gigether-options no-auto-negotiation
gigether-options fec none

gigether-options {
 no-auto-negotiation;
 fec none;
}

When you import the configlet into your blueprint, you'll specify interfaces such as xe-0/0/0. For a Junos
Interface-Level set configlet Apstra software will prepend the set commands:

set interfaces xe-0/0/0 gigether-options no-auto-negotiation
set interfaces xe-0/0/0 gigether-options fec none

For a Junos Interface-Level hierarchical configlet Apstra software will load Junos structured
configuration:

interfaces {
 xe-0/0/0 {
 gigether-options {
 no-auto-negotiation;
 fec none;
 }

1121

 }
}

Juniper Junos Configlet Example on 4.0.2: MTU (section Interface-Level: Delete)

If you want to use a Junos interface-level configlet to remove an existing configuration, you can use an
interface level delete configlet. Like the interface level set configlet, when you are creating the configlet
during the design phase, you won't know interface names. It's not until you're working in the blueprint
that you'll have that information. Interface-level delete configlets for Junos are designed for you to enter
details without including the delete interface command. For example, to remove the Junos interface
"mtu" configuration.

mtu

When you import the configlet into your blueprint, you'll specify interfaces such as xe-0/0/0. For a Junos
Interface-Level delete configlet Apstra software will prepend the delete commands:

delete interfaces xe-0/0/0 mtu

Juniper Junos Configlet Example on 4.0.2 Example: SNMP (multiple sections)

You can create a configlet with a generator at the Top-Level to enable SNMP. To avoid SNMP alarms on
server-facing interfaces, for example, you can create a second generator at the Interface-Level to set up
no-traps.

Top-Level template text is validated to begin with ‘set’ or ‘delete’. See below for example text.

set snmp community public authorization read-only
set snmp description “this is configlet test” set snmp location “Apstra DC”
set snmp contact “june at juniper dot net”
set snmp trap-group authentication-traps targets 10.0.10.1
set snmp trap-group authentication-traps targets 192.168.15.27
set snmp trap-group authentication-traps categories authentication

Interface-Level template text is not validated because it's not a complete CLI command. See below for
example text.

no-traps

1122

When you import the configlet into your blueprint, you'll specify interfaces such as ex-0/0/0 and Apstra
software will prepend the set command as .

set interface xe-0/0/0 no-traps

Juniper Junos Configlet Example on 4.0.1 and 4.0.0: NTP (section SYSTEM)

Sample text for configuring NTP servers on Junos devices. (On Apstra version 4.0.2 SYSTEM is called
Top-Level/Hierarchical.)

system {
 ntp {
 boot-server 10.1.4.1;
 server 10.1.4.2;
 }
}

Cisco NX-OS Configlet Example: Syslog (section SYSTEM)

Sample text for configuring Syslog on NX-OS devices.

logging server 192.168.0.30
logging facility local3
logging trap warning

no logging server 192.168.0.30
no logging facility local3
no logging trap warning

1123

Arista EOS Configlet Example: NTP (section SYSTEM)

Sample text for configuring NTP servers on EOS devices. This configlet uses property sets for the NTP
server IP addresses.

ntp server {{NTP_SERVER_1}}
ntp server {{NTP_SERVER_2}}

no ntp server {{NTP_SERVER_1}}
no ntp server {{NTP_SERVER_2}}

Arista EOS Configlet Example: Interface Speed (section INTERFACE)

Sample text for applying 'speed auto' to an interface. (You specify devices and interfaces when you
import the configlet into a blueprint.)

speed auto

no speed auto

Enterprise SONiC Configlet Example: NTP (section SYSTEM)

Sample text for using the config command to set up an NTP server to use mgmt VRF on SONiC devices.

sonic-db-cli CONFIG_DB hset 'NTP |global' vrf mgmt
config ntp add {{ntp_server}}

config ntp del {{ntp_server}}

1124

Enterprise SONiC Configlet Example: SNMP (section SYSTEM)

Sample text for using the config command to set up an SNMP snmptrap to use mgmt VRF on SONiC
devices.

config snmptrap modify 2 {{SNMP_SERVER}} -v mgmt -c mypass

config snmptrap del 2

Enterprise SONiC Configlet Example: Syslog (section SYSTEM)

Sample text for using the config command to set the Syslog server for SONiC devices.

config syslog add {{syslog_host}}

config syslog del {{syslog_host}}

Enterprise SONiC Configlet Example: Static Route (section FRR)

Sample text for adding a static route

ip route 4.2.2.2/32 {{static_route_next_hop}}
ip route 4.2.2.3/32 {{static_route_next_hop}}

1125

Enterprise SONiC Configlet Example: sonic-cli Commands (section SYSTEM)

Sample text for using the sonic-cli command to set up the delay-restore option for SONiC mclag. You must
use sudo -u admin at the beginning, and surround terms that contain spaces with single quotes in each sonic-cli
command, and < /dev/console at the end.

sudo -u admin sonic-cli -c config -c 'mclag domain 1' -c 'delay-restore 600' < /dev/console

sudo -u admin sonic-cli -c config -c 'mclag domain 1' -c 'no delay-restore' < /dev/console

Apstra-CLI Commands

IN THIS SECTION

change-device-password | 1126

config-syntax-check (Juniper only) | 1127

The "Apstra-CLI" on page 836 utility comes with a built-in feature that auto-completes commands. Use
the TAB key to learn about this tool, its functionality, and available commands. See below for just a few
of the available commands. For assistance with using Apstra-CLI, contact "Juniper Support " on page
802.

.

change-device-password

scenario change-device-password --blueprint <bp_id> --system <sys_id> --old-password <old_password> --new-password
<new_password>

As of Apstra version 4.1.2, you can change device credentials for device system agents using apstra-cli.
The new scenario command is a category of apstra-cli commands that include multiple tasks. scenario
change-device-password is a collection of eleven tasks as follows:

• Check old password by ssh connection

1126

• State creation of configlet for password

• Commit blueprint

• Check new password by ssh connection

• Change system agent password

• Check system agent status

• Update device pristine config

• State deletion of configlet used for password change

• Commit blueprint

• Check new password by ssh connection

• Check system agent status

config-syntax-check (Juniper only)

Command Syntax for Datacenter blueprints:

blueprint --blueprint <bp_id> config-syntax-check --system <sys_id> --username <device_username> --password
<device_password>

Command Syntax for Freeform blueprints:

blueprint --blueprint <bp_id> freeform-system config-syntax-check --system <sys_id> --username <device_username>
--password <device_password>

With the config-syntax-check command, you can verify configuration syntax on your Juniper devices
before committing your blueprint (as of Apstra version 4.1.2). This check is useful when working with
configlets in Datacenter blueprints and when working with config templates in Freeform blueprints.

This command works only with hierarchical configuration to verify whether configuration syntax is
correct. It doesn't work for set commands.

1127

Apstra EVPN Support Addendum

IN THIS SECTION

Qualified Vendor and NOS | 1128

Limitations | 1129

TCAM Carving in NX-OS | 1130

Arista EOS VxLAN Routing | 1131

Graph Node VTEP Types | 1133

When deploying EVPN on Apstra-supported devices and NOSs, be aware of several caveats and
limitations. Even though EVPN is a standard, vendors implement protocols in very different manners.
Also, different ASICs support varying feature sets that impact EVPN BGP VXLAN implementations
(Routing In and Out of Tunnels (RIOT) for example). The following sections describe supported EVPN
deployment implementations.

Qualified Vendor and NOS

Apstra software supports EVPN on the following hardware. For recommended NOS versions, see
"Qualified Device and NOS" on page 956.

Hardware ASIC Support

Apstra supports EVPN on the following hardware ASICs:

• Arista DCS 7280SE with Arad chipset

• Cisco Cloudscale

• Mellanox Spectrum A1

• Trident Trident2 (see below)

• Trident Trident2+ (see below)

• Trident Trident3 (see below)

• Trident Tomahawk (see below)

• Juniper Q5

1128

Table 28: Apstra EVPN ASIC Support

ASIC Example Switches Notes

Arista Trident2 Arista DCS-7050 Can use as Spine, Leaf, or Border Leaf. Must set up EOS
Recirculation interface(s) to use as a Layer3 Leaf (see
Arista VXLAN documentation for more information).

Arista Trident3 DCS-7050CX3 Can use as Spine, Leaf, or Border Leaf.

Arista XP80 Arista DCS-7160 Ca use as Spine, Leaf, or Border Leaf.

Arista Jericho DCS-7280R Can use as Spine, Leaf, or Border Leaf.

Cisco Cloudscale Cisco 93180YC-EX Can use as Spine, Leaf, or Border Leaf

Cisco Trident2 with
ALE

Cisco 9396PX, 9372PX,
9332PQ, 9504

Can use as Spine, Leaf, or Border Leaf (see TCAM Carving
in NXOS section).

Cisco Trident2+ Cisco 3132Q-V Can't use as Border Leaf

Juniper Q5 Juniper QFX10002 Can use as Spine, Leaf, or Border Leaf

Juniper Trident2 Juniper QFX5100 Can use as Spine or Layer2 Leaf

Juniper Trident2+ Juniper QFX5110 Can use as Spine, Leaf, or Border Leaf

Juniper Trident3 Juniper QFX5120 Can use as Spine, Leaf, or Border Leaf

For recommended NOS versions, refer to Qualified Devices and NOS <device_support>.

Limitations

IN THIS SECTION

EVPN Layer2 Limitations | 1130

EVPN Layer3 Limitations | 1130

1129

https://www.arista.com/assets/data/pdf/user-manual/um-eos/Chapters/VXLAN.pdf

EVPN Layer2 Limitations

• VLAN (Rack-local) Virtual networks must be in the default routing zone.

• VxLAN (Inter-rack) Virtual networks can't be part of the default routing zone.

EVPN Layer3 Limitations

• Generic systems with BGP peering to non-default routing zones must connect to leaf devices.

• Generic systems with BGP peering only to the default routing zone can connect to leaf devices, spine
devices or superspine devices.

• Multi-zone security segmentations only support up to 16 routing zones (VRFs) on Arista (HW
Limitation)

• Inter routing zone (VRF) routing must be handled on a generic system (EVPN type 5 route leaking)

• All BGP sessions and loopback addresses are part of the default routing zone.

TCAM Carving in NX-OS

To successfully deploy EVPN on Cisco Nexus devices other then Cisco Cloudscale, you must first
configure Cisco NXOS TCAM carving. These other devices may include Cisco NXOSv, or Cisco Nexus
"Trident2" devices such as 9396PX, 9372PX, 9332PQ, or 9504. On Cisco NXOS the ARP Suppression
feature is used in order to minimize ARP flooding.

For details, see Juniper Support Knowledge Base article KB36733

Before installing the device agent, we recommend that you apply TCAM Carving during device
management setup or during Cisco Power-on Auto Provisioning (POAP). TCAM Carving requires a
device reboot.

Alternatively, you can apply TCAM Carving with configlets when you deploy the blueprint. You must
manually reboot devices.

Use show hardware access-list tcam region to show and verify TCAM allocation on Cisco NX-OS.

1130

https://kb.juniper.net/KB37299

Cisco NXOSv TCAM Carving

hardware access-list tcam region vacl 0
hardware access-list tcam region racl 0
hardware access-list tcam region arp-ether 256

no hardware access-list tcam region arp-ether 256
no hardware access-list tcam region racl 0
no hardware access-list tcam region vacl 0

Cisco Trident2 TCAM Carving

hardware access-list tcam region l3qos 0
hardware access-list tcam region arp-ether 256 double-wide

no hardware access-list tcam region l3qos 0
no hardware access-list tcam region arp-ether 256 double-wide

Arista EOS VxLAN Routing

IN THIS SECTION

Recirculation Interface for Arista Trident2 Devices | 1132

VxLAN Routing System Profile for Arista Jericho Devices | 1132

VxLAN Routing Profile for Arista Arad Devices | 1133

1131

Recirculation Interface for Arista Trident2 Devices

VxLAN Routing for Trident2 devices (for example, 7050QX-32) is supported but requires assigning EOS
recirculation interfaces to unused physical interfaces on the device. You can use configlets to deploy this
to all devices that require this configuration.

interface Recirc-Channel501
 switchport recirculation features vxlan
interface Ethernet35
 traffic-loopback source system device mac
 channel-group recirculation 501
interface Ethernet36
 traffic-loopback source system device mac
 channel-group recirculation 501

interface Ethernet35
 no traffic-loopback source system device mac
 no channel-group recirculation 501
interface Ethernet36
 no traffic-loopback source system device mac
 no channel-group recirculation 501
no interface Recirc-Channel501

VxLAN Routing System Profile for Arista Jericho Devices

We recommend when using VxLAN Routing for Jericho devices (for example, 7280SR-48C6) that you
assign EOS VxLAN Routing System Profile on the device.

Before installing the device agent, we recommend that you apply the Arista TCAM system profile during
the device management setup or during Arista Zero-Touch Provisioning (ZTP). TCAM system profile
requires a device reboot.

1132

Alternatively, you can use configlets to deploy this to all devices requiring this configuration and
manually reboot the devices.

hardware tcam
 system profile vxlan-routing

hardware tcam
 no system profile vxlan-routing

VxLAN Routing Profile for Arista Arad Devices

We recommend when using VxLAN Routing for Arista Arad devices (for example, on 7280SE platform)
that you assign EOS VxLAN Routing Profile on the device.

Before installing the device agent, we recommend that you apply the Arista TCAM system profile during
the device management setup or during Arista Zero-Touch Provisioning (ZTP). TCAM system profile
requires a device reboot.

Alternatively, you can use configlets to deploy this to all devices requiring this configuration and
manually reboot the devices.

hardware tcam
 profile vxlan-routing

Graph Node VTEP Types

IN THIS SECTION

Unicast VTEPs | 1133

Logical VTEPs | 1134

Anycast VTEP | 1135

Unicast VTEPs

Unicast VTEPs do not apply to Arista.

1133

Cisco Unicast VTEPs - Vendor Definition: Anycast VTEP

Apstra IP Allocation

Unique per leaf in MLAG pair

Not allocated to singleton switches

MLAG Configuration

interface loopback1
 IP address 10.0.0.1/32
 IP address 10.0.0.3/32 secondary
interface nve1
 source-interface loopback1

interface loopback1
 IP address 10.0.0.2/32
 IP address 10.0.0.3/32 secondary
interface nve1
 source-interface loopback1

Single Switch Configuration

interface loopback1
 IP address 10.0.0.1/32
interface nve1
 source-interface loopback1

Logical VTEPs

Arista Logical VTEPs

Apstra IP Allocation

Logical VTEP configured as primary IP on loopback1 interface for both MLAG and singleton switches

All top of rack nodes share same logical VTEP IP:

• MLAG leaf devices share same logical VTEP IP

1134

• Singleton leaf device gets its own VTEP IP

MLAG Configuration

interface loopback1
 IP address: 10.0.0.1/32
 IP address: 10.0.0.4/32 secondary
interface vxlan1
 vxlan source-interface loopback1

interface loopback1
 IP address: 10.0.0.1/32
 IP address: 10.0.0.4/32 secondary
interface vxlan1
 vxlan source-interface loopback1

Single Switch Configuration

interface loopback1
 IP address: 10.0.0.5/32
 IP address 10.0.0.4/32 secondary
interface vxlan1
 vxlan source-interface loopback1

Anycast VTEP

Anycast VTEPs do not apply to Cisco.

Arista Anycast VTEPs

Apstra IP Allocation

One anycast VTEP for entire blueprint, shared between all Arista leaf devices

Configured as secondary IP on loopback1 interface

MLAG Configuration

interface loopback1
 IP address 10.0.0.1/32

1135

 IP address 10.0.0.5/32 secondary
interface vxlan1
 vxlan source-interface loopback1

interface loopback1
 IP address 10.0.0.1/32
 IP address 10.0.0.5/32 secondary
interface vxlan1
 vxlan source-interface loopback1

Single Switch Configuration

interface loopback1
 IP address 10.0.0.5/32
 IP address 10.0.0.4/32 secondary
interface vxlan1
 vxlan source-interface loopback1

Apstra Server Configuration File

IN THIS SECTION

Controller | 1137

Security | 1137

Log Rotate | 1138

Auth Sysdb Log Rotator | 1138

Main Sysdb Log Rotator | 1139

Anomaly Sysdb Log Rotator | 1141

Device Image Management | 1141

Authentication | 1142

Device Config Management | 1142

Telemetry Init | 1142

Telemetry Global Config | 1143

1136

Task API | 1143

Statistics | 1144

Enterprise | 1144

Syslog | 1144

Builtin Telemetry Disable | 1145

Agent Management | 1146

Show Tech | 1146

System Operation Filesystem Thresholds | 1147

System Operation Memory Thresholds | 1147

/etc/aos/aos.conf

Controller

admin@aos-server:/etc/aos$ cat aos.conf
[controller]
metadb=eth0

Role for the controller. Set the option to "slave" in order to setup AOS as a
slave AOS. The options "metadb" and "node_id" should be also set while
setting "role" to "slave"
role = controller
Id of the slave node. Empty in case the server is the controller. The ID is
generated by the controller.
node_id =

Security

[security]

EXPERIMENTAL FEATURE This feature should not be enabled without Apstra
engineering assistance. Enable secure connections for AOS system agents.
enable_secure_sysdb_connection = 0
This encrypts sensitive data when sending configuration to device. This also
enables aos agents to use appropriate credentials to access and/or configure

1137

device. Default behavior to configure or run commands using device root
Note: Manual agent installation will not work if this is enabled.
enable_encryption_to_device = 0

Log Rotate

[logrotate]

AOS has builtin log rotate functionality. You can disable it by setting
<enable_log_rotate> to 0 if you want to use linux logrotate utility to manage
your log files. AOS agent reopens log file on SIGHUP
enable_log_rotate = 1
Log file will be rotated when its size exceeds <max_file_size>
max_file_size = 1M
The most recent <max_kept_backups> rotated log files will be saved. Older
ones will be removed. Specify 0 to not save rotated log files, i.e. the log
file will be removed as soon as its size exceeds limit.
max_kept_backups = 5
Interval, specified as <hh:mm:ss>, at which log files are checked for
rotation.
check_interval = 1:00:00
Maximum number of recent invalid persistence group kept
max_kept_invalid_persistence_groups = 3

Auth Sysdb Log Rotator

[auth_sysdb_log_rotator]

AOS has builtin auth sysdb persistence file rotation functionality. Default
value is 1 which means sysdb retention policy is enabled. You can disable it
by setting it to 0 and you also can enable it again by setting it to 1. All
retention policy parameters will be reloaded by restarting AOS service, or
sending SIGHUP signal to SysdbResourceManager agent via "sudo kill -s 1
$(pgrep -f SysdbResourceManager)"
enable_auth_sysdb_rotate = 1
Maximum number of backup copies of valid auth sysdb persistence file groups
in /var/lib/aos/db. AOS will remove all the older groups. Default value is 5,
which means AOS will keep the latest 5 groups. Min value is 3. It should be
specified as a positive number or empty. Leaving it empty means no groups

1138

number limitation. It will be set to default value if it is configured in
invalid format. It will be set to minimum value if it is configured to a
smaller value.
max_kept_backups = 5
Maximum total size of valid auth sysdb persistence file groups in
/var/lib/aos/db. Default value is empty, which means no size limitation. It
should be specified as empty or a positive number ending with k/m/g (case
insensitive) or no suffix. Otherwise, it will be set to default value. AOS
will keep at least 3 valid groups no matter how <max_total_files_size> being
configured.
max_total_files_size =
Interval, specified as <hh:mm:ss>, at which auth sysdb persistence files are
checked for rotation. Default value is 1:00:00. It will be set to default
value is it is configured in invalid format. Min value is 00:01:00. It will
be set to min value if it is configured to a smaller value. AOS also update
all the retention policy parameters per <check_interval> when it is enabled.
check_interval = 1:00:00

Main Sysdb Log Rotator

Four parameters for configuring the main graph datastore retention policy.

[main_sysdb_log_rotator]

AOS has builtin main sysdb persistence file rotation functionality. Default
value is 1 which means sysdb retention policy is enabled. You can disable it
by setting it to 0 and you also can enable it again by setting it to 1. All
retention policy parameters will be reloaded by restarting AOS service, or
sending SIGHUP signal to SysdbResourceManager agent via "sudo kill -s 1
$(pgrep -f SysdbResourceManager)"
enable_main_sysdb_rotate = 1
Maximum number of backup copies of valid main sysdb persistence file groups
in /var/lib/aos/db. AOS will remove all the older groups. Default value is 5,
which means AOS will keep the latest 5 groups. Min value is 3. It should be
specified as a positive number or empty. Leaving it empty means no groups
number limitation. It will be set to default value if it is configured in
invalid format. It will be set to minimum value if it is configured to a
smaller value.
max_kept_backups = 5
Maximum total size of valid main sysdb persistence file groups in
/var/lib/aos/db. Default value is empty, which means no size limitation. It

1139

should be specified as empty or a positive number ending with k/m/g (case
insensitive) or no suffix. Otherwise, it will be set to default value. AOS
will keep at least 3 valid groups no matter how <max_total_files_size> being
configured.
max_total_files_size =
Interval, specified as <hh:mm:ss>, at which main sysdb persistence files are
checked for rotation. Default value is 1:00:00. It will be set to default
value is it is configured in invalid format. Min value is 00:01:00. It will
be set to min value if it is configured to a smaller value. AOS also update
all the retention policy parameters per <check_interval> when it is enabled.
check_interval = 1:00:00

enable_main_sysdb_rotate = 1 enables and disables the policy.

• Set to 1 to enable the retention policy (default). If you enable the policy after it has been disabled,
you must restart the Apstra server for it to be enabled again.

• Set to 0 to disable the retention policy and keep all backups. AOS VM file disk utilization issues may
occur. The policy will be disabled during the next retention check (check_interval). There is no need to
restart the Apstra server unless you want to disable the policy immediately.

max_kept_backups = 5 maximum number of backups to store in /var/lib/aos/db.

• Leave default of 5 to keep the latest five backups.

• Set to an empty string to keep an unlimited number of backups.

• Setting to an invalid number results in the default value of 5.

• Setting to a number smaller than 3 (the minimum) results in the minimum value of 3.

max_total_files_size = maximum file group size to store in /var/lib/aos/db

• Leave default of an empty string for no size limitation.

• Set to a number ending in k, m, or g (case-sensitve) or without a suffix.

The effect of max_kept_backups and max_total_files_size is cumulative. For security, Apstra keeps a minimum
of three groups of valid Main Graph Datastore persistence files.

check_interval = 1:00:00 time between retention checks and parameter updates (if file has been updated)
(format: <hh:mm:ss>).

• Leave default of 1:00:00 to check every hour.

• Setting to an invalid number results in the default value of 1:00:00.

• Setting to a number smaller than 00:01:00 (the minimum) results in the minimum value of 1:00:00.

1140

Anomaly Sysdb Log Rotator

[anomaly_sysdb_log_rotator]

AOS has builtin anomaly sysdb persistence file rotation functionality.
Default value is 1 which means sysdb retention policy is enabled. You can
disable it by setting it to 0 and you also can enable it again by setting it
to 1. All retention policy parameters will be reloaded by restarting AOS
service, or sending SIGHUP signal to SysdbResourceManager agent via "sudo
kill -s 1 $(pgrep -f SysdbResourceManager)"
enable_anomaly_sysdb_rotate = 1
Maximum number of backup copies of valid anomaly sysdb persistence file
groups in /var/lib/aos/db. AOS will remove all the older groups. Default
value is 5, which means AOS will keep the latest 5 groups. Min value is 3. It
should be specified as a positive number or empty. Leaving it empty means no
groups number limitation. It will be set to default value if it is configured
in invalid format. It will be set to minimum value if it is configured to a
smaller value.
max_kept_backups = 5
Maximum total size of valid anomaly sysdb persistence file groups in
/var/lib/aos/db. Default value is empty, which means no size limitation. It
should be specified as empty or a positive number ending with k/m/g (case
insensitive) or no suffix. Otherwise, it will be set to default value. AOS
will keep at least 3 valid groups no matter how <max_total_files_size> being
configured.
max_total_files_size =
Interval, specified as <hh:mm:ss>, at which anomaly sysdb persistence files
are checked for rotation. Default value is 1:00:00. It will be set to default
value is it is configured in invalid format. Min value is 00:01:00. It will
be set to min value if it is configured to a smaller value. AOS also update
all the retention policy parameters per <check_interval> when it is enabled.
check_interval = 1:00:00

Device Image Management

[device_image_management]

Enable version compatibility check. By default version compatibility check is
enabled. A device will not connect to AOS if its version of AOS device agent
is not compatible with AOS controller

1141

enable_version_check = 1
Enable AOS device agent image auto upgrade. By default auto image upgrade is
disabled. With this option enabled a device can download an image from the
controller and upgrade itself if needed.
enable_auto_upgrade = 0
A device will retry in specified timeout (in seconds) if it fails version
compatibility check or to download/install new image.
retry_timeout = 600

Authentication

[authentication]

Enable authentication/authorization check. By default
authentication/authorization is enabled. You can disable it by setting enable
to 0
enable = 1
Set token expiration time (in seconds). By default token will be expired
after 24 hours (86400 seconds).
token_expiration = 86400
Enable ratelimiting. This mechanism protects against password bruteforce. By
default ratelimiting is enabled. You can disable it by setting
enable_ratelimit to 0
enable_ratelimit = 1

Device Config Management

[device_config_management]

Setting to push quarantine config to unacknowledged devices. By default it is
disabled as it causes traffic disruptions.Set the value to 1 to enable
pushing quarantine config, which shuts down all interfaces on the device.
enable_push_quarantine_config = 0

Telemetry Init

[telemetry_init]

1142

Number of initial BGP telemetry update rounds before anomaly detection is
started.
bgp = 4
Number of initial interface telemetry update rounds before anomaly detection
is started.
interface = 4
Number of initial LAG telemetry update rounds before anomaly detection is
started.
lag = 4
Number of initial LLDP telemetry update rounds before anomaly detection is
started.
lldp = 4
Number of initial route telemetry update rounds before anomaly detection is
started.
route = 4
Number of initial MLAG telemetry update rounds before anomaly detection is
started.
mlag = 4

Telemetry Global Config

[telemetry_global_config]

Python multithreading enable/disable knob for telemetry collection
multithreading_config = 1
Execution timeout for extensible telemetry collectors
command_timeout = 120

Task API

[task_api]

Default maximum time in seconds a task can stay in its current state.
default_timeout = 600.0
Time in seconds a blueprint.create task can stay in its current state.Format:
"timeout_<task_type>"
timeout_blueprint.create = 360.0
Time in seconds a blueprint.deploy task can stay in its current state.Format:
"timeout_<task_type>"

1143

timeout_blueprint.deploy = 300.0
Time in seconds blueprint.facade.* tasks can stay in their current state.
Specific facade task overrides prevail over this one.Format:
"timeout_<task_type>"
timeout_blueprint.facade = 600.0
Maximum number of tasks, which allowed in the queue. When number of tasks
becomes higher this value, task rotation will be started.
max_tasks_in_queue = 100
Maximum number of Bytes in data field which does not require compression. If
data size is greater than threshold data will be compressed before storing it
in sysdb.
max_uncompressed_data_size = 1000

Statistics

[statistics]

Enable or disable full validation for pod statistics. Disable if Racks and/or
Pods tabs load times are excessive
pod_full_validation = enabled

Enterprise

[enterprise]

Enable or disable Enterprise related features
enable = 0

Syslog

[syslog]

Interval, specified as <hh:mm:ss>, at which collector will recollect hostname
hostname_check_interval = 00:00:10

1144

Builtin Telemetry Disable

New in Apstra version 4.1.1

[builtin_telemetry_disable]

Disable telemetry service lldp for the specified set of system IDs. System
IDs can be provided as a comma seperated list(eg: a, b, c, d). In order to
disable the service for all devices, specify the value "all".
lldp_disable_devices =
Disable telemetry service arp for the specified set of system IDs. System IDs
can be provided as a comma seperated list(eg: a, b, c, d). In order to
disable the service for all devices, specify the value "all".
arp_disable_devices =
Disable telemetry service hostname for the specified set of system IDs.
System IDs can be provided as a comma seperated list(eg: a, b, c, d). In
order to disable the service for all devices, specify the value "all".
hostname_disable_devices =
Disable telemetry service mac for the specified set of system IDs. System IDs
can be provided as a comma seperated list(eg: a, b, c, d). In order to
disable the service for all devices, specify the value "all".
mac_disable_devices =
Disable telemetry service xcvr for the specified set of system IDs. System
IDs can be provided as a comma seperated list(eg: a, b, c, d). In order to
disable the service for all devices, specify the value "all".
xcvr_disable_devices =
Disable telemetry service interface for the specified set of system IDs.
System IDs can be provided as a comma seperated list(eg: a, b, c, d). In
order to disable the service for all devices, specify the value "all".
interface_disable_devices =
Disable telemetry service interface_counters for the specified set of system
IDs. System IDs can be provided as a comma seperated list(eg: a, b, c, d). In
order to disable the service for all devices, specify the value "all".
interface_counters_disable_devices =
Disable telemetry service bgp for the specified set of system IDs. System IDs
can be provided as a comma seperated list(eg: a, b, c, d). In order to
disable the service for all devices, specify the value "all".
bgp_disable_devices =
Disable telemetry service mlag for the specified set of system IDs. System
IDs can be provided as a comma seperated list(eg: a, b, c, d). In order to
disable the service for all devices, specify the value "all".
mlag_disable_devices =

1145

Disable telemetry service route for the specified set of system IDs. System
IDs can be provided as a comma seperated list(eg: a, b, c, d). In order to
disable the service for all devices, specify the value "all".
route_disable_devices =
Disable telemetry service lag for the specified set of system IDs. System IDs
can be provided as a comma seperated list(eg: a, b, c, d). In order to
disable the service for all devices, specify the value "all".
lag_disable_devices =

Agent Management

New in Apstra version 4.1.1

[agent_management]

Override the default heartbeat timeout for agents spawned dynamically by
AgentManager. The value must be a non-negative number. The unit is seconds.
The value 0 is used to turn off heartbeat-based agent timeouts and restarts.
The minimum non-0 value allowed is 60. If not provided, then the default
timeout value (600 seconds) is used.
heartbeat_period =

Show Tech

New in Apstra version 4.1.1

[show_tech]

Minimum free space in the file system for /var/lib/aos/show_tech needed to
initiate controller show tech collection via the Apstra API (in MBytes,
default: 4096, min: 4096)
min_free_disk_space = 4096
The directory /var/lib/aos/show_tech must be smaller than this size to
initiate controller show tech collection via the Apstra API (in MBytes,
default: 10240, min: 4096)
max_directory_size = 10240
Maximum controller show tech collection duration before job times out (in
seconds, default: 1200, min: 1200)
controller_timeout = 1200.0

1146

System Operation Filesystem Thresholds

New in Apstra verion 4.1.2

[system_operation_filesystem_thresholds]

Default operation thresholds for filesystem utilization, used unless an
option for a specific filesystem is specified in the section. Two thresholds
are specified - warning and critical. When resource utilization passes each
threshold, an operation anomaly is raised at the corresponding level. When a
critical threshold is crossed the APIs are automatically transitioned into
read-only mode. Numbers here are utilization levels, between 0.0 and 1.0.
Note: Both 0.0 and 1.0 utilization levels are not allowed.
default = warning:0.8 critical:0.9

System Operation Memory Thresholds

New in Apstra version 4.1.2

[system_operation_memory_thresholds]

Operation thresholds for memory utilization of the controller VM. Two
thresholds are specified - warning and critical. When resource utilization
passes each threshold, an operation anomaly is raised at the corresponding
level. When a critical threshold is crossed the APIs are automatically
transitioned into read-only mode. Numbers here are utilization levels,
between 0.0 and 1.0. Note: Both 0.0 and 1.0 utilization levels are not
allowed.
default = warning:0.8 critical:0.9

Agent Configuration File (Devices)

IN THIS SECTION

Controller Section | 1148

1147

Service Section | 1149

Logrotate Section | 1150

Device Info Section | 1151

Device Profile Section | 1151

Controller Section

[controller]
<metadb> provides directory service for AOS. It must be configured properly
for a device to connect to AOS controller.
metadb = tbt://aos-server:29731
Use <web> to specify AOS web server IP address or name. This is used by
device to make REST API calls to AOS controller. It is assumed that AOS web
server is running on the same host as metadb if this option is not specified
web =
<interface> is used to specify the management interface.This is currently
being used only on server devices and the AOS agent on the server device will
not come up unless this is specified.
interface =

metadb

Agent Server Discovery is a client-server model. The Apstra Device agent registers directly to the Apstra
server via the metadb connection. The Apstra server can be discovered from static IP or DNS.

Dynamic DNS - By default, Apstra device agents point to the DNS entry aos-server, relying on dhcp-
provided DNS resolution and hostname resolution. On the Apstra server, if the metadb connection entry
points to a DNS entry, then the Apstra agents must be able to resolve that DNS entry as well. DNS must
be configured so aos-server resolves to an interface on the Apstra server itself, and so the agents are
configured with metadb = tbt://aos-server:29731

Static DNS - We can add a static DNS entry pointing directly to the IP of aos-server. Add a static DNS
entry, or use a DNS Nameserver configuration on the device.

Arista and Cisco Static Hostname

localhost(config)#ip host aos-server 192.168.25.250

1148

Obtaining IP from Apstra Server

admin@aos-server:~# ip addr show dev eth0
2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
 link/ether 08:00:27:8a:39:05 brd ff:ff:ff:ff:ff:ff
 inet 192.168.59.250/24 brd 192.168.59.255 scope global eth0
 inet6 fe80::a00:27ff:fe8a:3905/64 scope link
 valid_lft forever preferred_lft forever

Then the agents will be configured with metadb = tbt://aos-server:29731.

web

In a future release, the Apstra REST API will be able to run on a separate server from the Apstra server
itself. This feature is for Apstra internal usage only.

interface

The device agent source interface applies to Linux servers only (Ubuntu, CentOS). This source IP is the
server interface that the device agent uses when registering with Apstra. For example, on a server, to
bind the device agent to eth1 instead of the default eth0, specify interface = eth1.

Service Section

[service]
AOS device agent by default starts in "telemetry-only" mode.Set following
variable to 1 if you want AOS agent to manage the configuration of your
device.
enable_configuration_service = 0
When managing device configuration AOS agent will restore backup config if it
fails to connect to AOS controller in <backup_config_restoration_timeout>,
specified as <hh:mm:ss>. Set it to 00:00:00 to disable backup restoration
backup_config_restoration_timeout = 00:00:00

The service section manages specific agent configuration related to configuration rendering and
telemetry services.

enable_configuration_service

This field specifies the operation mode of the device agent: telemetry only or full control.

1149

enable_configuration_service = 0 To push telemetry (alerts) only, leave the default value of 0. Configuration
files wont be modified unless a network administrator specifies it.

enable_configuration_service = 1 Setting this field to 1 allows Apstra to fully manage the device agent
configuration, including pushing discovery and full intent-based configuration.

backup_config_restoration_timeout

Configuration is not stored on the device. This prevents a device from booting up and immediately
participating in fabric that may not be properly configured yet. The Apstra device agent is configured
after the discovery phase completes.

backup_restoration_timeout = 00:00:00 This disabled state (default) keeps the Apstra device agent from
replacing the running configuration if it cannot contact the Apstra server. Any previous configuration
state is not restored.

backup_restoration_timeout = 00:15:00 Any value other than the default 00:00:00 enables the Apstra agent to
boot and replace the running configuration with the most known previous state after the specified
period of time (fifteen minutes in this example). Specifically, the files from /.aos/rendered/ are restored to
the system after the configuration restore period expires.

Logrotate Section

[logrotate]

AOS has builtin log rotate functionality. You can disable it by setting
<enable_log_rotate> to 0 if you want to use linux logrotate utility to manage
your log files. AOS agent reopens log file on SIGHUP
enable_log_rotate = 1
Log file will be rotated when its size exceeds <max_file_size>
max_file_size = 1M
The most recent <max_kept_backups> rotated log files will be saved. Older
ones will be removed. Specify 0 to not save rotated log files, i.e. the log
file will be removed as soon as its size exceeds limit.
max_kept_backups = 5
Interval, specified as <hh:mm:ss>, at which log files are checked for
rotation.
check_interval = 1:00:00

Apstra logs to the /var/log/aos folder under a series of files. Apstra implements its own method of log
rotation to prevent /var/log/aos from filling up. You can enable (2) or disable (1) log rotation. Each
individual log file is rotated when it approaches the appropriate maximum size. Log rotation occurs by
default every hour.

1150

Device Info Section

[device_info]
<model> is used to specify the device's hardware model to be reported to AOS
device manager. This is only used by servers, so can be ignored for non-
server devices such as switches. By default a server reports "Generic Model"
which matches a particular HCL entry's selector::model value in AOS. Specify
another model for the server to be classified as a different HCL entry.
model = Generic Model

model

The device info section is used to modify the default device model of servers as they register to Apstra.
For example, Server 2x10G changes the server to a dual-attached L3 server. All valid options for model
include:

• Generic Model

• Server 2x10G

• Server 1x25G

• Server 1x40G

• Server 4x10G

Device Profile Section

<device_profile_id> is used to specify the device profile to be associated to
the device. Selector in the specified device profile should match the
reported device facts.
device_profile_id =
[credential]
username = admin

1151

Graph

IN THIS SECTION

Graph Overview | 1152

Query Specification | 1153

Change Notification | 1155

Notification Processing | 1155

Putting It All Together | 1157

Convenience Functions | 1158

Apstra Graph Datastore | 1167

Graph Overview

Apstra uses the Graph model to represent a single source of truth regarding infrastructure, policies,
constraints etc. This Graph model is subject to constant change and we can query it for various reasons.
It is represented as a graph. All information about the network is modeled as nodes and relationships
between them.

Every object in a graph has a unique ID. Nodes have a type (a string) and a set of additional properties
based on a particular type. For example, all switches in our system are represented by nodes of type
system and can have a property role which determines which role in the network it is assigned (spine/
leaf/server). Physical and logical switch ports are represented by an interface node, which also has a
property called if_type.

Relationships between different nodes are represented as graph edges which we call relationships.
Relationships are directed, meaning each relationship has a source node and a target node. Relationships
also have a type which determines which additional properties particular relationship can have. E.g.
system nodes have relationships of type hosted_interfaces towards interface nodes.

A set of possible node and relationship types is determined by a graph schema. The schema defines
which properties nodes and relationships of particular type can have along with types of those
properties (string/integer/boolean/etc) and constraints. We use and maintain an open source schema
library, Lollipop, that allows flexible customization of value types.

Going back to the graph representing a single source of truth, one of the most challenging aspects was
how to reason about it in the presence of change, coming from both the operator and the managed
system. In order to support this we developed what we call Live Query mechanism which has three
essential components:

1152

• Query Specification

• Change Notification

• Notification Processing

Having modeled our domain model as a graph, you can run searches on the graph specified by graph
queries to find particular patterns (subgraphs) in a graph. The language to express the query is
conceptually based on Gremlin, an open source graph traversal language. We also have parsers for
queries expressed in another language - Cypher, which is a query language used by popular graph
database neo4j.

Query Specification

You start with a node() and then keep chaining method calls, alternating between matching relationships
and nodes:

node('system', name='system').out().node('interface', name='interface').out().node('link',
name='link')

The query above translated in english reads something like: starting from a node of type system,
traverse any outgoing relationship that reaches node of type interface, and from that node traverse all
outgoing relationship that lead to node of type `link.

At any point you can add extra constraints:

node('system', role='spine', name='system').out().node('interface', if_type='ip',
name='interface')

Notice role=`spine` argument, it will select only system nodes that have role property set to spine.

Same with if_type property for interface nodes.

node('system', role=is_in(['spine', 'leaf']), name='system')
.out()
.node('interface', if_type=ne('ip'), name='interface')

That query will select all system nodes that have role either spine or leaf and interface nodes that have
if_type anything but ip (ne means not equal).

1153

You can also add cross-object conditions which can be arbitrary Python functions:

node('system', name='system')
.out().node('interface', name='if1')
.out().node('link')
.in_().node('interface', name='if2')
.in_().node('system', name='remote_system')
.where(lambda if1, if2: if1.if_type != if2.if_type)

Name objects to refer to them and use those names as argument names for your constraint function (of
course you can override that but it makes a convenient default behavior). So, in example above it will
take two interface nodes named if1 and if2, pass them into given where function and filter out those
paths, for which function returns False. Don't worry about where you place your constraint: it will be
applied during search as soon as all objects referenced by constraint are available.

Now, you have a single path, you can use it to do searches. However, sometimes you might want to have
a query more complex than a single path. To support that, query DSL allows you to define multiple paths
in the same query, separated by comma(s):

match(
 node('a').out().node('b', name='b').out().node('c'),
 node(name='b').out().node('d'),
)

This match() function creates a grouping of paths. All objects that share the same name in different paths
will actually be referring to the same object. Also, match() allows adding more constraints on objects with
where(). You can do a distinct search on particular objects and it will ensure that each combination of
values is seen only once in results:

match(
 node('a', name='a').out().node('b').out().node('c', name='c')
).distinct(['a', 'c'])

This matches a chain of a -> b -> c nodes. If two nodes a and c are connected through more than one
node of type b, the result will still contain only one (a, c) pair.

There is another convenient pattern to use when writing queries: you separate your structure from your
criteria:

match(
 node('a', name='a').out().node('b').out().node('c', name='c'),

1154

 node('a', foo='bar'),
 node('c', bar=123),
)

Query engine will optimize that query into:

match(
 node('a', name='a', foo='bar')
 .out().node('b')
 .out().node('c', name='c', bar=123)
)

No cartesian product, no unnecessary steps.

Change Notification

Ok, now you have a graph query defined. What does a notification result look like? Each result will be a
dictionary mapping a name that you have defined for a query object to object found. E.g. for following
query

node('a', name='a').out().node('b').out().node('c', name='c')

results will look like {'a': <node type='a'>, 'c': <node type='c'>}. Notice, only named objects are present
(there is no <node type='b'> in results, although that node is present in query because it does not have a
name).

You register a query to be monitored and a callback to execute if something will change. Later, if
someone will modify the graph being monitored, it will detect that new graph updates caused new
query results to appear, or old results to disappear or update. The response executes the callback that is
associated with the query. The callback receives the whole path from the query as a response, and a
specific action (added/updated/removed) to execute.

Notification Processing

When the result is passed to the processing (callback) function, from there you can specify reasoning
logic. This could really be anything, from generating logs, errors, to rendering configurations, or running
semantic validations. You could also modify the graph itself, using graph APIs and some other piece of
logic may react to changes you made. This way, you can enforce the graph as a single source of truth
while it also serves as a logical communication channel between pieces of your application logic. The
Graph API consists of three parts:

1155

Graph management - methods to add/update/remove stuff in a graph. add_node(), set_node(), del_node(),
get_node()add_relationship(), set_relationship(), del_relationship(), get_relationship(), commit() Query
get_nodes()get_relationships() Observable interface add_observer(),remove_observer()

Graph management APIs are self-explanatory. add_node() creates new node, set_node() updates properties
of existing node, and del_node() deletes a node.

commit() is used to signal that all updates to the graph are complete and they can be propagated to all
listeners.

Relationships have similar API.

The observable interface allows you to add/remove observers - objects that implement notification a
callback interface. Notification callback consists of three methods:

• on_node() - called when any node/relationship is added, removed or updated

• on_relationship() - called when any node/relationship is added, removed or updated

• on_graph() - called when the graph is committed

The Query API is the heart of our graph API and is what powers all searching. Both get_nodes() and
get_relationships() allow you to search for corresponding objects in a graph. Arguments to those
functions are constraints on searched objects.

E.g. get_nodes() returns you all nodes in a graph, get_nodes(type='system') returns you all system nodes,
get_nodes(type='system', role='spine') allows you to constrain returned nodes to those having particular
property values. Values for each argument could be either a plain value or a special property matcher
object. If the value is a plain value, the corresponding result object should have its property equal to the
given plain value. Property matchers allow you to express a more complex criterias, e.g. not equal, less
than, one of given values and so on:

NOTE: The example below is for directly using Graph python. For demonstration purposes, you
can replace graph.get_nodes with node in the Graph explorer. This specific example will not work
on the Apstra GUI.

graph.get_nodes(
 type='system',
 role=is_in(['spine', 'leaf']),
 system_id=not_none(),
)

1156

In your graph schema you can define custom indexes for particular node/relationship types and the
methods get_nodes() and get_relationships() pick the best index for each particular combination of
constraints passed to minimize search time.

Results of get_nodes()/get_relationships() are special iterator objects. You can iterate over them and they
will yield all found graph objects. You can also use APIs that those iterators provide to navigate those
result sets. E.g. get_nodes() returns you a NodeIterator object which has methods out() and in_(). You can
use those to get an iterator over all outgoing or incoming relationship from each node in the original
result set. Then, you can use those to get nodes on the other end of those relationships and continue
from them. You can also pass property constraints to those methods the same way you can do for
get_nodes() and get_relationships().

graph.get_nodes('system', role='spine') \
 .out('interface').node('interface', if_type='loopback')

The code in the example above finds all nodes with type system and role spine and then finds all their
loopback interfaces.

Putting It All Together

Thequery below is an example of an internal rule that Apstra can use to derive telemetry expectations --
for example, link and interface status. The @rule will insert a callback to process_spine_leaf_link, in
which case we write to telemetry expectations.

@rule(match(
 node('system', name='spine_device', role='spine')
 .out('hosted_interfaces')
 .node('interface', name='spine_if')
 .out('link')
 .node('link', name='link')
 .in_('link')
 .node('interface', name='leaf_if')
 .in_('hosted_interfaces')
 .node('system', name='leaf_device', role='leaf')
))
def process_spine_leaf_link(self, path, action):
 """
 Process link between spine and leaf

 """
 spine = path['spine_device']
 leaf = path['leaf_device']

1157

 if action in ['added', 'updated']:
 # do something with added/updated link
 pass
 else:
 # do something about removed link
 pass

Convenience Functions

To avoid creating complex where() clauses when building a graph query, use convenience functions,
available from the Apstra GUI.

1. From the blueprint navigate to the Staged view or Active view, then click the GraphQL API Explorer
button (top-right >_). The graph explorer opens in a new tab.

2. Type a graph query on the left. See function descriptions below.

3. From the Action drop-down list, select qe.

4. Click the Execute Query button (looks like a play button) to see results.

Functions

The Query Engine describes a number of helpful functions:

match(*path_queries)

This function returns a QueryBuilder object containing each result of a matched query. This is generally a
useful shortcut for grouping multiple match queries together.

1158

These two queries are not a 'path' together (no intended relationship). Notice the comma to separate out
arguments. This query will return all of the leaf devices and spine devices together.

match(
 node('system', name='leaf', role='leaf'),
 node('system', name='spine', role='spine'),
)

node(self, type=None, name=None, id=None, **properties)

• Parameters

• type (str or None) - Type of node to search for

• name (str or None) - Sets the name of the property matcher in the results

• id (str or None) - Matches a specific node by node ID in the graph

• properties (dict or None) - Any additional keyword arguments or additional property matcher
convenience functions to be used

• Returns - Query builder object for chaining queries

• Return type - QueryBuilder

While both a function, this is an alias for the PathQueryBuilder nodes -- see below.

iterate()

• Returns - generator

• Return type: generator

Iterate gives you a generator function that you can use to iterate on individual path queries as if it were
a list. For example:

def find_router_facing_systems_and_intfs(graph):
 return q.iterate(graph, q.match(
 q.node('link', role='to_external_router')
 .in_('link')
 .node('interface', name='interface')
 .in_('hosted_interfaces')
 .node('system', name='system')
))

1159

PathQueryBuilder Nodes

node(self, type=None, name=None, id=None, **properties)

This function describes specific graph node, but is also a shortcut for beginning a path query from a
specific node. The result of a `node() call returns a path query object. When querying a path, you usually
want to specify a node `type`: for example node('system') would return a system node.

• Parameters

• type (str or None) - Type of node to search for

• name (str or None) - Sets the name of the property matcher in the results

• id (str or None) - Matches a specific node by node ID in the graph

• properties (dict or None) - Any additional keyword arguments or additional property matcher
convenience functions to be used

• Returns - Query builder object for chaining queries

• Return type - QueryBuilder

If you want to use the node in your query results, you need to name it --node('system', name='device').
Furthermore, if you want to match specific kwarg properties, you can directly specify the match
requirements -

node('system', name='device', role='leaf')

node('system', name='device', role='leaf')

out(type=None, id=None, name=None, **properties)

Traverses a relationship in the 'out' direction according to a graph schema. Acceptable parameters are
the type of relationship (for example, interfaces), the specific name of a relationship, the id of a
relationship, or other property matches that must match exactly given as keyword arguments.

• Parameters

• type (str or None) - Type of node relationship to search for

• id (str or None) - Matches a specific relationship by relationship ID in the graph

• name (str or None) - Matches a specific relationship by named relationship

1160

For example:

node('system', name='system') \
 .out('hosted_interfaces')

in_(type=None, id=None, name=None, **properties)

Traverses a relationship in the 'in' direction. Sets current node to relationship source node. Acceptable
parameters are the type of relationship (for example, interfaces), the specific name of a relationship, the
id of a relationship, or other property matches that must match exactly given as keyword arguments.

• Parameters

• type (str or None) - Type of node relationship to search for

• id (str or None) - Matches a specific relationship by relationship ID in the graph

• name (str or None) - Matches a specific relationship by named relationship

• properties (dict or None) - Matches relationships by any further kwargs or functions

node('interface', name='interface') \
 .in_('hosted_interfaces')

where(predicate, names=None)

Allows you to specify a callback function against the graph results as a filter or constraint. The predicate
is a callback (usually lambda function) run against the entire query result. where() can be used directly on
an a path query result.

• Parameters

• predicate (callback) - Callback function to run against all nodes in graph

• names (str or None) - If names are given they are passed to callback function for match

node('system', name='system') \
 .where(lambda system: system.role in ('leaf', 'spine'))

enure_different(*names)

Allows a user to ensure two different named nodes in the graph are not the same. This is helpful for
relationships that may be bidirectional and could match on their own source nodes. Consider the query:

• Parameters

1161

• names (tuple or list) - A list of names to ensure return different nodes or relationships from the
graph

match(node('system', name='system', role='leaf') \
 .out('hosted_interfaces') \
 .node('interface', name='interface', ipv4_addr=not_none()) \
 .out('link') \
 .node('link', name='link') \
 .in_('link') \
 .node('interface', name='remote_interface', ipv4_addr=not_none())) \
 .ensure_different('interface', 'remote_interface')

The last line could be functionally equivalent to the where() function with a lambda callback function

match(node('system', name='system', role='leaf') \
 .out('hosted_interfaces') \
 .node('interface', name='interface', ipv4_addr=not_none()) \
 .out('link') \
 .node('link', name='link') \
 .in_('link') \
 .node('interface', name='remote_interface', ipv4_addr=not_none())) \
 .where(lambda interface, remote_interface: interface != remote_interface)

Property matchers

Property matches can be run on graph query objects directly - usually used within a node() function.
Property matches allow for a few functions.

eq(value)

Ensures the property value of the node matches exactly the results of the eq(value) function.

• Parameters

• value - Property to match for equality

node('system', name='system', role=eq('leaf'))

1162

Which is similar to simply setting a value as a kwarg on a node object:

node('system', name='system', role='leaf')

node('system', name='system').where(lambda system: system.role == 'leaf')

Returns:

{
 "count": 4,
 "items": [
 {
 "system": {
 "tags": null,
 "hostname": "l2-virtual-mlag-2-leaf1",
 "label": "l2_virtual_mlag_2_leaf1",
 "system_id": "000C29EE8EBE",
 "system_type": "switch",
 "deploy_mode": "deploy",
 "position": null,
 "role": "leaf",
 "type": "system",
 "id": "391598de-c2c7-4cd7-acdd-7611cb097b5e"
 }
 },
 {
 "system": {
 "tags": null,
 "hostname": "l2-virtual-mlag-2-leaf2",
 "label": "l2_virtual_mlag_2_leaf2",
 "system_id": "000C29D62A69",
 "system_type": "switch",
 "deploy_mode": "deploy",
 "position": null,
 "role": "leaf",
 "type": "system",
 "id": "7f286634-fbd1-43b3-9aed-159f1e0e6abb"
 }
 },
 {

1163

 "system": {
 "tags": null,
 "hostname": "l2-virtual-mlag-1-leaf2",
 "label": "l2_virtual_mlag_1_leaf2",
 "system_id": "000C29CFDEAF",
 "system_type": "switch",
 "deploy_mode": "deploy",
 "position": null,
 "role": "leaf",
 "type": "system",
 "id": "b9ad6921-6ce3-4d05-a5c7-c31d96785045"
 }
 },
 {
 "system": {
 "tags": null,
 "hostname": "l2-virtual-mlag-1-leaf1",
 "label": "l2_virtual_mlag_1_leaf1",
 "system_id": "000C297823FD",
 "system_type": "switch",
 "deploy_mode": "deploy",
 "position": null,
 "role": "leaf",
 "type": "system",
 "id": "71bbd11c-ed0f-4a38-842f-341781c01c24"
 }
 }
]
}

ne(value)

Not-equals. Ensures the property value of the node does NOT match results of ne(value) function

• Parameters

• value - Value to ensure for inequality condition

node('system', name='system', role=ne('spine'))

1164

Similar to:

node('system', name='system').where(lambda system: system != 'spine')

gt(value)

Greater-than. Ensures the property of the node is greater than the results of gt(value) function.

• Parameters

• value - Ensure property function is greater than this value

node('vn_instance', name='vlan', vlan_id=gt(200))

ge(value)

Greater-than or Equal To. Ensures the property of the node is greater than or equal to results of ge().

• Parameters: value - Ensure property function is greater than or equal to this value

node('vn_instance', name='vlan', vlan_id=ge(200))

lt(value)

Less-than. Ensures the property of the node is less than the results of lt(value).

• Parameters

• value - Ensure property function is less than this value

node('vn_instance', name='vlan', vlan_id=lt(200))

Similar to:

node('vn_instance', name='vlan').where(lambda vlan: vlan.vlan_id <= 200)

le(value)

Less-than or Equal to. Ensures the property is less than, or equal to the results of le(value) function.

• Parameters

1165

• value - Ensures given value is less than or equal to property function

node('vn_instance', name='vlan', vlan_id=le(200))

Similar to:

node('vn_instance', name='vlan').where(lambda vlan: vlan.vlan_id < 200)

is_in(value)

Is in (list). Check if the property is in a given list or set containing items is_in(value).

• Parameters

• value (list) - Ensure given property is in this list

node('system', name='system', role=is_in(['leaf', 'spine']))

Similar to:

node('system', name='system').where(lambda system: system.role in ['leaf', 'spine'])

not_in(value)

Is not in (list). Check if the property is NOT in a given list or set containing items not_in(value).

• Parameters

• value (list) - List Value to ensure property matcher is not in

node('system', name='system', role=not_in(['leaf', 'spine']))

Similar to:

node('system', name='system').where(lambda system: system.role not in ['leaf', 'spine'])

is_none()

1166

A query that expects is_none expects this particular attribute to be specifically None.

node('interface', name='interface', ipv4_addr=is_none()

Similar to:

node('interface', name='interface').where(lambda interface: interface.ipv4_addr is None)

not_none()

A matcher that expects this attribute to have a value.

node('interface', name='interface', ipv4_addr=not_none()

Similar to:

node('interface', name='interface').where(lambda interface: interface.ipv4_addr is not None)

Apstra Graph Datastore

The Apstra graph datastore is an in-memory graph database. The log file size is checked periodically, and
when a blueprint change is committed. If the graph datastore reaches 100MB or more, a new graph
datastore checkpoint file is generated. The database itself does not remove any graph datastore
persistence logs or checkpoint files. Apstra provides clean-up tools for the main graph datastore.

Valid graph datastore persistence file groups contain four files: log, log-valid, checkpoint, and checkpoint-
valid. Valid files are the effective indicators for log and checkpoint files. The name of each persistence
file has three parts: basename, id, and extension.

regex for sysdb persistence files.
e.g.
_Main-0000000059ba612e-00017938-checkpoint-valid
\--/ \-----------------------/ \--------------/
basename id extension

• basename - derived from the main graph datastore partition name.

• id - a unix timestamp obtained from gettimeofday. Seconds and microseconds in the timestamp are
separated by a "-". A persistence file group can be identified by id. The timestamp can also help to
determine the generated time sequence of persistence file groups.

1167

• extension - log, log-valid, checkpoint, or checkpoint-valid.

Juniper Apstra Technology Preview

Tech Previews give you the ability to test functionality and provide feedback during the development
process of innovations that are not final production features. The goal of a Tech Preview is for the
feature to gain wider exposure and potential full support in a future release. Customers are encouraged
to provide feedback and functionality suggestions for a Technology Preview feature before it becomes
fully supported.

Tech Previews may not be functionally complete, may have functional alterations in future releases, or
may get dropped under changing markets or unexpected conditions, at Juniper’s sole discretion. Juniper
recommends that you use Tech Preview features in non-production environments only.

Juniper considers feedback to add and improve future iterations of the general availability of the
innovations. Your feedback does not assert any intellectual property claim, and Juniper may implement
your feedback without violating your or any other party's rights.

These features are "as is" and voluntary use. Juniper Support will attempt to resolve any issues that
customers experience when using these features and create bug reports on behalf of support cases.
However, Juniper may not provide comprehensive support services to Tech Preview features. Certain
features may have reduced or modified security, accessibility, availability, and reliability standards
relative to General Availability software. Tech Preview is not supported under existing service
agreements, SLAs, or support service.

For additional details, please contact "Juniper Support " on page 802or your local account team.

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper
Networks, Inc. in the United States and other countries. All other trademarks, service marks, registered
marks, or registered service marks are the property of their respective owners. Juniper Networks assumes
no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change,
modify, transfer, or otherwise revise this publication without notice. Copyright © 2023 Juniper Networks,
Inc. All rights reserved.

1168

	Table of Contents
	Get Started
	Install Apstra Software
	Devices
	Design
	Resources
	Blueprints
	Next Steps

	Apstra GUI
	Access Apstra GUI
	Reset Apstra GUI Admin Password
	Check Apstra GUI Version
	Update Apstra GUI Version
	Restore Apstra GUI Version

	Design
	Logical Devices (Datacenter Design)
	Logical Device Overview
	Create Logical Device
	Edit Logical Device
	Delete Logical Device

	Interface Maps (Datacenter Design)
	Interface Map Overview
	Create Interface Map
	Example: Create Interface Map with Breakout Ports
	Example: Inter Port Constraints - Disabled Ports
	Edit Interface Map
	Delete Interface Map (Design)

	Rack Types (Datacenter Design)
	Rack Type Overview
	Create Rack Type
	Example: Create Rack Type
	Edit Rack Type in Global Catalog
	Edit Rack Type in Template
	Edit Rack Type in Blueprint
	Delete Rack Type

	Templates (Datacenter Design)
	Template Overview
	Create Rack Based Template
	Create Pod Based Template
	Create Collapsed Template
	Edit Template
	Update Rack Type in Rack Based Template
	Delete Template

	Config Templates (Freeform Design)
	Create Config Template
	Edit Config Template
	Delete Config Template

	Configlets (Datacenter Design)
	Configlet Overview
	Create Configlet
	Export / Edit / Delete Configlet (Design)
	Export Configlet
	Edit Configlet
	Delete Configlet

	Property Sets (Datacenter Design)
	Create Property Set (Datacenter Design)
	Edit / Delete Property Set (Datacenter Design)
	Edit Property Set
	Delete Property Set (Datacenter Design)

	TCP/UDP Port Aliases (Datacenter Design)
	TCP/UDP Port Alias Overview
	Create TCP/UDP Port Alias
	Edit TCP/UDP Port Alias
	Delete TCP/UDP Port Alias

	Tags (Design)
	Tags Overview
	Create Tag (Design)
	Edit Tag (Design)
	Delete Tag (Design)

	Devices
	Device Configuration Lifecycle
	Terminology
	Configuration Stages: Overview
	Configuration Stages: Detail
	View Device Config from Blueprint
	Configuration Deviations
	Device Offline (Unavailable)
	Manually Apply Full Config
	Deploy Modes

	Managed Devices Overview
	Add Device to Managed Devices
	Remove (Decommission) Device from Managed Devices
	Drain Device Traffic
	Edit Device
	Delete Device
	Upgrade Device NOS
	NOS Upgrade Overview
	Update User-defined Device Profiles
	Register / Upload OS Image
	Upgrade OS Image

	Device AAA
	Create Onbox Agent
	Create Offbox Agent
	Set Device Admin State
	Uninstall and Delete Agent
	Edit Agent
	Edit One Agent
	Edit Multiple Agents

	Edit Pristine Config
	Update Pristine Config from Device
	Juniper Device Agent
	Juniper ZTP
	Disable ZTP
	Appy Initial Juniper Junos Configuration
	Configure super-user User
	Configure IP address and Management VRF
	Configure SSH and NETCONF
	Add Junos License Configuration

	SONiC Device Agent
	SONiC Device Agent Overview
	Configure Management IP Manually (SONiC)
	Install Agent Manually (SONiC)
	Uninstall Agent Manually (SONiC)

	Cisco Device Agent
	Cisco NX-OS Device Agent Overview
	Device Configuration Requirements
	Resize and Enable Guestshell
	Download Agent Installer
	Install Cisco Device Agent
	Update Agent Config File and Start Service
	Activate Apstra Devices on Apstra Server
	Deploy Device
	Reset Apstra Device Agent
	Uninstall Apstra Device Agent
	Remove Apstra EEM Scripts
	Cisco Agent Troubleshooting

	Arista Device Agent
	Initial Arista EOS Configuration
	Decommission Device
	Remove Apstra Package from Device
	Restart System
	Manually Install Arista Device Agent
	Device Agent Configuration File
	Arista Agent Troubleshooting

	Telemetry (Devices)
	Services
	Service Registry
	Service Registry Overview
	Import Service Schemas
	Delete Service Registry

	Telemetry Collection Statistics
	Telemetry Streaming
	Route Anomalies for a Host - Example
	Telemetry Command Reference
	Cisco Telemetry
	Arista Telemetry Commands
	Linux Servers
	Debugging Telemetry

	Agent Profiles (Devices)
	Create Agent Profile
	Edit / Delete Agent Profile
	Edit Agent Profile
	Delete Agent Profile

	Packages (Devices)
	Packages Overview
	Upload Packages

	Apstra ZTP (Devices)
	Apstra ZTP Overview
	Download and Deploy Apstra ZTP VM
	Configure Static Management IP Address (Apstra ZTP)
	Configure ZTP User
	Configure DHCP Server
	Configure Controller IP Address for ZTP
	Edit Apstra ZTP Configuration File
	Apstra ZTP - Juniper
	Juniper and ZTP Disk Space
	Example: Juniper Junos ztp.json
	Example: Juniper Junos OS Evolved ztp.json
	Juniper Junos Bootstrap File
	Juniper Junos Custom Config File
	Restart Juniper Junos ZTP
	Troubleshoot Juniper Junos ZTP

	Apstra ZTP - SONiC
	Enterprise SONiC and ZTP Overview
	Example: Enterprise SONiC ztp.json
	Enterprise SONiC Custom Config File
	Restart Enterprise SONiC ZTP
	

	Apstra ZTP - Cisco
	Cisco NX-OS and ZTP Disk Space
	Example: Cisco NX-OS ztp.json
	Cisco NX-OS Custom Config File
	Cisco NX-OS Offbox Agent Custom Config File
	Restart Cisco NX-OS ZTP

	Apstra ZTP - Arista
	Arista EOS
	Example: Arista EOS ztp.json
	Arista EOS Custom Config File
	Restart Arista EOS ZTP

	Upgrade Apstra ZTP

	Device Profiles
	Device Profile Overview
	Create Device Profile
	Edit / Delete Device Profile
	Edit Device Profile
	Delete Device Profile

	Juniper Device Profiles
	SONiC Device Profile
	Background
	Problem Statement
	Solution
	User Interface
	Selector information
	Capabilities
	Interface naming conventions
	Troubleshooting
	Example: DP and port_config.ini

	Resources
	ASN Pools (Resources)
	ASN Pool Overview
	Create ASN Pool
	Edit ASN Pool
	Delete ASN Pool

	VNI Pools (Resources)
	VNI Pool Overview
	Create VNI Pool
	Edit VNI Pool
	Delete VNI Pool

	IP Pools (Resources)
	IP Pool Overview
	Create IPv4 Pool
	Edit IPv4 Pool
	Delete IPv4 Pool

	IPv6 Pools (Resources)
	IPv6 Pool Overview
	Create IPv6 Pool
	Edit IPv6 Pool
	Delete IPv6 Pool

	Datacenter Reference Design
	Create / Delete Datacenter Blueprint
	Create Datacenter Blueprint
	Delete Datacenter Blueprint

	Datacenter Blueprint Summary and Dashboard
	Blueprints Summary
	Blueprint Dashboard

	Assign Physical Resources (Datacenter)
	Update Physical Resource Assignments
	Reset Physical Resource Group Overrides

	Assign Device Profiles
	Configlets (Datacenter Blueprint)
	Import Configlet
	Edit / Delete Configlet (Blueprint)
	Edit Configlet Scope
	Edit Configlet Generators
	Delete Configlet

	Assign Configlet

	Topology (Datacenter)
	2D Topology View
	3D Topology View
	Neighbors Selection View
	Links Selection View
	Virtual Network Endpoints

	Nodes (Datacenter)
	Assign Device (Datacenter)
	Device Assignment Overview
	Assign Device(s) (from Devices Build Panel)
	Assign One Device (from Devices Build Panel)
	Assign One System ID (from Selection Panel)

	Unassign Device (Datacenter)
	Unassign Device (from Device Selection Panel)
	Unassign Device(s) (from Devices Build Panel)

	Set Deploy Mode (Datacenter)
	Set Deploy Mode (from Build Panel)
	Set Deploy Mode (from Selection Panel)
	Set Deploy Mode (from Nodes View)

	Generic Systems vs. External Generic Systems
	Add Generic System
	Add Generic System (from Topology View)
	Copy Existing Generic System (from Topology View)

	Add External Generic System
	Add External Generic System (from Topology View)
	Add External Generic System (from Nodes View)

	Add Access Switch
	Update Node Tags
	Update Node Tags (One Node)
	Update Node Tags (Multiple Nodes)

	Update Port Channel ID Range
	Update Port Channel ID Range (from Topology View)
	Update Port Channel ID Range (from Nodes view)

	Edit Hostname (Datacenter)
	Edit Hostname (from Build Panel)
	Edit Hostname (from Selection Panel)
	Edit Hostname (from Nodes View)

	Edit Generic System Name
	Edit Generic System Name (from Nodes View)

	Edit Device Properties (Datacenter)
	View Node's Static Routes
	Delete Node

	Links (Datacenter)
	Add Links to Leaf
	Add Links to Spine
	Add Links to Generic System
	Add Links to External Generic System
	Add Leaf Peer Links
	Form LAG
	Break LAG
	Update LAG Mode
	Update Link Tags
	Update Link Tags (One Link - Topology View)
	Update Link Tags (One Link - Links View)
	Update Link Tags (Multiple Link - Links View)

	Update Link Speed
	Update Link Speed (Topology View)
	Update Link Speed (Links View)

	Update Link Properties
	Delete Link (Datacenter)
	Delete Link (Neighbors View)
	Delete Link (Links View)

	Import / Export Cabling Map (Datacenter)
	Import Cabling Map
	Export Cabling Map

	Edit Cabling Map (Datacenter)
	Edit Cabling Map (GUI)
	Edit Cabling Map (JSON)

	Fetch Discovered LLDP Data (Datacenter)

	Racks (Datacenter)
	Change Rack Name
	Add Rack
	Export Rack Type
	Edit Rack
	Delete Rack

	Pods (Datacenter)
	Add Pod (5-Stage Only)
	Change Pod Name
	Add Spine per Pod
	Add Link per Superspine (5-Stage)
	Change Link Speed per Superspine (5-Stage)
	Change Spine Logical Device (Pod)
	Delete Pod

	Planes (Datacenter)
	Add Superspine per Plane
	Change Superspine Logical Device (Plane)

	Virtual Networks
	Assign Virtual Resources
	Update Virtual Resources Assignments
	Reset Virtual Resource Group Overrides

	Create Virtual Networks
	Create Virtual Networks (using GUI)
	Create Virtual Networks (using CSV File)

	Assign / Unassign Virtual Networks
	Assign / Unassign One Virtual Network
	Assign / Unassign Multiple Virtual Networks

	Import / Export Virtual Networks
	Import Virtual Networks
	Export Virtual Networks

	Edit Virtual Networks
	Edit One Virtual Network
	Edit Multiple Virtual Networks

	Delete Virtual Networks
	Delete One Virtual Network
	Delete Multiple Virtual Networks

	Routing Zones
	Create Routing Zones
	Create Routing Zones (using GUI)
	Create Routing Zones (using CSV File)

	Assign DHCP Server to Routing Zone
	Assign Resources to Routing Zone
	Import / Export Routing Zones
	Import Routing Zones
	Export Routing Zones

	Edit Routing Zones
	Edit One Routing Zone
	Edit Multiple Routing Zones

	Delete Routing Zones
	Delete One Routing Zone
	Delete Multiple Routing Zones

	Static Routes (Virtual)
	Protocol Sessions (Virtual)
	Data Center Interconnect (DCI) / Remote EVPN Gateways (Virtual)
	DCI / EVPN Gateway Overvew
	DCI Deployment Options
	Implementation
	Apstra Workflow

	Virtual Infra (Virtual)
	vCenter Virtual Infra
	VMware vSphere Integration Overview
	Enable vCenter Integration
	VM Visibility
	Validate Virtual Infra Integration
	Auto-Remediation Overview
	Enable Auto-Remediation
	Remediate Probe Anomalies
	Disable Virtual Infra Integration

	NSX-T Integration
	VMware NSX-T Integration Overview
	Enable NSX-T Integration
	Virtual Infrastructure Visibility
	Validate Virtual Infra Integration
	Disable Virtual Infra Integration

	NSX-T Edge and Connectivity Templates
	Overview
	Set Up NSX-T Tier-0 Router BGP peering
	Set Up NSX-T VRF Lite
	Set Up Default Static Route towards NSX-T Edge
	Set Up BGP IPv6 towards NSX-T Edge
	Un-assign BGP on VXLAN VN towards NSX-T Edge

	NSX-T Inventory Mapping to Apstra Virtual Infrastructure
	Overview
	NSX-T Networking Terminology and correlation
	NSX Inventory Model
	Model Details and Relationship

	Endpoints Overview (Virtual)
	Internal Endpoints (Virtual)
	Create Internal Endpoint
	Edit Internal Endpoint
	Delete Internal Endpoint

	External Endpoints (Virtual)
	Create External Endpoint
	Edit External Endpoint
	Delete External Endpoint

	Enforcement Points (Virtual)
	Endpoint Groups (Virtual)
	Create Endpoint Group
	Edit Endpoint Group
	Delete Endpoint Group

	Policies (Datacenter) Staged
	Security Policies
	Security Policy Overview
	Security Policy Parameters
	Create Security Policy
	Policy Errors
	Edit Security Policy
	Delete Security Policy
	Security Policy Search
	Security Policy Conflicts
	Security Policy Settings

	Interface Policies
	Routing Policies
	Routing Policy Overview
	Create Routing Policy
	Edit Routing Policy
	Delete Routing Policy

	Routing Zone (VRF) Constraints
	Create Routing Zone Groups (Optional)
	Create Routing Zone Constraint Policy
	Edit / Delete Routing Zone Constraint Policy
	Apply Routing Zone Constraint

	Fabric Addressing Policy
	Enable IPv6 Applications
	ESI MAC Most Significant Byte

	Virtual Network Policy
	Virtual Network Policy Overview
	Modify Virtual Network Policy

	Anti-Affinity Policy
	Anti-Affinity Policy Overview
	Enable/Disable Anti-Affinity Policy

	Validation Policy

	Logical Devices (Datacenter Blueprint)
	Logical Devices Overview (Blueprint Catalog)
	Export Logical Device

	Interface Maps (Datacenter Blueprint)
	Interface Maps Overview (Blueprint)
	Import Interface Map
	Delete Interface Map (Blueprint)

	Property Sets (Datacenter Blueprint)
	Import / Re-import Property Set (Datacenter Blueprint)
	Import Property Set
	Re-import Property Set

	Delete Property Set (Datacenter Blueprint)

	AAA Servers (Datacenter Blueprint)
	AAA Servers Overview
	Create AAA Server
	Edit AAA Server
	Delete AAA Server
	AAA RADIUS Server Configuration Tasks
	Client Supplicant Configuration Tasks

	Tags (Datacenter Blueprint)
	Tags Overview (Blueprint)
	Search Tags (Blueprint)
	Find by Tags
	Create Tag (Blueprint)
	Import Tag
	Export Tag
	Edit Tag (Blueprint)
	Delete Tag (Blueprint)

	Tasks (Datacenter) Staged
	Connectivity Templates
	Primitives
	Virtual Network (Single) Primitive
	Virtual Network (Multiple) Primitive
	IP Link Primitive
	Static Route Primitive
	Custom Static Route Primitive
	BGP Peering (IP Endpoint) Primitive
	BGP Peering (Generic System) Primitive
	Dynamic BGP Peering Primitive
	Routing Policy Primitive
	Routing Zone Constraint Primitive
	User-defined
	Pre-defined

	Create Connectivity Template for Multiple VNs on Same Interface (Example)
	Create Connectivity Template for Layer 2 Connected External Router (Example)
	Assign Connectivity Template
	Assign Connectivity Template Overview
	Method 1
	Method 2
	Force Assign VN Templates

	Edit Connectivity Template
	Delete Connectivity Template

	Active (Datacenter Blueprint)
	Active Blueprint Overview
	Selection Panel
	Status Panel
	Topology (Active)
	2D Topology View (Active)
	3D Topology View (Active)
	Neighbors View (Active)
	Links View (Active Topology)
	Virtual Networks Endpoints (Active)
	Headroom (Topology)

	Nodes (Active)
	Active Nodes Overview
	Apply Full Config

	Links (Active)
	Active Links Overview
	Export Cabling Map

	Racks (Active)
	Change Rack Name

	Pods (Active)
	Query
	Anomalies (Service)
	Discovery Anomalies
	Configuration Deviation

	Root Causes
	Root Cause Overview
	Enable Root Cause Analysis
	View Root Cause Analysis

	BGP Route Tagging

	Freeform Reference Design
	Freeform Overview
	Freeform Workflow
	Create / Delete Freeform Blueprint
	Create Freeform Blueprint
	Delete Freeform Blueprint

	Freeform Blueprint Summary and Dashboard
	Blueprints Summary
	Blueprint Dashboard

	Topology (Freeform)
	Systems (Freeform)
	Create Internal System (Freeform)
	Create Internal System (from Topology Editor)
	Create Internal System (from Systems View)
	Clone Internal System (from Topology Editor)
	Clone Internal System (from Systems View)

	Create External System (Freeform)
	Create External System (from Topology Editor)
	Create External System (from Systems View)
	Clone External System (from Topology Editor)
	Clone External System (from Systems View)

	Edit System Properties (Freeform)
	Delete System (Freeform)
	Delete System (from Topology Editor)
	Delete System (from Systems View)

	Assign Config Template
	Remove Config Template Assignment
	Set Deploy Mode (Freeform)
	Set Deploy Mode on One System
	Set Deploy Modes on Multiple Systems

	Assign System (Freeform)
	Assign System(s) (from Systems View)
	Assign System (from Topology Editor)
	Assign System (from Device Panel)

	Unassign System (Freeform)
	Unassign System(s) (from Systems View)
	Unassign System (from Topology Editor)
	Unassign System (from Device Panel)

	Device Context (Freeform)
	Links (Freeform)
	Add Link (Freeform)
	Edit Cabling Map (Freeform)
	Fetch Discovered LLDP Data (Freeform)
	Manage Link Tags (Freeform)
	Delete Link (Freeform)

	Config Templates (Freeform Blueprint)
	A Simple Config Template
	Config Template With Variable
	Config Template and Property Sets
	Create Config Template (Freeform Blueprint)
	Edit / Delete Config Template (Freeform)
	Edit Config Template
	Delete Config Template

	Import / Export Config Template (Freeform)
	Import Config Template
	Export Config Template

	Import Device Profile (Freeform)
	Property Sets (Freeform Blueprints)
	Create Property Set (Freeform Blueprint)
	Create Property Set with Builder
	Create Property Set with Editor

	Edit / Delete Property Set (Freeform Blueprint)
	Edit Property Sets
	Delete Property Sets

	Tags (Freeform Blueprint)
	Create Tag (Freeform Blueprint)
	Edit / Delete Tag (Freeform Blueprint)
	Edit Tags
	Delete Tag

	Tasks - Staged (Freeform)
	Active
	Traffic Heat (Freeform)

	Commit Blueprint
	Uncommitted Overview
	Review Staged Changes
	Commit Staged Changes
	Revert Staged Changes

	Time Voyager
	Time Voyager Overview
	Jump to Previous Blueprint Revision
	Keep Saved Blueprint Revision
	Update Blueprint Revision Description
	Delete Kept Blueprint Revision

	Analytics
	Analytics Overview
	Analytics Dashboard
	Configure Auto-Enabled Dashboards
	Instantiate Predefined Dashboard
	Create Analytics Dashboard
	Edit / Delete Dashboard
	Edit Dashboard
	Delete Dashboard

	Anomalies (Analytics)
	Widgets Overview
	Create Anomaly Heat Map Widget
	Create Stage Widget
	Create Stage Widget from Widgets View
	Create Stage Widget from Probes View

	Edit / Delete Widget
	Edit Widget
	Delete Widget

	Probes
	IBA Probes Overview

	Instantiate Predefined Probe
	Create Probe
	Import / Export Probe
	Import Probe
	Export Probe

	Edit / Delete Probe
	Edit Probe
	Delete Probe

	Providers (External Systems)
	LDAP Provider
	Create LDAP Provider
	Configure LDAP Provider

	Active Directory Provider
	Create Active Directory Provider

	TACACS+ Provider
	Create TACACS+ Provider
	Configure TACACS+ Provider

	RADIUS Provider
	RADIUS Limitations
	Create RADIUS Provider

	Edit / Delete Provider
	Edit Provider
	Delete Provider

	Provider Role Map Overview
	Create Provider Role Map
	Edit / Delete Role Map
	Edit Role Map
	Delete Role Map

	Platform
	User/Role Management (Platform)
	User Profile Management
	User Role Management
	User Profile Use Cases
	Use Case Overview

	Create User Profile
	Change Apstra GUI User Password
	Log Out User
	Edit / Delete User Profile
	Edit User Profile
	Delete User Profile

	User Role Use Cases
	Use Cases Overview

	Create User Role
	Edit / Delete User Role
	Edit User Role
	Delete User Role

	Security (Platform)
	Allowed List
	Allowed List Overview
	Add IP/Subnet to Allowed List
	Edit IP/Subnet to Allowed List
	Delete IP/Subnet from Allowed List

	Banned List
	Banned List Overview
	Delete IP/Subnet from Banned List

	ACL Rules
	Overview
	Enable / Disable ACL Rules
	Add ACL Rule
	Edit ACL Rule
	Delete ACL Rule

	Rate Limit Configuration
	Rate Limit Configuration Overview
	Edit Rate Limit Configuration

	Edit Password Complexity Requirements

	Syslog Configuration (Platform)
	Syslog Overview
	Create Syslog Config
	Edit Syslog Config
	Delete Syslog Config

	Receivers (Platform)
	Streaming Receivers Overview
	Create Receiver
	Delete Receiver
	Configure Receivers Using Telegraf Plugin

	Global Statistics (Platform)
	Event Log (Platform)
	Event Log Overview
	Export Event Log to CSV File
	Send Event Log to External System

	Apstra VM Clusters
	Apstra Cluster Nodes
	Nodes Overview
	Create Apstra Node
	Edit Apstra Node
	Delete Apstra Node

	Apstra Cluster Management
	Change Cluster Application Memory Usage (API)

	Developers (Platform)
	Authenticate User (API)
	Resource Pools (API)
	Configlets (API)
	Property Sets (API)
	Interface Descriptions (API)
	Probes (API)
	RCI Fault Model (API)
	Health Check Apstra VMs (API)
	API From Python
	REST API Explorer

	Juniper Technical Support
	Show Tech: Apstra Controller and Device Agents (GUI)
	Show Tech: Offbox Agents (CLI)
	Show Tech: Infra Offbox Agents (CLI)
	Show Tech: Apstra Controller (CLI)
	Show Tech: Onbox Agents (CLI)

	Favorites & User
	Manage Favorites
	Change Your User Password
	Change Your User Name/Email
	Log Out

	Apstra Server Management
	Monitor Apstra Server via CLI
	Restart Apstra Server
	Reset Apstra Server VM Password
	Reinstall Apstra Server
	Apstra Database Overview
	Back up Apstra Database
	Restore Apstra Database
	Reset Apstra Database
	Migrate Apstra Database
	Replace SSL Certificate on Apstra Server with Signed One
	Replace SSL Certificate on Apstra Server with Self-Signed One
	Change Apstra Server Hostname

	Apstra CLI Utility
	Install Apstra-CLI
	Access Apstra-CLI

	Guides
	Extensible Telemetry Guide
	Extensible Telemetry Overview
	Set Up Development Environment
	Develop Collector
	Write Collector
	Unit Test Collector
	Package Collector
	Upload Packages
	Use Telemetry Collector

	5-Stage Clos Architecture
	5-Stage Clos Overview
	Create 5-Stage Clos Network
	Modify 5-stage Clos Network

	Juniper EVPN Support
	Overview
	EVPN multi-homing Terminology and Concepts
	Topology Specification
	EVPN Services
	Configuration Rendering

	Intent-Based Analytics with apstra-cli Utility
	IBA with apstra-cli Overview
	Install apstra-cli
	Install Packages
	Create Agent Profiles
	Create Agents
	Update Agents from apstra-cli
	Install IBA Probes
	Apstra IBA Probes Examples

	AOSOM-Streaming Guide
	AOSOM-Streaming Overview
	Configure Aosom-Streaming
	Reconfigure Aosom-streaming after Apstra Server Upgrade
	Build Aosom-Streaming VM (Optional)
	Troubleshooting

	Mixed Uplink Speeds between Leaf Devices and Spine Devices

	References
	Apstra Feature Matrix
	Apstra 4.1.2 Feature Matrix
	Apstra 4.1.1 Feature Matrix
	Apstra 4.1.0 Feature Matrix

	Qualified Devices and NOS
	Apstra Release 4.1.2
	Apstra Release 4.1.1
	Apstra Release 4.1.0

	NOS Upgrade Paths (Devices)
	Predefined Dashboards (Analytics)
	Device Environmental Health Summary Dashboard (New in 4.1.2)
	Device Health Summary Dashboard
	Device Telemetry Health Summary Dashboard (New in 4.1.2)
	Drain Validation Dashboard
	Throughput Health MLAG Dashboard
	Traffic Trends Dashboard
	Virtual Infra Fabric Health Check Dashboard
	Virtual Infra Redundancy Check Dashboard

	Predefined Probes (Analytics)
	BGP Session Flapping Probe
	Bandwidth Utilization Probe
	Critical Services: Utilization, Trending, Alerting Probe
	Device Environmental Checks Probe (New in 4.1.2)
	Device System Health Probe
	Device Telemetry Health Probe
	Device Traffic Probe
	Drain Traffic Anomaly Probe
	ECMP Imbalance (External Interfaces) Probe
	ECMP Imbalance (Fabric Interfaces) Probe
	ECMP Imbalance (Spine to Superspine Interfaces) Probe
	ESI Imbalance Probe
	EVPN Host Flapping Probe
	EVPN VXLAN Type-3 Route Validation Probe
	EVPN VXLAN Type-5 Route Validation Probe
	External Routes Probe
	Hot/Cold Interface Counters (Fabric Interfaces) Probe
	Hot/Cold Interface Counters (Specific Interfaces) Probe
	Hot/Cold Interface Counters (Spine to Superspine Interfaces) Probe
	Hypervisor and Fabric LAG Config Mismatch Probe (Virtual Infra)
	Hypervisor and Fabric VLAN Config Mismatch Probe (Virtual Infra)
	Hypervisor & Fabric VLAN Config Mismatch Probe Overview
	Usage with NSX-T Integration
	Usage with VCenter Integration

	Hypervisor MTU Mismatch Probe (Virtual Infra)
	Hypervisor MTU Threshold Check Probe (Virtual Infra)
	Hypervisor Missing LLDP Config Probe (Virtual Infra)
	Hypervisor Redundancy Checks Probe (Virtual Infra)
	Interface Flapping (Fabric Interfaces) Probe
	Interface Flapping (Specific Interfaces) Probe
	Interface Flapping (Specific Interfaces) Probe
	Interface Policy 802.1x Probe
	LAG Imbalance Probe
	Leafs Hosting Critical Services: Utilization, Trending, Alerting Probe
	Link Fault Tolerance in Leaf and Access LAGs Probe
	MLAG Imbalance Probe
	Multiagent Detector Probe
	Optical Transceivers Probe
	Packet Discard Percentage Probe
	Spine Fault Tolerance Probe
	Total East/West Traffic Probe
	VMs without Fabric Configured VLANs Probe (Virtual Infra)
	VXLAN Flood List Validation Probe

	Probe Processors (Analytics)
	Processor: Accumulate
	Processor: Average
	Processor: Comparison
	Processor: EVPN Type 3
	Processor: EVPN Type 5
	Processor: Extensible Service Data Collector
	Processor: Generic Graph Collector
	Processor: Generic Service Data Collector
	Processor: Interface Counters
	Processor: Logical Operator
	Processor: Match Count
	Processor: Match Percentage
	Processor: Match String
	Processor: Max
	Processor: Min
	Processor: Periodic Average
	Processor: Range
	Processor: Ratio
	Processor: Service Data Collector
	Processor: Set Comparison
	Processor: Set Count
	Processor: Standard Deviation
	Processor: State
	Processor: Subtract
	Processor: Sum
	Processor: System Utilization
	Processor: Time in State
	Processor: Traffic Monitor
	Processor: Union
	Processor: VXLAN Floodlist

	Configlet Examples (Design)
	Apstra-CLI Commands
	Apstra EVPN Support Addendum
	Qualified Vendor and NOS
	Limitations
	TCAM Carving in NX-OS
	Arista EOS VxLAN Routing
	Graph Node VTEP Types

	Apstra Server Configuration File
	Agent Configuration File (Devices)
	Controller Section
	Service Section
	Logrotate Section
	Device Info Section
	Device Profile Section

	Graph
	Graph Overview
	Query Specification
	Change Notification
	Notification Processing
	Putting It All Together
	Convenience Functions
	Apstra Graph Datastore

	Juniper Apstra Technology Preview

