Help us improve your experience.

Let us know what you think.

Do you have time for a two-minute survey?

 
 

QFX5100 Site Guidelines and Requirements

Environmental Requirements and Specifications for a QFX5100 Device

The switch must be installed in a rack or cabinet. It must be housed in a dry, clean, well-ventilated, and temperature-controlled environment.

Follow these environmental guidelines:

  • The site must be as dust-free as possible, because dust can clog air intake vents and filters, reducing the efficiency of the switch cooling system.

  • Maintain ambient airflow for normal switch operation. If the airflow is blocked or restricted, or if the intake air is too warm, the switch might overheat, leading to the switch temperature monitor shutting down the device to protect the hardware components.

Table 1 provides the required environmental conditions for normal switch operation.

Table 1: QFX5100 Switch Environmental Tolerances

Description

Tolerance

Altitude

No performance degradation to 6,562 feet (2000 meters)

Relative humidity

Normal operation ensured in relative humidity range of 5% through 90%, noncondensing

  • Short-term operation ensured in relative humidity range of 5% through 93%, noncondensing

    Note:

    As defined in NEBS GR-63-CORE, Issue 3, short-term events can be up to 96 hours in duration but not more than 15 days per year.

Temperature

  • Normal operation ensured in temperature range of 32° F through 104° F (0° C through 40° C)

    Note:

    Customers with QFX5100-48T switches should ensure the room temperature does not exceed a 2° C increase or decrease per minute.

  • Nonoperating storage temperature in shipping container: –40° F through 158° F (–40° C through 70° C)

Seismic

Designed to comply with Zone 4 earthquake requirements per NEBS GR-63-CORE, Issue 3.

Note:

Install QFX Series devices only in restricted areas, such as dedicated equipment rooms and equipment closets, in accordance with Articles 110-16, 110-17, and 110-18 of the National Electrical Code, ANSI/NFPA 70.

General Site Guidelines

Efficient device operation requires proper site planning and maintenance and proper layout of the equipment, rack or cabinet (if used), and wiring closet.

To plan and create an acceptable operating environment for your device and prevent environmentally caused equipment failures:

  • Keep the area around the chassis free from dust and conductive material, such as metal flakes.

  • Follow prescribed airflow guidelines to ensure that the cooling system functions properly and that exhaust from other equipment does not blow into the intake vents of the device.

  • Follow the prescribed electrostatic discharge (ESD) prevention procedures to prevent damaging the equipment. Static discharge can cause components to fail completely or intermittently over time.

  • Install the device in a secure area, so that only authorized personnel can access the device.

Site Electrical Wiring Guidelines

Table 2 describes the factors you must consider while planning the electrical wiring at your site.

Warning:

You must provide a properly grounded and shielded environment and use electrical surge-suppression devices.

Avertissement Vous devez établir un environnement protégé et convenablement mis à la terre et utiliser des dispositifs de parasurtension.

Table 2: Site Electrical Wiring Guidelines

Site Wiring Factor

Guidelines

Signaling limitations

If your site experiences any of the following problems, consult experts in electrical surge suppression and shielding:

  • Improperly installed wires cause radio frequency interference (RFI).

  • Damage from lightning strikes occurs when wires exceed recommended distances or pass between buildings.

  • Electromagnetic pulses (EMPs) caused by lightning damage unshielded conductors and electronic devices.

Radio frequency interference

To reduce or eliminate RFI from your site wiring, do the following:

  • Use a twisted-pair cable with a good distribution of grounding conductors.

  • If you must exceed the recommended distances, use a high-quality twisted-pair cable with one ground conductor for each data signal when applicable.

Electromagnetic compatibility

If your site is susceptible to problems with electromagnetic compatibility (EMC), particularly from lightning or radio transmitters, seek expert advice.

Some of the problems caused by strong sources of electromagnetic interference (EMI) are:

  • Destruction of the signal drivers and receivers in the device

  • Electrical hazards as a result of power surges conducted over the lines into the equipment

Grounding Cable and Lug Specifications for a QFX5100 Device

For installations that require a separate grounding conductor to the chassis, the switch must be adequately grounded before power is connected to ensure proper operation and to meet safety and electromagnetic interference (EMI) requirements. To ground a QFX5100 device, connect a grounding cable to earth ground and then attach it to the chassis grounding points.

Warning:

The switch is pluggable type A equipment installed in a restricted-access location. It has a separate protective earthing terminal provided on the chassis in addition to the grounding pin of the power supply cord. This separate protective earthing terminal must be permanently connected to earth ground for installations that require a separate grounding conductor to the chassis.

Warning:

To comply with GR-1089 requirements, all intra-building copper cabling used for SFP+ and QSFP+ ports must be shielded and grounded at both ends.

CAUTION:

Before switch installation begins, a licensed electrician must attach a cable lug to the grounding cables that you supply. See Connecting Earth Ground to a QFX5100 Device. A cable with an incorrectly attached lug can damage the switch.

Before connecting the switch to earth ground, review the following information:

  • A protective earthing terminal bracket is provided in the accessory kit for connecting the switch to earth ground. This L-shaped bracket attaches to the side of the QFX5100 chassis through the mounting bracket, providing a protective earthing terminal for the switch.

  • The grounding lug required is a Panduit LCD10-10A-L or equivalent (not provided).. The grounding lug should accommodates 14–10 AWG (2–5.3 mm²) stranded wire.

  • The grounding cable that you provide for a QFX5100 device must be 14 AWG (2 mm²), minimum 60° C wire, or as permitted by the local code.

  • Ensure you have two SAE 10-32 washers and screws to attach the cable and bracket (not provided).

Rack Requirements for a QFX5100 Device

All QFX5100 devices are designed to be installed on four-post racks. The QFX5100-96S device can also be installed on two-post racks.

Rack requirements consist of:

  • Rack type

  • Mounting bracket hole spacing

  • Rack size and strength

Table 3 provides the rack requirements and specifications for the QFX5100 device.

Table 3: Rack Requirements for the QFX5100 Device

Rack Requirement

Guidelines

Rack type (all product SKUs)

Use a four-post rack that provides bracket holes or hole patterns spaced at 1 U (1.75 in. or 4.45 cm) increments and that meets the size and strength requirements to support the weight.

A U is the standard rack unit defined in Cabinets, Racks, Panels, and Associated Equipment (document number EIA-310–D) published by the Electronics Industry Association.

Rack type (QFX5100-96S only)

Use a two-post or four-post rack that provides bracket holes or hole patterns spaced at 1 U (1.75 in. or 4.45 cm) increments and that meets the size and strength requirements to support the weight.

Mounting bracket hole spacing (all product SKUs)

The holes in the mounting brackets are spaced at 1 U (1.75 in. or 4.45 cm), so that the switch can be mounted in any rack that provides holes spaced at that distance.

Rack size and strength (all product SKUs)

  • Ensure that the rack complies with the standards for a 19-in. or 23-in. rack as defined in Cabinets, Racks, Panels, and Associated Equipment (document number EIA-310–D) published by the Electronics Industry Association.

  • A 600-mm rack as defined in the four-part Equipment Engineering (EE); European telecommunications standard for equipment practice (document numbers ETS 300 119-1 through 119-4) published by the European Telecommunications Standards Institute.

    The horizontal spacing between the rails in a rack that complies with this standard is usually wider than the device's mounting brackets, which measure 19 in. (48.26 cm) from outer edge to outer edge. Use approved wing devices to narrow the opening between the rails as required.

  • Ensure that the rack rails are spaced widely enough to accommodate the switch chassis’ external dimensions. The outer edges of the front-mounting brackets extend the width to 28.5 in. (72.4 cm) to 31.5 in. (80 cm).

  • For four-post installations, the front and rear rack rails must be spaced between 28.5 in. (72.4 cm) to 31.5 in. (80 cm) front-to-back.

  • The rack must be strong enough to support the weight of the switch.

  • Ensure that the spacing of rails and adjacent racks allows for proper clearance around the switch and rack.

Rack connection to building structure

  • Secure the rack to the building structure.

  • If earthquakes are a possibility in your geographical area, secure the rack to the floor.

  • Secure the rack to the ceiling brackets as well as wall or floor brackets for maximum stability.

Cabinet Requirements for a QFX5100 Device

You can mount the QFX5100 device in an enclosure or cabinet that contains a four-post 19-in. open rack as defined in Cabinets, Racks, Panels, and Associated Equipment (document number EIA-310-D) published by the Electronics Industry Association.

Cabinet requirements consist of:

  • Cabinet size and clearance

  • Cabinet airflow requirements

Table 4 provides the cabinet requirements and specifications for the QFX5100 device.

Table 4: Cabinet Requirements for the QFX5100 Device

Cabinet Requirement

Guidelines

Cabinet size and clearance

The minimum cabinet size for accommodating a QFX5100 device is 36 in. (91.4 cm) deep. Large cabinets improve airflow and reduce the chance of overheating.

Cabinet airflow requirements

When you mount the switch in a cabinet, ensure that ventilation through the cabinet is sufficient to prevent overheating.

  • Ensure that the cool air supply you provide through the cabinet adequately dissipates the thermal output of the switch (or switches).

  • Ensure that the cabinet allows the chassis hot exhaust air to exit the cabinet without recirculating into the switch. An open cabinet (without a top or doors) that employs hot air exhaust extraction from the top allows the best airflow through the chassis. If the cabinet contains a top or doors, perforations in these elements assist with removing the hot air exhaust.

  • The QFX5100 device fans exhaust hot air either through the vents on the port panel or through the fans and power supplies. Install the switch in the cabinet in a way that maximizes the open space on the FRU side of the chassis. This maximizes the clearance for critical airflow.

  • Route and dress all cables to minimize the blockage of airflow to and from the chassis.

  • Ensure that the spacing of rails and adjacent cabinets allows for the proper clearance around the switch and cabinet.