Abbreviated Table of Contents

<table>
<thead>
<tr>
<th>Part</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>About</td>
<td>This Guide</td>
<td>xv</td>
</tr>
<tr>
<td>Part 1</td>
<td>Administration</td>
<td></td>
</tr>
<tr>
<td>Chapter 1</td>
<td>Administration</td>
<td>3</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Monitoring Security Devices</td>
<td>61</td>
</tr>
<tr>
<td>Part 2</td>
<td>Index</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>119</td>
</tr>
</tbody>
</table>
Table of Contents

About This Guide .. xv

Document Conventions .. xv

Document Feedback .. xvii

Requesting Technical Support xviii

Part 1 Administration

Chapter 1 Administration ... 3

Federal Information Processing Standards (FIPS) ... 3

- Power-On Self-Test ... 4
- Config-Data Integrity Test ... 5
- Firmware Integrity Test ... 5
- Self-Test on Demand by Administrator ... 5
- Self-Test After Key Generation ... 5
- Periodic Self-Test ... 6

Management with the Web User Interface ... 6

- WebUI Help ... 7
- Copying the Help Files to a Local Drive ... 7
- Pointing the WebUI to the New Help Location ... 7

HyperText Transfer Protocol .. 8

- Session ID ... 8

Secure Sockets Layer ... 9

- SSL Configuration .. 10
- Redirecting HTTP to SSL ... 12

Management with the Command Line Interface ... 13

- Telnet .. 13

Secure Telnet Connections ... 14

- Secure Shell ... 15

- Client Requirements ... 16

- Basic SSH Configuration on the Device ... 16

Authenticaion .. 18

- Binding a PKA key to administrator ... 18

- Binding a PKA certificate to administrator ... 20

- SSH and Vsys ... 20

- Host Key .. 20

- Host Certificate .. 21

- Example: SSHv1 with PKA for Automated Logins ... 22

Secure Copy .. 22

- WebUI ... 23

- CLI ... 23

- Serial Console .. 23
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Console</td>
<td>24</td>
</tr>
<tr>
<td>Remote Console Using V.92 Modem Port</td>
<td>24</td>
</tr>
<tr>
<td>Remote Console Using an AUX Port</td>
<td>25</td>
</tr>
<tr>
<td>Modem Port</td>
<td>26</td>
</tr>
<tr>
<td>Management with the Network and Security Manager</td>
<td>26</td>
</tr>
<tr>
<td>Initiating Connectivity Between NSM Agent and the MGT System</td>
<td>27</td>
</tr>
<tr>
<td>Enabling, Disabling, and Unsetting NSM Agent</td>
<td>28</td>
</tr>
<tr>
<td>Setting the Primary Server IP Address of the Management System</td>
<td>29</td>
</tr>
<tr>
<td>Controlling Administrative Traffic</td>
<td>32</td>
</tr>
<tr>
<td>MGT and VLAN1 Interfaces</td>
<td>33</td>
</tr>
<tr>
<td>Setting Manage IPs for Multiple Interfaces</td>
<td>36</td>
</tr>
<tr>
<td>Levels of Administration</td>
<td>38</td>
</tr>
<tr>
<td>Defining Admin Users</td>
<td>41</td>
</tr>
<tr>
<td>Example: Adding a Read-Only Admin</td>
<td>41</td>
</tr>
<tr>
<td>Example: Modifying an Admin</td>
<td>41</td>
</tr>
<tr>
<td>Example: Viewing the Configuration State</td>
<td>31</td>
</tr>
<tr>
<td>Example: Retrieving the Configuration Hash</td>
<td>31</td>
</tr>
<tr>
<td>Example: Administration Through the MGT Interface</td>
<td>34</td>
</tr>
<tr>
<td>Example: Administration Through the VLAN1 Interface</td>
<td>34</td>
</tr>
<tr>
<td>Setting Administrative Interface Options</td>
<td>34</td>
</tr>
<tr>
<td>Setting Administrative Interface Options</td>
<td>35</td>
</tr>
<tr>
<td>Setting Manage IPs for Multiple Interfaces</td>
<td>36</td>
</tr>
<tr>
<td>Root Administrator</td>
<td>38</td>
</tr>
<tr>
<td>Read/Write Administrator</td>
<td>40</td>
</tr>
<tr>
<td>Read-Only Administrator</td>
<td>40</td>
</tr>
<tr>
<td>Virtual System Administrator</td>
<td>40</td>
</tr>
<tr>
<td>Virtual System Read-Only Administrator</td>
<td>41</td>
</tr>
<tr>
<td>WebUI</td>
<td>28</td>
</tr>
<tr>
<td>CLI</td>
<td>28</td>
</tr>
<tr>
<td>WebUI</td>
<td>29</td>
</tr>
<tr>
<td>CLI</td>
<td>29</td>
</tr>
<tr>
<td>WebUI</td>
<td>29</td>
</tr>
<tr>
<td>CLI</td>
<td>29</td>
</tr>
<tr>
<td>WebUI</td>
<td>30</td>
</tr>
<tr>
<td>CLI</td>
<td>30</td>
</tr>
<tr>
<td>WebUI</td>
<td>30</td>
</tr>
<tr>
<td>CLI</td>
<td>30</td>
</tr>
<tr>
<td>WebUI</td>
<td>32</td>
</tr>
<tr>
<td>CLI</td>
<td>32</td>
</tr>
<tr>
<td>WebUI</td>
<td>35</td>
</tr>
<tr>
<td>CLI</td>
<td>35</td>
</tr>
<tr>
<td>WebUI</td>
<td>37</td>
</tr>
<tr>
<td>CLI</td>
<td>37</td>
</tr>
<tr>
<td>WebUI</td>
<td>37</td>
</tr>
<tr>
<td>CLI</td>
<td>37</td>
</tr>
<tr>
<td>WebUI</td>
<td>38</td>
</tr>
<tr>
<td>Role Attributes</td>
<td>38</td>
</tr>
<tr>
<td>WebUI</td>
<td>41</td>
</tr>
<tr>
<td>CLI</td>
<td>41</td>
</tr>
<tr>
<td>WebUI</td>
<td>41</td>
</tr>
<tr>
<td>CLI</td>
<td>41</td>
</tr>
<tr>
<td>WebUI</td>
<td>41</td>
</tr>
<tr>
<td>CLI</td>
<td>41</td>
</tr>
</tbody>
</table>
Example: Deleting an Admin .. 42
 WebUI ... 42
 CLI ... 42
Example: Configuring Admin Accounts for Dialup Connections 42
 WebUI ... 43
 CLI ... 43
Example: Clearing an Admin’s Sessions .. 43
 WebUI ... 43
 CLI ... 43
Securing Administrative Traffic .. 43
 WebUI ... 44
 CLI ... 44
Changing the Port Number .. 44
 WebUI ... 44
 CLI ... 44
Changing the Admin Login Name and Password 44
 Example: Changing an Admin User’s Login Name and Password 45
 Example: Changing Your Own Password 46
Setting the Minimum Length of the Root Admin Password 46
Resetting the Device to the Factory Default Settings 47
Restricting Administrative Access ... 47
 Example: Restricting Administration to a Single Workstation 48
 Example: Restricting Administration to a Subnet 48
 Restricting the Root Admin to Console Access 48
 Monitoring Admin access .. 48
VPN Tunnels for Administrative Traffic 50
 Administration Through a Route-Based Manual Key VPN Tunnel 51
 Administration Through a Policy-Based Manual Key VPN Tunnel 54
Password Policy .. 58
 Setting a Password Policy .. 58
 CLI ... 59
 Removing a Password Policy .. 59
 CLI ... 59
 Viewing a Password Policy .. 59
 Recovering from a Rejected Default Admin Password 59
 CLI ... 59
 Creating a Login Banner .. 60
Chapter 2 Monitoring Security Devices .. 61
Storing Log Information .. 61
Event Log .. 62
 Viewing the Event Log by Severity Level and Keyword 63
 WebUI ... 63
 CLI ... 63
 WebUI ... 63
 CLI ... 63
 WebUI ... 63
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>64</td>
</tr>
<tr>
<td>Sorting and Filtering the Event Log</td>
<td>64</td>
</tr>
<tr>
<td>WebUI</td>
<td>65</td>
</tr>
<tr>
<td>CLI</td>
<td>65</td>
</tr>
<tr>
<td>Downloading the Event Log</td>
<td>65</td>
</tr>
<tr>
<td>Example: Downloading the Entire Event Log</td>
<td>65</td>
</tr>
<tr>
<td>Example: Downloading the Event Log for Critical Events</td>
<td>65</td>
</tr>
<tr>
<td>Traffic Log</td>
<td>66</td>
</tr>
<tr>
<td>WebUI</td>
<td>66</td>
</tr>
<tr>
<td>CLI</td>
<td>66</td>
</tr>
<tr>
<td>WebUI</td>
<td>66</td>
</tr>
<tr>
<td>CLI</td>
<td>66</td>
</tr>
<tr>
<td>Viewing the Traffic Log</td>
<td>67</td>
</tr>
<tr>
<td>WebUI</td>
<td>67</td>
</tr>
<tr>
<td>CLI</td>
<td>67</td>
</tr>
<tr>
<td>WebUI</td>
<td>67</td>
</tr>
<tr>
<td>CLI</td>
<td>67</td>
</tr>
<tr>
<td>WebUI</td>
<td>68</td>
</tr>
<tr>
<td>CLI</td>
<td>68</td>
</tr>
<tr>
<td>WebUI</td>
<td>68</td>
</tr>
<tr>
<td>CLI</td>
<td>69</td>
</tr>
<tr>
<td>Removing the Reason for Close Field</td>
<td>70</td>
</tr>
<tr>
<td>WebUI</td>
<td>70</td>
</tr>
<tr>
<td>CLI</td>
<td>70</td>
</tr>
<tr>
<td>Self Log</td>
<td>71</td>
</tr>
<tr>
<td>WebUI</td>
<td>71</td>
</tr>
<tr>
<td>CLI</td>
<td>71</td>
</tr>
<tr>
<td>Viewing the Self Log</td>
<td>71</td>
</tr>
<tr>
<td>WebUI</td>
<td>71</td>
</tr>
<tr>
<td>CLI</td>
<td>71</td>
</tr>
<tr>
<td>WebUI</td>
<td>72</td>
</tr>
<tr>
<td>CLI</td>
<td>72</td>
</tr>
<tr>
<td>Storing Debug Information</td>
<td>72</td>
</tr>
<tr>
<td>Downloading the Self Log</td>
<td>73</td>
</tr>
<tr>
<td>WebUI</td>
<td>73</td>
</tr>
<tr>
<td>CLI</td>
<td>73</td>
</tr>
<tr>
<td>Downloading the Asset Recovery Log</td>
<td>73</td>
</tr>
<tr>
<td>WebUI</td>
<td>73</td>
</tr>
<tr>
<td>CLI</td>
<td>74</td>
</tr>
<tr>
<td>Traffic Alarms</td>
<td>74</td>
</tr>
<tr>
<td>Example: Policy-Based Intrusion Detection</td>
<td>74</td>
</tr>
<tr>
<td>WebUI</td>
<td>75</td>
</tr>
<tr>
<td>CLI</td>
<td>75</td>
</tr>
<tr>
<td>Example: Compromised System Notification</td>
<td>75</td>
</tr>
<tr>
<td>WebUI</td>
<td>75</td>
</tr>
<tr>
<td>CLI</td>
<td>76</td>
</tr>
<tr>
<td>Example: Sending Email Alerts</td>
<td>76</td>
</tr>
<tr>
<td>WebUI</td>
<td>76</td>
</tr>
<tr>
<td>CLI</td>
<td>76</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Security Alarms and Audit Logs</td>
<td>77</td>
</tr>
<tr>
<td>Enabling Security Alarms</td>
<td>77</td>
</tr>
<tr>
<td>WebUI</td>
<td>78</td>
</tr>
<tr>
<td>CLI</td>
<td>78</td>
</tr>
<tr>
<td>WebUI</td>
<td>78</td>
</tr>
<tr>
<td>CLI</td>
<td>78</td>
</tr>
<tr>
<td>Setting Potential-Violation Security Alarms</td>
<td>79</td>
</tr>
<tr>
<td>Example: Configuring a Device to Trigger a Potential-Violation Alarm</td>
<td>80</td>
</tr>
<tr>
<td>Configuring Exclude Rules</td>
<td>80</td>
</tr>
<tr>
<td>Example: Setting an Exclude Rule to Exclude an Event for the Audit Log</td>
<td>81</td>
</tr>
<tr>
<td>Syslog</td>
<td>81</td>
</tr>
<tr>
<td>Enabling Syslog on Backup Devices</td>
<td>82</td>
</tr>
<tr>
<td>WebUI</td>
<td>82</td>
</tr>
<tr>
<td>CLI</td>
<td>82</td>
</tr>
<tr>
<td>Example: Enabling Multiple Syslog Servers</td>
<td>82</td>
</tr>
<tr>
<td>WebUI</td>
<td>82</td>
</tr>
<tr>
<td>CLI</td>
<td>83</td>
</tr>
<tr>
<td>WebTrends</td>
<td>83</td>
</tr>
<tr>
<td>WebUI</td>
<td>84</td>
</tr>
<tr>
<td>CLI</td>
<td>85</td>
</tr>
<tr>
<td>Simple Network Management Protocol</td>
<td>85</td>
</tr>
<tr>
<td>SNMPv1 and SNMPv2c Implementation Overview</td>
<td>88</td>
</tr>
<tr>
<td>SNMPv3 Implementation Overview</td>
<td>89</td>
</tr>
<tr>
<td>Defining a Read/Write SNMP Community</td>
<td>90</td>
</tr>
<tr>
<td>WebUI</td>
<td>90</td>
</tr>
<tr>
<td>CLI</td>
<td>91</td>
</tr>
<tr>
<td>Configuring a MIB Filter in the SNMP Community</td>
<td>91</td>
</tr>
<tr>
<td>Example</td>
<td>91</td>
</tr>
<tr>
<td>Example: Configuring an SNMPv3 packet</td>
<td>92</td>
</tr>
<tr>
<td>WebUI</td>
<td>92</td>
</tr>
<tr>
<td>CLI</td>
<td>94</td>
</tr>
<tr>
<td>VPN Tunnels for Self-Initiated Traffic</td>
<td>95</td>
</tr>
<tr>
<td>Example: Self-Generated Traffic Through a Route-Based Tunnel</td>
<td>96</td>
</tr>
<tr>
<td>WebUI (Device-A)</td>
<td>97</td>
</tr>
<tr>
<td>CLI (Device-A)</td>
<td>99</td>
</tr>
<tr>
<td>WebUI (Device-B)</td>
<td>100</td>
</tr>
<tr>
<td>CLI (Device-B)</td>
<td>101</td>
</tr>
<tr>
<td>Example: Self-Generated Traffic Through a Policy-Based Tunnel</td>
<td>102</td>
</tr>
<tr>
<td>WebUI (Device-A)</td>
<td>103</td>
</tr>
<tr>
<td>CLI (Device-A)</td>
<td>106</td>
</tr>
<tr>
<td>WebUI (Device-B)</td>
<td>108</td>
</tr>
<tr>
<td>CLI (Device-B)</td>
<td></td>
</tr>
<tr>
<td>Viewing Screen Counters</td>
<td>109</td>
</tr>
<tr>
<td>WebUI</td>
<td>115</td>
</tr>
<tr>
<td>CLI</td>
<td>116</td>
</tr>
</tbody>
</table>
List of Figures

About This Guide

- About This Guide .. xv
- Figure 1: Images in Illustrations .. xvii

Part 1 Administration

Chapter 1

- Administration ... 3
- Figure 2: WebUI ... 6
- Figure 3: Session ID with a NAT device .. 8
- Figure 4: Session ID with Source IP Address .. 9
- Figure 5: SSL Client to Server .. 9
- Figure 6: Redirection of HTTP to SSL .. 12
- Figure 7: Establishing a Telnet Connection .. 14
- Figure 8: SSH Traffic Flow .. 15
- Figure 9: SSH Connection .. 16
- Figure 10: Remote Console Management Connection .. 25
- Figure 11: Remote Console Management Connection .. 26
- Figure 12: Security Device with NSM Agent Enabled .. 27
- Figure 13: Setting Management IPs for Multiple Interfaces .. 37
- Figure 14: Administration Through a Route-Based Manual Key VPN Tunnel .. 51
- Figure 15: Administration Through a Policy-Based Manual Key VPN Tunnel .. 55

Chapter 2

- Monitoring Security Devices .. 61
- Figure 16: Traffic Through a Route-Based Tunnel .. 97
- Figure 17: Traffic Through a Policy-Based Tunnel .. 103
List of Tables

Part 1 Administration

Chapter 1 Administration

Table 1: Cryptographic Algorithms .. 4
Table 2: Privileges for Administrators According to Role Attribute 39

Chapter 2 Monitoring Security Devices ... 61

Table 3: Reason Codes for Session Close ... 69
Table 4: WELF Logs ... 84
Table 5: RFC List ... 85
Table 6: Trap Alarm Types ... 87
Table 7: Proxy IDs for Route-Based Tunnel .. 96
Table 8: Proxy IDs for Policy-Based Tunnel .. 103
Table 9: Screen Counters ... 109
Table 10: Hardware Counters ... 111
Table 11: Flow Counters ... 112

Copyright © 2012, Juniper Networks, Inc.
About This Guide

Juniper Networks security devices provide different ways for you to manage the devices, either locally or remotely. This guide contains the following chapters:

- “Administration” on page 3 explains the different means available for managing a security device both locally and remotely. This chapter also explains the privileges pertaining to each of the four levels of network administrators that can be defined.
- “Monitoring Security Devices” on page 61 explains various monitoring methods and provides guidance in interpreting monitoring output.
- Document Conventions on page xv
- Document Feedback on page xvii
- Requesting Technical Support on page xviii

Document Conventions

This document uses the conventions described in the following sections:

- Web User Interface Conventions on page xv
- Command Line Interface Conventions on page xvi
- Naming Conventions and Character Types on page xvi
- Illustration Conventions on page xvii

Web User Interface Conventions

The Web user interface (WebUI) contains a navigational path and configuration settings. To enter configuration settings, begin by clicking a menu item in the navigation tree on the left side of the screen. As you proceed, your navigation path appears at the top of the screen, with each page separated by angle brackets.

The following example shows the WebUI path and parameters for defining an address:

Policy > Policy Elements > Addresses > List > New: Enter the following, then click OK:

Address Name: addr_1
IP Address/Domain Name:
 IP/Netmask: (select), 10.2.2.5/32
Zone: Untrust

To open Online Help for configuration settings, click the question mark (?) in the upper right of the screen.
The navigation tree also provides a Help > Config Guide configuration page to help you configure security policies and Internet Protocol Security (IPSec). Select an option from the list, and follow the instructions on the page. Click the ? character in the upper right for Online Help on the Config Guide.

Command Line Interface Conventions

The following conventions are used to present the syntax of command line interface (CLI) commands in text and examples.

In text, commands are in **boldface** type and variables are in *italic* type.

In examples:

- Variables are in *italic* type.
- Anything inside square brackets [] is optional.
- Anything inside braces { } is required.
- If there is more than one choice, each choice is separated by a pipe (|). For example, the following command means “set the management options for the ethernet1, the ethernet2, or the ethernet3 interface”:

```
set interface { ethernet1 | ethernet2 | ethernet3 } manage
```

NOTE: When entering a keyword, you only have to type enough letters to identify the word uniquely. Typing `setadminuwhhejj12fmt54` will enter the command `setadminuserwheezerrj12fmt54`. However, all the commands documented in this guide are presented in their entirety.

Naming Conventions and Character Types

ScreenOS employs the following conventions regarding the names of objects—such as addresses, admin users, auth servers, IKE gateways, virtual systems, VPN tunnels, and zones—defined in ScreenOS configurations:

- If a name string includes one or more spaces, the entire string must be enclosed within double quotes; for example:

```
set address trust "local LAN" 10.1.1.0/24
```

- Any leading spaces or trailing text within a set of double quotes are trimmed; for example, “local LAN” becomes “local LAN”.

- Multiple consecutive spaces are treated as a single space.

- Name strings are case-sensitive, although many CLI keywords are case-insensitive. For example, “local LAN” is different from “local lan”.

ScreenOS supports the following character types:

- Single-byte character sets (SBCS) and multiple-byte character sets (MBCS). Examples of SBCS are ASCII, European, and Hebrew. Examples of MBCS—also referred to as double-byte character sets (DBCS)—are Chinese, Korean, and Japanese.
NOTE: A console connection only supports SBCS. The WebUI supports both SBCS and MBCS, depending on the character sets that your browser supports.

Figure 1 on page xvii shows the basic set of images used in illustrations throughout this guide.

Figure 1: Images in Illustrations

- Autonomous System or Virtual Routing Domain
- Local Area Network (LAN) with a Single Subnet or Security Zone
- Internet
- Dynamic IP Pool (DIP)
- Security Zone Interfaces: White = Protected Zone IF (Example: Trust Zone); Black = Outside Zone IF (Example: Untrust Zone)
- Policy Engine
- Generic Network Device
- Tunnel Interface
- Server
- VPN Tunnel
- Router
- Juniper Networks Security Devices
- Switch
- Hub

Document Feedback

If you find any errors or omissions in this document, contact Juniper Networks at techpubs-comments@juniper.net.
Requesting Technical Support

Technical product support is available through the Juniper Networks Technical Assistance Center (JTAC). If you are a customer with an active J-Care or JNASC support contract, or are covered under warranty, and need postsales technical support, you can access our tools and resources online or open a case with JTAC.

- JTAC policies—For a complete understanding of our JTAC procedures and policies, review the JTAC User Guide located at http://www.juniper.net/customers/support/downloads/710059.pdf.
- Product warranties—For product warranty information, visit http://www.juniper.net/support/warranty/.
- JTAC hours of operation—The JTAC centers have resources available 24 hours a day, 7 days a week, 365 days a year.

Self-Help Online Tools and Resources

For quick and easy problem resolution, Juniper Networks has designed an online self-service portal called the Customer Support Center (CSC) that provides you with the following features:

- Find CSC offerings—http://www.juniper.net/customers/support/
- Search for known bugs—Find product documentation—http://www.juniper.net/techpubs/
- Find solutions and answer questions using our Knowledge Base—http://kb.juniper.net/
- Download the latest versions of software and review your release notes—http://www.juniper.net/customers/csc/software/
- Search technical bulletins for relevant hardware and software notifications—http://www.juniper.net/alerts/
- Join and participate in the Juniper Networks Community Forum—http://www.juniper.net/company/communities/
- Open a case online in the CSC Case Manager—http://www.juniper.net/customers/cm/
- To verify service entitlement by product serial number, use our Serial Number Entitlement (SNE) Tool—https://tools.juniper.net/SerialNumberEntitlementSearch/

Opening a Case with JTAC

You can open a case with JTAC on the Web or by telephone.

- Use the Case Manager tool in the CSC at http://www.juniper.net/customers/cm/.
- Call 1-888-314-JTAC (1-888-314-5822—toll free in USA, Canada, and Mexico).

For international or direct-dial options in countries without toll-free numbers, visit us at http://www.juniper.net/customers/support/requesting-support/.
PART 1

Administration

- Administration on page 3
- Monitoring Security Devices on page 61
CHAPTER 1

Administration

This chapter describes management methods and tools, methods for securing administrative traffic, and the administrative privilege levels that you can assign to admin users. This chapter contains the following sections:

- Federal Information Processing Standards (FIPS) on page 3
- Management with the Web User Interface on page 6
- Management with the Command Line Interface on page 13
- Management with the Network and Security Manager on page 26
- Controlling Administrative Traffic on page 32
- Levels of Administration on page 38
- Defining Admin Users on page 41
- Securing Administrative Traffic on page 43
- Password Policy on page 58
- Creating a Login Banner on page 60

Federal Information Processing Standards (FIPS)

Federal Information Processing Standards (FIPS) specify the security requirements that a cryptographic module employed within a security system should comply with. FIPS requires that the system provide a self-test function for cryptographic algorithms at power on and conditional test. Juniper Networks security devices comply with FIPS by supporting this self-test on power-on.

Juniper Networks security devices support the self-test functions for the following situations:

- At power on
- On demand
- After key generation
- For periodic self-tests

Table 1 on page 4 lists the algorithms that the system tests as part of the FIPS requirements.
Table 1: Cryptographic Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSA</td>
<td>Digital Signatures Algorithm</td>
</tr>
<tr>
<td>ECDSA</td>
<td>Elliptic Curve Digital Signatures Algorithm</td>
</tr>
<tr>
<td>RSA</td>
<td>Rivest, Shamir and Adleman Algorithm</td>
</tr>
<tr>
<td>DES</td>
<td>Data Encryption Standard</td>
</tr>
<tr>
<td>DRNG</td>
<td>Deterministic Random Number Generator</td>
</tr>
<tr>
<td>SHA</td>
<td>Deterministic Random Number Generator</td>
</tr>
<tr>
<td>DH</td>
<td>Diffie-Hellman</td>
</tr>
<tr>
<td>HMAC</td>
<td>Keyed-Hash Message Authentication Code</td>
</tr>
<tr>
<td>AES</td>
<td>Advanced Encryption Standard</td>
</tr>
</tbody>
</table>

Power-On Self-Test

When the device powers on, the system performs a set of cryptographic algorithm self-tests. These tests run after the hardware self-tests are complete and before the system loads the device configuration files. When the system completes its power-on self-test (POST), it generates a message displaying the results. If the POST fails, the device halts; no traffic is passed and the status LED blinks red.

The system performs the following cryptographic algorithm tests as part of its POST:

- Advanced Encryption Standard (AES)
- Triple Data Encryption Standard (3DES)
- Secure Hash Algorithm 1 (SHA-1) and Secure Hash Algorithm 2 (SHA-256)
- Hashed Message Authentication Code (HMAC) SHA-1
- RSA known-answer test
- Digital Signature Algorithm (DSA) known-answer test
- Elliptical Curve Digital Signature Algorithm (ECDSA) known-answer test
- American National Standards Institute (ANSI) X9.32 DRNG
- Diffie-Hellman (DH) algorithm
- Elliptical Curve Diffie-Hellman (ECDH) algorithm

In addition to these tests, the system also performs the config-data integrity and firmware integrity tests as part of the POST.
Config-Data Integrity Test

In a config-data integrity test, the system calculates the SHA1 value for the configuration data and writes it in a new file. Whenever the system executes the config-data integrity test, it recalculates the hash value based on the configuration data and compares it with the hash value stored in the new file. If both values are the same, the device passes the config-data test.

Similarly, the system calculates the checksum of the public key infrastructure (PKI) database and stores it in flash memory. Whenever the PKI data changes, the checksum is recalculated and stored in the flash. When the config-data integrity test is executed, the system recalculates the checksum using the latest PKI database and compares it with the checksum stored in flash memory. If both checksums match, the PKI database is uncorrupted.

Firmware Integrity Test

Whenever the system administrator downloads the image using the save software command or through the boot loader, the system verifies the digital signature of the image against the original digital image that was signed using DSA. If the verification fails, the system does not write the image to the flash.

In the current release, you can configure a default gateway to download a boot loader or a new image from a TFTP server when upgrading using the boot loader method. After initialization, the boot loader prompts you to provide an input. To upgrade the boot loader from the TFTP server, press the X and A keys simultaneously. You can hit any key for downloading a new image from the TFTP server. For the boot loader to start the TFTP process, you should specify the IP address of your device, the mask of the subnet, the gateway to be used, and the IP address of your TFTP server. If the device address and the TFTP server address are not in the same subnet segment, the boot loader uses the specified gateway to initiate the TFTP process.

Self-Test on Demand by Administrator

The administrator can invoke the FIPS self-test at run time with the exec fips-mode self-test command. The cryptographic algorithms that are tested are similar to those tested at self-test on power up. In addition to those tests, the system also performs the config-data and firmware integrity tests as part of the self-test on demand. If the device fails the self-test, the system sends an error message to the console and the buffer and stores it in the event log. If the periodic self-test is running when the administrator invokes the self-test on demand, the system prompts the admin to try again later.

Any audit, cryptographic, or security administrator can execute the self-test on demand.

Self-Test After Key Generation

Administrators can configure the FIPS self-test to run immediately after the generation of a key by using the set fips-mode self-test afterkeygen command. This option is available only for asymmetric cryptographic algorithms such as DSA, RSA, ECDSA, and ECDH. The system will run pair-wise consistency tests on these algorithms.
NOTE: Only cryptographic administrators can enable and disable the self-test after key generation feature.

Periodic Self-Test

Administrators can also configure the system to run periodic self-tests by using the `set fips-mode self-test interval` command. Administrators can set the run interval for these tests from 1 to 24 hours. The cryptographic algorithms run during periodic self-tests are the same as those run at POST. Additionally, the system also performs the config-data and firmware integrity tests as part of the periodic self-test.

NOTE: Only security administrators can configure the periodic self-test feature.

Management with the Web User Interface

You can use the Web user interface (WebUI) to configure and manage the software for Juniper Networks security devices. Figure 2 on page 6 shows the WebUI window. The left pane contains the navigation menu, and the right pane displays the navigation window.

![WebUI](image)

To use the WebUI, you must have the following application and connection:

- Microsoft Internet Explorer (version 5.5 or later) or Netscape Communicator (version 4.7 or later)
- TCP/IP network connection to the security device
WebUI Help

You also have the option of relocating the Help files. You might want to store them locally and point the WebUI to either the administrator’s workstation or a secured server on the local network. In case you do not have Internet access, storing the Help files locally provides accessibility to them you otherwise would not have.

Copying the Help Files to a Local Drive

The Help files are available on the documentation CD. You can modify the WebUI to point to the Help files on the CD in your local CD drive. You can also copy the files from the CD to a server on your local network or to another drive on your workstation and configure the WebUI to invoke the Help files from that location.

NOTE: If you want to run the Help files directly from the documentation CD, you can skip this procedure. Proceed to “Pointing the WebUI to the New Help Location” on page 7.

1. Load the documentation CD in the CD drive of your workstation.
2. Navigate to the CD drive and copy the directory named help.
3. Navigate to the location where you want to store the Help directory and paste the Help directory there.

Pointing the WebUI to the New Help Location

You must now redirect the WebUI to point to the new location of the Help directory. Change the default URL to the new file path, where path is the specific path to the Help directory from the administrator’s workstation.

1. Configuration > Admin > Management: In the Help Link Path field, replace the default URL:

 http://help.juniper.net/help/english/screenos_version/filename.htm

 with

 (for local drive) file://path.../help

 or

 (for local server) http://server_name.../path/help

2. Click Apply.

 When you click the help link in the upper right corner of the WebUI, the device now uses the new path that you specified in the Help Link Path field to locate the appropriate Help file.
HyperText Transfer Protocol

With a standard browser, you can access, monitor, and control your network security configurations remotely using HyperText Transfer Protocol (HTTP).

You can secure HTTP administrative traffic by encapsulating it in a virtual private network (VPN) tunnel or by using the Secure Sockets Layer (SSL) protocol. You can further secure administrative traffic by completely separating it from network user traffic. To do this, you can run all administrative traffic through the MGT interface—available on some security devices—or bind an interface to the MGT zone and devote it exclusively to administrative traffic.

NOTE: For more information, see “Secure Sockets Layer” on page 9, “MGT and VLAN1 Interfaces” on page 33, and “VPN Tunnels for Administrative Traffic” on page 50.

Session ID

The security device assigns each HTTP administrative session a unique session ID. For security devices that support virtual systems (vsys), the ID is globally unique across all systems—root and vsys.

Each session ID is a 39-byte number resulting from the combination of five pseudo-randomly generated numbers. The randomness of the ID generation—versus a simple numerical incremental scheme—makes the ID nearly impossible to predict. Furthermore, the randomness combined with the length of the ID makes accidental duplication of the same ID for two concurrent administrative sessions extremely unlikely.

The following are two benefits that a session ID provides to administrators:

- Figure 3 on page 8 illustrates how the security device can distinguish concurrent sessions from multiple admins behind a NAT device that assigns the same source IP address to all outbound packets.

Figure 3: Session ID with a NAT device

- Figure 4 on page 9 illustrates how the security device can distinguish concurrent root-level admin sessions from the same source IP address to the root system and from there to different virtual systems.
Secure Sockets Layer (SSL) is a set of protocols that can provide a secure connection between a Web client and a Web server communicating over a TCP/IP network. SSL consists of the SSL Handshake Protocol (SSLHP), which can allow the client and server to authenticate each other and negotiate an encryption method, and the SSL Record Protocol (SSLRP), which provides basic security services to higher-level protocols such as HTTP. These two protocols operate at the following two layers in the Open Systems Interconnection (OSI) Model:

- SSLHP at the Application Layer (Layer 7)
- SSLRP at the Presentation Layer (Layer 6)

Independent of application protocol, SSL uses TCP to provide secure service (see Figure 5 on page 9). SSL uses certificates to authenticate first the server or both the client and the server, and then encrypt the traffic sent during the session. ScreenOS supports authentication only of the server (security device), not the client (administrator attempting to connect to the security device through SSL).

A Juniper Networks security device can redirect administrative traffic using HTTP (default port 80) to SSL (default port 443). The default certificate for SSL is the automatically generated self-signed certificate, although you can later use a different certificate if you want. Because SSL is integrated with PKI key/certificate management, you can select...
the SSL certificate from any in the certificate list. You can also use the same certificate for an IPsec VPN.

NOTE: For information about redirecting administrative HTTP traffic to SSL, see “Redirecting HTTP to SSL” on page 12. For information about self-signed certificates, see Self Signed Certificates. For information on obtaining certificates, see Certificates and CRLs.

The ScreenOS implementation of SSL provides the following capabilities, compatibilities, and integration:

- SSL server authentication (not SSL server and client authentication); that is, the security device authenticates itself to the administrator attempting to connect through SSL, but the administrator does not use SSL to authenticate himself to the device
- SSL version 3 compatibility (not version 2)
- Compatibility with Netscape Communicator 4.7x and later and Internet Explorer 5.x and later
- Public Key Infrastructure (PKI) key management integration (see Public Key Cryptography)
- The following encryption algorithms for SSL:
 - RC4-40 with 40-bit keys
 - RC4 with 128-bit keys
 - DES: Data Encryption Standard with 56-bit keys
 - 3DES: Triple DES with 168-bit keys
- The same authentication algorithms for SSL as for VPNs:
 - Message Digest version 5 (MD5)—128-bit keys
 - Secure Hash Algorithm version 1 (SHA-1)—160-bit keys
 - Secure Hash Algorithm version 2 (SHA-2)—256-bit keys

NOTE: The RC4 algorithms are always paired with MD5; DES and 3DES are always paired with SHA-1.

SSL Configuration

The basic steps for setting up SSL are as follows:

1. Make use of the self-signed certificate that the security device automatically generates during its initial bootup, or create another self-signed certificate, or obtain a CA-signed certificate and load it on the device.
NOTE: Check your browser to see how strong the ciphers can be and which ones your browser supports. (Both the security device and your browser must support the same kind and size of ciphers you use for SSL.) In Internet Explorer 5x, click Help, About Internet Explorer, and read the section about cipher strength. To obtain the advanced security package, click Update Information. In Netscape Communicator, click Help, About Communicator, and read the section about RSA. To change the SSL configuration settings, click Security Info, Navigator, Configure SSL v3. For more information, see Self Signed Certificates. For details on requesting and loading a certificate, see Certificates and CRLs.

2. Enable SSL management.

NOTE: SSL is enabled by default.

WebUI

Configuration > Admin > Management: Enter the following, then click Apply:

SSL: (select)
Port: Use the default port number (443) or change it to another.
Certificate: Select the certificate you intend to use from the drop-down list.
Cipher: Select the cipher you intend to use from the drop-down list.

NOTE: If you change the SSL port number, the admins need to specify the nondefault port number when entering the URL in their browser.

CLI

```
set ssl port num
set ssl cert id_num
set ssl encrypt { { 3des | des } sha-1 | { rc4 | rc4-40 } | md5 }
set ssl enable
save
```

NOTE: To learn the ID number for a certificate, use the following command: get pki x509 list cert.

3. Configure the interface through which you manage the security device to permit SSL management:

WebUI

Network > Interfaces > Edit (for the interface you want to manage): Select the SSL management service check box, then click OK.
CLI

set interface interface manage ssl
save

1. Connect to the security device through the SSL port. When you enter the IP address for managing the security device in the browser’s URL field, change http to https, and follow the IP address with a colon and the HTTPS (SSL) port number if you have changed it from the default. For example:
 https://123.45.67.89:1443).

Redirecting HTTP to SSL

The security device can redirect administrative traffic using HTTP (default port 80) to SSL (default port 443), as shown in Figure 6 on page 12.

During the SSL handshake, the security device sends Alice its certificate. Alice encrypts a random number with the public key contained in the certificate and sends it back to the device, which uses its private key to decrypt the number. Both participants then use the shared random number and a negotiated secret key cipher (3DES, DES, RC4, or RC4-40) to create a shared secret key, which they use to encrypt traffic between themselves. They also use an agreed-upon compression method (PKZip or gzip) to compress data and an agreed-upon hash algorithm (SHA-1 or MD-5) to generate a hash of the data to provide message integrity.

Figure 6: Redirection of HTTP to SSL

To enable the redirection and use the default automatically generated self-signed certificate for SSL, do either of the following:

WebUI

Configuration > Admin > Management: Enter the following, then click Apply:

Redirect HTTP to HTTPS: (select)
Certificate: Default – System Self-Signed Cert

CLI

set admin http redirect
save
NOTE: You do not have to enter a CLI command to apply the automatically generated self-signed certificate for use with SSL because the security device applies it to SSL by default. If you have previously assigned another certificate for use with SSL and you now want to use the default certificate instead, you must unset the other certificate with the `unset ssl cert id_num` command, in which `id_num` is the ID number of the previously assigned certificate.

Although HTTP does not provide the security that SSL does, you can configure the security device so that it does not redirect HTTP traffic. To disable the HTTP-to-SSL redirect mechanism, clear the Redirect HTTP to HTTPS option in the WebUI, or enter the `unset admin http redirect` CLI command.

Management with the Command Line Interface

Advanced administrators can attain finer control by using the command line interface (CLI). To configure a security device with the CLI, you can use any software that emulates a VT100 terminal. With a terminal emulator, you can configure the security device using a console from any Windows, UNIX, or Macintosh operating system. For remote administration through the CLI, you can use Telnet or Secure Shell (SSH). With a direct connection through the console port, you can use HyperTerminal.

NOTE: For a complete listing of the ScreenOS CLI commands, see the ScreenOS CLI Reference Guide: IPv4 Command Descriptions.

Telnet

Telnet is a login and terminal emulation protocol that uses a client/server relationship to connect to and remotely configure network devices over a TCP/IP network. You can create a connection with the Telnet client program on the security device by launching a Telnet server program on the admin workstation or other security device. After logging in, the administrator can issue CLI commands, which are sent to the Telnet program on the security device, effectively configuring the device as if operating through a direct connection. Using Telnet to manage security devices requires the following application and connection:

- Telnet software on the admin workstation or other security device
- Ethernet connection to the security device

NOTE: The Telnet client program is not available at the vsys level.

If you want to remotely check service availability using a telnet client, we recommend that you connect to a Juniper Networks security device using Telnet/SSH rather than console.

Figure 7 on page 14 illustrates the setup procedure for establishing a Telnet connection.
Figure 7: Establishing a Telnet Connection

In this example, you telnet to a security device using a specific port and source interface:

```
telnet 192.168.2.1 port 23 src-interface ethernet0/0
```

You can close the Telnet connection by issuing `exit` or `clear socket` commands or by using the `ctrl+D` shortcut. Use the `set/unset telnet client enable` command to enable or disable the Telnet client feature on a security device.

To minimize an unauthorized user's chances of logging into a device, you can limit the number of unsuccessful login attempts allowed before the security device terminates a Telnet session. This restriction also protects against certain types of attacks, such as automated dictionary attacks.

By default, the device allows up to three unsuccessful login attempts before it closes the Telnet session. To change this number, enter the following command:

```
set admin access attempts number
```

NOTE: You must use the CLI to set this restriction.

Securing Telnet Connections

You can secure Telnet traffic by completely separating it from network user traffic. Depending upon your security device model, you can run all administrative traffic through the MGT interface or devote an interface such as the DMZ entirely to administrative traffic.

In addition, to ensure that admin users use a secure connection when they manage a security device through Telnet, you can require such users to Telnet only through a virtual private network (VPN) tunnel. After you have set this restriction, the device denies access if anyone tries to Telnet without going through a VPN tunnel.

NOTE: For information about VPN tunnels, see *Virtual Private Networks*.

To restrict Telnet access through a VPN:

```
set admin telnet access tunnel
```
Secure Shell

The built-in Secure Shell (SSH) server on a Juniper Networks security device provides a means by which administrators can remotely and securely manage the device in using applications that are SSH-aware. SSH allows you to open a remote command shell securely and execute commands. SSH provides protection from IP or DNS spoofing attacks and password or data interception.

You can choose to run either an SSH version 1 (SSHv1) or an SSH version 2 (SSHv2) server on the device. SSHv2 is considered more secure than SSHv1 and is currently being developed as the IETF standard. However, SSHv1 has been widely deployed and is commonly used. Note that SSHv1 and SSHv2 are not compatible. That is, you cannot use an SSHv1 client to connect to an SSHv2 server on the security device and you cannot use an SSHv2 client to connect to an SSHv1 server on the security device. The client console or terminal application must run the same SSH version as the server. Figure 8 on page 15 illustrates SSH traffic flow.

Figure 8: SSH Traffic Flow

Figure 9 on page 16 illustrates the basic SSH connection procedure.
A maximum of five SSH sessions is allowed on a Juniper Networks security device at any one time.

Client Requirements

As described in “Secure Shell” on page 15, the client application must run the same SSH version as the server on the security device. SSHv2 clients must be configured to request the Diffie-Hellman (DH) key exchange algorithm and Digital Signature Algorithm (DSA) for PKA. SSHv1 clients must be configured to request the Rivest-Shamir-Adleman (RSA) for PKA.

Basic SSH Configuration on the Device

The following are the basic steps for configuring SSH on a Juniper Networks security device:

1. Determine whether you will use password authentication or PKA for SSH. If you are using PKA, the PKA certificates must be bound to an admin before SSH connections can be made. See “Authentication” on page 18 for more information about using passwords or PKA.

2. Determine which version of SSH you need to enable on the security device. By default, SSHv2 is enabled. (Remember that the client application and the SSH server on the device must run the same SSH version.) If you enabled SSH on the device in a previous ScreenOS version, SSHv2 runs when you enable SSH now. To see which version of SSH is active but not enabled on the device, enter the `get ssh` command:

Figure 9: SSH Connection

1. SSH client sends TCP connection request to port 22 on security device (acting as SSH server).

2. Device and client exchange information about SSH version they support.

3. Device sends public component of its host and server keys, cookie, and encryption and authentication algorithms it supports.

4. Client creates secret session key, encrypts it with the public component of host and server keys, and sends session key to device.

5. Device signs session key with its private key and sends signed session key to client. Client verifies signature with session key generated during key exchange. Creation of a secure channel is complete.

6. Device signals SSH client to prompt end user for authentication information.

7. Client encrypts username and either password or public component of its PKA key and sends them for authentication.

Keys

- **Host Key**: Public key component of a public/private key pair used to authenticate security device/keys to client and encrypt session key. (Each vsys has its own host key) Host key is permanently bound to the device/vsys.

- **Server Key**: Temporary RSA public/private key pair used to encrypt session key. (Device generates new one every hour by default for each vsys.)

- **Session Key**: Temporary secret key (DES or 3DES) that client and device create together during connection setup to encrypt communication (when session ends, it is discarded).

- **PKA Key**: Persistent RSA public/private key pair that resides on SSH client. Client’s public key must also be loaded on security device before initiating SSH connection; PKA key must be bound to the admin user.

Note: Public/Private Key Pair = A set of cryptographic keys that operate such that anything encrypted by one can only be decrypted by the other.
device> get ssh
SSH V2 is active
SSH is not enabled
SSH is not ready for connections
Maximum sessions: 8
Active sessions: 0

In the output shown above, SSHv2 is active and runs when you enable SSH. If you want to use a different SSH version, make sure that all keys created with the previous version are removed. For example, to clear SSHv2 keys and to use SSHv1:

device> delete ssh device all

The following messages appear:

SSH disabled for vsys: 1
PKA key deleted from device: 0
Host keys deleted from device: 1
Execute the ‘set ssh version v2’ command to activate SSH v1 for the device

To use SSHv1

device-> set ssh version v1

NOTE: Setting the SSH version does not enable SSH on the security device.

3. If you do not want to use port 22 (the default) for SSH client connections, you can specify a port number between 1024 and 32767.

NOTE: You can also use the WebUI to change the port number and enable SSHv2 and SCP on the Configuration > Admin > Management page.

device-> set admin ssh port 1024

4. Enable SSH for the root system or for the virtual system. See “SSH and Vsys” on page 20 for additional information about enabling and using SSH for a vsys.

To enable SSH for the root system:

device-> set ssh enable

To enable SSH for a vsys, you need to first enter the vsys and then enable SSH:

device-> set vsys v1
device(v1)-> set ssh enable

5. Enable SSH on the interface on which the SSH client will connect.

device-> set interface manage ssh

6. Distribute the host certificate to the SSH client. See “Host Certificate” on page 21 for more information.
Authentication

An administrator can connect to a Juniper Networks security device with SSH using one of two authentication methods:

- **Password Authentication**: This method is used by administrators who need to configure or monitor a security device. The SSH client initiates an SSH connection to the device. If SSH manageability is enabled on the interface receiving the connection request, the device signals the SSH client to prompt the user for a username and password. When the SSH client has this information, it sends it to the device, which compares it with the username and password in the admin user's account. If they match, the device authenticates the user. If they do not match, the device rejects the connection request.

- **Public Key Authentication with key (PKA key)**: This method provides increased security over the password authentication method and allows you to run automated scripts. Instead of a username and password, the SSH client sends a username and the public key component of a public/private key pair. The device compares it with up to four public keys that can be bound to an admin. If one of the keys matches, the device authenticates the user. If none of them matches, the device rejects the connection request.

- **Public Key Authentication with certificate (PKA certificate)**: This method is very similar to PKA with key, but instead of using raw keys, PKI certificates are used. The public key is embedded in the PKI certificate. This method requires that the certificate be loaded to the security device and then bound to an administrators account. This method provides increased security over PKA with keys in that the certificate contains the information identify the owner of the certificate and the identity of the CA that has verified the identity. This authentication method is supported by SSHv2 only.

NOTE: The supported authentication algorithms are RSA for SSHv1 and DSA for SSHv2.

Both authentication methods require the establishment of a secure connection before the SSH client logs in. After an SSH client has established an SSH connection with the device, he must authenticate himself either with a username and password or with a PKA certificate.

Both password authentication and PKA require that you create an account for the admin user on the device and enable SSH manageability on the interface through which you intend to manage the device with an SSH connection. (For information about creating an admin user account, see “Defining Admin Users” on page 41.) The password authentication method does not require any further set up on the SSH client.

Binding a PKA key to administrator

To prepare for PKA, you must first perform the following tasks:
1. On the SSH client, generate a public and private key pair using a key generation program. (The key pair is either RSA for SSHv1 or DSA for SSHv2. See the SSH client application documentation for more information.)

 NOTE: If you want to use PKA for automated logins, you must also load an agent on the SSH client to decrypt the private key component of the PKA public/private key pair and hold the decrypted version of the private key in memory.

2. Move the public key from the local SSH directory to a directory on your TFTP server, and launch the TFTP program.

3. To load the public key from the TFTP server to the device, enter one of the following CLI commands:
 - For SSHv1:
     ```
     exec ssh tftp pka-rsa [username name ] file-name name_str ip-addr tftp_ip_addr
     ```
 - For SSHv2:
     ```
     exec ssh tftp pka-dsa [ user-name name ] file-name name_str ip-addr tftp_ip_addr
     ```

4. Bind the PKA key, a public key to the administrative account of the administrator that who processes the associated private key. The following CLI commands can be used to bind the PKA key to an administrators account:
   ```
   set ssh pka-dsa key pka-key
   set ssh pka-dsa user-name login-id key pka-key
   ```
 The `user-name` option is only available to the root admin, so that only the root admin can bind to another admin. When you—as the root admin or as a read/write admin—enter the command without a username, the device binds the PKA certificate to your own admin account; that is, it binds the certificate to the admin who enters the command.

 NOTE: The security device supports up to four PKA public keys per admin user.

When an administrator attempts to log in via SSH on an interface that has SSH manageability enabled, the device first checks if a public key is bound to that administrator. If so, the device authenticates the administrator using PKA. If a public key is not bound to the administrator, the device prompts for a username and password. (You can use the following command to force an admin to use only the PKA method:
```
set admin ssh password disable username name_str.
```) Regardless of the authentication method you intend the administrator to use, when you initially define his or her account, you still must include a password, even though when you later bind a public key to this user, the password becomes irrelevant.
Binding a PKA certificate to administrator

1. Using the SSH client or a key generation utility generate a public key pair.
2. Using certificate request utility generate a certificate request with the public key pair embedded.
3. Submit the certificate request to a CA to generate a certificate.
4. Store the PKA certificate in the security devices PKI DB. The PKI system will assign a unique key-id to the certificate.
5. To bind the PKA certificate to an administrative account use the following commands:
 set ssh pka-dsa cert cert-id
 set ssh pka-dsa user-name login-id cert-id cert-id

The user-name option is only available to the ROOT privileged admin, since only the ROOT privileged admin is permitted to bind PKA certificates to the accounts belonging to other administrators will a non-ROOT privileged level. When no login-id is specified, the PKA certificate is bound to the account of the administrator executing the command.

NOTE: The security device supports up to four PKA public certificates per administrator

SSH and Vsys

For security devices that support vsys, you can enable and configure SSH for each vsys. SSH uses Host Keys or Host Certificates to provide a means to identify a server side entity to the SSH client. Each device has its own host key (see “Host Key” on page 20) and maintains and manages a PKA key for the admin of the system.

In the case of Host Certificates (see “Host Certificate” on page 21), a single Host Certificate is used to identify the root system and all VSYS. This single Host Certificate must first be created and explicitly bound to the security devices SSH server/device.

The maximum number of SSH sessions is a device-wide limit and is between 2 and 24, depending upon the device. If the maximum number of SSH clients are already logged into the device, no other SSH client can log into the SSH server. The root system and the vsys share the same SSH port number. This means that if you change the SSH port from the default port 22, the port is changed for all vsys as well.

NOTE: When you deploy a large number of virtual systems on a single device, be aware that if many or all vsys admins use SSH, the storage reserved for PKI objects can fill up.

Host Key

The host key allows the security device to identify itself to an SSH client. On devices that support virtual systems (vsys), each vsys has its own host key. When SSH is first enabled on a vsys (for devices that support vsys) or on a device, a host key is generated that is
unique to the vsys or device. The host key is permanently bound to the vsys or device and
the same host key is used if SSH is disabled and then enabled again.

The host key on the device must be distributed to the SSH client in one of two ways:

- Manually—the root or vsys admin sends the host key to the client admin user with
 email, telephone, and so on. The receiving admin stores the host key in the appropriate
 SSH file on the SSH client system. (The SSH client application determines the file
 location and format.)

- Automatically—When the SSH client connects to the device, the SSH server sends the
 unencrypted public component of the host key to the client. The SSH client searches
 its local host key database to see if the received host key is mapped to the address of
 the device. If the host key is unknown (there is no mapping to the device address in the
 client’s host key database), the Admin user might be able to decide whether to accept
 the host key. Otherwise, the connection is terminated. (See the appropriate SSH client
 documentation for information on accepting unknown host keys.)

To verify that the SSH client has received the correct host key, the Admin user on the
client system can generate the SHA hash of the received host key. The client Admin user
can then compare this SHA hash with the SHA hash of the host key on the device. On
the device, you can display the SHA hash of the host key by executing the CLI command
`get ssh host-key`.

Host Certificate

The host certificate allows the device to identify itself on the SSH client application. The
SSH client application loads a local certificate to the device with the subject name
`ssh-cert-dsa` along with the related CA certificate and CRL. The security device assigns
a certificate ID to each host certificate and stores it in the PKI database.

Before binding the host certificate to the device, perform the following steps:

1. Disable SSH for all vsys and delete all host keys:

 `delete ssh device all`

2. Set SSH version to the active version:

 `set ssh version 2`

Once the certificate is loaded, the root-admin can force the device to use the host
certificate by using the CLI command;

`set ssh host-identity cert-dsa cert-id`

where `cert-id` denotes the ID of the host certificate.

When the SSH client application connects to the device, the device sends the host
certificate to the SSH client application. The application performs assured certification
of the device based on the host certificate.

To unbind the host certificate from the device use the `delete ssh device all` command.

Binding a Host certificate to a device is not permitted in the following situations:
- No version of SSH is active
- SSH version1 is active
- SSH is enabled for any vsys
- The host key is still bound to any VSYS.
- The certificate-ID does not exist.
- The host certificate has an invalid subject name.

Example: SSHv1 with PKA for Automated Logins

In this example, you (as the root admin) set up SSHv1 public key authentication (PKA) for a remote host that runs an automated script. The sole purpose for this remote host to access the device is to download the configuration file every night. Because authentication is automated, no human intervention is necessary when the SSH client logs into the device.

You define an admin user account named `cfg`, with password `cfg` and read-write privileges. You enable SSH manageable on interface ethernet1, which is bound to the Untrust zone.

You have previously used a key generation program on your SSH client to generate an RSA public/private key pair, moved the public key file, which has the filename "idnt_cfg.pub", to a directory on your TFTP server, and launched the TFTP program. The IP address of the TFTP server is 10.1.1.5.

WebUI

Configuration > Admin > Administrators > New: Enter the following, then click OK:

- Name: `cfg`
- New Password: `cfg`
- Confirm Password: `cfg`
- Privileges: Read-Write (select)
- SSH Password Authentication: (select)

Network > Interfaces > Edit (for ethernet1): Select **SSH** in Service Options, then click OK.

NOTE: You can only load a public key file for SSH from a TFTP server with the exec ssh command.

CLI

```
set admin user cfg password cfg privilege all
set interface ethernet1 manage ssh
exec ssh tftp pka-rsa username cfg file-name idnt_cfg.pub ip-addr 10.1.1.5
save
```

Secure Copy

Secure Copy (SCP) provides a way for a remote client to transfer files to or from the security device using the SSH protocol. (The SSH protocol provides authentication,
encryption, and data integrity to the SCP connection.) The device acts as an SCP server
to accept connections from SCP clients on remote hosts.

SCP requires that the remote client be authenticated before file transfer commences.
SCP authentication is exactly the same process used to authenticate SSH clients. The
SCP client can be authenticated with either a password or a PKA key. Once the SCP client
is authenticated, one or more files can be transferred to or from the device. The SCP
client application determines the exact method for specifying the source and destination
filenames; see the SCP client application documentation.

SCP is disabled by default on the device. To enable SCP, you must also enable SSH.

WebUI
Configuration > Admin > Management: Select the following, then click Apply:

 Enable SSH: (select)
 Enable SCP: (select)

CLI

 set ssh enable
 set scp enable
 save

The following is an example of an SCP client command to copy the configuration file
from flash memory on a device (administrator name is “juniper” and the IP address is
10.1.1.1) to the file “ns_sys_config_backup” on the client system:

 scp juniper@10.1.1.1:ns_sys_config ns_sys_config_backup

You can also copy a ScreenOS image to and from a device. To save an image named
“ns.5.1.0r1” to a device from an SCP client, enter the following SCP client command, in
which the administrator’s login name is “juniper” and the IP address of the device is 10.1.1.1:

 scp ns.5.1.0r1 juniper@10.1.1.1:image

Then enter the reset command to reboot the security device to load and run the new
ScreenOS image.

To copy a ScreenOS image from a device to an SCP client and name the saved image
“current_image_backup,” enter the following SCP client command:

 scp juniper@10.1.1.1:image current_image_backup

You need to consult your SCP client application documentation for information on how
to specify the administrator name, device IP address, source file, and destination file.

Serial Console

You can manage a security device through a direct serial connection from the
administrator’s workstation to the device with the console port. Although a direct
connection is not always possible, this is the most secure method for managing the device
provided that the location around the device is secure.
NOTE: To prevent unauthorized users from logging in remotely as the root admin, you can require the root admin to log into the device through the console only. For additional information on this restriction, see “Restricting the Root Admin to Console Access” on page 48.

Depending on your Juniper Networks security device model, creating a serial connection requires one of the following cables:

- A female DB-9 to male DB-25 straight-through serial cable
- A female DB-9 to male DB-9 straight-through serial cable
- A female DB-9 to male MiniDIN-8 serial cable
- A female DB-9 to RJ-45 adapter with an RJ-45 to RJ-45 straight-through Ethernet cable

You will also need HyperTerminal software (or another kind of VT100 terminal emulator) on the management workstation, with the HyperTerminal port settings configured as follows:

- Serial communications 9600 bps
- 8 bit
- No parity
- 1 stop bit
- No flow control

NOTE: For more details on using HyperTerminal, see the ScreenOS CLI Reference Guide: IPv4 Command Descriptions or the documentation for your device.

Remote Console

You can remotely access the console interface on a security device by dialing into it. There are two ways of dialing into the console:

- “Remote Console Using V.92 Modem Port” on page 24
- “Remote Console Using an AUX Port” on page 25

Remote Console Using V.92 Modem Port

You can remotely manage the security devices that are equipped with v.92 modem ports by dialing into the port and accessing the console interface. To use remote console, you connect the v.92 modem port on the device to a telephone line, and dial into the device using a remote computer with a modem. You use a terminal program such as HyperTerminal to establish the console session.
In order to use remote console connection, you must first enable remote management with the following CLI command:

```
set interface serialx/0 modem auxenable
save
```

Figure 10 on page 25 shows how to connect the device for remote console management.

Figure 10: Remote Console Management Connection

You will also need HyperTerminal software (or another kind of VT100 terminal emulator) on the management workstation, with the HyperTerminal port settings configured as follows:

- Serial communications 9600 bps
- 8 bit
- No parity
- 1 stop bit
- No flow control

NOTE: For more details on using HyperTerminal, see the ScreenOS CLI Reference Guide: IPv4 Command Descriptions or the documentation for your device.

Remote Console Using an AUX Port

You can remotely manage the security devices that are equipped with AUX ports by dialing into a modem connected to the port and accessing the console interface. To use remote console, you connect the AUX modem port on the device to a telephone line using an external modem, and dial into the device using a remote computer with a modem. You use a terminal program such as HyperTerminal to establish the console session.

Figure 11 on page 26 shows how to connect the device for remote console management.
You will also need HyperTerminal software (or another kind of VT100 terminal emulator) on the management workstation, with the HyperTerminal port settings configured as follows:

- Serial communications 9600 bps
- 8 bit
- No parity
- 1 stop bit
- No flow control

NOTE: For more details on using HyperTerminal, see the *ScreenOS CLI Reference Guide: IPv4 Command Descriptions* or the documentation for your device.

Modem Port

You can also manage a security device by connecting the administrator’s workstation to the modem port on the device. The modem port functions similarly to the console port, except that you cannot define parameters for the modem port or use this connection to upload an image.

To prevent unauthorized users from managing the device through a direct connection to the console or modem port, you can disable both ports by entering the following commands:

```
set console disable
set console aux disable
```

Management with the Network and Security Manager

Network and Security Manager (NSM) is Juniper Networks’ enterprise-level management software application that configures and monitors multiple Juniper Networks security devices over a local area network (LAN) or a wide area network (WAN) environment.
The NSM user interface (UI) enables network administrators to deploy, configure, and manage multiple devices from central locations.

NSM uses three components to enable remote communication with security devices:

- The **NSM UI** is a java-based software application that you use to access and configure data on your network with the NSM management system. From the UI, you can view, configure, and manage your network.

- The **management system** is a set of services that resides on an external host. These services process, track, and store device management information exchanged between a device and the NSM UI. The management system is composed of two components:
 - The **GUI Server** receives and responds to requests and commands from the UI. It manages the system resources and configuration data required to manage your network. It also contains a local data store of information about your managed security devices, administrators, and configurations.
 - The **Device Server** acts as a collection point for all data generated by each of your network devices. It stores this data, primarily traffic logs, in the local data store.

- **NSM Agent** is a service that resides on each managed security device. NSM Agent receives configuration parameters from the external management system and forwards them to ScreenOS. NSM Agent also monitors each device and transmits reports back to the management system. NSM Agent can download signature packs, certificates, and entitlements between a security device and NSM.

Figure 12 on page 27 shows how NSM Agent communicates with the NSM UI.

Figure 12: Security Device with NSM Agent Enabled

For more information about these and other NSM components, see the Network and Security Manager documentation at http://www.juniper.net/techpubs/software/management/security-manager.

Initiating Connectivity Between NSM Agent and the MGT System

Before NSM can access and manage a security device, it is necessary to initiate communications between NSM Agent (which resides on the device) and the management system (which resides on an external host). Initialization might require up to two users at two different sites, depending upon the current availability of the security device. These users might include the NSM administrator, who uses the NSM UI on a client host, and the on-site user, who executes CLI commands on a device with a console session. Possible initialization cases include the following:
Case 1: A device already has a known IP address and is reachable over your network infrastructure.

In this case, the NSM administrator adds the device using the NSM UI on the client host. (No on-site user is necessary.) The device automatically connects back to the management system and is ready to send configuration information to the NSM database that resides there.

Case 2: The IP address is unreachable.

In this case, both users perform initialization tasks. The administrator adds the device through the NSM UI. The administrator also determines which CLI commands the on-site user needs and delivers them to the user, who then executes them through the console. The device then automatically connects with the management system and is ready to send configuration information to the NSM database.

Case 3: The device is a new appliance and contains the factory default settings.

In this case, both users perform initialization tasks. The on-site user can use an encrypted configuration script, called a configlet, which the NSM administrator generates. The process is as follows:

1. The administrator selects the device platform and ScreenOS version, using the Add Device wizard in the NSM UI.
2. The administrator edits the device and enters the desired configuration.
3. The administrator activates the device.
4. The administrator generates and delivers the Configlet file (or the necessary CLI commands, as with Case 2) to the on-site user.
5. The on-site user executes Configlet (or the CLI commands).

For more information, see the Network and Security Manager documentation at http://www.juniper.net/techpubs/software/management/security-manager.

Enabling, Disabling, and Unsetting NSM Agent

Before a security device can communicate with the management system, you must enable Network and Security Manager (NSM) Agent residing on the device.

If you want to unset NSM, use the `unset nsmgmt all` command. This command sets NSM Agent to its initial defaults, so it acts as though it was never connected to NSM. Use the `unset nsmgmt all` command when you want to reconfigure the NSM settings.

To enable NSM Agent on the security device, do either of the following:

WebUI

Configuration > Admin > NSM: Select Enable Communication with Network and Security Manager (NSM), then click Apply.

CLI

```
set nsmgt enable
```
To disable NSM Agent on the device, do either of the following:

WebUI

Configuration > Admin > NSM: Clear Enable Communication with Network and Security Manager (NSM), then click Apply.

CLI

```
unset nsmgt enable
save
```

Setting the Primary Server IP Address of the Management System

The IP address by which NSM Agent identifies the external management system servers is a configurable parameter.

In the following example you set the primary server IP address to 1.1.1.100.

WebUI

Configuration > Admin > NSM: Enter the following, then click Apply:

```
Primary IP Address/Name: 1.1.1.100
```

CLI

```
set nsmgmt server primary 1.1.1.100
save
```

Setting Alarm and Statistics Reporting

NSM Agent monitors the device events and transmits reports back to the management system. This allows the NSM administrator to view the events from the NSM UI.

The categories of events tracked by NSM Agent are as follows:

- **Alarms** report potentially dangerous attacks or traffic anomalies, including attacks detected through deep inspection.
- **Log events** report changes in a device’s configuration and non-severe changes that occur on a device.
- **Protocol distribution** events report messages generated by the following protocols:
 - Authentication Header (AH)
 - Encapsulating Security Payload (ESP)
 - Generic Routing Encapsulation (GRE)
 - Internet Control Message Protocol (ICMP)
 - Open Shortest Path First (OSPF)
• Transmission Control Protocol (TCP)
• User Datagram Protocol (UDP)
• Statistics messages report the following statistical information:
 • Attack statistics
 • Ethernet statistics
 • Traffic flow statistics
 • Policy statistics

In the following example, you enable transmission of all Alarm and Statistics messages to the Management System.

WebUI

Configuration > Admin > NSM: Enter the following, then click **Apply**:

- Attack Statistics: (select)
- Policy Statistics: (select)
- Attack Alarms: (select)
- Traffic Alarms: (select)
- Flow Statistics: (select)
- Ethernet Statistics: (select)
- Deep Inspection Alarms: (select)
- Event Alarms: (select)

CLI

```
set nsmgmt report statistics attack enable
set nsmgmt report statistics policy enable
set nsmgmt report alarm attack enable
set nsmgmt report alarm traffic enable
set nsmgmt report statistics flow enable
set nsmgmt report statistics ethernet enable
set nsmgmt report alarm idp enable
set nsmgmt report alarm other enable
save
```

Configuration Synchronization

If the ScreenOS configuration is changed from the last time it was synchronized with NSM, then the security device notifies the NSM administrator of the change. For example, the device sends a message when a device administrator uses console, telnet, SSH, or the WebUI to change a security device configuration. Changing the configuration with any application other than NSM causes it to be unsynchronized. The NSM configuration file must be synchronized with the security device configuration file for NSM to work correctly. The synchronization is achieved when you import the configuration file to NSM. For information about importing devices, see the Network and Security Manager documentation at http://www.juniper.net/techpubs/software/management/security-manager,

The following example displays the command used to view the configuration status.
Example: Viewing the Configuration State

In the following example, you view the configuration synchronization state of a security device.

WebUI

```text
NOTE: You must use the CLI to retrieve the running configuration state.
```

CLI

```
get config nsmgmt-dirty
```

NOTE: If applications other than NSM applications have not changed the configuration file, then the command returns a blank; otherwise, it returns a “yes.”

Example: Retrieving the Configuration Hash

NSM uses the configuration hash to verify the configuration synchronization of a security device. In the following example, you retrieve the running configuration hash for a specific virtual system.

WebUI

```text
NOTE: You must use the CLI to retrieve the running configuration hash.
```

CLI

```
device-> enter vsys vsys1
device(vsys1)-> get config hash
a26a16cd6b8ef40dc79d5b2ec9e1ab4f
device(vsys1)->
device(vsys1)-> exit
```

Retrieving the Configuration Timestamp

A security device provides two configuration timestamps—running-config and saved-config. The running-config timestamp is when the set or unset command was last executed for each virtual system. The saved-config timestamp is when the device configuration was last saved.

In the following example, the security device retrieves the last running and saved configuration timestamps for the vsys1 virtual system:
WebUI

NOTE: You must use the CLI to retrieve the running and saved configuration timestamps.

CLI

get config timestamp vsys vsys1
get config saved timestamp

NOTE: If you omit vsys vsys_name from the command, the security device retrieves the configuration timestamp for the root system. If the timestamp is unavailable, then an “unknown” message is displayed.

Controlling Administrative Traffic

ScreenOS provides the following options for configuring and managing the security device:

- **WebUI**: Selecting this option allows the interface to receive HTTP traffic for management with the Web user interface (WebUI).

- **Telnet**: A terminal emulation program for TCP/IP networks such as the Internet. Telnet is a common way to remotely control network devices. Selecting this option enables Telnet manageability.

- **SSH**: You can administer the security device from an Ethernet connection or a dial-in modem using SSH. You must have an SSH client that is compatible with Version 1.5 of the SSH protocol. These clients are available for Windows 95 and later, Windows NT, Linux, and UNIX. The security device communicates with the SSH client through its built-in SSH server, which provides device configuration and management services. Selecting this option enables SSH manageability.

- **SNMP**: The security device supports both SNMPv1 and SNMPv2c, and all relevant Management Information Base II (MIB II) groups, as defined in RFC1213. Selecting this option enables SNMP manageability.

- **SSL**: Selecting this option allows the interface to receive HTTPS traffic for secure management of the security device with the WebUI.

- **Network and Security Manager**: Selecting this option allows the interface to receive NSM traffic.

- **Ping**: Selecting this option allows the security device to respond to an ICMP echo request, or ping, which determines whether a specific IP address is accessible over the network.

- **Ident-Reset**: Services like Mail and FTP send identification requests. If they receive no acknowledgement, they send the request again. While the request is processing, there is no user access. By enabling the Ident-reset option, the security device sends a TCP
reset announcement in response to an IDENT request to port 113 and restores access that has been blocked by an unacknowledged identification request.

To use these options, you enable them on one or more interfaces, depending on your security and administrative needs.

MGT and VLAN1 Interfaces

Some Juniper Networks security devices have a physical interface—Management (MGT)—dedicated exclusively for management traffic. You can use this interface for management traffic when interfaces are in NAT, route, or transparent mode.

In transparent mode, you can configure all security devices to allow administration through the logical interface, VLAN1. To enable management traffic to reach the VLAN1 interface, you must enable the management options you want both on VLAN1 and on the Layer 2 zones—VI-Trust, VI-Untrust, VI-DMZ, user-defined Layer 2 zone—through which the management traffic passes to reach VLAN1.

In transparent mode, the VLAN1 logical interface supports the DHCP client with AUTOCONFIG feature. This feature is supported on SSG 5 and SSG 20 platforms.

The process of VLAN1 interface working as DHCP client to do AUTOCONFIG is as follows:

1. The environment variable is set by the `set env var dhcp autofcfg=yes` command. The DHCP client and AUTOCONFIG will be set on the UNTRUST interface.
2. The config file on TFTP server is loaded and saved to the flash. The config file turns the device into pure transparent mode and configure VLAN1 as DHCP client and set AUTOCONFIG on.
3. The VLAN1 interface again loads the config file as the DHCP client is set for the first time.
4. If the SSG 5 or SSG 20 resets, at first, the device loads the configuration in the Flash. The VLAN1 then works as DHCP client to get the IP address of the device and loads the config file again. The config file is loaded from the TFTP server and saved again in the flash. The device is set to transparent mode.

NOTE: The repeated config file loading will not impact the transparent mode.

NOTE: When the DHCP client with the AUTOCONFIG feature is enabled, you can access the device using WEB, Telnet, SSH, and Ping until the DHCP is done successfully and you know the IP address that is allocated to the device.

To maintain the highest level of security, Juniper Networks recommends that you limit administrative traffic exclusively to the VLAN1 or MGT interface and user traffic to the
security zone interfaces. Separating administrative traffic from network user traffic greatly increases administrative security and ensures constant management bandwidth.

Example: Administration Through the MGT Interface

In this example, you set the IP address of the MGT interface to 10.1.1.2/24 and enable the MGT interface to receive Web and SSH administrative traffic.

WebUI

Network > Interfaces > Edit (for mgt): Enter the following, then click **OK**:

- **IP Address/Netmask**: 10.1.1.2/24
- **Management Services**: WebUI, SSH: (select)

CLI

```
set interface mgt ip 10.1.1.2/24
set interface mgt manage web
set interface mgt manage ssh
save
```

Example: Administration Through the VLAN1 Interface

In this example, you set the IP address of the VLAN1 interface to 10.1.1.1/24 and enable the VLAN1 interface to receive Telnet and Web administrative traffic through the V1-Trust zone.

WebUI

Network > Interfaces > Edit (for VLAN1): Enter the following, then click **OK**:

- **IP Address/Netmask**: 10.1.1.1/24
- **Management Services**: WebUI, Telnet: (select)

Network > Zones > Edit (for V1-Trust): Select the following, then click **OK**:

- **Management Services**: WebUI, Telnet: (select)

CLI

```
set interface vlan1 ip 10.1.1.1/24
set interface vlan1 manage web
set interface vlan1 manage telnet
set interface vlan1 dhcp client
set interface vlan1 dhcp client settings autoconfig
set zone v1-trust manage web
set zone v1-trust manage telnet
save
```

Setting Administrative Interface Options

On security devices that have multiple physical interfaces for network traffic, but no physical MGT interface, you might dedicate one physical interface exclusively for administration, separating management traffic completely from network user traffic. For example, you might have local management access the device through an interface bound to the Trust zone and remote management through an interface bound to the Untrust zone.
In this example, you bind ethernet1 to the Trust zone and ethernet3 to the Untrust zone.
You assign ethernet1 the IP address 10.1.1.1/24 and give it the Manage IP address 10.1.1.2.
(Note that the Manage IP address must be in the same subnet as the security zone
interface IP address.) You also allow ethernet1 to receive Web and Telnet traffic. You
then assign ethernet3 the IP address 1.1.1.1/24 and block all administrative traffic to that
interface.

WebUI

Network > Interfaces > Edit (for ethernet1): Enter the following, then click **Apply**:

- **Zone Name:** Trust
- **Static IP:** (select this option when present)
- **IP Address/Netmask:** 10.1.1.1/24
- **Manage IP:** 10.1.1.2
- **Management Services:**
 - WebUI: (select)
 - SNMP: (clear)
 - Telnet: (select)
 - SSL: (clear)
 - SSH: (clear)

Enter the following, then click **OK**:

- **Interface Mode:** NAT

Network > Interfaces > Edit (for ethernet3):

Enter the following, then click **OK**:

- **Zone Name:** Untrust
- **Static IP:** (select this option when present)
- **IP Address/Netmask:** 1.1.1.1/24
- **Management Services:**
 - WebUI: (clear)
 - SNMP: (clear)
 - Telnet: (clear)
 - SSL: (clear)
 - SSH: (clear)

CLI

```
set interface ethernet1 zone trust
set interface ethernet1 ip 10.1.1.1/24
set interface ethernet1 manage-ip 10.1.1.2
set interface ethernet1 manage web
unset interface ethernet1 manage snmp
set interface ethernet1 manage telnet
unset interface ethernet1 manage ssl
unset interface ethernet1 manage ssh
set interface ethernet1 nat
set interface ethernet3 zone untrust
set interface ethernet3 ip 1.1.1.1/24
save
```
NOTE: When you bind an interface to any security zone other than the Trust and V1-Trust zones, all management options are disabled by default. Therefore, in this example, you do not have to disable the management options on ethernet3.

Setting Manage IPs for Multiple Interfaces

Any physical, redundant, or aggregate interface or sub-interface you bind to a security zone can have at least two IP addresses:

- An interface IP address, which connects to a network
- A logical Manage IP address for receiving administrative traffic

When a security device is a backup unit in a redundant group for high availability (HA), you can access and configure the unit through its Manage IP address (or addresses).

NOTE: The Manage IP address differs from the VLAN1 address in the following two ways:
When the security device is in transparent mode, the VLAN1 IP address can be the endpoint of a VPN tunnel, but the Manage IP address cannot. You can define multiple Manage IP addresses—one for each network interface—but you can only define one VLAN1 IP address—for the entire system.

If you select the Manageable option on the interface configuration page in the WebUI, you can manage the security device either through the interface IP address or the Manage IP address associated with that interface.

Figure 13 on page 37 illustrates this example in which you bind ethernet2 to the DMZ zone and ethernet3 to the Untrust zone. You set the management options on each interface to provide access for the specific kinds of administrative traffic. You allow HTTP and Telnet access on ethernet2 for a group of local administrators in the DMZ zone, and SNMP access on ethernet3 for central device monitoring from a remote site. Ethernet2 and ethernet3 each have a Manage IP address, to which the administrative traffic is directed. You also set a route directing self-generated SNMP traffic out ethernet3 to the external router at 1.1.1.250.
Figure 13: Setting Management IPs for Multiple Interfaces

WebUI

Network > Interfaces > Edit (ethernet2): Enter the following, then click OK:

Zone Name: DMZ
Static IP: (select this option when present)
IP Address/Netmask: 1.2.2.1/24
Manage IP: 1.2.2.2
Management Services:
WebUI: (select)
Telnet: (select)

Network > Interfaces > Edit (ethernet3): Enter the following, then click OK:

Zone Name: Untrust
Static IP: (select this option when present)
IP Address/Netmask: 1.1.1.1/24
Manage IP: 1.1.1.2
Management Services:
SNMP: (select)

CLI

set interface ethernet2 zone dmz
set interface ethernet2 ip 1.2.2.1/24
set interface ethernet2 manage-ip 1.2.2.2
set interface ethernet2 manage web
set interface ethernet2 manage telnet
set interface ethernet3 zone untrust
set interface ethernet3 ip 1.1.1.1/24
set interface ethernet3 manage-ip 1.1.1.2
set interface ethernet3 manage snmp
Levels of Administration

Juniper Networks security devices support multiple administrative users. For any configuration changes made by an administrator, the security device logs the following information:

- The name of the administrator making the change
- The IP address from which the change was made
- The time of the change

There are several levels of administrative user. The availability of some of these levels depends on the model of your Juniper Networks security device. The following sections list all the admin levels and the privileges for each level. These privileges are only accessible to an admin after he or she successfully logs in with a valid username and password.

Root Administrator

The root administrator has complete administrative privileges. There is only one root administrator per security device. The root administrator has the following privileges:

- Manages the root system of the security device
- Adds, removes, and manages all other administrators
- Assigns role attributes to all other administrators
- Establishes and manages virtual systems and assigns physical or logical interfaces to them
- Creates, removes, and manages virtual routers (VRs)
- Adds, removes, and manages security zones
- Assigns interfaces to security zones
- Performs asset recovery
- Sets the device to FIPS mode
- Resets the device to its default settings
- Updates the firmware
- Loads configuration files
- Clears all active sessions of a specified admin or of all active admins

Role Attributes

The Juniper Networks security device allows you—the root admin—to assign role attributes to nonroot read-write and read-only administrators. You cannot assign role attributes to root and vsys admins, however.
You can assign one of the following role attributes to an admin user.

- **Crypto**—Gives the user the ability to configure and monitor cryptographic data.
- **Security**—Gives the user the ability to configure and monitor security data.
- **Audit**—Gives the user the ability to configure and monitor audit data.

You cannot assign two role attributes for the same admin user. However, you can change the role attribute for an admin user when the admin user is inactive.

You can assign roles to admin users in local database. For admin users authenticated by external RADIUS or TACACS+ authentication servers, the role attribute is assigned in the remote server.

Table 2 on page 39 lists the privileges of admin users according to assigned role attribute.

Table 2: Privileges for Administrators According to Role Attribute

<table>
<thead>
<tr>
<th>Admin with Role</th>
<th>Privileges</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Read Crypto Data</td>
</tr>
<tr>
<td>Read-write admin with crypto</td>
<td>x</td>
</tr>
<tr>
<td>Read-only admin with crypto</td>
<td>x</td>
</tr>
<tr>
<td>Read-write admin with security</td>
<td></td>
</tr>
<tr>
<td>Read-only admin with security</td>
<td></td>
</tr>
<tr>
<td>Read-write admin with audit</td>
<td></td>
</tr>
<tr>
<td>Read-only admin with audit</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 on page 39 lists the privileges of admin users according to assigned role attribute.
Each role attribute has a scope. The security device keeps a check on the role of the admin user. An admin user with role attribute cannot make configuration changes outside the scope of the role attribute. For example, a cryptographic admin cannot access security data and a security admin cannot access cryptographic data.

NOTE: The security device does not check the role attribute when an administrator views the audit logs or executes self-tests. For information about self-tests, see “Federal Information Processing Standards (FIPS)” on page 3.

Read/Write Administrator

The read/write administrator has the same privileges as the root administrator, but cannot create, modify, or remove other admin users. The read/write administrator has the following privileges:

- Creates virtual systems and assigns a virtual system administrator for each one
- Monitors any virtual system
- Tracks statistics (a privilege that cannot be delegated to a virtual system administrator)

Read-Only Administrator

The read-only administrator has only viewing privileges using the WebUI, and can only issue the `get` and `ping` CLI commands. The read-only administrator has the following privileges:

- Read-only privileges in the root system, using the following four commands: `enter`, `exit`, `get`, and `ping`
- Read-only privileges in virtual systems

Virtual System Administrator

Some security devices support virtual systems. Each virtual system (vsys) is a unique security domain, which can be managed by virtual system administrators with privileges that apply only to that vsys. Virtual system administrators independently manage virtual systems through the CLI or WebUI. On each vsys, the virtual system administrator has the following privileges:

- Creates and edits auth, IKE, L2TP, XAuth, and Manual Key users
- Creates and edits services
- Creates and edits policies
- Creates and edits addresses
- Creates and edits VPNs
- Modifies the virtual system administrator login password
• Creates and manages security zones
• Adds and removes virtual system read-only administrators

Virtual System Read-Only Administrator

A virtual system read-only administrator has the same set of privileges as a read-only administrator, but only within a specific virtual system. A virtual system read-only administrator has viewing privileges for his particular vsys through the WebUI, and can only issue the `enter`, `exit`, `get`, and `ping` CLI commands within his vsys.

NOTE: For more information on virtual systems, see Virtual Systems.

Defining Admin Users

The root administrator is the only one who can create, modify, and remove admin users. In the following example, the one performing the procedure must be a root administrator.

Example: Adding a Read-Only Admin

In this example, you—as the root admin—add a read-only administrator named Roger with password 2bd21wG7.

WebUI

Configuration > Admin > Administrators > New: Enter the following, then click OK:

Name: Roger
New Password: 2bd21wG7
Confirm New Password: 2bd21wG7
Privileges: Read-Only (select)
Role: None (default)

NOTE: The password can be up to 31 characters long and is case sensitive.

CLI

```
set admin user Roger password 2bd21wG7 privilege read-only
save
```

Example: Modifying an Admin

In this example, you—as the root admin—change Roger’s privileges from read-only to read/write and assign a security role attribute. Roger and the root admin share the same privilege in managing security-related configuration changes.

WebUI

Configuration > Admin > Administrators > Edit (for Roger): Enter the following, then click OK:
Name: Roger
New Password: 2bd21wG7
Confirm New Password: 2bd21wG7
Privileges: Read-Write (select)
Role: Security (select)

CLI
unset admin user Roger
set admin user Roger password 2bd21wG7 privilege all
set admin user Roger role security
save

Example: Deleting an Admin
In this example, you—as the root admin—delete the admin user Roger.

WebUI
Configuration > Admin > Administrators: Click Remove in the Configure column for Roger.

CLI
unset admin user Roger
save

Example: Configuring Admin Accounts for Dialup Connections
Some devices support a modem connection for outbound dialup disaster recovery situations. You can set up trustee accounts for the interface, for the modem or for both the interface and modem. This section describes the two types of trustees:

- Interface trustee
 An interface trustee only has access to the WebUI and is restricted to the signaling methods and IP address assignment for the primary Untrust interface.
 For devices with ADSL interfaces, an interface trustee has control over the following characteristics:
 - Layer 1 characteristics: VPI/VCI, multiplexing mode, RFC1483 bridged or routed
 - Layer 2 signaling methods (PPPoE or PPPoA, and their parameters)
 - IP address assignment methods (statically defined by an administrator, or dynamically acquired from the circuit through PPPoE or PPPoA).
 For devices with only ethernet interfaces, an interface trustee can control how the interface IP address is assigned (statically defined by administrator, or dynamically acquired from the circuit with DHCP or PPPoE).

- Modem trustee
 A modem trustee only has access to the WebUI and is restricted to Modem and ISP settings for the serial interface. A modem trustee can created, modify, and delete modem definitions to suit their specific needs, and can create, modify, and delete the settings for ISP1 and ISP2. A modem trustee can view the configurations for ISP3 and ISP4, and can test connectivity for any defined ISP and phone number.
You can view all administrator accounts by entering the `get admin user` command, or you can view only the trustee accounts by entering the `get admin user trustee` command.

In the following example, you configure a Read/Write modem trustee account for Richard Brockie. You set his username to be `sdonovan` and his password to be `!23fb`.

WebUI

Configuration > Admin > Administrators

CLI

```
set admin user sdonovan password !23fb privilege all
set admin user sdonovan trustee modem
```

Example: Clearing an Admin’s Sessions

In this example, you—as the root admin—terminate all active sessions of the admin user Roger. When you execute the following command, the security device closes all active sessions and automatically logs off Roger from the system.

WebUI

CLI

```
NOTE: You must use the CLI to clear an admin’s sessions.
```

```
clear admin name Roger
save
```

Securing Administrative Traffic

To secure the security device during setup, perform the following steps:

1. On the WebUI, change the administrative port.
 See “Changing the Port Number” on page 44.
2. Change the username and password for administration access.
 See “Changing the Admin Login Name and Password” on page 44
3. Define the management client IP addresses for the admin users.
 See “Restricting Administrative Access” on page 47.
4. Turn off any unnecessary interface management service options.
 See “Controlling Administrative Traffic” on page 32.
5. Disable the ping and ident-reset service options on the interfaces, both of which respond to requests initiated by unknown parties and can reveal information about your network:
WebUI

Network > Interfaces > Edit (for the interface you want to edit): Disable the following service options, then click OK:

Ping: Selecting this option allows the security device to respond to an ICMP echo request, or “ping,” which determines whether a specific IP address is accessible from the device.

Ident-Reset: When a service such as Mail or FTP sends an identification request and receives no acknowledgment, it sends the request again. While the request is in progress, user access is disabled. With the Ident-Reset check box enabled, the security device automatically restores user access.

CLI

```
unset interface interface manage ping
unset interface interface manage ident-reset
```

Changing the Port Number

Changing the port number to which the security device listens for HTTP management traffic improves security. The default setting is port 80, the standard port number for HTTP traffic. After you change the port number, you must then enter the new port number in the URL field in your browser when you next attempt to contact the security device. (In the following example, the administrator needs to enter http://188.30.12.2:15522.)

In this example, the IP address of the interface bound to the Trust zone is 10.1.1.1/24. To manage the security device with the WebUI on this interface, you must use HTTP. To increase the security of the HTTP connection, you change the HTTP port number from 80 (the default) to 15522.

WebUI

Configuration > Admin > Management: In the HTTP Port field, enter 15522, then click Apply.

CLI

```
set admin port 15522
save
```

Changing the Admin Login Name and Password

By default, the initial login name for security devices is **netscreen**. The initial password is also **netscreen**. Because these have been widely published, we recommend you change the login name and password immediately. The login name and password are both case-sensitive. They can contain any character that can be entered from the keyboard with the exception of ? and ". Record the new admin login name and password in a secure manner.

WARNING: Be sure to record your new password. If you forget it, you must reset the security device to its factory settings, and all your configurations
Admin users for the security device can be authenticated using the internal database or an external auth server. When the admin user logs into the security device, it first checks the local internal database for authentication. If there is no entry present and an external auth server is connected, it then checks for a matching entry in the external auth server database. After an admin user successfully logs into an external auth server, the security device maintains the admin’s login status locally.

NOTE: Juniper Networks supports RADIUS, SecurID, and LDAP servers for admin user authentication. (For more information, see Admin Users.) Although the root admin account must be stored on the local database, you can store root-level read/write and root-level read-only admin users on an external auth server. To store root-level and vsys-level admin users on an external auth server and query their privileges, the server must be RADIUS and you must load the netscreen.dct file on it.

For more information about admin user levels, see “Levels of Administration” on page 38. For more about using external auth servers, see External Authentication Servers.

When the root admin changes any attribute of an admin user’s profile—username, password, or privilege—any administrative session that the admin currently has open automatically terminates. If the root admin changes any of these attributes for himself, or if a root-level read/write admin or vsys read/write admin changes his own password, all of that user’s currently open admin sessions terminate, other than the one in which he made the change.

NOTE: The behavior of an HTTP or HTTPS session using the WebUI is different. Because HTTP does not support a persistent connection, any change that you make to your own user profile automatically logs you out of that and all other open sessions.

Example: Changing an Admin User’s Login Name and Password

In this example, you—as the root admin—change a read/write administrator’s login name from “John” to “Smith” and his password from xL7s62a1 to 3MAb99j2.
NOTE: Instead of using actual words for passwords, which might be guessed or discovered through a dictionary attack, you can use an apparently random string of letters and numbers. To create such a string that you can easily remember, compose a sentence and use the first letter from each word. For example, “Charles will be 6 years old on November 21” becomes “Cwb6yyoN21.” For more information, see “Levels of Administration” on page 38.

WebUI
Configuration > Admin > Administrators > Edit (for John): Enter the following, then click OK:

- Name: Smith
- New Password: 3MAb99j2
- Confirm New Password: 3MAb99j2

CLI
unset admin user John
set admin user Smith password 3MAb99j2 privilege all
save

Example: Changing Your Own Password
Admin users with read/write privileges can change their own administrator password, but not their login name. In this example, an administrator with read/write privileges and the login name “Smith” changes his password from 3MAb99j2 to ru494Vq5.

WebUI
Configuration > Admin > Administrators > Edit (for first entry): Enter the following, then click OK:

- Name: Smith
- New Password: ru494Vq5
- Confirm New Password: ru494Vq5

CLI
set admin password ru494Vq5
save

Setting the Minimum Length of the Root Admin Password
In some corporations, one person might initially configure the device as the root admin, but another person later assumes the role of root admin and manages the device. To prevent the subsequent root admin from using short passwords that are potentially easier to decode, the initial root admin can set a minimum length requirement for the root admin’s password to any number from 1 to 31.

You can set the minimum password length only if you are the root admin and your own password meets the minimum length requirement you are attempting to set. Otherwise, the security device displays an error message.
To specify a minimum length for the root admin’s password, enter the following CLI command:

```
set admin password restrict length number
```

NOTE: You must use the CLI to set this restriction.

Resetting the Device to the Factory Default Settings

If the admin password is lost, you can use the following procedure to reset the security device to its default settings. The configurations will be lost, but access to the device will be restored. To perform this operation, you need to make a console connection, which is described in detail in *ScreenOS CLI Reference Guide: IPv4 Command Descriptions* and the documentation for your device.

NOTE: By default, the device recovery feature is enabled. You can disable it by entering the `unset admin device-reset` command. Also, if the security device is in FIPS mode, the recovery feature is automatically disabled.

1. At the login prompt, enter the serial number of the device.
2. At the password prompt, enter the serial number again.

 The following message appears:

   ```
   !!!! Lost Password Reset !!!! You have initiated a command to reset the device to factory defaults, clearing all current configuration, keys and settings. Would you like to continue? y/n
   ```

3. Press the *y* key.

 The following message appears:

   ```
   !! Reconfirm Lost Password Reset !! If you continue, the entire configuration of the device will be erased. In addition, a permanent counter will be incremented to signify that this device has been reset. This is your last chance to cancel this command. If you proceed, the device will return to factory default configuration, which is: System IP: 192.168.1.1; username: netscreen; password: netscreen. Would you like to continue? y/n
   ```

4. Press the *y* key to reset the device. You can now log in using *netscreen* as the default username and password.

Restricting Administrative Access

You can administer security devices from one or multiple addresses of a subnet. By default, any host on the trusted interface can administer a security device. To restrict this ability to specific workstations, you must configure management client IP addresses.
Example: Restricting Administration to a Single Workstation

In this example, the administrator at the workstation with the IP address 172.16.40.42 is the only administrator specified to manage the security device.

WebUI

Configuration > Admin > Permitted IPs: Enter the following, then click Add:

- IP Address / Netmask: 172.16.40.42/32

CLI

- set admin manager-ip 172.16.40.42/32
- save

Example: Restricting Administration to a Subnet

In this example, the group of administrators with workstations in the 172.16.40.0/24 subnet are specified to manage a security device.

WebUI

Configuration > Admin > Permitted IPs: Enter the following, then click Add:

- IP Address / Netmask: 172.16.40.0/24

CLI

- set admin manager-ip 172.16.40.0 255.255.255.0
- set admin manager-ip 3ffe:7777::1/32
- set admin manager-ip 3ffe:7777::1/24
- save

Restricting the Root Admin to Console Access

You can also require the root admin to log into the security device through the console only. This restriction requires the root admin to have physical access to the device to log in, thus preventing unauthorized users from logging in remotely as the root admin. After you have set this restriction, the device denies access if anyone tries to log in as the root admin through other means, such as the WebUI, Telnet, or SSH, even if these management options are enabled on the ingress interface.

To restrict the access of the root admin to the console only, enter the following command:

- set admin root access console

NOTE: You must use the CLI to set this restriction.

Monitoring Admin access

ScreenOS provides the following features to monitor and control the admin access to the security devices:
Lock and unlock interactive session

Users will be able to lock and unlock the current active session by using Exit command.

Auto lock after inactivity

ScreenOS supports this feature by employing three components:

- When the administrator is inactive on the terminal for a specified period of time the device automatically locks the session. Root-admins can specify the time period of inactivity after which the device locks the session by using the set console time command.
- When the administrator locks a session by using the exit command or when the device auto-locks the session, the security device clears all contents or overwrites the contents on display devices making it unreadable. About 50 empty lines will be flushed out on the display devices.
- After locking the session, any activity other than unlocking the session will be disabled. Users will be denied access to data in ScreenOS without reauthentication.

Restrict admin access based on time

ScreenOS restricts the admin access to users based on location by using the set admin manager command. For example, the following command restricts management to a single host with IP address 10.1.10.100:

```
set admin manager-ip 10.1.10.100 255.255.255.255
```

To restrict admin access based on time, use the set admin user user_name access schedule scheduler_name. When a new connection initiated by certain admin comes at firewall, the scheduler bound to the admin is checked to see if the permit time window is open. If not, the connection request will be rejected. The scheduler will be checked every 10 seconds and once the stop time is due, the admin will be restricted access to the security device.

You can view details of admins who are currently active by using the get active admin user login command:

```
ssg5-serial-> get admin user login
```

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Vsys</th>
<th>Date</th>
<th>Time</th>
<th>Source</th>
<th>IP Addr</th>
<th>Auth Type</th>
<th>Role</th>
<th>Time Remain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>kkk</td>
<td>Root</td>
<td>2008-04-23</td>
<td>17:53:01</td>
<td>console</td>
<td>0.0.0.0</td>
<td>local</td>
<td>-</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>kkk</td>
<td>Root</td>
<td>2008-04-23</td>
<td>17:49:26</td>
<td>web</td>
<td>2.2.2.2</td>
<td>local</td>
<td>-</td>
<td>N/A</td>
</tr>
</tbody>
</table>

To view details of all administrators use the get admin user command:

```
ssg5-serial-> get admin user
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Privilege</th>
<th>Role</th>
<th>Scheduler</th>
</tr>
</thead>
<tbody>
<tr>
<td>kkk</td>
<td>Root</td>
<td>-</td>
<td>N/A</td>
</tr>
</tbody>
</table>
You can use virtual private network (VPN) tunnels to secure remote management of a security device from either a dynamically assigned or fixed IP address. Using a VPN tunnel, you can protect any kind of traffic, such as NSM, HTTP, Telnet, or SSH. (For information about creating a VPN tunnel to secure self-initiated traffic such as NSM reports, syslog reports, or SNMP traps, see “Configuring a MIB Filter in the SNMP Community” on page 91.)

Juniper Networks security devices support two types of VPN tunnel configurations:

- **Route-based VPNs**: The security device uses route table entries to direct traffic to tunnel interfaces, which are bound to VPN tunnels.

- **Policy-based VPNs**: The security device uses the VPN tunnel names specifically referenced in policies to direct traffic through VPN tunnels.

For each VPN tunnel configuration type, there are the following types of VPN tunnel:

- **Manual key**: You manually set the three elements that define a Security Association (SA) at both ends of the tunnel: a Security Parameters Index (SPI), an encryption key, and an authentication key. To change any element in the SA, you must manually enter it at both ends of the tunnel.

- **AutoKey IKE with pre-shared key**: One or two pre-shared secrets—one for authentication and one for encryption—function as seed values. Using them, the IKE protocol generates a set of symmetrical keys at both ends of the tunnel; that is, the same key is used to encrypt and decrypt. At predetermined intervals, these keys are automatically regenerated.

- **AutoKey IKE with certificates**: Using the Public Key Infrastructure (PKI), the participants at both ends of the tunnel use a digital certificate (for authentication) and an RSA public/private key pair (for encryption). The encryption is asymmetrical; that is, one key in a pair is used to encrypt and the other to decrypt.

If you use a policy-based VPN configuration, you must create an address book entry with the IP address of an interface in any zone other than the one to which the outgoing interface is bound. You can then use that as the source address in policies referencing the VPN tunnel. This address also serves as the end entity address for the remote IPsec peer. If you are using a route-based VPN configuration, such an address book entry is unnecessary.
Administration Through a Route-Based Manual Key VPN Tunnel

Figure 14 on page 51 illustrates an example in which you set up a route-based Manual Key VPN tunnel to provide confidentiality for administrative traffic. The tunnel extends from the NetScreen-Remote VPN client running on an admin’s workstation at 10.1.1.56 to ethernet1 (10.1.1.1/24). The admin’s workstation and ethernet1 are both in the Trust zone. You name the tunnel “tunnel-adm”. You create an unnumbered tunnel interface, name it tunnel.1, and bind it to the Trust zone and to the VPN tunnel “tunnel-adm.”

The security device uses the internal IP address configured on the NetScreen-Remote client—10.10.10.1—as the destination address to target beyond the peer gateway address of 10.1.1.56. You define a route to 10.10.10.1/32 through tunnel.1. A policy is unnecessary because of the following two reasons:

- The VPN tunnel protects administrative traffic that terminates at the security device itself instead of passing through the device to another security zone.
- This is a route-based VPN, meaning that the route lookup—not a policy lookup—links the destination address to the tunnel interface, which is bound to the appropriate VPN tunnel.

NOTE: Compare this example with “Administration Through a Policy-Based Manual Key VPN Tunnel” on page 54.

NetScreen-Remote uses the IP address of ethernet3—1.1.1.1—as the destination address to target beyond the remote gateway at 10.1.1.1. The NetScreen-Remote configuration specifies the remote party ID type as “IP address” and the protocol as “All.”

Figure 14: Administration Through a Route-Based Manual Key VPN Tunnel

WebUI

1. Interfaces

Network > Interfaces > Edit (ethernet1): Enter the following, then click Apply:

- Zone Name: Trust
- Static IP: (select this option when present)
- IP Address/Netmask: 10.1.1.1/24
Select the following, then click **OK**:

Interface Mode: NAT

Network > Interfaces > Edit (ethernet3): Enter the following, then click **OK**:

- **Zone Name:** Untrust
- **Static IP:** (select this option when present)
- **IP Address/Netmask:** 1.1.1.1/24

Network > Interfaces > New Tunnel IF: Enter the following, then click **OK**:

- **Tunnel Interface Name:** Tunnel.1
- **Zone (VR):** Trust (trust-vr)
- **Unnumbered:** (select)
- **Interface:** ethernet1 (trust-vr)

NOTE: The unnumbered tunnel interface borrows the IP address of the specified security zone interface.

2. **VPN**

VPNs > Manual Key > New: Enter the following, then click **OK**:

- **VPN Tunnel Name:** tunnel-adm
- **Gateway IP:** 10.11.1.56
- **Security Index (HEX Number):** 5555 (Local) 5555 (Remote)
- **Outgoing Interface:** ethernet1
- **ESP-CBC:** (select)
- **Encryption Algorithm:** DES-CBC
- **Generate Key by Password:** netscreen1
- **Authentication Algorithm:** MD5
- **Generate Key by Password:** netscreen2

> Advanced: Enter the following, then click **Return** to set the advanced options and return to the basic configuration page:

- **Bind to Tunnel Interface:** (select), Tunnel.1

NOTE: Because NetScreen-Remote processes passwords into keys differently than do other Juniper Networks products, after you configure the tunnel you need to do the following: (1) Return to the Manual Key Configuration dialog box (click **Edit** in the Configure column for “tunnel-adm”); (2) copy the generated hexadecimal keys; (3) use those hexadecimal keys when configuring the NetScreen-Remote end of the tunnel.

3. **Route**

Network > Routing > Destination > trust-vr New: Enter the following, then click **OK**:

- **Network Address/Netmask:** 10.10.10.1/32
- **Gateway:** (select)
- **Interface:** Tunnel.1
- **Gateway IP Address:** 0.0.0.0
CLI

1. Interfaces

 set interface ethernet1 zone trust
 set interface ethernet1 ip 10.1.1.1/24
 set interface ethernet1 nat
 set interface ethernet3 zone untrust
 set interface ethernet3 ip 1.1.1.1/24
 set interface tunnel.1 zone trust
 set interface tunnel.1 ip unnumbered interface ethernet1

 NOTE: The unnumbered tunnel interface borrows the IP address of the
 specified security zone interface.

2. VPN

 set vpn tunnel-adm manual 5555 5555 gateway 10.1.1.56 outgoing ethernet1 esp des
 password netscreen1 auth md5 password netscreen2
 set vpn tunnel-adm bind interface tunnel.1

 NOTE: Because NetScreen-Remote processes passwords into keys
 differently than do other Juniper Networks products, after you configure
 the tunnel you need to do the following: (1) Enter `get vpn admin-tun`;
 (2) copy the hexadecimal keys generated by “netscreen1” and “netscreen2” ;
 (3) use those hexadecimal keys when configuring the NetScreen-Remote
 end of the tunnel.

3. Route

 set vrouter trust-vr route 10.10.10.1/32 interface tunnel.1
 save

NetScreen-Remote Security Policy Editor

1. Click Options > Global Policy Settings, and select the Allow to Specify Internal
 Network Address check box.

2. Click Options > Secure > Specified Connections.

3. Click Add a new connection, and enter Admin next to the new connection icon that
 appears.

4. Configure the connection options:
 - Connection Security: Secure
 - Remote Party Identity and Addressing:
 - ID Type: IP Address, 1.1.1.1
 - Protocol: All
 - Connect using Secure Gateway Tunnel: (select)
 - ID Type: IP Address, 10.1.1.1

5. Click the PLUS symbol, located to the left of the UNIX icon, to expand the connection policy.
6. Click **My Identity**, in the Select Certificate drop-down list, choose **None**, and in the Internal Network IP Address, enter 10.10.10.1.

7. Click **Security Policy**, and select **Use Manual Keys**.

8. Click the PLUS symbol, located to the left of the Security Policy icon, then click the PLUS symbol to the left of Key Exchange (Phase 2) to expand the policy further.

9. Click **Proposal 1**, then select the following IPsec protocols:

 - Encapsulation Protocol (ESP): (select)
 - Encrypt Alg: DES
 - Hash Alg: MD5
 - Encapsulation: Tunnel

10. Click **Inbound Keys**, and in the Security Parameters Index field, enter 5555.

11. Click **Enter Key**, enter the following, then click **OK**:

 - Choose key format: Binary
 - ESP Encryption Key: dccbee96c7e546bc
 - ESP Authentication Key: dccbe9e6c7e546bcb0b667794ab7290c

 NOTE: These are the two generated keys that you copied after configuring the security device.

12. Click **Outbound Keys**, and, in the Security Parameters Index field, enter 5555.

13. Click **Enter Key**, enter the following, then click **OK**:

 - Choose key format: Binary
 - ESP Encryption Key: dccbee96c7e546bc
 - ESP Authentication Key: dccbe9e6c7e546bcb0b667794ab7290c

14. Click **Save**.

Administration Through a Policy-Based Manual Key VPN Tunnel

Figure 15 on page 55 illustrates an example in which you set up a policy-based Manual Key VPN tunnel for administrative traffic. The tunnel extends from the NetScreen-Remote VPN client running on an admin's workstation at 10.1.1.56 to ethernet1 (10.1.1.1/24). The admin's workstation and ethernet1 are both in the Trust zone. You name the tunnel “tunnel-adm” and bind it to the Trust zone.

The security device uses the internal IP address configured on the NetScreen-Remote—10.10.10.1—as the destination address to target beyond the peer gateway address of 10.1.1.56. You define a Trust zone address book entry specifying 10.10.10.1/32, and an Untrust zone address book entry specifying the IP address of ethernet3. Although the address of the ethernet3 interface is 1.1.1.1/24, the address you create has a 32-bit netmask: 1.1.1.1/32. You use this address and the internal address of the admin's workstation in the policy you create referencing the tunnel “tunnel-adm”. A policy is necessary because this is a policy-based VPN, meaning that the policy lookup—not a route lookup—links the destination address to the appropriate VPN tunnel.

You must also define a route to 10.10.10.1/32 through ethernet1.
NetScreen-Remote uses the IP address 1.1.1.1 as the destination address to target beyond the remote gateway at 10.1.1.1. The NetScreen-Remote tunnel configuration specifies the remote party ID type as IP address and the protocol as “All.”

Figure 15: Administration Through a Policy-Based Manual Key VPN Tunnel

WebUI

1. **Interfaces**

 Network > Interfaces > Edit (ethernet1): Enter the following, then click **Apply**:

 Zone Name: Trust
 Static IP: (select this option when present)
 IP Address/Netmask: 10.1.1.1/24

 Select the following, then click **OK**:

 Interface Mode: NAT

 Network > Interfaces > Edit (ethernet3): Enter the following, then click **OK**:

 Zone Name: Untrust
 Static IP: (select this option when present)
 IP Address/Netmask: 1.1.1.1/24

2. **Addresses**

 Policy > Policy Elements > Addresses > Lists > New: Enter the following, then click **OK**:

 Address Name: Untrust-IF
 IP Address/Domain Name: IP/Netmask: (select), 1.1.1.1/32
 Zone: Untrust

 Policy > Policy Elements > Addresses > Lists > New: Enter the following, then click **OK**:

 Address Name: admin
 IP Address/Domain Name: IP/Netmask: (select), 10.10.10.1/32
 Zone: Trust

3. **VPN**
VPNs > Manual Key > New: Enter the following, then click OK:

- **VPN Tunnel Name**: tunnel-adm
- **Gateway IP**: 10.1.1.56
- **Security Index (HEX Number)**: 5555 (Local) 5555 (Remote)
- **Outgoing Interface**: ethernet1
- **ESP-CBC**: (select)
- **Encryption Algorithm**: DES-CBC
- **Generate Key by Password**: netscreen1
- **Authentication Algorithm**: MD5
- **Generate Key by Password**: netscreen2

NOTE: Because NetScreen-Remote processes passwords into keys differently than do other Juniper Networks products, after you configure the tunnel you need to do the following: (1) Return to the Manual Key Configuration dialog box (click Edit in the Configure column for “tunnel-adm”); (2) copy the generated hexadecimal keys; (3) use those hexadecimal keys when configuring the NetScreen-Remote end of the tunnel.

4. **Route**

`Network > Routing > Destination > trust-vr New: Enter the following, then click OK:`

- **Network Address/Netmask**: 10.10.10.1/32
- **Gateway**: (select)
- **Interface**: ethernet1
- **Gateway IP Address**: 0.0.0.0

5. **Policies**

`Policies > (From: Trust, To: Untrust) New: Enter the following, then click OK:`

- **Source Address**: Address Book Entry: (select), admin
- **Destination Address**: Address Book Entry: (select), Untrust-IF
- **Service**: Any
- **Action**: Tunnel
- **Tunnel**: VPN: tunnel-adm
- **Modify matching bidirectional VPN policy**: (select)
- **Position at Top**: (select)

CLI

1. **Interfaces**

- `set interface ethernet1 zone trust`
- `set interface ethernet1 ip 10.1.1.1/24`
- `set interface ethernet1 nat`
- `set interface ethernet3 zone untrust`
- `set interface ethernet3 ip 1.1.1.1/24`

2. **Addresses**

- `set address trust admin 10.10.10.1/32`
set address untrust Untrust-IF 1.1.1.1/32

3. **VPN**

 set vpn tunnel-adm manual 5555 5555 gateway 10.1.1.56 outgoing ethernet1 esp des password netscreen1 auth md5 password netscreen2

 NOTE: Because NetScreen-Remote processes passwords into keys differently than do other Juniper Networks products, after you configure the tunnel you need to do the following: (1) Enter get vpn admin-tun; (2) copy the hexadecimal keys generated by “netscreen1” and “netscreen2”; (3) use those hexadecimal keys when configuring the NetScreen-Remote end of the tunnel.

4. **Route**

 set vrouter trust-vr route 10.10.10.1/32 interface ethernet1

5. **Policies**

 set policy top from trust to untrust admin Untrust-IF any tunnel vpn tunnel-adm
 set policy top from untrust to trust Untrust-IF admin any tunnel vpn tunnel-adm
 save

NetScreen-Remote Security Policy Editor

1. Click **Options > Secure > Specified Connections.**

2. Click **Add a new connection**, and enter **Admin** next to the new connection icon that appears.

3. Configure the connection options:

 Connection Security: Secure
 Remote Party Identity and Addressing:
 ID Type: IP Address, 1.1.1.1
 Protocol: All
 Connect using Secure Gateway Tunnel: (select)
 ID Type: IP Address, 10.1.1.1

4. Click the **PLUS** symbol, located to the left of the UNIX icon, to expand the connection policy.

5. Click **My Identity**, and, in the **Select Certificate** drop-down list, choose **None**.

6. Click **Security Policy**, and select **Use Manual Keys**.

7. Click the **PLUS** symbol, located to the left of the Security Policy icon, and then the **PLUS** symbol to the left of Key Exchange (Phase 2) to expand the policy further.

8. Click **Proposal 1**, and select the following IPsec protocols:

 Encapsulation Protocol (ESP): (select)
 Encrypt Alg: DES
 Hash Alg: MD5
 Encapsulation: Tunnel

9. Click **Inbound Keys**, and in the Security Parameters Index field, enter 5555.
10. Click **Enter**, enter the following, and click **OK**:

 Choose key format: Binary
 ESP Encryption Key: dccbee96c7e546bc
 ESP Authentication Key: dccbe9e6c7e546bcb0b667794ab7290c

 NOTE: These are the two generated keys that you copied after configuring the security device.

11. Click **Outbound Keys**, and in the Security Parameters Index field, enter 5555.

12. Click **Enter Key**, enter the following, then click **OK**:

 Choose key format: Binary
 ESP Encryption Key: dccbee96c7e546bc
 ESP Authentication Key: dccbe9e6c7e546bcb0b667794ab7290c

13. Click **Save**.

Password Policy

The password policy feature allows you to enforce a minimum length and a complexity scheme for administrator (admin) and authenticated (auth) user passwords. The password policy feature is intended for use in a local database, and therefore is useful in environments where the Windows directory or RADIUS are not available to provide centralized password policy enforcement.

Setting a Password Policy

You can create a password policy to require that admin and auth passwords fulfill one or both of the following:

- Minimum length
- Complexity

The range for password minimum length is 1 to 32 characters. Use the following command to create a password policy requiring a minimum length of 8 characters for admin passwords:

```
set password-policy user-type admin minimum-length 8
```

Password complexity means passwords must include at least two uppercase letters, two lowercase letters, and two alphanumeric and two non-alphanumeric characters; for example: AAbb12@#. To require that passwords contain complexity, you set complexity to 1. To unset the complexity requirement, set complexity to 0. Use the following command to create a password policy requiring that auth passwords contain complexity:

```
set password-policy user-type auth complexity 1
```

In the following example, you create a password policy for admin and auth accounts requiring complexity and a minimum length of 8 characters:
CLI

set password-policy user-type admin minimum-length 8
set password-policy user-type admin complexity 1
set password-policy user-type auth minimum-length 8
set password-policy user-type auth complexity 1
save

NOTE: You can configure a password policy only from the command line interface (CLI).

Removing a Password Policy

Use the `unset password-policy` command to delete a password policy. When you remove a password policy, the password requirement for the account reverts to the default settings. In the following example, you remove the minimum length requirement for auth passwords.

CLI

```
unset password-policy user-type auth minimum-length
```

Viewing a Password Policy

Use the `get password-policy` command to display the password policy for admin and auth users.

Recovering from a Rejected Default Admin Password

When you delete (unset) the root admin account on a device on which you have a password policy configured, you might need to set a new admin password before logging off the system. This is because ScreenOS reverts to the default password (`netscreen`) when you delete the root admin account. If you have a password policy requiring complexity, or a minimum length greater than 9 characters, your next login attempt will fail. If this happens, use the asset recovery procedure to gain access to the device. Refer to the installation and configuration guide for your device for details.

In the following example, you delete the admin account named `admin2005`, then display the current password policy. As shown, the policy specifies that passwords must have a minimum length of 8 characters, and use complexity (a minimum of two uppercase, two lowercase, two alphanumeric, and two non-alphanumeric characters). You then create a new admin account named `admin2006` and set a password for it that fulfills the minimum length and complexity requirements of the password policy.

CLI

```
unset admin admin2005
get password-policy

user-type: admin
password minimum length: 8
```
password complexity scheme: 1

user-type: auth
password minimum length: 8
password complexity scheme: 1

set admin admin2006 password AAbb12@# save

NOTE: You can configure an admin account only from the command line interface (CLI).

Creating a Login Banner

The size of the login banner is increased to a maximum of 4Kbytes. This provides space for terms of use statements, which are presented before administrators and authenticated users log into the security device and into protected resources behind the device. The login banner is a clear text ASCII file you create and store on the security device, the file must be called usrterms.txt. You activate the banner by restarting of the device. If the banner file is greater than 4Kbytes, the security device will not accept it and will continue using existing banners entered through the CLI and the WebUI.

When activated, the login banner is used globally by the root device and all virtual systems (vsys). You cannot differentiate or customize between or within a vsys. The login banner preempts all individually defined administrative access banners and firewall authentication banners. After entering a username and password, the user must click the Login button. Pressing the Enter key will not log the user into the device.

Use the SCP utility to securely copy the banner file to the security device. With the following command, an administrator with username netscreen copies the banner file my_large_banner.txt to a security device at IP address 1.1.1.2. The banner file must be saved on the security device as usrterms.txt.

You must restart the device to activate the new banner. To modify the banner file, create a new file and overwrite the existing one with the new one.

To remove the banner, issue the following command on the security device:

device-> delete file usrterms.txt

This disables the login banner feature after you restart the device.
CHAPTER 2

Monitoring Security Devices

This chapter discusses the following topics about monitoring Juniper Networks security devices. It contains the following sections:

- Storing Log Information on page 61
- Event Log on page 62
- Traffic Log on page 66
- Self Log on page 71
- Downloading the Asset Recovery Log on page 73
- Traffic Alarms on page 74
- Security Alarms and Audit Logs on page 77
- Syslog on page 81
- Simple Network Management Protocol on page 85
- VPN Tunnels for Self-Initiated Traffic on page 95
- Viewing Screen Counters on page 109

Storing Log Information

All Juniper Networks security devices allow you to store event and traffic log data internally (in flash storage) and externally (in a number of locations). Although storing log information internally is convenient, the amount of device memory is limited. When the internal storage space completely fills up, the security device begins overwriting the oldest log entries with the latest ones. If this first-in-first-out (FIFO) mechanism occurs before you save the logged information, you can lose data. To mitigate such data loss, you can store event and traffic logs externally in a syslog or WebTrends server or in the NetScreen-Global PRO database. The security device sends new event and traffic log entries to an external storage location every second.

The following list provides the possible destinations for logged data:

- **Console**: A destination for all log entries to appear when you are troubleshooting a security device through the console. Optionally, you might elect to have only alarm messages (critical, alert, emergency) appear here to alert you immediately if you happen to be using the console at the time an alarm is triggered.
- **Internal**: Allows you to store a limited number of log entries.
• **Email**: A method for sending event and traffic logs to remote administrators.

• **SNMP**: In addition to the transmission of SNMP traps, a security device can also send alarm messages (critical, alert, emergency) from its event log to an SNMP community.

• **Syslog**: All event and traffic log entries that a security device can store internally, it can also send to a syslog server. Because syslog servers have a much greater storage capacity than the internal flash storage on a security device, sending data to a syslog server can mitigate data loss that might occur when log entries exceed the maximum internal storage space. Syslog stores alert- and emergency-level events in the security facility that you specify, and all other events (including traffic data) in the facility you specify.

• **WebTrends**: Allows you to view log data for critical-, alert-, and emergency-level events in a more graphical format than syslog, which is a text-based tool.

• **CompactFlash (PCMCIA)**: Allows you to store data on a CompactFlash card.

• **USB**: Allows you to store data on a USB flash drive. When you set USB as the log destination, the system sends log messages to a file on the USB flash drive. The log file is named `hostname_date.evt_log`, where `hostname` is the system hostname at boot time, and `date` is date on which the device was last started. Logging to USB is disabled by default; use the `set log usb enable` CLI command to enable USB logging.

Use the `set log... destination...` command to set the severity levels for all log destinations. The following example logs all system module messages of level critical or higher to the USB flash drive:

```
set log module system level critical destination usb
```

Event Log

ScreenOS provides an event log for monitoring system events such as admin-generated configuration changes, and self-generated messages and alarms regarding operational behavior and attacks. The security device categorizes system events by the following severity levels:

• **Emergency**: Messages on SYN attacks, Tear Drop attacks, and Ping of Death attacks. For more information on these types of attacks, see Attack Detection and Defense Mechanisms.

• **Alert**: Messages about conditions that require immediate attention, such as firewall attacks and the expiration of license keys.

• **Critical**: Messages about conditions that probably affect the functionality of the device, such as high availability (HA) status changes.

• **Error**: Messages about error conditions that probably affect the functionality of the device, such as a failure in antivirus scanning or in communicating with SSH servers.

• **Warning**: Messages about conditions that could affect the functionality of the device, such as a failure to connect to email servers or authentication failures, timeouts, and successes.
- **Notification**: Messages about normal events, including configuration changes initiated by an admin.
- **Information**: Messages that provide general information about system operations.
- **Debugging**: Messages that provide detailed information used for debugging purposes.

The event log displays the date, time, level and description of each system event. You can view system events for each category stored in flash storage on the security device through the WebUI or the CLI. You can also open or save the file to the location you specify, and then use an ASCII text editor (such as Notepad or WordPad) to view the file. Alternatively, you can send them to an external storage space (see “Storing Log Information” on page 61).

NOTE: For detailed information about the messages that appear in the event log, see the *ScreenOS Message Log Reference Guide*.

Viewing the Event Log by Severity Level and Keyword

You can view the event log stored in the device by using the CLI or the WebUI. You can display log entries by severity level and search the event log by keyword in both the WebUI and CLI.

To display the event log by severity level, do either of the following:

WebUI

Reports > System Log > Event: Select a severity level from the Log Level drop-down list.

CLI

```
get event level { emergency | alert | critical | error | warning | notification | information | debugging }
```

To search the event log by keyword, do either of the following:

WebUI

Reports > System Log > Event: Enter a word or phrase up to 15 characters in length in the search field, then click **Search**.

CLI

```
get event include word_string
```

In this example, you view event log entries with a “warning” severity level and do a search for the keyword AV.

WebUI

Reports > System Log > Event:

Log Level: Warning (select)

Search: Enter AV, then click **Search**.
CLI

get event level warning include av

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Module Level</th>
<th>Level</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003-05-16</td>
<td>15:56:20</td>
<td>system warn</td>
<td>00547</td>
<td>AV</td>
<td>scanman is removed.</td>
</tr>
<tr>
<td>2003-05-16</td>
<td>09:45:52</td>
<td>system warn</td>
<td>00547</td>
<td>AV</td>
<td>test1 is removed.</td>
</tr>
</tbody>
</table>

Total entries matched = 2

Sorting and Filtering the Event Log

Additionally, you can use the CLI to sort or filter the event log based on the following criteria:

- **Source or Destination IP Address**: Only certain events contain a source or destination IP address, such as authentication, land attacks, or ping flood attacks. When you sort event logs by source or destination IP address, the device sorts and displays only the event logs that contain source or destination IP addresses. It ignores all event logs with no source or destination IP address. The authentication log messages include the user’s IP address.

When you filter the event log by specifying a source or destination IP address or range of addresses, the device displays the log entries for the specified source or destination IP address, or range of addresses.

- **Date**: You can sort the event log by date only, or by date and time. When you sort log entries by date and time, the device lists the log entries in descending order by date and time.

You can also filter event log entries by specifying a start date, an end date, or a date range. When you specify a start date, the device displays log entries with date/time stamps after the start date. When you specify an end date, the device displays log entries with date/time stamps before the end date.

- **Time**: When you sort logs by time, the device displays the log entries in descending order by time, regardless of the date. When you specify a start time, the device displays log entries with time stamps after the specified start time, regardless of the date. When you specify an end time, the device displays log entries with time stamps before the specified end time, regardless of the date. When you specify both a start and end time, the device displays log entries with time stamps within the specified time period.

- **Message Type ID Number**: You can display event log entries for a specific message type ID number, or you can display log entries with message type ID numbers within a specified range. The device displays log entries with the message type ID number(s) you specified, in descending order by date and time.

In this example you view event log entries that contain source IP addresses within the range 10.100.0.0 to 10.200.0.0. The log entries are also sorted by source IP address.
NOTE: You must use the CLI to sort the event log by address entries.

`get event sort-by src-ip 10.100.0.0-10.200.0.0`

Downloading the Event Log

You can open or save the event log to the location you specify, and then use an ASCII text editor (such as Notepad or WordPad) to view the file. Alternatively, you can send the log entries to an external storage space (see “Storing Log Information” on page 61). You can download the entire event log through the WebUI. You can download the event log by severity level through the CLI.

Example: Downloading the Entire Event Log

In this example, you download the event log to the local directory. Using the WebUI, you download it to `C:\netscreen\logs`. Using the CLI, you download it to the root directory of a TFTP server at the IP address 10.1.1.5. You name the file “evnt07-02.txt.”

WebUI

1. Reports > System Log > Event: Click **Save**.
 - The File Download dialog box prompts you to open the file (using an ASCII editor) or save it to disk.
2. Select the **Save** option, then click **OK**.
 - The File Download dialog box prompts you to choose a directory.
3. Specify `C:\netscreen\logs`, name the file `evnt07-02.txt`, then click **Save**.

CLI

```
get event > tftp 10.1.1.5 evnt07-02.txt
```

Example: Downloading the Event Log for Critical Events

In this example, you download the critical events entered in the event log to the root directory of a TFTP server at the IP address 10.1.1.5. You name the file `crt_evnt07-02.txt`.

WebUI

```
NOTE: You must use the CLI to download entries by severity level.
```

CLI

```
get event level critical > tftp 10.1.1.5 crt_evnt07-02.txt
```
Traffic Log

The Juniper Networks security device can monitor and record traffic that it permits or denies based on previously configured policies. You can enable the logging option for each policy that you configure. When you enable the logging option for a policy that permits traffic, the device records the traffic allowed by that policy. When you enable the logging option for a policy that denies traffic, the device records traffic that attempted to pass through the device, but was dropped because of that policy.

A traffic log notes the following elements for each session:

- Date and time that the connection started
- Duration
- Source address and port number
- Translated source address and port number
- Destination address and port number
- The duration of the session
- The service used in the session

To log all traffic that a security device receives, you must enable the logging option for all policies. To log specific traffic, enable logging only on policies that apply to that traffic. To enable the logging option on a policy, do either of the following:

WebUI

Policies > (From: src_zone, To: dst_zone) New: Select **Logging** and then click **OK**.

CLI

```
set policy from src_zone to dst_zone src_addr dst_addr service action log
```

In addition to logging traffic for a policy, the device can also maintain a count in bytes of all network traffic to which the policy was applied. When you enable the counting option, the device includes the following information when it displays traffic log entries:

- Bytes transmitted from a source to a destination
- Bytes transmitted from a destination to a source

You can enable counting on a policy from the WebUI and from the CLI.

WebUI

Policies > (From: src_zone, To: dst_zone) New > Advanced: Select **Counting**, click **Return**, then click **OK**.

CLI

```
set policy from src_zone to dst_zone src_addr dst_addr service action log count
```
Viewing the Traffic Log

You can view traffic log entries stored in flash storage on the security device using either the WebUI or the CLI.

WebUI

Policies > Logging (for policy ID number)

or

Reports > Policies > Logging (for policy ID number)

CLI

get log traffic policy number

Example: Viewing Traffic Log Entries

In this example, you view the traffic log details of a policy with ID number 3, and for which you have previously enabled logging:

WebUI

Policies: Click the Logging icon for the policy with ID number 3.

The following information appears:

- Date/Time: 2003-01-09 21:33:43
- Duration: 1800 sec.
- Source IP Address/Port: 1.1.1.1:1046
- Destination IP Address/Port: 10.1.1.5:80
- Service: HTTP
- Reason for Close: Age out
- Translated Source IP Address/Port: 1.1.1.1:1046
- Translated Destination IP Address/Port: 10.1.1.5:80
- Policy ID number: 3

CLI

get log traffic policy 3

Sorting and Filtering the Traffic Log

Similar to the event log, when you use the CLI to view the traffic log, you can sort or filter the log entries according to the following criteria:

- **Source or Destination IP Address**: You can sort the traffic log by source or destination IP address. You can also filter the traffic log by specifying a source or destination IP address or range of addresses.
• **Date:** You can sort the traffic log by date only, or by date and time. The device lists the log entries in descending order by date and time.

You can also filter event log entries by specifying a start date, an end date, or a date range. When you specify a start date, the device displays log entries with date/time stamps after the start date. When you specify an end date, the device displays log entries with date/time stamps before the end date.

• **Time:** When you sort the traffic log by time, the device displays the log entries in descending order by time, regardless of the date. When you specify a start time, the device displays log entries with time stamps after the specified start time, regardless of the date. When you specify an end time, the device displays log entries with time stamps before the specified end time, regardless of the date. When you specify both a start and end time, the device displays log entries with time stamps within the specified time period.

Example: Sorting the Traffic Log by Time

In this example you view the traffic log sorted by time with a time stamp after 1:00 a.m.

WebUI

```
NOTE: The ability to sort the traffic log by time is available only through the CLI.
```

CLI

```
get log traffic sort-by time start-time 01:00:00
```

Downloading the Traffic Log

You can also open or save the log to the location you specify, and then use an ASCII text editor (such as Notepad or WordPad) to view the file.

Alternatively, you can send traffic log entries to an external storage space (see “Storing Log Information” on page 61). The security device makes an entry in the traffic log when a session terminates. When you enable the security device to send traffic log entries to an external storage location, it sends new entries every second. Because the security device makes a traffic log entry when a session closes, the security device sends traffic log entries for all sessions that have closed within the past second. You can also include traffic log entries with event log entries sent by email to an admin.

In this example, you download the traffic log for a policy with ID number 12. For the WebUI, you download it to the local directory “C:\netscreen\logs”. For the CLI, you download it to the root directory of a TFTP server at the IP address 10.10.20.200. You name the file “traf_log11-21-02.txt.”

WebUI

1. Reports > Policies > Logging (for policy ID 12): Click **Save**.

 The File Download dialog box prompts you to open the file (using an ASCII editor) or save it to disk.
2. Select the **Save** option, then click **OK**.

 The File Download dialog box prompts you to choose a directory.

3. Specify C:\netscreen\logs, name the file traf_log11-21-02.txt, then click **Save**.

CLI

```
get log traffic policy 12 > tftp 10.10.20.200 traf_log11-21-02.txt
```

Removing the Reason for Close Field

By default, ScreenOS records and displays the reason for session close so that you can differentiate session creation messages from session close messages. If you do not want the reason to display, you can explicitly configure the device not to display the field.

Table 3 on page 69 lists the reasons for session close that ScreenOS identifies. Any session that cannot be identified is labeled **OTHER**.

Table 3: Reason Codes for Session Close

<table>
<thead>
<tr>
<th>Logged Reason</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP FIN</td>
<td>TCP connection torn down due to FIN packet.</td>
</tr>
<tr>
<td>TCP RST</td>
<td>TCP connection torn down due to RST packet.</td>
</tr>
<tr>
<td>RESP</td>
<td>Special sessions, such as PING and DNS, close when response is received.</td>
</tr>
<tr>
<td>ICMP</td>
<td>ICMP error received.</td>
</tr>
<tr>
<td>AGE OUT</td>
<td>Connection aged out normally.</td>
</tr>
<tr>
<td>ALG</td>
<td>ALG forced session close either due to error or other reason specific to that ALG.</td>
</tr>
<tr>
<td>NSRP</td>
<td>NSRP session close message received.</td>
</tr>
<tr>
<td>AUTH</td>
<td>Auth failure.</td>
</tr>
<tr>
<td>IDP</td>
<td>Closed by IDP.</td>
</tr>
<tr>
<td>SYN PROXY FAIL</td>
<td>SYN Proxy failure.</td>
</tr>
<tr>
<td>SYN PROXY LIMIT</td>
<td>System limit for SYN proxy sessions reached.</td>
</tr>
<tr>
<td>TENT2NORM CONV</td>
<td>Failure of tentative to normal session conversion.</td>
</tr>
<tr>
<td>PARENT CLOSED</td>
<td>Parent session closed.</td>
</tr>
<tr>
<td>CLI</td>
<td>User command closed.</td>
</tr>
</tbody>
</table>
Table 3: Reason Codes for Session Close (continued)

<table>
<thead>
<tr>
<th>Logged Reason</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTHER</td>
<td>Reason for close not identified.</td>
</tr>
</tbody>
</table>

Sample traffic log with reason for close listed:

device-> get log traffic
PID 1, from Trust to Untrust, src Any, dst Any, service ANY, action Permit
Total traffic entries matched under this policy = 2300

Date Time Duration Source IP Port Destination IP Port Service
Reason Xlated Src IP Port Xlated Dst IP Port ID
==
2001-10-25 07:08:51 0:00:59 10.251.10.25 137 172.24.16.10 137 NETBIOS (NS)
Close - AGE OUT 172.24.76.127 8946 172.24.16.10 137
2001-10-25 07:08:51 0:00:59 10.251.10.25 137 172.24.244.10 137 NETBIOS (NS)
Close - AGE OUT 172.24.76.127 8947 172.24.244.10 137
2001-10-25 07:07:53 0:00:01 10.251.10.25 1028 172.24.16.10 53 DNS
Close - RESP 172.24.76.127 8945 172.24.16.10 53
2001-10-25 07:06:29 0:01:00 10.251.10.25 1025 172.24.244.10 138 NETBIOS (DGM)
Close - AGE OUT 172.24.76.127 8933 172.24.244.10 138
2001-10-25 07:06:11 0:03:16 10.251.10.25 2699 172.24.60.32 1357 TCP PORT 1357
Close - TCP FIN 172.24.76.127 8921 172.24.60.32 1357

Sample traffic log without reason for close listed:

device-> get log traffic
PID 1, from Trust to Untrust, src Any, dst Any, service HTTP, action Permit
Total traffic entries matched under this policy = 1538

Date Time Duration Source IP Port Destination IP Port Service
Xlated Src IP Port Xlated Dst IP Port ID
==
2002-07-19 15:53:11 0:01:33 10.251.10.25 2712 207.17.137.108 80 HTTP
10.251.10.25 2712 207.17.137.108 80
2002-07-19 15:51:33 0:00:12 10.251.10.25 2711 66.163.175.128 80 HTTP
10.251.10.25 2711 66.163.175.128 80
2002-07-19 15:41:33 0:00:12 10.251.10.25 2688 66.163.175.128 80 HTTP
10.251.10.25 2688 66.163.175.128 80
2002-07-19 15:31:39 0:00:18 10.251.10.25 2678 66.163.175.128 80 HTTP
10.251.10.25 2678 66.163.175.128 80

In the following example, you configure the device to not display the reason for closing sessions because it interferes with a script that you want to run on the traffic log. You must use the command line interface to change the log output style.

WebUI

Not available.

CLI

```
set log traffic detail 0
save
```
Self Log

ScreenOS provides a self log to monitor and record all packets terminated at the security device. For example, if you disable some management options on an interface—such as WebUI, SNMP, and ping—and HTTP, SNMP, or ICMP traffic is sent to that interface, entries appear in the self log for each dropped packet.

To activate the self log, do one of the following:

WebUI

Configuration > Report Settings > Log Settings: Select the Log Packets Terminated to Self check box, then click Apply.

CLI

set firewall log-self

When you enable the self log, the security device logs the entries in two places: the self log and the traffic log. Similar to the traffic log, the self log displays the date, time, source address/port, destination address/port, duration, and service for each dropped packet terminating at the security device. Self log entries typically have a source zone of Null and a destination zone of “self.”

Viewing the Self Log

You can view the self log, which is stored in flash storage on the security device, through either the CLI or WebUI.

WebUI

Reports > System Log > Self

CLI

get log self

Sorting and Filtering the Self Log

Similar to the event and traffic logs, when you use the CLI to view the self log, you can sort or filter the log entries according to the following criteria:

- **Source or Destination IP Address**: You can sort the self log by source or destination IP address. You can also filter the self log by specifying a source or destination IP address or range of addresses.

- **Date**: You can sort the self log by date only, or by date and time. The device lists the log entries in descending order by date and time.

 You can also filter self log entries by specifying a start date, an end date, or a date range. When you specify a start date, the device displays log entries with date/time stamps after the start date. When you specify an end date, the device displays log entries with date/time stamps before the end date.
Time: When you sort the self log by time, the security device displays the log entries in descending order by time, regardless of the date. When you specify a start time, the device displays log entries with time stamps after the specified start time, regardless of the date. When you specify an end time, the device displays log entries with time stamps before the specified end time, regardless of the date. When you specify both a start and end time, the device displays log entries with time stamps within the specified time period.

Example: Filtering the Self Log by Time

In this example, you filter self log entries by the end time. The security device displays log entries with time stamps before the specified end time:

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Duration</th>
<th>Source IP</th>
<th>Port</th>
<th>Destination IP</th>
<th>Port</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003-08-21</td>
<td>16:32:57</td>
<td>0:00:00</td>
<td>10.100.25.1</td>
<td>0</td>
<td>224.0.0.5</td>
<td>0</td>
<td>OSPF</td>
</tr>
<tr>
<td>2003-08-21</td>
<td>16:32:47</td>
<td>0:00:00</td>
<td>10.100.25.1</td>
<td>0</td>
<td>224.0.0.5</td>
<td>0</td>
<td>OSPF</td>
</tr>
</tbody>
</table>

Total entries matched = 2

Storing Debug Information

The Juniper Networks security device allows you to store debug information on the debug buffer or a USB flash drive. By setting USB as the destination for debug information, you can increase the amount of debug information stored and reduce the time required to retrieve it.

The debug buffer size is limited to 4 MB. When the debug buffer fills up, the security device begins overwriting the oldest debug information. You can mitigate such data loss by setting a USB flash drive as the storage destination using the `set dbuf usb enable` command.

When you set USB as the destination for debug information, the security device sends debug information to the debug buffer and to a file on the USB flash drive. The default file is named `hostname_date.def.txt`, where `hostname` is the system hostname at boot time and `date` is the date on which the device was last started. You use `set dbuf usb default-file` to activate the default file. Alternatively, you can use the `set dbuf usb filename` command to create and activate a new file for storing the debug information. You can create a maximum of 32 files, but only one file can be active at a time.
You use the `set dbuf usb filesize` command to set the maximum size of the files stored on a USB flash drive. When the file size exceeds 90 percent of the maximum file size, a warning message will be displayed. You can increase the amount of debug information stored in a file by defining a larger file size.

You can view file entry details by issuing the `get dbuf usb` command.

Downloading the Self Log

You can also save the log as a text file to a location you specify, and then use an ASCII text editor (such as Notepad or WordPad) to view it.

In this example, you download a self log to the local directory “C:\netscreen\logs” (WebUI) or to the root directory of a TFTP server at the IP address 10.1.1.5 (CLI). You name the file “self_log07-03-02.txt.”

WebUI

1. Reports > System Log > Self: Click **Save**.

The File Download dialog box prompts you to open the file (using an ASCII editor) or save it to disk.

2. Select the **Save** option, then click **OK**.

The File Download dialog box prompts you to choose a directory.

3. Specify C:\netscreen\logs, name the file self_log07-03-02.txt, then click **Save**.

CLI

```
get log self > tftp 10.1.1.5 self_log07-03-02.txt
```

Downloading the Asset Recovery Log

A Juniper Networks security device provides an asset recovery log to display information about each time the device is returned to its default settings using the asset recovery procedure (see “Resetting the Device to the Factory Default Settings” on page 47). In addition to viewing the asset recovery log through the WebUI or CLI, you can also open or save the file to the location you specify. Use an ASCII text editor (such as Notepad) to view the file.

In this example, you download the asset recovery log to the local directory “C:\netscreen\logs” (WebUI) or to the root directory of a TFTP server at the IP address 10.1.1.5 (CLI). You name the file “sys_rst.txt.”

WebUI

1. Reports > System Log > Asset Recovery: Click **Save**.
The File Download dialog box prompts you to open the file (using an ASCII editor) or save it to disk.

2. Select the **Save** option, then click **OK**.
 The File Download dialog box prompts you to choose a directory.

3. Specify C:\netscreen\logs, name the file sys_rst.txt, then click **Save**.

CLI

```
get log asset-recovery > tftp 10.1.1.5 sys_rst.txt
``` 

Traffic Alarms

The security device supports traffic alarms when traffic exceeds thresholds that you have defined in policies. You can configure the security device to alert you through one or more of the following methods whenever the security device generates a traffic alarm:

- Console
- Internal (Event Log)
- Email
- SNMP
- Syslog
- WebTrends
- NetScreen-Global PRO

You set alarm thresholds to detect anomalous activity. To know what constitutes anomalous activity, you must first establish a baseline of normal activity. To create such a baseline for network traffic, you must observe traffic patterns over a period of time. Then, after you have determined the amount of traffic that you consider as normal, you can set alarm thresholds above that amount. Traffic exceeding that threshold triggers an alarm to call your attention to a deviation from the baseline. You can then evaluate the situation to determine what caused the deviation and whether you need to take action in response.

You can also use traffic alarms to provide policy-based intrusion detection and notification of a compromised system. Examples of the use of traffic alarms for these purposes are provided below.

Example: Policy-Based Intrusion Detection

In this example, there is a Web server with IP address 211.20.1.5 (and name “web1”) in the DMZ zone. You want to detect any attempts from the Untrust zone to access this Web server with Telnet. To accomplish this, you create a policy denying Telnet traffic from any address in the Untrust zone destined to the Web server named web1 in the DMZ zone, and you set a traffic alarm threshold at 64 bytes. Because the smallest size of IP packet is 64 bytes, even one Telnet packet attempting to reach the Web server from the Untrust zone will trigger an alarm.
WebUI

Policy > Policy Elements > Addresses > List > New: Enter the following, then click OK:

- Address Name: web1
- IP Address/Domain Name:
 - IP/Netmask: (select), 211.20.1.5/32
- Zone: DMZ

Policies > (From: Untrust, To: DMZ) New: Enter the following, then click OK:

- Source Address:
 - Address Book Entry: (select), Any
- Destination Address:
 - Address Book Entry: (select), web1
- Service: Telnet
- Action: Deny

> Advanced: Enter the following, then click Return to set the advanced options and return to the basic configuration page:

- Counting: (select)
- Alarm Threshold: 64 Bytes/Sec, 0 Kbytes/Min

CLI

set address dmz web1 211.20.1.5/32
set policy from untrust to dmz any web1 telnet deny count alarm 64 0
save

Example: Compromised System Notification

In this example, you use traffic alarms to provide notification of a compromised system. You have an FTP server with IP address 211.20.1.10 (and name ftp1) in the DMZ zone. You want to allow FTP-get traffic to reach this server. You don’t want traffic of any kind to originate from the FTP server. The occurrence of such traffic would indicate that the system has been compromised, perhaps by a virus similar to the NIMDA virus. You define an address for the FTP server in the Global zone, so that you can then create two global policies.

WebUI

Policy > Policy Elements > Addresses > List > New: Enter the following, then click OK:

- Address Name: ftp1
- IP Address/Domain Name:
 - IP/Netmask: (select), 211.20.1.10/32
- Zone: Global

Policies > (From: Global, To: Global) New: Enter the following, then click OK:

- Source Address:
 - Address Book Entry: (select), Any
- Destination Address:
 - Address Book Entry: (select), ftp1
- Service: FTP-Get
- Action: Permit
Policies > (From: Global, To: Global) New: Enter the following, then click OK:

Source Address:
Address Book Entry: (select), ftp1
Destination Address:
Address Book Entry: (select), Any
Service: ANY
Action: Deny

> Advanced: Enter the following, then click Return to set the advanced options and return to the basic configuration page:

Counting: (select)
Alarm Threshold: 64 Bytes/Sec, 0 Kbytes/Min

CLI

set address global ftp1 211.20.1.10/32
set policy global any ftp1 ftp-get permit
set policy global ftp1 any deny count alarm 64 0
save

Example: Sending Email Alerts

In this example, you set up notification by email alerts when there is an alarm. The mail server is at 172.16.10.254, the first email address to be notified is jharker@juniper.net, and the second address is driggs@juniper.net. The security device includes traffic logs with event logs sent with email.

WebUI

Configuration > Report Settings > Email: Enter the following information, then click Apply:

Enable E-Mail Notification for Alarms: (select)
Include Traffic Log: (select)
SMTP Server Name: 172.16.10.254
E-Mail Address 1: jharker@juniper.net
E-Mail Address 2: driggs@juniper.net

NOTE: If you have DNS enabled, you can also use a hostname for the mail server, such as mail.juniper.net.

CLI

set admin mail alert
set admin mail mail-addr1 jharker@juniper.net
set admin mail mail-addr2 driggs@juniper.net
set admin mail server-name 172.16.10.254
set admin mail traffic-log
save
Security Alarms and Audit Logs

Juniper Networks security devices enable you to configure automatic security alarms. When the security device detects a security violation (event), it alerts the network security administrator and the users in the network with a security alarm. The security alarm is displayed on the console.

NOTE: You need to have security administrator privileges to configure and monitor security alarms and audit logs.

The security device provides an auditable event log for monitoring all security events. An audit log records the following elements for each event:

- Date and time the audit log was generated
- Module that generated the audit log
- Severity level of the event
- Type of the event
- Detailed description of each security alarm event
 - Acknowledgment ID (unique)
 - ID of the authenticated user
 - Source IP address
 - Destination IP address and port number
 - Exclude rule ID

ScreenOS supports persistent storage mechanisms such as the syslog server, which stores all audit logson a remote server. You can also save the audit log files to an external storage device. For more information about external storage space, see “Storing Log Information” on page 61.

NOTE: For detailed information about the messages that appear in the audit log, see the ScreenOS Message Log Reference Guide.

Enabling Security Alarms

You can configure the security device to generate an automatic alarm when it detects a security violation.

To log all alarms that a security device receives, you must enable the security alarm option. You can enable security alarms through the WebUI or the CLI.
WebUI

Configuration > Admin > Audit Setting: Enter the following, then click **Apply**:

- Enable Alarm Security: (select)

CLI

```
set alarm security enable
```

In addition to enabling security alerts, you can configure the security device to send audible security alarms at regular intervals.

- **Audible Alarms**—The security device displays security alarm messages on consoles with an audible bell sound. The audible message is displayed on consoles that are logged in, logging out, or logging into the network when the admin is acknowledging the security alarm.

- **Local-force**—By default, the audible security alarm is visible to a local system only if the security administrator has logged in. By enabling the local-force feature, the security device displays the security alarm on a local system regardless of whether a security administrator is logged in or not.

- **Alarm Interval**—The security device sends the audible alert message at regular intervals. The default interval is 10 seconds. You can set a maximum interval of 3600 seconds.

- **Alarm Overwrite**—The maximum number of alarm events the security device can store is 100. When a new alarm event occurs, the security device drops the newest security alarm by default. However, you can configure the security device to overwrite the oldest event in the log with the new event.

WebUI

Configuration > Admin > Audit Setting: Enter the following, then click **Apply**:

- Use Alarm Security Audible: (select)
- Use Alarm Security Local-Force: (select)
- Use Alarm Security Overwrite: (select)
- Alarm Security Interval (seconds): 10

CLI

```
set alarm security audible
set alarm security local-force
unset alarm security overwrite disable
set alarm security interval number
```

Viewing Security Alarms

You can use the following CLI commands to view the details of a single security alarm and statistics for all security alarms.

CLI

To view the details of a security alarm:

```
get alarm security ack-id number
```
To view statistics for all security alarms:

```
get alarm security statistics
```

The output of the `get alarm security` command displays the following elements:

- **TOTAL**—Total number of security alarms
- **ACTIVE**—Number of security alarms currently not acknowledged
- **ACKED**—Number of security alarms manually acknowledged by the security administrator
- **AUTO ACKED**—Number of security alarms auto-acknowledged
- **OVERWRITTEN**—Number of security alarms overwritten by new events
- **LOG EXCLUDED**—Number of security alarms excluded by the exclude rules

Acknowledging Security Alarms

When a security alarm is triggered, you can execute the `exec alarm security` command to acknowledge it:

```
exec alarm security ack-id number
```

All consoles—connected to the network—then display the acknowledged security alarm, and the alarm status becomes inactive. Once the security alarm is acknowledged (manually or automatically), it becomes inactive and an audit log is generated. The security administrator can retrieve the details of each acknowledged security alarm from the audit log.

You can use the `exec alarm security all` command to acknowledge all active security alarms.

```
exec alarm security all
```

Setting Potential-Violation Security Alarms

Juniper Networks security devices enable you to configure a set of rules for monitoring events, including thresholds for each event type. If any of the rules is violated, the security device triggers a potential-violation security alarm.

A potential-violation security alarm is triggered if any of the following events exceeds its threshold value:

- Authentication violations
- Policy violations
- Replays of security attributes
- Encryption failures
- Decryption failures
- Key-generation failures
- Cryptographic and noncryptographic module self-test failures
- Internet Key Exchange (IKE) Phase 1 authentication failures
- IKE Phase 2 authentication failures

Once an event exceeds its threshold value, the security device triggers a potential-violation security alarm. The default threshold value is 3 for any event.

NOTE: The potential-violation security alarm does not support IPv6 traffic.

Example: Configuring a Device to Trigger a Potential-Violation Alarm

In this example, you configure the security device to trigger an alarm when the number of encryption, decryption, and IKE Phase 1/Phase 2 failures exceeds the potential-violation threshold value of 5. You also configure the security device to trigger an alarm when the number of policy failures exceeds 5 per minute.

When any of these threshold values is exceeded, the security device triggers a security alarm and alerts the security administrator.

NOTE: You must use the CLI to configure potential-violation security alarms.

CLI

```
set alarm security potential-violation encryption-failures 5
set alarm security potential-violation decryption-failures 5
set alarm security potential-violation ike-p1-failures 5
set alarm security potential-violation ike-p2-failures 5
set alarm security potential-violation policy-violation rate 5 per minute
save
```

For more information about potential-violation commands, see the [ScreenOS CLI Reference Guide: IPv4 Command Descriptions](#).

Configuring Exclude Rules

You can set rules to exclude some audit logs from being generated. You must have security administrator privileges to include or exclude auditable events from the audit log.

You can configure exclude rules based on the following attributes:

- **Exclude ID**—Identity of the exclude rule
- **User ID**—Identity of the authenticated user
- **Event Type**—Log type or event type
- **Network Addresses**—Source IP address, destination IP address, and destination port

By default, no exclude rule is set and the security device generates all logs. You cannot set more than 10 exclude rules. However, you can modify the existing rules according to
the requirements of your network. Excluded security alarms are not generated in the audit log.

Example: Setting an Exclude Rule to Exclude an Event for the Audit Log

In this example, you—as the root admin—configure an exclude rule to prevent a failure event from being generated in the audit log.

You can use the WebUI or the CLI to configure an exclude rule.

WebUI

Configuration > Admin > Exclude Rules: Enter the following, then click **Add**:

- **Rule ID:** 1
- **User ID:** admin
- **Event Type:** 2
- **Source IP address:** 2.2.2.0
- **Destination IP Address:** 3.3.3.0
- **Destination Port:** 80
- **Event Result:** Failure

The Configured Exclude Rules table displays all exclude rules configured on the security device.

CLI

```bash
set log exclude-id 1 user-id sam event-type 2 src-ip 2.2.2.0 dst-ip 3.3.3.0 dst-port 80 failure
```

To view the configured exclude rules:

```bash
get log exclude
```

The security device displays all active exclude rules that you have configured.

Syslog

A security device can generate syslog messages for system events at predefined severity levels (see the list of severity levels in “Syslog” on page 81) and, optionally, for traffic that policies permit across a firewall. It sends these messages to up to four designated syslog hosts running on UNIX and Linux systems. For each syslog host, you can specify the following:

- Whether the security device includes traffic log entries or event log entries, or both.
- Whether to send traffic through a VPN tunnel to the syslog server and—if through a VPN tunnel—which interface to use as the source interface (see “Example: Self-Generated Traffic Through a Route-Based Tunnel” on page 96 and “Example: Self-Generated Traffic Through a Policy-Based Tunnel” on page 102).
- The port to which the security device sends syslog messages.
- The security facility, which classifies and sends emergency and alert level messages to the syslog host; and the regular facility, which classifies and sends all other messages for events unrelated to security.
By default, the security device sends messages to syslog hosts with User Datagram Protocol (UDP) on port 514. To increase the reliability of the message delivery, you can change the transport protocol for each syslog host to Transmission Control Protocol (TCP) on port 514.

You can use syslog messages to create email alerts for the system administrator or to display messages on the console of the designated host using UNIX syslog conventions.

NOTE: On UNIX and Linux platforms, modify the `/etc/rc.d/init.d/syslog` file so that the syslog retrieves information from the remote source (`syslog -r`).

Enabling Syslog on Backup Devices

In an Active/Passive NSRP configuration where one device acts as a primary and the other as its backup, only the primary device sends all the syslog messages to the syslog server. Whereas the backup devices in an NSRP cluster send only the event log messages. To allow an administrator to effectively monitor the backup devices, all the syslog messages need to be backed up on the syslog server. Hence in the current release, ScreenOS allows you to configure the backup devices to send all the syslog messages to the syslog server. This configuration is synced to the primary device in an NSRP Active/Passive cluster. You can verify the status of the syslog backup on a backup device by issuing the CLI command `get syslog backup`. By default, syslog backup is disabled.

To enable the backup device to send all the syslog messages:

WebUI

Configuration > Report Settings > Syslog: Enter the following, then click **Apply**:

- **Enable syslog backup:** Select this option to send logs from the backup device to the specified syslog servers.

CLI

```
set syslog backup enable
save
```

Example: Enabling Multiple Syslog Servers

In this example, you configure the security device to send event and traffic logs with TCP to three syslog servers at the following IP addresses/port numbers:

- 1.1.1.1/1514
- 2.2.2.1/2514
- 3.3.3.1/3514

You set both the security and facility levels to **Local0**.

WebUI

Configuration > Report Settings > Syslog: Enter the following, then click **Apply**:

- ```
 set syslog destination
 set syslog destination 1.1.1.1 1514
 set syslog destination 2.2.2.1 2514
 set syslog destination 3.3.3.1 3514
  ```

- ```
  set syslog security level local0
  ```

- ```
 set syslog facility level local0
  ```

- ```
  save
  ```
Enable syslog messages: Select this option to send logs to the specified syslog servers.
No.: Select 1, 2, and 3 to indicate you are adding 3 syslog servers.
IP/Hostname: 1.1.1.1, 2.2.2.1, 3.3.3.1
Port: 1514, 2514, 3514
Security Facility: Local0, Local0, Local0
Facility: Local0, Local0, Local0
Event Log: (select)
Traffic Log: (select)
TCP: (select)

CLI

```
set syslog config 1.1.1.1 port 1514
set syslog config 1.1.1.1 log all
set syslog config 1.1.1.1 facilities local0 local0
set syslog config 1.1.1.1 transport tcp
set syslog config 2.2.2.1 port 2514
set syslog config 2.2.2.1 log all
set syslog config 2.2.2.1 facilities local0 local0
set syslog config 2.2.2.1 transport tcp
set syslog config 3.3.3.1 port 3514
set syslog config 3.3.3.1 log all
set syslog config 3.3.3.1 facilities local0 local0
set syslog config 2.2.2.1 transport tcp
set syslog enable
save
```

WebTrends

NetIQ offers a product called the WebTrends Firewall Suite that allows you to create customized reports based on WELF logs generated by the security device. You can customize the reports to display the information you want in the format you specify. The security device sends the WELF logs to the WebTrends server through a source interface. You can create reports on all events and severity levels or focus on an area such as firewall attacks. (For additional information on WebTrends, see the WebTrends product documentation.)

WebTrends supports three kinds of logs: event, traffic, and IDP. However, you can view IDP logs only if the security device supports IDP.

If you enable backup for the logs, you can send them to multiple WebTrends servers (the maximum is 4). To send a log to a WebTrends server, you must specify the IP address or hostname of the server along with the destination port.

By default, WELF logs are sent using UDP, but you can also use TCP. If required, you can manually reset the IP connections.

The following table lists the log types along with the required heading prefix with which it must be sent.
Table 4: WELF Logs

<table>
<thead>
<tr>
<th>Log Category</th>
<th>Log Types</th>
<th>Heading Prefix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event Log</td>
<td>Configuration log</td>
<td>[Config Change]</td>
</tr>
<tr>
<td>Event Log</td>
<td>URL Filter Detection log</td>
<td>[URL filtering]</td>
</tr>
<tr>
<td>Event Log</td>
<td>AntiVirus Detection log</td>
<td>[AntiVirus]</td>
</tr>
<tr>
<td>Event Log</td>
<td>AntiSpam Detection log</td>
<td>[AntiSpam]</td>
</tr>
<tr>
<td>IDP Log</td>
<td>IPS/DI Detection log</td>
<td>[IPS/DI]</td>
</tr>
<tr>
<td>Event Log</td>
<td>Screen Attack log</td>
<td>[Attack]</td>
</tr>
</tbody>
</table>

You can also send WebTrends messages through a VPN tunnel. In the WebUI, use the **Use Trust Zone Interface as Source IP for VPN** option. In the CLI, use the `set webtrends vpn` command.

In the following example, you send an event log to the WebTrends host (172.10.16.25) through port 514.

WebUI

1. **WebTrends Settings**

 Configuration > Report Settings > WebTrends: Enter the following, then click **Apply**:

 - Enable WebTrends Messages: (select)
 - Use Trust Zone Interface as Source IP for VPN: (select)
 - Enable WebTrends Backup: (select)
 - Source Interface: (select)
 - Enable: (select)
 - IP/Hostname: 172.10.16.25
 - Port: 514
 - Event Log: (select)
 - Traffic Log:
 - IDP Log:
 - TCP: (select)
 - Reconnect:

2. **Severity Levels**

 Configuration > Report Settings > Log Settings: Enter the following, then click **Apply**:

 - WebTrends Notification: (select)
NOTE: When you enable WebTrends on a security device running in transparent mode, you must set up a static route. See Static Routing.

CLI

3. WebTrends Settings
 set webtrends VPN
 set webtrends enable
 set webtrends src-interface interface-name
 set webtrends config IP address/host-name
 set webtrends config IP address/host-name log { all | event | idp | traffic }
 set webtrends config IP address/host-name port port_num
 set webtrends config IP address/host-name transport tcp
 set webtrends backup enable
 exec webtrends reconnect IP address/hostname

4. Severity Levels
 set log module system level notification destination webtrends
 save

Simple Network Management Protocol

The Simple Network Management Protocol (SNMP) agent for the Juniper Networks security device provides network administrators with a way to view statistical data about the network and the devices on it and to receive notification of system events of interest. Juniper Networks security devices support the SNMPv1, the SNMPv2c, and the SNMPv3 protocols, all described in the RFCs show in Table 5 on page 85:

Table 5: RFC List

<table>
<thead>
<tr>
<th>Version</th>
<th>RFC List</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMPv1</td>
<td>• RFC1157, A Simple Network Management Protocol</td>
</tr>
<tr>
<td>SNMPv2c</td>
<td>• RFC-1901, Introduction to Community-based SNMPv2</td>
</tr>
<tr>
<td></td>
<td>• RFC-1906, Transport Mappings for Version 2 of the Simple Network Management Protocol (SNMPv2)</td>
</tr>
</tbody>
</table>
Table 5: RFC List (continued)

<table>
<thead>
<tr>
<th>Version</th>
<th>RFC List</th>
</tr>
</thead>
</table>
| SNMPv3 | • RFC 3411, An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks
• RFC 3412, Message Processing and Dispatching for the Simple Network Management Protocol (SNMP)
• RFC 3413, Simple Network Management Protocol (SNMP) Applications
• RFC 3414, User-based Security Model (USM) for version 3 of Simple Network Management Protocol (SNMP)
• RFC 3415, View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP)
• RFC 3417, Transport Mapping for the Simple Network Management Protocol (SNMP)
• RFC 3584, Coexistence between Version 1, Version 2, and Version 3 of the Internet-standard Network Management Framework |

Security devices also support all relevant Management Information Base II (MIB II) groups defined in RFC-1213, Management Information Base for Network Management of TCP/IP-based Internets: MIB-II. The devices also have private enterprise MIB files, which you can load into an SNMP MIB browser.

NOTE: Using an SNMP MIB browser, you can check the CPU, memory usage, and session usage counts on both the ScreenOS and the Intrusion Detection and Prevention (IDP) security modules.

The Juniper Networks SNMP agent generates the following traps (notifications) when specified events or conditions occur:

- **Cold Start Trap**: The security device generates a cold start trap when it becomes operational after you power it on.

- **Trap for SNMP Authentication Failure**: The SNMP agent in the security device triggers the authentication failure trap if someone attempts to connect to it using an incorrect SNMP community string or if the IP address of the host attempting the connection is not defined in an SNMP community. (This option is enabled by default.)

- **Traps for System Alarms**: Security device error conditions and firewall conditions trigger system alarms. Three enterprise traps are defined to cover alarms related to hardware, security, and software. (For more information on firewall settings and alarms, see ICMP Settings and "Traffic Alarms" on page 74.)

- **Traps for Traffic Alarms**: Traffic alarms are triggered when traffic exceeds the alarm thresholds set in policies. (For more information on configuring policies, see Policies.)

Table 6 on page 87 lists possible alarm types and their associated trap numbers.
Table 6: Trap Alarm Types

<table>
<thead>
<tr>
<th>Trap Enterprise ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Hardware problems</td>
</tr>
<tr>
<td>200</td>
<td>Firewall problems</td>
</tr>
<tr>
<td>300</td>
<td>Software problems</td>
</tr>
<tr>
<td>400</td>
<td>Traffic problems</td>
</tr>
<tr>
<td>500</td>
<td>VPN problems</td>
</tr>
<tr>
<td>600</td>
<td>NSRP problems</td>
</tr>
<tr>
<td>800</td>
<td>DRP problems</td>
</tr>
<tr>
<td>900</td>
<td>Interface failover problems</td>
</tr>
<tr>
<td>1000</td>
<td>Firewall attacks</td>
</tr>
</tbody>
</table>

NOTE: The network administrator must have an SNMP manager application such as HP OpenView or SunNet Manager to browse the SNMP MIB II data and to receive traps from either the trusted or untrusted interface. Shareware and freeware SNMP manager applications are available from the Internet.

SNMPv1 and SNMPv2c

Security devices are not shipped with a default configuration for the SNMP manager. To configure your security device for SNMP, you must first create communities, define their associated hosts, and assign permissions (read/write or read-only).

When you create an SNMP community, you can specify whether the community supports SNMPv1, SNMPv2c, or both SNMP versions, as required by the SNMP management stations. (For backward compatibility with earlier ScreenOS releases that only support SNMPv1, security devices support SNMPv1 by default.) If an SNMP community supports both SNMP versions, you must specify a trap version for each community member.

For security reasons, an SNMP community member with read/write privileges can change only the following variables on a security device:
• **sysContact**—Contact information for the security device admin in the event that the SNMP admin needs to contact the admin for the security device. This can be the security admin's name, email address, telephone number, office location, or a combination of such information.

• **sysLocation**—The physical location of the security device. This can be the name of a country, city, building, or its exact location on a rack in a network operations center (NOC).

• **sysName**—The name that SNMP administrators use for the security device. By convention, this is a fully qualified domain name (FQDN), but it can be something else.

• **snmpEnableAuthenTraps**—This enables or disables the ability of the SNMP agent in the security device to generate a trap whenever someone attempts to contact the SNMP agent with an incorrect SNMP community name.

• **ipDefaultTTL**—The default value inserted into the time-to-live (TTL) field in the IP header of datagrams originating from the security device whenever the Transport Layer protocol does not supply a TTL value.

• **ipForwarding**—This indicates whether or not the security device forwards traffic—other than that destined for the security device itself. By default, the security device indicates that it does not forward traffic.

SNMPv3

Security devices are not shipped with a default configuration for SNMPv3. To configure your security device for SNMPv3, you must first create a unique engine ID to identify an SNMP entity and a user-based security model (USM) with the respective privilege and password.

When you create a USM user, you can specify the authentication type (MD5, SHA, or None). The authentication type is used to compute identical message digests for the same block of data. It requires a password and uses Data Encryption Standard (DES) to encrypt and decrypt the SNMPv3 packets.

SNMPv1 and SNMPv2c Implementation Overview

Juniper Networks has implemented SNMP in its devices in the following ways:

• SNMP administrators are grouped in SNMP communities. A device can support up to three communities, with up to eight members in each community.

• A community member can be either a single host or a subnet of hosts, depending on the netmask you use when defining the member. By default, the security device assigns an SNMP community member with a 32-bit netmask (255.255.255.255), which defines it as a single host.

• If you define an SNMP community member as a subnet, any device on that subnet can poll the security device for SNMP MIB information. However, the security device cannot send an SNMP trap to a subnet, only to an individual host.

• Each community has either read-only or read/write permission for the MIB II data.
Each community can support SNMPv1, SNMPv2c, or both. If a community supports both versions of SNMP, you must specify a trap version for each community member.

You can allow or deny receipt of traps for each community.

You can access the MIB II data and traps through any physical interface.

Each system alarm (a system event classified with a severity level of critical, alert, or emergency) generates a single enterprise SNMP trap to each of the hosts in each community that is set to receive traps.

The security device sends Cold Start/Link Up/Link Down traps to all hosts in communities that you set to receive traps.

If you specify trap-on for a community, you also have the option to allow traffic alarms.

You can send SNMP messages through a route-based or policy-based VPN tunnel. For more information, see “Configuring a MIB Filter in the SNMP Community” on page 91.

SNMPv3 Implementation Overview

Juniper Networks has implemented SNMPv3 in its devices in the following ways:

- An administrator can define a USM user in the SNMPv3 framework. A device can support up to 32 users.
- The security device administrator can create the view-based access control model (VACM) views. Each view is tagged with an object identifier and mask values. A device can support up to 32 VACM views.
- The security device administrator can create a VACM access group. For each access group you can define the security model, security level, and the privilege access. A device can support up to 32 VACM access groups.
- The security device administrator can create a group to map an SNMPv3 USM user, an SNMPv1 community, or an SNMPv2c community, in combination with a VACM access group.
- The security device administrator can configure an SNMPv1 or SNMPv2c community under an SNMPv3 framework. In an SNMPv3 community, the administrator can enforce access control to SNMPv1 or SNMPv2c requests as well. Each community has a tag name.
- The administrator can configure the trap details such as filters, target parameters, and target address.
- The SNMPv3 filters are configured by an administrator. A device can support up to 32 SNMPv3 filters.
- Each filter is attached to a target (host).
- The target parameter is used when sending a trap to a target. The administrator can configure an SNMPv3 target parameter. A device can support up to 32 target parameters.
- Each target has an IPv4 or IPv6 address/netmask.
• You can enter both the IPv4 and IPv6 addresses. The system sends the trap to the target if the mask is 32 for IPv4 addresses or 128 for IPv6 addresses.

• Each target has a trap port and a tag.

• You can specify 8 tags to a target.

Defining a Read/Write SNMP Community

In this example, you create an SNMP community named MAge11. You assign it read/write privileges and enable its members to receive MIB II data and traps. It has the members 1.1.1.5/32 and 1.1.1.6/32. Each of these members has an SNMP manager application running a different version of SNMP: SNMPv1 and SNMPv2c. The community name functions as a password and needs to be protected.

You provide contact information for the local admin of the security device in case an SNMP community member needs to contact him—name: al_baker@mage.com. You also provide the location of the security device—location: 3-15-2. These numbers indicate that the device is on the third floor, in the fifteenth row, in the second position in that row.

You also enable the SNMP agent to generate traps whenever someone illegally attempts an SNMP connection to the security device. Authentication failure traps is a global setting that applies to all SNMP communities and is disabled by default.

Finally, you enable SNMP manageability on ethernet1, an interface that you have previously bound to the Trust zone. This is the interface through which the SNMP manager application communicates with the SNMP agent in the security device.

WebUI

Configuration > Report Settings > SNMP: Enter the following settings, then click Apply:

System Contact: al_baker@mage.com
Location: 3-15-2
Enable Authentication Fail Trap: (select)

Configuration > Report Settings > SNMP > New Community: Enter the following settings, then click OK:

Community Name: MAge11
 Permissions:
Write: (select)
Trap: (select)
Including Traffic Alarms: (clear)
Version: ANY (select)
Hosts IP Address/Netmask and Trap Version:
1.1.1.5/32 v1
1.1.1.6/32 v2c

Network > Interfaces > Edit (for ethernet1): Enter the following settings, then click OK:

Service Options:
Management Services: SNMP
CLI

set snmp contact al_baker@mage.com
set snmp location 3-15-2
set snmp auth-trap enable
set snmp community MAge11 read-write trap-on version any
set snmp host Mage 1.1.1.5/32 trap v1
set snmp host Mage 1.1.1.6/32 trap v2
set interface ethernet1 manage snmp
save

Configuring a MIB Filter in the SNMP Community

An SNMP agent can encounter problems when different devices from the same management domain report conflicting IP address ranges. This issue is widely observed in NAT deployments where the tendency is to use similar IP address ranges in the private domain. However, by configuring a MIB filter in the SNMP community, you can now resolve the issue of overlapping addresses by filtering conflicting private IP addresses that exist in the same domain.

As root admin, you can configure the MIB filter to either include or exclude an IP address entry from the address list of the following MIB tables:

- atTable
- ipAddrTable
- ipNetToMediaTable
- ipRouteTable

When you configure the MIB filter to exclude an IP address, all IP addresses are included except the one being filtered. Likewise, if you configure the MIB filter to include an IP address, only the filtered address is included in the MIB table and all other IP addresses are excluded. Each MIB filter you configure should be bound to its related SNMP community.

NOTE: You cannot configure a MIB filter to both include and exclude IP addresses at the same time.

Example

In this example, you (as the root admin) configure a MIB filter filter-private-address to exclude private network IP addresses 192.168.0.0/16 and 10.10.0.0/16. The MIB filter is bound to the SNMP community comm_vzb and the SNMP host IP address is 202.100.11/32.

You can use the WebUI and the CLI to create and bind a MIB filter to the SNMP community.

WebUI

Configuration > Report Settings > SNMP > MIB Filter Edit: Enter the following, then click Apply:
MIB Filter Name: filter-private-address
Type: IP (select)
Action: Exclude (select)

Configuration > Report Settings > SNMP > MIB Filter Edit: Enter the following, then click Add:
- IP: 192.168.0.0
 Netmask: 255.255.0.0
- IP: 10.10.0.0
 Netmask: 255.255.0.0

Configuration > Report Setting > SNMP > Community Edit: Enter the following, then click OK:
- Community Name: comm_vzb
- Permission:
 - Write: (select)
 - Trap: (select)
 - Including Traffic Alarms: (clear)
 - Version: ANY (select)
 - MIB Filter: filter_private_address (select)
- Host IP Address: 202.100.1.1
 Netmask: 255.255.255.255
 Trap: V2C

CLI

1. Creating a MIB Filter:
   ```
   set snmp mib-filter name filter-private-address type ip action exclude
   ```

2. Adding an Entry to the MIB Filter:
   ```
   set snmp mib-filter filter-private-address ip 192.168.0.0/255.255.0.0
   set snmp mib-filter filter-private-address ip 10.10.0.0/255.255.0.0
   ```

3. Binding a MIB Filter to the SNMP Community:
   ```
   set snmp community comm_vzb read-write version any
   set snmp community comm_vzb mib-filter filter-private-address
   ```

4. Assigning a Host to the SNMP Community:
   ```
   set snmp host comm_vzb 202.100.1.1/255.255.255.255 trap v2
   save
   ```

Example: Configuring an SNMPv3 packet

In this example, you (as the root admin) configure an SNMPv3 packet.

WebUI

1. **Engine-ID**

 NOTE: Local engine ID configuration is optional. A local-engine ID is to identify an SNMP entity. By default, the serial number of the device is assigned as the value of the local engine ID.
2. **USM User**

Configuration > Report Settings > SNMPv3 > USM User > New User: Enter the following settings, then click **OK**:

- **User Name**: netscreen
- **Authentication Type**: (select)
- **Authentication Password**: netscreen
- **Privacy Protocol**: (select)
- **Privacy Password**: netscreen

3. **View**

Configuration > Report Settings > SNMPv3 > VACM > New View: Enter the following settings, then click **OK**:

- **View Name**: test-view

Configuration > Report Settings > SNMPv3 > VACM > View Database Edit: Enter the following settings, then click **Add**:

- **Subtree OID**: .1
- **Subtree Mask**: FF
- **Type**: (select)

4. **Access Group**

Configuration > Report Settings > SNMPv3 > VACM > New Access Group: Enter the following settings, then click **OK**:

- **Group Name**: test-grp
- **Security Model**: (select)
- **Security Level**: (select)
- **Read View**: (select)
- **Write View**: (select)
- **Notification View**: (select)

5. **Group Mapping**

Configuration > Report Settings > SNMPv3 > VACM > New Sec-to-group Mapping: Enter the following settings, then click **OK**:

- **Security Model**: (select)
- **User Name**: (select)
- **Community**: (read only)
- **Group Name**: (select)

6. **Community**

NOTE: The community name must be unique.

Configuration > Report Settings > SNMPv3 > Community > New Community: Enter the following settings, then click **OK**:
7. **Trap**

 Configuration > Report Settings > SNMPv3 > Trap > New Filter: Enter the following settings, then click **OK**:
 - **Filter Name:** test-filter

 Configuration > Report Settings > SNMPv3 > Trap > Filter Database Edit: Enter the following settings, then click **Add**:
 - **Subtree OID:** .1
 - **Subtree Mask:** FF
 - **Type:** (select)

8. **Target Parameter**

 Configuration > Report Settings > SNMPv3 > Trap > New Target Parameter: Enter the following settings, then click **OK**:
 - **Target Parameter Name:** test-param
 - **Filter Name:** (select)
 - **Security Model:** (select)
 - **Security Level:** (select)
 - **User Name:** (select)

9. **Target Address**

 Configuration > Report Settings > SNMPv3 > Trap > New Target Address: Enter the following settings, then click **OK**:
 - **Target Name:** test-target
 - **Target IPv4 Address/Netmask:** 192.168.1.1/32
 - **Trap Port:** 162
 - **Target Parameter:** (select)
 - **Taglist:** (select)

CLI

1. **Engine ID**

 set snmpv3 local-engine id netscreen

2. **USM User**

 set snmpv3 user netscreen auth md5 auth-pass netscreen priv des priv-pass netscreen

3. **View**

 set snmpv3 view name test-view
 set snmpv3 view test-view oid .1 mask FF type include

4. **Access Group**

 set snmpv3 access group test-grp sec-model usm sec-level priv read test-view

5. **Group Mapping**

 set snmpv3 group-mapping sec-model usm user netscreen group test-grp

6. **Community**
VPN Tunnels for Self-Initiated Traffic

You can use virtual private network (VPN) tunnels to secure remote monitoring of a security device from a fixed IP address. Using a VPN tunnel, you can protect traffic addressed to and initiated from a security device. Types of traffic initiated from a security device can include NetScreen-Global PRO reports, event log entries sent to syslog and WebTrends servers, and SNMP MIB traps.

Juniper Networks security devices support two types of VPN tunnel configurations:

- **Route-Based VPNs:** The security device uses route table entries to direct traffic to tunnel interfaces, which are bound to VPN tunnels.

 To send traffic such as event log entries, NetScreen-Global PRO reports, or SNMP traps generated by the security device through a route-based VPN tunnel, you must manually enter a route to the proper destination. The route must point to the tunnel interface that is bound to the VPN tunnel through which you want the security device to direct the traffic. No policy is required.

- **Policy-Based VPNs:** The security device uses the VPN tunnel names specifically referenced in policies to direct traffic through VPN tunnels.

 To send self-initiated traffic through a policy-based VPN tunnel, you must include the source and destination addresses in the policy. For the source address, use the IP address of an interface on the security device. For the destination address, use the IP address of the storage server or SNMP community member's workstation, if it is located behind a remote security device. If the remote SNMP community member uses the NetScreen-Remote VPN client to make VPN connections to the local security device, use an internal IP address defined on the NetScreen-Remote as the destination address.

If either the remote gateway or the end entity has a dynamically assigned IP address, then the security device cannot initiate the formation of a VPN tunnel because these addresses cannot be predetermined, and thus you cannot define routes to them. In such cases, the remote host must initiate the VPN connection. After either a policy-based or route-based VPN tunnel is established, both ends of the tunnel can initiate traffic if policies permit it. Also, for a route-based VPN, there must be a route to the end entity through a tunnel interface bound to the VPN tunnel—either because you manually entered the route or because the local security device received the route through the exchange of dynamic routing messages after a tunnel was established. (For information about
dynamic routing protocols, see Routing.) You can also use VPN monitoring with the rekey option or IKE heartbeats to ensure that once the tunnel is established, it remains up regardless of VPN activity. (For more information about these options, see VPN Monitoring and Monitoring Mechanisms.)

For each VPN tunnel configuration type, you can use any of the following types of VPN tunnel:

- **Manual Key**: You manually set the three elements that define a Security Association (SA) at both ends of the tunnel: a Security Parameters Index (SPI), an encryption key, and an authentication key. To change any element in the SA, you must manually enter it at both ends of the tunnel.

- **AutoKey IKE with Pre-shared Key**: One or two pre-shared secrets—one for authentication and one for encryption—function as seed values. Using them, the IKE protocol generates a set of symmetrical keys at both ends of the tunnel; that is, the same key is used to encrypt and decrypt. At predetermined intervals, these keys are automatically regenerated.

- **AutoKey IKE with Certificates**: Using the Public Key Infrastructure (PKI), the participants at both ends of the tunnel use a digital certificate (for authentication) and an RSA public/private key pair (for encryption). The encryption is asymmetrical; that is, one key in a pair is used to encrypt and the other to decrypt.

NOTE: For a complete description of VPN tunnels, see Virtual Private Networks. For more information on NetScreen-Remote, see the NetScreen-Remote VPN Client Administrator Guide.

Example: Self-Generated Traffic Through a Route-Based Tunnel

Figure 16 on page 97 illustrates an example in which you configure a local security device (Device-A) to send SNMPv1 MIB traps and syslog reports through a route-based AutoKey IKE VPN tunnel to an SNMP community member behind a remote security device (Device-B). The tunnel uses a pre-shared key (Ci5y0a1aAG) for data origin authentication and the security level predefined as “Compatible” for both Phase 1 and Phase 2 proposals. You, as the local admin for Device-A, create the tunnel 1 interface and bind it to vpn1. You and the admin for Device-B define the proxy IDs as shown in Table 7 on page 96.

Table 7: Proxy IDs for Route-Based Tunnel

<table>
<thead>
<tr>
<th>Device-A</th>
<th>Device-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local IP</td>
<td>10.1.1.32</td>
</tr>
<tr>
<td>Remote IP</td>
<td>10.2.2.2/32</td>
</tr>
<tr>
<td>Service</td>
<td>Any</td>
</tr>
</tbody>
</table>

You bind ethernet1 to the Trust zone and ethernet3 to the Untrust zone. The default gateway IP address is 1.1.1.250. All zones are in the trust-vr routing domain.
The remote admin for Device-B uses similar settings to define that end of the AutoKey IKE VPN tunnel so that the pre-shared key, proposals, and proxy IDs match.

You also configure an SNMP community named “remote_admin” with read/write privileges, and you enable the community to receive traps. You define the host at 10.2.2.2/32 as a community member.

NOTE: This example assumes that the remote admin has already set up the syslog server and SNMP manager application that supports SNMPv1. When the remote admin sets up the VPN tunnel on his security device, he uses 1.1.1.1 as the remote gateway and 10.1.1.1 as the destination address.

WebUI (Device-A)

1. **Interfaces**

 Network > Interfaces > Edit (for ethernet1): Enter the following, then click **Apply**:

 Zone Name: Trust
 Static IP: (select this option when present)
 IP Address/Netmask: 10.1.1.1/24

 Select the following, then click **OK**:

 Interface Mode: NAT (select)

 NOTE: By default, any interface that you bind to the Trust zone is in NAT mode. Consequently, this option is already enabled for interfaces bound to the Trust zone.

 When the remote admin configures the SNMP manager, he must enter 10.1.1.1 in the Remote SNMP Agent field. This is the address to which the SNMP manager sends queries.
Network > Interfaces > Edit (for ethernet3): Enter the following, then click OK:

Zone Name: Untrust
Static IP: (select this option when present)
IP Address/Netmask: 1.1.1.1/24
Service Options:
Management Services: SNMP

Network > Interfaces > New Tunnel IF: Enter the following, then click OK:

Tunnel Interface Name: tunnel.1
Zone (VR): Untrust (trust-vr)
Unnumbered: (select)
Interface: ethernet1(trust-vr)

2. **Syslog and SNMP**

Configuration > Report Settings > Syslog: Enter the following, then click Apply:

Enable Syslog Messages: (select)
No.: Select 1 to indicate you are adding 1 syslog server.
IP / Hostname: 10.2.2.2
Port: 514
Security Facility: auth/sec
Facility: Local0

Configuration > Report Settings > SNMP > New Community: Enter the following, then click OK:

Community Name: remote_admin
Permissions:
Write: (select)
Trap: (select)
Including Traffic Alarms: (clear)
Version: V1
Hosts IP Address/Netmask: 10.2.2.2/32 V1
Trap Version: V1

3. **VPN**

VPNs > AutoKey IKE > New: Enter the following, then click OK:

VPN Name: vpn1
Security Level: Compatible
Remote Gateway: Create a Simple Gateway: (select)
Gateway Name: to_admin
Type: Static IP, Address/Hostname: 2.2.2.2
Preshared Key: Ci5y0a1aAG
Security Level: Compatible
Outgoing interface: ethernet3

> Advanced: Enter the following advanced settings, then click Return to return to the basic AutoKey IKE configuration page:

Bind to: Tunnel Interface: (select), tunnel.1
Proxy-ID: (select)
Local IP/Netmask: 10.1.1.1/32
Remote IP/Netmask: 10.2.2.2/32
Service: ANY
4. **Routes**

 Network > Routing > Destination > trust-vr New: Enter the following, then click **OK**:

 - Network Address/Netmask: 10.2.2.2/32
 - Gateway: (select)
 - Interface: tunnel.1
 - Gateway IP Address: 0.0.0.0

 Network > Routing > Destination > trust-vr New: Enter the following, then click **OK**:

 - Network Address/Netmask: 0.0.0.0/0
 - Gateway: (select)
 - Interface: ethernet3
 - Gateway IP Address: (select) 1.1.1.250

CLI (Device-A)

1. **Interfaces**

   ```
   set interface ethernet1 zone trust
   set interface ethernet1 ip 10.1.1.1/24
   set interface ethernet1 nat
   set interface ethernet3 zone untrust
   set interface ethernet3 ip 1.1.1.1/24
   set interface ethernet3 manage snmp
   set interface tunnel.1 zone untrust
   set interface tunnel.1 ip unnumbered interface ethernet1
   ```

 NOTE: When the remote admin configures the SNMP manager, he must enter 10.1.1.1 in the Remote SNMP Agent field. This is the address to which the SNMP manager sends queries. By default, any interface that you bind to the Trust zone is in NAT mode. Consequently, this option is already enabled for interfaces bound to the Trust zone.

2. **VPN**

   ```
   set ike gateway to_admin address 2.2.2.2 outgoing-interface ethernet3 preshare Ci5y0alAG sec-level compatible
   set vpn vpn1 gateway to_admin sec-level compatible
   set vpn vpn1 bind interface tunnel.1
   set vpn vpn1 proxy-id local-ip 10.1.1.32 remote-ip 10.2.2.2/32 any
   ```

3. **Syslog and SNMP**

   ```
   set syslog config 10.2.2.2 auth/sec local0
   set syslog enable
   set snmp community remote_admin read-write trap-on version v1
   set snmp host remote_admin 10.2.2.2/32
   ```

4. **Routes**

   ```
   set vrouter trust-vr route 10.2.2.2/32 interface tunnel.1
   set vrouter trust-vr route 0.0.0.0/0 interface ethernet3 gateway 1.1.1.250
   save
   ```
WebUI (Device-B)

1. **Interfaces**

 Network > Interfaces > Edit (for ethernet1): Enter the following, then click **Apply**:

 - Zone Name: Trust
 - Static IP: (select this option when present)
 - IP Address/Netmask: 10.2.2.1/24

 Select the following, then click **OK**:

 - Interface Mode: NAT

 Network > Interfaces > New Tunnel IF: Enter the following, then click **OK**:

 - Zone Name: Untrust
 - Static IP: (select this option when present)
 - IP Address/Netmask: 2.2.2.2/24

2. **Addresses**

 Policy > Policy Elements > Addresses > Lists > New: Enter the following, then click **OK**:

 - Address Name: addr1
 - IP Address/Domain Name: IP/Netmask: 10.2.2.2/32
 - Zone: Trust

 Policy > Policy Elements > Addresses > Lists > New: Enter the following, then click **OK**:

 - Address Name: ns-a
 - IP Address/Domain Name: IP/Netmask: 10.1.1.1/32
 - Zone: Untrust

3. **Service Group**

 Policy > Policy Elements > Services > Groups > New: Enter the following group name, move the following services, then click **OK**:

 - Group Name: s-grp1

 Select **Syslog** and use the << button to move the service from the Available Members column to the Group Members column.

 Select **SNMP** and use the << button to move the service from the Available Members column to the Group Members column.

4. **VPN**

 VPNs > AutoKey IKE > New: Enter the following, then click **OK**:

 - VPN Name: vpn1
Security Level: Compatible
Remote Gateway: Create a Simple Gateway: (select)
Gateway Name: to_admin
Type: Static IP, Address/Hostname: 1.1.1.1
Preshared Key: Ci5y0a1aAG
Security Level: Compatible
Outgoing Interface: ethernet3

> Advanced: Enter the following advanced settings, then click Return to return to the basic AutoKey IKE configuration page:

Bind to: Tunnel Interface: (select), tunnel.1
Proxy-ID: (select)
Local IP/Netmask: 10.2.2.2/32
Remote IP/Netmask: 10.1.1.1/32
Service: Any

5. Routes

Network > Routing > Destination > trust-vr New: Enter the following, then click **OK**:

- Network Address/Netmask: 10.1.1.1/32
- Gateway: (select)
- Interface: tunnel.1
- Gateway IP Address: 0.0.0.0

Network > Routing > Destination > trust-vr New: Enter the following, then click **OK**:

- Network Address/Netmask: 0.0.0.0/0
- Gateway: (select)
- Interface: ethernet3
- Gateway IP Address: (select) 2.2.2.250

6. Policies

Policies > (From: Trust, To: Untrust) New: Enter the following, then click **OK**:

- Source Address:
- Address Book Entry: (select), addr1
- Destination Address:
- Address Book Entry: (select), ns-a
- Service: s-grp1
- Action: Permit
- Position at Top: (select)

Policies > (From: Untrust, To: Trust) New: Enter the following, then click **OK**:

- Source Address:
- Address Book Entry: (select), ns-a
- Destination Address:
- Address Book Entry: (select), addr1
- Service: s-grp1
- Action: Permit
- Position at Top: (select)

CLI (Device-B)

1. Interfaces
set interface ethernet1 zone trust
set interface ethernet1 ip 10.2.2.1/24
set interface ethernet1 nat
set interface ethernet3 zone untrust
set interface ethernet3 ip 2.2.2.2/24
set interface tunnel.1 zone untrust
set interface tunnel.1 ip unnumbered interface ethernet1

2. Addresses
set address trust addr1 10.2.2.2/32
set address untrust ns-a 10.1.1.1/32

3. Service Group
set group service s-grp1
set group service s-grp1 add syslog
set group service s-grp1 add snmp

4. VPN
set ike gateway to_admin address 1.1.1.1 outgoing-interface ethernet3 preshare
Ci5y0a1aAG sec-level compatible
set vpn vpn1 gateway to_admin sec-level compatible
set vpn vpn1 bind interface tunnel.1
set vpn vpn1 proxy-id local-ip 10.2.2.2/32 remote-ip 10.1.1.1/32 any

5. Routes
set vrouter trust-vr route 10.1.1.1/32 interface tunnel.1
set vrouter trust-vr route 0.0.0.0/0 interface ethernet3 gateway 2.2.2.250

6. Policies
set policy top from trust to untrust addr1 ns-a s-grp1 permit
set policy top from untrust to trust ns-a addr1 s-grp1 permit
save

Example: Self-Generated Traffic Through a Policy-Based Tunnel

In this example (illustrated in Figure 17 on page 103), you configure a local security device (Device-A) to send SNMPv2c MIB traps and syslog reports through a policy-based AutoKey IKE VPN tunnel (vpn1) to an SNMP community member behind a remote security device (Device-B). The tunnel uses a preshared key (Ci5y0a1aAG) for data origin authentication and the security level predefined as “compatible” for both Phase 1 and Phase 2 proposals.

NOTE: This example assumes that the remote admin has already set up the syslog server and an SNMP manager application that supports SNMPv2c. When the remote admin sets up the VPN tunnel on his security device, he uses 1.1.1.1 as the remote gateway and 10.1.1.1 as the destination address.

Both you and the remote admin bind ethernet1 to the Trust zone, and ethernet3 to the Untrust zone on Device-A and Device-B. The default gateway IP address for Device-A is 1.1.1.250. The default gateway IP address for Device-B is 2.2.2.250. All zones are in the trust-vr routing domain.
You also configure an SNMP community named “remote_admin” with read/write privileges, and you enable the community to receive traps. You define the host at 10.2.2.2/32 as a community member.

The inbound and outbound policies on Device-A match the outbound and inbound policies on Device-B. The addresses and service used in the policies are as follows:

- 10.1.1.1/32, the address of the Trust zone interface on Device-A
- 10.2.2.2/32, the address of the host for the SNMP community member and syslog server
- Service group named “s-grp1,” which contains SNMP and syslog services

From the policies that you and the admin for Device-B create, the two security devices derive the following proxy IDs for vpn1:

Table 8: Proxy IDs for Policy-Based Tunnel

<table>
<thead>
<tr>
<th></th>
<th>Device-A</th>
<th>Device-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local IP</td>
<td>10.1.1.1/32</td>
<td>Local IP</td>
</tr>
<tr>
<td>Remote IP</td>
<td>10.2.2.2/32</td>
<td>Remote IP</td>
</tr>
<tr>
<td>Service</td>
<td>Any</td>
<td>Service</td>
</tr>
</tbody>
</table>

NOTE: The security device treats a service group as “any” in proxy IDs.

WebUI (Device-A)

1. **Interfaces—Security Zones**

 Network > Interfaces > Edit (for ethernet1): Enter the following, then click OK:
Zone Name: Trust
Static IP: (select this option when present)
IP Address/Netmask: 10.1.1.1/24

Select the following, then click OK:
Interface Mode: NAT (select)

NOTE: When the remote admin configures the SNMP manager, he must enter 10.1.1.1 in the Remote SNMP Agent field. This is the address to which the SNMP manager sends queries.
By default, any interface that you bind to the Trust zone is in NAT mode.
Consequently, this option is already enabled for interfaces bound to the Trust zone.

Network > Interfaces > Edit (for ethernet3): Enter the following, then click OK:
Zone Name: Untrust
Static IP: (select this option when present)
IP Address/Netmask: 1.1.1.1/24
Service Options:
Management Services: SNMP

2. Addresses
Policy > Policy Elements > Addresses > Lists > New: Enter the following, then click OK:
Address Name: trust_int
IP Address/Domain Name:
IP/Netmask: 10.1.1.1/32
Zone: Trust
Policy > Policy Elements > Addresses > Lists > New: Enter the following, then click OK:
Address Name: remote_admin
IP Address/Domain Name:
IP/Netmask: 10.2.2.2/32
Zone: Untrust

3. Service Group
Policy > Policy Elements > Services > Groups > New: Enter the following group name, move the following services, then click OK:
Group Name: s-grp1
Select Syslog and use the << button to move the service from the Available Members column to the Group Members column.
Select SNMP and use the << button to move the service from the Available Members column to the Group Members column.

4. VPN
VPNs > AutoKey IKE > New: Enter the following, then click OK:
VPN Name: vpn1
Security Level: Compatible
Remote Gateway: Create a Simple Gateway: (select)
Gateway Name: to_admin
Type: Static IP, Address/Hostname: 2.2.2.2
Preshared Key: Ci5y0a1aAG
Security Level: Compatible
Outgoing Interface: ethernet3

5. Syslog and SNMP

Configuration > Report Settings > Syslog: Enter the following, then click Apply:
- Enable Syslog Messages: (select)
- Source Interface: ethernet1
- No.: Select 1 to indicate you are adding 1 syslog server.
- IP/Hostname: 10.2.2.2
- Port: 514
- Security Facility: auth/sec
- Facility: Local0

Configuration > Report Settings > SNMP > New Community: Enter the following, then click OK:
- Community Name: remote_admin
- Permissions:
 - Write: (select)
 - Trap: (select)
- Including Traffic Alarms: (clear)
- Version: V2C
- Hosts IP Address/Netmask: 10.2.2.2/32 V2C
- Trap Version: V2C
- Source Interface: ethernet1 (select)

Configuration > Report Settings > SNMP: Enter the following, then click Apply:
- Enable Authentication Fail Trap: (select)

6. Route

Network > Routing > Destination > trust-vr New: Enter the following, then click OK:
- Network Address/Netmask: 0.0.0.0/0
- Gateway: (select)
- Interface: ethernet3
- Gateway IP Address: 1.1.1.250

7. Policies

Policies > (From: Trust, To: Untrust) New: Enter the following, then click OK:
- Source Address:
- Address Book Entry: (select), trust_int
- Destination Address:
- Address Book Entry: (select), remote_admin
- Service: s-grp1
- Action: Tunnel
- Tunnel VPN: vpn1
- Modify matching outgoing VPN policy: (select)
CLI (Device-A)

1. **Interfaces—Security Zones**

   ```
   set interface ethernet1 zone trust
   set interface ethernet1 ip 10.1.1.1/24
   set interface ethernet1 nat
   set interface ethernet3 zone untrust
   set interface ethernet3 ip 1.1.1.1/24
   set interface ethernet3 manage snmp
   ```

 NOTE: By default, any interface that you bind to the Trust zone is in NAT mode. Consequently, this option is already enabled for interfaces bound to the Trust zone.

2. **Addresses**

   ```
   set address trust trust_int 10.1.1.1/32
   set address untrust remote_admin 10.2.2.2/32
   ```

3. **Service Group**

   ```
   set group service s-grp1
   set group service s-grp1 add syslog
   set group service s-grp1 add snmp
   ```

4. **VPN**

   ```
   set ike gateway to_admin address 2.2.2.2 outgoing-interface ethernet3 preshare
   Cli5y0a1aAG sec-level compatible
   set vpn vpn1 gateway to_admin sec-level compatible
   ```

5. **Syslog and SNMP**

   ```
   set syslog config 10.2.2.2 auth/sec local0
   set syslog src-interface ethernet1
   set syslog enable
   set snmp community remote_admin read-write trap-on version v2c
   set snmp host remote_admin 10.2.2.2/32 src-interface ethernet1
   ```

6. **Route**

   ```
   set vrouter trust-vr route 0.0.0.0/0 interface ethernet3 gateway 1.1.1.250
   ```

7. **Policies**

   ```
   set policy top from trust to untrust trust_int remote_admin s-grp1 tunnel vpn vpn1
   set policy top from untrust to trust remote_admin trust_int s-grp1 tunnel vpn vpn1
   ```

WebUI (Device-B)

1. **Interfaces—Security Zones**

 Network > Interfaces > Edit (for ethernet1): Enter the following, then click **Apply**:

   ```
   Zone Name: Trust
   ```
Static IP: (select this option when present)
IP Address/Netmask: 10.2.2.1/24

Select the following, then click OK:
Interface Mode: NAT

Network > Interfaces > Edit (for ethernet3): Enter the following, then click OK:
Zone Name: Untrust
Static IP: (select this option when present)
IP Address/Netmask: 2.2.2.2/24

2. Addresses
Policy > Policy Elements > Addresses > Lists > New: Enter the following, then click OK:
Address Name: addr1
IP Address/Domain Name:
IP/Netmask: 10.2.2.2/32
Zone: Trust

Policy > Policy Elements > Addresses > Lists > New: Enter the following, then click OK:
Address Name: ns-a
IP Address/Domain Name:
IP/Netmask: 10.1.1.1/32
Zone: Untrust

3. Service Groups
Policy > Policy Elements > Services > Group: Enter the following group name, move the following services, then click OK:
Group Name: s-grp1
Select Syslog and use the << button to move the service from the Available Members column to the Group Members column.
Select SNMP and use the << button to move the service from the Available Members column to the Group Members column.

4. VPN
VPNs > AutoKey IKE > New: Enter the following, then click OK:
VPN Name: vpn1
Security Level: Compatible
Remote Gateway: Create a Simple Gateway: (select)
Gateway Name: to_admin
Type: Static IP, IP Address: 1.1.1.1
Preshared Key: Ci5y0a1aAG
Security Level: Compatible
Outgoing interface: ethernet3

5. Route
Network > Routing > Routing Table > trust-vr New: Enter the following, then click OK:
Network Address/Netmask: 0.0.0.0/0
Gateway: (select)
Interface: ethernet3
Gateway IP Address: (select) 2.2.2.250

6. Policies

Policies > (From: Trust, To: Untrust) New: Enter the following, then click OK:

Source Address:
Address Book Entry: (select), addr1
Destination Address:
Address Book Entry: (select), ns-a
Service: s-grp1
Action: Tunnel
Tunnel VPN: vpn1
Modify matching outgoing VPN policy: (select)
Position at Top: (select)

CLI (Device-B)

1. Interfaces—Security Zones

 set interface ethernet1 zone trust
 set interface ethernet1 ip 10.2.2.1/24
 set interface ethernet1 nat
 set interface ethernet3 zone untrust
 set interface ethernet3 ip 2.2.2.2/24

2. Addresses

 set address trust addr1 10.2.2.2/32
 set address untrust ns-a 10.1.1.1/32

3. Service Group

 set group service s-grp1
 set group service s-grp1 add syslog
 set group service s-grp1 add snmp

4. VPN

 set ike gateway to_admin address 1.1.1.1 outgoing-interface ethernet3 preshare
 Cli5y0a1sec-level compatible
 set vpn vpn1 gateway to_admin sec-level compatible

5. Route

 set vrouter trust-vr route 0.0.0.0/0 interface ethernet3 gateway 2.2.2.250

6. Policies

 set policy top from trust to untrust addr1 ns-a s-grp1 tunnel vpn vpn1
 set policy top from untrust to trust ns-a addr1 s-grp1 tunnel vpn vpn1
 save
Juniper Networks security devices provide screen, hardware, and flow counters for monitoring traffic. Counters give processing information for specified zones and interfaces, and help you to verify configurations for desired policies.

Table 9 on page 109 shows the screen counters for monitoring general firewall behavior and for viewing the amount of traffic affected by specified policies.

Table 9: Screen Counters

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bad IP Option Protection</td>
<td>Number of frames discarded because of malformed or incomplete IP options</td>
</tr>
<tr>
<td>Dst IP-based session limiting</td>
<td>Number of sessions dropped after the session threshold was reached</td>
</tr>
<tr>
<td>FIN bit with no ACK bit</td>
<td>Number of packets detected and dropped with an illegal combination of flags</td>
</tr>
<tr>
<td>Fragmented packet protection</td>
<td>Number of blocked IP packet fragments</td>
</tr>
<tr>
<td>HTTP Component Blocked</td>
<td>Number of blocked packets with HTTP components</td>
</tr>
<tr>
<td>HTTP Component Blocking for ActiveX controls</td>
<td>Number of ActiveX components blocked</td>
</tr>
<tr>
<td>HTTP Component Blocking for .exe files</td>
<td>Number of blocked HTTP packets with .exe files</td>
</tr>
<tr>
<td>HTTP Component Blocking for Java applets</td>
<td>Number of blocked Java components</td>
</tr>
<tr>
<td>HTTP Component Blocking for .zip files</td>
<td>Number of blocked HTTP packets with .zip files</td>
</tr>
<tr>
<td>ICMP Flood Protection</td>
<td>Number of ICMP packets blocked as part of an ICMP flood</td>
</tr>
<tr>
<td>ICMP Fragment</td>
<td>Number of ICMP frames with the More Fragments flag set, or with offset indicated in the Offset field</td>
</tr>
<tr>
<td>IP Spoofing Attack Protection</td>
<td>Number of IP addresses blocked as part of an IP spoofing attack</td>
</tr>
<tr>
<td>IP Sweep Protection</td>
<td>Number of IP sweep attack packets detected and blocked</td>
</tr>
<tr>
<td>Land Attack Protection</td>
<td>Number of packets blocked as part of a suspected land attack</td>
</tr>
<tr>
<td>Large ICMP Packet</td>
<td>Number of ICMP frames detected with an IP length greater than 1024</td>
</tr>
<tr>
<td>Limit Session</td>
<td>Number of undeliverable packets because the session limit had been reached</td>
</tr>
</tbody>
</table>
Table 9: Screen Counters (continued)

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loose Src Route IP Option</td>
<td>Number of IP packets detected with the Loose Source Route option enabled</td>
</tr>
<tr>
<td>Malicious URL Protection</td>
<td>Number of suspected malicious URLs blocked</td>
</tr>
<tr>
<td>Ping-of-Death Protection</td>
<td>Number of suspected and rejected ICMP packets that are oversized or of an irregular size</td>
</tr>
<tr>
<td>Port Scan Protection</td>
<td>Number of port scans detected and blocked</td>
</tr>
<tr>
<td>Record Route IP Option</td>
<td>Number of frames detected with the Record Route option enabled</td>
</tr>
<tr>
<td>Security IP Option</td>
<td>Number of frames discarded with the IP Security option set</td>
</tr>
<tr>
<td>Src IP-based session limiting</td>
<td>Number of sessions dropped after the session threshold was reached</td>
</tr>
<tr>
<td>Source Route IP Option Filter</td>
<td>Number of IP source routes filtered</td>
</tr>
<tr>
<td>Stream IP Option</td>
<td>Number of packets discarded with the IP Stream identifier set</td>
</tr>
<tr>
<td>Strict Src Route IP Option</td>
<td>Number of packets detected with the Strict Source Route option enabled</td>
</tr>
<tr>
<td>SYN-ACK-ACK-Proxy DoS</td>
<td>Number of blocked packets because of the SYN-ACK-ACK-proxy DoS SCREEN option</td>
</tr>
<tr>
<td>SYN and FIN bits set</td>
<td>Number of packets detected with an illegal combination of flags</td>
</tr>
<tr>
<td>SYN Flood Protection</td>
<td>Number of SYN packets detected as part of a suspected SYN flood</td>
</tr>
<tr>
<td>SYN Fragment Detection</td>
<td>Number of packet fragments dropped as part of a suspected SYN fragments attack</td>
</tr>
<tr>
<td>Timestamp IP Option</td>
<td>Number of IP packets discarded with the Internet Timestamp option set</td>
</tr>
<tr>
<td>TCP Packet without Flag</td>
<td>Number of illegal packets dropped with missing or malformed flags field</td>
</tr>
<tr>
<td>Teardrop Attack Protection</td>
<td>Number of packets blocked as part of a Teardrop attack</td>
</tr>
<tr>
<td>UDP Flood Protection</td>
<td>Number of UDP packets dropped as part of a suspected UDP flood</td>
</tr>
<tr>
<td>Unknown Protocol Protection</td>
<td>Number of packets blocked as part of an unknown protocol</td>
</tr>
</tbody>
</table>
Table 9: Screen Counters (continued)

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WinNuke Attack Protection</td>
<td>Number of packets detected as part of a suspected WinNuke attack</td>
</tr>
</tbody>
</table>

Table 10 on page 111 shows the hardware counters for monitoring hardware performance and packets with errors.

Table 10: Hardware Counters

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>drop vlan</td>
<td>Number of packets dropped because of missing VLAN tags, an undefined sub-interface, or because VLAN trunking was not enabled when the security device was in transparent mode</td>
</tr>
<tr>
<td>early frame</td>
<td>Number of counters used in an Ethernet driver buffer descriptor management</td>
</tr>
<tr>
<td>in align err</td>
<td>Number of incoming packets with an alignment error in the bit stream</td>
</tr>
<tr>
<td>in bytes</td>
<td>Number of bytes received</td>
</tr>
<tr>
<td>in coll err</td>
<td>Number of incoming collision packets</td>
</tr>
<tr>
<td>in crc err</td>
<td>Number of incoming packets with a cyclic redundancy check (CRC) error</td>
</tr>
<tr>
<td>in dma err</td>
<td>Number of incoming packets with a Direct Memory Access (DMA) error</td>
</tr>
<tr>
<td>in misc err</td>
<td>Number of incoming packets with a miscellaneous error</td>
</tr>
<tr>
<td>in no buffer</td>
<td>Number of unreceived packets because of unavailable buffers</td>
</tr>
<tr>
<td>in overrun</td>
<td>Number of transmitted overrun packets</td>
</tr>
<tr>
<td>in packets</td>
<td>Number of packets received</td>
</tr>
<tr>
<td>in short frame</td>
<td>Number of incoming packets with an Ethernet frame shorter than 64 bytes (including the frame checksum)</td>
</tr>
<tr>
<td>in underrun</td>
<td>Number of transmitted underrun packets</td>
</tr>
<tr>
<td>late frame</td>
<td>Number of counters used in an Ethernet driver buffer descriptor management</td>
</tr>
<tr>
<td>out bs pak</td>
<td>Number of packets held in back store while searching for an unknown MAC address</td>
</tr>
</tbody>
</table>

When the security device forwards a packet, it first checks if the destination MAC address is in the ARP table. If it cannot find the destination MAC in the ARP table, the security device sends an ARP request to the network. If the security device receives another packet with the same destination MAC address before it receives a reply to the first ARP request, it increases the out bs pak counter by one.
Table 10: Hardware Counters *(continued)*

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>out bytes</td>
<td>Number of bytes sent</td>
</tr>
<tr>
<td>out coll err</td>
<td>Number of outgoing collision packets</td>
</tr>
<tr>
<td>out cs lost</td>
<td>Number of dropped outgoing packets because the Carrier Sense Multiple</td>
</tr>
<tr>
<td></td>
<td>Access/Collision Detect (CSMA/CD) protocol lost the signal</td>
</tr>
<tr>
<td>out defer</td>
<td>Number of deferred outgoing packets</td>
</tr>
<tr>
<td>out discard</td>
<td>Number of discarded outgoing packets</td>
</tr>
<tr>
<td>out heartbeat</td>
<td>Number of outgoing heartbeat packets</td>
</tr>
<tr>
<td>out misc err</td>
<td>Number of outgoing packets with a miscellaneous error</td>
</tr>
<tr>
<td>out no buffer</td>
<td>Number of unsent packets because of unavailable buffers</td>
</tr>
<tr>
<td>out packets</td>
<td>Number of packets sent</td>
</tr>
<tr>
<td>re xmt limit</td>
<td>Number of dropped packets when the retransmission limit was exceeded while</td>
</tr>
<tr>
<td></td>
<td>an interface was operating at half-duplex</td>
</tr>
</tbody>
</table>

Table 11 on page 112 shows the flow counters for monitoring the number of packets inspected at the flow level.

Table 11: Flow Counters

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>address spoof</td>
<td>Number of suspected address spoofing attack packets received</td>
</tr>
<tr>
<td>auth deny</td>
<td>Number of times user authentication was denied</td>
</tr>
<tr>
<td>auth fail</td>
<td>Number of times user authentication failed</td>
</tr>
<tr>
<td>big bkstr</td>
<td>Number of packets that are too big to buffer in the ARP back store while</td>
</tr>
<tr>
<td></td>
<td>waiting for MAC-to-IP address resolution</td>
</tr>
<tr>
<td>connections</td>
<td>Number of sessions established since the last boot</td>
</tr>
<tr>
<td>encrypt fail</td>
<td>Number of failed Point-to-Point Tunneling Protocol (PPTP) packets</td>
</tr>
<tr>
<td>*icmp broadcast</td>
<td>Number of ICMP broadcasts received</td>
</tr>
<tr>
<td>icmp flood</td>
<td>Number of ICMP packets that are counted toward the ICMP flood threshold</td>
</tr>
<tr>
<td>illegal pak</td>
<td>Number of packets dropped because they do not conform to the protocol standards</td>
</tr>
</tbody>
</table>
Table 11: Flow Counters (continued)

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>in arp req</td>
<td>Number of incoming arp request packets</td>
</tr>
<tr>
<td>in arp resp</td>
<td>Number of outgoing arp request packets</td>
</tr>
<tr>
<td>in bytes</td>
<td>Number of bytes received</td>
</tr>
<tr>
<td>in icmp</td>
<td>Number of Internet Control Message Protocol (ICMP) packets received</td>
</tr>
<tr>
<td>in other</td>
<td>Number of incoming packets that are of a different Ethernet type</td>
</tr>
<tr>
<td>in packets</td>
<td>Number of packets received</td>
</tr>
<tr>
<td>in self</td>
<td>Number of packets addressed to the Management IP address</td>
</tr>
<tr>
<td>*in un auth</td>
<td>Number of unauthorized incoming TCP, UDP, and ICMP packets</td>
</tr>
<tr>
<td>*in unk prot</td>
<td>Number of incoming packets using an unknown Ethernet protocol</td>
</tr>
<tr>
<td>in vlan</td>
<td>Number of incoming vlan packets</td>
</tr>
<tr>
<td>in vpn</td>
<td>Number of IPsec packets received</td>
</tr>
<tr>
<td>invalid zone</td>
<td>Number of packets destined for an invalid security zone</td>
</tr>
<tr>
<td>ip sweep</td>
<td>Number of packets received and discarded beyond the specified ip sweep threshold</td>
</tr>
<tr>
<td>land attack</td>
<td>Number of suspected land attack packets received</td>
</tr>
<tr>
<td>loopback drop</td>
<td>Number of packets dropped because they cannot be looped back through the security device. An example of a loopback session is when a host in the Trust zone sends traffic to a MIP or VIP address that is mapped to a server that is also in the Trust zone. The security device creates a loopback session that directs such traffic from the host to the MIP or VIP server.</td>
</tr>
<tr>
<td>mac relearn</td>
<td>Number of times that the MAC address learning table had to relearn the interface associated with a MAC address because the location of the MAC address changed</td>
</tr>
<tr>
<td>mac tbl full</td>
<td>Number of times that the MAC address learning table completely filled up</td>
</tr>
<tr>
<td>mal url</td>
<td>Number of blocked packets destined for a URL determined to be malicious</td>
</tr>
<tr>
<td>*misc prot</td>
<td>Number of packets using a protocol other than TCP, UDP, or ICMP</td>
</tr>
<tr>
<td>mp fail</td>
<td>Number of times a problem occurred when sending a PCI message between the master processor module and the processor module</td>
</tr>
<tr>
<td>no conn</td>
<td>Number of packets dropped because of unavailable Network Address Translation (NAT) connections</td>
</tr>
</tbody>
</table>
Table 11: Flow Counters *(continued)*

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>no dip</td>
<td>Number of packets dropped because of unavailable Dynamic IP (DIP) addresses</td>
</tr>
<tr>
<td>no frag netpak</td>
<td>Number of times that the available space in the netpak buffer fell below 70%</td>
</tr>
<tr>
<td>*no frag sess</td>
<td>The number of times that fragmented sessions were greater than half of the</td>
</tr>
<tr>
<td></td>
<td>maximum number of NAT sessions</td>
</tr>
<tr>
<td>no g-parent</td>
<td>Number of packets dropped because the parent connection could not be found</td>
</tr>
<tr>
<td>no gate</td>
<td>Number of packets dropped because no gate was available</td>
</tr>
<tr>
<td>no gate sess</td>
<td>Number of terminated sessions because there were no gates in the firewall for</td>
</tr>
<tr>
<td></td>
<td>them</td>
</tr>
<tr>
<td>no map</td>
<td>Number of packets dropped because there was no map to the trusted side</td>
</tr>
<tr>
<td>no nat vector</td>
<td>Number of packets dropped because the Network Address Translation (NAT)</td>
</tr>
<tr>
<td></td>
<td>connection was unavailable for the gate</td>
</tr>
<tr>
<td>*no nsp tunnel</td>
<td>Number of dropped packets sent to a tunnel interface to which no VPN tunnel</td>
</tr>
<tr>
<td></td>
<td>is bound</td>
</tr>
<tr>
<td>no route</td>
<td>Number of unroutable packets received</td>
</tr>
<tr>
<td>no sa</td>
<td>The number of packets dropped because no Security Associations (SA) was</td>
</tr>
<tr>
<td></td>
<td>defined</td>
</tr>
<tr>
<td>no sa policy</td>
<td>Number of packets dropped because no policy was associated with an SA</td>
</tr>
<tr>
<td>*no xmit vpnf</td>
<td>Number of dropped VPN packets due to fragmentation</td>
</tr>
<tr>
<td>null zone</td>
<td>Number of dropped packets erroneously sent to an interface bound to the Null</td>
</tr>
<tr>
<td>nvec err</td>
<td>Number of packets dropped because of NAT vector error</td>
</tr>
<tr>
<td>out bytes</td>
<td>Number of bytes sent</td>
</tr>
<tr>
<td>out packets</td>
<td>Number of packets sent</td>
</tr>
<tr>
<td>out vlan</td>
<td>Number of outgoing vlan packets</td>
</tr>
<tr>
<td>ping of death</td>
<td>Number of suspected Ping of Death attack packets received</td>
</tr>
<tr>
<td>policy deny</td>
<td>Number of packets denied by a defined policy</td>
</tr>
<tr>
<td>port scan</td>
<td>Number of packets that are counted as a port scan attempt</td>
</tr>
<tr>
<td>proc sess</td>
<td>Number of times that the total number of sessions on a processor module</td>
</tr>
<tr>
<td></td>
<td>exceeded the maximum threshold</td>
</tr>
</tbody>
</table>

Copyright © 2012, Juniper Networks, Inc.
Table 11: Flow Counters (continued)

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sa inactive</td>
<td>Number of packets dropped because of an inactive SA</td>
</tr>
<tr>
<td>sa policy deny</td>
<td>Number of packets denied by an SA policy</td>
</tr>
<tr>
<td>sessn thresh</td>
<td>The threshold for the maximum number of sessions</td>
</tr>
<tr>
<td>*slow mac</td>
<td>Number of frames whose MAC addresses were slow to resolve</td>
</tr>
<tr>
<td>src route</td>
<td>Number of packets dropped because of the filter source route option</td>
</tr>
<tr>
<td>syn frag</td>
<td>Number of dropped SYN packets because of a fragmentation</td>
</tr>
<tr>
<td>tcp out of seq</td>
<td>Number of TCP segments received whose sequence number is outside the acceptable range</td>
</tr>
<tr>
<td>tcp proxy</td>
<td>Number of packets dropped from using a TCP proxy such as the SYN flood protection option or user authentication</td>
</tr>
<tr>
<td>teardrop</td>
<td>Number of packets blocked as part of a suspected Teardrop attack</td>
</tr>
<tr>
<td>tiny frag</td>
<td>Number of tiny fragmented packets received</td>
</tr>
<tr>
<td>trmn drop</td>
<td>Number of packets dropped by traffic management</td>
</tr>
<tr>
<td>trmng queue</td>
<td>Number of packets waiting in the queue</td>
</tr>
<tr>
<td>udp flood</td>
<td>Number of UDP packets that are counted toward the UDP flood threshold</td>
</tr>
<tr>
<td>url block</td>
<td>Number of HTTP requests that were blocked</td>
</tr>
<tr>
<td>winnuke</td>
<td>Number of WinNuke attack packets received</td>
</tr>
<tr>
<td>wrong intf</td>
<td>Number of session creation messages sent from a processor module to the master processor module</td>
</tr>
<tr>
<td>wrong slot</td>
<td>Number of packets erroneously sent to the wrong processor module</td>
</tr>
</tbody>
</table>

NOTE: For more information about the Carrier Sense Multiple Access/Collision Detect (CSMA/CD) protocol, see the IEEE 802.3 standard available at http://standards.ieee.org.

In this example, you view the device screen counters for the Trust zone.

WebUI

Reports > Counters > Zone Screen: Select **Trust** from the Zone drop-down list.
CLI

get counter screen zone trust
PART 2

Index

- Index on page 119
Index

SNMP...32, 85
 cold start trap...85
 configuration..88
 encryption...88, 91
 management options..32
SNMP community
 private..88
 public..88
SNMP traps
 100, hardware problems..................................85
 200, firewall problems......................................85
 300, software problems....................................85
 400, traffic problems.......................................85
 500, VPN problems..85
 allow or deny..88
 system alarm..85
 traffic alarm...85
 types..85
SNMPv3
 encryption...89
 framework...85
source route..115
SSH...15
 authentication method priority.......................18
 automated logins...21
 connection procedure.....................................15
 forcing PKA authentication only......................18
 loading public keys, TFTP...............................18, 22
 management options..32
 password authentication.................................18
 PKA...18
SSL...9
SSL Handshake Protocol See SSLHP
SSL management options....................................32
SSLHP...9
statistics, reporting to NSM...............................29
syslog..61
 encryption...91
 facility..81
 host...81
 hostname...81, 97, 103
 messages..81
 port...81
 security facility...81

Telnet..13
 management options...32
 Telnet, logging in with......................................14
 traffic alarms..74
 transparent mode, management options..............33
U
 USB..61
User-based Access Model
 USM...85
 users, multiple administrative........................38
 USM
 user...89
V
 VACM
 views..89
 View-based Access Control Model
 VACM..85
virtual private networks See VPNs
virtual systems
 admins..40
 read-only admins...40
VLANNI, management options............................33
VPNs
 AutoKey IKE...50, 91
 for administrative traffic..................................91
 manual key...91
 manual keys...50
W
 Web user interface See WebUI
WebTrends..61, 81
 encryption...81, 91
 messages..81
WebUI..6
 Help files..7
 management options...32
T
tag..89
TCP proxy..115