Help us improve your experience.

Let us know what you think.

Do you have time for a two-minute survey?

 
 

QFX5200 Planificación de cables y transceptores de red

Determinación de QFX5200 compatibilidad de interfaz óptica

Puede encontrar información sobre los transceptores ópticos compatibles con su dispositivo Juniper mediante la Herramienta de compatibilidad de hardware. Además del transceptor y el tipo de conexión, las características ópticas y del cable, cuando corresponda, se documentan para cada transceptor. La Herramienta de compatibilidad de hardware le permite buscar por producto, mostrando todos los transceptores compatibles con ese dispositivo, o categoría, por velocidad o tipo de interfaz. La lista de transceptores compatibles para el QFX5200-32C y QFX5200-32C-L se encuentra en https://apps.juniper.net/hct/product/#prd=QFX5200-32C y https://apps.juniper.net/hct/product/#prd=QFX5200-48Y

CAUTELA:

El Centro de asistencia técnica de Juniper Networks (JTAC) ofrece soporte completo para los módulos ópticos y cables suministrados por Juniper. Sin embargo, el JTAC no proporciona soporte para cables y módulos ópticos de terceros que no estén calificados o no sean suministrados por Juniper Networks. Si tiene problemas para ejecutar un dispositivo Juniper que utiliza cables o módulos ópticos de terceros, el JTAC puede ayudarlo a diagnosticar problemas relacionados con el host si, en opinión del JTAC, el problema observado no está, en opinión del JTAC, relacionado con el uso de los módulos o cables ópticos de terceros. Es probable que su ingeniero del JTAC le pida que revise el cable o módulo óptico de terceros y, si es necesario, que lo reemplace por un componente equivalente calificado por Juniper.

El uso de módulos ópticos de terceros con un alto consumo de energía (por ejemplo, ZR coherente o ZR+) puede causar daños térmicos o reducir la vida útil del equipo host. Cualquier daño al equipo host debido al uso de módulos ópticos o cables de terceros es responsabilidad del usuario. Juniper Networks no aceptará ninguna responsabilidad por los daños causados por dicho uso.

Nota:

Para la interoperabilidad con otros conmutadores de la serie QFX, asegúrese de que la negociación automática en el QFX5200 esté desactivada.

Especificaciones de cable para transceptores QSFP+, QSFP28 y QSFP-DD

Los transceptores QSFP+, 100 Gigabit Ethernet QSFP28 y 400G (QDD-400G-DR4 y QDD-400G-SR4P2) que se utilizan en los conmutadores serie QFX utilizan cables cruzados de fibra multimodo de 12 cintas con conectores MPO-12 de zócalo (UPC/APC). La fibra puede ser OM3 u OM4. Juniper Networks no vende estos cables.

CAUTELA:

Para mantener las aprobaciones de la agencia, use solo un cable blindado y construido correctamente.

Propina:

Asegúrese de pedir cables con la polaridad correcta. Los proveedores se refieren a estos cables cruzados como llave arriba a llave, pestillo para enganchar arriba, Tipo B o Método B. Si utiliza paneles de conexión entre dos transceptores QSFP+ o QSFP28, asegúrese de que se mantenga la polaridad adecuada a través de la planta de cables.

La Tabla 1 describe las señales en cada fibra. La Tabla 2 muestra las conexiones de pin a pin para una polaridad adecuada.

Tabla 1: Pines del receptáculo del módulo óptico QSFP+ y QSFP28

Fibra

Señal

1

Tx0 (Transmitir)

2

Tx1 (Transmisión)

3

Tx2 (Transmisión)

4

Tx3 (Transmisión)

5

No usado

6

No usado

7

No usado

8

No usado

9

Rx3 (Recibir)

10

Rx2 (Recibir)

11

Rx1 (Recibir)

12

Rx0 (Recibir)

Tabla 2: Pines del cable cruzado de fibra óptica QSFP+ MPO

Anclar

Anclar

1

12

2

11

3

10

4

9

5

8

6

7

7

6

8

5

9

4

10

3

11

2

12

1

Descripción de la pérdida, atenuación y dispersión de señal de cable de fibra óptica de la serie QFX

Para determinar el presupuesto de potencia y el margen de potencia necesarios para las conexiones de fibra óptica, debe comprender cómo la pérdida de señal, la atenuación y la dispersión afectan a la transmisión. La serie QFX utiliza varios tipos de cables de red, incluidos los cables de fibra óptica multimodo y monomodo.

Pérdida de señal en cables de fibra óptica monomodo y multimodo

La fibra multimodo es lo suficientemente grande en diámetro para permitir que los rayos de luz se reflejen internamente (reboten en las paredes de la fibra). Las interfaces con óptica multimodo suelen utilizar indicadores LED como fuentes luminosas. Sin embargo, los LED no son fuentes de luz coherentes. Pulverizan diferentes longitudes de onda de luz en la fibra multimodo, lo que refleja la luz en diferentes ángulos. Los rayos de luz viajan en líneas irregulares a través de una fibra multimodo, causando dispersión de la señal. Cuando la luz que viaja en el núcleo de fibra irradia hacia el revestimiento de fibra (capas de material de menor índice de refracción en contacto cercano con un material del núcleo de mayor índice de refracción), se produce una pérdida de modo de orden superior. Juntos, estos factores reducen la distancia de transmisión de la fibra multimodo en comparación con la de la fibra monomodo.

La fibra monomodo tiene un diámetro tan pequeño que los rayos de luz se reflejan internamente a través de una sola capa. Las interfaces ópticas monomodo utilizan láseres como fuentes de luz. Los láseres generan una sola longitud de onda de luz, que viaja en línea recta a través de la fibra monomodo. En comparación con la fibra multimodo, la fibra monomodo tiene un ancho de banda más alto y puede transportar señales por distancias más largas. En consecuencia, es más caro.

Para obtener información acerca de la distancia máxima de transmisión y el rango de longitud de onda admitida para los tipos de cables de fibra óptica monomodo y multimodo que están conectados a la serie QFX, consulte la Herramienta de compatibilidad de hardware. Exceder las distancias máximas de transmisión puede resultar en una pérdida de señal significativa, lo que causa una transmisión no confiable.

Atenuación y dispersión en cable de fibra óptica

Un enlace óptico de datos funciona correctamente siempre que la luz modulada que llega al receptor tenga suficiente potencia para ser demodulada correctamente. La atenuación es la reducción de la intensidad de la señal luminosa durante la transmisión. Los componentes de medios pasivos, como cables, empalmes de cables y conectores, causan atenuación. Aunque la atenuación es significativamente menor para la fibra óptica que para otros medios, todavía ocurre tanto en la transmisión multimodo como en la monomodo. Un enlace de datos ópticos eficiente debe transmitir suficiente luz para superar la atenuación.

Dispersion es la propagación de la señal con el tiempo. Los siguientes dos tipos de dispersión pueden afectar a la transmisión de señales a través de un vínculo de datos ópticos:

  • Dispersión cromática, que es la propagación de la señal a lo largo del tiempo causada por las diferentes velocidades de los rayos de luz.

  • Dispersión modal, que es la propagación de la señal a lo largo del tiempo causada por los diferentes modos de propagación en la fibra.

Para la transmisión multimodo, la dispersión modal, en lugar de la dispersión cromática o atenuación, generalmente limita la velocidad de bits máxima y la longitud de vínculo. Para la transmisión monomodo, la dispersión modal no es un factor. Sin embargo, a velocidades de bits más altas y en distancias más largas, la dispersión cromática limita la longitud máxima del enlace.

Un vínculo de datos ópticos eficiente debe tener suficiente luz para exceder la potencia mínima que el receptor requiere para funcionar dentro de sus especificaciones. Además, la dispersión total debe estar dentro de los límites especificados para el tipo de enlace en el documento GR-253-CORE (Sección 4.3) de Telcordia Technologies y en el documento G.957 de la Unión Internacional de Telecomunicaciones (UIT).

Cuando la dispersión cromática está al máximo permitido, su efecto puede considerarse como una penalización de potencia en el presupuesto de alimentación. El presupuesto de potencia óptica debe permitir la suma de la atenuación de los componentes, las penalizaciones de potencia (incluidas las de la dispersión) y un margen de seguridad para pérdidas inesperadas.

Cálculo del presupuesto de energía y el margen de potencia para cables de fibra óptica

Use la información de este tema y las especificaciones de su interfaz óptica para calcular el presupuesto de energía y el margen de potencia de los cables de fibra óptica.

Propina:

Puede usar la Herramienta de compatibilidad de hardware para obtener información sobre los transceptores conectables compatibles con su dispositivo de Juniper Networks.

Para calcular el presupuesto de potencia y el margen de potencia, realice las siguientes tareas:

Calcular el presupuesto de energía para cables de fibra óptica

Para garantizar que las conexiones de fibra óptica tengan suficiente potencia para un correcto funcionamiento, debe calcular el presupuesto de potencia del enlace (PB), que es la cantidad máxima de energía que puede transmitir. Cuando se calcula el presupuesto de energía, se utiliza un análisis del peor de los casos para proporcionar un margen de error, aunque todas las partes de un sistema real no funcionen en los niveles del peor de los casos. Para calcular la estimación del peor de los casos de PB, se asume la potencia mínima del transmisor (PT) y la sensibilidad mínima del receptor (PR):

PB =P T – PR

La siguiente ecuación hipotética de presupuesto de potencia utiliza valores medidos en decibelios (dB) y decibelios referidos a un milivatio (dBm):

PB =P T – PR

PB = –15 dBm – (–28 dBm)

PB = 13 dB

Cómo calcular el margen de potencia para cables de fibra óptica

Después de calcular PB de un enlace, puede calcular el margen de potencia (PM), que representa la cantidad de potencia disponible después de restar la atenuación o pérdida de enlace (LL) del PB) Una estimación del peor de los casos de PM asume un LL máximo:

PM = PB – LL

PM mayor que cero indica que el presupuesto de potencia es suficiente para operar el receptor.

Los factores que pueden causar la pérdida de vínculo incluyen pérdidas de modo de orden superior, dispersión modal y cromática, conectores, empalmes y atenuación de fibra. En el cuadro 3 se enumera una cantidad estimada de pérdida para los factores utilizados en los siguientes cálculos de muestra. Para obtener información sobre la cantidad real de pérdida de señal causada por el equipo y otros factores, consulte la documentación del proveedor.

Tabla 3: Valores estimados para los factores que causan la pérdida de enlaces

Factor de pérdida de enlace

Valor estimado de pérdida de vínculo

Pérdidas en modo de orden superior

Modo único: ninguno

Multimodo: 0,5 dB

Dispersión modal y cromática

Modo único: ninguno

Multimodo: ninguno, si el producto del ancho de banda y la distancia es inferior a 500 MHz-km

Conector defectuoso

0,5 dB

Empalme

0,5 dB

Atenuación de la fibra

Modo único: 0,5 dB/km

Multimodo: 1 dB/km

El siguiente cálculo de muestra para un enlace multimodo de 2 km de largo con un PB de 13 dB utiliza los valores estimados de la Tabla 3. En este ejemplo se calcula LL como la suma de la atenuación de la fibra (2 km @ 1 dB/km, o 2 dB) y la pérdida para cinco conectores (0,5 dB por conector, o 2,5 dB) y dos empalmes (0,5 dB por empalme, o 1 dB), así como las pérdidas de modo de orden superior (0,5 dB). El PM se calcula de la siguiente manera:

PM = PB – LL

PM = 13 dB – 2 km (1 dB/km) – 5 (0,5 dB) – 2 (0,5 dB) – 0,5 dB

PM = 13 dB – 2 dB – 2,5 dB – 1 dB – 0,5 dB

PM = 7 dB

El siguiente cálculo muestral para un enlace monomodo de 8 km de longitud con un PB de 13 dB utiliza los valores estimados del cuadro 3. En este ejemplo se calcula LL como la suma de la atenuación de la fibra (8 km @ 0,5 dB/km, o 4 dB) y la pérdida para siete conectores (0,5 dB por conector o 3,5 dB). ElpP M se calcula de la siguiente manera:

PM = PB – LL

PM = 13 dB – 8 km (0,5 dB/km) – 7(0,5 dB)

PM = 13 dB – 4 dB – 3,5 dB

PM = 5,5 dB

En ambos ejemplos, el PM calculado es mayor que cero, lo que indica que el enlace tiene suficiente potencia para la transmisión y no excede la potencia máxima de entrada del receptor.