Juniper Networks, the Juniper Networks logo, NetScreen, and ScreenOS are registered trademarks of Juniper Networks, Inc. in the United States and other countries. JUNOS and JUNOSe are trademarks of Juniper Networks, Inc. All other trademarks, service marks, registered trademarks, or registered service marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change, modify, transfer, or otherwise revise this publication without notice.

Products made or sold by Juniper Networks (including the ERX-310, ERX-705, ERX-710, ERX-1410, ERX-1440, M5, M7i, M10i, M20, M40, M40e, M160, M320, and T320 routers, T640 routing node, and the JUNOS, JUNOSe, and SDX-300 software) or components thereof might be covered by one or more of the following patents that are owned by or licensed to Juniper Networks: U.S. Patent Nos. 5,473,599, 5,905,725, 5,909,440, 6,192,051, 6,333,650, 6,559,479, 6,406,312, 6,429,706, 6,459,579, 6,493,347, 6,538,518, 6,538,899, 6,552,918, 6,567,902, 6,578,186, and 6,590,785

Copyright © 2007, Juniper Networks, Inc.
All rights reserved. Printed in USA.

Writing: John Borelli, Jim Lawson, Bill Lemons, Mike Skerritt
Editing: Fran Mues
Illustration: John Borelli, Jim Lawson, Bill Lemons

Revision History
07 November 2007—Revision 1

The information in this document is current as of the date listed in the revision history.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change, modify, transfer, or otherwise revise this publication without notice.

FCC Notice
This CTP products have been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Software License
The terms and conditions for using this software are described in the software license contained in the acknowledgment to your purchase order or, to the extent applicable, to any reseller agreement or end-user purchase agreement executed between you and Juniper Networks. By using this software, you indicate that you understand and agree to be bound by those terms and conditions.

Generally speaking, the software license restricts the manner in which you are permitted to use the software and may contain prohibitions against certain uses. The software license may state conditions under which the license is automatically terminated. You should consult the license for further details.

For complete product documentation, please see the Juniper Networks Web site at www.juniper.net/techpubs

END USER LICENSE AGREEMENT
READ THIS END USER LICENSE AGREEMENT (“AGREEMENT”) BEFORE DOWNLOADING, INSTALLING, OR USING THE SOFTWARE. BY DOWNLOADING, INSTALLING, OR USING THE SOFTWARE OR OTHERWISE EXPRESSING YOUR AGREEMENT TO THE TERMS CONTAINED HEREIN, YOU (AS CUSTOMER OR IF YOU ARE NOT THE CUSTOMER, AS A REPRESENTATIVE/AUTHORIZED TO BIND THE CUSTOMER) CONSENT TO BE BOUND BY THIS AGREEMENT. IF YOU DO NOT OR CANNOT AGREE TO THE TERMS CONTAINED HEREIN, THEN (A) DO NOT DOWNLOAD, INSTALL, OR USE THE SOFTWARE, AND (B) YOU MAY CONTACT JUNIPER NETWORKS REGARDING LICENSE TERMS.

1. The Parties. The parties to this Agreement are Juniper Networks, Inc. and its subsidiaries (collectively “Juniper”), and the person or organization that originally purchased from Juniper or an authorized Juniper reseller the applicable license(s) for use of the Software (“Customer”) (collectively, the “Parties”).

2. The Software. In this Agreement, “Software” means the program modules and features of the Juniper or Juniper-supplied software, and updates and releases of such software, for which Customer has paid the applicable license or support fees to Juniper or an authorized Juniper reseller. “Embedded Software” means Software which Juniper has embedded in the Juniper equipment.

3. License Grant. Subject to the payment of the applicable fees and the limitations and restrictions set forth herein, Juniper grants to Customer a non-exclusive and non-transferable license, without right to sublicense, to use the Software, in executable form only, subject to the following use restrictions:

 a. Customer shall use the Embedded Software solely as embedded in, and for execution on, Juniper equipment originally purchased by Customer from Juniper or an authorized Juniper reseller.

 b. Customer shall use the Software on a single hardware chassis having a single processing unit, or as many chassis or processing units for which Customer has paid the applicable license fees, provided, however, with respect to the Steel-Belted Radius or Odyssey Access Client software only, Customer shall use such Software on a single computer containing a single physical random access memory space and containing any number of processors. Use of the Steel-Belted Radius software on multiple computers requires multiple licenses, regardless of whether such computers are physically contained on a single chassis.

 c. Product purchase documents, paper or electronic user documentation, and/or the particular licenses purchased by Customer may specify limits to Customer’s use of the Software. Such limits may restrict use to a maximum number of seats, registered endpoints, concurrent users, sessions, calls, connections, subscribers, clusters, nodes, realms, devices, links, ports or transactions, or require the purchase of separate licenses to use particular features, functionalities, services, applications, operations, or capabilities, or provide throughput, performance, configuration, bandwidth, interface, processing, temporal, or geographical limits. In addition, such limits may restrict the use of the Software to managing certain kinds of networks or require the Software to be used only in conjunction with other specific Software. Customer’s use of the Software shall be subject to all such limitations and purchase of all applicable licenses.

4. General. This Agreement contains the entire agreement between the Parties, and supersedes all prior understandings or agreements between the Parties, whether oral or written, relating to the subject matter hereof. If any provision of this Agreement is determined to be illegal or unenforceable, such determination will not affect the validity or enforceability of any other provision hereof, and the Parties will attempt in good faith to enter into such modifications as may be necessary to render the Agreement valid and enforceable. This Agreement may not be modified, except in writing signed by both Parties. This Agreement shall be governed by the laws of the State of California, without giving effect to any principles of conflict of laws. The Parties further agree to submit to the personal jurisdiction of the State or Federal Court located in San Jose, California in any action or proceeding arising out of or relating to this Agreement. No action or proceeding arising out of or relating to this Agreement may be brought in any other court.

5. Governing Law. This Agreement shall be governed by the laws of the State of California, without giving effect to any principles of conflict of laws.

6. Legal Notice. No license or right is granted to use this software except as described in this Agreement.

7. Modification of License. Juniper reserves the right to change the terms and conditions of this Agreement at any time. Juniper will provide written notice to Customer of any such changes. Customer’s continued use of the Software shall constitute acceptance of such changes.

8. Legal Effect. This Agreement is intended to be legally binding and incorporates Juniper’s standard terms and conditions for software licenses.

9. Miscellaneous. This Agreement represents the entire agreement between the Parties with respect to the Software. This Agreement shall not be amended, modified, or supplemented except in writing signed by both Parties.

10. Venue. Any legal action or proceeding relating to this Agreement shall be brought in the state or federal court located in San Jose, California, and the Parties consent to the personal jurisdiction of the state and federal courts located in San Jose, California.

11. No Waiver. No waiver by Juniper of any provision of this Agreement shall be construed as a waiver of any other provision of this Agreement or of Juniper’s right to enforce this Agreement in the future.

12. Governing Law. This Agreement shall be governed by the laws of the State of California, without giving effect to any principles of conflict of laws.
d. For any trial copy of the Software, Customer’s right to use the Software expires 30 days after download, installation or use of the Software. Customer may operate the Software after the 30-day trial period only if Customer pays for a license to do so. Customer may not extend or create an additional trial period by re-installing the Software after the 30-day trial period.

e. The Global Enterprise Edition of the Steel-Belted Radius software may be used by Customer only to manage access to Customer’s enterprise network. Specifically, service provider customers are expressly prohibited from using the Global Enterprise Edition of the Steel-Belted Radius software to support any commercial network access services.

The foregoing license is not transferable or assignable by Customer. No license is granted herein to any user who did not originally purchase the applicable license(s) for the Software from Juniper or an authorized Juniper reseller.

4. Use Prohibitions. Notwithstanding the foregoing, the license provided herein does not permit the Customer to, and Customer agrees not to and shall not: (a) modify, unbundle, reverse engineer, or create derivative works based on the Software; (b) make unauthorized copies of the Software (except as necessary for backup purposes); (c) rent, sell, transfer, or grant any rights in and to any copy of the Software, in any form, to any third party; (d) remove any proprietary notices, labels, or marks on or in any copy of the Software or any product in which the Software is embedded. (e) distribute any copy of the Software to any third party, including as may be embedded in Juniper equipment sold in the secondhand market; (f) use any ‘locked’ or key-restricted feature, function, service, application, operation, or capability without first purchasing the applicable license(s) and obtaining a valid key from Juniper, even if such feature, function, service, application, operation, or capability is enabled without a key; (g) distribute any key for the Software provided by Juniper to any third party; (h) use the Software in any manner that extends or is broader than the uses purchased by Customer from Juniper or an authorized Juniper reseller; (i) use the Embedded Software on non-Juniper equipment; (j) use the Software (or make it available for use) on Juniper equipment that the Customer did not originally purchase from Juniper or an authorized Juniper reseller; (k) disclose the results of testing or benchmarking of the Software to any third party without the prior written consent of Juniper; or (l) use the Software in any manner other than as expressly provided herein.

5. Audit. Customer shall maintain accurate records as necessary to verify compliance with this Agreement. Upon request by Juniper, Customer shall furnish such records to Juniper and certify with this Agreement.

6. Confidentiality. The Parties agree that aspects of the Software and associated documentation are the confidential property of Juniper. As such, Customer shall exercise all reasonable commercial efforts to maintain the Software and associated documentation in confidence, which at a minimum includes restricting access to the Software to Customer employees and contractors having a need to use the Software for Customer’s internal business purposes.

7. Ownership. Juniper and Juniper’s licensors, respectively, retain ownership of all right, title, and interest (including copyright) in and to the Software, associated documentation, and all copies of the Software. Nothing in this Agreement constitutes a transfer or conveyance of any right, title, or interest in the Software or associated documentation, or a sale of the Software, associated documentation, or copies of the Software.

8. Warranty, Limitation of Liability, Disclaimer of Warranty. The warranty applicable to the Software shall be as set forth in the warranty statement that accompanies the Software (the “Warranty Statement”). Nothing in this Agreement shall give rise to any obligation to support the Software. Support services may be purchased separately. Any such support shall be governed by a separate, written support services agreement. TO THE MAXIMUM EXTENT PERMITTED BY LAW, JUNIPER SHALL NOT BE LIABLE FOR ANY LOSS PROFITS, LOSS OF DATA, OR COSTS OR PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, THE SOFTWARE, OR ANY JUNIPER OR JUNIPER-SUPPLIED SOFTWARE. IN NO EVENT SHALL JUNIPER BE LIABLE FOR DAMAGES ARISING FROM UNAUTHORIZED OR IMPROPER USE OF ANY JUNIPER OR JUNIPER-SUPPLIED SOFTWARE. EXCEPT AS EXPRESSLY PROVIDED IN THE WARRANTY STATEMENT TO THE EXTENT PERMITTED BY LAW, JUNIPER DISCLAIMS ANY AND ALL WARRANTIES IN AND TO THE SOFTWARE (WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE), INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT IN NO EVENT DOES JUNIPER WARRANT THAT THE SOFTWARE, OR ANY EQUIPMENT OR NETWORK RUNNING THE SOFTWARE, WILL OPERATE WITHOUT ERROR OR INTERRUPTION, OR WILL BE FREE OF VULNERABILITY TO INTRUSION OR ATTACK. IN NO EVENT SHALL JUNIPER’S OR ITS SUPPLIERS’ OR LICENSORS’ LIABILITY TO CUSTOMER, WHETHER IN CONTRACT, TORT (INCLUDING NEGLIGENCE), BREACH OF WARRANTY, OR OTHERWISE, EXCEED THE PRICE PAID BY CUSTOMER FOR THE SOFTWARE THAT GAVE RISE TO THE CLAIM, OR IF THE SOFTWARE IS EMBEDDED IN ANOTHER JUNIPER PRODUCT, THE PRICE PAID BY CUSTOMER FOR SUCH OTHER PRODUCT. CUSTOMER ACKNOWLEDGES AND AGREES THAT JUNIPER HAS SET ITS PRICES AND ENTERED INTO THIS AGREEMENT IN RELIANCE UPON THE DISCLAIMERS OF WARRANTY AND THE LIMITATIONS OF LIABILITY SET FORTH HEREIN, THAT THE SAME REFLECT AN ALLOCATION OF RISK BETWEEN THE PARTIES (INCLUDING THE RISK THAT A CONTRACT REMEDY MAY FAIL OF ITS ESSENTIAL PURPOSE AND CAUSE CONSEQUENTIAL LOSS), AND THAT THE SAME FORM AN ESSENTIAL BASIS OF THE BARGAIN BETWEEN THE PARTIES.

9. Termination. Any breach of this Agreement or failure by Customer to pay any applicable fees due shall result in automatic termination of the license granted herein. Upon such termination, Customer shall destroy or return to Juniper all copies of the Software and related documentation in Customer’s possession or control.

10. Taxes. All license fees for the Software are exclusive of taxes, withholdings, duties, or levies (collectively “Taxes”). Customer shall be responsible for paying Taxes arising from the purchase of the license, or importation or use of the Software.

11. Export. Customer agrees to comply with all applicable export laws and restrictions and regulations of any United States and any applicable foreign agency or authority, and not to export or re-export the Software or any direct product thereof in violation of any such restrictions, laws, or regulations, or without all necessary approvals. Customer shall be liable for any such violations. The version of the Software supplied to Customer may contain encryption or other capabilities restricting Customer’s ability to export the Software without an export license.

12. Commercial Computer Software. The Software is “commercial computer software” and is provided with restricted rights. Use, duplication, or disclosure by the United States government is subject to restrictions set forth in this Agreement and as provided in DFARS 227.7201 through 227.7202-4, FAR 12.212, FAR 27.405(b)(2), FAR 52.227-19, or FAR 52.227-14(ALT III) as applicable.

13. Interface Information. To the extent required by applicable law, and at Customer’s written request, Juniper shall provide Customer with the interface information needed to achieve interoperability between the Software and another independently created program, on payment of applicable fee, if any. Customer shall observe strict obligations of confidentiality with respect to such information and shall use such information in compliance with any applicable laws and conditions upon which Juniper makes such information available.

14. Third Party Software. Any licensor of Juniper whose software is embedded in the Software and any supplier of Juniper whose products or technology are embedded for services for services are accessible to this Agreement, and such licensor or vendor shall have the right to enforce this Agreement in its own name as if it were Juniper. In addition, certain third party software may be provided with the Software and is subject to the accompanying license(s), if any, of its respective owner(s). The portions of the Software are distributed under and subject to open source or license obligations Juniper to make the source code for such portions publicly available (such as the GNU General Public License (“GPL”) or the GNU Library General Public License (“LGPL”), Juniper will make such source code portions (including Juniper modifications, as appropriate) available upon request for a period of up to three years from the date of distribution. Such request can be made in writing to Juniper Networks, Inc., 1194 N. Mathilda Ave., Sunnyvale, CA 94089, ATTN: General Counsel. You may obtain a copy of the GPL at http://www.gnu.org/licenses/gpl.html, and a copy of the LGPL at http://www.gnu.org/licenses/lgpl.html.
15. Miscellaneous. This Agreement shall be governed by the laws of the State of California without reference to its conflicts of laws principles. The provisions of the U.N. Convention for the International Sale of Goods shall not apply to this Agreement. For any disputes arising under this Agreement, the Parties hereby consent to the personal and exclusive jurisdiction of, and venue in, the state and federal courts within Santa Clara County, California. This Agreement constitutes the entire and sole agreement between Juniper and the Customer with respect to the Software, and supersedes all prior and contemporaneous agreements relating to the Software, whether oral or written (including any inconsistent terms contained in a purchase order), except that the terms of a separate written agreement executed by an authorized Juniper representative and Customer shall govern to the extent such terms are inconsistent or conflict with terms contained herein. No modification to this Agreement nor any waiver of any rights hereunder shall be effective unless expressly assented to in writing by the party to be charged. If any portion of this Agreement is held invalid, the Parties agree that such invalidity shall not affect the validity of the remainder of this Agreement. This Agreement and associated documentation has been written in the English language, and the Parties agree that the English version will govern. (For Canada: Les parties aux présents confirment leur volonté que cette convention de même que tous les documents y compris tout avis qui s’y rattaché, soient rédigés en langue anglaise. (Translation: The parties confirm that this Agreement and all related documentation is and will be in the English language)).
Table of Contents

Part 1 CTP Hardware Installation and Configuration

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>CTP Overview</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Serial Stream Processing</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Transmit Packet Processing</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Packet Processing</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Receive Packet Processing</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Serial Stream Creation</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Clock Options</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Hardware Configuration and Installation</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of Hardware Chassis</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Environmental and Power Requirements</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>CTP1000-Series Models</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>CTP1002—Front Panel</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>CTP1002—Rear Panel</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>CTP1004 and CTP1012—Front Panel</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>CTP1004 and CTP1012—Rear Panel</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>CTP2000-Series Models</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>CTP2008, CTP2024, and CTP2056 Components</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Interface Modules</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Power Supplies</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Processor Module</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>PMC Modules</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Clock RTM Module</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Cables</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Chassis Installation</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Rack Mounting</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Power-On Sequence</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Power-Off Sequence</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Router and Switch Configuration</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Product Reclamation and Recycling Program</td>
<td>26</td>
<td></td>
</tr>
</tbody>
</table>

Part 2 CTP Software Configuration

<table>
<thead>
<tr>
<th>Chapter 3</th>
<th>Software Configuration</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>First Boot Configuration</td>
<td>31</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

- Port Configuration—Circuit Emulation .. 32
 - Port Descriptor Text.. 35
 - Configuring the Port Descriptor with the CLI ... 35
 - Configuring the Port Descriptor with CTPView .. 35
 - Remote Port ... 36
 - Configuring the Remote Port with the CLI ... 36
 - Configuring the Remote Port with CTPView .. 37
 - Interface Type ... 38
 - 4WTO Voice Interface.. 38
 - T1/E1 Interface ... 38
 - Fractional T1/E1 Interface .. 38
 - Configuring the Interface Type with the CLI .. 39
 - Configuring the Interface Type with CTPView 42
 - Interface Mode .. 43
 - Interface Encoding .. 44
 - Configuring Encoding with the CLI... 45
 - Configuring Encoding with CTPView... 46
 - Packet Size .. 47
 - Determining Optimal Packet Size.. 47
 - Configuring Packet Size with the CLI.. 49
 - Configuring Packet Size with CTPView ... 49
 - Clock Configuration ... 50
 - Adaptive Clocking Options ... 51
 - Custom Clocking Options .. 52
 - Configuring Port Clocking with the CLI ... 54
 - Configuring Port Clocking with CTPView .. 56
 - Port Speed ... 60
 - Configuring the Port Speed with the CLI .. 60
 - Configuring the Port Speed with CTPView ... 60
 - Buffer Settings ... 61
 - Minimum Buffer... 62
 - Packet Buffer ... 62
 - Maximum Buffer.. 62
 - Configuring the Buffer Settings with the CLI ... 62
 - Configuring the Buffer Settings with CTPView 63
 - Service Type .. 63
 - Configuring the Service Type with CTPView ... 65
 - Time to Live .. 65
 - Configuring Time to Live with the CLI.. 65
 - Signaling Configurations.. 67
 - Configuring the Signals with CTPView .. 68
 - Advanced Options ... 69
 - Implementing Y Cable Redundancy.. 70
 - Configuring Advanced Options with the CLI .. 72
 - Configuring Advanced Options with CTPView 72
 - Port Configuration—Packet-Bearing Serial Interface 73
 - Packet-Bearing Serial Interface Parameters .. 75
 - Configuring the Packet-Bearing Serial Interface with the CLI 76
 - Configuring the Packet-Bearing Serial Interface with CTPView 76
 - Node Synchronization... 77
 - Configuring References.. 78
 - 32-KHz Reference Output ... 79
 - Calibrate Node to Current Reference... 79
 - Node Operations and Maintenance .. 79
| Node Operations and Maintenance Parameters | 81 |
| Change Node Date/Time | 81 |
| Display Network Settings | 81 |
| Configure Network Settings | 81 |
| Initialize Database | 81 |
| Ping IP address | 81 |
| Traceroute IP Address | 81 |
| SSH to Another Host | 82 |
| System Descriptor Field | 82 |
| Reboot Node | 82 |
| Powerdown Node | 82 |
| Display Ethernet Media | 82 |
| Configure Ethernet Media | 82 |
| Set Your Password | 82 |
| System Port Speed Range | 83 |
| Config Security Profile | 83 |

Chapter 4	Software Queries and Operations	85
Overview	85	
Port Queries and Operations	86	
Port Query with the CLI	88	
Port Query with CTPView	89	
Technical Notes—Port Operations	90	
Missing Packets and Late Packets	90	
Buffer Recenter Count	90	
Port Database States	91	
Port Recenter	93	
Advanced Query Menu	93	
Serial Loops	94	
BERT Testing	96	
SCC Counts	100	
Buffer Counts	102	
Clear All Counts	103	
I/F Signaling Query	103	
Modify Runtime Configuration	103	
Diagnostics	103	
Node Summary	105	
Node Diagnostics	106	
Run Diags on Card/Ports	106	
Set Log Print Level	107	
Show Node Log	108	
Node Synchronization	108	
Query Sync Status	108	

Chapter 5	Security Profile Menu	111
Overview	111	
User Management	112	
Password Management	112	
Secure Log Management	114	
Login Banner	115	
Part 3 CTPView Server Installation and Configuration 117

Chapter 6 Installing the Software and Configuring Security Settings 119

Overview ... 119

Scheme 1—Install FC4 OS and CTPView Software 120
Scheme 2—Upgrade CTPView Software Only ... 120
Scheme 3—Upgrade FC4 OS and CTPView Software 121
Scheme 4—Configure Administrative Settings Only 121

Schemes 1 and 3—Installing or Upgrading the CTPView Server Operating System ... 121

Requirements .. 121

Saving Current Data and Settings to External Storage Device 122
Using the CTPView Data Backup Utility ... 122
Using Server Synchronization ... 122

Installing or Upgrading Operating Systems .. 122
Restoring Configuration Settings and Data .. 123
Using the CTPView Restore Utility... 123
Using Server Synchronization ... 123

Review the Installation Log for Errors ... 123
Administrative Configuration Modifications 124
Verifying That the Operating Stem Was Successfully Upgraded 124
Validating the System Configuration ... 124

Scheme 2—Upgrade CTPView Software Only .. 124

For Systems with FC1 .. 125
For Systems Running CTPView 2.2R1 or Earlier 125
For Systems Running CTPView 2.2R2 or Later 125

Scheme 4—Configuring Administrative Settings .. 126

Rack-Mounting the CTPView Server... 127
Connecting a Management Console... 127
Connecting an Ethernet Cable ... 127
Powering On the CTPView Server.. 127
Changing the BIOS Menu Password... 127
Changing the Server’s Default User Account Password 128
Changing the Server’s Root Account Password 128
Changing the GRUB Boot Loader Password ... 128
Changing the MySQL Apache Account Password 129
Changing the MySQL Root Account Password 129
Configuring the Network Access .. 129
Creating a Self-Signed Web Certificate... 129
Updating the CTPView Software .. 129
Logging In with a Browser ... 130
Changing the CTPView Default User Account Password 130
Creating a New Global_Admin Account ... 130

Part 4 CTPView Server Functions

Chapter 7 CTPView Administration Center 133

Overview .. 133

Accessing the Admin Center ... 134
Navigating Within the Admin Center.. 134
Table of Contents

Setting Global CTPView Access
- Admin Center Option Descriptions

Chapter 8 Support for CTP Features
- SysMon
- Node Settings
- AutoSwitch
- Virtual IP Designation for CTP Systems
- Autobaud Support
- DTE Interface Support
- Hardware Monitoring
- IPv6 Support
- PWE3 Support (SAToP)
- Transparent Mode Support
- VLAN Support
- Support for Multiple Ethernets on CTPs
 - NID Selection
 - Updating NID Information
- Packet-Based Serial (PBS) Port Configuration
 - PBS Port Designation
 - Port Display Limits

Chapter 9 CTPView Server Management Functions
- CTPView Server Administration
- Adding and Deleting CTP Hosts and Groups
- Managing CTP Network Hosts
- Configuring E-Mail Notifications
- Configuring Automatic Functions
- Node Maintenance Functions
- Saving Port, Node, and CTP Configurations
- Updating CTP Software
- Formatting Maintenance Reports
- Network Monitoring
- Statistics and IP Performance Reports
- CTPView Server Synchronization
 - Requirements
 - Setup Procedure
 - Definitions
 - Configuration
 - Miscellaneous
- Automatically Saving CTP System Configurations
 - Configuration
 - Restoring Saved Configurations
- CTPView Connection Throttling
 - Configuration
 - Scope
- Support for Tabbed Browsers
 - Limitations
 - Using the Tabbed Style
 - Browser Configuration
- Server Configuration Validation
 - Using Configuration Validation
- SSH Port Forwarding
Using SSH Port Forwarding ... 171
Updating CTP Software Directory ... 171
Obtaining New CTP Software .. 171
Directory Location ... 171
Burning CTP Compact Flash Media ... 172
Obtaining CTP Flash Image Files .. 172
Directory Location ... 172
Network Monitoring ... 172
Audible Alarm ... 172
Manual Override .. 173
AutoSwitch Connection Check ... 173
Using Connection Check ... 173
Network Host Reports .. 174
Accessing Reports .. 174
Database Updates .. 174
Exporting to Spreadsheet Program .. 174

Part 5

Appendixes

Appendix A CTPView Troubleshooting and Recovery 177

Restoring Shell Access to a CTPView Server .. 177
Login Restrictions .. 177
Getting Access to a Shell .. 178
Setting a New Password for a Root User Account 178
Setting a New Password for a Nonroot User Account 179
Creating a Temporary Nonroot User Account and Password 179
Restoring Browser Access to a CTPView Server 180
Creating or Resetting a Default Account ... 180
Booting CTPView from a CD-ROM ... 180
Modifying the Setting in the BIOS Menu ... 180
Restoring the Setting in the BIOS Menu ... 181

Appendix B Default CTPView Accounts and Passwords 183

Default Accounts and Passwords ... 183

Appendix C Tripwire v2.3 Software on CTPView 185

Appendix D Antivirus Software on CTPView 187

Antivirus Installation Directory ... 187

Appendix E CTP Declaration of Conformity 189

Declaration of Conformity — CTP1000 Models 189
Declaration of Conformity — CTP 2000 series 190

Index 191
Part 1
CTP Hardware Installation and Configuration
Chapter 1
CTP Overview

The CTP products are designed to create an IP packet flow from a serial data stream or analog voice connection, providing the necessary processing to re-create the serial bit stream or analog signal from an IP packet flow.

This chapter contains the following sections:

- Overview on page 1
- Packet Processing on page 3
- Clock Options on page 4

Overview

CTP products are designed to accommodate the delay, delay jitter, and packet reordering characteristics of an IP network. Figure 1 shows examples of applications that use CTP products.

Figure 1: Sample Applications Using CTP Products
Numerous processes must occur to adapt serial data to and from IP packets. These processes are summarized in Figure 2. You configure the characteristics of the processes by using the CTP menu interface or the CTPView graphical user interface.

Figure 2: Processes

Packet Creation

- **Serial Stream Processing**
 - Rate & Clock Config
 - References
 - Electrical Interface
 - Adapt Voice to PCM

- **Transmit Packet Processing**
 - Remote IP Address
 - Remote Serial Port
 - Packet Size
 - TTL & Service Type

Packet Processing

- **Serial Stream Creation**
 - Rate & Clock Config
 - Reference
 - Electrical Interface
 - Adapt PCM to Voice

- **Receive Packet Processing**
 - Buffer Configuration
 - Resequencing
 - Counter/Event Update

Using the menu interface, you can configure the CTP products to accept a serial data stream and create an IP flow that will be transferred across an IP network. The connection provided by the CTP system is a physical layer circuit between the end user equipment.

Serial Stream Processing

For a summary of this process, see Figure 2.

Rate selection and clock configuration allow the serial interface rate to be configured through the software. Rates supported range from less than 300 bps to 12.288 Mbps (in subhertz increments).

You can configure the CTP systems by using the menu interface to provide multiple prioritized node clock references. An external reference input and any of the serial interfaces may be used for the node reference clock. Reference frequencies must be 32 KHz, \(n \times 64 \) KHz, or 1544 KHz up to a maximum of 4096 KHz (2048 KHz maximum on the CTP1002).

The electrical characteristics and encoding of the CTP ports are software configurable. The available options are EIA530, EIA530A, RS-232, V.35, analog 4W-TO, conditioned diphase, isochronous, T1, and E1.

An analog voice signal terminated on the 4W-TO interface is converted into a 64-kbps PCM digital bit stream before adaptation to and from an IP flow. The analog interface allows transmit and receive levels to be adjusted.
Transmit Packet Processing

For a summary of this process, see Figure 2 on page 2.

The CTP system is configured with the remote IP address of the system where the packets created from the local serial port are to be routed.

The CTP remote port is specified by the IP address and physical port number of the remote unit and port.

The packet size created by the CTP system may be set from 32 to 1456 bytes. As discussed in Chapter 3, Software Configuration, larger packet sizes are more bandwidth-efficient but introduce more serialization delay when the packet is created. The menu interface checks to verify that the combination of packet size and data rate does not result in a packet rate exceeding 1200 packets per second.

Time to live (TTL) may be set from 0 to 255 (see Time to Live in Chapter 3, Software Configuration). The TTL is the maximum number of hops in the IP network that the packet may travel before it is discarded by the network. You can configure the service type byte (see Service Type in Chapter 3, Software Configuration), which some IP networks use to determine the quality of service provided to the IP flow.

Packet Processing

Using the CTP menu interface, you can configure the unit to accept the IP flow and create a serial data stream that meets your application requirements. For a summary of this process, see Figure 2 on page 2.

Receive Packet Processing

A receive buffer is required to “smooth” the timing jitter of received packets because of the delay variance that is inevitably encountered in the IP network. The configuration allows you to configure both the size of the buffer (in 1-msec increments) and the maximum amount of buffering delay allowed before the buffer will recenter. The size of the buffer configured should be dependent on the performance and characteristics of the IP network.

The CTP system automatically re-sequences packets when they arrive out of order. If a packet is not received, the CTP system inserts all data in lieu of the packet information so that bit count integrity is maintained.

You can prompt the menu interface to display detailed information about the port status, such as packet counts, late packets, missing packets, and buffer fill.

Serial Stream Creation

The packet receive process allows the serial data rate to be configured through the software. Rates supported range from less than 300 bps to 12.288 Mbps in subhertz increments as described in Chapter 3, Software Configuration. Conditioned diphase and isochronous interfaces operate at rates up to 1.024 Mbps.
Clock Options

The CTP system provides numerous options for physical layer clocking:

- Interface clocking options—As detailed in Clock Configuration on page 50 in Chapter 3, Software Configuration, the CTP system allows complete configuration flexibility of interface clocking. This flexibility includes your ability to specify how clocks are generated (that is, from the node clock, which can be phase locked to an external clock input) and what clocks are used to process the data from the attached device. The CTP system can synthesize over 1.5 billion rates between 1 bps and 12.288 Mbps.

- Asymmetric clocking—As detailed in Custom Clock Options—CLI on page 55 in Chapter 3, Software Configuration, you can configure CTP circuits to synthesize asymmetric rates.

- Reference clock input—The CTP system can phase lock its node clock to an interface clock or external reference input. Up to five prioritized references can be configured. The node provides a reference holdover if all references are lost.

- Plesiochronous operation—Calibrated Clock is a patented CTP feature that allows the one-time calibration of the CTP oscillator to a known reference. Depending on environmental factors, two units calibrated to the same clock will have a clock difference as small as 100 parts per billion. This allows CTP circuits to operate for long periods of time before a buffer recenter occurs.

- Adaptive clocking—Although IP router networks do not transfer physical layer clocking, the CTP adaptive clocking feature, using patented Advanced Time Domain Processing (ATDP), allows the CTP system to recover clocking information from the remote CTP port and adjust the local clock accordingly. ATDP provides rapid convergence to the correct clock, and does not vary due to changes in the average jitter buffer fill. As a result, a CTP circuit will continuously operate without a buffer recenter, even when clock references are not used.
Chapter 2

Hardware Configuration and Installation

This chapter describes the CTP hardware configuration and installation. The chapter contains the following sections:

- Overview of Hardware Chassis on page 5
- CTP1000-Series Models on page 7
- CTP2000-Series Models on page 11
- Cables on page 20
- Chassis Installation on page 24
- Router and Switch Configuration on page 25
- Product Reclamation and Recycling Program on page 26

Overview of Hardware Chassis

The following CTP1000- and CTP2000-series models are available:

- CTP1002 (AC only)
- CTP1004 (DC and AC)
- CTP1012 (AC only)
- CTP2008 (DC and AC)
- CTP2024 (DC and AC)
- CTP2056 (DC and AC)

The CTP1002 is 1U high and a half-rack wide, and is designed for installation on a tabletop, on a shelf, or in a rack with the supplied rack mount kit. The CTP1004 and CTP1012 chassis are an industrial 1-U rack-mount case. The CTP2008, CTP2024, and CTP2056 models are multicard chassis that are 1U, 2U, and 4U high, respectively.
All of the chassis, except the CTP1002, have multiple cooling fans; the CTP1002 does not use fans. Air flow is front to back in the CTP1004 and CTP1012, and side to side in the CTP2008, CTP2024, and CTP2056. The CTP environmental and power requirements, front and rear subassembly description, chassis subsystems, and indicators and switches are detailed in the following sections.

Environmental and Power Requirements

Table 1 provides a summary of the environmental and power requirements for the CTP products.

Table 1: CTP Environmental and Power Specifications

<table>
<thead>
<tr>
<th></th>
<th>CTP1002</th>
<th>CTP1004</th>
<th>CTP1012</th>
<th>CTP2008</th>
<th>CTP2024</th>
<th>CTP2056</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power required (VAC)</td>
<td>100–240</td>
<td>100–132</td>
<td>100–132</td>
<td>100–240</td>
<td>100–240</td>
<td>100–240</td>
</tr>
<tr>
<td>AC line frequency (Hz)</td>
<td>50–60</td>
<td>50–60</td>
<td>50–60</td>
<td>50–60</td>
<td>50–60</td>
<td>50–60</td>
</tr>
<tr>
<td>Nominal current (115Vamps)</td>
<td>< 1.0</td>
<td>1.5</td>
<td>1.5</td>
<td>2.0</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>Power</td>
<td>100 W</td>
<td>150 W</td>
<td>150 W</td>
<td>200 W</td>
<td>200 W</td>
<td>250 W</td>
</tr>
<tr>
<td>DC Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage (VDC)</td>
<td>N/A</td>
<td>–40 to –72</td>
<td>N/A</td>
<td>–40 to –72</td>
<td>–40 to –72</td>
<td>–40 to –72</td>
</tr>
<tr>
<td>Current</td>
<td>N/A</td>
<td>1 A @ –48 VDC</td>
<td>N/A</td>
<td>3 A @ –48 VDC</td>
<td>3 A @ –48 VDC</td>
<td>4 A @ –48 VDC</td>
</tr>
<tr>
<td>Power</td>
<td>N/A</td>
<td>48 W maximum</td>
<td>N/A</td>
<td>144 W maximum</td>
<td>144 W maximum</td>
<td>192 W maximum</td>
</tr>
<tr>
<td>Environmental operating temperature (°C)</td>
<td>0–40</td>
<td>0–40</td>
<td>0–40</td>
<td>0–40</td>
<td>0–40</td>
<td>0–40</td>
</tr>
<tr>
<td>Humidity (noncondensing)</td>
<td>5–90 %</td>
<td>5–90 %</td>
<td>5–90 %</td>
<td>5–90 %</td>
<td>5–90 %</td>
<td>5–90 %</td>
</tr>
<tr>
<td>Physical width (in.)</td>
<td>8.0</td>
<td>17.25</td>
<td>17.25</td>
<td>17.25</td>
<td>17.25</td>
<td>17.25</td>
</tr>
<tr>
<td>Height (in.)</td>
<td>1.75</td>
<td>1.75</td>
<td>1.75</td>
<td>1.75</td>
<td>3.5</td>
<td>1.75</td>
</tr>
<tr>
<td>Depth (in.)</td>
<td>12.5</td>
<td>13.9</td>
<td>17.25</td>
<td>11.25</td>
<td>11.25</td>
<td>11.25</td>
</tr>
<tr>
<td>Weight (lb.)</td>
<td>6</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>20</td>
<td>27</td>
</tr>
</tbody>
</table>
The following CTP1000 models are available.

CTP1002—Front Panel

The CTP1002 system has a removable flash drive accessible from the front. You can remove the flash drive by pressing the eject button next to the card. The CTP1002 must be powered off when you insert or remove the flash drive. The CTP1002 front panel (Figure 3) includes:

- **Power LED** — Illuminated green when power is connected and the front panel power switch is set to ON position.
- **HDD LED** — Illuminated red when the flash drive is in use.
- **Front power switch** — Set to ON position when “1” is briefly pressed. Set to OFF when “1” is pressed for 4 or more seconds.
- **Removable flash drive.**

Figure 3: CTP1002 Front Panel

CTP1002—Rear Panel

The CTP1002 rear panel (Figure 4) includes:

- **Power input** from the external 12VDC power supply provided with the unit.
- **Port 0 and port 1 DB-25 connectors** — DB25 connectors for terminating EIA530, RS-232, V.35, 4WTO, and T1 circuits.
- **COM 2 console connection** — Provides an asynchronous TTY connection for locally configuring the CTP system.
- **Fast Ethernet connector** — Provides the 100-Mbps Ethernet connection to the IP network by means of a local Ethernet switch or router.
- **USB connector.**

The pinout of the DB-25 port connector is the same as provided by the quad cables used on the larger CTP systems. The pinouts for this connector and the console connector are provided in Cables on page 20.
CTP1004 and CTP1012—Front Panel

The CTP1004 and CTP1012 systems have a removable flash drive accessible from the front. You can remove the flash drive by pressing the eject button next to the card. The systems must be powered off when you insert or remove the flash drive. The CTP1004 (Figure 5) and CTP1012 (Figure 6) front panels include:

- Power LED — Illuminated green when power is connected and the front panel power switch is set to ON position.
- HDD LED — Illuminated red when the flash drive is in use.
- Front power switch—Set to ON position when the switch is briefly pressed. Set to OFF position when the switch is pressed for 4 or more seconds.
- Removable flash drive.
- USB ports (CTP1004 only).

Figure 4: CTP1002 Rear Panel

![CTP1002 Rear Panel Diagram]

Figure 5: CTP1004 Front Panel

![CTP1004 Front Panel Diagram]
Figure 6: CTP1012 Front Panel

CTP1004 and CTP1012—Rear Panel

The rear panels of the CTP1004 and CTP1012 models are shown in Figure 7, Figure 8, and Figure 10. Use a standard IEC power cord for the AC version of each chassis and 26-AWG fork terminal connectors for the CTP1004 model DC version. There is no power redundancy for the CTP1004 DC model.

Information about the connectors and cables are provided in Cables on page 20. Other connections available on the rear panels include:

- Ethernet connection—Provides the 100-Mbps Ethernet connection to the IP network by means of a local Ethernet switch or router
- Console connection—Provides an asynchronous TTY connection for locally configuring the CTP system
- Interface connector—Features a 100-pin connector providing four serial interfaces when used with the CTP quad cable

Figure 7: CTP1004 Rear Panel—AC Power

Figure 8: CTP1004 Rear Panel—DC Power

![Diagram of CTP1004 Rear Panel—DC Power]

NOTE: Do not remove the screws or the protective cover for the DC power terminal when cabling for power (see Figure 9). Use a magnetic screwdriver to loosen the two inner screws 2-3 turns.

Slide the fork terminal connectors up through the bottom of the protective cover. If you install the wires from the top, they will block the power switch.

Figure 9: Wiring a CTP1004 Rear Panel DC Unit

- Do not remove screws or cover.
- Use a magnetic screwdriver and loosen only 2-3 turns.
- Insert wires from bottom.
CTP2000-Series Models

The CTP2008, CTP2024, and CTP2056 models have four subsystems: CTP interface modules, power supplies, processor modules (front and rear), and the clock rear transition module (RTM).

The CTP2024 and CTP2056 models support an optional second power supply for redundancy. The front and rear subsystems are shown in Figure 11 through Figure 18. There are no power switches on CTP2000-series DC models, so a readily accessible disconnect device must be provided as part of the electrical installation of the unit. We recommend 22-AWG wire for DC power terminals. Use a shielded cable for the COM2 port on the CTP2056.

All CTP2000-series chassis are available in AC and DC versions.

CAUTION: CTP2000-series DC models—For continued protection against risk of fire, replace only with the same type and rating of fuse.

ATTENTION: Pour ne pas compromettre la protection contre les risques d’incendie, remplacer par un fusible de même type et de mêmes caractéristiques nominales.
Figure 11: CTP2008 Front View

Figure 12: CTP2008 Rear View—AC Power

Figure 13: CTP2008 Rear View—DC Power
Figure 14: CTP2024 Front View

Figure 15: CTP2024 Rear View—AC Power

Figure 16: CTP2024 Rear View—DC Power
Figure 17: CTP2056 Front View

Optional Fiber PMC Module (GigE or Fast Ethernet) Primary SC Connector on Left

Figure 18: CTP2056 Rear View—AC Power

10/100/1000 Ethernet

Power Input And Switch
CTP2008, CTP2024, and CTP2056 Components

Theses models have the following components.

Interface Modules

The CTP2008, CTP2024, and CTP2056 systems have up to one, three, and seven interface modules, respectively. The interface modules are interchangeable between the systems.

The following interface modules have two 100-pin connectors similar to the connectors provided on the CTP1004 and CTP1012 systems. Each connector provides four ports by means of the quad cable. (See Cables on page 20.) See Figure 17 for port numbering. The lowest-numbered ports start at the top right.

- **CTP2000-IM-8P**—Provides the standard software-configurable data interfaces, including EIA530, EIA530A, RS-232, and V.35; 8 port.
- **CTP2000-IM-8P-T1**—Provides the standard software-configurable data interfaces, plus a configurable T1/E1 interface; 8 port.
- **CTP2000-IM-8P-V**—Provides the standard software-configurable data interfaces, plus a configurable 4WTO interface; 8 port.
The following interface module has RJ-48 ports numbered left to right (0-7).

- **CTP2000-IM-8P-T1E1**—Provides a configurable E1 (2.048 MHz) or T1 (1.544 MHz) interface with AMI or B8ZS encoding; 8 port. (See Figure.)

Figure 20: CTP2000-IM-8P-T1E1 Interface Module

Installing and Removing Interface Modules

You can install an interface module by inserting it into the chassis with the extractors unlocked and pushed outward. The system should be powered off when you insert or remove the module. When you insert the module into the backplane connector, the extractors are pushed inward; that motion inserts the module into the connectors. Each module has two Phillips head screws, which you use to lock the module into the chassis. Loosen the screws to remove the module and push the extractors outward while depressing the red latch.

LEDs

Each interface module has two LEDs. The bottom LED is blue when the module is functioning, and the top LED states are as follows:

- **Yellow**—Interface module is offline and not recognized by the system. This state typically occurs when the system is first turned on and booting.

- **Green**—Interface module is online and recognized by the system. The interface module clocking is as configured.

 The top interface module is used for input clock references, which are distributed to the other modules across the backplane. The LED is green on the top module if no clock reference is defined. The other interface modules should always display the green LED.

- **Red**—Interface module is online and recognized by the system. It either is not using the clock distributed by the top interface module or the configured references are not available to the top module.

- **Orange**—Interface module is online and recognized by the system. The configured clock is not available, and the system is in a holdover clocking mode.
Power Supplies
The CTP2008 system has a single power supply, and the CTP2024 and CTP2056 systems have one supply with an option for a second hot-swappable power supply, which provides redundancy. The green LED on the power supply front panel indicates that the input power is OK; a red LED indicates a power supply fault. The power supplies are interchangeable between the systems.

CAUTION: CTP2000-series DC models—For continued protection against risk of fire, replace only with the same type and rating of fuse.

ATTENTION: Pour ne pas compromettre la protection contre les risques d’incendie, remplacer par un fusible de même type et de mêmes caractéristiques nominales.

CAUTION: A readily accessible disconnect device must be provided as part of the electrical installation for CTP2000 series models.

You can remove the power supply by first unscrewing the retaining screw in the lower-left corner of the power supply panel. Next, press the red tab on the extractor and pull the extractor lever outward. You can insert a power supply by first sliding the power supply in with the extractor pulled outward. Then push the extractor inward to latch the power supply in place, and tighten the retaining screw at the lower-left corner of the supply.

Processor Module
This module provides the IP network connection through the 100/1000-Mbps Ethernet interface (copper) or optional dual 100-Mbps and 1-Gbps fiber interfaces, which are installed in the PMC1 slot. The primary connector is on the left when the PMC1 slot is used. The PMC2 slot is not used. The processor module can be installed only in the bottom slot of the CTP2008 model, and only in the upper slot of the CTP2024 and CTP2056 models.

Remove or install the processor modules (front and rear) only with the unit power turned off. Install the processor module by inserting it into the chassis with the extractors unlocked and pushed outward. When you insert the module into the backplane connector, the extractors are pushed inward to insert the module into the connectors. The module has two screws, which you use to lock the processor module into the chassis. Loosen the screws to remove the module. Then push the extractors outward while depressing the red latch.

The processor module provides a front connector for asynchronous console, video, and keyboard connections, but you must use a special cable that is provided with the system. Never leave the cable installed in the unit when the cable is not in use. Asynchronous console connections that allow connection to the COM2 port on the rear transition module will be available in a future release. A ferrite core should be connected to any Ethernet cable that is connected to the processor. We recommend the Fair-Rite Products 461164281.

The following connectors on the rear transition module are not used: PMC I/O 1, PMC I/O 2, and COM3. Do not connect cables to these connectors.
The compact flash card is installed on the processor rear transition module. (See Figure 21.)

To remove or install the flash card:

1. Power off the unit.

2. Remove the processor rear transition module by unscrewing the retaining screws and pushing the extractors outward with the latching buttons depressed.

3. Remove the flash card–retaining screw and nut. You can then remove or install the flash card in the flash socket.

4. Reinstall the flash card–retaining screw and nut.

5. Reinstall the processor RTM into the chassis, and secure the retaining screws.

Figure 21: Processor Rear Transition Module and Compact Flash Card

PMC Modules

The CTP2000 model can be ordered with an optional PMC module that provides two fiber-optic Fast Ethernet or Gigabit Ethernet network connections. The PMC module is mounted onto the processor module and can be installed or replaced in the field. Figure 22 shows the location of the PMC module. Use the following procedures when you remove or install a PMC module.
To remove a PMC module:

CAUTION: To prevent electrostatic damage to the system and its components, be sure that persons handling the system wear an antistatic device.

1. Confirm that the system is powered off.
2. Remove the processor module as described in Processor Module on page 17.
3. Perform the removal in a suitable area.
4. The PMC module is secured by four Phillips head screws on the bottom of the board. Two screws are secured to standoffs, and two are secured to the PMC front assembly. Remove these screws from the back of the processor module, leaving the standoff attached to the PMC module and using caution not to strip the screws.
5. Carefully lift the PCM module from the back of the processor module, and remove it from the processor module.

To install a PMC module:

CAUTION: To prevent electrostatic damage to the system and its components, be sure that persons handling the system wear an antistatic device.

1. Confirm that the system is powered off.
2. Remove the processor module as described in Processor Module on page 17.
3. Perform the installation in a suitable area.
4. A shield is inserted into the PMC slot of the processor’s front panel if a PMC module has not been previously removed. You can remove this shield by gently pushing it out from behind the panel.

5. The PMC module has four screws. Two of the screws are secured to standoffs, and two are attached to the front assembly of the PMC module. Remove the two screws secured to the standoff, leaving the standoff attached to the PMC module. Remove the two screws on the front assembly located on the side with the standoffs. The front assembly should remain attached to the PMC hardware. Keep the screws for reattachment.

6. Align the PMC module with the printed circuit board connectors toward the processor board and with the fiber connectors inserted through the processor’s front panel. Align the alignment post on the processor module with the PMC module’s alignment hole.

7. Gently press the PMC module into the processor module.

8. From the back of the processor module, use the four Phillips head screws to secure the two PMC standoff posts and PMC front assembly to the processor module.

9. Reinstall the processor using the procedures outlined in Processor Module on page 17.

Clock RTM Module

The clock rear transition module (RTM) is used to input a reference clock into the CTP2000 system. The module is installed in the rear of the chassis behind the CTP2000 interface modules with ports 0–7. The clock RTM module is the first slot above the processor RTM on the CTP2008 system, and the first slot below the processor RTM on the CTP2024 and CTP2056 systems. The module provides a DB-25 connector, and the differential clock input is provided on pins 24 and 11.

Cables

The following cables connect to the CTP system:

- Interface module cable—The CTP interface modules provide a 100-pin connector for external serial interfaces connections to the CPT-1004, 1012, 2008, 2024, and 2056 systems. The quad cable ordered separately with the system provides four standard DB-25 connectors, which are labeled P0, P1, P2, and P3. These port numbers correspond to the port-numbering scheme implemented in the software configuration (as detailed in Chapter 3, Software Configuration). Use a Revision B or later cable when connecting it to a CTP1012, CTP2008, CTP2024, or CTP2056 system.

Table 2, Table 3, Table 4, and Table 5 list the EIA530, RS-232, voice interface, and T1 interface signals.

⚠️ CAUTION: The cable must have stress relief before you attach it to the 100-pin connector. Connecting the cable without stress relief will damage either the connector thumbscrews or the interface module.
Table 2: EIA530 Connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>To/From CTP</th>
<th>Description</th>
<th>Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>–</td>
<td>Shield</td>
<td>BA</td>
</tr>
<tr>
<td>2</td>
<td>To</td>
<td>Transmitted data—A</td>
<td>BA</td>
</tr>
<tr>
<td>3</td>
<td>From</td>
<td>Received data—A</td>
<td>BB</td>
</tr>
<tr>
<td>4</td>
<td>To</td>
<td>Request to send—A</td>
<td>CA</td>
</tr>
<tr>
<td>5</td>
<td>From</td>
<td>Clear to send—A</td>
<td>CB</td>
</tr>
<tr>
<td>6</td>
<td>From</td>
<td>Data set ready—A</td>
<td>CC</td>
</tr>
<tr>
<td>7</td>
<td>–</td>
<td>Signal ground</td>
<td>Ground</td>
</tr>
<tr>
<td>8</td>
<td>From</td>
<td>Data carrier detect—A</td>
<td>CF</td>
</tr>
<tr>
<td>9</td>
<td>From</td>
<td>Receive signal element timing—B</td>
<td>DD</td>
</tr>
<tr>
<td>10</td>
<td>To</td>
<td>Transmit signal element timing—B (DTE)</td>
<td>DA</td>
</tr>
<tr>
<td>11</td>
<td>From</td>
<td>Transmit signal element timing—B (DCE)</td>
<td>DB</td>
</tr>
<tr>
<td>12</td>
<td>From</td>
<td>Clear to send—B</td>
<td>CB</td>
</tr>
<tr>
<td>13</td>
<td>To</td>
<td>Transmitted data—B</td>
<td>BA</td>
</tr>
<tr>
<td>14</td>
<td>From</td>
<td>Transmit signal element timing—A (DCE)</td>
<td>DB</td>
</tr>
<tr>
<td>15</td>
<td>From</td>
<td>Received data—B</td>
<td>BB</td>
</tr>
<tr>
<td>16</td>
<td>From</td>
<td>Receive signal element timing—A</td>
<td>DD</td>
</tr>
<tr>
<td>17</td>
<td>To</td>
<td>Local loopback</td>
<td>LL</td>
</tr>
<tr>
<td>18</td>
<td>To</td>
<td>Request to send—B</td>
<td>CA</td>
</tr>
<tr>
<td>19</td>
<td>To</td>
<td>Data terminal ready—A</td>
<td>CD</td>
</tr>
<tr>
<td>20</td>
<td>To</td>
<td>Remote loopback</td>
<td>RL</td>
</tr>
<tr>
<td>21</td>
<td>From</td>
<td>Data set ready—B</td>
<td>CC</td>
</tr>
<tr>
<td>22</td>
<td>To</td>
<td>Data terminal ready—B</td>
<td>CD</td>
</tr>
<tr>
<td>23</td>
<td>To</td>
<td>Transmit signal element timing—A (DTE)</td>
<td>DA</td>
</tr>
<tr>
<td>24</td>
<td>–</td>
<td>Test mode</td>
<td>TM</td>
</tr>
</tbody>
</table>

Table 3: RS-232 Connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>To/From CTP</th>
<th>Description</th>
<th>Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>–</td>
<td>Shield</td>
<td>BA</td>
</tr>
<tr>
<td>2</td>
<td>To</td>
<td>Transmitted data—A</td>
<td>BA</td>
</tr>
<tr>
<td>3</td>
<td>From</td>
<td>Received data—A</td>
<td>BB</td>
</tr>
<tr>
<td>4</td>
<td>To</td>
<td>Request to send—A</td>
<td>CA</td>
</tr>
<tr>
<td>5</td>
<td>From</td>
<td>Clear to send—A</td>
<td>CB</td>
</tr>
<tr>
<td>6</td>
<td>From</td>
<td>Data set ready—A</td>
<td>CC</td>
</tr>
<tr>
<td>7</td>
<td>–</td>
<td>Signal ground</td>
<td>Ground</td>
</tr>
<tr>
<td>8</td>
<td>From</td>
<td>Data carrier detect—A</td>
<td>CF</td>
</tr>
</tbody>
</table>
Table 3: RS-232 Connector (continued)

<table>
<thead>
<tr>
<th>Pin</th>
<th>To/From CTP</th>
<th>Description</th>
<th>Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>From</td>
<td>Transmit signal element timing—A (DCE)</td>
<td>DB</td>
</tr>
<tr>
<td>17</td>
<td>From</td>
<td>Receive signal element timing—A</td>
<td>DD</td>
</tr>
<tr>
<td>20</td>
<td>To</td>
<td>Data terminal ready—A</td>
<td>CD</td>
</tr>
<tr>
<td>22</td>
<td>From</td>
<td>Data set ready—B</td>
<td>CC</td>
</tr>
<tr>
<td>24</td>
<td>To</td>
<td>Transmit signal element timing—A (DTE)</td>
<td>DA</td>
</tr>
</tbody>
</table>

Table 4: Voice Interface Signals

<table>
<thead>
<tr>
<th>Pin</th>
<th>To/From CTP</th>
<th>Description</th>
<th>Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>–</td>
<td>Shield</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>To</td>
<td>Channel 0 voice RX—A</td>
<td>Channel 0</td>
</tr>
<tr>
<td>3</td>
<td>From</td>
<td>Channel 0 voice TX—A</td>
<td>Channel 0</td>
</tr>
<tr>
<td>4</td>
<td>To</td>
<td>Channel 1 voice signaling input A</td>
<td>Channel 1</td>
</tr>
<tr>
<td>5</td>
<td>From</td>
<td>Channel 1 voice signaling output A</td>
<td>Channel 1</td>
</tr>
<tr>
<td>6</td>
<td>From</td>
<td>Channel 0 voice signaling output A</td>
<td>Channel 0</td>
</tr>
<tr>
<td>9</td>
<td>From</td>
<td>Channel 1 voice TX—A</td>
<td>Channel 1</td>
</tr>
<tr>
<td>11</td>
<td>To</td>
<td>Channel 1 voice RX—B</td>
<td>Channel 1</td>
</tr>
<tr>
<td>13</td>
<td>From</td>
<td>Channel 1 voice signaling output—B</td>
<td>Channel 1</td>
</tr>
<tr>
<td>14</td>
<td>To</td>
<td>Channel 0 voice RX—B</td>
<td>Channel 0</td>
</tr>
<tr>
<td>16</td>
<td>From</td>
<td>Channel 0 voice TX—B</td>
<td>Channel 0</td>
</tr>
<tr>
<td>17</td>
<td>From</td>
<td>Channel 1 voice TX—A</td>
<td>Channel 1</td>
</tr>
<tr>
<td>19</td>
<td>To</td>
<td>Channel 1 voice signaling input—A</td>
<td>Channel 1</td>
</tr>
<tr>
<td>20</td>
<td>To</td>
<td>Channel 0 voice signaling input—A</td>
<td>Channel 0</td>
</tr>
<tr>
<td>22</td>
<td>From</td>
<td>Channel 0 voice signaling output—A</td>
<td>Channel 0</td>
</tr>
<tr>
<td>23</td>
<td>To</td>
<td>Channel 0 voice signaling input—B</td>
<td>Channel 0</td>
</tr>
<tr>
<td>24</td>
<td>To</td>
<td>Channel 1 voice RX—A</td>
<td>Channel 1</td>
</tr>
</tbody>
</table>

Table 5: T1 Interface Signals

<table>
<thead>
<tr>
<th>Pin</th>
<th>To/From CTP</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>–</td>
<td>Shield</td>
</tr>
<tr>
<td>2</td>
<td>To</td>
<td>Transmitted data—A</td>
</tr>
<tr>
<td>3</td>
<td>From</td>
<td>Received data—A</td>
</tr>
<tr>
<td>7</td>
<td>–</td>
<td>Signal ground</td>
</tr>
<tr>
<td>14</td>
<td>To</td>
<td>Transmitted data—B</td>
</tr>
<tr>
<td>16</td>
<td>From</td>
<td>Received data—B</td>
</tr>
</tbody>
</table>
Console cable—A console is connected to the CTP1002, CTP1004, and CTP1012 systems with a DB-9 crossover cable. The console connector to the CTP2008, CTP2024, and CTP2056 systems is a RJ-45 crossover connected to COM2 on the RTM. This cable must be connected during the first boot process described in Chapter 3. The specification for the DB9 and RJ45 console cables are provided in Table 6 and Table 7. Use a shielded cable for the COM2 port on the CTP2056.

The console connections are configured to the following parameters:

- Speed: 9600 bps
- Data bits: 8
- Stop bits: 1
- Flow control: Xon/Xoff
- Parity: none

<table>
<thead>
<tr>
<th>Table 6: Console Cable Pinouts for CTP 1000 models</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB9F - CTP</td>
</tr>
<tr>
<td>Pin-2 RCV</td>
</tr>
<tr>
<td>Pin-3 XMT</td>
</tr>
<tr>
<td>Pin-4 DTR</td>
</tr>
<tr>
<td>Pin-5 GND</td>
</tr>
<tr>
<td>Pin-6 DSR</td>
</tr>
<tr>
<td>Pin-7 RTS</td>
</tr>
<tr>
<td>Pin-8 CTS</td>
</tr>
<tr>
<td>Pin-9 RNG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 7: Console Cable Pinouts for CTP 2000 models</th>
</tr>
</thead>
<tbody>
<tr>
<td>RJ45 - CTP 2000</td>
</tr>
<tr>
<td>Pin-1 RTS</td>
</tr>
<tr>
<td>Pin-2 DTR</td>
</tr>
<tr>
<td>Pin-3 GND</td>
</tr>
<tr>
<td>Pin-4 TXD</td>
</tr>
<tr>
<td>Pin-5 RXD</td>
</tr>
<tr>
<td>Pin-6 CD</td>
</tr>
<tr>
<td>Pin-7 DSR</td>
</tr>
<tr>
<td>Pin-8 CTS</td>
</tr>
</tbody>
</table>

Fast Ethernet cable—The Ethernet connection is a standard RJ-45 connector. Typically, a straight-through cable is used to connect to a switch, and a crossover cable is used to connect to a router.
Chassis Installation

Fiber-optic cable—The multimode fiber-optic cable connectors on the CTP1012 (Fast Ethernet), CTP2024 (Fast Ethernet or Gigabit Ethernet), and CTP2056 (Fast Ethernet and Gigabit Ethernet) systems are SC type.

Power cables—We recommend 26-AWG wire for the CTP1004 model and 22-AWG for all CTP2000-series models.

Rack Mounting

The CTP1004 and CTP1012 chassis are shipped with preattached brackets. These brackets are used to secure the unit in a rack only when the CTP is supported by a shelf. The chassis is shipped with longer side-support brackets, which must be installed when the unit is mounted in a 19-inch rack without a shelf.

The CTP2008, CTP2024, and CTP2056 models have rack mounts attached to the sides of the chassis. When you install these units in a rack, you must install them with screws in all the bracket holes.

The CTP1002 model can be installed on a shelf, on a table, or in a rack with the supplied rack-mount kit. The rack-mount kit also allows two units to be installed in a 1-U rack space.

When you install the CTP system into a rack, we recommend that two people install it in order to properly support the unit. To rack-mount the CTP unit:

1. Verify that there is adequate space in front of and behind the CTP1004 and CTP1012 systems for airflow. Verify that there is adequate space on the sides of the CTP2008, CTP2024, and CTP2056 systems for adequate airflow.

2. Remove the brackets on the CTP1004 and CTP1012 systems, and install the larger rack-mount brackets if the unit is to be installed in a 19-inch rack without a shelf.

3. Carefully support the CTP unit while it is being mounted in the rack.

4. Make certain that you place screws in all the rack-mount holes and that you securely fasten the screws.

5. Connect a grounding cable to the CTP2000 systems that provide a grounding lug on the rear.

Power-On Sequence

The first time you power on the system and flash drive, enter the information below on the console connection. You can change this information, if necessary, in the Node Operations menu. (See Node Operations and Maintenance on page 79 in Chapter 3, Software Configuration.)

1. IP address of the unit
2. Unit’s hostname
To power on the CTP system:

1. Be sure that the system is properly installed and that the top cover of a CTP1002, CTP1004, or CTP1012 system is properly secured.

2. On the CTP1004, CTP1012, CTP2024, and CTP2056 systems, set the rear power switch to off. Disconnect the external 12V DC supply from a CTP1002 system.

3. Connect the CTP power cable or external supply to either a 115V AC or 230V AC power source.

4. Set the rear power switch to the ON position, or insert the external 12V DC supply output into the CTP1002 system.

5. Verify that the front panel power status LED is green on the CTP1002, CTP1004, and CTP1012 systems and that the green LED is illuminated on the CTP2024 and CTP2056 processor modules.

6. Verify that the front panel HDD activity LED is flickering red on the CTP1002, CTP1004, and CTP1012 systems.

Power-Off Sequence

As described in *Chapter 3, Software Configuration*, an option is provided in the Node Operations menu to power down the node. Always use this option when maintenance or other activity requires the unit to be powered off.

Router and Switch Configuration

The router or switch Fast Ethernet configuration must match the CTP configuration; otherwise a duplex conflict will result. The default configuration for the CTP Fast Ethernet interface is autonegotiate duplex mode and autospeed. We recommend that you set the switch or router to the same autonegotiation configuration.

If the router or switch is set to full duplex or 100-Mbps speed, or both, then you must set the configuration of the CTP system to the same configuration by using the Node Operations menu (see Node Operations and Maintenance on page 79 in *Chapter 3, Software Configuration*).

You must explicitly disable proprietary router protocols on the interface, such as Cisco Discovery Protocol (use the interface configuration command `NO CDP`). You must also turn off any options to power external voice-over-IP (VoIP) phones through the Ethernet.
Product Reclamation and Recycling Program

Juniper Networks is committed to environmentally responsible behavior. As part of this commitment, we work to comply with environmental standards such as the European Union’s Waste Electrical and Electronic Equipment (WEEE) Directive and Restriction of Hazardous Substances (RoHS) Directive.

These directives and other similar regulations from countries outside the European Union regulate electronic waste management and the reduction or elimination of specific hazardous materials in electronic products. The WEEE Directive requires electrical and electronics manufacturers to provide mechanisms for the recycling and reuse of their products. The RoHS Directive restricts the use of certain substances that are commonly found in electronic products today. Restricted substances include heavy metals, including lead, and polybrominated materials. The RoHS Directive, with some exemptions, applies to all electrical and electronic equipment.

In accordance with Article 11(2) of Directive 2002/96/EC (WEEE), products put on the market after 13 August 2005 are marked with the following symbol or include it in their documentation: a crossed-out wheeled waste bin with a bar beneath.

Juniper Networks provides recycling support for our equipment worldwide to comply with the WEEE Directive. For recycling information, go to http://www.juniper.net/environmental, indicating the type of Juniper Networks equipment that you wish to dispose of and the country where it is currently located, or contact your Juniper Networks account representative.

Products returned through our reclamation process are recycled, recovered, or disposed of in a responsible manner. Our packaging is designed to be recycled and should be handled in accordance with your local recycling policies.
Part 2
CTP Software Configuration
Chapter 3
Software Configuration

This chapter provides information about CTP configuration parameters and about configuring the systems with both the command-line interface (CLI) and CTPView. The chapter contains the following sections:

- Overview on page 29
- First Boot Configuration on page 31
- Port Configuration—Circuit Emulation on page 32
- Port Configuration—Packet-Bearing Serial Interface on page 73
- Node Synchronization on page 77
- Node Operations and Maintenance on page 79

Overview

Figure 23 on page 30 provides the hierarchy of the CLI menus used to configure the CTP system. Each section in this chapter also provides the corresponding CTPView configuration window. The menu options that you use include:

- Port configuration commands—You use these commands to configure port parameters, such as port clock, serial interface rates, interface type, buffering, and distant port IP address.

- Node synchronization commands—You use these commands to configure the clock reference to be used by the CTP system. (See Port Configuration—Packet-Bearing Serial Interface on page 73.)

- Node operation commands—You use these commands infrequently to perform operations such as setting the CTP IP address when the unit is first installed, upgrading the CTP software, and initializing the database. (See Node Operations and Maintenance on page 79.)

Commands that you use to monitor the CTP system, circuits, and the IP network (such as activate, disable, and query) are detailed in Chapter 4, Software Queries and Operations.
In the CLI, the default setting for each configuration parameter appears in brackets whenever you are prompted for input. The default setting is implemented when the only input is a return. Whenever you enter an acceptable nondefault setting, that setting becomes the new default for the configuration parameter. When you are configuring the CTP system, any configuration changes take effect immediately and are implemented when you exit the configuration or activate the port.

Figure 24: CTP Main Menu

Please select a number from the following list:

0) Exit to Shell
1) Port Operations
2) Node Synchronization
3) Node Summary
4) Node Diagnostics
5) Node Operations

---------- Your choice [1]: 1

Enter port (0-3)[0]:
First Boot Configuration

The first boot processes allow you to configure the CTP system parameters the first time the system is powered on. The system configuration information entered during the first boot process is saved, and first boot prompts will not occur during subsequent power-on cycle. An asynchronous terminal connection is required during the first power-on. COM2, located on the RTM, is used when you configure the CTP2000 during the first boot process.

You can modify the system configuration after the first boot by using the menu interface, as described in Node Operations and Maintenance on page 79. However, it is helpful to have as much complete information as possible during the first boot. The information needed includes the following:

- **Password for the root user**—The system will check to verify that the password meets the security profile requirements. However, you can use a noncompliant password by reentering it during the password confirmation prompt.

- **Supported protocols** — Version 4.3 allows the user to specify which versions of IP will be used by the CTP. The choices include: IPv4 only, IPv6 only, and IPv4 and IPv6.

- **Hostname.**

- **Default Ethernet interface**—The first boot process detects the available Ethernet interfaces, and you must select the default. CTP circuits can be routed to the default or other active Ethernet interfaces. Required information for the default ethernet interface includes:
 - IPv4 and/or IPv6 address
 - Subnet mask
 - Gateway
 - Maximum transmission unit (MTU) size
 - Additional routes for the default interface (optional)

- **Current date and time.**

Additional management and/or data interfaces can be configured through the CLI. This includes the ability to configure virtual IPs as well as VLAN interfaces. Details on configuring these interfaces can be found in Node Operations and Maintenance on page 79.
Figure 25 shows an example of the first boot process and user input.

Figure 25: First Boot Process and User Input Example

Configure Supported Protocols:
0) IPv4 Only
1) IPv6 Only
2) IPv4&IPv6
Please select your option (rtn for 0):

There are 2 Ethernet devices available for use. The default device is the device through which the default gateway can be accessed. CTP circuits can run over any Ethernet device, default or not. A default device must be configured; other devices may be configured and enabled, or disabled. Here is a list of the available devices and their descriptions:

- eth0: 10/100/1000 Copper (front)
- eth1: 10/100/1000 Copper (back)

What device would you like to make the default device? (rtn for eth0) eth0
OK, eth0 (10/100/1000 Copper (front)) will be configured as the IPv4 default device.

Please input the hostname (return for ctp): ctp26

Configuration for eth0 (default device):
Please input the ip (return for 127.0.0.1): 172.25.62.26
Please input the netmask (return for 255.255.255.0): 255.255.255.128
Please input the gateway (return for 127.0.0.1): 172.25.62.1
Please input the mtu in bytes (return for 1500):

Add route to interface eth0 [n] y

How many routes would you like to add to eth1? (0-3)[0] 1

----- Route #1 for eth0
Please input the network (return for 127.0.0.1): 10.0.0.0
Please input the number of bits in the netmask (return for 24):
Please input the gateway (return for 127.0.0.1): 10.0.0.1

Port Configuration—Circuit Emulation

You are required to have administrative privileges to modify a port configuration using the CLI. The port must be disabled and will not pass data when you configure it with the CLI. The port is not disabled when you configure it with CTPView, and the configured changes will not take effect until you select the **Submit Changes** button, at which time there will be a momentary interruption in the data flow.

Figure 26 provides a summary of the configuration options available from the Port Operations menu for a circuit emulation port. Figure 27 on page 34 shows the configuration menu provided by CTPView when you select the configuration option in the left pane of the window. Note that when using CTPView, you must be connected to the remote CTP system through the Connection area in the upper left pane. At the bottom of the window you select the port range that is displayed.
Figure 26: Configuration Options Available from the CLI Config Menu

- Exit to Shell
- Port Operations
 - Query
 - Config
 - Activate
 - Disable
 - Delete
 - Re-Center
 - Advanced
- Node Synchronization
 - Remote Port
 - Packet Size
 - Clocking Config
 - Interface
 - Min Buffer
 - Pkt Buffer Set
 - Maximum Buffer
 - Service Type
 - Time To Live
- Node Summary
- Node Diagnostic
- Node Operations
 - Advanced Options

- vv. www. xxx. yyy.Pz
- 32 – 1460 Bytes
- EIA-530, EIA-530A, RS-232, V.35, Optional, Diphasic, Isochronous, Off
- .001 – 9999 mSec
- .001 – 999 mSec
- .001 – 999 mSec
- 0 – 255
- RL / RTS / DTR / LL
- DSR / CTS / DCD / TM
- Advanced Submenus
When using the CLI, you configure ports by selecting the Config option from the Port Operations submenu to obtain the configuration menu shown in Figure 28. The valid port numbers for different CTP products are as follows:

- CTP1002: P0 and P1
- CTP1004: P0, P1, P2, P3
- CTP1012: P0 through P11
- CTP2008: P0 through P7
- CTP2024: P0 through P23
- CTP2056: P0 through P55

Figure 28: Selecting Port Configuration—CLI

Please select a number from the following list:

- 0) Back to Previous Menu
- 1) Port descriptor text: \{user text\}
- 3) Interface: \{Submenu - Type, Mode, Encoding\}
- 4) Packet Size: \{32 - 1456 bytes\}
- 5) Clock Config: \{Submenu - Rate and Config\}
6) Min Buffer (ms): \{0.001 - 9999.000\}
7) Pkt Buffer Set (ms): \{0.001 - 9999.000\}
8) Max Buffer (ms): \{0.001 - 9999.000\}
9) Service Type: \{0 - 255\}
10) Time to Live: \{0 - 255\}
11) Signaling In Config: | RL = --- | RTS= --- | DTR=--- | LL = ---|
12) Signaling Out Config: | DSR= --- | CTS= --- | DCD= --- | TM =--- |
13) Advanced Options...

------------ Your choice []:

Port Descriptor Text

You can enter a user description of the port. The description is limited to 32 alphanumeric or “-” characters. The port and circuit will function properly regardless of whether a description is entered. The description will be displayed during query and operational commands (described in Chapter 4, Software Queries and Operations).

Configuring the Port Descriptor with the CLI

The current description is shown in the CLI menu. You configure the port description by selecting Option 1 from the Port Configuration menu shown in Figure 28 on page 34. To delete the current description, enter no description. Then, when prompted, confirm that the description is to be deleted.

Configuring the Port Descriptor with CTPView

You configure the description by entering the text into the Port Descriptor field Figure 29 on page 36. The current description is shown above the fields. No description has been entered when (empty) is displayed.
Remote Port

The Remote Port parameter specifies the CTP port where data from the configured port is to be sent and received (thus establishing a circuit across the IP network). As of Release 4.2, the port being configured and the remote port can be on the same CTP system (referred to as a “hairpin” circuit). As of Release 4.3, you can specify an IPv4 or IPv6 address.

Configuring the Remote Port with the CLI

You configure the remote port by specifying the CTP IP address and the physical port to be used on that remote system as shown in Figure 30. The IP address is specified by its 4 octets, and the port is specified by its physical port number, which is in the range 0–55 depending on the type of CTP system.

Figure 30: Specifying the Remote Port—CLI

0) Back to Previous Menu
1) Port descriptor text: {user text}
2) Remote Port: {vvv.www.xxx.yyy:Pz}
3) Interface: {Submenu - Type, Mode, Encoding}
4) Packet Size: {32 – 1456 bytes}
5) Clock Config: {Submenu - Rate and Config}

6) Min Buffer (ms): {0.001 - 9999.000}

7) Pkt Buffer Set (ms): {0.001 - 9999.000}

8) Max Buffer (ms): {0.001 - 9999.000}

9) Service Type: {0 - 255}

10) Time to Live: {0 - 255}

11) Signaling In Config: | RL = --- | RTS= --- | DTR=--- | LL = ---|

12) Signaling Out Config: | DSR= --- | CTS= --- | DCD= --- | TM =--- |

13) Advanced Options...

--------- Your choice [3]: 2

Example of entering an IPV6 Remote Port Address:
Is remote node a IPv6 node? y[n]: y
Enter remote node IP address: (rtn for ::)? ::COA8:2
Enter remote port number (0-55)[1]:

Example of entering an IPV4 Remote Port Address:
Is remote node a IPv6 node? y[n]: n
Enter remote node IP address (rtn for 10.0.0.0)? 172.25.83.54
Enter remote port number (0-55)[1]: 1

Configuring the Remote Port with CTPView

You are provided with a series of drop-down menus, which allow you to select the group name, CTP name, and port number of a remote CTP system (Figure 31). The Group and CTP names are configured on CTPView when an administrator adds the CTP system to CTPView (see Chapter 5, Security Profile Menu).

Figure 31: CTPView Remote Port Drop-Down Menu
Interface Type

You can configure the interface attributes, including the interface type and the serial encoding. The standard interface types are RS-232, V.35, EIA530, and EIA530A. 4WTO analog voice, T1/E1, and fractional T1/E1 interface types are available when you order the optional hardware and install it on the CTP interface module. The optional interfaces are software configurable, and the system automatically detects when the necessary hardware is installed.

4WTO Voice Interface

Additional parameters associated with the 4WTO voice interface include the following:

- **Dual Channel**—Each CTP port with the optional voice daughter card is capable of supporting either one or two voice channels. For one channel, disable the parameter. For two channels, enable the parameter.

- **Enabled Channel**—If Dual Channel is disabled, then use this parameter to select which channel is enabled. The parameter is not available (N/A) if the Dual Channel parameter is enabled.

- **Input level**—The input level can be adjusted to a value between 0 and 255. The value of 25 is the default and is the unity value (no attenuation or gain). Setting the value to 0 attenuates the signal 33% (1.8 dB). Setting the value to 255 amplifies the signal 400% (6 dB). Intermediate values are derived with linear interpolation. The actual gain depends on the impedance of the attached device.

- **Output level**—The output level can be adjusted to a value between 0 and 255. The value of 25 is the default and is the unity value (no attenuation or gain). Setting the value to 0 attenuates the signal 33% (1.8 dB). Setting the value to 255 amplifies the signal 400% (6 dB). Intermediate values are derived with linear interpolation. The actual gain depends on the impedance of the attached device.

- **Talk Squelch**—This parameter allows the active squelch circuit to be enabled or disabled.

T1/E1 Interface

Additional parameters are associated with the optional T1/E1 interface. When the T1 interface is configured, then you can configure the encoding for either B8ZS or AMI. When the E1 interface is configured, then you can configure the termination to work with either Coax or RJ-48.

Fractional T1/E1 Interface

Fractional T1/E1 transports the first n DS0 channels across the IP network, where n is configurable. There are slight differences depending on whether the fractional support is for T1 or E1. Fractional T1 supports only ESF framing. CRC generation/checking is not supported in either.

For fractional T1, this implementation can also transport the framing bits across the IP network in addition to the DS0s. Transport of the framing bits is configurable, and the default configuration transports the framing.
For ESF framing, the frame synchronization, data link, and CRC framing bits are passed across the IP network untouched. When the framing bits are not transported across the IP network, the regenerated T1 stream at the far end most likely will not have the same data alignment within the nonidle DS0s. In addition, the CRC and data link framing bits are set to 0 in the regenerated T1 stream.

For fractional E1, the framing is contained in the first DS0. This DS0 is always transported unaltered in this implementation. In addition, CAS support is optional. When CAS support is enabled, the sixteenth DS0 is transported. DS0s that are not transported across the IP network must be idle if CRC checking is enabled by the customer equipment.

There is no internal BERT support for fractional T1/E1 circuits. Fractional T1 circuit emulation supports only T1 circuits with ESF framing. CTPOS 4.4 does not support CRC generation. Fractional T1/E1 circuit transport can be run only on ports 0 and 1 on CTP-1000 series products.

NOTE: Both endpoints must be configured with the same fractional T1/E1 options. If not, the port runtime state will go to MisCFG as a result of the endpoint clocking check.

Configuring the Interface Type with the CLI

The interface type is a configuration option available from the Interface submenu. The configurable interfaces, including the Optional T1/E1 or 4WTO, are provided when you select Option 1 from the submenu (Figure 32). The display shows the current configured interface type in parentheses.

Figure 32: Selecting the Interface Type—CLI

Please select a number from the following list:

0) Back to Previous Menu
1) Type: {EIA530, EIA530A, RS-232, V.35, Optional: Voice 4W/TO or T1/E1, OFF}
2) Mode: {DCE, DTE, N/A}
3) Encoding: {NRZ, ISOCH, CDI, TRANS, N/A}

------------ Your choice [1]: 1

Please select a number from the following list:

0) OFF
1) EIA-530
2) EIA-530A
3) RS-232
4) V.35
5) Optional Interface: Voice 4W/TO

------------ Your choice [5]: 5

Selecting the 4WTO will bring up additional channel options that you can configure. The submenu for configuring the optional 4WTO interface is shown in Figure 33.

NOTE: Selecting the optional voice interface results in the clock rate and clocking configuration being set automatically.
Figure 33: 4WTO Analog Voice Submenu

Please select a number from the following list:

0) Back to Previous Menu
1) Dual Channel: {Enable, Disabled}
2) Enabled Channel: {Chan 0, Chan 1, N/A}
3) Input level: {0 – 255}
4) Output level: {0 – 255}
5) Talk Squelch: {Enable, Disable Active Squelch}

------------- Your choice [0]:

Selecting the optional T1/E1 interface will bring up additional channel options that you can configure. When you configure the type for T1, then you have an option to set the encoding for B8ZS or AMI (Figure 34).

CTP Release 4.3 introduced support for Structure-Agnostic Time Division Multiplexing (TDM) over Packet (SAToP) circuit emulation. This is an implementation of the IETF’s PWE3 working group Structure Agnostic TDM over Packet RFC 4553. By default, standard CTP circuit emulation techniques are used. Setting Option 3 to Yes enables standards-compliant circuit emulation.

The default packet size for SAToP encapsulation is 192. The remote port (for example, P1) is not used to identify the circuit endpoints. The source UDP port is used as the circuit identifier; you must configure both circuit endpoints to use the same UDP port. The UDP port must be unique on the CTP system. You will not be able to activate a port if another port is using the same source UDP port number.

Figure 34: Configuring a T1 Interface and Options—CLI

Please select a number from the following list:

0) Back to Previous Menu
1) Type: T1
2) Option: B8Z
3) SAToP: No

Example of Configuring the Encoding:

------------- Your choice [2]: 2

Please select a number from the following list:

0) B8ZS
1) AMI

------------- Your choice [0]:

Example of Configuring the SAToP

------------- Your choice [2]: 3

Please select a number from the following list:

0) Back to Previous Menu
1) Type: T1
2) Option: B8ZS
3) SAToP: No

------------- Your choice [1]: 3

Enable SAToP for T1 using UDP for transport? y[n]: y

Enter source UDP port: (1-65535)[6000]: 2142
When you configure the type for E1, then you have the option to select the impedance for a Coax or an RJ-48 termination (Figure 35).

Figure 35: Configuring an E1 Interface and Options—CLI

![CLI](intel_52 10/09/06 21:34:49 GMT) | Voice T1E1 Config Menu for Port 0

Please select a number from the following list:

0) Back to Previous Menu
1) Type: E1
2) Option: RJ48
3) SAToP: No

----------- Your choice [1]: 2

Please select a number from the following list:

0) RJ48
1) COAX

----------- Your choice [0]:

Figure 36 is an example of configuring a fractional T1 interface.

Figure 36: Configuring a Fractional T1/E1 Interface and Options—CLI

![CLI](ctp23 6/13/07 21:34:49 GMT) | Voice T1E1 Config Menu for Port 1

Please select a number from the following list:

0) Back to Previous Menu
1) Type: T1
2) Option: B8ZS
3) SAToP: No

----------- Your choice [1]: 2

Then enable fractional T1 or fractional E1 support:

Please select a number from the following list:

0) T1
1) E1
2) Fractional T1
3) Fractional E1

----------- Your choice [0]: 2

Fractional T1 interface:

![CLI](ctp23 6/13/07 21:34:49 GMT) | Voice T1E1 Config Menu for Port 1

Please select a number from the following list:

0) Back to Previous Menu
1) Type: Fractional T1
2) Option: B8ZS
3) SAToP: No
4) Fractional Channels: 12
5) Fractional Frame Transport: Frame Transport

------------------ Your choice [1]:

Fractional E1 interface:

(cpt23 6/13/07 21:34:49 GMT) | Voice T1E1 Config Menu for Port 1

Please select a number from the following list:

0) Back to Previous Menu
1) Type: Fractional E1
2) Option: RJ48
3) SAToP: No
4) Fractional channels: 12
5) CAS support: No CAS Support

------------------ Your choice [1]:

Configuring the Interface Type with CTPView

An Interface Type drop-down menu allows you to configure the interface type as shown in Figure 37. The T1/E1 or 4WTO interface supported by optional hardware is displayed when the necessary hardware is installed. The current interface type is shown above the drop-down menu. Figure 38 shows the additional channel options when the 4WTO is selected.

Figure 37: CTPView Interface Type Drop-Down Menu
Interface Mode

Configuring the interface mode is available in CTP Release 4.3. The interface configuration menus (Figure 39 and Figure 40) allow the interface to be configured for connection to a data communication equipment (DCE) device or to a data terminal equipment (DTE) device.

Figure 39: Configuring the Interface Mode—CLI

===
(nova_54 01/19/07 19:36:14 GMT) | Interface Config Menu for Port 1
===
Please select a number from the following list:

0) Back to Previous Menu
1) Type: EIA-530
2) Mode: DCE
3) Encoding: NRZ
------------ Your choice [1]: 2

Please select a number from the following list:

0) DCE
1) DTE
------------ Your choice [0]: 1
Interface Encoding

NRZ is the standard encoding used with the EIA530, V.35, and RS-232 interface types. Note that the encoding options for the T1 interface are B8ZS and AMI; however, these options are configured when the interface type selected is T1. The Interface Encoding is displayed as N/A when the 4WTO, T1, or E1 is configured.

Conditioned diphase, isochronous, and transparent are special encoding schemes. Conditioned diphase encoding recovers and embeds the clock in the data signal. Isochronous encoding does not provide or embed the clock in the data. Asynchronous applications are supported when you configure the encoding to isochronous. The maximum data rate for isochronous and conditioned diphase encoding is 1.024 Mbps.

NOTE: Transparent encoding, described below, is for unique and nonstandard applications. The encoding scheme can be supported only when you have worked with the Juniper Networks Technical Assistance Center (JTAC) to verify that the application requires this encoding scheme. Special adapters may be required on the cable to properly map the data and clock signals to the connector pins used by the application.
Transparent mode is for unique applications, requiring that the data and clock signals be sampled at one end and replicated at the far end. These applications often have clocks that disappear periodically during the circuit operation. The circuit rate should be 32 Kbps or less.

Transparent encoding samples incoming data on four port input leads, transports these signals across the IP network to the remote port, and sends out the signals on four output leads. The signal sampling rate is based on the configured rate of the port. For example, if the port is configured for 128 Kbps, then the four signals are sampled at 128KHz, which will generate a packet flow through the IP network of 512 Kbps (4 x 128 KHz.). The smallest sampling rate available is 5.3 µsec (approximately 192 KHz). To prevent errors, both ends of the transparent circuit must be synchronized with each other. You can achieve synchronization either by locking each CTP node to a common reference or by enabling adaptive clocking on one end of the circuit. The following is the mapping between the input and output signals:

- Pin 2 --------> Pin 3
- Pin 24 -------> Pin 17
- Pin 4 --------> Pin 5
- Pin 20 -------> Pin 6
- Pin 3 --------> Pin 2
- Pin 17 -------> Pin 24
- Pin 5 --------> Pin 4
- Pin 20 -------> Pin 6

Transparent encoding provides the option by means of a phase correction FIFO buffer. This FIFO buffer will correct the clock/data phase relationship in which the clock travels in one direction through the network and the data returns in the other direction. The correction is made on the RD output (pin 3) based on the clock input provided on Pin 4. Figure 41 shows the data flows and FIFO when transparent encoding is used.

Figure 41: Transparent (TRANS) Encoding Signal Flow

![Transparent Encoding Signal Flow Diagram](image)

Configuring Encoding with the CLI

The Encoding options are provided in the interface submenu (Figure 42). The menu displays the currently configured encoding. The encoding options available depend on the interface type selected. The encoding option is N/A (not available) when the 4WTO interface type is selected.
Figure 42: Encoding Submenu

Please select a number from the following list:
--
0) Back to Previous Menu
1) Type: {EIA530, EIA530A, RS-232, V.35, T1, E1, Optional, OFF}
2) Mode: {DCE, DTE, N/A}
3) Encoding: {NRZ, ISOCH, CDI, TRANS, N/A}
------------ Your choice [1]: 3

Please select a number from the following list:

0) NRZ
1) ISOCH
2) CDI
3) MSTAR
4) TRANS
------------ Your choice [2]: 1

Configuring Encoding with CTPView

CTPView shows the currently configured encoding and allows you to configure the encoding using a drop-down menu. CTPView automatically displays the available encoding based on the interface selected. Figure 43 provides an example of configuring the encoding with CTPView.
Packet Size

The Packet Size parameter specifies the IP packet size that will be created from data received at the serial port. Packet size ranges from 32 to 1456 bytes and must be a multiple of 16 bytes. The local and remote port packet size can be set to different values, except when adaptive clocking is configured.

The packet rate is calculated based on the packet size and serial interface rate, and the rate is limited to less than 1200 packets per second. You are prompted to change the rate or packet size if the packet rate exceeds this limit.

Determining Optimal Packet Size

Determining the optimal packet size for a particular application involves several important considerations, including:

- Performance limitations (if any) of the IP network
- Bandwidth for transporting serial data
- Packet creation delay

The most significant considerations are the serialization (packet creation) delay and the bandwidth required to transport the serial data.
IP Network Performance

The number of packets created (packet rate) is inversely related to the packet size configured. For example, smaller packets result in a greater packet rate. When you configure the Packet Size parameter, consider the packet-forwarding performance of the attached router and network. Table 8 provides examples of packet rates for various packet sizes and serial interface rates. The CTP system limits the packet rate per interface to 1200 pps and will prompt you if the configuration exceeds this limit.

Table 8: Packet Rate for Various Packet Size and Serial Interface Rate Settings

<table>
<thead>
<tr>
<th>Interface Rate (Kbps)</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>768</th>
<th>1024</th>
<th>1400</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>62.5</td>
<td>31.3</td>
<td>15.6</td>
<td>10.4</td>
<td>7.8</td>
<td>5.7</td>
</tr>
<tr>
<td>128</td>
<td>125.0</td>
<td>62.5</td>
<td>31.3</td>
<td>20.8</td>
<td>15.6</td>
<td>11.4</td>
</tr>
<tr>
<td>256</td>
<td>250.0</td>
<td>125.0</td>
<td>62.5</td>
<td>41.7</td>
<td>31.3</td>
<td>22.9</td>
</tr>
<tr>
<td>1024</td>
<td>1000.0</td>
<td>500.0</td>
<td>250.0</td>
<td>166.7</td>
<td>125.0</td>
<td>91.4</td>
</tr>
<tr>
<td>1544</td>
<td>1507.8</td>
<td>753.9</td>
<td>377.0</td>
<td>251.3</td>
<td>188.5</td>
<td>137.9</td>
</tr>
<tr>
<td>2048</td>
<td>2000.0</td>
<td>1000.0</td>
<td>500.0</td>
<td>333.3</td>
<td>250.0</td>
<td>182.9</td>
</tr>
</tbody>
</table>

Bandwidth for Transporting Serial Data

It is necessary to add overhead for both the layer 2 encapsulation and the IP header in order to transport packets of data across the IP network. The IP header comprises 20 bytes; and the encapsulation overhead varies based on the method used, but is typically either 6 or 8 bytes on serial links. As a result of this overhead, smaller packets are less efficient and result in the serial data requiring more IP bandwidth. The amount of bandwidth required on the IP network for a serial bit stream may be calculated as follows:

\[
\text{IP Bandwidth} = [\text{Packet Size (bytes)} + 20 \text{ (bytes)} + 2 \text{ (bytes)} + \text{Encapsulation Overhead (bytes)} \times [\text{Packet Rate (pps)}] \times 8
\]

Packet Serialization Delay

Serial data received at the CTP interface must be buffered long enough to allow a packet to be created for transmission across the IP network. The delay to create the packet will increase as either the size of the packet increases or as the rate of the serial interface decreases. Generally, this delay is minimal except when the rate of the serial interface is low and the packet size is large. We recommend that the Packet Size parameter be set to a smaller value when the serial interface operates at lower speeds. Table 9 provides examples of serial interface packet creation delay in milliseconds.
Chapter 3: Software Configuration

Configuring Packet Size with the CLI
You configure packet size by selecting Option 4 from the Port Configuration menu (Figure 44). The currently configured packet size is the default value.

Figure 44: Specifying the Packet Size—CLI
Local CTP Configuration Menu for port 0
Please select a number from the following list:
0) Back to Previous Menu
1) Port descriptor text: {user text}
2) Remote Port: {vvv.www.xxx.yyy:Pz}
3) Interface: {Submenu - Type, Mode, Encoding}
4) Packet Size: {32 - 1456 1Bytes}
5) Clock Config: {Submenu - Rate and Config}
6) Min Buffer (ms): {0.001 - 9999.000}
7) Pkt Buffer Set (ms): {0.001 - 9999.000}
8) Max Buffer (ms): {0.001 - 9999.000}
9) Service Type: {0 - 255}
10) Time to Live: {0 - 255}
11) Signaling In Config: | RL = --- | RTS= --- | DTR=--- | LL = ---|
12) Signaling Out Config: | DSR= --- | CTS= --- | DCD= --- | TM =--- |
13) Advanced Options...
------------ Your choice [3]: 4

Enter packet size in bytes (32-1456)[1024]: {Input Value}

Configuring Packet Size with CTPView
Enter the packet size into the Packet Size field. The value displayed above the window is the value currently configured on the CTP port.

Table 9: Serial Interface Packet Creation Delay

<table>
<thead>
<tr>
<th>Serial Interface Delay (msec)</th>
<th>Packet Size (bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Rate (Kbps)</td>
<td>128</td>
</tr>
<tr>
<td>64</td>
<td>16.0</td>
</tr>
<tr>
<td>128</td>
<td>8.0</td>
</tr>
<tr>
<td>256</td>
<td>4.0</td>
</tr>
<tr>
<td>1024</td>
<td>1.0</td>
</tr>
<tr>
<td>1544</td>
<td>0.7</td>
</tr>
<tr>
<td>2048</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Clock Configuration

The following is a summary of clocking options with a data interface and NRZ encoding:

- Configured Rate w/o External Tx Clock (TT)—The CTP system expects that the transmit data from the attached DTE will be at the rate specified in the configuration and that the transmit data from the DTE will be sampled at the CTP based on the transmit timing (TT) provided by the CTP system.

- Configured Rate w/ External Tx Clock (TT)—The CTP system expects that the transmit data from the attached DTE will be at the rate specified in the configuration and that the data will be sampled based on the external timing provided by the attached DTE. This option is a common configuration for long cables or high data rates because clock and data signals will travel the same cable length from the DTE and the CTP will sample the data based on the TT input.

- All Clocked w/ External TX Clock (TT)—The clock received from the attached device is received on the external TT clock input and is used for all interface clocks. This option includes transmit and receiving timing and the clock used to clock data out of the receive FIFO buffer toward the IP network.
Adaptive Rate w/o External Tx Clock (TT)—The CTP system generates the transmit and receive timing based on the clock of the distant CTP system using Advanced Time Domain Processing (ATDP) adaptive clocking. This option allows the clock to rapidly adjust, or adapt, to the remote clock. The circuit will run continuously without buffer overruns or underruns, even when no reference clock is provided to the CTP1004.

Autobaud Rate w/ External TX Clock (TT)—The CTP system calculates the transmit data rate of the attached DTE by processing the external timing (TT) from the DTE. Autobaud will be supported in a future release.

The custom clocking options are described in Custom Clock Options—CLI on page 55.

The following are the clocking options when the configured Interface Type is T1 or E1:

- The CTP system is clock source. In this configuration, the PBX is returning the clock received from the CTP, or it is returning a clock that is traceable to the same source as the CTP node clock reference. You typically use this configuration when you configure the CTP system with a clock reference input.

- The CTP system is loop timed. In this configuration, the PBX is providing the clock and the CTP is returning the same clock to the PBX. You typically use this configuration when the PBX has the more accurate clock source. You can configure the far end of the circuit with adaptive clocking to recover this clock if necessary.

- The CTP system is clock source (adaptive). In this configuration, the PBX returns the clock received from the CTP, and the CTP uses the adaptive recovered clock. You typically use this configuration when the CTP does not have a reference input and the PBX typically requires clock from the distant PBX.

The custom clocking options are described in Custom Clock Options—CLI on page 55.

NOTE: The clock configuration is automatically configured when isochronous, conditioned diphase, or transparent encoding is configured. The user should not change the clock configuration when these encoding options have been selected.

Adaptive Clocking Options

There are configurable attributes that affect the Adaptive Clocking algorithm. The attributes are configured only when the clocking configuration specifies adaptive. The default settings are acceptable for the majority of applications. Consider using the assistance of JTAC before changing these parameters since they affect how the clocking and circuit functions. The parameters are as follows:

- AGGR Seconds/Calc—The default is 20. The valid range is 2–60. Sets the time period during initial start of adaptive clocking for identifying packet samples experiencing the least delay through the network. Samples are used in aggressive state calculations.
- MNTN Seconds/Calc—The default is 45. The valid range is 1–60. Sets the time period during normal adaptive clocking for identifying packets experiencing the least delay through the network. Samples are used in maintenance state calculations.

- Slope for MNTN in ppm—The default is 5. The valid range is 1–10. Sets the value for changing that adaptive clocking algorithm from aggressive to maintenance state. Lower values result in longer switchover times with a clock value closer to the distant clock.

- Maintenance Decay in calc on—The default is 3. The valid range is 2–10. Sets how quickly the clocking corrects to buffer set point in maintenance state.

- Max Clock Adjust in ppb—The default is 200. The valid range is 1–1000. Constrains the frequency adjustments to the adaptive clock. This parameter has the effect of capping the frequency acceleration.

- Max Clock Offset in ppm—The default is 200. The valid range is 1–400. Constrains the frequency of the adaptive clock. This parameter has the effect of capping the frequency velocity.

- Max Buffer Error in µsec—The default is 2000. The valid range is 100–5000. Sets the buffer error required to change the adaptive clocking algorithm state from maintenance to aggressive.

Custom Clocking Options

Custom clocking gives you flexibility in the configuration to provide services such as asymmetric rates. This section provides an overview of the port clocking subsystem and how the custom clocking options can be used.

NOTE: With the flexibility of custom clocking comes the opportunity to misconfigure the port so that it will not operate according to expectations. Use caution when configuring custom clocking.

Figure 46 on page 53 shows a CTP port with every clock option and a simplified data path (loops and BERT testers are not included). Items in red are configurable parameters specific to port clocking. The major blocks on the diagram are:

- OSC: node clock oscillator—There is one central clock oscillator for every node, and it runs at a nominal rate of 32.768 MHz. This oscillator is part of a phase-locked loop (PLL), which can be locked to the incoming clock on a CTP port or the external reference input.

- DDS: direct digital synthesizer —This is a type of clock generator that is capable of synthesizing a clock at nearly any desired rate. The range of clock output is 1 Hz–12.288 MHz in increments of 1/128 Hz. Because the node OSC provides the reference clock to the DDS, the DDS output will be as accurate at the OSC. The DDS rate is configured in the port clock menu.

- DIV—This is a programmable divider that can divide a clock by an even number between 2 and 16384, inclusive. It may accept as its input clock either the OSC (32.768 MHz) or DDS output clock.
- **Packet engine**—This block is responsible for conversion of a constant stream of serial data to IP packets and vice versa. In the network-bound direction, incoming serial data is partitioned into packets of data (according to the packet size configured in the Port Configuration menu) and sent into the IP network toward a remote port. In the reverse (interface-bound) direction, IP packets are received from the IP network, stripped of their IP headers, reordered to accommodate packet delay, buffered to accommodate packet delay jitter, and transmitted to the serial interface as a constant stream of data.

- **Rx FIFO memory**—First-in first-out (FIFO) memory is used to accommodate small amounts of jitter and/or phase shift in the data because of the use of different clocks in the network-bound path (that is, TT [user] clock) or to accommodate the transmit data and transmit clock phase shift experienced on longer cables at higher data rates.

Figure 46: Custom Clocking Configuration Options

The standard port timing options described in the previous section are used in most network applications. Based on the option that you select, the settings for the multiplexers and clocking elements on the clock diagram are configured automatically. When you select Custom from the Clock Options menu, the Advanced Clock menu (Figure 48 on page 55) is presented, allowing you to configure the clocking elements.
Configuring Port Clocking with the CLI

The Clock Config submenu is available when you select Option 5 from the Port Configuration menu. The menu shown in Figure 47 allows you to set the serial interface rate and select port clocking options. You do not need to configure port speed and clocking when you select the optional analog 4WTO interface. Selecting this interface causes the port speed and clocking to be automatically configured.

Figure 47: Port Clock Configuration Menu—CLI

Port Clock Configuration Menu 0
Please select a number from the following list:

0) Back to Previous Menu
1) Port Clock Config: Configured Rate, NO Ext Tx Clk (TT)
2) Port Speed (KHz): 1024.000000
3) Send User Clock thru Network: NO

----------- Your choice [2]: 1

Clock Options Menu for Port 0 (DCE Mode)
Please select a number from the following list:

0) Back to Previous Menu
1) Configured Rate w/o External Tx Clock (TT)
2) Configured Rate w/ External Tx Clock (TT)
3) All Clocked w/ External Tx Clock (TT)
4) Adaptive Rate w/o External Tx Clock (TT)
5) Autobaud Rate w/ External Tx Clock (TT)
6) Custom...
7) Set Adaptive Parameters...

----------- Your choice [0]:

Clock Options Menu for Port 1 (DTE Mode)
Please select a number from the following list:

0) Back to Previous Menu
1)
2)
3)
4)
5)
6) DTE, All Clocked by Ext Clk (ST/RT)
8) Custom...
9) Set Adaptive Parameters...

----------- Your choice [0]:
The custom clocking and adaptive parameters are available by when you select Options 6 and 7, respectively, from the Clock Options menu. Figure 48 shows the Custom Clocking menu (Advanced Clock Options).

Figure 48: Custom Clock Options—CLI

```
Advanced Clock Options for Port 0
Please select a number from the following list:

0) Back to Previous Menu
1) DDS Synthesizer Source: User (OI)
2) DIV (clk divider) Source: Oscillator
3) DIV (clk divider) Value: 16384
4) ST (net bound i/F) clk sel: DDS (synth)
5) RF (net bound fifo) clk sel: DDS (synth)
6) RX (net bound scc) clk sel: DDS (synth)
7) RT (i/F bound i/F) clk sel: DDS (synth)
8) TX (i/F bound scc) clk sel: DDS (synth)

------------ Your choice [0]:
```

The clocking options menu shown in Figure 49 is provided when the interface type is T1 or E1.

Figure 49: Port Clock Configuration (T1/E1)—CLI

```
Port Clock Configuration Menu 0
Please select a number from the following list:

0) Back to Previous Menu
1) Port Clock Config: ....
2) Port Speed (KHz): 1544.000000

------------ Your choice [2]: 1
```

Clock Options Menu for Port 0
```
Please select a number from the following list:

0) Back to Previous Menu
1) ..... 
2) CTP is Clock Source
3) CTP is Loop Timed
4) ..... 
5) PBX is Clock Source (Adaptive End)
6) ..... 
7) Custom...
8) Set Adaptive Parameters...

------------ Your choice [0]:
```
Example of an Asymmetric Configuration with the CLI

The following is a description of an asymmetric circuit configuration with custom clocking. Assume that you want the network-bound direction (toward the remote DTE) to operate at 2.048 MHz and the interface-bound data (toward the local DTE) to operate at 64 KHz. You first configure the DDS for 2048.0 KHz; set the DIV source to DDS; and set the DIV value to 32 (because 2048/32 = 64). Set the network-bound multiplexers (Options 4, 5, and 6) for DDS, which sets the network-bound data rate to 2.048 Mbps. Set the interface-bound multiplexers (Options 7 and 8) for DIV, which sets the interface-bound data rate to 64 Kbps.

If the cable length of this port is long, it might be desirable to switch multiplexer 4 from DDS to TT, and have the DTE equipment loop the ST clock back to TT so that it travels in phase with the network-bound user data. Figure 50 shows an example of the above configuration.

At the remote CTP asymmetric port, the DDS and DIV settings would be identical, but the clock multiplexer selections would be configured appropriately for the speed of that data direction.

Figure 50: Example of Asymmetric Configuration

Advanced Clock Options for Port 0

Please select a number from the following list:

0) Back to Previous Menu
1) DDS Synthesizer Source: User (OI)
2) DIV (clk divider) Source: DDS Output
3) DIV (clk divider) Value: 32
4) ST (net bound i/f) clk sel: DDS (synth)
5) RF (net bound fifo) clk sel: DDS (synth)
6) RX (net bound scc) clk sel: DDS (synth)
7) RT (i/f bound i/f) clk sel: DIV (synth)
8) TX (i/f bound scc) clk sel: DIV (synth)

--- Your choice [6]:

Configuring Port Clocking with CTPView

CTPView provides a drop-down menu of clocking options based on the interface type. Figure 51 on page 57 shows the drop-down menu when a data interface type is specified with NRZ serial encoding. Figure 52 on page 58 shows the options available when an interface is in DTE mode. The clocking options specified are different when the T1/E1 interface type is specified, as shown in Figure 53 on page 59. Selecting custom and adaptive clocking displays the additional parameters that you can configure. Figure 54 on page 59 shows a custom clocking example.
Figure 51: CTPView Clock Configuration Drop-Down Menu
Figure 52: CTPView DTE Clock Configuration Drop-Down Menu

![CTPView DTE Clock Configuration Drop-Down Menu](https://i.imgur.com/CTPViewDTEClockMenu.png)

<table>
<thead>
<tr>
<th>Clock Options</th>
<th>Drop Down Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock Rates</td>
<td></td>
</tr>
<tr>
<td>Automatic Cnfg</td>
<td></td>
</tr>
<tr>
<td>User Cnfg</td>
<td></td>
</tr>
<tr>
<td>System Cnfg</td>
<td></td>
</tr>
<tr>
<td>Node Cnfg</td>
<td></td>
</tr>
<tr>
<td>Statistics</td>
<td></td>
</tr>
<tr>
<td>Network</td>
<td></td>
</tr>
<tr>
<td>Flash</td>
<td></td>
</tr>
<tr>
<td>Server</td>
<td></td>
</tr>
</tbody>
</table>

- **Clock Rates**: Options for selecting clock rates.
- **Automatic Cnfg**: Automatic configuration options.
- **User Cnfg**: Customization options for users.
- **System Cnfg**: System configuration options.
- **Node Cnfg**: Node-specific configuration options.
- **Statistics**: Statistics-related options.
- **Network**: Network-related options.
- **Flash**: Flash management options.
- **Server**: Server configuration options.

Port Configuration

<table>
<thead>
<tr>
<th>Port Status</th>
<th>Port Config</th>
<th>Link A</th>
<th>Link B</th>
<th>Link C</th>
<th>Link D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Remote Port:
- **Port Configuration**: Details for each port are shown in the table.
- **CTPView DTE Clock Configuration**: Options available through the drop-down menu.

Port Description

- **Remote Port**: Details such as clock rates and configuration options are visible.

Figure 52 illustrates the CTPView DTE Clock Configuration Drop-Down Menu, providing users with various clock rate options and automatic configuration settings. This menu is crucial for configuring and maintaining the port status and link configuration in CTPView, ensuring optimal performance and reliability for Circuit Emulation services.
Chapter 3: Software Configuration

Figure 53: CTPView T1 and E1 Clocking Drop-Down Menu

Figure 54: CTPView Custom Clocking Drop-Down Menus and Input Fields
Port Speed

The port speed is specified in Kbps ranging from 0.001000 to 12288.000000; however, the CTP1002 is limited to a port speed of 2048.000000. The aggregate port rate (sum of the rates of all ports) of the CTP1012 cannot exceed 49.152 Mbps, and the aggregate port rate of the CTP2008, CTP2024, and CTP2056 cannot exceed 114.688 Mbps. The clock rate of ports using either conditioned diphase and isochronous encoding is limited to 1024 Kbps.

The CTP system is capable of accurately synthesizing frequencies with a granularity of 0.0078125 Hz or less. If the selected frequency cannot be synthesized, the CTP system calculates the closest available rate within 0.0078125 Hz and allows you the option of using the calculated frequency.

Configuring the Port Speed with the CLI

You configure the port speed by selecting Option 2 from the Port Clock Configuration submenu (Figure 55).

Figure 55: Specifying Port Speed—CLI

```plaintext
Port Clock Configuration Menu 0
Please select a number from the following list:
0) Back to Previous Menu
1) Port Clock Config: Configured Rate, NO Ext Tx Clock (TT)
2) Port Speed (KHz): 1024.000000
3) Send User Clock thru Network: NO
------- Your choice [1]: 2

Enter Synthesized port rate (kHz)
(0.001000 - 12288.000000)[1024.000000]:
```

Configuring the Port Speed with CTPView

You configure the port speed by specifying the rate in the Synthesized Port Rate field (Figure 56).
Buffer Settings

Packets received from the IP network must be buffered to accommodate variances in the packet arrival rates (referred to as delay variance or delay jitter) and the resequencing of out-of-order IP packets. Making the buffer larger ensures that greater amounts of delay variance may be accommodated; however, it also increases the overall delay encountered by the serial data. We recommend that you set the buffer as small as possible without introducing unacceptable error rates and port starvation restarts due to missed packets caused by delay jitter. You can use the query commands and CTPView Runtime Query and Jitter graphs, as detailed in Chapter 4, Software Queries and Operations, to determine how well the serial circuit is performing, and you can make adjustments to the buffering based on actual performance.

The default settings are acceptable for local IP-switched connections, but are normally increased for routed IP connections.

NOTE: Set the buffer parameters based on the expected packet delay variance (jitter). Do not set them based on the overall packet delay through the network. For example, if a CTP circuit transits a satellite circuit with 260 msec of delay and the packets experience 20 msec of jitter, then you would configure the Packet Buffer Set parameter to a value slightly greater than 20 msec (such as 30 msec).
Minimum Buffer

The Min Buffer parameter ensures that the buffer does not become too small because of timing variances between the local and remote serial interfaces. The minimum buffer size is specified in milliseconds and defines the minimum average buffer size before the buffer is recentered.

Periodic buffer recenters are not expected. If you notice recenters, we recommend that you verify the reference to the CTP (if used) or that you configure one port with adaptive clocking. It should also be noted that the entire buffer is available for accommodating and smoothing packet delay jitter, regardless of the Minimum buffer setting. The minimum buffer setting is set to a value greater than the expected jitter and less than the packet buffer setting.

Packet Buffer

You set the buffer size by using the Pkt Buffer Set parameter. The buffer size is set to this value when the circuit enters a Running State. The Pkt Buffer Set value must be large enough to accommodate the anticipated packet delay jitter. Pkt Buffer Set must be set to a value greater than the Min Buffer parameter and less than the Max Buffer parameter.

Maximum Buffer

You configure the Max Buffer parameter to ensure that the buffer does not become too large due to timing variances between the local and remote serial interfaces. The buffer is recentered to the Pkt Buffer Set value if the buffer size exceeds the Max Buffer value.

Periodic buffer recenters are not expected. If you notice recenters, we recommend that you verify the reference to the CTP (if used) or that you configure one port with adaptive clocking.

Configuring the Buffer Settings with the CLI

You configure the Min Buffer, Pkt Buffer Set, and Max Buffer parameters by selecting Options 6, 7, or 8 from the Port Config menu (Figure 57). The current settings for the buffer are displayed and are the defaults.

Figure 57: Setting Minimum Buffering—CLI

```plaintext
Config Menu for port 0

Please select a number from the following list:

0) Back to Previous Menu
1) Port descriptor text: {user text}
2) Remote Port: {vvv.www.xxx.yyy:Pz}
3) Interface: {Submenu - Type, Mode, Encoding}
4) Packet Size: {32 - 1456 1Bytes}
5) Clock Config: {Submenu - Rate and Config}
6) Min Buffer (ms): {0.001 - 9999.000}
7) Pkt Buffer Set (ms): {0.001 - 9999.000}
8) Max Buffer (ms): {0.001 - 9999.000}
9) Service Type: {0 - 255}
10) Time to Live: {0 - 255}
```
11) Signaling In Config: | RL = --- | RTS= --- | DTR=--- | LL = ---|
12) Signaling Out Config: | DSR= --- | CTS= --- | DCD= --- | TM =--- |
13) Advanced Options...

---------- Your choice [3]: 6

Enter minimum buffer fill (in ms) (0.001 - 9999.000)[8.000]:

Configuring the Buffer Settings with CTPView

You configure the Min Buffer, Pkt Buffer Set, and Max Buffer parameters by entering the data into the appropriate field (Figure 58).

Figure 58: CTPView Receive Buffer Fields

![CTPView Receive Buffer Fields](image)

Service Type

You can configure the ToS byte in the IP header. The ToS setting is specific to the port being configured, and the value is set in the IP packets transmitted from the CTP system into the IP network. The ToS setting does not need to be the same value on the local and remote ports.

Because you can configure the entire byte, the options are 0–255. Packet classification in IP networks is frequently based on the Differentiated Services code point (DSCP) as specified in the ToS byte. Table 10 shows the service type settings for all DSCP classes.
Configuring the Service Type with the CLI

You configure the Service Type parameters by selecting Option 9 from the Port Config menu (Figure 59).

Figure 59: Service Type Settings—CLI

Config Menu for port 0

Please select a number from the following list:

0) Back to Previous Menu
1) Port descriptor text: *{user text}*
2) Remote Port: *{vvv.wwwww.xxx.yyy:Pz}*
3) Interface: *{Submenu - Type, Mode, Encoding}*
4) Packet Size: *{32 - 1456 1Bytes}*
5) Clock Config: *{Submenu - Rate and Config}*
6) Min Buffer (ms): *{0.001 - 9999.000}*
7) Pkt Buffer Set (ms): *{0.001 - 9999.000}*
8) Max Buffer (ms): *{0.001 - 9999.000}*
9) Service Type: *{0 - 255}*
10) Time to Live: *{0 - 255}*

Table 10: DSCP Classes and Service Type

<table>
<thead>
<tr>
<th>Class</th>
<th>DSCP Setting</th>
<th>TOS Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS7</td>
<td>56</td>
<td>224</td>
</tr>
<tr>
<td>CS6</td>
<td>48</td>
<td>192</td>
</tr>
<tr>
<td>EF</td>
<td>46</td>
<td>184</td>
</tr>
<tr>
<td>CS5</td>
<td>40</td>
<td>160</td>
</tr>
<tr>
<td>AF43</td>
<td>38</td>
<td>152</td>
</tr>
<tr>
<td>AF42</td>
<td>36</td>
<td>144</td>
</tr>
<tr>
<td>AF41</td>
<td>34</td>
<td>136</td>
</tr>
<tr>
<td>CS4</td>
<td>32</td>
<td>128</td>
</tr>
<tr>
<td>AF33</td>
<td>30</td>
<td>120</td>
</tr>
<tr>
<td>AF32</td>
<td>28</td>
<td>112</td>
</tr>
<tr>
<td>AF31</td>
<td>26</td>
<td>104</td>
</tr>
<tr>
<td>CS3</td>
<td>24</td>
<td>96</td>
</tr>
<tr>
<td>AF23</td>
<td>22</td>
<td>88</td>
</tr>
<tr>
<td>AF22</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>AF21</td>
<td>18</td>
<td>72</td>
</tr>
<tr>
<td>CS2</td>
<td>16</td>
<td>64</td>
</tr>
<tr>
<td>AF13</td>
<td>13</td>
<td>52</td>
</tr>
<tr>
<td>AF12</td>
<td>12</td>
<td>48</td>
</tr>
<tr>
<td>AF11</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>CS1</td>
<td>8</td>
<td>32</td>
</tr>
</tbody>
</table>
11) Signaling In Config: | RL = --- | RTS= --- | DTR=--- | LL = --- |
12) Signaling Out Config: | DSR= --- | CTS= --- | DCD= --- | TM =--- |
13) Advanced Options...

----------- Your choice [8]: 9

Enter Time to Live (0-255)[255]:

Configuring the Service Type with CTPView
You configure the Service Type parameters by entering the data into the appropriate field (Figure 60).

Time to Live
You can configure the IP packet time to live (TTL). The acceptable values range from 0 to 255; the default is 255. The TTL value specifies the maximum number of router hops that a packet can traverse, and the value is set in the IP packets transmitted from the CTP system into the IP network. Note that the IP network does not alter or optimize the packet routing based on the TTL setting, and the setting does not need to be the same value on the local and remote ports.

Configuring Time to Live with the CLI
You configure the TTL setting by selecting Option 10 from the Port Config menu (Figure 61). The current settings for TTL are displayed and are the defaults.
Figure 61: Configuring Time to Live—CLI
===
Config Menu for port 0
===
Please select a number from the following list:

0) Back to Previous Menu
1) Port descriptor text: {user text}
2) Remote Port: {vvv. www.xxx. yyy: Pz}
3) Interface: {Submenu - Type, Mode, Encoding}
4) Packet Size: {32 - 1456 1Bytes}
5) Clock Config: {Submenu - Rate and Config}
6) Min Buffer (ms): {0.001 - 9999.000}
7) Pkt Buffer Set (ms): {0.001 - 9999.000}
8) Max Buffer (ms): {0.001 - 9999.000}
9) Service Type: {0 - 255}
10) Time to Live: {0 - 255}
11) Signaling In Config: | RL = --- | RTS= --- | DTR=--- | LL = --- |
12) Signaling Out Config: | DSR= --- | CTS= --- | DCD= --- | TM =--- |
13) Advanced Options...
------------------------ Your choice [8]: 10

Enter Time to Live (0-255)[255]:

Configuring the Time to Live with CTPView

You configure the TTL setting by entering the data into the appropriate field (Figure 62).

Figure 62: CTPView Time to Live Field
Signaling Configurations

The input signals (RL, RTS, DTR, LL) can be either unused (ignored) or used to create a demand circuit. When configured for demand, the packets created from the circuit are transferred across the IP network only when the signal lead is in the specified state for the circuit to be a Demand Call – Active. When two or more leads are configured for demand, all the configured leads must be in the state Demand Call – Active for the circuit to transfer packets across the IP network.

The port output signals (DSR, CTS, DCD, TM) can be set to a fixed value (high or low), or they can be set to inband so that the output signal state is based on the state of an input signal at the remote CTP port. The remote input signals that can be mapped to the output signals include RL, RTS, DTR, and LL.

The input state of each signal lead is encoding once in every transmitted IP packet. Thus the granularity of the transitions (frequency of changes) that can be transferred across the network is equal to the packet rate of the circuit.

Configuring Signals with the CLI

The menus shown in Figure 63 and Figure 64 are provided when you select either Option 11 (Signaling In Config) or Option 12 (Signaling Out Config). Both menus allow you to configure the input signals used for establishing a demand circuit and the output signals based on the remote port input.

Figure 63: Input Signaling Configuration for Demand Circuits—CLI

```
Signaling Menu for Port 0

Please select a number from the following list:

0) Back to Previous Menu
1) DSR (output): Fixed - Low
2) CTS (output): Fixed - Low
3) DCD (output): Fixed - Low
4) TM (output): Fixed - High
5) RL (input): Unused
6) RTS (input): Unused
7) DTR (input): Demand Call - Active High
8) LL (input): Unused

------------ Your choice [2]: 7

Enter input signal function:
Please select a number from the following list:

0) Unused
1) Demand Call

------------ Your choice [1]:

(NOTE: 0=Space=On, 1=Mark=Off )

Enter input signal value to initiate call (0-1)[1]:
```
Figure 64: Output Signaling Configuration—CLI

Signaling Menu for Port 0

Please select a number from the following list:

0) Back to Previous Menu
1) DSR (output): Fixed - Low
2) CTS (output): Fixed - Low
3) DCD (output): Fixed - Low
4) TM (output): Fixed - High
5) RL (input): Unused
6) RTS (input): Unused
7) DTR (input): Demand Call - Active High
8) LL (input): Unused

------------ Your choice [1]: 2

Enter output signal function:
Please select a number from the following list:

0) Fixed
1) In-Band

------------ Your choice [0]: 1

Choose remote port signal source:
Please select a number from the following list:

0) RL
1) RTS
2) DTR
3) LL

------------ Your choice [0]: 0

Configuring the Signals with CTPView

The signaling configuration drop-down menus are displayed when you select the Show Settings check box for the Signaling Settings parameters. As shown in Figure 65, the drop-down menus provide the valid options for configuring both the output signals and the input signals used for demand calls.
Chapter 3: Software Configuration

The default Advanced Option settings are acceptable for the majority of circuits and applications. The advanced options allow the user to configure nonstandard attributes that may be required by some applications. The following is a summary of Advanced Option parameters:

- **OAM Configuration**—The CTP system uses periodic UDP OAM packets to determine the connectivity between the two CTP systems that are providing the circuit’s ports. These parameters allow you to configure the OAM packet rate: the number of consecutive OAM packets that must be received before the circuit will change to IN-SYNC, and the number of consecutive OAM packets that must be missed before the circuit state is changed to NO-SYNC.

- **Virtual IP address**—This parameter allows you to use and configure an IP address for the circuit’s data and OAM flow that is different from the IP address of the CTP system. This virtual IP address is used in the IP packet’s Origination Address field, and the distant CTP system must be configured with the virtual IP address of the port.

- **Packet Protector**—In a network where significant IP packet loss is expected, you can configure this option to send and/or receive cloned (duplicated) packets. When configured to receive cloned packets, the CTP system automatically uses the cloned packet when the original packet is dropped by the IP network. The system ignores the cloned packet when both the original and cloned packets are received.
The following are the configuration options for the Packet Protector feature:

- 0—Disable packet protector
- 1—Send cloned packets to NET
- 2—Expect cloned packets from NET
- 3—Send and expect cloned packets

- Missing pkt fill pattern—When an IP packet is dropped, the CTP system automatically inserts data into the circuit bit stream in lieu of the actual data. The number of bits inserted is equal to the number of bits in the missed packet. This data insertion method prevents a loss of bit count integrity to attached circuit devices and encryptors. This parameter allows you to configure the fill-pattern byte to a value other than ff. You enter the number as two hexadecimal digits. Note that the input does not require the 0x characters.

- Consecutive pkts loss to starve—Specifies how many consecutive circuit packets must be dropped by the IP network for the CTP circuit state to process the loss as a starvation and to recenter the buffer. The circuit state will also change from RUNNING to IN-SYNC, depending on the duration of the loss. This parameter allows you to change the number of consecutive lost packets required for a starvation from the default value of 5 to a value between 1 and 64.

 We recommend that you set the parameter to a larger value when the IP network uses packet-encrypting devices. These devices will cause momentary interruption in packet flows when encryption keys are periodically updated.

- In sequence pkts after starve—After a starvation, the CTP circuit must begin receiving circuit packets before the port recovers from the packet starvation and resets the jitter buffer. The circuit state may also change from IN-SYNC to RUNNING. This parameter allows you to change the number of required in-sequence packets received by the CTP system from the default of 15 to a value between 1 and 64.

- Y cable redundancy—Set to YES when the CTP system is configured with a redundant Y cable.

Implementing Y Cable Redundancy

Customers use Y cable redundancy to increase circuit availability to a site (typically a remote site) as shown in Figure 66 on page 71. Configuring Y cable redundancy will switch the circuit to a co-located alternate CTP and port during an unlikely network or equipment failure. The objective of this redundancy scheme is to maximize network availability by providing complete hardware redundancy that protects from failures that include chassis, processor, power supplies, and the interface module. The process of switching the circuit to the redundant system is controlled by the AutoSwitch feature running at the Hub CTP. Chapter 6 provides additional details on configuring AutoSwitch.
Using this feature requires a special Y cable (Juniper Networks part number CTP-CBL-4Q-Y). The Y cable provides control leads between the two CTP systems in addition to the standard signal, clock and data leads connected to the attached device.

The following are technical considerations to keep in mind when you use Y cable redundancy:

- The Y cable is short to maintain signal quality. The two CTP systems connected to the Y cable must be in close proximity to each other.

- The redundant port numbers may be different provided that they are using the same port on the CPT 100 pin connector. For example, a Y cable 100-pin connector could be attached to ports 0-3 on the first CTP system, with the second connector attached to ports 8-11 on the second system. The redundant ports would be P0/P8, P1/P9, P2/P10 and P3/P11 on the first and second CTP systems, respectively.

- Use CTPView to configure the Autoswitch at the “hub” CTP. CTPView is not required, however, to initiate or control the switchover.

- The rate of the switchover is determined by the AutoSwitch Check Period and Switch Count values configured at the hub CTP. The default values are 60 seconds, with a Switch Count of 3. The default configuration minimizes unnecessary switchovers due to transient failures, such as might occur with a brief network problem.
Configuring Advanced Options with the CLI

Figure 67 shows the Advanced Options menu provided when you select it from the Port Config menu. The CTP system automatically configures parameters 11 through 14. Do not change these values without consulting JTAC.

Figure 67: Advanced Options Menu

Please select a number from the following list:

0) Back to Previous Menu
1) OAM Chan Rate (sec/pkt): 1
2) OAM pkts for Sync: 2
3) OAM pkts for Sync Loss: 5
4) Use virtual ip for port NO
5) Virtual ip for port: 0.0.0.0
6) Packet Protector(tm) Disabled
7) Missing pkt fill pattern: 0xff
8) Consecutive pkts loss to starve: 5
9) In sequence pkts after starve: 15
10) Y cable redundancy: NO
11) Single ended data/clock outputs: NO
12) Reclock RD to align RD/RT: YES
13) Send pkts to stack: NO
14) Unidirectional circuit: NO

---------------- Your choice [1]:
Parameters 1 through 3

Configuring Advanced Options with CTPView

The advanced option (Advanced Settings) drop-down menus and input fields are displayed when you select the Show Settings check box for the Advanced Settings parameters (Figure 68).
You are required to have administrative privileges to modify a port configuration. You are not permitted to configure the port if you have only user privileges. The port is disabled and will not pass data when you configure it with the CLI. The port is not disabled when you configure it with CTPView, and the configured changes will not take effect until you click the **Submit Changes** button, at which time there will be a momentary interruption in the data flow.

Configuring a packet-bearing serial (PBS) interface allows you to connect a CTP1000 to an IP network through a serial interface. The feature is currently available on the CTP1000 products and will be supported on the CTP2000 with a future software release. A port configured as a PBS interface uses static routes and does not participate in any routed protocol sessions, such as OSPF and RIP.
A port must be configured as either a circuit emulation (CE) port or PBS interface. The default is the CE port. You can change the port between CE and PBS modes in the Node Operations menu. Changing the type of port, which is typically done only during the initial installation, requires the system to automatically reboot. The following are the ports that can be configured for PBS port operation:

- CTP1002—P0 and P1
- CTP1004—P0 and P1
- CTP1012—P0, P1, P4, P5, P8, and P9

Figure 69 shows the menu that you use to change the port to PBS operation with the CLI. This submenu is available from the Node Operations menu.

Figure 69: Configuring a Port for PBS Operation—CLI

PBS operation is limited to the following ports:

- Port 0 configured for PBS operation: no
- Port 1 configured for PBS operation: yes
- Port 4 configured for PBS operation: no
- Port 5 configured for PBS operation: no
- Port 8 configured for PBS operation: no
- Port 9 configured for PBS operation: no

Please input a port to configure, <rt> to exit: 0
Configure port 1 for PBS operation? n[y]:

You can change the ports between PBS and CE modes with CTPView. The window shown in Figure 70 is provided when you select Ports from the Connect window or when you select the Convert to CE/Convert to PBS check box in the configuration window. You select the CE and PBS mode by using the buttons provided.
Packet-Bearing Serial Interface Parameters

The following is a summary of the parameters used to configure a packet-bearing serial interface.

- **Encapsulation**—PPP and HDLC encapsulation are supported by PBS interfaces. Select the encapsulation from the CLI or from the CTPView drop-down menu.

- **Local and remote IP address**—The PBS interface requires that the IP address of the local and remote IP interfaces be specified. Both addresses must be on the same network.

- **Clock configuration**—The clock configuration submenu lets you configure port speed and clock configuration. The clocking options include configured rate with and without external TT, all clocked by external TT, and custom clocking. The custom configuration is as detailed in Port Configuration—Circuit Emulation on page 32.

 CTPView allows you to configure the rate using an input field and specify the clocking from a pull down menu of valid options.

- **MTU**—The MTU can be configured to a value up to 1500 bytes. MTU fragmentation is not supported.
- **Interface**—The Interface is configurable to be either EIA530, EIA530A, RS232, V.35 or T1/E1 (optional when hardware is installed). The encoding is limited to NRZ.

- **Static routes**—Up to three static routes that use the PBS interface can be configured and active. The static routes cannot conflict with the static routes configured on any other PBS Interfaces.

Configuring the Packet-Bearing Serial Interface with the CLI

Figure 71 shows the CLI menu for configuring the PBS interface. The parameters are as described in Packet-Bearing Serial Interface Parameters on page 75. Figure 72 shows the submenu that you use to configure the static route.

Figure 71: Configuring the PBS Interface—CLI

```
Please select a number from the following list:

0) Back to Previous Menu
1) Port descriptor text:   {Text}
2) Encapsulation:         {PPP,HDLC)  
3) Local ip of p2p link:  {www.xxx.yyy.zzz IP address) 
4) Remote ip of p2p link: {www.xxx.yyy.zzz IP address) 
5) Clock Config:          {Rate/ Clock Configuration} 
6) MTU:                   {0 - 1500} 
7) Interface:             {Interface / Encoding} 
8) First static route:    {Disabled or IP Address / Subnet Mask) 
9) Second static route:   {Disabled or IP Address / Subnet Mask) 
10) Third static route:    {Disabled or IP Address / Subnet Mask) 
11) Advanced Options...

---------- Your choice [6]: 8
```

Figure 72: Submenu for Configuring a Static Route

```
Please select a number from the following list:

0) Back to Previous Menu
1) Enable this route: NO 
2) Network:           172.25.61.0 
3) Netmask:           255.255.255.0 

---------- Your choice [0]:
```

Configuring the Packet-Bearing Serial Interface with CTPView

Figure 73 shows CTPView display for configuring the PBS interface and static routes. The parameters are as described Packet-Bearing Serial Interface Parameters on page 75.
Node Synchronization

The CTP products can use an external clock as a reference input to the system. The reference can be input on a port or on the external reference input. You can configure and prioritize up to five references depending on the CTP model. The system will automatically use the highest priority reference available, and will switch to a holdover mode if all the references are lost. The following ports can be used for reference inputs:

- CTP1002: P0–P1
- CPT1004: P0–P3
- CTP1012: P0–P3
- CTP2008, CTP20024, CTP2056: P0–P3

The CTP2000 external reference input is provide by the CLK-RTM module through a DB-25 connector.

NOTE: An interface module must be present in slot one of the CTP2000 chassis to provide reference synchronization throughout the system.
The CTP1000 external input is provided on either a rear BNC or D-B9 connector depending on the chassis revision (see Chapter 2, Hardware Configuration and Installation). The input is differential with one of the two differential leads input on the BNC outer ring. This outer ring is isolated from the chassis ground. More information about the external clock inputs is available in Clock Configuration on page 50.

Configuring References

You can define multiple clocks as references, each with a priority, to ensure that a reference with lower priority is available if the primary clock reference fails. The reference inputs to the CTP system must be 32 Kbps, an \(n \times 64 \) Kbps (up to 4096), or 1.544 Mbps. The CTP system provides a reference holdover with an accuracy of approximately 100 parts per billion if the reference is lost and no backup is defined or available.

Figure 74 shows the Node Synchronization menu. When you select the reference, you may either disable it or specify both the reference input (port number or external) and frequency. Figure 75 shows the CTPView configuration window.

Figure 74: Node Synchronization Options Menu—CLI

```
CTP Main Menu
Please select a number from the following list:
0) Exit to Shell
1) Port Operations
2) Node Synchronization
3) Node Summary
4) Node Diagnostics
5) Node Operations
6) Save Database to Flash
---------- Your choice [1]: 2

Node Synchronization Options Menu
Please select a number from the following list:
0) Back to Previous Menu
1) 1st Priority, Reference 0: Disabled
2) 2nd Priority, Reference 1: Disabled
3) 3rd Priority, Reference 2: Disabled
4) 4th Priority, Reference 3: Disabled
5) 5th Priority, Reference 4: Disabled
6) 32 kHz Ref Output: {Yes or No}
7) Query Node Sync Status
8) Measure Ref Inputs
9) Calibrate Node to Current Reference
---------- Your choice [7]: 1

Enter port providing reference (4=External,5=Disabled) (0-5)[0]: 2

Enter Reference Frequency (in Khz) (128-8192)[128]: {Input Value}
```
32-KHz Reference Output

You can use the external reference interface to send out a 32-KHz differential signal by setting the 32 KHz Ref Output value to Yes. Note that the BNC connector on the CTP1000 is isolated from the chassis, and the differential signal is sent out on both the center pin and outer BNC ring.

Calibrate Node to Current Reference

When the CTP system is configured to accept a reference and the reference is present, you can calibrate the system to the reference input by selecting Option 9. The calibrated value is stored in EEPROM, and the system uses this value to calibrate the internal oscillator when no reference is present. The calibrated clock accuracy is approximately 100 ppb.

Node Operations and Maintenance

Figure 76 shows the Node Operations menu. If you change the name, IP address, network mask gateway, or Ethernet configuration of the unit, the system reboots. Before you are allowed to change these node settings, the CTP system asks for confirmation that rebooting is desired. If not confirmed, you will return to the main menu without the system’s rebooting.
Node Operations and Maintenance

Figure 76: Node Operations Menu—CLI
==
==
Please select a number from the following list:

0) Back to Previous Menu
1) Change Node Date/Time
2) Display network settings:
3) Configure network settings:
4) Initialize Database
5) Ping IP address
6) Traceroute IP address
7) ssh to another host
8) System descriptor field:
9) Reboot Node
10) Powerdown Node
11) Display ethernet media:
12) Config ethernet media:
13) Set your password
14) System port speed range: 0 kHz - 12288 kHz
15) Config security profile
----------------- Your choice [0]:

You can also perform some functions that are available in the Node Operations menu from the CTPView Node Maintenance window (Figure 77).

Figure 77: CTPView Node Maintenance Window
Node Operations and Maintenance Parameters

The following sections describe the node operations and maintenance parameters that you can configure or execute.

Change Node Date/Time

With this selection you can change the date and times on the node.

Display Network Settings

This parameter displays the status of the Ethernet interface that is connected to the CTP system. The information includes interface IP address, default gateway, receive and transmit packet counts, errors, dropped packets, overruns, and frame errors.

Configure Network Settings

This option provides submenus allowing you to configure the IP interface(s). The configurable options include:

- **IP Protocol**—The options available are IPv4, IPv6 or both IPv4 and IPv6.

- **IP configuration**—When there are more than two interfaces available, the default device (interface) is specified through which the default gateway can be reached. The default interface can also be a VLAN. CTP circuits can use any interface regardless of whether or not it is the default. Up to three routes can be added to an interface.

- **OAM port and Data Packet protocol**—These parameters can be reconfigured from their default values. The default port for OAM packets is 16 (IPv4) and 32 (IPv6). The default data packet protocol is 47.

- **VLAN configuration**—VLANs can be added or deleted from the network settings. You add VLANs by specifying which Ethernet interface the VLAN will be added to, and the VLAN ID in the range 0–4095. After the VLAN interfaces have been defined, IP addressing can be applied by means of the above IP configuration options.

- **Virtual IP addresses**—Virtual IP addresses are attached to the loopback interface and can be configured through this submenu. Use care to ensure proper routing of traffic associated with the virtual IPs.

Initialize Database

This parameter clears nonvolatile configuration of the local CTP system. It returns all node settings to their factory defaults and leaves all ports in the disabled state.

Ping IP address

This parameter allows you to ping an IP address and reports the whether the ping is successful.

Traceroute IP Address

This parameter allows you to enter an IP address and get a traceroute to that address.
SSH to Another Host
This parameter allows you to enter an IP address of a host; the system establishes an SSH session with that host. You must know the login and password to the remote host. You can also use the CTPView Node Maintenance window (Figure 77 on page 80) to establish an SSH session to a host.

System Descriptor Field
This parameter allows you to enter a system descriptor that will be displayed in the top banner of each menu.

Reboot Node
This parameter allows you to reboot the CTP system. You can also use the CTPView Node Maintenance window (Figure 77 on page 80) to reboot the CTP system.

Powerdown Node
This parameter allows you to gracefully power down the system. You can also use the CTPView Node Maintenance window (Figure 77 on page 80) to power down the system.

Display Ethernet Media
This parameter displays the supported link modes (speed and duplex) and the configuration of the Ethernet media.

Configure Ethernet Media
You can configure the CTP Ethernet media to autonegotiate the duplex mode and speed, to set the duplex to either half or full, and to set the speed to either 100 or 10 Mbps. If you answer No to Enable Autonegotiate, you will receive prompts for the Ethernet speed and duplex settings. If you answer No to Setup Ethernet for 100 Mbps, the speed will be set to 10 Mbps. If you answer No to Setup Ethernet full duplex, the configuration will be half duplex.

The Ethernet configurations of the CTP must match the configuration of the connected router or switch. Mismatched configurations, such as setting the CTP system to autonegotiate and the router to full duplex, will result in a misconfiguration and dropped packets. You must disable Cisco Discovery Protocol on the Fast Ethernet port connected to the CTP system.

Set Your Password
You can log in to the system to change your password. The password must meet the criteria established in the Configuration Security Profile menu, and you must have the current password to make any changes.

CAUTION: Always use the powerdown option provided in the node operations menu when maintenance or other activity requires a system powerdown.
System Port Speed Range

The parameter sets one of two valid port speed ranges for the CTP1000 series. The first range allows ports to run at rates from 1 bps through 8 Mbps. The second range allows ports to run at rates from 4 Kbps to 12.288 Mbps. There is only one port speed range for the CTP2000 series, which is 0 KHz to 12288 kHz.

Config Security Profile

The Config Security Profile menu is covered in *Chapter 5, Security Profile Menu*. The administrator must have the root password to gain access to the menu.
Chapter 4
Software Queries and Operations

The CTP command-line interface (CLI) and CTPView provide extensive capabilities that allow you to diagnose problems and assess the performance of both circuits and the IP network. The CLI and CTPView also provide tools to assist with the diagnosis of problems. These diagnostic tools include integral bit error rate tests (BERTs), circuit loops, IP pings, IP traceroutes, packet delay jitter, and dropped packet plots.

The chapter contains the following sections:

- Overview on page 85
- Port Queries and Operations on page 86
- Node Summary on page 105
- Node Diagnostics on page 106
- Node Synchronization on page 108

Overview

The CTP menu interface provides a set of menu-driven operational commands. You can use these commands to determine the status of the node or ports and to perform operations such as looping ports or saving the database. Figure 78 shows the Main menu interface with Software Queries and Operations highlighted.
Port Queries and Operations

Port queries and advanced operations are available from the CLI or from CTPView. Both provide information on the port configuration, database state, runtime state, and performance when running. The following summarizes the type of information provided by the CLI and CTPView displays:

- **Remote Port**—Remote port to which the queried port is connected. The variable `vvv.wwww.xxx.yyy` specifies the IP address of the remote CTP, and `z` specifies the port number (0-4).

- **Port Database State**—Specifies whether the port is active or disabled in the database. Ports disabled in the database will not connect to the remote port or pass serial data.

- **Port Runtime State**—Indicates whether the active local CTP port is communicating with the remote node, as follows:
 - N/A—Not applicable; is displayed when the port database state is disabled.
 - No Sync—Indicates that the local CTP system is not able to communicate with the remote CTP system.
 - In Sync—Indicates that the local CTP system is communicating properly with the remote system, but data is not flowing to the interface.
Running—Indicates that the local CTP system is communicating and is synchronized with the remote CTP system. The circuit is established between the ports.

Cfg Fail—Indicates that the database configuration for the port cannot be supported. You will not typically encounter this state. If you do, delete and reinstall the port.

MisCfg —Indicates that a misconfiguration between the local and remote ports prevents bringing up the circuit. Examples of misconfigurations are incorrectly configured IP addresses or ports, and mismatched speeds.

Too Slow—Encountered on a port when the port clock configured is TT ALL and either no clock is provided by the external device or the rate is different from the configured rate.

Net Bound Data Info—Indicates the packet size created for transfer, the short-term average number of packets per second being sent out to the remote port, and the approximate data rate of information being received at the serial interface and sent into the IP network to the remote port.

Pkt Size—Size of packets created for transfer across the network. You can modify the packet size by using the Packet Size Configuration command (Port Operations > Config > Parameter 4).

Pkt/sec—Short-term average number of packets per second being sent to the remote port.

Data Rate—Approximate data rate in bits per second of information being received at the serial interface and sent into the IP network to the remote port. The data rate is calculated based on packets per second and packet size, and should be approximately the same as the configured port speed or the expected rate from the data terminal equipment (DTE) when autobaud is configured.

I/F Bound Data Info—Indicates the following information:

Pkt Size—Size of packets received from the IP network destined for the queried port. You can modify the packet size.

Pkt/sec—Short-term average number of packets per second being received from the IP network.

Data Rate—Displays in bits per second the approximate data rate of information being received from the IP network and sent to the queried serial port. The data rate is calculated based on packets per second and packet size, and should be approximately the same as the configured remote port speed or the expected rate from the remote DTE when autobaud is configured.

Late Pkts —Counter of packets that arrives too late to be sent to the serial interface. You may need to increase the buffer size if the late packet count continually increments.
Missing Packets—Counter of packets destined for the serial interface that were not available at the time when that data was needed. This unavailability may be due to a dropped packet in the IP network or to a packet that arrived too late at the CTP unit to be processed out the serial interface. Both dropped and late packets cause the missing packet counter to increment.

Buffer Recenter Count—Count of buffer recenters since the last time statistics were cleared. Recenters are due to either buffer underflow (buffer depleted) or the buffer exceeding the maximum delay configured for the port.

Buffer Underflow Count—Number of times the buffer reached the minimum set threshold.

Buffer Overflow Count—Number of times the buffer reached the maximum set threshold.

Buffer Fill—Amount of data (in milliseconds) currently held in the buffer.

Buffer Starvation Count—Indicates an exceeded threshold. The CTP system is designed to tolerate strings of consecutive missing packets without the loss of bit count integrity. The number of packets is configurable; the default is five (5). Exceeding this threshold is called a “starvation,” and a counter is incremented each time this event occurs.

Port Query with the CLI

The Query operation provides both the database configuration and current state of the port (Figure 79). When you perform the query, the menu interface provides the option to clear the statistics (counters).

Figure 79: Port Query and Results

```
Operations Menu for port 0
Please select a number from the following list:
0) Back to Previous Menu
1) Query
2) Config
3) Activate
4) Disable
5) Delete
6) Recenter
7) Advanced...
----------- Your choice [2]: 1
```

```
Detail query display for port 0
---------------------------------------------
Port Database State:              DISABLED, ACTIVE
Port Runtime State:               N/A,No Sync,In Sync,Running,Cfg
Fail,MisCfg,Too Slow
Permanent/Demand:                 Permanent or Demand
-------------- Net Bound Data Info -----------
Pkt Size:                         Configured Packet Size
Pkt/sec:                          Approximate Packet Rate
```
Port Queries and Operations

Data Rate (Approx bps): Calculated Rate

---------- I/F Bound Data Info ----------
Pkt Size: Packet Size from Remote
Pkt/sec: Approximate Packet Rate From Remote
Data Rate (Approx bps): Approximate Date Rate
Late/Missing Pkts: Late Packets/Missing Packets Since Last Clear
Buffer Recntr/Underflow/Overflow: Recenter/Underflow/Overflow Since Last Clear
Buffer Fill (in Msec): 0.000
Buffer Starvation Count: 0

Clear Port 0 Stats? y[n]:

Port Query with CTPView

A superset of Port Query attributes is described at the beginning of the Port Queries and Operations section on page 86. The CTPView Port Runtime option provides the status of the port (Figure 80). Additional information provided by the Runtime query includes the status of internal BERTs and port loops. The display will periodically be updated at the rate specified in the drop-down menu. The Reset ALL System Counters button at the bottom of the display resets the counters.
Technical Notes—Port Operations

Missing Packets and Late Packets

Each time a packet is missed, the data fill pattern specified in the advanced port options is substituted for data in the missed packet. The substitution maintains the bit count integrity of the data sent to the DTE or encryptor, but results in what appears to be a burst of errors with a duration equal to the size of the packet. Both the missing packet count and late packet count are incremented if the packet is received too late to be processed out the serial interface.

Packets may infrequently arrive late because of momentary congestion and delay in the IP network. If the rate of late packets is too great, consider increasing the port buffer size to accommodate the delay jitter being experienced. You can modify the port buffer size in the Port Configuration menu of the CLI or the Configuration window of CTPView.

Buffer Recenter Count

Under normal operations, the buffer recenter count should not be incrementing. If the count is incrementing, examine both the clocking configuration and references being used by the CTP system. For example, if the distant port and local port are configured with slightly different rates, buffer recenters will result. If the accuracy or stability of the references is inaccurate, recenters may also occur.
Port Database States

A port’s database state can be set to Active or Disabled, or the port can be deleted. Deleting the port disables it and returns the port configuration to default values the next time it is configured. As shown in Figure 81, the commands to activate, disable or delete the port are provided in the Port Operations menu. You will be prompted to confirm your command before it will take effect.

Ports must be disabled when configured from the CLI. When you select Config from the menu, you will be prompted to confirm that the port can be disabled.

Figure 81: Activating Port Command

===
Operations Menu for port 0
===
Please select a number from the following list:

0) Back to Previous Menu
1) Query
2) Config
3) Activate
4) Disable
5) Delete
6) Recenter
7) Advanced...
------------ Your choice [7]: 3

*** You asked to bring the port up. Are you sure? y[n]:

You can activate or disable the port by using either of two CTPView windows. The Port Configuration window allows you to change the state by checking the appropriate box near the top of the display (Figure 82). You can also open the Change Port Status window (Figure 83). This window allows you to change the state of the port from active to disabled or disabled to active, to delete the port, and to recenter the buffer.
Figure 82: CTPView Port Configuration Window to Activate and Disable the Port

Figure 83: CTPView Change Port Status Window
Port Recenter

Use the Recenter operation to reset the buffer to the Pkt Buffer Set size specified in the port configuration. Recentering the buffer results in a one-time loss of bit count integrity and synchronization for the attached DTE. Figure 84 shows the Port Recenter option from the CLI. You can also recenter the port from the Change Port Status window on CTPView (Figure 83).

Figure 84: Port Recentering

```
Operations Menu for port 0

Please select a number from the following list:

0) Back to Previous Menu
1) Query
2) Config
3) Activate
4) Disable
5) Delete
6) Recenter
7) Advanced...

--------- Your choice [5]: 6

*** This will cause a port data interruption. Are you sure? y[n]:
```

Advanced Query Menu

You access the Advanced Query menu from the CLI Port Operations menu by selecting Advanced (Figure 85).

Figure 85: Advanced Query Menu

```
Operations Menu for Port 0

Please select a number from the following list:

0) Back to Previous Menu
1) Query
2) Config
3) Activate
4) Disable
5) Delete
6) Recenter
7) Advanced...

--------- Your choice [7]: 7
```
Advanced Query Menu for Port 0

Please select a number from the following list:

0) Back to Previous Menu
1) Serial Loop: None
2) BERT Injection: Disabled
3) BERT Reception: Disabled
4) BERT Pattern: 2^15-1
5) BERT Error Inject
6) BERT Counts
7) SCC Counts
8) Buffer Counts
9) Clear All Counts
10) I/F Signaling Query
11) Modify Runtime Configuration
12) Diagnostics...

------------- Your choice [8]:

Serial Loops

The Serial Loop parameter provides the option for enabling loops toward the interface (DTE device) or toward the “NET” (IP network) in the direction of the remote port (Figure 86). The following loop options are available:

- **Disabled**—If a loop is currently active on the port, the Disabled setting will remove the loop.

- **To NET**—Data arriving from the IP network destined for the serial interface is looped back to the IP network and remote port. The data is still transmitted from the IP network to the serial interface, but the data from the serial interface to the IP network and remote port is blocked.

- **To I/F**—Data arriving from the serial interface that is destined for the IP network is looped back to the serial interface. The data is still transmitted from the serial interface to the IP network, but the data from the IP network to the serial interface is blocked.
Figure 86: CTP Serial Loops

Serial Loop: None

Serial Loop: To NET

Serial Loop: To I/F

Figure 87 shows the CLI Advanced Query menu that you use for setting the loops.

Figure 87: Serial Loop Menu

Advanced Query Menu for Port 0

Please select a number from the following list:

0) Back to Previous Menu
1) Serial Loop: None
2) BERT Injection: Disabled
3) BERT Reception: Disabled
4) BERT Pattern: 2^15-1
5) BERT Error Inject
6) BERT Counts
7) SCC Counts
8) Buffer Counts
9) Clear All Counts
10) I/F Signaling Query
11) Modify Runtime Configuration
12) Diagnostics...

------------------ Your choice [8]: 1

Enter Loop Function
Please select a number from the following list:

0) None
1) To NET
2) To I/F
--------- Your choice [0]:

You can also configure serial loops by using the Bit Error Rate Tester menu, which is located in the Port Diagnostics window. The remote port is automatically displayed when you select the local port (Figure 88).

Figure 88: CTPView Bit Error Rate Tester Window—Serial Loop Buttons

BERT Testing

Each port provides a dedicated BERT transmitter and receiver, which are capable of transmitting and receiving a pseudorandom sequence of data by means of a user-specified pattern. The data sequence may be injected toward the serial interface or the IP network, and replaces the user data with the BERT pattern in the selected direction (Figure 89 on page 97). The BERT receiver does not disrupt the existing data flow in either direction (Figure 90 on page 98).
You can select the type of BERT pattern. The BERT patterns are compatible with the Firebird 6000, with the exception of pattern $2^{31}-1$, which is not a Firebird option. You must configure the same pattern on both ports when performing a bidirectional end-to-end BERT. The available patterns include MARK, ALT, 511×2047, $2^{15}-1$, $2^{20}-1$, $2^{23}-1$, $2^{29}-1$, and $2^{31}-1$.

Figure 89: BERT Injection

BERT Injection: Disabled

BERT Injection: TX to NET

BERT Injection: TX to I/F
In the CLI menu, use Options 2, 3, and 4 to configure the BERT transmitter, receiver, and pattern (Figure 91). Option 5 injects an error in the pattern to verify that an end-to-end BERT has been established. Option 6 provides the BERT counts (Figure 92).

Figure 91: Example of Configuring the BERT Transmitter

Please select a number from the following list:

- 0) Back to Previous Menu
- 1) Serial Loop: None
- 2) BERT Injection: Disabled
- 3) BERT Reception: Disabled
- 4) BERT Pattern: \(2^{15}-1\)
- 5) BERT Error Inject
- 6) BERT Counts
- 7) SCC Counts
- 8) Buffer Counts
- 9) Clear All Counts
- 10) I/F Signaling Query
- 11) Modify Runtime Configuration
- 12) Diagnostics...

------------ Your choice [8]: 2

Enter Tx BERT Function
Please select a number from the following list:

0) Disabled
1) Tx to NET
2) Tx to I/F
--------- Your choice [0]: 1

Figure 92: BERT Counts

Advanced Query Menu for Port 0

Please select a number from the following list:

0) Back to Previous Menu
1) Serial Loop: None
2) BERT Injection: Disabled
3) BERT Reception: Disabled
4) BERT Pattern: $2^{15}-1$
5) BERT Error Inject
6) BERT Counts
7) SCC Counts
8) Buffer Counts
9) Clear All Counts
10) I/F Signaling Query
11) Modify Runtime Configuration
12) Diagnostics...
--------- Your choice [2]: 6

BERT query display for port 0
=======================================
BERT Running time: Sync Seconds: 0
Errored Seconds: 0
Error Count: 0
Sync Loss Count: 0
Currently in SYNC: NO

Time since last counter clear: 0 wks, 0 days, 1 hrs, 34 mins 20 secs

Clear Port 0 BERT Stats? y[n]:

Figure 93 on page 100 shows the BERT pane, which is displayed when you select Port > Diagnostics in the left pane of the CTPView window. The remote port is automatically displayed when you select the local port. You can use this window to specify whether the BERT transmitter and receiver will be directed toward the network (NET) or serial interface (I/F). You choose the pattern by using the drop-down menu. CTPView checks the status of the BERT at the rate specified in the Update Rate drop-down menu and updates the synchronization status and counter accordingly.
SCC Counts

The Serial Communications Controller (SCC) counts are counters related to packet creation and reception (Figure 94 on page 101). Many of these counters also appear in the Port Query menu. All the SCC counts increment until you clear them.

The SCC counts are:

- **Pkts to NET**—Number of packets that have been sent to the IP network.
- **Pkts to NET ints**—Packets-to-NET interrupts; corresponds to the number of packets destined for the IP network that have been processed by the software driver.
- **Pkts to I/F**—Number of packets that have been sent to the serial interface.
- **Pkts to I/F ints**—Packets-to-interface interrupts; corresponds to the number of packets destined for the serial interface that have been processed by the software driver.
Chapter 4: Software Queries and Operations

- Pkts to I/F missing—Packets to interface missing; packets destined for the serial interface that were not available at the time when that data was needed. Unavailability may be caused by a dropped packet in the IP network or a delayed packet considered late by the CTP system, according to the current buffer settings and state.

- Pkts to I/F late—Packets to interface late; number of packets destined for the serial interface that were not available at the time when that data was needed. Unavailability may be caused by a dropped packet in the IP network or a packet delayed too long, according to the current buffer settings and state.

- Pkts to I/F recenter cnt—Packets to interface recenter count; number of buffer recenters since the last time statistics were cleared. Recenters are due to either buffer underflow (buffer depleted) or the buffer exceeding the maximum delay configured for the port.

- Pkts to I/F underflow cnt—Packets to underflow count; number of times the minimum threshold was reached since the counter was last reset.

- Pkts to I/F overflow cnt—Packets to overflow count; number of times the maximum threshold was reached since the counter was last reset.

- Pkts to I/F starve cnt—Packets to interface starvation count. When a fixed consecutive number of packets are missing from the IP network, the CTP receive processor detects this as a starvation condition. During this state, the buffer is recentered. Starvation can occur because of a failure in the IP network or because of a cabling or Ethernet interface problem.

- Clear Port Stats—Responding affirmatively to this option will clear all the SCC counts listed in this menu.

Figure 94: SCC Counts Output

Advanced Query Menu for Port 0

Please select a number from the following list:

0) Back to Previous Menu
1) Serial Loop: None
2) BERT Injection: Disabled
3) BERT Reception: Disabled
4) BERT Pattern: 2^15-1
5) BERT Error Inject
6) BERT Counts
7) SCC Counts
8) Buffer Counts
9) Clear All Counts
10) I/F Signaling Query
11) Modify Runtime Configuration
12) Diagnostics...

---------- Your choice [3]: 7
Advanced Packet query display for port 0

==
Pkts to NET: 0
Pkts to NET ints: 0
--
Pkts to I/F: 0
Pkts to I/F ints: 0
Pkts to I/F missing: 0
Pkts to I/F late: 0
Pkts to I/F recenter cnt: 0
Pkts to I/F underflow cnt: 0
Pkts to I/F overflow cnt: 0
Pkts to I/F starve cnt: 0

Clear Port 0 Stats? y[n]:

Buffer Counts

The CTP system monitors packet delay. The time is measured from when a packet arrives from the Ethernet interface to when it is completely transmitted out the serial interface. This interval represents an instantaneous measure of the buffer fill. Short-term changes in the value of this measured delay correspond to the packet delay jitter in the network. These values are stored in an array where the average may be calculated over a large number of samples.

Figure 95 on page 103 shows the Buffer Counts menu, which provides the following counts:

- Sample Buffer Size—Total number of samples in the array used for averaging.
- Valid Buffer Samples—Number of currently valid samples in the array.
- Total Samples—Number of packets measured since the last time the count was cleared.
- Smallest Sample—Within the total number of samples, the smallest sample measured (in milliseconds).
- Average Sample—Within the valid array samples, the average buffer fill (in milliseconds).
- Largest Sample—Within the total number of samples, the largest sample measured (in milliseconds).
- Largest Buffer Jitter—Difference between the largest sample and the smallest sample measured. This corresponds to system packet delay jitter.
- Reset Array Monitor—An affirmative response will reset the counter for all statistics in this menu.
Figure 95: Buffer Counts Command

Advanced Query Menu for Port 0

Please select a number from the following list:

0) Back to Previous Menu
1) Serial Loop: None
2) BERT Injection: Disabled
3) BERT Reception: Disabled
4) BERT Pattern: 2^15-1
5) BERT Error Inject
6) BERT Counts
7) SCC Counts
8) Buffer Counts
9) Clear All Counts
10) I/F Signaling Query
11) Modify Runtime Configuration
12) Diagnostics...

------------ Your choice [5]: 9

Advanced Buffer query display for port 0

Sample Buffer Size: 2048
Valid Buffer Samples: 0
Total Samples: 0

Smallest Sample: 0.000 ms
Average Sample: 0.000 ms
Largest Sample: 0.000 ms
Largest Buffer Jitter: 0.000 ms

Reset Buffer Monitor? y[n]:

Clear All Counts
Select this option to clear all the counts on all the ports.

I/F Signaling Query
Select this option to record the state of the signaling leads.

Modify Runtime Configuration
Selecting this option allows you to modify parameters that affect adaptive clocking, signal output, interface mode, and buffer configurations without your having to disable the port. The changes are valid only while the port is active and are not stored in the database. We recommend that you do not make port changes with this option except in a lab or test environment.

Diagnostics
You can perform diagnostic tests on a port by using the Diagnostics menu. Running the diagnostics on a port will automatically test the port with the integral BERT. The port will not transfer user data during the test.
Figure 96 shows the CLI Diagnostics menu. The system reports results as pass or fail. A failed test indicates possible faulty hardware. You can select one diagnostic test from this menu at a time. The test menu (parameter 5) allows additional functions, such as intentionally dropping an IP packet that should be used only in a test or lab environment. Tests include:

- Test Port Data Path (towards NET fast and slow)—Data path test toward the IP network.
- Test Port Data Path (towards I/F)—Data path test toward the serial interface.
- Test Port Signaling—Tests the signaling leads on the serial interface.

Figure 96: Diagnostics Command

```
Advanced Query Menu for Port 0

Please select a number from the following list:

0) Back to Previous Menu
1) Serial Loop: None
2) BERT Injection: Disabled
3) BERT Reception: Disabled
4) BERT Pattern: 2^15-1
5) BERT Error Inject
6) BERT Counts
7) SCC Counts
8) Buffer Counts
9) Clear All Counts
10) I/F Signaling Query
11) Modify Runtime Configuration
12) Diagnostics...

---------- Your choice [8]: 9
```

```
Diagnostics Menu for Port 0

Please select a number from the following list:

0) Back to Previous Menu
1) Test Port Data Path (towards NET fast)
2) Test Port Data Path (towards NET Slow)
3) Test Port Data Path (towards I/F)
4) Test Port Signalling

---------- Your choice [2]:
```
Figure 97 shows a sample CLI Node Summary menu. The node summary provides CTP port system information for all ports on a single screen.

The menu provides the following summary information:

- **RemPort**—Remote port to which the local port is connected. The variable \[vwww.xxx.yyy\] specifies the IP address of the remote CTP system, and \(z\) defines the port number (0-55). You can change the remote port by using the **Port Configuration** command (Port Operations > Configuration > Parameter 1).

- **DbState**—Database state and whether the port is active or disabled in the database. Ports disabled in the database will not connect to the remote port or pass serial data.

- **RunState**—Remote node synchronization state; indicates whether the local CTP port is communicating and synchronized with the remote node. Status is defined as NoSYNC, ToSYNC, or RUNNING.

- **NoSYNC**—Indicates that the local CTP system is not able to communicate with the remote CTP system.

- **InSYNC**—Indicates that the local CTP system is communicating properly with the remote unit, but data is not flowing to the interface.

- **RUNNING**—Indicates that the local CTP system is communicating and synchronized with the remote CTP system and that the circuit is established.
- **MisCfg**—Indicates that there is a misconfiguration between the local and remote ports that prevent bringing up the circuit. Examples of misconfigurations are incorrectly configured IP addresses or ports, and mismatched speeds.

- **N/A**—Not applicable; displayed when the port database state is disabled.

- **Cfg Fail**—Indicates that the database configuration for the port cannot be supported. You will not typically encounter this state. If you do, delete and reinstall the port.

- **Too Slow**—Encountered on a port when the port clock configured is TT ALL and either no clock is provided by the external device or the rate is different from the configured rate.

- **NtSz**—Network-bound data packet size. You can modify the packet size by using the **Packet Size Configuration** command.

- **IfSz**—Interface-bound data packet size. You can modify the packet size only at the remote CTP system.

- **PortRate**—User-specified port speed in kilohertz. (For further details, see Port Speed on page 60 in Chapter 3, Software Configuration.)

- **ReCtr**—Number of times the buffer has been recentered to the size specified in the port configuration.

Node Diagnostics

By using the Node Diagnostics menu, you can troubleshoot suspected problems with the CTP hardware or software configuration.

Run Diags on Card/Ports

This parameter runs data path tests on each port (Figure 98) using the built-in BERT testers. The test will loop back data at both the serial and packet interfaces on all ports. In addition, the system tests signaling loopback on the serial interface. Ports will be disabled for the duration of the tests and then reactivated after the diagnostic is complete. The system reports results as pass or fail. A failed test may indicate a hardware problem.

Figure 98: Run Diagnostics on Card/Ports

Diagnostics Menu

Please select a number from the following list:

0) Back to Previous Menu
1) Run Diags on Card/Ports
2) Set Log Print Level: EVE
3) Show Node Log
4) Set Lab Mode: Disable

------------- Your choice [0]: 1

*** This will cause a port data interruption
Set Log Print Level

By selecting Set Log Print Level, you can set the level of stored node event messages that the CTP system logs. Figure 99 shows the Set Log Print Level menu. The settings range from most detailed (Level 1: debug) to least detailed (Level 8: fatal alarm):

- **DBG**—debug
- **GEN**—general
- **FNC**—function entry
- **EVE**—event
- **TMP**—temporary; not a user setting; for system development only
- **MIN**—minor alarm
- **MAJ**—major alarm
- **FAT**—fatal alarm

Figure 99: Set Log Print Level Menu

===
Diagnostics Menu
===

Please select a number from the following list:

0) Back to Previous Menu
1) Run Diags on Card/Ports
2) Set Log Print Level: EVE
3) Show Node Log
4) Set Lab Mode: Disable

-------- Your choice [0]:2
Please select a number from the following list:

0) OFF
1) DBG
2) GEN
3) FNC
4) EVE
5) TMP
6) MIN
7) MAJ
8) FAT

--------- Your choice [4]:

Show Node Log

By selecting Show Node Log, you can review stored node event messages that the CTP system logs. The node prompts you to specify the number of most recent events to be reviewed and the number of events to be presented per page.

Set Lab Mode

Set Lab Mode is not a user parameter; this parameter is for system development use only.

Node Synchronization

Query Sync Status

Figure 100 shows the Node Synchronization menu provided by the CLI, and Figure 101 shows the Node Synchronization Query window provided by CTPView. The Query Node Sync Status option (option 7 on the CLI menu) provides details of the current state of the node synchronization:

- PLL Monitor Runtime—Time (in seconds) that the phase lock loop (PLL) has been monitored since the last restart of the CTP or reconfiguration of the CTP reference.

- PLL Locked—Indicates whether the PLL is currently locked to a valid reference (YES) or whether no reference is available (NO).

- PLL Loss Seconds—Indicates the number of seconds during the PLL monitor runtime that the PLL has not been locked.

- Reference in Use:
 - Fixed/Calibrated—The CTP unit is not locked to a reference and has loaded and used the calibrated value (provides improved clock accuracy). Setting a calibrated value is discussed in Chapter 3, Software Configuration.

 - Center—The CTP unit is not locked to a reference, and the clock is based on the natural frequency of the internal oscillator.

 - Ref (0–4)—The CTP unit is currently using a reference defined in the configuration.
Holdover—The CTP unit acquired a valid reference that was subsequently lost. The clock is biased to the reference until it is restored.

Reference Info:
- Valid—Indicates whether the reference is valid for the configuration (Yes) or invalid (No)
- PPM—Measured difference in parts per million from the current state of the clock and the reference.
- Count—Progress (1–5) of the system’s assessment of the reference before its use.

Holdover Info
- Valid—Indicates whether the reference is valid for holdover use.
- Value—Numerical value between 1 and 4096 used to profile the reference for holdover if the reference is lost.
- Count—Progress (1–5) of the system’s assessment of the reference before determining the holdover value.

Figure 100: Node Synchronization Status Menu

Node Synchronization Menu

Please select a number from the following list:

0) Back to Previous Menu
1) 1st Priority, Reference 0: Disabled
2) 2nd Priority, Reference 1: Disabled
3) 3rd Priority, Reference 2: Disabled
4) 4th Priority, Reference 3: Disabled
5) 5th Priority, Reference 4: Disabled
6) 32 kHz Ref Output: NO
7) Query Node Sync Status
8) Measure Ref Inputs
9) Calibrate Node to Current Reference

------------ Your choice [2]: 7

Node Synchronization Info

PLL Monitor Runtime: 1056
PLL Locked: NO
PLL Loss Seconds: 1056
Reference in use: Fixed/Calibrated

<table>
<thead>
<tr>
<th>Reference Info</th>
<th>HoldOver Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref</td>
<td>Valid</td>
</tr>
</tbody>
</table>
------------------------|--------------|
0: ----- ----- ----- ----- ----- ----- -----
1: ----- ----- ----- ----- ----- ----- -----
2: ----- ----- ----- ----- ----- ----- -----
3: ----- ----- ----- ----- ----- ----- -----
4: ----- ----- ----- ----- ----- ----- -----

Clear Counters? y[n]:
Figure 101: CTPView Node Synchronization Query Window
Chapter 5

Security Profile Menu

This chapter describes security profile options available on CTP systems through the command-line interface (CLI). The chapter contains the following sections:

- Overview on page 111
- User Management on page 112
- Password Management on page 112
- Secure Log Management on page 114
- Login Banner on page 115

Overview

The Security Profile menu is available from the Node Operations menu to administrators who have the root password. The Security Profile menu provides the following functions:

- User management
 - Adding or deleting user and administrator profiles
 - Displaying user and administrator profiles
- Password management
 - Displaying and managing password expirations
 - Displaying and managing password requirements
- Secure log management
 - Scanning and viewing the secure log
 - Following log entries
 - Copying logs to a remote host
 - Configuring and showing remote logging options
User Management

User management functions are provided by Option 1 from the Security Profile menu (Figure 102). The submenu allows the security administrator access to the following functions:

- Users and administrators logged in to the CTP—Users are able to execute menu commands to query the status of the ports and clocking. Administrators can configure the CTP system, configure loops and BERTs, and query the status of the ports and clocking.
- User and administrator accounts currently configured.
- Option to add or delete user accounts.

Figure 102: User Administration Menu

Main Configuration Menu

Please choose a menu item from the following list:
0) Exit Security Profile Menu
1) User Management
2) Password Management
3) Secure Log Management
4) Change login banner

Please input your choice [1]:

User Management Menu

Please choose a menu item from the following list:
0) Return to main menu
1) List users currently logged on
2) List user & admin accounts
3) Add user or admin accounts
4) Delete user or admin account

Please input your choice [1]:

Password Management

Password management functions are provided by Option 2 from the Security Profile menu (see Figure 102). The submenu (Figure 103) provides a list of password management functions.
Password Management Menu

Please choose a menu item from the following list:
0) Return to main menu
1) List user & admin accounts
2) Display password expiration details
3) Manage password expiration details
4) Show password requirements
5) Manage password requirements

When you select Option 2, you see the password expiration details for a user, including the life of the password, days before expiration before a warning is provided, maximum number of inactive days after expiration when the password can be changed, and the password expiration and inactivity dates. Figure 104 shows an example of the display of password expiration details.

Figure 104: Expiration Details

Displaying the password aging setting for a user.
Input the username to query, hit return to exit: jiml
Minimum: 10
Maximum: 90
Warning: 3
Inactive: 45
Last Change: Mar 31, 2005
Password Expires: Jun 29, 2005
Password Inactive: Aug 13, 2005
Account Expires: Jun 29, 2005

When you select Option 3 from the Password Management menu, you can configure the password expiration details of a specific user:

- Maximum number of days a password will remain valid (5 to 9999 days)
- Minimum number of days between password changes (0 to 90 days)
- Days before expiration that an expiration warning is provided (0 to 80 days)
- Number of days after expiration that the user account is locked out (0 to 100 days)

When you select Options 4 and 5 from the Password Management menu, you can view and configure password requirements. The configurable password requirements are as follows:

- Password length (0 to 20 characters)—No restriction is enforced if you enter 0.
- Minimum number of lowercase characters (0 to 6)—No restriction is enforced if you enter 0.
- Minimum number of uppercase characters (0 to 5)—No restriction is enforced if you enter 0.
- Minimum number of numerals (0 to 4)—No restriction is enforced if you enter 0.
- Minimum number of other characters (nonalphanumeric; 0 to 3)—No restriction is enforced if you enter 0.

Secure Log Management

The secure log provides an audit trail of user and administrator activity on the CTP system. Figure 105 shows the Secure Log Management submenu, which you access from the CLI Security Profile menu > Option 3. You can view the log by selecting Option 1—Scan/view log entries. Use the Page Up and Page Down keys to move through the log; press q to exit the log view. You can view the secure log in real time when you select Option 2—Follow log entries. Enter ^c to terminate the real-time view and return to the submenu.

Options 3 and 4 allow you to copy the secure logs to a remote host or to configure a host for remote logging. Option 5 shows the remote logging configuration.

Figure 105: Secure Log Management Submenu

Please choose a menu item from the following list:
- 0) Return to main menu
- 1) Scan/view log entries
- 2) Follow log entries
- 3) Copy logs to remote host
- 4) Configure remote logging options
- 5) Show remote logging configuration

Please input your choice [1]:

114 Secure Log Management
Login Banner

You can configure the login banner by selecting Option 4—Change login banner—which you access from the CLI Security Profile menu. The banner can have multiple lines, up to 80 characters. The input is complete when you enter a blank line. Figure 106 shows an example of changing the login banner.

Figure 106: Login Banner

Main Configuration Menu

Please choose a menu item from the following list:
0) Exit to shell
1) User Management
2) Password Management
3) Secure Log Management
4) Change login banner

Please input your choice [1]: 4
In order to input a banner message to be displayed to users before they log in, you will be asked to input alphanumeric text at the keyboard.

Would you like to continue? [n] y
Input your text, 80 characters to a line. Enter a blank line when you are finished.

CTP Security Banner
Lab Test Unit
Part 3

CTPView Server Installation and Configuration
Chapter 6
Installing the Software and Configuring Security Settings

The chapter describes how to install, manage, and configure CTPView and configure security features. The chapter contains the following sections:

- Overview on page 119
- Schemes 1 and 3—Installing or Upgrading the CTPView Server Operating System on page 121
- Scheme 2—Upgrade CTPView Software Only on page 124
- Scheme 4—Configuring Administrative Settings on page 126

Overview

All existing CTPView servers can upgrade to this CTPView release. However, your upgrade procedure will differ depending on your existing operating system (OS). This release of CTPView is compatible with CTPOS versions 4.3 and earlier.

CTPView version 2.2R2 introduced a new security-enhanced user login interface. To upgrade to this release (2.3R1), your CTPView server must be running Fedora Core 4 (FC4) OS. Additionally, enabling all of the security updates requires that certain server settings be configured by an administrator.

If the CTPView server you have is a Dell PowerEdge server, it was delivered with FC4 OS already installed. (Delivery of these units started in November 2006. Servers shipped before this date were built with FC1 OS installed.)

See Figure 107 on page 120 to determine which scheme you should follow to get your server ready for use.
Figure 107: CTPView Server Configuration Flowchart

Scheme 1—Install FC4 OS and CTPView Software

This procedure can be used for any system. The new installation of the operating system reformatst the server hard drives and deletes all existing data and settings. The advantage to this method is that you are guaranteed to have your server in a stable known state, with all of the security-related features enabled. The main steps are:

1. Saving existing server configuration and data.
2. Performing a new installation of FC4 OS.
3. Installing the current CTPView software.
4. Restoring the saved server configuration and data.

Scheme 2—Upgrade CTPView Software Only

This option is only for servers already running FC4 OS.
Scheme 3—Upgrade FC4 OS and CTPView Software

This option can be used for any system. The steps are similar to Scheme 1, but the hard drive is not reformatted. The main steps are:

1. Saving existing server configuration and data.
2. Upgrading the existing OS to FC4.
3. Installing the current CTPView software.

Only if there is a loss of data or a configuration error will you need to restore the saved configuration and data.

Scheme 4—Configure Administrative Settings Only

This option is for new Dell servers that are delivered with CTPView version 2.2R2 or later software already installed.

Schemes 1 and 3—Installing or Upgrading the CTPView Server Operating System

Follow these steps for Schemes 1 and 3.

Requirements

- CTPView server built according to Juniper Networks specifications
- CTPView Management System for Fedora Core 4 CDs for the current software version (disks #1 and #4)
- Monitor, keyboard, and mouse connected to server
- Ethernet connection to the network
- External storage device for saving the current CTPView data and settings

For FC1 servers, you must upgrade the CTPView software to at least version 2.1R2 if you want to back up your existing configuration and data before upgrading the server operating system. The upgrade is necessary to utilize the backup utility described in the next step.

The last released version of software that supports FC1 servers is 2.1R3. Install the required CTPView software before proceeding, and follow the separate installation instructions appropriate to the release version you will be installing.

If you are upgrading the CTPView software from a version earlier than 2.0.4R1, after upgrading you may need to update the server ethernet settings. Use the CLI menu: System Configuration > Display Current Configuration. Make any required modifications from within the CLI menu.
Saving Current Data and Settings to External Storage Device

Using the CTPView Data Backup Utility
Run the CTPView data backup utility from the CLI menu: Backup Functions > Save Current Settings and Data. The utility works for all systems.

The remote storage device can use any operating system; however, the backup utility function will automatically transfer the backup file only to a remote Linux system. A network path needs to exist between the upgrading server and the remote storage device being used for storing the backup file. If your remote storage computer is running another operating system, you will need to transfer the file with a copy utility compatible with that operating system.

Before running the backup utility, the hard drive on the upgrading server must have at least 25% free space. You can view the server’s current usage from within CTPView. Go to the Server Diagnostics pane, and look in the Mounted Filesystems section.

You can create additional free space on the hard drive by deleting old data files. There is an automatic CTPView function for this. In the CTPView navigation pane, click Server > Administration, the Administrative Functions pane appears. Click Automatic Functions. There are three options to choose from: older than 6, 9, or 12 months. If the amount of free space on the hard drive is less than 25% when the backup utility is run, the utility will prompt you to delete more old data files before continuing.

Using Server Synchronization
Ensure that there has been a recent data synchronization. Use the Manual Synchronization function if an update is necessary. From the Administrative Functions window, click Server Synchronization. The button to start the processes is in the Server Synchronization pane of the primary server. The server synchronization works only with two or more CTPView servers.

After the synchronization is complete, be sure to isolate the server being upgraded from the synchronization function of other CTPView servers. From the Server Synchronization pane of the server to be upgraded, set the Server Type to Primary Server.

Note that some functions in the Server Synchronization pane are not available if you are accessing the pane by means of a management console. You must connect to the CTPView server using the Ethernet connection.

Installing or Upgrading Operating Systems
Working from the monitor and keyboard connected to the upgrading server, insert the CTPView Management System for Fedora Core 4 CD #1 into the CD-ROM drive. Reboot the server by using the CLI: System Configuration > Reboot System.

The boot process stops at the Juniper CTPView Management System window. You have the choice here either to install a new instance of Fedora Core 4 or only to upgrade the existing operating system to Fedora Core 4. A new installation will reformat the hard drives and give you a pristine instance of the operating system.
At the bottom of the screen type either `ctpview-install` or `ctpview-upgrade` at the prompt for boot, and then press Enter.

The operating system update begins. On some early hardware systems a RAMDISK error may be reported at the beginning of the upgrade process. If this occurs, you must reboot the system using the power switch, leaving disk #1 in the CD-ROM drive. After the hard restart, at the “boot:” prompt type `mediacheck`, and then press Enter. The response will be “Could not find kernel image: mediacheck”; the “boot:” prompt will be reprinted. Now retype `ctpview-install` or `ctpview-upgrade`, and press Enter. The upgrade process should proceed normally.

When the upgrade process is complete, remove the last CD from the CD-ROM drive.

NOTE: Using the CTPView Management System CDs automatically installs the CTPView software on the system.

Restoring Configuration Settings and Data

This step is required if you installed a new instance of the FC4 OS. If the existing operating system was only upgraded, this step is necessary only in the unlikely event of data loss.

Using the CTPView Restore Utility

On the upgraded server, use the CTPView restore utility from the CLI menu by choosing Backup Functions > Restore Settings and Data. The utility works for all systems.

Before starting the restore utility, place the file that contains the data backup in the `/tmp` directory of the upgraded server.

The filename will be in this format: `ctpview_data_<hostname>_<date>.tgz`

Using Server Synchronization

The server synchronization works only with two or more CTPView servers. On the upgraded server, go to the Server Synchronization pane, and verify that the server is not listed or its Server Type is set as Not Selected.

On the CTPView server with the intact data (the primary server), go to the Server Synchronization pane. Set the upgraded server as Server Type Secondary Server, the primary server as type Primary Server, and any other listed server as type Not Selected.

Click **Manually Synchronize Network**. A new window opens. In the new window, click **Select All Hosts**, and then click **Synchronize Servers**.

After the synchronization program finishes, restore the Server Type selections for all servers to the values normally used for your network.

Review the Installation Log for Errors

From the command prompt, open the file `/var/log/ctpview_autoinstall.log`. This file has the log of all CTPView installations and upgrades beginning with version 2.1R1.
Find the beginning of the latest upgrade. There should be no unresolved errors reported.

Administrative Configuration Modifications

Follow the steps detailed in the section Scheme 4—Configuring Administrative Settings on page 126 to complete the setup of the server and ensure that the new security enhancements are properly set.

After completing that section return to this point and continue with the next step.

Verifying That the Operating Stem Was Successfully Upgraded

To verify whether the upgrade has been successful:

1. In CTPview, go to the Server Diagnostics pane.
2. In the System Vital section, verify the following information:
 - Kernel Version: 2.6.17-1.2142_FC4
 - Distribution Name: Fedora Core release 4 (Stentz)

The system information above can also be found in the heading on the CLI menu pages.

Validating the System Configuration

From the Server Diagnostics pane, click **Validate Server Configuration**. All items should be set to default values. For any highlighted items, follow the supplied directions to correct the problem.

NOTE: Upgrading from a pre-2.2 version of CTPView to the current software does not change the existing server passwords or accounts except to add the user account “juniper”. However, all the existing pre-2.2 CTPView user accounts are removed. Browser access to the CTPView is through a new login interface, which requires that an administrator create new usernames and passwords.

Scheme 2—Upgrade CTPView Software Only

For a successful installation, please follow the directions carefully. You can download updates from the CTP Support site at

https://www.juniper.net/customers/csc/software/ctp/

To install new software, you need the:

- Root account password
- Operating system version (FC1 or FC4)
- CTPView software version that is currently running on your system
To find this information:

1. Log in to the server CLI and type the command `uname -r`. If the output starts with 2.4, the operating system is FC1. If it starts with 2.6, the operating system is FC4.

2. To locate the current software version, open CTPView, and look in the header section of the page under the time.

For Systems with FC1

Because this release is supported only by FC4 systems, you will need to follow the steps described in Schemes 1 and 3—Installing or Upgrading the CTPView Server Operating System on page 121.

For Systems Running CTPView 2.2R1 or Earlier

Follow these steps:

1. Copy the archive file labeled complete to the /tmp directory on the server. The file name is in the format

 `ctpview_fc4_complete_<version>_<date>.tgz`

2. Extract the archive by typing `tar -xzvf <filename>`.

3. Run the installation script by typing the command `/tmp/upgrade` while logged in as root.

4. Complete the steps in the section Scheme 4—Configuring Administrative Settings on page 126 to complete the setup of the server and ensure that the new security enhancements are properly set.

5. To validate the system configuration, in CTPView click **Server > Server Diagnostics**, and then click **Validate Server Configuration**.

For Systems Running CTPView 2.2R2 or Later

Follow these steps:

1. Copy the archive file labeled web to the /tmp directory on the server. The file name is in the format

 `web_fc4_<version>_<date>.tgz`

2. Run the installation script by typing the command `upgrade` while logged in as root.
3. To validate the system configuration, in CTPView click **Server > Server Diagnostics**, and then click **Validate Server Configuration**.

NOTE: Upgrading from a pre-2.2 version of CTPView to the current software does not change the existing server passwords or accounts except to add the user account juniper. However, all the existing pre-2.2 CTPView user accounts are removed. Browser access to the CTPView is through a new login interface, which requires that an administrator create new usernames and passwords.

Scheme 4—Configuring Administrative Settings

If you have received a new Dell PE860 CTPView server or have upgraded your existing server, you must perform some additional configuration before using the system. To initialize the server for first use, complete the following tasks:

- Rack-Mounting the CTPView Server on page 127
- Connecting a Management Console on page 127
- Connecting an Ethernet Cable on page 127
- Powering On the CTPView Server on page 127
- Changing the BIOS Menu Password on page 127
- Changing the Server’s Default User Account Password on page 128
- Changing the Server’s Root Account Password on page 128
- Changing the GRUB Boot Loader Password on page 128
- Changing the MySQL Apache Account Password on page 129
- Changing the MySQL Root Account Password on page 129
- Configuring the Network Access on page 129
- Creating a Self-Signed Web Certificate on page 129
- Updating the CTPView Software on page 129
- Logging In with a Browser on page 130
- Changing the CTPView Default User Account Password on page 130
- Creating a New Global_Admin Account on page 130

For information about which procedure to use to upgrade the software or operating system for a working CTPView server, see Figure 107 on page 120.
Rack-Mounting the CTPView Server

Follow the steps in the Rack Installation Guide, which came packed with your CTPView Server to install the server in a rack.

Connecting a Management Console

Connect a monitor and keyboard to the appropriate ports on the server. You may also connect a mouse or make a connection using a HyperTerminal utility on another device. The server’s serial COM1 port connection is configured with these settings:

- Speed—9600 bps
- Data bits—8
- Parity—none
- Stop bits—1

Connecting an Ethernet Cable

Insert an Ethernet cable (RJ-45) connector into the 10/100Base-T (RJ-45) port labeled 1 until it clicks into place. Connect the other end of the cable to the appropriate Ethernet network.

Powering On the CTPView Server

Verify that the power source is operational and turned on. Inspect all grounding and power connections to the server chassis. Confirm that all connections are secure. Switch the power switch to ON, and monitor the LEDs on the front panel to verify that the system is booting properly.

Changing the BIOS Menu Password

For security purposes, change the default password for BIOS menu access. There is no username associated with this account.

During the boot process, while the Dell logo is displayed on the monitor, press F2. The boot process continues, displaying several messages on the screen. Wait until the process pauses and asks for the Setup Password. Enter the default password to continue. See Appendix B, Default CTPView Accounts and Passwords.

When you have gained access to the BIOS menu, highlight the line System Security, and press Enter. Highlight the line Setup Password. (Make sure that you have not selected System Password.) Press Enter, and type your new BIOS password. Press Enter, and then reenter your new password. Press Enter to continue.

Press the Esc key. In the pop-up window highlight the line Save Changes and Exit, and press Enter. The system will now restart.

NOTE: Good security practice requires that the BIOS menu password be changed at least yearly or upon administrator reassignment.
Changing the Server's Default User Account Password

For security purposes, change the default password for the server’s default user account.

Using the management console, log in as the default user. For the default account username and password, see Appendix B, Default CTPView Accounts and Passwords. Note that logging in using the root account is not allowed.

After successfully logging in as the default user, type `passwd` at the command line prompt. You will be prompted to select a new password. Alternatively, you may choose to delete the default user account at the conclusion of this configuration process.

⚠️ CAUTION: Do not delete the default user account until after you have created another user account. Otherwise, you will not be able to log in to the server.

Changing the Server's Root Account Password

For security purposes, change the default password for the server’s root user account.

After logging in as a nonroot user, switch to the root user account. For the default root account password, see Appendix B, Default CTPView Accounts and Passwords. At the command prompt type `su -` and then enter the password when prompted.

After successfully logging in as the root user, type `passwd` at the command line prompt. You will be prompted to select a new password.

⚠️ NOTE: Good security practice requires that the root account password be changed at least yearly or on administrator reassignment.

Changing the GRUB Boot Loader Password

For security purposes, change the default password for the GRUB Boot Loader menu.

Using the management console, log in as the default user, and then switch to the root user account. At the command prompt type `menu`. The CTPView Configuration Menu utility will open. Make a note of the CTPView version number displayed in the heading. You will need it later when checking for upgrades.

Select Option 8 (GRUB Functions). Then select Option 1 (Change GRUB password), and follow the prompts.

⚠️ NOTE: Good security practice requires that the GRUB Boot Loader password be changed at least yearly or on administrator reassignment.
Changing the MySQL Apache Account Password

For security purposes, change the default password for the MySQL server Apache user account.

Using the management console, log in as the default user, and then switch to the root user account. At the command prompt type *menu*. The CTPView Configuration Menu utility will open.

Select Option 6 (MySQL Functions). Then select Option 2 (Change MySQL Apache password), and follow the prompts.

NOTE: Good security practice requires that the MySQL Apache password be changed at least yearly or on administrator reassignment.

Changing the MySQL Root Account Password

For security purposes, change the default password for the MySQL server Root user account.

While in the main screen of the menu utility, select Option 6 (MySQL Functions). Then select Option 1 (Change MySQL Root password), and follow the prompts.

NOTE: Good security practice requires that the MySQL root password be changed at least yearly or on administrator reassignment.

Configuring the Network Access

While in the main screen of the menu utility, select Option 2 (System Configuration). Answer *y* to continue. Select Option 1 (Display Current Configuration). Use Options 2 through 5 to configure the server to operate on your network. Exit the submenu to implement your changes.

Creating a Self-Signed Web Certificate

While in the main screen of the menu utility, select Option 4 (Advanced Functions). Then select Option 4 (Reset CTPView Self-Signed Certificate). Answer the list of questions that will be displayed. When asked for the Common Name, enter the IP address of the server. Otherwise, at login your users' browsers will report a domain name mismatch when users connect to the server. In any event, the browser connection will be successfully completed.

Updating the CTPView Software

From a computer with access to the Web, use a browser to connect with the Juniper CTP Support site at

> https://www.juniper.net/customers/csc/software/ctp/

You need your Juniper support username and password to access this site. If an update to the CTPView software is available, download the new archive along with the release notes. Your current CTPView version is listed in the header of the CLI menu utility.
After reviewing the release notes, see Scheme 2—Upgrade CTPView Software Only on page 124 to install a newer version of the CTPView software on the server. Then return to this point, and continue with the remaining steps below.

Logging In with a Browser

In the address bar of a browser enter the address

https://<your server IP address>

Your browser then issues a warning that the security certificate presented by the website was not issued by a trusted certificate authority. Make the selection to accept the certificate, and continue.

The CTPView login page will load. Log in as the default CTPView user. For the default account username and password, see Appendix B, Default CTPView Accounts and Passwords.

Changing the CTPView Default User Account Password

For security purposes, change the default password for the CTPView default user account.

Click Edit My Account. Enter the new password. For help in determining acceptable passwords, click Password Help. Return to the login screen by clicking Return to Login Page.

Creating a New Global_Admin Account

The new security-enhanced CTPView interface introduced with version 2.2R2 allows only one active session per username. If a second user were to attempt to log in using the same username in an active session, both clients’ IP addresses and the username would be locked out from access for a preset lockout period. It is therefore imperative that each user have his or her own account and that the default user account not be used for normal access.

After logging into CTPView using the Juniper Networks user account, click Admin Center.

Add a new user account for yourself. Make sure that the user level is set to Global_Admin in order to access the CTPView User Administration Center.

After creating a new Global_Admin user account, log out of CTPView. Then log in using your new user account.
Part 4
CTPView Server Functions
Chapter 7
CTPView Administration Center

The chapter describes the CTPView Administration Center. It contains the following sections:

- Overview on page 133
- Accessing the Admin Center on page 134
- Navigating Within the Admin Center on page 134
- Setting Global CTPView Access on page 134
- Admin Center Option Descriptions on page 134

Overview

CTPView version 2.2R2 introduced a new security-enhanced login interface. There are now three user levels:

- **Net_View**—Users belonging to this class are restricted to query-only access to CTP systems. This class was previously referred to as query-only.

- **Net_Admin**—Members of this user level are able to configure CTP systems; however, they do not have the ability to create or modify CTPView user accounts. This class was previously referred to as administrators.

- **Global_Admin**—This is a new user class. These users have all the privileges of the Net_Admin class. They are also able to create and modify user accounts.

Net_View and Net_Admin users will see a few new features. The significant ones are a new login dialog, a browser interface to change their own password, the ability to log out of CTPView, and more secure password requirements. These changes do not affect the appearance or functionality of the CTPView query or provisioning interface that previous users are accustomed to.

Each CTPView user has a profile that describes his or her privileges and restrictions, referred to here as user properties. For convenience, users are assigned to user groups. These groups have a set of default user properties that are transferred to new users; however, Global_Admin users can modify any of the user properties on a per-user basis.
Accessing the Admin Center

Only members of the new user class Global_Admin have access to the Admin Center, where CTPView user and password profiles are managed. After your successful login to CTPView, the window will display four buttons, one of which is labeled Admin Center. Click it.

Navigating Within the Admin Center

In the header of the Admin Center screen is a row of category names: Users, Groups, Prohibit, Delete, Passwords, Login/Logout and Display All.

Display All is a special case. Clicking it will show all option dialogs in a single window. This view is useful if you do not know under which category the option you are looking for is located.

Hovering your mouse over any of the other category names displays its subcategories or options. You can then click on the option to open its dialog box. Alternatively, you can click on the major category link, which displays all its subcategories in a single window.

Setting Global CTPView Access

Global_Admin users can block or reinstate global browser access to the CTPView server. When access is allowed, which is the default setting, a green button is prominently displayed at the top of the Admin Center that contains the text ACCESS To CTPView Is Allowed. Clicking this button toggles the option to deny access after the user confirms his or her choice. The button background changes to red, and the text reads ALL ACCESS To CTPView Is BLOCKED. Clicking the button again restores access.

Admin Center Option Descriptions

See Table 11 for a description of all Admin Center options.

Table 11: Admin Center Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Users</td>
<td>This is a view-only table that lists all users who are logged into CTPView. In addition to the username, the user browser’s IP address is listed, along with the time the browser session began, the time of last activity, and the current period of inactivity.</td>
</tr>
<tr>
<td>All Users</td>
<td>This is a view-only table that displays all users who are in the CTPView user database. Also listed is each user’s group affiliation, the user level, and the time of last login.</td>
</tr>
</tbody>
</table>
Table 11: Admin Center Options (continued)

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add New User</td>
<td>Use this dialog box to add new CTPView users. You are required to type the new username, assign the new user to an existing user group by selecting from a list, and create a user password. The password requirements are displayed when you click the link Password Help. The new user is required to change this initial password the first time he or she attempts a login. The username requirements for length are a minimum of 6 characters and a maximum of 30. The allowed characters are the same as for passwords: either alphanumeric or the characters @ { } # % ~ [] = & , - _ ! The new user is then assigned the default user properties of the group you selected. If you wish to alter the particular user’s properties, use the Modify User Properties option after creating the new user.</td>
</tr>
<tr>
<td>Modify User’s Group Affiliation</td>
<td>We expect that user groups will be used to group users who share a common set of user properties; however, shared properties are not a requirement. User groups can be used simply to label a set of users irrespective of their individual user properties if that suits your particular situation. To change the group a user belongs to, select the username and group from the drop-down lists, and click Update Group. Changing group affiliation does not alter the current user properties of the user.</td>
</tr>
<tr>
<td>Modify User Properties</td>
<td>When you select a user from the drop-down list, the current user properties for that user are displayed. You can then change any of the user properties by using the drop-down menu for each property. The property labels are self-explanatory. The No Access Date property is a special case. When you enter a date here, the user’s access will be blocked as of that date. This option overrides all other properties.</td>
</tr>
<tr>
<td>All Groups</td>
<td>This is a view-only table that displays all groups and the associated default user properties for its members. Note that any individual member can have user properties that are different from the default values.</td>
</tr>
<tr>
<td>Add New Group</td>
<td>We expect that user groups will be used to group users who share a common set of user properties. However shared properties are not a requirement. User groups can be used simply to label a set of users irrespective of their individual user properties if that suits your particular situation. Enter the new group name, and select a default user level from the drop-down menu. The new group will be assigned the following default property values: Max Days Between Logins—30 Min Password Age Before Change—1 Max Valid Password Age—60 Days Before Expire Start Warning—7 Days Before No Access After Expire—14 Use the Modify Group Properties option if you wish to change these default values. The group name requirements for length are a minimum of 6 characters and a maximum of 30. The allowed characters are the same as for passwords: either alphanumeric or the characters @ { } # % ~ [] = & , - _ !</td>
</tr>
</tbody>
</table>
Modify Group Properties

When you select a group name from the drop-down list, the current default user properties for that group are displayed. You can then change any of the user properties by using the drop-down menu for each property. The property labels are self-explanatory. The No Access Date property is a special case. When you enter a date here, the user’s access will be blocked as of that date. This option overrides all other properties.

Changes made to the group default user properties will not affect current members of the group unless you select Update current members before clicking Update Group Properties.

Current Prohibited Users

This is a view-only table that displays all users who have been manually added to this category. For each member of this list, the following information is also displayed: the time added to this category, by whom, and the last time CTPView was accessed.

Designate Prohibited User

Individual users can be blocked from accessing CTPView for an indefinite period. Select the user from the drop-down menu, and click Add Prohibited User.

Reinstate Prohibited User

Select the user from the drop-down menu, and click Reinstate Prohibited User. The user will be removed from the prohibited list. However, if the user is excluded from access to CTPView due to some other cause, such as an expired password, those restrictions are still in effect.

Delete Prohibited User

Delete a user on the prohibited list from the CTPView user database.

Delete User

Delete a user from the CTPView user database. If the user is on the Prohibited User or the Inactive User List, the username will not appear here. To remove those users, go to the delete option for those categories.

Delete Inactive User

Delete a user on the Inactive list from the CTPView user database.

Delete Group

Delete a user group and all of its members. If the group has members, you will be asked to confirm your desire to delete all the users belonging to the group before the request is executed.

Re-Use Password Limit

When a user changes a password, he or she is prohibited from reusing a password before using a certain number of new passwords. This option sets the number of new passwords that must be used before a reused password is allowed.

Excluded Passwords

The administrator can create a list of passwords that are not allowed. Use this option to add or remove words from the excluded list.

Modify Password Requirements

The required password properties can be modified here. Parameters that can be specified are minimum length, maximum length, minimum number of lowercase letters, minimum number of uppercase letters, minimum number of digits, and minimum number of other characters. Changes do not affect existing passwords.

Logout Users

Any active user, including oneself, can be logged off the system.

Auto Logout

This option sets the allowed period of inactivity of a logged-in user after which time the user will be logged out automatically.

Lockout Period

When a user exceeds the allowed failed login attempts or tries to open multiple CTPView sessions from unique IP addresses, the user will be locked out of accessing CTPView for the lockout period. This option sets the lockout period.

Login Limit

This option sets the number of allowed failed login attempts before a user is locked out. The user lockout is effective for the lockout period.
Clear Counters Two counters are associated with each user. One counter is the number of failed login attempts. This counter is automatically reset to zero after a successful login. The other counter is the number of reminders that a user receives to change his or her password. This counter is automatically reset after the user has selected a new password.

If a counter exceeds the allowed limit, the user is locked out of CTPView access. Use this option to restore access by manually resetting the counters to zero.

UnLock IP When a user attempts to access CTPView with a currently active username from a second IP address, the username and both IP addresses are locked out for the lockout period. You can remove the IP addresses from the list.

IP Access Filter The IP address of the user’s browser can filter access to CTPView. The default setting is to allow access from any IP address.

Defining a new filter is a two-step process

1. Specify an IP address or range of IP addresses.
2. Choose whether to allow or deny the specified address or range.

You can define multiple filters. In case of conflict, a rule to deny will override one that allows an IP address.

With this option, you can also remove filters from the set of rules.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear Counters</td>
<td>Two counters are associated with each user. One counter is the number of failed login attempts. This counter is automatically reset to zero after a successful login. The other counter is the number of reminders that a user receives to change his or her password. This counter is automatically reset after the user has selected a new password. If a counter exceeds the allowed limit, the user is locked out of CTPView access. Use this option to restore access by manually resetting the counters to zero.</td>
</tr>
<tr>
<td>UnLock IP</td>
<td>When a user attempts to access CTPView with a currently active username from a second IP address, the username and both IP addresses are locked out for the lockout period. You can remove the IP addresses from the list.</td>
</tr>
</tbody>
</table>
| IP Access Filter | The IP address of the user’s browser can filter access to CTPView. The default setting is to allow access from any IP address. Defining a new filter is a two-step process
1. Specify an IP address or range of IP addresses.
2. Choose whether to allow or deny the specified address or range.
You can define multiple filters, In case of conflict, a rule to deny will override one that allows an IP address. With this option, you can also remove filters from the set of rules. |
Chapter 8
Support for CTP Features

The chapter describes additional features of the CTP operating system. It contains the following sections:

- SysMon on page 140
- Node Settings on page 141
- AutoSwitch on page 142
- Virtual IP Designation for CTP Systems on page 144
- Autobaud Support on page 144
- DTE Interface Support on page 145
- Hardware Monitoring on page 145
- IPv6 Support on page 145
- PWE3 Support (SAToP) on page 145
- Transparent Mode Support on page 146
- VLAN Support on page 146
- Support for Multiple Ethernets on CTPs on page 146
- Packet-Based Serial (PBS) Port Configuration on page 147
You can configure the CTP system to monitor critical software daemons by providing AutoSwitch and Port Forwarding capabilities. When these functions are enabled, the system will automatically regenerate these processes if they fail unexpectedly. In addition to SysMon settings, you can use the SysMon window to configure SNMP and SNMP trap settings, as shown in Figure 108.

Figure 108: SysMon Configuration Window
Node Settings

The Node Settings window allows you to configure RADIUS, NTP, and system logging (syslog) settings (Figure 109). You can also configure the CTP port speed range if applicable to the CTP system.

Figure 109: Node Settings Configuration Window
AutoSwitch

The CTP AutoSwitch feature monitors the status of a circuit connection, and will reconfigure the remote port to an alternate port if the circuit fails to operate. You configure AutoSwitch using CTPView. AutoSwitch is generally used for one of two applications, as shown in Figure 110. The first application is the automatic switching of circuits from a primary hub site to an alternate hub site in the event of a failure. Automatic switching allows communications to be quickly restored in the event of a major site outage, as might occur with a power failure.

The second application is switching a circuit between two redundant CTP systems connected by a Y cable. This redundancy feature quickly restores communications when a system is not reachable or has failed, and is especially valuable at locations that do not have maintenance personnel or spares.

Figure 110: AutoSwitch Applications

AutoSwitch Application – Automatic Switching to Secondary (Back-up) Site

![AutoSwitch Application – Automatic Switching to Secondary (Back-up) Site](image)

AutoSwitch Application – Y-Cable Redundancy

![AutoSwitch Application – Y-Cable Redundancy](image)

You access the Autoswitch configuration window by selecting the AutoSwitch button in the System Configuration window (Figure 111 on page 143). The configurable Check Period value is the time period between the checking of ports to determine the circuit status. You can configure this value to 3, 5, 10, 15, 20, 30, 45, 60, or 120 seconds. You configure the Switch Count value on a per-port basis. Switch Count specifies how many consecutive checks are required without a circuit being
established before the primary port is reconfigured to an alternate port. You must properly configure the alternate port to establish a circuit connection to the AutoSwitch port; AutoSwitch will not configure the alternate port. You can set the Switch Count value to 1, 2, 3, 4, or 5. We recommend that Switch Period and Switch Count be configured to values that prevent the circuit from switching in the event of a short transient outage.

You can configure the CTP system to periodically check the connectivity to the AutoSwitch primary port after a switch to the alternate. Setting the Secondary Revert value to Enabled allows the CTP system to reconfigure the port back to the primary when it is available.

You can verify the connectivity between a CTP port running AutoSwitch and its primary and secondary remote ports by using the Primary and Secondary Host Test buttons. When selected, the button will change to Testing while the system is checking connectivity. The results of the test will show Success with a green background or Failure with a red background. When you click Connection Check All, the system checks the connectivity to all primary and secondary hosts, and updates the display with the results.

Figure 111: CTPView AutoSwitch Configuration Window
Virtual IP Designation for CTP Systems

Creating and selecting CTP virtual IP addresses are now separated into two distinct operations.

To create the virtual IP addresses that will be associated with a CTP system, click Node > Maintenance > Configure [CTP] Virtual IPs. Follow the simple instructions at the top of the pane. You can create a maximum of 56 virtual IP addresses. All current virtual IP addresses are shown. The system checks new IP addresses for proper format before submission.

To designate a source virtual IP when you configure a remote port, select the virtual IP from a drop-down menu by clicking Port > Configuration > Advanced Settings and then selecting Source Virtual IP.

Autobaud Support

Autobaud configuration depends on your first configuring a circuit to work properly in an adaptive clocking configuration. You can use many methods to configure the clocking that will allow adaptive clocking to work properly. Generally, however, you must configure one end to generate packets in the net-bound direction using the TT (user) clock, and then you must configure the other end for adaptive clocking.

From Port > Configuration, you can then switch this circuit over to Autobaud:

- On the adaptive end, set DDS Synthesizer Source in the custom clocking menu from Adaptive to Autobaud. This setting enables the monitoring of OAM packets for the other end TT frequency, and processing to accommodate frequency changes that are detected.

- On the other end, it is important to enable the port advance configuration for Only High TT Checking. This setting keeps the port from going to the TtFail state when the incoming user clock fluctuates, and allows a TT clock in the range of 0 to the configured port rate. However, it does check for the TT rate going above the configured port rate, and will send the port to the TtFail state if it goes above. This process protects the system from an overspeed TT causing problems for the port, CTP system, or network.

It is also important to set the port rate on both ends for the maximum required port operating speed. Although the port will autobaud to any rate between 0 and the configured rate, it will not operate above the configured speed of the port.
DTE Interface Support

In the Port > Configuration window, you can configure a port for DTE Interface mode. In this mode:

- There will be only one “canned” [meaning default?] clock configuration option available, which is DTE, All Clocked by Ext Clk. The other option available is “custom”.

- The labels for the eight signaling parameters and the signaling menu options are labeled for both DCE and DTE encoding. Refer to the correct label when you choose the configuration options. The convention used is to list the DCE label first, followed by the DTE label.

Hardware Monitoring

CTPView does not provide a user interface for displaying sensor data from CTP platforms. You may use SNMP or the CTP CLI to obtain the hardware sensor data.

IPv6 Support

CTPView supports both IPv4 and IPv6 address protocols for CTP products, including the coexistence of both protocols on the same equipment. However, the current CTP operating system does not support some features—such as virtual IP, PWE3 and PBS. They may be supported in later releases.

The CTPView server is IPv6-capable. You configure an Ethernet port through the CLI menu. All ethernet ports are configurable and can have routes associated with them.

PWE3 Support (SAToP)

Structure-Agnostic Time Division Multiplexing (TDM) over Packet (SAToP) configuration appears as Port Configuration options after you have configured the port to use the T1/E1 interface type. You must install a T1/E1 DCARD before the configuration options are visible.

When the SAToP option is set to Enable, the packet size will be set to the default value of 192, and the Clock Option Menu will be set to CTP is Loop Timed. Both of these values may be modified if desired.

SAToP ports use the source UDP port as the circuit identifier. It must be the same on both pseudowire emulation (PE) endpoints and cannot be used by another SAToP port on either PE endpoint. The source UDP port is used instead of the remote port to define the circuit, and the configured remote port is not used during SAToP operation. All other configuration options are the same as those for standard CTP ports that are configured to use the T1/E1 DCARD, including buffer settings, remote node IP address, and clocking options.
Transparent Mode Support

Transparent circuit mode is available only on CTP2000 products and appears as a serial encoding Port Configuration option.

Transparent mode is intended to be used only for DCE NRZ serial circuits (default port configuration). Although it is possible to choose the interface electrical standard (EIA-530A, RS-232, V.35), it is not intended to work in conjunction with any other interface-related configurations (DCARD, encoding, interface mode) and is therefore not supported. Note that the menu interface and CTPView may not disallow these nonsupported configurations, so be careful if you choose these configurations.

BERTs will not work on transparent ports because of the location of the BERT tester in the data path.

Loops may not work on transparent circuits. The serial loop function connects the SD and RD leads of the interface (in the direction specified), and will work only if a transparent circuit actually uses these leads for data transport. You may use the transparent leads for any purpose you see fit.

When you select the TRANS serial encoding option, three additional advanced port configuration options are made available: 16-Bit Jitter Absorption FIFO, Invert FIFO Write Clock, and Invert FIFO Read Clock.

VLAN Support

You configure CTP VLANs through the CLI. CTPView displays all the configured CTP IP addresses (such as ethernet, virtual IP, and VLAN) in its port selection drop-down menus.

Support for Multiple Ethernets on CTPs

Also labeled as network interface devices (NIDs) in CTPView, this information is gathered from several sources. The actual configuration of the CTP interface device is done on the CTP itself. CTPView assembles, stores, and updates this information for display to the user during provisioning of the data circuits.

NID Selection

When in the port configuration process, as part of the Remote Port selection, you are presented with a list of NIDs and their respective IP addresses to choose from as the final step in designating the remote port. To help you identify the current NID/Remote Port pairings, the Remote Port display in the Port Configuration and AutoSwitch Configuration panes now show the IP address of the port along with the hostname.
Updating NID Information

The NID information on CTPView is compiled and updated through these methods:

- When you add a CTP host to the CTPView database, you enter values for the management and default data IP addresses. If the CTP operating system is 4.2R1+, the CTP system is queried for NID information.

- During the CTPView-to-CTP connection process, if the CTP operating system is 4.2R1+, the CTP system is queried for all of its NID information.

- You can manually update NID information by clicking **Update NID Info** in the Port Configuration pane on the Remote Port line.

Packet-Based Serial (PBS) Port Configuration

During the CTP connection process, CTPView determines whether the PBS feature is supported on the CTP system. If it is, CTPView will present a modified set of configuration panes. Currently, the CTP 1000 series running CTP operating system 4.2+ supports this feature.

When CTPView is connected to a PBS-capable CTP system, the navigation pane shows submenus for Port Configuration and Port Database Query. These submenus are split into two categories: CE ports (the default type) and PBS ports. Because different configuration options are available for these two port types, separate port configuration panes are necessary.

PBS Port Designation

To enable/disable PBS on a port, after making a CTP connection, click the gray **Ports** button inside the blue connection box at the top of the CTPView navigation pane. A configuration pane is displayed.

Not every port on a PBS-capable CTP system is available for designation as a PBS interface. The configuration pane displays which ports are available for PBS selection and what CE/PBS type has currently been assigned to each port.

In the main pane, a set of simple instructions explains how to interpret the display and how to modify the current configuration.

Additional links to this CE/PBS configuration pane are in the Port Configuration pane at the top of each column directly under the port numbers.

Port Display Limits

The CE/PBS configuration pane shares its window with the Ports to Display selection panel. The pane contains a set of simple instructions on how to interpret the display and how to modify the current configuration.
You can select a maximum of 4 ports of each type—CE or PBS. When a change in the configuration of CE/PBS Interface Type results in the maximum number of ports to be displayed of any one type to exceed 4, only the first 4 ports of each type will remain selected, starting with port 0. You are notified when this happens. If you want to change this selection, you can use the normal process to modify the selected Ports to Display.
Chapter 9
CTPView Server Management Functions

This chapter describes the administration of the CTPView server, and about using the CTPView to monitor, manage, and maintain CTP systems.

This chapter contains the following sections:

- CTPView Server Administration on page 150
- Adding and Deleting CTP Hosts and Groups on page 150
- Managing CTP Network Hosts on page 151
- Configuring E-Mail Notifications on page 152
- Configuring Automatic Functions on page 153
- Node Maintenance Functions on page 155
- Saving Port, Node, and CTP Configurations on page 156
- Formatting Maintenance Reports on page 161
- Network Monitoring on page 162
- Statistics and IP Performance Reports on page 164
- Automatically Saving CTP System Configurations on page 169
- CTPView Connection Throttling on page 169
- Support for Tabbed Browsers on page 170
- Server Configuration Validation on page 170
- SSH Port Forwarding on page 171
- Updating CTP Software Directory on page 171
- Burning CTP Compact Flash Media on page 172
- Network Monitoring on page 172
CTPView Server Administration

Figure 112 shows the CTPView Administrative Functions window. This window allows you to add and delete CTP hosts and groups, manage and update the configuration of existing CTP hosts, configure e-mail notifications, configure automatic functions, and synchronize CTPView servers. Information about using these functions is provided in the following sections.

Figure 112: CTPView Administrative Functions Window

Adding and Deleting CTP Hosts and Groups

CTPView allows you to create groups that multiple CTP hosts are then logically associated with. The host groups allow easier connection and monitoring of CTP systems, especially as networks become large and complex. Group names can have 3 to 20 characters that include letters, numbers, hyphens, and underscores. The groups and names are created based on your requirements, and are often based on geography or application type. If you do not define a group, then the CTP hosts are placed in the Default group.
The **Connected to** area in the upper left pane provides a good example of how host groups are used. The available groups are first displayed in the window, and then the CTP hosts within the group are displayed after the group is selected. This process makes connecting to a CTP system easier compared with a connect window that lists every CTP host in a large network.

Figure 11.2 on page 150 shows the area that you use to add a host group and the area that you use to delete a selected group.

NOTE: Deleting a group will delete all the CTP hosts within the group. Use the Network Hosts window to move CTP hosts to other groups before the group is deleted.

You add CTP systems to CTPView using the Add Remote Host field and drop-down menus (Figure 11.2 on page 150). To successfully add a CTP host, fill in the following fields, or select the appropriate parameter from the drop-down menus:

- **Host Name**—A unique name for the CTP host.
- **IP—Management, IP—Default Data**—IP addresses used for CTPView management connection and circuit data flow.
- **Password**—Password on the CTP host that CTPView will use when accessing the system.
- **Menu Group**—The group that the CTP host is be logically associated with. The available group names are displayed, and Default is used when no groups have been defined.
- **Chassis Model**—CTPView will determine the type of CTP1000 system. You must specify the type of CTP2000 system when applicable (CTP2008, CTP2024, and CTP2056).
- **Network Monitoring**—CTPView is capable of monitoring remote CTP hosts (see Network Monitoring on page 162). The drop-down list provides the option of including or excluding the CTP host for monitoring.
- **Access**—When selected for monitoring, CTPView must periodically access the CTP host. The type of access can be either SSH or SNMP, as specified in this drop-down menu.
- **SNMP Community**—Defines the SNMP community of the CTP host.

Managing CTP Network Hosts

The Manage Network window, which you access by clicking **Manage Network Hosts** in the Administration Functions window, allows you to change the configuration of an existing host (Figure 11.3 on page 152). After selecting the appropriate group, you are able to change the type of CTP system, group association, monitoring, monitoring connection type, and SNMP community of any CTP host within the selected group. The changes do not take effect until you click **Submit**.
Configuring E-Mail Notifications

You may want to create e-mail notifications based on specific server and network problems identified by CTPView. As shown in Figure 114, you can create a list of specific e-mail addresses to be notified based on the type of problem. The problems that can initiate an e-mail notification are specified in the following CTPView areas (Figure 114):

- CTP host Unreachable
- CTP has become Check Host
- CTP Port has become Active–Down
- CTP Port has become Assessing
- CTP Port has become Active–Up
- CTP Port has become Disabled
Figure 114: Configuring E-Mail Notifications with CTPView

Configuring Automatic Functions

You configure actions that should periodically occur in the CTPView Automatic Functions window (Figure 115 on page 155). This window specifies the following actions:

- Verify Email Notification Script Is Running—A software script runs in the background to create the e-mails used for notifications. This automatic function verifies that the script is running and restarts the script if necessary.

- Gather Remote Host Statistical Data—This function retrieves the data used to create the plots of IP Buffer Usage, Delay Jitter, Round Trip Delay, and Missing Packets.

- Synchronize Secondary Servers—This function copies information from the primary server to each secondary server. The information includes SSH keys, archived port configurations, e-mail notifications, port forwarding settings, trigger point for hard drive warning usage level, and CTP identification information (IP address, host name, group name).
Synchronize Secondary Servers and Remote Hosts—This function copies information from the primary to each secondary server and CTP host. The information transferred to the secondary servers includes SSH keys, archived port configurations, e-mail notifications, port forwarding settings, trigger point for hard drive warning usage level, CTP identification information (IP address, host name, group name) and CTP statistical data. The function copied from the primary server to CTP hosts includes each secondary server’s SSH key.

Remove Outdated Data Files (over 6, 9, or 12 months)—CTPView removes older files (typically CTP host statistical data) based on the age of the data. The age criterion can be set to 6, 9, or 12 months. We recommend that you configure the automatic function to ensure that the file system does not become filled.

Update Network Interface Device Information—CTPView collects network interface device information. Use this automatic function if you configure virtual IP addresses using the CLI or if you use multiple CTPView servers to configure CTP hosts and virtual IP addresses.

Save Current CTP Host System Configuration—CTPView saves every CTP host configuration at the specified time interval. CTPView will save the 10 most recent configurations.

In the CTPView Automatic Functions window (Figure 115 on page 155), you select the action in the area titled Add New Automatic Entry for Server serverName, and you specify when the action should take place. For example, the action being added in Figure 115 would occur every day at 01:00.

It may be necessary for an action to occur multiple times in a day. To add this configuration, you can add multiple entries for the same action and specify a different time for each entry. In the example shown in Figure 115, the Gather Remote Host Statistical Data action is to occur four times every day—at 00:45, 03:45, 05:45 and 8:45.

You can limit the bandwidth used to copy and retrieve information from the CTP hosts by using the Modify Throttle Value for Server serverName area in the CTPView Automatic Functions window. Throttling the bandwidth is typically not necessary and may be required only when the local LAN segment experiences significant load and bandwidth limitations.
Node Maintenance Functions

The Node Maintenance window (Figure 116 on page 156) allows you to perform functions such as distributing and updating CTP software, saving port and node configurations, saving and restoring CTP databases, and creating reports that detail the provisioning of ports. Other functions provided are similar to those in the Node Operations command-line interface (CLI) menu, which includes opening SSH connections, shutting down and rebooting systems, and modifying banners.
CTPView allows you to save a port configuration using your naming convention. You can apply the saved port configuration as a template to other ports when you are configuring them. Reusing the configuration eliminates repetitive entries for common configurations. The saved configuration includes all the port attributes except the remote host and port.
Figure 117 shows the window for saving a port configuration. You enter a name above the port whose configuration you want to save, and then you click **Save**.

Figure 117: Saving a Port Configuration with CTPView
You can apply a saved port configuration to another port by using the Port Configuration window (Figure 118). First, select the saved port configuration from the Archived Port Configuration drop-down menu, and then click Load Here on the appropriate port(s). The configuration is loaded when you click Load Selected Archive. The changes do not take effect on the CTP system until you click Submit.

Figure 118: Applying a Save Port Configuration with CTPView
You access the Node Configuration window (Figure 119) by selecting **Save Node Configuration** in the Node Maintenance window (Figure 116 on page 156). This window allows you to save the clock configuration for the CTP system as a template, which you can then apply to other node configurations.

Figure 119: Saving a Node Configuration with CTPView
You can save the current complete CTP configuration or restore an earlier configuration by using the Save and Restore CTP System Configuration windows (Figure 120). You access these windows by selecting the **Save/Restore CTP Configuration** button in the Node Maintenance window (Figure 116 on page 156).

You can also save multiple configurations for future restoration. Configuring Automatic Functions on page 153 describes how you can configure CTPView to periodically retrieve and save the CTP configuration. You can restore these saved configurations by using the Restore CTP System Configuration window (Figure 120). Up to 10 of the latest configurations are saved. The oldest configurations are automatically deleted when 10 are exceeded.

Restoration of a configuration requires the CTP system to reboot, which occurs automatically. CTPView monitors the system during this process and provides a confirmation when the CTP system returns online with the restored configuration.

Figure 120: Saving and Restoring the CTP Configuration with CTPView

Updating CTP Software

You can use CTPView to manage the distribution and installation of CTP operating system archives. The software update window (Figure 121), which you access from the Node Maintenance window (Figure 116 on page 156), allows you to select from the available archives provided and then to select the CTP system(s) to be updated. You can select all the CTP systems, or you can specify a system by pressing the Ctrl key when you select each system. CTPView updates the target CTP systems sequentially, and provides a window with the status of the upgrade process.
Node maintenance reports detail how ports are provisioned on one or more CTP systems. You can format reports for printing and sort the columns.

The Channelization Report provides a summary of all the ports and includes the source IP address, remote IP address and port, interface type, and port speed. The CCSD report includes only ports that are configured, and the Non-Configured Port Report shows ports that are in the default configuration. Figure 122 shows an example of the Channelization Report.
Network Monitoring

When Network Monitoring is in the Running state, CTPView periodically checks the reachability of CTP hosts if the host is configured with network monitoring enabled. If the host is reachable, CTPView obtains the status of the CTP host ports. Selecting Network Monitoring in the CTPView navigation pane opens the network monitoring window, which provides a summary of both the CTP host reachability and the port status. The highest alarm level on a CTP percolates up to the Group icon.

Figure 123 on page 163 provides an example of a network monitoring window. When you select a group, the window displays all CTP hosts within the group. The status or alarm associated with each CTP host and port is displayed:

- Unreachable (alarm)—The CTPView server cannot reach the CTP host. This alarm could be due to a IP network problem, a site problem (such as a power outage), or a CTP equipment or configuration issue.

- Active–Down (alarm)—The port on the CTP system is configured as active, but the port state is Down (that is, no circuit is established to the port).

- Assessing (alarm)—The problem is being assessed, and a user has placed the CTP host into an Assessing state, as described below.

- Active–Up (status)—The port is configured as active, and the port state is Up (that is, a circuit is established to the port).

- Disabled (status)—The circuit is configured as disabled.
- No Data (status)—No data could be obtained from the CTP host, a status that requires further investigation

- Check Host (alarm)—The CTP host is reachable across the network, but CTPView is unable to communicate with the system and obtain the status of the ports.

Figure 123: Network Monitoring Window

Additional information and functions are available, as shown in Figure 124. You access them by clicking a CTP host or port. The functions available include quick access to the runtime and database queries (see Chapter 4, Software Queries and Operations). You can also create and modify comments about the problem, and change the alarm level to Assessing by clicking Modify Host Status/Comments.
Statistics and IP Performance Reports

CTPView periodically retrieves IP performance information from each CTP system. The data retrieved includes 1-minute observations of the maximum, minimum, and average buffer state; calculated IP packet delay variance (jitter); round-trip delay; and missing packet counts. CTPView allows you to review this data using either preset or custom plots.

Preset plots are provided for the currently connected CTP system. The time periods displayed include the preceding 1, 6, 12, 24, 48, or 72 hours. The plot’s y axis is automatically scaled unless you specify the axis units with the minimum and maximum value in the three drop-down menus provided. You can make plots for a single port, for the four ports currently selected, or for all the ports on the CTP system. You can select and expand thumbnail plots.
Figure 125 is an example of a preset report showing packet delay variance received at a port over a 12-hour period.

Figure 125: Viewing a Preset Statistics Report with CTPView

Custom statistics plots allow you to display graphs from one or more CTP systems during any period of time when CTPView has retrieved data from the system(s). The plot’s y axis is automatically scaled unless you specify the axis units with the minimum and maximum value in the drop-down menus provided. You can create up to four plots by specifying the CTP system and port, report type, and the start and finish time of the plot. Figure 126 on page 166 shows an example of a custom plot.
CTPView Server Synchronization

Requirements

All servers must have CTPView version 1.4.2 or higher installed.

Setup Procedure

With a Web browser, connect to the server you have chosen to be the source of the data used in the synchronization process by clicking **Server > Administration > Server Synchronization**. This server will be the primary server.

Enter the information for the primary server in the block labeled Add Network Server. The server name is used for display purposes only and does not need to be the server’s UNIX hostname. Click **Add New Server**. You will now see the server listed in the block labeled Current Server Synchronization Settings.

Repeat for all the other servers in the network that you wish to have synchronized with the primary server. These additional servers will be secondary servers. When you add a secondary server, the primary server will set up SSH authorization keys with the secondary server so it can communicate without requiring the login password again.
Now look in the Current Server Synchronization Settings area. You should see all the servers that you added listed here. The Server Type will be set to Not Selected. This is the default setting for all new entries. For each server, select the Server Type from the drop-down menu. Only the server you are logged in to can be set as the primary server. You can leave a server as Not Selected if you wish to temporarily remove it from the synchronization process. You can remove an entry entirely by checking the Remove box. After making your selections, click Commit Changes.

To set up the primary server to perform the synchronization at predetermined times, click Set Automatic Functions in the Synchronize Servers on Network area. This action opens a new window where you can set commands that CTPView will perform automatically, known as the Crontab function. Numerous commands are available; two relate to server synchronization. If you chose the option Synchronize Secondary Servers and Remote Hosts, the program copies the necessary SSH keys to each secondary server so that it will then be able to communicate with the remote hosts without requiring the login password to be typed. This is the default selection. The second synchronization option synchronizes only server-specific information.

After selecting your choice for Action, set the time for the command to be executed by using the drop-down menus. Remember that the numbers you select represent a specific time, not an interval of time. For example the default setting of [0,1,ANY,ANY,ANY] means that the command will be run at the 0 minute (that is, on the hour) of the first hour (1 AM) every day (that is, ANY day of ANY month, landing on ANY day of the week). A setting of [30,16,8,ANY,ANY] would result in the command being executed at 4:30 PM on the 8th of every month. You may add any number of entries as required to provide the result you desire. The optimal configuration will have the server synchronization being run shortly after the statistical data is obtained from the remote hosts. Commit your new selection by clicking Add New Entry.

The primary server is now set up to perform the synchronization process automatically at the times you have selected. More information about this process is detailed later in this document.

You may also manually execute the synchronization process. In the Server Synchronization window in the Synchronize Servers on Network area, click Manually Synchronize Network. This action opens a new window from which you can choose to synchronize only the servers or to include any number of remote hosts. From this window you can also access the logs generated from the synchronization process.

Definitions

The scope of these definitions is not global, but are locally restricted to the server that the user is logged in to. In other words, each server views the rest of the servers in the network according to its own designations. Each server maintains its own file of server designations that it refers to when performing a server synchronization. You do not need to configure a remote server for that server to be updated by the server that is performing the synchronization.
Primary server—Any server with the correct version of CTPView software can be designated as a primary server. The primary server executes the synchronization program and distributes data to the secondary servers. Regardless of how any other server is configured, when a server is designated as a primary server its data is safeguarded from being overwritten by any other server executing the server synchronization program. You set or change a server’s designation by logging in to that server and entering the required information in the Server Synchronization CTPView window.

Secondary server—Any server with the correct version of CTPView software can be designated by a primary server as one of its secondary servers. The data files on the secondary server are updated to match those on the primary server on synchronization.

Data Files—The data which is synchronized is the:
- Statistical history that has been archived from the CTP systems.
- IP addresses, hostnames, host menus, and SSH authorization keys that are necessary to communicate with the CTP systems.

Configuration

Remember that the settings described below are restricted to how this server views the world. The choices made here do not change any configuration or settings on remote servers.

- Current Server Settings—This section displays the current configuration file of the server you are logged in to. You must have the local server listed here. This is also where you modify Server Type of the listed servers or remove a server from the list. The default type for newly added servers is Not Selected.

- Synchronize Servers on Network—You can use the links here to modify the timing of the automatic synchronization schedule and to open a new window that allows you to manually start a synchronization process.

- Add Network Server—You make additions to this server’s configuration file here. The Server Name is for identification only. It is not used for any other purpose or passed to any other server. Because the default type for newly added servers is Not Selected, you need to modify the type designation before running the synchronization program.

Miscellaneous

There is a 15-second timeout limit on attempts of the primary server to establish contact with a remote host. If the timeout is reached, the primary server skips to the next remote host and continues executing the program. This information is displayed in the screen output and logs.

When you add a new remote host to a primary server, the new host’s SSH RSA keys are also exchanged with each secondary server. You are given the option to disable this feature in the Administration window when you add the new remote host.
Automatically Saving CTP System Configurations

You can now program an automatic function to save every CTP system configuration at a prescribed time and interval. The saved files are then available to restore the settings on a CTP system.

Configuration

You set automatic saving set in the Automatic Functions pane. Click the button in the Server Administration window to get there. In the Add New Automatic Entry dialog box, select Current CTP Host System Configurations from the Action drop-down menu.

CTPView will save the ten most recent configuration files for each CTP system. The Manual System Configuration Save is still available. In addition, each CTP upgrade automatically creates another system save before beginning the upgrade process.

Restoring Saved Configurations

From the Node Maintenance pane, click Save / Restore CTP Configuration to restore a saved configuration or to manually save one.

All available saved configurations appear in the drop-down list in the Restore CTP Configuration pane. Follow the prompts to complete the restoration.

CTPView Connection Throttling

File transfers between CTPView and CTP systems are now throttled to limit the used bandwidth during the file transfer. The selected throttle value is user configurable.

Configuration

In the Server Administration pane, click Automatic Functions. The Throttle dialog box is at the bottom of the pop-up screen. The default value is 100,000 Kbits/sec—that is, the full bandwidth of the server's Ethernet port.

Scope

The following functions are affected by the bandwidth throttling:

- Gathering statistical data for plots
- Synchronizing secondary servers
- Saving CTP system configurations
- Modifying CTP login banners
- Upgrading CTP operating system software
Support for Tabbed Browsers

You can configure CTPView for use with tabbed Web browsers, such as Firefox, Mozilla, or Internet Explorer 7. You can select your own preference for the type of browser to support, either classic or tab. Your selection is stored in your browser settings, but you can change your preference at any time. After being enabled, the Tabbed Browsing feature applies to all new CTPView windows opened with the New Window link located in the Directory frame. The remaining links and window behavior of the two CTPView styles remain the same. The default CTPView style is Classic, which is suitable for earlier versions of Internet Explorer.

Limitations

The current tabbed browsers do not support dynamically changing the tab's title after a page has been loaded onto the screen. CTPView uses frames to open new content in the viewing window without reloading the entire page, so the tab titles cannot describe the current content. However, to differentiate the tabs for easier browsing, we add a bracketed sequencing number in the tab's title when the tab is first opened.

Using the Tabbed Style

The current browser style is displayed in the Directory frame just under the heading Server. Click on the style type or the GUI Settings link to go to the style configuration page.

On the configuration page you can choose the browser style. In addition, there is a button that will manually reset the tab index counter. The tab index is also reset after you close all browser windows.

You must configure each browser that you use separately, even when you open the browsers on the same desktop.

Browser Configuration

With default Firefox or Internet Explorer 7 settings, to open a new window as a tab, right-click the New Window link under the Server heading in the Directory frame. Select Open Link in New Tab from the pop-up menu. If the new tab does not open in focus (as the visible tab) on your desktop, you can modify your browser's tab options/preferences to change the behavior.

Server Configuration Validation

This utility tests and reports on a long list of system configuration details that are either critical or desirable for the proper operation of the CTPView Management System. For every item that is identified as out of compliance, instructions for correcting the problem are supplied.

Using Configuration Validation

To run this utility, go to the Server Diagnostics window. At the bottom, click Validate Server Configuration. There will be a few seconds' delay while the script is processing the configuration before the results appear.
Validate the server configuration after every CTPView software upgrade or any time you are experiencing a problem with the CTPView operations.

SSH Port Forwarding

This feature creates a persistent encrypted and protected connection between CTPView and a remote CTP system. The reduction of overhead compared with using separate SSH connections for each command results in a noticeable performance increase of CTPView. This feature must be enabled on both CTPView and the CTP system. It is enabled by default.

Using SSH Port Forwarding

In the Server Administration pane in CTPView, the button labeled CTP Port Forwarding is [Allowed || Prohibited] indicates the current state of this function on CTPView. When clicked, the button will toggle CTPView to the other state.

After connecting to a remote CTP system with CTPView, go to the System Configuration window. In the SysMon pane, in the SysMon Settings area, the current state of the CTP port forwarding daemon is shown. You can also reconfigure it here.

When a port forwarding connection has been successfully established, the phrase Port Forwarding appears directly underneath the CTP hostname in the blue Connection Box located at the top of the navigation pane in CTPView.

Updating CTP Software Directory

Obtaining New CTP Software

Before using CTPView to upgrade CTP software, you must copy the appropriate CTP archive files to the proper directory on the CTPView server. Released versions of CTP operating system software packages are available for download from the Juniper Networks CTP Support site at

https://www.juniper.net/customers/csc/software/ctp/

You need your Juniper Networks support username and password to access this site.

Directory Location

The location to place the CTP archives into on the CTPView server is the /var/www/html/acorn/ctp/ directory. To copy software into this directory you must be a root user or a member of the UNIX group “server,” such as the default user “juniper”. The CTPView server automatically checks and modifies the copied file’s ownership and permissions as necessary.
Burning CTP Compact Flash Media

Obtaining CTP Flash Image Files
Before using CTPView to burn CTP software images onto flash drives, you must copy the appropriate CTP image files to the proper directory on the CTPView server. Released versions of CTP operating system software images are available for download from the Juniper Networks CTP Support site at

https://www.juniper.net/customers/csc/software/ctp/

You need your Juniper Network support username and password to access this site.

Directory Location
Place the CTP flash image file on the CTPView server in the /var/www/html/flash/ directory. To copy software into this directory, you must be a root user or a member of the UNIX group “server,” such as the default user “juniper”. You do not need to modify the file’s ownership and permissions after you have copied it into the flash directory.

To burn a CTP image:

1. Place the new compact flash media into a USB compact flash adapter, and insert the adapter into one of the USB ports on the CTPView server. The adapter will be mounted automatically.

2. Using SSH from a remote computer or using a management console connected to the server, log in to the CTPView server. Switch to the root user account. Change to the /var/www/html/flash directory.

3. Type the command:

 \texttt{./burn_flash < version>}, where \texttt{flash_<version>.img} is the image filename.

4. Typing just the command \texttt{./burn_flash} will return the usage instructions and a list of flash images that are available.

5. Answer the screen prompts to complete the process.

6. Log out of the server, and remove the USB compact flash adapter.

Network Monitoring

Audible Alarm
This option is configurable at the user level. When Audible Alarm is enabled, your Web browser plays the selected audio file each time the Network Monitoring window refreshes and the Network Status is red or yellow. The state of this function is displayed within the Network Status indicator.
The audible alarm function has two configuration settings, which are accessible from the Display Settings button in the Network Monitoring pane. You can turn the sound on or off, and you can choose and preview the audio file that will be played.

The site administrator can add additional audio files to the list of available selections by copying the desired file to the directory /var/www/html/acorn/sounds/. Only wav files are supported, and the filename may consist only of alphanumeric characters and the underscore (_). The root of the filename is displayed as the label of the selection. CTPView automatically corrects illegal filenames and modifies the file permissions as necessary to enable the embedded media player to read the file.

For Linux users, your default browser installation probably does not have an embedded media player. If you need a player, there is an easy-to-install multimedia plug-in named Plugger available at

http://fredrik.hubbe.net/plugger.html

Manual Override

When you manually override the status of a host in the Network Monitoring pane, a magnifying glass icon appears within that host’s button, its group button, and the network button. The overridden host’s color status will not be passed on to the group and network buttons. In other words, the color of the buttons indicates the most severe status of only the hosts that are not overridden, and the icon indicates whether a host, and which one, has been manually excluded from the group and network color indicators.

AutoSwitch Connection Check

This new utility tests the connection between a CTP port running AutoSwitch and its primary and secondary remote ports. The function also verifies that the authorization keys have been correctly set. This feature is available only when the AutoSwitch host’s CTP operating system is version 4.2R1 or later.

Using Connection Check

Go to the System Configuration pane, and click AutoSwitch. In the AutoSwitch pane, the Connection Check test buttons are on the extreme right end of each port line. There are individual buttons for each primary and secondary host plus a single button labeled All, which runs the test for every port with a single click.

When in the ready mode, the buttons will display “test”. While the script is running, the buttons will show “testing” and turn blue. The results of the test are displayed as text inside the buttons, and the background color around the buttons either turns green or red, for success or failure, respectively.

After a test has been completed, you may rerun the test by clicking the button again.
Network Host Reports

Three new database reports are available, in both onscreen and printer friendly formats. On an individual port basis for any or all CTP units in the system, the reports list selected information about the source and destination ports of the circuits. You can sort the reports and resize the font for easy viewing. The report database is updated in real time when CTPView is used for CTP provisioning. Additionally, a configurable automatic function queries for the current configuration data from all CTP units.

Accessing Reports

You access Network Host Reports from the Node Configuration window. Click **View Network Host Reports** under the heading Reports.

The three reports are:

- Channelization—Includes all ports.
- Configured Ports—Displays only configured ports.
- Non-Configured Ports—Shows just the nonconfigured ports.

Database Updates

To schedule the database updates to be done on a regular basis, from the Server Administration pane click **Automatic Functions**. Select the **Save Current CTP Host System Configurations** from the Action menu. Then set the time interval, and add the entry to the list of automatic functions. We recommend that you set this function to run on a daily basis.

You can also manually trigger a one-time database update by clicking **Update Database** in the Network Reports pane.

Exporting to Spreadsheet Program

To export data from the Reports pane:

1. From the CTPView Network Reports pane, create the report you want.
2. Click **Printer Friendly Page**.
3. Select all, copy, and then paste as HTML into your spreadsheet application.
Part 5
Appendixes
Appendix A
CTPView Troubleshooting and Recovery

This appendix describes how to restore system settings. It contains the following sections:

- Restoring Shell Access to a CTPView Server on page 177
- Restoring Browser Access to a CTPView Server on page 180
- Booting CTPView from a CD-ROM on page 180

Restoring Shell Access to a CTPView Server

Login Restrictions

You cannot log in to the server as user root. You must first log in using an existing nonroot account. Then, if you are required to perform tasks as a root user, switch to the root account with the command su -. You are prompted for the root password.

This section describes a method that will help you regain access to the server if you have:

- Lost the root password
- Lost the passwords to all available nonroot user accounts and cannot log in to the server

To continue, you must have the GRUB Boot Loader password and physical access to the server with a connected monitor and keyboard.

If you have forgotten the GRUB Boot Loader password, you must use the system motherboard jumpers to disable the password protection feature before proceeding. You can find details about how to perform this task on the Dell PowerEdge Documentation CD P/N GJ625, which was included with the original packing material.
Getting Access to a Shell

To get access to a shell:

1. Use the power switch on the server to turn the power off.
2. Turn the server power back on.
3. When the blue GNU GRUB screen appears, type the letter `p`. You have only a few seconds to do this.
4. The system prompts you to enter the GRUB Boot Loader password.
5. Type the letter `e`.
6. Using the keyboard arrows, highlight the line that begins with the word `kernel`.
7. Type the letter `e` again.
8. Type the following code to the end of the highlighted line, and press Enter:

   ```
   init=/bin/bash
   ```
9. Type the letter `b`. The system boots and gives a shell prompt of “bash-3.00#”.
10. Type the following phrase, and press Enter:

   ```
   /bin/mount /dev/md2 -o remount,rw
   ```
11. Continue with the appropriate following section.

Setting a New Password for a Root User Account

1. Prepare the server by following the instructions for Getting Access to a Shell on page 178.
2. Type the following phrase, and press Enter:

   ```
   /usr/bin/passwd
   ```
3. Type the new root password at the prompts.
4. Type the following phrase, and press Enter:

   ```
   /bin/mount /dev/md2 -o remount,ro
   ```
5. Type the word `reboot`, and press Enter.
6. Allow the system to reboot.
Setting a New Password for a Nonroot User Account

1. Prepare the server by following the instructions for Getting Access to a Shell on page 178.

2. Type the following phrase, and press Enter:

 `/usr/bin/passwd <username>`

3. Type the new password for `<username>` at the prompts.

4. Type the following phrase, and press Enter:

 `/bin/mount /dev/ md2 -o remount,ro`

5. Type the word `reboot`, and press Enter.

6. Allow the system to reboot.

Creating a Temporary Nonroot User Account and Password

1. Prepare the server by following the instructions for “Getting Access to a Shell” on page 178.

2. Type the following phrase, and press Enter:

 `/usr/sbin/useradd <username>`

3. Type the following phrase, and press Enter:

 `/usr/bin/passwd <username>`

4. Type the new password for `<username>` at the prompts.

5. Type the following phrase, and press Enter:

 `/bin/mount /dev/ md2 -o remount,ro`

6. Type the word `reboot`, and press Enter.

7. Allow the system to reboot.

8. Log in as Temporary User.

9. Switch to the root account by typing `su -`, and press Enter.

10. At the command prompt, type `menu`. The CTPView Configuration Menu utility opens. Create a new permanent nonroot user account.

11. Exit Menu, exit the root account, and then exit the temporary user account.

12. Log in again, this time as the new permanent user.
13. Switch to the root account by typing `su -` and press Enter.

14. Delete the temporary user account by typing the following phrase, and then press Enter:

```
/usr/bin/userdel -r <username>
```

Restoring Browser Access to a CTPView Server

Lost usernames and passwords cannot be recovered. If you have lost access to CTPView as a Global_Admin user, you can use the following procedure to re-create the default user account “Juniper,” re-create the default user group “TempGroup,” and select a new password for user “Juniper.”

After you have regained access to CTPView Admin Center, use its functions to create the desired user account.

Creating or Resetting a Default Account

Using the terminal management console, log in as the default user, and then switch to the root user account. At the command prompt, type `menu`. The CTPView Configuration Menu utility opens.

Select Option 7 (CTPView Access Functions). Then select Option 1 (Reset password for default user Juniper), and follow the prompts.

The user “Juniper” is assigned to the default user group “TempGroup” and is given default user properties. Review these values using CTPView Admin Center, and make any appropriate modifications.

Booting CTPView from a CD-ROM

For security purposes booting from the CD-ROM drive has been disabled in the system BIOS settings. If you need to boot from a CD-ROM, you need to reconfigure the BIOS. You must also have physical access to the server and have the BIOS Menu password.

If you have forgotten the BIOS Menu password, use the system motherboard jumpers to disable the password protection feature before proceeding. Details about how to perform this task are found on the Dell PowerEdge Documentation CD P/N GJ625, which was included with the original packing material.

Modifying the Setting in the BIOS Menu

To modify the BIOS setting:

1. Connect a monitor, PS/2 keyboard, and PS/2 mouse to the system.

2. Turn on the system. While the Dell logo is displayed, press F2. The phrase “Entering Setup” appears in the top right corner of the screen, and then the BIOS setup screen loads. If you miss entering F2 at the proper time, press Ctrl + Alt + Delete together to reboot the system so you can repeat this step.
3. The bottom line on the screen contains help for navigating and modifying this menu.

4. Insert the CD-ROM disk from which you intend to boot into the system’s CD-ROM drive.

5. Enter the BIOS Menu password, and press Enter to continue.

6. Highlight the line Boot Sequence, press Enter, and select IDE CD-ROM device. Press Enter to continue.

7. Press the Esc key. In the pop-up window highlight the line Save Changes and Exit, and press Enter.

The system will now restart and boot from the CD-ROM disk you placed into the drive earlier.

Restoring the Setting in the BIOS Menu

Repeat the procedure you used to modify the BIOS Menu, but this time remove the check mark next to the line for IDE CD-ROM device in the Boot Sequence menu.

For security considerations it is important that you leave the system’s ability to boot from a CD-ROM in the disabled state.
Appendix B
Default CTPView Accounts and Passwords

This appendix lists the default accounts and passwords for the CTPView software. It contains the following sections:

- Default Accounts and Passwords on page 183

Default Accounts and Passwords

Table 12: Default Accounts and Passwords for CTPView 2.2 and Later

<table>
<thead>
<tr>
<th>Application</th>
<th>Default Username</th>
<th>Default Password</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server (cli) BIOS Menu</td>
<td>Not applicable</td>
<td>CTPView-2-2</td>
</tr>
<tr>
<td>Server (cli) GRUB Boot Loader</td>
<td>Not applicable</td>
<td>CTPView-2-2</td>
</tr>
<tr>
<td>Server (cli) User account</td>
<td>juniper (lowercase j)</td>
<td>CTPView-2-2</td>
</tr>
<tr>
<td>Server (cli) Root account</td>
<td>root</td>
<td>CTPView-2-2</td>
</tr>
<tr>
<td>CTPView (browser) Global_Admin account</td>
<td>Juniper (capital J)</td>
<td>CTPView-2-2</td>
</tr>
<tr>
<td>MySQL (cli) Root account</td>
<td>root</td>
<td>CTPView-2-2</td>
</tr>
<tr>
<td>MySQL (cli) Apache account</td>
<td>ctpview_mysql</td>
<td>CTPView-2-2</td>
</tr>
</tbody>
</table>

NOTE: Upgrading from a pre-2.2 version of CTPView to the current software does not change the existing server passwords or accounts except to add the user account “juniper”. However, all the existing pre-2.2 CTPView user accounts are removed. Browser access to the CTPView is through a new login interface, which requires that an administrator create new usernames and passwords.
Table 13: Default Accounts and Passwords for CTPView 2.1 and Earlier

<table>
<thead>
<tr>
<th>Application</th>
<th>Default Username</th>
<th>Default Password</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server (cli) User</td>
<td>sys_user</td>
<td>sys_user</td>
</tr>
<tr>
<td>Server (cli) Root</td>
<td>root</td>
<td>passw0rd</td>
</tr>
<tr>
<td>CTPView (browser) Admin</td>
<td>admin</td>
<td>admin</td>
</tr>
<tr>
<td>CTPView (browser) Query-only</td>
<td>ctp</td>
<td>ctp</td>
</tr>
</tbody>
</table>
Appendix C
Tripwire v2.3 Software on CTPView

NOTE: Tripwire is third-party software that is preloaded onto the CTPView server. It is not supported by Juniper Networks. Refer to the Tripwire documentation for more information.

Complete documentation is located on the CTPView server in the following directory:

/usr/share/doc/tripwire-2.3.1
Appendix D

Antivirus Software on CTPView

McAfee VirusScan for UNIX, version 5.10.0, is the only antivirus application from a DOD-approved vendor that is compatible with CTPView server software. You can download the software and documentation from the McAfee website.

NOTE: Third-party antivirus software is not supported by Juniper Networks. Refer to the antivirus documentation for more information.

Antivirus Installation Directory

A dedicated directory is on the CTPView server for the antivirus software installation:

/var/av

You may install the antivirus software directly into the directory /var/av if you are a member of the group “server.” After the software archive is in the /var/av directory, follow the installation directions in the McAfee product guide. We recommend that you select the default choices offered when installing the antivirus software.
Antivirus Installation Directory
Appendix E

CTP Declaration of Conformity

Declaration of Conformity — CTP1000 Models

Declaration of Conformity

Juniper Networks, Inc.
10 Technology Park Drive
Westford, Massachusetts 01886 USA

Declares that under our sole responsibility the product(s)
Circuit-to-Packet Network Device
Models CTP1002, CTP1004, CTP1012
are in conformity with the provisions of the following EC Directives, including all amendments,
and with national legislation implementing these directives:
Low Voltage Directive 73/23/EEC
EMC Directive 89/336/EEC

and that the following harmonized standards have been applied:
EN 60950-1:2001 + A11
EN 60825-1:1994 + A1 + A2
EN 55024:1998 + A1 + A2

Place Signature Date
Westford, MA, USA Susanne Delisle 7/19/2007
Declaration of Conformity — CTP 2000 series

Declaration of Conformity

Juniper Networks, Inc.
10 Technology Park Drive
Westford, Massachusetts 01886 USA

Declares that under our sole responsibility the product(s)

Circuit-to-Packet Network Device
Model CTP 2000 series

are in conformity with the provisions of the following EC Directives, including all amendments, and with national legislation implementing these directives:

Low Voltage Directive 73/23/EEC
EMC Directive 89/336/EEC

and that the following harmonized standards have been applied:

EN 60950-1:2001 +A11
EN 60825-1:1994 + A1 + A2
EN 300 386 V1.3.3:2005
EN 55024:1998 +A1 + A2

Place Signature Date
Westford, MA, USA Susanne Delisle 7/19/2007
Index

Numerics
- 4WTO Voice interface ... 38

A
- accounts, default.. 183
- asymmetric configuration, example 56
- Autobaud ... 144
- AutoSwitch .. 142
- AutoSwitch connection check utility 173
- advanced options, configuring 72

B
- BERT testing .. 96
- boot configuration, first ... 31
- buffer recenter count .. 90
- buffer settings .. 61
- configuring ... 63

C
- channel
 - dual ... 38
 - enabled .. 38
- chassis
 - cables ... 20
 - clock rear transition module (RTM) 20
 - installing .. 24
 - PMC module ... 18
 - power supply .. 17
 - processor module ... 17
- circuit emulation .. 32
- CLI menu ... 29, 30
- clock rear transition module (RTM) 20
- clocking
 - options ... 4, 50, 51, 52
- clocking, configuring .. 54
- commands
 - node operation .. 29
 - node synchronization ... 29
 - port configuration ... 29
- configuring a port .. 32
- configuring the software 29
- Connection Check utility 173
- CTP groups, adding and removing 150
- CTP hosts, adding and removing 150
- CTP network hosts, managing 151
- CTP operating system, updating 160
- CTP overview .. 1
- CTP software, burning images 172
- CTP1004 chassis .. 5
- CTP1012 chassis .. 5
- CTPView
 - automatic functions .. 153
 - booting from CD .. 180
 - configuring ... 119
 - connection throttling ... 169
 - installing .. 119, 124
 - restoring settings ... 123
 - restoring shell access ... 177
 - saving configurations .. 156
 - setting global access .. 134
 - updates ... 171
- CTPView administration center 133, 166
- CTPView server
 - configuring ... 126
 - restoring browser access 180
 - synchronization .. 166
- Declaration of Conformity, EC 189, 190
- diagnostics .. 106
- direct digital synthesizer 52
- DTE interface .. 145
- dual channel .. 38
- e-mail notifications ... 152
- enabled channel .. 38
- environmental requirements, chassis 6
- Ethernet support ... 146
- Fast Ethernet configuration 25
- Fedora Core 4 ... 119
- FIFO ... 53
- Fractional T1/E1 interface 38

G
- GRUB Boot Loader .. 128
Index

H
- hardware configuration .. 5
- hardware monitoring ... 145

I
- input level .. 38
- input signals ... 67
- installing the chassis ... 24
- installing the software .. 119
- interface encoding, configuring 44, 45
- interface mode, configuring .. 43
- interface module cable .. 20
- interface type, configuring ... 38
- IPv4 .. 145
- IPv6 .. 145

L
- LEDs
 - HDD ... 7, 8
 - power ... 7, 8
- log print level, setting .. 107
- logging, secure ... 114
- login banner, configuring .. 115

M
- maintenance reports ... 161
- MySQL Apache account password 129

N
- network monitoring .. 162, 172
- NID selection ... 146
- node
 - maintenance .. 79, 155
 - operations .. 79
 - synchronization .. 77, 108
- node operation command .. 29
- node settings ... 141
- node synchronization command 29

O
- output level ... 38

P
- packet processing .. 3
- packet size, configuring .. 47, 49
- packet-based serial (PBS) port configuration 147
- packet-bearing serial interface 73, 75
- packets .. 90
- passwords
 - default .. 183
 - managing ... 112
- passwords, setting ... 178
- PBS .. 147
- PMC module ... 18
- port clocking, configuring ... 54
- port configuration .. 32
- packet-bearing serial interface 73
- port configuration command .. 29
- port database, state ... 91
- port descriptor text ... 35
- port forwarding ... 171
- port operations ... 90
- port queries ... 86, 88
- port speed, configuring .. 60
- power requirements, chassis .. 6
- power supply ... 17
- processor module .. 17
- PWE3 support ... 145

Q
- queries
 - advanced ... 93
- port ... 86, 88

R
- receive packet processing .. 3
- recycling program ... 26
- remote port, configuring ... 36
- reporting .. 174
- reports ... 164
- maintenance ... 161
- restoring browser access to CTPView server 180
- restoring shell access ... 177

S
- SAToP .. 145
- SCC ... 100
- secure log management .. 114
- security profile .. 111
- security settings, advanced ... 119
- Serial Communications Controller (SCC) counts 100
- serial loop .. 94
- serial stream processing .. 2
- server configuration validation utility 170
- service type, configuring ... 63, 64
- signaling configurations ... 67
- software
 - installation .. 119
 - operations .. 85
 - queries, performing ... 85
 - updates .. 171
- SSH ... 171
- SSH port forwarding ... 171
- synchronization ... 77
- system saves, automatic .. 169

T
- T1/E1 interface ... 38
- T1/E1 interface module ... 16
- tabbed browser support ... 170
- talk squelch .. 38
- time to live, configuring .. 65
- transmit packet processing .. 3
- transparent circuit mode ... 146
- Tripwire .. 185
- troubleshooting .. 177
U
user management functions ... 112

V
virtual IP addresses ... 144
VLAN support ... 146

W
WEEE Directive ... 26

Y
Y cable redundancy .. 70