
vMX

vMX Getting Started Guide for KVM

Published

2020-09-21

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc. in
the United States and other countries. All other trademarks, service marks, registered marks, or registered service marks
are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

vMX vMX Getting Started Guide for KVM
Copyright © 2020 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use with)
Juniper Networks software. Use of such software is subject to the terms and conditions of the EndUser License Agreement
(“EULA”) posted at https://support.juniper.net/support/eula/. By downloading, installing or using such software, you
agree to the terms and conditions of that EULA.

ii

https://support.juniper.net/support/eula/

Table of Contents

About the Documentation | viii

Documentation and Release Notes | viii

Documentation Conventions | viii

Documentation Feedback | xi

Requesting Technical Support | xi

Self-Help Online Tools and Resources | xii

Creating a Service Request with JTAC | xii

vMX Overview1
vMX Overview | 14

Benefits and Uses of vMX Routers | 14

Automation for vMX Routers | 15

Architecture of a vMX Instance | 15

Traffic Flow in a vMX Router | 18

Virtual Network Interfaces for vMX | 19

Paravirtualization | 20

PCI Passthrough with SR-IOV | 20

Installing and Deploying vMX on KVM2
Minimum Hardware and Software Requirements | 23

vMX Package Contents | 28

Installing vMX on KVM | 30

Preparing the Ubuntu Host to Install vMX | 30

Upgrading the Kernel | 32

Upgrading to libvirt 1.2.19 | 33

Updating Drivers for the X710 NIC | 34

iii

Install the Other Required Packages | 35

Preparing the Red Hat Enterprise Linux Host to Install vMX | 35

Preparing the Red Hat Enterprise Linux 7.3 Host to Install vMX | 35

Preparing the Red Hat Enterprise Linux 7.2 Host to Install vMX | 39

Preparing the CentOS Host to Install vMX | 42

Installing vMX for Different Use Cases | 45

Installing vMX for Lab Simulation | 49

Installing vMX for Low-Bandwidth Applications | 51

Installing vMX for High-Bandwidth Applications | 53

Installing vMX with Dual Routing Engines | 55

Installing vMX with Mixed WAN Interfaces | 59

Deploying and Managing vMX | 61

Specifying vMX Configuration File Parameters | 62

Configuring the Host | 63

Configuring the VCP VM | 63

Configuring the VFP VM | 65

Configuring Interfaces | 67

Connecting to VMs | 68

Logging In to VCP | 68

Logging In to VFP | 69

Managing vMX | 70

Deploying vMX | 70

Managing vMX Deployments | 71

Specifying the Temporary File Directory | 72

Specifying the Environment File | 72

Configuring Logging Options for vMX | 72

Connecting to Console Port for the VMs | 73

Getting Help for the Script Options | 73

Binding virtio Devices | 73

Setting Up the Device Bindings | 75

Creating Device Bindings | 77

Deleting Device Bindings | 77

Verifying Device Bindings | 78

iv

Installing Nested vMX VMs | 79

Overview of the Nested VM Model | 79

Nested VM with Virtio Interfaces | 79

Nested VM with SR-IOV Interfaces | 80

System Requirements for Nested VM Model | 81

vMX Limitations with the Nested VM Model | 81

Hardware and Software Requirements for Nested vMX VMs | 82

Installing and Launching the Nested vMX VM on KVM | 83

Preparing the Ubuntu Host to Install the Nested vMX VM | 83

Loading the Modified IXGBE Driver | 84

Launching a Nested vMX Instance | 85

Connecting to the VFP Console Port | 88

Connecting to the VCP | 88

Example: Enabling SR-IOV on vMX Instances on KVM | 89

Procedure for Identifying PCI-Addresses and Kernel Name for the NIC | 90

Download and Install the Latest Driver Software from Intel | 91

Prepare NIC to Use SR-IOV in System Mode | 92

Setting SR-IOV at Boot-Time | 93

Verify sriov_numvfs Settings | 93

Changing the Number of sriov_numvfs | 95

Updating the VMX Configuration File (vmx.conf) Parameters | 96

Changes Required for Using Intel ixgbe Driver | 99

Configuring Modified and Unmodified Drivers3
Modified and Unmodified i40e Driver | 101

Understanding the Differences between Modified and Unmodified i40e Driver | 101

Deploying vMX with Unmodified i40e Driver | 102

Moving from Modified i40e Driver to Unmodified i40e Driver | 105

Moving from Unmodified i40e Driver to Modified i40e Driver | 106

Modified and Unmodified IXGBE Driver | 107

Understanding the Differences between Modified and Unmodified IXGBE Driver | 107

Deploying vMX with Unmodified IXGBE Driver | 108

Moving from Modified IXGBE Driver to Unmodified IXGBE Driver | 111

v

Moving from Unmodified IXGBE Driver to Modified IXGBE Driver | 112

Understanding the Features Supported on Modified and Unmodified Drivers | 113

Configuring vMX Chassis-Level Features4
Configuring the Number of Active Ports on vMX | 117

Naming the Interfaces | 117

Configuring the Media MTU | 118

Enabling Performance Mode or Lite Mode | 119

Tuning Performance Mode | 121

lite-mode | 122

performance-mode | 124

Class of Service for vMX5
CoS on vMX Overview | 127

CoS Features and Limitations on vMX | 129

Weighted Round-Robin of Subscriber Traffic on a Port Limitations | 130

Configuring Four-Level Hierarchical Scheduling on vMX | 131

Packet Loss Priority and Drop Profiles on vMX | 132

Limitations | 133

Managing Congestion Using Drop Profiles and Packet Loss Priorities on vMX | 133

Configuring Drop Profiles | 134

Configuring Schedulers with Drop Profiles | 135

Configuring Hierarchical CoS on vMX | 136

Enabling Flexible Queuing | 136

Mapping Forwarding Classes to Queues on vMX | 136

Configuring Traffic Control Profiles for vMX | 136

Configuring Schedulers on vMX | 137

Example: Configuring Hierarchical CoS on vMX | 138

Bypassing the Queuing Chip | 143

vi

Troubleshooting vMX6
Verifying Whether VMs Are Running | 146

Viewing CPU Information | 146

Viewing VFP Statistics | 147

Viewing VFP Log Files | 149

Troubleshooting VFP and VCP Connection Establishment | 150

Verifying BIOS Settings for SR-IOV | 151

vii

About the Documentation

IN THIS SECTION

Documentation and Release Notes | viii

Documentation Conventions | viii

Documentation Feedback | xi

Requesting Technical Support | xi

Use this guide to install the virtual MX router in the KVM environment. This guide also includes basic vMX
configuration and management procedures.

After completing the installation and basic configuration procedures covered in this guide, refer to the
Junos OS documentation for information about further software configuration on the vMX router.

Documentation and Release Notes

To obtain the most current version of all Juniper Networks® technical documentation, see the product
documentation page on the Juniper Networks website at https://www.juniper.net/documentation/.

If the information in the latest release notes differs from the information in the documentation, follow the
product Release Notes.

Juniper Networks Books publishes books by Juniper Networks engineers and subject matter experts.
These books go beyond the technical documentation to explore the nuances of network architecture,
deployment, and administration. The current list can be viewed at https://www.juniper.net/books.

Documentation Conventions

Table 1 on page ix defines notice icons used in this guide.

viii

https://www.juniper.net/documentation/
https://www.juniper.net/books

Table 1: Notice Icons

DescriptionMeaningIcon

Indicates important features or instructions.Informational note

Indicates a situation that might result in loss of data or hardware
damage.

Caution

Alerts you to the risk of personal injury or death.Warning

Alerts you to the risk of personal injury from a laser.Laser warning

Indicates helpful information.Tip

Alerts you to a recommended use or implementation.Best practice

Table 2 on page ix defines the text and syntax conventions used in this guide.

Table 2: Text and Syntax Conventions

ExamplesDescriptionConvention

To enter configuration mode, type
the configure command:

user@host> configure

Represents text that you type.Bold text like this

user@host> show chassis alarms

No alarms currently active

Represents output that appears on
the terminal screen.

Fixed-width text like this

• A policy term is a named structure
that defines match conditions and
actions.

• Junos OS CLI User Guide

• RFC 1997, BGP Communities
Attribute

• Introduces or emphasizes important
new terms.

• Identifies guide names.

• Identifies RFC and Internet draft
titles.

Italic text like this

ix

Table 2: Text and Syntax Conventions (continued)

ExamplesDescriptionConvention

Configure the machine’s domain
name:

[edit]
root@# set system domain-name
domain-name

Represents variables (options for
which you substitute a value) in
commands or configuration
statements.

Italic text like this

• To configure a stub area, include
the stub statement at the [edit
protocols ospf area area-id]
hierarchy level.

• The console port is labeled
CONSOLE.

Represents names of configuration
statements, commands, files, and
directories; configuration hierarchy
levels; or labels on routing platform
components.

Text like this

stub <default-metric metric>;Encloses optional keywords or
variables.

< > (angle brackets)

broadcast | multicast

(string1 | string2 | string3)

Indicates a choice between the
mutually exclusive keywords or
variables on either side of the symbol.
The set of choices is often enclosed
in parentheses for clarity.

| (pipe symbol)

rsvp { # Required for dynamic MPLS
only

Indicates a comment specified on the
same line as the configuration
statement to which it applies.

(pound sign)

community name members [
community-ids]

Encloses a variable for which you can
substitute one or more values.

[] (square brackets)

[edit]
routing-options {
static {
route default {
nexthop address;
retain;

}
}

}

Identifies a level in the configuration
hierarchy.

Indention and braces ({ })

Identifies a leaf statement at a
configuration hierarchy level.

; (semicolon)

GUI Conventions

x

Table 2: Text and Syntax Conventions (continued)

ExamplesDescriptionConvention

• In the Logical Interfaces box, select
All Interfaces.

• To cancel the configuration, click
Cancel.

Represents graphical user interface
(GUI) items you click or select.

Bold text like this

In the configuration editor hierarchy,
select Protocols>Ospf.

Separates levels in a hierarchy of
menu selections.

> (bold right angle bracket)

Documentation Feedback

We encourage you to provide feedback so that we can improve our documentation. You can use either
of the following methods:

• Online feedback system—Click TechLibrary Feedback, on the lower right of any page on the Juniper
Networks TechLibrary site, and do one of the following:

• Click the thumbs-up icon if the information on the page was helpful to you.

• Click the thumbs-down icon if the information on the page was not helpful to you or if you have
suggestions for improvement, and use the pop-up form to provide feedback.

• E-mail—Send your comments to techpubs-comments@juniper.net. Include the document or topic name,
URL or page number, and software version (if applicable).

Requesting Technical Support

Technical product support is available through the Juniper Networks Technical Assistance Center (JTAC).
If you are a customer with an active Juniper Care or Partner Support Services support contract, or are

xi

https://www.juniper.net/documentation/index.html
https://www.juniper.net/documentation/index.html
mailto:techpubs-comments@juniper.net?subject=

covered under warranty, and need post-sales technical support, you can access our tools and resources
online or open a case with JTAC.

• JTAC policies—For a complete understanding of our JTAC procedures and policies, review the JTACUser
Guide located at https://www.juniper.net/us/en/local/pdf/resource-guides/7100059-en.pdf.

• Productwarranties—For productwarranty information, visit https://www.juniper.net/support/warranty/.

• JTAC hours of operation—The JTAC centers have resources available 24 hours a day, 7 days a week,
365 days a year.

Self-Help Online Tools and Resources

For quick and easy problem resolution, Juniper Networks has designed an online self-service portal called
the Customer Support Center (CSC) that provides you with the following features:

• Find CSC offerings: https://www.juniper.net/customers/support/

• Search for known bugs: https://prsearch.juniper.net/

• Find product documentation: https://www.juniper.net/documentation/

• Find solutions and answer questions using our Knowledge Base: https://kb.juniper.net/

• Download the latest versions of software and review release notes:
https://www.juniper.net/customers/csc/software/

• Search technical bulletins for relevant hardware and software notifications:
https://kb.juniper.net/InfoCenter/

• Join and participate in the Juniper Networks Community Forum:
https://www.juniper.net/company/communities/

• Create a service request online: https://myjuniper.juniper.net

To verify service entitlement by product serial number, use our Serial Number Entitlement (SNE) Tool:
https://entitlementsearch.juniper.net/entitlementsearch/

Creating a Service Request with JTAC

You can create a service request with JTAC on the Web or by telephone.

• Visit https://myjuniper.juniper.net.

• Call 1-888-314-JTAC (1-888-314-5822 toll-free in the USA, Canada, and Mexico).

For international or direct-dial options in countries without toll-free numbers, see
https://support.juniper.net/support/requesting-support/.

xii

https://www.juniper.net/us/en/local/pdf/resource-guides/7100059-en.pdf
https://www.juniper.net/support/warranty/
https://www.juniper.net/customers/support/
https://prsearch.juniper.net/
https://www.juniper.net/documentation/
https://kb.juniper.net/
https://www.juniper.net/customers/csc/software/
https://kb.juniper.net/InfoCenter/
https://www.juniper.net/company/communities/
https://myjuniper.juniper.net
https://entitlementsearch.juniper.net/entitlementsearch/
https://myjuniper.juniper.net
https://support.juniper.net/support/requesting-support/

1
CHAPTER

vMX Overview

vMX Overview | 14

Virtual Network Interfaces for vMX | 19

vMX Overview

The vMX router is a virtual version of the MX Series 3D Universal Edge Router. Like the MX Series router,
the vMX router runs the Junos operating system (Junos OS) and supports Junos OS packet handling and
forwarding modeled after the Trio chipset. Configuration and management of vMX routers are the same
as for physical MX Series routers, allowing you to add the vMX router to a network without having to
update your operations support systems (OSS).

You install vMX software components on an industry-standard x86 server running a hypervisor, either the
kernel-based virtual machine (KVM) hypervisor or the VMware ESXi hypervisor.

For servers running the KVMhypervisor, you also run the Linux operating system and applicable third-party
software. vMX software components come in one software package that you install by running an
orchestration script included with the package. The orchestration script uses a configuration file that you
customize for your vMX deployment. You can install multiple vMX instances on one server.

For servers running the ESXi hypervisor, you run the applicable third-party software.

Some Junos OS software features require a license to activate the feature. To understand more about
vMX Licenses, see, vMX Licenses for KVM and VMware. Please refer to the Licensing Guide for general
information about License Management. Please refer to the product Data Sheets for further details, or
contact your Juniper Account Team or Juniper Partner.

Benefits and Uses of vMX Routers

You can use virtual devices to lower your capital expenditure and operating costs, sometimes through
automating network operations. Even without automation, use of the vMX application on standard x86
servers enables you to:

• Quickly introduce new services

• More easily deliver customized and personalized services to customers

• Scale operations to push IP services closer to customers or to manage network growth when growth
forecasts are low or uncertain

• Quickly expand service offerings into new sites

Awell designed automation strategy decreases costs aswell as increasing network efficiency. By automating
network tasks with the vMX router, you can:

• Simplify network operations

• Quickly deploy new vMX instances

14

https://www.juniper.net/assets/us/en/local/pdf/datasheets/1000522-en.pdf

• Efficiently install a default Junos OS configuration on all or selected vMX instances

• Quickly reconfigure existing vMX routers

You can deploy the vMX router to meet some specific network edge requirements, such as:

• Network simulation

• Terminate broadband subscribers with a virtual broadband network gateway (vBNG)

• Temporary deployment until a physical MX Series router is available

Automation for vMX Routers

Automating network tasks simplifies network configuration, provisioning, and maintenance. Because the
vMX software uses the same Junos OS software asMX Series routers and other Juniper Networks routing
devices, vMX supports the same automation tools as JunosOS. In addition, you can use standard automation
tools to deploy the vMX, as you do other virtualized software.

Architecture of a vMX Instance

The vMX architecture is organized in layers:

• The vMX router at the top layer

• Third-party software and the hypervisor in the middle layer

Linux, third-party software, and the KVM hypervisor in the middle layer in Junos OS Release 15.1F3 or
earlier releases. In Junos OS Release 15.1F3 and earlier releases, the host contains the Linux operating
system, applicable third-party software, and the hypervisor

• The x86 server in the physical layer at the bottom

Figure 1 on page 16 illustrates the architecture of a single vMX instance inside a server. Understanding
this architecture can help you plan your vMX configuration.

15

Figure 1: vMX Instance in a Server

The physical layer of the server contains the physical NICs, CPUs, memory, and Ethernet management
port. The host contains applicable third-party software and the hypervisor.

Supported in Junos OS Release 15.1F3 and earlier releases, the host contains the Linux operating system,
applicable third-party software, and the hypervisor.

The vMX instance contains two separate virtual machines (VMs), one for the virtual forwarding plane (VFP)
and one for the virtual control plane (VCP). The VFP VM runs the virtual Trio forwarding plane software
and the VCP VM runs Junos OS.

The hypervisor presents the physical NIC to the VFP VM as a virtual NIC. Each virtual NIC maps to a vMX
interface. Figure 2 on page 17 illustrates the mapping.

The orchestration script maps each virtual NIC to a vMX interface that you specify in the configuration
file. After you run the orchestration script and the vMX instance is created, you use the Junos OS CLI to
configure these vMX interfaces in the VCP (supported in Junos OS Release 15.1F3 or earlier releases).

16

Figure 2: NIC Mapping

After the vMX instance is created, you use the Junos OS CLI to configure these vMX interfaces in the
VCP. The vMX router supports the following types of interface names:

• Gigabit Ethernet (ge)

• 10-Gigabit Ethernet (xe)

• 100-Gigabit Ethernet (et)

NOTE: vMX interfaces configured with the Junos OS CLI and the underlying physical NIC on
the server are independent of each other in terms of interface type (for example, ge-0/0/0 can
get mapped to a 10-Gigabit NIC).

The VCPVMand VFPVM require Layer 2 connectivity to communicatewith each other. An internal bridge
that is local to the server for each vMX instance enables this communication.

The VCPVMandVFPVMalso require Layer 2 connectivity to communicatewith the Ethernetmanagement
port on the server. Youmust specify virtual Ethernet interfaceswith unique IP addresses andMAC addresses
for both the VFP and VCP to set up an external bridge for a vMX instance. Ethernet management traffic
for all vMX instances enters the server through the Ethernet management port.

The way network traffic passes from the physical NIC to the virtual NIC depends on the virtualization
technique that you configure.

17

vMX can be configured to run in two modes depending on the use case:

• Lite mode—Needs fewer resources in terms of CPU and memory to run at lower bandwidth.

• Performance mode—Needs higher resources in terms of CPU and memory to run at higher bandwidth.

NOTE: Performance mode is the default mode.

Traffic Flow in a vMX Router

The x86 server architecture consists of multiple sockets and multiple cores within a socket. Each socket
also has memory that is used to store packets during I/O transfers from the NIC to the host. To efficiently
read packets from memory, guest applications and associated peripherals (such as the NIC) should reside
within a single socket. A penalty is associated with spanning CPU sockets for memory accesses, which
might result in non-deterministic performance.

The VFP consists of the following functional components:

• Receive thread (RX): RX moves packets from the NIC to the VFP. It performs preclassification to ensure
host-bound packets receive priority.

• Worker thread: The Worker performs lookup and tasks associated with packet manipulation and
processing. It is the equivalent of the lookup ASIC on the physical MX Series router.

• Transmit thread (TX): TX moves packets from the Worker to the physical NIC.

The RX and TX components are assigned to the same core (I/O core). If there are enough cores available
for the VFP, the QoS scheduler can be allocated separate cores. If there are not enough cores available,
the QoS scheduler shares the TX core.

TX has a QoS scheduler that can prioritize packets across several queues before they are sent to the NIC
(supported in Junos OS Release 16.2).

The RX and TX components can be dedicated to a single core for each 1G or 10G port for themost efficient
packet processing. High-bandwidth applications must use SR-IOV. The Worker component utilizes a
scale-out distributed architecture that enables multiple Workers to process packets based on
packets-per-second processing needs. Each Worker requires a dedicated core (supported in Junos OS
Release 16.2).

RELATED DOCUMENTATION

18

Virtual Network Interfaces for vMX | 19

Managing vMX Licenses

Virtual Network Interfaces for vMX

In a virtual environment, packet input and output capabilities play a significant role in the performance of
the packet processing functionality inside the virtual machine, specifically the VFP VM. VFP supports two
types of virtual network interfaces:

• Paravirtualized—Paravirtualized network interfaces use network drivers in the guest OS and host OS
that interact with the virtual environment and communicate effectively to give higher performance than
fully emulated interfaces. In KVM, the supported paravirtualized interface is virtio. For VMware, VMXNET3
is supported.

• PCI passthrough—PCI passthrough enables PCI devices such as network interfaces to appear as if they
were physically attached to the guest operating system, bypassing the hypervisor and providing a high
rate of data transfer. The physical network interfaces support single root I/O virtualization (SR-IOV)
capability and can be connected to the VMs using PCI passthrough.

Choose the type based on how you want to use the vMX router. SeeTable 3 on page 19.

Table 3: Considerations for Choosing a Virtualization Technique

PCI Passthrough TechniqueParavirtualization TechniqueConsideration

SR-IOVvirtio (for KVM), VMXNET3 (for VMware)Interfaces

• Static vMX deployments

• High-throughput applications
• Network simulation

• Low-throughput applications

Use Cases

Physical NIC must support PCI
passthrough

No requirements specific to this techniqueHost Requirements

Creating an identical vMX instance on
a new server.

Moving vMX instance to a new server
without reconfiguration.

VM Mobility (Junos OS
Release 15.1F4 or earlier
releases)

19

Paravirtualization

Supported in Junos OS Release 15.1F4, in a paravirtualized router, the VM and the host work together to
efficiently move packets from the physical NIC to the application in the VM. You implement
paravirtualization on the vMX router by configuring virtio, a technique that the KVM hypervisor supports
that optimizes network and disk operations for the VM. Both the VFP VM and the host contain virtio
drivers that interact tomove packets. You implement paravirtualization on theVMware server by configuring
VMXNET3 on the ESXi hypervisor. You must provide the following information in the configuration file
for each vMX interface:

• Junos OS name

• Unique MAC address

If you want to move the VM from one server to another, you can do so without reconfiguration, provided
the names and MAC addresses of each interface remain the same.

PCI Passthrough with SR-IOV

Supported in Junos OS Release 15.1F4, The vMX router supports PCI passthrough in combination with
single root I/O virtualization (SR-IOV). In the PCI passthrough technique, you directly assign aNIC’s memory
space to a VM, enabling packets to bypass the hypervisor. Bypassing the hypervisor increases efficiency
and results in high throughput of packets.

With SR-IOV, the hypervisor detects the physical NICs (known as a physical functions) and creates multiple
virtual NICs (known as virtual functions) in the VFP VM. In the vMX implementation, the host dedicates
a NIC to a single VM.

When you configure PCI passthrough with SR-IOV, you specify the following parameters for each vMX
interface:

• Junos OS name

• Unique MAC address

• Name of the physical NIC

Because you create a direct connection between a virtual NIC and a physical NIC, you cannot move a VM
from one host to another. If you need to move a VM to another host, you must install a new vMX instance
on that host, and delete the vMX instance on the original host.

RELATED DOCUMENTATION

20

vMX Overview | 14

Licenses for vMX

21

https://www.juniper.net/documentation/en_US/release-independent/licensing/topics/topic-map/vmx-licensing.html#id-managing-vmx-licenses

2
CHAPTER

Installing and Deploying vMX on KVM

Minimum Hardware and Software Requirements | 23

vMX Package Contents | 28

Installing vMX on KVM | 30

Deploying and Managing vMX | 61

Installing Nested vMX VMs | 79

Example: Enabling SR-IOV on vMX Instances on KVM | 89

Minimum Hardware and Software Requirements

The tables lists the hardware requirements.

Table 4: Minimum Hardware Requirements for vMX

ValueDescription

For lab simulation and low performance (less than 100 Mbps) use cases, any x86 processor
(Intel or AMD) with VT-d capability.

For all other use cases, Intel Ivy Bridge processors or later are required.
Example of Ivy Bridge processor: Intel Xeon E5-2667 v2 @ 3.30 GHz 25 MB Cache

For single root I/O virtualization (SR-IOV) NIC type, use Intel Ivy Bridge CPU (or higher) and
Intel x520 NICs using ixgbe driver or X710 NICs with 10G ports and using i40e driver. Any
other NIC models are not supported.

Sample system
configuration

For Junos OS Release 19.1R1-S1 and Junos OS Release 19.2R1 onwards, for single root I/O
virtualization (SR-IOV) NIC type, use Intel Ivy Bridge CPU (or higher) and Intel x520NICs using
ixgbe driver, or X710 and XL710 NICs with 10G ports using i40e driver or XL710Q-DA2 NIC
with 40G ports using i40e driver. Any other NIC models are not supported.

NOTE: XL710Q-DA2 with 40G ports is only supported with i40e driver version 2.4.10 or
later on Ubuntu 16.04 or RHEL 7.5

When using 40G ports on the vMX instances, quality-of-service (QoS) is not supported.

23

Table 4: Minimum Hardware Requirements for vMX (continued)

ValueDescription

For lite mode with lab simulation use case applications: Minimum of 4

• 1 for VCP

• 3 for VFP

NOTE: If you want to use lite mode when you are running with more than 3 vCPUs for the
VFP, you must explicitly configure lite mode.

Number of cores

NOTE: Performance
mode is the default
mode and the
minimum value is
based on one port.

For performance mode with low-bandwidth (virtio) or high-bandwidth (SR-IOV) applications:
Minimum of 9

• 1 for VCP

• 8 for VFP

The exact number of required vCPUs differs depending on the Junos OS features that are
configured and other factors, such as average packet size. You can contact Juniper Networks
Technical Assistance Center (JTAC) for validation of your configuration and make sure to test
the full configuration under load before use in production. For typical configurations, we
recommend the following formula to calculate the minimum vCPUs required by the VFP:

• Without QoS—(4 * number-of-ports) + 4

• With QoS—(5 * number-of-ports) + 4

NOTE: All VFP vCPUs must be in the same physical non-uniform memory access (NUMA)
node for optimal performance.

In addition to vCPUs for the VFP, we recommend 2 x vCPUs for VCP and 2 x vCPUs for Host
OS on any server running the vMX.

For lite mode: Minimum of 3 GB

• 1 GB for VCP

• 2 GB for VFP

For performance mode:

• Minimum of 5 GB

1 GB for VCP
4 GB for VFP

• Recommended of 16 GB

4 GB for VCP
12 GB for VFP

Additional 2 GB recommended for host OS

Memory

NOTE: Performance
mode is the default
mode.

24

Table 4: Minimum Hardware Requirements for vMX (continued)

ValueDescription

Local or NAS

Each vMX instance requires 44 GB of disk storage

Minimum storage requirements:

• 40 GB for VCP

• 4 GB for VFP

Storage

SR-IOV

NOTE: SR-IOV is only supported with Intel Ivy Bridge CPU (or higher) and Intel x520 NICs
using ixgbe driver or X710 NICs with 10G ports and using i40e driver. Any other NIC models
are not supported.

Support for unmodified ixgbe driver and i40e driver is available from JunosOSRelease 18.4R1
onwards.

vNICs

Intel VT-d capability

Hyperthreading (recommended)

AES-NI

Other requirements

Table 5 on page 25 lists the software requirements.

Table 5: Software Requirements for Ubuntu

ValueDescription

• For Junos OS 20.1R1 and later releases:

• Ubuntu 18.04.3 LTS

• Linux 4.15.0-70-generic

• For Junos OS 18.2 and later releases:

• Ubuntu 16.04.5 LTS

• Linux 4.4.0-62-generic

• Prior to Junos OS 18.2 Release

• Ubuntu 14.04.1 LTS

• Linux 3.19.0-80-generic

Operating system

NOTE: Only English localization
is supported.

• QEMU-KVM 2.11.1(Debian 1:2.11+dfsg-1ubuntu7.20) For Ubuntu 18.04.3 LTS
(For Junos OS Release 20.1R1)

• QEMU-KVM 2.0.0+dfsg-2ubuntu1.11

Virtualization

25

Table 5: Software Requirements for Ubuntu (continued)

ValueDescription

The required packagesmight change depending upon the supportedUbuntu version.

• For Ubuntu 18.04.3 LTS.

bridge-utils qemu-kvm libvirt-bin python python-netifaces,vnc4server libyaml-dev
python-yaml numactl libparted0-dev libpciaccess-dev libnuma-dev libyajl-dev
libxml2-dev libglib2.0-dev libnl-3-dev python-pip python-dev libxslt1-dev

• The required packages (Previous releases)

bridge-utils qemu-kvm libvirt-bin python python-netifaces vnc4server libyaml-dev
python-yaml numactl libparted0-dev libpciaccess-dev libnuma-dev libyajl-dev
libxml2-dev libglib2.0-dev libnl-dev python-pip python-dev libxml2-dev libxslt-dev

Libvirt versions:

• libvirt 1.2.19

• libvirt 1.3.1 (Junos OS 18.2 and later releases)

• libvirtd (libvirt) 4.0.0 (Junos OS Release 20.1R1 and later releases)

Required packages

NOTE: Other additional
packages might be required to
satisfy all dependencies.

NOTE: Use the apt-get install pkgname or sudo apt-get install <pkg-name> commands to install
a package.

Table 6 on page 27 lists the software requirements for Red Hat Enterprise Linux.

26

Table 6: Software Requirements for Red Hat Enterprise Linux

ValueDescription

• Junos OS Release 20.3R1

Red Hat Enterprise Linux Server 7.7

Kernel: 3.10.0-1062.4.1.el7.x86_64

• Junos OS Release 19.4R1

Red Hat Enterprise Linux Server 7.6

Kernel: 3.10.0-862.el7.x86_64

• Junos OS Release 19.1R1-S1 and Junos OS Release 19.2R1

Red Hat Enterprise Linux Server 7.5 (Maipo)

Kernel: 3.10.0-862.el7.x86_64

• Junos OS Release 17.4R1

Red Hat Enterprise Linux 7.2

Kernel: 3.10.0-327.4.5

• Junos OS Release 17.3R1

Red Hat Enterprise Linux 7.3

Kernel: 3.10.0-514.6.2

Operating system

NOTE: Only English localization is
supported.

QEMU-KVM 1.5.3Virtualization

python27-python-pip python27-python-devel numactl-libs libpciaccess-devel
parted-devel yajl-devel libxml2-devel glib2-devel libnl-devel libxslt-devel
libyaml-devel numactl-devel redhat-lsb kmod-ixgbe libvirt-daemon-kvm numactl
telnet net-tools

NOTE: libvirt 1.2.17 or later

Required packages

NOTE: SR-IOV requires these
packages: kernel-devel gcc

NOTE: Use the yum install pkg name command to install a package.

Table 7 on page 27 lists the software requirements for CentOS.

Table 7: Software Requirements for CentOS

ValueDescription

CentOS 7.2

Linux 3.10.0-327.22.2

Operating system

NOTE: Only English localization is
supported.

27

Table 7: Software Requirements for CentOS (continued)

ValueDescription

QEMU-KVM 1.5.3Virtualization

python27-python-pip python27-python-devel numactl-libs libpciaccess-devel
parted-devel yajl-devel libxml2-devel glib2-devel libnl-devel libxslt-devel
libyaml-devel numactl-devel redhat-lsb kmod-ixgbe libvirt-daemon-kvm
numactl telnet net-tools

NOTE: libvirt 1.2.19

To avoid any conflicts, install libvirt 1.2.19 instead of updating from libvirt
1.2.17.

Required packages

NOTE: Use the yum install pkg name command to install a package.

RELATED DOCUMENTATION

Preparing the Ubuntu Host to Install vMX | 30

Preparing the Red Hat Enterprise Linux Host to Install vMX | 35

Preparing the CentOS Host to Install vMX | 42

Installing vMX for Different Use Cases | 45

vMX Package Contents

Table 8 on page 28 lists the contents of the vMX package.

Table 8: vMX Package Contents

DescriptionFilename

Main orchestration script.

Note: Only English locale is supported for using the vmx.sh script.

vmx.sh

vMX release information detailsvmx_release.txt

28

Table 8: vMX Package Contents (continued)

DescriptionFilename

Startup configuration file:

• config/vmx.conf—Configuration file for defining vMX parameters.

• config/vmx-junosdev.conf—Configuration file for binding devices (for virtio NICs).

See “Specifying vMX Configuration File Parameters” on page 62 for more information.

config/

Source files for modified ixgbe and i40e drivers.drivers/

OS environment settings.env/

Software image files.

• images/junos-vmx-x86-64-*.qcow2—Software image files for VCP.

• images/vmxhdd.img—Software image file for VCP file storage.

• images/vFPC_*.img—Software image file for VFP.

images/

Scripts and xml files for open stack deployment.openstack

Juniper Networks orchestration scripts.scripts

The vMX package consists of the following components: (in Junos OS Release 15.1F4 and earlier releases)

build

config

— vmx.conf

— vmx-junosdev.conf

docs

drivers

— ixgbe-3.19.1

env

images

— jinstall64-vmx-15.1F4.15-domestic.img

— jinstall64-vmx-15.1F4.15-domestic-signed.img

— vmxhdd.img

— vFPC_20151203.img

scripts

— common

— junosdev-bind

— kvm

— templates

vmx.sh

29

NOTE: Modified IXGBE drivers are included in the package. Multicast promiscuous mode for
Virtual Functions is needed to receive control traffic that comes with broadcast MAC addresses.
The reference driver does not come with this mode set, so the IXGBE drivers in this package
contain certain modifications to overcome this limitation.

RELATED DOCUMENTATION

Minimum Hardware and Software Requirements | 23

Installing vMX on KVM | 30

Deploying and Managing vMX | 61

Installing vMX on KVM

IN THIS SECTION

Preparing the Ubuntu Host to Install vMX | 30

Preparing the Red Hat Enterprise Linux Host to Install vMX | 35

Preparing the CentOS Host to Install vMX | 42

Installing vMX for Different Use Cases | 45

Read this topic to understand how to install the virtual MX router in the KVM environment.

Preparing the Ubuntu Host to Install vMX

IN THIS SECTION

Upgrading the Kernel | 32

Upgrading to libvirt 1.2.19 | 33

30

Updating Drivers for the X710 NIC | 34

Install the Other Required Packages | 35

To prepare the Ubuntu host system for installing vMX (Starting in Junos OS Release 15.1F6):

1. Meet the minimum software and OS requirements described in “Minimum Hardware and Software
Requirements” on page 23. See “Upgrading the Kernel” on page 32 and “Upgrading to libvirt 1.2.19”
on page 33.

If you are using Intel XL710 PCI-Express family cards, make sure you update the drivers. See “Updating
Drivers for the X710 NIC” on page 34.

2. Enable Intel VT-d in BIOS. (We recommend that you verify the process with the vendor because
different systems have different methods to enable VT-d.)

Refer to the procedure to enable VT-d available on the Intel Website.

3. Disable KSM by setting KSM_ENABLED=0 in /etc/default/qemu-kvm.

4. Disable APIC virtualization by editing the /etc/modprobe.d/qemu-system-x86.conf file and adding
enable_apicv=0 to the line containing options kvm_intel.

options kvm_intel nested=1 enable_apicv=0

5. Restart the host to disable KSM and APIC virtualization.

6. If you are using SR-IOV, you must perform this step.

NOTE: You must remove any previous installation with an external bridge in
/etc/network/interfaces and revert to using the original management interface. Make sure
that the ifconfig -a command does not show external bridges before you proceed with the
installation.

To determine whether an external bridge is displayed, use the ifconfig command to see the
management interface. To confirm that this interface is used for an external bridge group,
use the brctl show command to seewhether themanagement interface is listed as an external
bridge.

Enable SR-IOV capability by turning on intel_iommu=on in the /etc/default/grub directory.

31

GRUB_CMDLINE_LINUX_DEFAULT="intel_iommu=on"

Append the intel_iommu=on string to any existing text for the GRUB_CMDLINE_LINUX_DEFAULT
parameter.

Run the update-grub command followed by the reboot command.

7. For optimal performance, we recommend you configure the size of Huge Pages to be 1G on the host
and make sure the NUMA node for the VFP has at least 16 1G Huge Pages. To configure the size of
Huge Pages, add the following line in /etc/default/grub:

GRUB_CMDLINE_LINUX="default_hugepagesz=1Ghugepagesz=1Ghugepages=number-of-huge-pages"

The number of Huge Pages must be at least (16G * number-of-numa-sockets).

8. Run the modprobe kvm-intel command before you install vMX.

NOTE: Starting in Junos OS 18.2 and later releases, Ubuntu 16.04.5 LTS and Linux
4.4.0-62-generic are supported.

To meet the minimum software and OS requirements, you might need to perform these tasks:

Upgrading the Kernel

NOTE: Upgrading Linux kernel in Ubuntu 16.04 version is not required.

NOTE: If you are using Ubuntu 14.04.1 LTS, which comes with 3.19.0-80-generic, you can skip
this step. Ubuntu 14.04 comes with a lower version of kernel (Linux 3.13.0-24-generic) than the
recommended version (Linux 3.19.0-80-generic).

To upgrade the kernel:

1. Determine your version of the kernel.

uname -a
Linux rbu-node-33 3.19.0-80-generic #57-Ubuntu SMP Tue Jul 15 03:51:08 UTC 2014

x86_64 x86_64 x86_64 GNU/Linux

2. If your version differs from the version shown in step 1, run the following commands:

32

apt-get install linux-firmware

apt-get install linux-image-3.19.0-80-generic

apt-get install linux-image-extra-3.19.0-80-generic

apt-get install linux-headers-3.19.0-80-generic

3. Restart the system.

Upgrading to libvirt 1.2.19

NOTE: Ubuntu 16.04.5 supports Libvirt version is 1.3.1. Upgrading libvirt in Ubuntu 16.04 is
not required.

Ubuntu 14.04 supports libvirt 1.2.2 (which works for VFP lite mode). If you are using the VFP performance
mode or deploying multiple vMX instances using the VFP lite mode, you must upgrade to libvirt 1.2.19.

To upgrade libvirt:

1. Make sure that you install all the packages listed in “Minimum Hardware and Software Requirements”
on page 23.

2. Navigate to the /tmp directory using the cd /tmp command.

3. Get the libvirt-1.2.19 source code by using the command
wget http://libvirt.org/sources/libvirt-1.2.19.tar.gz.

4. Uncompress and untar the file using the tar xzvf libvirt-1.2.19.tar.gz command.

5. Navigate to the libvirt-1.2.19 directory using the cd libvirt-1.2.19 command.

6. Stop libvirtd with the service libvirt-bin stop command.

7. Run the ./configure --prefix=/usr --localstatedir=/ --with-numactl command.

8. Run the make command.

9. Run the make install command.

10.Make sure that the libvirtd daemon is running. (Use the service libvirt-bin start command to start it
again. If it does not start, use the /usr/sbin/libvirtd -d command.)

root@vmx-server:~# ps aux | grep libvirtd

root 1509 0.0 0.0 372564 16452 ? Sl 10:25 0:00 /usr/sbin/libvirtd

 -d

11.Verify that the versions of libvirtd and virsh are 1.2.19.

33

root@vmx-server:~# /usr/sbin/libvirtd --version

libvirtd (libvirt) 1.2.19

root@vmx-server:~# /usr/bin/virsh --version

1.2.19

root@vmx-server:~#

The system displays the code compilation log.

NOTE: If you cannot deploy vMX after upgrading libvirt, bring down the virbr0 bridge with the
ifconfig virbr0 down command and delete the bridge with the brctl delbr virbr0 command.

Updating Drivers for the X710 NIC

If you are using Intel XL710 PCI-Express family NICs, make sure you update the drivers before you install
vMX.

To update the drivers:

1. Download the vMX software package as root and uncompress the package.

tar xzvf package-name

2. Install the i40e driver from the installation directory.

cd drivers/i40e-1.3.46/src
make install

3. Install the latest i40evf driver from Intel.

For example, the following commands download and install Version 1.4.15:

cd /tmp
wget https://downloadmirror.intel.com/26003/eng/i40evf-1.4.15.tar.gz
tar zxvf i40evf-1.4.15.tar.gz
cd i40evf-1.4.15/src
make install

4. Update initrd with the drivers.

34

update-initramfs -u -k 'uname -r'

5. Activate the new driver.

rmmod i40e
modprobe i40e

Install the Other Required Packages

1. Use the following commands to install python-netifaces package on Ubuntu.

apt-get install python-pip
apt-get install python-netifaces
pip install pyyaml

Preparing the Red Hat Enterprise Linux Host to Install vMX

IN THIS SECTION

Preparing the Red Hat Enterprise Linux 7.3 Host to Install vMX | 35

Preparing the Red Hat Enterprise Linux 7.2 Host to Install vMX | 39

To prepare the host system running Red Hat Enterprise Linux for installing vMX, perform the task for your
version:

Preparing the Red Hat Enterprise Linux 7.3 Host to Install vMX

To prepare the host system running Red Hat Enterprise Linux 7.3 for installing vMX:

1. Meet the minimum software and OS requirements described in “Minimum Hardware and Software
Requirements” on page 23.

2. Enable hyperthreading and VT-d in BIOS.

35

If you are using SR-IOV, enable SR-IOV in BIOS.

We recommend that you verify the process with the vendor because different systems have different
methods to access and change BIOS settings.

3. During theOS installation, select theVirtualizationHost andVirtualizationPlatform software collections.

If you did not select these software collections during the GUI installation, use the following commands
to install them:

yum groupinstall "virtualization host"
yum groupinstall "virtualization platform"

4. Register your host using your Red Hat account credentials. Enable the appropriate repositories.

subscription-manager register --username username --password password --auto-attach
subscription-manager repos --enable rhel-7-fast-datapath-htb-rpms
subscription-manager repos --enable rhel-7-fast-datapath-rpms
subscription-manager repos --enable rhel-7-server-extras-rpms
subscription-manager repos --enable rhel-7-server-nfv-rpms
subscription-manager repos --enable rhel-7-server-optional-rpms
subscription-manager repos --enable rhel-7-server-rh-common-rpms
subscription-manager repos --enable rhel-7-server-rhn-tools-beta-rpms
subscription-manager repos --enable rhel-7-server-rpms
subscription-manager repos --enable rhel-ha-for-rhel-7-server-rpms
subscription-manager repos --enable rhel-server-rhscl-7-rpms

To install the Extra Packages for Enterprise Linux 7 (epel) repository:

yum -y install wget
cd /tmp/
wget https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
yum -y install epel-release-latest-7.noarch.rpm

5. Update currently installed packages.

yum upgrade

6. For optimal performance, we recommend you configure the size of Huge Pages to be 1G on the host
and make sure that the NUMA node for the VFP has at least sixteen 1G Huge Pages. To configure the
size of Huge Pages, use the following step:

For Red Hat: Add the Huge Pages configuration.

36

grubby --update-kernel=ALL --args="default_hugepagesz=huge-pages-size hugepagesz=huge-pages-size
hugepages=number-of-huge-pages"

grub2-install /dev/boot-device-name
reboot

Use the mount | grep boot command to determine the boot device name.

The number of Huge Pages must be at least (16G * number-of-numa-sockets).

7. Install the required packages.

yum install python27-python-pip python27-python-devel numactl-libs libpciaccess-devel parted-devel
yajl-devel libxml2-devel glib2-devel libnl-devel libxslt-devel libyaml-devel numactl-devel redhat-lsb
kmod-ixgbe libvirt-daemon-kvm numactl telnet net-tools dosfstools

8. (Optional) If you are using SR-IOV, you must install these packages and enable SR-IOV capability.

yum install kernel-devel gcc
grubby --args="intel_iommu=on" --update-kernel=ALL

Reboot and log in again.

9. Link the qemu-kvm binary to the qemu-system-x86_64 file.

ln -s /usr/libexec/qemu-kvm /usr/bin/qemu-system-x86_64

10. Set up the path for the correct Python release and install the PyYAML library.

PATH=/opt/rh/python27/root/usr/bin:$PATH
export PATH
pip install netifaces pyyaml

11. If you have installed any Red Hat OpenStack libraries, you must change script/templates/red_{vPFE,
vRE}-ref.xml to use <type arch='x86_64' machine='pc-0.13'>hvm</type> as the machine type.

12.Disable KSM.

systemctl disable ksm
systemctl disable ksmtuned

37

To verify that KSM is disabled run the following command.

cat /sys/kernel/mm/ksm/run 0

The value 0 in the output indicates that KSM is disabled.

13.Disable APIC virtualization by editing the /etc/modprobe.d/kvm.conf file and adding enable_apicv=n
to the line containing options kvm_intel.

modprobe -r kvm_intel

vi /etc/modprobe.d/kvm.conf to add the following lines
options kvm-intel enable_apicv=n

You can use enable_apicv=0 also.

modprobe kvm-intel

Restart the host to disable KSM and APIC virtualization.

14. Stop and disable Network Manager.

systemctl disable NetworkManager
systemctl stop NetworkManager

If you cannot stop Network Manager, you can prevent resolv.conf from being overwritten with the
chattr +I /etc/resolv.conf command.

15. Ensure that the build directory is readable by the QEMU user.

chmod -R o+r,o+x build-directory-pathname

As an alternative, you can configureQEMU to run as the root user by setting the /etc/libvirt/qemu.conf
file to user="root".

You can now install vMX.

NOTE: When you install vMX with the sh vmx.sh -lv --install command, you might see a kernel
version mismatch warning. You can ignore this warning.

38

Preparing the Red Hat Enterprise Linux 7.2 Host to Install vMX

To prepare the host system running Red Hat Enterprise Linux 7.2 for installing vMX:

1. Meet the minimum software and OS requirements described in “Minimum Hardware and Software
Requirements” on page 23.

2. Enable hyperthreading and VT-d in BIOS.

If you are using SR-IOV, enable SR-IOV in BIOS.

We recommend that you verify the process with the vendor because different systems have different
methods to access and change BIOS settings.

3. During theOS installation, select theVirtualizationHost andVirtualizationPlatform software collections.

If you did not select these software collections during the GUI installation, use the following commands
to install them:

yum groupinstall "virtualization host"
yum groupinstall "virtualization platform"

4. Register your host using your Red Hat account credentials. Enable the appropriate repositories.

subscription-manager register --username username --password password --auto-attach
subscription-manager repos --enable rhel-server-rhscl-7-rpms
subscription-manager repos --enable rhel-7-server-extras-rpms
subscription-manager repos --enable rhel-7-server-rhn-tools-beta-rpms
subscription-manager repos --enable rhel-7-server-optional-rpms

5. Update currently installed packages.

yum upgrade

6. Install the required packages.

yum install python27-python-pip python27-python-devel numactl-libs libpciaccess-devel parted-devel
yajl-devel libxml2-devel glib2-devel libnl-devel libxslt-devel libyaml-devel numactl-devel redhat-lsb
kmod-ixgbe libvirt-daemon-kvm numactl telnet net-tools dosfstools

39

7. For optimal performance, we recommend you configure the size of Huge Pages to be 1G on the host
and make sure that the NUMA node for the VFP has at least sixteen 1G Huge Pages. To configure the
size of Huge Pages, use the following step:

For Red Hat: Add the Huge Pages configuration.

grubby --update-kernel=ALL --args="default_hugepagesz=huge-pages-size hugepagesz=huge-pages-size
hugepages=number-of-huge-pages"

grub2-install /dev/boot-device-name
reboot

Use the mount | grep boot command to determine the boot device name.

The number of Huge Pages must be at least (16G * number-of-numa-sockets).

8. (Optional) If you are using SR-IOV, you must install these packages and enable SR-IOV capability.

yum install kernel-devel gcc
grubby --args="intel_iommu=on" --update-kernel=ALL

Reboot and log in again.

9. Link the qemu-kvm binary to the qemu-system-x86_64 file.

ln -s /usr/libexec/qemu-kvm /usr/bin/qemu-system-x86_64

10. Set up the path for the correct Python release and install the PyYAML library.

PATH=/opt/rh/python27/root/usr/bin:$PATH
export PATH
pip install netifaces pyyaml

11. If you have installed any Red Hat OpenStack libraries, you must change script/templates/red_{vPFE,
vRE}-ref.xml to use <type arch='x86_64' machine='pc-0.13'>hvm</type> as the machine type.

12.Disable KSM.

systemctl disable ksm
systemctl disable ksmtuned

To verify that KSM is disabled run the following command.

40

cat /sys/kernel/mm/ksm/run 0

The value 0 in the output indicates that KSM is disabled.

13.Disable APIC virtualization by editing the /etc/modprobe.d/kvm.conf file and adding enable_apicv=n
to the line containing options kvm_intel.

modprobe -r kvm_intel

vi /etc/modprobe.d/kvm.conf to add the following lines
options kvm-intel enable_apicv=n

You can use enable_apicv=0 also.

modprobe kvm-intel

Restart the host to disable KSM and APIC virtualization.

14. Stop and disable Network Manager.

systemctl disable NetworkManager
systemctl stop NetworkManager

If you cannot stop Network Manager, you can prevent resolv.conf from being overwritten with the
chattr +I /etc/resolv.conf command.

15. Ensure that the build directory is readable by the QEMU user.

chmod -R o+r,o+x build-directory-pathname

As an alternative, you can configureQEMU to run as the root user by setting the /etc/libvirt/qemu.conf
file to user="root".

You can now install vMX.

NOTE: When you install vMX with the sh vmx.sh -lv --install command, you might see a kernel
version mismatch warning. You can ignore this warning.

41

Preparing the CentOS Host to Install vMX

To prepare the host system running CentOS for installing vMX:

1. Meet the minimum software and OS requirements described in “Minimum Hardware and Software
Requirements” on page 23.

2. Enable hyperthreading and VT-d in BIOS.

If you are using SR-IOV, enable SR-IOV in BIOS.

We recommend that you verify the process with the vendor because different systems have different
methods to access and change BIOS settings.

3. During theOS installation, select theVirtualizationHost andVirtualizationPlatform software collections.

If you did not select these software collections during the GUI installation, use the following commands
to install them:

yum groupinstall "virtualization host"
yum groupinstall "virtualization platform"

4. Enable the appropriate repositories.

yum install -y "http://www.elrepo.org/elrepo-release-7.0-2.el7.elrepo.noarch.rpm"
yum install centos-release-scl

5. Update currently installed packages.

yum upgrade

6. Install the required packages.

yum install python27-python-pip python27-python-devel numactl-libs libpciaccess-devel parted-devel
yajl-devel libxml2-devel glib2-devel libnl-devel libxslt-devel libyaml-devel numactl-devel redhat-lsb
kmod-ixgbe libvirt-daemon-kvm numactl telnet net-tools

7. (Optional) If you are using SR-IOV, you must install these packages and enable SR-IOV capability.

yum install kernel-devel gcc
grubby --args="intel_iommu=on" --update-kernel=ALL

42

Reboot and log in again.

8. Link the qemu-kvm binary to the qemu-system-x86_64 file.

ln -s /usr/libexec/qemu-kvm /usr/bin/qemu-system-x86_64

9. Set up the path for the correct Python release and install the PyYAML library.

PATH=/opt/rh/python27/root/usr/bin:$PATH
export PATH
pip install netifaces pyyaml

NOTE: In case of error with installation, use the following workaround:

yum install python27-python-pip
scl enable python27 bash
source scl_source enable python27
export LD_LIBRARY_PATH=/opt/rh/python27/root/usr/lib64
pip install -upgrade pip
pip install netifaces pyyaml

10.Disable KSM.

systemctl disable ksm
systemctl disable ksmtuned

To verify that KSM is disabled run the following command.

cat /sys/kernel/mm/ksm/run 0

The value 0 in the output indicates that KSM is disabled.

11.Disable APIC virtualization by editing the /etc/modprobe.d/kvm.conf file and adding enable_apicv=0
to the line containing options kvm_intel.

•
modprobe -r kvm_intel

43

•
vi /etc/modprobe.d/kvm.conf to add the following lines
options kvm-intel enable_apicv=n

•
modprobe kvm-intel

Restart the host to disable KSM and APIC virtualization.

12. Stop and disable Network Manager.

systemctl disable NetworkManager
systemctl stop NetworkManager

If you cannot stop Network Manager, you can prevent resolv.conf from being overwritten with the
chattr +I /etc/resolv.conf command.

13. Ensure that the build directory is readable by the QEMU user.

chmod -R o+r,o+x build-directory-pathname

As an alternative, you can configureQEMU to run as the root user by setting the /etc/libvirt/qemu.conf
file to user=root.

14.Add this line to the end of the /etc/profile file.

export PATH=/opt/rh/python27/root/usr/bin:$PATH

You can now install vMX.

NOTE: When you install vMX with the sh vmx.sh -lv --install command, you might see a kernel
version mismatch warning. You can ignore this warning.

44

Installing vMX for Different Use Cases

IN THIS SECTION

Installing vMX for Lab Simulation | 49

Installing vMX for Low-Bandwidth Applications | 51

Installing vMX for High-Bandwidth Applications | 53

Installing vMX with Dual Routing Engines | 55

Installing vMX with Mixed WAN Interfaces | 59

Installing vMX is different for specific use cases. Table lists the sample configuration requirements for
some vMX use cases.

Table 9: Sample Configurations for Use Cases (supported in Junos OS Release 18.3 to 18.4)

NIC Device TypeMinimum MemoryMinimum vCPUsUse Case

virtio5 GB:
1 GB for VCP
4 GB for VFP

4:
1 for VCP
3 for VFP

Lab simulation

Up to 100 Mbps
performance

virtio20 GB:
4 GB for VCP
16 GB for VFP

10:
1 for VCP
9 for VFP

Low-bandwidth
applications

Up to 3 Gbps performance

SR-IOV20 GB
4 GB for VCP
16 GB for VFP

10:
1 for VCP
9 for VFP

High-bandwidth
applications or performance
testing

For 3 Gbps and beyond
performance

45

Table 9: Sample Configurations for Use Cases (supported in Junos OS Release 18.3 to 18.4) (continued)

NIC Device TypeMinimum MemoryMinimum vCPUsUse Case

virtio or SR-IOVDouble the number of VCP
resources for your
particular use case is
consumed when deploying
both VCP instances.

Double the number of VCP
resources for your
particular use case is
consumed when deploying
both VCP instances.

Dual virtual Routing
Engines

NOTE: Whendeploying on
separate hosts, you must
set up a connection
between the hosts for the
VCPs to communicate with
each other.

Table 10: Sample Configurations for Use Cases (supported in Junos OS Release 18.1 to 18.2)

NIC Device TypeMinimum MemoryMinimum vCPUsUse Case

virtio5 GB:
1 GB for VCP
4 GB for VFP

4:
1 for VCP
3 for VFP

Lab simulation

Up to 100 Mbps
performance

virtio16 GB:
4 GB for VCP
12 GB for VFP

8:
1 for VCP
7 for VFP

Low-bandwidth
applications

Up to 3 Gbps performance

SR-IOV16 GB
4 GB for VCP
12 GB for VFP

8:
1 for VCP
7 for VFP

High-bandwidth
applications or performance
testing

For 3 Gbps and beyond
performance

virtio or SR-IOVDouble the number of VCP
resources for your
particular use case is
consumed when deploying
both VCP instances.

Double the number of VCP
resources for your
particular use case is
consumed when deploying
both VCP instances.

Dual virtual Routing
Engines

NOTE: Whendeploying on
separate hosts, you must
set up a connection
between the hosts for the
VCPs to communicate with
each other.

46

Table 11: Sample Configurations for Use Cases (supported in Junos OS Release 17.4)

NIC Device TypeMinimum MemoryMinimum vCPUsUse Case

virtio5 GB:
1 GB for VCP
4 GB for VFP

4:
1 for VCP
3 for VFP

Lab simulation

Up to 100 Mbps
performance

virtio16 GB:
4 GB for VCP
12 GB for VFP

8:
1 for VCP
7 for VFP

Low-bandwidth
applications

Up to 3 Gbps performance

SR-IOV16 GB
4 GB for VCP
12 GB for VFP

8:
1 for VCP
7 for VFP

High-bandwidth
applications or performance
testing

For 3 Gbps and beyond
performance

Table 12: Sample Configurations for Use Cases (supported in Junos OS Release 15.1F6 to 17.3)

NIC Device TypeMinimum MemoryMinimum vCPUsUse Case

virtio5 GB:
1 GB for VCP
4 GB for VFP

4:
1 for VCP
3 for VFP

Lab simulation

Up to 100 Mbps
performance

virtio16 GB:
4 GB for VCP
12 GB for VFP

8:
1 for VCP
7 for VFP

Low-bandwidth
applications

Up to 3 Gbps performance

SR-IOV16 GB
4 GB for VCP
12 GB for VFP

8:
1 for VCP
7 for VFP

High-bandwidth
applications or performance
testing

For 3 Gbps and beyond
performance

47

Table 13: Sample Configurations for Use Cases (supported in Junos OS Release 15.1F4 to 15.1F3)

NIC Device TypeMinimum MemoryMinimum vCPUsUse Case

virtio10 GB:
2 GB for VCP
8 GB for VFP

4:
1 for VCP
3 for VFP

Lab simulation

Up to 100 Mbps
performance

virtio or SR-IOV10 GB:
2 GB for VCP
8 GB for VFP

4:
1 for VCP
3 for VFP

Low-bandwidth
applications

Up to 3 Gbps performance

SR-IOV16 GB
4 GB for VCP
12 GB for VFP

8:
1 for VCP
7 for VFP

High-bandwidth
applications or performance
testing

For 3 Gbps and beyond
performance (with
minimum of two 10Gb
Ethernet ports)

Up to 80 Gbps of raw
performance

Table 14: Sample Configurations for Use Cases (supported in Junos OS Release 14.1)

NIC Device TypeMinimum MemoryMinimum vCPUsUse Case

virtio8 GB:
2 GB for VCP
6 GB for VFP

4:
1 for VCP
3 for VFP

Lab simulation

Up to 100 Mbps
performance

virtio or SR-IOV8 GB:
2 GB for VCP
6 GB for VFP

4:
1 for VCP
3 for VFP

Low-bandwidth
applications

Up to 3 Gbps performance

48

Table 14: Sample Configurations for Use Cases (supported in Junos OS Release 14.1) (continued)

NIC Device TypeMinimum MemoryMinimum vCPUsUse Case

SR-IOV8 GB
2 GB for VCP
6 GB for VFP

5:
1 for VCP
4 for VFP

High-bandwidth
applications or performance
testing

For 3 Gbps and beyond
performance (with
minimum of two 10Gb
Ethernet ports)

Up to 80 Gbps of raw
performance

NOTE: From Junos OS Release 18.4R1 (Ubuntu host) and Junos OS Release 19.1R1 (RedHat
host), you can set the use_native_drivers value to true in the vMX configuration file to use the
latest unmodified drivers for your network interface cards for vMX installations

To install vMX for a particular use case, perform one of the following tasks:

Installing vMX for Lab Simulation

Starting in Junos OS Release 14.1, the use case for lab simulation uses the virtio NIC.

To install vMX for the lab simulation (less than 100 Mbps) application use case:

1. Download the vMX software package as root and uncompress the package.

tar xzvf package-name

2. Change directory to the location of the uncompressed vMX package.

cd package-location

3. Edit the config/vmx.conf text file with a text editor to configure a single vMX instance.

Ensure the following parameter is set properly in the vMX configuration file:

device-type : virtio

See “Specifying vMX Configuration File Parameters” on page 62.

49

4. Run the ./vmx.sh -lv --install script to deploy the vMX instance specified by the config/vmx.conf startup
configuration file and provide verbose-level logging to a file. See “Deploying and Managing vMX” on
page 61.

5. From the VCP, enable lite mode for the VFP.

user@vmx# set chassis fpc 0 lite-mode

Here is a sample vMX startup configuration file using the virtio device type for lab simulation:

#Configuration on the host side - management interface, VM images etc.

HOST:

 identifier : vmx1 # Maximum 4 characters

 host-management-interface : eth0

 routing-engine-image : "/home/vmx/vmxlite/images/junos-vmx-x86-64.qcow2"

 routing-engine-hdd : "/home/vmx/vmxlite/images/vmxhdd.img"

 forwarding-engine-image : "/home/vmx/vmxlite/images/vFPC.img"

#External bridge configuration

BRIDGES:

 - type : external

 name : br-ext # Max 10 characters

#vRE VM parameters

CONTROL_PLANE:

 vcpus : 1

 memory-mb : 1024

 console_port: 8601

 interfaces :

 - type : static

 ipaddr : 10.102.144.94

 macaddr : "0A:00:DD:C0:DE:0E"

#vPFE VM parameters

FORWARDING_PLANE:

 memory-mb : 4096

 vcpus : 3

 console_port: 8602

50

 device-type : virtio

 interfaces :

 - type : static

 ipaddr : 10.102.144.98

 macaddr : "0A:00:DD:C0:DE:10"

#Interfaces

JUNOS_DEVICES:

 - interface : ge-0/0/0

 mac-address : "02:06:0A:0E:FF:F0"

 description : "ge-0/0/0 interface"

 - interface : ge-0/0/1

 mac-address : "02:06:0A:0E:FF:F1"

 description : "ge-0/0/1 interface"

Installing vMX for Low-Bandwidth Applications

Starting in Junos OS Release 14.1, the use case for low-bandwidth applications uses virtio or SR-IOVNICs.

To install vMX for the low-bandwidth (up to 3 Gbps) application use case:

1. Download the vMX software package as root and uncompress the package.

tar xzvf package-name

2. Change directory to the location of the uncompressed vMX package.

cd package-location

3. Edit the config/vmx.conf text file with a text editor to configure a single vMX instance.

Ensure the following parameter is set properly in the vMX configuration file:

device-type: virtio or device-type: sriov

See “Specifying vMX Configuration File Parameters” on page 62.

4. Run the ./vmx.sh -lv --install script to deploy the vMX instance specified by the config/vmx.conf startup
configuration file and provide verbose-level logging to a file. See “Deploying and Managing vMX” on
page 61.

5. From the VCP, enable performance mode for the VFP.

51

user@vmx# set chassis fpc 0 performance-mode

Here is a sample vMX startup configuration file using the virtio device type for low-bandwidth applications:

#Configuration on the host side - management interface, VM images etc.

HOST:

 identifier : vmx1 # Maximum 4 characters

 host-management-interface : eth0

 routing-engine-image : "/home/vmx/vmx/images/junos-vmx-x86-64.qcow2"

 routing-engine-hdd : "/home/vmx/vmx/images/vmxhdd.img"

 forwarding-engine-image : "/home/vmx/vmx/images/vFPC.img"

#External bridge configuration

BRIDGES:

 - type : external

 name : br-ext # Max 10 characters

#vRE VM parameters

CONTROL_PLANE:

 vcpus : 1

 memory-mb : 4096

 console_port: 8601

 interfaces :

 - type : static

 ipaddr : 10.102.144.94

 macaddr : "0A:00:DD:C0:DE:0E"

#vPFE VM parameters

FORWARDING_PLANE:

 memory-mb : 16384

 vcpus : 9

 console_port: 8602

 device-type : virtio

 interfaces :

 - type : static

 ipaddr : 10.102.144.98

 macaddr : "0A:00:DD:C0:DE:10"

52

#Interfaces

JUNOS_DEVICES:

 - interface : ge-0/0/0

 mac-address : "02:06:0A:0E:FF:F0"

 description : "ge-0/0/0 interface"

 - interface : ge-0/0/1

 mac-address : "02:06:0A:0E:FF:F1"

 description : "ge-0/0/1 interface"

Installing vMX for High-Bandwidth Applications

Starting in Junos OS Release 14.1, the use case for high-bandwidth applications uses the SR-IOV NICs.

To install vMX for the high-bandwidth (above 3 Gbps) application use case:

1. Download the vMX software package as root and uncompress the package.

tar xzvf package-name

2. Change directory to the location of the uncompressed vMX package.

cd package-location

3. Edit the config/vmx.conf text file with a text editor to configure a single vMX instance.

Ensure the following parameter is set properly in the vMX configuration file:

device-type: sriov

See “Specifying vMX Configuration File Parameters” on page 62.

4. Run the ./vmx.sh -lv --install script to deploy the vMX instance specified by the config/vmx.conf startup
configuration file and provide verbose-level logging to a file. See “Deploying and Managing vMX” on
page 61.

5. From the VCP, enable performance mode for the VFP.

user@vmx# set chassis fpc 0 performance-mode

53

Here is a sample vMX startup configuration file using the SR-IOV device type:

#Configuration on the host side - management interface, VM images etc.

HOST:

 identifier : vmx1 # Maximum 4 characters

 host-management-interface : eth0

 routing-engine-image : "/home/vmx/images/junos-vmx-x86-64.qcow2"

 routing-engine-hdd : "/home/vmx/images/vmxhdd.img"

 forwarding-engine-image : "/home/vmx/images/vFPC.img"

#External bridge configuration

BRIDGES:

 - type : external

 name : br-ext # Max 10 characters

#VCP VM parameters

CONTROL_PLANE:

 vcpus : 1

 memory-mb : 4096

 console_port: 8601

 interfaces :

 - type : static

 ipaddr : 10.102.144.94

 macaddr : "0A:00:DD:C0:DE:0E"

#VFP VM parameters

FORWARDING_PLANE:

 memory-mb : 16384

 vcpus : 9

 console_port: 8602

 device-type : sriov

 interfaces :

 - type : static

 ipaddr : 10.102.144.98

 macaddr : "0A:00:DD:C0:DE:10"

#Interfaces

JUNOS_DEVICES:

54

 - interface : ge-0/0/0

 port-speed-mbps : 10000

 nic : eth1

 mtu : 2000

 virtual-function : 0

 mac-address : "02:06:0A:0E:FF:F0"

 description : "ge-0/0/0 connects to eth1"

 - interface : ge-0/0/1

 port-speed-mbps : 10000

 nic : eth2

 mtu : 2000

 virtual-function : 0

 mac-address : "02:06:0A:0E:FF:F1"

 description : "ge-0/0/1 connects to eth2"

For more information see, “Example: Enabling SR-IOV on vMX Instances on KVM” on page 89.

Installing vMX with Dual Routing Engines

You can set up redundant Routing Engines on the vMX server by creating the master Routing Engine (re0)
and backup Routing Engine (re1) in the CONTROL_PLANE section of the vMX startup configuration file
(default file is config/vmx.conf).

NOTE: When deploying the Routing Engines on separate hosts, you must set up a connection
between the hosts for the VCPs to communicate with each other.

Starting in Junos OS Release 18.1 to install vMX for the dual Routing Engines use case:

1. Download the vMX software package as root and uncompress the package.

tar xzvf package-name

2. Change directory to the location of the uncompressed vMX package.

cd package-location

3. Edit the config/vmx.conf text file with a text editor to configure the vMX instance.

The default CONTROL_PLANE section resembles the following with one interface entry:

55

CONTROL_PLANE:

 vcpus : 1

 memory-mb : 2048

 console_port: 8896

 interfaces :

 - type : static

 ipaddr : 10.216.48.117

 macaddr : "0A:01:03:A1:A1:02"

To set up the redundant Routing Engines:

a. Navigate to CONTROL_PLANE and specify the proper number of vCPUs (vcpus) and amount of
memory (memory-mb).

b. Starting with Junos OS Release 18.1R1, add the deploy parameter to designate the Routing Engine
instance deployed on this host. If you do not specify this parameter, all instances (0,1) are deployed
on the host.

When deploying the Routing Engines on separate hosts, you must set up a connection between the
hosts for the VCPs to communicate with each other.

c. Modify the interfaces entry to add instance : 0 after the type parameter to set up re0.

Specify the ipaddr and macaddr parameters. This address is the management IP address for the
VCP VM (fxp0).

d. Add another entry, but specify instance : 1 to set up re1 and specify the console_port parameter
for re1 after the instance : 1 parameter.

Specify the ipaddr and macaddr parameters. This address is the management IP address for the
VCP VM (fxp0).

The revised CONTROL_PLANE section that deploys re0 on the host resembles the following example
with two interface entries:

CONTROL_PLANE:

 vcpus : 1

 memory-mb : 4096

 console_port : 8896

 deploy : 0

 interfaces :

56

 - type : static

 instance : 0

 ipaddr : 10.216.48.117

 macaddr : "0A:01:03:A1:A1:02"

 - type : static

 instance : 1

 console_port : 8897

 ipaddr : 10.216.48.118

 macaddr : "0A:01:03:A1:A1:06"

See “Specifying vMX Configuration File Parameters” on page 62.

4. Run the ./vmx.sh -lv --install script to deploy the vMX instance specified by the config/vmx.conf startup
configuration file and provide verbose-level logging to a file. See “Deploying and Managing vMX” on
page 61.

5. From the VCP, enable performance mode for the VFP.

user@vmx# set chassis fpc 0 performance-mode

6. When deploying the Routing Engines on separate hosts, you must set up a connection between the
hosts for the VCPs to communicate with each other.

For example, to set up a connection (such as br-int-vmx1) between the two hosts over an interface
(such as eth1), run the following command on both hosts:

ifconfig eth1 up && brctl addif br-int-vmx1 eth1

Here is a sample vMX startup configuration file that is deploying the first Routing Engine instance on this
host:

#Configuration on the host side - management interface, VM images etc.

HOST:

 identifier : vmx1 # Maximum 4 characters

 host-management-interface : eth0

 routing-engine-image : "/home/vmx/images/junos-vmx-x86-64.qcow2"

 routing-engine-hdd : "/home/vmx/images/vmxhdd.img"

 forwarding-engine-image : "/home/vmx/images/vFPC.img"

#External bridge configuration

57

BRIDGES:

 - type : external

 name : br-ext # Max 10 characters

#VCP VM parameters

CONTROL_PLANE:

 vcpus : 1

 memory-mb : 4096

 console_port : 8601

 deploy : 0

 interfaces :

 - type : static

 instance : 0

 ipaddr : 10.102.144.94

 macaddr : "0A:00:DD:C0:DE:0E"

 - type : static

 instance : 1

 console_port : 8612

 ipaddr : 10.102.144.95

 macaddr : "0A:00:DD:C0:DE:0F"

#VFP VM parameters

FORWARDING_PLANE:

 memory-mb : 12288

 vcpus : 10

 console_port: 8602

 device-type : sriov

 interfaces :

 - type : static

 ipaddr : 10.102.144.98

 macaddr : "0A:00:DD:C0:DE:10"

#Interfaces

JUNOS_DEVICES:

 - interface : ge-0/0/0

 port-speed-mbps : 10000

 nic : eth1

 mtu : 2000

58

 virtual-function : 0

 mac-address : "02:06:0A:0E:FF:F0"

 description : "ge-0/0/0 connects to eth1"

 - interface : ge-0/0/1

 port-speed-mbps : 10000

 nic : eth2

 mtu : 2000

 virtual-function : 0

 mac-address : "02:06:0A:0E:FF:F1"

 description : "ge-0/0/1 connects to eth2"

Installing vMX with Mixed WAN Interfaces

Starting in Junos OS Release 17.2, the use case for mixed WAN interfaces uses the virtio and SR-IOV
interfaces. Sample configuration requirements are the same as for using SR-IOV device type.

To install vMX with mixed interfaces:

1. Download the vMX software package as root and uncompress the package.

tar xzvf package-name

2. Change directory to the location of the uncompressed vMX package.

cd package-location

3. Edit the config/vmx.conf text file with a text editor to configure a single vMX instance.

Ensure the following parameter is set properly in the vMX configuration file:

device-type: mixed

When configuring the interfaces, make sure the virtio interfaces are specified before the SR-IOV
interfaces. The type parameter specifies the interface type.

See “Specifying vMX Configuration File Parameters” on page 62.

4. Run the ./vmx.sh -lv --install script to deploy the vMX instance specified by the config/vmx.conf startup
configuration file and provide verbose-level logging to a file. See “Deploying and Managing vMX” on
page 61.

5. From the VCP, enable performance mode for the VFP.

user@vmx# set chassis fpc 0 performance-mode

59

Here is a sample vMX startup configuration file using mixed interfaces:

#Configuration on the host side - management interface, VM images etc.

HOST:

 identifier : vmx1 # Maximum 4 characters

 host-management-interface : eth0

 routing-engine-image : "/home/vmx/images/junos-vmx-x86-64.qcow2"

 routing-engine-hdd : "/home/vmx/images/vmxhdd.img"

 forwarding-engine-image : "/home/vmx/images/vFPC.img"

#External bridge configuration

BRIDGES:

 - type : external

 name : br-ext # Max 10 characters

#VCP VM parameters

CONTROL_PLANE:

 vcpus : 1

 memory-mb : 4096

 console_port: 8601

 interfaces :

 - type : static

 ipaddr : 10.102.144.94

 macaddr : "0A:00:DD:C0:DE:0E"

#VFP VM parameters

FORWARDING_PLANE:

 memory-mb : 12288

 vcpus : 10

 console_port: 8602

 device-type : mixed

 interfaces :

 - type : static

 ipaddr : 10.102.144.98

 macaddr : "0A:00:DD:C0:DE:10"

#Interfaces

JUNOS_DEVICES:

60

 - interface : ge-0/0/0

 type : virtio

 mac-address : "02:06:0A:0E:FF:F0"

 description : "ge-0/0/0 interface"

 - interface : ge-0/0/1

 type : sriov

 port-speed-mbps : 10000

 nic : eth2

 mtu : 2000

 virtual-function : 0

 mac-address : "02:06:0A:0E:FF:F1"

 description : "ge-0/0/1 connects to eth2"

RELATED DOCUMENTATION

Minimum Hardware and Software Requirements | 23

vMX Package Contents | 28

Deploying and Managing vMX | 61

Deploying and Managing vMX

IN THIS SECTION

Specifying vMX Configuration File Parameters | 62

Connecting to VMs | 68

Managing vMX | 70

Binding virtio Devices | 73

Read this topic to understand the procedures required to manage vMX instance after you install it.

61

Specifying vMX Configuration File Parameters

IN THIS SECTION

Configuring the Host | 63

Configuring the VCP VM | 63

Configuring the VFP VM | 65

Configuring Interfaces | 67

The parameters required to configure vMX are defined in the startup configuration file. The configuration
file is in YAML format. The default file is config/vmx.conf.We recommend you to rename the configuration
file to a different name so that you can use the same configuration file every time you create different
instances.

NOTE: You must set up these three interfaces to launch the VFP.

• Management access

• Bridge for internal communication between the VCP and VFP

• WAN interface (minimum of one)

Starting in Junos OS Release 18.1, to configure the vMX instance, download and modify the startup
configuration file (vmx.conf).

1. Download the vMX software package as root and uncompress the package.

tar xzvf package-name

2. Change directory to the location of the uncompressed vMX package.

cd package-location

3. Edit the config/vmx.conf text file with a text editor to configure a single vMX instance and save the
file.

To customize the configuration, perform these tasks:

62

http://www.yaml.org/

Configuring the Host

To configure the host environment, you must change the identifier for each vMX instance and you must
provide the correct path for the images.

To configure the host, navigate to Host and specify the following parameters:

DescriptionParameter

Name of the vMX instance, maximum of four alphanumeric characters.identifier

Name of the physical NIC on the host device that is used formanagement access
(eth0).

NOTE: The interfaces forHOST:host-management-interface, CONTROL_PLANE,
and FORWARDING_PLANE must be on the same subnet.

host-management-interface

Absolute path to the junos-vmx-x86-64-*.qcow2 file for launching VCP.routing-engine-image

Absolute path to the vmxhdd.img file for VCP storage.routing-engine-hdd

Absolute path to the vFPC-*.img file for launching VFP.forwarding-engine-image

(Optional) Makes a local copy of the VCP and VFP images and uses the local
copy to launch vMX. Default value is yes.

NOTE: Copy the image file from its default location to ensure that the scripts
do not try to use the same image file concurrently.

make-local-copy-of-images

(Optional) Makes a local copy of the VCP storage image and uses the local copy
to launch vMX. Default value is yes.

NOTE: Copy the image file from its default location to ensure that the scripts
do not try to use the same image file concurrently.

make-local-copy-of-vmxhdd

Configuring the VCP VM

To configure the VCP VM, you must change the IP address and you must make sure the console port is
not being used by another vMX instance or another server.

To configure the VCP VM, navigate to CONTROL_PLANE and specify the following parameters:

63

NOTE:

DescriptionParameter

Number of vCPUs for the VCP, default is 1. Starting in Junos OS Release 18.1, If you are
deploying dual VCP instances, you must double the number of vCPUs.

vcpus

Amount of memory for the VCP, default is 2 GB.

In Junos OS Release 15.1F6, amount of memory for the VCP; minimum is 4 GB (performance
mode) and 1 GB (lite mode).

memory-mb

KVM TCP-based console port. It must be a unique number.console_port

(Optional) VCP instance to deploy on this host. Specify the number of the instance; first
instance is 0, second instance is 1, and multiple instances are separated by a comma. If you
do not specify this parameter, both instances (0,1) are deployed on this host. If none is set,
no VCP instance will be deployed on this host.

NOTE: When deploying on separate hosts, you must set up a connection between the hosts
for the VCPs to communicate.

Starting in Junos OS Release 18.1 If you are deploying across multiple servers (for example,
one server as the RE and one server as the PFE), and you want to disable VCP for the Control
Plane on the server, you have the option to specify none.

deploy

(Optional) IP address for the interface from which the console can be accessed; default is
127.0.0.1, which only allows access fromwithin the host. To allow access from any interfaces,
specify 0.0.0.0.

console_listen

64

DescriptionParameter

VCP instance. Navigate to interfaces > type (static) and include this parameter below it.

(Optional) Create the second instance below the first instance and include the console_port
parameter for the second instance. The parameters for specifying both VCP instances might
resemble the following:

 interfaces :

 - type : static

 instance : 0

 ipaddr : 10.102.144.94

 macaddr : "0A:00:DD:C0:DE:0E"

 - type : static

 instance : 1

 console_port: 8612

 ipaddr : 10.102.144.95

 macaddr : "0A:00:DD:C0:DE:0F"

instance (starting in
Junos OS Release
18.1)

Management IP address for the VCP VM (fxp0). Navigate to interfaces > type (static) > ipaddr
to modify this parameter.

NOTE: The interfaces for HOST:host-management-interface, CONTROL_PLANE, and
FORWARDING_PLANE must be on the same subnet.

ipaddr

Configuring the VFP VM

Before you configure the VFP VM, consider the following:

• You must make sure the console port is not being used by another vMX instance or another server.

• To disable network access to the VFP console, do not configure an IP address.

• Based on your requirements, you might want to change the memory, number of vCPUs, and the device
type. See “Installing vMX forDifferentUseCases” on page 45 for some sample configuration requirements.

NOTE: Starting in JunosOSRelease 18.1 if you are deploying acrossmultiple servers (for example,
one server as the RE and one server as the PFE), and you need to disable VFP for the Forwarding
Plane on the server, you have the option to specify none.

65

To configure the VFP VM, navigate to FORWARDING_PLANE and specify the following parameters:

DescriptionParameter

Amount of memory for the VFP, default is 6 GB.memory-mb

Number of vCPUs for the VFP, default is 3.vcpus

KVM TCP-based console port. It must be a unique number.console_port

(Optional) VFP instance to deploy on this host. Specify the number of the instance; first
instance is 0, second instance is 1, and multiple instances are separated by a comma. If you
do not specify this parameter, both instances (0,1) are deployed on this host. If none is set,
no VFP instance will be deployed on this host.

NOTE: When deploying on separate hosts, you must set up a connection between the
hosts for the VFPs to communicate.

deploy

(Optional) IP address for the interface from which the console can be accessed; default is
127.0.0.1, which only allows access from within the host. To allow access from any
interfaces, specify 0.0.0.0.

console_listen

NIC interface type, either sriov or virtio. If you are configuring both virtio and SR-IOV
interfaces, specify mixed.

device-type

Management IP address for the VFP VM (eth0). Navigate to interfaces > type (static) >
ipaddr to modify this parameter.

NOTE: The interfaces for HOST:host-management-interface, CONTROL_PLANE, and
FORWARDING_PLANE must be on the same subnet.

ipaddr

Set to true to allow using the host’s driver.

NOTE: From Junos OS Release 18.4R1 (Ubuntu host) and Junos OS Release 19.1R1 (Red
Hat host), you can set the use_native_drivers value to true to use the latest unmodified
drivers for your network interface cards for vMX installations.

use_native_drivers

To configure the VFP VM, navigate to FORWARDING_PLANE and specify the following parameters
(supported in Junos OS Release 15.1F6):

DescriptionParameter

Amount of memory for the VFP; minimum is 12 GB (performance mode) and 4 GB (lite
mode).

memory-mb

Number of vCPUs for the VFP; minimum is 7 (performance mode) and 3 (lite mode).vcpus

66

DescriptionParameter

KVM TCP-based console port. It must be a unique number.console_port

(Optional) IP address for the interface fromwhich the console can be accessed; default
is 127.0.0.1, which only allows access from within the host. To allow access from any
interfaces, specify 0.0.0.0.

console_listen

NIC interface type, either sriov or virtio.device-type

Management IP address for the VFP VM (eth0). Navigate to interfaces > type (static)
> ipaddr to modify this parameter.

NOTE: The interfaces for HOST:host-management-interface, CONTROL_PLANE, and
FORWARDING_PLANE must be on the same subnet.

ipaddr

Configuring Interfaces

The JUNOS_DEVICES interface names correspond to the Linux physical NIC names on the host. Bring up
the Linux physical NIC ports that are defined in this section before proceeding. For example, use the
ifconfig eth9 up command to bring up the NIC ports on the eth9 interface.

To configure interfaces for virtio device types, you must specify the interface and the MAC address. You
can bind virtio devices to connect virtio NICs in the vMX to physical NICs or virtio NICs in another vMX
(see “Binding virtio Devices” on page 73).

To configure interfaces for SR-IOV device types, you must specify the interface, the NIC, and the MAC
address.

To configure the routed interfaces, navigate to JUNOS_DEVICES and specify the following parameters:

DescriptionParameter

Name of the interface on the vMX.

NOTE: The interface names that are defined in the vmx.conf file must be contiguous
starting from ge-0/0/0. The total number of interfaces supported is 23 for
configurations running in performance mode. If you are running virtio interfaces in
lite mode, you can use up to 96 interfaces.

interface

NIC interface type, either sriov or virtio.

NOTE: If you are configuring both interface types, you must specify the virtio
interfaces before the SR-IOV interfaces.

type (supported in Junos
OS Release 17.2 onwards)

(SR-IOV only) Port speed for the physical NIC, default is 10000 Mbps.port-speed-mbps

67

DescriptionParameter

(SR-IOV only) Name of the physical NIC.

NOTE: Depending on the version of udev, you can rename the classic Linux standard
ethXX names. See Predictable Network Interface Names for more information.

nic

(SR-IOV only) MTU value, default is 2000 and maximum is 9500.

To change the MTU configuration for virtio device types, modify the mtu parameter
in the device binding file (vmx-junosdev.conf).

mtu

(SR-IOV only) Child unit of the physical NIC, default is 0.

(SR-IOV only) Virtual function number of the physical NIC; default is 0 (supported in
Junos OS Release 15.1F5 and earlier releases).

virtual-function

Unicast MAC address for the physical NIC.mac-address

Description of the mapping.description

Connecting to VMs

IN THIS SECTION

Logging In to VCP | 68

Logging In to VFP | 69

Perform these tasks to connect to the virtual machines for first-time configuration, to enable access by
other means (like Telnet or SSH):

Logging In to VCP

You can access the serial console using the ./vmx.sh --console vcp vmx-id command, where vmx-id is the
vMX identifier specified in the startup configuration file, and log inwith the username root and no password.

To disconnect from the console, log out of the session and press Ctrl +]. At the telnet> prompt, type close
and press Enter.

68

http://www.freedesktop.org/wiki/Software/systemd/PredictableNetworkInterfaceNames/

Logging In to VFP

You can access the serial console using the ./vmx.sh --console vfp vmx-id command, where vmx-id is the
vMX identifier specified in the startup configuration file, and log in with the username root and password
root.

To disconnect from the console, log out of the session and press Ctrl +]. At the telnet> prompt, type close
and press Enter.

To SSH into the virtual forwarding plane (VFP), use the IP address defined under FORWARDING_PLANE
in the vmx.conf file. For security reasons, you cannot connect to VFP using the Telnet protocol.

Also for security reasons you cannot connect to the VFP instance using the SSH protocol with the root
user. You must first access the VFP with console, login as root user, and create a user that you can then
use to SSH in with.

For example:

Access the VFP with the console:

root@ubuntu:~/19.2/vmx# ./vmx.sh --console vfp vmx1

root@qemux86-64:/home/pfe/riot# ./vfp_util.sh -create_user
Enter Username:pfe
Enter Password:
Re-enter Password:
Not copying any file from skel directory into it.
User pfe created, HOME:/var/pfe
Restarting OpenBSD Secure Shell server: sshd.

Now when using SSH to access the VFP as the PFE user you can login as super user to access to the root
directory.

pfe@qemux86-64:~$ su
root@qemux86-64:/var/pfe# id
uid=0(root) gid=0(root) groups=0(root)
root@qemux86-64:/var/pfe#

69

Managing vMX

IN THIS SECTION

Deploying vMX | 70

Managing vMX Deployments | 71

Specifying the Temporary File Directory | 72

Specifying the Environment File | 72

Configuring Logging Options for vMX | 72

Connecting to Console Port for the VMs | 73

Getting Help for the Script Options | 73

NOTE: Only English locale is supported for using the vmx.sh script.

After you install and deploy vMX, you can use the vmx.sh script with different options to perform these
tasks:

Deploying vMX

NOTE: You must be logged in as root to use the control options.

Using the --install option also launches the VCP and VFP VMs.

We recommend you deploy the vMX by running the ./vmx.sh -lv --install script to provide verbose-level
logging to a file for the deployment of the vMX instance.

NOTE: Only English locale is supported for using the vmx.sh script.

NOTE: If you cannot deploy vMX after upgrading libvirt, bring down the virbr0 bridge with the
ifconfig virbr0 down command and delete the bridge with the brctl delbr virbr0 command.

70

NOTE: Before you reboot the host server, you must shut down the vMX instance using the
request system halt command.

To deploy vMX, use these options with the vmx.sh script:

--cfg file—Use the specified vMX startup configuration file. The default file is config/vmx.conf.

--install—Start vMX by setting up the environment, driver dependencies, and memory requirements and
deploying the vMX. If you do not specify a startup configuration file with the --cfg option, the default
file is used.

NOTE: If you cannot deploy vMX after upgrading libvirt, bring down the virbr0 bridge with the
ifconfig virbr0 down command and delete the bridge with the brctl delbr virbr0 command.

This example deploys a new vMX instance specified by the my-vmx.cfg configuration file and provides
verbose-level logging to a file:

./vmx.sh -lv --install --cfg config/my-vmx.cfg

Managing vMX Deployments

NOTE: You must be logged in as root to use the control options.

Use these options with the vmx.sh script to stop, start, restart, verify, and clean up an existing vMX:

--cfg file—Use the specified vMX startup configuration file. The default file is config/vmx.conf.

--cleanup—Stop vMX and clean up relevant information about the vMX instance. It also tears down the
Linux bridges and other dependencies. If you do not specify a startup configuration file with the --cfg
option, the default file is used.

--restart—Stop and start a running vMX. This option is useful for redeploying a vMX that has parameter
changes in the startup configuration file. If you do not specify a startup configuration file with the
--cfg option, the default file is used.

--start—Start the vMX that was running and stopped. If you do not specify a startup configuration file with
the --cfg option, the default file is used.

71

--status—Verify the status of a deployed vMX. If you do not specify a startup configuration file with the
--cfg option, the default file is used.

--stop—Stop vMX without cleaning up build files so that the vMX can be started quickly without setup
performed by the --install option.

This example tears down an existing vMX instance specified by the my-vmx.cfg configuration file:

./vmx.sh --cleanup --cfg config/my-vmx.cfg

Starting in Junos OS release 19.1 onwards, if you are deploying the vMX image with i40e driver-based
NIC cards and want to redeploy the vMX that has parameter changes in the startup configuration file, we
recommend not using the options such as --restart or --start/--stop. You must use the following options:

1. Use the ./vmx.sh --cleanup command to clean up an existing vMX.

2. Run the ./vmx.sh -lv --install script to re-deploy vMX.

The vMX instance starts with the updated configuration.

Specifying the Temporary File Directory

NOTE: You must be logged in as root to use the control options.

To specify the directory used for temporary files, run the ./vmx.sh build directory script. The default
directory is build/vmx-id, where vmx-id is the vMX identifier specified in the startup configuration file.

By default, copies of the VCP and VFP images are copied to this directory. We recommend that you do
not change themake-local-copy-of-images andmake-local-copy-of-vmxhdd parameterswhen specifying
startup configuration file parameters for the host.

Specifying the Environment File

NOTE: You must be logged in as root to use the control options.

To specify the environment file (.env), run the ./vmx.sh env file script. The default file is
env/ubuntu_sriov.env.

Configuring Logging Options for vMX

You can enable logging options. It is especially useful when used with the control options, such as --install.

72

Use these options to configure logging:

-l—Enable logging to a file in the specified build directory. The default directory is build/vmx-id/logs, where
vmx-id is the vMX identifier specified in the startup configuration file. By default, logging is disabled.

-lv—Enable logging with verbose details.

-lvf—Enable logging with verbose details to the foreground (standard output).

This example deploys a new vMX instance specified by the my-vmx.cfg configuration file and provides
verbose-level logging to a file:

./vmx.sh -lv --install --cfg config/my-vmx.cfg

Connecting to Console Port for the VMs

Use these options with the vmx.sh script to connect to the console of the VCP or VFP of the specified
vMX:

--console vcp [vmx-id]—Connect to the console of the VCP for the specified vMX. The vMX identifier is
specified in the startup configuration file.

--console vfp [vmx-id]—Connect to the console of the VFP for the specified vMX. The vMX identifier is
specified in the startup configuration file.

This example connects to the console of the VCP for the vMX instance specified by the vmx1 identifier:

./vmx.sh --console vcp vmx1

Getting Help for the Script Options

To obtain on-line help for the vmx.sh script options, run the ./vmx.sh --help script.

Binding virtio Devices

IN THIS SECTION

Setting Up the Device Bindings | 75

Creating Device Bindings | 77

73

Deleting Device Bindings | 77

Verifying Device Bindings | 78

For configurations using virtio device types, you can bind multiple vMX instances together on the same
system if the host has enough CPU and memory to support the vMX instances. You configure each vMX
instance with a different startup configuration file.

If you are deploying multiple vMX instances, make sure:

• The VM identifiers are unique across all instances.

• The console ports of the VCP and the VFP are unique across all instances.

• The external static IP address of the VCP and the VFP are unique across all instances.

• The MAC addresses of the VCP and the VFP are unique across all instances, whenever specified.

NOTE: All VMs share the same management domain. The physical management interface (for
example, eth0) is also part of this global external bridge.

You can connect virtio NICs in the vMX to physical NICs or virtio NICs in another vMX by binding these
devices as shown in Figure 3 on page 74.

Figure 3: Binding Devices

g0
43

27
5

Physical NICs

Bridge

VCP

VFP

vMX1

P1 P2 P3

VCP

VFP

vMX2

P1 P2 P3

VCP

VFP

vMXn

P1 P2 P3

74

To manage device bindings, perform these tasks:

Setting Up the Device Bindings

The parameters required to configure vMX to bind devices are defined in the device-binding file. The
device-binding file is in YAML format. The default file is config/vmx-junosdev.conf.

The device-binding file defines the endpoints of each link originating from the VFP of a vMX. One endpoint
must be a device using virtio NICs. The other endpoint can be a physical NIC, a virtio NIC in another vMX
instance, or a Linux bridge.

To bind the vMX instances together:

1. Edit the config/vmx-junosdev.conf file to set up the communication between the vMX instances.

2. Modify the link_name to the name of the Linux bridge (as shown by the brctl show command). The
link name can be 15 characters long. It must be unique for each bridge. If more than two interfaces
(virtual or physical) are connected by a Linux bridge, then the bridge name is derived from the dev_name
of the common endpoint for the connected devices.

3. Specify themtu to change theMTU value for virtio device types from the default of 1500. Themaximum
value is 9500.

To change the MTU configuration for SR-IOV device types, modify the mtu parameter in the startup
configuration file (vmx.conf).

4. Specify the endpoints for vMX devices (junos_dev type) by customizing these parameters:

• type—Type of device is junos_dev.

• vm-name—Name of the vMX identifier specified in the startup configuration file for that vMX instance.

• dev-name—Name of the interface on vMX as specified in the startup configuration file.

5. Specify the endpoints for physical NICs (host_dev type) by customizing these parameters:

• type—Type of device is host_dev.

• dev-name—Name of the physical NIC on the host.

6. Specify the endpoints for bridges (bridge_dev type) by customizing these parameters:

• type—Type of device is bridge_dev.

• dev-name—Name of the Linux bridge.

7. If you have multiple device-binding files, save them with different names.

75

http://www.yaml.org/

Here is a sample vMX device-binding file:

interfaces :

 - link_name : link_host

 mtu : 1500

 endpoint_1 :

 - type : junos_dev

 vm_name : vmx1

 dev_name : ge-0/0/0

 endpoint_2 :

 - type : host_dev

 dev_name : int2

 - link_name : link_vmx_12

 mtu : 1500

 endpoint_1 :

 - type : junos_dev

 vm_name : vmx1

 dev_name : ge-0/0/1

 endpoint_2 :

 - type : junos_dev

 vm_name : vmx2

 dev_name : ge-0/0/0

 - link_name : bridge_vmx_123

 endpoint_1 :

 - type : junos_dev

 vm_name : vmx1

 dev_name : ge-0/0/2

 endpoint_2 :

 - type : bridge_dev

 dev_name : bridge1

 - link_name : bridge_vmx_123

 endpoint_1 :

 - type : junos_dev

 vm_name : vmx2

 dev_name : ge-0/0/1

 endpoint_2 :

 - type : bridge_dev

 dev_name : bridge1

 - link_name : bridge_vmx_123

 endpoint_1 :

76

 - type : junos_dev

 vm_name : vmx3

 dev_name : ge-0/0/0

 endpoint_2 :

 - type : bridge_dev

 dev_name : bridge1

The link_host entry shows how to connect the ge-0/0/0 interface on vmx1 to the physical NIC. The
link_vmx_12 entry shows how to connect two interfaces on vmx1 and vmx2 to each other. The
bridge_vmx_123 entries show how to connect the interfaces on vmx1, vmx2, and vmx3 with a bridge.

Creating Device Bindings

NOTE: You must be logged in as root to bind devices.

To bind devices with virtio NICs to other devices, define your devices in the vMX device-binding file and
run the ./vmx.sh --bind-dev –-cfg device-binding-file script to create the device binding. If you do not
specify a file, the default file is config/vmx-junosdev.conf.

This example creates device bindings with the specified device-binding file:

./vmx.sh --bind-dev –-cfg config/vmx1-junosdev.conf

Deleting Device Bindings

NOTE: You must be logged in as root to unbind devices.

To unbind devices, run the ./vmx.sh --unbind-dev –-cfg device-binding-file script to delete the device
bindings created with the --bind-dev option. If you do not specify a file, the default file is
config/vmx-junosdev.conf.

This example deletes device bindings with the specified device-binding file:

./vmx.sh --unbind-dev –-cfg config/vmx1-junosdev.conf

77

Verifying Device Bindings

NOTE: You must be logged in as root to bind devices.

To verify the status of device bindings created with the --bind-dev option, run the ./vmx.sh --bind-check
–-cfg device-binding-file script. If you do not specify a file, the default file is config/vmx-junosdev.conf.

This example verifies the status of the device bindings for the specified device-binding file:

./vmx.sh --bind-check –-cfg config/vmx1-junosdev.conf

Release History Table

DescriptionRelease

Starting in Junos OS Release 18.1 If you are deploying across multiple servers (for example, one
server as the RE and one server as the PFE), and you want to disable VCP for the Control Plane
on the server, you have the option to specify none.

18.1

Starting in Junos OS Release 18.1 if you are deploying across multiple servers (for example, one
server as the RE and one server as the PFE), and you need to disable VFP for the Forwarding Plane
on the server, you have the option to specify none.

18.1

RELATED DOCUMENTATION

Minimum Hardware and Software Requirements | 23

vMX Package Contents | 28

Installing vMX on KVM | 30

Installing Nested vMX VMs | 79

78

Installing Nested vMX VMs

IN THIS SECTION

Overview of the Nested VM Model | 79

Hardware and Software Requirements for Nested vMX VMs | 82

Installing and Launching the Nested vMX VM on KVM | 83

A nested virtual machine is a virtual machine contained within another VM. Read this topic to understand
how to launch the nested vMX VM on KVM.

Overview of the Nested VMModel

The nested vMX virtual machine (VM) model has the virtual control plane (VCP) running as a VM within
the virtual forwarding plane (VFP) VM. The VFP VM runs the virtual Trio forwarding plane software and
the VCP VM runs Junos OS. The VCP VM and VFP VM require Layer 2 connectivity to communicate with
each other. An internal bridge that is local to the server for each vMX instance enables this communication.
The VCPVMandVFPVMalso require Layer 2 connectivity to communicatewith the Ethernetmanagement
port on the server. Youmust specify virtual Ethernet interfaceswith unique IP addresses andMAC addresses
for both the VFP and VCP to set up an external bridge for a vMX instance. Ethernet management traffic
for all vMX instances enters the server through the Ethernet management port.

The nested vMX VM supports virtio and SR-IOV interfaces for forwarding ports. The first interface is used
for management andmust be a virtio interface connected to the br-ext bridge (external bridge). Subsequent
interfaces are WAN interfaces and can be virtio or SR-IOV interfaces. You must create the bridges for all
the virtio interfaces. You must have at least one WAN interface for forwarding.

Nested VM with Virtio Interfaces

In virtio mode, the server interfaces must not be configured with the VFs. You can remove or reset the
interfaces (eth1) using the rmmod ixgbe command and you can add the IXGBE driver with default interface
to the server interface using the modprobe ixgbe command.

Figure 4 on page 80 illustrates the nested vMX VM model with virtio interfaces.

79

Figure 4: Nested VM with virtio Interfaces

g0
43

61
4

HOST

VFP
Virtual Forwarding Plane

Internal
Bridge

External
Bridge

External
Bridge

eth0
(VFP)fxp0

em1

VCP
Virtual Control Plane

eth0
(host)

Bridges on Host
vnet1vnet0

Nested VM with SR-IOV Interfaces

In SR-IOV mode, the vMX interfaces are associated with the server interfaces. For example, the ge-0/0/0
interface is associated with eth1 . eth1 is defined in the .conf file- interface: ge-0/0/0 ,nic: eth1.

The VF is added to the IXGBE driver of the server interface eth1 which associated with the VF and can
be checked using the ip link show eth1 command while running in the SR-IOV mode.

Figure 5 on page 81 illustrates the nested vMX VM model with SR-IOV interfaces.

80

Figure 5: Nested VM with SR-IOV Interfaces

g0
43

61
5

HOST

VFP
Virtual Forwarding Plane

Internal
Bridge

VF0VF0

PF1PF0

External
Bridge

External
Bridge

eth0
(VFP)fxp0

em1

VCP
Virtual Control Plane

eth0
(host)

For SR-IOV interfaces, you must load the modified IXGBE driver before launching the nested vMX VM.

The way network traffic passes from the physical NIC to the virtual NIC depends on the virtualization
technique that you configure.

System Requirements for Nested VMModel

vMX can be configured to run in two modes depending on the use case:

• Lite mode—Needs fewer resources in terms of CPU and memory to run at lower bandwidth.

• Performance mode—Needs higher resources in terms of CPU and memory to run at higher bandwidth.

NOTE: Performance mode is the default mode.

vMX Limitations with the Nested VMModel

vMX does not support the following features with the nested VM model:

• Attachment or detachment of interfaces while a vMX instance is running

• Upgrade of Junos OS release

81

Hardware and Software Requirements for Nested vMX VMs

Table 15 on page 82 lists the hardware requirements.

Table 15: Minimum Hardware Requirements for the Nested vMX VM

ValueDescription

For virtio: Any x86 processor (Intel or AMD) with VT-d capability.

For SR-IOV: Intel 82599-based PCI-Express cards (10 Gbps) and Ivy Bridge
processors.

Sample system configuration

• For lite mode: Minimum of 3 vCPUs

NOTE: If you want to use lite mode when you are running with more than
3 vCPUs for the VFP, you must explicitly configure lite mode.

• For performance mode: Minimum of 8 vCPUs

NOTE: To calculate the recommended number of vCPUs needed by VFP
for performance mode:

(3 * number-of-forwarding-ports) + 4

Number of cores

NOTE: Performance mode is the
default mode and the minimum value
is based on one port.

• For lite mode: Minimum of 3 GB

• For performance mode:

• Minimum of 5 GB

• Recommended of 16 GB

Memory

Table 16 on page 82 lists the software requirements.

Table 16: Software Requirements for Ubuntu

ValueDescription

Ubuntu 14.04.1 LTS

Linux 3.19.0-80-generic

Operating system

QEMU-KVM 2.0.0+dfsg-2ubuntu1.11Virtualization

bridge-utils qemu-kvm libvirt-bin virtinst

NOTE: libvirt 1.2.19

Required packages

NOTE: Other additional packages might be required to
satisfy all dependencies.

82

Installing and Launching the Nested vMX VM on KVM

IN THIS SECTION

Preparing the Ubuntu Host to Install the Nested vMX VM | 83

Loading the Modified IXGBE Driver | 84

Launching a Nested vMX Instance | 85

Connecting to the VFP Console Port | 88

Connecting to the VCP | 88

To launch the nested vMX VM on KVM, perform these tasks.

Preparing the Ubuntu Host to Install the Nested vMX VM

To prepare the Ubuntu host system for installing vMX:

1. Meet the software andOS requirements described in “Hardware and Software Requirements for Nested
vMX VMs” on page 82.

2. Enable Intel VT-d in BIOS. (We recommend that you verify the process with the vendor because
different systems have different methods to enable VT-d.)

Refer to the procedure to enable VT-d available on the Intel Website.

3. Disable KSM by setting KSM_ENABLED=0 in /etc/default/qemu-kvm.

4. Disable APIC virtualization by editing the /etc/modprobe.d/qemu-system-x86.conf file and adding
enable_apicv=0 to the line containing options kvm_intel.

options kvm_intel nested=1 enable_apicv=0

5. Restart the host to disable KSM and APIC virtualization.

6. If you are using SR-IOV, you must perform this step.

83

NOTE: You must remove any previous installation with an external bridge in
/etc/network/interfaces and revert to using the original management interface. Make sure
that the ifconfig -a command does not show external bridges before you proceed with the
installation.

To determine whether an external bridge is displayed, use the ifconfig command to see the
management interface. To confirm that this interface is used for an external bridge group,
use the brctl show command to seewhether themanagement interface is listed as an external
bridge.

Enable SR-IOV capability by turning on intel_iommu=on in the /etc/default/grub directory.

GRUB_CMDLINE_LINUX_DEFAULT="intel_iommu=on"

Append the intel_iommu=on string to any existing text for the GRUB_CMDLINE_LINUX_DEFAULT
parameter.

7. For optimal performance, we recommend you configure the size of Huge Pages to be 1G on the host
and make sure the NUMA node for the VFP has at least 16 1G Huge Pages. To configure the size of
Huge Pages, add the following line in /etc/default/grub:

GRUB_CMDLINE_LINUX="default_hugepagesz=1Ghugepagesz=1Ghugepages=number-of-huge-pages"

The number of Huge Pages must be at least (16G * number-of-numa-sockets).

8. Run the update-grub command followed by the reboot command.

9. Run the modprobe kvm-intel command before you install vMX.

Loading the Modified IXGBE Driver

If you are using SR-IOV interfaces, you must load the modified IXGBE driver before launching the nested
vMX VM. To load the modified IXGBE driver:

1. Download the vMX KVM software package and uncompress the package.

tar xvf package-name

2. Before compiling the driver, make sure gcc and make are installed.

sudo apt-get update

84

sudo apt-get install make gcc

3. Unload the default IXGBE driver, compile the modified Juniper Networks driver, and load the modified
IXGBE driver.

cd package-location/drivers/ixgbe-3.19.1/src
make
sudo rmmod ixgbe
sudo insmod ./ixgbe.ko max_vfs=1,1
sudo make install

4. Verify the driver version (3.19.1) on the SR-IOV interfaces.

Launching a Nested vMX Instance

To launch the nested vMX instance:

1. Download the vMX Nested software package.

2. Convert the vmdk image to qcow2 format.

qemu-img convert -f vmdk -O qcow2 vmdk-filename qcow2-filename

3. Create the bridges for the virtio interfaces.

brctl addbr bridge-name

NOTE: When you create a bridge using the brctl addbr <bridge-name> command, the server
might lose the connection. Alternatively, you can spawn the vMX in unnested mode (either
in SRIOV or virtio mode) and use the virsh destroy vcp vcp-name and virsh destroy vfp
vfp-name commands to create and retain the bridge.

NOTE: You must create the bridges for the virtio interfaces before you launch the nested
vMX instance.

85

4. Launch the nested vMX VM instance with the virt-install command. For example:

sudo virt-install --hvm --vcpus=number-vcpus -r memory \

 --serial tcp,host=:console-port,mode=bind,protocol=telnet \

 --nographics --import --noautoconsole \

 --cpu \

SandyBridge,+erms,+smep,+fsgsbase,+pdpe1gb,+rdrand,+f16c,+osxsave,+dca,+pcid,+pdcm,+x

tpr,+tm2,+est,+smx,+vmx,+ds_cpl,+monitor,+dtes64,+pbe,+tm,+ht,+ss,+acpi,+ds,+vme

 \

 -w bridge=br-ext,model=virtio \

 -w bridge=bridge-name,model=virtio \

 --host-device=pci-id \

 -n name --disk disk-image,format=qcow2

where:

• --vcpus—Specifies the number of vCPUs.

For lite mode, minimum of 4 vCPUs. For performance mode, minimum of [(4 *
number-of-forwarding-ports) + 4] vCPUs.

• -r—Specifies the amount of memory the VM uses in MB. Minimum of 16 GB.

• --serial—Specifies the serial port for the VFP.

• -w—Specifies the virtio interface. The first interface is used for management and is connected to the
br-ext bridge. Subsequent interfaces are WAN interfaces and are connected to the bridges on the
host.

• --host-device—Specifies the SR-IOV interface as the PCI ID of the virtual function (VF0).

To determine the PCI ID:

a. Use the ip link command to obtain the interface names for which you create VFs that are bound
to the vMX instance.

b. Use the ethtool -i interface-name utility to determine the PCI bus information.

driver: ixgbe

version: 3.19.1

firmware-version: 0x61bd0001

bus-info: 0000:81:00.0

supports-statistics: yes

supports-test: yes

supports-eeprom-access: yes

86

supports-register-dump: yes

supports-priv-flags: no

c. Use the virsh nodedev-list command to obtain the VF PCI ID.

pci_0000_81_00_0

pci_0000_81_00_1

pci_0000_81_10_0

pci_0000_81_10_1

• -n—Specifies the name of the vMX VM.

• --disk—Specifies the path to the qcow2 file (vmx-nested-release.qcow2).

For example, this command launches a vMX instance in performance mode with two virtio interfaces
connected to the vnet0 and vnet1 bridges:

sudo virt-install --hvm --vcpus=12 -r 16384 \

 --serial tcp,host=:4001,mode=bind,protocol=telnet \

 --nographics --import --noautoconsole \

 --cpu \

SandyBridge,+erms,+smep,+fsgsbase,+pdpe1gb,+rdrand,+f16c,+osxsave,+dca,+pcid,+pdcm,+x

tpr,+tm2,+est,+smx,+vmx,+ds_cpl,+monitor,+dtes64,+pbe,+tm,+ht,+ss,+acpi,+ds,+vme

\

 -w bridge=br-ext,model=virtio \

 -w bridge=vnet0,model=virtio \

 -w bridge=vnet1,model=virtio \

 -n vmx1 --disk vmx-nested-17.2R1.13-4.qcow2,format=qcow2

For example, this command launches a vMX instance in performance mode with two SR-IOV interfaces:

sudo virt-install --hvm --vcpus=12 -r 16384 \

 --serial tcp,host=:4001,mode=bind,protocol=telnet \

 --nographics --import --noautoconsole \

 --cpu \

SandyBridge,+erms,+smep,+fsgsbase,+pdpe1gb,+rdrand,+f16c,+osxsave,+dca,+pcid,+pdcm,+x

tpr,+tm2,+est,+smx,+vmx,+ds_cpl,+monitor,+dtes64,+pbe,+tm,+ht,+ss,+acpi,+ds,+vme

\

 -w bridge=br-ext,model=virtio \

 --host-device=pci_0000_81_10_0 \

87

 --host-device=pci_0000_81_10_1 \

 -n vmx2 --disk vmx-nested-17.2R1.13-4.qcow2,format=qcow2

Connecting to the VFP Console Port

After launching the vMX instance with the virt-install command, you can connect to the console port of
the VFP from the host with the telnet localhost serial-port command, where serial-port is the port you
specified as host with the -serial parameter.

For example:

$ telnet localhost 4001

Log in with the default username jnpr and password jnpr123. Become root using the sudo -i command.

The br-ext interface tries to fetch an IP address using DHCP. Use the ifconfig br-ext command to display
the assigned IP address. If DHCP is unavailable or if you prefer a static IP address, assign an IP address to
br-ext. You can now connect to the VFP using the SSH protocol and this assigned IP address.

Connecting to the VCP

When the VCP VM is launched, you can connect to the VCP console port at TCP port 8601 from the VFP
VM using this command:

$ telnet localhost 8601

From the console port, you can log in with username root and no password.

At a minimum, you must perform these initial Junos OS configuration tasks after logging in to the VCP:

1. Start the CLI.

root@% cli
root@>

2. Enter configuration mode.

root@> configure

[edit]

root@#

88

3. Configure the root password.

[edit]

root@# set system root-authentication plain-text-password
New password: password
Retype new password: password

4. Configure the IP address and prefix length for the router’s management Ethernet interface.

[edit]

root@# set interfaces fxp0 unit 0 family inet address address/prefix-length

5. Commit the configuration.

[edit]

root@# commit

RELATED DOCUMENTATION

Installing vMX on KVM | 30

Deploying and Managing vMX | 61

Example: Enabling SR-IOVon vMX Instances onKVM

vMX on KVM supports single-root I/O virtualization (SR-IOV) interface types. Single root I/O virtualization
(SR-IOV) allows a physical function to appear as multiple, separate vNICs. SR-IOV allows a device, such
as a network adapter to have separate access to its resources among various hardware functions. If you
have a physical NIC that supports SR-IOV, you can attach SR-IOV-enabled vNICs or virtual functions (VFs)
to the vMX instance to improve performance.

System requirements:

• Junos OS Release 18.4 or later.

• SR-IOV on the VMX for KVM requires one of the following Intel NIC drivers:

• Intel X520 or X540 using 10G ports and ixgbe driver

• Intel X710 or XL710 using 10G ports and i40e driver

89

Starting in Junos OS Release 19.1R1-S1 and in Junos OS Release 19.2R1, support for 40G ports with
Intel XL710-QDA2 NICs are available for VMX instances. When using 40G ports, the vMX autodetects
the port speed and assigns two I/O vCPUs.

To enable SR-IOV on VMX instances, you must complete the following tasks:

• Prepare a NIC to use SR-IOV in system (/sys/) mode.

• Install driver from Intel, you must compile the driver, uninstall old driver, and install new compiled driver

NOTE: The vMX installer provides amodified intel-driver as well. You can either use the native
drivers from Intel, or use vMX modified driver.

• Prepare vmx.conf file

• Use Junos CLI to configure native driver

• BIOS requirement to enable SR-IOV- Ensure that Intel VT-d or AMD IOMMUare enabled in the system’s
BIOS settings.

Procedure for Identifying PCI-Addresses and Kernel Name for the NIC

1. To find the PCI address, use the following command:

lab@ubuntu2:/etc/modprobe.d$ ethtool -i ens8f1 | grep bus

bus-info: 0000:85:00.1

2. To find the kernel name using PCI, use the following command:

lab@ubuntu2:~$ cd /sys/bus/pci/devices
lab@ubuntu2:/sys/bus/pci/devices$ ls 0000\:85\:00.1/net/

ens8f1

3. To find out the driver in use for the NIC, use the following command:

lab@ubuntu2:~$ ethtool -i ens8f1 | grep ^driver

driver: ixgbe

90

Download and Install the Latest Driver Software from Intel

You can download the latest driver software from Intel and replace existing driver software provided by
Ubuntu.

In this example, download the software from Intel® Network Adapter Driver for PCIe* Intel® 10 Gigabit
Ethernet Network Connections Under Linux and save it into any directory of your choice and follow the
README instructions to proceed next.

To install driver software from Intel:

1. Install the driver software.

cd ~/intel_ixgbe/ixgbe-5.5.3/src
sudo make install

2. Uninstall the old driver and load the updated driver by using the rmmod/modprobe command.

sudo rmmod ixgbe
sudo modprobe ixgbe

WARNING: The command rmmod uninstalls the 10GE driver. If this is the only
interface you are connected to, then access to the host will be lost.

3. Verify if the new driver is installed correctly.

lab@ubuntu2:~/intel_ixgbe/ixgbe-5.5.3/src$ modinfo ixgbe | grep -i version
version: 5.5.3

91

https://downloadcenter.intel.com/download/14687/Intel-Network-Adapter-Driver-for-PCIe-Intel-10-Gigabit-Ethernet-Network-Connections-Under-Linux-
https://downloadcenter.intel.com/download/14687/Intel-Network-Adapter-Driver-for-PCIe-Intel-10-Gigabit-Ethernet-Network-Connections-Under-Linux-

Prepare NIC to Use SR-IOV in System Mode

The host needs to be informed for each dedicated NIC by setting the sriov_numvfs value, how many VFs
are going to use SR-IOV for the given NIC. The vmx.sh script have no information of how many VFs will
use the shared NIC. Because of this, you must configure the sriov_numvfs accordingly.

This value can be set as a boot-option to be persistent after a reboot and can be changed on-the-fly which
would not be persistent after a reboot.

The procedure given in this example is temporary solution for configuring sriov_numvfs using /sys Any
setting to /sys/class/net/interface-name/device/sriov_numvfs is non-permanent, hence the configuration
does not survive a reboot.

To prepare NIC to use SR-IOV, complete the following steps:

1. Create a virtual function (VF) using the following command:

echo num_of_vf > /sys/class/net/interface-name/device/sriov_numvfs

Below command allows 4 VNFs to use shared NIC ens8f1 for SR-IOV. You must either use sudo or
need login as root user.

As sudo user:

root@ubuntu2:~# echo 4 | sudo tee -a /sys/class/net/ens8f1/device/sriov_numvfs

As root user

root@ubuntu2:~# echo 4 > /sys/class/net/ens8f1/device/sriov_numvfs

NOTE: The sriov_numvfs option only accepts values 0-n, where n is the maximum number of
VFs that are supported by the SR-IOV.

92

Setting SR-IOV at Boot-Time

The following procedures provide some alternatemethods for configuring SR-IOVwhere the configuration
persists a reboot of the host.

Following options are available to set the value during the boot-process of the host:

• Using rc.local

• Setting modprobe options

• Setting kernel-paramater using grub

Below example shows a method to configure the sriov_numvfs value by using grub kernel command

• You must set "intel_iommu=on" and ixgbe.max_vfs= value

For more information on hugepages, see Preparing the Ubuntu Host to Install vMX.

Edit the file “/etc/default/grub”:

lab@ubuntu2:~$ cat /etc/default/grub | grep -i cmd
GRUB_CMDLINE_LINUX_DEFAULT="intel_iommu=on"
GRUB_CMDLINE_LINUX="isolcpus=34-41,48-55 default_hugepagesz=1G
hugepagesz=1G hugepages=120 ixgbe.max_vfs=8"

After editing, update the following:

sudo update-grub

Write new boot-loader to make changes active upon next reboot.

sudo grub-install /dev/sda

Reboot the host to make settings active.

sudo reboot

Verify sriov_numvfs Settings

Purpose
To verify the sriov_numvfs configuration using the CLI. In this example, the required NIC to usewith SR-IOV
is ens8f1 at PCI-address 85:00.0. Please note the “Virtual Function” in the output.

93

https://www.juniper.net/documentation/en_US/vmx/topics/task/installation/vmx-install-preparing.html

Action

lab@ubuntu2:~$ lspci | grep 85

85:00.0 Ethernet controller: Intel Corporation 82599ES 10-Gigabit SFI/SFP+ Network

Connection (rev 01)

85:00.1 Ethernet controller: Intel Corporation 82599ES 10-Gigabit SFI/SFP+ Network

Connection (rev 01)

85:10.0 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual

Function (rev 01)

85:10.1 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual

Function (rev 01)

85:10.2 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual

Function (rev 01)

85:10.3 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual

Function (rev 01)

85:10.4 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual

Function (rev 01)

85:10.5 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual

Function (rev 01)

85:10.6 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual

Function (rev 01)

85:10.7 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual

Function (rev 01)

85:11.0 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual

Function (rev 01)

85:11.1 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual

Function (rev 01)

85:11.2 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual

Function (rev 01)

85:11.3 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual

Function (rev 01)

85:11.4 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual

Function (rev 01)

85:11.5 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual

Function (rev 01)

85:11.6 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual

Function (rev 01)

85:11.7 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual

Function (rev 01)

94

The /sys/class/net/ens8f1/device/sriov_numvfs also contains the desired value of sriov_numvfs.

lab@ubuntu2:~$ cat /sys/class/net/ens8f1/device/sriov_numvfs

8

For testing, the sriov_numvfs can be changed quickly by directly writing into
/sys/class/net/interface-name/device/sriov_numvfs.

Changing the Number of sriov_numvfs

We recommend creating sriov_numvfs in advance (example: by using grub command at boot-time), because,
changing the VF’s number is not allowed after deploying 1st vMX instance which uses given NIC with
SR-IOV. If you must change the VF’s number, then you must stop the running vMX. We recommend to
set the sriov_numvfs option to a higher value to avoid changing the sriov_numvfs number afterwards.

To change an already configured value of VFs, you must first change it's value as 0, and then change it to
required integer value.

If there are no VFs assigned, the number of VFs can be changed to any valid value (0 - n, where n is the
maximum number of VFs that are supported by the SR-IOV)

You must perform the following steps to modify the number of VFs:

1. Stop running VNFs using the shared SR-IOV NIC.

2. Disable the SR-IOV network adapter by setting the number of Virtual Functors (VFs) to 0.

As root:
root@ubuntu2:~# echo 0 > /sys/class/net/ens8f1/device/sriov_numvfs

As sudo:
lab@ubuntu2:~$ echo 0 | sudo tee -a /sys/class/net/ens8f1/device/sriov_numvfs

3. Change the required number of VF (you are using six in this example)

root@ubuntu2:~# echo 6 > /sys/class/net/ens8f1/device/sriov_numvfs

95

NOTE: If you see the following error message, then first set the value to zero as described
in step 2 before performing step 3

root@ubuntu2:~# echo 6 > /sys/class/net/ens8f1/device/sriov_numvfs bash:

 echo: write error: Device or resource busy

4. Verify your configuration by using the following command:

root@ubuntu2:~# cat /sys/class/net/ens8f1/device/sriov_numvfs

Before restarting the vMX, adopt the vmx.conf file for SR-IOV usage.

Updating the VMX Configuration File (vmx.conf) Parameters

The parameters required to configure vMX are defined in the startup configuration file. The configuration
file is in YAML format. The default file is config/vmx.conf. You can save your configuration file to a different
name for different instances.

To configure interfaces for SR-IOV device types, you must specify the interface, the NIC, and the MAC
address. Table 17 on page 96 provides the details of the configuration parameters that we are using to
change vmx.conf file.

Table 17: VMX Configuration File Parameters

DescriptionVM ParametersComponents

Use sriov for all interfaces using the SR-IOV or use
mixed to allow mixing of SR-IOV and
non-SR-IOV-based interfaces.

device-typevPFE

Set to true to allow using the host’s Intel ixgbe
driver (which was downloaded and complied in
above steps)

use_native_drivers

96

Table 17: VMX Configuration File Parameters (continued)

DescriptionVM ParametersComponents

If type is set to sriov, then port-speed-mbps and
nic must be set.

typeInterfaces

Set it to 10000 for 10GE NIC.port-speed-mbps

The kernel-name for the interface to use.nic

Set to 0 for first vMX instance using this NIC.
Ensure to set to 1 for 2nd vMX using this shared
NIC (and so on)

virtual-function

Ensure that each VF instance using the shared NIC
is using a unique or different MAC address.

mac-address

A sample vmx.conf file:

lab@ubuntu2:~/vmx/config$ cat vmx.conf.sriov

##

#

vmx.conf

Config file for vmx on the hypervisor.

Uses YAML syntax.

Leave a space after ":" to specify the parameter value.

#

##

#Configuration on the host side - management interface, VM images etc.

HOST:

 identifier : vmx1 # Maximum 6 characters

 host-management-interface : ens4f0

 routing-engine-image :

"/home/lab/vmx/images/junos-vmx-x86-64-18.1R3-S2.5.qcow2"

 routing-engine-hdd : "/home/lab/vmx/images/vmxhdd.img"

 forwarding-engine-image : "/home/lab/vmx/images/vFPC-20181023.img"

#External bridge configuration

BRIDGES:

 - type : external

97

 name : br-ext # Max 10 characters

#vRE VM parameters

CONTROL_PLANE:

 vcpus : 1

 memory-mb : 1024

 console_port: 8601

 interfaces :

 - type : static

 ipaddr : 10.102.144.94

 macaddr : "0A:00:DD:C0:DE:0E"

#vPFE VM parameters

FORWARDING_PLANE:

 memory-mb : 8192

 vcpus : 4

 console_port: 8602

 device-type : mixed <<<< sriov or mixed

 use_native_drivers : true <<<< use drivers as provided by the

host

 interfaces :

 - type : static

 ipaddr : 10.102.144.98

 macaddr : "0A:00:DD:C0:DE:10"

#Interfaces

JUNOS_DEVICES:

 - interface : ge-0/0/0

 type : virtio <<< required

 mac-address : "02:06:0A:0E:FF:F0"

 description : "ge-0/0/0 interface"

 - interface : ge-0/0/1

 type : sriov <<< required

 mtu : 9192 <<< required

 port-speed-mbps : 10000 <<< required

 nic : ens8f1 <<< required

 virtual-function : 0 <<< use consecutive / unique numbers

for each vMX instance

98

 mac-address : "02:06:0A:0E:FF:F1" <<< make sure that each vNF is

using a DIFFERENT MAC-address

 description : "ge-0/0/1 interface"

Start vmx-install

lab@ubuntu2:~/vmx$ sudo ./vmx.sh --install --cfg ./config/vmx.conf.sriov

Changes Required for Using Intel ixgbe Driver

When you try to move an existing deployment from modified IXGBE driver to unmodified IXGBE driver,
enter edit mode in Junos CLI and use the following command when using "native" drivers.

user@host# set interfaces vlan-offload

For more information, see “Modified and Unmodified IXGBE Driver” on page 107.

RELATED DOCUMENTATION

Modified and Unmodified IXGBE Driver | 107

Minimum Hardware and Software Requirements | 23

99

3
CHAPTER

Configuring Modified and Unmodified
Drivers

Modified and Unmodified i40e Driver | 101

Modified and Unmodified IXGBE Driver | 107

Understanding the Features Supported on Modified and Unmodified Drivers | 113

Modified and Unmodified i40e Driver

IN THIS SECTION

Understanding the Differences between Modified and Unmodified i40e Driver | 101

Deploying vMX with Unmodified i40e Driver | 102

Moving from Modified i40e Driver to Unmodified i40e Driver | 105

Moving from Unmodified i40e Driver to Modified i40e Driver | 106

Read this topic to understand modified and unmodified i40e driver support for vMX instances.

Understanding the Differences between Modified and Unmodified i40e
Driver

The single root I/O virtualization (SR-IOV) functionality consists of a physical function (PF) driver and a
virtual function (VF) driver. The PF driver of an SR-IOV device is used to manage the physical function of
an SR-IOV capable device. A VF driver of an SR-IOV device shares one or more physical resources with
the physical function and other virtual functions that are associated with the same physical function.

In the modified i40e driver the physical function sets the port to the MAC promiscuous and VLAN
promiscuous mode. In this case, all the frames associated with the port is passed to the single VF which
is associated with the vMX. A single VF instance might be supported on a PF and the total number of
VLANs per IFD is limited to 64 if the vlan-offload option is configured.

In the unmodified i40e driver, the vMX configures the device through the PF driver with the VLAN ID that
the PF driver receive. When an Ethernet frame is received, the outer VLAN is compared with configured
VLAN ID and frame, and then forwarded to the VF associated with the vMX. In another vMX instance,
using a different VF on the same physical port, you must configure a different set of VLAN IDs to the
device to receive the Ethernet frames. As a result, multiple vMX instances can share the same physical
port only if the VLAN ID is unique. The IFL configuration determines the VLAN ID of the Ethernet frame
that needs to be sent to the vMX through the VF.

NOTE: When using the modified driver, you can only create a single VF per PF. Unmodified
driver supports multiple VFs per PF.

101

NOTE: By default LLDP is consumed by i40e physical function (PF) driver. To disable the LLDP
packet consumption at PF level, use following command:

#echo lldp stop > /sys/kernel/debug/i40e/PCI-bus-info/

You can retrieve PCI bus information from the output of ethtool -i interface-name| grep bus-info
command.

NOTE: If you notice that i40e driver link is not stable, you can renegotiate the link speed by
using the following command:

ethtool -r ethX/interface-name

Deploying vMX with Unmodified i40e Driver

Before installing a vMX instance, you must choose to load the unmodified i40e driver. To load the
unmodified i40e driver:

NOTE: Starting in JunosOS Release 18.4R1, vMX instances can be deployedwith an unmodified
i40e driver on Ubuntu version 16.04. XL710NIC recommended if unmodified i40e driver version
is 2.4.10 and firmware version 6.01. Unmodified 2.4.10 driver is qualified for XL710.

NOTE: To use the unmodified driver, youmust set the value of the use_native_drivers command
to true in the vMX configuration file.

1. Upgrade the host OS to Ubuntu 16.04 version or later, and ensure that the IP route package value is
iproute2-4.9.0.

2. Remove the existing driver module.

rmmod i40e

102

3. Install the required version of the unmodified driver on the host. If host is running an older version of
the driver, upgrade the host to the required version. For example:

insmod i40e.ko

4. Use the ethtool -i interface-name utility to determine the driver information.

[root@host ~]# ethtool -i eth8

driver: i40e

version: 2.4.10

firmware-version: 6.01 0x80003484 1.1747.0

NOTE: The firmware versionmust be compatiblewith the driver version that you are installing.

5. Create a virtual function (VF) using either of the following commands.

echo num_of_vf > /sys/class/net/<interface-name>/device/sriov_numvfs

For example, if you want to create two VFs, use the following command:

echo 2 > /sys/class/net/eth16/device/sriov_numvfs

If you want to modify the number of VFs, use the following command:

echo 0 > /sys/class/net/<interface-name>/device/sriov_numvfs
echo num_of_vf > /sys/class/net/<interface-name>/device/sriov_numvfs

NOTE: On some PCI devices, when you change the number of VFs, you might receive the
error message : Device or resource busy. In such cases, you first set sriov_numvfs to 0, and
then set it to your new value.

If the value of sriov_numvfs > 0, then you have to set it to 0 first and then change it to numeric
value.

103

6. Configure the vMX configuration file (vmx.conf) to skip the installation of the modified driver. For
example:

FORWARDING_PLANE:

 memory-mb : 16384

 vcpus : 12

 console_port: 8602

 device-type : sriov

 use_native_drivers : true

7. Install vMX.

./vmx.sh --install --cfg ../vmx.conf

The vMX programs the PF driver with VLAN information. The PF driver compares the outer VLAN of the
VLAN tag information of the packets against the programmed VLAN and forwards to corresponding VF.

1. Enter the CLI configuration mode after logging in to the vMX and set the per interface configuration
knob for the respective interface.

set interfaces <interface-name> vlan-offload

104

Moving from Modified i40e Driver to Unmodified i40e Driver

When you try tomove an existing deployment frommodified i40e driver to unmodified i40e driver, perform
the following steps:

NOTE: Use the set interface <interface-name> vlan-offload command to offload the VLAN
filtering to unmodified PF driver.

NOTE: Support for modified drivers for i40e is not available starting in Junos OS Release 19.1
and later releases.

1. Install the required version of the unmodified driver on the host. If host is running an older version of
the driver, upgrade the host to the required version. For example:

insmod ./i40e.ko <installing the driver>

ethtool -i eth8

driver: i40e

version: 2.4.10

firmware-version: 6.01 0x80003484 1.1747.0

NOTE: The firmware version must be compatible with the driver version you are installing.

2. Configure the vMX configuration file (vmx.conf) to skip the installation of the modified driver. For
example:

FORWARDING_PLANE:

 memory-mb : 16384

 vcpus : 12

 console_port: 8602

 device-type : sriov

 use_native_drivers : true

3. Install vMX.

105

./vmx.sh --install --cfg ../vmx.conf

4. Login to vMX and set the per IFD configuration knob for the respective IFDs.

set interfaces <interface-name> vlan-offload

Moving from Unmodified i40e Driver to Modified i40e Driver

When you try to move an existing deployment to from unmodified i40e driver to modified i40e driver,
perform the following steps:

1. Clear the relevant knob from vMX configuration file.

FORWARDING_PLANE:

 memory-mb : 16384

 vcpus : 12

 console_port: 8602

 device-type : sriov

2. Clean the vMX.

./vmx.sh --cleanup --cfg ../vmx.conf

3. Reinstall vMX on your device.

./vmx.sh --install --cfg ../vmx.conf

RELATED DOCUMENTATION

Example: Enabling SR-IOV on vMX Instances on KVM | 89

Modified and Unmodified IXGBE Driver | 107

Understanding the Features Supported on Modified and Unmodified Drivers | 113

106

Modified and Unmodified IXGBE Driver

IN THIS SECTION

Understanding the Differences between Modified and Unmodified IXGBE Driver | 107

Deploying vMX with Unmodified IXGBE Driver | 108

Moving from Modified IXGBE Driver to Unmodified IXGBE Driver | 111

Moving from Unmodified IXGBE Driver to Modified IXGBE Driver | 112

Read this topic to understand the modified and unmodified IXGBE driver support for vMX instances.

Understanding the Differences between Modified and Unmodified IXGBE
Driver

The single root I/O virtualization (SR-IOV) functionality consists of a physical function (PF) driver and a
virtual function (VF) driver. The PF driver of an SR-IOV device is used to manage the physical function of
an SR-IOV capable device. A VF driver of an SR-IOV device shares one or more physical resources with
the physical function and other virtual functions that are associated with the same physical function.

In the modified IXGBE driver, the PF driver is in VLAN promiscuous mode and the modified driver accepts
and transfers all the packets to the virtual Forwarding Plane (vFP) irrespective of the VLAN tag. The vFP
does the filtering of packets based on the VLAN and rejects the packets if the VLAN is not programmed.
The knowledge of VLAN stays within the vFP.

In the unmodified IXGBE driver, the vMX configures the device using the PF driver with the VLAN ID the
driver receives. When an Ethernet frame is received, the outer VLAN is compared with the configured
VLAN ID and frame, and then forwarded to the appropriate VF associated with the vMX instance. When
another vMX instance is using a different VF on the same physical port, you can configure a different set
of VLAN IDs to the device to receive the Ethernet frames. As a result, multiple vMX instances can share
the same physical port only if the VLAN ID is unique (multiple VFs are supported on a port).

The IFL configuration determines the VLAN ID of the Ethernet frames that can be sent to the vMX through
the VF. In the case of unmodified IXGBE driver, the MAC cannot be set to promiscuous mode resulting in
the layer 2 forwarding functionality not being supported on the vMX with the unmodified driver.

107

NOTE: On a vMX instance, you can create multiple VFs on the same PF, but only one VF from
the PF must be assigned to one vMX instance. You can assign other VFs from the same PF to
other vMX instances.

Deploying vMX with Unmodified IXGBE Driver

Before installing a vMX instance, you must choose to load the unmodified IXGBE driver. To load the
unmodified IXGBE driver:

NOTE: Starting in JunosOS Release 18.4R1, vMX instances can be deployedwith an unmodified
IXGBE driver on Ubuntu version 16.04. IXGBE based NIC recommended if IXGBE driver version
is 5.3.6 and compatible firmware version is 0x61bd0001.

NOTE: To use the unmodified driver, youmust set the value of the use_native_drivers command
to true in the vMX configuration file.

1. Upgrade the host OS to Ubuntu 16.04 version or later, and ensure that the IP route package value is
iproute2-4.9.0.

2. Remove the existing driver module.

rmmod ixgbe

3. Install the required version of the unmodified driver on the host. If host is running an older version of
the driver, upgrade the host to the required version. For example:

insmod ixgbe.ko

4. Use the ethtool -i interface-name utility to determine the driver information.

108

[root@host ~]# ethtool -i eth6

driver: ixgbe

version: 5.3.6

firmware-version: 0x61bd0001

NOTE: The firmware versionmust be compatiblewith the driver version that you are installing.

5. Create a virtual function (VF) using either of the following commands.

echo num_of_vf > /sys/class/net/<interface-name>/device/sriov_numvfs

For example, if you want to create two VFs, use the following command:

echo 2 > /sys/class/net/eth16/device/sriov_numvfs

If you want to modify the number of VFs, use the following command:

echo 0 > /sys/class/net/<interface-name>/device/sriov_numvfs
echo num_of_vf > /sys/class/net/<interface-name>/device/sriov_numvfs

NOTE: On some PCI devices, when you change the number of VFs, you might receive the
error message : Device or resource busy. In such cases, you first set sriov_numvfs to 0, and
then set it to your new value.

If the value of sriov_numvfs > 0, then you have to set it to 0 first and then change it to numeric
value.

6. Configure the vMX configuration file (vmx.conf) to skip the installation of the modified driver. For
example:

FORWARDING_PLANE:

 memory-mb : 16384

 vcpus : 12

 console_port: 8602

109

 device-type : sriov

 use_native_drivers : true

7. Install vMX.

./vmx.sh --install --cfg ../vmx.conf

The vMX programs the PF driver with VLAN information. The PF driver compares the outer VLAN of the
VLAN tag information of the packets against the programmed VLAN and forwards to corresponding VF.

1. Enter the CLI configuration mode after logging in to the vMX and set the per interface configuration
knob for the respective interface.

set interfaces <interface-name> vlan-offload

110

Moving from Modified IXGBE Driver to Unmodified IXGBE Driver

When you try to move an existing deployment from modified IXGBE driver to unmodified IXGBE driver,
perform the following steps:

NOTE: Use the set interface <interface-name> new-vlan-offload-knob command to offload
the VLAN filtering to unmodified PF driver.

1. Install the required version of the unmodified driver on the host. If host is running an older version of
the driver, upgrade the host to the required version. For example:

insmod ./ixgbe.ko <installing the driver>

ethtool -i eth8

driver: ixgbe

version: 5.3.6

firmware-version: 0x61bd0001

NOTE: The vMXwith the modified driver is the default choice at the time of spawning vMX.
You can choose the unmodified PF driver through the configuration. This selection must be
made before installing vMX and cannot be modified during run time.

2. Configure the vMX configuration file (vmx.conf) to skip the installation of the modified driver. For
example:

FORWARDING_PLANE:

 memory-mb : 16384

 vcpus : 12

 console_port: 8602

 device-type : sriov

 use_native_drivers : true

3. Install vMX.

./vmx.sh --install --cfg ../vmx.conf

4. Login to vMX and set the VLAN offload option.

111

set interfaces <interface-name> vlan-offload

A single VF instance might be supported on a PF and the total number of VLANs per interface is limited
to 64 if the vlan-offload option is configured.

Moving from Unmodified IXGBE Driver to Modified IXGBE Driver

When you try to move an existing deployment from unmodified IXGBE driver to modified IXGBE driver,
perform the following steps:

1. Clear the relevant knob from vMX configuration file.

FORWARDING_PLANE:

 memory-mb : 16384

 vcpus : 12

 console_port: 8602

 device-type : sriov

2. Cleanup the vMX, delete existing configuration and VLAN IDs.

./vmx.sh --cleanup --cfg ../vmx.conf

3. Reinstall vMX on your device.

./vmx.sh --install --cfg ../vmx.conf

RELATED DOCUMENTATION

Example: Enabling SR-IOV on vMX Instances on KVM | 89

Modified and Unmodified i40e Driver | 101

Understanding the Features Supported on Modified and Unmodified Drivers | 113

112

Understanding the Features Supported on Modified
and Unmodified Drivers

113

Table 18 on page 114 lists the features that are supported on modified and unmodified drivers.

Table 18: Features Supported on Modified and Unmodified Drivers

i40e DriverIXGBE DriverFeature

vlan-offload=offvlan-offload=onvlan-offload=offvlan-offload=on

trust=offtrust=ontrust=offtrust=ontrust=offtrust=ontrust=offtrust=on

YesYesYesYesYesYesYesYesUntagged (IPv4 or
IPv6)

YesYesYesYesNoNoYesYesSingle tag (IPv4 or
IPv6)

YesYesYesYesNoNoYesYesQ-in-Q or double
tag

YesYesYesYesYesYesYesYesMTU (64 - 9000)

YesYesYesYesYesYesYesYesMPLS

YesYesYesYesYesYesYesYesBGP

YesYesYesYesYesYesYesYesOSPF version 2

YesYesYesYesYesYesYesYesOSPF version 3

YesYesYesYesNoYesNoYesAE or LACP

YesYesYesYesYesYesYesYesLLDP

YesYesYesYesYesYesYesYesSTP

YesYesYesYesYesYesYesYesBFD or Micro-BFD

YesYesYesYesYesYesYesYesCFM

YesYesYesYesYesYesYesYesLFM

YesYesYesYesYesYesYesYesISIS

YesYesYesYesNoNoNoNoVRRP

114

Table 18: Features Supported on Modified and Unmodified Drivers (continued)

i40e DriverIXGBE DriverFeature

NoYesNoYesNoYesNoYesMulticast (PIM or
IGMP or IGMP
traffic)

NoYesNoYesNoNoNoNoLayer 2 bridging

NoNoYesYesNoNoYesYesMultiple VFs per PF
with VLAN to VF
mapping

NOTE: By default, the ethtool priv-flag vf-true-promisc-support option is set to false. It means
that the promiscuous mode for the virtual function (VF) 'will be set to limited mode.

To set the promiscuous mode for the VF to true promiscuous and allow the VF to see all ingress
traffic, use the following command:

#ethtool set-priv-flags vf-true-promisc-support on

NOTE: Support for modified drivers for i40e is not available starting in Junos OS Release 19.1
and later releases.

NOTE: The use_native_drivers option does not support Layer 2 promiscuous mode and other
such features.

RELATED DOCUMENTATION

Modified and Unmodified i40e Driver | 101

Modified and Unmodified IXGBE Driver | 107

115

4
CHAPTER

Configuring vMX Chassis-Level
Features

Configuring the Number of Active Ports on vMX | 117

Naming the Interfaces | 117

Configuring the Media MTU | 118

Enabling Performance Mode or Lite Mode | 119

Tuning Performance Mode | 121

lite-mode | 122

performance-mode | 124

Configuring the Number of Active Ports on vMX

You can specify the number of active ports for vMX. The default number of ports is 10, but you can specify
any value in the range of 1 through 23. You can change this number if you want to limit the number of
Ethernet interfaces in the VCP VM to match the number of NICs added to the VFP VM.

NOTE: If you are running virtio interfaces in lite mode, you can use up to 96 ports.

Other configurations running in performance mode support up to 23 ports.

To specify the number of active ports, configure the number of ports at the [edit chassis fpc 0 pic 0]
hierarchy level.

[edit]

user@vmx# set chassis fpc 0 pic 0 number-of-ports

RELATED DOCUMENTATION

Naming the Interfaces | 117

Configuring the Media MTU | 118

Enabling Performance Mode or Lite Mode | 119

Tuning Performance Mode | 121

Naming the Interfaces

vMX supports the following interface types:

• Gigabit Ethernet (ge)

• 10-Gigabit Ethernet (xe)

• 100-Gigabit Ethernet (et)

By default, the interfaces come up as ge interfaces with 1 Gbps bandwidth in the Junos OS configuration.
The default port speed values for the interface types are 1 Gbps (ge), 10 Gbps (xe), and 100 Gbps (et). If
you do not enable schedulers, the speed is only for display purposes and is not enforced. If you enable

117

schedulers, the transmit rate of the port is limited to the speed unless it is overridden by the shaping rate
in the CoS configuration.

To specify the interface types, configure the interface type at the [edit chassis fpc 0 pic 0] hierarchy level.

[edit]

user@vmx# set chassis fpc 0 pic 0 interface-type (ge | xe | et)

RELATED DOCUMENTATION

Configuring the Number of Active Ports on vMX | 117

Configuring the Media MTU | 118

Enabling Performance Mode or Lite Mode | 119

Tuning Performance Mode | 121

Configuring the Media MTU

For vMX, you can configure the media MTU in the range 256 through 9500.

NOTE: For VMware, the maximum value is 9000. For AWS, the maximum value is 1514.

You configure the MTU by including the mtu statement at the [edit interface interface-name] hierarchy
level.

[edit]

user@vmx# set interface ge-0/0/0 mtu bytes

RELATED DOCUMENTATION

Configuring the Number of Active Ports on vMX | 117

Naming the Interfaces | 117

Enabling Performance Mode or Lite Mode | 119

Tuning Performance Mode | 121

118

Enabling Performance Mode or Lite Mode

vMX can be configured to run in two modes depending on the use case.

• Lite mode—Needs fewer resources in terms of CPU and memory to run at lower bandwidth.

• Performance mode—Needs higher resources in terms of CPU and memory to run at higher bandwidth.

NOTE: Starting in Junos OS Release 15.1F6 and later releases performance mode is enabled
implicitly by default.

When you enable performance mode, make sure you have configured the proper number of
vCPUs (four or more VPCUs) and memory for your VMs based on your use case.

You can explicitly enable lite-mode. If you are using paravirtualized network interfaces such as virtio (for
KVM) or VMXNET3 (for VMware) for lab simulation use cases, you can disable performance mode by
including the lite-mode statement at the [edit chassis fpc 0] hierarchy level.

[edit]

user@vmx# set chassis fpc 0 lite-mode

You can explicitly enable performance mode by including the performance-mode statement at the [edit
chassis fpc 0] hierarchy level.

[edit]

user@vmx# set chassis fpc 0 performance-mode

NOTE: We recommend that you enable hyperthreading in BIOS.We recommend that you verify
the process with the vendor because different systems have different methods to enable
hyperthreading.

Starting with Junos OS Release 17.3R1, the show chassis hardware command displays the mode in which
vMX is running in the part number field for the FPC. RIOT-PERF indicates performancemode and RIOT-LITE
indicates lite mode. For example, this output indicates that vMX is running in lite mode.

user@vmx> show chassis hardware

119

Hardware inventory:

Item Version Part number Serial number Description

Chassis VM54599D128A VMX

Midplane

Routing Engine 0 RE-VMX

CB 0 VMX SCB

CB 1 VMX SCB

FPC 0 Virtual FPC

 CPU Rev. 1.0 RIOT-LITE BUILTIN

 MIC 0 Virtual

 PIC 0 BUILTIN BUILTIN Virtual

Table 19 on page 120 highlights some of the challenging features which are supported in the Fast Path and
some which are not supported. Features which are not supported in the Fast Path still work but they get
less than 100K PPS per worker vCPU.

Table 19: Features Support in Fast Path

Support in Fast PathFeatures

Not SupportedPseudowire Headend Termination (PWHT) (Layer 2 VPN)

Not SupportedL2 circuit

Not SupportedEthernet VPN (EVPN)

Not SupportedVirtual Extensible LAN protocol (VXLAN)

Not SupportedMPLS-over-UDP (MPLSoUDP)

SupportedInline J-flow

SupportedPseudowire Headend Termination (PWHT) (Layer 3 VPN and IP)

SupportedGRE

Supportedlogical tunnel interfaces (lt)

Release History Table

DescriptionRelease

Starting in Junos OS Release 15.1F6 and later releases performance mode is enabled
implicitly by default.

15.1F6

120

RELATED DOCUMENTATION

Tuning Performance Mode | 121

lite-mode | 122

performance-mode | 124

Tuning Performance Mode

To tune performancemode for the traffic, you can specify the number ofWorkers dedicated to processing
multicast and control traffic. You can specify any value in the range of 0 through 15. The default of 0
specifies that all available Workers are used to process all traffic.

The number of dedicated Workers specified in relation to the number of available Workers results in the
following behavior:

• If the number of dedicated Workers is greater than or equal to the number of available Workers, then
all available Workers are used to process all traffic.

• If the number of dedicated Workers is less than the number of available Workers, then the first set of
available Workers (equal to the specified number of dedicated Workers) is used to process multicast
and control traffic while the remaining available Workers are used to process flow cache traffic.

To specify the number of dedicated Workers for processing multicast and control traffic, configure the
number of Workers at the [edit chassis fpc 0 performance-mode] hierarchy level.

[edit]

user@vmx# set chassis fpc 0 performance-mode number-of-ucode-workers number-workers

NOTE: Changing the number of Workers reboots the FPC.

RELATED DOCUMENTATION

Enabling Performance Mode or Lite Mode | 119

performance-mode | 124

121

lite-mode
Syntax

lite-mode;

Hierarchy Level

[edit chassis fpc 0]

Release Information
Statement introduced in Junos OS Release 15.1F4 and 16.1R1 for vMX routers.

Description
(vMX routers only) Enables vMX to run in lite mode and disables performance mode. Lite mode needs
fewer vCPUs and memory to run at lower bandwidth. If you are using paravirtualized network interfaces
such as virtio (for KVM) or VMXNET3 (for VMware) for lab simulation use cases, you can enable lite mode.

NOTE: Make sure you have configured the proper number of vCPUs and memory for your VMs
based on your use case. If you have not configured enough vCPUs for performance mode, vMX
runs in lite mode.

Starting with Junos OS Release 15.1F6, performance mode is enabled by default for vMX.

NOTE: The FPC reboots if you change this configuration.

Options
lite-mode—Enables lite mode.

To disable lite mode, enable performance mode by including the performance-mode statement at the
[edit chassis fpc 0] hierarchy level.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

122

RELATED DOCUMENTATION

performance-mode | 124

123

performance-mode
Syntax

performance-mode {
number-of-ucode-workers number-of-ucode-workers;

}

Hierarchy Level

[edit chassis fpc 0]

Release Information
Statement introduced in Junos OS Release 15.1F4 and 16.1R1 for vMX routers.
number-of-ucode-workers option introduced in Junos OS Release 15.1F6 and 16.2R1 for vMX routers.

Description
(vMX routers only) Enables vMX to run in performance mode. Performance mode needs more vCPUs and
memory to run at higher bandwidth.

NOTE: When you enable performancemode, make sure you have configured the proper number
of vCPUs and memory for your VMs based on your use case. If you have not configured enough
vCPUs, vMX runs in lite mode.

Starting with Junos OS Release 15.1F6, performance mode is enabled by default for vMX.

NOTE: The FPC reboots if you change this configuration.

You can tune performance mode for unicast traffic by changing the number of Workers dedicated to
processingmulticast and control traffic. Starting with Junos OS Release 17.2R1, you do not need to specify
dedicated Workers for processing multicast traffic. The default specifies that all available Workers are
used to process all traffic.

The number of dedicated Workers specified in relation to the number of available Workers results in the
following behavior:

• If the number of dedicated Workers is greater than or equal to the number of available Workers, then
all available Workers are used to process all traffic.

124

• If the number of dedicated Workers is less than the number of available Workers, then the first set of
available Workers (equal to the specified number of dedicated Workers) is used to process multicast
and control traffic while the remaining available Workers are used to process flow cache traffic.

Options
performance-mode—Enables performance mode.

To disable performance mode, enable lite mode by including the lite-mode statement at the [edit
chassis fpc 0] hierarchy level.

number-of-ucode-workers number-workers—Specifies the number of dedicated Workers for processing
multicast and control traffic.

Range: 0 through 15
Default: 0 specifies that all available Workers are used to process all traffic.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

RELATED DOCUMENTATION

lite-mode | 122

125

5
CHAPTER

Class of Service for vMX

CoS on vMX Overview | 127

CoS Features and Limitations on vMX | 129

Configuring Four-Level Hierarchical Scheduling on vMX | 131

Packet Loss Priority and Drop Profiles on vMX | 132

Managing Congestion Using Drop Profiles and Packet Loss Priorities on vMX | 133

Configuring Hierarchical CoS on vMX | 136

Example: Configuring Hierarchical CoS on vMX | 138

Bypassing the Queuing Chip | 143

CoS on vMX Overview

vMX supports two-level hierarchical scheduling (per-unit scheduler or hierarchical scheduler) with VLAN
queuing. Each VLAN (logical interface) uses three traffic classes and eight queues.

Starting with Junos OS Release 17.3R1, vMX supports four-level hierarchical scheduling for up to 16 level
2 CoS scheduler nodes. The level 2 node maps to the interface set or VLAN (logical interface).

vMX supports shaping at the traffic class level, not at the queue level. A traffic class is a bundle of queues
with fixed priority. The next level in the hierarchy is the VLAN (logical interface), which is a bundle of traffic
classes.

vMX has the following fixed priorities and queues for these traffic classes:

• Traffic Class 1: High (strict priority)

Queue 0

Queue 6

• Traffic Class 2: Medium (strict priority)

Queue 1

Queue 7

• Traffic Class 3: Low

Queue 2

Queue 3

Queue 4

Queue 5

NOTE: Both Traffic Class 1 and Traffic Class 2 follow strict priority, so all excess traffic is
discarded as tail drops. However, Traffic Class 3 does not follow strict priority, so the shaping
rate is set to the shaping rate of the VLAN.

All queues in the same traffic class have equal priority, so the scheduler pulls packets from each
queue in the traffic class based on weighted round robin (WRR) for the VLAN.

All configured forwarding classes must be mapped to one of the queues.

The following features are not supported::

• Weighted random early detection (WRED)

127

• Queue buffer size configuration

NOTE: No commit errors are displayed for unsupported features.

Starting in Junos OS Release 18.4R1, the quality of service (QoS) configuration is enhanced such that,
when a port is oversubscribed and congested, a subscriber with higher priority gets more weight than a
subscriber with a lower priority. For example, when a subscriber on a port has 100MB service and another
subscriber has 10MB service then the subscriberwith 100MB service getsmore priority than the subscriber
with 10 MB service. You must ensure that the priority is followed at level 1 and level 2 nodes, regardless
of the weight. The WRR provides the ability handle the oversubscription so that the scheduled traffic
reflects a ratio of the shaping rate configured for the individual VLANs.

Use the following commands to configure a maximum number of 16384 subscribers per port on a level 2
node and a maximum number of 32768 subscribers per port on a level 3 node:

set interfaces <interface-name> hierarchical-scheduler maximum-hierarchy 3 max-l2-nodes 16384
set interfaces <interface-name> hierarchical-scheduler maximum-hierarchy 3 max-l3-nodes 32768

NOTE: The default number of subscribers that are configured per level 2 node is 4000.

Use the following command to disable the WRR feature:

subport_oversubscription_disable=1 in the /etc/riot/runtime.conf of the vFP

The following list describes the limitations for WRR:

• The delay-buffer rate must be configured for WRR to work appropriately.

• A discrepancy in the delay-buffer rate values, among the VLANs belonging to the same level 2 scheduler
node can cause the WRR to work incorrectly.

• TheWRRworks incorrectly when the ratio of shaping rate is greater than 100 among all the subscribers.

• The number of level 2 scheduler nodes and the number of subscribers per level 2 scheduler node must
be equal to 32,000.

• Any modification to the level 2 scheduler node configuration would require a FPC reset.

RELATED DOCUMENTATION

128

CoS Features and Limitations on vMX | 129

Packet Loss Priority and Drop Profiles on vMX | 132

CoS Features and Limitations on vMX

vMX has the following limitations for CoS support:

• Schedulers support only the transmit-rate and excess-rate statements. Only weights are supported at
the queue level, so transmission rate and excess rate are used for calculating queue weights.

• If transmit-rate percent is configured at the queue level, then configure guaranteed rate at the VLAN
level.

NOTE: Guaranteed rate is not supported, but it is used to calculate queue weights.

• If you only configure transmit rate, queue weights are calculated based on the transmission rate.

• If you only configure excess rate, queue weights are calculated based on the excess rate.

• If you configure both transmit rate and excess rate, queue weights are calculated based on the excess
rate.

• If you configure the excess rate for one queue, the excess rate is expected for all the queues to compute
the weights. If the excess rate is not configured, the default weight of 1 is used.

NOTE: To get the expected behavior, you must configure the excess rate for all queues.

• Traffic control profiles support only the shaping-rate and scheduler-map statements.

If a traffic control profile has a default scheduler map, you must configure the guaranteed rate.

• For high- and medium-priority traffic classes, the transmission rate is the shaping rate.

• For low-priority queues, the shaping rate for the VLAN is used for the queue. As a result, the low-priority
queues can burst up to the configured shaping rate for the VLAN. The transmission rate is used as the
WRR weight when there is more than one queue configured for a given priority.

Some considerations for the high- and medium-priority traffic classes:

• All excess traffic from the traffic classes for high- andmedium-priority queues are discarded as tail drops.

• For high- and medium-priority traffic classes, the transmission rate is the shaping rate.

129

If the transmission rate is not configured and the shaping rate is configured, then the queue weight is
calculated based upon the configured shaping rate.

If you configure the transmission rate for both queues of the same traffic class, the shaping rate of the
traffic class is the sum of the individual transmission rates of the queues for that traffic class.

• If a queue is not configured, its transmission rate is set to zero.

If no queues are configured, the shaping rate of the VLAN is applied to the traffic class as the transmission
rate.

• If any of the queues in the traffic class is configured, the shaping rate of the VLAN is set to the guaranteed
rate of the configured queue. If a queue is not configured, the guaranteed rate is set to zero by default.

• If the sum of the rates of the individual queues in a traffic class exceeds the shaping rate of the VLAN,
the shaping rate of the VLAN is used as the shaping rate of the traffic class.

Weighted Round-Robin of Subscriber Traffic on a Port Limitations

The following list describes the limitations for WRR:

• A discrepancy in the delay-buffer rate values among the VLANs belonging to the same level 2 scheduler
node can cause the WRR to work incorrectly.

• WRRdoes not work correctly if the ratio of the shaping rate is greater than 100 among all the subscribers.

• The number of level 2 scheduler nodes and the number of subscribers per level 2 scheduler node must
be equal to 32,000 for it to work correctly.

• Any modification to the level 2 scheduler node configuration requires an FPC reset.

RELATED DOCUMENTATION

Configuring Hierarchical CoS on vMX | 136

CoS on vMX Overview | 127

130

Configuring Four-Level Hierarchical Scheduling on
vMX

Startingwith JunosOS Release 17.3R1, four-level hierarchical scheduling for up to 16 level 2 CoS scheduler
nodes is supported on vMX routers. The level 2 node maps to the interface set or VLAN (logical interface).
Two of the level 2 nodes are used for control traffic. If you configure less than four nodes, no commit
errors are displayed but there are not enough nodes for other applications to use. Different interfaces can
have a different number of level 2 nodes. The interface can be an inline service interface.

To configure four-level hierarchical scheduling:

1. Hierarchical CoS is disabled by default. Configure flexible queuing to enable CoS.

[edit]

user@vmx# set chassis fpc 0 flexible-queuing-mode

NOTE: The FPC reboots if you enable flexible queuing.

2. Enable hierarchical scheduling.

[edit]

user@vmx# set interfaces interface-name implicit-hierarchy

3. Set the maximum number of hierarchical scheduling levels for node scaling to 3. If the
maximum-hierarchy-levels option is not configured, it is automatically set to 2.

[edit]

user@vmx# set interfaces interface-name hierarchical-scheduler maximum-hierarchy-levels 3

4. Specify the maximum number of level 2 scheduler nodes; only 1, 2, 4, 8, and 16 are valid values. The
default value is 4. We recommend that you do not configure less than four nodes because two of the
nodes are used for control traffic.

[edit]

user@vmx# set interfaces interface-name hierarchical-schedulermaximum-l2-nodes number-of-nodes

For example:

[edit]

user@vmx# set interfaces ge-0/0/0 hierarchical-scheduler maximum-l2-nodes 4

131

NOTE: This configuration must be present before you reboot the FPC.

RELATED DOCUMENTATION

CoS on vMX Overview | 127

CoS Features and Limitations on vMX | 129

Configuring Hierarchical CoS on vMX | 136

Packet Loss Priority and Drop Profiles on vMX

vMX handles packet priorities within a queue by assigning a threshold to each loss priority within a queue
and dropping new packets of that loss priority level when the queue depth exceeds the threshold. When
the queue becomes oversubscribed, packets of lower priority are dropped to ensure that there is room in
the queue for packets of higher priority.

Packet loss priority has four loss priority levels:

• low

• medium-low

• medium-high

• high

vMX supports three thresholds so the medium-low and medium-high loss priority levels are grouped
together. vMX maps the packet loss priority to tricolor marking as follows:

ColorPacket Loss Priority

greenlow

yellowmedium-low

yellowmedium-high

redhigh

132

vMX drop profiles define the threshold within a queue for a given loss priority as the fill level value
associatedwith the drop probability of 100 percent. If you do not specify a drop probability of 100 percent
in the drop profile, the threshold defaults to 100 percent. All other fill level values are ignored. These drop
profiles can be referenced by the scheduler to evaluate packets with different loss priority settings.

You can set packet loss priority for packets using behavior aggregate (BA) classifiers, firewall filters, or
firewall policers.

Limitations

vMX has the following limitations for supporting drop profiles and packet loss priority:

• If you do not apply drop profiles to the queue, then packets are tail dropped.

• The show interface queue command does not display separate drop rates for the medium-high PLP and
medium-low PLP because they both map to yellow. All yellow drop rates appear as medium-high drops.

RELATED DOCUMENTATION

Managing Congestion Using Drop Profiles and Packet Loss Priorities on vMX | 133

CoS on vMX Overview | 127

CoS Features and Limitations on vMX | 129

ManagingCongestionUsingDropProfiles and Packet
Loss Priorities on vMX

IN THIS SECTION

Configuring Drop Profiles | 134

Configuring Schedulers with Drop Profiles | 135

133

When you are configuring CoS, you can manage congestion by configuring drop profiles to specify the
thresholds for packet loss priority. You reference the drop profiles in the scheduler configuration to assign
a drop profile to the loss priority setting.

To configure how packet loss priority is handled for queues, perform these tasks:

Configuring Drop Profiles

Drop profiles specify the threshold for a given loss priority.

NOTE: The threshold for the loss priority assigned this drop profile is the fill-level value associated
with the drop-probability of 100. If you do not specify a drop probability of 100 percent in the
drop profile, the fill level defaults to 100 percent. All other fill levels are ignored.

To specify the drop profile, include the drop-profiles statement at the [edit class-of-service] hierarchy
level.

[edit]

user@vmx# set class-of-service drop-profiles profile-name

To specify the threshold for the loss priority, include the fill-level and drop-probability statements at the
[edit class-of-service drop-profiles profile-name] hierarchy level.

[edit class-of-service drop-profiles profile-name]

user@vmx# set fill-level percentage drop-probability percentage

For example, the dpLow drop profile specifies a threshold of 100 percent, the dpMed drop profile specifies
a threshold of 75 percent, and the dpHigh drop profile specifies a threshold of 50 percent.

[edit]

user@vmx# set class-of-service drop-profiles dpLow fill-level 100 drop-probability 100

user@vmx# set class-of-service drop-profiles dpMed fill-level 75 drop-probability 100

user@vmx# set class-of-service drop-profiles dpHigh fill-level 50 drop-probability 100

134

Configuring Schedulers with Drop Profiles

The drop profile map contains the mapping of loss priority and protocol type to configured drop profiles.
You can associate multiple drop profile maps with a scheduler.

NOTE: If you do not apply drop profiles to the queue, then packets are tail dropped.

To specify the drop profile map, include the drop-profile-map statement at the [edit class-of-service
schedulers scheduler-name] hierarchy level.

[edit class-of-service schedulers scheduler-name]

user@vmx# set drop-profile-map loss-priority (any | low | medium-low | medium-high | high)
protocol any drop-profile profile-name

For example, the sched-be scheduler applies the dpLow drop profile to packets with low loss priority for
any protocol type, applies the dpMed drop profile to packets with medium-high loss priority for any
protocol type, and applies the dpHigh drop profile to packets with high loss priority for any protocol type.

[edit class-of-service schedulers sched-be]

user@vmx# set drop-profile-map loss-priority low protocol any drop-profile dpLow

user@vmx# set drop-profile-map loss-priority medium-high protocol any drop-profile dpMed

user@vmx# set drop-profile-map loss-priority high protocol any drop-profile dpHigh

RELATED DOCUMENTATION

Packet Loss Priority and Drop Profiles on vMX | 132

CoS on vMX Overview | 127

CoS Features and Limitations on vMX | 129

135

Configuring Hierarchical CoS on vMX

IN THIS SECTION

Enabling Flexible Queuing | 136

Mapping Forwarding Classes to Queues on vMX | 136

Configuring Traffic Control Profiles for vMX | 136

Configuring Schedulers on vMX | 137

To configure hierarchical CoS, perform these tasks:

Enabling Flexible Queuing

Hierarchical CoS is disabled by default. To enable hierarchical CoS, include the flexible-queuing-mode
statement at the [edit chassis fpc 0] hierarchy level and restart the FPC.

[edit]

user@vmx# set chassis fpc 0 flexible-queuing-mode

Mapping Forwarding Classes to Queues on vMX

You must map all configured forwarding classes to one of the queues.

[edit]

user@vmx# set class-of-service forwarding-classes class class-name queue-num queue-number

Configuring Traffic Control Profiles for vMX

Traffic control profiles support only the shaping-rate and scheduler-map statements for vMX.

136

To specify the shaping rate, include the shaping-rate statement at the [edit class-of-service
traffic-control-profiles profile-name] hierarchy level.

[edit]

user@vmx# set class-of-service traffic-control-profiles profile-name shaping-rate rate

To specify the scheduler map, include the scheduler-map statement at the [edit class-of-service
traffic-control-profiles profile-name] hierarchy level.

[edit]

user@vmx# set class-of-service traffic-control-profiles profile-name scheduler-map map-name

Configuring Schedulers on vMX

The scheduler map contains the mapping of forwarding classes to their schedulers. The scheduler defines
the properties for the queue.

Schedulers support only the transmit-rate and excess-rate proportion statements for vMX.

To specify the transmission rate, include the transmit-rate statement at the [edit class-of-service schedulers
scheduler-name] hierarchy level.

[edit]

user@vmx# set class-of-service schedulers scheduler-name transmit-rate rate

BEST PRACTICE: Guaranteed rate is not supported, so there is no reserved bandwidth for the
VLAN. To get the expected behavior, we recommend that you configure the transmit rate to be
the guaranteed rate.

To specify the proportion of the excess bandwidth to share, include the excess-rate proportion statement
at the [edit class-of-service schedulers scheduler-name] hierarchy level. The value is in the range of 0
through 1000.

[edit]

137

user@vmx# set class-of-service schedulers scheduler-name excess-rate proportion value

If you configure the excess rate for one queue, the excess rate is expected for all the queues to compute
the weights. If the excess rate is not configured, the default weight of 1 is used.

NOTE: To get the expected behavior, you must configure the excess rate for all queues.

For example, if you configure excess rate for the low-priority queues, configure the same excess
rate for the high- and medium-priority queues.

RELATED DOCUMENTATION

Example: Configuring Hierarchical CoS on vMX | 138

CoS on vMX Overview | 127

CoS Features and Limitations on vMX | 129

Example: Configuring Hierarchical CoS on vMX

IN THIS SECTION

Requirements | 139

Overview | 139

Configuration | 139

This example describes how to configure hierarchical CoS on vMX with eight queues.

138

Requirements

This example uses the following hardware and software components:

• Junos OS Release 16.2

• vMX Release 16.2

Overview

This example configures two-level hierarchical schedulers with specified transmission rates.

Configuration

IN THIS SECTION

Configuring the Chassis | 139

Applying Shaping and Scheduling to VLANs | 140

Configuring the Chassis

CLI Quick Configuration

[edit]
set chassis fpc 0 flexible-queuing-mode

Step-by-Step Procedure
To enable hierarchical CoS on the chassis:

1. Enable flexible queuing mode on the chassis.

[edit]
user@vmx# set chassis fpc 0 flexible-queuing-mode

Once you commit the configuration, the FPC is restarted.

139

Applying Shaping and Scheduling to VLANs

CLI Quick Configuration

[edit]
set class-of-service forwarding-classes class voice1 queue-num 0
set class-of-service forwarding-classes class video1 queue-num 1
set class-of-service forwarding-classes class data1 queue-num 2
set class-of-service forwarding-classes class data2 queue-num 3
set class-of-service forwarding-classes class data3 queue-num 4
set class-of-service forwarding-classes class data4 queue-num 5
set class-of-service forwarding-classes class voice2 queue-num 6
set class-of-service forwarding-classes class video2 queue-num 7
set interfaces ge-0/0/0 hierarchical-scheduler maximum-hierarchy-levels 2
set interfaces ge-0/0/0 vlan-tagging
set interfaces ge-0/0/0 unit 100 vlan-id 100
set interfaces ge-0/0/0 unit 100 family inet address 10.2.2.1/24
set interfaces ge-0/0/1 hierarchical-scheduler maximum-hierarchy-levels 2
set interfaces ge-0/0/1 vlan-tagging
set interfaces ge-0/0/1 unit 100 vlan-id 100
set interfaces ge-0/0/1 unit 100 family inet address 10.1.1.1/24
set class-of-service classifiers inet-precedence vlan_tos forwarding-class voice1 loss-priority low code-points
000

set class-of-service classifiers inet-precedence vlan_tos forwarding-class video1 loss-priority low code-points
001

set class-of-service classifiers inet-precedence vlan_tos forwarding-class data1 loss-priority low code-points 010
set class-of-service classifiers inet-precedence vlan_tos forwarding-class data2 loss-priority low code-points 011
set class-of-service classifiers inet-precedence vlan_tos forwarding-class data3 loss-priority low code-points 100
set class-of-service classifiers inet-precedence vlan_tos forwarding-class data4 loss-priority low code-points 101
set class-of-service classifiers inet-precedence vlan_tos forwarding-class voice2 loss-priority low code-points
110

set class-of-service classifiers inet-precedence vlan_tos forwarding-class video2 loss-priority low code-points
111

set class-of-service traffic-control-profiles ge_0_0_1_vlan_100_tcp shaping-rate 50m
set class-of-service traffic-control-profiles ge_0_0_1_vlan_100_tcp scheduler-map vlan_smap
set class-of-service interfaces ge-0/0/1 unit 100 output-traffic-control-profile ge_0_0_1_vlan_100_tcp
set class-of-service interfaces ge-0/0/0 unit 100 classifiers inet-precedence vlan_tos
set class-of-service scheduler-maps vlan_smap forwarding-class voice1 scheduler sched_voice1
set class-of-service scheduler-maps vlan_smap forwarding-class video1 scheduler sched_video1
set class-of-service scheduler-maps vlan_smap forwarding-class data1 scheduler sched_data1
set class-of-service scheduler-maps vlan_smap forwarding-class data2 scheduler sched_data2
set class-of-service scheduler-maps vlan_smap forwarding-class data3 scheduler sched_data3
set class-of-service scheduler-maps vlan_smap forwarding-class data4 scheduler sched_data4
set class-of-service scheduler-maps vlan_smap forwarding-class voice2 scheduler sched_voice2
set class-of-service scheduler-maps vlan_smap forwarding-class video2 scheduler sched_video2

140

set class-of-service schedulers sched_voice1 transmit-rate 15m
set class-of-service schedulers sched_video1 transmit-rate 15m
set class-of-service schedulers sched_data1 transmit-rate 5m
set class-of-service schedulers sched_data2 transmit-rate 5m
set class-of-service schedulers sched_data3 transmit-rate 5m
set class-of-service schedulers sched_data4 transmit-rate 5m
set class-of-service schedulers sched_voice2 transmit-rate 10m
set class-of-service schedulers sched_video2 transmit-rate 10m

Step-by-Step Procedure
To apply shaping and scheduling:

1. Map the forwarding classes to their respective queues.

[edit]
user@vmx# set class-of-service forwarding-classes class voice1 queue-num 0
user@vmx# set class-of-service forwarding-classes class video1 queue-num 1
user@vmx# set class-of-service forwarding-classes class data1 queue-num 2
user@vmx# set class-of-service forwarding-classes class data2 queue-num 3
user@vmx# set class-of-service forwarding-classes class data3 queue-num 4
user@vmx# set class-of-service forwarding-classes class data4 queue-num 5
user@vmx# set class-of-service forwarding-classes class voice2 queue-num 6
user@vmx# set class-of-service forwarding-classes class video2 queue-num 7

2. Configure the interfaces to enable two-level hierarchical scheduling and apply scheduling to the VLANs.

[edit]
user@vmx# set interfaces ge-0/0/0 hierarchical-scheduler maximum-hierarchy-levels 2
user@vmx# set interfaces ge-0/0/0 vlan-tagging
user@vmx# set interfaces ge-0/0/0 unit 100 vlan-id 100
user@vmx# set interfaces ge-0/0/0 unit 100 family inet address 10.2.2.1/24
user@vmx# set interfaces ge-0/0/1 hierarchical-scheduler maximum-hierarchy-levels 2
user@vmx# set interfaces ge-0/0/1 vlan-tagging
user@vmx# set interfaces ge-0/0/1 unit 100 vlan-id 100
user@vmx# set interfaces ge-0/0/1 unit 100 family inet address 10.1.1.1/24

3. Configure the classifiers.

[edit]
user@vmx# set class-of-service classifiers inet-precedence vlan_tos forwarding-class voice1 loss-priority
low code-points 000

141

user@vmx# set class-of-service classifiers inet-precedence vlan_tos forwarding-class video1 loss-priority
low code-points 001

user@vmx# set class-of-service classifiers inet-precedence vlan_tos forwarding-class data1 loss-priority low
code-points 010

user@vmx# set class-of-service classifiers inet-precedence vlan_tos forwarding-class data2 loss-priority low
code-points 011

user@vmx# set class-of-service classifiers inet-precedence vlan_tos forwarding-class data3 loss-priority low
code-points 100

user@vmx# set class-of-service classifiers inet-precedence vlan_tos forwarding-class data4 loss-priority low
code-points 101

user@vmx# set class-of-service classifiers inet-precedence vlan_tos forwarding-class voice2 loss-priority
low code-points 110

user@vmx# set class-of-service classifiers inet-precedence vlan_tos forwarding-class video2 loss-priority
low code-points 111

4. Configure the traffic control profiles.

[edit]
user@vmx# set class-of-service traffic-control-profiles ge_0_0_1_vlan_100_tcp shaping-rate 50m
user@vmx# set class-of-service traffic-control-profiles ge_0_0_1_vlan_100_tcp scheduler-map vlan_smap

5. Map the traffic control profiles to their respective interface.

[edit]
user@vmx# set class-of-service interfaces ge-0/0/1 unit 100 output-traffic-control-profile
ge_0_0_1_vlan_100_tcp

user@vmx# set class-of-service interfaces ge-0/0/0 unit 100 classifiers inet-precedence vlan_tos

6. Configure the scheduler maps.

[edit]
user@vmx# set class-of-service scheduler-maps vlan_smap forwarding-class voice1 scheduler sched_voice1
user@vmx# set class-of-service scheduler-maps vlan_smap forwarding-class video1 scheduler sched_video1
user@vmx# set class-of-service scheduler-maps vlan_smap forwarding-class data1 scheduler sched_data1
user@vmx# set class-of-service scheduler-maps vlan_smap forwarding-class data2 scheduler sched_data2
user@vmx# set class-of-service scheduler-maps vlan_smap forwarding-class data3 scheduler sched_data3
user@vmx# set class-of-service scheduler-maps vlan_smap forwarding-class data4 scheduler sched_data4
user@vmx# set class-of-service scheduler-maps vlan_smap forwarding-class voice2 scheduler sched_voice2
user@vmx# set class-of-service scheduler-maps vlan_smap forwarding-class video2 scheduler sched_video2

7. Configure the schedulers.

142

[edit]
user@vmx# set class-of-service schedulers sched_voice1 transmit-rate 15m
user@vmx# set class-of-service schedulers sched_video1 transmit-rate 15m
user@vmx# set class-of-service schedulers sched_data1 transmit-rate 5m
user@vmx# set class-of-service schedulers sched_data2 transmit-rate 5m
user@vmx# set class-of-service schedulers sched_data3 transmit-rate 5m
user@vmx# set class-of-service schedulers sched_data4 transmit-rate 5m
user@vmx# set class-of-service schedulers sched_voice2 transmit-rate 10m
user@vmx# set class-of-service schedulers sched_video2 transmit-rate 10m

RELATED DOCUMENTATION

Configuring Hierarchical CoS on vMX | 136

CoS on vMX Overview | 127

CoS Features and Limitations on vMX | 129

Configuring Hierarchical CoS on vMX | 136

Bypassing the Queuing Chip

When flexible queuing option is enabled, QoS is applied on all the configured ports. Applying QoS on the
ports requires additional vCPU reserve for each port and this affects vCPU resource allocation. By default,
all traffic passes through the queuing-chip, which decreases the available vCPU resource, there by affecting
the performance.

Starting with Junos OS 18.2R1, you can bypass the queuing-chip on vMX routers to save vCPU resources
when scheduling is not needed on an interface. In cases when you do not require QoS features such as
hierarchical scheduling or per-vlan queuing on a particular interface, you can bypass the queuing-chip to
increase the available bandwidth.

Use the following commands to enable bypass queue option:

1. Enable bypass the queuing-chip on vMX VM:

[edit interfaces]
user@router# set ge-0/0/1 bypass-queuing-chip

143

NOTE: Enabling the bypass queue option reboots the FPC.

When you configure the bypass queuing chip option, the show interface queue command does not
display any output.

2. Optionally you can configure to share the resources (QoS scheduling and Workers) among a selected
set of ports. This feature is supported for active-standby configuration of LAG.

[edit interfaces]
user@router# set interfaces ae0 aggregated-ether-options share-standby

When you configure the share-standby option, all the members of aggregated Ethernet (AE) interface
share the same resources (vCPUs) for both Worker processing and QoS scheduling.

RELATED DOCUMENTATION

Increasing Available Bandwidth on Rich-Queuing MPCs by Bypassing the Queuing Chip

bypass-queuing-chip

share-standby

144

https://www.juniper.net/documentation/en_US/vmx/topics/reference/configuration-statement/share-standby-edit-aggregated-ethernet.html

6
CHAPTER

Troubleshooting vMX

Verifying Whether VMs Are Running | 146

Viewing CPU Information | 146

Viewing VFP Statistics | 147

Viewing VFP Log Files | 149

Troubleshooting VFP and VCP Connection Establishment | 150

Verifying BIOS Settings for SR-IOV | 151

Verifying Whether VMs Are Running

To verify that the VMs are running after vMX is installed, use the virsh list command. The virsh list command
displays the name and state of the VM. The state can be: running, idle, paused, shutdown, crashed, or
dying.

You can stop and start VMs with the following virsh commands.

• virsh destroy—Forcefully stop a VM while leaving its resources intact.

• virsh start—Start an inactive VM that was defined previously.

RELATED DOCUMENTATION

Connecting to VMs | 68

Viewing CPU Information

On the host server, use the lscpu command to display CPU information. The output displays such information
as the total number of CPUs, the number of cores per socket, and the number of CPU sockets. For example:

root@vmx-host:~# lscpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 40

On-line CPU(s) list: 0-39

Thread(s) per core: 1

Core(s) per socket: 10

Socket(s): 4

NUMA node(s): 4

Vendor ID: GenuineIntel

CPU family: 6

Model: 62

Stepping: 7

CPU MHz: 3191.766

BogoMIPS: 6385.87

146

Virtualization: VT-x

L1d cache: 32K

L1i cache: 32K

L2 cache: 256K

L3 cache: 38400K

NUMA node0 CPU(s): 0,4,8,12,16,20,24,28,32,36

NUMA node1 CPU(s): 1,5,9,13,17,21,25,29,33,37

NUMA node2 CPU(s): 2,6,10,14,18,22,26,30,34,38

NUMA node3 CPU(s): 3,7,11,15,19,23,27,31,35,39

RELATED DOCUMENTATION

Verifying Whether VMs Are Running | 146

Viewing VFP Statistics | 147

Viewing VFP Log Files | 149

Troubleshooting VFP and VCP Connection Establishment | 150

Viewing VFP Statistics

You can view the VFP statistics from a Web browser. The displayed statistics are not absolute counters;
they are relative to the start of the HTTP session and start as all zero counters.

The RPIO Stats and Hostif Stats sections provide statistics about the internal communication between the
VCP and the VFP. The RPIO session uses ports 3000 and 3001 and the HostIF session uses port 3002.

The Port Stats section provides statistics about the packets received from and transmitted to the NIC
interfaces.

• There is a receive (rx) and transmit (tx) line for each port. Port 0 maps to the ge-0/0/0 interface, port 1
maps to the ge-0/0/1 interface, and so forth. rx0 displays statistics for packets received from port 0 and
tx1 displays statistics for packets transmitted to port 1.

• Errors are miscellaneous errors reported by the physical layer NIC.

The Ring Stats section provides statistics about packet processing.

• There is an I/O thread (io) for packets received from a port.

• There is a Worker thread (wk) for each CPU core.

147

• The host interface (host) sends protocol packets to the VCP.

• The queue processes the packets. The columns provide this information about the queues:

• The Producer and Consumer columns display the source and destination that generate packets for
this queue. The values can be io, wk, tx, or host.

• The Priority column displays the priority of the queue. The values can be Normal or High (only for
control packets).

• The Free and Used columns display the queue occupancy. The queue has 1024 entries.

• The Enqueues and Dequeues columns display the number of queue operations.

• The Drops column indicates whether the queue is being drained fast enough.

To view the statistics:

1. By default, you cannot log in to the Web browser window without configuring the username and
password credentials and enabling HTTP access.

From theVFP console, configure the username and password by invoking the /home/pfe/riot/vfp_util.sh
-setpass command.

root@vfp-vmx1:/home/pfe/riot# ./vfp_util.sh -setpass
Enter new Username: pfe
Enter new Password:

Re-enter Password:

Password successfully changed

root@vfp-vmx1:/home/pfe/riot#

To enable HTTP access, invoke this command.

root@vfp-vmx1:/home/pfe/riot# ./vfp_util.sh -http_enable

2. Navigate to http://vfp-mgmt-ip:8080/, where vfp-mgmt-ip is the management IP address for the VFP
VM.

3. When prompted, enter pfe as the username and the password configured in Step 1.

4. View the statistics displayed in the browser window.

5. After troubleshooting, you can disable HTTP access to improve security with this command:

root@vfp-vmx1:/home/pfe/riot# ./vfp_util.sh -http_disable

148

RELATED DOCUMENTATION

Viewing VFP Log Files

vMX Overview | 14

Viewing VFP Log Files

The VFP saves the following files:

• VFP log files are saved in the /var/log directory.

• VFP crash files are automatically saved in the VCP /var/crash directory.

To view the VFP log or crash files:

1. Log in to the VFP console by using the ./vmx.sh --console vfp vmx-id command, where vmx-id is the
vMX identifier specified in the startup configuration file.

2. Navigate to the appropriate directory to determine whether there are any files to view.

cd /var/crash
ls -l

-rwxr-xr-x 1 root root 864678 Jan 4 02:14 core.riot.1420366466.8271.gz

3. (Optional) If necessary, unzip the file and view it using GDB.

gunzip core.riot.1420366466.8271.gz
gdb /build/app core.riot.1420366466.8271

The VFP is configured for remote logging of the /var/log/messages directory. You can configure the VCP
syslog facility to record the VFP log messages:

user@vmx# set system syslog file messages any any

user@vmx# set system syslog server routing-instances all

user@vmx# set services app-engine monitor-cpu 50 100

user@vmx# commit

149

RELATED DOCUMENTATION

Verifying Whether VMs Are Running | 146

Viewing CPU Information | 146

Viewing VFP Statistics | 147

Troubleshooting VFP and VCP Connection Establishment | 150

Troubleshooting VFP and VCP Connection
Establishment
Purpose
When the VCP and VFP connection is established, the show interfaces terse command in the VCP CLI
displays the ge-0/0/x interfaces and the following messages appear in the VFP syslog file:

RPIO: Accepted connection from 128.0.0.1:50896 <-> vPFE:3000

RPIO: Accepted connection from 128.0.0.1:56098 <-> vPFE:3000

HOSTIF: Accepted connection

If the VCP cannot connect to the VFP, the VFP syslog file does not display theRPIO andHOSTIFmessages.

Action
Run the request chassis fpc slot 0 restart command from the VCP CLI. If an FPC is in transition error
message is displayed, then run restart chassis-control.

If these commands do not correct the problem, verify whether the VCP can ping the VFP from the
routing-instance __juniper_private1__. The three management interfaces (for the host, VCP VM, and VFP
VM) connected to the internal bridge should be able to reach each other. For example:

root> ping 128.0.0.16 routing-instance __juniper_private1__

PING 128.0.0.16 (128.0.0.16): 56 data bytes

64 bytes from 128.0.0.16: icmp_seq=0 ttl=64 time=0.273 ms

64 bytes from 128.0.0.16: icmp_seq=1 ttl=64 time=0.606 ms

If the VCP cannot ping the VFP, perform these tasks:

1. Use the brctl show command to verify the bridge configuration and connected interfaces.

2. Verify that the startup configuration file is correct.

150

3. Verify that the VFP and the VCP VMs are up and the correct IP addresses are assigned.

4. Restart the FPC from the VCP VM.

5. Restart the chassis management process from VCP VM.

6. Stop and start the VFP VM.

7. Stop and start the VCP VM.

8. Restart the host.

If the problem persists, contact the Juniper Networks Technical Assistance Center (JTAC).

RELATED DOCUMENTATION

Connecting to VMs | 68

Verifying Whether VMs Are Running | 146

Viewing VFP Statistics | 147

Viewing VFP Log Files | 149

Verifying BIOS Settings for SR-IOV

If you are having problems with the SR-IOV ports, make sure BIOS has the following settings:

• SR-IOV is enabled.

• VT-d is enabled.

• Hyperthreading is enabled.

We recommend that you verify the process with the vendor because different systems have different
methods to access and change BIOS settings.

RELATED DOCUMENTATION

vMX Package Contents | 28

Installing vMX on KVM | 30

151

Deploying and Managing vMX | 61

152

	Table of Contents
	About the Documentation
	Documentation and Release Notes
	Documentation Conventions
	Documentation Feedback
	Requesting Technical Support
	Self-Help Online Tools and Resources
	Creating a Service Request with JTAC

	vMX Overview
	vMX Overview
	Benefits and Uses of vMX Routers
	Automation for vMX Routers
	Architecture of a vMX Instance
	Traffic Flow in a vMX Router

	Virtual Network Interfaces for vMX
	Paravirtualization
	PCI Passthrough with SR-IOV

	Installing and Deploying vMX on KVM
	Minimum Hardware and Software Requirements
	vMX Package Contents
	Installing vMX on KVM
	Preparing the Ubuntu Host to Install vMX
	Upgrading the Kernel
	Upgrading to libvirt 1.2.19
	Updating Drivers for the X710 NIC
	Install the Other Required Packages

	Preparing the Red Hat Enterprise Linux Host to Install vMX
	Preparing the Red Hat Enterprise Linux 7.3 Host to Install vMX
	Preparing the Red Hat Enterprise Linux 7.2 Host to Install vMX

	Preparing the CentOS Host to Install vMX
	Installing vMX for Different Use Cases
	Installing vMX for Lab Simulation
	Installing vMX for Low-Bandwidth Applications
	Installing vMX for High-Bandwidth Applications
	Installing vMX with Dual Routing Engines
	Installing vMX with Mixed WAN Interfaces

	Deploying and Managing vMX
	Specifying vMX Configuration File Parameters
	Configuring the Host
	Configuring the VCP VM
	Configuring the VFP VM
	Configuring Interfaces

	Connecting to VMs
	Logging In to VCP
	Logging In to VFP

	Managing vMX
	Deploying vMX
	Managing vMX Deployments
	Specifying the Temporary File Directory
	Specifying the Environment File
	Configuring Logging Options for vMX
	Connecting to Console Port for the VMs
	Getting Help for the Script Options

	Binding virtio Devices
	Setting Up the Device Bindings
	Creating Device Bindings
	Deleting Device Bindings
	Verifying Device Bindings

	Installing Nested vMX VMs
	Overview of the Nested VM Model
	Nested VM with Virtio Interfaces
	Nested VM with SR-IOV Interfaces
	System Requirements for Nested VM Model
	vMX Limitations with the Nested VM Model

	Hardware and Software Requirements for Nested vMX VMs
	Installing and Launching the Nested vMX VM on KVM
	Preparing the Ubuntu Host to Install the Nested vMX VM
	Loading the Modified IXGBE Driver
	Launching a Nested vMX Instance
	Connecting to the VFP Console Port
	Connecting to the VCP

	Example: Enabling SR-IOV on vMX Instances on KVM
	Procedure for Identifying PCI-Addresses and Kernel Name for the NIC
	Download and Install the Latest Driver Software from Intel
	Prepare NIC to Use SR-IOV in System Mode
	Setting SR-IOV at Boot-Time
	Verify sriov_numvfs Settings
	Changing the Number of sriov_numvfs
	Updating the VMX Configuration File (vmx.conf) Parameters
	Changes Required for Using Intel ixgbe Driver

	Configuring Modified and Unmodified Drivers
	Modified and Unmodified i40e Driver
	Understanding the Differences between Modified and Unmodified i40e Driver
	Deploying vMX with Unmodified i40e Driver
	Moving from Modified i40e Driver to Unmodified i40e Driver
	Moving from Unmodified i40e Driver to Modified i40e Driver

	Modified and Unmodified IXGBE Driver
	Understanding the Differences between Modified and Unmodified IXGBE Driver
	Deploying vMX with Unmodified IXGBE Driver
	Moving from Modified IXGBE Driver to Unmodified IXGBE Driver
	Moving from Unmodified IXGBE Driver to Modified IXGBE Driver

	Understanding the Features Supported on Modified and Unmodified Drivers

	Configuring vMX Chassis-Level Features
	Configuring the Number of Active Ports on vMX
	Naming the Interfaces
	Configuring the Media MTU
	Enabling Performance Mode or Lite Mode
	Tuning Performance Mode
	lite-mode
	performance-mode

	Class of Service for vMX
	CoS on vMX Overview
	CoS Features and Limitations on vMX
	Weighted Round-Robin of Subscriber Traffic on a Port Limitations

	Configuring Four-Level Hierarchical Scheduling on vMX
	Packet Loss Priority and Drop Profiles on vMX
	Limitations

	Managing Congestion Using Drop Profiles and Packet Loss Priorities on vMX
	Configuring Drop Profiles
	Configuring Schedulers with Drop Profiles

	Configuring Hierarchical CoS on vMX
	Enabling Flexible Queuing
	Mapping Forwarding Classes to Queues on vMX
	Configuring Traffic Control Profiles for vMX
	Configuring Schedulers on vMX

	Example: Configuring Hierarchical CoS on vMX
	Requirements
	Overview
	Configuration
	Configuring the Chassis
	Applying Shaping and Scheduling to VLANs

	Bypassing the Queuing Chip

	Troubleshooting vMX
	Verifying Whether VMs Are Running
	Viewing CPU Information
	Viewing VFP Statistics
	Viewing VFP Log Files
	Troubleshooting VFP and VCP Connection Establishment
	Verifying BIOS Settings for SR-IOV

