Configuring and Deploying Ethernet Switching on SRX3xx, SRX550M, and SRX1500 Services Gateways

Application Note

September 2016
Contents
List of Tables .. iv
List of Figures ... iv
Introduction ... 1
Scope ... 1
 Hardware Scope .. 1
 Software Scope ... 1
 Feature and Capabilities ... 2
 Supported Features .. 2
 Limitations ... 2
Summary of Changes (CLI)... 3
Life of a Packet in Ethernet Switching ... 4
Ethernet Switching Deployment Scenarios .. 5
 Enabling Ethernet Switching on SRX3xx, SRX550M, and SRX1500 Services Gateways 5
 Configuring Layer 2 Switching ... 5
 Configuring VLANs ... 5
 Attaching Switch Ports to VLANs ... 6
 Configuring the Port Mode .. 7
 Native VLAN ID ... 7
 Configuring Integrated Routing and Bridging (IRB) Interfaces............................ 8
 Link Aggregation – LACP .. 8
Configuration Examples ... 10
 Simple Ethernet Switching .. 10
 Configuration .. 10
 Verification .. 10
 Adding VLANs .. 11
 Configuration .. 11
 Verification .. 12
 Routing Traffic between VLANs ... 12
 Configuration .. 13
 Verification .. 13
 Adding Tagged Interface .. 14
 Verification .. 15
 Native VLAN ID Configuration ... 16
Introduction

Juniper Networks SRX Series Services Gateways for the branch enable an enterprise to provide services without boundaries. The Ethernet switching features on these devices can reduce or even eliminate the need for Layer 2 switches in branch offices.

Juniper Networks Junos operating system Release 15.1 for the SRX Series introduces changes in the Ethernet switching features, mainly in the CLI configuration of Layer 2 features. This application note is intended to capture all relevant information regarding these changes. It also describes common deployment scenarios and includes detailed configurations and examples.

Scope

This application note covers details for the hardware platforms listed in Table 1 only.

For information on using Ethernet switching features in an SRX Chassis Cluster environment, see the SRX Series Services Gateway technical documentation.

Hardware Scope

<table>
<thead>
<tr>
<th>Platform</th>
<th>On-Board Cu GE</th>
<th>On-Board SFP GE</th>
<th>mPIM</th>
<th>gPIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX300</td>
<td>6</td>
<td>2</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>SRX320</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>x</td>
</tr>
<tr>
<td>SRX320-POE</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>x</td>
</tr>
<tr>
<td>SRX340</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>x</td>
</tr>
<tr>
<td>SRX345</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>x</td>
</tr>
<tr>
<td>SRX550M</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>6*</td>
</tr>
<tr>
<td>SRX1500</td>
<td>12</td>
<td>4x1GE + 4x10GE</td>
<td>2</td>
<td>x</td>
</tr>
</tbody>
</table>

*Out of 6 GPIM slots only 2 (slot 3 and slot 5) support Ethernet switching

Table 1 – Physical Interface Support on SRX Series Devices

Starting with Junos OS 15.1X49-D50, all interfaces have support for Ethernet switching. [Release Notes]

Software Scope

SRX Series devices for the branch support two modes: transparent mode and switching mode. Table 2 shows a matrix of current support for these modes as of Junos OS Release 15.1X49-D50.

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>L2 - Transparent Mode (L2TM)</th>
<th>Switching</th>
</tr>
</thead>
<tbody>
<tr>
<td>L3 Routing</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Stateful Firewall for L2 traffic</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>L1 Secure-Wire</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Management over IRB</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Routing over IRB</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Packet Switched | at flow (SRXPFTE) | Broadcom (L2) Chip
--- | --- | ---
Mixed Mode | L1 | L2 Switch | L3
Platforms Supported | All (Including High-End) | SRX300, SRX320, SRX340, SRX345, SRX550M SRX1500 Only
Link Aggregation - LACP | Yes | No
HA Support | Yes | No (Roadmap)
IPv6 Support | Yes | Yes
L2 interfaces and Zones | Physical Interfaces must be added to Zones | IRB interfaces (not physical) must be added to zones

Table 2 – Software Support Scope on SRX Series Devices

The Ethernet switching features on SRX Series branch devices are based on Juniper Networks EX Series Ethernet switches, which follow the Enhanced Layer 2 Switching (ELS) configuration method.

Feature and Capabilities

This section describes the Ethernet switching feature and capabilities on SRX Series Services gateways.

Supported Features

As of Junos OS Release 15.1X49-D50, the following features are supported:

- Layer 2 switching of traffic, including support for both trunk and access ports
- Intra-VLAN and Integrated Routing and Bridging (IRB) for Inter-VLAN traffic
- Link Aggregation using the Link Aggregation Control Protocol (LACP)

Limitations

As of Junos OS Release 15.1X49-D50, the following features are not supported. Please check the release notes for more details.

- IEEE 802.1x authentication
- Link Layer Discovery Protocol (LLDP), LLDP-MED (available in Junos OS 15.1X49-D60)
- Ethernet switching in HA (Chassis Cluster)
- Spanning Tree Protocol (STP)
- Rapid Spanning Tree Protocol (RTSP)
- Multiple Spanning Tree Protocol (MSTP)
- IGMP snooping
- IEEE 802.1Q (dot1q) tunneling (Q-in-Q)
- IRB support in Packet mode (available in 15.1X49-D60 release)
- Port Security features (MAC limiting, allowed MAC address)
- GVRP / MVRP
- Ethernet OAM, CFM, and LFM
Summary of Changes (CLI)

Table 3 provides a summary of the CLI changes made for Ethernet switching features on SRX SRX300, SRX320, SRX340, SRX345, SRX550M, and SRX1500 Services Gateways.

<table>
<thead>
<tr>
<th>VLANS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Old CLI - Switching</td>
<td>Old CLI - L2TM</td>
<td>New Common CLI</td>
</tr>
<tr>
<td><code>[edit vlans] <vlan-name> vlan-id <vlan-id></code></td>
<td><code>[edit bridge-domain] <bd-name> vlan-id <vlan-id></code></td>
<td><code>[edit vlans] <vlan-name> vlan-id <vlan-id></code></td>
</tr>
<tr>
<td><code>[edit vlans] <vlan-name> vlan-range <start>-<end></code></td>
<td><code>[edit bridge-domain] <bd-name> vlan-id-list [values]</code></td>
<td><code>[edit vlans] <vlan-name> vlan-id-list [values]</code></td>
</tr>
<tr>
<td><code>[edit vlans] <vlan-name> interface <ifl-name></code></td>
<td><code>[edit bridge-domain] <bd-name> interface <ifl-name></code></td>
<td><code>[edit vlans] <vlan-name> interface <ifl-name></code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interfaces</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Old CLI</td>
<td>Old CLI</td>
<td>New Common CLI</td>
</tr>
<tr>
<td><code>[edit interfaces] <ifd> { unit 0 { family ethernet-switching { vlan members <vid-list>; port-mode trunk/access; } } }</code></td>
<td><code>[edit interfaces] <ifd> { unit 0 { family bridge { vlan-id <vid>; vlan-id-list <vid-list>; } } }</code></td>
<td><code>[edit interfaces] <ifd> { unit 0 { family ethernet-switching { vlan members <vid-list>; interface-mode trunk/access; } } }</code></td>
</tr>
<tr>
<td><code>[edit interfaces] <ifd> { unit 0 { family ethernet-switching { native-vlan-id <vid>; unit 0 { family bridge { interface-mode trunk; } } } } }</code></td>
<td><code>[edit interfaces] <ifd> { native-vlan-id <vid>; unit 0 { family bridge { interface-mode trunk; } } }</code></td>
<td><code>[edit interfaces] <ifd> { native-vlan-id <vid>; unit 0 { family ethernet-switching { interface-mode trunk; } } }</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Old CLI</th>
<th>New Common CLI</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show vlans</code></td>
<td><code>show vlans</code></td>
</tr>
<tr>
<td><code>show ethernet-switching interface</code></td>
<td><code>show l2-learning interface</code></td>
</tr>
<tr>
<td><code>show ethernet-switching table</code></td>
<td><code>show bridge mac-table</code></td>
</tr>
<tr>
<td><code>show route forwarding-table family ethernet-switching</code></td>
<td><code>show route forwarding-table family ethernet-switching</code></td>
</tr>
</tbody>
</table>

Table 3 – Summary of CLI Changes on SRX Series Devices
Life of a Packet in Ethernet Switching

Figure 1 illustrates the life of a packet processed by Ethernet switching features.

1. Intra-VLAN traffic – Once interfaces are configured in the same VLAN, the “Ethernet switch chip” is programmed accordingly; MAC learning and VLAN states are maintained in the Layer 2 hardware. Packets in the same VLAN are switched internally by the Layer 2 Ethernet switch. Since packets do not traverse the flow architecture, security features are not applied to this traffic.

2. Inter-VLAN traffic – Packets for different VLANs are routed/forwarded through the flow architecture.
 a. Incoming traffic is classified according to the port-based VLAN.
 b. The destination MAC address of inter-VLAN traffic is matched with the IRB interface at the Ethernet switch and is sent to the flow module for further processing.
 c. In the flow module, inter-VLAN traffic goes through all security checks and is routed to a different VLAN.
 d. Routed traffic is sent back to the Ethernet switch chip, which then sends out the traffic.

Changes between Junos OS Release 12.3 and Release 15.1: Inter-VLAN IRB interfaces in Junos OS Release 12.3 or older were named `vlan.x`; in Junos OS Release 15.1 they are named `irb.x`
Ethernet Switching Deployment Scenarios

Enabling Ethernet Switching on SRX3xx, SRX550M, and SRX1500 Services Gateways

Starting with Junos OS Release 15.1X49-D50, SRX Series branch devices have global switching enabled by default. The factory default configuration includes the following configuration:

```
set protocols l2-learning global-mode switching
```

This configuration can be used to enable and disable Ethernet switching on the SRX Series devices, including both Layer 2 switching and IRB-based routing.

When the SRX Series device does not have the default configuration shown above, its default configuration is transparent mode. Enabling and disabling switching mode requires a system reboot.

Configuring Layer 2 Switching

The following configuration defines an interface as a switching port:

```
interfaces {
  ge-<slot number>/0/<port number> { 
    unit 0 {
      family ethernet-switching;
    }
  }
}
```

The Layer 2 configuration is limited to unit 0 of an interface. Additionally, Ethernet switching needs to be enabled globally, as described in the previous section.

Changes between Junos OS Release 12.3 and Release 15.1: None

Configuring VLANs

By default, all switching-enabled interfaces form part of the same broadcast domain. If an interface is enabled for Layer 2 switching but not associated with any VLAN, it becomes part of the default VLAN (VLAN ID 1). To configure a new domain, a VLAN has to be defined under the [vlans] hierarchy and given a unique identifier (VLAN ID).

```
vlangs {
  <vlan name> { 
    vlan-id <id>;
  }
}
```
Supported VLAN Range (Table)

<table>
<thead>
<tr>
<th>Platform</th>
<th>No. of VLANs</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRX300</td>
<td>1000</td>
</tr>
<tr>
<td>SRX320</td>
<td>1000</td>
</tr>
<tr>
<td>SRX320-POE</td>
<td>1000</td>
</tr>
<tr>
<td>SRX340</td>
<td>2000</td>
</tr>
<tr>
<td>SRX345</td>
<td>3000</td>
</tr>
<tr>
<td>SRX550M</td>
<td>3967</td>
</tr>
<tr>
<td>SRX1500</td>
<td>3900</td>
</tr>
</tbody>
</table>

Table 4 – Number of VLANs Supported on SRX Series Devices

Note: On SRX3xx and SRX5xx devices, the VLAN IDs 3968 through 4096 are reserved and cannot be configured.

Attaching Switch Ports to VLANs

There are two ways to attach an interface to a VLAN.

The first way, under the `[interfaces]` hierarchy, is to declare the VLAN as a part of an interface configuration, as follows:

```javascript
interfaces {
  ge-<slot number>/0/<port number> {
    unit 0 {
      family ethernet-switching {
        vlan {
          members <vlan name>;
        }
      }
    }
  }
}
```

The second way, under the `[vlan]` hierarchy, is to define the VLAN member interfaces, as follows:

```javascript
vlans {
  <name> {
    vlan-id <id>;
    interface <interface name>;
    interface <interface name>;
  }
}
```

Changes from Junos OS 12.3 to Release 15.1: None
Configuring the Port Mode

VLAN tagging (IEEE 802.1q) extends the Ethernet header by adding a VLAN identifier (a 12-bit value) that is used to differentiate traffic from different VLANs. To configure a switch port as an access port, use following configuration:

```
interfaces {
    ge-<slot number>/0/<port number> {
        unit 0 {
            family ethernet-switching {
                interface-mode access;
            }
        }
    }
}
```

By default, all switching interfaces are access ports. An interface can be configured as a trunk port by changing the configuration, as shown below:

```
interfaces {
    ge-<slot number>/0/<port number> {
        unit 0 {
            family ethernet-switching {
                interface-mode trunk;
                vlan {
                    members [<vlan name>, <vlan name> ..];
                }
            }
        }
    }
}
```

Changes from Junos OS Release 12.3 to Release 15.1: CLI change, `port-mode` (used in Junos OS Release 12.3) is changed to `interface-mode` in Release 15.1.

Native VLAN ID

Typically, trunk ports accept VLAN-tagged packets but do not accept untagged packets. You can enable a trunk port to accept untagged data packets by configuring a native VLAN ID on the receiving interface, as follows:

```
interfaces {
    ge-<slot number>/0/<port number> {
        native-vlan-id <NativeVLAN-ID>;
        unit 0 {
            family ethernet-switching {
                interface-mode trunk;
                vlan {
                    members [NativeVLAN-ID, <vlan name> ..];
                }
            }
        }
    }
}
```
For more information, see Configuring the Native VLAN Identifier.

Configuring Integrated Routing and Bridging (IRB) Interfaces

Integrated Routing and Bridging (IRB) interfaces (also known as routed VLAN interfaces, or RVIs) are used to enable inter-VLAN routing. These logical interfaces work similarly to Layer 3 interfaces and should be added to security zones. In Layer 2 transparent mode, an IRB works only for management access, while in switching mode, it works for inter-VLAN routing.

An IRB can be created under the `[interfaces]` hierarchy. After the logical interface is created, it must be associated with a particular VLAN using the `l3-interface` statement, as follows:

```
interfaces {
    irb {
        unit <unit number> {
            family inet {
                address <ip address>/<netmask>;
            }
        }
    }
}
vlans {
    <vlan name> {
        l3-interface irb.<unit of newly created irb interface>;
    }
}
```

Changes from Junos OS Release 12.3 to Release 15.1: `[interfaces vlan unit]` changed to `[interfaces irb unit]`

Routed IRB interfaces are no different than any other Layer 3 interface in Junos OS and therefore require the same configuration. In particular, these interfaces have to be assigned to a security zone, and security policies have to explicitly allow traffic to be forwarded between these interfaces and any other configured Layer 3 interfaces.

Link Aggregation – LACP

Multiple links can be aggregated to form a virtual link or link aggregation group (LAG). The MAC client can treat this virtual link as a single link to increase bandwidth and availability while providing graceful degradation as failure occurs.

Specify the number of aggregated interfaces to be configured on the device using the following configuration:
chassis {
 aggregated-devices {
 ethernet {
 device-count <number of AEs to be configured>;
 }
 }
}

Associate physical interfaces to the respective aggregated interfaces using the following configuration:

interfaces {
 ge-<slot number>/0/<port number> {
 ether-options {
 802.3ad ae<0..n>;
 }
 }
 ge-<slot number>/0/<port number> {
 ether-options {
 802.3ad ae<0..n>;
 }
 }
}

For aggregated Ethernet interfaces, you can configure the minimum number of links that must be up for the bundle as a whole before labeling it as down. By default, only one link needs to be up for the bundle to be labeled up.

interfaces {
 ae<0..n> {
 aggregated-ether-options {
 minimum-links <number of minimum links required>;
 }
 }
}

Junos OS supports the Link Aggregation Control Protocol (LACP), a sub-component of 802.3ad that provides additional functionality for LAGs. LACP provides a standard mechanism for exchanging information between partner systems on a link. This exchange allows their link aggregation control instances to reach agreement on the identity of the LAG to which the link belongs, and then to move the link to that LAG. This exchange also enables the transmission and reception processes for the link to function in an orderly manner [see Understanding LACP on Standalone Devices].
Configuration Examples
Starting with Junos OS Release 15.1X49-D50, the factory default configuration comes with **global switching mode** enabled. This can be verified from using **show ethernet-switching global-information** operational command, as follows:

```
user@SRX300# run show ethernet-switching global-information
Global Configuration:
MAC aging interval: 300
MAC learning: Enabled
MAC statistics: Disabled
MAC limit Count: 16383
MAC limit hit: Disabled
MAC packet action drop: Disabled
LE aging time: 1200
LE VLAN aging time: 1200
Global Mode: Switching
```

Note: Please check your product’s Quick Start (How to Set Up) Guide for SRX default configurations and settings. Modification to the default settings might be required in certain scenarios.

Simple Ethernet Switching
This example details the configuration needed to use a branch SRX device as simple Layer 2 switch. The topology is illustrated in Figure 2.

![Simple Ethernet Switching](image)

Figure 2 – Simple Ethernet Switching

Configuration
This example is enabled using the following configuration:

Interfaces:
```
set interfaces ge-0/0/1 unit 0 family ethernet-switching
set interfaces ge-0/0/4 unit 0 family ethernet-switching
```

Verification
The following command shows the interfaces as part of the default VLAN:
Adding VLANs

Assuming this small branch office has two departments, SALES and OPERATIONS, add VLANs to the design in order to isolate the departments and prevent traffic from leaking between domains. This change results in a new topology, as illustrated in Figure 3.

![Figure 3 – Adding VLANs - Ethernet Switching](image)

Configuration

This example is enabled using the following configuration:

VLANs

```plaintext
set vlans OPERATIONS vlan-id 20
set vlans SALES vlan-id 10
```

Interfaces

```plaintext
set interfaces ge-0/0/1 unit 0 family ethernet-switching vlan members OPERATIONS
set interfaces ge-0/0/2 unit 0 family ethernet-switching vlan members SALES
set interfaces ge-0/0/4 unit 0 family ethernet-switching vlan members OPERATIONS
```
set interfaces ge-0/0/5 unit 0 family ethernet-switching vlan members SALES

Verification

The following command shows interface-to-VLAN associations:

```
user@SRX300# run show vlans
Routing instance       VLAN name  Tag       Interfaces
default-switch         OPERATIONS 20        ge-0/0/1.0
                      ge-0/0/4.0
default-switch         SALES       10        ge-0/0/2.0
                      ge-0/0/5.0
default-switch         default     1         
```

Routing Traffic between VLANs

In this example, this small branch provides connectivity between the different business units by assigning each business unit its own Layer 3 segment. The traffic between different business units can be routed and inspected by the firewall module, where security policies can be enforced. The following configuration adds two Layer 3 interfaces, one for each VLAN, which serve as default gateways for the respective network segment. These new IRB interfaces are then added to security zones, and security policies are defined to allow traffic between the zones. In this example, two security zones – SALES and OPERATIONS – are created and HTTP traffic is allowed between them (bidirectional).

![Figure 4 – IRB in Ethernet Switching]
Configuration

This example is enabled using the following configuration:

VLANs

```
set vlans OPERATIONS vlan-id 20
set vlans OPERATIONS l3-interface irb.20
set vlans SALES vlan-id 10
set vlans SALES l3-interface irb.10
```

Interfaces

```
set interfaces ge-0/0/1 unit 0 family ethernet-switching vlan members OPERATIONS
set interfaces ge-0/0/2 unit 0 family ethernet-switching vlan members SALES
set interfaces ge-0/0/4 unit 0 family ethernet-switching vlan members OPERATIONS
set interfaces ge-0/0/5 unit 0 family ethernet-switching vlan members SALES
set interfaces irb unit 10 family inet address 10.1.1.1/24
set interfaces irb unit 20 family inet address 10.1.2.1/24
```

Security Zones

```
set security zones security-zone OPERATIONS interfaces irb.20
set security zones security-zone SALES interfaces irb.10
```

Security Policies

```
set security policies from-zone SALES to-zone OPERATIONS policy Allow_HTTP
match source-address any
set security policies from-zone SALES to-zone OPERATIONS policy Allow_HTTP
match destination-address any
set security policies from-zone SALES to-zone OPERATIONS policy Allow_HTTP
match application junos-http
set security policies from-zone SALES to-zone OPERATIONS policy Allow_HTTP
then permit
set security policies from-zone OPERATIONS to-zone SALES policy Allow_HTTP
match source-address any
set security policies from-zone OPERATIONS to-zone SALES policy Allow_HTTP
match destination-address any
set security policies from-zone OPERATIONS to-zone SALES policy Allow_HTTP
match application junos-http
set security policies from-zone OPERATIONS to-zone SALES policy Allow_HTTP
then permit
```

Verification

The following commands show the interface-to-VLAN associations and IRB configuration:

```
user@SRX300# run show vlans
Routing instance VLAN name Tag Interfaces
default-switch OPERATIONS 20
ge-0/0/1.0*
ge-0/0/4.0*
```
default-switch SALES 10
 ge-0/0/2.0
 ge-0/0/5.0

default-switch default 1

user@SRX300# run show interfaces terse irb
Interface Admin Link Proto Local Remote
irb up up
irb.10 up up inet 10.1.1.1/24
irb.20 up up inet 10.1.2.1/24

Adding Tagged Interface

In this example, two SRX Series devices are connected together, where SALES and OPERATIONS users belonging to one switch want to access their respective servers on another switch while keeping their VLAN domains separate. You enable VLAN communication between the two devices by configuring a trunk link, as shown in Figure 5:

Figure 5 – Enabling VLAN Communication Between Two Devices Using a Trunk Link

Configuration – SRX1

VLANs
set vlans OPERATIONS vlan-id 20
set vlans SALES vlan-id 10
Interfaces
set interfaces ge-0/0/1 unit 0 family ethernet-switching vlan members
OPERATIONS
set interfaces ge-0/0/3 unit 0 family ethernet-switching interface-mode trunk
set interfaces ge-0/0/3 unit 0 family ethernet-switching vlan members SALES
set interfaces ge-0/0/3 unit 0 family ethernet-switching vlan members
OPERATIONS
set interfaces ge-0/0/4 unit 0 family ethernet-switching vlan members SALES

Configuration – SRX2

VLANs
set vlans OPERATIONS vlan-id 20
set vlans SALES vlan-id 10

Interfaces
set interfaces ge-0/0/2 unit 0 family ethernet-switching vlan members
OPERATIONS
set interfaces ge-0/0/3 unit 0 family ethernet-switching interface-mode trunk
set interfaces ge-0/0/3 unit 0 family ethernet-switching vlan members SALES
set interfaces ge-0/0/3 unit 0 family ethernet-switching vlan members
OPERATIONS
set interfaces ge-0/0/5 unit 0 family ethernet-switching vlan members SALES

Verification
The following commands show the VLAN tagging state of the interfaces:

user@SRX300-1# run show ethernet-switching interface brief
Routing Instance Name : default-switch
Logical Interface flags (DL - disable learning, AD - packet action drop,
 LH - MAC limit hit, DN - interface down,
 MMAS - Mac-move action shutdown,
 SCTL - shutdown by Storm-control)

<table>
<thead>
<tr>
<th>Logical interface members</th>
<th>TAG</th>
<th>MAC</th>
<th>STP</th>
<th>Logical interface flags</th>
<th>Tagging</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/1.0</td>
<td></td>
<td>16383</td>
<td>20</td>
<td>OPERATIONS</td>
<td>untagged</td>
</tr>
<tr>
<td>SALES</td>
<td></td>
<td>16383</td>
<td>20</td>
<td></td>
<td>untagged</td>
</tr>
<tr>
<td>ge-0/0/4.0</td>
<td></td>
<td>16383</td>
<td></td>
<td></td>
<td>untagged</td>
</tr>
<tr>
<td>SALES</td>
<td></td>
<td>16383</td>
<td></td>
<td></td>
<td>untagged</td>
</tr>
<tr>
<td>ge-0/0/3.0</td>
<td></td>
<td>16383</td>
<td></td>
<td></td>
<td>tagged</td>
</tr>
<tr>
<td>OPERATIONS</td>
<td></td>
<td>16383</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SALES</td>
<td></td>
<td>16383</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

user@SRX300-2# run show ethernet-switching interface brief
Routing Instance Name : default-switch
Logical Interface flags (DL - disable learning, AD - packet action drop,
 LH - MAC limit hit, DN - interface down,
 MMAS - Mac-move action shutdown,
 SCTL - shutdown by Storm-control)

<table>
<thead>
<tr>
<th>Logical interface members</th>
<th>TAG</th>
<th>MAC</th>
<th>STP</th>
<th>Logical interface flags</th>
<th>Tagging</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-0/0/1.0</td>
<td></td>
<td>16383</td>
<td>20</td>
<td>OPERATIONS</td>
<td>untagged</td>
</tr>
<tr>
<td>SALES</td>
<td></td>
<td>16383</td>
<td>20</td>
<td></td>
<td>untagged</td>
</tr>
<tr>
<td>ge-0/0/4.0</td>
<td></td>
<td>16383</td>
<td></td>
<td></td>
<td>untagged</td>
</tr>
<tr>
<td>SALES</td>
<td></td>
<td>16383</td>
<td></td>
<td></td>
<td>untagged</td>
</tr>
<tr>
<td>ge-0/0/3.0</td>
<td></td>
<td>16383</td>
<td></td>
<td></td>
<td>tagged</td>
</tr>
<tr>
<td>OPERATIONS</td>
<td></td>
<td>16383</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SALES</td>
<td></td>
<td>16383</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Native VLAN ID Configuration

The `native-vlan-id` option can be added to an interface to help classify untagged packets on trunk ports.

Configuration

This example is enabled using the following configuration:

VLANs

```bash
set vlans TESTVLAN vlan-id 40
set vlans NATIVE vlan-id 50
```

Interfaces

```bash
set interfaces ge-0/0/4 native-vlan-id 50
set interfaces ge-0/0/4 unit 0 family ethernet-switching interface-mode trunk
set interfaces ge-0/0/4 unit 0 family ethernet-switching vlan members TESTVLAN
set interfaces ge-0/0/4 unit 0 family ethernet-switching vlan members NATIVE
```

Verification

```bash
user@SRX300# run show ethernet-switching interface
```

<table>
<thead>
<tr>
<th>Logical</th>
<th>Vlan</th>
<th>TAG</th>
<th>MAC</th>
<th>STP</th>
<th>Logical Tagging</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface members</td>
<td>limit</td>
<td>state</td>
<td>interface flags</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-0/0/4.0</td>
<td>16383</td>
<td>Forwarding</td>
<td>tagged</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Link Aggregation with LACP

The following example shows how to configure link aggregation using LACP.
Figure 6 – Link Aggregation with LACP

Configuration – SRX1

Physical interfaces

```plaintext
set interfaces ge-0/0/1 unit 0 family ethernet-switching vlan members OPERATIONS
set interfaces ge-0/0/2 ether-options 802.3ad ae0
set interfaces ge-0/0/3 ether-options 802.3ad ae0
set interfaces ge-0/0/4 unit 0 family ethernet-switching vlan members SALES
```

Aggregated interfaces

```plaintext
set chassis aggregated-devices ethernet device-count 1
set interfaces ae0 aggregated-ether-options minimum-links 1
set interfaces ae0 aggregated-ether-options lacp active
set interfaces ae0 unit 0 family ethernet-switching interface-mode trunk
set interfaces ae0 unit 0 family ethernet-switching vlan members OPERATIONS
set interfaces ae0 unit 0 family ethernet-switching vlan members SALES
```

IRB Interfaces

```plaintext
set interfaces irb unit 10 family inet address 10.1.1.1/24
set interfaces irb unit 20 family inet address 10.1.2.1/24
```

VLANs

```plaintext
set vlans OPERATIONS vlan-id 20
set vlans OPERATIONS 13-interface irb.20
```
set vlans SALES vlan-id 10
set vlans SALES 13-interface irb.10

Security Zones:
set security zones security-zone OPERATIONS interfaces irb.20
set security zones security-zone SALES interfaces irb.10

Security Policies:
set security policies from-zone SALES to-zone OPERATIONS policy Allow_HTTP
match source-address any
set security policies from-zone SALES to-zone OPERATIONS policy Allow_HTTP
match destination-address any
set security policies from-zone SALES to-zone OPERATIONS policy Allow_HTTP
match application junos-http
set security policies from-zone SALES to-zone OPERATIONS policy Allow_HTTP
then permit
set security policies from-zone OPERATIONS to-zone SALES policy Allow_HTTP
match source-address any
set security policies from-zone OPERATIONS to-zone SALES policy Allow_HTTP
match destination-address any
set security policies from-zone OPERATIONS to-zone SALES policy Allow_HTTP
match application junos-http
set security policies from-zone OPERATIONS to-zone SALES policy Allow_HTTP
then permit

Configuration – SRX2

Physical Interfaces
set interfaces ge-0/0/1 ether-options 802.3ad ae0
set interfaces ge-0/0/2 unit 0 family ethernet-switching vlan members
OPERATIONS
set interfaces ge-0/0/3 ether-options 802.3ad ae0
set interfaces ge-0/0/5 unit 0 family ethernet-switching vlan members SALES

Aggregated Interfaces
set chassis aggregated-devices ethernet device-count 1
set interfaces ae0 aggregated-ether-options minimum-links 1
set interfaces ae0 aggregated-ether-options lacp active
set interfaces ae0 unit 0 family ethernet-switching interface-mode trunk
set interfaces ae0 unit 0 family ethernet-switching vlan members OPERATIONS
set interfaces ae0 unit 0 family ethernet-switching vlan members SALES

IRB Interfaces
set interfaces irb unit 10 family inet address 10.1.1.1/24
set interfaces irb unit 20 family inet address 10.1.2.1/24

VLANs
set vlans OPERATIONS vlan-id 20
set vlans OPERATIONS 13-interface irb.20
set vlans SALES vlan-id 10
set vlans SALES 13-interface irb.10
Security Zones:
set security zones security-zone OPERATIONS interfaces irb.20
set security zones security-zone SALES interfaces irb.10

Security Policies:
set security policies from zone SALES to zone OPERATIONS policy Allow_HTTP
match source-address any
set security policies from zone SALES to zone OPERATIONS policy Allow_HTTP
match destination-address any
set security policies from zone SALES to zone OPERATIONS policy Allow_HTTP
match application junos-http
set security policies from zone SALES to zone OPERATIONS policy Allow_HTTP
then permit
set security policies from zone OPERATIONS to zone SALES policy Allow_HTTP
match source-address any
set security policies from zone OPERATIONS to zone SALES policy Allow_HTTP
match destination-address any
set security policies from zone OPERATIONS to zone SALES policy Allow_HTTP
match application junos-http
set security policies from zone OPERATIONS to zone SALES policy Allow_HTTP
then permit

Verification

user@SRX300-1# run show lacp interfaces
Aggregated interface: ae0
LACP state: Role Exp Def Dist Col Syn Aggr Timeout
Activity
ge-0/0/2	Actor No	No	Yes	Yes	Yes	Yes	Fast	Active
ge-0/0/2	Partner No	No	Yes	Yes	Yes	Yes	Fast	Active
ge-0/0/3	Actor No	No	Yes	Yes	Yes	Yes	Fast	Active
ge-0/0/3	Partner No	No	Yes	Yes	Yes	Yes	Fast	Active
LACP protocol: Receive State Transmit State Mux State								
ge-0/0/2	Current	Fast periodic	Collecting	distributing				
ge-0/0/3	Current	Fast periodic	Collecting	distributing				

user@SRX300-2# run show lacp interfaces
Aggregated interface: ae0
LACP state: Role Exp Def Dist Col Syn Aggr Timeout
Activity
ge-0/0/1	Actor No	No	Yes	Yes	Yes	Yes	Fast	Active
ge-0/0/1	Partner No	No	Yes	Yes	Yes	Yes	Fast	Active
ge-0/0/3	Actor No	No	Yes	Yes	Yes	Yes	Fast	Active
ge-0/0/3	Partner No	No	Yes	Yes	Yes	Yes	Fast	Active
LACP protocol: Receive State Transmit State Mux State								
ge-0/0/1	Current	Fast periodic	Collecting	distributing				
ge-0/0/3	Current	Fast periodic	Collecting	distributing				
Configuring DHCP Server

The following example shows how to configure DHCP Server (JDHCP) using an IRB interface, and assumes a user is connected to an SRX300 device on port ge-0/0/1.

A DHCP server group has to be configured and the interface should be assigned to a DHCP group. In addition, Security zones and interfaces should be configured.

Configuration

This example is enabled using the following configuration:

Physical

```
set interfaces ge-0/0/1 unit 0 family ethernet-switching vlan members vlan-trust
```

IRB

```
set interfaces irb unit 0 family inet address 192.168.1.1/24
```

VLAN

```
set vlans vlan-trust vlan-id 3
set vlans vlan-trust l3-interface irb.0
```

DHCP Server

```
set system services dhcp-local-server group DHCP-Group interface irb.0
```

DHCP address pool has to be configured with IP range and network information.

```
set access address-assignment pool DHCP_Pool family inet network 192.168.1.0/24
set access address-assignment pool DHCP_Pool family inet range DHCP_Range low 192.168.1.10
set access address-assignment pool DHCP_Pool family inet range DHCP_Range high 192.168.1.100
set access address-assignment pool DHCP_Pool family inet dhcp-attributes router 192.168.1.1
```
set access address-assignment pool DHCP_Pool family inet dhcp-attributes name-server 8.8.8.8

Verification

user@SRX300# run show dhcp server binding
IP address Session Id Hardware address Expires State Interface
192.168.1.10 1 00:00:5e:00:53:c1 86390 BOUND irb.0

user@SRX300# run show dhcp server statistics
Packets dropped:
 Total 0

Messages received:
 BOOTREQUEST 2
 DHCPDECLINE 0
 DHCPDISCOVER 1
 DHCPINFORM 0
 DHCPRELEASE 0
 DHCPREQUEST 1
 DHCPLEASEQUERY 0
 DHCPBULKLEASEQUERY 0

Messages sent:
 BOOTREPLY 2
 DHCPOFFER 1
 DHCPACK 1
 DHCPNAK 0
 DHCPFORCERENEW 0
 DHCPLEASEUNASSIGNED 0
 DHCPLEASEUNKNOWN 0
 DHCPLEASEACTIVE 0
 DHCPLEASEQUERYDONE 0
Appendix

Transparent Mode

Transparent mode is a bump-in-wire firewall deployment in which an SRX device acts as a Layer 2 switch providing the security functionality of a stateful firewall, as well as providing additional services, such as IPS, AppSecure, and UTM. Transparent mode can co-exist with routed mode and is called mixed mode. This means that SRX Series branch devices can have Layer 2 interfaces and Layer 3 interfaces simultaneously.

In transparent mode, the SRX series devices filter packets that traverse the device without modifying any of the source or destination information in the IP packet header. Under transparent mode, the device does not route Layer 3 traffic. Layer 2 interfaces are configured to be a part of security zones and security policies are applied to it. In this way, various security features can be applied to the traffic. For more details, see L2 Switching and Transparent Mode for Security.

To enable transparent mode, use the following command:

```
set protocols l2-learning global-mode transparent-bridge
```

When to Use Transparent Mode

Typically, scenarios in which Layer 3 implementation of a firewall is not ideal or needs to be avoided entirely, transparent mode can be used. Ideally, you would use transparent mode when there is a need to comply with security standards, such as PCI, HIPAA, etc., and integrating a Layer 3 firewall would involve making IP changes. To prevent this, an SRX device can be deployed in transparent mode, where it provides the security functionality of a firewall without any change to the existing IP infrastructure.

Secure-Wire

While in transparent mode, with the SRX Series devices deployed in Layer 2, you can also provide security by just using Layer 1 connectivity. Traffic arriving on a specific interface can be forwarded unchanged through another interface. These two interfaces can be mapped to form a secure-wire deployment. When the traffic passes through the device, it does not require any change in the routing tables or reconfiguration of neighboring devices. Interfaces are added to a security zone and security policies are applied. No routing or switching decision needs to be made on the packet.

Secure-wire is a special case of transparent mode and is best suited when SRX device deployment needs to be transparent to Layer 2 protocol PDUs without compromising security.

Secure-wire is configured under the [edit security forwarding-options] hierarchy. Similar to transparent mode, security features that use routing, such as NAT and IPsec VPN, are not supported in Secure-wire deployments, in which features such as AppSecure, IPS, and UTM are supported.

For more information, refer L2 Switching and Transparent Mode for Security.
DHCP Configuration on SRX3XX, SRX550M and SRX1500

Starting with Junos OS Release 15.1X49-D60, the DHCP process (dhcppd) is replaced with a new advanced DHCP process known as JDHCP (jdhcppd) as the factory default. The new version has been available on the existing SRX1xx and SRX2xx devices since Junos OS Release 11.4 and is also the default DHCP process in EX Series and MX Series platforms.

Please note that the CLI configuration has changed. The examples below show the new way of configuring DHCP on SRX Series devices. Starting with Junos OS Release 15.1X49-D60, legacy DHCP CLI commands will be hidden. (Please refer D60 release notes for details).

Define the DHCP server group and assign the interface to it:

```plaintext
services {
    dhcp-local-server {
        group <group name> {
            interface <interface>;
        }
    }
}
```

Define the DHCP pool with network and the IP list:

```plaintext
access {
    address-assignment {
        pool <pool name> {
            family inet {
                network <network>/<mask>;
                range <name of the range> { 
                    low <start IP>;
                    high <end IP>;
                }
                dhcp-attributes {
                    router {
                        <router IP>;
                    }
                    propagate-settings <interface>;
                }
            }
        }
    }
}
```