Network Configuration Example

Configuring Bidirectional Forwarding Detection for BGP
Network Configuration Example Configuring Bidirectional Forwarding Detection for BGP
NCE0048
Copyright © 2017, Juniper Networks, Inc.
All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License Agreement ("EULA") posted at http://www.juniper.net/support/eula.html. By downloading, installing or using such software, you agree to the terms and conditions of that EULA.
Table of Contents

Chapter 1 Configuring Bidirectional Forwarding Detection for BGP 5
 About This Network Configuration Example ... 5
 Understanding BFD for BGP ... 5
 Example: Configuring BFD on Internal BGP Peer Sessions 6
CHAPTER 1

Configuring Bidirectional Forwarding Detection for BGP

- About This Network Configuration Example on page 5
- Understanding BFD for BGP on page 5
- Example: Configuring BFD on Internal BGP Peer Sessions on page 6

About This Network Configuration Example

This network configuration example provides an overview and describes how to configure a router to use Bidirectional Forwarding Detection (BFD). BFD is used to detect failures in a network by periodically sending hello packets to neighboring routers and waiting for a packet receipt reply.

Understanding BFD for BGP

The Bidirectional Forwarding Detection (BFD) protocol is a simple hello mechanism that detects failures in a network. Hello packets are sent at a specified, regular interval. A neighbor failure is detected when the routing device stops receiving a reply after a specified interval. BFD works with a wide variety of network environments and topologies. The failure detection timers for BFD have shorter time limits than default failure detection mechanisms for BGP, so they provide faster detection.

The BFD failure detection timers are adaptive and can be adjusted to be faster or slower. The lower the BFD failure detection timer value, the faster the failure detection and vice versa. For example, the timers can adapt to a higher value if the adjacency fails (that is, the timer detects failures more slowly). Or a neighbor can negotiate a higher value for a timer than the configured value. The timers adapt to a higher value when a BFD session flap occurs more than three times in a span of 15 seconds. A back-off algorithm increases the receive (Rx) interval by two if the local BFD instance is the reason for the session flap. The transmission (Tx) interval is increased by two if the remote BFD instance is the reason for the session flap. You can use the `clear bfd adaptation` command to return BFD interval timers to their configured values. The `clear bfd adaptation` command is hitless, meaning that the command does not affect traffic flow on the routing device.

In Junos OS Release 8.3 and later, BFD is supported on internal BGP (IBGP) and multihop external BGP (EBGP) sessions as well as on single-hop EBGP sessions. In Junos OS
Release 9.1 through Junos OS Release 11.1, BFD supports IPv6 interfaces in static routes only. In Junos OS Release 11.2 and later, BFD supports IPv6 interfaces with BGP.

Related Documentation
- Example: Configuring BFD on Internal BGP Peer Sessions on page 6

Example: Configuring BFD on Internal BGP Peer Sessions

This example shows how to configure internal BGP (IBGP) peer sessions with the Bidirectional Forwarding Detection (BFD) protocol to detect failures in a network.

Requirements

No special configuration beyond device initialization is required before you configure this example.

Overview

The minimum configuration to enable BFD on IBGP sessions is to include the `bfd-liveness-detection minimum-interval` statement in the BGP configuration of all neighbors participating in the BFD session. The `minimum-interval` statement specifies the minimum transmit and receive intervals for failure detection. Specifically, this value represents the minimum interval after which the local routing device transmits hello packets as well as the minimum interval that the routing device expects to receive a reply from a neighbor with which it has established a BFD session. You can configure a value from 1 through 255,000 milliseconds.

Optionally, you can specify the minimum transmit and receive intervals separately using the `transmit-interval minimum-interval` and `minimum-receive-interval` statements. For information about these and other optional BFD configuration statements, see `bfd-liveness-detection`.
NOTE: BFD is an intensive protocol that consumes system resources. Specifying a minimum interval for BFD less than 100 ms for Routing Engine-based sessions and less than 10 ms for distributed BFD sessions can cause undesired BFD flapping.

Depending on your network environment, these additional recommendations might apply:

- For large-scale network deployments with a large number of BFD sessions, specify a minimum interval of 300 ms for Routing Engine-based sessions and 100 ms for distributed BFD sessions.
- For very large-scale network deployments with a large number of BFD sessions, contact Juniper Networks customer support for more information.
- For BFD sessions to remain up during a Routing Engine switchover event when nonstop active routing (NSR) is configured, specify a minimum interval of 2500 ms for Routing Engine-based sessions. For distributed BFD sessions with NSR configured, the minimum interval recommendations are unchanged and depend only on your network deployment.

BFD is supported on the default routing instance (the main router), routing instances, and logical systems. This example shows BFD on logical systems.

Figure 1 on page 7 shows a typical network with internal peer sessions.

Figure 1: Typical Network with IBGP Sessions

Configuration

CLI Quick Configuration

To quickly configure this example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, and then copy and paste the commands into the CLI at the [edit] hierarchy level.

Device A

```plaintext
set logical-systems A interfaces lt-1/2/0 unit 1 description to-B
set logical-systems A interfaces lt-1/2/0 unit 1 encapsulation ethernet
set logical-systems A interfaces lt-1/2/0 unit 1 peer-unit 2
```
Configuring Bidirectional Forwarding Detection for BGP

set logical-systems A interfaces lt-1/2/0 unit 1 family inet address 10.10.10.1/30
set logical-systems A interfaces lo0 unit 1 family inet address 192.168.6.5/32
set logical-systems A protocols bgp group internal-peers type internal
set logical-systems A protocols bgp group internal-peers traceoptions file bgp-bfd
set logical-systems A protocols bgp group internal-peers traceoptions flag bfd detail
set logical-systems A protocols bgp group internal-peers local-address 192.168.6.5
set logical-systems A protocols bgp group internal-peers export send-direct
set logical-systems A protocols bgp group internal-peers bfd-liveness-detection
 minimum-interval 1000
set logical-systems A protocols bgp group internal-peers neighbor 192.163.6.4
set logical-systems A protocols bgp group internal-peers neighbor 192.168.40.4
set logical-systems A protocols ospf area 0.0.0.0 interface lo0.1 passive
set logical-systems A protocols ospf area 0.0.0.0 interface lt-1/2/0.1
set logical-systems A policy-options policy-statement send-direct term 2 from protocol
direct
set logical-systems A policy-options policy-statement send-direct term 2 then accept
set logical-systems A routing-options router-id 192.168.6.5
set logical-systems A routing-options autonomous-system 17

Device B
set logical-systems B interfaces lt-1/2/0 unit 2 description to-A
set logical-systems B interfaces lt-1/2/0 unit 2 encapsulation ethernet
set logical-systems B interfaces lt-1/2/0 unit 2 peer-unit 1
set logical-systems B interfaces lt-1/2/0 unit 2 family inet address 10.10.10.2/30
set logical-systems B interfaces lt-1/2/0 unit 5 description to-C
set logical-systems B interfaces lt-1/2/0 unit 5 encapsulation ethernet
set logical-systems B interfaces lt-1/2/0 unit 5 peer-unit 6
set logical-systems B interfaces lt-1/2/0 unit 5 family inet address 10.10.10.5/30
set logical-systems B interfaces lo0 unit 2 family inet address 192.163.6.4/32
set logical-systems B protocols bgp group internal-peers type internal
set logical-systems B protocols bgp group internal-peers local-address 192.163.6.4
set logical-systems B protocols bgp group internal-peers export send-direct
set logical-systems B protocols bgp group internal-peers bfd-liveness-detection
 minimum-interval 1000
set logical-systems B protocols bgp group internal-peers neighbor 192.163.6.4
set logical-systems B protocols bgp group internal-peers neighbor 192.168.40.4
set logical-systems B protocols ospf area 0.0.0.0 interface lo0.2 passive
set logical-systems B protocols ospf area 0.0.0.0 interface lt-1/2/0.2
set logical-systems B protocols ospf area 0.0.0.0 interface lt-1/2/0.5
set logical-systems B policy-options policy-statement send-direct term 2 from protocol
direct
set logical-systems B policy-options policy-statement send-direct term 2 then accept
set logical-systems B routing-options router-id 192.163.6.4
set logical-systems B routing-options autonomous-system 17

Device C
set logical-systems C interfaces lt-1/2/0 unit 6 description to-B
set logical-systems C interfaces lt-1/2/0 unit 6 encapsulation ethernet
set logical-systems C interfaces lt-1/2/0 unit 6 peer-unit 5
set logical-systems C interfaces lt-1/2/0 unit 6 family inet address 10.10.10.6/30
set logical-systems C interfaces lo0 unit 3 family inet address 192.168.40.4/32
set logical-systems C protocols bgp group internal-peers type internal
set logical-systems C protocols bgp group internal-peers local-address 192.168.40.4
set logical-systems C protocols bgp group internal-peers export send-direct
set logical-systems C protocols bgp group internal-peers bfd-liveness-detection
 minimum-interval 1000
set logical-systems C protocols bgp group internal-peers neighbor 192.163.6.4
set logical-systems C protocols bgp group internal-peers neighbor 192.168.6.5
set logical-systems C protocols ospf area 0.0.0.0 interface lo0.3 passive
set logical-systems C protocols ospf area 0.0.0.0 interface lt-1/2/0.6
set logical-systems C policy-options policy-statement send-direct term 2 from protocol direct
set logical-systems C policy-options policy-statement send-direct term 2 then accept
set logical-systems C routing-options router-id 192.168.40.4
set logical-systems C routing-options autonomous-system 17

Configuring Device A

Step-by-Step Procedure

The following example requires that you navigate various levels in the configuration hierarchy. For information about navigating the CLI, see Using the CLI Editor in Configuration Mode in the CLI User Guide.

To configure Device A:

1. Set the CLI to Logical System A.
 user@host> set cli logical-system A

2. Configure the interfaces.
 [edit interfaces lt-1/2/0 unit 1]
 user@host:A# set description to-B
 user@host:A# set encapsulation ethernet
 user@host:A# set peer-unit 2
 user@host:A# set family inet address 10.10.10.1/30

 [edit interfaces lo0 unit 1]
 user@host:A# set family inet address 192.168.6.5/32

3. Configure BGP.
 The neighbor statements are included for both Device B and Device C, even though Device A is not directly connected to Device C.
 [edit protocols bgp group internal-peers]
 user@host:A# set type internal
 user@host:A# set local-address 192.168.6.5
 user@host:A# set export send-direct
 user@host:A# set neighbor 192.163.6.4
 user@host:A# set neighbor 192.168.40.4

4. Configure BFD.
 [edit protocols bgp group internal-peers]
 user@host:A# set bfd-liveness-detection minimum-interval 1000
 You must configure the same minimum interval on the connecting peer.

5. (Optional) Configure BFD tracing.
 [edit protocols bgp group internal-peers]
 user@host:A# set traceoptions file bgp-bfd
 user@host:A# set traceoptions flag bfd detail

6. Configure OSPF.
 [edit protocols ospf area 0.0.0.0]
user@host:A# set interface lo0.1 passive
user@host:A# set interface lt-1/2/0.1

7. Configure a policy that accepts direct routes.

Other useful options for this scenario might be to accept routes learned through OSPF or local routes.

```
[edit policy-options policy-statement send-direct term 2]
user@host:A# set from protocol direct
user@host:A# set then accept
```

8. Configure the router ID and the autonomous system (AS) number.

```
[edit routing-options]
user@host:A# set router-id 192.168.6.5
user@host:A# set autonomous-system 17
```

9. If you are done configuring the device, enter `commit` from configuration mode. Repeat these steps to configure Device B and Device C.

Results From configuration mode, confirm your configuration by entering the `show interfaces`, `show policy-options`, `show protocols`, and `show routing-options` commands. If the output does not display the intended configuration, repeat the instructions in this example to correct the configuration.

```
user@host:A# show interfaces
lt-1/2/0 {
  unit 1 {
    description to-B;
    encapsulation ethernet;
    peer-unit 2;
    family inet {
      address 10.10.10.1/30;
    }
  }
}
lo0 {
  unit 1 {
    family inet {
      address 192.168.6.5/32;
    }
  }
}
user@host:A# show policy-options
policy-statement send-direct {
  term 2 {
    from protocol direct;
    then accept;
  }
}
user@host:A# show protocols
bgp {
  group internal-peers {
    type internal;
    traceoptions {
```
Verification

Confirm that the configuration is working properly.

- Verifying That BFD Is Enabled on page 11
- Verifying That BFD Sessions Are Up on page 12
- Viewing Detailed BFD Events on page 12
- Viewing Detailed BFD Events After Deactivating and Reactivating a Loopback Interface on page 13

Verifying That BFD Is Enabled

Purpose

Verify that BFD is enabled between the IBGP peers.

Action

From operational mode, enter the `show bgp neighbor` command. You can use the `| match bfd` filter to narrow the output.

```
user@host:A# show bgp neighbor | match bfd
Options: <BfdEnabled>
BFD: enabled, up
Trace file: /var/log/A/bgp-bfd size 131072 files 10
Options: <BfdEnabled>
BFD: enabled, up
Trace file: /var/log/A/bgp-bfd size 131072 files 10
```

Meaning

The output shows that Logical System A has two neighbors with BFD enabled. When BFD is not enabled, the output displays `BFD: disabled, down`, and the `<BfdEnabled>` option is absent. If BFD is enabled and the session is down, the output displays `BFD: enabled`,...
The output also shows that BFD-related events are being written to a log file because trace operations are configured.

Verifying That BFD Sessions Are Up

Purpose
Verify that the BFD sessions are up, and view details about the BFD sessions.

Action
From operational mode, enter the `show bfd session extensive` command.

```
user@host:A> show bfd session extensive
```

```
Detect   Transmit
Address                  State     Interface      Time     Interval  Multiplier
192.163.6.4              Up                       3.000     1.000        3
Client BGP, TX interval 1.000, RX interval 1.000
Session up time 00:54:40
Local diagnostic None, remote diagnostic None
Remote state Up, version 1
Logical system 12, routing table index 25
Min async interval 1.000, min slow interval 1.000
Adaptive async TX interval 1.000, RX interval 1.000
Local min TX interval 1.000, minimum RX interval 1.000, multiplier 3
Remote min TX interval 1.000, min RX interval 1.000, multiplier 3
Local discriminator 10, remote discriminator 9
Echo mode disabled/inactive
Multi-hop route table 25, local-address 192.168.6.5

192.168.40.4             Up                       3.000     1.000        3
Client BGP, TX interval 1.000, RX interval 1.000
Session up time 00:48:03
Local diagnostic None, remote diagnostic None
Remote state Up, version 1
Logical system 12, routing table index 25
Min async interval 1.000, min slow interval 1.000
Adaptive async TX interval 1.000, RX interval 1.000
Local min TX interval 1.000, minimum RX interval 1.000, multiplier 3
Remote min TX interval 1.000, min RX interval 1.000, multiplier 3
Local discriminator 14, remote discriminator 13
Echo mode disabled/inactive
Multi-hop route table 25, local-address 192.168.6.5

2 sessions, 2 clients
Cumulative transmit rate 2.0 pps, cumulative receive rate 2.0 pps
```

Meaning
The `TX interval 1.000, RX interval 1.000` output represents the setting configured with the `minimum-interval` statement. All of the other output represents the default settings for BFD. To modify the default settings, include the optional statements under the `bfd-liveness-detection` statement.

Viewing Detailed BFD Events

Purpose
View the contents of the BFD trace file to assist in troubleshooting, if needed.
Action
From operational mode, enter the `file show /var/log/A/bgp-bfd` command.

```
user@host:A> file show /var/log/A/bgp-bfd
```

Aug 15 17:07:25 trace_on: Tracing to "/var/log/A/bgp-bfd" started
Aug 15 17:07:26.492190 bgp_peer_init: BGP peer 192.163.6.4 (Internal AS 17) local address 192.168.6.5 not found. Leaving peer idled
Aug 15 17:07:26.493176 bgp_peer_init: BGP peer 192.168.40.4 (Internal AS 17) local address 192.168.6.5 not found. Leaving peer idled
Aug 15 17:07:32.597979 task_connect: task BGP_17.192.163.6.4+179 addr 192.168.40.4+179: No route to host
Aug 15 17:07:32.599623 bgp_connect_start: connect 192.168.40.4 (Internal AS 17): No route to host
Aug 15 17:08:04.599220 task_connect: task BGP_17.192.163.6.4+179 addr 192.168.40.4+179: No route to host
Aug 15 17:08:04.601135 bgp_connect_start: connect 192.168.40.4 (Internal AS 17): No route to host
Aug 15 17:08:08.869717 task_connect: task BGP_17.192.163.6.4+179 addr 192.168.40.4+179: No route to host
Aug 15 17:08:08.869934 bgp_connect_start: connect 192.168.40.4 (Internal AS 17): No route to host
Aug 15 17:08:36.603544 advertising receiving-speaker only capability to neighbor 192.163.6.4 (Internal AS 17)
Aug 15 17:08:36.606726 bgp_read_message: 192.163.6.4 (Internal AS 17): 0 bytes buffered
Aug 15 17:08:36.609119 Initiated BFD session to peer 192.163.6.4 (Internal AS 17): address=192.163.6.4 ifindex=0 ifname=(none) txivl=1000 rxivl=1000 mult=3 ver=255
Aug 15 17:08:36.734033 advertising receiving-speaker only capability to neighbor 192.168.40.4 (Internal AS 17)
Aug 15 17:08:36.738436 Initiated BFD session to peer 192.168.40.4 (Internal AS 17): address=192.168.40.4 ifindex=0 ifname=(none) txivl=1000 rxivl=1000 mult=3 ver=255
Aug 15 17:08:40.537552 BFD session to peer 192.163.6.4 (Internal AS 17) up
Aug 15 17:08:40.694410 BFD session to peer 192.168.40.4 (Internal AS 17) up

Meaning
Before the routes are established, the **No route to host** message appears in the output. After the routes are established, the last two lines show that both BFD sessions come up.

Purpose
Check to see what happens after bringing down a router or switch and then bringing it back up. To simulate bringing down a router or switch, deactivate the loopback interface on Logical System B.

Action
1. From configuration mode, enter the `deactivate logical-systems B interfaces lo0 unit 2 family inet` command.

```
user@host:A# deactivate logical-systems B interfaces lo0 unit 2 family inet
```

2. From operational mode, enter the `file show /var/log/A/bgp-bfd` command.

```
user@host:A> file show /var/log/A/bgp-bfd
```
Aug 15 17:20:55.995648 bgp_read_v4_message:9747: NOTIFICATION received from 192.163.6.4 (Internal AS 17): code 6 (Cease) subcode 6 (Other Configuration Change)
Aug 15 17:20:56.004508 Terminated BFD session to peer 192.163.6.4 (Internal AS 17)
Aug 15 17:21:28.007755 task_connect: task_BGP_17.192.163.6.4+179 addr 192.163.6.4+179: No route to host

3. From configuration mode, enter the `activate logical-systems B interfaces lo0 unit 2 family inet` command.

   ```
   user@host:A# activate logical-systems B interfaces lo0 unit 2 family inet
   user@host:A# commit
   ```

4. From operational mode, enter the `file show /var/log/A/bgp-bfd` command.

   ```
   user@host:A> file show /var/log/A/bgp-bfd
   ```

Aug 15 17:25:53.623743 advertising receiving-speaker only capabilty to neighbor 192.163.6.4 (Internal AS 17)
Aug 15 17:25:53.631314 Initiated BFD session to peer 192.163.6.4 (Internal AS 17): address=192.163.6.4 ifindex=0 ifname=(none) txivl=1000 rxivl=1000 mult=3 ver=255
Aug 15 17:25:57.570932 BFD session to peer 192.163.6.4 (Internal AS 17) up

Related Documentation
- Understanding BFD for BGP on page 5