
SRC PE Software

NETCONF API Guide

Release

4.13.x

Modified: 2019-08-21

Copyright © 2019, Juniper Networks, Inc.

Juniper Networks, In.
1133 InnovationWay
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Copyright © 2019 Juniper Networks, Inc. All rights reserved.

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc. and/or its affiliates in
the United States and other countries. All other trademarks may be property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change, modify,
transfer, or otherwise revise this publication without notice.

SRC PE Software NETCONF API Guide
Release 4.13.x
Copyright © 2019 Juniper Networks, Inc. All rights reserved.

Revision History
August 2019—Revision 1

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related limitations through the
year 2038. However, the NTP application is known to have some difficulty in the year 2036.

SOFTWARE LICENSE

The terms and conditions for using this software are described in the software license contained in the acknowledgment to your purchase
order or, to the extent applicable, to any reseller agreement or end-user purchase agreement executed between you and Juniper Networks.
By using this software, you indicate that you understand and agree to be bound by those terms and conditions.

Generally speaking, the software license restricts the manner in which you are permitted to use the software andmay contain prohibitions
against certain uses. The software license may state conditions under which the license is automatically terminated. You should consult
the license for further details.

For complete product documentation, please see the Juniper NetworksWeb site at www.juniper.net/techpubs.

ENDUSER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use with) Juniper Networks
software. Use of such software is subject to the terms and conditions of the End User License Agreement (“EULA”) posted at
https://support.juniper.net/support/eula/. By downloading, installing or using such software, you agree to the terms and conditions of
that EULA.

Copyright © 2019, Juniper Networks, Inc.ii

https://support.juniper.net/support/eula/

Abbreviated Table of Contents

About the Documentation . xi

Part 1 Using the SRC XML and NETCONF APIs

Chapter 1 Introduction to the SRC XML and NETCONF APIs . 3

Chapter 2 Using NETCONF and SRC XML Tag Elements . 9

Chapter 3 Controlling the NETCONF Session . 21

Chapter 4 Requesting Information . 47

Chapter 5 Changing Configuration Information . 65

Chapter 6 Committing Configurations . 85

Chapter 7 Summary of NETCONF Tag Elements . 87

Chapter 8 Summary of Attributes in SRC XML Tags . 101

iiiCopyright © 2019, Juniper Networks, Inc.

Copyright © 2019, Juniper Networks, Inc.iv

SRC PE 4.13.x NETCONF API Guide

Table of Contents

About the Documentation . xi

SRC Documentation and Release Notes . xi

Audience . xi

Documentation Conventions . xi

Documentation Feedback . xiii

Requesting Technical Support . xiv

Self-Help Online Tools and Resources . xiv

Creating a Service Request with JTAC . xiv

Part 1 Using the SRC XML and NETCONF APIs

Chapter 1 Introduction to the SRC XML and NETCONF APIs . 3

About XML . 4

XML and NETCONF Tag Elements . 4

Document Type Definition . 5

Advantages of Using the NETCONF and SRC XML APIs . 5

NETCONF Session Overview . 6

Chapter 2 Using NETCONF and SRC XML Tag Elements . 9

Complying with XML and NETCONF Conventions . 9

Request and Response Tag Elements . 10

Child Tag Elements of a Request Tag Element . 11

Child Tag Elements of a Response Tag Element . 11

Spaces, Newline Characters, and Other White Space 11

XML Comments . 12

Predefined Entity References . 12

Mapping Commands to SRC XML Tag Elements . 13

Mapping for Command Options with Variable Values 14

Mapping for Fixed-Form Command Options . 14

Mapping Configuration Statements to SRC XML Tag Elements 15

Mapping for Hierarchy Levels and Container Statements 15

Mapping for Objects That Have an Identifier . 15

Mapping for Single-Value and Fixed-Form Leaf Statements 17

Mapping for Leaf Statements with Multiple Values . 18

Using the Same Configuration Tag Elements in Requests and Responses 19

vCopyright © 2019, Juniper Networks, Inc.

Chapter 3 Controlling the NETCONF Session . 21

Client Application’s Role in a NETCONF Session . 21

Establishing a NETCONF Session . 22

Generating Well-Formed XML Documents . 22

Prerequisites for Establishing a Connection . 23

Client Application Can Access SSH Software . 23

Client Application Can Log In on C Series Controllers 23

Login Account Has Public/Private Key Pair or Password 24

Client Application Can Access the Keys or Password 26

NETCONF Service over SSH Is Enabled . 26

Connecting to the NETCONF Server . 27

Starting the NETCONF Session . 28

Exchanging <hello> Tag Elements . 28

Verifying Compatibility . 29

Exchanging Information with the NETCONF Server . 31

Sending a Request to the NETCONF Server . 31

Request Classes . 32

Including Attributes in the Opening <rpc> Tag . 34

Parsing the NETCONF Server Response . 34

NETCONF Server Response Classes . 35

Using a Standard API to Parse Response Tag Elements 36

Handling an Error or Warning . 37

Locking and Unlocking the Candidate Configuration . 38

Locking the Candidate Configuration . 38

Unlocking the Candidate Configuration . 39

Terminating Another NETCONF Session . 40

Ending a NETCONF Session and Closing the Connection . 41

Displaying CLI Output as XML Tag Elements . 41

Example of a NETCONF Session . 42

Exchanging Initialization Tag Elements . 42

Sending an Operational Request . 43

Locking the Configuration . 43

Changing the Configuration . 44

Committing the Configuration . 45

Unlocking the Configuration . 45

Closing the NETCONF Session . 46

Chapter 4 Requesting Information . 47

Request Procedure Overview . 47

Requesting Operational Information . 48

Parsing the <output> Tag Element . 49

Requesting Configuration Information . 49

Requesting Information from the Candidate Configuration 51

Specifying the Scope of Configuration Information to Return 51

Requesting the Complete Configuration . 52

Requesting a Hierarchy Level or Container Object Without an

Identifier . 53

Requesting All Configuration Objects of a Specified Type 54

Requesting Identifiers for Configuration Objects of a Specified Type . . . 56

Copyright © 2019, Juniper Networks, Inc.vi

SRC PE 4.13.x NETCONF API Guide

Requesting One Configuration Object . 58

Requesting Specific Child Tags for a Configuration Object 60

Requesting Multiple Configuration Elements Simultaneously 62

Chapter 5 Changing Configuration Information . 65

Configuration Changes Overview . 65

Changing the Candidate Configuration . 66

Defining the New Configuration Data . 67

Providing Configuration Data in a File . 67

Providing Configuration Data as a Data Stream . 68

Setting the Default Mode for Incorporating New Configuration Data 70

Replacing the Entire Candidate Configuration . 71

Replacing the Candidate Configuration with Newly Defined Data 72

Replacing the Configuration with the Contents of a File 72

Setting Replace Mode as the Default Mode . 72

Replacing the Candidate Configuration with the Running Configuration 73

Changing Individual Configuration Elements . 73

Merging Configuration Elements . 74

Replacing Configuration Elements . 76

Creating New Configuration Elements . 77

Deleting Configuration Elements . 78

Deleting a Hierarchy Level or Container Object . 79

Deleting a Configuration Object That Has an Identifier 80

Deleting a Single-Value or Fixed-FormOption from a Configuration

Object . 81

Deleting Values from a Multivalue Option of a Configuration Object . . . 82

Chapter 6 Committing Configurations . 85

Verifying a Configuration Before Committing It . 85

Committing a Configuration . 85

Chapter 7 Summary of NETCONF Tag Elements . 87

]]>]]> . 87

<close-session/> . 88

<commit> . 88

<copy-config> . 88

<data> . 89

<delete-config> . 90

<discard-changes/> . 90

<edit-config> . 91

<error-info> . 92

<get-config> . 93

<hello> . 94

<kill-session> . 95

<lock> . 95

<ok/> . 96

<rpc> . 97

<rpc-error> . 97

<rpc-reply> . 98

<target> . 99

viiCopyright © 2019, Juniper Networks, Inc.

Table of Contents

<unlock> . 99

Chapter 8 Summary of Attributes in SRC XML Tags . 101

operation . 101

sdx:changed-localtime . 102

sdx:changed-seconds . 102

xmlns . 103

Copyright © 2019, Juniper Networks, Inc.viii

SRC PE 4.13.x NETCONF API Guide

List of Tables

About the Documentation . xi

Table 1: Notice Icons . xii

Table 2: Text Conventions . xii

Part 1 Using the SRC XML and NETCONF APIs

Chapter 2 Using NETCONF and SRC XML Tag Elements . 9

Table 3: Predefined Entity Reference Substitutions for Tag Content Values 13

Table 4: Predefined Entity Reference Substitutions for Attribute Values 13

ixCopyright © 2019, Juniper Networks, Inc.

Copyright © 2019, Juniper Networks, Inc.x

SRC PE 4.13.x NETCONF API Guide

About the Documentation

• SRC Documentation and Release Notes on page xi

• Audience on page xi

• Documentation Conventions on page xi

• Documentation Feedback on page xiii

• Requesting Technical Support on page xiv

SRCDocumentation and Release Notes

For a list of related SRC documentation, see https://www.juniper.net/documentation/.

If the information in the latest SRC Release Notes differs from the information in the SRC

guides, follow the SRC Release Notes.

Audience

This documentation is intended for experienced systemand network specialistsworking

with routers running Junos OS and JunosE software in an Internet access environment.

We assume that readers know how to use the routers, directories, and RADIUS servers

that they will deploy in their SRC networks. If you are using the SRC software in a cable

network environment, we assume that you are familiar with the PacketCableMultimedia

Specification (PCMM) as defined by Cable Television Laboratories, Inc. (CableLabs) and

with the Data-over-Cable Service Interface Specifications (DOCSIS) 1.1 protocol. We

also assume that you are familiar with operating amultiple service operator (MSO)

multimedia-managed IP network.

Documentation Conventions

Table 1 on page xii defines the notice icons used in this guide. Table 2 on page xii defines

text conventions used throughout this documentation.

xiCopyright © 2019, Juniper Networks, Inc.

https://www.juniper.net/documentation/

Table 1: Notice Icons

DescriptionMeaningIcon

Indicates important features or instructions.Informational note

Indicates a situation that might result in loss of data or hardware damage.Caution

Alerts you to the risk of personal injury or death.Warning

Alerts you to the risk of personal injury from a laser.Laser warning

Indicates helpful information.Tip

Alerts you to a recommended use or implementation.Best practice

Table 2: Text Conventions

ExamplesDescriptionConvention

• Specify the keyword exp-msg.

• Run the install.sh script.

• Use the pkgadd tool.

• To cancel the configuration, click Cancel.

• Represents keywords, scripts, and tools in
text.

• Represents a GUI element that the user
selects, clicks, checks, or clears.

Bold text like this

user@host# set cache-entry-age
cache-entry-age

Represents text that the user must type.Bold text like this

nic-locators {
 login {
 resolution {
 resolver-name /realms/
 login/A1;
 key-type LoginName;
 value-type SaeId;
 }

Represents informationasdisplayedon your
terminal’s screen, such as CLI commands in
output displays.

Fixed-width text like this

• system ldap server{
stand-alone;

• Use the request saemodify device failover
command with the force option

• user@host# . . .

• https://www.juniper.net/documentation/software/
management/src/api-index.html

• Represents configuration statements.

• IndicatesSRCCLIcommandsandoptions
in text.

• Represents examples in procedures.

• Represents URLs.

Regular sans serif typeface

Copyright © 2019, Juniper Networks, Inc.xii

SRC PE 4.13.x NETCONF API Guide

Table 2: Text Conventions (continued)

user@host# set local-address
local-address

Represents variables in SRCCLI commands.Italic sans serif typeface

Another runtime variable is <gfwif>.In text descriptions, indicate optional
keywords or variables.

Angle brackets

Press Enter.Indicates the nameof a key on the keyboard.Key name

Press Ctrl + b.Indicates that youmust press two or more
keys simultaneously.

Keynames linkedwithaplus sign
(+)

• There are two levels of access: user and
privileged.

• SRC PE Getting Started Guide

• o=Users, o=UMC

• The /etc/default.properties file.

• Emphasizes words.

• Identifies book names.

• Identifies distinguished names.

• Identifies files, directories, and paths in
text but not in command examples.

Italic typeface

Plugin.radiusAcct-1.class=\
net.juniper.smgt.sae.plugin\
RadiusTrackingPluginEvent

At the end of a line, indicates that the text
wraps to the next line.

Backslash

diagnostic | lineRepresent a choice to select one keyword or
variable to the left or right of this symbol.
(The keyword or variable may be either
optional or required.)

Words separated by the | symbol

Documentation Feedback

We encourage you to provide feedback, comments, and suggestions so that we can

improve the documentation. You can provide feedback by using either of the following

methods:

• Online feedback system—Click TechLibrary Feedback, on the lower right of any page

on the Juniper Networks TechLibrary site, and do one of the following:

• Click the thumbs-up icon if the information on the page was helpful to you.

• Click the thumbs-down icon if the information on the page was not helpful to you

or if you have suggestions for improvement, and use the pop-up form to provide

feedback.

• E-mail—Sendyourcommentsto techpubs-comments@juniper.net. Includethedocument

or topic name, URL or page number, and software version (if applicable).

xiiiCopyright © 2019, Juniper Networks, Inc.

About the Documentation

https://www.juniper.net/documentation/index.html
mailto:techpubs-comments@juniper.net?subject=

Requesting Technical Support

Technical product support is available through the JuniperNetworksTechnicalAssistance

Center (JTAC). If you are a customer with an active J-Care or Partner Support Service

support contract, or are covered under warranty, and need post-sales technical support,

you can access our tools and resources online or open a case with JTAC.

• JTAC policies—For a complete understanding of our JTAC procedures and policies,

review the JTAC User Guide located at

https://www.juniper.net/us/en/local/pdf/resource-guides/7100059-en.pdf.

• Product warranties—For product warranty information, visit

http://www.juniper.net/support/warranty/.

• JTAC hours of operation—The JTAC centers have resources available 24 hours a day,

7 days a week, 365 days a year.

Self-Help Online Tools and Resources

For quick and easy problem resolution, Juniper Networks has designed an online

self-service portal called the Customer Support Center (CSC) that provides youwith the

following features:

• Find CSC offerings: https://www.juniper.net/customers/support/

• Search for known bugs: https://prsearch.juniper.net/

• Find product documentation: https://www.juniper.net/documentation/

• Find solutions and answer questions using our Knowledge Base: https://kb.juniper.net/

• Download the latest versions of software and review release notes:

https://www.juniper.net/customers/csc/software/

• Search technical bulletins for relevant hardware and software notifications:

https://kb.juniper.net/InfoCenter/

• Join and participate in the Juniper Networks Community Forum:

https://www.juniper.net/company/communities/

• Create a service request online: https://myjuniper.juniper.net

Toverify serviceentitlementbyproduct serial number, useourSerialNumberEntitlement

(SNE) Tool: https://entitlementsearch.juniper.net/entitlementsearch/

Creating a Service Request with JTAC

You can create a service request with JTAC on theWeb or by telephone.

• Visit https://myjuniper.juniper.net.

• Call 1-888-314-JTAC (1-888-314-5822 toll-free in the USA, Canada, and Mexico).

For international or direct-dial options in countries without toll-free numbers, see

https://support.juniper.net/support/requesting-support/.

Copyright © 2019, Juniper Networks, Inc.xiv

SRC PE 4.13.x NETCONF API Guide

https://www.juniper.net/us/en/local/pdf/resource-guides/7100059-en.pdf
https://www.juniper.net/support/warranty/
https://www.juniper.net/customers/support/
https://prsearch.juniper.net/
https://www.juniper.net/documentation/
https://kb.juniper.net/
https://www.juniper.net/customers/csc/software/
https://kb.juniper.net/InfoCenter/
https://www.juniper.net/company/communities/
https://myjuniper.juniper.net
https://entitlementsearch.juniper.net/entitlementsearch/
https://myjuniper.juniper.net
https://support.juniper.net/support/requesting-support/

PART 1

Using the SRC XML and NETCONF APIs

• Introduction to the SRC XML and NETCONF APIs on page 3

• Using NETCONF and SRC XML Tag Elements on page 9

• Controlling the NETCONF Session on page 21

• Requesting Information on page 47

• Changing Configuration Information on page 65

• Committing Configurations on page 85

• Summary of NETCONF Tag Elements on page 87

• Summary of Attributes in SRC XML Tags on page 101

1Copyright © 2019, Juniper Networks, Inc.

Copyright © 2019, Juniper Networks, Inc.2

SRC PE 4.13.x NETCONF API Guide

CHAPTER 1

Introduction to the SRC XML and
NETCONF APIs

TheNETCONFAPI (applicationprogramming interface) isanExtensibleMarkupLanguage

(XML) application that client applications use to request and change configuration

information on a C Series Controller that runs the SRC software. The operations defined

in the API are equivalent to configuration mode commands in the SRC command-line

interface (CLI). Applications use the API to display, edit, and commit configuration

statements (amongother operations), just asadministrators useCLI configurationmode

commands such as show, set, and commit to perform those operations.

The SRC XML API is an XML representation of SRC CLI configuration statements and

operational mode commands. SRC XML configuration tag elements are the content to

which the operations in the NETCONF API apply. SRC XML operational tag elements are

equivalent in function to operational mode commands in the CLI, which administrators

use to retrieve and change status information for a C Series Controller.

The NETCONF API is described in RFC 4741, NETCONF Configuration Protocol, available

at http://www.ietf.org/rfc/rfc4741.txt.

Client applications request or change information on the C Series Controller by encoding

the request with tag elements from the NETCONF and SRC XML APIs and sending it to

the NETCONF server on the C Series Controller. (The NETCONF server is integrated into

the SRC software and does not appear as a separate entry in process listings.) The

NETCONF server directs the request to the appropriate software modules within the C

Series Controller, encodes the response in NETCONF and SRC XML tag elements, and

returns the result to the client application. For example, to request information about

the status of a C Series Controller’s interfaces, a client application sends the

<get-interfaces> tag element from the SRC XML API. The NETCONF server gathers the

information from the interface process and returns it in the <output> tag element.

This manual explains how to use the NETCONF and SRC XML APIs to configure Juniper

Networks C Series Controllers or request information about configuration or operation.

Themain focus is onwriting client applications to interact with the NETCONF server, but

you can also use theNETCONFAPI to build customend-user interfaces for configuration

and information retrieval and display, such as aWeb browser–based interface.

3Copyright © 2019, Juniper Networks, Inc.

http://www.ietf.org/rfc/rfc4741.txt

This chapter includes the following topics:

• About XML on page 4

• Advantages of Using the NETCONF and SRC XML APIs on page 5

• NETCONF Session Overview on page 6

About XML

XML is a language for defining a set of markers, called tags, that are applied to a data

setordocument todescribe the functionof individual elementsandcodify thehierarchical

relationships between them. Tags look much like Hypertext Markup Language (HTML)

tags, but XML is actually a metalanguage used to define tags that best suit the kind of

data being marked.

The following sections discuss XML and NETCONF:

• XML and NETCONF Tag Elements on page 4

• Document Type Definition on page 5

For more details about XML, see A Technical Introduction to XML at

http://www.xml.com/pub/a/98/10/guide0.html and the additional referencematerial at

thewww.xml.com site. The official XML specification from theWorldWideWeb

Consortium (W3C), Extensible Markup Language (XML) 1.0, is available at

http://www.w3.org/TR/REC-xml.

XML and NETCONF Tag Elements

Items in an XML-compliant document or data set are always enclosed in paired opening

and closing tags. XML is stricter in this respect than HTML, which sometimes uses only

opening tags. The following examples show paired opening and closing tags enclosing

a value:

<interface>
<name>eth0</name>

</interface>

The term tag element refers to the triple of opening tag, contents, and closing tag. The

content can be an alphanumeric character string as in the preceding examples, or can

itself be a container tag element, which contains other tag elements.

If a tagelement isempty—hasnocontents—it canbe representedeither aspairedopening

and closing tagswith nothing between them, or as a single tagwith a forward slash after

the tag name. For example, the notation <eventing/> is equivalent to

<eventing></eventing>.

As the preceding examples show, angle brackets enclose the name of a NETCONF or

SRCXML tag element in its opening and closing tags. This is an XML convention, and the

brackets are a required part of the complete tag element name. They are not to be

confused with the angle brackets used in Juniper Networks documentation to indicate

optional parts of CLI command strings.

Copyright © 2019, Juniper Networks, Inc.4

SRC PE 4.13.x NETCONF API Guide

http://www.xml.com/pub/a/98/10/guide0.html
http://www.w3.org/TR/REC-xml

NETCONF and SRC XML tag elements obey the XML convention that the tag element

name indicates the kind of information enclosed by the tag element. For example, the

name of the SRC XML <interface> tag element indicates that it contains information

about an interface on the C Series Controller, whereas the name of the <name> tag

element indicates that its contents specify the identifier.

When discussing tag elements in text, the convention is to use just the name of the

opening tag to represent the complete tag element (opening tag, contents, and closing

tag). For example, it usually refers to “the <interface> tag element” instead of “the

<interface><name>name </name></interface> tag element.”

Document Type Definition

An XML-tagged document or data set is structured, because a set of rules specifies the

ordering and interrelationships of the items in it. The rules define the contexts in which

each tagged item can—and in some cases must—occur. A file called a document type

definition, or DTD, lists every tag element that can appear in the document or data set,

defines the parent-child relationships between the tags, and specifies other tag

characteristics. The same DTD can apply to many XML documents or data sets.

Advantages of Using the NETCONF and SRC XML APIs

The NETCONF and SRC XML APIs are programmatic interfaces. They fully document all

options for every supported operational request and all elements in every configuration

statement. The tag names clearly indicate the function of an element in an operational

request or configuration statement.

The combination of meaningful tag names and the structural rules in a DTDmakes it

easy to understand the content and structure of an XML-tagged data set or document.

NETCONF and SRC XML tag elements make it straightforward for client applications

that request information from a C Series Controller to parse the output and find specific

information.

The following example illustrates how theAPIsmake it easier toparseoutput andextract

theneeded information. It compares formattedASCII andXML-taggedversionsofoutput.

The formatted ASCII follows:

Physical interface: fxp0, Enabled, Physical link is Up
 Interface index: 4, SNMP ifIndex: 3

This is the XML-tagged version:

<interface>
 <name>fxp0</name>
 <admin-status>enabled</admin-status>
 <operational-status>up</operational-status>
 <index>4</index>
 <snmp-index>3</snmp-index>
</interface>

When a client application needs to extract a specific value from formatted ASCII output,

it must rely on the value’s location, expressed either absolutely or with respect to labels

5Copyright © 2019, Juniper Networks, Inc.

Chapter 1: Introduction to the SRC XML and NETCONF APIs

or values in adjacent fields. Suppose that the client application wants to extract the

interface index. It can use a regular-expressionmatching utility to locate specific strings,

but one difficulty is that the number of digits in the interface index is not necessarily

predictable. The client application cannot simply read a certain number of characters

after the Interface index: label, but must instead extract everything between the label

and the subsequent label, which is:

, SNMP ifIndex

A problem arises if the format or ordering of output changes in a later version of the

software; for example, if a Logical index field is added following the interface index

number:

Physical interface: fxp0, Enabled, Physical link is Up
 Interface index: 4, Logical index: 12, SNMP ifIndex: 3

An application that extracts the interface index number delimited by the Interface index:

andSNMPifIndex labelsnowobtainsan incorrect result. Theapplicationmustbeupdated

manually to search for the following label instead:

, Logical index

In contrast, the structured nature of XML-tagged output enables a client application to

retrieve the interface index by extracting everything within the opening <index> tag and

closing </index> tag. The application does not have to rely on an element’s position in

the output string, so the NETCONF server can emit the child tag elements in any order

within the<interface> tag element. Adding a new<logical-index> tag element in a future

release does not affect an application’s ability to locate the <index> tag element and

extract its contents.

Tagged output is also easier to transform into different display formats. For instance,

youmight want to display different amounts of detail about a given C Series Controller

componentatdifferent times.WhenaCSeriesController returns formattedASCII output,

you have to design andwrite special routines anddata structures in your display program

toextractandstore the informationneeded for agivendetail level. In contrast, the inherent

structure of XML output is an ideal basis for a display program’s own structures. It is also

easy to use the same extraction routine for several levels of detail, simply ignoring the

tag elements you do not need when creating a less detailed display.

NETCONF Session Overview

Communication between theNETCONF server and a client application is session-based.

The two parties explicitly establish a connection before exchanging data and close the

connection when they are finished. The following list outlines the basic structure of a

NETCONF session. For more specific information, see

“Controlling the NETCONF Session” on page 21.

Copyright © 2019, Juniper Networks, Inc.6

SRC PE 4.13.x NETCONF API Guide

1. The client application establishes a connection to the NETCONF server and opens

the NETCONF session.

2. The NETCONF server and client application exchange initialization information, used

to determine if they are using compatible versions of the SRC software and the

NETCONF API.

3. The client application sends one ormore requests to theNETCONF server and parses

its responses.

4. The client application closes the NETCONF session and the connection to the

NETCONF server.

7Copyright © 2019, Juniper Networks, Inc.

Chapter 1: Introduction to the SRC XML and NETCONF APIs

Copyright © 2019, Juniper Networks, Inc.8

SRC PE 4.13.x NETCONF API Guide

CHAPTER 2

Using NETCONF and SRC XML Tag
Elements

This chapter describes the syntactic and notational conventions used by the NETCONF

server and client applications, including the mappings between statements and

commands in the SRC command-line interface (CLI) and the tag elements in the SRC

Extensible Markup Language (XML) application programming interface (API).

For more information about the syntax of CLI commands and configuration statements,

see the SRC PE CLI User Guide. For information about specific configuration statements

and operational mode commands, see the SRC documentation set.

This chapter includes the following topics:

• Complying with XML and NETCONF Conventions on page 9

• Mapping Commands to SRC XML Tag Elements on page 13

• Mapping Configuration Statements to SRC XML Tag Elements on page 15

• Using the Same Configuration Tag Elements in Requests and Responses on page 19

Complying with XML and NETCONF Conventions

A client application must comply with XML and NETCONF conventions. Each request

from the client application must be awell-formed XML document; that is, it must obey

thestructural rulesdefined in theNETCONFandSRCXMLDTDs for thekindof information

encoded in the request. The client application must emit tag elements in the required

order and only in the legal contexts. Compliant applications are easier tomaintain in the

event of changes to the SRC software or NETCONF API.

Similarly, each response from the NETCONF server constitutes a well-formed XML

document. (TheNETCONFserver obeysXMLandNETCONFconventions.) The following

sections describe NETCONF conventions:

• Request and Response Tag Elements on page 10

• Child Tag Elements of a Request Tag Element on page 11

• Child Tag Elements of a Response Tag Element on page 11

• Spaces, Newline Characters, and Other White Space on page 11

9Copyright © 2019, Juniper Networks, Inc.

• XML Comments on page 12

• Predefined Entity References on page 12

Request and Response Tag Elements

A request tag element is one generated by a client application to request information

aboutaCSeriesController’s current statusor configuration, or tochange theconfiguration.

A request tag element corresponds to a CLI operational or configuration command. It

canoccur onlywithin an<rpc> tag element. For informationabout the<rpc> tag element,

see “Sending a Request to the NETCONF Server” on page 31.

A response tag element represents the NETCONF server’s reply to a request tag element

andoccurs onlywithin an<rpc-reply> tagelement. For informationabout the<rpc-reply>

tag element, see “Parsing the NETCONF Server Response” on page 34.

The following example represents an exchange in which a client application emits the

<get-interfaces> request tag element and the NETCONF server returns the <output>

response tag element.

NOTE: This example, like all others in this guide, shows each tag element on
a separate line, in the tag streams emitted by both the client application and
NETCONF server. In practice, a client application does not need to include
newline characters between tag elements, because the server automatically
discards such white space. For further discussion, see “Spaces, Newline
Characters, and OtherWhite Space” on page 11.

For information about the]]>]]> character sequence, see “GeneratingWell-FormedXML

Documents” on page 22. For information about the attributes in the opening <rpc-reply>

tag, see “Parsing the NETCONF Server Response” on page 34. For information about the

xmlns attribute in the opening <output> tag, see “Requesting Operational Information”

on page 48.

NETCONF ServerClient Application

<rpc>
<get-interfaces>
<interface-name>eth0</interface-name>
</get-interfaces>
</rpc>
]]>]]>

<rpc-reply xmlns=”URN” xmlns:sdx=”URL” >
<interface-information xmlns=”URL” >
<!-- children of <interface-information> -->
</interface-information>
</rpc-reply>
]]>]]>

Copyright © 2019, Juniper Networks, Inc.10

SRC PE 4.13.x NETCONF API Guide

Child Tag Elements of a Request Tag Element

Some request tag elements contain child tag elements. For configuration requests, each

child tag element represents a configuration element (hierarchy level or configuration

object). For operational requests, each child tag element represents one of the options

you provide on the command line when issuing the equivalent CLI command.

Some requests havemandatory child tag elements. Tomake a request successfully, a

clientapplicationmustemit themandatory tagelementswithin the request tagelement’s

opening and closing tags. If any of the children are themselves container tag elements,

the opening tag for eachmust occur before any of the tag elements it contains, and the

closing tag must occur before the opening tag for another tag element at its hierarchy

level.

Inmost cases, the client application can emit children that occur at the same levelwithin

a container tag element in any order. The important exception is a configuration element

that has an identifier tag element, which distinguishes the configuration element from

other elements of its type. The identifier tag element must be the first child tag element

in the container tag element. Most frequently, the identifier tag element specifies the

name of the configuration element and is called <name>. For more information, see

“Mapping for Objects That Have an Identifier” on page 15.

Child Tag Elements of a Response Tag Element

The child tag elements of a response tag element represent the individual data items

returned by the NETCONF server for a particular request. The children can be either

individual tag elements (empty tags or tag element triples) or container tag elements

thatenclose their ownchild tagelements. For somecontainer tagelements, theNETCONF

server returns the children in alphabetical order. For other elements, the children appear

in the order in which they were created in the configuration.

The set of child tag elements that can occur in a response or within a container tag

element is subject to change in later releases of the SRC XML API. Client applications

must not rely on the presence or absence of a particular tag element in the NETCONF

server’s output, or on the ordering of child tag elements within a response tag element.

For the most robust operation, include logic in the client application that handles the

absence of expected tag elements or the presence of unexpected ones as gracefully as

possible.

Spaces, Newline Characters, and OtherWhite Space

As dictated by the XML specification, the NETCONF server ignores white space (spaces,

tabs, newline characters, and other characters that represent white space) that occurs

between tag elements in the tag stream generated by a client application. Client

applicationscan, butdonotneed to, includewhite spacebetween tagelements.However,

they must not insert white space within an opening or closing tag. If they include white

space in the contents of a tag element that they are submitting as a change to the

candidate configuration, the NETCONF server preserves the white space in the

configuration database.

11Copyright © 2019, Juniper Networks, Inc.

Chapter 2: Using NETCONF and SRC XML Tag Elements

In its responses, the NETCONF server includes white space between tag elements to

enhance the readability of responses that are saved to a file: it uses newline characters

to put each tag element on its own line, and spaces to indent child tag elements to the

right compared to their parents. A client application can ignoreor discard thewhite space,

particularly if it does not store responses for later review by human users. However, it

must not depend on the presence or absence of white space in any particular location

when parsing the tag stream.

For more information about white space in XML documents, see the XML specification

from theWorldWideWeb Consortium (W3C), Extensible Markup Language (XML) 1.0,

at http://www.w3.org/TR/REC-xml.

XML Comments

Client applications and the NETCONF server can insert XML comments at any point

between tag elements in the tag stream they generate, but not within tag elements.

Clientapplicationsmusthandlecomments inoutput fromtheNETCONFserver gracefully

butmust not depend on their content. Client applications also cannot use comments to

convey information to the NETCONF server, because the server automatically discards

any comments it receives.

XMLcommentsareenclosedwithin thestrings<!--and -->, andcannotcontain thestring

-- (two hyphens). For more details about comments, see the XML specification at

http://www.w3.org/TR/REC-xml.

The following is an example of an XML comment:

<!- - This is a comment. Please ignore it. - ->

Predefined Entity References

By XML convention, there are two contexts in which certain characters cannot appear in

their regular form:

• In the string that appears between opening and closing tags (the contents of the tag

element)

• In the string value assigned to an attribute of an opening tag

When including a disallowed character in either context, client applications must

substitute the equivalent predefined entity reference, which is a string of characters that

represents the disallowed character. Because the NETCONF server uses the same

predefined entity references in its response tag elements, the client applicationmust be

able to convert them to actual characters when processing response tag elements.

Table 3 on page 13 summarizes the mapping between disallowed characters and

predefined entity references for strings that appear between the opening and closing

tags of a tag element.

Copyright © 2019, Juniper Networks, Inc.12

SRC PE 4.13.x NETCONF API Guide

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml

Table 3: Predefined Entity Reference Substitutions for Tag Content Values

Predefined Entity ReferenceDisallowed Character

&& (ampersand)

>> (greater-than sign)

<< (less-than sign)

Table 4 on page 13 summarizes the mapping between disallowed characters and

predefined entity references for attribute values.

Table 4: Predefined Entity Reference Substitutions for Attribute Values

Predefined Entity ReferenceDisallowed Character

&& (ampersand)

'' (apostrophe)

>> (greater-than sign)

<< (less-than sign)

"" (quotationmark)

Asanexample, suppose that the followingstring is thevaluecontainedby the<condition>

tag element:

if (a<b && b>c) return "Peer’s not responding"

The <condition> tag element looks like this (it appears on two lines for legibility only):

<condition>if (a<b && b>c) return "Peer’s not \
 responding"</condition>

Similarly, if the value for the <example> tag element’s heading attribute is

Peer’s "age" <> 40, the opening tag looks like this:

<example heading="Peer's "age" <> 40">

Mapping Commands to SRC XML Tag Elements

TheSRCXMLAPIdefines tag-elementequivalents formanycommands inCLIoperational

mode. For example, the<get-interfaces> tag element corresponds to the show interfaces

command.

13Copyright © 2019, Juniper Networks, Inc.

Chapter 2: Using NETCONF and SRC XML Tag Elements

For information about the available command equivalents in the current release of the

SRC software, see the SRC XML API Operational Reference. For the mapping between

commands and XML tag elements, see the table at the beginning of each chapter. For

detailed information about a specific operation, see the appropriate section for the

request tag element.

The following sections describe the tag elements that map to command options:

• Mapping for Command Options with Variable Values on page 14

• Mapping for Fixed-Form Command Options on page 14

Mapping for CommandOptions with Variable Values

Many CLI commands have options that identify the object that the command affects or

reports about, distinguishing the object from other objects of the same type. In some

cases, the CLI does not precede the identifier with a fixed-form keyword, but XML

convention requires that the SRCXMLAPI define a tag element for every option. To learn

thenames for each identifier (andanyother child tagelements) for anoperational request

tag element, consult the tag element’s entry in the appropriate DTD or in the SRC XML

API Operational Reference.

The following example shows theXML tag elements for aCLI operational command that

has variable-form options. In the show interfaces command, eth0 is the name of the

interface.

SRC XML TagsCLI Command

<rpc>
<get-interfaces>
<interface-name>eth0</interface-name>
</get-interfaces>
</rpc>

show interfaces eth0

Mapping for Fixed-Form CommandOptions

Some CLI commands include options that have a fixed form, such as the brief and detail

strings, which specify the amount of detail to include in the output. The SRC XML API

usually maps such an option to an empty tag whose namematches the option name.

The following example shows the XML tag elements for the show disk status command,

which has a fixed-form option called brief.

SRC XML TagsCLI Command

<rpc>
<get-disk-status>
<brief/>
</get-disk-status>
</rpc>

show disk status brief

Copyright © 2019, Juniper Networks, Inc.14

SRC PE 4.13.x NETCONF API Guide

Mapping Configuration Statements to SRC XML Tag Elements

The SRC XML API defines a tag element for every container and leaf statement in the

configuration hierarchy. At the top levels of the configuration hierarchy, there is almost

always a one-to-onemapping between tag elements and statements, andmost tag

namesmatch the configuration statement name. At deeper levels of the hierarchy, the

mapping is sometimes less direct, because someCLI notational conventions do notmap

directly to XML-compliant tagging syntax. The following sections describe the mapping

between configuration statements and XML tag elements:

• Mapping for Hierarchy Levels and Container Statements on page 15

• Mapping for Objects That Have an Identifier on page 15

• Mapping for Single-Value and Fixed-Form Leaf Statements on page 17

• Mapping for Leaf Statements with Multiple Values on page 18

NOTE: For someconfiguration statements, the notation usedwhen you type
thestatementat theCLIconfiguration-modepromptdiffers fromthenotation
used in a configuration file. The same XML tag elementmaps to both
notational styles.

Mapping for Hierarchy Levels and Container Statements

The <configuration> tag element is the top-level XML container tag element for

configuration statements. It corresponds to the [edit] hierarchy level in CLI configuration

mode.Most statementsat thenext few levelsof theconfigurationhierarchyare container

statements. The XML container tag element that corresponds to a container statement

almost always has the same name as the statement.

The following example shows the XML tag elements for a statement at the top level of

the configuration hierarchy. Note that a closing brace in a CLI configuration statement

corresponds to a closing XML tag.

SRC XML TagsCLI Configuration Statements

<configuration>
<system>
<login>
<!-- tags for child statements -->
</login>
</system>
</configuration>

system login {
...child statements...
}

Mapping for Objects That Have an Identifier

At some hierarchy levels, the same kind of configuration object can occurmultiple times.

Each instanceof theobjecthasaunique identifier todistinguish it fromtheother instances.

In the CLI notation, the parent statement for such an object consists of a keyword and

identifier of the following form:

15Copyright © 2019, Juniper Networks, Inc.

Chapter 2: Using NETCONF and SRC XML Tag Elements

keyword identifier {
 … configuration statements for individual characteristics …
}

keyword is a fixed string that indicates the type of object being defined, and identifier is

the unique name for this instance of the type. In the SRC XML API, the tag element

corresponding to the keyword is a container tag element for child tag elements that

represent the object’s characteristics. The container tag element’s name generally

matches the keyword string.

The SRC XML API differs from the CLI in its treatment of the identifier. Because the SRC

XML API does not allow container tag elements to contain both other tag elements and

untagged character data such as an identifier name, the identifier must be enclosed in

a tagelementof itsown.Most frequently, identifier tagelements for configurationobjects

are called <name>. Some objects havemultiple identifiers, which usually have names

other than <name>. To verify the name of each identifier tag element for a configuration

object, consult the entry for the object in the SRC XML API Configuration Reference.

NOTE: The SRC software reserves the prefix sdx- for the identifiers of

configuration groups defined within the sdx-defaults configuration group.

User-defined identifiers cannot start with the string sdx-.

Identifier tag elements also constitute an exception to the general XML convention that

tag elements at the same level of hierarchy can appear in any order; the identifier tag

element always occurs first within the container tag element.

Theconfiguration formostobjects thathave identifiers includesadditional leaf statements,

which represent other characteristics of the object. For example, each SAE group

configured at the [edit shared sae group] hierarchy level has an associated name (the

identifier) and can have leaf statements for other characteristics, such as configuration,

DHCP classification script, and subscriber classification script. For information about the

XMLmapping for leaf statements, see “Mapping for Single-Value and Fixed-Form Leaf

Statements” on page 17, “Mapping for Leaf StatementswithMultiple Values” on page 18,

and “Using theSameConfigurationTagElements inRequestsandResponses”onpage 19.

The following example shows the XML tag elements for configuration statements that

define two users called U1 and U2. Notice that the XML <user-name> tag element that

encloses the identifier of each user does not have a counterpart in the CLI statements.

Copyright © 2019, Juniper Networks, Inc.16

SRC PE 4.13.x NETCONF API Guide

For complete information about changing C Series Controller configurations, see

“Changing Configuration Information” on page 65.

SRC XML TagsCLI Configuration Statements

<configuration>
<system>
<login>
<user>
<user-name>U1</user-name> <!-- identifier -->
<class>admin</class>
</user>
<user>
<user-name>U2</user-name> <!-- identifier -->
<class>admin</class>
</user>
</login>
</system>
</configuration>

system login {
user U1 {
class admin;
}
user U2 {
class admin;
}
}

Mapping for Single-Value and Fixed-Form Leaf Statements

A leaf statement is a CLI configuration statement that does not contain any other

statements. Most leaf statements define a value for one characteristic of a configuration

object and have the following form:

keyword value ;

In general, the name of the XML tag element corresponding to a leaf statement is the

same as the keyword string. The string between the opening and closing XML tags is the

same as the value string.

The following example shows the XML tag elements for a leaf statement that has a

keyword and a value: the announcement statement at the [edit system login] hierarchy

level.

SRC XML TagsCLI Configuration Statements

<configuration>
<system>
<login>
<announcement>Authorized users only

</announcement>
</login>
</system>
</configuration>

system login {
announcement “ Authorized users only” ;
}

Some leaf statements consist of a fixed-form keyword only, without an associated

variable-form value. The SRC XML API represents such statements with an empty tag.

17Copyright © 2019, Juniper Networks, Inc.

Chapter 2: Using NETCONF and SRC XML Tag Elements

The following example shows the XML tag elements for the sftp statement at the

[edit system services] hierarchy level.

SRC XML TagsCLI Configuration Statements

<configuration>
<system>
<services>
<sftp/>
</services>
</system>
</configuration>

system services {
sftp;
}

Mapping for Leaf Statements with Multiple Values

Some leaf statements acceptmultiple values,which canbe either user-definedor drawn

from a set of predefined values. CLI notation uses square brackets to enclose all values

in a single statement, as in the following:

statement [value1 value2 value3 ...];

The SRC XML API instead encloses each value in its own tag element. The following

example shows the XML tag elements for a CLI statement with multiple user-defined

values. The domain-search statement specifies two domains defined elsewhere in the

configuration. For complete informationaboutchangingCSeriesController configurations,

see “Changing Configuration Information” on page 65.

SRC XML TagsCLI Configuration Statements

<configuration>
<system>
<domain-search>jnpr.net</domain-search>
<domain-search>juniper.net</domain-search>
</system>
</configuration>

system {
domain-search [jnpr.net juniper.net];
}

Copyright © 2019, Juniper Networks, Inc.18

SRC PE 4.13.x NETCONF API Guide

The following example shows the XML tag elements for a CLI statement with multiple

predefined values. The permissions statement grants three predefined permissions to

members of the user-accounts login class.

SRC XML TagsCLI Configuration Statements

<configuration>
<system>
<login>
<class>
<name>user-accounts</name>
<permissions>configure</permissions>
<permissions>admin</permissions>
<permissions>control</permissions>
</class>
</login>
</system>
</configuration>

system login class user-accounts {
permissions [configure admin control];
}

Using the Same Configuration Tag Elements in Requests and Responses

The NETCONF server encloses its response to each configuration request in <rpc-reply>

and <configuration> tag elements. Enclosing each configuration response within a

<configuration> tag element contrasts with how the server encloses each different

operational response in a tag element named for that type of response—for example,

the<chassis-inventory> tagelement for chassis informationor the<interface-information>

tag element for interface information.

The XML tag elements within the <configuration> tag element represent configuration

hierarchy levels, configuration objects, and object characteristics, always ordered from

higher to deeper levels of the hierarchy. When a client application loads a configuration,

it can emit the same tag elements in the sameorder that theNETCONFserver useswhen

returning configuration information. This consistent representation makes handling

configuration information more straightforward. For instance, the client application can

request thecurrent configuration, store theNETCONFserver’s response ina localmemory

buffer, make changes or apply transformations to the buffered data, and submit the

altered configuration as a change to the candidate configuration. Because the altered

configuration is based on the NETCONF server’s response, it is certain to be syntactically

correct. For more information about changing C Series Controller configurations, see

“Changing Configuration Information” on page 65.

Similarly, when a client application requests information about a configuration element

(hierarchy level or configurationobject), it uses the same tagelements that theNETCONF

server will return in response. To represent the element, the client application sends a

complete streamof tagelements fromthe topof theconfigurationhierarchy (represented

by the <configuration> tag element) down to the requested element. The innermost tag

element, which represents the level or object, is either empty or includes the identifier

tag element only. The NETCONF server’s response includes the same stream of parent

tag elements, but the tag element for the requested configuration element contains all

the tag elements that represent the element’s characteristics or child levels. For more

information, see “Requesting Configuration Information” on page 49.

19Copyright © 2019, Juniper Networks, Inc.

Chapter 2: Using NETCONF and SRC XML Tag Elements

The tag streams emitted by the NETCONF server and by a client application can differ

in the use of white space, as described in “Spaces, Newline Characters, and OtherWhite

Space” on page 11.

Copyright © 2019, Juniper Networks, Inc.20

SRC PE 4.13.x NETCONF API Guide

CHAPTER 3

Controlling the NETCONF Session

This chapter explains how to start and terminate a session with the NETCONF server,

and describes the Extensible Markup Language (XML) tag elements from the NETCONF

application programming interface (API) that client applications and the NETCONF

server use tocoordinate informationexchangeduring the session. It includes the following

topics:

• Client Application’s Role in a NETCONF Session on page 21

• Establishing a NETCONF Session on page 22

• Exchanging Information with the NETCONF Server on page 31

• Locking and Unlocking the Candidate Configuration on page 38

• Terminating Another NETCONF Session on page 40

• Ending a NETCONF Session and Closing the Connection on page 41

• Displaying CLI Output as XML Tag Elements on page 41

• Example of a NETCONF Session on page 42

Client Application’s Role in a NETCONF Session

To create a session and communicate with the NETCONF server, a client application

performs the following procedures, which are described in the indicated sections:

1. Establishes a connection to the NETCONF server on the C Series Controller, as

described in “Connecting to the NETCONF Server” on page 27.

2. Opens a NETCONF session, as described in “Starting the NETCONF Session” on

page 28.

3. (Optional) Locks the candidate configuration, as described in “Locking the Candidate

Configuration” on page 38. Locking the configuration prevents other users or

applications from changing it at the same time.

4. Requests operational or configuration information, or changes configuration

information, as described in “Requesting Information” on page 47 and

“Changing Configuration Information” on page 65.

5. (Optional) Verifies the syntactic correctness of a configuration before attempting to

commit it, asdescribed in “VerifyingaConfigurationBeforeCommitting It” onpage85.

21Copyright © 2019, Juniper Networks, Inc.

6. Commits changes made to the configuration, as described in “Committing a

Configuration” on page 85.

7. Unlocks the candidate configuration if it is locked, as described in “Unlocking the

Candidate Configuration” on page 39.

8. Ends the NETCONF session and closes the connection to the C Series Controller, as

described in “Ending a NETCONF Session and Closing the Connection” on page 41.

Establishing a NETCONF Session

The NETCONF server communicates with client applications within the context of a

NETCONF session. The server and client explicitly establish a connection and session

before exchanging data, and close the session and connection when they are finished.

Client applications access the NETCONF server using the SSH protocol and use the

standard SSH authentication mechanism. After authentication, the NETCONF server

uses the login usernames and classes already configured on the C Series Controller to

determine whether a client application is authorized to make each request.

For informationabout establishingaconnectionandNETCONFsession, see the following

sections:

• GeneratingWell-Formed XML Documents on page 22

• Prerequisites for Establishing a Connection on page 23

• Connecting to the NETCONF Server on page 27

• Starting the NETCONF Session on page 28

For an example of a complete NETCONF session, see “Example of a NETCONF Session”

on page 42.

GeneratingWell-Formed XML Documents

Each set of NETCONF and XML tag elements emitted by the NETCONF server and a

client application within a <hello>, <rpc>, or <rpc-reply> tag element must constitute a

well-formedXMLdocumentbyobeying thestructural rulesdefined in thedocument type

definition (DTD) for the kind of information being sent. The client application must emit

tag elements in the required order and only in the allowed contexts.

The NETCONF server and client applicationsmust also comply with RFC 4742,Using the

NETCONF Configuration Protocol over Secure Shell (SSH), available at

http://www.ietf.org/rfc/rfc4742.txt. In particular, the server and applications must send

the character sequence]]>]]> after each XML document. This sequence is not legal

withinanXMLdocumentandsounambiguously signals theendofadocument. Inpractice,

the client application sends the sequence after the closing</hello> tag and each closing

</rpc> tag, and the NETCONF server sends it after the closing </hello> tag and each

closing </rpc-reply> tag.

Copyright © 2019, Juniper Networks, Inc.22

SRC PE 4.13.x NETCONF API Guide

http://www.ietf.org/rfc/rfc4742.txt

NOTE: In the following example (and in all examples in this document of tag
elements emitted by a client application), bold font is used to highlight the
part of the tag sequence that is discussed in the text.

<!- - generated by a client application - ->
<hello | rpc>
 <!-contents of top-level tag element - ->
</hello | /rpc>
]]>]]>

<!- - generated by the NETCONF server - ->
<hello | rpc-reply attributes>
 <!- - contents of top-level tag element - ->
</hello | /rpc-reply>
]]>]]>

Prerequisites for Establishing a Connection

To enable a client application to establish an SSH connection to the NETCONF server,

you must satisfy the requirements discussed in the following sections:

• Client Application Can Access SSH Software on page 23

• Client Application Can Log In on C Series Controllers on page 23

• Login Account Has Public/Private Key Pair or Password on page 24

• Client Application Can Access the Keys or Password on page 26

• NETCONF Service over SSH Is Enabled on page 26

Client Application Can Access SSH Software

The client applicationmust be able to access the SSH software on the computer where

it runs.

If theapplicationuses theNETCONFPerlmoduleprovidedby JuniperNetworks, no further

action is necessary. As part of the installation procedure for the Perl module, you install

a prerequisites package that includes the necessary SSH software.

If the application does not use the NETCONF Perl module, obtain the SSH software and

install it on the computer where the application runs. For information about obtaining

and installing SSH software, see http://www.ssh.com and http://www.openssh.com.

Client Application Can Log In on C Series Controllers

The client application must be able to log in to each C Series Controller on which it

establishes NETCONF sessions. The following instructions explain how to create a login

account for the application. Alternatively, you can skip this section and enable

authentication throughRADIUSorTACACS+. For instructions, seeSRCPEGettingStarted

Guide.

To determine if a login account exists, enter SRC command-line interface (CLI)

configuration mode on the C Series Controller and issue the following commands:

23Copyright © 2019, Juniper Networks, Inc.

Chapter 3: Controlling the NETCONF Session

http://www.ssh.com
http://www.openssh.com

[edit]
user@host# edit system login

[edit system login]
user@host# show user user-name

If the appropriate account does not exist, perform the following steps:

1. Include the user statement at the [edit system login] hierarchy level. Specify a login

class that has the permissions required for all actions to be performed by the

application. You can also include the optional full-name and uid statements. For

detailed information about creating user accounts, see SRC PE Getting Started Guide.

[edit system login]
user@host# set user user-name class class

2. (Optional) Commit the configuration. Alternatively, you canwait until you have added

the statements that satisfy all prerequisites (see “NETCONF Service over SSH Is

Enabled” on page 26).

[edit system login]
user@host# commit

3. Repeat the preceding steps on each C Series Controller where the client application

establishes NETCONF sessions.

Login Account Has Public/Private Key Pair or Password

For a client application to authenticate with the NETCONF server, the login account that

you created in “Client Application Can Log In on C Series Controllers” on page 23must

have an SSH public/private key pair, a text-based password, or both. A public/private

keypair is sufficient if the account is usedonly to connect to theNETCONFserver through

SSH. If the account is also used to access the C Series Controller in other ways (for login

on the console, for example), it must have a text-based password. The password is also

used (the SSH server prompts for it) if key-based authentication is configured but fails.

NOTE: You can skip this section if you have chosen to enable authentication
through RADIUS or TACACS+, as described in SRC PE Getting Started Guide.

Follow the instructions in the appropriate section:

• Creating a Text-Based Password on page 24

• Creating a Public/Private Key Pair on page 25

Creating a Text-Based Password

To create a text-based password, perform the following steps:

Copyright © 2019, Juniper Networks, Inc.24

SRC PE 4.13.x NETCONF API Guide

1. Include either the plain-text-password or encrypted-password statement at the [edit

systemloginuseruser-nameauthentication]hierarchy level. First,move to thathierarchy

level:

[edit system login]
user@host# edit user user-name authentication

To enter a password as text, issue the following command. You are prompted for the

password, which is encrypted before being stored.

[edit system login user user-name authentication]
user@host# set plain-text-password
New password: password
Retype new password: password

To store a password that you have previously created and hashed using Message

Digest 5 (MD5) or Secure Hash Algorithm 1 (SHA-1), issue the following command:

[edit system login user user-name authentication]
user@host# set encrypted-password "password"

2. (Optional) Commit the configuration. Alternatively, you canwait until you have added

the statements that satisfy all prerequisites (see “NETCONF Service over SSH Is

Enabled” on page 26).

[edit system login user user-name authentication]
user@host# commit

3. Repeat the preceding steps on each C Series Controller where the client application

establishes NETCONF sessions.

Creating a Public/Private Key Pair

To create an SSH public/private key pair, perform the following steps:

1. Issue the ssh-keygen command in the standard command shell (not the SRC CLI) on

the computer where the client application runs. By providing the appropriate

arguments, you encode the public key with either RSA (supported by SSH versions 1

and2) or theDigital SignatureAlgorithm(DSA, supportedbySSHversion 2). Formore

information, see the manual page for the ssh-keygen command. The SRC software

uses SSH version 2 by default, but also supports version 1.

% ssh-keygen options

2. Associate the public keys with the login account by including the ssh-authorized-keys

statement at the [edit system login user user-name authentication] hierarchy level.

The SRC software copies the public keys onto the C Series Controller:

[edit system login user user-name authentication]
user@host# set ssh-authorized-keys [ssh-authorized-keys...]

The ssh-keygen command by default stores each public key in a file in the ssh

subdirectory of the user home directory; the filename depends on the encoding (DSA

25Copyright © 2019, Juniper Networks, Inc.

Chapter 3: Controlling the NETCONF Session

orRSA)andSSHversion. Formore informationabout configuringSSHauthentication,

see SRC PE Getting Started Guide.

3. (Optional) Commit the configuration. Alternatively, you canwait until you have added

the statements that satisfy all prerequisites (see “NETCONF Service over SSH Is

Enabled” on page 26).

[edit system login user user-name authentication]
user@host# commit

4. Repeat Steps 2 and 3 on each C Series Controller where the client application

establishes NETCONF sessions.

Client Application Can Access the Keys or Password

The client application must be able to access the public/private keys or password you

created in “Login Account Has Public/Private Key Pair or Password” on page 24 and

provide it when the NETCONF server prompts for it.

There are several methods for enabling the application to access the key or password:

• If public/private keys are used, the ssh-agent program runs on the computer where the

client application runs, and handles the private key.

• When a user starts the application, the application prompts the user for the password

and stores it temporarily in a secure manner.

• The password is stored in encrypted form in a secure local-disk location or in a secured

database.

NETCONF Service over SSH Is Enabled

The IETF draft titled Using the NETCONF Configuration Protocol over Secure Shell (SSH)

requires that theNETCONF server by default provide SSHaccess to clientmachines over

a devoted Transmission Control Protocol (TCP) port, tomake it easy to identify and filter

NETCONF traffic. The port for the SRC NETCONF server is 32000. In addition, you can

enable client applications to access the NETCONF server over the default SSH port (22).

(For more information about the IETF draft, see “GeneratingWell-Formed XML

Documents” on page 22.)

Perform the following steps:

1. Include one or both of the following statements at the indicated hierarchy level:

• To enable SSH access over the devoted port (32000) as specified by the IETF

specification, include the ssh statement at the [edit system services netconf]

hierarchy level:

[edit system login user user-name authentication]
user@host# top
[edit]
user@host# set system services netconf ssh

Copyright © 2019, Juniper Networks, Inc.26

SRC PE 4.13.x NETCONF API Guide

• To enable access over the default SSH port (22), include the ssh statement at the

[edit system services] hierarchy level. This configuration also enables SSH access

to the C Series Controller for all users and applications.

[edit]
user@host# set system services ssh

2. Commit the configuration:

[edit]
user@host# commit

3. Repeat the preceding steps on each C Series Controller where the client application

establishes NETCONF sessions.

Connecting to the NETCONF Server

Before a client application can connect to the NETCONF server, you must satisfy the

requirements described in “Prerequisites for Establishing a Connection” on page 23.

When the prerequisites are satisfied, applications written in Perl use the NETCONF Perl

module to connect to the NETCONF server. A client application that does not use the

NETCONF Perl module uses one of twomethods:

• It uses SSH library routines to establish an SSH connection to the NETCONF server,

provide the username and password or passphrase, and create a channel that acts as

an SSH subsystem for the NETCONF session. Providing instructions for using library

routines is beyond the scope of this document.

• It issues the following ssh command to create a NETCONF session as an SSH

subsystem:

ssh -p 32000 -s user@hostname netconf

The -p option defines the port number on which the NETCONF server listens. This

option can be omitted if you enabled access to SSHover the default port in “NETCONF

Service over SSH Is Enabled” on page 26.

The -s option establishes the NETCONF session as an SSH subsystem.

The application must include code to intercept the NETCONF server’s prompt for the

passwordorpassphrase.Perhaps themoststraightforwardmethod is for theapplication

touseautility suchas theexpectcommand.TheNETCONFPerl clientuses thismethod,

for example.

27Copyright © 2019, Juniper Networks, Inc.

Chapter 3: Controlling the NETCONF Session

Starting the NETCONF Session

Each NETCONF session begins with a handshake in which the NETCONF server and the

client application specify theNETCONFcapabilities they support. The following sections

describe how to start a NETCONF session:

• Exchanging <hello> Tag Elements on page 28

• Verifying Compatibility on page 29

Exchanging <hello> Tag Elements

TheNETCONFserver andclient applicationeachbeginbyemittinga<hello> tagelement

to specify which operations, or capabilities, they support from among those defined in

the NETCONF specification. The <hello> tag element encloses the <capabilities> tag

element and the <session-id> tag element, which specifies the process ID (PID) of the

NETCONF server for the session. Within the <capabilities> tag element, a <capability>

tag element specifies each supported function.

The client application must emit the <hello> tag element before any other tag element

during the NETCONF session, andmust not emit it more than once.

Each capability defined in the NETCONF specification is represented in a tag element by

auniformresourcename(URN).Capabilitiesdefinedby individual vendorsare represented

by uniform resource identifiers (URIs), which can be URNs or URLs. The NETCONF API

for SRC emits the following<hello> tag element (each<capability> tag element appears

on three lines for legibility only):

<hello>
 <capabilities>
 <capability>urn:ietf:params:xml:ns:netconf:base:1.0</capability>
 <capability>
 urn:ietf:params:xml:ns:netconf:capability:candidate:1.0
 </capability>
 <capability>
 urn:ietf:params:xml:ns:netconf:capability:url:1.0?protocol=http,ftp,file
 </capability>
 <capability>http://xml.juniper.net/netconf/junos/1.0</capability>
 <capability>http://xml.juniper.net/netconf/junos/sdx/1.0</capability>
 </capabilities>
 <session-id>3911</session-id>
</hello>
]]>]]>

(For information about the]]>]]> character sequence, see “GeneratingWell-Formed

XML Documents” on page 22.)

The URIs in the <hello> tag element indicate the following supported capabilities:

• urn:ietf:params:xml:ns:netconf:base:1.0—The NETCONF server supports the basic

NETCONF operations and tag elements defined in this namespace.

• urn:ietf:params:xml:ns:netconf:capability:candidate:1.0—TheNETCONFserver supports

operations on a candidate configuration. For more information, see “Requesting

Copyright © 2019, Juniper Networks, Inc.28

SRC PE 4.13.x NETCONF API Guide

Information from the Candidate Configuration” on page 51 and

“Committing Configurations” on page 85.

• urn:ietf:params:xml:ns:netconf:capability:url:1.0?protocol=http,ftp,file—TheNETCONF

server accepts configuration data stored in a file. It can retrieve files both from its local

filesystem(indicatedby the file option in theURN)and from remotemachinesbyusing

Hypertext Transfer Protocol (HTTP) or FTP (indicated by the http and ftp options in

theURN). Formore information, see “ProvidingConfigurationData inaFile” onpage67.

• http://xml.juniper.net/netconf/junos/1.0—TheNETCONFserver supports theoperations

defined in the SRC XML API for requesting and changing operational information (the

tag elements in the SRC XML API Operational Reference).

• http://xml.juniper.net/netconf/junos/sdx/1.0—The NETCONF server supports the

operations defined in the SRC XML API for requesting and changing operational

information (the tag elements in the SRC XML API Operational Reference). The

NETCONF server also supports operations for requesting or changing configuration

information (the tag elements in the SRC XML API Configuration Reference).

To comply with the NETCONF specification, the client application also emits a <hello>

tag element to define the capabilities it supports. It does not include the <session-id>

tag element:

<hello>
 <capabilities>
 <capability>first-capability</capability>
 <!- - tag elements for additional capabilities - ->
 </capabilities>
</hello>
]]>]]>

Verifying Compatibility

Exchanging <hello> tag elements enables a client application and the NETCONF server

to determine if they support the same capabilities. In addition, we recommend that the

client application determine the version of the SRC software running on the NETCONF

server. After emitting its<hello> tag element, it emits the <get-system-info> tag element

in an <rpc> tag element:

<rpc>
<get-system-info/>

</rpc>
]]>]]>

The NETCONF server returns the <system-info> tag element, which encloses the

<system-identification> and <software-version> tag elements. (For information about

the <rpc-reply> tag element, see “Parsing the NETCONF Server Response” on page 34.)

Some tag elements appear onmultiple lines, for legibility only:

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" \
 xmlns:sdx="http://xml.juniper.net/junos/sdx/1.0">
 <system-info>
 <system-identification>

29Copyright © 2019, Juniper Networks, Inc.

Chapter 3: Controlling the NETCONF Session

http://xml.juniper.net/netconf/junos/1.0
http://xml.juniper.net/netconf/junos/sdx/1.0

 <software-version>SRC Release 2.0.0</software-version>
 <!- - other <system-identification> child tag elements - ->
 </system-identification>
 <!- - other <system-info> child tag elements - ->
 </system-info>
</rpc-reply>
]]>]]>

Normally, the version is the same for all SRC software components running on the C

Series Controller. (We recommend this configuration for predictable performance.) The

client application can determine the version of the SRC software components running

on the NETCONF server by emitting the <get-component-all> tag element in an<rpc>

tag element:

<rpc>
<get-component-all/>

</rpc>
]]>]]>

TheNETCONF server returns the<sdx-component-list> tag element, which encloses the

<sdx-component> tag elements plus a <version> tag element for each installed SRC

software component. (For information about the <rpc-reply> tag element, see “Parsing

the NETCONF Server Response” on page 34.) The <version> tag element within the

<sdx-component> tag element specifies the SRC release number (in the following

example, 2.0 for SRCRelease 2.0) and the build information. Some tag elements appear

onmultiple lines, for legibility only:

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" \
 xmlns:sdx="http://xml.juniper.net/junos/sdx/1.0">
 <sdx-component-list>
 <sdx-component>
 <status>stopped</status>
 <version>Release: 2.0 Build: ACP.B.2.0.0.001</version>
 <name>acp</name>
 </sdx-component>
 <!- - other <sdx-component> tag elements - ->
 <sdx-component>
 <status>running</status>
 <version>Release: 2.0 Build: WEBADM.B.2.0.0.001</version>
 <name>webadm</name>
 </sdx-component>
 </sdx-component-list>
</rpc-reply>
]]>]]>

In the NETCONFAPI for SRC, it is the responsibility of the client application to determine

howtohandleanydifferences in versionor capabilities. For fully automatedperformance,

include code in the client application that determines whether it supports the same

capabilities and SRC version as the NETCONF server. Decide which of the following

options is appropriate when there are differences, and implement the corresponding

response:

• Ignore differences in capabilities and SRC version, and do not alter the client

application’s behavior to accommodate the NETCONF server. A difference in SRC

Copyright © 2019, Juniper Networks, Inc.30

SRC PE 4.13.x NETCONF API Guide

versions does not necessarily make the server and client incompatible, so this is often

a valid approach. Similarly, it is a valid approach if the capabilities that the client

application does not support are operations that are always initiated by a client, such

asvalidationofaconfigurationandconfirmedcommit. In that case, theclientmaintains

compatibility by not initiating the operation.

• Alter standard behavior to be compatible with the NETCONF server. If the client

application is running a later version of the SRC software, for example, it can choose

toemitonlyNETCONFandSRCXMLtagelements that represent thesoftware features

available in the NETCONF server’s version of the software.

• End the NETCONF session and terminate the connection. This is appropriate if you

decide that it is not practical to make the client application accommodate the SRC

version or capabilities supported by the NETCONF server. For instructions, see “Ending

a NETCONF Session and Closing the Connection” on page 41.

Exchanging Information with the NETCONF Server

The session continues when the client application sends a request to the NETCONF

server. The NETCONF server does not emit any tag elements after session initialization

except in response to the client application’s requests. The following sections describe

the exchange of tagged data:

• Sending a Request to the NETCONF Server on page 31

• Parsing the NETCONF Server Response on page 34

• Handling an Error or Warning on page 37

Sending a Request to the NETCONF Server

To initiate a request to theNETCONF server, a client application emits the opening <rpc>

tag, followed by one or more tag elements that represent the particular request, and the

closing </rpc> tag, in that order:

<rpc>
 <!- - tag elements representing a request - ->
</rpc>
]]>]]>

Each request is enclosed in its own separate pair of opening <rpc> and closing </rpc>

tags andmust constitute awell-formedXML document by including only compliant and

correctly ordered tag elements. For information about the]]>]]> character sequence,

see “GeneratingWell-Formed XML Documents” on page 22. For an example of emitting

an <rpc> tag element in the context of a complete NETCONF session, see “Example of

a NETCONF Session” on page 42.

The NETCONF server ignores any newline characters, spaces, or other white space

characters that occur between tag elements in the tag stream, but it preserves white

space within tag elements. For more information, see “Spaces, Newline Characters, and

Other White Space” on page 11.

31Copyright © 2019, Juniper Networks, Inc.

Chapter 3: Controlling the NETCONF Session

See the following sections for further information:

• Request Classes on page 32

• Including Attributes in the Opening <rpc> Tag on page 34

Request Classes

A client application canmake three classes of requests:

• Operational Requests on page 32

• Configuration Information Requests on page 32

• Configuration Change Requests on page 33

NOTE: Althoughoperationalandconfiguration requestsconceptuallybelong
to separate classes, a NETCONF session does not have distinct modes that
correspond to CLI operational and configurationmodes. Each request tag
element is enclosedwithin its own<rpc> tag element, so a client application

can freely alternate operational and configuration requests.

Operational Requests

Operational requests are requests for information about C Series Controller status, and

correspond to theCLIoperationalmodecommands listed in theSRCsoftwarecommand

references. The SRC XML API defines a request tag element for many CLI commands.

For example, the <get-interfaces> tag element corresponds to the show interfaces

command, and the <get-system-info> tag element requests the same information as

the show system information command.

The following sample request is for information about the interface called eth0:

<rpc>
 <get-interfaces>
 <interface-name>eth0</interface-name>
 </get-interfaces>
</rpc>
]]>]]>

For more information, see “Requesting Operational Information” on page 48. For

information about the XML request tag elements available in the current SRC software

release, see the SRC XML API Operational Reference.

Configuration Information Requests

Requests for configuration information are requests for information about the current

configuration, either candidate or committed (the one currently in active use on the C

Series Controller). The candidate and committed configurations diverge when there are

uncommitted changes to the candidate configuration.

The NETCONF API defines the <get-config> tag element for retrieving configuration

information.TheSRCXMLAPIdefinesa tagelement for everyCLI configurationstatement

described in the SRC software documentation set.

Copyright © 2019, Juniper Networks, Inc.32

SRC PE 4.13.x NETCONF API Guide

The following example shows how to request information from the [edit system login]

hierarchy level of the candidate configuration:

<rpc>
 <get-config>
 <source>
 <candidate/>
 </source>
 <filter type="subtree">
 <configuration>
 <system>
 <login/>
 </system>
 </configuration>
 </filter>
 </get-config>
</rpc>
]]>]]>

For more information, see “Requesting Configuration Information” on page 49. For a

summary of the available configuration tag elements, see theSRCXMLAPI Configuration

Reference.

Configuration Change Requests

Configuration change requests are requests to change the candidate configuration, or to

commit those changes to put them into active use on the C Series Controller. The

NETCONF API defines the <edit-config> and <copy-config> tag elements for changes to

the configuration. The SRC XML API defines a tag element for every CLI configuration

statement described in the SRC software documentation set.

The following example shows how to create a new user account called admin at the

[edit system login] hierarchy level in the candidate configuration:

<rpc>
 <edit-config>
 <target>
 <candidate/>
 </target>
 <config>
 <configuration>
 <system>
 <login>
 <user>
 <user-name>admin</user-name>
 <full-name>Administrator</full-name>
 <class>super-user</class>
 </user>
 </login>
 </system>
 </configuration>
 </config>
 </edit-config>
</rpc>
]]>]]>

33Copyright © 2019, Juniper Networks, Inc.

Chapter 3: Controlling the NETCONF Session

For more information, see “Changing Configuration Information” on page 65. For a

summary of SRC XML configuration tag elements, see the SRC XML API Configuration

Reference.

Including Attributes in the Opening <rpc> Tag

Optionally, a client application can include one or more attributes of the form

attribute-name="value" in the opening <rpc> tag. The NETCONF server echoes each

attribute, unchanged, in the opening <rpc-reply> tag in which it encloses its response.

This feature can be used to associate requests and responses if the value assigned to

an attribute by the client application is unique in each opening <rpc> tag. Because the

NETCONF server echoes the attribute unchanged, it is simple to map the response to

the initiating request. TheNETCONF specification specifies the namemessage-id for this

attribute.

Parsing the NETCONF Server Response

The NETCONF server encloses its response to each client request in a separate pair of

opening <rpc-reply> and closing </rpc-reply> tags, each of which constitutes a

well-formed XML document. In the opening <rpc-reply> tag, it includes the xmlns and

xmlns:sdx attributes (the opening tag appears here onmultiple lines for legibility only):

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" \
 xmlns:sdx="http://xml.juniper.net/junos/sdx/1.0" \
 [echoed attributes]>
 <!- - tag elements representing a response - ->
</rpc-reply>
]]>]]>

The xmlns attribute defines the namespace for enclosed tag elements that do not have

the sdx: prefix on their names and that are not enclosed in a child container tag that has

the xmlns attribute with a different value.

The xmlns:sdx attribute defines the namespace for enclosed tag elements that have the

sdx: prefix on their names.

For informationabout the]]>]]>character sequence, see “GeneratingWell-FormedXML

Documents”onpage22. For informationaboutechoedattributes, see “IncludingAttributes

in the Opening <rpc> Tag” on page 34.

Client applications must include code for parsing the stream of response tag elements

coming from the NETCONF server, either processing them as they arrive or storing them

until the response is complete. See the following sections for further information:

• NETCONF Server Response Classes on page 35

• Using a Standard API to Parse Response Tag Elements on page 36

Copyright © 2019, Juniper Networks, Inc.34

SRC PE 4.13.x NETCONF API Guide

NETCONF Server Response Classes

The NETCONF server returns three classes of responses:

• Operational Responses on page 35

• Configuration Information Responses on page 35

• Configuration Change Responses on page 36

Operational Responses

Operational responsesare responses to requests for informationaboutCSeriesController

status. They correspond to the output from CLI operational commands as described in

the SRC CLI command references.

The SRC XML API defines response tag elements for all defined operational request tag

elements. For example, the NETCONF server returns the information requested by the

<get-system-info> tag element in a response tag element called <system-info>.

The following sample response includes information about the C Series Controller. The

namespace indicated by the xmlns attribute in the opening <system-info> tag is for

system information. The opening tags appear on two lines here for legibility only:

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"\
 xmlns:sdx="http://xml.juniper.net/junos/sdx/1.0">
 <system-info sdx:style="normal"\
 xmlns="http://xml.juniper.net/sdx/system-info"\
 xmlns:sdx="http://xml.juniper.net/sdx">
 <cpu xmlns="http://xml.juniper.net/sdx/cpu">
 <number>4</number>
 <model>Dual Core AMD Opteron(tm) Processor 265</model>
 <speed>1804.108 MHz</speed>
 </cpu>
 <!- - other data tag elements for <system-info> - ->
 </system-info>
</rpc-reply>
]]>]]>

Formore informationabout the xmlnsattributeand thecontentsofoperational response

tag elements, see “Requesting Operational Information” on page 48. For a summary of

operational response tag elements, see the SRC XML API Operational Reference.

Configuration Information Responses

Configuration information responses are responses to requests for information about the

C Series Controller’s current configuration. The SRC XML API defines a tag element for

every container and leaf statement in the configuration hierarchy.

The following sample response includes the information at the [edit system login]

hierarchy level in the configuration hierarchy. For brevity, the sample shows only one user

defined at this level. The opening <rpc-reply> tag appears on two lines for legibility only.

For information about the attributes in the opening <configuration> tag, see “Requesting

Information from the Candidate Configuration” on page 51.

35Copyright © 2019, Juniper Networks, Inc.

Chapter 3: Controlling the NETCONF Session

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"\
 xmlns:sdx="http://xml.juniper.net/junos/sdx/1.0">
 <data>
 <configurationattributes>
 <system>
 <login>
 <user>
 <user-name>admin</user-name>
 <full-name>Administrator</full-name>
 <!- - other data tag elements for the admin user - ->
 </user>
 </login>
 </system>
 </configuration>
 </data>
</rpc-reply>
]]>]]>

Configuration Change Responses

Configuration change responses are responses to requests that change the state or

contents of the C Series Controller configuration. The NETCONF server indicates

successful execution of a request by returning the <ok/> tag within the <rpc-reply> tag

element:

<rpc-reply xmlns="URN "xmlns:sdx="URL”>
 <ok/>
</rpc-reply>
]]>]]>

If the operation fails, the <rpc-reply> tag element instead encloses an <rpc-error> tag

element that describes the cause of the failure. For information about handling errors,

see “Handling an Error or Warning” on page 37.

For information about changing C Series Controller configuration, see

“Changing Configuration Information” on page 65. For a summary of the available

configuration tag elements, see the SRC XML API Configuration Reference.

Using a Standard API to Parse Response Tag Elements

Client applications can handle incoming XML tag elements by feeding them to a parser

that is based on a standard API such as the Document Object Model (DOM) or Simple

API for XML (SAX). Describing how to implement and use a parser is beyond the scope

of this document.

Routines in the DOM accept incoming XML and build a tag hierarchy in the client

application’smemory. TherearealsoDOMroutines formanipulatinganexistinghierarchy.

DOM implementations are available for several programming languages, including C,

C++, Perl, and Java. For detailed information, see the Document Object Model (DOM)

Level 1 Specification from theWorldWideWeb Consortium (W3C) at

http://www.w3.org/TR/REC-DOM-Level-1. Additional information is available from the

Comprehensive Perl Archive Network (CPAN) at

http://search.cpan.org/~tjmather/XML-DOM/lib/XML/DOM.pm.

Copyright © 2019, Juniper Networks, Inc.36

SRC PE 4.13.x NETCONF API Guide

http://www.w3.org/TR/REC-DOM-Level-1
http://search.cpan.org/~tjmather/XML-DOM/lib/XML/DOM.pm

One potential drawback with DOM is that it always builds a hierarchy of tag elements,

which can become very large. If a client application needs to handle only a subhierarchy

at a time, it can use a parser that implements SAX instead. SAX accepts XML and feeds

the tag elements directly to the client application,whichmust build its own tag hierarchy.

For more information, see the official SAX website at http://sax.sourceforge.net.

Handling an Error orWarning

If theNETCONF server encounters an error condition, it emits an<rpc-error> tag element

containing tag elements that describe the error:

<rpc-reply xmlns="URN "xmlns:sdx="URL”>
 <rpc-error>
 <error-severity>error-severity</error-severity>
 <error-path>error-path</error-path>
 <error-message>error-message</error-message>
 <error-info>
 <bad-element>command-or-statement</bad-element>
 </error-info>
 </rpc-error>
</rpc-reply>
]]>]]>

• <bad-element> identifies the command or configuration statement that was being

processed when the error or warning occurred. For a configuration statement, the

<error-path> tag element enclosed in the <rpc-error> tag element specifies the

statement’s parent hierarchy level.

• <error-message> describes the error or warning in a natural-language text string.

• <error-path> specifies the path to the configuration hierarchy level at which the error

or warning occurred, in the form of the CLI configuration mode banner.

• <error-severity> indicates the severity of the event that caused the NETCONF server

to return the <rpc-error> tag element. The two possible values are error andwarning.

An error can occur while the server is performing any of the following operations, and the

server can send a different combination of child tag elements in each case:

• Processing an operational request submitted by a client application

• Changing, committing, or closing a configuration as requested by a client application

• Parsingaconfigurationsubmittedbyaclientapplication inan<edit-config> tagelement

Client applications must be prepared to receive and handle an <rpc-error> tag element

at any time. The information in any response tag elements already received and related

to the current request might be incomplete. The client application can include logic for

deciding whether to discard or retain the information.

When the <error-severity> tag element has the value error, the usual response is for the

client application to discard the information and terminate. When the <error-severity>

tag element has the value warning, indicating that the problem is less serious, the usual

response is for the client application to log the warning or pass it to the user, but to

continue parsing the server’s response.

37Copyright © 2019, Juniper Networks, Inc.

Chapter 3: Controlling the NETCONF Session

http://sax.sourceforge.net

Locking and Unlocking the Candidate Configuration

When a client application is requesting or changing configuration information, it can use

one of twomethods to access the configuration:

• Lock the candidate configuration, which prevents other users or applications from

changing it until the application releases the lock (equivalent to the CLI configure

exclusive command).

• Change the candidate configuration without locking it. We do not recommend this

method, becauseof thepotential for conflictswith changesmadebyother applications

or users that are editing the configuration at the same time.

If anapplication is simply requestingconfiguration informationandnotchanging it, locking

the configuration is not required. The application can begin requesting information

immediately, asdescribed in “RequestingConfiguration Information”onpage49.However,

it is appropriate to lock the configuration if it is important that the information being

returned not change during the session.

For more information about locking and unlocking the candidate configuration, see the

following sections:

• Locking the Candidate Configuration on page 38

• Unlocking the Candidate Configuration on page 39

Locking the Candidate Configuration

To lock the candidate configuration, a client application emits the <lock> and <target>

tag elements and the <candidate/> tag in the <rpc> tag element:

<rpc>
<lock>
<target>
<candidate/>

</target>
</lock>

</rpc>
]]>]]>

Emitting these tag elements prevents other users or applications from changing the

candidate configurationuntil the lock is released (equivalent to theCLI configureexclusive

command). We recommend locking the configuration before youmake changes,

particularly on C Series Controllers where multiple users are authorized to change the

configuration. A commit operation applies to all changes in the candidate configuration,

not just thosemadeby theuseror application that requests thecommit.Allowingmultiple

users or applications to make changes simultaneously can lead to unexpected results.

The NETCONF server confirms that it has locked the candidate by returning the <ok/>

tag in the <rpc-reply> tag element:

<rpc-reply xmlns="URN” xmlns:junos=”URL”>

Copyright © 2019, Juniper Networks, Inc.38

SRC PE 4.13.x NETCONF API Guide

 <ok/>
</rpc-reply>
]]>]]>

If the server cannot lock the configuration, the <rpc-reply> tag element instead encloses

an <rpc-error> tag element explaining the reason for the failure. Reasons for the failure

can include the following:

• Another user or application has already locked the candidate configuration. The error

message reports theNETCONF session identifier of the user or application. If the client

application has the necessary access privilege, it can terminate the session that holds

the lock.Formore information, see “TerminatingAnotherNETCONFSession”onpage40.

• The candidate configuration already includes changes that have not yet been

committed. To commit the changes, see “Committing a Configuration” on page 85. To

discard uncommitted changes, see “Replacing the Candidate Configuration with the

Running Configuration” on page 73.

Only one application can hold the lock on the candidate configuration at a time. Other

users and applications can read the candidate configuration while it is locked. The lock

persists until either the NETCONF session ends or the client application unlocks the

configuration by emitting the <unlock> tag element, as described in “Unlocking the

Candidate Configuration” on page 39.

If the candidate configuration is not committed before the client application unlocks it,

or if the NETCONF session ends for any reason before the changes are committed, the

changes are automatically discarded. The candidate and committed configurations

remain unchanged.

Unlocking the Candidate Configuration

As long as a client application holds a lock on the candidate configuration, other

applications and users cannot change the candidate. To unlock the candidate

configuration, the client application includes the <unlock> and <target> tag elements

and the <candidate/> tag in the<rpc> tag element:

<rpc>
<unlock>
<target>
<candidate/>

</target>
</unlock>

</rpc>
]]>]]>

The NETCONF server confirms that it has unlocked the candidate by returning the <ok/>

tag in the <rpc-reply> tag element:

<rpc-reply xmlns="URN” xmlns:junos=”URL”>
 <ok/>
</rpc-reply>
]]>]]>

39Copyright © 2019, Juniper Networks, Inc.

Chapter 3: Controlling the NETCONF Session

If the server cannotunlock theconfiguration, the<rpc-reply> tagelement insteadencloses

an <rpc-error> tag element explaining the reason for the failure.

Terminating Another NETCONF Session

Aclientapplication’s attempt to lock thecandidateconfigurationcan fail becauseanother

user or application already holds the lock, as mentioned in “Locking the Candidate

Configuration” on page 38. In this case, the NETCONF server returns an error message

that includes the username and process ID (PID) for the entity that holds the existing

lock:

<rpc-reply xmlns="URN” xmlns:junos=”URL”>
 <rpc-error>
 <error-severity>error</error-severity>
 <error-message>
 configuration database locked by:

user terminal (pid PID) on since YYYY-MM-DD hh:mm:ss TZ, idle hh:mm:ss

 exclusive
 </error-message>
 </rpc-error>
</rpc-reply>
]]>]]>

If the client application has maintenance permission, it can end the session that holds

the lock by emitting the <kill-session> and <session-id> tag elements in an <rpc> tag

element. The <session-id> tag element specifies the process ID (PID) obtained from the

error message:

<rpc>
<kill-session>
<session-id>PID</session-id>

</kill-session>
</rpc>
]]>]]>

The NETCONF server confirms that it has terminated the other session by returning the

<ok/> tag in the <rpc-reply> tag element:

<rpc-reply xmlns="URN" xmlns:sdx="URL”>
 <ok/>
</rpc-reply>
]]>]]>

Werecommendthat theapplication include logic fordeterminingwhether it is appropriate

to terminate another session, based on factors such as the identity of the user or

application that holds the lock, or the length of idle time.

Whena session is terminated, theNETCONFserver that is servicing the session rolls back

all uncommitted changes that have beenmade during the session.

Copyright © 2019, Juniper Networks, Inc.40

SRC PE 4.13.x NETCONF API Guide

The following example shows how to terminate a session:

NETCONF ServerClient Application

<rpc>
<kill-session>
<session-id>3250</session-id>
</kill-session>
</rpc>
]]>]]>

<rpc-reply xmlns=”URN” xmlns:sdx=”URL” >
<ok/>
</rpc-reply>
]]>]]>

Ending a NETCONF Session and Closing the Connection

When a client application is finishedmaking requests, it ends the NETCONF session by

emitting the empty <close-session/> tag within an <rpc> tag element:

<rpc>
<close-session/>

</rpc>
]]>]]>

In response, the NETCONF server emits the <ok/> tag enclosed in an <rpc-reply>

tag element:

<rpc-reply xmlns="URN "xmlns:sdx="URL”>
 <ok/>
</rpc-reply>
]]>]]>

For an example of the exchange of closing tag elements, see “Closing the NETCONF

Session” on page 46.

Because the connection to the NETCONF server is an SSH subsystem, it closes

automatically when the NETCONF session ends.

Displaying CLI Output as XML Tag Elements

To display the output from a CLI command as NETCONF and SRC XML tag elements

insteadofas thedefault formattedASCII, pipe thecommandto thedisplayxmlcommand.

The tag elements that describe SRC configuration or operational data belong to the SRC

XML API, which defines the content that can be retrieved andmanipulated by the

NETCONF API.

The following example shows the output from the show system information command

issued on a CSeries Controller (the opening <system-info> tag appears onmultiple lines

for legibility only):

41Copyright © 2019, Juniper Networks, Inc.

Chapter 3: Controlling the NETCONF Session

user@host> show system information |display xml
<?xml version="1.0" encoding="utf-8"?>
 <system-info sdx:style="normal"\
 xmlns="http://xml.juniper.net/sdx/system-info"\
 xmlns:sdx="http://xml.juniper.net/sdx">
 <cpu xmlns="http://xml.juniper.net/sdx/cpu">
 <number>4</number>
 <model>Dual Core AMD Opteron(tm) Processor 265</model>
 <speed>1804.108 MHz</speed>
 </cpu>
 <!- - other child tags of <system-info> - ->
 </system-info>

Example of a NETCONF Session

This section describes the sequence of tag elements in a sample NETCONF session. The

client application begins by establishing a connection to a NETCONF server. See the

following sections:

• Exchanging Initialization Tag Elements on page 42

• Sending an Operational Request on page 43

• Locking the Configuration on page 43

• Changing the Configuration on page 44

• Committing the Configuration on page 45

• Unlocking the Configuration on page 45

• Closing the NETCONF Session on page 46

Exchanging Initialization Tag Elements

After the client application establishes a connection to a NETCONF server, the two

exchange <hello> tag elements, as shown in the following example. For legibility, the

exampleplaces theclient application’s<hello> tagelementbelowtheNETCONFserver’s.

The two parties can actually emit their <hello> tag elements at the same time. For

informationabout the]]>]]>character sequenceused in this and the followingexamples,

see “GeneratingWell-Formed XML Documents” on page 22. For a detailed discussion of

the<hello> tag element, see “Exchanging <hello> Tag Elements” on page 28.

Client ApplicationNETCONF Server

<hello>
<capabilities>
<capability>urn:ietf:params:xml:ns:netconf:base:1.0</capability>
<capability>urn:ietf:params:xml:ns:netconf:capability:candidate:1.0</capability>
<capability>urn:ietf:params:xml:ns:netconf:capability:url:1.0?candidate:1.0</capability>
<capability>http://xml.juniper.net/netconf/junos/1.0</capability>
<capability>http://xml.juniper.net/netconf/junos/sdx/1.0</capability>
</capabilities>
<session-id>3911</session-id>
</hello>
]]>]]>

Copyright © 2019, Juniper Networks, Inc.42

SRC PE 4.13.x NETCONF API Guide

Client ApplicationNETCONF Server

<hello>
<capabilities>
<capability>urn:ietf:params:xml:ns:netconf:base:1.0</capability>
<capability>urn:ietf:params:xml:ns:netconf:capability:candidate:1.0</capability>
<capability>urn:ietf:params:xml:ns:netconf:capability:url:1.0?candidate:1.0</capability>
<capability>http://xml.juniper.net/netconf/junos/1.0</capability>
<capability>http://xml.juniper.net/netconf/junos/sdx/1.0</capability>
</capabilities>
</hello>
]]>]]>

Sending an Operational Request

The client application now emits the <get-system-info> tag element to request

information about the C Series Controller’s chassis hardware. The NETCONF server

returns the requested information in the <system-info> tag element.

NETCONF ServerClient Application

<rpc>
<get-system-info/>
</rpc>
]]>]]>

<rpc-reply xmlns=”URN” xmlns:sdx=”URL” >
<system-info>
<cpu>
<!-- other tags for <cpu> -->
</cpu>
<!-- other tags for <system-info> -->
</system-info>
</rpc-reply>
]]>]]>

Locking the Configuration

The client application then prepares to incorporate a change into the candidate

configuration by emitting the <lock> tag to prevent any other users or applications from

altering the candidate configuration at the same time. To confirm that the candidate

configuration is locked, the NETCONF server returns an <ok/> tag in an <rpc-reply> tag

43Copyright © 2019, Juniper Networks, Inc.

Chapter 3: Controlling the NETCONF Session

element. Formore informationabout locking theconfiguration, see “Locking theCandidate

Configuration” on page 38.

NETCONF ServerClient Application

<rpc>
<lock>
<target>
<candidate/>
</target>
</lock>
</rpc>
]]>]]>

<rpc-reply xmlns=”URN” xmlns:sdx=”URL” >
<ok/>
</rpc-reply>
]]>]]>

Changing the Configuration

The client application now emits tag elements to create a new login class called

network-mgmt at the [edit system login class] hierarchy level in the candidate

configuration. To confirm that it incorporated the changes, the NETCONF server returns

an <ok/> tag in an <rpc-reply> tag element. (Understanding the meaning of these tag

elements is not necessary for the purposes of this example, but for information about

them, see “Changing Configuration Information” on page 65.)

NETCONF ServerClient Application

<rpc>
<edit-config>
<target>
<candidate/>
</target>
<config>
<configuration>
<system>
<login>
<class>
<name>network-mgmt</name>
<permissions>configure</permissions>
<permissions>snmp</permissions>
<permissions>system</permissions>
</class>
</login>
</system>
</configuration>
</config>
</edit-config>
</rpc>
]]>]]>

Copyright © 2019, Juniper Networks, Inc.44

SRC PE 4.13.x NETCONF API Guide

NETCONF ServerClient Application

<rpc-reply xmlns=”URN” xmlns:sdx=”URL” >
<ok/>
</rpc-reply>
]]>]]>

Committing the Configuration

Theclientapplicationcommits thecandidateconfiguration.Toconfirmthat it committed

the candidate configuration, the NETCONF server returns an <ok/> tag in an <rpc-reply>

tag element. For more information about the commit operation, see “Committing a

Configuration” on page 85.

NETCONF ServerClient Application

<rpc>
<commit/>
</rpc>
]]>]]>

<rpc-reply xmlns=”URN” xmlns:sdx=”URL” >
<ok/>
</rpc-reply>
]]>]]>

Unlocking the Configuration

The client application unlocks (and by implication closes) the candidate configuration.

To confirm that it unlocked the candidate configuration, the NETCONF server returns an

<ok/> tag in an <rpc-reply> tag element. For more information about unlocking the

configuration, see “Unlocking the Candidate Configuration” on page 39.

NETCONF ServerClient Application

<rpc>
<unlock>
<target>
<candidate/>
</target>
</unlock>
</rpc>
]]>]]>

<rpc-reply xmlns=”URN” xmlns:sdx=”URL” >
<ok/>
</rpc-reply>
]]>]]>

45Copyright © 2019, Juniper Networks, Inc.

Chapter 3: Controlling the NETCONF Session

Closing the NETCONF Session

The client application closes the NETCONF session. For more information about closing

the session, see “Ending a NETCONF Session and Closing the Connection” on page 41.

NETCONF ServerClient Application

<rpc>
<close-session/>
</rpc>
]]>]]>

<rpc-reply xmlns=” URN ” xmlns:sdx=” URL ” >
<ok/>
</rpc-reply>
]]>]]>

Copyright © 2019, Juniper Networks, Inc.46

SRC PE 4.13.x NETCONF API Guide

CHAPTER 4

Requesting Information

This chapter explains how to use the SRC Extensible Markup Language (XML) and

NETCONF application programming interfaces (APIs) to request information about C

Series Controller status and the current configuration.

The tagelements foroperational requestsaredefined in theSRCXMLAPIandcorrespond

to command-line interface (CLI) operational commands,which are described in theSRC

software command references. There is a request tag element for many commands in

the CLI show family of commands.

The tag element for configuration requests is the NETCONF <get-config> tag element.

It corresponds to the CLI configuration mode show command, which is described in the

SRC PE CLI User Guide. The SRC XML tag elements that make up the content of both

requests and the NETCONF server’s responses correspond to CLI configuration

statements, which are described in the SRC software documentation set.

In addition to informationabout thecurrent configuration, client applicationscan request

other configuration-related information.

This chapter includes the following topics:

• Request Procedure Overview on page 47

• Requesting Operational Information on page 48

• Requesting Configuration Information on page 49

Request Procedure Overview

To request information from the NETCONF server, a client application performs the

procedures described in the indicated sections:

1. Establishes a connection to the NETCONF server on the C Series Controller, as

described in “Connecting to the NETCONF Server” on page 27.

2. Opens a NETCONF session, as described in “Starting the NETCONF Session” on

page 28.

3. If making configuration requests, optionally locks the candidate configuration, as

described in “Locking the Candidate Configuration” on page 38.

47Copyright © 2019, Juniper Networks, Inc.

4. Makes any number of requests one at a time, freely intermingling operational and

configuration requests. See “Requesting Operational Information” on page 48 and

“Requesting Configuration Information” on page 49.

The application can also intermix requests with configuration changes, which are

described in “Changing Configuration Information” on page 65.

5. Accepts the tag stream emitted by the NETCONF server in response to each request

and extracts its content, as described in “Parsing the NETCONF Server Response” on

page 34.

6. Unlocks the candidate configuration if it is locked, as described in “Unlocking the

Candidate Configuration” on page 39. Other users and applications cannot change

the configuration while it remains locked.

7. Ends the NETCONF session and closes the connection to the C Series Controller, as

described in “Ending a NETCONF Session and Closing the Connection” on page 41.

Requesting Operational Information

To request information about the current status of a C Series Controller, a client

application emits the specific tag element from theSRCXMLAPI that returns thedesired

information. For example, the <get-interfaces> tag element corresponds to the

show interfaces command, and the <get-system-info> tag element requests the same

information as the show system information command.

For complete information about the operational request tag elements available in the

current SRCsoftware release, see the chapters in theSRCXMLAPIOperational Reference

that are titled “ Mapping Between Operational Tag Elements and CLI Commands” and

“ Summary of Operational Request Tag Elements.”

The application encloses the request tag element in an <rpc> tag element. The syntax

depends on whether the corresponding CLI command has any options:

<rpc>
 <!- - If the command does not have options - ->

<operational-request/>

 <!- - If the command has options - ->
<operational-request>

 <!- - tag elements representing the options - ->
</operational-request>

</rpc>
]]>]]>

The NETCONF server encloses its response in a specific tag element that matches the

request tag element, enclosed in an <rpc-reply> tag element.

<rpc-reply xmlns="URN" xmlns:sdx="URL”>
 <operational-response xmlns="URL-for-DTD">
 <!- - SRC XML tag elements for the requested information - ->
 </operational-response>
</rpc-reply>
]]>]]>

Copyright © 2019, Juniper Networks, Inc.48

SRC PE 4.13.x NETCONF API Guide

The opening tag for each operational response includes the xmlns attribute to define the

XML namespace for the enclosed tag elements that do not have a prefix (such as sdx:)

in their names. The namespace indicates which XML document type definition (DTD)

defines the set of tag elements in the response. TheSRCXMLAPI defines separateDTDs

for operational responses from different software components. For instance, the DTD

for software component information is called SdxComponentList.dtd. The division into

separate DTDs and XML namespaces means that a tag element with the same name

can have distinct functions depending on which DTD it is defined in.

The namespace is a URL of the following form:

http://xml.juniper.net/sdx/category

where category specifies the DTD for the top-level tag.

For example, http://xml.juniper.net/sdx/sdx-component-listwould be the namespace for

the SdxComponentList DTD.

The SRC XML API Operational Reference includes the text of the SRC XML DTDs for

operational responses.

Parsing the <output> Tag Element

If the SRC XML API does not define a response tag element for the type of output

requested by a client application, the NETCONF server encloses its response in an

<output> tag element. The tag element’s contents are usually one or more lines of

formatted ASCII output like that displayed by the CLI on the computer screen.

NOTE: The content and formatting of data within an <output> tag element

aresubject tochange, soclientapplicationsmustnotdependonthem.Future
versions of the SRC XML API will define specific response tag elements
(instead of<output> tag elements) formore commands. Client applications

that rely on the content of<output> tag elementswill not be able to interpret

the output from future versions of the SRC XML API.

Requesting Configuration Information

To request information about a configuration onaCSeriesController, a client application

encloses the <get-config>, <source>, and <filter> tag elements in an <rpc> tag element.

By including the appropriate child tag element in the <source> tag element, the client

application requests information from either the candidate or active configuration. By

including the appropriate child tag elements in the <filter> tag element, the application

can request the entire configuration or portions of it:

<rpc>
<get-config>

 <source>
 <!- - tag specifying the source configuration - ->

49Copyright © 2019, Juniper Networks, Inc.

Chapter 4: Requesting Information

http://xml.juniper.net/sdx/category
http://xml.juniper.net/sdx/sdx-component-list

 </source>
 <filter type="subtree">
 <!- - tag elements representing the configuration elements to
return - ->
 </filter>

</get-config>
</rpc>
]]>]]>

The type="subtree"attribute in theopening<filter> tag indicates that theclientapplication

is using XML tag elements to represent the configuration elements about which it is

requesting information. For information about the syntax used within the <filter> tag

element to represent elements, see “Specifying the Scope of Configuration Information

to Return” on page 51.

NOTE: If the client application locks the candidate configuration before
making requests, it needs to unlock the configuration after making its read
requests.Otherusersandapplicationscannotchange theconfigurationwhile
it remains locked. For more information, see “Locking and Unlocking the
Candidate Configuration” on page 38.

The NETCONF server encloses its reply in <configuration>, <data>, and <rpc-reply> tag

elements. It includes attributes in the opening <configuration> tag that indicate the XML

namespace for the enclosed tag elements andwhen the configurationwas last changed

or committed. For information about the attributes, see “Requesting Information from

the Candidate Configuration” on page 51.

<rpc-reply xmlns="URN" xmlns:sdx="URL”>
 <data>
 <configuration attributes>
 <!- - SRC XML tag elements representing configuration elements -
 ->
 </configuration>
 </data>
</rpc-reply>
]]>]]>

If an XML tag element is returned within an <undocumented> tag element, the

correspondingconfigurationelement isnotdocumented in theSRCsoftwareconfiguration

guides or officially supported by Juniper Networks. Most often, the enclosed element is

used for debugging only by Juniper Networks personnel. In a smaller number of cases,

theelement isno longer supportedorhasbeenmoved toanotherareaof theconfiguration

hierarchy, but appears in the current location for backward compatibility.

Client applications can also request other configuration-related information.

The following sections describe how a client application specifies the source and scope

of configuration information returned by the NETCONF server:

• Requesting Information from the Candidate Configuration on page 51

• Specifying the Scope of Configuration Information to Return on page 51

Copyright © 2019, Juniper Networks, Inc.50

SRC PE 4.13.x NETCONF API Guide

Requesting Information from the Candidate Configuration

To request information from the candidate configuration, a client application includes

the<source> tag element and<candidate/> tag in<rpc>and<get-config> tag elements:

<rpc>
 <get-config>

<source>
<candidate/>

</source>
 <filter>
 <!- - tag elements representing the configuration elements to
return - ->
 </filter>
 </get-config>
</rpc>
]]>]]>

NOTE: If requesting theentireconfiguration, theapplicationomits the<filter>

tag element. For information about the <filter> tag element, see “Specifying

the Scope of Configuration Information to Return” on page 51.

The NETCONF server encloses its reply in <configuration>, <data>, and <rpc-reply> tag

elements. In the opening <configuration> tag, it includes the xmlns attribute to specify

the namespace for the enclosed tag elements.

When returning information from the candidate configuration, the NETCONF server also

includes attributes that indicate when the configuration last changed (they appear on

multiple lines here only for legibility):

<rpc-reply xmlns="URN" xmlns:sdx="URL”>
 <data>
 <configuration xmlns="URL" sdx:changed-seconds=seconds" \
 sdx:changed-localtime="YYYY-MM-DD hh:mm:ss TZ">
 <!- - SRC XML tag elements representing the configuration - ->
 </configuration>
 </data>
</rpc-reply>
]]>]]>

sdx:changed-localtime represents the time of the last change as the date and time in the

C Series Controller’s local time zone.

sdx:changed-seconds represents the time of the last change as the number of seconds

since midnight on 1 January 1970.

Specifying the Scope of Configuration Information to Return

By including the appropriate child tag elements in the <filter> tag element within the

<rpc> and <get-config> tag elements, a client application can request the entire

configuration or portions of it:

51Copyright © 2019, Juniper Networks, Inc.

Chapter 4: Requesting Information

<rpc>
 <get-config>
 <source>
 <candidate/>
 </source>

<filter>
 <!- - tag elements representing the configuration elements to
return - ->

</filter>
 </get-config>
</rpc>
]]>]]>

For information about requesting different amounts of configuration information, see

the following sections:

• Requesting the Complete Configuration on page 52

• Requesting a Hierarchy Level or Container Object Without an Identifier on page 53

• Requesting All Configuration Objects of a Specified Type on page 54

• Requesting Identifiers for Configuration Objects of a Specified Type on page 56

• Requesting One Configuration Object on page 58

• Requesting Specific Child Tags for a Configuration Object on page 60

• Requesting Multiple Configuration Elements Simultaneously on page 62

Requesting the Complete Configuration

To request the entire candidate configuration, a client application encloses <get-config>

and <source> tag elements and the <candidate/> tag in an <rpc> tag element:

<rpc>
<get-config>
<source>
<candidate/>

</source>
</get-config>

</rpc>
]]>]]>

The NETCONF server encloses its reply in <configuration>, <data>, and <rpc-reply> tag

elements. For information about the attributes in the opening <configuration> tag, see

“Requesting Information from the Candidate Configuration” on page 51.

<rpc-reply xmlns="URN "xmlns:sdx="URL”>
 <data>
 <configuration attributes>
 <!- - SRC XML tag elements representing the configuration - ->
 </configuration>
 </data>
</rpc-reply>
]]>]]>

Copyright © 2019, Juniper Networks, Inc.52

SRC PE 4.13.x NETCONF API Guide

Requesting a Hierarchy Level or Container ObjectWithout an Identifier

To request complete information about all child configuration elements at a hierarchy

level or in a container object that does not have an identifier, a client application emits

a <filter> tag element that encloses the tag elements representing all levels in the

configuration hierarchy from the root (represented by the <configuration> tag element)

down to the immediate parent level of the level or container object, which is represented

by an empty tag. The entire request is enclosed in an <rpc> tag element:

<rpc>
 <get-config>
 <source>

<!- - tag specifying the source configuration - ->
 </source>
 <filter type="subtree">
 <configuration>

<!- - opening tags for each parent of the requested level -
->

<level-or-container/>
<!- - closing tags for each parent of the requested level -

->
 </configuration>
 </filter>
 </get-config>
</rpc>
]]>]]>

For information about the <source> tag element, see “Requesting Information from the

Candidate Configuration” on page 51.

The NETCONF server returns the requested section of the configuration in <data> and

<rpc-reply> tag elements. For information about the attributes in the opening

<configuration> tag, see “Requesting Information from the Candidate Configuration” on

page 51.

<rpc-reply xmlns="URN" xmlns:sdx="URL”>
 <data>
 <configuration attributes>
 <!- - opening tags for each parent of the level - ->
 <level-or-container>
 <!- - child tag elements of the level or container - ->
 </level-or-container>
 <!- - closing tags for each parent of the level - ->
 </configuration>
 </data>
</rpc-reply>
]]>]]>

The application can also request additional configuration elements of the same or other

types by including the appropriate tag elements in the same <get-config> tag element.

Formore information, see “RequestingMultiple Configuration Elements Simultaneously”

on page 62.

53Copyright © 2019, Juniper Networks, Inc.

Chapter 4: Requesting Information

The following example shows how to request the contents of the [edit system login]

hierarchy level in the candidate configuration.

NETCONF ServerClient Application

<rpc>
<get-config>
<source>
<candidate/>
</source>
<filter>
<configuration>
<system>
<login/>
</system>
</configuration>
</filter>
</get-config>
</rpc>
]]>]]>

<rpc-reply xmlns=”URN” xmlns:sdx=”URL” >
<data>
<configuration xmlns=”URL” \
sdx:changed-seconds="seconds" \
sdx:changed-localtime="timestamp">
<system>
<login>
<user>
<name>barbara</name>
<full-name>Barbara Anderson</full-name>
<class>super-user</class>
<uid>632</uid>
</user>
<!-- other child tag elements of <login> -->
</login>
</system>
</configuration>
</data>
</rpc-reply>
]]>]]>

Requesting All Configuration Objects of a Specified Type

To request complete information about all configuration objects of a specified type in a

hierarchy level, a client application emits a <filter> tag element that encloses the tag

elements representing all levels in the configuration hierarchy from the root (represented

by the <configuration> tag element) down to the immediate parent level for the object

type. An empty tag represents the requested object type. The entire request is enclosed

in an <rpc> tag element:

<rpc>
 <get-config>
 <source>
 <!- - tag specifying the source configuration - ->
 </source>

Copyright © 2019, Juniper Networks, Inc.54

SRC PE 4.13.x NETCONF API Guide

 <filter type="subtree">
 <configuration>
 <!- - opening tags for each parent of the requested object
type - ->

<object-type/>
 <!- - closing tags for each parent of the requested object
type - ->
 </configuration>
 </filter>
 </get-config>
</rpc>
]]>]]>

For information about the <source> tag element, see “Requesting Information from the

Candidate Configuration” on page 51.

This type of request is useful when the object’s parent hierarchy level hasmore than one

type of child object. If the requested object is the only child type that can occur in its

parent hierarchy level, then this type of request yields the same output as a request for

the complete parent hierarchy, which is described in “Requesting a Hierarchy Level or

Container Object Without an Identifier” on page 53.

The NETCONF server returns the requested objects in <data> and <rpc-reply> tag

elements. For information about the attributes in the opening <configuration> tag, see

“Requesting Information from the Candidate Configuration” on page 51.

<rpc-reply xmlns="URN "xmlns:sdx="URL”>
 <data>
 <configuration attributes>
 <!- - opening tags for each parent of the object type - ->
 <first-object>
 <!- - child tag elements for the first object - ->
 </first-object>
 <second-object>
 <!- - child tag elements for the second object - ->
 </second-object>
 <!- - additional instances of the object - ->
 <!- - closing tags for each parent of the object type - ->
 </configuration>
 </data>
</rpc-reply>
]]>]]>

The application can also request additional configuration elements of the same or other

types by including the appropriate tag elements in the same <get-config> tag element.

Formore information, see “RequestingMultiple Configuration Elements Simultaneously”

on page 62.

55Copyright © 2019, Juniper Networks, Inc.

Chapter 4: Requesting Information

The followingexampleshowshowto requestcomplete informationaboutall radius-server

objects at the [edit system] hierarchy level in the candidate configuration.

NETCONF ServerClient Application

<rpc>
<get-config>
<source>
<candidate/>
</source>
<filter>
<configuration>
<system>
<radius-server/>
</system>
</configuration>
</filter>
</get-config>
</rpc>
]]>]]>

<rpc-reply xmlns=”URN” xmlns:sdx=”URL” >
<data>
<configuration xmlns=”URL” \
sdx:changed-seconds="seconds" \
sdx:changed-localtime="timestamp">
<system>
<radius-server>
<address>10.25.34.166</address>
<port>1812</port>
<secret>9Pf3900REcr/9t...</secret>
<timeout>5</timeout>
<retry>3</retry>
</radius-server>
<radius-server>
<address>10.25.6.204</address>
<port>1812</port>
<secret>9K5Kvxd2gJZUi-d...</secret>
<timeout>5</timeout>
<retry>3</retry>
</radius-server>
</system>
</configuration>
</data>
</rpc-reply>
]]>]]>

Requesting Identifiers for Configuration Objects of a Specified Type

To request output that showsonly the identifier for eachconfigurationobject of a specific

type in a hierarchy, a client application emits a <filter> tag element that encloses the tag

elements representingall levels of the configurationhierarchy fromthe root (represented

by the <configuration> tag element) down to the immediate parent level for the object

type. The object type is represented by its container tag element enclosing an empty

<name/> tag. (The <name> tag element can always be used, even if the actual identifier

Copyright © 2019, Juniper Networks, Inc.56

SRC PE 4.13.x NETCONF API Guide

tag element has a different name. The actual name is also valid.) The entire request is

enclosed in an <rpc> tag element:

<rpc>
 <get-config>
 <source>
 <!-tag specifying the source configuration - -> -
 </source>
 <filter type="subtree">
 <configuration>

<!- - opening tags for each parent of the object type - ->
<object-type>

<name/>
</object-type>
<!- - closing tags for each parent of the object type - ->

 </configuration>
 </filter>
 </get-config>
</rpc>
]]>]]>

For information about the <source> tag element, see “Requesting Information from the

Candidate Configuration” on page 51.

NOTE: It is not possible to request only identifiers for object types that have
multiple identifiers. However, for many such objects the identifiers are the
only child tag elements, so requesting complete information yields the same
output as requesting only identifiers. For instructions, see “Requesting All
Configuration Objects of a Specified Type” on page 54.

The NETCONF server returns the requested objects in <data> and <rpc-reply> tag

elements (here, objects for which the identifier tag element is called <name>). For

information about the attributes in the opening <configuration> tag, see “Requesting

Information from the Candidate Configuration” on page 51.

<rpc-reply xmlns="URN" xmlns:sdx="URL”>
 <data>
 <configuration attributes>

<!- - opening tags for each parent of the object type - ->
 <first-object>
 <name>identifier-for-first-object</name>
 </first-object>
 <second-object>
 <name>identifier-for-second-object</name>
 </second-object>

<!- - additional objects - ->
<!- - closing tags for each parent of the object type - ->

 </configuration>
 </data>
</rpc-reply>
]]>]]>

The application can also request additional configuration elements of the same or other

types by including the appropriate tag elements in the same <get-config> tag element.

57Copyright © 2019, Juniper Networks, Inc.

Chapter 4: Requesting Information

Formore information, see “RequestingMultiple Configuration Elements Simultaneously”

on page 62.

The following example shows how to request the identifier for each file configured at

the [edit system syslog file] hierarchy level in the candidate configuration.

NETCONF ServerClient Application

<rpc>
<get-config>
<source>
<candidate/>
</source>
<filter>
<configuration>
<system>
<syslog>
<file/>
</syslog>
</system>
</configuration>
</filter>
</get-config>
</rpc>
]]>]]>

<rpc-reply xmlns=”URN” xmlns:sdx=”URL” >
<data>
<configuration xmlns=”URL” \
sdx:changed-seconds="seconds" \
sdx:changed-localtime="timestamp">
<system>
<syslog>
<file>
<name>file1</name>
<name>file2</name>
</file>
</syslog>
</system>
</configuration>
</data>
</rpc-reply>
]]>]]>

Requesting One Configuration Object

To request complete informationaboutaspecific configurationobject, a clientapplication

emits a <filter> tag element that encloses the tag elements representing all levels of the

configuration hierarchy from the root (represented by the <configuration> tag element)

down to the immediate parent level for the object.

To represent the requested object, the application emits its container tag element and

eachof its identifier tagelements, completewith identifier value. For objectswitha single

identifier, the <name> tag element can always be used, even if the actual identifier tag

element has a different name. The actual name is also valid. For objects with multiple

identifiers, the actual names of the identifier tag elements must be used. To verify the

Copyright © 2019, Juniper Networks, Inc.58

SRC PE 4.13.x NETCONF API Guide

name of each of the identifiers for a configuration object, see the SRC XML API

Configuration Reference. The entire request is enclosed in an <rpc> tag element:

<rpc>
 <get-config>
 <source>

<!- -tag specifying the source configuration - ->
 </source>
 <filter type="subtree">
 <configuration>

<!- - opening tags for each parent of the object - ->
<object>

<name>identifier</name>
</object>
<!- - closing tags for each parent of the object - ->

 </configuration>
 </filter >
 </get-config>
</rpc>
]]>]]>

For information about the <source> tag element, see “Requesting Information from the

Candidate Configuration” on page 51.

TheNETCONFserver returns the requestedobject in<data>and<rpc-reply> tagelements

(here, an object for which the identifier tag element is called <name>). For information

about the attributes in the opening <configuration> tag, see “Requesting Information

from the Candidate Configuration” on page 51.

<rpc-reply xmlns="URN"xmlns:sdx ="URL">
 <data>
 <configuration attributes>
 <!- - opening tags for each parent of the object - ->
 <object>
 <name>identifier</name>
 <!- - other child tag elements of the object - ->
 </object>
 <!- - closing tags for each parent of the object - ->
 </configuration>
 </data>
</rpc-reply>
]]>]]>

The application can also request additional configuration elements of the same or other

types by including the appropriate tag elements in the same <get-config> tag element.

Formore information, see “RequestingMultiple Configuration Elements Simultaneously”

on page 62.

The following example shows how to request the contents of the user called barbara,

which is at the [edit system login user] hierarchy level in the candidate configuration. To

59Copyright © 2019, Juniper Networks, Inc.

Chapter 4: Requesting Information

specify the desired object, the client application emits the <name>barbara</name>

identifier tag element as the innermost tag element.

NETCONF ServerClient Application

<rpc>
<get-config>
<source>
<candidate/>
</source>
<filter>
<configuration>
<system>
<login>
<user>
<name>barbara</name>
</user>
</login>
</system>
</configuration>
</filter>
</get-config>
</rpc>
]]>]]>

<rpc-reply xmlns=”URN” xmlns:sdx=”URL” >
<data>
<configuration xmlns=”URL” \
sdx:changed-seconds="seconds" \
sdx:changed-localtime="timestamp">
<system>
<login>
<user>
<name>barbara</name>
<full-name>Barbara Anderson</full-name>
<class>super-user</class>
<uid>632</uid>
</user>
<!-- other child tag elements of <login> -->
</login>
</system>
</configuration>
</data>
</rpc-reply>
]]>]]>

Requesting Specific Child Tags for a Configuration Object

To request specific child tag elements for a specific configuration object, a client

application emits a <filter> tag element that encloses the tag elements representing all

levels of the configuration hierarchy from the root (represented by the <configuration>

tag element) down to the immediate parent level for the object. To represent the

requested object, the application emits its container tag element and identifier tag

element. For objectswith a single identifier, the<name> tag element canalwaysbeused,

even if the actual identifier tag element has a different name. The actual name is also

valid. For objectswithmultiple identifiers, theactual namesof the identifier tag elements

Copyright © 2019, Juniper Networks, Inc.60

SRC PE 4.13.x NETCONF API Guide

must be used. To represent the child tag elements to return, it emits each one as an

empty tag. The entire request is enclosed in an <rpc> tag element:

<rpc>
 <get-config>
 <source>

<!- - tag specifying the source configuration - ->
 </source>
 <filter type="subtree">
 <configuration>

<!- - opening tags for each parent of the object - ->
<object>

<name>identifier</name>
<first-child/>
<second-child/>
<!- - empty tag for each additional child to return

- ->
</object>

<!- - closing tags for each parent of the object - ->
 </configuration>
 </filter>
 </get-config>
</rpc>
]]>]]>

For information about the <source> tag element, see “Requesting Information from the

Candidate Configuration” on page 51.

The NETCONF server returns the requested children of the object in <data> and

<rpc-reply> tag elements (here, an object for which the identifier tag element is called

<name>). For information about the attributes in the opening <configuration> tag, see

“Requesting Information from the Candidate Configuration” on page 51.

<rpc-reply xmlns="URN" xmlns:sdx="URL">
 <data>
 <configuration attributes>

<!- - opening tags for each parent of the object - ->
 <object>
 <name>identifier</name>

<!- - requested child tag elements - ->
 </object>

<!- - closing tags for each parent of the object - ->
 </configuration>
 </data>
</rpc-reply>
]]>]]>

The application can also request additional configuration elements of the same or other

types by including the appropriate tag elements in the same <get-config> tag element.

Formore information, see “RequestingMultiple Configuration Elements Simultaneously”

on page 62.

61Copyright © 2019, Juniper Networks, Inc.

Chapter 4: Requesting Information

The following example shows how to request only the address of the next-hop router

for the 192.168.5.0/24 route at the [edit routing-options static route] hierarchy level in the

candidate configuration.

NETCONF ServerClient Application

<rpc>
<get-config>
<source>
<candidate/>
</source>
<filter>
<configuration>
<routing-options>
<static>
<route>
<destination>192.168.5.0/24</destination>
<next-hop/>
</route>
</static>
</routing-options>
</configuration>
</filter>
</get-config>
</rpc>
]]>]]>

<rpc-reply xmlns=”URN” xmlns:sdx=”URL” >
<data>
<configuration xmlns=”URL” \
sdx:changed-seconds="seconds" \
sdx:changed-localtime="timestamp">
<routing-options>
<static>
<route>
<destination>192.168.5.0/24</destination>
<next-hop>192.168.71.254</next-hop>
</route>
</static>
</routing-options>
</configuration>
</data>
</rpc-reply>
]]>]]>

RequestingMultiple Configuration Elements Simultaneously

Withina<get-config> tagelement, a client application can requestmultiple configuration

elements of the same type or different types. The request includes only one <filter> and

<configuration> tag element. (The NETCONF server returns an error if there ismore than

one of each.)

If two requestedobjectshave the sameparenthierarchy level, the client caneither include

both requests within one parent tag element, or repeat the parent tag element for each

request. For example, at the [edit system] hierarchy level the client can request the list

Copyright © 2019, Juniper Networks, Inc.62

SRC PE 4.13.x NETCONF API Guide

of configured services and the identifier tag element for RADIUS servers in either of the

following two ways:

<!- - both requests in one <system> tag element - ->
<rpc>
 <get-config>
 <source>

<!- - tag specifying the source configuration - ->
 </source>
 <filter type="subtree">
 <configuration>
 <system>
 <services/>
 <radius-server>
 <name/>
 </radius-server>
 </system>
 </configuration>
 </filter>
 </get-config>
</rpc>
]]>]]>

<!- - separate <system> tag element for each element - ->
<rpc>
 <get-config>
 <source>
 <!- - tag specifying the source configuration - ->
 </source>
 <filter type="subtree">
 <configuration>
 <system>
 <services/>
 </system>
 <system>
 <radius-server>
 <name/>
 </radius-server>
 </system>
 </configuration>
 </filter>
 </get-config>
</rpc>
]]>]]>

The client can combine requests for any of the following types of information:

• Requesting a Hierarchy Level or Container Object Without an Identifier on page 53

• Requesting All Configuration Objects of a Specified Type on page 54

• Requesting Identifiers for Configuration Objects of a Specified Type on page 56

• Requesting One Configuration Object on page 58

• Requesting Specific Child Tags for a Configuration Object on page 60

63Copyright © 2019, Juniper Networks, Inc.

Chapter 4: Requesting Information

Copyright © 2019, Juniper Networks, Inc.64

SRC PE 4.13.x NETCONF API Guide

CHAPTER 5

Changing Configuration Information

This chapter explains how to use the SRC Extensible Markup Language (XML) and

NETCONF application programming interfaces (APIs) to change C Series Controller

configuration. The NETCONF <edit-config> tag element corresponds to configuration

mode commands in the SRC command-line interface (CLI), which are described in the

SRC PE CLI User Guide. The SRC XML tag elements described here correspond to

configuration statements, which are described in the SRC software documentation set.

This chapter includes the following topics:

• Configuration Changes Overview on page 65

• Changing the Candidate Configuration on page 66

• Defining the New Configuration Data on page 67

• Setting the Default Mode for Incorporating New Configuration Data on page 70

• Replacing the Entire Candidate Configuration on page 71

• Changing Individual Configuration Elements on page 73

Configuration Changes Overview

To change configuration information, the client application performs the procedures

described in the indicated sections:

1. Establishes a connection to the NETCONF server on the C Series Controller, as

described in “Connecting to the NETCONF Server” on page 27.

2. Opens a NETCONF session, as described in “Starting the NETCONF Session” on

page 28.

3. (Optional) Locks the candidate configuration, as described in “Locking the Candidate

Configuration” on page 38. Locking the configuration prevents other users or

applications from changing it at the same time.

4. Encloses the <edit-config> and <target> tag elements and the <candidate/> tag in

an <rpc> tag element. By including various child tag elements, the application can

provide the configuration data either in a file or as a directly loaded tag stream, and

can completely replace the existing configuration or specify the manner in which the

NETCONF server loads the data into the existing candidate or copy. See “Changing

the Candidate Configuration” on page 66.

65Copyright © 2019, Juniper Networks, Inc.

5. Accepts the tag stream emitted by the NETCONF server in response to each request

and extracts its content, as described in “Parsing the NETCONF Server Response” on

page 34.

6. (Optional) Verifies the syntactic correctness of a configuration before attempting to

commit it, asdescribed in “VerifyingaConfigurationBeforeCommitting It” onpage85.

7. Commits changes made to the configuration, as described in

“Committing Configurations” on page 85.

8. Unlocks the candidate configuration if it is locked, as described in “Unlocking the

Candidate Configuration” on page 39. Other users or applications cannot change the

configuration while it remains locked.

9. Ends the NETCONF session and closes the connection to the C Series Controller, as

described in “Ending a NETCONF Session and Closing the Connection” on page 41.

Changing the Candidate Configuration

To change the candidate configuration on a C Series Controller, a client application

encloses the <edit-config> and <target> tag elements and the <candidate/> tag in the

<rpc> tag element:

<rpc>
<edit-config>

 <target>
 <candidate/>
 </target>

 <!- - EITHER - ->
 <config>

<!- - tag elements representing the configuration elements to
change - ->
 </config>
 <!- - OR - ->
 <url>

<!- - location specifier for file containing changes - ->
 </url>

 <default-operation>(merge | none | replace)</default-operation>
</edit-config>

</rpc>
]]>]]>

The other child tag elements in the preceding syntax statement specify additional

parameters, and are described in the indicated sections:

• The <url> or <config> tag element defines the new configuration data to incorporate

into the candidate. See “Defining the New Configuration Data” on page 67.

• The <default-operation> tag element specifies the default manner in which the

NETCONFserver incorporatesnewconfigurationdata into thecandidateconfiguration.

See “Setting the Default Mode for Incorporating New Configuration Data” on page 70.

Copyright © 2019, Juniper Networks, Inc.66

SRC PE 4.13.x NETCONF API Guide

The NETCONF server confirms that it incorporated the configuration data by returning

the <ok/> tag in the <rpc-reply> tag element:

<rpc-reply xmlns="URN" xmlns:sdx="URL">
 <ok/>
</rpc-reply>
]]>]]>

If the NETCONF server cannot incorporate the configuration data, the <rpc-reply> tag

element insteadenclosesan<rpc-error> tagelementexplaining the reason for the failure.

Regardless of the value provided, the NETCONF server for the SRC software performs a

basic syntaxcheckon theconfigurationdata in the<edit-config> tagelement. It performs

a complete syntactic and semantic validation in response to the <commit> tag element

(that is, when the configuration is committed),but not in response to the <edit-config>

tag element. For information about the <commit> tag element, see

“Committing Configurations” on page 85.

The client application can also include the operation attribute in the opening tag for a

configuration element to specify themanner in which to incorporate the element, which

can differ from themanner specified by the <default-operation> tag element. See

“Changing Individual Configuration Elements” on page 73.

Defining the NewConfiguration Data

A client application can use one of two ways to define the new data to incorporate into

the candidate configuration:

• Providing Configuration Data in a File on page 67

• Providing Configuration Data as a Data Stream on page 68

Providing Configuration Data in a File

To provide the new configuration data in a file, a client application emits the <url> and

<edit-config> tag elements in an<rpc> tag element:

<rpc>
 <edit-config>
 <target>
 <candidate/>
 </target>

<url>
<!- - location of file containing configuration data - ->

</url>
<!- - other child tag elements of the <edit-config> tag element - ->

 </edit-config>
</rpc>
]]>]]>

Before loading the file, the client application or an administrator saves XML tag elements

as the contents of the file. The file includes the tag elements representing all levels of

theconfigurationhierarchy fromthe root (representedby the<configuration> tagelement)

down to each element to change. The notation is the same as that used to request

67Copyright © 2019, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

configuration information, asdescribed in “Requesting Information” onpage47. Formore

detailed information about the XML representation of configuration statements, see

“Mapping Configuration Statements to SRC XML Tag Elements” on page 15.

The file named by the <url> tag element can be specified as a local file path, an FTP

location, or a Hypertext Transfer Protocol (HTTP) URL:

• A local filename can have one of the following forms:

• /path/filename—File on amounted file system, either on the local flash disk or on

the hard disk.

• a:filename or a:path/filename—File on the local drive. The default path is / (the

root-level directory). The removablemedia canbe inMS-DOSorUNIX (UFS) format.

• A filename on an FTP server has the following form:

ftp://username:password@hostname/path/filename

• A filename on an HTTP server has the following form:

http://username:password@hostname/path/filename

The default value for the path variable is the home directory for the username. To specify

an absolute path, the application starts the path with the characters%2F, as in

ftp://username:password@hostname/%2Fpath/filename.

The following example shows how to incorporate configuration data stored in the file

/var/configs/user-accounts on the FTP server called cfg-server.mycompany.com.

NETCONF ServerClient Application

<rpc>
<edit-config>
<target>
<candidate/>
</target>
<url>ftp://admin:AdminPwd@cfg-server.mycompany.com/var/configs/user-accounts</url>
</edit-config>
</rpc>
]]>]]>

<rpc-reply xmlns=”URN” xmlns:sdx=”URL” >
<ok/>
</rpc-reply>
]]>]]>

Providing Configuration Data as a Data Stream

To provide configuration data as a data stream, a client application emits <rpc>,

<edit-config>, and <config> tag elements. To specify the configuration elements to

change, theapplicationemits the tagelements representingall levels of theconfiguration

hierarchy from the root (represented by the <configuration> tag element) down to each

element to change. The notation is the same as that used to request configuration

Copyright © 2019, Juniper Networks, Inc.68

SRC PE 4.13.x NETCONF API Guide

http://username:password@hostname/path/filename

information, as described in “Requesting Information” on page 47. For more detailed

informationabout themappingsbetweenconfigurationelementsandXML tagelements,

see “Mapping Configuration Statements to SRC XML Tag Elements” on page 15.

<rpc>
 <edit-config>
 <target>
 <candidate/>
 </target>

<config>
<configuration>

 <!- - tag elements representing the configuration changes - ->

</configuration>
</config>

 <!- - other child tag elements of the <edit-config> tag element - ->
 </edit-config>
</rpc>
]]>]]>

The following example shows how to provide new configuration data for themessages

system log file in a data stream:

NETCONF ServerClient Application

<rpc>
<edit-config>
<target>
<candidate/>
</target>
<config>
<configuration>
<system>
<syslog>
<file>
<name>messages</name>
<contents>
<name>any</name>
<warning/>
</contents>
<contents>
<name>authorization</name>
<info/>
</contents>
</file>
</syslog>
</system>
</configuration>
</config>
</edit-config>
</rpc>
]]>]]>

<rpc-reply xmlns=”URN” xmlns:sdx=”URL” >
<ok/>
</rpc-reply>
]]>]]>

69Copyright © 2019, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

Setting the Default Mode for Incorporating NewConfiguration Data

By default, the NETCONF servermerges new configuration data into the candidate

configuration, according to the following rules:

• A configuration element (hierarchy level or configuration object) that exists in the

candidate but not in the new configuration remains unchanged.

• A configuration element that exists in the new configuration but not in the candidate

is added to the candidate.

• If a configuration element exists in both configurations, the semantics are as follows:

• If a child statementof theconfigurationelement (representedbyachild tagelement)

exists in the candidate but not in the new configuration, it remains unchanged.

• If a child statement exists in the new configuration but not in the candidate, it is

added to the candidate.

• If a child statement exists in both configurations, the value in the new data replaces

the value in the candidate.

Merge mode applies to all elements in the new configuration that do not have the

operation attribute in their opening container tag to specify a different mode. (For

information about the operation attribute, see “Changing Individual Configuration

Elements” on page 73.)

Merge mode is the default mode for incorporating new configuration data (it is used

when a client application does not specify a different mode). To explicitly specify merge

mode, the application can include the <default-operation> tag element with the value

merge in the <edit-config> tag element:

<rpc>
 <edit-config>

<default-operation>merge</default-operation>
 <!- - other child tag elements of the <edit-config> tag element - ->
 </edit-config>
</rpc>
]]>]]>

The client application can specify one of two alternative defaultmodes for incorporating

new configuration data:

• In replacemode, the new configuration data completely replaces the candidate

configuration. To specify replace mode, the candidate application includes the

<default-operation> tagelementwith thevalue replace in the<edit-config> tagelement:

<rpc>
 <edit-config>

<default-operation>replace</default-operation>
 <!- - other child tag elements of the <edit-config> tag element -
->
 </edit-config>
</rpc>

Copyright © 2019, Juniper Networks, Inc.70

SRC PE 4.13.x NETCONF API Guide

]]>]]>

Werecommendusing replacemodeonlywhenyoucompletelyoverwrite thecandidate

configuration with new configuration data. When the default mode is replace, we do

not recommend including the operation attribute on individual configuration elements

in the new configuration to specify a different incorporation mode for them.

It is alsopossible to replace individual configurationelementswhilemergingor creating

others. See “Replacing Configuration Elements” on page 76.

• In no-change mode, configuration elements in the existing candidate configuration

remain unchanged unless the new configuration includes a corresponding element

that has the operation attribute in its opening container tag to specify an incorporation

mode. This mode prevents the NETCONF server from creating parent hierarchy levels

for an element that is being deleted. Formore information, see “Deleting Configuration

Elements” on page 78. To specify no-changemode, the candidate application includes

the <default-operation> tag element with the value none in the <edit-config> tag

element:

<rpc>
 <edit-config>

<default-operation>none</default-operation>
 <!- - other child tag elements of the <edit-config> tag element -
->
 </edit-config>
</rpc>
]]>]]>

If the new configuration data includes a configuration element that does not exist in

the candidate, the NETCONF server returns an error. We recommend using no-change

modeonlywhenyou removeconfigurationelements fromthecandidate configuration.

When creating or modifying elements, applications need to usemergemode.

Replacing the Entire Candidate Configuration

A client application can completely replace the current candidate configuration, either

with new data or by rolling back to a previous configuration.

NOTE: To comply with the NETCONF specification, the NETCONF server
accepts the <delete-config> tag element, which deletes the entire candidate

configuration. However, a commit operation fails if the candidate
configuration does not exist or is completely empty, so the applicationmust
use the <edit-config> or <copy-config> tag element to add data to the

candidate configuration before committing it. See “<delete-config>” on
page 90.

71Copyright © 2019, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

For informationabout completely replacing thecandidateconfiguration, see the following

sections:

• Replacing the Candidate Configuration with Newly Defined Data on page 72

• Replacing the Candidate Configuration with the Running Configuration on page 73

Replacing the Candidate Configuration with Newly Defined Data

To replace the entire candidate configuration with new configuration data, a client

application can use either of twomethods, as described in the following sections.

With either method, the NETCONF server confirms that it replaced the candidate

configuration by returning the <ok/> tag in the <rpc-reply> tag element:

<rpc-reply xmlns="URN" xmlns:sdx=”URL">
 <ok/>
</rpc-reply>
]]>]]>

If the NETCONF server cannot replace the candidate configuration data, the <rpc-reply>

tag element instead encloses an<rpc-error> tag element explaining the reason for the

failure.

Replacing the Configuration with the Contents of a File

Onemethod for replacing the entire candidate configuration is to include the

<copy-config> tag element in the<rpc> tag element. The<source> tag element encloses

the <url> tag element to specify the filename that contains the new configuration data.

The <target> tag element encloses the <candidate/> tag to indicate that the new

configuration data replaces the candidate configuration:

<rpc>
<copy-config>

 <target>
 <candidate/>
 </target>
 <source>
 <url>
 <!- - location specifier for file containing the new
configuration - ->
 </url>
 </source>

</copy-config>
</rpc>
]]>]]>

Setting ReplaceMode as the Default Mode

The othermethod for replacing the entire candidate configuration is to set replacemode

as the default incorporation mode. The candidate configuration includes the

<default-operation>tag elementwith the value replace in the <edit-config> tag element,

as described in “Setting the Default Mode for Incorporating New Configuration Data” on

page 70. To specify thenewconfigurationdata, theapplication includes either a<config>

Copyright © 2019, Juniper Networks, Inc.72

SRC PE 4.13.x NETCONF API Guide

tag element that contains the data or a <url> tag element that names the file containing

the data, as discussed in “Defining the New Configuration Data” on page 67.

<rpc>
 <edit-config>

<default-operation>replace</default-operation>
 <source>

 <!- - EITHER - ->
 <config>
 <!- - tag elements representing the new configuration - ->
 </config>
 <!- - OR - ->
 <url>
 <!- - location specifier for file containing the new
configuration - ->
 </url>

 </source>
 </edit-config>
</rpc>
]]>]]>

Replacing the Candidate Configuration with the Running Configuration

To discard changes made to the candidate configuration andmake its contents match

the contents of the current running (active) configuration, a client application includes

the <discard-changes/> tag in an<rpc> tag element:

<rpc>
<discard-changes/>

</rpc>
]]>]]>

This operation is equivalent to the CLI configuration mode rollback command.

The NETCONF server indicates that it discarded the changes by enclosing the <ok/> tag

in the <rpc-reply> tag element:

<rpc-reply xmlns="URN" xmlns:sdx="URL">
 <ok/>
</rpc-reply>
]]>]]>

Changing Individual Configuration Elements

Although theNETCONFserver bydefaultmergesnewconfigurationdata into the existing

candidate configuration, a client application can also replace, create, or delete individual

configuration elements (hierarchy levels or configuration objects). The same basic tag

elements are emitted for all operations—the<edit-config>,<target>, and either<config>

or <url> tag elements, plus the <candidate/> tag, in an <rpc> tag element:

<rpc>
 <edit-config>

73Copyright © 2019, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

 <target>
 <candidate/>
 </target>

 <!- - EITHER - ->
 <config>
 <configuration>
 <!- - tag elements representing the configuration elements to
 change - ->
 </configuration>
 </config>
 <!- - OR - ->
 <url>
 <!- - location specifier for file containing changes - ->
 </url>

 </edit-config>
</rpc>
]]>]]>

Within the <config> tag element or in the file named by the <url> tag element, the

application defines a configuration element by including the tag elements representing

all levels of the configurationhierarchy from the root (representedby the<configuration>

tag element) down to the immediate parent level for the element. To represent the

element, the application includes its container tag element. The child tag elements

included within the container tag element depend on the operation, and are described

in the following sections.

For more information about the tag elements that represent configuration statements,

see “Mapping Configuration Statements to SRC XML Tag Elements” on page 15. For

information about the tag elements for a specific configuration element, see the SRC

XML API Configuration Reference.

The NETCONF server indicates that it changed the configuration in the requested way

by enclosing the <ok/> tag in the <rpc-reply> tag element:

<rpc-reply xmlns="URN" xmlns:sdx="URL">
 <ok/>
</rpc-reply>
]]>]]>

For more information, see the following sections:

• Merging Configuration Elements on page 74

• Replacing Configuration Elements on page 76

• Creating New Configuration Elements on page 77

• Deleting Configuration Elements on page 78

Merging Configuration Elements

Tomerge configuration elements (hierarchy levels or configuration objects) into the

candidate configuration, a client application emits the basic tag elements described in

“Changing Individual Configuration Elements” on page 73.

Copyright © 2019, Juniper Networks, Inc.74

SRC PE 4.13.x NETCONF API Guide

To represent each element tomerge (either within the <config> tag element or in the file

namedby the<url> tag element), theapplication includes the tagelements representing

its parent hierarchy levels and its container tag element, as described in “Changing

Individual Configuration Elements” on page 73. Within the container tag, the application

includeseachof theelement’s identifier tagelements (if it has them)and the tagelement

for each child to add or for which to set a different value. In the following, the identifier

tag element is called <name>:

<configuration>
 <!- - opening tags for each parent of the element - ->

<element>
<name>identifier</name>

 <!- - - child tag elements to add or change - ->
</element>

 <!- - closing tags for each parent of the element - ->
</configuration>

The NETCONF server merges the new configuration element according to the rules

specified in “Setting the Default Mode for Incorporating New Configuration Data” on

page 70. As described in that section, the application can explicitly specify merge mode

by including the<default-operation>tagelementwith thevaluemerge in the<edit-config>

tag element.

The following example shows how tomerge information for a new interface called eth1

into the [edit interfaces] hierarchy level in the candidate configuration:

NETCONF ServerClient Application

<rpc>
<edit-config>
<target>
<candidate/>
</target>
<config>
<configuration>
<interfaces>
<interface>
<name>eth1</name>
<unit>
<name>0</name>
<family>
<inet>
<address>10.0.0.1/8</address>
</inet>
</family>

</unit>
</interface>
</interfaces>
</configuration>
</config>
</edit-config>
</rpc>
]]>]]>

75Copyright © 2019, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

NETCONF ServerClient Application

<rpc-reply xmlns=”URN” xmlns:sdx=”URL” >
<ok/>
</rpc-reply>
]]>]]>

Replacing Configuration Elements

To replace configuration elements (hierarchy levels or configuration objects) in the

candidate configuration, a client application emits the basic tag elements described in

“Changing Individual Configuration Elements” on page 73.

To represent the new definition for each configuration element being replaced (either

within the <config> tag element or in the file named by the <url> tag element), the

application emits the tag elements representing its parent hierarchy levels and its

container tag element, as described in “Changing Individual Configuration Elements” on

page 73.Within the container tag, theapplication includeseachof theelement’s identifier

tag elements (if it has them) and all child tag elements (with values if appropriate) that

are being defined for the new version of the element. In the following, the identifier tag

element is called <name>. The application includes the operation="replace" attribute in

the opening container tag:

<configuration>
 <!- - opening tags for each parent of the element - ->

<container-tag operation="replace">
<name>identifier</name>

 <!- - other child tag elements - ->
</container-tag>

 <!- - closing tags for each parent of the element - ->
</configuration>

TheNETCONF server removes the existing element that has the specified identifiers and

inserts the new element.

The application can also replace all objects in the configuration in one operation. For

instructions, see “Replacing the Entire Candidate Configuration” on page 71.

Copyright © 2019, Juniper Networks, Inc.76

SRC PE 4.13.x NETCONF API Guide

The followingexampleshowshowtograntnewpermissions for theobjectnamedoperator

at the [edit system login class] hierarchy level.

NETCONF ServerClient Application

<rpc>
<edit-config>
<target>
<candidate/>
</target>
<config>
<configuration>
<system>
<login>
<class operation=” replace” >
<name>operator</name>
<permissions>configure</permissions>
<permissions>admin-control</permissions>
</class>
</login>
</system>
</configuration>
</config>
</edit-config>
</rpc>
]]>]]>

<rpc-reply xmlns=”URN” xmlns:sdx=”URL”
>
<ok/>
</rpc-reply>
]]>]]>

Creating NewConfiguration Elements

To create configuration elements (hierarchy levels or configuration objects) in the

candidate configuration only if the elements do not already exist, a client application

emits the basic tag elements described in “Changing Individual Configuration Elements”

on page 73.

To represent each configuration element being created (either within the <config>tag

element or in the file named by the <url>tag element), the application emits the tag

elements representing its parent hierarchy levels and its container tag element, as

described in “Changing IndividualConfigurationElements”onpage73.Within thecontainer

tag, the application includes eachof the element’s identifier tag elements (if it has them)

and all child tag elements (with values if appropriate) that are being defined for the

element. In the following, the identifier tag element is called <name>. The application

includes the operation="create" attribute in the opening container tag:

<configuration>
 <!- - opening tags for each parent of the element - ->

<element operation="create">
<name>identifier</name> <!- - if the element has an identifier -

 ->

77Copyright © 2019, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

 <!- - other child tag elements - ->
</element>

 <!- - closing tags for each parent of the element - ->
</configuration>

The NETCONF server adds the new element to the candidate configuration only if there

is no existing element of that name (for a hierarchy level) or with the same identifiers

(for a configuration object).

The following example shows how to add a user to aCSeries Controller if it is not already

configured:

NETCONF ServerClient Application

<rpc>
<edit-config>
<target>
<candidate/>
</target>
<config>
<configuration>
<system>
<login>
<user operation=” create” >
<name>camryn</name>
<class>super-user</class>
</user>
</login>
</system>
</configuration>
</config>
</edit-config>
</rpc>
]]>]]>

<rpc-reply xmlns=”URN” xmlns:sdx=”URL” >
<ok/>
</rpc-reply>
]]>]]>

Deleting Configuration Elements

To delete a configuration element (hierarchy level or configuration object) from the

candidate configuration, a client application emits the basic tag elements described in

“Changing Individual Configuration Elements” on page 73. It also emits the

<default-operation> tag element with the value none to change the default mode

to no-change.

<rpc>
 <edit-config>
 <target>
 <candidate/>
 </target>

<default-operation>none</default-operation>

Copyright © 2019, Juniper Networks, Inc.78

SRC PE 4.13.x NETCONF API Guide

 <!- - EITHER - ->
 <config>
 <configuration>
 <!- - tag elements representing the configuration elements to
 delete - ->
 </configuration>
 </config>
 <!- - OR - ->
 <url>
 <!- - location specifier for file containing elements to delete
- ->
 </url>

 </edit-config>
</rpc>
]]>]]>

In no-changemode, existing configuration elements remain unchanged unless the

corresponding element in the new configuration has the operation="delete" attribute in

its opening tag. This mode prevents the NETCONF server from creating parent hierarchy

levels for an element that is being deleted. We recommend that the only operation

performed in no-changemode be deletion. Whenmerging, replacing, or creating

configuration elements, client applications use mergemode.

To represent each configuration element being deleted (either within the <config> tag

element or in the file named by the <url> tag element), the application emits the tag

elements representing its parent hierarchy levels, as described in “Changing Individual

Configuration Elements” on page 73. The tag element in which the operation="delete"

attribute is includeddepends on the element type, as described in the following sections:

• Deleting a Hierarchy Level or Container Object on page 79

• Deleting a Configuration Object That Has an Identifier on page 80

• Deleting a Single-Value or Fixed-FormOption from a Configuration Object on page 81

• Deleting Values from aMultivalue Option of a Configuration Object on page 82

Deleting a Hierarchy Level or Container Object

To delete a hierarchy level and all of its children (or a container object that has children

but no identifier), a client application includes the operation="delete" attribute in the

empty tag that represents the level:

<configuration>
 <!- - opening tags for each parent level - ->

<level-to-delete operation="delete"/>
 <!- - closing tags for each parent level - ->
</configuration>

We recommend that the application set the defaultmode to no-change by including the

<default-operation> tag element with the value none, as described in “Deleting

Configuration Elements” on page 78. For more information about hierarchy levels and

container objects, see “Mapping for Hierarchy Levels and Container Statements” on

page 15.

79Copyright © 2019, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

The following example showshow to remove the [edit systemservicesnetconf]hierarchy

level of the candidate configuration:

NETCONF ServerClient Application

<rpc>
<edit-config>
<target>
<candidate/>
</target>
<default-operation>none</default-operation>
<config>
<configuration>
<system>
<services>
<netconf operation=” delete” />
</services>
</system>
</configuration>
</config>
</edit-config>
</rpc>
]]>]]>

<rpc-reply xmlns=”URN” xmlns:sdx=”URL” >
<ok/>
</rpc-reply>
]]>]]>

Deleting a Configuration Object That Has an Identifier

To delete a configuration object that has an identifier, a client application includes the

operation="delete" attribute in the container tag element for the object. Inside the

container tag element, it includes the identifier tag element only, not any tag elements

that represent other characteristics. In the following, the identifier tag element is called

<name>:

<configuration>
 <!- - opening tags for each parent of the object - ->

<object operation="delete">
<name>identifier</name>

</object>
 <!- - closing tags for each parent of the object - ->
</configuration>

NOTE: The delete attribute appears in the opening container tag, not in the

identifier tag element. The presence of the identifier tag element results in
the removal of the specified object, not in the removal of the entire hierarchy
level represented by the container tag element.

We recommend that the application set the defaultmode to no-change by including the

<default-operation> tag element with the value none, as described in “Deleting

Copyright © 2019, Juniper Networks, Inc.80

SRC PE 4.13.x NETCONF API Guide

ConfigurationElements”onpage78. Formore informationabout identifiers, see “Mapping

for Objects That Have an Identifier” on page 15.

The following example shows how to remove the user object barbara from the

[edit system login user] hierarchy level in the candidate configuration:

NETCONF ServerClient Application

<rpc>
<edit-config>
<target>
<candidate/>
</target>
<default-operation>none</default-operation>
<config>
<configuration>
<system>
<login>
<user operation=” delete” >
<name>barbara</name>
</user>
</login>
</system>
</configuration>
</config>
</edit-config>
</rpc>
]]>]]>

<rpc-reply xmlns=”URN” xmlns:sdx=”URL” >
<ok/>
</rpc-reply>
]]>]]>

Deleting a Single-Value or Fixed-FormOption from a Configuration Object

To delete from a configuration object either a fixed-form option or an option that takes

just one value, a client application includes the operation="delete" attribute in the tag

element for the option. In the following, the identifier tag element for the object is called

<name>. (For information about deleting an option that can take multiple values, see

“Deleting Values from aMultivalue Option of a Configuration Object” on page 82.)

<configuration>
 <!- - opening tags for each parent of the object - ->

<object>
<name>identifier</name>

 <option1 operation="delete">
 <option2 operation="delete">
 <!- - tag elements for other options to delete - ->

</object>
 <!- - closing tags for each parent of the object - ->
</configuration>

We recommend that the application set the defaultmode to no-change by including the

<default-operation> tag element with the value none, as described in “Deleting

81Copyright © 2019, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

Configuration Elements” on page 78. For more information about options, see “Mapping

for Single-Value and Fixed-Form Leaf Statements” on page 17.

The following example shows how to remove the fixed-form stand-alone option at the

[edit system ldap server] hierarchy level:

NETCONF ServerClient Application

<rpc>
<edit-config>
<target>
<candidate/>
</target>
<default-operation>none</default-operation>
<config>
<configuration>
<system>
<ldap>
<server>
<stand-alone operation=” delete” />
</server>
</ldap>
</system>
</configuration>
</config>
</edit-config>
</rpc>
]]>]]>

<rpc-reply xmlns=”URN” xmlns:sdx=”URL” >
<ok/>
</rpc-reply>
]]>]]>

Deleting Values from aMultivalue Option of a Configuration Object

As described in “Mapping for Leaf Statements with Multiple Values” on page 18, some

configuration objects are leaf statements that havemultiple values. In the formatted

ASCII CLI representation, the values are enclosed in square brackets following the name

of the object:

object [value1 value2 value3 ...];

The XML representation does not use a parent tag for the object, but instead uses a

separate instance of the object tag element for each value. In the following, the identifier

tag element is called <name>:

<parent-object>
 <name>identifier</name>
 <object>value1</object>
 <object>value2</object>
 <object>value3</object>

Copyright © 2019, Juniper Networks, Inc.82

SRC PE 4.13.x NETCONF API Guide

</parent-object>

To remove one or more values for such an object, a client application includes the

operation="delete" attribute in the opening tag for each value. It does not include tag

elements that represent values to be retained. The identifier tag element in the following

is called <name>:

<configuration>
 <!- - opening tags for each parent of the parent object - ->

<parent-object>
<name>identifier</name>
<object operation="delete">value1</object>
<object operation="delete">value2</object>

</parent-object>
 <!- - closing tags for each parent of the parent object - ->
</configuration>

We recommend that the application set the defaultmode to no-change by including the

<default-operation> tag element with the value none, as described in “Deleting

Configuration Elements” on page 78. For more information about leaf statements with

multiple values, see “Mapping for Leaf Statements with Multiple Values” on page 18.

The following example shows how to remove two of the permissions granted to the

user-accounts login class:

NETCONF ServerClient Application

<rpc>
<edit-config>
<target>
<candidate/>
</target>
<default-operation>none</default-operation>
<config>
<configuration>
<system>
<login>
<class>
<name>user-accounts</name>
<permissions operation=” delete” >configure</permissions>
<permissions operation=” delete” >control</permissions>
</class>
</login>
</system>
</configuration>
</config>
</edit-config>
</rpc>
]]>]]>

<rpc-reply xmlns=”URN” xmlns:sdx=”URL” >
<ok/>
</rpc-reply>
]]>]]>

83Copyright © 2019, Juniper Networks, Inc.

Chapter 5: Changing Configuration Information

Copyright © 2019, Juniper Networks, Inc.84

SRC PE 4.13.x NETCONF API Guide

CHAPTER 6

Committing Configurations

This chapter explains how to commit a candidate configuration so that it becomes the

active configuration on the C Series Controller. For more detailed information about

commit operations, including a discussion of the interaction among different variants of

the operation, see the SRC PE CLI User Guide.

This chapter includes the following topics:

• Verifying a Configuration Before Committing It on page 85

• Committing a Configuration on page 85

Verifying a Configuration Before Committing It

During the process of committing the candidate configuration or a private copy, the

NETCONF server confirms that it is syntactically correct. If the syntax check fails, the

server does not commit the candidate.

The NETCONF server confirms that the candidate is valid by returning the <ok/> tag in

the <rpc-reply> tag element:

<rpc-reply xmlns="URN" xmlns:sdx="URL">
 <ok/>
</rpc-reply>
]]>]]>

If the candidate is not valid, the <rpc-reply> tag element instead encloses an <rpc-error>

tag element explaining the reason for the failure.

Committing a Configuration

To commit the candidate configuration, a client application includes the <commit/> tag

in an <rpc> tag element:

<rpc>
<commit/>

</rpc>
]]>]]>

TheNETCONFserver confirms that it committed thecandidateconfigurationby returning

the <ok/> tag in the <rpc-reply> tag element:

85Copyright © 2019, Juniper Networks, Inc.

<rpc-reply xmlns="URN "xmlns:sdx="URL">
 <ok/>
</rpc-reply>
]]>]]>

If theNETCONFserver cannot commit thecandidate, the<rpc-reply> tagelement instead

encloses an <rpc-error> tag element explaining the reason for the failure. Themost

common causes are semantic or syntactic errors in the candidate configuration.

To avoid inadvertently committing changesmade by other users or applications, a client

application locks thecandidateconfigurationbeforechanging it andemits the<commit/>

tag while the configuration is still locked. (For instructions on locking and changing the

candidate configuration, see “Locking the Candidate Configuration” on page 38 and

“Changing Configuration Information” on page 65.) After committing the configuration,

the application unlocks the candidate as described in “Unlocking the Candidate

Configuration” on page 39.

Copyright © 2019, Juniper Networks, Inc.86

SRC PE 4.13.x NETCONF API Guide

CHAPTER 7

Summary of NETCONF Tag Elements

This chapter lists the tag elements that client applications and the NETCONF server use

to control the NETCONF session and to exchange configuration information. It also

describes the]]>]]> character sequence, which signals the end of each request and

response. The entries are in alphabetical order. For information about the notational

conventions used in this chapter, see Table 2 on page xii.

]]>]]>

Usage <hello>
 <!- - child tag elements included by client application or NETCONF server
 - ->
</hello>
]]>]]>

<rpc [attributes]>
 <!- - tag elements in a request from a client application - ->
</rpc>
]]>]]>

<rpc-reply xmlns="URN" xmlns:sdx="URL">
 <!- - tag elements in the response from the NETCONF server - ->
</rpc-reply>
]]>]]>

Description Signal theendofeachXMLdocumentsentby theNETCONFserverandclientapplications.

Clients send the sequence after each XML document (after the closing </hello> tag and

each closing </rpc> tag). The NETCONF server sends the sequence after its closing

</hello> tag and each closing </rpc-reply> tag.

Use of this signal is required by RFC4742,Using theNETCONFConfiguration Protocol over

Secure Shell (SSH), available at http://www.ietf.org/rfc/rfc4742.txt.

Usage Guidelines See “GeneratingWell-Formed XML Documents” on page 22.

Related
Documentation

<hello> on page 94•

• <rpc> on page 97

87Copyright © 2019, Juniper Networks, Inc.

http://www.ietf.org/rfc/rfc4742.txt

• <rpc-reply> on page 98

<close-session/>

Usage <rpc>
<close-session/>

</rpc>
]]>]]>

Description Request that the NETCONF server end the current session.

Usage Guidelines See “Ending a NETCONF Session and Closing the Connection” on page 41.

Related
Documentation

]]>]]> on page 87•

• <rpc> on page 97

<commit>

Usage <rpc>
<commit/>

</rpc>
]]>]]>

Description Request that the NETCONF server commit the configuration immediately, making it the

active configuration.

Usage Guidelines See “Committing a Configuration” on page 85.

Related
Documentation

]]>]]> on page 87•

• <rpc> on page 97

<copy-config>

Usage <rpc>
<copy-config>

 <target>
 <candidate/>
 </target>
 <source>
 <url>
 <!- - location specifier for file containing the new
configuration - ->
 </url>

Copyright © 2019, Juniper Networks, Inc.88

SRC PE 4.13.x NETCONF API Guide

 </source>
<copy-config>

</rpc>
]]>]]>

Description Replace the existing candidate configuration with configuration data contained in a file.

Contents <source>—Encloses the<url> tagelement,whichspecifies thesourceof theconfiguration

data.

<url>—Names the file that contains the new configuration data to substitute for the

existing candidate configuration. For information about specifying the file location, see

“Providing Configuration Data in a File” on page 67.

The <target> tag element and its contents are explained separately.

Usage Guidelines See “Replacing the Configuration with the Contents of a File” on page 72.

Related
Documentation

]]>]]> on page 87•

• <rpc> on page 97

• <target> on page 99

<data>

Usage <rpc-reply xmlns="URN" xmlns:sdx="URL">
<data>
 <configuration>
 <!- - XML tag elements for the configuration data - ->
 </configuration>
</data>
</rpc-reply>
]]>]]>

Description Encloseconfigurationdata returnedby theNETCONFserver in response toa<get-config>

tag element.

Contents <configuration>—Encloses configuration tag elements. It is the top-level tag element in

the XML API, equivalent to the [edit] hierarchy level in the CLI. For information about

configuration elements, see the SRC XML API Configuration Reference.

Usage Guidelines See “Requesting Configuration Information” on page 49.

Related
Documentation

]]>]]> on page 87•

89Copyright © 2019, Juniper Networks, Inc.

Chapter 7: Summary of NETCONF Tag Elements

• <get-config> on page 93

• <rpc-reply> on page 98

<delete-config>

Usage <rpc>
<delete-config>
 <target>
 <candidate/>
 </target>
<delete-config>
</rpc>
]]>]]>

Description Delete the existing candidate configuration.

Contents The <target> tag element and its contents are explained separately.

Usage Guidelines See “Replacing the Entire Candidate Configuration” on page 71.

Related
Documentation

]]>]]> on page 87•

• <rpc> on page 97

• <target> on page 99

<discard-changes/>

Usage <rpc>
<discard-changes/>

</rpc>
]]>]]>

Description Discard changesmade to the candidate configuration, andmake its contentsmatch the

contents of the current running (active) configuration. This operation is equivalent to the

CLI configuration mode rollback command.

Usage Guidelines See “Replacing theCandidate Configurationwith the Running Configuration” on page 73.

Related
Documentation

]]>]]> on page 87•

• <rpc> on page 97

Copyright © 2019, Juniper Networks, Inc.90

SRC PE 4.13.x NETCONF API Guide

<edit-config>

Usage <rpc>
<edit-config>
 <target>
 <candidate/>
 </target>

 <!- - EITHER - ->
 <config>
 <configuration>
 <!- - tag elements representing the data to incorporate - ->

 </configuration>
 </config>

 <!- - OR - ->
 <url>
 <!- - location specifier for file containing data - ->
 </url>

 <default-operation>(merge | none | replace)</default-operation>
<edit-config>
</rpc>
]]>]]>

Description Request that the NETCONF server incorporate configuration data into the candidate

configuration. Provide the data in one of two ways:

• Include the <url> tag element to specify the location of a file that contains the XML

configuration tag elements to incorporate.

• Include the <config> tag element to provide a data stream of XML configuration tag

elements to incorporate. The tag elements are enclosed in the <configuration> tag

element.

Contents <config>—Encloses the <configuration> tag element.

<configuration>—Encloses the tag elements to incorporate into the candidate

configuration, providedasadatastream.For informationabout thesyntax for representing

the elements to create, delete, or modify, see “Mapping Configuration Statements to

SRC XML Tag Elements” on page 15 and “Changing Individual Configuration Elements”

on page 73.

<default-operation>—(Optional) Specifies how to incorporate the new configuration

data into the candidate configuration, particularlywhen there are conflicting statements.

The following are acceptable values:

91Copyright © 2019, Juniper Networks, Inc.

Chapter 7: Summary of NETCONF Tag Elements

• merge—Combines the new configuration data with the candidate configuration

according to the rules defined in “Setting the Default Mode for Incorporating New

Configuration Data” on page 70. This is the defaultmode if the<default-operation> tag

element is omitted. It applies to all elements in the new data that do not have the

operation attribute in their opening container tag to specify a different mode. (For

information about the operation attribute, see “Changing Individual Configuration

Elements” on page 73.)

• none—Retains each configuration element in the existing candidate configuration

unless the newdata includes a corresponding element that has the operation attribute

in its opening container tag to specify an incorporation mode. This mode prevents the

NETCONF server from creating parent hierarchy levels for an element that is being

deleted. For more information, see “Deleting Configuration Elements” on page 78.

• replace—Discards the existing candidate configuration and replaces it with the new

data. Formore information, see “SettingReplaceModeas theDefaultMode”onpage72.

<url>—Specifies the full pathname of the file that contains the configuration data to

load. The file must reside on the local disk. For more information, see “Providing

Configuration Data in a File” on page 67.

The <target> tag element and its contents are explained separately.

Usage Guidelines See “Changing Configuration Information” on page 65.

Related
Documentation

]]>]]> on page 87•

• <rpc> on page 97

• <target> on page 99

<error-info>

Usage <rpc-reply xmlns="URN" xmlns:sdx="URL">
 <rpc-error>

<error-info>
 <bad-element>command-or-statement</bad-element>

</error-info>
 </rpc-error>
</rpc-reply>
]]>]]>

Description Provide additional information about the event or condition that causes the NETCONF

server to report an error or warning in the <rpc-error> tag element.

Contents <bad-element>—Identifies the command or configuration statement that was being

processed when the error or warning occurred. For a configuration statement, the

Copyright © 2019, Juniper Networks, Inc.92

SRC PE 4.13.x NETCONF API Guide

<error-path> tag element enclosed in the <rpc-error> tag element specifies the

statement’s parent hierarchy level.

Usage Guidelines See “Handling an Error or Warning” on page 37.

Related
Documentation

]]>]]> on page 87•

• <rpc-error> on page 97

• <rpc-reply> on page 98

<get-config>

Usage <rpc>
<get-config>
 <source>
 <candidate/>
 </source>
</get-config>

<get-config>
 <source>
 <candidate/>
 </source>
 <filter type="subtree">
 <configuration>
 <!- - tag elements for each configuration element to return
- ->
 </configuration>
 </filter>
</get-config>
</rpc>
]]>]]>

Description Request configuration data from the NETCONF server. The child tag elements <source>

and <filter> specify the source and scope of data to display:

• To display the entire candidate configuration, enclose the <source> tag element and

<candidate/> tag in the <get-config> tag element.

• To display one or more sections of the configuration hierarchy (hierarchy levels or

configuration objects), enclose the appropriate child tag elements in the<source> and

<filter> tag elements.

Contents <candidate/>—Represents the candidate configuration.

<configuration>—Encloses tag elements that specify which configuration elements to

return.

93Copyright © 2019, Juniper Networks, Inc.

Chapter 7: Summary of NETCONF Tag Elements

<filter>—Encloses the <configuration> tag element. Themandatory type attribute

indicates the kind of syntax used to represent the requested configuration elements; the

only acceptable value is subtree.

To specify the configuration elements to return, include within the <filter> tag element

the XML tag elements that represent all levels of the configuration hierarchy from the

root (represented by the <configuration> tag element) down to each element to display.

For information about the syntax for representing each kind of element, see “Specifying

the Scope of Configuration Information to Return” on page 51. For information about the

configuration elements available in the current version of the SRC software, see the SRC

XML API Configuration Reference.

<source>—Encloses the tag that specifies the sourceof theconfigurationdata. To specify

the candidate configuration, include the <candidate/>tag.

Usage Guidelines See “Requesting Configuration Information” on page 49.

Related
Documentation

]]>]]> on page 87•

• <data> on page 89

• <rpc> on page 97

<hello>

Usage <!- - emitted by a client application - ->
<hello>
 <capabilities>
 <capability>URI</capability>
 </capabilities>
</hello>
]]>]]>

<!- - emitted by the NETCONF server - ->
<hello>
 <capabilities>
 <capability>URI</capability>
 </capabilities>
 <session-id>session-identifier</session-id>
</hello>
]]>]]>

Description Specifywhichoperations, or capabilities, the emitter supports fromamong thosedefined

in the NETCONF specification. The client applicationmust emit the <hello> tag element

before any other tag element during the NETCONF session, andmust not emit it more

than once.

Contents <capabilities>—Encloses one or more <capability> tags, which together specify the set

of supported NETCONF operations.

Copyright © 2019, Juniper Networks, Inc.94

SRC PE 4.13.x NETCONF API Guide

<capability>—Specifies the uniform resource identifier (URI) of a capability defined in

the NETCONF specification or by a vendor. Each capability from the NETCONF

specification is represented by a uniform resource name (URN). Capabilities defined by

vendors are represented by URNs or URLs. For a list of the capabilities supported by the

NETCONF server for the SRC software, see “Exchanging <hello> Tag Elements” on

page 28.

<session-id>—(Generated by NETCONF server only) Specifies the process ID (PID) of

the NETCONF server for the session.

Usage Guidelines See “Exchanging <hello> Tag Elements” on page 28.

Related
Documentation

]]>]]> on page 87•

<kill-session>

Usage <rpc>
<kill-session>

 <session-id>PID</session-id>
</kill-session>

</rpc>
]]>]]>

Description Request that theNETCONFserver terminateanotherNETCONFsession.Theusual reason

to emit this tag is that the user or application for the other session holds a lock on the

candidate configuration, preventing the client application from locking the configuration

itself.

The client application must havemaintenance permission.

Contents <session-id>—The PID of the entity conducting the session to terminate. The PID is

reported in the <rpc-error> tag element that the NETCONF server generates when it

cannot lock a configuration as requested.

Usage Guidelines See “Terminating Another NETCONF Session” on page 40.

Related
Documentation

]]>]]> on page 87•

• <lock> on page 95

• <rpc> on page 97

<lock>

Usage <rpc>

95Copyright © 2019, Juniper Networks, Inc.

Chapter 7: Summary of NETCONF Tag Elements

<lock>
 <target>
 <candidate/>
 </target>

</lock>
</rpc>
]]>]]>

Description Request that the NETCONF server lock the candidate configuration, enabling the client

application both to read and change it, but preventing any other users or applications

fromchanging it. Theapplicationmustemit the<unlock/> tag tounlock theconfiguration.

If the NETCONF session ends or the application emits the <unlock> tag element before

the candidate configuration is committed, all changes made to the candidate

are discarded.

Contents The <target> tag element and its contents are explained separately.

Usage Guidelines See “Locking the Candidate Configuration” on page 38.

Related
Documentation

]]>]]> on page 87•

• <rpc> on page 97

• <target> on page 99

• <unlock> on page 99

<ok/>

Usage <rpc-reply xmlns="URN" xmlns:sdx="URL">
<ok/>

</rpc-reply>
]]>]]>

Description Indicate that the NETCONF server successfully performed a requested operation that

changes the state or contents of the configuration.

Usage Guidelines See “Configuration Change Responses” on page 36.

Related
Documentation

]]>]]> on page 87•

• <rpc-reply> on page 98

Copyright © 2019, Juniper Networks, Inc.96

SRC PE 4.13.x NETCONF API Guide

<rpc>

Usage <rpc [attributes]>
 <!- - tag elements in a request from a client application - ->
</rpc>
]]>]]>

Description Enclose all tag elements in a request generated by a client application.

Attributes (Optional) One or more attributes of the form attribute-name="value". This feature can

be used to associate requests and responses if the value assigned to an attribute by the

client application is unique in each opening <rpc> tag. The NETCONF server echoes the

attribute unchanged in its opening<rpc-reply> tag,making it simple tomap the response

to the initiating request. The NETCONF specification assigns the namemessage-id to

this attribute.

Usage Guidelines See “Sending a Request to the NETCONF Server” on page 31.

Related
Documentation

]]>]]> on page 87•

• <rpc-reply> on page 98

<rpc-error>

Usage <rpc-reply xmlns="URN" xmlns:sdx="URL">
<rpc-error>

 <error-severity>error-severity</error-severity>
 <error-path>error-path</error-path>
 <error-message>error-message</error-message>
 <error-info>...</error-info>

</rpc-error>
</rpc-reply>
]]>]]>

Description Indicate that the NETCONF server has experienced an error while processing the client

application’s request. If the server has already emitted the response tag element for the

current request, the information enclosed in that response tag element might be

incomplete. The client application must include code that discards or retains the

information, as appropriate. The child tag elements described in the Contents section

detail the nature of the error. The NETCONF server does not necessarily emit all child tag

elements; it omits tag elements that are not relevant to the current request.

Contents <error-message>—Describes the error or warning in a natural-language text string.

<error-path>—Specifies the path to the configuration hierarchy level at which the error

or warning occurred, in the form of the CLI configuration mode banner.

97Copyright © 2019, Juniper Networks, Inc.

Chapter 7: Summary of NETCONF Tag Elements

<error-severity>—Indicates the severity of the event that caused the NETCONF server

to return the <rpc-error> tag element. The two possible values are error andwarning.

The <error-info> tag element is described separately.

Usage Guidelines See “Handling an Error or Warning” on page 37.

Related
Documentation

]]>]]> on page 87•

• <error-info> on page 92

• <rpc-reply> on page 98

<rpc-reply>

Usage <rpc-reply xmlns="URN" xmlns:sdx="URL">
 <!- - tag elements in a reply from the NETCONF server - ->
</rpc-reply>
]]>]]>

Description Enclose all tag elements in a reply from the NETCONF server. The immediate child tag

element is usually one of the following:

• The XML tag element that encloses the data requested by a client application with an

XML operational request tag element; for example, the <interface-information> tag

element in response to the <get-interface-information> tag element

• The <data> tag element, to enclose the data requested by a client application with

the <get-config> tag element

• The<ok/> tag, toconfirmthat theNETCONFserver successfullyperformedanoperation

that changes the stateor contentsof a configuration (suchasa lock, change, or commit

operation)

• The <output> tag element, if the XML API does not define a specific tag element for

requested operational information

• The <rpc-error> tag element, if the requested operation generated an error or warning

Attributes xmlns—Names the default XML namespace for the enclosed tag elements.

Usage Guidelines See “Parsing the NETCONF Server Response” on page 34.

Related
Documentation

]]>]]> on page 87•

• <data> on page 89

• <ok/> on page 96

Copyright © 2019, Juniper Networks, Inc.98

SRC PE 4.13.x NETCONF API Guide

• <rpc> on page 97

• <rpc-error> on page 97

<target>

Usage <rpc>
 <(copy-config | delete-config | edit-config | lock | unlock)>

<target>
 <candidate/>

</target>
 </(copy-config | delete-config | edit-config | lock | unlock)>
</rpc>
]]>]]>

Description Specify the configuration on which to perform an operation.

Contents <candidate/>—Specifies the candidate configuration as the configuration on which to

perform the operation. This is the only acceptable value for the SRC software.

Usage Guidelines See “Locking the Candidate Configuration” on page 38, “Unlocking the Candidate

Configuration” on page 39, “Changing the Candidate Configuration” on page 66, and

“Replacing the Configuration with the Contents of a File” on page 72.

Related
Documentation

]]>]]> on page 87•

• <copy-config> on page 88

• <delete-config> on page 90

• <edit-config> on page 91

• <lock> on page 95

• <rpc> on page 97

• <unlock> on page 99

<unlock>

Usage <rpc>
<unlock>

 <target>
 <candidate/>
 </target>

</unlock>
</rpc>
]]>]]>

99Copyright © 2019, Juniper Networks, Inc.

Chapter 7: Summary of NETCONF Tag Elements

Description Request that the NETCONF server unlock and close the candidate configuration, which

the client application previously locked by emitting the <lock> tag. Until the application

emits this tag element, other users or applications can read the configuration but cannot

change it.

Contents The <target> tag element and its contents are explained separately.

Usage Guidelines See “Unlocking the Candidate Configuration” on page 39.

Related
Documentation

•]]>]]> on page 87

• <lock> on page 95

• <rpc> on page 97

• <target> on page 99

Copyright © 2019, Juniper Networks, Inc.100

SRC PE 4.13.x NETCONF API Guide

CHAPTER 8

Summary of Attributes in SRC XML Tags

This chapter describes the attributes that the NETCONF server and client applications

include in openingSRCXML tags. For information about the notational conventions used

in this chapter, see Table 2 on page xii.

operation

Usage <rpc>
 <edit-config>
 <config>
 <configuration>
 <!- - opening tags for each parent of the changing element -
 ->
 <changing-element operation="(create | delete | replace
) ">

<name>identifier</name> <!- - if changing element has
 an identifier - ->
 <!- - other child tag elements, if appropriate for
the operation - ->
 </changing-element>
 <!- - closing tags for each parent of the changing element -
 ->
 </configuration>
 </config>
 <!- - other child tag elements of the <edit-config> tag element - ->
 <edit-config>
</rpc>
]]>]]>

Description Specify how the NETCONF server incorporates an individual configuration element into

the candidate configuration. If the attribute is omitted, the element is merged into the

configurationaccording to the rulesdefined in “Setting theDefaultMode for Incorporating

New Configuration Data” on page 70. The following are acceptable values:

• create—Creates the specified element in the configuration only if the element does

not already exist. See “Creating New Configuration Elements” on page 77.

• delete—Deletes the specified element from the candidate configuration. We

recommend that the <default-operation> tag element with the value none also be

included in the <edit-config> tag element. See “Deleting Configuration Elements” on

page 78.

101Copyright © 2019, Juniper Networks, Inc.

• replace—Replaces the specified element in the candidate configuration with the

provided new configuration data. See “Replacing Configuration Elements” on page 76.

Usage Guidelines See “Changing Individual Configuration Elements” on page 73.

Related
Documentation

<edit-config> on page 91•

• <rpc> on page 97

• xmlns on page 103

sdx:changed-localtime

Usage <rpc-reply xmlns:sdx="URL">
 <configuration xmlns="URL" sdx:changed-seconds=" seconds" \

sdx:changed-localtime="YYYY-MM-DD hh:mm:ss TZ">
 <!- - XML tag elements for the requested configuration data - ->
 </configuration>
</rpc-reply>

Description (Displayed when the candidate configuration is requested) Specify the time when the

configuration was last changed as the date and time in the C Series Controller’s local

time zone.

Usage Guidelines See “Requesting Information from the Candidate Configuration” on page 51.

Related
Documentation

<rpc-reply> on page 98•

• sdx:changed-seconds on page 102

• xmlns on page 103

sdx:changed-seconds

Usage <rpc-reply xmlns:sdx="URL">
 <configuration xmlns="URL" sdx:changed-seconds="seconds" \
 sdx:changed-localtime="YYYY-MM-DD hh:mm:ss TZ">
 <!- - XML tag elements for the requested configuration data - ->
 </configuration>
</rpc-reply>

Description (Displayed when the candidate configuration is requested) Specify the time when the

configuration was last changed as the number of seconds since midnight on 1 January

1970.

Usage Guidelines See “Requesting Information from the Candidate Configuration” on page 51.

Copyright © 2019, Juniper Networks, Inc.102

SRC PE 4.13.x NETCONF API Guide

Related
Documentation

<rpc-reply> on page 98•

• operation on page 101

• xmlns on page 103

xmlns

Usage <rpc-reply xmlns:sdx="URL">
 <operational-response xmlns="URL-for-DTD">
 <!- -XML tag elements for the requested operational data - ->
 </operational-response>
</rpc-reply>

<rpc-reply xmlns:sdx="URL">
 <configuration xmlns="URL" sdx:changed-seconds="seconds" \
 sdx:changed-localtime="YYYY-MM-DD hh:mm:ss TZ" >
 <!- - XML tag elements for the requested configuration data - ->
 </configuration>
</rpc-reply>

Description For operational responses, define the XML namespace for the enclosed tag elements

that do not have a prefix (such as sdx:) in their names. The namespace indicates which

XML document type definition (DTD) defines the set of tag elements in the response.

For configuration data responses, define the XML namespace for the enclosed

tag elements.

Usage Guidelines See “RequestingOperational Information” onpage48and “Requesting Information from

the Candidate Configuration” on page 51.

Related
Documentation

• <rpc-reply> on page 98

• operation on page 101

• sdx:changed-seconds on page 102

103Copyright © 2019, Juniper Networks, Inc.

Chapter 8: Summary of Attributes in SRC XML Tags

Copyright © 2019, Juniper Networks, Inc.104

SRC PE 4.13.x NETCONF API Guide

	Abbreviated Table of Contents
	Table of Contents
	List of Tables
	About the Documentation
	SRC Documentation and Release Notes
	Audience
	Documentation Conventions
	Documentation Feedback
	Requesting Technical Support
	Self-Help Online Tools and Resources
	Creating a Service Request with JTAC

	Part 1: Using the SRC XML and NETCONF APIs
	Chapter 1: Introduction to the SRC XML and NETCONF APIs
	About XML
	XML and NETCONF Tag Elements
	Document Type Definition

	Advantages of Using the NETCONF and SRC XML APIs
	NETCONF Session Overview

	Chapter 2: Using NETCONF and SRC XML Tag Elements
	Complying with XML and NETCONF Conventions
	Request and Response Tag Elements
	Child Tag Elements of a Request Tag Element
	Child Tag Elements of a Response Tag Element
	Spaces, Newline Characters, and Other White Space
	XML Comments
	Predefined Entity References

	Mapping Commands to SRC XML Tag Elements
	Mapping for Command Options with Variable Values
	Mapping for Fixed-Form Command Options

	Mapping Configuration Statements to SRC XML Tag Elements
	Mapping for Hierarchy Levels and Container Statements
	Mapping for Objects That Have an Identifier
	Mapping for Single-Value and Fixed-Form Leaf Statements
	Mapping for Leaf Statements with Multiple Values

	Using the Same Configuration Tag Elements in Requests and Responses

	Chapter 3: Controlling the NETCONF Session
	Client Application’s Role in a NETCONF Session
	Establishing a NETCONF Session
	Generating Well-Formed XML Documents
	Prerequisites for Establishing a Connection
	Client Application Can Access SSH Software
	Client Application Can Log In on C Series Controllers
	Login Account Has Public/Private Key Pair or Password
	Creating a Text-Based Password
	Creating a Public/Private Key Pair

	Client Application Can Access the Keys or Password
	NETCONF Service over SSH Is Enabled

	Connecting to the NETCONF Server
	Starting the NETCONF Session
	Exchanging <hello> Tag Elements
	Verifying Compatibility

	Exchanging Information with the NETCONF Server
	Sending a Request to the NETCONF Server
	Request Classes
	Operational Requests
	Configuration Information Requests
	Configuration Change Requests

	Including Attributes in the Opening <rpc> Tag

	Parsing the NETCONF Server Response
	NETCONF Server Response Classes
	Operational Responses
	Configuration Information Responses
	Configuration Change Responses

	Using a Standard API to Parse Response Tag Elements

	Handling an Error or Warning

	Locking and Unlocking the Candidate Configuration
	Locking the Candidate Configuration
	Unlocking the Candidate Configuration

	Terminating Another NETCONF Session
	Ending a NETCONF Session and Closing the Connection
	Displaying CLI Output as XML Tag Elements
	Example of a NETCONF Session
	Exchanging Initialization Tag Elements
	Sending an Operational Request
	Locking the Configuration
	Changing the Configuration
	Committing the Configuration
	Unlocking the Configuration
	Closing the NETCONF Session

	Chapter 4: Requesting Information
	Request Procedure Overview
	Requesting Operational Information
	Parsing the <output> Tag Element

	Requesting Configuration Information
	Requesting Information from the Candidate Configuration
	Specifying the Scope of Configuration Information to Return
	Requesting the Complete Configuration
	Requesting a Hierarchy Level or Container Object Without an Identifier
	Requesting All Configuration Objects of a Specified Type
	Requesting Identifiers for Configuration Objects of a Specified Type
	Requesting One Configuration Object
	Requesting Specific Child Tags for a Configuration Object
	Requesting Multiple Configuration Elements Simultaneously

	Chapter 5: Changing Configuration Information
	Configuration Changes Overview
	Changing the Candidate Configuration
	Defining the New Configuration Data
	Providing Configuration Data in a File
	Providing Configuration Data as a Data Stream

	Setting the Default Mode for Incorporating New Configuration Data
	Replacing the Entire Candidate Configuration
	Replacing the Candidate Configuration with Newly Defined Data
	Replacing the Configuration with the Contents of a File
	Setting Replace Mode as the Default Mode

	Replacing the Candidate Configuration with the Running Configuration

	Changing Individual Configuration Elements
	Merging Configuration Elements
	Replacing Configuration Elements
	Creating New Configuration Elements
	Deleting Configuration Elements
	Deleting a Hierarchy Level or Container Object
	Deleting a Configuration Object That Has an Identifier
	Deleting a Single-Value or Fixed-Form Option from a Configuration Object
	Deleting Values from a Multivalue Option of a Configuration Object

	Chapter 6: Committing Configurations
	Verifying a Configuration Before Committing It
	Committing a Configuration

	Chapter 7: Summary of NETCONF Tag Elements
]]>]]>
	<close-session/>
	<commit>
	<copy-config>
	<data>
	<delete-config>
	<discard-changes/>
	<edit-config>
	<error-info>
	<get-config>
	<hello>
	<kill-session>
	<lock>
	<ok/>
	<rpc>
	<rpc-error>
	<rpc-reply>
	<target>
	<unlock>

	Chapter 8: Summary of Attributes in SRC XML Tags
	operation
	sdx:changed-localtime
	sdx:changed-seconds
	xmlns

