
Paragon Automation Installation Guide

Published

2021-12-16

RELEASE

21.2

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

 Paragon Automation Installation Guide
21.2
Copyright © 2021 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

ii

https://support.juniper.net/support/eula/

Table of Contents

About This Guide | v

1 Introduction

Paragon Automation Portfolio Installation Overview | 2

2 System Requirements

Paragon Automation System Requirements | 6

3 Install and Update Paragon Automation

Installation Prerequisites | 11

Prepare the Control Host | 11

Prepare Cluster Nodes | 14

Virtual IP Address Considerations | 18

DNS Server Configuration (Optional) | 19

Install Paragon Automation | 20

Download the Software | 20

Install Paragon Automation | 21

Log in to the Paragon Automation UI | 33

Update Paragon Automation | 34

Edit Cluster Nodes | 35

Add a Node | 35

Remove a Node | 36

Replace a Node | 36

Uninstall Paragon Automation | 37

4 Backup and Restore

Backup and Restore | 40

Back up the Configuration | 41

iii

Restore the Configuration | 44

5 Troubleshooting

Troubleshoot Paragon Automation Installation | 48

Resolve Merge Conflicts of the Configuration File | 48

Common Backup and Restore Issues | 49

View Installation Log Files | 49

View Log Files in Kibana | 49

Troubleshooting Using the kubectl Interface | 51

View Node Status | 51

View Pod Status | 52

View Detailed Information about a Pod | 52

View the Logs for a Container in a Pod | 52

Run a Command on a Container in a Pod | 53

View Services | 54

Frequently Used kubectl Commands | 54

Troubleshooting Ceph and Rook | 55

Common Utility Commands | 58

6 Migrate Data

Migrate Data from Northstar to Paragon Automation | 61

Prerequisites | 61

Create the nsmigration Task Pod | 62

Migrate DeviceProfile and Cassandra DB | 63

(Optional) Migrate Analytics Data | 65

(Optional) Migrate Northstar Planner Data | 69

iv

About This Guide

Use this guide to install Paragon Automation on a Linux server.

RELATED DOCUMENTATION

Paragon Automation User Guide

Paragon Automation Release Notes, Release 21.2

v

https://www.juniper.net/documentation/us/en/software/paragon-automation21.2/paragon-automation-user-guide/index.html
https://www.juniper.net/documentation/us/en/software/paragon-automation21.2/release-notes/pa-release-notes-21.2/index.html

1
CHAPTER

Introduction

Paragon Automation Portfolio Installation Overview | 2

Paragon Automation Portfolio Installation Overview

Juniper® Paragon Automation Portfolio is a cloud-ready solution for network planning, configuration,
provisioning, traffic engineering, monitoring, and lifecycle management. This solution brings advanced
visualization capabilities and analytics to network management and monitoring. Paragon Automation is
deployed as an on-premises (customer managed) application. Paragon Automation Portfolio offers users
a suite of microservices-based applications including Paragon Insights (previously known as HealthBot),
Paragon Planner (previously known as NorthStar Planner), and Paragon Pathfinder (previously known as
NorthStar Controller).

Paragon Automation is built on a Kubernetes cluster, and is a collection of microservices that interact
with one other through APIs. A Kubernetes cluster contains one or more primary nodes (control plane
nodes) and one or more worker nodes (compute nodes) as illustrated in Figure 1 on page 3. These
nodes can be virtual machines (VMs) or bare metal servers, but must be running the same OS (Ubuntu,
CentOS, or RHEL) version of Linux. The control plane manages the cluster, and the compute nodes run
the application workloads. The applications run in containers. Containers are not tied to individual
nodes, but are abstracted across the cluster. A Paragon Automation Kubernetes cluster consists of

2

primary and worker nodes. The total number of cluster nodes depends on the intended capacity of the
system.

Figure 1: Kubernetes Cluster

Installation is automated using Ansible playbooks. The Ansible playbooks are packaged in a Docker
image, and can be executed on a separate dedicated host (control host), which has Docker installed, and
can mount local directories into a Docker container. You must have a dedicated machine functioning as
the control host which will install the required software on all the cluster nodes

You can install Paragon Automation by downloading an installation bundle and running the installer on
the control host. You must download the installation bundle on the control host, and then create, and
configure the installation files required for installation. Installation is controlled through several variables
that are defined in configuration files that are created and updated during the installation process. Based
on the configuration files, the Ansible playbook deploys the Kubernetes cluster. You must have internet
access to download the packages on the control host. You must also have internet access on the cluster
nodes to download any additional software such as Docker and OS patches.

This guide describes how to install Paragon Automation and is intended for network operators and
administrators who install, configure, and manage the network infrastructure. This guide explains how
to:

3

• Install and update Paragon Automation

• Uninstall Paragon Automation

• Add and remove nodes

• Back up and restore a configuration

• Migrate data from your existing setup to Paragon Automation

• Perform common installation troubleshooting tasks

NOTE: You must perform a fresh installation of Paragon Automation Release 21.2. You cannot
upgrade from Release 21.1 to Release 21.2.

RELATED DOCUMENTATION

Paragon Automation Overview

Installation Prerequisites | 11

Install Paragon Automation | 20

4

2
CHAPTER

System Requirements

Paragon Automation System Requirements | 6

Paragon Automation System Requirements

IN THIS SECTION

Minimum Hardware Requirements | 6

Software Requirements | 8

Disk Partition Requirements | 8

Web Browser Requirements | 9

Before you install the Paragon Automation software, ensure that your system meets the requirements
described in these sections.

Minimum Hardware Requirements

Dimensioning of your Paragon Automation production deployment is based on the network scale and
features used. Table 1 on page 6 lists the minimum hardware requirements.

Table 1: Minimum Hardware Requirements

Node Minimum
Number of
Nodes
Required

Hardware Requirement Storage Requirement Role

Control
Host

1 2–4-core CPU, 12-GB
RAM, 100-GB HDD

NA Carry out Ansible
operations to install
the cluster.

Primary 1 8-core CPU, 32-GB RAM,
250-GB SSD

NA Kubernetes primary
node

6

Table 1: Minimum Hardware Requirements (Continued)

Node Minimum
Number of
Nodes
Required

Hardware Requirement Storage Requirement Role

Worker 3 8-core CPU, 32-GB RAM,
250-GB SSD

Minimum three nodes with
unpartitioned disks or
unformatted disk partitions
attached for system storage
requirements. See "Disk
Partition Requirements" on
page 8.

Kubernetes worker
node

The numbers listed here are minimum requirements. The actual system resources is determined by the
intended capacity of the system, including number of devices to be monitored, type of sensors,
frequency of telemetry messages, and number of playbooks and rules.

Proof-of-concept (POC) systems typically support up to two device groups with two devices and two to
three playbooks per device group across all Paragon Automation components, which is supported with
the minimum resources specified in Table 1 on page 6. Increase in the number of device groups, devices,
or playbooks, will need higher CPU and memory capacities.

Similarly, the total number of cluster nodes depends on the intended capacity of the system, you need at
least one primary and one worker. While it is possible to have a single node acting as both primary and
worker it is not recommended.

For a fully redundant setup, you must have a minimum of three primary nodes and one worker node. In
this case, master scheduling must be enabled when the installation configuration file is created.

In release 21.2, Paragon Automation uses Ceph to provide system storage. For successful installation,
you need three or more worker nodes with unpartitioned disks or unformatted disk partitions available.
If master scheduling is configured, then primary nodes can also provide storage.

NOTE: To get a production deployment scale and size estimate and to discuss detailed
dimensioning requirements, contact your Juniper Partner or Juniper Sales Representative.

7

Software Requirements

• Ubuntu version 18.04.4 or later, or RHEL version 8.3, or CentOS versions later than version 7.1 must
be installed on each node.

• Docker must be installed on the control host. If you are using Docker CE, the recommended version
is 18.09 and later.

If you are using Docker EE, the recommended version is 18.03.1-ee-1 and later. Also, to use Docker
EE, you must install Docker EE on the cluster nodes.

Docker allows you to run the Paragon Automation installer file, which is packaged with Ansible
(version 2.9.5) and the roles and playbooks that are required to install the cluster.

NOTE: Installation will fail if you do not have the correct versions. Commands to verify these
versions are described in this guide in subsequent sections.

Disk Partition Requirements

The following disk partitions are recommended for the cluster nodes.

• Root partition mounted at / with minimum 20-GB space.

• Unformatted partition or disk for Ceph storage with minimum 20-GB space.

The following optional disk partitions are recommended.

• Docker partition mounted at /var/lib/docker with minimum 50-GB space.

• Data partition mounted at /export with minimum 50-GB space. The data partition is used for
Postgres, Zookeeper, Kafka, and Elasticsearch.

• Data partition mounted at /var/local with minimum 50-GB space, The data partition is used for
Paragon Insights influxdb.

You can mount /export and /var/local on the same partition, but you must mount /var/lib/docker on
a separate file system to increase the stability of the cluster. If one of the databases fills up its
available disk space, Kubernetes can respond by shutting down applications and reschedule them on
other nodes.

If you do not create the optional partitions, you must add their minimum size requirements to the root
partition.

8

Web Browser Requirements

Table 2 on page 9 lists the 64-bit Web browsers that support Paragon Automation.

Table 2: Supported Web Browsers

Browser Supported Versions Supported OS Versions

Chrome 85 and later Windows 10

Firefox 79 and later Windows 10

Safari 14.0.3 MacOS 10.15 and later

RELATED DOCUMENTATION

Installation Prerequisites | 11

Install Paragon Automation | 20

9

3
CHAPTER

Install and Update Paragon
Automation

Installation Prerequisites | 11

Install Paragon Automation | 20

Update Paragon Automation | 34

Edit Cluster Nodes | 35

Uninstall Paragon Automation | 37

Installation Prerequisites

IN THIS SECTION

Prepare the Control Host | 11

Prepare Cluster Nodes | 14

Virtual IP Address Considerations | 18

DNS Server Configuration (Optional) | 19

To successfully install and deploy a Paragon Automation cluster, you must have a dedicated machine
that functions as the control host and installs the distribution software on a number of cluster nodes.
You can download the distribution software on the control host, and then create and configure the
installation files to run the installation from the control host. You must have internet access to download
the packages on the control host. You must also have internet access on the cluster nodes to download
any additional software such as Docker, and OS patches.

Before you download and install the distribution software, you must preconfigure the control host and
the cluster nodes as described in this topic.

Prepare the Control Host

The control host is a dedicated machine that is used to orchestrate the installation of a Paragon
Automation cluster. You must download the installer packages on the control host. The control host
carries out the Ansible operations that runs the software installer and installs the software on the cluster
nodes as illustrated in Figure 2 on page 12. The control host also installs any additional packages such
as optional OS packages, Docker, and Elasticsearch on the cluster nodes. The control node requires
internet access to download software. All microservices, including third-party microservices, are
downloaded onto the control host, and do not access any public registries during installation. The

11

control host can be on a different broadcast domain from the cluster nodes, but needs SSH access to the
nodes.

Figure 2: Control Host

Once installation is complete, the control host plays no role in the functioning of the cluster. However,
you will need the control host to update the software or any component, make changes to the cluster, or
re-install it if a node fails. You can also use the control host to archive configuration files. We
recommend that you keep the control host available, and not use it for something else, after installation.

Ensure that the control host meets the following prerequisites:

• A base OS of any Linux distribution that allows installation of Docker CE or Docker EE must be
installed.

• Docker must be installed and configured on the control host to implement the Linux container
environment. Paragon Automation Release 21.2 supports Docker EE in addition to Docker CE. The
Docker version you choose to install in the control host is independent of the Docker version you
plan to use in the cluster nodes.

If you want to install Docker EE, ensure that you have a trial or subscription before installation. For
more information on Docker EE, supported systems, and installation instructions, see https://
www.docker.com/blog/docker-enterprise-edition/.

To download and install Docker CE, perform the following steps:

• On RHEL:

12

https://www.docker.com/blog/docker-enterprise-edition/
https://www.docker.com/blog/docker-enterprise-edition/

The following commands will install the latest stable version on x86 machines.

$ sudo dnf config-manager --add-repo=https://download.docker.com/linux/centos/docker-
ce.repo
$ sudo dnf install docker-ce --nobest -y
$ sudo systemctl disable firewalld
$ sudo systemctl start docker
$ sudo systemctl enable docker

To verify that Docker is installed and running, use the # docker run hello-world command.

To verify the Docker version installed, use the # docker version or # docker --version commands.

• On Ubuntu OS:

The following commands install the latest stable version on x86 machines.

sudo apt-get install -y apt-transport-https ca-certificates curl gnupg-agent software-
properties-common
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $
(lsb_release -cs) stable"
sudo apt-get update
sudo apt-get install -y docker-ce docker-ce-cli containerd.io

To verify that Docker is installed and running, use the # docker run hello-world command.

To verify the Docker version installed, use the # docker version or # docker --version commands.

For full instructions and more information, see https://docs.docker.com/engine/install/ubuntu/.

• On CentOS:

The following commands will install the latest stable version on x86 machines.

$ sudo yum install -y yum-utils \
 device-mapper-persistent-data \
 lvm2
$ sudo yum-config-manager \
 --add-repo \
 https://download.docker.com/linux/centos/docker-ce.repo

13

https://docs.docker.com/engine/install/ubuntu/

$ sudo yum install docker-ce
$ sudo systemctl start docker

To verify that Docker is installed and running, use the $ docker run hello-world command.

To verify the Docker version installed, use the $ docker version or $ docker --version commands.

For full instructions and more information, see https://docs.docker.com/engine/install/centos/.

• The installer running on the control host must be connected to the cluster nodes through SSH using
the install user account.

• The wget package must be installed. Use the wget tool to download the Paragon Automation
distribution software.

• On RHEL, use the $ dnf install wget command.

• On Ubuntu OS, use the # apt install wget command.

• On CentOS, use the $ yum install wget command.

Prepare Cluster Nodes

Paragon Automation is installed on a Kubernetes cluster of one or more primary nodes (control plane
nodes) and one or more worker nodes (compute nodes) as illustrated in Figure 3 on page 15. The

14

https://docs.docker.com/engine/install/centos/

control plane manages the cluster, and the compute nodes run the application workloads. The primary
and worker nodes are collectively called the cluster nodes.

Figure 3: Cluster Nodes

Ensure that the cluster nodes meet the following prerequisites:

• Each cluster node must have a static, unique IP address. We recommend that all the nodes be in the
same broadcast domain. The hostnames of the node can have only lower case alphabets and can
have no special characters other than “-” and “.” .

For cluster nodes in different broadcast domains, see "Load Balancing Configuration" on page 18 for
additonal load balancing configuration.

The cluster nodes need not be accessible from outside the cluster. Access to the Kubernetes cluster
is managed by separate virtual IP addresses. For more information, see "Virtual IP Address
Considerations" on page 18.

• A base OS of Ubuntu version 18.04.4 or later, or RHEL version 8.3, or CentOS version later than 7.1,
must be installed on each node. To verify the installed OS version, use the lsb_release -a command.

• The cluster nodes must have raw storage block devices with unpartitioned disks or unformatted disk
partitions attached. The nodes can also be partitioned such that a portion of the disk space available
is used for the root partition and other files systems. The remaining space must be unpartitioned
with no file systems and reserved for Ceph to use. For redundancy, you must have a minimum of
three cluster nodes with storage space attached. Installation will fail if disks are unavailable. For more
information, see "Disk Partition Requirements" on page 8.

Ceph requires relatively newer Kernel versions. If your Linux kernel is very old, consider upgrading or
reinstalling a new one. For a list of minimum Linux kernel versions supported by Ceph for your OS,
see https://docs.ceph.com/en/latest/start/os-recommendations.

15

https://docs.ceph.com/en/latest/start/os-recommendations/

• All nodes must run NTP or other time-synchronization at all times.

• The install user must be a root user or have superuser (sudo) privileges.

• An SSH server must be running on all nodes. The installer running on the control host connects to
the cluster nodes through SSH using the install user account. You might need to edit the sshd_config
file to allow root login, depending on the authentication method selected. See "2.d" on page 23 of
the installation process.

• Select one of the following Docker versions to install.

• Docker CE—If you want to use Docker CE, you need not explicitly install it on the cluster nodes.
The deploy script installs Docker CE on the nodes during installation of Paragon Automation.

• Docker EE—If you want to use Docker EE, you must install Docker EE on all the cluster nodes. If
you install Docker EE on the nodes, the deploy script uses the installed version and does not
attempt to install Docker CE in its place. For more information on Docker EE, supported systems,
download, and installation instructions, see https://www.docker.com/blog/docker-enterprise-
edition/.

The Docker version you choose to install in the cluster nodes is independent of the Docker version
installed in the control host.

• Kubernetes requires iptables rules to accept forwarding traffic. Installing Docker might create a
firewall that prevents forwarding traffic. Configure the iptables firewall settings to accept all packets
by default using the iptables -P FORWARD ACCEPT command.

Inter-cluster communication between the nodes must be allowed. In particular, the ports listed in
Table 1 must be kept open for communication.

Table 3: Ports That Must Be Allowed by External Firewalls

Port Numbers Purpose

6443, 2379-2380, 10250, 10252, 10255 TCP

30000-32767 Kubernetes port assignment range

UI access

22 SSH daemon

80 HTTP

16

https://www.docker.com/blog/docker-enterprise-edition/
https://www.docker.com/blog/docker-enterprise-edition/

Table 3: Ports That Must Be Allowed by External Firewalls (Continued)

Port Numbers Purpose

443 HTTPS

7000 Paragon Planner communications

Communication between network elements

7804 NETCONF callback

161 SNMP (UDP)

• Python must be installed on the cluster nodes. If not pre-installed on your OS, install Python 3 on the
cluster nodes:

• On RHEL:

To install Python 3, use the # yum install python3 command.

To verify the Python version installed, use the $ python3 --version command.

• On Ubuntu OS:

To install Python 3.8, use the # apt install python3.8 command.

To verify the Python version installed, use # python -V or # python --version commands.

• On CentOS:

To install Python 3, use the $ yum install -y python3 command.

To verify the Python version installed, use $ python -V or $ python --version commands.

Python 2.7 is also supported.

17

Virtual IP Address Considerations

IN THIS SECTION

Load Balancing Configuration | 18

Access to the Paragon Automation cluster from outside the cluster is through virtual IP addresses (VIPs)
that are managed by a load balancer. You require up to five VIPs for a cluster. The VIPs can be within the
same broadcast domain as the cluster nodes or in a different broadcast domain.

You must identify the following VIPs before you install Paragon Automation.

• In case of a multi-primary node setup, you need one VIP in the same broadcast domain as the cluster
nodes. This IP address is used for communication between the primary and worker nodes. This IP
address is referred to as the Kubernetes Master Virtual IP address in the installation wizard.

• You also need a VIP for each of the following load-balanced services:

• Ingress controller—Paragon Automation provides a common Web server that provides access for
installing applications. Access to the server is managed through the Kubernetes Ingress Controller.
This VIP is used for Web access of the Paragon Automation GUI.

• Paragon Insights services—This VIP is used for DHCP services such as SNMP, syslog, and DHCP
relay.

• Paragon Pathfinder PCE server—Used to establish PCEP sessions with devices in the network.

• SNMP trap receiver proxy (Optional)—You should configure a VIP for the SNMP trap receiver proxy
only if this functionality is required.

Load Balancing Configuration

VIPs are managed in Layer 2 by default. When all cluster nodes are in the same broadcast domain, each
VIP is assigned to one cluster node at a time. If the cluster nodes are in different broadcast domains, you
must configure a load balancer in Layer 3 to load balance between the nodes.

You must configure a BGP router to advertise the VIP to the network. The BGP router should be
configured to use ECMP to balance TCP/IP sessions between different hosts. Connect the BGP router
directly to the cluster nodes.

18

To configure load balancing on the cluster nodes, edit the config.yml file. For example:

metallb_config:
 peers:
 - peer-address: 192.x.x.1 ## address of BGP router
 peer-asn: 64501 ## autonomous system number of BGP router
 my-asn: 64500 ## ASN of cluster
 address-pools:
 - name: default
 protocol: bgp
 addresses:
 - 10.x.x.0/24

In this example, The BGP router at 192.x.x.1 is responsible to advertise reachability for the VIPs with the
10.x.x.0/24 prefix to the rest of the network. The cluster allocates the VIP of this range and advertises
the address for the cluster nodes that can handle the address.

DNS Server Configuration (Optional)

You can access the main Web gateway either through the ingress controller VIP or through a hostname
that is configured in the DNS that resolves to the ingress controller VIP. You need to configure DNS only
if you want to use a hostname to access the Web gateway.

Add the hostname to DNS as A, AAAA, or CNAME record. For lab and POC setups, you can add the
hostname to the /etc/hosts file on the cluster nodes.

RELATED DOCUMENTATION

Paragon Automation System Requirements | 6

Install Paragon Automation | 20

Uninstall Paragon Automation | 37

19

Install Paragon Automation

IN THIS SECTION

Download the Software | 20

Install Paragon Automation | 21

Log in to the Paragon Automation UI | 33

This topic describes the installation of the Paragon Automation cluster. The order of installation tasks is
shown at a high level in Figure 4 on page 20. Ensure that you have completed all the preconfiguration
and preparation steps described in "Installation Prerequisites" on page 11 before you begin installation.

Figure 4: High-Level Process Flow for Installing Paragon Automation

Download the Software

Prerequisite

• You need a Juniper account to download the Paragon Automation software.

1. Log in to the control host.

2. Create a directory in which you download the software.

This directory is referred to as pa-download-dir in this guide.

3. From the Version drop-down list on the Paragon Automation software download page at https://
support.juniper.net/support/downloads/?p=pa, select the version number.

20

https://support.juniper.net/support/downloads/?p=pa
https://support.juniper.net/support/downloads/?p=pa

4. Download the Paragon Automation Setup installation files to the download folder using the wget
"http://cdn.juniper.net/software/file-download-url" command.

The Paragon Automation Setup installation bundle consists of the following scripts and tar files to
install each of the component modules:

• davinci.tar.gz, which is the primary installer file.

• infra.tar, which installs the Kubernetes infrastructure components including Docker and Helm.

• ems.tar, which installs the base platform component.

• northstar.tar, which installs the Paragon Pathfinder and Paragon Planner components.

• healthbot.tar, which installs the Paragon Insights and the UI components.

• run script, which executes the installer image. You might need to make the run script executable
by using the chmod +x run command.

Install Paragon Automation

1. Use the run script to create and initialize a configuration directory with the configuration template
files.

./run -c config-dir init

config-dir is a user-defined directory on the control host that contains configuration information for a
particular installation. The init command automatically creates the directory if it does not exist.
Alternatively, you can create the directory before you execute the init command.

If you are using the same control host to manage multiple installations of Paragon Automation, you
can differentiate between installations by using differently named configuration directories.

2. Use a text editor to customize the inventory file, created under the config-dir directory, with the IP
addresses or hostnames of the cluster nodes, as well as the usernames and authentication
information that are required to connect to the nodes.

The inventory file describes the cluster nodes on which Paragon Automation will be installed.

vi config-dir/inventory

Edit the following groups in the inventory file.

a. Add the IP addresses of the Kubernetes primary and worker nodes of the cluster.

21

The master group identifies the primary nodes, and the node group identifies the worker nodes. The
same IP address cannot be in both master and node groups. If you have configured hostnames that
can be resolved to the required IP addresses, you can also add hostnames in the inventory file.

For example:

[master]
10.12.xx.x3
10.12.xx.x4
10.12.xx.x5
hostname of kubernetes master

[node]
10.12.xx.x6
10.12.xx.x7
10.12.xx.x8
hostname(s) of kubernetes nodes

b. Define the nodes that run Elasticsearch in the elasticsearch_cluster group.

These nodes store the Elasticsearch hosts for log collection, and use /var/lib/elasticsearch to
store logging data. These nodes can be the same as the worker nodes, or can be a different set of
nodes. Elasticsearch uses a lot of disk space. If you use the worker nodes, you must ensure that
the nodes have sufficient space for log collection.

For example:

[elasticsearch_cluster]
10.12.xx.x7
10.12.xx.x8

c. Define the nodes that have disk space available for applications under the
local_storage_nodes:children group.

Services such as Postgres, Zookeeper, and Kafka use local storage or disk space partitioned inside
export/local-volumes. By default, worker nodes have local storage available. If you require the
primary nodes to run applications as well, add master to this group. If you do not add the master
here, you can run only applications that do not require local storage on the primary nodes.

22

For example:

[local_storage_nodes:children]
node
master

d. Configure the user account and authentication methods to authenticate the installer with the
cluster nodes under the [all:vars] group. Set the ansible_user variable to the user account to log in
to the cluster. The user account must be root or in case of non-root users, the account must have
superuser (sudo) privileges. Use any one of the following methods to specify user account
passwords.

• Use an ssh-key for authentication. Configure the ansible_ssh_private_key_file variable in the
inventory file.

[all:vars]
ansible_user=root
ansible_ssh_private_key_file=config/id_rsa

If you use an SSH key, you must perform the following steps on the control host.

i. Generate an SSH key.

ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/root/.ssh/id_rsa): <= ENTER (use
default)
Enter passphrase (empty for no passphrase): <= ENTER (no
passphrase)
Enter same passphrase again: <= ENTER (no
passphrase)
Your identification has been saved in /root/.ssh/id_rsa.
Your public key has been saved in /root/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:YS8cWopND9RFnpHGqaI1Q8e5ca2fxP/yMVzZtIDINbg root@Control1
The key's randomart image is:
+---[RSA 2048]----+
| ..o *=+ |
| ..= *o*oo |
| . .o==*+. . .|
| =+oO.Eo ..+|

23

| o.++ So.o oo|
| . .o .. . |
| .+ |
| . .o |
| o. |
+----[SHA256]-----+

ii. Copy the private key to the config-dir directory, where the inventory file is saved.

cd config-dir
cp ~/.ssh/id_rsa .

iii. To allow authentication using the SSH key, copy id_rsa.pub to the cluster nodes. Repeat
this step for all cluster nodes.

ssh-copy-id -i ~/.ssh/id_rsa.pub cluster-node-IP-or-hostname

iv. (Optional) If you want to protect the SSH key with a passphrase, you must run ssh-agent
and use the ssh-add config-dir/id_rsa command to add the key to the agent.

• Enter the ansible_user name and password in the master and node groups of the inventory file.

[master]
10.12.xx.x3 ansible_user=root ansible_ssh_pass=Password
10.12.xx.x4 ansible_user=root ansible_ssh_pass=Password
10.12.xx.x5 ansible_user=root ansible_ssh_pass=Password
hostname of kubernetes master

[node]
10.12.xx.x6 ansible_user=root ansible_ssh_pass=Password
10.12.xx.x7 ansible_user=root ansible_ssh_pass=Password
10.12.xx.x8 ansible_user=root ansible_ssh_pass=Password
hostname(s) of kubernetes nodes

• Use the ansible-vault encrypt_string command supported by Ansible to encrypt passwords.

i. Run the ./run -c config-dir ansible-vault encrypt_string command.

ii. Enter a vault password and confirm the password when prompted.

iii. Copy and paste the encrypted password into the inventory file.

24

For example:

./run -c config-dir ansible-vault encrypt_string
====================
PO-Runtime installer
====================

Supported command:
 deploy [-t tags] deploy runtime
 destroy [-t tags] destroy runtime
 init init configuration skeleton
 conf basic configuration editor
 info [-mc] cluster installation info

Starting now: ansible-vault encrypt_string
New Vault password:
Confirm New Vault password:
Reading plaintext input from stdin. (ctrl-d to end input)
V3rySecret!
!vault |
 $ANSIBLE_VAULT;1.1;AES256

62383364363833633462353534383731373838316539303030343565623537343661656137316461

3831323931333366646131643533396334326635646439630a333630623035306464346139643437

37643334323639363836343835653932383362336462346437373663356365616438666231626233

3064363761616462350a393664383433333638343433633931326166663066646165663764663032
 6265
Encryption successful

In this example, the encrypted password is the text starting from "!vault |" up to and including
"6265". If you are encrypting multiple passwords, enter the same password for all.

For more information, see https://docs.ansible.com/ansible/latest/user_guide/vault.html.

NOTE: The default inventory file is in the INI format. If you choose to encrypt
passwords using the Vault method, you must convert the inventory file to the YAML
format. For information about inventory files, see https://docs.ansible.com/ansible/
latest/network/getting_started/first_inventory.html.

25

https://docs.ansible.com/ansible/latest/user_guide/vault.html
https://docs.ansible.com/ansible/latest/network/getting_started/first_inventory.html
https://docs.ansible.com/ansible/latest/network/getting_started/first_inventory.html

• Enter the authentication password directly in the file for ansible_password. We do not
recommend using this option to specify the password.

[all:vars]
ansible_user=root
ansible_password=root-password

If ansible_user is not root, the configured user must be able to use sudo to execute privileged
commands. If sudo requires a password, also add ansible_become_password=password to the inventory
file. For more information about how to configure Ansible inventory, see https://
docs.ansible.com/ansible/latest/user_guide/intro_inventory.html.

e. (Optional) Specify a name for your Kubernetes cluster in the kubernetes_cluster_name group.

3. Use the conf script to configure the installer.

./run -c config-dir conf

The conf script runs an interactive installation wizard that allows you to choose the components to be
installed and configure a basic Paragon Automation setup. The script populates the config.yml file
with your input configuration. For advanced configuration, you must edit the config.yml file manually.

Enter the information as prompted by the wizard. Use the cursor keys to move the cursor, use the
space key to select an option, and use a or i to toggle selecting or clearing all options. Press Enter to
move to the next configuration option. You can skip configuration options by entering a period (.).
You can re-enter all your choices by exiting the wizard and restarting from the beginning. The
installer allows you to exit the wizard after you save the choices that you already made or to restart
from the beginning. You cannot go back and redo the choices that you already made in the current
workflow without exiting the wizard altogether.

The configuration options that the conf script prompts for are listed in Table 4 on page 26:

Table 4: conf Script Options

conf Script Prompts Description/Options

Select components You can install one or more of the Infrastructure, Pathfinder, Insights, and
base platform components. By default, all components are selected.

NOTE: In Paragon Automation Release 21.2, you must install the base
platform and Paragon Insights components. The installation of the other
components is optional and based on your requirement.

26

https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html

Table 4: conf Script Options (Continued)

conf Script Prompts Description/Options

Infrastructure Options These options are displayed only if you selected to install the Infrastructure
component in the previous prompt.

• Install Kubernetes Cluster—Installs the required Kubernetes cluster. If
you are installing Paragon Automation on an existing cluster, you can
clear this selection.

• Install MetalLB LoadBalancer—Installs an internal load balancer for the
Kubernetes cluster. By default, this option is already selected. If you are
installing Paragon Automation on an existing cluster with preconfigured
load balancing, you can clear this selection.

• Install Chrony NTP Client—NTP is required to synchronize the clocks of
the cluster nodes. If NTP is already installed and configured, you need
not install Chrony. All nodes must run NTP or some other time-
synchronization at all times.

• Allow Master Scheduling—Master scheduling determines how the
primary nodes are used. If you select this option, the master nodes are
used as both the control plane and worker nodes, which means that you
can run application workloads on the primary nodes as well. Master
scheduling allows for better resource allocation and management in the
cluster. However, you also run the risk that a misbehaving workload can
exhaust resources and affect the stability of the whole cluster.

If you do not allow master scheduling, the primary nodes are used only
as the control plane. You can accommodate primary nodes with lesser
resources, because they do not run any application workloads. If you
have multiple primary nodes or nodes with high capacity and disk space,
you risk wasting their resources by not utilizing them completely.

If you allow master scheduling, the primary nodes can also provide
storage.

Kubernetes Master Virtual IP
address

Configure a virtual IP address (VIP) for the primary nodes in a multi-primary
node setup. The VIP must be in the same broadcast domain as the primary
and worker nodes.

NOTE: This option is displayed only when the inventory file is updated with
more than one primary node.

27

Table 4: conf Script Options (Continued)

conf Script Prompts Description/Options

Install Loadbalancer for
Master Virtual IP address

Install a load balancer for clusters with multiple primary nodes. The load
balancer is responsible for the primary node’s VIP and is not used for
externally accessible services. By default, the load balancer is internal, but
you can also use external load balancers.

For more information, see https://kubernetes.io/docs/setup/production-
environment/tools/kubeadm/high-availability/#create-load-balancer-for-
kube-apiserver.

List of NTP servers Enter a comma-separated list of NTP servers.

LoadBalancer IP address
ranges

Enter a comma-separated list of IP addresses or address ranges that are
reserved for the load balancer. The externally accessible services are
handled through MetalLB, which needs one or more IP address ranges that
are accessible from outside the cluster. VIPs for the different servers are
selected from these ranges of addresses. The address ranges can be (but
need not be) in the same broadcast domain as the cluster nodes.

For ease of management, because the network topologies need access to
Insights services and the PCE server clients, we recommend that the VIPs
for these be selected from the same range.

For more information, see "VIP Considerations" on page 18.

NOTE: Do not include the Kubernetes Master Virtual IP address.

Addresses can be entered as comma separated values, or as a range, or as a
combination of both. For example:

• 10.x.x.1, 10.x.x.2, 10.x.x.3

• 10.x.x.1-10.x.x.3

• 10.x.x.1, 10.x.x.3-10.x.x.5

• 10.x.x.1-3 is not a valid format

Virtual IP address for ingress
controller

Enter a VIP to be used for Web access of the Kubernetes cluster or the
Paragon Automation user interface. This must be an unused IP address that
is managed by the load balancer.

28

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/#create-load-balancer-for-kube-apiserver
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/#create-load-balancer-for-kube-apiserver
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/#create-load-balancer-for-kube-apiserver

Table 4: conf Script Options (Continued)

conf Script Prompts Description/Options

Virtual IP address for Insights
services

Enter a VIP for Paragon Insights services. This must be an unused IP address
that is managed by the load balancer.

Virtual IP address for
Pathfinder PCE server

Enter a VIP to be used for Paragon Pathfinder PCE server access. This must
be an unused IP address that is managed by the load balancer.

NOTE: The addresses for ingress controller, Insights services, and PCE server
must be unique. You cannot use the same address for all three VIPs.

Ensure that these three addresses are listed in the LoadBalancer IP address
ranges option.

Hostname of Main web
application

Enter a hostname or an IP address. If you enter an IP address, it must be the
same as the VIP that you entered for the ingress controller. If you enter a
hostname, it should resolve to the VIP for the ingress controller and must be
preconfigured in the DNS server.

This address or hostname is used to access the Paragon Automation Web UI
from your browser. For example, https://hostname or https://IP-address.

BGP autonomous number of
CRPD peer

Set up the Containerized Routing Protocol Daemon (cRPD) autonomous
systems and the nodes with which cRPD creates its BGP sessions.

If Paragon Pathfinder is installed, you must configure a cRPD to peer with a
BGP-LS router in the network to import the network topology. For a single
autonomous system, you must configure the ASN of the network.

NOTE: While you can configure the correct ASN at the time of installation,
you can also modify the cRPD configuration later.

29

Table 4: conf Script Options (Continued)

conf Script Prompts Description/Options

Comma separated list of
CRPD peers

List of CRPD peers. The CRPD instance running as part of a cluster opens a
BGP connection to the specified peer routers and imports topology data
using BGP-LS.

NOTE: While you can configure the correct peer IP addresses at the time of
installation, you can also modify the cRPD configuration later.

If more than one peer is required, these can be added as comma separated
values or as a range or as a combination of both, similar to LoadBalancer IP
addresses.

The following example shows the configuration of the BGP peer in the
connected network topology. The example shows the configuration of a
Juniper device active as BGP-LS peer to provide topology information to
Paragon Pathfinder.

[edit groups northstar]
root@system# show protocols bgp group northstar
type internal;
family traffic-engineering {
 unicast;
}
export TE;
allow 10.xx.43.0/24;

[edit groups northstar]
root@system# show policy-options policy-statement TE
from family traffic-engineering;
then accept;

In this example, the cluster hosts are in the 10.xx.43.0/24 network, and the
router will accept BGP sessions from any host in this network.

You can also configure the specific IP addresses of the worker nodes
combined with the passive option. For example:

[edit protocols bgp group BGP-LS]
root@vmx101# show | display set
set protocols bgp group BGP-LS family traffic-engineering unicast
set protocols bgp group BGP-LS peer-as 11
set protocols bgp group BGP-LS allow 10.x.43.1
set protocols bgp group BGP-LS allow 10.x.43.2

30

Table 4: conf Script Options (Continued)

conf Script Prompts Description/Options

set protocols bgp group BGP-LS allow 10.x.43.3
set protocols bgp group BGP-LS passive
set protocols bgp group BGP-LS export TE

The BGP session is initiated by cRPD. Only one session is established at a
time and is initiated using the address of the worker node currently running
cRPD. If you choose to configure the specific IP addresses instead of using
the allow option, configure the addresses of all the workers nodes for
redundancy.

You will also need to enable OSPF/ISIS and MPLS traffic engineering as
shown:

set protocols isis traffic-engineering igp-topology
Or
set protocols ospf traffic-engineering igp-topology

set protocols mpls traffic-engineering database import igp-topology

For more information, see https://www.juniper.net/documentation/us/en/
software/junos/mpls/topics/topic-map/mpls-traffic-engineering-
configuration.html.

4. Click Yes to save the configuration information.

This configures a basic setup, and the information is saved in the config.yml file in the config-dir
directory.

5. (Optional) For more advanced configuration of the cluster, use a text editor to manually edit the
config.yml file.

The config.yml file consists of an essential section at the beginning of the file that corresponds to the
configuration options that the installation wizard prompts you to enter. The file also has an extensive
list of sections under the essential section that allows you to enter complex configuration values
directly in the file.

Consider editing the following configuration options:

• By default, the install_opendistro_es is set to true to replace the Elasticsearch version with Open
Distro. Open Distro provides authentication to log in to the Kibana application. The username is
preconfigured as admin in #opendistro_es_admin_user: admin.

You must configure the authentication password, # opendistro_es_admin_password: "password". Use
admin as username and this password to log in to Kibana.

31

https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/topic-map/mpls-traffic-engineering-configuration.html
https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/topic-map/mpls-traffic-engineering-configuration.html
https://www.juniper.net/documentation/us/en/software/junos/mpls/topics/topic-map/mpls-traffic-engineering-configuration.html

• Set the iam_skip_mail_verification configuration option to true for user management without SMTP
by Identity Access Management (IAM). For user management with SMTP, set the option to false.

Save and exit the file after you finish editing it.

6. (Optional) If you want to deploy custom SSL certificates signed by a recognized certificate authority
(CA), store the private key and certificate in the config-dir directory. Save the private key as
ambassador.key.pem and the certificate as ambassador.cert.pem.

By default, ambassador uses a locally generated certificate signed by the Kubernetes cluster-internal
CA.

NOTE: If the certificate is about to expire, save the new certificate as ambassador.cert.pem in
the same directory, and execute the ./run -c config-dir deploy -t ambassador command.

7. Install the Paragon Automation cluster based on the information that you configured in the
config.yml and inventory files.

./run -c config-dir deploy

The time taken to install the configured cluster depends on the complexity of the cluster. A basic
setup installation takes at least 30 minutes to complete.

If you are installing Paragon Automation on an existing Kubernetes cluster, the deploy script upgrades
the currently deployed cluster to the latest Kubernetes version. The script also upgrades the Docker
CE version, if required. If Docker EE is already installed on the nodes, the deploy script will not
overwrite it with Docker CE. When upgrading the Kubernetes version or the Docker version, the
script performs the upgrade sequentially on one node at a time. Each node is cordoned off and
removed from scheduling and upgrades are performed, Kubernetes is restarted on the node, and the
node is finally uncordoned and brought back into scheduling.

8. Log in to the worker nodes.

Use a text editor to configure the following recommended information for Paragon Insights in the
limits.conf and sysctl.conf files.

a.

vi /etc/security/limits.conf
 # End of file
 * hard nofile 1048576
 * soft nofile 1048576
 root hard nofile 1048576
 root soft nofile 1048576

32

 influxdb hard nofile 1048576
 influxdb soft nofile 1048576

b.

vi /etc/sysctl.conf
 fs.file-max = 2097152
 vm.max_map_count=262144
 fs.inotify.max_user_watches=524288
 fs.inotify.max_user_instances=512

Repeat this step for all worker nodes.

Log in to the Paragon Automation UI

After you install Paragon Automation, log in to the Paragon Automation UI.

1. Open a browser, and enter either the hostname of the main Web application or the VIP of the ingress
controller that you entered in the URL field of the installation wizard.

For example, https://vip-of-ingress-controller-or-hostname-of-main-web-application. The Paragon
Automation login page is displayed.

2. For first-time access, enter admin as username and Admin123! as the password to log in. You must
change the password immediately.

The Set Password page is displayed. To access the Paragon Automation setup, you must set a new
password.

3. Set a new password that meets the password requirements.

The password should be between 6 to 20 characters and must be a combination of uppercase letters,
lowercase letters, numbers, and special characters. Confirm the new password, and click OK.

The Dashboard page is displayed. You have successfully installed and logged in to the Paragon
Automation UI.

4. Update the URL to access the Paragon Automation UI in Administration > Authentication > Portal
Settings to ensure that the activation e-mail sent to users for activating their account contains the
correct link to access the GUI. For more information, see Configure Portal Settings.

RELATED DOCUMENTATION

Installation Prerequisites | 11

Paragon Automation GUI Overview

33

https://vip-of-ingress-controller-or-hostname-of-main-web-application

Backup and Restore | 40

Troubleshoot Paragon Automation Installation | 48

Migrate Data from Northstar to Paragon Automation | 61

Update Paragon Automation

To reinstall Paragon Automation, run the deploy script again on the control host.

To update an existing instance of Paragon Automation, edit the inventory and config.yml files, and run
the deploy script again on the control host.

./run -c config-dir deploy

If the deploy script fails for a particular component, you can run the destroy command to uninstall the
component, and then reinstall it with the deploy script.

./run -c config-dir destroy -t tags
./run -c config-dir deploy -t tags

The following optional parameters are supported for the deploy script:

• --list-tags—View a list of available tags.

• -t tag1,tag2—Deploy or redeploy a subset of the installation tasks or components of the cluster
selectively. For example, to install or update only the infrastructure component, use # ./run -c config-
dir deploy -t infra.

• --skip-tags tag1,tag2—Skip over some installation tasks. For example, to deploy the cluster without
installing the Paragon Insights component, use # ./run -c config-dir deploy --skip-tags healthbot.

• --ask-vault-pass—Prompt for the password to decrypt authentication passwords, if Ansible vault was
previously configured.

RELATED DOCUMENTATION

Installation Prerequisites | 11

Install Paragon Automation | 20

34

Uninstall Paragon Automation | 37

Edit Cluster Nodes

IN THIS SECTION

Add a Node | 35

Remove a Node | 36

Replace a Node | 36

Use the information provided in this topic to edit cluster nodes.

Add a Node

You can edit an operational Paragon Automation cluster and add additional nodes to the cluster. The
node can be either a primary or worker node.

However, note that if your existing cluster is configured with a single primary node, you cannot add an
additional primary node using this procedure. To add an additional primary node to a single primary
node cluster, you must reinstall the whole cluster.

To add new nodes:

1. Prepare the node and ensure it meets all the cluster node prerequisites as described in "Prepare
Cluster Nodes" on page 14.

2. Log in to the control host.

3. Edit the inventory file with the IP address or hostname of the new node. Add the node to the
required cluster node group (primary or worker).

4. Execute the ./run -c config-dir deploy command.

You can also limit the execution of the command to deploy only the new node by using the ./run -c
config-dir deploy -l node-address command.

35

Remove a Node

You can edit an operational Paragon Automation cluster to remove one or more nodes from the cluster.

To remove nodes:

1. Access kubectl.

The main interface in the Kubernetes cluster is kubectl which is installed on a primary node.
However, you can also access the Kubernetes API from any node that has access to the cluster,
including the control host. To use a node other than the primary node, you must ensure that you
copy the admin.conf file and set the kubeconfig environment variable, or you can use the export
KUBECONFIG=config-dir/admin.conf command.

For more information on kubectl commands, see https://kubernetes.io/docs/reference/kubectl/
overview/.

2. Execute the following kubectl commands to remove a node.

root@primary-node:~# kubectl cordon node-address
root@primary-node:~# kubectl drain node-address
root@primary-node:~# kubectl delete node-address

3. Log in to the control host. Update the inventory file to delete the node so that the inventory file also
reflects the change. However, do not execute the ./run -c config-dir deploy command again.

Replace a Node

You can replace a node with another node in an existing Paragon Automation cluster.

To replace a node with another node:

1. Prepare the node and ensure it meets all the cluster node prerequisites as described in "Prepare
Cluster Nodes" on page 14.

2. Access kubectl.

The main interface in the Kubernetes cluster is kubectl which is installed on a primary node. However,
you can also access the Kubernetes API from any node that has access to the cluster, including the
control host. To use a node other than the primary node, you must ensure that you copy the
admin.conf file and set the kubeconfig environment variable, or you can use the export KUBECONFIG=config-
dir/admin.conf command.

For more information on kubectl commands, see https://kubernetes.io/docs/reference/kubectl/
overview/.

36

https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/

3. Run the following kubectl commands to remove a node.

root@primary-node:~# kubectl cordon node-address
root@primary-node:~# kubectl drain node-address
root@primary-node:~# kubectl delete node-address

4. Log in to the control host.

5. Edit the inventory file with the IP address or hostname of the new node. Add the node to the
required cluster node group (primary or worker). Also, delete the node you replaced.

6. Run the ./run -c config-dir deploy command.

You can also limit the execution of the command to deploy only the new node by using the ./run -c
config-dir deploy -l node-address command.

In some cases, if a node fails, you can rebuild a replacement node using the same IP address as the failed
node.

To redeploy the same node as a replacement, perform the following steps:

1. Prepare the node and ensure it meets all the cluster node prerequisites as described in "Prepare
Cluster Nodes" on page 14.

2. Log in to the control host.

3. Run the ./run -c config-dir deploy command again.

You can also limit the execution of the command to only the redeployed node by using the ./run -c
config-dir deploy -l node-address command.

RELATED DOCUMENTATION

Installation Prerequisites | 11

Install Paragon Automation | 20

Update Paragon Automation | 34

Uninstall Paragon Automation

To uninstall Paragon Automation:

1. Log in to the control host.

37

2. Uninstall individual components or component groups:

./run -c config-dir destroy -t tags

To view a list of available tags, use # ./run -c config-dir deploy --list-tags.

If you uninstall Paragon Automation completely, you must also ensure that the /var/lib/rook
directory is removed on all nodes, and all Ceph block devices are wiped. For information on clearing
Ceph block devices, see "Reformat a Disk" on page 55.

NOTE: To completely uninstall the whole cluster, we recommend that you re-image all the
cluster nodes. Re-imaging is a faster and more complete option.

RELATED DOCUMENTATION

Install Paragon Automation | 20

Update Paragon Automation | 34

Edit Cluster Nodes | 35

38

4
CHAPTER

Backup and Restore

Backup and Restore | 40

Backup and Restore

IN THIS SECTION

Back up the Configuration | 41

Restore the Configuration | 44

This topic describes the backup and restore capabilities available in Paragon Automation. Although
Paragon Automation is a GUI-based application, the backup and restore operations are managed from
the Paragon Insights cMGD CLI. Postgres is the primary persistent storage database for microservices.
Backup files are saved in a local persistent volume on the cluster nodes. The backup procedure can be
performed while microservices are running and does not affect the operation of the cluster. However,
for restore procedures, microservices are stopped and the cluster is not functional until the databases
are restored.

Currently, you cannot schedule a backup or restore procedure. Also, you cannot select applications to be
backed-up and restored. A preconfigured and fixed set of applications are backed-up and restored for
each component.

40

The backup and restore procedures are implemented by containerized scripts that are invoked through
Kubernetes jobs.

Figure 5: Backup and Restore Process

Back up the Configuration

Data across most Paragon Automation applications is primarily stored in Postgres. When you back up a
configuration, system determined predefined data is backed-up. When you perform a backup, the
operational system and microservices are not affected. You can continue to use Paragon Automation
while a backup is running.

To back up the current Paragon Automation configuration:

1. Determine and log in to the cMGD CLI managed by Paragon Insights (formerly Healthbot).

41

For example:

root@primary-node:~# kubectl get -n healthbot pods -l app=mgd
NAME READY STATUS RESTARTS AGE
mgd-57b5754b7f-26mlm 1/1 Running 0 10d
root@primary-node:~# kubectl exec -it -n healthbot mgd-57b5754b7f-26mlm -- bash
root@primary-node:~# cli

NOTE: The main interface in the Kubernetes cluster is kubectl which is installed on a primary
node. However, you can also access the Kubernetes API from any node that has access to the
cluster, including the control host. To use a node other than the primary node, you must
ensure that you copy the admin.conf file and set the kubeconfig environment variable, or you
can use the export KUBECONFIG=config-dir/admin.conf command.

2. Enter the request system backup path path-to-backup-folder command to start a backup job which backs up
all databases up until the moment you run the command.

For example:

root@mgd-57b5754b7f-26mlm> request system backup path /hello/world/

A corresponding Kubernetes db-backup-hello-world job is created. The Kubernetes job creates a backup
of the predefined data. The files are stored in a local persistent volume.

3. After backup is complete, you must explicitly and manually back up the base platform resources
using kubectl.

a. Back up jobmanager-identitysrvcreds and devicemodel-connector-default-scope-id:

root@primary-node:~# kubectl get secrets -n ems jobmanager-identitysrvcreds devicemodel-
connector-default-scope-id -o yaml > ems-scope-bkup.yaml

b. (Optional) If SMTP is configured on the Paragon Automation cluster, then back up the available
iam-smtp-config secret:

root@primary-node:~# kubectl get secrets -n common iam-smtp-config -o yaml > iam-smtp-
bkup.yaml

If this command fails, then SMTP is not configured in the cluster and you can ignore the error.

Frequently Used kubectl Commands to View Backup Details

42

To view the status of your backup or the location of your backup files, or to view more information on
the backup files, use the following commands.

• Backup jobs exist in the common namespace and use the common=db-backup label. To view all backup
jobs:

root@primary-node:~# kubectl get -n common jobs -l common=db-backup
NAME COMPLETIONS DURATION AGE
db-backup-hello-world 1/1 3m11s 2d20h

• To view more details of a specific Kubernetes job:

root@primary-node:~# kubectl describe -n common jobs/db-backup-hello-world

• To view the logs of a specific Kubernetes job:

root@primary-node:~# kubectl logs -n common --tail 50 jobs/db-backup-hello-world

• To determine the location of the backup files:

root@primary-node:~# kubectl get -n common pvc db-backup-pvc
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
db-backup-pvc Bound local-pv-cb20f386 145Gi RWO local-storage 3d3h

The output points you to the local persistent volume. Use that persistent volume to determine the
node on which the backup files are stored.

root@primary-node:~# kubectl describe -n common pv local-pv-cb20f386
Node Affinity:
 Required Terms:
 Term 0: kubernetes.io/hostname in [10.49.xxx.x2]
Message:
Source:
 Type: LocalVolume (a persistent volume backed by local storage on a node)
 Path: /export/local-volumes/pv*

43

To view all the backup files, log in to the node and navigate to the location of the backup folder.

root@primary-node:~# ssh root@10.49.xxx.x2
root@10.49.xxx.x2:~# ls -l /export/local-volumes/pv*

To view commonly seen backup and restore failure scenarios, see "Common Backup and Restore Issues"
on page 49.

Restore the Configuration

You can restore a Paragon Automation configuration from a previously backed-up configuration folder. A
restore operation rewrites the databases with all the backed-up configuration information. You cannot
selectively restore databases. When you perform a restore, a Kubernetes job is spawned, which will stop
the affected microservices. The job restores the backed-up configuration, and restarts the microservices.
Paragon Automation is not functional until the restoration procedure is complete.

You cannot run multiple restore jobs at the same time, since microservices are stopped during the
restoration process. Also, you cannot run both backup and restore processes concurrently.

NOTE: We strongly recommend that you restore a configuration during a maintenance window,
else the system can go into an inconsistent state.

To restore the Paragon Automation configuration to a previously backed-up configuration:

1. Log in to the cMGD CLI managed by Paragon Insights (formerly Healthbot).

For example:

root@primary-node:~# kubectl get -n healthbot pods -l app=mgd
NAME READY STATUS RESTARTS AGE
mgd-57b5754b7f-26mlm 1/1 Running 0 10d
root@primary-node:~# kubectl exec -it -n healthbot mgd-57b5754b7f-26mlm -- bash
root@primary-node:~# cli

2. Enter the request system restore path path-to-backup-folder command to restore the configuration with
the files in the specified backup folder on the persistent volume.

44

For example:

root@mgd-57b5754b7f-26mlm> request system restore path /hello/world/

A corresponding Kubernetes db-restore-hello-world job is created. The restore process takes longer
than a backup process since microservices are stopped and restarted. When the restoration is
complete, the Paragon Automation system is not operational immediately. You must wait around ten
minutes for the system to stabilize and become fully functional.

NOTE: If you are logged in during the restore process, you must log out and log back in after
the restore process is complete.

3. After restore is complete, you must explicitly restore the base platform resources with the previously
manually backed-up base-platform backup files.

a. Delete the jobmanager-identitysrvcreds and devicemodel-connector-default-scope-id base
platform secrets resources.

root@primary-node:~# kubectl delete secrets -n ems jobmanager-identitysrvcreds devicemodel-
connector-default-scope-id

b. Restore the previously backed-up base platform resources.

root@primary-node:~# kubectl apply -f ems-scope-bkup.yaml

c. Restart the jobmanager and devicemodel-connector base platform services.

root@primary-node:~# kubectl rollout restart deploy jobmanager devicemodel-connector -n ems

d. (Optional) If SMTP is configured on the Paragon Automation cluster, delete the current SMTP
secrets file and restore from the previously backed-up file.

root@primary-node:~# kubectl delete secret -n common iam-smtp-config
root@primary-node:~# kubectl apply -f iam-smtp-bkup.yaml

45

e. (Optional) Delete the manually backed-up files.

root@primary-node:~# rm ems-scope-bkup.yaml iam-smtp-bkup.yaml

Frequently Used kubectl Commands to View Restore Details

To view more information and the status of your restore process, use the following commands.

• Restore jobs exist in the common namespace and use the common=db-restore label. To view all restore
jobs:

root@primary-node:~# kubectl get -n common jobs -l common=db-restore
NAME COMPLETIONS DURATION AGE
db-restore-hello-world 0/1 20s 21s

• To view more details of a specific Kubernetes job:

root@primary-node:~# kubectl describe -n common jobs/db-restore-hello-world

• To view the logs of a particular Kubernetes job:

root@primary-node:~# kubectl logs -n common --tail 50 jobs/db-restore-hello-world

To view commonly seen backup and restore failure scenarios, see "Common Backup and Restore Issues"
on page 49.

RELATED DOCUMENTATION

Troubleshoot Paragon Automation Installation | 48

Update Paragon Automation | 34

Uninstall Paragon Automation | 37

46

5
CHAPTER

Troubleshooting

Troubleshoot Paragon Automation Installation | 48

Troubleshoot Paragon Automation Installation

SUMMARY

This topic provides a general guide to
troubleshooting some typical problems you might
encounter during and after installation.

IN THIS SECTION

Resolve Merge Conflicts of the Configuration
File | 48

Common Backup and Restore Issues | 49

View Installation Log Files | 49

View Log Files in Kibana | 49

Troubleshooting Using the kubectl
Interface | 51

Troubleshooting Ceph and Rook | 55

Common Utility Commands | 58

Resolve Merge Conflicts of the Configuration File

The init script creates the template configuration files. If you update an existing installation using the
same config-dir directory that was used for the installation, the template files that the init script creates
are merged with the existing configuration files. Sometimes, this merging action creates a merge conflict
that you must resolve. The script prompts you about how to resolve the conflict. When prompted, select
one of the following options:

• C—You can retain the existing configuration file and discard the new template file. This is the default
option.

• n—You can discard the existing configuration file and reinitialize the template file.

• m—You can merge the files manually. Conflicting sections are marked with lines starting with
“<<<<<<<<“, “||||||||”, “========“, and “>>>>>>>>”. You must edit the file and remove the merge
markers before you proceed with the update.

• d—You can view the differences between the files before you decide how to resolve the conflict.

48

Common Backup and Restore Issues

In a scenario when you destroy an existing cluster and redeploy a software image on the same cluster
nodes, if you try to restore a configuration from a previously backed up configuration folder, the restore
operation might fail. Restore fails because the mount path for the backed up configuration is now
changed. When you destroy an existing cluster, the persistent volume is deleted. When you redeploy
the new image, the persistent volume gets recreated in one of the cluster nodes wherever space is
available, but not necessarily in the same node as it was present in previously. Hence, the restore
operation fails.

As a workaround:

1. Determine the mount path of the new persistent volume.

2. Copy the contents of the previous persistent volume's mount path to the new path.

3. Retry the restore operation.

View Installation Log Files

If the deploy script fails, you must check the installation log files in the config-dir directory. By default, the
config-dir directory stores six zipped log files. The current log file is saved as log, and the previous log
files are saved as log.1 through log.5 files. Every time you run the deploy script, the current log is saved,
and the oldest one is discarded.

Error messages are typically found at the end of a log file. View the error message, and fix the
configuration.

View Log Files in Kibana

System logs are stored in Elasticsearch, and can be accessed through the Kibana application. To view
logs in Kibana:

1. To access the Kibana application use the VIP of the ingress controller. Open a browser, and enter
https://vip-of-ingress-controller-or-hostname-of-main-web-application/kibana, in the URL field.

2. Enter the opendistro_es_admin_user username and the opendistro_es_admin_password password that you
configured in the config.yml file during installation. The default username is admin.

You cannot log in to Kibana if you have not configured a password before installation.

49

https://%3Cvip-of-ingress-controller-or-hostname-of-main-web-application%3E/kibana

3. If you are logging in for the first time, create an index pattern by navigating to Management > Index
Pattern.

4. Enter logstash-* in the Index pattern field and then click > Next Step.

Figure 6: Kibana - Define Index Pattern

5. Select @timestamp from the Time Filter field name list, and then click Create index pattern to create
an index pattern.

Figure 7: Kibana - Configure Settings

6. Use Discover to browse the log files, and to add or remove filters as required.

50

Troubleshooting Using the kubectl Interface

IN THIS SECTION

View Node Status | 51

View Pod Status | 52

View Detailed Information about a Pod | 52

View the Logs for a Container in a Pod | 52

Run a Command on a Container in a Pod | 53

View Services | 54

Frequently Used kubectl Commands | 54

The main interface in the Kubernetes cluster is kubectl, which is installed on a primary node. You can log
in to the primary node and use the kubectl interface to access the Kubernetes API, view node details,
and perform basic troubleshooting actions. The admin.conf file is copied to the config-dir directory on
the control host as part of the installation process.

You can also access the Kubernetes API from any other node that has access to the cluster. To use a
node other than the primary node, you must copy the admin.conf file and set the kubeconfig environment
variable. Another option is to use the export KUBECONFIG=config-dir/admin.conf command.

Use the following sections to troubleshoot and view installation details using the kubectl interface.

View Node Status

Use the kubectl get no command to view the status of the cluster nodes. The status of the nodes must be
Ready, and the roles should be either control-plane or none. For example:

root@primary-node:~# kubectl get no
NAME STATUS ROLES AGE VERSION
10.49.xx.x1 Ready control-plane,master 5d5h v1.20.4
10.49.xx.x6 Ready <none> 5d5h v1.20.4
10.49.xx.x7 Ready <none> 5d5h v1.20.4
10.49.xx.x8 Ready <none> 5d5h v1.20.4

If a node is not Ready, verify whether the kubelet process is running. You can also use the system log of
the node to investigate the issue.

51

View Pod Status

Use the kubectl get po –n namespace | -A command to view the status of a pod. You can specify an
individual namespace (such as healthbot, northstar, and common) or you can use the -A parameter to
view the status of all namespaces. For example:

root@primary-node:~# kubectl get po -n northstar
NAME READY STATUS RESTARTS AGE
bmp-854f8d4b58-4hwx4 3/3 Running 1 30h
dcscheduler-55d69d9645-m9ncf 1/1 Running 1 7h13m

The status of healthy pods must be displayed as Running or Completed, and the number of ready
containers should match the total. If the status of a pod is not Running or if the number of containers
does not match, use the kubectl describe po command to troubleshoot the issue further.

View Detailed Information about a Pod

Use the kubectl describe po -n namespace pod-name command to view detailed information about a specific
pod. For example:

root@primary-node:~# kubectl describe po -n northstar bmp-854f8d4b58-4hwx4
Name: bmp-854f8d4b58-4hwx4
Namespace: northstar
Priority: 0
Node: 10.49.xx.x1/10.49.xx.x1
Start Time: Mon, 10 May 2021 07:11:17 -0700
Labels: app=bmp
 northstar=bmp
 pod-template-hash=854f8d4b58
…

View the Logs for a Container in a Pod

Use the kubectl logs -n namespace pod-name [-c container-name] command to view the logs for a particular
pod. If a pod has multiple containers, you must specify the container for which you want to view the
logs. For example:

root@primary-node:~# kubectl logs -n common atom-db-0 | tail -3
2021-05-31 17:39:21.708 36 LOG {ticks: 0, maint: 0, retry: 0}

52

2021-05-31 17:39:26,292 INFO: Lock owner: atom-db-0; I am atom-db-0
2021-05-31 17:39:26,350 INFO: no action. i am the leader with the lock

Run a Command on a Container in a Pod

Use the kubectl exec –ti –n namespace pod-name [-c container-name] -- command-line command to run commands
on a container inside a pod. For example:

root@primary-node:~# kubectl exec -ti -n common atom-db-0 -- bash

 ____ _ _
/ ___| _ __ (_) | ___
___ \| '_ \| | |/ _ \
 ___) | |_) | | | (_) |
|____/| .__/|_|_|___/
 |_|

This container is managed by runit, when stopping/starting services use sv

Examples:

sv stop cron
sv restart patroni

Current status: (sv status /etc/service/*)

run: /etc/service/cron: (pid 29) 26948s
run: /etc/service/patroni: (pid 27) 26948s
run: /etc/service/pgqd: (pid 28) 26948s
root@atom-db-0:/home/postgres#

After you run exec the command, you get a bash shell into the Postgres database server. You can access
the bash shell inside the container, and run commands to connect to the database. Not all containers
provide a bash shell. Some containers provide only SSH, and some containers do not have any shells.

53

View Services

Use the kubectl get svc namespace | -A command to view the cluster services. You can specify an individual
namespace (such as healthbot, northstar, and common), or you can use -A parameter to view the services
for all namespaces. For example:

root@primary-node:~# kubectl get svc -A --sort-by spec.type
NAMESPACE NAME TYPE EXTERNAL-IP PORT(S)
…
healthbot tsdb-shim LoadBalancer 10.54.xxx.x3
8086:32081/TCP
healthbot ingest-snmp-proxy-udp LoadBalancer 10.54.xxx.x3 162:32685/
UDP
healthbot hb-proxy-syslog-udp LoadBalancer 10.54.xxx.x3 514:31535/
UDP
ems ztpservicedhcp LoadBalancer 10.54.xxx.x3 67:30336/
UDP
ambassador ambassador LoadBalancer 10.54.xxx.x2 80:32214/
TCP,443:31315/TCP,7804:32529/TCP,7000:30571/TCP
northstar ns-pceserver LoadBalancer 10.54.xxx.x4
4189:32629/TCP
…

In this example, the services are sorted by type, and only services of type LoadBalancer are displayed.
You can view the services that are provided by the cluster and the external IP addresses that are
selected by the load balancer to access those services.

Frequently Used kubectl Commands

• List the replication controllers:

kubectl get –n namespace deploy

kubectl get –n namespace statefulset

• Restart a component:

kubectl rollout restart –n namespace deploy deployment-name

54

• Edit a Kubernetes resource: You can edit a deployment or any Kubernetes API object, and these
changes are saved to the cluster. However, if you reinstall the cluster, these changes are not
preserved.

kubectl edit –ti –n namespace deploy deployment-name

Troubleshooting Ceph and Rook

Ceph requires relatively newer Kernel versions. If your Linux kernel is very old, consider upgrading or
reinstalling a new one.

Use this section to troubleshoot issues with Ceph and Rook.

Insufficient Disk Space

A common reason for installation failure is that the object storage daemons (OSDs) are not created. An
OSD configures the storage on cluster node. OSDs might not be created because of non-availability of
disk resources, in the form of either insufficient resources or incorrectly partitioned disk space. Ensure
that the nodes have sufficient unpartitioned disk space available.

Reformat a Disk

Examine the logs of the "rook-ceph-osd-prepare-hostname-*" jobs. The logs are descriptive and if you
need to reformat the disk or partition, and restart Rook, perform the following steps.

1. Use one of the following methods to reformat an existing disk or partition.

• If you have a block storage device that should have been used for Ceph, but wasn't used because
it was in an unusable state, you can reformat the disk completely.

$ sgdisk -zap /dev/disk
$ dd if=/dev/zero of=/dev/disk bs=1M count=100

55

• If you have a disk partition that should have been used for Ceph, you can clear the data on the
partition completely.

$ wipefs -a -f /dev/partition
$ dd if=/dev/zero of=/dev/partition bs=1M count=100

NOTE: These commands completely reformat the disk or partitions that you are using and
you will lose all data on them.

2. Restart Rook to save the changes and reattempt the OSD creation process.

$ kubectl rollout restart deploy -n rook-ceph rook-ceph-operator

View Pod Status

To check the status of Rook and Ceph pods installed in the rook-ceph namespace use the # kubectl get po
-n rook-ceph command. The following pods must be in the running state.

• rook-ceph-mon-*—Typically three monitor pods are created

• rook-ceph-mgr-*—One manager pod

• rook-ceph-osd-*—Three or more OSD pods

• rook-ceph-mds-cephfs-*—Metadata servers

• rook-ceph-rgw-object-store-*—ObjectStore gateway

• rook-ceph-tools*—For additional debugging options.

To connect to the toolbox, use the command:

$ kubectl exec -ti -n rook-ceph $(kubectl get po -n rook-ceph -l app=rook-ceph-tools \ -o
jsonpath={..metadata.name}) -- bash

Some of the common commands you can use in the toolbox are:

ceph status # ceph osd status, # ceph osd df, # ceph osd utilization, # ceph osd pool stats, # ceph osd
tree, and # ceph pg stat

56

Repair a Failed Disk

Check the status of pods installed in the rook-ceph namespace.

kubectl get po -n rook-ceph

If a rook-ceph-osd-* pod is in the Error or CrashLoopBackoff state, then you must repair the disk.

1. Stop the rook-ceph-operator.

kubectl scale deploy -n rook-ceph rook-ceph-operator --replicas=0

2. Remove the failing OSD processes.

kubectl delete deploy -n rook-ceph rook-ceph-osd-number

3. Connect to the toolbox.

$ kubectl exec -ti -n rook-ceph $(kubectl get po -n rook-ceph -l app=rook-ceph-tools \ -o
jsonpath={..metadata.name}) -- bash

4. Identify the failing OSD.

ceph osd status

5. Mark out the failed OSD.

[root@rook-ceph-tools-/]# ceph osd out 5
marked out osd.5.
[root@rook-ceph-tools-/]# ceph osd status
ID HOST USED AVAIL WR OPS WR DATA RD OPS RD DATA STATE
 0 10.xx.xx.210 4856M 75.2G 0 0 0 0 exists,up
 1 10.xx.xx.215 2986M 77.0G 0 0 1 89 exists,up
 2 10.xx.xx.98 3243M 76.8G 0 0 1 15 exists,up
 3 10.xx.xx.195 4945M 75.1G 0 0 0 0 exists,up
 4 10.xx.xx.170 5053M 75.0G 0 0 0 0 exists,up
 5 10.xx.xx.197 0 0 0 0 0 0 exists

6. Remove the failed OSD.

ceph osd purge number --yes-i-really-mean-it

7. Connect to the node that hosted the failed OSD and do one of the following:

• Replace the hard disk in case of a hardware failure.

57

• Reformat the disk completely.

$ sgdisk -zap /dev/disk
$ dd if=/dev/zero of=/dev/disk bs=1M count=100

• Reformat the partition completely.

$ wipefs -a -f /dev/partition
$ dd if=/dev/zero of=/dev/partition bs=1M count=100

8. Restart rook-ceph-operator.

kubectl scale deploy -n rook-ceph rook-ceph-operator --replicas=1

9. Monitor the OSD pods.

kubectl get po -n rook-ceph

If the OSD does not recover, use the same procedure to remove the OSD, and then remove the disk
or delete the partition before restarting rook-ceph-operator.

For more information on Rook and Ceph, see https://github.com/rook/rook/blob/master/
Documentation/ceph-common-issues.md.

Common Utility Commands

You can use the following utility commands installed in /usr/local/bin to connect to pods running in the
system.

Command Description

paragon-db Start the Postgres SQL shell in the atom-db
instance for database management.

pf-cmgd Start the shell connected to the Paragon Pathfinder
CMGD instance.

pf-crpd Start the shell connected to the CRPD instance.

pf-redis Start (authenticated) redis-cli connected to Paragon
Pathfinder Redis.

pf-debugutils Start the shell connected to Paragon Pathfinder
debugutils pod which must be installed with
install_northstar_debugutils: true.

58

https://github.com/rook/rook/blob/master/Documentation/ceph-common-issues.md
https://github.com/rook/rook/blob/master/Documentation/ceph-common-issues.md

RELATED DOCUMENTATION

Installation Prerequisites | 11

Install Paragon Automation | 20

Uninstall Paragon Automation | 37

59

6
CHAPTER

Migrate Data

Migrate Data from Northstar to Paragon Automation | 61

Migrate Data from Northstar to Paragon
Automation

IN THIS SECTION

Prerequisites | 61

Create the nsmigration Task Pod | 62

Migrate DeviceProfile and Cassandra DB | 63

(Optional) Migrate Analytics Data | 65

(Optional) Migrate Northstar Planner Data | 69

You can migrate DeviceProfile, Cassandra DB, and Analytics (ES DB) data from an existing Northstar
Release 6.x setup to a Paragon Automation Release 21.2 setup.

Use the steps described in this topic to migrate date from Northstar to Paragon Automation.

Prerequisites

• Ensure that both the Northstar and Paragon Automation setups are up and running.

• Cassandra must be accessible from Paragon Automation. Set the rpc_address parameter in the /opt/
northstar/data/apache-cassandra/conf/cassandra.yaml to an address to which the Paragon
Automation setup can connect. Ater setting the address, restart Cassandra for the configuration
changes to take effect:

root@ns1: # supervisorctl restart infra:cassandra

• (Optional) We recommend that you back up Cassandra DB prior to starting the data migration
procedure. The userDataBackupRestore script in Northstar facilitates backing up and restoring relevant
data in Cassandra. The script exports and imports the data using the CSV format.

61

For example, to export data to /opt/northstar/utils/backupRestoreData/ in the CSV format:

root@ns1: # /opt/northstar/utils/userDataBackupRestore.js -t db -m backup allset

Large database tables might cause backup issues. Specifically, tables with sizes exceeding ~1M rows
might cause the backup to fail. The userDataBackupRestore.js script indicates any issues with error
messages, similar to the following:

“Cannot catch: keyspace.table_name Reason: File too big/No such file.”

Or

“The entries of keyspace.table_name is larger than 1000,000: row count”

If you see these errors, back up those specific tables manually with the -force flag:

root@ns1: # /opt/northstar/utils/userDataBackupRestore.js -t db -m backup keyspace.table_name
-force

Follow this procedure to migrate data from Northstar to Paragon Automation.

Create the nsmigration Task Pod

1. Log in to the Paragon Automation primary node.

2. Create the nsmigration task pod.

root@pa-primary: # kubectl apply -f /etc/kubernetes/po/nsmigration/kube-cfg.yml
 job.batch/nsmigration created

3. Log in to the nsmigration task pod.

root@pa-primary:~# kubectl exec -it $(kubectl get po -n northstar -l app=nsmigration -o
jsonpath={..metadata.name}) -c nsmigration -n northstar -- bash
root@nsmigration-fcvl6:/# cd /opt/northstar/util/db/nsmigration

62

Migrate DeviceProfile and Cassandra DB

1. Run the ns_data_migration.py -a -sp -dp script from the nsmigration task pod. The complete command
syntax is ./ns_data_migration.py -a ns-app-server-ip -su root -sp ns-app-user-ssh-password -dh cassandra-db-
host -du cassandra -dp cassandra-password -pu postgres-user -pp postgres-password -ph postgres-host -po
postgres-port -pah vip-of-ingress-controller-or-hostname-of-main-web-application -pau paragon-web-ui-login -
pap paragon-web-ui-password -dr 1.
For example:

root@nsmigration-7xbbz:/opt/northstar/util/db/nsmigration# ./ns_data_migration.py -a
10.xx.xx.200 -su root -sp password -dh 10.xx.xx.200 -dp password -pu northstar -pp
BB91qaDCfjpGWPbjEZBV -ph atom-db.common -po 5432 -pah 10.xx.xx.11 -pau admin -pap password1 -
dr 1
Logs stored at /opt/northstar/util/db/nsmigration/logs/nsdatamigration.log
Cassandra connection established...connection attempt: 1
Testing cassandra connectivity
Connected to cluster Test Cluster
Testing EMS connectivity
scope_id: d3ae39f7-35c6-49dd-a1bd-c509a38bd4ea, auth_token length: 1160
scoped token length: 1303
jwt_token length: 40974
All connection ok starting mirgation
Starting device profile migration...
Found 2 devices in Northstar device profile

...

2021-09-28 13:59:15,559:INFO:Copying cassandra table anycastgroup: anycastgroupIndex
2021-09-28 13:59:15,942:INFO:Copying cassandra table pcs_restconf: admin_group_names
2021-09-28 13:59:15,946:INFO:Skipping database db_meta
The NS data migaration completed

The following parameters must be specified while running the ns_data_migration.py script.

• -a APP, --app APP—IP address or hostname of the application server

• -su SSHUSER, --sshuser SSHUSER—SSH username (default is root)

• -sp SSHPASS, --sshpass SSHPASS—SSH password

• -so SSHPORT, --sshport SSHPORT—SSH port (default is 22)

• -du DBUSER, --dbuser DBUSER—Cassandra DB username (default is cassandra)

63

• -dp DBPASS, --dbpass DBPASS—Cassandra DB password

• -do DBPORT, --dbport DBPORT—Cassandra DB port (default is 9042)

• -dh DBHOST, --dbhost DBHOST—Comma separated Host IP addresses of Cassandra DB

• -pu PGUSER, --pguser PGUSER—Postgres DB username (default is northstar)

• -pp PGPASS, --pgpass PGPASS—Postgres DB password

• -ph PGHOST, --pghost PGHOST—Postgres DB host (default is atom-db.common)

• -po PGPORT, --pgport PGPORT—Postgres DB port (default is 5432)

• -pah PARAGONHOST, --paragonHost PARAGONHOST—IP address (VIP) of Paragon Automation Web UI

• -pau PARAGONUSER, --paragonUser PARAGONUSER—Paragon Automation Web UI username

• -pap PARAGONPASSWORD, --paragonPassword PARAGONPASSWORD—Paragon Automation Web UI user password

• -dr DISCOVERYRETRIES, --discoveryRetries DISCOVERYRETRIES—Device discovery retries (default is 2).

The dr DISCOVERYRETRIES option is used for device-profile migration when device discovery by
Paragon Automation fails in the first attempt. There are multiple reasons for discovery failure,
such as devices not being reachable or device credentials being incorrect. Despite discovery
failure for devices with incorrect information, devices with correct information are discovered.
Partial failure for a subset of devices while discovering multiple devices at a time is possible. To
determine the exact reason of failure, see the Monitoring > Jobs page in the Paragon Automation
Web UI.

If the dr option is set to more than 1, on getting a discovery failure, the ns_data_migration.py script
retries the discovery for all the devices. This does not impact the devices that are already
discovered. However, the chances of successfully discovering devices in subsequent attempts for
any failed device discovery is minimal. We recommended that the maximum value for the dr
option be set to 2, which is the default value. Use a value of 1 if there are too many devices in the
network avoid unnecessary retries.

2. Verify the DeviceProfile data.

Log in to Paragon Automation Web UI and navigate to Configuration > Device. Verify that all the
devices are discovered and present. Also, verify if all the configuration information is the same as that
in the Northstar device profile.

To view the device discovery result, see Monitoring > Jobs page in the Paragon Automation Web UI.

3. Verify Cassandra DB data.

The log output of the ns_data_migration.py script indicates if there were any problems migrating data
from Cassandra. You can also check individual tables for content or row count. For example:p

64

On Northstar:

root@ns1 # /opt/northstar/thirdparty/apache-cassandra/bin/cqlsh -u cassandra -p <password> -
ssl
cassandra@cqlsh> select count(*) from pcs.messages;
 count

 2173

On Paragon Automation:

root@pa-primary:~# /usr/local/bin/paragon-db
postgres=# \c ns_pcs
ns_pcs=# select count(*) from messages;
 count

 2268

(Optional) Migrate Analytics Data

If you have installed Analytics, perform the following steps to migrate analytics data from Northstar ES
DB to Paragon Automation Influx DB:
1. Log in to the nsmigration task pod, and run the import_es_data.py -a script.

root@nsmigration-p7tcd:/# cd /opt/northstar/util/db/nsmigration
root@nsmigration-p7tcd:/opt/northstar/util/db/nsmigration# ./import_es_data.py -a 10.xx.xx.95
Logs stored at /opt/northstar/util/db/nsmigration/logs/es_data_migration.log
Certs are missing, fetching them from Northstar app server
Please enter SSH password:
Testing Elasticsearch connectivity
Elasticsearch DB connection ok
Testing Influx DB connectivity
Influx DB connection ok
Starting data extraction for type= interface

<OUTPUT SNIPPED>

 "migartion_rate_sec": 1471.1758360302051,

65

 "timetaken_min": 0.7725,
 "total_points": 68189
}
ETLWorker-2 completed, total points=68189 in 0.7725 minutes with
migartion_rate=1471.1758360302051

The import_es_data.py script options are described here.

• Statistics type—By default, supports interface, LSP, and link-latency stats data. You can select a
specific type by using the --type option.

• Rollups type—By default, supports daily and hourly time periods. You can select a specific type by
using the --rollup_type option.

• Migration Schema: The ES DB to Influx DB schema mapping is defined in the /opt/northstar/
util/db/nsmigration/es_influx_mapping.json file.

• Rollup ages—By default, fetches hourly and daily data for the last 180 days and 1000 days
respectively. You can change the ages by using --hourly_age and --daily_age options.

• ETL parallel worker process: By default, uses 4 ETL parallel worker processes. You can change the
worker process by using the --wp option.

• Execution time—The script execution time varies based on data volume, the number of days, and
the number of ETL parallel worker processes. For example, if 4 ETL workers take
migration_rate=1500, then:

25K LSP stats of 180 days hourly can take 5 hours and

50K LSP stats of 180 days hourly can take 10 hours

For more information on script arguments, see help 'import_es_data.py -h'.

2. Verify Influx DB data using the following commands.

• To query all tunnel traffic data for the last 30 days in influxdb, run the /opt/pcs/bin/
getTrafficFiles.py script inside the dcscheduler pod:

root@pa-primary:~# kubectl exec -it $(kubectl get po -n northstar -l app=dcscheduler -o
jsonpath={..metadata.name}) -c dcscheduler -n northstar -- /opt/pcs/bin/
getTrafficFiles.py -t tunnel_traffic -i 1d -b 30
#Starting Time : 08/17/21 12:00:00 AM
#Interval : 24 hour
UNIT = 1

Aggregation:
- Series: time series

66

- Statistic: 95th percentile
- Interval: 1 day
Report Date= 2021-09-16 (Thu) 08:56

vmx101:Silver-101-102 A2Z 0 -1 -1 -1 0 -1
-1
vmx101:Silver-101-104 A2Z 0 -1 -1
vmx102:Silver-102-101 A2Z 0 1071913 1072869 1073082 1073378 1073436 1073378 1073620
1073378 1073388 1073484 1073896 1074086 1073974 1073795 1073378 1073590 1073790 1074498
1074595 1074498 1074092 1076565 1076565 1076919 1075502 1075857 1075325 1075148 -1 -1
vmx102:Silver-102-103 A2Z 0 2118101 2120705 2121258 2120438 2120773 2119652 2121258
2120296 2120190 2120962 2121364 2121867 2121817 2122209 2120167 2120323 2121665 2122733
2122685 2122321 2121511 2121855 2119546 2119700 2109572 2102489 2101604 2121258 2109749
2110280
vmx102:Silver-102-104 A2Z 0 3442749 3449550 3450757 3448983 3448603 3446081 3453525
3451513 3448142 3449008 3450874 3452721 3451650 3450733 3447297 3447147 3449132 3451747
3450887 3450727 3448429 3452310 3448132 3447328 3200657 3200480 3197646 3445363 3215530
3215884
vmx103:Silver-103-101 A2Z 0 2149705 2151625 2158319 2170251 2170980 2171171 2169252
2167757 2168518 2172730 2168582 2166350 2161904 2161460 2167162 2158050 2160413 2166131
2167033 2166226 2165632 2171717 2178973 2178102 2158015 2158015 2157661 2157306 -1 -1
vmx103:Silver-103-102 A2Z 0 2122922 2125508 2131074 2141411 2142899 2141840 2139937
2138338 2139743 2144156 2139602 2138745 2134561 2132725 2137973 2129397 2132755 2138203
2138653 2136713 2135444 2144637 2150006 2147677 2108332 2107801 2107270 2124800 2112228
2113113
vmx103:Silver-103-104 A2Z 0 3426540 3437589 3447876 3461550 3464308 3461249 3460710
3453848 3458821 3463446 3456119 3456969 3450036 3446943 3451602 3439059 3445325 3455444
3455491 3454308 3449833 3468558 3472376 3470223 3185429 3187731 3183304 3430135 3198001
3202781
vmx104:Silver-104-102 A2Z 0
vmx104:Silver-104-103 A2Z 0
vmx105:rsvp-105-106 A2Z 0 114 114 121 116 122 125 125 114 214 224 215 223 213 223 222 226
222 217 213 214 216 219 218 219 202 202 202 211 204 202

• To query all egress interface traffic data for the last 30 days in influxdb, run the /opt/pcs/bin/
getTrafficFiles.py script inside the dcscheduler pod:

root@pa-primary:~# kubectl exec -it $(kubectl get po -n northstar -l app=dcscheduler -o
jsonpath={..metadata.name}) -c dcscheduler -n northstar -- /opt/pcs/bin/
getTrafficFiles.py -t interface_out -i 1d -b 30
#Starting Time : 08/17/21 12:00:00 AM
#Interval : 24 hour

67

UNIT = 1

Aggregation:
- Series: time series
- Statistic: 95th percentile
- Interval: 1 day
Report Date= 2021-09-16 (Thu) 08:49

vmx101 ge-0/0/8.0 A2Z 0 2620 2620 2621 2621 2621 2621 2622 2622 2623 2624 2626 2627 2627
2627 2627 2627 2627 2627 2627 2628 2631 2631 2632 2632 0 0 0 2632 -1 -1
vmx101 ge-0/0/5 A2Z 0 843 846 848 860 843 858 863 866 1001 1012 1012 1018 1011 1048 1018
1048 1027 1013 1025 1017 1010 1046 1046 1048 1053 1055 1073 1045 -1 -1
...
...
...
vmx107 ge-0/0/8.0 A2Z 0 2620 2621 2622 2622 2623 2624 2626 2626 2630 2631 2632 2632 2632
2632 2632 2632 2633 2633 2635 2635 2635 2635 2636 2636 0 0 0 2636 0 0
vmx107 ge-0/1/9.0 A2Z 0 6888955 6907022 6907653 6902645 6899706 6892876 6905804 6902894
6899395 6897851 6897322 6896863 6900351 6898745 6890080 6889337 6896781 6902034 6899116
6898749 6898630 6903136 6889662 6890800 6401393 6410976 6400867 6885900 6431500 6436156
vmx107 ge-0/0/5 A2Z 0 4290428 4296767 4297691 4295393 4292480 4290593 4293842 4293149
4295279 4294504 4294045 4294905 4294996 4294921 4292093 4292703 4295408 4297494 4296424
4295983 4295972 4296808 4294929 4299425 4285605 4286205 4285146 4288390 2126258 2127510
vmx107 ge-0/0/6 A2Z 0 122 122 122 122 122 122
122 122 122
vmx107 ge-0/0/7 A2Z 0 878 874 915 898 886 879 897 889 1028 1021 1022 1023 1055 1079 1077
1097 1094 1092 1044 1007 1028 1062 1065 1057 1094 1075 1071 1102 1082 1054
vmx107 ge-0/0/8 A2Z 0 2921 2925 2925 2924 2925 2926 2928 2928 2930 2934 2934 2936 2934
2935 2935 2934 2935 2936 2939 2938 2938 19892 20581 20965 20582 21076 20376 21578 23252
21312
vmx107 ge-0/1/8 A2Z 0 2127443 2130145 2130846 2128792 2128138 2127177 2128628 2128331
2128820 2128716 2128916 2129022 2129380 2128995 2127648 2127240 2128885 2130132 2130474
2130345 2129410 2129376 2125952 2125957 2117061 2114139 2119148 2126518 2122808 2121792
vmx107 ge-0/1/9 A2Z 0 6889737 6907821 6908350 6903585 6900486 6893779 6906516 6903747
6900412 6898908 6898427 6897892 6901325 6899809 6891078 6890377 6897822 6903099 6900152
6899763 6899726 6904248 6890745 6891782 6402507 6412083 6401924 6884168 6432556 6437280

68

(Optional) Migrate Northstar Planner Data

If you want to use saved Northstar Planner models on the Northstar application server file system in
Paragon Automation, copy the models using the following steps:
1. Log in to the Northstar server.

2. Use scp and copy the directory (/opt/northstar/data/specs) where your Planner models are saved to
the Paragon Automation primary node (/root/ns_specs). For example:

[root@ns1-site1-q-pod21 specs]# ls -l /opt/northstar/data/specs
total 8
drwx------ 2 root root 4096 Sep 16 08:18 network1
drwx------ 2 root root 4096 Sep 16 08:18 sample_fish

[root@ns1-site1-q-pod21 data]# [root@ns1-site1-q-pod21 ~]# scp -r /opt/northstar/data/specs
root@10.xx.xx.153:/root/ns_specs
The authenticity of host '10.xx.xx.153 (10.xx.xx.153)' can't be established.
ECDSA key fingerprint is SHA256:haylHqFfEuIEm8xThKbHJhG2uuTpT2xBpC2GZdzfZss.
ECDSA key fingerprint is MD5:15:71:76:c7:d2:2b:0d:fe:ff:0d:5f:62:7f:52:80:fe.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '10.xx.xx.153' (ECDSA) to the list of known hosts.
bblink.x
 100% 3893 2.2MB/s 00:00
bgplink.x
 100% 140 9.6KB/s 00:00
bgpnode.x
 100% 120 56.5KB/s 00:00
bgpobj.x
 100% 4888 1.8MB/s 00:00
cosalias.x
 100% 385 180.4KB/s 00:00
custrate.x
 100% 1062 184.0KB/s 00:00
demand.x
 100% 104KB 2.1MB/s 00:00
dparam.x
 100% 11KB 2.5MB/s 00:00
...

3. Log in to the Paragon Automation primary node.

69

4. Copy the /root/ns_specs folder to the Northstar Planner pod at /opt/northstar/data/specs using the
kubectl command. For example

root@pa-primary:~# ls -l /root/ns_specs
total 8
drwx------ 4 root root 4096 Sep 16 01:41 network1
drwx------ 4 root root 4096 Sep 16 01:41 sample_fish

root@pa-primary:~# kubectl cp /root/ns_specs northstar/$(kubectl get po -n northstar -l
app=ns-web-planner -o jsonpath={..metadata.name}):/opt/northstar/data/specs -c ns-web-planner

5. Verify that the Northstar Planner models are copied inside the Northstar Planner pod at /opt/
northstar/data/specs/ns_specs.

root@pa-primary:~/ns_specs# kubectl exec -it $(kubectl get po -n northstar -l app=ns-web-
planner -o jsonpath={..metadata.name}) -c ns-web-planner -n northstar -- ls -l /opt/northstar/
data/specs/ns_specs
total 8
drwx------ 2 root root 4096 Sep 16 08:18 network1
drwx------ 2 root root 4096 Sep 16 08:18 sample_fish

RELATED DOCUMENTATION

Paragon Automation System Requirements | 6

Install Paragon Automation | 20

Uninstall Paragon Automation | 37

70

	Table of Contents
	About This Guide
	Introduction
	Paragon Automation Portfolio Installation Overview

	System Requirements
	Paragon Automation System Requirements

	Install and Update Paragon Automation
	Installation Prerequisites
	Prepare the Control Host
	Prepare Cluster Nodes
	Virtual IP Address Considerations
	DNS Server Configuration (Optional)

	Install Paragon Automation
	Download the Software
	Install Paragon Automation
	Log in to the Paragon Automation UI

	Update Paragon Automation
	Edit Cluster Nodes
	Add a Node
	Remove a Node
	Replace a Node

	Uninstall Paragon Automation

	Backup and Restore
	Backup and Restore
	Back up the Configuration
	Restore the Configuration

	Troubleshooting
	Troubleshoot Paragon Automation Installation
	Resolve Merge Conflicts of the Configuration File
	Common Backup and Restore Issues
	View Installation Log Files
	View Log Files in Kibana
	Troubleshooting Using the kubectl Interface
	View Node Status
	View Pod Status
	View Detailed Information about a Pod
	View the Logs for a Container in a Pod
	Run a Command on a Container in a Pod
	View Services
	Frequently Used kubectl Commands

	Troubleshooting Ceph and Rook
	Common Utility Commands

	Migrate Data
	Migrate Data from Northstar to Paragon Automation
	Prerequisites
	Create the nsmigration Task Pod
	Migrate DeviceProfile and Cassandra DB
	(Optional) Migrate Analytics Data
	(Optional) Migrate Northstar Planner Data

