
Creating a Custom Speedtest Web Page

Published

2021-12-07

RELEASE

3.1

Table of Contents

Introduction

Speedtest Web Page Implementation

Setup and Initialization

Starting and Stopping the Test

Test Results

Troubleshooting

ii

Introduction

This document describes how to set up a customizable web page user interface for Speedtest. The web
page uses the Speedtest feature in Paragon Active Assurance via the product's REST API.

The Speedtest web page can be hosted on any web server (that is, not necessarily where Control Center
resides), as long as the REST API and access to the Test Agents are configured correctly.

Paragon Active Assurance provides an example web page implementation which is referred to in this
document.

Please note that an on-premise installation of Paragon Active Assurance is required for creating a
Speedtest web page.

Document version: 1.0

Speedtest Web Page Implementation

IN THIS SECTION

Speedtest Files | 2

Custom User Interface | 2

Below is an overview of the files contained in the Speedtest web page implementation. All of these files
need to be hosted on a web server.

The files are included in the Control Center installation and can be accessed at

http://<hostname>/static/speedtest_demo/example.html

In the file system, they are located at

/usr/lib/python3.6/dist-packages/netrounds/static/speedtest_demo

1

NOTE: If you edit these files in place, they will be overwritten during the next upgrade of Control
Center. Therefore, for production use, it is strongly recommended that you make copies of the
files and host them under a different path.

Speedtest Files

These files should not be changed by the end user.

• Speedtest.js − Speedtest implementation.

• SpeedtestWorker.js − Internal Speedtest worker implementation.

• SpeedtestLib.js − Library exposing the functionality of Speedtest.js and the REST API communication
to the end user.

Custom User Interface

The following files constitute the example web page implementation. They exemplify how to use the
SpeedtestLib.js library and how to connect it to the user interface in example.html.

• example.html − Speedtest web page.

• static/js/script.js − Connector between SpeedtestLib.js and the HTML.

• static/js/gauge.js − User interface meter showing the data transfer speed in real time.

• static/style.css − User interface styling.

• static/logo.png − Logotype used on the web page.

2

Setup and Initialization

IN THIS SECTION

Speedtest-enabled Test Agent | 3

ALLOWED_ORIGINS Setting for REST API | 3

Web Server Redirection from HTTPS to HTTP | 4

Hosting the Custom Speedtest Web Page with Control Center | 4

Hosting the Custom Speedtest Web Page on a Separate Web Server | 5

Including the Speedtest Library | 5

Initializing Speedtest | 5

Speedtest-enabled Test Agent

The Test Agent that is to be used for the Speedtest measurements must be accessible from the web
client performing the Speedtest. In most cases, this means it must be accessible over the internet.

ALLOWED_ORIGINS Setting for REST API

In order for Speedtest to work, the Speedtest web page needs to be able to access the REST API. This
means we must add the hostname at which the Speedtest web page is hosted to the ALLOWED_ORIGINS
settings. If this is not done, the web browser will deny access to the REST API.

On your Control Center instance, open the file /etc/netrounds/restol.conf and add this setting:

ALLOWED_ORIGINS=https://<hostname>

where <hostname> is the Fully Qualified Domain Name (FQDN) where the Speedtest web page is hosted.

To learn about how the ALLOWED_ORIGINS setting works, read this article: https://developer.mozilla.org/en-
US/docs/Web/HTTP/Headers/Access-Control-Allow-Origin

3

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Origin
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Origin

To understand the big picture regarding Cross-Origin Resource Sharing (CORS), you will find this article
helpful: https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Web Server Redirection from HTTPS to HTTP

Since the Speedtest feature in Paragon Active Assurance uses the unencrypted HTTP protocol for
maximum performance, it is important that any web client loading the page uses http:// in the URL.

However, when linking to this page, or when the protocol http:// is omitted by the user in the address
bar, web browsers will default to https://, which will cause issues with the Speedtest page.

For this reason, the built-in Speedtest feature in Paragon Active Assurance has a rewrite rule in the
Apache config to redirect any https:// requests to http:// for the Speedtest page.

It is recommended that you add such a rewrite rule for your custom Speedtest web page as well. See the
following subsections.

Hosting the Custom Speedtest Web Page with Control Center

If you are hosting your custom Speedtest web page on the same web server as Control Center, you can
edit the file /etc/apache2/sites-available/netrounds-ssl.conf.

Below is the rewrite rule for the built-in Speedtest page:

Rewrite rules
RewriteEngine On
RewriteRule ^/[^/]+/speedtest(?:-flash|-websocket)?/?$ http://%{HTTP_HOST}%{REQUEST_URI} [R]

So to add a similar rule for the example web page you would write:

RewriteRule ^/static/speedtest_demo/example.html$ http://%{HTTP_HOST}%{REQUEST_URI} [R]

NOTE: If you upgrade Control Center to a new version, this file will be overwritten, so you will
have to re-add this rule after the upgrade.

4

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Hosting the Custom Speedtest Web Page on a Separate Web Server

If you are hosting the custom Speedtest web page on a different web server than the one where Control
Center is hosted, please refer to your web server documentation on how to add a similar rewrite rule.

Including the Speedtest Library

The Speedtest library needs to be included and initialized in the HTML file. In example.html this is done as
follows:

<script src='static/js/Speedtest.js'></script>
<script src='static/js/SpeedtestLib.js'></script>
<script src='static/js/script.js'></script>
<script type='text/javascript'>
 var account = 'dev';
 var apiUrl = 'https://<rest_hostname>/rest';
 var workerScriptPath = 'static/js/SpeedtestWorker.js';
 initSpeedtest(apiUrl, workerScriptPath, account);
</script>

Explanations:

• var account = 'dev' − Short name of the account in Paragon Active Assurance.

• var apiUrl = 'https://<rest_hostname>/rest' − Replace this with the URL to the Paragon Active Assurance
REST API.

• var workerScriptPath = 'static/js/SpeedtestWorker.js' − Path where the worker script will be accessible.

Initializing Speedtest

In the file static/js/script.js, initSpeedtest sets up the callback functions, which will handle the Speedtest
responses.

function initSpeedtest(apiUrl, workerScriptPath, account) {
speedtest = new SpeedtestLib(apiUrl, workerScriptPath, account);
speedtest.setSnapshotResponse(resultSpeed);

5

speedtest.setResultResponse(resultDelay);
speedtest.setFailureResponse(failureHandler);
speedtest.setSuccessResponse(successHandler);
speedtest.getServers(setServerDropdown);
speedtest.getCategories(setCategoryDropdown);

The argument for each speedtest. function should be a callback function which handles the data sent by
SpeedtestLib.

• speedtest.setSnapshotResponse(resultSpeed) − partial results for the upload/download part of the test; sent
during the test run

• speedtest.setResultResponse(resultDelay) − partial results for the TCP/ICMP Ping part of the test; sent
during the test run

• speedtest.setFailureResponse(failureHandler) − sending the report to Control Center failed

• speedtest.setSuccessResponse(successHandler) − sending the report to Control Center succeeded

• speedtest.getServers(setServerDropdown) − list of available servers was fetched

• speedtest.getCategories(setCategoryDropdown) − list of available Speedtest categories was fetched

For example, the setServerDropdown callback function populates the available servers in the user interface:

function setServerDropdown(serverList) {
 serverList['items'].forEach(function(server) {
 var option = document.createElement('option');
 option.text = server['name'];
 var serverString = server['test_agent_id'] + ':' + server['interface'] + ' ' +
 server['ip'] + ' ' + server['port'] + ' ' + server['test_length'] + ' ' +
 server['tcp_sessions'];
 option.value = serverString;
 document.getElementById('dropdown-server').add(option);
 });
}

Here, serverList is provided by SpeedtestLib.

For the other callback functions, please refer to static/js/script.js.

6

Starting and Stopping the Test

Starting and stopping a test is as simple as calling start and stop on the SpeedtestLib instance:

speedtest.start(server, category['id'], comment);

speedtest.stop()

This can be done from the web page by clicking the start and stop buttons. (The latter becomes visible
after you click start.)

The blue bar shows the progress of the test.

Test Results

The example GUI shows metrics and SLA indicators according to the screenshot below. The meter at the
top shows the current data transfer speed.

After the test has finished, full results are posted to the Paragon Active Assurance REST API
automatically by SpeedtestLib, and either setSuccessResponse or setFailureResponse is called.

7

Troubleshooting

It is generally helpful to navigate to the Javascript console (“Developer tools” in Chrome) from the
Speedtest page and check for error messages.

• For example, if apiUrl is set incorrectly, you will see a “connection refused” message:

• If the URL contains https://, you will get these messages:

8

• If ALLOWED_ORIGIN is wrongly configured, messages like these will appear:

Access to XMLHttpRequest at
'http://<hostname>/rest/accounts/demo/speedtest_public/interfaces/' from origin
'http://<hostname>' has been blocked by CORS policy: No 'Access-Control-Allow-Origin'
header is present on the requested resource.
Access to XMLHttpRequest at
'http://<hostname>/rest/accounts/demo/speedtest_public/categories/' from origin
'http://<hostname>' has been blocked by CORS policy: No 'Access-Control-Allow-Origin'
header is present on the requested resource.

• Something else to keep in mind if you are hosting your Speedtest web page on the same web server
as Control Center is to avoid making inappropriate changes to the Apache configuration files. For
example, it is crucial that ServerName be set identically in the files /etc/apache2/sites-available/
netrounds.conf and /etc/apache2/sites-available/netrounds-ssl.conf. If these settings differ, the Speedtest
page will not work.

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper
Networks, Inc. in the United States and other countries. All other trademarks, service marks, registered
marks, or registered service marks are the property of their respective owners. Juniper Networks assumes
no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change,
modify, transfer, or otherwise revise this publication without notice. Copyright © 2021 Juniper Networks,
Inc. All rights reserved.

9

	Table of Contents
	Introduction
	Speedtest Web Page Implementation
	Setup and Initialization
	Starting and Stopping the Test
	Test Results
	Troubleshooting

