
Querying Metrics in TimescaleDB

Published

2021-07-20
RELEASE

Table of Contents

Introduction

Preparations

Querying the Metrics Database

ii

Introduction

TimescaleDB is an open-source time-series database optimized for fast ingest and complex queries and
supporting full SQL. It is based on and functions as an extension of PostgreSQL.

Paragon Active Assurance stores time-series data (metrics) in a TimescaleDB database (hereafter
referred to as the "metrics database"). You can use external reporting tools such as Grafana to query
metrics from this database.

The external reporting tool must support PostgreSQL databases as data sources.

To get started, you need to:

• specify the parameters for connecting to the metrics database;

• update the metrics database configuration to allow connections from the node where the external
tool is installed.

In the following, we assume the scenario shown in the diagram below:

Preparations

IN THIS SECTION

Enabling Ingestion into TimescaleDB | 2

Setting Up Support for PostgreSQL Databases | 2

Allowing Incoming Connections from an External Tool TODO no longer present in the Confluence doc
-- no longer needed? | 3

1

Parameters for Connecting to the Metrics Database | 3

Additional Settings When Defining the PostgreSQL Data Source | 4

Enabling Ingestion into TimescaleDB

To enable ingestion of Paragon Active Assurance data into TimescaleDB, do as follows:

• Enable the services paa-metrics-service and paa-timescaledb:

sudo systemctl enable paa-metrics-service paa-timescaledb

• In /etc/netrounds/netrounds.conf make the following settings:

KAFKA_METRICS_ENABLED=True
AVAILABLE_TIME_SERIES=['rrd', 'kafka']

• Restart all netrounds-* and paa-* services:

sudo systemctl restart netrounds-* paa-*

Setting Up Support for PostgreSQL Databases

External tools use different approaches to supporting PostgreSQL databases:

• If the tool requires a JDBC driver, download the latest driver for PostgreSQL from https://
jdbc.postgresql.org/download.html before proceeding with the configuration.

• Other reporting tools provide support for PostgreSQL databases through a data source plugin: this
can either be installed separately or be included in their standard installation.

2

https://jdbc.postgresql.org/download.html
https://jdbc.postgresql.org/download.html

Allowing Incoming Connections from an External Tool TODO no longer
present in the Confluence doc -- no longer needed?

1. Take note of the IP address ERT-IP where the external tool is running (for example, 10.0.0.1).

2. Connect via SSH to the database node TSDB.

3. Switch to the postgres user: su – postgres

4. Open the file $PGDATA/pg_hba.conf.

5. Append the following line to that file (consult https://www.postgresql.org/docs/12/auth-pg-hba-
conf.html on how to allow connections from subnets):

• for IPv4: host paa paaread <ERT-IP>/32 md5; in our example, host paa paaread 10.0.0.1/32 md5

• for IPv6: host paa paaread <ERT-IP>/128 md5

6. Run pg_ctl reload.

7. Now it is possible to connect from ERT to the database instance paa defined in the TSDB database
server as user paaread.

Parameters for Connecting to the Metrics Database

At this point, it is possible to connect to the database using the following connection parameters:

• Hostname: either TSDB or TSDB-IP

• Port: 7432

• Database: paa-metrics

• Username: <Paragon Active Assurance username>

• Password: <Paragon Active Assurance password>

• TLS/SSL Mode: disable

<Paragon Active Assurance username> and <Paragon Active Assurance password> might differ from
one external tool to another, as they depend on the system module responsible for access management.

For example, within Grafana it is possible to configure one data source with credentials of the paaread
read-only user, and all users will have their own credentials to access to the Grafana portal and the
permission to use the same data source.

3

https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html

On the other hand, if there is a direct connection from the user to the database, each user that is
allowed to access the database should have its own database credentials.

An external tool may request a JDBC connection to connect to the metrics database. If so, go to https://
jdbc.postgresql.org/documentation/head/connect.html to find out how to compose the JDBC
connection string given the parameters above.

Additional Settings When Defining the PostgreSQL Data Source

• If the external tool has a TimescaleDB option, enable it so that the tool can suggest and use the
features provided by this PostgreSQL extension.

• Set the following connection limits in the external tool:

• Maximum number of open connections: 2

• Maximum number of idle connections: 1

• Maximum lifetime of a connection: 14,400 seconds (= 4 hours)

Querying the Metrics Database

IN THIS SECTION

Introduction | 4

Basic TimescaleDB Functions | 5

Database Objects to Query | 6

Introduction

The metrics database uses the TimescaleDB extension to efficiently manage time series, providing
additional functions for data aggregation and rollup.

4

https://jdbc.postgresql.org/documentation/head/connect.html
https://jdbc.postgresql.org/documentation/head/connect.html

In this chapter we will introduce some of the TimescaleDB functions commonly used to retrieve time
series data, as well as the database objects and fields of the metrics database and their usage within an
SQL query.

Basic TimescaleDB Functions

The time_bucket function in TimescaleDB allows you to customize the granularity of an underlying
dataset. This function accepts arbitrary time intervals as well as optional offsets and returns the bucket
start time.

As an example, suppose we have a table temperature_measurement:

CREATE TABLE temperature_measurement(
id BIGINT PRIMARY KEY NOT NULL,
"time" timestamp with time zone, -- time when the temperature has been read
device text, -- identifier of the device that read the temperature
temperature double precision -- metric value
);

Now if measurements are taken every 10 seconds, using time_bucket we can run aggregation functions
on a coarser granularity. The query below returns the median value (50th percentile) of the temperature
within 30-second buckets:

SELECT time_bucket('30 seconds',"time") as 30s_bucket,
percentile_cont(0.5)
WITHIN GROUP (ORDER BY temperature) as "Temperature (Celsius)"
FROM temperature_measurement
GROUP BY 30s_bucket
ORDER BY 30s_bucket;

NOTE: We recommend that you provide an alias for the field generated by time_bucket, different
from the time column. In the above example, the alias 30s_bucket is used.

The same alias must also be used in the GROUP BY and ORDER BY clauses.

Further functions that can be used for advanced analytics queries are found under the heading
Advanced analytic-queries in the TimescaleDB documentation.

5

https://jdbc.postgresql.org/documentation/head/connect.html

Database Objects to Query

Each plugin in Paragon Active Assurance has:

• one view for tests

• five views for monitors with metrics aggregated at different granularities: 10 seconds (raw), 1 minute,
5 minutes, 30 minutes, and 60 minutes.

The naming convention for the view objects is the following:

• vw_(monitor|test)_metrics_<plugin_name> for raw data

• vw_monitor_metrics_minute<minutes>_<plugin_name> for predefined time buckets on raw data for
monitoring.

As an example, the HTTP plugin has the following database objects that can be queried:

vw_test_metrics_http
vw_monitor_metrics_http
vw_monitor_metrics_minute1_http
vw_monitor_metrics_minute5_http
vw_monitor_metrics_minute30_http
vw_monitor_metrics_minute60_http

Each view contains two categories of information:

• measurement

• metric

The measurement category is needed to retrieve the information related to a task in a test or monitor,
and it must be included in the WHERE clause of an SQL statement. Examples of fields in this category
are:

monitor_name, task_name, measurement_name, test_name

The metric category consists of values of metrics retrieved at a given point in time.

The time column is common to all views and must be included in each query.

The columns holding specific measurements differ from one task to another, and they are usually part of
the metrics table in the view definition.

6

For example, the vw_monitor_metrics_http view contains:

metrics.connect_time_avg,
metrics.first_byte_time_avg,
metrics.response_time_min,
metrics.response_time_avg,
metrics.response_time_max,
metrics.size_avg,
metrics.speed_avg,
metrics.es_timeout,
metrics.es_response,
metrics.es

Example: Here is how to write a query for the median of the response time average for an HTTP task
associated with "Measurement 1" (test or monitor name) using a 30-second time bucket between
2021-06-21 09:55:30+00 and 2021-06-21 09:57:00+00.

SELECT
 -- time field
 time_bucket('30s',"time") as "time",
 -- metric
 percentile_cont(0.5) WITHIN GROUP (ORDER BY response_time_avg) as "avg_response_time"
FROM
 -- data source
 vw_monitor_metrics_http
WHERE
 -- time interval to analyze
 "time" between '2021-06-21 09:55:30+00' AND '2021-06-21 09:57:00+00'
 AND
 -- measurement identifier
 measurement_name = 'Measurement 1'
 AND
 -- account identifier
 account_short_name = 'account_1'
GROUP BY "time"
ORDER BY "time"

7

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper
Networks, Inc. in the United States and other countries. All other trademarks, service marks, registered
marks, or registered service marks are the property of their respective owners. Juniper Networks assumes
no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change,
modify, transfer, or otherwise revise this publication without notice. Copyright © 2021 Juniper Networks,
Inc. All rights reserved.

8

	Table of Contents
	Introduction
	Preparations
	Querying the Metrics Database

