
WebApp Secure 5.1.3

Published: 2013-11-20

Copyright © 2013, Juniper Networks, Inc.

Juniper Networks, Inc.
1194 North Mathilda Avenue
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Copyright © 2013, Juniper Networks, Inc. All rights reserved.

Juniper Networks, Junos, Steel-Belted Radius, NetScreen, and ScreenOS are registered trademarks of Juniper Networks, Inc. in the United
States and other countries. The Juniper Networks Logo, the Junos logo, and JunosE are trademarks of Juniper Networks, Inc. All other
trademarks, service marks, registered trademarks, or registered service marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change, modify,
transfer, or otherwise revise this publication without notice.

WebApp Secure 5.1.3
Copyright © 2013, Juniper Networks, Inc.
All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related limitations through the
year 2038. However, the NTP application is known to have some difficulty in the year 2036.

ENDUSER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use with) Juniper Networks
software. Use of such software is subject to the terms and conditions of the End User License Agreement (“EULA”) posted at
http://www.juniper.net/support/eula.html. By downloading, installing or using such software, you agree to the terms and conditions of
that EULA.

Copyright © 2013, Juniper Networks, Inc.ii

http://www.juniper.net/support/eula.html

Table of Contents

About the Documentation . xix

Documentation and Release Notes . xix

Documentation Conventions . xix

Documentation Feedback . xxi

Requesting Technical Support . xxi

Self-Help Online Tools and Resources . xxii

Opening a Case with JTAC . xxii

Part 1 Overview

Chapter 1 WebApp Secure . 3

WebApp Secure Summary . 3

How It Works . 3

Four Phases of Detection and Response . 4

WebApp Secure Features . 4

WebApp Secure Services . 5

Limitations . 6

WebApp Secure Appliance Terminology . 6

Using WebApp Secure with Third-Party Load Balancer . 6

Chapter 2 Deployment . 7

Appliance Deployment Overview . 7

Placement Between Firewall and Web Servers . 7

Options for Load-Balanced Environments . 9

SSL Traffic Considerations . 9

EC2 Deployment . 10

Using a Secure Cluster . 10

Chapter 3 Configuration . 11

First Time Configuration . 11

Web Interface Configuration Overview . 11

About the Configuration Wizard . 12

Basic vs. Expert Configuration . 12

Using the CLI . 13

Chapter 4 Clustering . 15

Using a Secure Cluster . 15

Node Types . 15

Chapter 5 High Availability . 17

High Availability Overview . 17

iiiCopyright © 2013, Juniper Networks, Inc.

Chapter 6 SRX Integration . 19

Integration with SRX Overview . 19

Chapter 7 Appliance Management . 21

Appliance Management Overview . 21

Chapter 8 Spotlight Secure . 23

About Spotlight Secure . 23

Chapter 9 The Processors . 25

Processors Overview . 25

Chapter 10 Reports . 27

Reporting Overview . 27

Scheduling a Report Overview . 27

Part 2 Configuration

Chapter 11 Initial Tasks . 31

Initial Appliance Configuration . 31

TUI Steps . 31

Setting the Hostname . 32

Interface Configuration . 33

Set DNS . 34

Restart the network . 35

Initialize the Appliance . 35

Verify Connectivity . 36

Install the License . 37

Chapter 12 Configuration Wizard . 39

Configuration Wizard: Backend Server . 39

Backend Server Requirements . 39

SMTP Servers . 40

Wizard Alert Service . 41

Email Alert Requirements . 42

Wizard Backup Service . 43

Backup Service Fields . 44

Wizard: Spotlight Secure . 44

Wizard Confirmation Page . 44

Chapter 13 Command Line Interface . 47

Using the CLI . 47

CLI: Config . 48

CLI: Config: Setting a Configuration Parameter . 48

CLI: Config: Initializing the Configuration . 49

CLI: Config: Import/Export . 49

CLI: Config: Configure a Proxy Exclusion . 50

CLI: Services . 50

CLI: System . 50

Copyright © 2013, Juniper Networks, Inc.iv

WebApp Secure 5.1.3

Chapter 14 Configuration Options . 51

Securing Multiple Web Servers . 51

Create a New Application . 51

Edit Applications . 52

Application Patterns . 53

Define Backend Servers . 55

Enable SSL to the Client . 56

Whitelist Settings . 57

Configure Support for Akamai Dynamic Site Accelerator 58

Chapter 15 Clustering . 61

Using a Secure Cluster . 61

Setting Up Clustering . 61

Updating the Cluster . 63

Chapter 16 High Availability . 65

High Availability Overview . 65

Configuring High Availability . 65

Updating with High Availability . 69

Chapter 17 SRX Integration . 71

Filters and Terms Configuration Summary for SRX Integration 71

Creating SRX Filters and Terms . 72

Configure the SRX Integration . 73

Chapter 18 Reports . 77

Schedule a Report . 77

The Reports CLI . 79

Supported arguments . 80

Data Sources . 81

Formatting . 81

Example Report . 82

Part 3 Administration

Chapter 19 General Tasks . 85

Changing the Password . 85

Resetting the Password . 85

Chapter 20 Verify . 87

Verify the Installation . 87

Chapter 21 EC2 Deployment . 89

EC2: Deploying Using the Command Line . 89

EC2: Deploying Using the Web Interface . 90

Assigning the Instance and IP Using the CLI . 94

Assigning the Instance and IP Using the Web Interface . 94

Verify the Instance is Running . 95

Chapter 22 Configuration Modes and Roles . 97

Basic Configuration Mode . 97

Expert Configuration Mode . 98

vCopyright © 2013, Juniper Networks, Inc.

Table of Contents

Role-Based Administrator Access Control . 99

Configuring Role-Based Access Control . 99

RBAC Groups and Roles . 100

Edit User Preferences . 103

Unblock Login Ban . 104

Chapter 23 SRX Integration . 107

Testing the SRX Integration Configuration . 107

Chapter 24 Appliance Management . 109

Restart and Shutdown the Appliance . 109

System Updates . 109

Statistics . 112

Master - Slave Mode . 115

Managing Services . 115

Backup and Recovery Overview . 115

Health Check URL . 116

Backup and Recovery Overview . 117

Restoring a Backup . 117

Chapter 25 Spotlight Secure . 119

Enabling Spotlight Secure . 119

Chapter 26 Security Monitor . 123

The Dashboard . 123

Attackers . 128

Responses Tab . 131

Locations Tab . 132

Incidents . 133

Counter Responses . 135

Sessions . 136

Search . 137

Reporting . 139

Configuration . 139

System Status . 140

Updates . 140

Chapter 27 Autoresponse Defaults and Rule Creation . 143

Autoresponse Overview . 143

Editor Overview . 147

Part 4 Monitoring

Chapter 28 The Processors . 151

Complexity Rating Definitions . 151

Security Engine Incidents . 152

Session Cookie Spoofing . 152

Session Cookie Tampering . 152

Security Processors . 153

Copyright © 2013, Juniper Networks, Inc.vi

WebApp Secure 5.1.3

Chapter 29 Honeypot Processors . 155

Honeypot Processors: Access Policy Processor . 156

Honeypot Processors: Access Policy Processor: Incidents - Malicious Service

Call . 157

Honeypot Processors: Access Policy Processor: Incidents - Service Directory

Indexing . 157

Honeypot Processors: Access Policy Processor: Incidents - Service Directory

Spider . 158

Honeypot Processors: AJAX Processor . 159

Honeypot Processors: AJAX Processor: Incidents - Malicious Script Execution . . 160

Honeypot Processors: AJAX Processor: Incidents - Malicious Script

Introspection . 161

Honeypot Processors: Basic Authentication Processor . 162

Honeypot Processors: Basic Authentication Processor: Incidents - Apache

Configuration Requested . 163

Honeypot Processors: Basic Authentication Processor: Incidents - Apache

Password File Requested . 164

Honeypot Processors: Basic Authentication Processor: Incidents - Invalid

Credentials . 165

Honeypot Processors: Basic Authentication Processor: Incidents - Protected

Resource Requested . 166

Honeypot Processors: Basic Authentication Processor: Incidents - Password

Cracked . 166

Honeypot Processors: Basic Authentication Processor: Incidents - Basic

Authentication Brute Force . 167

Honeypot Processors: Cookie Processor . 168

Honeypot Processors: Cookie Processor: Incident - Cookie Parameter

Manipulation . 169

Honeypot Processors: File Processor . 170

Honeypot Processors: File Processor: Incident - Suspicious Filename 170

Honeypot Processors: File Processor: Incident - Suspicious File Exposed 171

Honeypot Processors: File Processor: Incident - Suspicious Resource

Enumeration . 172

Honeypot Processors: Hidden Input Form Processor . 173

Honeypot Processors: Hidden Input Form Processor: Incident - Parameter Type

Manipulation . 173

Honeypot Processors: Hidden Input Form Processor: Incident - Hidden Parameter

Manipulation . 174

Honeypot Processors: Hidden Link Processor . 175

Honeypot Processors: Hidden Link Processor: Incident - Link Directory

Indexing . 176

Honeypot Processors: Hidden Link Processor: Incident - Link Directory

Spidering . 176

Honeypot Processors: Hidden Link Processor: Incident - Malicious Resource

Request . 177

Honeypot Processors: Query String Processor . 177

Honeypot Processors: Query String Processor: Incident - Query Parameter

Manipulation . 178

Honeypot Processors: Robots Processor . 179

viiCopyright © 2013, Juniper Networks, Inc.

Table of Contents

Honeypot Processors: Robot Processor: Incident - Malicious Spider Activity . . . 179

Chapter 30 Activity Processors . 181

Activity Processors . 182

Activity Processors: Custom Authentication Processor: Incident - Auth Input

Parameter Tampering . 183

Activity Processors: Custom Authentication Processor: Incident - Auth Query

Parameter Tampering . 184

Activity Processors: Custom Authentication Processor: Incident - Auth Cookie

Tampering . 184

Activity Processors: Custom Authentication Processor: Incident - Authentication

Brute Force . 185

Activity Processors: Custom Authentication Processor: Incident - Auth Invalid

Login . 185

Activity Processors: Cookie Protection Processor . 186

Activity Processors: Cookie Protection Processor: Incident - Application Cookie

Manipulation . 187

Activity Processors: Error Processor . 187

Activity Processors: Error Processor: Incident - Illegal Response Status 192

Activity Processors: Error Processor: Incident - Suspicious Response Status . . . 193

Activity Processors: Error Processor: Incident - Unexpected Response Status . . 193

Activity Processors: Error Processor: Incident - Unknown Common Directory

Requested . 194

Activity Processors: Error Processor: Incident - Unknown User Directory

Requested . 194

Activity Processors: Error Processor: Incident - Common Directory

Enumeration . 195

Activity Processors: Error Processor: Incident - User Directory Enumeration 195

Activity Processors: Error Processor: Incident - Resource Enumeration 196

Activity Processors: Header Processor . 197

Activity Processors: Header Processor: Incident - Duplicate Request Header . . . 198

Activity Processors: Header Processor: Incident - Duplicate Response

Header . 199

Activity Processors: Header Processor: Incident - Illegal Request Header 199

Activity Processors: Header Processor: Incident - Illegal Response Header 200

Activity Processors: Header Processor: Incident - Missing All Headers 200

Activity Processors: Header Processor: Incident - Missing Host Header 200

Activity Processors: Header Processor: Incident - Missing Request Header 201

Activity Processors: Header Processor: Incident - Missing Response Header . . . 201

Activity Processors: Header Processor: Incident - Missing User Agent Header . . 202

Activity Processors: Header Processor: Incident - Request Header Overflow . . . 202

Activity Processors: Header Processor: Incident - Unexpected Request

Header . 203

Activity Processors: Method Processor . 203

Activity Processors: Method Processor: Incident - Illegal Method Requested . . 204

Activity Processors: Method Processor: Incident - Unexpected Method

Requested . 205

Activity Processors: Method Processor: Incident - Missing HTTP Protocol 205

Activity Processors: Method Processor: Incident - Unknown HTTP Protocol . . . 206

Copyright © 2013, Juniper Networks, Inc.viii

WebApp Secure 5.1.3

Chapter 31 Tracking Processors . 207

Tracking Processors: Etag Beacon Processor . 207

Tracking Processors: Etag Beacon Processor: Incident - Session Etag

Spoofing . 208

Tracking Processors: Client Beacon Processor . 209

Tracking Processors: Client Beacon Processor: Incident - Beacon Parameter

Tampering . 210

Tracking Processors: Client Beacon Processor: Incident - Beacon Session

Tampering . 211

Tracking Processors: Client Fingerprint Processor . 211

Tracking Processors: Client Fingerprint Processor: Incident - Fingerprint Directory

Indexing . 214

Tracking Processors: Client Fingerprint Processor: Incident - Fingerprint Directory

Probing . 214

Tracking Processors: Client Fingerprint Processor: Incident - Fingerprint

Manipulation . 215

Tracking Processors: Client Classification Processor . 215

Chapter 32 Response Processors . 219

Response Processors . 221

Response Processors: Block Processor . 222

Response Processors: Request Captcha Processor . 223

Response Processors: Request Captcha Processor: Incident - Captcha Answer

Automation . 226

Response Processors: Request Captcha Processor: Incident - No Captcha Answer

Provided . 227

Response Processors: Request Captcha Processor: Incident - Multiple Captcha

Request Overflow . 228

Response Processors: Request Captcha Processor: Incident - Unsupported

Audio Captcha Requested . 228

Response Processors: Request Captcha Processor: Incident - Bad Captcha

Answer . 229

Response Processors: Request Captcha Processor: Incident - Mismatched

Captcha Session . 230

Response Processors: Request Captcha Processor: Incident - Expired Captcha

Request . 230

Response Processors: Request Captcha Processor: Incident - Captcha Request

Tampering . 231

Response Processors: Request Captcha Processor: Incident - Captcha Signature

Tampering . 232

Response Processors: Request Captcha Processor: Incident - Captcha Signature

Spoofing . 233

Response Processors: Request Captcha Processor: Incident - Captcha Cookie

Manipulation . 233

Response Processors: Request Captcha Processor: Incident - Captcha Image

Probing . 234

Response Processors: Request Captcha Processor: Incident - Captcha Request

Size Limit Exceeded . 235

ixCopyright © 2013, Juniper Networks, Inc.

Table of Contents

Response Processors: Request Captcha Processor: Incident - Captcha Disallowed

MultiPart . 236

Response Processors: Request Captcha Processor: Incident - Captcha Directory

Indexing . 236

Response Processors: Request Captcha Processor: Incident - Captcha Directory

Probing . 237

Response Processors: Request Captcha Processor: Incident - Captcha Parameter

Manipulation . 238

Response Processors: Request Captcha Processor: Incident - Captcha Request

Replay Attack . 239

Response Processors: Request Captcha Processor: Incident - Multiple Captcha

Replays . 240

Response Processors: Request Captcha Processor: Incident - Multiple Captcha

Disallow Multipart . 241

Response Processors: Request Captcha Processor: Incident - Multiple Captcha

Parameter Manipulation . 242

Response Processors: CSRF Processor . 243

Response Processors: CSRF Processor: Incident - CSRF Parameter

Tampering . 245

Response Processors: CSRF Processor: Incident - Multiple CSRF Parameter

Tampering . 246

Response Processors: CSRF Processor: Incident - CSRF Remote Script

Inclusion . 247

Response Processors: CSRF Processor: Incident - HTTP Referers Disabled 247

Response Processors: Header Injection Processor . 248

Response Processors: Force Logout Processor . 248

Response Processors: Strip Inputs Processor . 249

Response Processors: Slow Connection Processor . 249

Response Processors: Warning Processor . 250

Response Processors: Warning Processor: Incident - Warning Code

Tampering . 251

Response Processors: Application Vulnerability Processor 252

Response Processors: Application Vulnerability Processor: Incident - App

Vulnerability Detected . 252

Response Processors: Support Processor . 253

Response Processors: Cloppy Processor . 254

Response Processors: Login Processor . 255

Response Processors: Login Processor: Incident - Site Invalid Login 261

Response Processors: Login Processor: Incident - Site Login Multiple IP 262

Response Processors: Login Processor: Incident - Site Login Multiple

Usernames . 262

Response Processors: Login Processor: Incident - Site Login User Sharing 263

Response Processors: Login Processor: Incident - Site Login User Pooling 263

Response Processors: Login Processor: Incident - Site Login User Brute Force . . 264

Response Processors: Login Processor: Incident - Site Login Brute Force 264

Response Processors: Login Processor: Incident - Site Login Username Scan . . 264

Response Processors: Google Map Processor . 265

Copyright © 2013, Juniper Networks, Inc.x

WebApp Secure 5.1.3

Chapter 33 Incident Methods . 267

List Of Incident Methods . 267

Chapter 34 Captcha Template . 271

Captcha Template . 271

Chapter 35 Log Format . 275

Log Format . 275

Incident Log Format . 275

Counter Response Log Format . 276

Profile Log Format . 277

Part 5 Index

Index . 281

xiCopyright © 2013, Juniper Networks, Inc.

Table of Contents

Copyright © 2013, Juniper Networks, Inc.xii

WebApp Secure 5.1.3

List of Figures

Part 1 Overview

Chapter 2 Deployment . 7

Figure 1: WebApp Secure Placement in the Network - Between Firewall and Web

Servers . 8

Figure 2: WebApp Secure Deployment - Connected to Load Balancer 9

Chapter 3 Configuration . 11

Figure 3: Configuration, Main Screen . 13

Chapter 10 Reports . 27

Figure 4: Reporting Interface . 27

Figure 5: Scheduled Reports . 28

Part 2 Configuration

Chapter 11 Initial Tasks . 31

Figure 6: TUI, Initialize Appliance . 32

Figure 7: TUI, Set Hostname . 32

Figure 8: TUI, Enter Hostname . 33

Figure 9: TUI, Configure Interface . 33

Figure 10: TUI, Network Interfaces . 34

Figure 11: TUI, Configure Interface . 34

Figure 12: TUI, Set DNS . 34

Figure 13: TUI, Restart Network . 35

Figure 14: TUI, Initialize Appliance . 35

Figure 15: TUI, Initialize System . 36

Figure 16: Appliance Login Screen . 37

Figure 17: License Terms . 38

Chapter 12 Configuration Wizard . 39

Figure 18: Wizard, Configure Backend Servers, Step 1 . 39

Figure 19: Wizard, Configure Backend Servers, Step 2 . 40

Figure 20: Wizard, Configure SMTP Settings, Step 3 . 41

Figure 21: Wizard, Configure Alert Service , Step 4 . 41

Figure 22: Wizard, Configure Alert Service , Step 5 . 42

Figure 23: Wizard, Configure Alert Service , SNMP, Step 6 42

Figure 24: Wizard, Configure Alert Service , Email Contacts, Step 7 43

Figure 25: Wizard, Configure Backup Service . 43

Figure 26: Wizard, Configure Spotlight Secure . 44

Figure 27: Wizard, Confirmation Page . 45

Chapter 14 Configuration Options . 51

xiiiCopyright © 2013, Juniper Networks, Inc.

Figure 28: Configured Applications . 52

Figure 29: Application Wizard . 52

Figure 30: Application Dashboard . 53

Figure 31: URL Pattern . 54

Figure 32: Application Patterns . 54

Figure 33: Define Backend Servers . 55

Figure 34: Add New Page . 56

Figure 35: Proxy / Backends . 57

Figure 36: Whitelists . 58

Chapter 15 Clustering . 61

Figure 37: TUI, Initialize Appliance . 62

Figure 38: TUI, Select System Mode . 62

Figure 39: TUI, Initialization Complete . 62

Figure 40: TUI Select Traffic Processor . 63

Figure 41: TUI, Master Node IP Address . 63

Chapter 16 High Availability . 65

Figure 42: TUI, Select HA . 66

Figure 43: TUI, Enter HA Node Addresses . 67

Figure 44: TUI, Enter Virtual Addresses . 67

Figure 45: HA Pair Status . 68

Chapter 17 SRX Integration . 71

Figure 46: Initialize Filter . 72

Figure 47: Create Filter Term . 72

Figure 48: Bind Filter to Interface . 73

Chapter 18 Reports . 77

Figure 49: Schedule Report - Scorecard . 78

Figure 50: Schedule Report - Country Comparison Over Time 79

Figure 51: Reports CLI . 80

Part 3 Administration

Chapter 19 General Tasks . 85

Figure 52: Boot Menu . 85

Figure 53: Reset Password . 86

Chapter 21 EC2 Deployment . 89

Figure 54: AWS management console . 90

Figure 55: Instance Type . 91

Figure 56: Configure Instance continued . 91

Figure 57: Instance, Configure Name . 92

Figure 58: Instance, Create Key Pair . 92

Figure 59: Instance Create Security Group . 93

Figure 60: Instance, Review and Launch . 94

Figure 61: Allocate New Address . 95

Chapter 22 Configuration Modes and Roles . 97

Figure 62: Edit Parameter . 98

Figure 63: Users and Groups, Add User . 100

Copyright © 2013, Juniper Networks, Inc.xiv

WebApp Secure 5.1.3

Figure 64: Assigned Roles . 100

Figure 65: User Preferences . 104

Figure 66: Blocked Login . 104

Chapter 24 Appliance Management . 109

Figure 67: Dashboard, Updates . 109

Figure 68: Downloading Update . 110

Figure 69: Update Description . 111

Figure 70: Updating the Application . 111

Figure 71: CPU Utilization . 112

Figure 72: CPU Load Average . 113

Figure 73: Memory Utilization . 113

Figure 74: Network Traffic . 114

Figure 75: Proxy Connections . 114

Figure 76: Proxy Requests . 115

Figure 77: Backup Configuration . 116

Figure 78: Backup Configuration . 117

Figure 79: Restore Backup . 118

Chapter 25 Spotlight Secure . 119

Figure 80: Spotlight Secure, Enable . 119

Figure 81: Spotlight Secure Configuration Screen . 120

Figure 82: Recent Attackers: Global and Local Names . 120

Figure 83: Recent Attackers: Global Names . 121

Figure 84: User Preferences: Select Spotlight Name Preference 122

Chapter 26 Security Monitor . 123

Figure 85: Security Monitor Dashboard . 124

Figure 86: Dashboard - Filter By tab . 124

Figure 87: User Preferences . 125

Figure 88: Recent Attackers . 129

Figure 89: Attacker Profile . 130

Figure 90: Responses tab - Deactivate . 131

Figure 91: System Status . 140

Figure 92: Services Status . 140

Figure 93: Updates . 141

Chapter 27 Autoresponse Defaults and Rule Creation . 143

Figure 94: Autoresponse . 143

xvCopyright © 2013, Juniper Networks, Inc.

List of Figures

Copyright © 2013, Juniper Networks, Inc.xvi

WebApp Secure 5.1.3

List of Tables

About the Documentation . xix

Table 1: Notice Icons . xx

Table 2: Text and Syntax Conventions . xx

Part 2 Configuration

Chapter 14 Configuration Options . 51

Table 3: Luna Control Center Configuration Changes . 58

Table 4: WebApp Secure Configuration Settings for Akamai Support 59

Chapter 17 SRX Integration . 71

Table 5: External Counter Response Service Configuration Parameters 74

Part 3 Administration

Chapter 22 Configuration Modes and Roles . 97

Table 6: RBAC Groups and Roles. 101

Chapter 24 Appliance Management . 109

Table 7: Health Check responses and corresponding meanings. 116

Chapter 26 Security Monitor . 123

Table 8: Security Monitor Dashboard Panes . 126

Chapter 27 Autoresponse Defaults and Rule Creation . 143

Table 9: Autoresponse Descriptions . 145

Table 10: Autoresponse Editor Fields . 147

Part 4 Monitoring

Chapter 29 Honeypot Processors . 155

Table 11: Access Policy Processor Configuration Parameters 156

Table 12: AJAX Processor Configuration Parameters . 159

Table 13: Basic Authentication Processor Configuration Parameters 162

Table 14: Cookie Processor Configuration Parameters . 169

Table 15: File Processor Configuration Parameters . 170

Table 16: Hidden Input Form Processor Configuration Parameters 173

Table 17: Hidden Link Processor Configuration Parameters 175

Table 18: Query String Processor Configuration Parameters Parameter Type

Default Value Description . 177

Table 19: Robots Processor Configuration Parameters . 179

Chapter 30 Activity Processors . 181

xviiCopyright © 2013, Juniper Networks, Inc.

Table 20: Custom Authentication Processor Configuration Parameters 182

Table 21: Cookie Protection Processor Configuration Parameters 186

Table 22: Error Processor Configuration Parameters . 188

Table 23: Header Processor Configuration Parameters . 197

Table 24: Method Processor Configuration Parameters 204

Chapter 31 Tracking Processors . 207

Table 25: Etag Beacon Processor Configuration Parameters 207

Table 26: Client Beacon Processor Configuration Parameters 209

Table 27: Client Fingerprint Configuration Parameters . 211

Table 28: Client Classification Configuration Parameters 216

Chapter 32 Response Processors . 219

Table 29: Block Processor Configuration Parameters . 222

Table 30: Request Captcha Processor Configuration Parameters 223

Table 31: CSRF Processor Configuration Parameters . 244

Table 32: Header Injection Processor Configuration Parameters 248

Table 33: Force Logout Processor Configuration Parameters 249

Table 34: Strip Inputs Processor Configuration Parameters 249

Table 35: Slow Connection Processor Configuration Parameters 250

Table 36: Warning Processor Configuration Parameters 250

Table 37: Application Vulnerability Processor Configuration Parameters 252

Table 38: Support Processor Configuration Parameters 254

Table 39: Cloppy Processor Configuration Parameters . 255

Table 40: Login Processor Configuration Parameters . 258

Table 41: Google Map Processor Configuration Parameters 265

Chapter 33 Incident Methods . 267

Table 42: Incident Methods . 267

Copyright © 2013, Juniper Networks, Inc.xviii

WebApp Secure 5.1.3

About the Documentation

• Documentation and Release Notes on page xix

• Documentation Conventions on page xix

• Documentation Feedback on page xxi

• Requesting Technical Support on page xxi

Documentation and Release Notes

To obtain the most current version of all Juniper Networks
®

technical documentation,

see the product documentation page on the Juniper Networks website at

http://www.juniper.net/techpubs/.

If the information in the latest release notes differs from the information in the

documentation, follow the product Release Notes.

Juniper Networks Books publishes books by Juniper Networks engineers and subject

matter experts. These books go beyond the technical documentation to explore the

nuances of network architecture, deployment, and administration. The current list can

be viewed at http://www.juniper.net/books.

Documentation Conventions

Table 1 on page xx defines notice icons used in this guide.

xixCopyright © 2013, Juniper Networks, Inc.

http://www.juniper.net/techpubs/
http://www.juniper.net/books

Table 1: Notice Icons

DescriptionMeaningIcon

Indicates important features or instructions.Informational note

Indicates a situation that might result in loss of data or hardware damage.Caution

Alerts you to the risk of personal injury or death.Warning

Alerts you to the risk of personal injury from a laser.Laser warning

Table 2 on page xx defines the text and syntax conventions used in this guide.

Table 2: Text and Syntax Conventions

ExamplesDescriptionConvention

To enter configuration mode, type the
configure command:

user@host> configure

Represents text that you type.Bold text like this

user@host> show chassis alarms

No alarms currently active

Represents output that appears on the
terminal screen.

Fixed-width text like this

• A policy term is a named structure
that defines match conditions and
actions.

• Junos OS CLI User Guide

• RFC 1997,BGPCommunities Attribute

• Introduces or emphasizes important
new terms.

• Identifies guide names.

• Identifies RFC and Internet draft titles.

Italic text like this

Configure the machine’s domain name:

[edit]
root@# set system domain-name
domain-name

Represents variables (options for which
you substitute a value) in commands or
configuration statements.

Italic text like this

• To configure a stub area, include the
stub statement at the [edit protocols
ospf area area-id] hierarchy level.

• The console port is labeledCONSOLE.

Represents names of configuration
statements, commands, files, and
directories; configuration hierarchy levels;
or labels on routing platform
components.

Text like this

stub <default-metricmetric>;Encloses optional keywords or variables.< > (angle brackets)

Copyright © 2013, Juniper Networks, Inc.xx

WebApp Secure 5.1.3

Table 2: Text and Syntax Conventions (continued)

ExamplesDescriptionConvention

broadcast | multicast

(string1 | string2 | string3)

Indicates a choice between the mutually
exclusive keywords or variables on either
side of the symbol. The set of choices is
often enclosed in parentheses for clarity.

| (pipe symbol)

rsvp { # Required for dynamicMPLS onlyIndicates a comment specified on the
same line as the configuration statement
to which it applies.

(pound sign)

community namemembers [
community-ids]

Encloses a variable for which you can
substitute one or more values.

[] (square brackets)

[edit]
routing-options {
static {
route default {
nexthop address;
retain;

}
}

}

Identifies a level in the configuration
hierarchy.

Indention and braces ({ })

Identifies a leaf statement at a
configuration hierarchy level.

; (semicolon)

GUI Conventions

• In the Logical Interfaces box, select
All Interfaces.

• To cancel the configuration, click
Cancel.

Represents graphical user interface (GUI)
items you click or select.

Bold text like this

In the configuration editor hierarchy,
select Protocols>Ospf.

Separates levels in a hierarchy of menu
selections.

> (bold right angle bracket)

Documentation Feedback

We encourage you to provide feedback, comments, and suggestions so that we can

improve the documentation. You can send your comments to

techpubs-comments@juniper.net, or fill out the documentation feedback form at

https://www.juniper.net/cgi-bin/docbugreport/ . If you are using e-mail, be sure to include

the following information with your comments:

• Document or topic name

• URL or page number

• Software release version (if applicable)

Requesting Technical Support

Technical product support is available through the Juniper Networks Technical Assistance

Center (JTAC). If you are a customer with an active J-Care or JNASC support contract,

xxiCopyright © 2013, Juniper Networks, Inc.

About the Documentation

mailto:techpubs-comments@juniper.net
https://www.juniper.net/cgi-bin/docbugreport/

or are covered under warranty, and need post-sales technical support, you can access

our tools and resources online or open a case with JTAC.

• JTAC policies—For a complete understanding of our JTAC procedures and policies,

review the JTAC User Guide located at

http://www.juniper.net/us/en/local/pdf/resource-guides/7100059-en.pdf.

• Product warranties—For product warranty information, visit

http://www.juniper.net/support/warranty/.

• JTAC hours of operation—The JTAC centers have resources available 24 hours a day,

7 days a week, 365 days a year.

Self-Help Online Tools and Resources

For quick and easy problem resolution, Juniper Networks has designed an online

self-service portal called the Customer Support Center (CSC) that provides you with the

following features:

• Find CSC offerings: http://www.juniper.net/customers/support/

• Search for known bugs: http://www2.juniper.net/kb/

• Find product documentation: http://www.juniper.net/techpubs/

• Find solutions and answer questions using our Knowledge Base: http://kb.juniper.net/

• Download the latest versions of software and review release notes:

http://www.juniper.net/customers/csc/software/

• Search technical bulletins for relevant hardware and software notifications:

https://www.juniper.net/alerts/

• Join and participate in the Juniper Networks Community Forum:

http://www.juniper.net/company/communities/

• Open a case online in the CSC Case Management tool: http://www.juniper.net/cm/

To verify service entitlement by product serial number, use our Serial Number Entitlement

(SNE) Tool: https://tools.juniper.net/SerialNumberEntitlementSearch/

Opening a Casewith JTAC

You can open a case with JTAC on the Web or by telephone.

• Use the Case Management tool in the CSC at http://www.juniper.net/cm/.

• Call 1-888-314-JTAC (1-888-314-5822 toll-free in the USA, Canada, and Mexico).

For international or direct-dial options in countries without toll-free numbers, see

http://www.juniper.net/support/requesting-support.html.

Copyright © 2013, Juniper Networks, Inc.xxii

WebApp Secure 5.1.3

http://www.juniper.net/us/en/local/pdf/resource-guides/7100059-en.pdf
http://www.juniper.net/support/warranty/
http://www.juniper.net/customers/support/
http://www2.juniper.net/kb/
http://www.juniper.net/techpubs/
http://kb.juniper.net/
http://www.juniper.net/customers/csc/software/
https://www.juniper.net/alerts/
http://www.juniper.net/company/communities/
http://www.juniper.net/cm/
https://tools.juniper.net/SerialNumberEntitlementSearch/
http://www.juniper.net/cm/
http://www.juniper.net/support/requesting-support.html

PART 1

Overview

• WebApp Secure on page 3

• Deployment on page 7

• Configuration on page 11

• Clustering on page 15

• High Availability on page 17

• SRX Integration on page 19

• Appliance Management on page 21

• Spotlight Secure on page 23

• The Processors on page 25

• Reports on page 27

1Copyright © 2013, Juniper Networks, Inc.

Copyright © 2013, Juniper Networks, Inc.2

WebApp Secure 5.1.3

CHAPTER 1

WebApp Secure

• WebApp Secure Summary on page 3

• How It Works on page 3

• Four Phases of Detection and Response on page 4

• WebApp Secure Features on page 4

• WebApp Secure Services on page 5

• Limitations on page 6

• WebApp Secure Appliance Terminology on page 6

• Using WebApp Secure with Third-Party Load Balancer on page 6

WebApp Secure Summary

WebApp Secure protects web sites from would-be attackers, fraud and theft. Its web

intrusion prevention system uses deception to detect, track, profile and block attackers

in real-time by inserting detection points into your web server's output to identify attackers

before they do damage. WebApp Secure then tracks detected attackers, profiling their

behavior and deploying counter measures.

How ItWorks

WebApp Secure sits between your web servers and the outside world. It inspects HTTP

and HTTPS traffic and functions as a reverse proxy. WebApp Secure seeks out potential

attack attempts or probes by adding detection points to outbound web traffic and

removing detection points from inbound web traffic. These detection points are

transparent to common, legitimate users. It then monitors and strips these points from

the requests coming back from the user's browser. Any change to a detection point is an

indicator of an attempted attack. The system logs incidents to a database of attacker

profiles, and exposes them to the security administrators through a web-based interface.

System administrators can then apply automated abuse-prevention policies, or respond

manually.

3Copyright © 2013, Juniper Networks, Inc.

Four Phases of Detection and Response

WebApp secure protects your web servers by doing the following:

1. Detect: Use traps to detect attackers before they are able to formulate attacks.

Detection points discover attackers doing reconnaissance on your site, looking for

vulnerabilities to exploit.

2. Trap: Persistent tokens and fingerprinting track IP addresses, browsers, software, and

scripts.

3. Profile: Create a smart profile of threats, helping you to understand the threat and

determine the best way to respond.

4. Respond: After detecting, tracking, and profiling the threat, you have many choices

for responding to the attacker. You can slow his connection causing him to waste

valuable time, warn him that he is being watched, or completely block him from your

application.

WebApp Secure Features

Below are some of the highlights of the features included available with WebApp Secure:

• AbuseProfilesTracking - Maintain a historical profile of known application abusers and

all of their malicious activity against the application for analysis and sharing.

• Counter Responses - Respond to application abuse with session-specific deceptive

responses, warnings, and blocks.

• HTTP Capture - Capture and log HTTP traffic for security incidents.

• Multi-application Protection - Secure traffic for multiple application domains.

• Intrusion Deception based protection - Enable specific abuse detection points in

application code using a library of security modules (referred to as Processors).

• TaggingandRe-identification - Re-identify abusive users and apply persistent responses

over time and across sessions.

• SSL Inspection - Passive decryption or termination.

• WebUser Interface - Examine application sessions, security incidents, and abuse profiles

using the Web-based monitoring and administration interface. Manage and monitor

responses and configure the system.

• Software and Hardware Delivery Support - Distributed as VMWare image, hardware

appliance or Amazon AMI image.

• Alerting - Configure WebApp Secure to send alerts to administrators security incidents

via SNMP or SMTP.

• Spotlight SecureConnectivity - Spotlight Secure is a global service designed to provide

additional intelligence in threat detection and prevention. If enabled, it will share

Copyright © 2013, Juniper Networks, Inc.4

WebApp Secure 5.1.3

information about attackers and attacks gathered across multiple customers and adds

yet another layer of intelligence to WebApp Secure attacker tracking.

• Authentication and Authorization – Connect your WebApp Secure instance to LDAP or

RADIUS to use common authentication across your datacenter. Assign roles to specific

users for more granular access controls.

WebApp Secure Services

WebApp Secure includes the following services which run in the background:

• Alert Service Configure WebApp Secure to send email alerts to administrators when

an incident of a specified severity is detected. For instance, the system can send out

an email notification to a specific administrator who is on call if an incident level of

critical is detected, allowing the administrator to respond quickly to the threat. It can

also send alerts to email addresses on a defined schedule, and/or send SNMP traps

to one or more SNMP servers. The initial configuration of the Alert Service can be

performed with the Configuration Wizard, but if you need to change these settings,

they are available through the "Services" tab of Configuration.

• Auto Response Service Turn the Auto Response service on or off.

• Backup Service Configure the frequency, type, and destination for system backups.

These settings can also be configured through the Configuration Wizard.

• Database Cleanup Service Configure how often the database cleanup service runs for

sessions, profiles, and incidents through this option.

• Security Engine Service Configure the memory, database, and fingerprinting used by

the security engine.

• Session Consolidation Service Configure how and when the system consolidates user

sessions.

• Statistical Service Configure how the system logs statistical data.

• Spotlight Secure Spotlight Secure is designed to provide additional intelligence. If

enabled, it will share information about attackers and attacks it is observing using the

Spotlight server run by Juniper Networks. Juniper will also consume information from

the Spotlight service. This allows customers to identify attackers (that have attacked

other Juniper customers). This service also provides additional details about sessions

which allows Juniper to make more informed decisions on how to respond to threats.

By default, the service is turned off. If you would like more information about the

Spotlight service, please contact Juniper Networks.

5Copyright © 2013, Juniper Networks, Inc.

Chapter 1: WebApp Secure

Limitations

WebApp Secure has the following limitations:

• WebApp Secure is an L7 reverse web proxy and does not support hardware fail open

capability itself; It should not be physically in line with protected application servers.

• WebApp Secure only accepts HTTP and HTTPS 1.0 and 1.1 traffic because it is the only

traffic it monitors.

• WebApp Secure is not a network firewall and should not be an edge device. While

firewall capabilities exist on the device, they are not available to the user and are there

to protect the WebApp Secure device itself.

• WebApp Secure does not support NTLM authentication.

WebApp Secure Appliance Terminology

The following terminology is used in this section:

• Appliance: The software/hardware system. It is synonymous with WebApp Secure in

most contexts.

• backend: In almost all cases (except where explicitly mentioned otherwise) the backend

is defined as the server which houses the web application that is being protected by

WebApp Secure.

• Application: The protected web application. It can also reference the web server

program, whether it is Apache, JBOSS, Microsoft, or other web serving software.

• GUI: Graphical User Interface. In cases referencing the WebApp Secure system, this

term refers to the Web Interface.

• HA: High Availability, a configuration that aims to reduce the chance full system failures.

• TUI: Text User Interface, usually invoked from the command line using sudo setup.

UsingWebApp Secure with Third-Party Load Balancer

If you are using the appliance with a third-party load balancer, you must make sure to

tell WebApp Secure to accept the X-Forwarded-For header from the load balancer. If

this is not set, all IPs in the appliance will seem to be coming from the load balancer

directly.

To trust the X-Forwarded-For header, SSH into the appliance, and enter the following:

sudomykonos-shell config set engine.exclude_forward_addresses
<IP_of_Loadbalancer>

This tells WebApp Secure to trust the header of your load balancer.

Copyright © 2013, Juniper Networks, Inc.6

WebApp Secure 5.1.3

CHAPTER 2

Deployment

• Appliance Deployment Overview on page 7

• Placement Between Firewall and Web Servers on page 7

• Options for Load-Balanced Environments on page 9

• SSL Traffic Considerations on page 9

• EC2 Deployment on page 10

• Using a Secure Cluster on page 10

Appliance Deployment Overview

The WebApp Secure appliance processes all inbound web requests and outbound web

responses. Outbound responses are modified in ways that are invisible to the average

user; inbound requests are checked to see if the modified responses have been altered

in any way. Any alterations are suspicious and indicate a possible hacker. Due to its focus

on web applications, WebApp Secure only accepts HTTP/HTTPS traffic and is normally

placed between a load balancer and your web applications. Topologically, you should

think of WebApp Secure as a web reverse proxy server.

Placement Between Firewall andWeb Servers

WebApp Secure acts as a reverse proxy and actively manipulates traffic between the

protected web application and the Internet. It is deployed between the protected web

server and the last system which can alter user-facing traffic. This location gives WebApp

Secure full visibility into the HTTP traffic destined for the web servers (including any

errors caused by authentication failures), and lets it inject and strip out any code it uses

in protecting the application. This topology has the added benefit of minimally impacting

internal network bandwidth. The following figure shows the WebApp Secure deployed

in its most simple form as a reverse proxy connected to a load balancer.

7Copyright © 2013, Juniper Networks, Inc.

Figure 1: WebApp Secure Placement in the Network - Between Firewall
andWeb Servers

Network placement requirements for WebApp Secure are as follows:

• Because WebApp Secure only processes HTTP and HTTPS traffic, it must live behind

a device that can separate Application Layer (Layer 7) traffic.

• In order to prevent a WebApp Secure issue from impacting a protected application,

the upstream device (i.e., the router or load balancer) must perform Health Check

monitoring on WebApp Secure over HTTP. If the Health Check fails, the load balancer

or Layer 7 router should pass traffic directly to the protected application servers, rather

than to WebApp Secure.

The actual implementation depends on the user's specific network topology. The following

figure shows a more complex environment with clustered web servers and clustered

appliances.

Copyright © 2013, Juniper Networks, Inc.8

WebApp Secure 5.1.3

Figure 2: WebApp Secure Deployment - Connected to Load Balancer

Options for Load-Balanced Environments

WebApp Secure can serve as a load balancer for HTTP and HTTPS web traffic, but it is

recommended that a dedicated hardware solution be used in that capacity. Dedicated

load balancers are optimized for that role and will provide higher overall performance.

SSL Traffic Considerations

WebApp Secure includes SSL decryption capabilities to give it visibility into all of the

protected application's traffic. It supports two modes: Passive Decryption and SSL

Termination. In Passive Decryption mode, WebApp Secure decrypts requests for

processing, then re-encrypts them before sending them on to the application server.

HTTPS responses to the user follow the same process, where they are decrypted,

processed, and re-encrypted before returning to the user. In SSL Termination mode, the

appliance serves as an SSL termination point. It decrypts incoming HTTPS traffic,

processes them, then proxies the decrypted requests on to the application. Responses

to the user are received unencrypted from the application server, processed, encrypted,

then passed to the user.

9Copyright © 2013, Juniper Networks, Inc.

Chapter 2: Deployment

EC2 Deployment

The WebApp Secure instance is a private instance. For access, you must provide Juniper

your account id. You can find your account id when you log into your AWS account and

select Account Activity. Your account id is displayed in the top right under your account

name.

Using a Secure Cluster

Individual WebApp Secure appliances have the ability to work together as one system

in a cluster. Clustering allows traffic to be divided among multiple appliances, effectively

reducing the per-system load. In a clustered network configuration, the master node

holds the database that is populated by one or more traffic processors" In order to

successfully utilize a WebApp Secure cluster, a load-balancer must properly segregate

traffic to each of the defined traffic processing nodes. Each of these traffic nodes must

maintain connectivity with the master in order to operate.

NOTE: Clustering should not be confused with High Availability. Clustering
is used to increase throughput (by utilizingmultiple processing nodes), and
can reduce the chance that the whole systemwill fail. Clustering does not
protect themaster node from failure as in a High Availability setup; only HA
configurations are set up to include failsafe procedures to designate a new
master when the first one is unavailable.

Copyright © 2013, Juniper Networks, Inc.10

WebApp Secure 5.1.3

CHAPTER 3

Configuration

• First Time Configuration on page 11

• Web Interface Configuration Overview on page 11

• About the Configuration Wizard on page 12

• Basic vs. Expert Configuration on page 12

• Using the CLI on page 13

First Time Configuration

Basic configuration of WebApp Secure is a straightforward process executed using the

console and the Text User Interface (TUI).

• Set the host name

• Set up networking TUI

• Restart networking

• Initialize the appliance

At this point, the web interface should be active. From the web interface , you will:

• License the appliance

• Run the installation wizard

• Perform a basic appliance test

Web Interface Configuration Overview

The Web interface is used for system configuration, as well as monitoring and reporting.

The initial installation required you to access this interface to license WebApp Secure

and to bring your appliance on-line. You will use this interface for nearly all configuration

options.

The web interface URL is: https://<IP address or hostname>:5000

For example:

• https://10.11.12.13:5000

11Copyright © 2013, Juniper Networks, Inc.

• https://webappsecure.mydomain.com:5000

NOTE: Log into theWeb interface using the default account. If you have not
changed the password, the default ismykonosadmin. It is strongly
recommended that you change this password.

About the ConfigurationWizard

The Configuration Wizard helps you configure the most commonly used features on the

WebApp Secure appliance, including defining one or more web applications to protect,

and setting up alerting and backups. Now that the appliance has network connectivity,

it needs one or more Backend Servers (web applications) defined in order to protect live

traffic.

The wizard walks you through the process of setting up Backend Servers, SMTP, Alerts,

and Backups. Once you've completed the wizard, a confirmation page is displayed. It

also provides some additional steps such as pointing your load balancer to the appliance.

WARNING: Upon completion of the wizard, make a note of your backup
encryption key. If you lose this key, no one - including Juniper Support, can
retrieve the information contained in your backups.

NOTE: When using the system's default mail server, set a valid hostname
and ensure that themail configuration observes all best practices for setting
up amail server.

NOTE: The wizard has aminimum of 6 steps. The actual number of steps
may increase depending on your choices, such as definingmultiple
applications to protect.

Basic vs. Expert Configuration

WebApp Secure is widely configurable with numerous settings to optimize it for your

environment. Once you've completed the Wizard, the Appliance will route traffic through

a default application profile to the designated backend servers. This default profile is

simple, but adequate for many applications. However, there are still hundreds of options

available to further customize the Appliance to meet your specific requirements. WebApp

Secure has two configuration modes accessible from the Configuration button on the

Web interface. Basic Mode gives you access to all of the Appliance's features with a wide

range of customizations through a user friendly interface and is recommended for most

situations. Expert mode, on the other hand, gives you access to the deepest levels of the

Appliance's configuration presented in a key:value pair format. Expert mode is just that:

Copyright © 2013, Juniper Networks, Inc.12

WebApp Secure 5.1.3

best used by experts who are comfortable making multiple changes at once. Basic mode

is recommended for most users and most applications.

NOTE: WhenusingExpertMode, be sure to click the "Save"buttonwhenyou
are donemaking changes. Unlike Basic Mode, Expert Mode does NOT save
the configuration to the engine after each parameter is modified; it lets you
makemultiple changesat onceand thenwrite theentire configuration image
as one transaction.

Figure 3: Configuration, Main Screen

Using the CLI

While the Web-based configuration handles most configuration needs, the WebApp

Secure CLI is also available for changing the appliance configuration. You can access

the CLI via the shell, by entering sudomykonos-shell from the command line.

There are currently three main systems within the CLI as follows:

• config: allows you to access the appliance configuration

• services: allows you to perform tasks on the various background services functioning

on the appliance

• system: allows you to perform tasks on the various background services functioning

on the appliance, and system allows you to shutdown or reboot the appliance

NOTE: At any point, you can enter ? or help to view the available commands

at the current context, or help <command> to get contextual help on the

specifiedcommand.Youcanalsoshow informationonaparticularparameter
by using the info command. For example, info services.cleanup.db.enabled.
Entering Ctrl + D or exitwill leave the context you are currently in, or exit the

CLI. The CLI also has full tab-complete support.

13Copyright © 2013, Juniper Networks, Inc.

Chapter 3: Configuration

Copyright © 2013, Juniper Networks, Inc.14

WebApp Secure 5.1.3

CHAPTER 4

Clustering

• Using a Secure Cluster on page 15

• Node Types on page 15

Using a Secure Cluster

Individual WebApp Secure appliances have the ability to work together as one system

in a cluster. Clustering allows traffic to be divided among multiple appliances, effectively

reducing the per-system load. In a clustered network configuration, the master node

holds the database that is populated by one or more traffic processors" In order to

successfully utilize a WebApp Secure cluster, a load-balancer must properly segregate

traffic to each of the defined traffic processing nodes. Each of these traffic nodes must

maintain connectivity with the master in order to operate.

NOTE: Clustering should not be confused with High Availability. Clustering
is used to increase throughput (by utilizingmultiple processing nodes), and
can reduce the chance that the whole systemwill fail. Clustering does not
protect themaster node from failure as in a High Availability setup; only HA
configurations are set up to include failsafe procedures to designate a new
master when the first one is unavailable.

Node Types

In a traditional WebApp Secure deployment (one system), the appliance is responsible

for holding its own database as well as processing the traffic. In a clustered deployment,

you have the ability to segregate the database from those systems which will process

incoming requests. During cluster configuration, you will have the ability to designate a

node type for each system. At a minimum, the cluster must have a way to process traffic

and a way to store the relevant information.

Node types are as follows:

• Master: A master node is similar to a single-system deployment in that it holds the

database, and also processes incoming traffic. This satisfies both requirements for a

cluster (database and traffic processor) It is possible to set up a cluster with only one

15Copyright © 2013, Juniper Networks, Inc.

master node (no additional processing nodes). Additional traffic processing nodes can

be added at a later point in time if desired.

• DedicatedMaster: A dedicated master node holds the database similar to a master

node, but it does not have the ability to process traffic. Using a dedicated master in a

clustered configuration requires the addition of at least one traffic node.

• Traffic Processor: A traffic node is only responsible for processing incoming requests.

It does not contain a database, so a master or a dedicated master node must

accompany a traffic node. The number of traffic nodes you can add to a cluster is

dependent on (1.) the hardware specifications of the master, (2.) the amount of

incoming traffic on protected web application, and (3.) the number of additional traffic

nodes in the cluster. For optimal stability, be sure to monitor the cluster's performance

as you add each traffic node.

Copyright © 2013, Juniper Networks, Inc.16

WebApp Secure 5.1.3

CHAPTER 5

High Availability

• High Availability Overview on page 17

High Availability Overview

To minimize the risk of downtime, WebApp Secure deployments have the ability to be

placed in a Highly Available (HA) configuration. In this setup, an additional appliance is

on stand-by in the event that the currently-active appliance goes offline. If this happens,

the passive appliance is able to become the new active appliance automatically - without

needing to restart the system. An HA configuration is similar to clustering, with the major

exception being that the passive system has a copy of the services needed to take over

when the master fails. WebApp Secure uses a Virtual IP (VIP) to float between the

currently active system and the current passive system.

NOTE: An HA configuration is only available onWebApp Secure dedicated
hardware systems. It is not available in a Virtual Machine installation.

17Copyright © 2013, Juniper Networks, Inc.

Copyright © 2013, Juniper Networks, Inc.18

WebApp Secure 5.1.3

CHAPTER 6

SRX Integration

• Integration with SRX Overview on page 19

Integration with SRXOverview

The SRX series by Juniper is an enterprise-level Secure Gateway for networks. WebApp

Secure has the ability to integrate with this solution, which means it can send IPs to the

SRX to achieve a block (or other configurable response) at the gateway level. This

effectively allows the SRX to tap into the identifying metrics produced by WebApp Secure.

19Copyright © 2013, Juniper Networks, Inc.

Copyright © 2013, Juniper Networks, Inc.20

WebApp Secure 5.1.3

CHAPTER 7

Appliance Management

• Appliance Management Overview on page 21

ApplianceManagement Overview

A few management tasks are organized into the Text User Interface, or TUI for short. You

can reach the TUI via SSH to your appliance on port 2022. Normal console login will take

the administrator directly to the TUI, but if you are at a shell prompt you can start the

TUI with the command: sudo setup. From here you can initialize the appliance (essentially

reformatting it to the state it was shipped), configure network components of the

appliance, and send a set of information to support staff.

21Copyright © 2013, Juniper Networks, Inc.

Copyright © 2013, Juniper Networks, Inc.22

WebApp Secure 5.1.3

CHAPTER 8

Spotlight Secure

• About Spotlight Secure on page 23

About Spotlight Secure

Spotlight Secure -- or simply Spotlight provides a database of known attackers to WebApp

Secure for use throughout the appliance. This two-way link enables WebApp Secure to

block attackers based only on a unique and specialized fingerprint gathered by a

completely different WebApp Secure installation. It also provides a mechanism for

reporting attacker information gathered on the local installation to the Global Attacker

Database. Because your local WebApp Secure appliance is relaying information to a

central data store, the ability to recognize attacker quickly and effectively increases as

the database grows.

Here is an overview of how Spotlight Secure works:

1. A user gets profiled by WebApp Secure.

2. WebApp Secure sends a unique client fingerprint that is unique to that user.

3. The Spotlight service searches its Global Attacker Database for an attacker with the

same fingerprint.

4. If a match is found, Spotlight feeds all identifying information on that user to the

WebApp Secure appliance automatically.

5. If the user is not doing anything malicious, and is not found currently within Spotlight's

database, the fingerprint for the user is still stored within the local session.

6. If at any point the user becomes malicious and is flagged by WebApp Secure, the

appliance will submit the fingerprint and other data to the Spotlight service for inclusion

in the Global Attacker Database.

23Copyright © 2013, Juniper Networks, Inc.

Copyright © 2013, Juniper Networks, Inc.24

WebApp Secure 5.1.3

CHAPTER 9

The Processors

• Processors Overview on page 25

Processors Overview

WebApp Secure uses a modular approach to securing your application. Each module is

responsible for monitoring, detecting and securing a particular aspect of the application

and/or individual HTTP request/ response. These logical entities are referred to as Security

Processors. Processors are the configurable operators that implement an additional layer

of security between the application/web servers and the end user. They are responsible

for analyzing the request and response data sent to and from the server and they monitor

anything from the state of injected honey pots to contents of the headers and the body

of the HTTP/HTTPS requests and responses.

Processors can be managed through the system configuration user interface. While some

of the operations may be as simple as incrementing a counter, others are far more

sophisticated and may alter the request and response data so it is important that you

configure processors correctly to ensure web application's security and functionality.

Each processor is monitoring the HTTP stream for particular alterations from what is

considered typical traffic. These alterations are called "triggers". Each security processor

may have several triggers they are responsible for detecting. If matched, the processor

responsible for handling it will generate a security incident. Incident varies by its

complexity, which is explained in the section below.

25Copyright © 2013, Juniper Networks, Inc.

Copyright © 2013, Juniper Networks, Inc.26

WebApp Secure 5.1.3

CHAPTER 10

Reports

• Reporting Overview on page 27

• Scheduling a Report Overview on page 27

Reporting Overview

WebApp Secure has a built-in reporting interface that can be accessed through the Web

UI, by navigating to the Reportsmenu item on the left-hand side. Administrators can run

one of many pre-defined reports or schedule a report or access report history. Most

reports can be exported to both PDF and CSV (comma separated value) formats. Reports

that are composed of several disparate visual elements (like the Scorecard) are only

available in PDF format.

Figure 4: Reporting Interface

Scheduling a Report Overview

The Scheduled Reports screens lets you view all of the reports currently scheduled to

run on the system, add a new report to the list, edit an existing report schedule, edit an

existing report options, or enable/disable an existing report scheduled to run. You can

configure the reporting interface to generate a report on a custom schedule which will

be automatically emailed to any email address specified.

27Copyright © 2013, Juniper Networks, Inc.

Figure 5: Scheduled Reports

Copyright © 2013, Juniper Networks, Inc.28

WebApp Secure 5.1.3

PART 2

Configuration

• Initial Tasks on page 31

• Configuration Wizard on page 39

• Command Line Interface on page 47

• Configuration Options on page 51

• Clustering on page 61

• High Availability on page 65

• SRX Integration on page 71

• Reports on page 77

29Copyright © 2013, Juniper Networks, Inc.

Copyright © 2013, Juniper Networks, Inc.30

WebApp Secure 5.1.3

CHAPTER 11

Initial Tasks

• Initial Appliance Configuration on page 31

• TUI Steps on page 31

• Setting the Hostname on page 32

• Interface Configuration on page 33

• Set DNS on page 34

• Restart the network on page 35

• Initialize the Appliance on page 35

• Verify Connectivity on page 36

• Install the License on page 37

Initial Appliance Configuration

Initial configuration is done through the console in a limited shell. Once WebApp Secure

has been initialized for the first time, you can log into a Web console to finish the initial

setup. Once the setup is complete, WebApp Secure is protecting your applications. You

must use the direct console interface to configure the appliance IP address. Once the

system has an IP address, you can use SSH to connect via port 2022.

Use the SSH command.

ssh <machine-ip-address> -p 2022 -l mykonos

• User: mykonos

• Password: mykonosadmin

NOTE: You should immediately change these defaults after you login.

TUI Steps

The following steps are performed through the Text User Interface. This is initially done

via the serial console, however the TUI is available through SSH once the Appliance is

operating.

31Copyright © 2013, Juniper Networks, Inc.

Figure 6: TUI, Initialize Appliance

The minimum requirements for the appliance's network setup are to set a hostname and

configure a network interface.

Setting the Hostname

To configure the network interface, do the following:

1. Enter the TUI and select Network Configuration from the menu.

2. Enter the Set Hostname menu.

Figure 7: TUI, Set Hostname

3. Enter the system's hostname and select Update.

Copyright © 2013, Juniper Networks, Inc.32

WebApp Secure 5.1.3

Figure 8: TUI, Enter Hostname

Interface Configuration

Once the hostname is set, open the Configure Interfaces menu and enter the network

settings for the appliance's network interface as follows:

1. Interface - Select network interface

2. IP Address - Specify a fixed IP address (if DHCP is unchecked)

3. Netmask - Specify the netmask

4. Gateway - Specify network gateway IP address

5. On Boot - Select to start the interface at boot time

Figure 9: TUI, Configure Interface

33Copyright © 2013, Juniper Networks, Inc.

Chapter 11: Initial Tasks

Figure 10: TUI, Network Interfaces

Figure 11: TUI, Configure Interface

Set DNS

Select DNS settings from the network menu, and enter appropriate values.

Figure 12: TUI, Set DNS

Copyright © 2013, Juniper Networks, Inc.34

WebApp Secure 5.1.3

Restart the network

After the Hostname and network interface information has been set, you must restart

networking to have the changes take effect.

Figure 13: TUI, Restart Network

Initialize the Appliance

To initialize the appliance's services, open the TUI menu and select the InitializeAppliance

from the menu.

Figure 14: TUI, Initialize Appliance

35Copyright © 2013, Juniper Networks, Inc.

Chapter 11: Initial Tasks

Figure 15: TUI, Initialize System

The Appliance typically takes 3 to 5 minutes to initialize, depending on available resources.

Once initialization is complete, the administrator will have access to the Web interface

where they can finish the initial configuration.

NOTE: Initialization sets the system to a default state andwill overwrite any
existingconfigurations. If this is the first timeyou'reconfiguring theAppliance,
it will not be an issue. However, if you are rerunning the initialization on an
existing system, be aware this will reset it to defaults, deleting any existing
data on the Appliance.

Verify Connectivity

Purpose After all initialization steps have been performed, verify that all network settings are

correct, and that the appliance can be reached from the network. Navigate to the IP or

hostname assigned to the appliance (on SSL), and specify port 5000.

Action For example:

• https://10.10.10.104:5000

• https://my-hostname:5000

If you see the appliance login screen, network settings are correctly configured.

Copyright © 2013, Juniper Networks, Inc.36

WebApp Secure 5.1.3

Figure 16: Appliance Login Screen

Install the License

In order to complete WebApp Secure configuration, you must install the license for the

product. Use a web browser to connect to your appliance on port 5000 and log in using

the Administrator credentials.

NOTE: The configuration url is: https://<IP address or hostname>:5000

Examples: https://10.11.12.13:5000 and
https://webappsecure.mydomain.com:5000

Go to the licensing section and follow the prompts:

1. Enter the license key provided to you in the Add a New License field.

2. Click Add.

3. Review the Terms of Service.

4. Click Yes on "I agree to the terms of service" to enable your WebApp Secure product.

37Copyright © 2013, Juniper Networks, Inc.

Chapter 11: Initial Tasks

Figure 17: License Terms

If the license validation step fails, check the network settings, particularly proxy settings

for the network. WebApp Secure must reach the outside world to contact the licensing

server.

Copyright © 2013, Juniper Networks, Inc.38

WebApp Secure 5.1.3

CHAPTER 12

ConfigurationWizard

• Configuration Wizard: Backend Server on page 39

• Backend Server Requirements on page 39

• SMTP Servers on page 40

• Wizard Alert Service on page 41

• Email Alert Requirements on page 42

• Wizard Backup Service on page 43

• Backup Service Fields on page 44

• Wizard: Spotlight Secure on page 44

• Wizard Confirmation Page on page 44

ConfigurationWizard: Backend Server

WebApp Secure functions as a reverse proxy, positioned in front of your web application.

WebApp Secure can protect an arbitrary number of application servers. But in order to

process traffic, you must specify at least one backend server to which the application

will proxy traffic. The default is 1, and this should suffice in most situations. If WebApp

Secure is serving as a software load balancer, rather than using a dedicated hardware

solution, multiple servers can be configured at this time.

Figure 18:Wizard, Configure Backend Servers, Step 1

Backend Server Requirements

Each backend server you configure here requires the following information:

39Copyright © 2013, Juniper Networks, Inc.

• Server Name: A unique name that WebApp Secure uses to identify this server. The

name can include any alphanumeric character, "-", and "_", with no white space. Do

not use the server's Fully Qualified Domain Name (FQDN) or a URL. If you are using

VMware, you may wish to use the same name here as you assigned in VMware, to avoid

confusion. But that is not required.

• Server Address: Specify the server's IP. WebApp Secure does not support IPv6

addressing at this time.

• HTTP Port: Usually port 80.

• HTTPS Port: Usually port 443.

• Weight: The default is 1. This value is used when WebApp Secure is serving as a software

load balancer and represents the relative weight the server has for balancing purposes.

• Backup: The default is NO. This only applies if you are using WebApp Secure as a

software load balancer, and you are designating this server as a backup.

Figure 19:Wizard, Configure Backend Servers, Step 2

SMTP Servers

WebApp Secure can email alerts to your administration team. While the appliance can

serve as its own mail server, it is recommended that you use a valid mail server for your

network. SMTP configuration supports the following fields:

• SMTPDefault Sender: This will be the "From:" address in email alerts. The address

should be valid for your network so alert mails won't be incorrectly categorized as

spam.

• SMTP Server Address: Defaults to localhost. Set it to the IP address or FQDN of your

mail server if you are using an off-board mail server as recommended.

• SMTPServer Port Number: Defaults to 25. Set it to the port your mail server is listening

on.

Copyright © 2013, Juniper Networks, Inc.40

WebApp Secure 5.1.3

• SMTPUsername: Defaults to blank, and may remain blank if you are using the on-board

server. Set it to a user with valid access to the mail server.

• SMTPPassword: Defaults to blank, and may remain blank if you are using the on-board

server. Set it to the password for the SMTP username.

Figure 20:Wizard, Configure SMTP Settings, Step 3

Wizard Alert Service

WebApp Secure can send alerts to an SNMP server or by email to appropriate personnel.

The alert service is optional, and defaults to No. If you choose not to activate alerts, the

Wizard skips to the next section.

Figure 21: Wizard, Configure Alert Service , Step 4

41Copyright © 2013, Juniper Networks, Inc.

Chapter 12: Configuration Wizard

Figure 22:Wizard, Configure Alert Service , Step 5

If you choose to activate alerts, you have the option of setting up the number of SNMP

servers to alert and the number of email addresses to which messages are sent. The

default values to both are 0.

Figure 23:Wizard, Configure Alert Service , SNMP, Step 6

If you activate SNMP Alerts, the wizard prompts you for the server address and the port

to which alerts are sent.

Email Alert Requirements

Email alerts require the following fields:

• Name: A common name for referencing this email address.

• Email Address: Email address.

• MinimumSeverity: Minimum severity level to trigger an email alert to this address.

• Shift Start: Start time for this address in 24 hour format.

• Shift End: End time for this address in 24 hour format.

You are also given the option of having alerts sent on the weekend. You can build complex

schedules by creating multiple entries for the same person. For example,

admin@yourcompany.com could have an entry named admin-weekday that specifies

8 AM to 5 PM, M-F, and a second entry named adminweekend that specified 6 AM to 6

PM.

Copyright © 2013, Juniper Networks, Inc.42

WebApp Secure 5.1.3

Figure 24:Wizard, Configure Alert Service , Email Contacts, Step 7

NOTE: Configuration of advanced features, such as encryption keys, are not
available in the wizard.

Wizard Backup Service

WebApp Secure can perform regular, scheduled backups of all data. It is strongly

recommend that you turn backups on. You can select backups using FTP or SSH.

Figure 25:Wizard, Configure Backup Service

43Copyright © 2013, Juniper Networks, Inc.

Chapter 12: Configuration Wizard

Backup Service Fields

The backup service lets you specify the following fields:

• Frequency: How often backups are sent off-board.

• Retention: Number of days to keep off-board backups.

• FTP Service: Whether to use FTP. If set to YES, the server, username, and password

fields are required.

• SSH Service: Whether to use SSH. If set to YES, the server, username, and password

fields are required.

Wizard: Spotlight Secure

Spotlight Secure provides a way to import malicious profiles from other subscribers to

the service. The service is enabled by default, but you can choose to disable it.

Figure 26:Wizard, Configure Spotlight Secure

Wizard Confirmation Page

Once you have completed the wizard's main steps, you will see the confirmation page.

Here, there is a URL you can use to confirm that the appliance is performing correctly.

You will also see the secret key the appliance generated for your backups. Whether

WebApp Secure is storing backups locally or off-site, you must have this key.

Copyright © 2013, Juniper Networks, Inc.44

WebApp Secure 5.1.3

Figure 27:Wizard, Confirmation Page

NOTE: The key is actually a link. Youmust click on it and confirm your
acceptance of the key.

NOTE: Record the secret key and keep it someplace safe. If you run through
System Initialization again, it will create a new key and you will lose access
toyourbackups if youhaven't recorded theoldkey. If you lose this key, Juniper
Support will not be able to recover it or your backups.

NOTE: It is alsoworthwhile to record other configuration entries in the event
that you perform a configuration re-initialization.
engine.session.encryption_key and engine.session.initialization_vector are
entriesneededtomaintain thedataofcurrentlyactiveuserson theprotected
application. It isbestpractice towrite thesedown,aswell.Onceconfiguration
initialization is done, these old valuesmay be set again.

45Copyright © 2013, Juniper Networks, Inc.

Chapter 12: Configuration Wizard

Copyright © 2013, Juniper Networks, Inc.46

WebApp Secure 5.1.3

CHAPTER 13

Command Line Interface

• Using the CLI on page 47

• CLI: Config on page 48

• CLI: Config: Setting a Configuration Parameter on page 48

• CLI: Config: Initializing the Configuration on page 49

• CLI: Config: Import/Export on page 49

• CLI: Config: Configure a Proxy Exclusion on page 50

• CLI: Services on page 50

• CLI: System on page 50

Using the CLI

While the Web-based configuration handles most configuration needs, the WebApp

Secure CLI is also available for changing the appliance configuration. You can access

the CLI via the shell, by entering sudomykonos-shell from the command line.

There are currently three main systems within the CLI as follows:

• config: allows you to access the appliance configuration

• services: allows you to perform tasks on the various background services functioning

on the appliance

• system: allows you to perform tasks on the various background services functioning

on the appliance, and system allows you to shutdown or reboot the appliance

NOTE: At any point, you can enter ? or help to view the available commands

at the current context, or help <command> to get contextual help on the

specifiedcommand.Youcanalsoshow informationonaparticularparameter
by using the info command. For example, info services.cleanup.db.enabled.
Entering Ctrl + D or exitwill leave the context you are currently in, or exit the

CLI. The CLI also has full tab-complete support.

47Copyright © 2013, Juniper Networks, Inc.

CLI: Config

Typing config at the CLI prompt will put the CLI into the configuration context.

Configuration values are organized in a hierarchical fashion, with the most general words

located at the beginning of the full configuration attribute string. For example:

services.cleanup.db.enabled

From the entry above, you can see that this parameter is for a service that handles the

cleanup of the database. Specifically, this parameter determines whether the service is

enabled or not.

Within the config context, you can choose to show any portion of the configuration. For

example:

show services.cleanup.db.enabled

In the entry above, the value of the parameter in question is shown. If you want to see all

of the configuration for the DB Cleanup Service, you can enter show services.cleanup.db

to return a JSON object representation of the entire configuration that relates to the DB

Cleanup Service. Likewise, entering only show displays the entire configuration as one

large object.

CLI: Config: Setting a Configuration Parameter

To set a configuration parameter, enter set PARAMETER.TO.SET VALUETOSETTO. For

example, to enable the DataBase Cleanup Service (which allows you to delete profiles

from WepApp Secure), enter the following:

set services.cleanup.db.enabled true

For more advanced users, you can edit configuration entries with an actual editor. If you

do this, you can append | edit to the end of the set command where your value would

be. The shell will put you into a text editor (VIM by default) where you can make changes

to the configuration values. This is convenient when editing the JSON representation of

a set of configuration entries, such as services.cleanup.db. Make any changes and, in

VIMs Normal Mode, enter wq to write and quit the editor. For more information about

VIM and how to use it, consult the VIM Documentation.

NOTE: Youcanchoose toshowaportionof theconfigurationwithout setting
it by using the keyword show rather than set. For example: show

services.cleanup.db This displays all configurations related to the DataBase

Cleanup Service.

After making any changes, you can compare the new configuration with the last-saved

version by typing entering | compare. A diff is printed to screen, with - indicating original

settings, and + indicating modified settings. For example, changing the DB Cleanup

Service from true to false will yield:

- - - Original Settings

Copyright © 2013, Juniper Networks, Inc.48

WebApp Secure 5.1.3

+++Modified Settings
@@ -2635,7 +2635,7@@
services.backups.retention: 7
services.backups.secret: WIB25lkIsbMM3wOR
services.backups.ssh.enabled: false
-services.cleanup.db.enabled: true
+services.cleanup.db.enabled: false
services.cleanup.db.expiration.history: 2592000
services.cleanup.db.expiration.malicious: 10368000
services.cleanup.db.expiration.session: 2592000

CLI: Config: Initializing the Configuration

At some point, it might be necessary to reset all configuration entries to default values.

To do this, you enter config initat the root context, or initand commitat the config context.

Once you do that, all entries are reset to their factory defaults.

WARNING: Because configuration initialization resets every parameter to a
default, youmightwant to recordsomeentriesbeforedoing this. Specifically,
engine.session.encryption_key and engine.session.initialization_vector. Those

two entries are needed tomaintain the correct session data for
currently-active users. If these values change, youmight see false positives
of Session Etag Spoofing incidents and Application Cookie Manipulation
incidents, because the corresponding key values have indeed been
manipulated.

CLI: Config: Import/Export

You can export a configuration image containing all configured parameters. This image

can be imported by the system, letting you make a backup of your system configuration

before making major changes, or to aid in some types of deployment. If you execute a

system initialization from the TUI, you can use an imported configuration to bring your

system back to its previous running configuration. However, historical traffic information

is not part of the exported configuration and is therefore not recoverable.

To access the Configuration Import / Export feature, enter sudomykonos-shell in an SSH

session on the appliance, and at the prompt enter config export <filename>. The

configuration is saved using the filename given. Similarly, import the configuration by

entering config import <filename>.

NOTE: Because configurations can change from version to version of the
product, importingaconfigurationexportedfromanolderversionofWebApp
Securemay fail.

49Copyright © 2013, Juniper Networks, Inc.

Chapter 13: Command Line Interface

CLI: Config: Configure a Proxy Exclusion

WebApp Secure functions as a reverse proxy. Therefore, all web traffic goes through

WebApp Secure so that it can analyze traffic for attacks. To improve performance, you

can configure WebApp Secure to not process certain types of resources, such as images,

or zip files, for example. To configure an exclusion for certain file extensions that you

want routed around WebApp Secure (as opposed to through it), you can use the

configuration setting described here.

For example, to have WebApp Secure not process any zip files, you can add the zip file

extension to the proxy exclusions list by entering the following command at the WebApp

Secure terminal:

sudomykonos-shell set engine.proxy.exclusions zip

Now WebApp Secure will not process zip files.

NOTE: GoogleWeb Toolkit utilizes specialized cache files that may conflict
withWebApp Secure. If your protected site utilizes GoogleWeb Toolkit, you
will need to add the file extension of these cache files (typically .cache.html)

to the engine.proxy.exclusions parameter.

CLI: Services

The services context lets you manage the various background processes that are running

on the appliance. From this context, you can start, restart, and stop the services, as well

as check the status of the services. An example output is given below:

service> status
nginx_management (pid 13749) is running...
mykonos-datastore (pid 13759) is running...
mykonos-api (pid 13844) is running...
mykonos-ui (pid 13866) is running...
mykonos-services (pid 13876) is running...
mykonos-cluster-services (pid 13924) is running...
mykonos-reports-api (pid 13960) is running...
mykonos-security-engine (pid 14347) is running...

CLI: System

Within the system context, commands exist to restore from a supplied backup, or reboot

and shutdown the system.

Copyright © 2013, Juniper Networks, Inc.50

WebApp Secure 5.1.3

CHAPTER 14

Configuration Options

• Securing Multiple Web Servers on page 51

• Create a New Application on page 51

• Edit Applications on page 52

• Application Patterns on page 53

• Define Backend Servers on page 55

• Enable SSL to the Client on page 56

• Whitelist Settings on page 57

• Configure Support for Akamai Dynamic Site Accelerator on page 58

SecuringMultipleWeb Servers

In more complex environments, it might be required to separate functionality into multiple

applications, each with their own settings and configuration. The Applications section of

the UI can help manage multiple applications/URL patterns from a single WebApp Secure

instance.

Create a NewApplication

To create a new application within WepApp Secure, do the following:

1. In the Web UI, click Configuration > Applications. Here you can view applications that

have already been configured.

NOTE: You can reorder applications in the applications list by dragging
and dropping them. Click Save Order to preserve your newly ordered list.

51Copyright © 2013, Juniper Networks, Inc.

Figure 28: Configured Applications

2. Enter information into the form to create a new application.

3. Click the Add Application button. This launches the Application Wizard. Fill in the

available fields, and continue to click theNext button until you have completed the

wizard. Based on your entries, the wizard can require three to six steps to complete.

Figure 29: ApplicationWizard

Edit Applications

You can edit an existing application by doing the following. If you want to change any

configured application settings, click the Edit/Override Settings icon for the application

in question.

1. Navigate to Configuration > Applications. Existing applications are listed in the

Application screen.

2. To edit an application, click the Edit/Override Settings icon under Actions for the

application in question.

Copyright © 2013, Juniper Networks, Inc.52

WebApp Secure 5.1.3

3. This takes you to the dashboard for the application. The dashboard displays which

application settings are overridden and which are inherited. From here, you modify

each setting individually.

Figure 30: Application Dashboard

Application Patterns

Application patterns determine which requests get routed to which applications. You

can change each application you've added later by navigating to Configuration >

Applications. Url patterns follow standard Perl Regular Expression (PCRE) syntax.

For example:

• Any traffic: ^.*$

• Any subdomain: ^.*\.domain\.com$

• Multiple, or no, subdomains: ^((www|shop)\.)?domain\.com$

53Copyright © 2013, Juniper Networks, Inc.

Chapter 14: Configuration Options

Figure 31: URL Pattern

NOTE: WebAppSecureprocessesapplications inorder. Thereforeconflicting
regular expressions will only be processed on the application or page where
it first appears. There are also some suggestions that cover some common
use-cases such as catch-all, subdomains, etc.

Figure 32: Application Patterns

WARNING: URL patterns and profiles are observed in the order they are
created.

NOTE: If SSL is required for this application, youwill also need to enable SSL
and ensure that all the required certificates are uploaded and configured
properly.

Copyright © 2013, Juniper Networks, Inc.54

WebApp Secure 5.1.3

Define Backend Servers

When separating applications, one application may reside on a different physical server.

You can define a backend server for this application here. For convenience, WebApp

Secure imported the existing backend server that was used in the global context.

NOTE: You do not have to define a backend server at the global level. For
example, you can define backend servers using only Applications. However,
if there is a backend server defined globally, you should not unset it. You can
only change it. There should always be at least one global backend server.
Deleting the last global backend server may cause instability. (If you want
to define backend servers using only Applications, you can skip this wizard
setup step.)

Figure 33: Define Backend Servers

NOTE: WebAppSecure supports different configurations for different pages
within a protected application. Fill out the required information and clickAdd

Page to create a new page.

55Copyright © 2013, Juniper Networks, Inc.

Chapter 14: Configuration Options

NOTE: The page nomenclature is used for simplicity. Much like applications,
page contexts can define a set of pages using a RegEx. They aren't restricted
to one actual page on the application.

Figure 34: Add NewPage

Enable SSL to the Client

To enable SSL between WebApp Secure and the client, do the following:

1. In the Web UI, navigate to the application for which you want to enable SSL or switch

to the desired application's context.

2. Navigate to Configuration > Applications > MyApp > Proxy/SSL Settings and enable

SSL to the backend.

3. Upload your SSL certificate and key file.

4. Select a listening interface IP address and HTTP and HTTPS ports,

NOTE: The combination of port/IPmust be unique for the system. If the
system is clustered, an IPmust be selected for each node.

5. When you save the SSL configuration in a deployment containing multiple appliances,

the certificate is propagated from the master system to all subsequent systems.

Copyright © 2013, Juniper Networks, Inc.56

WebApp Secure 5.1.3

Figure 35: Proxy / Backends

WARNING: To safeguard against inheriting SSL certificates,WepAppSecure
does not allow SSL at the global level. Therefore, youmust configure an
application in order to enable SSL.

WARNING: Your certificate and key files cannot be password protected. If
they are, WebApp Secure will be unable to read them. You can remove
passwords on your existing certificate by using the openssl program. For
example, openssl rsa -inmykey.pem -out newkey.pem.

NOTE: Certificatesmust be in valid PEM (Privacy EnhancedMail) format.
You can verify the SSL certificate by using the command, openssl verify
<sslcert.crt>. WebApp Secure is only concerned with the validity of the
format. openssl verify might allude to other problemswith the certificate,
but other issues do not come into play when used withinWebApp Secure.

Whitelist Settings

There are various types of whitelists to which you can add IP addresses. To access the

Whitelist screen, do the following:

57Copyright © 2013, Juniper Networks, Inc.

Chapter 14: Configuration Options

Navigate toConfiguration>Security Engine>Whitelists. The following types of whitelists

are available:

• Trusted IP Addresses: The IP addresses in this list will not trigger incidents. Click Add

New to enter IP addresses to be added to this list.

• X-Forwarded-For Address Exclusions: The IP addresses in this list are stripped off the

X-Forwarded-For header. This effectively trusts that the next IP address in the chain

is a genuine address. Click Add New to enter IP addresses to be added to this list.

Figure 36:Whitelists

Configure Support for Akamai Dynamic Site Accelerator

You can configure WebApp Secure to work with a site that utilizes Akamai Dynamic Site

Accelerator. You will need to make minor changes to your site's configuration in the

Akamai Luna Control Center and in the Content Delivery Network section of the Security

Engine configuration screen in the Configuration UI.

To make the necessary changes, do the following:

1. Log into Luna Control Center and select the Configure tab.

2. Click the link corresponding to the desired site configuration underConfigurationName.

3. On the next screen, find the currently-active configuration and click Create Version

from... in the right-hand column. Make the following changes:

Table 3: Luna Control Center Configuration Changes

ValueParameterConfiguration Section

false (uncheck)Cache Control HeadersHonor HTTP Cache-Control and Expires
Headers

false (uncheck)HTTP Expires HeadersHonor HTTP Cache-Control and Expires
Headers

Copyright © 2013, Juniper Networks, Inc.58

WebApp Secure 5.1.3

Table 3: Luna Control Center Configuration Changes (continued)

ValueParameterConfiguration Section

true (select)Pass through the origin's Cache-Control
headers to the browser

Browser Cache Control Headers

true (select)Pass through all origin cache control headersBrowser Cache Control Headers

true (check)Enable True Client IP HeaderEdge Services - General

True-Client-IP (or other; see
below)

True Client IP Header NameEdge Services - General

false (uncheck)Enable Edge Server IdentificationEdge Services - General

NOTE: Choosing a name for the True-Client-IP header other than the

default may provide additional security by preventingmalicious users
fromspoofing this header.Makeanoteof the value chosen for theheader.
You will need to configure it on theWebApp Secure side.

4. After making these changes, scroll to the bottom of the page and activate the new

Akamai configuration as you normally would.

5. Once you have verified that your new Akamai configuration has gone live, log into the

WebApp Secure web UI. If you are configuring Akamai support for an application,

browse to that application's configuration page. Otherwise, browse to the Content

DeliveryNetwork section of theSecurityEngine configuration (or use the Configuration

CLI). Make the following changes:

Table 4:WebApp Secure Configuration Settings for Akamai Support

ValueParameter NameParameter ID

trueAkamai: Enabledengine.cdn.akamai.enabled

(value specified in Akamai
configuration)

Akamai: True-Client-IP Headerengine.cdn.akamai.true_client_ip

true or falseAkamai: Spoofing Incident Enabledengine.cdn.akamai.incidents.spoofing.enabled

6. SetAkamai Enabled to true andTrue-Client-IPHeader to the value that you configured

in the Luna Control Center.

NOTE: If you want a security incident to be triggered when a client
attempts to spoof a request through Akamai, youmay enable theAkamai

Spoof Attempt incident. This incident carries a severity of Medium and

may be incorporated into custom Autoresponse rules.

59Copyright © 2013, Juniper Networks, Inc.

Chapter 14: Configuration Options

Copyright © 2013, Juniper Networks, Inc.60

WebApp Secure 5.1.3

CHAPTER 15

Clustering

• Using a Secure Cluster on page 61

• Setting Up Clustering on page 61

• Updating the Cluster on page 63

Using a Secure Cluster

Individual WebApp Secure appliances have the ability to work together as one system

in a cluster. Clustering allows traffic to be divided among multiple appliances, effectively

reducing the per-system load. In a clustered network configuration, the master node

holds the database that is populated by one or more traffic processors" In order to

successfully utilize a WebApp Secure cluster, a load-balancer must properly segregate

traffic to each of the defined traffic processing nodes. Each of these traffic nodes must

maintain connectivity with the master in order to operate.

NOTE: Clustering should not be confused with High Availability. Clustering
is used to increase throughput (by utilizingmultiple processing nodes), and
can reduce the chance that the whole systemwill fail. Clustering does not
protect themaster node from failure as in a High Availability setup; only HA
configurations are set up to include failsafe procedures to designate a new
master when the first one is unavailable.

Setting Up Clustering

WARNING: Unlike a traditional cluster, aWebApp Secure cluster does not
automatically balance traffic between each of the nodes. For this reason, a
load balancer is required to be configured to send traffic to each traffic
processing node.

Setting up a cluster is as easy as configuring multiple stand-alone boxes. The first step

is to set up the master. You must set up the master first because you will need to supply

the master's IP when initializing the traffic nodes.

61Copyright © 2013, Juniper Networks, Inc.

To initialize a master, chooseMaster orDedicatedMaster from the TUI setup menu (sudo

setup).

Figure 37: TUI, Initialize Appliance

Figure 38: TUI, Select SystemMode

Figure 39: TUI, Initialization Complete

Setup will initialize the master, and once the initialization is complete, you should be able

to navigate to the management interface athttps://HOSTNAME:5000. Once the master

is initialized, you can initialize the other appliances as traffic processing nodes. The steps

are similar to the master setup, however you will be prompted to enter the IP of the

master node.

Copyright © 2013, Juniper Networks, Inc.62

WebApp Secure 5.1.3

Figure 40: TUI Select Traffic Processor

Figure 41: TUI, Master Node IP Address

Once the traffic node is initialized, you can verify the cluster by navigating to the

management interface (https://HOSTNAME:5000) and clicking onSystemStats. There

should be a separate tab for each node in the cluster, and an additional tab for the

aggregate cluster data.

WARNING: Remember thatyoumustuseanexternal loadbalancingsolution
to point to each traffic processing node, as the clusterwill not do this for you.

Updating the Cluster

Updating a cluster is similar to updating a stand-alone box. Navigate to Updates in the

management interface on the master node (the traffic nodes have no management

interface) and apply the updates as you would on an individual appliance. The master

node will automatically apply the same update to each of it's traffic processing nodes

in the cluster. There is no need to individually update each appliance.

63Copyright © 2013, Juniper Networks, Inc.

Chapter 15: Clustering

NOTE: The process for updating a cluster will take longer than updating a
single appliance since the same updatemust be applied to each node.

Copyright © 2013, Juniper Networks, Inc.64

WebApp Secure 5.1.3

CHAPTER 16

High Availability

• High Availability Overview on page 65

• Configuring High Availability on page 65

• Updating with High Availability on page 69

High Availability Overview

To minimize the risk of downtime, WebApp Secure deployments have the ability to be

placed in a Highly Available (HA) configuration. In this setup, an additional appliance is

on stand-by in the event that the currently-active appliance goes offline. If this happens,

the passive appliance is able to become the new active appliance automatically - without

needing to restart the system. An HA configuration is similar to clustering, with the major

exception being that the passive system has a copy of the services needed to take over

when the master fails. WebApp Secure uses a Virtual IP (VIP) to float between the

currently active system and the current passive system.

NOTE: An HA configuration is only available onWebApp Secure dedicated
hardware systems. It is not available in a Virtual Machine installation.

Configuring High Availability

If your appliance is HA-ready, you will see two additional modes available on the Select

ApplianceMode screen during appliance initialization.

1. On the active appliance (the one that will be the primary appliance), enter TUI setup

by typing sudo setup.

2. Select Initialize Appliance and select either HAMaster or HADedicatedMaster for the

mode.

65Copyright © 2013, Juniper Networks, Inc.

Figure 42: TUI, Select HA

The available modes are:

• HAMaster: If the appliance is in HA Master mode, it acts as a stand-alone system.

The system's database will be stored on this node, and will be replicated/mirrored

to the passive appliance (configured later). The appliance will also process traffic

like a standard installation.

• HADedicatedMaster: Just like in clustering, the Dedicated Master has no way to

process traffic by itself. It only contains the database and the essential services to

talk to the other appliances. If you want a WebApp Secure cluster configured for

HA, you can select this mode to prevent the master from processing any traffic.

Keep in mind you just utilize clustering to configure at least one Traffic Processing

node. A copy of the master will still exist on the passive system.

3. Once a mode is selected, you must bind the appliance to an interface. This must be

the same interface that will accept incoming connections to the appliances and the

same interface that the VIP is on. The HA interconnect interface can only be used as

a link between HA appliances.

4. After selecting the interface, you are prompted to enter the IPs belonging to the HA

pair. This includes the IP of the current master (the active appliance) as well as the

IP of the appliance to fail-over to (the passive appliance).

Copyright © 2013, Juniper Networks, Inc.66

WebApp Secure 5.1.3

NOTE: Be sure that each of the appliances are on the sameWebApp
Secure version (invokemykonos-get-version from the appliance's
command line). Appliances not on the same version as themaster must
bemanually updated to the HAmaster's version before continuing on.

Figure 43: TUI, Enter HA Node Addresses

5. Next, you are prompted to enter the Virtual IP (VIP) that the system will use as the IP

of the currently active system. You may enter either the standard or the CIDR bitmask

(for example, 255.255.255.0 or /24) for the netmask.

Figure 44: TUI, Enter Virtual Addresses

6. After allowing the Initialization process to complete, you can verify proper HA setup

by navigating to the management interface https://VIP:5000where VIP is the Virtual

IP. Navigate to High Availability on the left-side menu to observe the status of the HA

pair.

67Copyright © 2013, Juniper Networks, Inc.

Chapter 16: High Availability

Figure 45: HA Pair Status

WARNING: Since the various HA appliances in a configuration need to
interface with the database, port 5432 will be open. Be sure to restrict
access to this port with your firewall to prevent unwanted incoming
connections.WebAppSecure isnot intendedtobeusedasanedgedevice.

NOTE: If the interconnect between an HA pair drops at any point, it is
possible that both systemswill try to assume the active system role. This
leads toaconditionknownassplit-brain,wheredata isnotproperly routed
through the pair. Tomitigate this, it is recommended that you bond the
pair using the 10Gb ports on the front of the appliance. Follow the steps
in the Network Configuration section of the TUI to setup the bond and
then to configure it as you would any other interface.

Copyright © 2013, Juniper Networks, Inc.68

WebApp Secure 5.1.3

NOTE: Youmust use the VIP to access the configuration interface. If you
attempt to use themanagement interface on the passive appliance, you
will see a notification indicating "The Administrative interface is not
accessible on this host because it is the secondary host in a High
Availability cluster."

Updating with High Availability

To update an HA system, navigate to the management interface (https://VIP:5000

where VIP is the Virtual IP) and update as described in the System Updates section. The

update will be applied to both systems in the HA pair.

NOTE: While both the active and passivemachinesmust be on the same
WebApp Secure version to be initially configured in HAmode, appliances
already in HAmodewill successfully update together.

69Copyright © 2013, Juniper Networks, Inc.

Chapter 16: High Availability

Copyright © 2013, Juniper Networks, Inc.70

WebApp Secure 5.1.3

CHAPTER 17

SRX Integration

• Filters and Terms Configuration Summary for SRX Integration on page 71

• Creating SRX Filters and Terms on page 72

• Configure the SRX Integration on page 73

Filters and Terms Configuration Summary for SRX Integration

The SRX uses a pipeline of filters to be applied to incoming packets. Each filter contains

any number of terms that can apply actions to these incoming packets. The first step in

configuring WebApp Secure to work with the SRX is to configure the filters and terms

required. WebApp Secure will require a valid IPv4 filter. This can be named anything and

can be a filter already set up prior to \WebApp Secure integration. Remember this filter

name, because you will input it into the WebApp Secure appliance once the SRX

configuration has been completed.

Along with a filter, you must create two terms. Unlike the filter, these terms cannot be

modified by any other service. The first term is the term that IP addresses are added to

in the event of an External Counter Response activation, and whose name will be supplied

to configuration. The second term must be added as a safeguard which will determine

what action to take when no IPs are in the first term. It is recommended that the second

term be similar to the following:

term jwas_default {
then {
accept;
}

}

This should be placed after theblocking term. It allows all traffic through once the previous

term's action has been changed to next term. Consult the SRX documentation for more

information on the SRX and its filters.

NOTE: Because the SRXwill drop packets when next term is the action and

no actual next term exists, it is important to have this additional term below
the termwhich will contain the actual IPs.

71Copyright © 2013, Juniper Networks, Inc.

WARNING: Any IPs added to theWebApp Secure term through the SRX CLI,
the SRX GUI, or any other external service besidesWebApp Secure, are not
guaranteed to remain in the term.

Creating SRX Filters and Terms

To initialize a filter for use with WebApp Secure do the following:

1. Log into the SRX via SSH. Then enter cli and next enter configure to put the cli into

configuration mode.

Figure 46: Initialize Filter

2. Next create the filter, term, and a placeholder action. Because each term must have

some sort of action, choose the next term action. This passes the packet on to the

next term in the filter. Although the inside of the term will be replaced by WebApp

Secure, it will allow the filter to be created. To do this enter set firewall family inet filter

my_filter term block then next term. You can enter show firewall to see your

newly-created filter.

Figure 47: Create Filter Term

Copyright © 2013, Juniper Networks, Inc.72

WebApp Secure 5.1.3

NOTE: The filter namemy_filter and term block are example names. You
may choose any names you like, but remember them because you will
need to inform \WebApp Secure of your name choices later on in the
configuration.

3. Although the filter is created, it is not set to intercept incoming packets. You must

now bind the filter to an interface. The interface and unit names will be different

depending on your network implementation, but an example is: set interfacesge-0/0/0

unit 0 family inet filter inputmy_filter. After binding to an interface, you should see the

newly created filter appear under the appropriate interface when you enter show

interfaces.

Figure 48: Bind Filter to Interface

4. Save the changes by entering commit. Exit the CLI by entering exit twice (once to exit

configure mode, and once to exit the CLI).

WARNING: If the blocking term is misplaced after the default (accept)

term, the filterwill notcommit.Makesure that theaccepting term isplaced
after the blocking term. Remember: next term needs a next term to switch

to.

Configure the SRX Integration

To configure the integration of an SRX appliance with WebApp Secure, you must enable

the External Counter Response Service, found within the configuration of the WebApp

Secure web interface. The External Counter Response Service allows the SRX to send

filter requests to the Appliance, and can be found under theGlobal section of the WebApp

Secure configuration. It is an Advanced configuration set, so you will need to show the

advanced configuration entries to see the External Counter Response Service configuration

category.

73Copyright © 2013, Juniper Networks, Inc.

Chapter 17: SRX Integration

WARNING: The configuration category will validate if there is an IP address
orhostname in thecorrespondingconfigurationentry, anda filternamealong
with a term name, but this does not mean the service is properly working.
Always test the counter response after changing the configuration entries,
explained in the next section.

Be sure to examine the configuration entries available for this service, and fill out all

necessary fields, outlined in the following table.

Table 5: External Counter Response Service Configuration Parameters

DescriptionDefault ValueTypeParameter

Whether or not to enable this service.FalseBooleanExternal Counter
Responses Enabled

Required. Either the IP address or the DNS name of the
device.

[Not Set]IP (or DNS
name)

Network Address

The password to log into the SRX.[Not Set]StringSRX Password

The username to log into the SRX.[Not Set]StringSRX Username

Provide a filter name that WebApp Secure will use.[Not Set]StringFilter Name

The term in the configured filter that WebApp Secure should
add the IPs to. It should not be currently in-use by any other
service, and should only be used for WebApp Secure.

[Not Set]StringTerm Name

Choose the actions for the SRX to take on IPs sent to it by
WebApp Secure. When no IPs are blocked on the SRX
through WebApp Secure, these terms will be changed to
Evaluate Next Term, which will continue to the next term in
the filter. By default, this is set to a collection of 1, consisting
of only discard.

[collection:1]Collection
(Strings)

Action(s) to Apply)

WARNING: When configuringmultiple actions to take, be careful not to
populate thecollectionwithconflictingactions.Anexampleof twoconflicting
actionsare rejectandaccept (Youcannot rejectaconnectionandthenaccept

a connection!.). WebApp Secure has no protection for conflicting actions.
The systemwill overwrite older actions with newer ones (further down the
collection). An example of non-conflicting actions are log and discard. In this

case, the packets will be logged, and then discarded. For more information
on actions to take, consult the SRX documentation.

Copyright © 2013, Juniper Networks, Inc.74

WebApp Secure 5.1.3

NOTE: If the External Counter Response Service is disabled or otherwise
configured incorrectly, blocking a profile via the External Block response will
not work, but will still be shown in the User Interface as a valid Counter
Response.

75Copyright © 2013, Juniper Networks, Inc.

Chapter 17: SRX Integration

Copyright © 2013, Juniper Networks, Inc.76

WebApp Secure 5.1.3

CHAPTER 18

Reports

• Schedule a Report on page 77

• The Reports CLI on page 79

• Supported arguments on page 80

• Data Sources on page 81

• Formatting on page 81

• Example Report on page 82

Schedule a Report

To schedule a report, do the following:

1. Select the Schedule Report left navigation link.

2. Click theAddScheduledReportbutton at the top right of the Scheduled Reports page.

This brings up a list of reports to run. Choose the report that you want to run on a

repeated basis by following its link.

3. On the subsequent page, enter all of the schedule details and report options and then

select Generate Report Schedule .

4. Save the changes.

Most reports share the following items:

• File type: The file format that will be used to generate the report. Options usually include

PDF or CSV. Certain reports are only available in PDF.

• Schedule Name: The name of the report schedule that will appear in the reporting

interface.

• Run: The time schedule in hours, weeks, months, or years that the report should run

on.

• Period: The period of time that the report should be run on.

• Send to: The email address that this report should be sent to.

• Enabled: Sets this report schedule to active (YES) or inactive (NO). Inactive reports

will not be run on a scheduled basis.

77Copyright © 2013, Juniper Networks, Inc.

Figure 49: Schedule Report - Scorecard

Copyright © 2013, Juniper Networks, Inc.78

WebApp Secure 5.1.3

NOTE: Individual reportsmayhavevariousadditionaloptions thatarespecific
to that report. For instancetheCountryComparisonOverTimereportcontains
a field for the number of countries to show and a list of specific countries to
include.

Figure 50: Schedule Report - Country Comparison Over Time

The Reports CLI

WebApp Secure contains a Command Line Interface (CLI), which provides users with

access to the primary data sources. The CLI allows users to generate complex reports

based on the data gathered by the security engine for the purpose of reporting and data

analysis. The interface can be run by executing the following command:

sudomykonos-reports-cli

NOTE: To get a list of required and optional arguments, refer to theman
pages at:manmykonosreports- cli

79Copyright © 2013, Juniper Networks, Inc.

Chapter 18: Reports

Figure 51: Reports CLI

To generate a report, specify the following:

• A data source

• An optional format

• Any parameters necessary to filter the data

• Any other output arguments

When fully constructed, a command to generate a report would look similar to this:

sudomykonos-reports-cli -d=Datasource --format=true/false --parameter

Using the –h option in the CLI will bring up a help page with all of the available filters and

parameters; a list of parameters is also available at the end of this document.

Supported arguments

The command line interface provides access to the raw information that the system

uses. The following are the main arguments provided for accessing, outputting, and

formatting the data returned by the CLI:

Copyright © 2013, Juniper Networks, Inc.80

WebApp Secure 5.1.3

• -d=<data source name>: Define which data source to get data from (from the list of

available data sources).

• -h: Get help documentation for the specified data source. This includes the accepted

arguments and resulting fields.

• -o=<path>: Output data to a specified file (if not specified, then output is to the

console).

• -f=<text|csv|xml|html>: The format to use when outputting the data from the data

source, supported formats are: CSV, XML, HTML or text.

• -l: Get the list of all supported data sources and their names.

• -i=<index>: Specify the starting index for the result set.

• -m=<max>: Specify the maximum number of records to return.

• -s=<fields>: Specify the sorting to apply to any data being read from the data source.

Data Sources

The CLI provides users with the following data sources In order to access the data

generated by the security engine and generate reports. The full list of Data sources can

be viewed at any time with the -l option and a Data source can be loaded through the

-d= argument:

• Browser: Data source that exposes information about known and detectable browsers.

• Country: Data source that exposes information about known countries.

• Environment: Data source that exposes information about environments.

• Incident: Data source that exposes information about incidents.

• IncidentType: Data source that exposes information about known incident types.

• IpAddress: Exposes IP Address information.

• Location: Data source that exposes information about locations.

• OperatingSystem: Data source that exposes information about known and detectable

operating systems.

• Profile: Data source that exposes information about profiles.

• Response: Data source that exposes types of responses (counter attacks).

• Session: Data source that exposes information about sessions.

Formatting

All reports are generated with the default columns and sorting. You may reformat any

report or change the sorting for the columns by supplying any optional filtering arguments

when the report is generated. To generate a report that has all of the profile and session

count data from the session’s data source, include the following arguments in the

command to add those columns:

81Copyright © 2013, Juniper Networks, Inc.

Chapter 18: Reports

sudomykonos-reports-cli -d=Session --include-default=false --include-counts=true

Example Report

The CLI allows users to combine filtering arguments for data sources to create complex

and detailed reports. These arguments follow the format:

--argumentName="Value"

For example, if a user wanted a report that displayed a list of all the sessions created

after 09/12/2010, that also were from a client that used Windows XP, the following

algorithm would be used:

sudomykonos-reports-cli -d=Session --createdStartDate='09/12/2010 01:01 am' --
environmentId=200

Copyright © 2013, Juniper Networks, Inc.82

WebApp Secure 5.1.3

PART 3

Administration

• General Tasks on page 85

• Verify on page 87

• EC2 Deployment on page 89

• Configuration Modes and Roles on page 97

• SRX Integration on page 107

• Appliance Management on page 109

• Spotlight Secure on page 119

• Security Monitor on page 123

• Autoresponse Defaults and Rule Creation on page 143

83Copyright © 2013, Juniper Networks, Inc.

Copyright © 2013, Juniper Networks, Inc.84

WebApp Secure 5.1.3

CHAPTER 19

General Tasks

• Changing the Password on page 85

• Resetting the Password on page 85

Changing the Password

The system password can only be changed from the underlying Linux command line. To

do this, connect via the console or SSH. You will see the setup utility screen. Navigate to

Quit to exit to the shell. Type passwd and follow the prompts.

Resetting the Password

To reset the password, an appliance reboot is required. A boot menu option exists to

reset the user credentials. By default, the appliance will boot normally, but by pressing

any key before the operating system starts booting, you can get to the boot menu.

Figure 52: Boot Menu

Then you can select the option to reset the password.

85Copyright © 2013, Juniper Networks, Inc.

Figure 53: Reset Password

Copyright © 2013, Juniper Networks, Inc.86

WebApp Secure 5.1.3

CHAPTER 20

Verify

• Verify the Installation on page 87

Verify the Installation

In order to verify that your WebApp Secure appliance is processing traffic, use the following

URL to access the appliance honeypot and confirm that it replies with a fake .htaccess.

http://<IP or Hostname>/.htaccess

The appliance should reply with something similar to the following. (Note that the actual

fake .htaccess file may not look exactly like the example.)

<files "server_logs.txt">
AuthUserFile /www/root/.htpasswd
AuthType Basic
AuthName "Error logs"
Require valid-user

</files>

Your initial WebApp Secure configuration is complete. The appliance is ready to start

protecting your applications.

NOTE: At this point, WebApp Secure is configured to secure one web server
application.

87Copyright © 2013, Juniper Networks, Inc.

Copyright © 2013, Juniper Networks, Inc.88

WebApp Secure 5.1.3

CHAPTER 21

EC2 Deployment

• EC2: Deploying Using the Command Line on page 89

• EC2: Deploying Using the Web Interface on page 90

• Assigning the Instance and IP Using the CLI on page 94

• Assigning the Instance and IP Using the Web Interface on page 94

• Verify the Instance is Running on page 95

EC2: Deploying Using the Command Line

You must have an ec2tools environment setup prior to deploying the instance from the

CLI. Please refer to the Amazon documentation for assistance in setting up your

environment.

Next, make sure you have access to the image by entering: ./ec2-describe-images -x self

-o "969756132034"

The output should look similar to the following: IMAGE ami-4d3df524

969756132034/MykonosAppliance969756132034available If you do not see any output

at all then you most-likely don't have access to our instance. Please contact Juniper

Networks support to get help with this issue.

To deploy using the CLI, do the following:

1. Create a security group for the instance.

• ./ec2-add-groupMykonos -d "Mykonos Appliance"

• ./ec2-authorize Mykonos -p 2022

• ./ec2-authorize Mykonos -p 80

• ./ec2-authorize Mykonos -p 443

• ./ec2-authorize Mykonos -p 5000

• ./ec2-authorize Mykonos -p 8080

NOTE: It is recommended that youonly allowports 5000and8080 from
known good IPs.

89Copyright © 2013, Juniper Networks, Inc.

2. You can now deploy the new instance as follows:

• ./ec2-run-instances 'AMI ID' -k 'KEY PAIR' - t m1.large -gMykonos

You must replace the AMI ID with the AMI ID listed in Describe Image. In this example,

it would be ami-4d3df524. You must also replace KEY PAIR with the name of the key

pair you are using to access the system.

EC2: Deploying Using theWeb Interface

To deploy using the Web Interface, do the following:

1. Log into the AWS management console.

2. Select the Amazon EC2 tab.

3. Click the Launch Instance button under the My Instances section.

4. Select Launch ClassicWizard then click continue.

5. Select the MyAMIs tab.

6. Next to Viewing, select Private Images.

7. To the right of the appliance, click the Select button.

Figure 54: AWSmanagement console

8. Change the Instance Type to Large (m1.large).

Copyright © 2013, Juniper Networks, Inc.90

WebApp Secure 5.1.3

Figure 55: Instance Type

9. Click the Continue button. Then click the Continue button again on the next screen.

Figure 56: Configure Instance continued

10. Add a Name to make the instance easily recognizable and click Continue.

91Copyright © 2013, Juniper Networks, Inc.

Chapter 21: EC2 Deployment

Figure 57: Instance, Configure Name

11. Select or create your Key Pair and click Continue.

Figure 58: Instance, Create Key Pair

12. Select Create a New Security Group and enter the following information:

• Group Name: Mykonos

• Group Description: Mykonos Appliance

Copyright © 2013, Juniper Networks, Inc.92

WebApp Secure 5.1.3

• Port Range: 2022

• Port Range: 80

• Add Rule

• Port Range: 443

• Add Rule

• Port Range: 5000

• Add Rule

Figure 59: Instance Create Security Group

13. Click the Continue button.

14. Click the Launch button.

93Copyright © 2013, Juniper Networks, Inc.

Chapter 21: EC2 Deployment

Figure 60: Instance, Review and Launch

Assigning the Instance and IP Using the CLI

1. Request a new public IP address: ./ec2-allocate-address Note the IP it returns.

2. Get the Instance ID of the WebApp Secure Instance: ./ec2-describe-instances Locate

the Instance ID of the Appliance.

3. Now you can associate the IP with the WebApp Instance: ./ec2-associate-address IP

-i 'Instance ID'

NOTE: Replace the 'IP'with your IP address and the 'Instance ID'with the
ID of your instance.

Assigning the Instance and IP Using theWeb Interface

1. Select the Amazon ec2 tab.

2. Select Elastic IPs under Navigation on the left.

3. Click the Allocate NewAddress button under the Address section.

4. Click Yes, Allocate.

Copyright © 2013, Juniper Networks, Inc.94

WebApp Secure 5.1.3

Figure 61: Allocate NewAddress

5. Click Associate Address.

6. Select the Appliance.

7. Click Yes, Associate.

Verify the Instance is Running

Purpose At this point, your instance should be up and running. You can use the web interface or

the CLI tools to verify this.

Action To access your instance, you must have a copy of the key pair you used for the instance.

ssh -i 'PATH TOKEY PAIR' mykonos@'IP' -p 2022

You should be granted access, and the TUI will be launched for you. From there, you can

configure the appliance.

95Copyright © 2013, Juniper Networks, Inc.

Chapter 21: EC2 Deployment

Copyright © 2013, Juniper Networks, Inc.96

WebApp Secure 5.1.3

CHAPTER 22

Configuration Modes and Roles

• Basic Configuration Mode on page 97

• Expert Configuration Mode on page 98

• Role-Based Administrator Access Control on page 99

• Configuring Role-Based Access Control on page 99

• RBAC Groups and Roles on page 100

• Edit User Preferences on page 103

• Unblock Login Ban on page 104

Basic ConfigurationMode

By default, any configuration page navigated to will result in the Basic Configuration page

for that particular section. You can view the various sections of Configuration underneath

the Configuration page on the left side navigation. The available sections are as follows:

• Security Engine: Core Security Engine options, such as health checks, and whitelisting.

• Processors: Security Processors are pluggable modules that process HTTP traffic and

perform actions.

• Services: Services run in the background, performing tasks such as sending alerts,

generating reports, or performing maintenance tasks.

• Proxy / Backends: Core proxy settings, such as backend servers and SSL.

• Applications: By default, the system will secure only one application. Adding multiple

profiles will enable you to protect multiple applications with their own separate settings.

• Backups: Configure backup frequency, retention, and pushes to FTP or SSH servers.

• Logging: Options for logging access on the management interfaces, as well as logging

the various security incidents triggered by WebApp Secure.

• Response Rules: Configure how the system responds to threats, or create custom

response rules.

• Licensing: Add or update licensing information to ensure operation of your system.

• Users and Groups: Add or update user roles and permissions.

97Copyright © 2013, Juniper Networks, Inc.

Expert ConfigurationMode

In most cases, using the standard configuration interface should be sufficient. Some

users might prefer editing the configuration parameters at the key-value level. Expert

Mode is a way to view all the configuration attributes from the Web UI. You can reach

Expert Mode by clicking theExpertModebutton on the upper right side of the Configuration

page.

To edit any configuration parameter, first navigate to the correct parameter name. The

table is ordered alphabetically, and you can browse through the help documentation for

various parameters by using the help keyword in the CLI (mykonos-shell).

Once you find the entry, you can edit it, remove it, or reset it to its default value using the

icons on the left side of the table. When editing a parameter, you are given a text box in

which to make the edit. Some parameters are Base64 encoded (like HTML responses),

but will be displayed in an un-encoded form. Make your changes and click Set Parameter

to save the changes.

Figure 62: Edit Parameter

WARNING: Even after you save the parameter, the changes to configuration
have not been saved and set until you click the Save button at the bottom of

Copyright © 2013, Juniper Networks, Inc.98

WebApp Secure 5.1.3

the page. If you navigate away from the page before saving the entire
configuration, parameters are note saved.

Role-Based Administrator Access Control

Role-Based Access Control (RBAC) is a way to assign different levels of administrator

functionality to different users. You can assign roles to various users that exist on a

configured LDAP or RADIUS server. The first step in integrating with your existing LDAP

or RADIUS service is to give WebApp Secure the connection information. In the web UI,

navigate to 'Configuration >> Users and Groups' and click on 'Manage Authentication

Settings'. On the resulting page, input all information relating to your LDAP or RADIUS

server and click 'Save'. You should now see the corresponding service as "Enabled" under

the Authentication section of Users and Groups. Once the server has been connected to

JWAS, the next step is to configure roles for various users. By default, the user "mykonos"

is enabled and given the role "Super Administrator". To add additional users, click the

'Add User' link. You will be prompted to enter a Username and will be given a choice of

which groups you want that user to inherit. A complete description of all roles is available

by clicking on 'View Role Descriptions' underneath the Roles dropdown. A more simplistic

table of roles and their corresponding permissions are given in Appendix D, RBAC Groups

and Roles.

Configuring Role-Based Access Control

1. In the Web UI, go to Configuration > Users and Groups.

2. Click Manage Authentication Settings.

3. Enter all information relating to your LDAP or RADIUS server and clickSave. You should

now see the corresponding service as Enabled under the Authentication section of

Users and Groups.

4. The next step is to configure roles for various users. By default, the user mykonos is

enabled and given the role Super Administrator. To add additional users, click the Add

User link.

5. You are prompted to enter a Username and you are given a choice of which groups

you want the user to inherit. A complete description of all roles is available by clicking

View Role Descriptions beneath the Roles drop down list. A more simplistic table of

roles and their corresponding permissions can be found in Appendix D, RBAC Groups

and Roles.

99Copyright © 2013, Juniper Networks, Inc.

Chapter 22: Configuration Modes and Roles

Figure 63: Users and Groups, Add User

Figure 64: Assigned Roles

NOTE: BecauseWebApp Secure doesn't actually create users on the
appliance itself butmerelymaps the username to the given permissions, the
only way to effectively remove the user is to strip them from all roles. After
removing roles and saving, the entry in the Authorization table is removed.

NOTE: WebApp Secure doesn't allow the last RBAC Administrator role to
bedeleted. It is possible to remove your ownpermissions, though, essentially
locking you out of the system. Similarly, re-initializing the configuration
settings will wipe out all user-role mappings, and themykonos user will be
the only one able to assign roles.

NOTE: Any violations of access control (a user trying to access some part of
the system they aren't configured to access) will be logged to the audit log.

RBACGroups and Roles

This is a list of all WebApp Secure roles, and their corresponding permissions.

Copyright © 2013, Juniper Networks, Inc.100

WebApp Secure 5.1.3

Table 6: RBACGroups and Roles.

Security
User

Device
Administrator

Web UI
Administrator

RBAC
Administrator

Security
Support
Staff

Security
Administrator

Super
Administrator

NoNoYesNoNoYesYesCan Manage
Processors

NoNoYesNoNoYesYesCan Manage
Response
Rules

YesYesYesNoYesYesYesCan View
System
Status

YesNoYesNoNoYesYesCan Edit
Profiles

NoNoYesNoNoNoYesCan Use
Expert Mode

YesNoYesNoNoYesYesCan Delete
Profiles

NoYesYesNoNoYesYesCan Manage
Logical
Services

YesNoYesNoYesYesYesCan View
Security Data

NoYesYesNoNoNoYesCan Manage
Licensing

NoYesYesNoNoNoYesCan Manage
Authentication

NoNoYesNoNoNoYesCan Manage
Applications

NoNoYesNoNoNoYesCan Import
Configuration

NoYesNoNoNoNoYesCan Initialize
Applicance

YesYesYesYesYesYesYesCan Log Into
Web UI

NoYesYesNoNoNoYesCan Manage
Backups

101Copyright © 2013, Juniper Networks, Inc.

Chapter 22: Configuration Modes and Roles

Table 6: RBACGroups and Roles. (continued)

Security
User

Device
Administrator

Web UI
Administrator

RBAC
Administrator

Security
Support
Staff

Security
Administrator

Super
Administrator

YesNoYesNoNoYesYesCan Activate
Responses

NoNoYesNoNoNoYesCan Export
Configuration

NoYesNoNoNoNoYesCan Manage
Physical
Services

NoYesYesNoNoNoYesCan Manage
Logging

NoNoYesNoNoYesYesCan Manage
Spotlight

YesNoYesNoNoYesYesCan
Deactivate
Responses

NoYesNoNoNoNoYesCan Log Into
Console

YesNoYesNoNoYesYesCan
Schedule
Reports

NoYesYesNoNoNoYesCan Update
Appliance

NoYesYesNoNoNoYesCan Manage
High
Availability

NoYesNoNoNoNoYesCan
Configure
Updates

NoNoYesNoNoYesYesCan Manage
Security
Engine

YesNoYesNoYesYesYesCan Run
Reports

NoNoYesYesNoNoYesCan Manage
Authorization

Copyright © 2013, Juniper Networks, Inc.102

WebApp Secure 5.1.3

Table 6: RBACGroups and Roles. (continued)

Security
User

Device
Administrator

Web UI
Administrator

RBAC
Administrator

Security
Support
Staff

Security
Administrator

Super
Administrator

NoYesNoNoNoNoYesCan Manage
SRX Settings

NoYesNoNoNoNoYesCan Restart
Appliance

Edit User Preferences

User Preferences control the appearance of the user interface and how certain information

is displayed. Click the Edit Preferences link at the top right of the UI to access the User

Preferences screen. The following preference settings are available:

• Skin: Change the color and overall look of the UI.

• Language: At this time, only English is supported.

• Timezone: Change the timezone setting. Note that this field defaults to UTC.

• PromptLevel: Change the amount of help text displayed for each field. If you are familiar

with the product, you may prefer abbreviated help text to lessen the amount of

information on the screen.

• Spotlight Name Preference: If Spotlight is enabled, you can select to have Spotlight

global names displayed in attacker lists and reports. You can also choose to display

only local names or to display both local and global names.

• Auto Refresh: You can enable or disable this setting. Note that Auto refresh affects all

security related screens, including the dashboard, lists of hackers, sessions, locations,

and incidents.

• Refresh Interval: Change the refresh interval. The minimum value you can set here is

10 seconds.

• Records Per Page: Change the number of records to display on a per page basis.

• DebugMode: You can enable or disable this setting. Certain UI items are hidden by

default. For debugging purposes, you can enable this checkbox to reveal all hidden

items.

103Copyright © 2013, Juniper Networks, Inc.

Chapter 22: Configuration Modes and Roles

Figure 65: User Preferences

Unblock Login Ban

After six failed login attempts, the IP address in question is blocked from further login

attempts for a period of thirty minutes.

NOTE: Once you reach four failed login attempts, you are warned that you
will be banned after twomore failed attempts.

Figure 66: Blocked Login

A system administrator can remove this block before the thirty minute time-frame has

expired by using the following command:

Copyright © 2013, Juniper Networks, Inc.104

WebApp Secure 5.1.3

[root@johnsmith-vmmykui]#mykonos-shell
Welcome to theWebApp Secure CLI
> system
system> unlock_webui
Confirm Unlock [y|N]: y
system> exit

NOTE: This command unlocks all locked accounts.

105Copyright © 2013, Juniper Networks, Inc.

Chapter 22: Configuration Modes and Roles

Copyright © 2013, Juniper Networks, Inc.106

WebApp Secure 5.1.3

CHAPTER 23

SRX Integration

• Testing the SRX Integration Configuration on page 107

Testing the SRX Integration Configuration

Purpose To verify the configuration of the WebApp Secure portion of the SRX integration, do the

following

Action 1. Create a profile by accessing the .htaccess file (explained in “Verify the Installation”).

2. Navigate to the WebApp Secure web interface and find the newly created profile.

3. Manually activate the Filter on SRX Counter Response.

4. Log into the SRX CLI, and run the command show configuration firewall (or show

firewall if in).

You should see a new filter created with the name you gave in configuration, and a new

term within that filter called that you also named within configuration. It should appear

similar to the following (depending on how you set up your filter and actions):

family inet {
filter my_filter {
term block {
from {
address {
10.10.10.10/32;

}
}
then {
reject;
}

}
term default {
then {
accept;
}
}
}

}

In the example above, 10.10.10.10 is the IP of the profile you activated the Counter

Response on. This is telling the SRX to reject the IP of the profile at the gateway level.

107Copyright © 2013, Juniper Networks, Inc.

Note the default term below the block term which will act as an accept-all in the case

that the block term's action has been changed to next term.

You can also verify the line with the IP address gets deleted when deactivating the Counter

Response.

NOTE: When there are no IPs to block, the SRX defaults to * or All Traffic.

This would effectively block all traffic from that interface! To counter this,
WebApp Secure changes the action from your configured entry to next term,

essentially letting thenext termwithin the filter dealwith the traffic. Because
you set up a default term to handle this case (see Configuration), the next
term simply accepts all traffic.

This filter should now look as follows:

family inet {
filter my_filter {
term block {
then next term;

}
term default {
then {
accept;
}
}

}
}

This is indicating that all traffic will be sent through this term, but the action is simply

passing the packet onto the next term in the filter, which is our default term that will

accept all traffic.

Copyright © 2013, Juniper Networks, Inc.108

WebApp Secure 5.1.3

CHAPTER 24

Appliance Management

• Restart and Shutdown the Appliance on page 109

• System Updates on page 109

• Statistics on page 112

• Master - Slave Mode on page 115

• Managing Services on page 115

• Backup and Recovery Overview on page 115

• Health Check URL on page 116

• Backup and Recovery Overview on page 117

• Restoring a Backup on page 117

Restart and Shutdown the Appliance

To safely shutdown or reboot the appliance, SSH into the appliance and invoke the

mykonos-shell by entering system shutdown or system reboot.

SystemUpdates

Provided WebApp Secure has Internet access, either direct or through a configured proxy,

it will automatically check for software updates every night and download them when

new ones are available. However, the appliance will not automatically apply updates.

For security and stability, an administrator must manually apply updates. The UI informs

the you that there is an update by a banner indicator at the top of the page.

Figure 67: Dashboard, Updates

While WebApp Secure checks for updates every night, you can force the appliance to

check for updates at any time by clicking the check for updates link underOnlineUpdates.

WepApp Secure will fetch any available online updates at this time. You can see progress

of the download via a status bar.

109Copyright © 2013, Juniper Networks, Inc.

Figure 68: Downloading Update

WebApp Secure can also upload updates manually, without an internet connection.

After uploading the package to the appliance (via the Web UI's Updates page), it will

become available to the updates system, and you will be able to apply the update as

described here.

WARNING: WhileWebApp Secure is uploading offline updates, you should
stay on the Updates pane until the upload is complete.

If an update is available (either an uploaded offline update or an automatically

downloaded one), you can view the available update package along with any information

about it, including the package name, version, whether or not a reboot is required after

installing the update, a description, and list of changes. After reviewing the changes you

can choose to apply the update by clicking the Update Selected button at the bottom of

the package table.

Copyright © 2013, Juniper Networks, Inc.110

WebApp Secure 5.1.3

Figure 69: Update Description

The system will update and inform the user of its progress via a status bar.

Figure 70: Updating the Application

NOTE: At this time, it is not possible to roll back to earlier versions of the
appliance software.

111Copyright © 2013, Juniper Networks, Inc.

Chapter 24: Appliance Management

Statistics

WebApp Secure software allows for standard SNMP system monitoring. All statistics

available on a typical Linux system would be available to WebApp Secure through

standard system SNMP mibs. In addition, WebApp Secure currently offers six types of

systems statistics in a form of graphs. They include CPU Utilization, CPU Load Average,

Memory Utilization, Network Traffic, Proxy Connection and Proxy Requests. They can be

access via SystemStatus button in the top menu of the Configuration management

interface. Depending on the desired level of details, the statistics can be viewed for the

Last Hour, Last 12 Hours, Last Day, Last Week and, finally, Last Month (always last 30

days).

Below are the details of the statistics that are available for each type:

CPU Utilization

• Wait - Percentage of CPU time spent in wait (on disk)

• Softirq - Percentage of CPU time spent handling software interrupts

• System - Percentage of CPU time spent in kernel space

• User - Percentage of CPU time spent in user space

Figure 71: CPUUtilization

CPU Load Average

• 1 min - CPU Load for the last minute

• 10 min - CPU Load for the last 10 minutes

• 15 min - CPU Load for the last 15 minutes

Copyright © 2013, Juniper Networks, Inc.112

WebApp Secure 5.1.3

Figure 72: CPU Load Average

Memory Utilization

• Used - Amount of memory used

• Free - Amount of memory free

• Free - Amount of memory free

Figure 73: Memory Utilization

Network Traffic

• Outbound - Amount of traffic leaving the box

• Inbound - Amount of traffic entering the box

113Copyright © 2013, Juniper Networks, Inc.

Chapter 24: Appliance Management

Figure 74: Network Traffic

Proxy Connections

• Reading - Number of TCP connections reading data

• Waiting - Number of TCP connections waiting

• Writing - Number of TCP connection writing Proxy

Figure 75: Proxy Connections

Copyright © 2013, Juniper Networks, Inc.114

WebApp Secure 5.1.3

Proxy Requests

• Requests - Current number of HTTP/HTTPS requests being processed

Figure 76: Proxy Requests

Master - SlaveMode

In the case of the appliance running in multi-server mode, the systems statistics will show

details for each node in the cluster as well as the key cumulative data across the entire

cluster. Each system will be presented as a tab in the Configuration UI's system status

page with theAggregate tab being first. TheAggregate tab always shows CPU Utilization,

Network traffic, Proxy connections and Proxy requests collected from the entire active

WebApp Secure cluster.

Managing Services

WebApp Secure runs on top of an optimized, hardened, Linux installation. The core of

WebApp Secure is several programs that run as services or daemons that work together

to defend your web applications. The services context in the CLI lets you check the status

of WebApp Secure services, or start, stop, or restart, them, if necessary. Note that these

are all console functions, and not accessed through the Web interface.

Backup and Recovery Overview

The administrator can adjust the backup settings in the Web UI's configuration by

navigating to Configuration > Backups. WebApp Secure stores its backups in

the/home/mykonos/backups directory.

115Copyright © 2013, Juniper Networks, Inc.

Chapter 24: Appliance Management

Figure 77: Backup Configuration

You can invoke a backup from the command line mykonos-shell, by entering system

backup. You will be prompted to confirm, and a file will be created in

/home/mykonos/backups/.

NOTE: The file will be named
mykonos-<version>-<hostname>-<datetimestamp>.myk

Health Check URL

The Health Check URL lets an external system (typically a load balancer) that confirms

the WebApp Secure system is operating properly. The system will generate a file name

consisting of an arbitrary string of characters; make a note of it. If an HTTP request is

sent to WebApp Secure for this file name, it will return 200OK, with a code in the body

of the message. The responses are as follows.

Table 7: Health Check responses and correspondingmeanings.

MeaningResponse

WebApp Secure is offlineNo response

WebApp Secure is fully functional and is protecting your web sites200 OK, plus OK

WebApp Secure is running, but has been disabled or the license has expired200 OK, plus DISABLED

WebApp Secure is waiting on an external resource. The contents of [...] will
provide additional information

200 OK, plus STAND-BY [...]

The format of the HTTP request should

be:http://jws_fullyqualifieddomainname_or_IPaddress/filenamegeneratedbyjws

Copyright © 2013, Juniper Networks, Inc.116

WebApp Secure 5.1.3

Backup and Recovery Overview

The administrator can adjust the backup settings in the Web UI's configuration by

navigating to Configuration > Backups. WebApp Secure stores its backups in

the/home/mykonos/backups directory.

Figure 78: Backup Configuration

You can invoke a backup from the command line mykonos-shell, by entering system

backup. You will be prompted to confirm, and a file will be created in

/home/mykonos/backups/.

NOTE: The file will be named
mykonos-<version>-<hostname>-<datetimestamp>.myk

Restoring a Backup

To restore the data that is displayed in the Monitoring Console from a back up, you must

use the command line utility specialized for the database backups. This does not include

configuration or other system settings, only database information.

NOTE: If the data is being restored to the console, a database backup will
need to be specified from /usr/share/msa/database or use the latest option

to restore from the last valid backup.

A restore is run with the following command: sudomykonos-db <option>

117Copyright © 2013, Juniper Networks, Inc.

Chapter 24: Appliance Management

The options for the command above are as follows:

• backup

• restore (filename)

• restore latest

• clean

Figure 79: Restore Backup

Copyright © 2013, Juniper Networks, Inc.118

WebApp Secure 5.1.3

CHAPTER 25

Spotlight Secure

• Enabling Spotlight Secure on page 119

Enabling Spotlight Secure

To enable the Spotlight Secure service on your appliance, do the following:

1. Navigate to Spotlight on the left side navigation menu in the WebApp Secure Web

UI.

2. Click the Enable button in the top right corner of the page.

You can optionally choose to customize some of the submission and resolution intervals

(using the Configure button), but for most applications the defaults will be fine.

Figure 80: Spotlight Secure, Enable

119Copyright © 2013, Juniper Networks, Inc.

Figure 81: Spotlight Secure Configuration Screen

Once an attacker from another site visits a page on your site, a Spotlight Profile will be

created for that user. Unlike local Profiles, Spotlight Profiles aren't automatically

considered malicious -- They haven't harmed your site yet. Having attackers from other

sites consolidated on the Spotlight page in the UI does allow you to keep close tabs on

them. You can view the Spotlight profiles from the Spotlight page. Each Spotlight profile

will be displayed in a row, with information such as their Local Profile name, Global

(Spotlight) Profile name, and the first and last times seen both locally and globally.

Figure 82: Recent Attackers: Global and Local Names

You can view the Spotlight attackers' activities on your system on the Sessions and

Attackers page. They are displayed with the same information as local attackers, and

are indicated by the Spotlight icon next to their name.

Copyright © 2013, Juniper Networks, Inc.120

WebApp Secure 5.1.3

Figure 83: Recent Attackers: Global Names

On the far left side of the Spotlight Attackers table is a small icon representing the local

threat of the attacker, as it pertains to your site. This is a fast way to scan through the

spotlight profiles and determine which ones might pose an immediate threat to your

system. The severities range from 0 or None to 4 or High.

121Copyright © 2013, Juniper Networks, Inc.

Chapter 25: Spotlight Secure

NOTE: Throughout theWeb UI, youmay start to see Spotlight Profiles,
indicated by the Spotlight icon next to their Profile name. You can choose to
display either Local or Global (Spotlight) names (or both) through the User

Preferences screen.

Figure 84: User Preferences: Select Spotlight Name Preference

Copyright © 2013, Juniper Networks, Inc.122

WebApp Secure 5.1.3

CHAPTER 26

Security Monitor

• The Dashboard on page 123

• Attackers on page 128

• Responses Tab on page 131

• Locations Tab on page 132

• Incidents on page 133

• Counter Responses on page 135

• Sessions on page 136

• Search on page 137

• Reporting on page 139

• Configuration on page 139

• System Status on page 140

• Updates on page 140

The Dashboard

The Dashboard is the page used to display currently monitored incidents, sessions, and

responses. It can be reached by navigating toDashboard in the left-hand menu, or simply

by clicking the logo in the top left of the window.

123Copyright © 2013, Juniper Networks, Inc.

Figure 85: Security Monitor Dashboard

The dashboard contains graphs and charts depicting the activity on protected web

applications. By default, the dashboard will display the information gathered from all

configured applications in the past week (7 days), but you can focus on specific

applications or change the date range by using the Filter By: tab near the top right of the

window.

Figure 86: Dashboard - Filter By tab

There are other customization options that can be configured per account by clicking

your username in the very top right of the window. Options include setting your timezone,

enabling auto-refresh of data contained in the dashboard, and configuring the number

Copyright © 2013, Juniper Networks, Inc.124

WebApp Secure 5.1.3

of records returned per page. Change these preferences to your liking and click Save at

the bottom of the page.

Figure 87: User Preferences

The main portion of the dashboard consists of various panes, each containing information

gathered by the Security Engine.

NOTE: TheWeb UI should be compliant with current browsers. While older
browsersmightwork,we recommendupdating to the latest versions for best
functionality. Likewise, it is recommended JavaScript be enabled in the
browser. JavaScript is used in the UI to enhance functionality and usability,
and while browsing without JavaScript is possible, it is not recommended.
TheUI targetsscreen resolutionsof 1366x768orhigher fornormaloperations,
and targets 1440x900when debugmode is enabled.

125Copyright © 2013, Juniper Networks, Inc.

Chapter 26: Security Monitor

Table 8: Security Monitor Dashboard Panes

Detected Attacks This pane displays
a chart that contains all incidents
created (within the filter parameters)
segregated by complexity of the
attacks. It is a good way to visualize
how active your web site's attackers
are. You can hover over each portion
of the pie chart to display the actual
number of attacks for each
complexity. This pane also contains
a short list of the most frequent
attacks. Clicking on any attack in the
list will open the Incident Type page
for that particular incident.

Detected Hackers The Detected
Hackers pane displays information on
actual hacker profiles created within
the specified time frame. Each hacker
gets a skill level which segments the
pie chart. As in any other chart, you
can hover over the pie chart to view
specific counts. Additionally, the most
active hackers are displayed in a list
below the chart. Clicking on any of
these hackers will open the Hacker
Profile page for that particular profile.

Copyright © 2013, Juniper Networks, Inc.126

WebApp Secure 5.1.3

Table 8: Security Monitor Dashboard Panes (continued)

Counter Responses The Counter
Responses pane lists the top
responses that have been recently
triggered by WebApp Secure. The
lower portion of the pane lists
countries in descending order by
response count. You can click on any
of the counter responses to open the
Counter Response Type page for that
response (explained later), or click on
the specific country to find other
information WebApp Secure has
gathered on that country.

Malicious Incidents The Malicious
Incidents dashboard pane consists of
a chart depicting the number of
incidents over time. It also stacks
these incidents by complexity.

127Copyright © 2013, Juniper Networks, Inc.

Chapter 26: Security Monitor

Table 8: Security Monitor Dashboard Panes (continued)

Attackers By Day (Attackers By Hour)
This pane contains a graphical
representation of how many detected
hackers were active on the protected
site, separated by day (or separated
by hour if the filter "Last Day" is
currently set).

Sessions By Day (Sessions By Hour)
Similar to the Attackers By Day pane,
the Sessions By Day pane shows the
number of sessions active on the
protected site each day (or each hour
if the filter "Last Day" is set).

NOTE: If youwould likemore horizontal space on any page, you can collapse
the navigationmenu by clicking on the double arrow (<<) button to the right
of themenu.

Attackers

The Attackers page contains any information on profiled attackers, and can be accessed

by clicking Attackers in the left navigation menu.

Copyright © 2013, Juniper Networks, Inc.128

WebApp Secure 5.1.3

Figure 88: Recent Attackers

There are various data views you can navigate through via the tabs near the top of the

page. You can also search for attackers by using the search field in the upper right side

of the page, under the Filter widget.

• TopAttackersThis tab contains an ordered list of the most active attackers, calculated

based on a weighting algorithm that takes into account the number of incidents and

their corresponding complexities.

• Recent Attackers This tab displays a table of the most recent profiles active on the

protected system. Each row consists of the Profile name, Threat level, their Public ID

(for use with the Support Processor), the Last IP they used on the system, the First

Time and Last Time they attacked the system, and available actions for that profile.

Clicking on the "eye" icon or the profile name will lead you to the page for that particular

profile. You can also click on a threat level to view other attackers with similar threat,

and you can click on a Last IP to navigate to the Location page for that IP. To keep this

data fresh, the monitor will periodically refresh the page (if Auto-refresh is enabled in

the User Preferences). To stop this from happening, click the alarm clock icon in the

top right corner of the tab to stop refresh.

• TimeGraph The Time Graph is a larger version of the same line graph displayed on the

Dashboard.

• Severity Graph This graph is a larger version of the same pie graph displayed on the

Dashboard.

NOTE: At any point on this page, you can click on an attacker's given name
to navigate to that Attacker's Profile page.

129Copyright © 2013, Juniper Networks, Inc.

Chapter 26: Security Monitor

Figure 89: Attacker Profile

The Attacker Profile page displays any information that pertains to a particular attacker.

At the top of the page you will see the Attacker Card, which contains a short overview of

the profile. This card contains the attacker's assigned name, last IP used, the first and

last date the attacker was active, and the Public ID of the attacker, for use with the

Support Processor in unblocking that profile. On the right side of the card there is a threat

gauge that indicates the current threat of that attacker, where green, yellow, and red

indicate low, medium, and high threat, respectively. The severity icons are displayed as

follows:

• (n/a): 0.0 - None

• : 1.0 - Suspicious

• : 2.0 - Low

• : 3.0 - Medium

• : 4.0 - High

Available on the right side of the Attacker Profile page is a quick Actions box, where you

can rapidly perform various profile-related functions such as blocking the attacker,

warning the user, editing the profile, and deleting the profile.

Copyright © 2013, Juniper Networks, Inc.130

WebApp Secure 5.1.3

NOTE: Deleting the profile will essentially erase all information gathered on
that attacker, and will effectively remove all blocks or other responses on
that profile.

Underneath the attacker card andquick actions box is a series of tabs,where
all of the attacker's specific activity information resides. The Incidents tab
contains a list of all incidents triggered by that attacker. The Incident name,
complexity, count, first and last time triggered are all available for each item
in the list. Additionally you can click the Details icon (the eye) to viewmore
information about any particular incident.

Responses Tab

debbi The Responses tab contains information relating to all of the active and inactive

responses issued to that attacker. Each entry contains the actual name of the response

issued, the configuration (if any) used when issuing the response, the time the response

was created, the delay set (if any), the time the response expires (if at all), the time the

response was finally deactivated (if it has been deactivated).

If the response is active, you can click the Deactivate Response icon (the stop sign under

Actions) to deactivate the response instantly. Alternatively, you can click the Deactivate

Selected button or to deactivate all responses, click the Deactivate All button

Figure 90: Responses tab - Deactivate

It is in this tab that you can manually activate Counter Responses on the current attacker.

The available counter responses are:

• BlockUser To block the user from accessing the protected application completely, you

can activate the Block User counter response. The next time the attacker tries to visit

any page on the application, they will see a configurable message indicating they have

been blocked from accessing the content. If the Support Processor is enabled, they

are also given their Public ID (also shown on the Attacker Profile page for that profile)

that they can give to support if they feel the block was in error.

• Filter on SRX For more information on what this counter response does, see: SRX

Integration. In jest, it feeds a message to an SRX device that can handle traffic at the

network level.

131Copyright © 2013, Juniper Networks, Inc.

Chapter 26: Security Monitor

NOTE: This counter response can be activated without configuring an
externalnetworkdevice,but itwill notdoanything.WebAppSecure requires
a properly configured external device for this counter response to function
properly.

• Break Authentication Hashes any incoming passwords when attempting to login,

effectively thwarting brute-force attacks that have correct credentials. Even with the

correct password, the login will be unsuccessful.

• Cloppy Activating this counter response will activate an animated paper clip that

intimidates the user with configurable messages. For information on how to customize

this response, see the Cloppy Processor in Processor Reference section.

• Force Captcha Validation The user will be prompted with a Captcha that has to be

solved to continue using the web site.

• Google Map The user will be shown a map of lawyers near their determined location.

The search term fed into Google Maps can be configured, see the Google Map Processor

in the Processor Reference section.

• Inject Header The suspected hackers requests will have a custom header injected into

them, useful for tracking.

• Logout User Terminates any current user sessions for this profile on a site.

• Slow Connection The user's requests to the site will be delayed by a configurable

window of milliseconds. This can frustrate the attacker and cause them to abandon

their future attacks. This response can take a <config/> node with 'min' and 'max'

parameters, for example; <config min=1000 max=5000 /> will slow the attackers

requests by 1 to 5 seconds.

• Strip Inputs If you suspect the attacker's inputs shouldn't be trusted (such as those

inputs submitted in forms on the site), you can choose to activate this response which

will strip them from all incoming requests. This will also strip any query parameters

from the request url as well.

• Warn User The next request sent by the attacker will respond with a pop-up warning

message that lets the attacker know he/she is being watched. The warning message

can be configured, see the Warning Processor in the Processor Reference section.

Consecutive requests might be grouped together and are viewable via the Sessions tab.

Each entry in this tab contains the Remote Address used during the session (the IP), the

Browser and Operating System used during the session, the number of Requests made

and Pages returned during that session, the number of Errors generated by the server in

response to requests in that session, as well as the First and Last Active times. You can

also click on the Details icon (the eye) to view more information about any particular

session.

Locations Tab

The Locations tab contains a list of all locations used by the attacker. For each location,

you are able to see the Remote Address (IP) associated with that location, the City,

Copyright © 2013, Juniper Networks, Inc.132

WebApp Secure 5.1.3

Region, and Country associated with the location (if they can be found), and the First

and Last Active times for the location. Depending on the location, you might also be able

to load a map showing that location (if it can be determined) by clicking on theMap icon.

You can also click on theDetails icon (the eye) to view more information on any particular

location, including all other attackers that were found to be using the same location, and

other Incidents, Sessions, or Environments used in conjunction with that location. If

WebApp Secure can determine the attacker was using a specific Browser and Operating

System combination, an entry in the Environments tab will be added. Each entry contains

the Browser and Operating System used, along with the full User Agent string and First

and Last active dates. If you wish to find other attackers that used the same Environment,

click on the magnifying glass icon. This will bring you to a page where you can see other

Attackers that used this Environment, Incidents produced with this Environment, Sessions

found that were using this Environment, and Locations that used this Environment.

Incidents

The Incidents page contains any information on specific incidents that have been triggered,

and offers additional information on all of the incidents that can be detected by WebApp

Secure.

There are various data views you can navigate through via the tabs near the top of the

page. You can also search within Incidents by using the search field in the upper right

side of the page, under the Filter widget.

133Copyright © 2013, Juniper Networks, Inc.

Chapter 26: Security Monitor

• Most Common This tab displays a list of the most frequently triggered incidents in

descending order. Count of triggered incidents of that type is displayed to the right of

each item in the list, and a graphic depicting the complexity of that incident is visible

to the left. Clicking on a particular incident in this list will bring you to a page with

additional information on that incident. By default, WebApp Secure only displays

malicious incidents (those that might be of direct interest to WebApp Secure users).

If you wish to show all incidents triggered, you can click on the Show all incidents link

above the list.

• MostRecentThis tab displays a table of the most recent incidents triggered. The incident

name is displayed along with the profile that triggered the incident, the complexity of

that incident, the Count indicating the number of times that incident was triggered at

one time (using the same data), the first and last times the profile activated that

particular incident, and any actions available to the WebApp Secure user regarding

that incident. You can navigate to other pages by using the tab above the table. Here

you can jump to the next page, previous page, first page, and last page by using the

corresponding buttons. You can also jump to a specific page or change the number of

rows returned per page by clicking on the label between the navigation buttons. By

default, only malicious incidents are displayed. To display all malicious and

non-malicious incidents, click the Show all incidents link above the title. To keep this

data fresh, the monitor will periodically refresh the page (if Auto-refresh is enabled in

the User Preferences). To stop this from happening, click the alarm clock icon in the

top right corner of the tab to stop refresh.

• Browse by Complexity For informational purposes, this tab allows you to browse the

list of detectable incidents, grouped by complexity. Clicking on an incident will bring

you to an informational page that contains a description of that incident, and allows

you to search for triggered incidents of that type.

• Time Graph The Time Graph is a larger version of the same bar graph displayed on the

Dashboard.

• Severity Graph This graph is a larger version of the same pie graph displayed on the

Dashboard.

Copyright © 2013, Juniper Networks, Inc.134

WebApp Secure 5.1.3

NOTE: Clicking on a particular incident's namewill bring you to the Incident

Details page for that incident. On this page all information about that

particular incident is shown.

Near the top of the page there is an incident infobox that contains a summary of the

incident, including the Attacker that caused the incident, the Location and Environment

that attacker was using, the Session (IP) used when triggering the incident, and the First

and Last times that particular incident occurred. Underneath the infobox there is a series

of tabs that display the Description of the Incident type, Details for the incident (differs

from incident to incident), and the raw Request and Response objects.

Counter Responses

The Counter Responses page contains any information on the various responses WebApp

Secure can issue to potential threats. It contains the following tabs:

135Copyright © 2013, Juniper Networks, Inc.

Chapter 26: Security Monitor

• Browse by Type In this tab, you can view information on any of the counter responses

WebApp Secure can issue. Clicking on a specific response will take you to a page that

explains that response, and allows you to search for profiles that were issued that

response.

• Active Responses In the Active Responses tab, a table displays the most recently

activated responses, along with the profile that the response was issued on, the specific

response issued, any configuration used in that response (blank if there wasn't any),

the time the response was issued, how long to delay the response.

• Inactive Responses The Inactive Responses tab is formatted like the Active Responses

tab, but shows all responses which have been deactivated, either manually or due to

response expiration.

Sessions

When users browse the protected site, similar or back-to-back requests can be grouped

together in a Session. The Sessions page allows you to view each of these browsing

sessions.

The tabs available in the Sessions page show Malicious Sessions, Other (non-malicious)

sessions, and a graph of sessions over time. Each Session entry contains information

including the Attacker the session belongs to (if it was a session with malicious intent),

the Remote Address used during the session (the IP), the Browser and Operating System

used during the session, the number of Requests made and Pages returned during that

session, the number of Errors generated by the server in response to requests in that

session, as well as the First and Last Active times. You can also click on the Details icon

(the eye) to view more information about any particular session.

Copyright © 2013, Juniper Networks, Inc.136

WebApp Secure 5.1.3

Clicking on the Details icon will bring you to the Session Details page for that session. On

this page all information about that particular session is shown.

Near the top of the page there is a session infobox which contains a summary of the

session, including the Attacker associated with the session, the Last known address (IP)

used in conjunction with the session, the Last Location and Environment used during the

session, and information regarding the number of Requests issued, Pages returned, and

Errors generated by the server as a result of a request. Underneath the infobox is a series

of tabs that display other Incidents, Locations, and Environments used during this browsing

session.

Search

You can find a particular attacker, incident, or session by using the search functionality

in the security monitor. To search, type the keyword in the Query form field, and optionally

modify the desired date-range (last 7 days by default), applications (all applications by

default), and the scope of your search. The scope can include Attackers, Incidents and/or

137Copyright © 2013, Juniper Networks, Inc.

Chapter 26: Security Monitor

Sessions. Depending on the complexity of your search parameters, it might take a couple

seconds to complete. Once finished, the results will be displayed.

The following items are indexed in the search (meaning if the string matches any items

in these categories, it is displayed.):

• User Agent

• Browser Name

• Browser Version

• Incident Name

• IP Address

• Host

• Geographic Region

Copyright © 2013, Juniper Networks, Inc.138

WebApp Secure 5.1.3

• Geographic City

• Geographic ZIP

• Country Name

• Country Code

• Profile Name

• Profile Description

• Profile Public Key

• Incident Request Content

• Incident Response Content

Reporting

The Reports page is responsible for producing graphical and textual representations of

the activity passed through WebApp Secure.

Configuration

Configuration section of the security monitor allows you to change numerous aspects

of the software.

139Copyright © 2013, Juniper Networks, Inc.

Chapter 26: Security Monitor

SystemStatus

System Status allow you to view performance metrics of your installation. This includes

information on system health, running services, and the routing table.

Figure 91: SystemStatus

Figure 92: Services Status

Updates

Perform updates to the installation by navigating to this page.

Copyright © 2013, Juniper Networks, Inc.140

WebApp Secure 5.1.3

Figure 93: Updates

141Copyright © 2013, Juniper Networks, Inc.

Chapter 26: Security Monitor

Copyright © 2013, Juniper Networks, Inc.142

WebApp Secure 5.1.3

CHAPTER 27

Autoresponse Defaults and Rule Creation

• Autoresponse Overview on page 143

• Editor Overview on page 147

Autoresponse Overview

An autoresponse is composed of a set of rules which define the conditions under which

a counter response should be automatically created and activated for a specific session

or profile. It is possible to have as many rules as needed to protect the system. However,

the more rules, the longer it will take to determine if a new incident matches an event

condition. In addition, the more conditions in the rule, the longer the rule will take to

evaluate if the event condition matches a new incident.

Figure 94: Autoresponse

143Copyright © 2013, Juniper Networks, Inc.

NOTE: You can view thedefault responses for each rule by clicking readmore

at the bottom of the entry's description in the UI.

Copyright © 2013, Juniper Networks, Inc.144

WebApp Secure 5.1.3

Table 9: Autoresponse Descriptions

DescriptionDefault Autoresponse

This autoresponse rule triggers if the user attempts tomanipulate theWebApp Secure
session tracking cookie.

Session Management

If your web-application uses supported 3rd party applications (like Joomla, Wordpress,
etc.), this processor will analyze and act onmalicious traffic that intends to exploit them.

Application Vulnerability
Processor

For more information on which 3rd party tools are supported, refer to the AutoResponse
documentation in Security Monitor.

This rule triggerson incidents thataregenerally triggeredbyabusiveandsuspiciousactivity
targeted at the web sites authentication system.

Login Processor

This autoresponse rule triggers if the user attempts to exploit the fake service exposed
by this processor.

Access Policy Processor

This autoresponse rule triggers if a user attempts tomanipulate theWebApp Secure
cached based tracking token.

ETag Beacon Processor

This autoresponse rule triggers when the user attempts to exploit the fake .htaccess file
exposed by this processor.

Basic Authentication Processor

This autoresponse triggers when the user or malicious spider uses the information in the
robots.txt file for illegitimate purposes.

Robots Processor

This autoresponse rule triggers when the user modifies a hidden form input parameter.Hidden Input Form Processor

This autoresponse rule triggers when the user attempts tomanipulate the value of a
cookie.

Cookie Processor

This autoresponse rule triggerswhen the user interactswith a fakeAJAX function injected
into the web application. If the user reverse engineers the code andmanually invokes its

AJAX Processor

behavior, such aswould happenwith an automated script or spider, the rulewill fire. If the
user actually invokes the Javascript function, the rule will fire.

This autoresponse rule triggers when the user has unusual headers or header data which
a normal browser or well developed spider would not supply. If the user excludes required

Header Processor

headers such as Host and UserAgent, manipulates their user agent header, overflows
headers beyond RFC standards will cause this rule to activate.

This autoresponse rule triggers when a spider or malicious user attempts to identify
unreferenced resources in a fake directory.

Hidden Link Processor

Thisautoresponse rule triggerswhenausermanipulates the fakequeryparameter injected
by the systemmore than 3 times.

Query Parameter Processor

This autoresponse rule triggers when a user or spider sends a request with amalicious
HTTPmethod such as TRACE.

Method Processor

This autoresponse rule triggers when a user attempts to find unreferenced resources by
guessing file names.

Error Processor

145Copyright © 2013, Juniper Networks, Inc.

Chapter 27: Autoresponse Defaults and Rule Creation

Table 9: Autoresponse Descriptions (continued)

DescriptionDefault Autoresponse

File Processor This autoresponse rule triggers when a user attempts to find sensitive files by guessing
file names or changing parts of valid file names.

This autoresponse rule triggers when a user attempts to automate the dismissal of the
warning response.

Warning Processor

This autoresponse rule triggers when a user attempts tomodify the web application
session cookie.

Cookie Protection Processor

This autoresponse rule triggerswhen a user attempts to find away to bypass the captcha
response without solving the captcha.

Captcha Processor

This autoresponse rule triggers if a user attempts tomanipulate the CSRF protection
introduced by the system, potentially to find a filter evasion vulnerability.

CSRF Processor

Thisautoresponse rule triggers if auserattempts toexploit theauthenticationmechanism
offered by the system.

Custom Authentication
Processor

This autoresponse rule triggers when the user attempts to tamper with the client side
tracking logic.

Client Beacon Processor

This autoresponse rule sends out an alert any time a new profile is created, or a profile
elevates its threat level. Theseverityof thealertwill equal the threatof theneworelevated
profile that triggered the alert.

New andModified Profiles

This autoresponse rule sends out an alert any time a profile returns on a subsequent day.
For example, a new hacker is observed onMonday, if the hacker is only active for 1 hour
on Monday, but returns on Tuesday to continue, this rule will issue an alert. The severity
of the alert will equal the threat level of the profile.

Returning Profile

Thisautoresponse rule sendsoutanalert any timeanew incident is observed.Theseverity
of the alert will equal the complexity of the incident.

New Incident

This autoresponse rule sends out an alert any time a new counter response is activated.
The severity of the alert will always equal 1.

New Response

Copyright © 2013, Juniper Networks, Inc.146

WebApp Secure 5.1.3

Editor Overview

To create an autoresponse, open the configuration UI and select the ADDNewRule

button. This will launch the editor which can be used to create and edit an autoresponse.

Table 10: Autoresponse Editor Fields

DescriptionField

The name of the autoresponse.Name

Description of the autoresponse and its triggers.Description

Sets an autoresponse to be active.Enabled

Allows the autoresponse to activate, but does not actually respond. This setting is for testing
and debugging autoresponses.

Safe Mode

The actual code that defines the autoresponse.Code

147Copyright © 2013, Juniper Networks, Inc.

Chapter 27: Autoresponse Defaults and Rule Creation

Table 10: Autoresponse Editor Fields (continued)

DescriptionField

The events that will trigger the autoresponse.Events

A table which consists of any log statements printed during autoresponse execution. Use
the JavaScipt console object to output to an autoresponse's log.

Log

A link to the Autoresponse API documentation.API Reference

Copyright © 2013, Juniper Networks, Inc.148

WebApp Secure 5.1.3

PART 4

Monitoring

• The Processors on page 151

• Honeypot Processors on page 155

• Activity Processors on page 181

• Tracking Processors on page 207

• Response Processors on page 219

• Incident Methods on page 267

• Captcha Template on page 271

• Log Format on page 275

149Copyright © 2013, Juniper Networks, Inc.

Copyright © 2013, Juniper Networks, Inc.150

WebApp Secure 5.1.3

CHAPTER 28

The Processors

• Complexity Rating Definitions on page 151

• Security Engine Incidents on page 152

• Session Cookie Spoofing on page 152

• Session Cookie Tampering on page 152

• Security Processors on page 153

Complexity Rating Definitions

Complexity is a rating of the skill, effort, and experience necessary to trigger a specific

incident. The following is a description of the rating system:

• Informational (0.0): Informational incidents represent information about the client

that may or may not indicate malicious activity, but are not common. Informational

incidents are used to identify more complex abuse patterns that cannot be identified

from a single request. An example of an informational incident is when the user has

disabled the Referer header.

• Suspicious (1.0): Suspicious incidents represent activity that is abnormal but not

guaranteed to be malicious. This is similar to an informational incident, except that

the event is borderline malicious, not just unusual. Just like informational incidents,

suspicious incidents are used to identify more complex abuse patterns that cannot be

confirmed as malicious from just one request. An example of a suspicious incident is

when the user requests a file that does not exist (404 error).

• Low (2.0): Low complexity incidents represent malicious activity that does not require

any special tools, does not require a deep understanding of application architecture,

and generally can be executed by an unsophisticated threat. An example of a low

complexity incident is when the user modifies a query string parameter in the URL.

• Medium (3.0): Medium complexity incidents represent malicious activity that would

require special tools, advanced browser configuration, scripting, or a understanding of

how web applications are designed and implemented. These types of attacks are

generally not executed by unsophisticated attackers, and are more likely to be targeted

at the protected site, rather than at an arbitrary IP range. An example of a medium

151Copyright © 2013, Juniper Networks, Inc.

complexity incident is when the user requests the robots.txt spider configuration file

from a browser or a script spoofing its identity as a browser.

• High(4.0): High complexity incidents represent malicious activity that is highly advanced

and requires a deep understanding of web application architecture, implementation,

security features, and multi request workflows. High complexity incidents are generally

far too advanced for an average attacker and usually have a specific target. An example

of a high complexity incident is when a user is able to break the encryption used on

basic authentication password files.

Security Engine Incidents

While the majority of all incidents will be produced by a processor, a few of them are

handled by the Security Engine directly. These will be found in the UI under Session

Management in the Response Rules page, and can be enabled or disabled through

Configuration > Security Engine > Incident Monitoring.

Session Cookie Spoofing

Complexity: Low (2.0)

Default Response: 1x = Logout User, 2x = 1 Day Clear Inputs, 3x = 5 Day Clear Inputs

Cause: WebApp Secure uses an HTTP cookie as one of the components of its fingerprinting

technology. The session cookie is comprised of an AES-encrypted and base64-encoded

numerical ID and a validation signature. Because the cookie has its own embedded digital

signature, any attempt to fabricate or modify a session cookie will almost always result

in a corrupted signature. If WebApp Secure detects that a cookie being provided has an

invalid signature, but otherwise uses the correct format, it will trigger a "Session Cookie

Spoofing" incident.

Behavior: Session cookies are commonly used by a web application order to facilitate

state. HTTP, by itself, is not a stateful protocol, and without technologies like cookies, a

web application would be unable to correlate requests made by the same user. When

an attacker attempts to modify a cookie, especially when they are careful to follow the

same format constraints as the original value (22 letters and numbers, or 16 hex

characters, etc), they are attempting to modify their state. If for example, an attacker

were able to successfully guess the session cookie value of another actively logged in

user, they would be able to assume that user's state (including their authentication and

authorization levels). This is referred to by the WASC as a "Credential and Session

Prediction" attack (see Credential and Session Prediction for information.)

Session Cookie Tampering

Complexity: Medium (3.0)

Default Response: 1x = Logout User, 2x = 1 Day Clear Inputs, 3x = 5 Day Clear Inputs

Cause: WebApp Secure uses an HTTP cookie as one of the components of its fingerprinting

technology. The session cookie is comprised of an AES-encrypted and base64-encoded

Copyright © 2013, Juniper Networks, Inc.152

WebApp Secure 5.1.3

http://projects.webappsec.org/w/page/13246918/Credential-and-Session-Prediction

numerical ID and a validation signature. Because the cookie has its own embedded digital

signature, any attempt to fabricate or modify a session cookie will almost always result

in a corrupted signature. If WebApp Secure detects that a cookie being provided does

not have a valid signature, and does not follow the correct format, it will trigger a "Session

Cookie Tampering" incident.

Behavior: Session cookies are commonly used by a web application order to facilitate

state. HTTP, by itself, is not a stateful protocol, and without technologies like cookies, a

web application would be unable to correlate requests made by the same user. However,

just like form parameters and query string parameters, cookies represent another type

of user-input. Just about any attack that can be accomplished by injecting malicious

values into a form input (SQL injection2, XSS3, Buffer Overflow4, Integer Overflow5,

etc.), could also potentially be accomplished by injecting malicious values into the session

cookie. An aggressive hacker would likely test for multiple vulnerability types in all form

inputs, query parameters, and cookies, because these are the inputs most likely to be

insecurely handled.

NOTE: For information on the attack typesmentioned here, go to TheWeb

Application Security ConsortiumWeb Site and search for the attack name to

learnmore about it.

Security Processors

The Security Processors are separated into four groups:

• Honeypot Processors

• Activity Processors

• Tracking Processors

• Response Processors

Honeypot processors contain the logic of injecting the fake vulnerabilities and points of

interest to the hackers with the goal of exposing the attacker prior to them finding an

actual vulnerability on the site. Activity processors are the processors that monitor for

and report any other malicious behavior. These operators watch for malicious activity

based on non-injected points of interest. These typically involve monitoring headers,

errors, input fields, URL sequences, etc, with the goal of identifying malicious behavior

within the valid application stream.

Activity processors enable monitoring of session traffic. Things like authentication and

cookies are among the types of traffic that become introspected by various activity

processors.

Tracking processors, allow for more advanced tracking of the attackers. These processors

attempt to collect additional data based on behavioral characteristics and unique

attacker's environment information. These "fingerprints" become a basis for the "hacker

database" used in detecting attackers from the first request they make.

153Copyright © 2013, Juniper Networks, Inc.

Chapter 28: The Processors

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

Response processors are the processors that are used for generating response to the

end user. If turned on, these can be used to either manually or automatically (depending

on the configuration) respond to a hacker as soon as their activity is detected. In case of

an automated response, these can be tuned to match more or less any condition including

but not limited to frequency of occurrence, complexity, types of incidents triggered.

Copyright © 2013, Juniper Networks, Inc.154

WebApp Secure 5.1.3

CHAPTER 29

Honeypot Processors

• Honeypot Processors: Access Policy Processor on page 156

• Honeypot Processors: Access Policy Processor: Incidents - Malicious Service

Call on page 157

• Honeypot Processors: Access Policy Processor: Incidents - Service Directory

Indexing on page 157

• Honeypot Processors: Access Policy Processor: Incidents - Service Directory

Spider on page 158

• Honeypot Processors: AJAX Processor on page 159

• Honeypot Processors: AJAX Processor: Incidents - Malicious Script Execution on page 160

• Honeypot Processors: AJAX Processor: Incidents - Malicious Script

Introspection on page 161

• Honeypot Processors: Basic Authentication Processor on page 162

• Honeypot Processors: Basic Authentication Processor: Incidents - Apache Configuration

Requested on page 163

• Honeypot Processors: Basic Authentication Processor: Incidents - Apache Password

File Requested on page 164

• Honeypot Processors: Basic Authentication Processor: Incidents - Invalid

Credentials on page 165

• Honeypot Processors: Basic Authentication Processor: Incidents - Protected Resource

Requested on page 166

• Honeypot Processors: Basic Authentication Processor: Incidents - Password

Cracked on page 166

• Honeypot Processors: Basic Authentication Processor: Incidents - Basic Authentication

Brute Force on page 167

• Honeypot Processors: Cookie Processor on page 168

• Honeypot Processors: Cookie Processor: Incident - Cookie Parameter

Manipulation on page 169

• Honeypot Processors: File Processor on page 170

• Honeypot Processors: File Processor: Incident - Suspicious Filename on page 170

• Honeypot Processors: File Processor: Incident - Suspicious File Exposed on page 171

155Copyright © 2013, Juniper Networks, Inc.

• Honeypot Processors: File Processor: Incident - Suspicious Resource

Enumeration on page 172

• Honeypot Processors: Hidden Input Form Processor on page 173

• Honeypot Processors: Hidden Input Form Processor: Incident - Parameter Type

Manipulation on page 173

• Honeypot Processors: Hidden Input Form Processor: Incident - Hidden Parameter

Manipulation on page 174

• Honeypot Processors: Hidden Link Processor on page 175

• Honeypot Processors: Hidden Link Processor: Incident - Link Directory

Indexing on page 176

• Honeypot Processors: Hidden Link Processor: Incident - Link Directory

Spidering on page 176

• Honeypot Processors: Hidden Link Processor: Incident - Malicious Resource

Request on page 177

• Honeypot Processors: Query String Processor on page 177

• Honeypot Processors: Query String Processor: Incident - Query Parameter

Manipulation on page 178

• Honeypot Processors: Robots Processor on page 179

• Honeypot Processors: Robot Processor: Incident - Malicious Spider Activity on page 179

Honeypot Processors: Access Policy Processor

This processor injects fake permission data into the clientaccesspolicy.xml file of the

web application's domain. The fake access policy references a fake service and grants

a random domain access to call it. If the service is ever called, or any files are ever

requested in the directory the service is supposedly contained in, an incident can be

created. Under normal conditions, no user will ever see the clientaccesspolicy.xml file,

and therefore be unaware of the URL to the fake service or the directory it resides in. In

the cases where a Silverlight object is legitimately requesting clientaccesspolicy.xml

from the protected domain in order to access a known service, it will not create an incident,

because the service being called is defined with real access directives.

Table 11: Access Policy Processor Configuration Parameters

DescriptionDefaultValueTypeParameter

Basic

Whether or not to enable this process for https traffic.TrueBooleanProcessor Enabled

Advanced

The fake service the user requested.RandomStringFake Service

The user manually entered the URL into the browser and
accessed the service that way. They did not call the
function.

TrueBooleanIncident: Malicious Service Call

Copyright © 2013, Juniper Networks, Inc.156

WebApp Secure 5.1.3

Table 11: Access Policy Processor Configuration Parameters (continued)

DescriptionDefaultValueTypeParameter

The user asked for a file index on the directory that
contains the fake service.

TrueBooleanIncident: Service Directory
Indexing

The user is issuing requests for resources inside the
directory that contains the fake service. Since the directory
does not exist, all of these types of requests are
unintended and malicious.

TrueBooleanIncident: Service Directory
Spider

Honeypot Processors: Access Policy Processor: Incidents - Malicious Service Call

Complexity: Medium (3.0)

Default Response: 1x = 5 day Clear Inputs

Cause: WebApp Secure adds a fake cookie to the websites it protects. The cookie is

intended to look as though it is part of the applications overall functionality, and is often

selected to appear vulnerable (such as naming the cookie 'debug' or 'admin' and giving

it a numerical or Boolean value). The "Cookie Parameter Manipulation" incident is triggered

whenever the fake cookie value changes its value.

Behavior: Modifying the inputs of a page is the foundation of a large variety of attack

vectors. Basically, if you want to get the backend server to do something different, you

need to supply different input values (either by cookie, query string, url, or form

parameters). Depending on what value the user chose for the input, the attack could fall

under large number of vectors, including "Buffer Overflow", "XSS", "Denial of Service",

"Fingerprinting", "Format String", "HTTP Response Splitting", "Integer Overflow", and

"SQL injection" among many others. A common practice is to first spider the web site,

then test every single input on the site for a specific set of vulnerabilities. For example,

the user might first index the site, then visit each page on the site, then test every exposed

input (cookie, query string, and form inputs) with a list of SQL injection tests. These tests

are designed to break the resulting page if the input is vulnerable. As such, the entire

process (which can involve thousands of requests) can be automated and return a clean

report on which inputs should be targeted. Because a WebApp Secure cookie looks just

like a normal application cookie, a spider that tests all inputs will eventually test the fake

cookie as well. This means that if there is a large volume of this incident, it is likely due

to such an automated process. It should be assumed that the values tested against the

fake cookie, have also been tested against the rest of the cookies on the site.

NOTE: For information on the attack typesmentioned here, go to TheWeb

Application Security ConsortiumWeb Site and search for the attack name to

learnmore about it.

Honeypot Processors: Access Policy Processor: Incidents - Service Directory Indexing

Complexity: Medium (3.0)

157Copyright © 2013, Juniper Networks, Inc.

Chapter 29: Honeypot Processors

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

Default Response: 1x = 5 day Block

Cause: Originally, embedded HTML technologies such as Flash and Java, were not able

to communicate with 3rd party domains. This was a security constraint to prevent a

malicious Java or Flash object from performing unwanted actions against a site other

then the one hosting the object (for example, a Java applet that brute forces a Gmail

login in the background). This limitation was eventually decreased in order to facilitate

more complex mash-ups of information from a variety of sources. However to prevent

any untrusted web sites from abusing this new capability, a resource called the

"clientaccesspolicy.xml" was introduced. Now, when a plugin object wants to

communicate with a different domain, it will first request "clientaccesspolicy.xml" from

that domain. If the file specifies that the requesting domain is allowed to access the

specified resource, then the plugin object will be given permission to communicate directly

with the 3rd party. The clientaccesspolicy.xml therefore provides a convenient reference

for hackers when trying to scope the attack surface of the web site. For example, there

may be a vulnerable service listed in clientaccesspolicy.xml, but that service may not be

referenced anywhere else on the site. So unless the hacker looks at clientaccesspolicy.xml,

they would never even know the service existed. WebApp Secure will inject a fake service

definition into the clientaccesspolicy.xml file in order to identify which users are manually

probing the file for information. The "Service Directory Indexing" incident will be triggered

if the user attempts to get a file listing from the directory the fake service is supposedly

located in.

Behavior: Attempting to get a file listing from the directory where the potentially vulnerable

service is located is likely in an effort to identify other unreferenced vulnerable services,

or possibly even data or source files used by the service. Such a request represents a "

Directory Indexing" attack, and is generally performed while attempting to establish a

full understanding of a websites attack surface.

Honeypot Processors: Access Policy Processor: Incidents - Service Directory Spider

Complexity: Medium (3.0)

Default Response: 1x = 5 day Block

Cause: Originally, embedded HTML technologies such as Flash and Java, were not able

to communicate with 3rd party domains. This was a security constraint to prevent a

malicious Java or Flash object from performing unwanted actions against a site other

then the one hosting the object (for example, a Java applet that brute forces a Gmail

login in the background). This limitation was eventually decreased in order to facilitate

more complex mash-ups of information from a variety of sources. However to prevent

any untrusted websites from abusing this new capability, a resource called the

"clientaccesspolicy.xml" was introduced. Now, when a plugin object wants to

communicate with a different domain, it will first request "clientaccesspolicy.xml" from

that domain. If the file specifies that the requesting domain is allowed to access the

specified resource, then the plugin object will be given permission to communicate directly

with the 3rd party. The clientaccesspolicy.xml therefore provides a convenient reference

for hackers when trying to scope the attack surface of the web site. For example, there

may be a vulnerable service listed in clientaccesspolicy.xml, but that service may not be

referenced anywhere else on the site. So unless the hacker looks at clientaccesspolicy.xml,

Copyright © 2013, Juniper Networks, Inc.158

WebApp Secure 5.1.3

they would never even know the service existed. WebApp Secure will inject a fake service

definition into the clientaccesspolicy.xml file in order to identify which users are manually

probing the file for information. The "Service Directory Spidering" incident will be triggered

if the user attempts to request a random file inside the directory the fake service is

supposedly located in.

Behavior: Requesting a random file from the directory where the potentially vulnerable

service is supposedly located is likely in an effort to identify other unreferenced resources.

This could include configuration files, other services, data files, etc. Usually an attacker

will first attempt to get a full directory index (which only takes one request), but if that

fails, the only other technique is to guess the filenames (which could take thousands of

requests). Because guessing the file names can take so many requests, there are several

publicly available tools that can enumerate over a large list of common file and directory

names in a matter of minutes. This type of behavior is an attempt to exploit a server for

"Predictable Resource Location" vulnerabilities, and is generally done while the attack

is trying to scope the web applications attack surface.

NOTE: For information on the attack typesmentioned here, go to TheWeb

Application Security ConsortiumWeb Site and search for the attack name to

learnmore about it.

Honeypot Processors: AJAX Processor

A mistake commonly made by web developers is to consolidate every JavaScript file

used by their web site into a single file. They then reference that one file from every page

on the site, regardless of whether it needs all of the code defined in the file. This is an

optimization trick that works, but exposes potential vulnerabilities. The goal is to get the

browser to cache all of the external JavaScript, so that you don't need to keep

downloading additional code as you navigate the site. Consider the case where one of

the pages on the site contains an administrative console written with AJAX technology.

In the administrative page, there is a JavaScript file that contains code for managing

users of the site (creating user, deleting users, getting user details, etc). Normally only

administrators would visit this page, and they would be the only ones who can see this

code. Once all JavaScript on the site is consolidated however, these types of sensitive

functions tend to get mixed into the rest of the safer functions. Hackers look for these

types of functions in order to find both the administrative page that uses them, as well

as exploit the function itself. The goal of this trap is to emulate this common mistake

and entice hackers into attempting to exploit the "sensitive looking" function.

Table 12: AJAX Processor Configuration Parameters

DescriptionDefault ValueTypeParameter

Basic

Whether traffic should be passed through this
processor.

TrueBooleanProcessor Enabled

159Copyright © 2013, Juniper Networks, Inc.

Chapter 29: Honeypot Processors

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

Table 12: AJAX Processor Configuration Parameters (continued)

DescriptionDefault ValueTypeParameter

Advanced

Whether to inject the fake Javascript code into
HTML responses.

TrueBooleanInject Script Enabled

The fake service to expose.AJAX ServiceConfigurableService

The user executed the fake JavaScript function.TrueBooleanIncident: Malicious Script
Execution

The user manually entered the URL into the
browser and accessed the service that way. They
did not call the function.

TrueBooleanIncident: Malicious Script
Introspection

Honeypot Processors: AJAX Processor: Incidents - Malicious Script Execution

Complexity: Medium (3.0)

Default Response: 1x = Slow Connection 2-6 seconds and permanent Clear Inputs in 10

minutes.

Cause: WebApp Secure injects a fake JavaScript file into the websites it protects. This

fake JavaScript file is designed to look as though it is intended for administrative use only,

but has been mistakenly linked in with non administrative pages. The JavaScript file

exposes an AJAX function that communicates with a potentially vulnerable fake service.

If the user attempts to invoke this function using a tool like Firebug, this incident will be

triggered.

Behavior: It is common practice to create a few single JavaScript files that contain the

majority of the code your site needs, and then importing that code into all of the pages.

This increases the performance of the site, because the user can download and cache

all the JavaScript at once, rather then having to re-download all or some of it again on

every page change. However in some cases, developers mistakenly include sensitive

administrative functions in with common functions needed by unauthenticated users.

For example, a developer might include an "addUser" function into a file that also contains

a "changeImageOnHover" function. The "addUser" function may only be called from an

administrative UI (behind a login), while the hover image effect would be called on a lot

of different pages. Hackers often look through all of the various Javascript files being

included on the pages of a website in order to find references to other services that might

be vulnerable. Once a function has been identified, the hacker will attempt to find a way

to exploit the service the function uses. Because the attacker is actually executing the

function instead of attempting to directly communicate with the potentially vulnerable

service, this is likely a less sophisticated attack. They are more then likely just trying to

determine if the service actually exists, and if they can call it without being authenticated,

however depending on the values they supplied as arguments to the function, this could

be a number of different attack types, including "Abuse of Functionality", "Buffer

Copyright © 2013, Juniper Networks, Inc.160

WebApp Secure 5.1.3

Overflow", "Denial of Service", "Format String", "Integer Overflows", "OS Commanding",

and "SQL Injection."

NOTE: For information on the attack typesmentioned here, go to TheWeb

Application Security ConsortiumWeb Site and search for the attack name to

learnmore about it.

Honeypot Processors: AJAX Processor: Incidents - Malicious Script Introspection

Complexity: Medium (3.0)

Default Response: 1x = Slow Connection 2-6 seconds and Captcha. 2x = Slow Connection

4-14 seconds and permanent Block in 10 minutes.

Cause: WebApp Secure injects a fake JavaScript file into the websites it protects. This

fake JavaScript file is designed to look as though it is intended for administrative use only,

but has been mistakenly linked in with non administrative pages. The JavaScript file

exposes an AJAX function that communicates with a potentially vulnerable fake service.

If the user manually inspects the code of the function and attempts to exploit the service

it uses directly (without calling the function itself), this incident will be triggered.

Behavior: To improve performance of a web site, by minimizing the number of HTTP

requests (and taking advantage of browser-side caching), web developers commonly

combine most of their JavaScript code into just a few files, which are then included in

the HTML of the entire site. However, in some cases, developers mistakenly include

sensitive administrative functions in with common functions needed by unauthenticated

users. For example, a developer might include an "addUser" function into a file that also

contains a "changeImageOnHover" function. The "addUser" function may only be called

from an administrative UI (behind a login), while the hover image effect would be called

on a lot of different pages. Hackers often look through all of the various Javascript files

being included on the pages of a website in order to find references to other services that

might be vulnerable. Once a function has been identified, the hacker will attempt to find

a way to exploit the service the function uses. Unlike the malicious script execution

incident, here the attacker has actually dissected the fake AJAX function and attempted

to directly exploit the service it uses. This is a more sophisticated attack then actually

calling the Javascript function, because it requires that the user understand Javascript

logic. Depending on what values they are sending to the service, this could be in an effort

to perform any number of exploits, including Abuse of Functionality", "Buffer Overflow",

"Denial of Service", "Format String", "Integer Overflows", "OS Commanding", and "SQL

Injection."

NOTE: For information on the attack typesmentioned here, go to TheWeb

Application Security ConsortiumWeb Site and search for the attack name to

learnmore about it.

161Copyright © 2013, Juniper Networks, Inc.

Chapter 29: Honeypot Processors

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

Honeypot Processors: Basic Authentication Processor

The basic authentication processor is responsible for emulating a vulnerable

authentication mechanism in the web application. This is done by publicly exposing fake

server configuration files (.htaccess and .htpasswd) that appear to be protecting a

resource with basic authentication (a part of the HTTP protocol). To the attacker, the

site will appear to be exposing a sensitive administrative script on the site, with weak

password protection. As the malicious user identifies the availability of such publicly

exposed files, they are walked through a series of steps that emulate exposing an

additional piece of information. As the final step, if they end up breaking the weakly

authenticated password, they will be considered a high threat.

NOTE: This processor should only be used when the site is using Apache as
front end web servers due to particular files involved (.htaccess and
.htpasswd) being specific to Apache web server.)

NOTE: Browsers often ignore the body content of HTTP responses if the
status code is anything other than 200. For best compatibility with different
browser versions, youmay wish to use a 200 status code when uploading
responses such as images or executable code.

Table 13: Basic Authentication Processor Configuration Parameters

DescriptionDefault ValueTypeParameter

Whether traffic should be passed through this
processor.

Basic

TrueBooleanProcessor Enabled

Advanced

A list of authorized user accounts.CollectionCollectionAuthorized Users

The fake protected resource.[random
resource]

StringProtected Resource URL

The HTTP status to return when accessing the
resource.

[random status]StringProtected Resource Response
Status

A random set of characters used to salt the
generation of code. Any value is fine here.

RandomStringRandomization Salt

The user has successfully accessed a fake
protected resource using a cracked username and
password.

TrueBooleanIncident: Password Cracked

Copyright © 2013, Juniper Networks, Inc.162

WebApp Secure 5.1.3

Table 13: Basic Authentication Processor Configuration Parameters (continued)

DescriptionDefault ValueTypeParameter

The user has requested the apache directory
configuration file .htaccess.

TrueBooleanIncident: Apache Configuration
Requested

The user has requested the apache password file
.htpasswd

TrueBooleanIncident: Apache Password File
Requested

The user has attempted to login to access the fake
file protected by basic authentication, but failed.

TrueBooleanIncident: Invalid Credentials

The user has requested a fake file which is
protected by basic authentication.

TrueBooleanIncident: Protected Resource
Requested

HoneypotProcessors:BasicAuthenticationProcessor: Incidents-ApacheConfiguration
Requested

Complexity: Low (2.0)

Default Response: none.

Cause: Apache is a web server used by many websites on the internet. As a result, hackers

will often look for vulnerabilities specific to apache, since there is a good chance any

given website is probably running apache. One such vulnerability involves the use of an

.htaccess22 file to provide directory level configuration (such as default 404 messages,

password protected resources, directory indexing options, etc...), while not sufficiently

protecting the .htaccess file itself. By convention, any resource that provides directory

level configuration should not be exposed to the public. This means that if a user requests

.htaccess or a related resource, they should get either a 404 or a 403 error. Unfortunately,

not all web servers are configured correctly to block requests for these resources. In such

a scenario, a hacker could gain valuable intelligence on the way the server is configured.

Behavior: Hackers will often attempt to get the .htaccess file from various directories on

a website in an effort to find valuable information about how the server is configured.

This is usually done to find a "Server Misconfiguration" weakness that might expose a

"Credential/Session Prediction", "OS Commanding", "Path Traversal", or "URL Redirector

Abuse" vulnerability among others. The fact that an .htaccess file is even exposed is a

"Server Misconfiguration" vulnerability in itself. In this specific case, the attacker is asking

for a different resource that is related to .htaccess. They are requesting a user database

file for a password protected resource defined in .htaccess. This file is generally named

".htpasswd". The user either opened the .htaccess file and found the reference to

.htpasswd, or they simply tried .htpasswd to see if anything came back (with or without

asking for .htaccess). Either way, this behavior is involved in the establishment of a

"Credential/Session Prediction" vulnerability. The request for .htpasswd is usually

performed while attempting to establish the scope of the websites attack surface,

although sometimes is not performed until trying to identify a valid attack vector.

163Copyright © 2013, Juniper Networks, Inc.

Chapter 29: Honeypot Processors

NOTE: For information on the attack typesmentioned here, go to TheWeb

Application Security ConsortiumWeb Site and search for the attack name to

learnmore about it.

Honeypot Processors: Basic Authentication Processor: Incidents - Apache Password
File Requested

Complexity: Low (2.0)

Default Response: 1x = Slow Connection 2-6 seconds.

Cause: Apache is a web server used by many websites on the internet. As a result, hackers

will often look for vulnerabilities specific to apache, since there is a good chance any

given website is probably running apache. One such vulnerability involves the use of an

.htaccess28 file to provide directory level configuration (such as default 404 messages,

password protected resources, directory indexing options, etc...), while not sufficiently

protecting the .htaccess file itself. By convention, any resource that provides directory

level configuration should not be exposed to the public. This means that if a user requests

.htaccess or a related resource, they should get either a 404 or a 403 error. Unfortunately,

not all web servers are configured correctly to block requests for these resources. In such

a scenario, a hacker could gain valuable intelligence on the way the server is configured.

WebApp Secure will automatically block any requests for the .htaccess resource, and

return a fake version of the file. The fake version of the file will contain the directives

necessary to password protect a fake resource. These directives allude to the existence

of a user database file that contains usernames and encrypted passwords. The "Apache

Password File Requested" incident will trigger in the event that the user requests the

fake user database file (generally named .htpasswd).

Behavior: Hackers will often attempt to get the .htaccess file from various directories on

a website in an effort to find valuable information about how the server is configured.

This is usually done to find a "Server Misconfiguration" weakness that might expose a

"Credential/Session Prediction", "OS Commanding", "Path Traversal", or "URL Redirector

Abuse" vulnerability among others. The fact that an .htaccess file is even exposed is a

"Server Misconfiguration" vulnerability in itself. In this specific case, the attacker is asking

for a different resource that is related to .htaccess. They are requesting a user database

file for a password protected resource defined in .htaccess. This file is generally named

".htpasswd". The user either opened the .htaccess file and found the reference to

.htpasswd, or they simply tried .htpasswd to see if anything came back (with or without

asking for .htaccess). Either way, this behavior is involved in the establishment of a

"Credential/Session Prediction" vulnerability. The request for .htpasswd is usually

performed while attempting to establish the scope of the websites attack surface,

although sometimes is not performed until trying to identify a valid attack vector.

NOTE: For information on the attack typesmentioned here, go to TheWeb

Application Security ConsortiumWeb Site and search for the attack name to

learnmore about it.

Copyright © 2013, Juniper Networks, Inc.164

WebApp Secure 5.1.3

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

Honeypot Processors: Basic Authentication Processor: Incidents - Invalid Credentials

Complexity: Medium (3.0)

Default Response: 1x = Slow Connection 2-6 seconds. 15x = Basic Authentication

Bruteforce Incident.

Cause: Apache is a web server used by many websites on the internet. As a result, hackers

will often look for vulnerabilities specific to apache, since there is a good chance any

given web site is probably running apache. One such vulnerability involves the use of an

.htaccess34 file to provide directory level configuration (such as default 404 messages,

password protected resources, directory indexing options, etc), while not sufficiently

protecting the .htaccess file itself. By convention, any resource that provides directory

level configuration should not be exposed to the public. This means that if a user requests

.htaccess or a related resource, they should get either a 404 or a 403 error. Unfortunately,

not all web servers are configured correctly to block requests for these resources. In such

a scenario, a hacker could gain valuable intelligence on the way the server is configured.

WebApp Secure will automatically block any requests for the .htaccess resource, and

return a fake version of the file. The fake version of the file will contain the directives

necessary to password protect a fake resource. Should the user request the password

protected resource, WebApp Secure will simulate the correct authentication method

defined in .htaccess, and simulate the existence of the fake resource. The "Invalid

Credentials" incident will trigger in the event that the user requests the fake password

protected file and supplies an invalid username and password (as would be the case if

they requested the file in a browser and guessed a username and password at the login

prompt).

Behavior: Hackers will often attempt to get the .htaccess file from various directories on

a website in an effort to find valuable information about how the server is configured.

This is usually done to find a "Server Misconfiguration" weakness that might expose a

"Credential/Session Prediction", "OS Commanding", "Path Traversal", or "URL Redirector

Abuse" vulnerability among others. The fact that an .htaccess file is even exposed is a

"Server Misconfiguration" vulnerability in itself. In this specific case, the attacker is asking

for a different resource that is referenced only from .htaccess. The fake resource is

password protected, and the user has attempted to authenticate with bad credentials.

This is most likely in an effort to guess a valid username and password combination, such

as "admin:admin", or "guest:guest". It may also be part of a larger brute force attempt,

where the attacker tries a long list of possible combinations. This is a poor method for

locating valid usernames and passwords, especially since the user database file .htpasswd

is actually exposed (albeit fake). So a brute force attack (represented by a large quantity

of this incident type) generally means the attacker is less sophisticated.

NOTE: For information on the attack typesmentioned here, go to TheWeb

Application Security ConsortiumWeb Site and search for the attack name to

learnmore about it.

165Copyright © 2013, Juniper Networks, Inc.

Chapter 29: Honeypot Processors

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

HoneypotProcessors: BasicAuthenticationProcessor: Incidents -ProtectedResource
Requested

Complexity: Low (2.0)

Default Response: 1x = Slow Connection 2-6 seconds.

Cause: Apache is a web server used by many websites on the internet. As a result, hackers

will often look for vulnerabilities specific to apache, since there is a good chance any

given website is probably running apache. One such vulnerability involves the use of an

.htaccess file to provide directory level configuration (such as default 404 messages,

password protected resources, directory indexing options, etc), while not sufficiently

protecting the .htaccess file itself. By convention, any resource that provides directory

level configuration should not be exposed to the public. This means that if a user requests

.htaccess or a related resource, they should get either a 404 or a 403 error. Unfortunately,

not all web servers are configured correctly to block requests for these resources. In such

a scenario, a hacker could gain valuable intelligence on the way the server is configured.

WebApp Secure will automatically block any requests for the .htaccess resource, and

return a fake version of the file. The fake version of the file will contain the directives

necessary to password protect a fake resource. Should the user request the password

protected resource, WebApp Secure will simulate the correct authentication method

defined in .htaccess, and simulate the existence of the fake resource. The "Protected

Resource Requested" incident will trigger in the event that the user requests the fake

password protected file and does not supply a username and password (as would be

the case if they requested the file in a browser and canceled the login prompt).

Behavior: Hackers will often attempt to get the .htaccess file from various directories on

a website in an effort to find valuable information about how the server is configured.

This is usually done to find a "Server Misconfiguration" weakness that might expose a

"Credential/Session Prediction", "OS Commanding", "Path Traversal", or "URL Redirector

Abuse" vulnerability among others. The fact that an .htaccess file is even exposed is a

"Server Misconfiguration" vulnerability in itself. In this specific case, the attacker is asking

for a different resource that is referenced only from .htaccess. The resource is password

protected, but the user has not yet tried to supply credentials. This is most likely in an

attempt to see if the password protected file actually exists.

NOTE: For information on the attack typesmentioned here, go to TheWeb

Application Security ConsortiumWeb Site and search for the attack name to

learnmore about it.

Honeypot Processors: Basic Authentication Processor: Incidents - Password Cracked

Complexity: High (4.0)

Default Response: 1x = Permanent Block.

Copyright © 2013, Juniper Networks, Inc.166

WebApp Secure 5.1.3

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

Cause: Apache is a web server used by many websites on the internet. As a result, hackers

will often look for vulnerabilities specific to apache, since there is a good chance any

given website is probably running apache. One such vulnerability involves the use of an

.htaccess46 file to provide directory level configuration (such as default 404 messages,

password protected resources, directory indexing options, etc.), while not sufficiently

protecting the .htaccess file itself. By convention, any resource that provides directory

level configuration should not be exposed to the public. This means that if a user requests

.htaccess or a related resource, they should get either a 404 or a 403 error. Unfortunately,

not all web servers are configured correctly to block requests for these resources. In such

a scenario, a hacker could gain valuable intelligence on the way the server is configured.

WebApp Secure will automatically block any requests for the .htaccess resource, and

return a fake version of the file. The fake version of the file will contain the directives

necessary to password protect a fake resource. The directives will also allude to the

existence of a password database file. If the attacker requests the password database

file, and then uses a tool such John The Ripper to crack one of the encrypted passwords,

they will be able to authenticate against the fake protected resource successfully. Should

the user request the password protected resource, and supply a valid username and

password combination (as defined in the password database), the "Password Cracked"

incident will be triggered.

Behavior: Hackers will often attempt to get the .htaccess file from various directories on

a website in an effort to find valuable information about how the server is configured.

This is usually done to find a "Server Misconfiguration" weakness that might expose a

"Credential/Session Prediction", "OS Commanding", "Path Traversal", or "URL Redirector

Abuse" vulnerability among others. The fact that an .htaccess file is even exposed is a

"Server Misconfiguration" vulnerability in itself. In this specific case, the attacker is asking

for a different resource that is referenced only from .htaccess. The fake resource is

password protected, and the user has supplied valid authentication credentials. The only

way to obtain valid credentials is to either brute force the login (which would be the case

if there were excessive numbers of "Invalid Credential" incidents), or to access the fake

password database file (usually .htpasswd) and crack one of the encrypted passwords

using an encryption cracking tool. This represents the final and most complicated step

in a successful "Credential/Session Prediction" exploit, and is usually performed long

after the attack surface of the site has been fully scoped. Unless there are excessive

numbers of "Invalid Credential" incidents, which would be the case in a brute force attack,

the user must have also requested ".htpasswd", and therefore should also have an

"Apache Password File Requested" incident. If this incident is missing, then the hacker

has likely established two independent profiles in WebApp Secure.

NOTE: For information on the attack typesmentioned here, go to TheWeb

Application Security ConsortiumWeb Site and search for the attack name to

learnmore about it.

HoneypotProcessors:BasicAuthenticationProcessor: Incidents -BasicAuthentication
Brute Force

Complexity: Medium (3.0)

167Copyright © 2013, Juniper Networks, Inc.

Chapter 29: Honeypot Processors

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

Default Response: 1X - CAPTCHA; 2x = Permanent Block.

Cause: Apache is a very common web server. As a result, hackers will often look for

vulnerabilities specific to Apache, since there is a good chance that any given website is

running Apache. One such vulnerability involves the use of an .htaccess file to provide

directory-level configuration (password-protected resources, directory indexing options,

etc), while not sufficiently protecting the .htaccess file itself. By convention, configuration

files should not be exposed to the public — so if a user requests .htaccess or a related

resource, they should get either a "404 Not Found" or "403 Forbidden" error.

Unfortunately, an improperly-configured installation of Apache may not block requests

for these resources. In such a scenario, a hacker could gain valuable knowledge of the

way the server is configured. WebApp Secure will automatically block any requests for

the .htaccess resource, and instead return a fake version of the file, which contains the

directives necessary to password-protect a fake resource. Should the user request the

password-protected resource, WebApp Secure will simulate the correct authentication

method defined in .htaccess, and simulate the existence of the fake resource. The "Basic

Authentication Brute Force" incident will trigger in the event that the user requests the

fake passwordprotected file and repeatedly supplies an invalid username and password

(as would be the case if the user were guessing various username and password

combinations).

Behavior: Hackers will often attempt to get the .htaccess file from various directories on

a website in an effort to find valuable information about how the server is configured.

This is usually done to find a "Server Misconfiguration" weakness that might expose a

"Credential/Session Prediction", "OS Commanding", "Path Traversal", or "URL Redirector

Abuse" vulnerability among others.

NOTE: For information on the attack typesmentioned here, go to TheWeb

Application Security ConsortiumWeb Site and search for the attack name to

learnmore about it.

In this specific case, the attacker is requesting a different resource that is referenced only

from .htaccess. The fake resource is password-protected, and the user has attempted

to authenticate with a large number of bad credentials. This is most likely in an effort to

guess a valid username and password combination, such as "admin:admin", or

"guest:guest". This is a poor method for locating valid usernames and passwords,

especially since the user database file .htpasswd is actually exposed (albeit fake). So a

brute force attack generally means the attacker is less sophisticated. Because the

password-protected file is not referenced from anywhere outside of .htaccess, this

incident should not happen unless an "Apache Configuration Requested" incident has

occurred first. If that is not the case, then the hacker has likely established two

independent profiles in WebApp Secure. This type of behavior is generally performed

when attempting to establish a successful attack vector.

Honeypot Processors: Cookie Processor

Cookies are used by web applications to maintain state for a given user. They consist of

key/value pairs that are passed around in headers and also stored client side. Each

Copyright © 2013, Juniper Networks, Inc.168

WebApp Secure 5.1.3

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

key/value pair has various attributes including which domains it is valid for, what paths

within those domains, as well as security restrictions and expiration information. Because

this is the primary way for a web application to maintain a session, hackers will often try

to manipulate cookie values manually in an effort to escalate access or hijack someone

else's session. All of the attacks applicable to modifying form parameters are also

applicable to modifying cookie parameters. It may even be possible, although unlikely,

to find an SQL injection flaw in a cookie parameter.

Table 14: Cookie Processor Configuration Parameters

DescriptionDefault ValueTypeParameter

Basic

Whether or not to enable this process for http
traffic.

TrueBooleanProcessor Enabled

Advanced

The fake cookie to use.CookieStringCookie

The user modified the value of a cookie which
should never be modified.

TrueBooleanIncident: Cookie Parameter
Manipulation

Honeypot Processors: Cookie Processor: Incident - Cookie Parameter Manipulation

Complexity: Medium (3.0)

Default Response: 1x = Slow Connection 2-6 seconds and permanent Clear Inputs in 10

minutes.

Cause: WebApp Secure adds a fake cookie to the web sites it protects. The cookie is

intended to look as though it is part of the applications overall functionality, and is often

selected to appear vulnerable (such as naming the cookie 'debug' or 'admin' and giving

it a numerical or Boolean value). The "Cookie Parameter Manipulation" incident is triggered

whenever the fake cookie value changes its value.

Behavior: Modifying the inputs of a page is the foundation of a large variety of attack

vectors. Basically, if you want to get the backend server to do something different, you

need to supply different input values (either by cookie, query string, url, or form

parameters). Depending on what value the user chose for the input, the attack could fall

under large number of vectors, including "Buffer Overflow", "XSS5", "Denial of Service",

"Fingerprinting", "Format String", "HTTP Response Splitting", "Integer Overflow", and

"SQL injection" among many others. A common practice is to first spider the website,

then test every single input on the site for a specific set of vulnerabilities. For example,

the user might first index the site, then visit each page on the site, then test every exposed

input (cookie, query string, and form inputs) with a list of SQL injection tests. These tests

are designed to break the resulting page if the input is vulnerable. As such, the entire

process (which can involve thousands of requests) can be automated and return a clean

report on which inputs should be targeted. Because WebApp Secure cookie looks just

169Copyright © 2013, Juniper Networks, Inc.

Chapter 29: Honeypot Processors

like a normal application cookie, a spider that tests all inputs will eventually test the fake

cookie as well. This means that if there is a large volume of this incident, it is likely due

to such an automated process. It should be assumed that the values tested against the

fake cookie, have also been tested against the rest of the cookies on the site.

NOTE: For information on the attack typesmentioned here, go to TheWeb

Application Security ConsortiumWeb Site and search for the attack name to

learnmore about it.

Honeypot Processors: File Processor

When developing websites, administrators will often rename files in order to make room

for a newer version of the file. They may also archive older files. A common vulnerability

is the case where these older files are left in the web accessible directories, and they

contain non static resources. For example, consider the case where a developer renames

shopping_cart.php to shopping_cart.php.bak. If an attacker looks for php files and tries

to access all of them with a .bak extension, they may stumble across the backup file.

Because the server is not configured to parse .bak files as php files, it will serve the

unexecuted script source code to the client. This technique can yield database credentials,

system credentials, as well as expose more serious vulnerabilities in the code itself. The

goal of this processor is to detect when a user is attempting to find unreferenced files.

Table 15: File Processor Configuration Parameters

DescriptionDefault ValueTypeParameter

Basic

Whether traffic should be passed through this
processor.

TrueBooleanProcessor Enabled

Advanced

The response to return when a request is blocked
due to a matching suspicious token rule with
blocking enabled.

HTTP ResponseConfigurableBlock Response

The configured suspicious extensions.CollectionCollectionSuspicious Tokens

A file which has a suspicious filename is publicly
available.

TrueBooleanIncident: Suspicious File
Exposed

A file with a filename that contains a suspicious
token was requested.

TrueBooleanIncident: Suspicious Filename

Honeypot Processors: File Processor: Incident - Suspicious Filename

Complexity: Suspicious (1.0)

Copyright © 2013, Juniper Networks, Inc.170

WebApp Secure 5.1.3

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

Default Response: 10x = Suspicious Resource Enumeration Incident.

Cause: WebApp Secure has a list of file tokens which represent potentially sensitive files.

For example, developers will often rename source files with a ".bck" extension during

debugging, and sometimes they forget to delete the backup after they are done. Hackers

often look for these left over source files. WebApp Secure is configured to look for any

request to a file with a ".bck" extension (as well as any other configured extensions), and

trigger this incident if the file does not exist. An incident will not be triggered if the file

does in fact exist, and the extension is not configured to block the response. This is to

avoid legitimate files being flagged as suspicious filenames.

Behavior: There are specific files that many websites host, that contain valuable

information for a hacker. These files generally include data such as passwords, SQL

schema's, source code, etc. When hackers try to breach a site, they will often check to

see if they can locate some of these special files in order to make their jobs easier. For

example, if a hacker sees that the home page is called "index.php", they may try and

request "index.php.bak", because if it exists, it will be returned as raw source code. This

is usually an effort to exploit a "Predictable Resource Location" vulnerability. Automated

scanners will generally test all of these types of extensions (.bck, .bak, .zip, .tar, .gz, etc...)

against every legitimate file that is located through simple spidering. Because this incident

is only created if the file being requested does not actually exist, it does not represent a

successful exploit.

NOTE: For information on the attack typesmentioned here, go to TheWeb

Application Security ConsortiumWeb Site and search for the attack name to

learnmore about it.

Honeypot Processors: File Processor: Incident - Suspicious File Exposed

Complexity: Suspicious (1.0)

Default Response: 10x = Suspicious Resource Enumeration Incident.

Cause: WebApp Secure has a list of file tokens which represent potentially sensitive files.

For example, developers will often rename source files with a ".bck" extension during

debugging, and sometimes they forget to delete the backup after they are done. Hackers

often look for these left over source files. WebApp Secure is configured to look for any

request to a file with a ".bck" extension (as well as any other configured extensions), and

trigger this incident if the extension is configured as illegal. This incident will only be

triggered if the file actually exists, and the request reaches the backend server. For

example, the user might request "database.sql". If the .sql extension is configured to

block, and the file actually exists on the server, this incident will be generated. If

"database.sql" does not exist, then only a "Suspicious Filename" incident will be created.

Behavior: There are specific files that many web sites host, that contain valuable

information for a hacker. These files generally include data such as passwords, SQL

schema's, source code, etc. When hackers try to breach a site, they will often check to

see if they can locate some of these special files in order to make their jobs easier. For

171Copyright © 2013, Juniper Networks, Inc.

Chapter 29: Honeypot Processors

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

example, if a hacker sees that the home page is called "index.php", they may try and

request "index.php.bak", because if it exists, it will be returned as raw source code. This

is usually an effort to exploit a "Predictable Resource Location" vulnerability. Automated

scanners will generally test all of these types of extensions (.bck, .bak, .zip, .tar, .gz, etc...)

against every legitimate file that is located through simple spidering. This incident is only

triggered when the user requested a file that would otherwise have been successfully

returned, if it were not blocked by WebApp Secure. For example, the user might request

"database.sql" and actually get a 200 response from the server indicating that the file

exists and is accessible to everyone. However if the system is configured to mark the

".sql" extension as illegal, then WebApp Secure will block the request. This prevents the

sensitive file from potentially being exposed to an actual malicious user. If this incident

occurs, the server administrator should immediately remove the sensitive file or change

its permissions so it is no longer publicly accessible.

Honeypot Processors: File Processor: Incident - Suspicious Resource Enumeration

Complexity: Low (2.0)

Default Response: 1x = 5 day Block.

Cause: WebApp Secure has a list of file tokens which represent potentially sensitive files.

For example, developers will often rename source files with a ".bck" extension during

debugging, and sometimes they forget to delete the backup after they are done. Hackers

often look for these left over source files. WebApp Secure is configured to look for any

request to a file with a ".bck" extension (as well as any other configured extensions), and

trigger a Suspicious Filename incident if the file does not exist. Should the suspicious

filename incident be triggered several times, this incident will then be triggered.

Behavior: There are specific files that many web sites host, that contain valuable

information for a hacker. These files generally include data such as passwords, SQL

schema's, source code, etc... When hackers try to breach a site, they will often check to

see if they can locate some of these special files in order to make their jobs easier. For

example, if a hacker sees that the home page is called "index.php", they may try and

request "index.php.bak", because if it exists, it will be returned as raw source code. This

is usually an effort to exploit a "Predictable Resource Location" vulnerability. Automated

scanners will generally test all of these types of extensions (.bck, .bak, .zip, .tar, .gz, etc.)

against every legitimate file that is located through simple spidering. The first few times

a user requests a filename containing a suspicious token, they will only get "Suspicious

Filename" incidents. However if they request a large volume of filenames with suspicious

tokens, then the "Suspicious Resource Enumeration" incident is generated. This incident

represents a user who is actively scanning the site with very aggressive tactics to find

unlinked and sensitive data.

NOTE: For information on the attack typesmentioned here, go to TheWeb

Application Security ConsortiumWeb Site and search for the attack name to

learnmore about it.

Copyright © 2013, Juniper Networks, Inc.172

WebApp Secure 5.1.3

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

Honeypot Processors: Hidden Input Form Processor

Many webmasters create forms which post to a common form handling service; using

hidden fields to indicate how the service should handle the data. A common hacking

technique is to look for these hidden parameters and see if there is any way to change

the behavior of the service by manipulating its input parameters. This processor is

responsible for injecting a fake hidden input into forms in HTML responses and ensuring

that when those values are posted back to the server, they have not been modified.

Table 16: Hidden Input Form Processor Configuration Parameters

Description
Default
ValueTypeParameter

Basic

Whether traffic should be passed through this processor.TrueBooleanProcessor Enabled

Advanced

The possible hidden inputs on a page.CollectionCollectionHidden Input Parameter

Whether to inject hidden inputs into HTML forms.TrueBooleanInject Input Enabled

The maximum number of fake hidden parameters that will
be added to any given URL.

3IntegerMaximum Injections

Whether to remove the fake input value from the posted
form results before proxying the request to the backend
servers. This should only be turned off if there is some
additional security implemented on the form, where its
contents are signed on the client and validated on the server.

TrueBooleanStrip Fake Input

The user submitted the form and the value of the injected
parameter is not what was expected.

TrueBooleanIncident: Hidden Parameter
Manipulation

The user submitted the form and the value of the injected
parameter is not what was expected. It was also modified
to post a file.

TrueBooleanIncident: Hidden Input Type
Manipulation

Honeypot Processors: Hidden Input Form Processor: Incident - Parameter Type
Manipulation

Complexity: High (4.0)

Default Response: 1x = Permanent Clear Inputs.

Cause: WebApp Secure inspects outgoing traffic for HTML forms with a "POST" method

type. Forms that post to a local URL (within the same domain), will be modified to include

a fake hidden input with a defined value. The input is intended to look as though it was

always part of the form, and is often selected to appear vulnerable (such as naming the

173Copyright © 2013, Juniper Networks, Inc.

Chapter 29: Honeypot Processors

input 'debug' or 'loglevel' and giving it a numerical or Boolean value). The input will

however, always be assigned a value that can be represented as a string of characters

(in other words, not binary data). The "Parameter Type Manipulation" incident is triggered

whenever the fake hidden input is modified from its originally assigned value in order to

submit a multipart file.

Behavior: Modifying the inputs of a page is the foundation of a large variety of attack

vectors. Basically, if you want to get the backend server to do something different, you

need to supply different input values (either by cookie, query string, url, or form

parameters). Depending on what value the user chose for the input, the attack could fall

under large number of vectors, including "Buffer Overflow", "XSS", "Denial of Service",

"Fingerprinting", "Format String", "HTTP Response Splitting", "Integer Overflow", and

"SQL injection" among many others. Unlike a normal "Hidden Parameter Manipulation"

incident, this version is triggered when the user changes the encoding of the form and

submits the hidden input as a file post. This is likely in an attempt to either achieve a

"Buffer Overflow", or to exploit a filter evasion weakness, that might have otherwise

blocked the value being submitted. A common practice is to first spider the website, then

test every single input on the site for a specific set of vulnerabilities. For example, the

user might first index the site, then visit each page on the site, then test every exposed

input (cookie, query string, and form inputs) with a list of SQL injection tests. These tests

are designed to break the resulting page if the input is vulnerable. As such, the entire

process (which can involve thousands of requests) can be automated and return a clean

report on which inputs should be targeted. Because WebApp Secure injects several fake

inputs, a spider that tests all inputs will eventually test the fake input as well. This means

that if there is a large volume of this incident, it is likely due to such an automated process.

It should be assumed that the values tested against the fake input, have also been tested

against the rest of the inputs on the site.

NOTE: For information on the attack typesmentioned here, go to TheWeb

Application Security ConsortiumWeb Site and search for the attack name to

learnmore about it.

Honeypot Processors: Hidden Input Form Processor: Incident - Hidden Parameter
Manipulation

Complexity: Medium (3.0)

DefaultResponse: 1x = Slow Connection 2-6 seconds. 2x = Logout User. 3x = Clear Inputs.

Cause: WebApp Secure inspects outgoing traffic for HTML forms with a "POST" method

type. Forms that post to a local URL (within the same domain), will be modified to include

a fake hidden input with a defined value. The input is intended to look as though it was

always part of the form, and is often selected to appear vulnerable (such as naming the

input 'debug' or 'loglevel' and giving it a numerical or Boolean value). The "Hidden

Parameter Manipulation" incident is triggered whenever the fake hidden input is modified

from its originally assigned value.

Copyright © 2013, Juniper Networks, Inc.174

WebApp Secure 5.1.3

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

Behavior: Modifying the inputs of a page is the foundation of a large variety of attack

vectors. Basically, if you want to get the backend server to do something different, you

need to supply different input values (either by cookie, query string, url, or form

parameters). Depending on what value the user chose for the input, the attack could fall

under large number of vectors, including "Buffer Overflow", "XSS", "Denial of Service",

"Fingerprinting", "Format String", "HTTP Response Splitting", "Integer Overflow", and

"SQL injection" among many others. A common practice is to first spider the website,

then test every single input on the site for a specific set of vulnerabilities. For example,

the user might first index the site, then visit each page on the site, then test every exposed

input (cookie, query string, and form inputs) with a list of SQL injection tests. These tests

are designed to break the resulting page if the input is vulnerable. As such, the entire

process (which can involve thousands of requests) can be automated and return a clean

report on which inputs should be targeted. Because WebApp Secure injects several fake

inputs, a spider that tests all inputs will eventually test the fake input as well. This means

that if there is a large volume of this incident, it is likely due to such an automated process.

It should be assumed that the values tested against the fake input, have also been tested

against the rest of the inputs on the site.

NOTE: For information on the attack typesmentioned here, go to TheWeb

Application Security ConsortiumWeb Site and search for the attack name to

learnmore about it.

Honeypot Processors: Hidden Link Processor

When trying to exploit a site, hackers will often scan the contents of the site in search of

directories and files that are of interest. Because this activity is done at the source level,

the hacker finds every file referenced, whereas when a user views a web site, they can

only see the links that are visible according to the HTML. This processor injects a fake

link into documents that references a file that looks interesting. The link is injected in

such a way that prevents it from being rendered when the browser loads the page. This

means that no normal user would ever find/click on the link, but that a scanner or hacker

who is looking at the source code likely will.

Table 17: Hidden Link Processor Configuration Parameters

DescriptionDefault ValueTypeParameter

Basic

Whether traffic should be passed through this
processor.

TrueBooleanProcessor Enabled

Advanced

The set of hidden links that can be injected into
the site.

Hidden LinksConfigurableHidden Links

Whether to inject the link into HTTP responses.TrueBooleanInject Link Enabled

175Copyright © 2013, Juniper Networks, Inc.

Chapter 29: Honeypot Processors

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

Table 17: Hidden Link Processor Configuration Parameters (continued)

DescriptionDefault ValueTypeParameter

The user requested a directory index on one of the
fake parent directories of the linked file.

TrueBooleanIncident: Link Directory Indexing

The user requested a resource inside the fake
directory of the linked file.

TrueBooleanIncident: Link Directory Spidering

The user requested the fake linked resource.TrueBooleanIncident: Malicious Resource
Request

Honeypot Processors: Hidden Link Processor: Incident - Link Directory Indexing

Complexity: Low (2.0)

Default Response: 1x = Slow Connection 2-6 seconds and 1 day Block.

Cause: WebApp Secure injects a hidden link into pages on the protected web application.

This link is not exposed visually to users of the website. In order to find the link, a user

would need to manually inspect the source code of the page. If a user finds the hidden

link code in the HTML, and attempts to get a directory file listing from the directory the

link points to, this incident will be triggered.

Behavior: A common technique for hackers when scoping the attack surface of a website

is to spider the site and collect the locations of all of its pages. This is generally done

using a simple script that looks for URL's in the returned HTML of the home page, then

requests those pages and checks for URL's in their source, and so forth. Legitimate search

engine spiders will do this as well. But the difference between a legitimate spider and a

malicious user, is how aggressively they will use the newly discovered URL to derive other

URLs. This incident triggers when the user goes beyond just checking the linked URL, but

instead also attempts to get a file listing from the directory the URL points to. A legitimate

spider would not do this, because it is considered fairly invasive. This activity is generally

looking for a "Directory Indexing" weakness on the server, in an effort to locate unlinked

and possibly sensitive resources.

Honeypot Processors: Hidden Link Processor: Incident - Link Directory Spidering

Complexity: Low (2.0)

Default Response: 1x = Slow Connection 2-6 seconds and 5 day Block in 6 minutes.

Cause: WebApp Secure injects a hidden link into pages on the protected web application.

This link is not exposed visually to users of the website. In order to find the link, a user

would need to manually inspect the source code of the page. If a user finds the hidden

link code in the HTML, and attempts to request some other arbitrary file in the same fake

directory as the link, this incident will be triggered.

Behavior: A common technique for hackers when scoping the attack surface of a website

is to spider the site and collect the locations of all of its pages. This is generally done

Copyright © 2013, Juniper Networks, Inc.176

WebApp Secure 5.1.3

using a simple script that looks for URL's in the returned HTML of the home page, then

requests those pages and checks for URL's in their source, and so forth. Legitimate search

engine spiders will do this as well. But the difference between a legitimate spider and a

malicious user, is how aggressively they will use the newly discovered URL to derive other

URLs. This incident triggers when the user goes beyond just checking the linked URL, but

instead also attempts to request one or more arbitrary files inside the same directory as

the file referenced by the hidden link. A legitimate spider would not do this, because it is

considered fairly invasive. This activity is generally looking for a "Directory Indexing"

weakness on the server, or a "Predictable Resource Location" vulnerability, in an effort

to locate unlinked and possibly sensitive resources.

NOTE: For information on the attack typesmentioned here, go to TheWeb

Application Security ConsortiumWeb Site and search for the attack name to

learnmore about it.

Honeypot Processors: Hidden Link Processor: Incident - Malicious Resource Request

Complexity: Suspicious (1.0)

Default Response: 1x = Slow Connection 2-6 seconds and 5 day Block in 6 minutes.

Cause: WebApp Secure injects a hidden link into pages on the protected web application,

which is only discoverable through manual source code inspection. If a user discovers

the hidden link, and attempts to request the file it references, this incident will be triggered.

Behavior: When scoping the attack surface of a web site, hackers commonly spider the

site and collect the locations of all pages. Spidering can be performed with the assistance

of simple scripts that look for URLs in the returned HTML of the home page, then request

those pages and check for URLs in their source, and so forth. Legitimate search engine

spiders will do this as well — but the difference between legitimate spiders and malicious

users lies in how aggressively they will use the newly discovered URL to derive other URLs.

This incident triggers when the user simply requests the hidden link URL. Because this

can also be triggered by a legitimate search engine spider, this type of incident is not

considered malicious on its own.

Honeypot Processors: Query String Processor

Hackers tend to manipulate the values of query string parameters in order to get the

application to behave differently. The goal of this processor is to add fake query string

parameters to some of the links and forms in the page, and verify that they do not get

modified when accessed by the user.

Table 18: Query String Processor Configuration Parameters Parameter Type Default Value
Description

Description
Default
ValueTypeParameter

Basic

177Copyright © 2013, Juniper Networks, Inc.

Chapter 29: Honeypot Processors

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

Table 18: Query String Processor Configuration Parameters Parameter Type Default Value
Description (continued)

Description
Default
ValueTypeParameter

Whether traffic should be passed through this processor.TrueBooleanProcessor Enabled

Advanced

The collection of fake parameters to add to the links which already
have parameters.

CollectionCollectionFake Parameters

Whether to inject query string parameters on urls in HTTP responses.TrueBooleanInject Parameter
Enabled

Whether to inject query string parameters on urls in HTTP responses.3IntegerMaximum Injections

Some web sites use complex redirection rules or modify query string
parameters of static links using javascript on the client. In these
situations, the randomization of fake query parameter values may be
problematic. To resolve the issue, you can either update the list of fake
parameters so that it does not include randomized tokens, or you can
define a randomization token name here. If you define a randomization
token, then the data used to randomize which value is selected will be
transfered as an additional query string parameter by this name. It is
recommended that you leave this field empty unless you experience
a lot of fake positives on query parameter manipulation incidents
shortly after setting up Webapp Secure to protect a website.

[Not Set]StringRandomization Token

Whether to remove the fake input value from the query string before
proxying the request to the backend servers. This should only be turned
off if there is some additional security implemented on the site, where
links are signed on the client and validated on the server.

TrueBooleanStrip Fake Input

The user manually modified the value of a query string parameter.TrueBooleanIncident: Query
Parameter Manipulation

HoneypotProcessors:QueryStringProcessor: Incident -QueryParameterManipulation

Complexity: Low (2.0)

Default Response: 3x = Slow Connection 2-6 seconds. 5x = 1 day Clear Inputs.

Cause: WebApp Secure injects a fake query parameter into some of the links of the

protected web site. This query parameter has a known value, and should never change,

because it is not part of the actual web application. If a user modifies the query parameter

value, this incident will be triggered.

Behavior: Query parameters represent the most visible form of user input a web application

exposes. They are clearly visible in the address bar, and can be easily changed by even

an inexperienced user. However most users do not attempt to change values directly in

the query string, unless they are trying to perform some action the website does not

Copyright © 2013, Juniper Networks, Inc.178

WebApp Secure 5.1.3

normally expose through its interface, or does not make sufficiently easy. Because it is

so easy for a normal user to accidentally change a query parameter, this incident alone

is not considered strictly malicious. However depending on the value that is submitted,

this could be part of a number of different exploit attempts, including "Buffer Overflow",

"XSS", "Denial of Service", "Fingerprinting", "Format String", "HTTP Response Splitting",

"Integer Overflow", and "SQL injection".

NOTE: For information on the attack typesmentioned here, go to TheWeb

Application Security ConsortiumWeb Site and search for the attack name to

learnmore about it.

Honeypot Processors: Robots Processor

The Robots.txt proxy processor is responsible for catching malicious spiders that do not

behave in accordance with established standards for spidering. Hackers often utilize the

extra information sites expose to spiders, and then use that information to access

resources normally not linked from the public site. Because this activity is effectively

breaking established standards for spidering, this processor will also identify hackers

who are using the information maliciously.

Table 19: Robots Processor Configuration Parameters

DescriptionDefault ValueTypeParameter

Basic

Whether traffic should be passed through this processor.TrueBooleanProcessor Enabled Boolean

Advanced

The path to a fake directory to add to the disallow rules in
the robots.txt file. This path should be completely fake
and not overlap with actual directories.

RandomStringFake Disallowed Directories

The user requested a resource which was restricted in the
spider rules file, indicating this user is not a good spider,
but is spidering the site anyway.

TrueBooleanIncident: Malicious Spider
Activity

Honeypot Processors: Robot Processor: Incident - Malicious Spider Activity

Complexity: Low (2.0)

Default Response: 1x = Captcha and Slow Connection 2-6 seconds. 6x = 1 day Block.

Cause: One of the standard resources that just about every website should expose is

called robots.txt. This resource is used by search engines to instruct them on how to

spider the website. Two of the more important directives are "allow" and "disallow".

These directives are used to identify which directories a spider should index, and which

directories it should stay away from. Good practice for any website is to lock down any

179Copyright © 2013, Juniper Networks, Inc.

Chapter 29: Honeypot Processors

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

resource that should not be exposed. However some web masters simply add a "disallow"

statement so that those resources do not get indexed and therefore are never found by

users. This technique does not work, because attackers will often access robots.txt and

intentionally traverse the "disallow" directories in search of vulnerabilities. So in effect,

the listing of such directories is basically pointing hackers in the direction of the most

sensitive resources on the site. WebApp Secure will intercept requests for robots.txt and

either generate a completely fake robots.txt file (if one does not exist), or modify the

existing version by injecting a fake directory as a disallow directive. The "Malicious Spider

Activity" incident is triggered whenever a user attempts to request a resource in the fake

disallow directory, or attempts to perform a directory index on the disallow directory.

Behavior: Requesting robots.txt occurs in two different scenarios. The first is where a

legitimate spider, such as Google, attempts to index the website. In this case, the robots.txt

file will be requested, and no requests from that client will be issued to the disallow

directories. In the second scenario, a malicious user requests robots.txt and then indexes

some or all of the disallow directories. In this specific case, the user has requested

robots.txt to obtain the list of disallow directories, and then started searching for resources

in those directories. This activity is performed to find a "Predictable Resource Location"

vulnerability. Because spidering a directory tends to be a noisy process (lots of requests),

there are likely to be many of these incidents if there are any. The sum of occurrences of

this incident represent the type of activity the user is performing to index a directory. The

set of URL's for which this incident is triggered, represent the filenames the malicious

user is testing for. For example, if they were searching for PDF files that contain stock

information, there would be an incident for each filename with a PDF extension they tried

to request. There is a very strong chance that if the filename was requested in the disallow

directory, it was probably requested in every other directory on the site as well. This type

of behavior is generally observed while the client is attempting to establish the overall

attack surface of the website (or in the case of a legitimate spider, they are attempting

to establish the desired index limitations).

Copyright © 2013, Juniper Networks, Inc.180

WebApp Secure 5.1.3

CHAPTER 30

Activity Processors

• Activity Processors on page 182

• Activity Processors: Custom Authentication Processor: Incident - Auth Input Parameter

Tampering on page 183

• Activity Processors: Custom Authentication Processor: Incident - Auth Query Parameter

Tampering on page 184

• Activity Processors: Custom Authentication Processor: Incident - Auth Cookie

Tampering on page 184

• Activity Processors: Custom Authentication Processor: Incident - Authentication Brute

Force on page 185

• Activity Processors: Custom Authentication Processor: Incident - Auth Invalid

Login on page 185

• Activity Processors: Cookie Protection Processor on page 186

• Activity Processors: Cookie Protection Processor: Incident - Application Cookie

Manipulation on page 187

• Activity Processors: Error Processor on page 187

• Activity Processors: Error Processor: Incident - Illegal Response Status on page 192

• Activity Processors: Error Processor: Incident - Suspicious Response Status on page 193

• Activity Processors: Error Processor: Incident - Unexpected Response Status on page 193

• Activity Processors: Error Processor: Incident - Unknown Common Directory

Requested on page 194

• Activity Processors: Error Processor: Incident - Unknown User Directory

Requested on page 194

• Activity Processors: Error Processor: Incident - Common Directory

Enumeration on page 195

• Activity Processors: Error Processor: Incident - User Directory Enumeration on page 195

• Activity Processors: Error Processor: Incident - Resource Enumeration on page 196

• Activity Processors: Header Processor on page 197

• Activity Processors: Header Processor: Incident - Duplicate Request Header on page 198

• Activity Processors: Header Processor: Incident - Duplicate Response Header on page 199

• Activity Processors: Header Processor: Incident - Illegal Request Header on page 199

181Copyright © 2013, Juniper Networks, Inc.

• Activity Processors: Header Processor: Incident - Illegal Response Header on page 200

• Activity Processors: Header Processor: Incident - Missing All Headers on page 200

• Activity Processors: Header Processor: Incident - Missing Host Header on page 200

• Activity Processors: Header Processor: Incident - Missing Request Header on page 201

• Activity Processors: Header Processor: Incident - Missing Response Header on page 201

• Activity Processors: Header Processor: Incident - Missing User Agent Header on page 202

• Activity Processors: Header Processor: Incident - Request Header Overflow on page 202

• Activity Processors: Header Processor: Incident - Unexpected Request

Header on page 203

• Activity Processors: Method Processor on page 203

• Activity Processors: Method Processor: Incident - Illegal Method Requested on page 204

• Activity Processors: Method Processor: Incident - Unexpected Method

Requested on page 205

• Activity Processors: Method Processor: Incident - Missing HTTP Protocol on page 205

• Activity Processors: Method Processor: Incident - Unknown HTTP Protocol on page 206

Activity Processors

The custom authentication processor is designed to add strong and secure authentication

to any page in the protected application. The authentication processor also logs malicious

activity like invalid logins and modifying cookies or query parameters.

Table 20: CustomAuthentication Processor Configuration Parameters

Description
Default
ValueTypeParameter

Basic

Whether traffic should be passed through this processor.TrueBooleanProcessor Enabled

The list of valid user accounts to use for this processor.[collection:0]CollectionUser Accounts

Advanced

The name of the authentication cookie.RandomStringAuth Cookie Name

The number of seconds a login page can be used before it
times out. This is intended to prevent attacks based on
watching network traffic. It should be as short as is tolerable.

10 MinutesIntegerLogin Page Timeout

The name of the Javascript resource that contains the MD5
code.

RandomStringMD5 Script Name

The number of seconds a session can be idle before it times
out.

1 HourIntegerSession Timeout

Copyright © 2013, Juniper Networks, Inc.182

WebApp Secure 5.1.3

Table 20: CustomAuthentication Processor Configuration Parameters (continued)

Description
Default
ValueTypeParameter

The user has modified the cookie used to manage custom
authentication, probably in an attempt to expose sensitive
information or bypass access restrictions.

TrueBooleanIncident: Auth Cookie
Tampering

The user has modified the parameters used to manage custom
authentication, probably in an attempt to expose sensitive
information or bypass the authentication mechanism.

TrueBooleanIncident: Auth Input
Parameter Tampering

The user has attempted to login but supplied invalid
credentials, this could be perfectly normal, but large numbers
of this type of incident would indicate a brute force attack.

TrueBooleanIncident: Auth Invalid Login

The user has modified the query parameters that were
submitted when the user was asked to originally login. This
is likely in an attempt to probe the authentication mechanism
for exploits.

TrueBooleanIncident: Auth Query
Parameter Tampering

ActivityProcessors:CustomAuthenticationProcessor: Incident -Auth InputParameter
Tampering

Complexity: Medium (3.0)

Default Response: 3x = Warn User, 5x = Captcha. 9x = 1 day Clear Inputs.

Cause: WebApp Secure provides the capability of password protecting any URL on the

protected site. This means that if a user attempts to access that URL, they will be

prompted to enter a username and password before the original request is allowed to

be completed. This incident is triggered when a user attempts to manipulate the hidden

form parameters used to handle authentication.

Behavior: Manipulating hidden input fields in a form, for whatever reason is generally

considered malicious. In this case, since the form is being used to password protect a

resource, it is likely that the attacker is trying to bypass the authentication by finding a

vulnerability in the authentication mechanism. Depending on the modified value they

submit, they could be attempting to launch a "Buffer Overflow", "XSS", "Denial of Service",

"Fingerprinting", "Format String", "HTTP Response Splitting", "Integer Overflow", or "SQL

injection" attack among many others.

NOTE: For information on the attack typesmentioned here, go to TheWeb

Application Security ConsortiumWeb Site and search for the attack name to

learnmore about it.

183Copyright © 2013, Juniper Networks, Inc.

Chapter 30: Activity Processors

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

ActivityProcessors:CustomAuthenticationProcessor: Incident -AuthQueryParameter
Tampering

Complexity: Low (2.0)

Default Response: 1x = Warn User. 2x = 1 day Clear Inputs.

Cause: WebApp Secure provides the capability of password protecting any URL on the

protected site. This means that if a user attempts to access that URL, they will be

prompted to enter a username and password before the original request is allowed to

be completed. This incident is triggered when a user attempts to manipulate the query

parameters that were submitted with the original unauthenticated request, after

authentication has been completed.

Behavior: Manipulating query parameters after authenticating is not very easy to do

without a 3rd party tool, and has no legitimate purpose. As such, this type of behavior is

most likely related to a user who is trying to smuggle a malicious payload through a

network or web firewall. Depending on the value the user submits for the modified query

string, they could be attempting a "Buffer Overflow", "XSS", "Denial of Service",

"Fingerprinting", "Format String", "HTTP Response Splitting", "Integer Overflow", or "SQL

injection" attack among many others. One interesting note is that the user has actually

authenticated in order to cause this incident. As such, it is also likely that the account for

which the user authenticated has been compromised and should be updated (with a

new password). Although it is possible that the true owner of the account has executed

the malicious action, and should therefore potentially be banned.

NOTE: For information on the attack typesmentioned here, go to TheWeb

Application Security ConsortiumWeb Site and search for the attack name to

learnmore about it.

Activity Processors: CustomAuthentication Processor: Incident - Auth Cookie
Tampering

Complexity: Medium (3.0)

Default Response: 1x = Warn User, 2x = Captcha. 3x = 1 day Strip Inputs.

Cause: WebApp Secure provides the capability of password protecting any URL on the

protected site. This means that if a user attempts to access that URL, they will be

prompted to enter a username and password before the original request is allowed to

be completed. This incident is triggered when a user attempts to manipulate the cookie

used to maintain the authenticated session once the user logs in.

Behavior: Manipulating cookies is not easy to do without a 3rd party tool, and has no

legitimate purpose. As such, this type of behavior is most likely related to a user who is

trying to perform a "Credential/Session Prediction" attack, or execute an input based

attack such as a "Buffer Overflow", "XSS", "Denial of Service", "Fingerprinting", "Format

String", "HTTP Response Splitting", "Integer Overflow", or "SQL injection" attack among

Copyright © 2013, Juniper Networks, Inc.184

WebApp Secure 5.1.3

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

many others. One interesting note is that the user has actually authenticated in order to

cause this incident. As such, it is also likely that the account for which the user

authenticated has been compromised and should be updated (with a new password).

Although it is possible that the true owner of the account has executed the malicious

action, and should therefore potentially be banned.

NOTE: For information on the attack typesmentioned here, go to TheWeb

Application Security ConsortiumWeb Site and search for the attack name to

learnmore about it.

ActivityProcessors:CustomAuthenticationProcessor: Incident -AuthenticationBrute
Force

Complexity: Medium (3.0)

Default Response: 1x = Captcha. 2x = 1 day Block.

Cause: WebApp Secure provides the capability of password protecting any URL on the

protected site. This means that if a user attempts to access that URL, they will be

prompted to enter a username and password before the original request is allowed to

be completed. This incident is triggered when a user submits a large volume of invalid

username and password combinations.

Behavior: Submitting a single invalid username or password is likely a user typo, and is

not necessarily malicious. However it does represent a security event, and a large number

of these events may represent a more serious threat such as "Brute Force". It is possible

however, that the invalid username or password might also be an attack vector targeted

at the authentication mechanism such as a "Buffer Overflow", "XSS", "Denial of Service",

"Fingerprinting", "Format String", "HTTP Response Splitting", "Integer Overflow", or "SQL

injection" attack among many others. This incident is a higher level incident that gets

tripped when dozens of "Auth Invalid Login" incidents are created. As such, it does not

contain much information about the actual accounts being targeted. If more detail is

desired, the underlying "Auth Invalid Login" incidents should be reviewed. These incidents

are only suspicious (not considered malicious on their own), so the filtering option will

need to be set to show non malicious incidents.

NOTE: For information on the attack typesmentioned here, go to TheWeb

Application Security ConsortiumWeb Site and search for the attack name to

learnmore about it.

Activity Processors: CustomAuthentication Processor: Incident - Auth Invalid Login

Complexity: Suspicious (1.0)

Default Response: 20x = Authentication Brute Force Incident.

185Copyright © 2013, Juniper Networks, Inc.

Chapter 30: Activity Processors

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

Cause: WebApp Secure provides the capability of password protecting any URL on the

protected site. This means that if a user attempts to access that URL, they will be

prompted to enter a username and password before the original request is allowed to

be completed. This incident is triggered when a user submits an invalid username or

password. This incident alone is not necessarily malicious, as it is possible for a legitimate

user to accidentally type their username or password incorrectly.

Behavior: Submitting a single invalid username or password is likely a user typo, and is

not necessarily malicious. However it does represent a security event, and a large number

of these events may represent a more serious threat such as "Brute Force". It is possible

however, that the invalid username or password might also be an attack vector targeted

at the authentication mechanism such as a "Buffer Overflow", "XSS", "Denial of Service",

"Fingerprinting", "Format String", "HTTP Response Splitting", "Integer Overflow", or "SQL

injection" attack among many others. So if the value specified for the username and

password does not look like a legitimate username and password (they are too long, or

contain unusual characters), then this incident may be more serious. However, even in

this case, the user is more likely to submit dozens of invalid credentials (not just one),

and there is a different incident for that scenario.

NOTE: For information on the attack typesmentioned here, go to TheWeb

Application Security ConsortiumWeb Site and search for the attack name to

learnmore about it.

Activity Processors: Cookie Protection Processor

This processor is responsible for protecting a set of application cookies from modification

or assignment by the user.

Table 21: Cookie Protection Processor Configuration Parameters

DescriptionDefault ValueTypeParameter

Basic

Whether traffic should be passed through this processor.TrueBooleanProcessor Enabled

The name of the protected cookie.CollectionCollectionProtected Cookies

Advanced

The suffix to add to the protected cookie names when
generating a signature cookie. For example, if the
protected cookie is PHPSESSID and the suffix is _MX, then
the signature for PHPSESSID would be in a cookie named
PHPSESSID_MX.

RandomStringProtected Cookie Signature
Suffix

The user either attempted to modify one of the protected
cookies, or attempted to assign a new value.

TrueBooleanIncident: Application Cookie
Manipulation

Copyright © 2013, Juniper Networks, Inc.186

WebApp Secure 5.1.3

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

Activity Processors: Cookie Protection Processor: Incident - Application Cookie
Manipulation

Complexity: Low (2.0)

Default Response: 1x = Warn User and Logout User. 2x = 5 day Clear Inputs.

Cause: WebApp Secure is designed to provide additional protection to cookies used by

the web application for tracking user sessions. This is done by issuing a signature cookie

any time the web application issues a "protected cookie"(which cookies to protect is

defined in configuration). The signature cookie ties the application cookie (such as

PHPSESSID) to the WebApp Secure session cookie. If any of the 3 cookies are modified

(WebApp Secure session cookie, signature cookie, or the actual application cookie), then

this incident will be triggered, and the application cookie will be terminated (effectively

terminating the users session). This prevents any users from manually creating a session

cookie, hijacking another users cookie, or manipulating an existing cookie.

Behavior: Manipulation of cookies is generally performed in order to hijack another user's

session. However because cookies represent another type of application input,

modifications could also be performed to attempt other exploits. If the modified value

resembles a legitimate value for the application cookie, then this is likely a session hijacking

attempt. If the cookie contains other values that are clearly not valid, then it is more then

likely an attack on generic application inputs such as a "Buffer Overflow", "XSS", "Denial

of Service", "Fingerprinting", "Format String", "HTTP Response Splitting", "Integer

Overflow", and "SQL injection" attack among many others.

NOTE: For information on the attack typesmentioned here, go to TheWeb

Application Security ConsortiumWeb Site and search for the attack name to

learnmore about it.

Activity Processors: Error Processor

Errors and their contents play a big part in hacking a website. When a hacker obtains an

error message, it provides useful information, the very least of which is that the attacker

found a way to do something unintended in the web application and the server executed

code to handle it. As such, when a user attempts to hack a website, they frequently induce

and receive error messages. Often these error messages are very unusual and are not

common when a normal user visits the site. For example, the error code 400 (Bad

Request) is returned when the raw data in a request does not follow the HTTP standards.

While it is possible to get a 400 error by typing invalid characters into the URL, the majority

of these errors are caused by 3rd party software (usually not a browser), improperly

communicating with the server. A hacker might for example, manually construct a

malicious request and forget to include the "Host" header. The goal of this processor is

to record unusual and unexpected errors as incidents. This processor will also monitor

all 404 errors and attempt to identify Common Directory Enumeration and User Directory

Enumeration.

187Copyright © 2013, Juniper Networks, Inc.

Chapter 30: Activity Processors

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

Table 22: Error Processor Configuration Parameters

DescriptionDefault ValueTypeParameter

Basic

Whether traffic should be
passed through this processor.

TrueBooleanProcessor Enabled

Whether to attempt to
identify errors in the protected
web applications so that they
can be ignored.

TrueBooleanLegitimate Error Detection
Enabled

Advanced

The number of seconds to
cache an error condition so
that subsequent matching
error conditions from other
users can be identified. The
less traffic the site sees on a
regular basis, the higher this
value must be. The
recommended default is for
sites that see several
thousand users a day or more.

43200 (12 hours)IntegerError Cache Expiration

The number of error
conditions to cache for each
level of specificity. If too many
error conditions are
encountered in a short period
of time, this will prevent the
tracking code from consuming
too much memory. Errors at
the full URL with query string
specificity will cache this
many conditions, at the URL
only level it will cache twice
this many, and at the filename
level, it will cache 3 times as
many as this value.

50IntegerError Cache Size

The number of seconds that
an error must not be
encountered on a filename
regardless of its location
before an ignored error starts
being recorded again.

259200 (3 days)IntegerFilename Only Expiration

Copyright © 2013, Juniper Networks, Inc.188

WebApp Secure 5.1.3

Table 22: Error Processor Configuration Parameters (continued)

DescriptionDefault ValueTypeParameter

The maximum number of
unique users who can hit a
specific filename, regardless
of location, and get the same
error before it stops being
recorded as suspicious (zero
= do not track based on
filename).

70IntegerFilename Only Threshold

The number of seconds that
an error must not be
encountered on the full URL
with query string before an
ignored error starts being
recorded again.

259200 (3 days)IntegerURL With Query Expiration

The maximum number of
unique users who can hit a full
URL including query string and
get the same error before it
stops being recorded as
suspicious (zero = do not
track based on full url).

30IntegerURL With Query Threshold

The number of seconds that
an error must not be
encountered on the URL
excluding query string before
an ignored error starts being
recorded again.

259200 (3 days)IntegerURL Without Query Expiration

The maximum number of
unique users who can hit a
URL excluding query string
and get the same error before
it stops being recorded as
suspicious (zero = do not
track based on url).

50IntegerURL Without Query Threshold

Continue.Error StatusConfigurable100 Continue

Switching Protocols.Error StatusConfigurable101 Switching Protocols

Processing.Error StatusConfigurable102 Processing

Multiple Choices.Error StatusConfigurable300 Multiple Choices

Moved Permanently.Error StatusConfigurable301 Moved Permanently

Found.Error StatusConfigurable302 Found

See Other.Error StatusConfigurable303 See Other

189Copyright © 2013, Juniper Networks, Inc.

Chapter 30: Activity Processors

Table 22: Error Processor Configuration Parameters (continued)

DescriptionDefault ValueTypeParameter

Not ModifiedError StatusConfigurable304 Not Modified

Use Proxy.Error StatusConfigurable305 Use Proxy

Switch Proxy.Error StatusConfigurable306 Switch Proxy

Switch Proxy.Error StatusConfigurable307 Temporary Redirect

Bad RequestError StatusConfigurable400 Bad Request

Unauthorized.Error StatusConfigurable401 Unauthorized

Payment Required.Error StatusConfigurable402 Payment Required

ForbiddenError StatusConfigurable403 Forbidden

Not FoundError StatusConfigurable404 Not Found

Not allowed.Error StatusConfigurable405 Method Not Allowed

Not acceptable.Error StatusConfigurable406 Not Acceptable

Proxy Authentication RequiredError StatusConfigurable407 Proxy Authentication
Required

Request Timeout.Error StatusConfigurable408 Request Timeout

Conflict.Error StatusConfigurable409 Conflict

Gone.Error StatusConfigurable410 Gone

Length Required.Error StatusConfigurable411 Length Required

Precondition Failed.Error StatusConfigurable412 Precondition Failed

Request Entity Too Large.Error StatusConfigurable413 Request Entity Too Large

Request-URI Too Long.Error StatusConfigurable414 Request-URI Too Long

Unsupported Media Type.Error StatusConfigurable415 Unsupported Media Type

Requested Range Not
Satisfiable.

Error StatusConfigurable416 Requested Range Not
Satisfiable

Expectation Failed.Error StatusConfigurable417 Expectation Failed

418 I'm a teapotError StatusConfigurable418 I'm a teapot

Copyright © 2013, Juniper Networks, Inc.190

WebApp Secure 5.1.3

Table 22: Error Processor Configuration Parameters (continued)

DescriptionDefault ValueTypeParameter

Unprocessable Entity.Error StatusConfigurable422 Unprocessable Entity

Locked.Error StatusConfigurable423 Locked

Failed Dependency.Error StatusConfigurable424 Failed Dependency

Unordered CollectionError StatusConfigurable425 Unordered Collection

Upgrade RequiredError StatusConfigurable426 Upgrade Required

Retry WithError StatusConfigurable449 Retry With

Blocked by Windows Parental
Controls.

Error StatusConfigurable450 Blocked by Windows
Parental Controls

Internal Server ErrorError StatusConfigurable500 Internal Server Error

Not ImplementedError StatusConfigurable501 Not Implemented

Bad GatewayError StatusConfigurable502 Bad Gateway

Service UnavailableError StatusConfigurable503 Service Unavailable

Gateway TimeoutError StatusConfigurable504 Gateway Timeout

HTTP Version Not SupportedError StatusConfigurable505 HTTP Version Not
Supported

Variant Also NegotiatesError StatusConfigurable506 Variant Also Negotiates

Insufficient StorageError StatusConfigurable507 Insufficient Storage

Bandwidth Limit ExceededError StatusConfigurable509 Bandwidth Limit
Exceeded

Not ExtendedError StatusConfigurable510 Not Extended

The user issued a request that
resulted in an error status
code that is considered
suspicious and possibly
malicious.

TrueBooleanIncident: Illegal Response
Status

191Copyright © 2013, Juniper Networks, Inc.

Chapter 30: Activity Processors

Table 22: Error Processor Configuration Parameters (continued)

DescriptionDefault ValueTypeParameter

The user issued a request that
resulted in a known error
status code generally involved
in malicious behavior. On its
own this is not enough to
classify abuse, but patterns of
this indicator may lead to
higher level malicious
incidents.

TrueBooleanIncident: Suspicious
Response Status

The user issued a request that
resulted in an unknown error
status code and could
represent a successful exploit.

TrueBooleanIncident: Unexpected
Response Status

The user has requested a
directory that does not exist.
The directory is in a list of
common directory names, so
it is likely that this request is
in an attempt to find a
directory that is not linked
from the site.

TrueBooleanIncident: Unknown Common
Directory Requested

The user has requested a
directory for a specific system
user that does not exist. The
username is in a list of
common usernames, so it is
likely that this request is in an
attempt to identify a user
account that is not linked from
the site.

TrueBooleanIncident: Unknown User
Directory Requested

Activity Processors: Error Processor: Incident - Illegal Response Status

Complexity: Suspicious (1.0)

Default Response: None.

Cause: WebApp Secure monitors the various status codes returned by the protected

website and compares them to a configurable list of know and acceptable status codes.

Some status codes are expected during normal usage of the site (such as 200 - OK, or

403 - Not Modified), but some status codes are much less common for a normal user

(such as 500 - Server Error, or 404 - File Not Found). When a user issues a request that

results in a status code that is configured as illegal, then this incident will be triggered.

Behavior: In the process of attempting to find vulnerabilities on a web server, hackers will

often encounter errors. Just a single error or two is likely not a problem, because even

legitimate users accidentally type a URL incorrectly on occasion. However when excessive

numbers of unexpected status codes are returned, the behavior of the user can be

Copyright © 2013, Juniper Networks, Inc.192

WebApp Secure 5.1.3

narrowed down and classified as malicious. The actual vulnerability an attacker is looking

for, can be identified through the status codes they are being returned. For example, if

the user is getting a lot of 404 errors, they are likely searching for unlinked files

("Predictable Resource Location"). If the user is getting a lot of 500 errors, they may be

trying to establish a successful "SQL Injection" or "XSS150" vulnerability.

Activity Processors: Error Processor: Incident - Suspicious Response Status

Complexity: Suspicious (1.0)

Default Response: 10x 404 = Resource Enumeration Incident.

Cause: WebApp Secure monitors the various status codes returned by the protected

website and compares them to a configurable list of know and acceptable status codes.

Some status codes are expected during normal usage of the site (such as 200 - OK, or

403 - Not Modified), but some status codes are much less common for a normal user

(such as 500 - Server Error, or 404 - File Not Found). When a user issues a request which

results in a status code that is not known and does not have any associated configuration,

this incident will be triggered.

Behavior: In the process of attempting to find vulnerabilities on a web server, hackers will

often encounter errors. Just a single error or two is likely not a problem, because even

legitimate users accidentally type a URL incorrectly on occasion. However when excessive

numbers of unexpected status codes are returned, the behavior of the user can be

narrowed down and classified as malicious. The actual vulnerability the attacker is looking

for can be identified through the status codes they are being returned. For example, if

the user is getting a lot of 404 errors, they are likely searching for unlinked files

("Predictable Resource Location"). If the user is getting a lot of 500 errors, they may be

trying to establish a successful "SQL Injection" or "XSS" vulnerability. In the case of this

incident, the user is getting an unexpected status code. This is likely because of a bug in

the web application which the user has found and is attempting to exploit. The URL this

incident is created for, should be reviewed to determine why it would be responding with

a non standard status code. If the status code is intentionally non-standard, but is

acceptable behavior, then the custom status code should be added to the list of known

and accepted status codes in config.

Activity Processors: Error Processor: Incident - Unexpected Response Status

Complexity: Suspicious (1.0)

Default Response: None.

Cause: WebApp Secure monitors the various status codes returned by the protected

website and compares them to a configurable list of known and acceptable status codes.

Some status codes are expected during normal usage of the site (such as "200 OK" or

"304 Not Modified"), but some status codes are much less common for a normal user

(such as "500 Internal Server Error" or "404 Not Found"). When a user issues a request

which results in a status code that is not known and does not have any associated

configuration, this incident will be triggered.

193Copyright © 2013, Juniper Networks, Inc.

Chapter 30: Activity Processors

Behavior: In the process of attempting to find vulnerabilities on a web server, hackers will

often encounter errors. Just a single error or two is likely not a problem, because even

legitimate users accidentally type a URL incorrectly on occasion. However when excessive

numbers of unexpected status codes are returned, the behavior of the user can be

narrowed down and classified as malicious. The actual vulnerability the attacker is looking

for can be identified through the status codes they are being returned. For example, if

the user is getting a lot of 404 errors, they are likely searching for unlinked files

("Predictable Resource Location"). If the user is getting a lot of 500 errors, they may be

trying to establish a successful "SQL Injection" or "XSS" vulnerability. In the case of this

incident, the user is getting an unexpected status code. This is likely because of a bug in

the web application which the user has found and is attempting to exploit. The URL this

incident is created for, should be reviewed to determine why it would be responding with

a non standard status code. If the status code is intentionally non-standard, but is

acceptable behavior, then the custom status code should be added to the list of known

and accepted status codes in config.

ActivityProcessors:ErrorProcessor: Incident -UnknownCommonDirectoryRequested

Complexity: Suspicious (1.0)

Default Response: 5x = Common Directory Enumeration Incident

Cause: This incident is triggered when a user requests a directory on the server that does

not exist, and that directory name is in a list of commonly used directory names (for

example: http://www.example.com/public/ where "public" is not a real directory).

Behavior: Often times, administrators will upload sensitive content onto a web server in

an obscure location and not link to that content anywhere on the site. The assumption

is that the content is private because no one will find it. However humans are somewhat

predictable, so it's actually quite common for two administrators to pick the same

"obscure" location to place sensitive content. As such, hackers have compiled a list of

the most commonly chosen directory names where sensitive content is often stored,

and they will basically test every name in the list to see if a site has a directory by that

name. If it does, the attacker is able to locate and obtain that sensitive content. An

example of a tool that allows attackers to quickly identify hidden directories is called

"DirBuster" (https://www.owasp.org/index.php/Category:OWASP_DirBuster_Project).

Activity Processors: Error Processor: Incident - UnknownUser Directory Requested

Complexity: Suspicious (1.0)

Default Response: 5x = User Directory Enumeration Incident

Cause: Many web servers allow the users on the system to maintain publicly accessible

web directories. These directories are generally accessible from the root directory of the

website followed by a tilde and the username. For example, if the web server had a user

named ‘george', that user could serve content from http://www.example.com/~george/.

This incident is triggered when an attacker requests a user directory on the server that

does not exist, and that user directory name is in a list of commonly used usernames (for

example: http://www.example.com/~root/ where "root" is not a real user directory).

Copyright © 2013, Juniper Networks, Inc.194

WebApp Secure 5.1.3

Behavior: Often times, administrators will upload sensitive content onto a web server in

an obscure location and not link to that content anywhere on the site. The assumption

is that the content is private because no one will find it. However humans are somewhat

predictable, so it's actually quite common for two administrators to pick the same

"obscure" location to place sensitive content. As such, hackers have compiled a list of

the most commonly chosen directory names where sensitive content is often stored,

and they will basically test every name in the list to see if a site has a directory by that

name. If it does, the attacker is able to locate and obtain that sensitive content. In this

specific case, the attacker is testing for default user directories for users with predictable

names (such as ‘root', ‘guest', ‘nobody', etc...). An example of a tool that allows attackers

to quickly identify hidden user directories is called "DirBuster"

(https://www.owasp.org/index.php/ Category:OWASP_DirBuster_Project).

Activity Processors: Error Processor: Incident - Common Directory Enumeration

Complexity: Medium (3.0)

Default Response: 1x = Slow Connection 2-6 seconds & Captcha, 2x = Slow Connection

2-6 seconds & 1 day Block

Cause: This incident is triggered when a user requests a directory on the server that does

not exist, and that directory name is in a list of commonly used directory names (for

example: http://www.example.com/public/ where "public" is not a real directory).

Specifically, this incident is triggered when the user requests many different commonly

named directories, as would be the case if they were testing for a large list of possible

directory names.

Behavior: Often times, administrators will upload sensitive content onto a web server in

an obscure location and not link to that content anywhere on the site. The assumption

is that the content is private because no one will find it. However humans are somewhat

predictable, so it's actually quite common for two administrators to pick the same

"obscure" location to place sensitive content. As such, hackers have compiled a list of

the most commonly chosen directory names where sensitive content is often stored,

and they will basically test every name in the list to see if a site has a directory by that

name. If it does, the attacker is able to locate and obtain that sensitive content. An

example of a tool that allows attackers to quickly identify hidden directories is called

"DirBuster" (https://www.owasp.org/index.php/Category:OWASP_DirBuster_Project).

Activity Processors: Error Processor: Incident - User Directory Enumeration

Complexity: Medium (3.0)

Default Response: 1x = Slow Connection 2-6 seconds & Captcha, 2x = Slow Connection

2-6 seconds & 1 day Block

Cause: Many web servers allow the users on the system to maintain publically accessible

web directories. These directories are generally accessible from the root directory of the

website followed by a tilde and the username. For example, if the web server had a user

named ‘george', that user could serve content from http://www.example.com/~george/.

This incident is triggered when an attacker requests a user directory on the server that

195Copyright © 2013, Juniper Networks, Inc.

Chapter 30: Activity Processors

does not exist, and that user directory name is in a list of commonly used usernames (for

example: http://www.example.com/~root/ where "root" is not a real user directory).

Specifically, this incident is triggered when an attacker requests many different username

directories, as would be the case if they were testing for a large list of possible usernames.

Behavior: Often times, administrators will upload sensitive content onto a web server in

an obscure location and not link to that content anywhere on the site. The assumption

is that the content is private because no one will find it. However humans are somewhat

predictable, so it's actually quite common for two administrators to pick the same

"obscure" location to place sensitive content. As such, hackers have compiled a list of

the most commonly chosen directory names where sensitive content is often stored,

and they will basically test every name in the list to see if a site has a directory by that

name. If it does, the attacker is able to locate and obtain that sensitive content. In this

specific case, the attacker is testing for default user directories for users with predictable

names (such as ‘root', ‘guest', ‘nobody', etc). An example of a tool that allows attackers

to quickly identify hidden user directories is called "DirBuster"

(https://www.owasp.org/index.php/ Category:OWASP_DirBuster_Project).

Activity Processors: Error Processor: Incident - Resource Enumeration

Complexity: Low (2.0)

Default Response: 1x = 5 day Block.

Cause: WebApp Secure has a list of file tokens which represent potentially sensitive files.

For example, developers will often rename source files with a ".bck" extension during

debugging, and sometimes they forget to delete the backup after they are done. Hackers

often look for these left over source files. WebApp Secure is configured to look for any

request to a file with a ".bck" extension (as well as any other configured extensions), and

trigger a Suspicious Filename incident if the file does not exist. Should the suspicious

filename incident be triggered several times, this incident will then be triggered.

Behavior: There are specific files that many web sites host, that contain valuable

information for a hacker. These files generally include data such as passwords, SQL

schema's, source code, etc. When hackers try to breach a site, they will often check to

see if they can locate some of these special files in order to make their jobs easier. For

example, if a hacker sees that the home page is called "index.php", they may try and

request "index.php.bak", because if it exists, it will be returned as raw source code. This

is usually an effort to exploit a "Predictable Resource Location68" vulnerability.

Automated scanners will generally test all of these types of extensions (.bck, .bak, .zip,

.tar, .gz, etc...) against every legitimate file that is located through simple spidering. The

first few times a user requests a filename containing a suspicious token, they will only

get "Suspicious Filename" incidents. However if they request a large volume of filenames

with suspicious tokens, then the "Suspicious Resource Enumeration" incident is generated.

This incident represents a user who is actively scanning the site with very aggressive

tactics to find unlinked and sensitive data.

Copyright © 2013, Juniper Networks, Inc.196

WebApp Secure 5.1.3

Activity Processors: Header Processor

A useful technique when attacking a site is to determine what software the site is using.

This is known as fingerprinting the server. There are many methods used, but the basic

idea is to look for signatures that identify various products. For example, it might be a

known signature that Apache always lists the Date response header before the

Last-Modified response header. If very few other servers follow this same pattern, then

checking to see which header comes first could be used as a means of identifying if

Apache is being used or not. Other key methods include looking forServerorX-Powered-By

headers that actually specify the software being used. The goal of this processor is to

eliminate headers as a means of fingerprinting a server.

NOTE: While the goal of this processor is mainly to prevent fingerprinting, it
may also catch somemalicious behavior and erroneous behavior in the
protected applications (potentially as a result of an exploit). As such, the
following incidents are recognized by the processor.

Table 23: Header Processor Configuration Parameters

Description
Default
ValueTypeParameter

Basic

Whether traffic should be passed through this processor.TrueBooleanProcessor Enabled

Advanced

Whether this processor should shuffle the order of
response headers to avoid exposing identifiable
information.

TrueBooleanHeader Mixing Enabled

Whether this processor should strip unnecessary headers
in request packets to avoid sending malicious data to
the server.

TrueBooleanRequest Header Stripping
Enabled

Whether this processor should strip unnecessary
response headers to avoid giving away identifiable
information.

TrueBooleanResponse Header Stripping
Enabled

The maximum allowed length of a header in bytes. If
header stripping is enabled, then any headers that
exceed this length will be removed from the request
before proxying.

8192IntegerMaximum Header Length

A list of known request headers.CollectionCollectionKnown Request Headers

A list of known Response headers.CollectionCollectionKnown Response Headers

197Copyright © 2013, Juniper Networks, Inc.

Chapter 30: Activity Processors

Table 23: Header Processor Configuration Parameters (continued)

Description
Default
ValueTypeParameter

The application returned multiple instances of the same
header, which it is never expected to do.

TrueBooleanIncident: Duplicate Request
Header

The user provided multiple instances of the same header,
and the header does not usually allow multiples.

FalseBooleanIncident: Duplicate Response
Header

The user provided a request header which is known to
be involved in malicious activity.

TrueBooleanIncident: Illegal Request Header

The application returned a response header which it is
never supposed to return.

TrueBooleanIncident: Illegal Response Header

The user issued a request which has no headers at all.TrueBooleanIncident: Missing All Headers

The application returned a response which is missing a
required header.

TrueBooleanIncident: Missing Host Header

The user issued a request which is missing a required
header.

TrueBooleanIncident: Missing Request Header

The application returned a response which is missing a
required header.

TrueBooleanIncident: Missing Response
Header

The user issued a request which is missing a required
header.

TrueBooleanIncident: Missing User Agent
Header

The user issued a request which contained a header that
was longer then the allowed maximum.

TrueBooleanIncident: Request Header
Overflow

The user issued a request which contains an unexpected
and unknown header.

FalseBooleanIncident: Unexpected Request
Header

Activity Processors: Header Processor: Incident - Duplicate Request Header

Complexity: Informational (0.0)

Default Response: None

Cause: WebApp Secure monitors all of the request headers sent from the client to the

web application. According to the HTTP RFC, no client should ever provide more the one

copy of a specific header. For example, clients should not send multiple Host headers.

However there are a few exceptions, such as the Cookie header, which can be configured

to allow multiples. If the user sends multiple headers that are not configured explicitly

to allow duplicates, then this incident will be triggered.

Behavior: Sending duplicate headers of the same type can be caused by several different

things. It is either an attempt to profile the web server and see how it reacts, an attempt

Copyright © 2013, Juniper Networks, Inc.198

WebApp Secure 5.1.3

to smuggle malicious data into the headers (because a firewall might not look at

subsequent copies of the same header), or possibly just be a poorly programmed web

client. In either case, it represents unusual activity that sets the user aside from everyone

else. It signifies that the user is suspicious and is doing something average users do not

do.

Activity Processors: Header Processor: Incident - Duplicate Response Header

Complexity: Informational (0.0)

Default Response: None

Cause: Secure monitors all of the response headers sent from the server to the client.

According to the HTTP RFC, no server should ever provide more the one copy of a specific

header. For example, servers should not send multiple "Content-Length" headers. However

there are a few exceptions, such as the "Set-Cookie" header, which can be configured

to allow multiples. If the server attempts to return multiple headers of the same type,

which are not configured explicitly to allow duplicates, then this incident will be triggered.

Behavior: The RFC does not allow for servers to return multiple headers of the same type,

with a few exceptions, such as Set-Cookie. If the server does return duplicates for a

header that normally does not support duplicates, then there is either a bug in the web

application, or the user has successfully executed a "Response Splitting158" attack. In

either case, the service located at the URL this incident is triggered for should probably

be reviewed for response splitting vulnerabilities or bugs that would cause duplicate

response headers to be returned.

Activity Processors: Header Processor: Incident - Illegal Request Header

Complexity: Suspicious (1.0)

Default Response: None.

Cause: WebApp Secure monitors all of the request headers included by clients. It has a

list of known request headers that should never be accepted. This list is configurable,

and by default, includes any headers known to be exclusively involved in malicious activity.

Should a user include one of the illegal headers, this incident will be triggered. Because

the list of illegal headers is configurable, it cannot be guaranteed that the request that

contained the header is strictly malicious, but it does signify that the client is doing

something highly unusual.

Behavior: Some HTTP headers can be used in order to get the server to do something it

isn't designed to do. For example, the "max-forwards" header can be used to specify

how many hops within the internal network the request should make before it is dropped.

An attacker could use this header to identify how many network devices are between

themselves and the target web server. Because the list of illegal headers is customizable,

the type of behavior the header relates to can vary. However this type of behavior is

generally performed when scoping the attack surface of the web site.

199Copyright © 2013, Juniper Networks, Inc.

Chapter 30: Activity Processors

Activity Processors: Header Processor: Incident - Illegal Response Header

Complexity: Informational (0.0)

Default Response: None.

Cause: WebApp Secure monitors all of the response headers sent to the client from the

web application. It has a list of known response headers that should never be returned.

This list is configurable, and by default, includes any headers known to compromise the

server's identity or security. Should the server return one of the illegal headers, this incident

will be triggered. Because the list of illegal headers is configurable, it cannot be guaranteed

that the request that contained the header is strictly malicious, but it does signify that

something unusual has taken place. This may even represent a hackers successful attempt

to exploit a backend service.

Behavior: There is a strict set of HTTP response headers that browsers understand and

can actually use. Any headers returned by the server outside of the standard set could

potentially expose information about the server or its software. Some headers can even

be used to execute more complex attacks. In order to protect the server in the event of

a serious issue (such as a "Response Splitting159" attack), some headers can be

configured as illegal. Because the set is configurable, it is not straight forward as to what

the actual header means or what vulnerability it might be targeted at.

Activity Processors: Header Processor: Incident - Missing All Headers

Complexity: Low (2.0)

Default Response: 1x = Slow Connection 2-6 seconds and Captcha.

Cause: Most legitimate web browsers and tools submit at least a few headers with each

HTTP request. Headers are used to provide valuable information to the server when trying

to construct a response, such as what type of browser the user is using, or what domain

name they are trying to access. If a user submits a request that does not contain any

headers at all, this incident will be triggered.

Behavior: Not providing any headers at all, is generally an activity performed when probing

an IP to see if it is running a web server. The user will submit a minimal request containing

1 line of text, and see if the response given back from the server is an HTTP response. If

so, the attacker has confirmed that the IP is hosting a web server on the given port. In

many cases, the attacker will also be able to identify which web server is running, and if

that web server has any known vulnerabilities. Such information can then be used to

attack the web server directly.

Activity Processors: Header Processor: Incident - Missing Host Header

Complexity: Low (2.0)

Default Response: 1x = Slow Connection 2-6 seconds and Captcha.

Copyright © 2013, Juniper Networks, Inc.200

WebApp Secure 5.1.3

Cause: All legitimate web browsers submit a Host header with each HTTP request. The

host header contains the value entered into the address bar as the server. This could be

either the server IP address or the domain name. In either case, it will always be provided.

If a user submits a request that does not contain a Host header, this incident will be

triggered.

Behavior: Not providing a host header is generally an activity performed when trying to

scope the attack surface of the web site. Some web servers are configured to host different

web sites from the same IP address, based on which domain name is supplied. Hackers

will often attempt to send a request without a host header to see if the server will serve

back a default web site. If the default web site is not the main web site, this may provide

additional pages the attacker can attempt to exploit. This could be considered a "Server

Misconfiguration" weakness, but may also be a legitimate design choice for the web

server and its applications. It does not necessarily expose a vulnerability as long as the

default web application is secure. Because all major browsers submit host headers on

every request, the user would need to take advantage of a more complex tool, such as

a raw data client, or HTTP debugging proxy to manually construct a request that does

not have a host header. As such, this activity is almost always malicious. In a few cases,

some legitimate monitoring tools may omit this header, but those tools should be added

to the trusted IP list in configuration.

Activity Processors: Header Processor: Incident - Missing Request Header

Complexity: Low (2.0)

Default Response: None.

Cause: WebApp Secure monitors all of the request headers sent from the client to the

server. It also maintains a list of headers which are required for all HTTP requests (such

as Host and User-Agent). If one of the required headers is not included in a request, this

incident will be triggered.

Behavior: Every legitimate client will always supply specific headers such as "Host" and

"User-Agent". If a client does not provide these headers, then the client is likely not a

legitimate user. There are several different cases of not legitimate clients, such as hacking

tools, manually crafted HTTP requests using something like Putty, or a network diagnostic

tool such as nagios. Because there are a few cases that are not necessarily malicious

(such as nagios), the incident itself is not necessarily malicious. It does however exclude

the user from being a legitimate web browser doing the intended actions allowed by the

web application.

Activity Processors: Header Processor: Incident - Missing Response Header

Complexity: Informational (0.0)

Default Response: None.

Cause: WebApp Secure monitors all of the response headers sent from the server to the

client. It also maintains a list of headers which are required for all HTTP responses (such

as Content-Type). If one of the required headers is not included in a response, this incident

will be triggered.

201Copyright © 2013, Juniper Networks, Inc.

Chapter 30: Activity Processors

Behavior: If the server is acting correctly, it should always return all of the required response

headers. If it is missing a response header, this is likely due to a bug in the web application,

or a successfully executed "Response Splitting"attack. In either case, the service located

at the URL this incident is triggered for, should probably be reviewed for either response

splitting vulnerabilities, or bugs that would cause abnormal HTTP responses (such as

dropping the connection immediately after sending the status code).

Activity Processors: Header Processor: Incident - Missing User Agent Header

Complexity: Low (2.0)

Default Response: 1x = Slow Connection 2-6 seconds and Captcha.

Cause: Most legitimate web browsers and tools submit a User-Agent header with each

HTTP request. The user agent header contains information that identifies which software

the user is using to access the website, whether that software it is Googlebot, Firefox,

Safari, or another piece of software. If a user submits a request that does not contain a

User-Agent header, this incident will be triggered.

Behavior: Not providing a user-agent header is generally an activity performed trying to

evade detection. The user agent header provides identifying information that could be

used by the web server to track requests made by the same user. It may also provide

information about the user's personal computer. Sometimes, hackers will replace the

user agent string with another user agent string that is perfectly legitimate, but for a

different environment than the one they are actually using. Some legitimate users also

take this measure as a general security practice; therefore, as long as at least some value

is submitted for the user-agent, it cannot be guaranteed to be a malicious act. However,

in the case of the header being absent, a user would have had to take advantage of a

tool or debugging proxy in order to filter the traffic. This is almost always performed

during the course of a malicious action. Some tools such as network heath monitors may

also trigger this incident, because they are doing something normal users should not do,

but they are considered trusted. In this case, the IP addresses of those tools should be

added to the configuration trusted IP whitelist.

Activity Processors: Header Processor: Incident - Request Header Overflow

Complexity: Suspicious (1.0)

Default Response: 3x = Compound Request Header Overflow Incident.

Cause: WebApp Secure monitors all of the request headers sent from the client to the

server. It has a configured limit that defines how long any individual header is allowed to

be. After 3 or more headers are submitted that exceed the limit, this incident will be

triggered.

Behavior: While not as common as form inputs or query parameter inputs, some web

applications actually use the values submitted in headers within their code base. If these

values are treated incorrectly, such as not being validated before being used in an SQL

statement, they potentially expose the same set of vulnerabilities a form input might. As

such a hacker who is attempting to execute a "Buffer Overflow162" attack might do so

by attempting to provide an excessively long value in a header. They may also use an

Copyright © 2013, Juniper Networks, Inc.202

WebApp Secure 5.1.3

excessively long header value to craft a complex "SQL Injection" attack. Because the

user submitted multiple headers which exceeded the defined limit, the intentions of the

user are more likely to be malicious. It is less likely that a poorly crafted browser plug-in

would overflow multiple headers, despite the possibility that it might overflow a single

one. Because there is a possibility that a legitimate user with a poorly-written browser

plugin may cause a header of unusual length to be submitted, this incident cannot be

guaranteed to be malicious from just a single case.

Activity Processors: Header Processor: Incident - Unexpected Request Header

Complexity: Informational (0.0)

Default Response: None

Cause: WebApp Secure monitors all of the request headers included by clients. It has a

list of known request headers that should be accepted. This list includes all of the headers

defined in the HTTP RFC document, which means that if any additional headers are

passed, it is part of some non standard HTTP extension. Should a user include a non

standard header, this incident will be triggered. It is not necessarily a malicious action on

its own, but it does signify that the client is unusual in some way (and potentially

malicious) and therefore warrants additional monitoring.

Behavior: When attackers are trying to exploit a server, one of the techniques is to attempt

to profile what software the server is running. This can be partially accomplished by

observing how the server reacts to various types of headers. For example, if the attacker

knows that a specific 3rd party web application has a feature where it behaves differently

if you send a header "X-No-Auth", then a hacker might send "X-No- Auth" to the site just

to see what happens. While this could represent a higher level attack on a specific

application; sending non standard headers is more likely part of the hacker's effort to

scope the attack surface of the web site. This incident alone cannot be deemed malicious

because some users have browser plug-ins installed that automatically include non

standard headers with requests to some sites. Additionally, some AJAX sites also pass

around custom headers as part of their expected protocol.

Activity Processors: Method Processor

GET and POST are two very well known HTTP request methods. A request method is a

keyword that tells the server what type of request the user is making. In the case of a

GET, the user is requesting a resource. In the case of a POST, the user is submitting data

to a resource. There are however, several other supported request methods which include

HEAD, PUT, DELETE, TRACE, and OPTIONS. These methods are intended to divide the

types of requests into more granular operation. In almost all web application

implementations, the PUT, DELETE, TRACE and OPTIONS methods are all left

unimplemented. Unfortunately, some systems provide default implementations for

things such as TRACE and OPTIONS. As a result, some administrators accidentally expose

unprotected services. Hackers often try these different request methods to identify servers

which support them, and therefore may be vulnerable.

203Copyright © 2013, Juniper Networks, Inc.

Chapter 30: Activity Processors

Table 24: Method Processor Configuration Parameters

DescriptionDefault ValueTypeParameter

Whether traffic should be
passed through this processor.

Basic

TrueBooleanProcessor Enabled

Advanced

Whether to block requests
that contain unknown HTTP
methods.

TrueBooleanBlock Unknown Methods

Whether to block requests
that contain unknown HTTP
protocols.

TrueBooleanBlock Unknown Protocol

The list of known HTTP
methods. Also allows you to
customize the action to take
for each occurrence of the
known HTTP method.

CollectionCollectionKnown Methods

The user issued a request
using an HTTP method which
is considered illegal.

TrueBooleanIncident: Illegal Method
Requested

The user issued a request
using a request method other
then GET, POST, and HEAD,
which resulted in a server error.

TrueBooleanIncident: Unexpected Method
Requested

No protocol specified in GET
line.

TrueBooleanIncident: Missing HTTP
Protocol

Non standard protocol
specified in GET line (anything
except 0.9, 1.0, 1.1).

TrueBooleanIncident: Unknown HTTP
Protocol

Activity Processors: Method Processor: Incident - Illegal Method Requested

Complexity: Low (2.0)

DefaultResponse: 1x = Slow Connection 2-6 seconds and 1 Day Clear Inputs in 10 minutes

Cause: HTTP supports several different "methods" of submitting data to a web server.

These methods generally include "GET", "POST", and "HEAD", and less commonly "PUT",

"DELETE", "TRACE", and "OPTIONS". WebApp Secure monitors all of the methods used

by a user when issuing HTTP requests, and compares them to a configured list of known

and allowed HTTP methods. If the user submits a request that uses a method which is

not in the list of known methods, this incident will be triggered.

Copyright © 2013, Juniper Networks, Inc.204

WebApp Secure 5.1.3

Behavior: HTTP methods allow the web server to handle user provided data in different

ways. However some of the supported methods are somewhat insecure and should not

be supported unless absolutely necessary. In a few cases, methods which are not standard

to HTTP are used by 3rd party web applications. When an attacker is looking for a known

vulnerability, they may issue requests using some of these custom defined HTTP methods

to see if the server accepts or rejects the request. If the server accepts the request, then

the software is likely installed. This type of activity is generally performed when scoping

the attack surface of the web application. It is possible that if a third-party web application

is legitimately installed and is using custom HTTP methods, that those methods will

need to be added to the list of configured HTTP methods so as not to flag users who are

using those applications. In either case, because it is possible for this incident to happen

without malicious intent, it is considered only suspicious.

Activity Processors: Method Processor: Incident - UnexpectedMethod Requested

Complexity: Suspicious (1.0)

Default Response: None.

Cause: HTTP supports several different "methods" of submitting data to a web server.

These methods generally include "GET", "POST", and "HEAD", and less commonly "PUT",

"DELETE", "TRACE", and "OPTIONS". WebApp Secure monitors all of the methods used

by a user when issuing HTTP requests, and compares them to a configured list of known

and allowed HTTP methods. If the user submits a request that uses a method which is

not in the list of known methods, this incident will be triggered.

Behavior: HTTP methods allow the web server to handle user provided data in different

ways. However some of the supported methods are somewhat insecure and should not

be supported unless absolutely necessary. In a few cases, methods which are not standard

to HTTP are used by 3rd party web applications. When an attacker is looking for a known

vulnerability, they may issue requests using some of these custom defined HTTP methods

to see if the server accepts or rejects the request. If the server accepts the request, then

the software is likely installed. This type of activity is generally performed when scoping

the attack surface of the web application. It is possible that if a 3rd party web application

is legitimately installed and is using custom HTTP methods, that those methods will

need to be added to the list of configured HTTP methods so as not to flag users who are

using those applications. In either case, because it is possible for this incident to happen

without malicious intent, it is considered only suspicious.

Activity Processors: Method Processor: Incident - Missing HTTP Protocol

Complexity: Medium (3.0)

Default Response: 1x = Slow Connection 2-6 seconds & 1 Hour Clear Inputs

Cause: HTTP comes in several different versions. These are specified in each request

issued by a client to the web server. The acceptable standard versions are 0.9, 1.0, and

1.1. Any other protocol represents a nonstandard HTTP request issued by a non-standard

HTTP client. Under nearly every legitimate use-case, there is no reason to either omit the

protocol or to provide one that is not standard. This incident triggers whenever a user

205Copyright © 2013, Juniper Networks, Inc.

Chapter 30: Activity Processors

submits a request that is completely missing a protocol version. This would represent a

clear violation of the HTTP protocol RFC specifications.

Behavior: This incident is likely to occur whenever the attacker is attempting to create a

custom attack script against the web site. They may have either forgotten to include a

protocol value, or they are intentionally omitting it to prevent intended functionality by

one of the devices that processes the request. For example, an attacker may try to submit

a request without a protocol in an effort to break security devices protecting the web

server. These security devices may not be able to handle non-standard protocols correctly,

and as a result, may allow malicious requests to reach the backend unmodified.

Activity Processors: Method Processor: Incident - UnknownHTTP Protocol

Complexity: Medium (3.0)

Default Response: 1x = Slow Connection 2-6 seconds & 1 Hour Clear Inputs

Cause: HTTP comes in several different versions. These are specified in each request

issued by a client to the web server. The acceptable standard versions are 0.9, 1.0, and

1.1. Any other protocol represents a nonstandard HTTP request issued by a non-standard

HTTP client. Under nearly every legitimate use-case, there is no reason to either omit the

protocol or to provide one that is not standard. This incident triggers whenever a user

submits a request that contains an unknown protocol version. This would represent a

clear violation of the HTTP protocol RFC specifications. The only time this should be

acceptable behavior, is if the web application intentionally utilizes a non-standard

protocol, however this should rarely, if ever, be the case.

Behavior: This incident is likely to occur whenever the attacker is attempting to create a

custom attack script against the web site. They may have either mistyped the protocol

value, or they are intentionally using a non-standard value to prevent intended

functionality by one of the devices that processes the request. For example, an attacker

may try to submit a request with an invalid protocol of 11.1 in an effort to break security

devices protecting the web server. These security devices may not be able to handle

non-standard protocols correctly, and as a result, may allow malicious requests to reach

the backend unmodified.

Copyright © 2013, Juniper Networks, Inc.206

WebApp Secure 5.1.3

CHAPTER 31

Tracking Processors

• Tracking Processors: Etag Beacon Processor on page 207

• Tracking Processors: Etag Beacon Processor: Incident - Session Etag

Spoofing on page 208

• Tracking Processors: Client Beacon Processor on page 209

• Tracking Processors: Client Beacon Processor: Incident - Beacon Parameter

Tampering on page 210

• Tracking Processors: Client Beacon Processor: Incident - Beacon Session

Tampering on page 211

• Tracking Processors: Client Fingerprint Processor on page 211

• Tracking Processors: Client Fingerprint Processor: Incident - Fingerprint Directory

Indexing on page 214

• Tracking Processors: Client Fingerprint Processor: Incident - Fingerprint Directory

Probing on page 214

• Tracking Processors: Client Fingerprint Processor: Incident - Fingerprint

Manipulation on page 215

• Tracking Processors: Client Classification Processor on page 215

Tracking Processors: Etag Beacon Processor

This processor is not intended to identify hacking activity, but instead is intended to help

resolve a potential vulnerability in the proxy. Because session tracking in the proxy is done

using cookies, it is possible for an attacker to clear their cookies in order to be recognized

by the proxy as a new user. This means that if we identify that someone is a hacker, they

can shed that classification simply by clearing their cookies. To help resolve this

vulnerability, this processor attempts to store identifying information in the browsers

JavaScript persistence mechanism. It then uses this information to attempt to identify

new sessions as being created by the same user as a previous session. If successful, a

hacker who clears their cookies and obtains a new session will be re-associated with the

previous session shortly afterwards.

Table 25: Etag Beacon Processor Configuration Parameters

DescriptionDefault ValueTypeParameter

Basic

207Copyright © 2013, Juniper Networks, Inc.

Table 25: Etag Beacon Processor Configuration Parameters (continued)

DescriptionDefault ValueTypeParameter

Whether traffic should be passed through this processor.TrueBooleanProcessor Enabled

Advanced

The resource to use for tracking.RandomConfigurableBeacon Resource

Whether a reference to the beacon resource should be
automatically injected into HTML responses.

TrueBooleanInject Beacon Enabled

How often in seconds to re-validate the old stored etag
and re-associate that session with the current one. This
value should not be left too short, because it will cause
the browser to constantly re-request the fake resource
and make the tracking technique more visible.

180 (3 Minutes)IntegerRevalidation Frequency

The user has provided a fake ETag value which is not a
valid session.

TrueBooleanIncident: Session Etag
Spoofing

Tracking Processors: Etag Beacon Processor: Incident - Session Etag Spoofing

Complexity: Medium (3.0)

DefaultResponse: 1x = Slow Connection 2-6 seconds, 3x = Slow Connection 4-15 seconds.

Cause: The HTTP protocol supports many different types of client side resource caching

in order to increase performance. One of these caching mechanisms uses a special header

called "E-Tag" to identify when the client already has a valid copy of a resource. When

a user requests a resource for the first time, the server has the option of returning an

E-Tag header. This header contains a key that represents the version of the file that was

returned (ex. an MD5 hash of the file contents). On subsequent requests for the same

resource, the client will provide the last E-Tag it was given for that resource. If the server

identifies that both the provided E-Tag, and the actual E-Tag of the file are the same,

then it will respond with a 403 status code (Not Modified), and the client will display the

last copy it successfully downloaded. This prevents the client from downloading the

same version of a resource over and over again. In the event that the E-Tag value does

not match, the server will return a new copy of the resource and a new E-Tag value.

WebApp Secure takes advantage of this caching mechanism to store a tracking token

on the client. It does this by injecting a fake embedded resource reference (such as an

image or a JavaScript file) into some of the pages on the protected site. When the browser

loads these pages, it will automatically request the embedded resources in the

background. The fake resource that was injected by WebApp Secure, will supply a special

E-Tag value that contains a tracking token. As the user continues to navigate around the

site, each time they load a page that contains a reference to the fake resource, the browser

will automatically transmit the previously received E-Tag to the server. This allows

WebApp Secure to correlate the requests, even if other tracking mechanisms such as

cookies are not successful. The E-Tag value returned by the fake resource, which contains

the tracking token, is also digitally signed and encrypted, much like the WebApp Secure

Copyright © 2013, Juniper Networks, Inc.208

WebApp Secure 5.1.3

session cookie. This prevents a user from successfully guessing a valid E-Tag token, or

attempting to provide an arbitrary value without being detected. If an invalid E-Tag is

supplied for the fake resource, a "Session ETag Spoofing" incident is triggered.

Behavior: There are very few cases where the E-Tag caching mechanism is part of an

attack vector, so this incident would almost exclusively represent a user who is attempting

to evade tracking or exploit the tracking method to their advantage. For example, if a

user identifies the E-Tag tracking mechanism, they may provide alternate values in order

to generate errors in the tracking logic and potentially disconnect otherwise correlated

traffic. They may also attempt to guess other valid values in order to correlate otherwise

nonrelated traffic (such as a hacker attempting to group other legitimate users into their

traffic). While this is a highly unlikely attack vector, it could loosely be classified as a

"Credential and Session Prediction" attack. It is also possible, though unlikely, that once

an attacker identifies the dynamic nature of the E-Tag header for the fake resource, they

may also launch a series of other attacks based on input manipulation. This could include

testing for SQL injection, XSS, Buffer Overflow, Integer Overflow, and HTTP Response

Splitting among others. However these would be attacks directly against WebApp Secure,

and not against the protected web application.

Tracking Processors: Client Beacon Processor

The client beacon processor is intended to digitally tag users for later identification by

for embedding a tracking token into the client. There are configurable parameters that

administrators can use to configure each type of storage mechanisms that are used track

malicious users.

Table 26: Client Beacon Processor Configuration Parameters

Description
Default
ValueTypeParameter

Basic

Whether traffic should be passed through this processor.TrueBooleanProcessor Enabled

Advanced

Whether to use the flash shared data API to track the user.TrueBooleanFlash Storage Enabled

Whether to use internet explorers userData storage API to track
the user.

TrueBooleanIE UserData Storage
Enabled

Whether to use Javascript local storage to track the user.TrueBooleanLocal Storage Enabled

Whether to track users between private browsing mode and
normal browsing mode in Firefox. A collection of names to use
for the Application session cookie.

TrueBooleanPrivate Storage Enabled

209Copyright © 2013, Juniper Networks, Inc.

Chapter 31: Tracking Processors

Table 26: Client Beacon Processor Configuration Parameters (continued)

Description
Default
ValueTypeParameter

Whether to use the Silverlight storage api to track the user. The
Silverlight storage API is unique in that it is exposed across all
browsers. If this beacon is enabled and the user has Silverlight
installed, this beacon can track the user even if they switch
browsers.

TrueBooleanSilverlight Storage Enabled

Whether to use the window.name property of the browser
window to track the user.

TrueBooleanWindow Name Storage
Enabled

A collection of resource extensions to use for the processor.CollectionCollectionResource Extensions

The amount of time in seconds to cache the randomly generated
set of beacon scripts. After this amount of time, the beacon
scripts will change.

3600 (1
Hour)

IntegerScript Refresh Delay

The number of random variations of the beacon script to cache,
and then to select from on each request.

30IntegerScript Variations

The user has issued a request to the session tracking service
which appears to be manually crafted. This is likely in an attempt
to spoof another users session, or to exploit the applications
session management. This would never happen under normal
usage.

TrueBooleanIncident: Beacon Parameter
Tampering

The user has altered the data stored on the client in an effort to
prevent tracking. They have altered the data in such a way as
to remain consistent with the same data format. This would
never happen under normal usage.

TrueBooleanIncident: Beacon Session
Tampering

TrackingProcessors:ClientBeaconProcessor: Incident -BeaconParameterTampering

Complexity: Medium (3.0)

Default Response: 1x = 5 day Clear Inputs in 10 minutes

Cause: WebApp Secure uses a special persistent token that inserts itself in multiple

locations throughout the client. When a user returns to the site later on, these tokens are

transmitted back to the server. This allows the server to correlate the traffic issued by

the same user, even if the requests are weeks apart. This incident is triggered when the

user manipulates the token data being transmitted to the server on a subsequent visit.

They manipulated the data in such a way as to break the expected formatting for the

token.

Behavior: Attempts to manipulate and spoof the tracking tokens are generally performed

when the attacker is trying to figure out what the token is used for and potentially evade

tracking. Because the format of the token is completely wrong, this is likely a generic

input attack, where the user is attempting to find a vulnerability in the code that handles

the token. This could include a "Buffer Overflow", "XSS", "Denial of Service",

Copyright © 2013, Juniper Networks, Inc.210

WebApp Secure 5.1.3

"Fingerprinting", "Format String", "HTTP Response Splitting", "Integer Overflow", or "SQL

injection" attack among many others. The content of the manipulated token should be

reviewed to better understand what type of attack the user was attempting, however

because the tokens are heavily encrypted and validated, this incident does not represent

a threat to the security of the system tracking mechanism.

Tracking Processors: Client Beacon Processor: Incident - Beacon Session Tampering

Complexity: Medium (3.0)

Default Response: 1x = 5 day Clear Inputs in 10 minutes.

Cause: WebApp Secure uses a special persistent token that inserts itself in multiple

locations throughout the client. When a user returns to the site later on, these tokens are

transmitted back to the server. This allows the server to correlate the traffic issued by

the same user, even if the requests are weeks apart. This incident is triggered when the

user manipulates the token data being transmitted to the server on a subsequent visit.

They manipulated the data in such a way as to remain consistent with the correct

formatting for the token, but the token itself is not valid and was never issued by the

server.

Behavior: Attempts to manipulate and spoof the tracking tokens are generally performed

when the attacker is trying to figure out what the token is used for and potentially evade

tracking. If they are assuming it's used for session management, this might also be a part

of a "Credential/Session Prediction" attack. Because the format of the submitted modified

token is still consistent with the format expected, this is not likely a generic input attack.

It also does not represent any threat to the system, as the modified token is simply ignored.

Tracking Processors: Client Fingerprint Processor

This processor is designed to collect uniquely identifying information from requests issued

by a user. This information is then compared to the information collected about other

sessions in the system. If a match is identified, the two sessions are merged. This allows

session association to work even if all storage mechanisms used by the other tracking

processors are cleared. Some of the uniquely identifying information includes the browser

plugin list, the system font list, time skew, time-zone, user-agent, system language, etc.

Table 27: Client Fingerprint Configuration Parameters

DescriptionDefault ValueTypeParameter

Basic

Whether traffic should be
passed through this
processor.

FalseBooleanProcessor Enabled

The fingerprint association
rules to ignore.

[collection:0]CollectionExclude Rules

The data points to prevent
collection of on the client.

[collection:0]CollectionExcluded Collectors

211Copyright © 2013, Juniper Networks, Inc.

Chapter 31: Tracking Processors

Table 27: Client Fingerprint Configuration Parameters (continued)

DescriptionDefault ValueTypeParameter

Whether to hash the raw
fingerprint data points before
storing them. This prevents
the recorded data from being
used to obtain the original
information about the client
and reduces the overall
storage size requirements. If
collecting PII data is a
concern, this is a
recommended option, as it
will eliminate any PII data in
place of hashed versions of
that data which cannot be
reversed.

FalseBooleanHash Fingerprint Data

Whether the fingerprint script
should be injected into the
requested page.

TrueBooleanPage Injection Enabled

Advanced

The fake directory where
binary resources required by
the fingerprinting script are
served from.

(randomized)StringBinary Resource Directory

The key used to prevent easy
reading of the submitted
fingerprint data. This should
be alphanumeric and at least
8 unique characters long,
duplicate characters are
allowed, but do not count
toward the total 8.

(randomized)StringData Obfuscation Key

The key used to store
fingerprint data. If this key is
changed, all previously stored
fingerprint data will be lost
and the system will begin
collecting fresh fingerprint
data.

(randomized)StringFingerprint Scope Key

The response to return when
a user attempts to submit a
fingerprint in the background.
The user will not see this
response unless they are
using a debug proxy.

text/plain 200 OKHTTP ResponseFingerprint Submission
Response

Copyright © 2013, Juniper Networks, Inc.212

WebApp Secure 5.1.3

Table 27: Client Fingerprint Configuration Parameters (continued)

DescriptionDefault ValueTypeParameter

The name of the cookie used
on the client to ensure we
don't submit multiple copies
of the same fingerprinting
data. This can be anything,
but should not overlap with a
legitimate cookie being used
on the site.

(randomized)StringFingerprint Tracking Cookie
Name

Whether to hash the raw
fingerprint data points before
storing them. This prevents
the recorded data from being
used to obtain the original
information about the client
and reduces the overall
storage size requirements. If
collecting PII data is a
concern, this is a
recommended option, as it
will eliminate any PII data in
place of hashed versions of
that data which cannot be
reversed.

FalseBooleanHash Fingerprint Data

The filename to use when
serving the fingerprint script
to the client.

(randomized)StringScript Filename

The filename where
fingerprint data should be
submitted back to the server

(randomized)StringSubmission Filename

The user requested a
directory index listing on the
fake directory used to serve
binary resources required by
the fingerprinting script. Since
this is a fake directory, the
request represents a
malicious action.

TrueBooleanIncident: Fingerprint Directory
Indexing

The user requested a random
file within the fake directory
used to serve binary resources
required by the fingerprinting
script. Since only files we
specifically reference in the
fingerprinting script should be
requested, this represents a
malicious action.

TrueBooleanIncident: Fingerprint Directory
Probing

213Copyright © 2013, Juniper Networks, Inc.

Chapter 31: Tracking Processors

Table 27: Client Fingerprint Configuration Parameters (continued)

DescriptionDefault ValueTypeParameter

The user submitted fingerprint
data to the server which was
not properly formatted. This
likely means that the user was
manipulating the
fingerprinting data or spoofed
it entirely.

TrueBooleanIncident: Fingerprint
Manipulation

Tracking Processors: Client Fingerprint Processor: Incident - Fingerprint Directory
Indexing

Complexity: Low (2.0)

Default Response: n/a

Cause: The client fingerprint processor is designed to obtain a semi-unique identifier from

the clients rendering engine. The fingerprint is a hash of data obtained through JavaScript

such as the plugin list, time zone, and screen resolution. In order to calculate a fingerprint,

some binary resources such as flash objects may be required. These resources will be

served from a known fake directory. This incident is triggered if the user attempts to get

a directory index listing from the known fake resource directory.

Behavior: If an attacker discovers the script being used to collect and submit the fingerprint

data, they may be interested to know what else is in the directory where fingerprint binary

resources are served. As such, they may request a directory index listing from the fake

directory. Because the directory is fake, there are no files to list, but the simply action of

attempting to get the list is indicative of abusive behavior. If an attacker is able to obtain

a directory index listing, they may attempt to exploit some of the other resources in the

directory, or gain information about the web site that may otherwise not be available.

Any attempts to index the directory will result in a 403, which will yield no useful

information to the attacker. This is usually part of a spidering effort and targets

"Predictable Resource Location" vulnerabilities.

Tracking Processors: Client Fingerprint Processor: Incident - Fingerprint Directory
Probing

Complexity: Low (2.0)

Default Response: n/a

Cause: The client fingerprint processor is designed to obtain a semi-unique identifier from

the clients rendering engine. The fingerprint is a hash of data obtained through JavaScript

such as the plugin list, time zone, and screen resolution. In order to calculate a fingerprint,

some binary resources such as flash objects may be required. These resources will be

served from a known fake directory. This incident is triggered if the user attempts to

request a file in the fake directory that does not exist. In other words, they are looking for

a specific file that does not exist within a fake directory.

Copyright © 2013, Juniper Networks, Inc.214

WebApp Secure 5.1.3

Behavior: If an attacker discovers the script being used to collect and submit the fingerprint

data, they may be interested to know what else is in the directory where fingerprint

resources are served from. As such, they may request specific files they think they be

inside the fake directory. Because the directory is fake, there are no actual files available,

but the simply action of attempting to get a resource that does not exist in a fake directory

is indicative of abusive behavior. This type of attack is generally targeted at "Predictable

Resource Location" vulnerabilities.

Tracking Processors: Client Fingerprint Processor: Incident - Fingerprint Manipulation

Complexity: Medium (3.0)

Default Response: n/a

Cause: The client fingerprint processor is designed to obtain a semi-unique identifier from

the clients rendering engine. The fingerprint is a hash of data obtained through JavaScript

such as the plugin list, time zone, and screen resolution. This incident is triggered when

the user attempts to submit an invalid fingerprint.

Behavior: Normally, the fingerprinting code will be allowed to execute on the client without

any problems. However if an attacker discovers the fingerprinting code, they may try to

spoof fingerprints of other users, or simply try to exploit the fingerprint service. To do this,

they may create a fake fingerprint value and submit it to the server in the same way that

legitimate fingerprints are submitted. It likely would not be clear to the attacker as to

what the value is used for, or how the value is consumed by the server, so this type of

activity would be purely exploratory. Once the attacker identifies a valid fingerprint that

was not generated from their rendering engine, they will likely continue to statically submit

that same fingerprint on all transactions. Once that happens, it will not be possible to

identify the manipulated fingerprint. So this incident should come early in the attack, but

will stop once the attacker has reached their goal. In such a case, the attacker is simply

trying to disguise their true identity. If the modified fingerprint is not alpha numeric and

contains special characters, then the attacker is probably attempting to launch a targeted

attack against the way the service consumes the data, such as a "SQL Injection", "XSS",

or "Buffer Overflow" attack.

Tracking Processors: Client Classification Processor

The client classification processor is designed to detect popular legitimate search engine

bots. These types of bots are notorious for performing aggressive spider activity on web

sites, and often this activity can trigger security related incidents. Using this processor to

define the conditions used to identify such bots, allows the system to ignore security

incidents from those clients. This will remove search engine related false positives, as

well as prevent errors in indexed and cached results. The popular search engines are

included by default, but if additional search engines should be allowed, new rules can

be created. Be careful not to define a rule that will match clients other than the targeted

search engine bot. The less specific the conditions of a rule, the easier it will be for an

attacker to spoof the search engine and circumvent detection. It is critical that DNS be

enabled on WebApp Secure to achieve effective classification of search engines. Not

enabling DNS and leaving this processor turned on, may result in some attackers not

being identified.

215Copyright © 2013, Juniper Networks, Inc.

Chapter 31: Tracking Processors

If a client is classified as a search engine based on one of the defined rules, then that

client will not be able to generate incidents, and additionally:

• Query String Processor will be turned off for that user (no query param injections)

• Hidden Link Processor will be turned off for that user (no hidden link injections)

This is done to ensure that the results cached by the search engine bot do not include

fake code that may change in the future, and thus end up flagging clients who are following

legitimate search engine links. Classification rules are made up of a series of patterns to

run against various attributes of the client:

• IP Address

• Hostname

• User Agent

• Country Code

• City

• Region

• Header Name and Value

At least one pattern must be specified on at least one attribute, however you can specify

patterns for as many attributes as the bot will allow. For example, if the bot changes its

IP address constantly, then you should not define a pattern for the IP. However if the

hostname always ends in google.com, then a pattern of [.]google[.]com$ could be

assigned to the “Hostname” attribute. If the user agent always contains “googlebot”,

then “googlebot” could be assigned as the user agent pattern. Here is an example of a

complete pattern for the Googlebot search engine spider:

Hostname Pattern: [.]google(bot)?[.]com$
User Agent Pattern: (adsbot.google|googlebot|Google[]Web[
]Preview|Mediapartners-Google)

Country Pattern: US
Region Pattern: (California|Georgia)

NOTE: It would be extremely difficult for an attacker to spoof values for all
of those attributes which wouldmatch the patterns. For example, spoofing
the reverse DNS lookup to end in “.google.com” would require serious effort,
and would require insecure DNS configuration on behalf of theWebApp
Secure administrator. Ideally every rule should include either an “ip” or
“hostname” pattern.

Table 28: Client Classification Configuration Parameters

DescriptionDefault ValueTypeParameter

Basic

Copyright © 2013, Juniper Networks, Inc.216

WebApp Secure 5.1.3

Table 28: Client Classification Configuration Parameters (continued)

DescriptionDefault ValueTypeParameter

Whether traffic should be passed through this
processor.

FalseBooleanProcessor Enabled

Classification Rules

The name of the type of client being identified.(none)StringClient Type

The IP address pattern to require (if any).(none)StringIP Pattern

The hostname pattern to require (if any) if DNS is
enabled.

(none)StringHostname Pattern

The user agent pattern to require (if any).(none)StringUser Agent Pattern

The country pattern to require (if any).(none)StringCountry Pattern

The city pattern to require (if any).(none)StringCity Pattern

The region pattern to require (if any).(none)StringRegion Pattern

A pattern used to identify a required header name
(if any).

(none)StringHeader Name Pattern

A pattern used to verify the value of a header that
matches the header name pattern (if any).

(none)StringHeader Value Pattern

217Copyright © 2013, Juniper Networks, Inc.

Chapter 31: Tracking Processors

Copyright © 2013, Juniper Networks, Inc.218

WebApp Secure 5.1.3

CHAPTER 32

Response Processors

• Response Processors on page 221

• Response Processors: Block Processor on page 222

• Response Processors: Request Captcha Processor on page 223

• Response Processors: Request Captcha Processor: Incident - Captcha Answer

Automation on page 226

• Response Processors: Request Captcha Processor: Incident - No Captcha Answer

Provided on page 227

• Response Processors: Request Captcha Processor: Incident - Multiple Captcha Request

Overflow on page 228

• Response Processors: Request Captcha Processor: Incident - Unsupported Audio

Captcha Requested on page 228

• Response Processors: Request Captcha Processor: Incident - Bad Captcha

Answer on page 229

• Response Processors: Request Captcha Processor: Incident - Mismatched Captcha

Session on page 230

• Response Processors: Request Captcha Processor: Incident - Expired Captcha

Request on page 230

• Response Processors: Request Captcha Processor: Incident - Captcha Request

Tampering on page 231

• Response Processors: Request Captcha Processor: Incident - Captcha Signature

Tampering on page 232

• Response Processors: Request Captcha Processor: Incident - Captcha Signature

Spoofing on page 233

• Response Processors: Request Captcha Processor: Incident - Captcha Cookie

Manipulation on page 233

• Response Processors: Request Captcha Processor: Incident - Captcha Image

Probing on page 234

• Response Processors: Request Captcha Processor: Incident - Captcha Request Size

Limit Exceeded on page 235

• Response Processors: Request Captcha Processor: Incident - Captcha Disallowed

MultiPart on page 236

219Copyright © 2013, Juniper Networks, Inc.

• Response Processors: Request Captcha Processor: Incident - Captcha Directory

Indexing on page 236

• Response Processors: Request Captcha Processor: Incident - Captcha Directory

Probing on page 237

• Response Processors: Request Captcha Processor: Incident - Captcha Parameter

Manipulation on page 238

• Response Processors: Request Captcha Processor: Incident - Captcha Request Replay

Attack on page 239

• Response Processors: Request Captcha Processor: Incident - Multiple Captcha

Replays on page 240

• Response Processors: Request Captcha Processor: Incident - Multiple Captcha Disallow

Multipart on page 241

• Response Processors: Request Captcha Processor: Incident - Multiple Captcha

Parameter Manipulation on page 242

• Response Processors: CSRF Processor on page 243

• Response Processors: CSRF Processor: Incident - CSRF Parameter

Tampering on page 245

• Response Processors: CSRF Processor: Incident - Multiple CSRF Parameter

Tampering on page 246

• Response Processors: CSRF Processor: Incident - CSRF Remote Script

Inclusion on page 247

• Response Processors: CSRF Processor: Incident - HTTP Referers Disabled on page 247

• Response Processors: Header Injection Processor on page 248

• Response Processors: Force Logout Processor on page 248

• Response Processors: Strip Inputs Processor on page 249

• Response Processors: Slow Connection Processor on page 249

• Response Processors: Warning Processor on page 250

• Response Processors: Warning Processor: Incident - Warning Code

Tampering on page 251

• Response Processors: Application Vulnerability Processor on page 252

• Response Processors: Application Vulnerability Processor: Incident - App Vulnerability

Detected on page 252

• Response Processors: Support Processor on page 253

• Response Processors: Cloppy Processor on page 254

• Response Processors: Login Processor on page 255

• Response Processors: Login Processor: Incident - Site Invalid Login on page 261

• Response Processors: Login Processor: Incident - Site Login Multiple IP on page 262

• Response Processors: Login Processor: Incident - Site Login Multiple

Usernames on page 262

• Response Processors: Login Processor: Incident - Site Login User Sharing on page 263

Copyright © 2013, Juniper Networks, Inc.220

WebApp Secure 5.1.3

• Response Processors: Login Processor: Incident - Site Login User Pooling on page 263

• Response Processors: Login Processor: Incident - Site Login User Brute Force on page 264

• Response Processors: Login Processor: Incident - Site Login Brute Force on page 264

• Response Processors: Login Processor: Incident - Site Login Username Scan on page 264

• Response Processors: Google Map Processor on page 265

Response Processors

The processors in this section are responsible for issuing the various counter responses

to malicious users on a server protected by WebApp Secure. A response is activated

when WebApp Secure believes intervention is required between the profiled user and

the webserver. This response can manifest into any of the types fully explained below.

ResponseMethodology: When WebApp Secure believes a response is required, the type

of response issued depends on the type of behavior the malicious user exhibited to receive

the response. For example, users that WebApp Secure think are automated tools will

likely get issued a CAPTCHA response, whereas it is obvious that a real malicious user

(not a bot) will be able to solve a CAPTCHA. In the second case, adding a 2 to 6 second

slow might be more effective at wasting the hacker's time. Another factor that comes

into play when issuing counter responses is risk level. If WebApp Secure believes a user

is of no immediate risk to the system, it might only activate those responses which still

allow the user to browse the site somehow, such as the Warning response or Slow

Connection response. This way, WebApp Secure can monitor that user and gather

additional information to properly assess their risk level. If WebApp Secure believes the

user is a danger to the system, it will issue a more severe response, such as stripping out

all inputs on every request or outright blocking the profile. Some responses might not

get issued right away. For example, an incident may produce "a permanent block in 20

minutes". The reason for this delay in the counter response is that WebApp Secure uses

this buffer time to gather some last-minute information on the profile before issuing the

final response. WebApp Secure will respond instantly if it perceives immediate threat to

the integrity of the system, but instances where this is not the case allow WebApp Secure

to profile the attacker for a bit longer. The end result will be a more complete look at the

attacker and his/her habits.

Types of Responses: Certain response processors are self-explanitory, such as the Block

Processor (the user will see that they are blocked). Other responses are "invisible" in that

there are no manifestations of the response visible to the user. An example of an invisible

response processor is the Strip Inputs Processor. This processor will simply Block

Processor 125 remove all values from all inputs on any form submitted because WebApp

Secure has determined that the user's input can no longer be trusted. On the user-end,

they will see nothing that will indicate to them that this response is active (until they

figure out that all inputs are not being recognized).

Response Activation: Responses get automatically activated according to rules set forth

within WebApp Secure. These rules are outlined for each incident a user can trigger, and

are described in the documentation for each processor. The default response for each

incident is documented in the User Guide, and will look something like, "Default Response:

1x = Warn User. 2x = 1 Day Block". The '1x' or '2x' indicate the number of incidents of that

221Copyright © 2013, Juniper Networks, Inc.

Chapter 32: Response Processors

type triggered. For this example, triggering this incident once results in the Warning

Processor being activated. If the same incident is triggered again on the same profile, the

user then gets a 1 day block via the Block Processor.

NOTE: Youmay wish to completely disable automatic counter responses
entirely. If this is the case, changing the configuration parameter Auto

Response Activation Enabled to Falsewill prevent any new automatic

activations, but will not hinder your ability tomanually activate responses
on profiles. (Configuration > Global Configuration > Auto Response Service >

Auto Response Activation Enabled = False)

Compounding and Overriding Responses

• Warning - There is no need to warn someone when they are already blocked.

• Captcha - If the user is ever unblocked (or the block expires), they will be prompted to

solve the captcha.

• Cloppy - If they are ever unblocked (or the block expires) Cloppy will appear.

• Google Maps - If the user is ever unblocked (or the block expires), they will be shown

the Google map.

Captcha overrides:

• Warning - WebApp Secure will warn after they solve the captcha.

• Cloppy - Cloppy will appear after they solve the captcha.

• Google Maps - The Google map will be shown after they solve the captcha.

Strip Inputs overrides:

• Break Authentication - It is redundant, as WebApp Secure is already stripping login

credentials.

Response Processors: Block Processor

The block processor is actually a form of auto response. When this processor is enabled,

it will allow the security system to block a response with "Blocked!" message sent back

to the user.

NOTE: There are noactual triggers for this processor; it is a formof response.

Table 29: Block Processor Configuration Parameters

DescriptionDefault ValueTypeParameter

Basic

Copyright © 2013, Juniper Networks, Inc.222

WebApp Secure 5.1.3

Table 29: Block Processor Configuration Parameters (continued)

DescriptionDefault ValueTypeParameter

Whether traffic should be passed through this
processor.

TrueBooleanProcessor Enabled

Advanced

The response to return to the user when they
are blocked.

HTTP ResponseConfigurableBlock Response

Response Processors: Request Captcha Processor

The Captcha processor is designed to protect specific pages in a web application from

automation. This is done by using a "Captcha" challenge, where the user is required to

transcribe random characters from an obscured image or muffled audio file in order to

complete the request. The intent is that a human would be capable of correctly answering

the challenge, while an automated script with no human intervention would be unable

to do so. This assumes that the image is obscured enough that text recognition software

is not effective, and the audio file significantly distorted to defeat speech-to-text software.

Requiring such user interaction is somewhat disruptive, so it should be utilized only for

pages that are prime automation targets (such as contact forms, registration pages,

login pages, etc.). Furthermore, these captcha challenges can be customized to fit the

style of the application it is protecting.

Table 30: Request Captcha Processor Configuration Parameters

Description
Default
ValueTypeParameter

Basic

Whether traffic should be passed through this processor.TrueBooleanProcessor Enabled

A collection of protected pages.NoneCollectionProtected Pages

Advanced

The response to return if the user issues a request that either is too
large, or uses multipart and multi-part is disabled.

400 HTTP
Response

HTTP
Response

Bad Request Block
Response

The response to return if the user attempts to submit the validated
request multiple times using the same captcha answer, and that
behavior is not allowed.

Random
Value

StringBlocked Replay Response

The name of the directory where captcha images and audio files will
be served from. This should not conflict with any actual directories on
the site.

Random
Value

StringCaptcha Binary Directory

223Copyright © 2013, Juniper Networks, Inc.

Chapter 32: Response Processors

Table 30: Request Captcha Processor Configuration Parameters (continued)

Description
Default
ValueTypeParameter

The characters to use when generating a random captcha value. Avoid
using characters that can be easily mixed up. This set of characters is
case sensitive.

Random
Value

StringCaptcha Characters

The name of the cookie to use to track the active captchas that have
not yet been solved. The cookie is only served to the captcha binary
directory.

Random
Value

StringCaptcha State Cookie
Name

The name of the form input used to transmit the captcha validation
key. This should be obscure so that users who have not been required
to enter a captcha cannot supply bad values to this input to profile
the system.

Random
Value

StringCaptcha Validation Input
Name

The maximum number of captchas any given user can be solving at
any given time. This limit can be overcome, but the majority of users
will not be able to. This is primarily for performance, as the more active
captchas that are allowed, the larger the state cookie becomes.

7IntegerMaximum Active
Captchas

Whether an audio version of the captcha is provided to the user. This
may be a requirement for accessibility, as vision impaired users would
otherwise be unable to solve the captcha.

TrueBooleanSupport Audio Version

The text to watermark the captcha with. This can be used to prevent
the captcha from being used in a phishing attack. For example, an
abuser would not be able to simply display the captcha on a different
site and ask a user to solve it. The watermark would tip the user off
that the captcha was not intended for the site they are visiting. Use
%DOMAIN to use the domain name as the watermark.

Random
Value

StringWatermark

The URL to redirect the user to if they cancel the captcha. This should
not be to the same domain, because the domain is being blocked using
a captcha, and therefore, canceling would only redirect to a new
captcha. An empty value will hide the cancel button.

NoneStringCancel URL

The maximum number of seconds the user has to solve the captcha
before the request is no longer possible.

2 minutesIntegerCaptcha Expiration

The response to return if the user submits a validated request after
the captcha has expired. This may happen if the user refreshes the
results of the captcha long after they have solved it.

400 HTTP
Response

HTTP
Response

Expired Captcha
Response

The maximum number of bytes in a request before it is considered not
acceptable for captcha validation, and will be blocked.

500kbIntegerMaximum Request Size

The user was asked to solve a captcha and entered the wrong value.
This could be a normal user error, or it could be the results of failed
abuse.

FalseBooleanIncident: Bad Captcha
Answer

Copyright © 2013, Juniper Networks, Inc.224

WebApp Secure 5.1.3

Table 30: Request Captcha Processor Configuration Parameters (continued)

Description
Default
ValueTypeParameter

The user submitted a request and was asked to solve a captcha. They
then modified the state cookie used to track captchas, making it invalid.
This is likely in an attempt to find a way to bypass the captcha
validation mechanism.

TrueBooleanIncident: Captcha Cookie
Manipulation

The user has requested a directory index in the directory that serves
the captcha images and audio files. This is likely in an attempt to get
a list of all active captchas or to identify how the captchas are
generated.

TrueBooleanIncident: Captcha
Directory Indexing

The user has requested a random file inside the directory that serves
the captcha images and audio files. This is likely in an attempt to find
an exploitable service or sensitive file that may help bypass the captcha
validation mechanism.

TrueBooleanIncident: Captcha
Directory Probing

The user has submitted a multipart form post to the protected page,
which has been configured as a disallowed option. This is likely in an
attempt to find an edge case the captcha validation mechanism is not
expecting.

TrueBooleanIncident: Captcha
Disallowed MultiPart

The user is probing the directory used to serve captcha images. This
is likely in an attempt to find hidden files or a way to invoke errors from
the captcha serving logic.

TrueBooleanIncident: Captcha Image
Probing

The user has submitted a request with a valid captcha, but they
modified the query string parameters. This could be in an attempt to
change the output of executing the request without requiring the user
to re-validate with another captcha.

TrueBooleanIncident: Captcha
Parameter Manipulation

The user has attempted to submit the same request multiple times
with the same captcha answer. In order words, they solved the captcha
once and issued the resulting request multiple times.

TrueBooleanIncident: Captcha
Request Replay Attack

The user has submitted a request to the protected page which contains
more data then is allowed. This is may be an attempt to reduce system
performance by issuing expensive requests, or it may be an indicator
of a more complex attack.

TrueBooleanIncident: Captcha
Request Size Limit
Exceeded

The user submitted a request and was asked to solve a captcha. They
introspected the page containing the captcha and altered the serialized
request data (the data from the original request before the captcha
prompt). They then submitted a valid captcha using the modified
request data. This is likely in an attempt to abuse the captcha system
and identify a bypass technique.

TrueBooleanIncident: Captcha
Request Tampering

The user submitted a request and was asked to solve a captcha. They
introspected the page containing the captcha and provided a validation
key from a previously solved captcha. This is likely in an attempt to
submit multiple requests under the validation of the first.

TrueBooleanIncident: Captcha
Signature Spoofing

225Copyright © 2013, Juniper Networks, Inc.

Chapter 32: Response Processors

Table 30: Request Captcha Processor Configuration Parameters (continued)

Description
Default
ValueTypeParameter

The user submitted a request and was asked to solve a captcha. They
introspected the page containing the captcha and provided a fake
validation key. This is likely in an attempt to bypass the captcha
validation mechanism.

TrueBooleanIncident: Captcha
Signature Tampering

The user submitted a request and was given a set window of time to
solve a captcha. The user solved the captcha and submitted the
request for final processing after the window of time expired. This is
likely an indication of a packet replay attack, where the user attempts
to invoke the business logic of the protected page multiple times under
the same captcha validation.

TrueBooleanIncident: Expired Captcha
Request

The user submitted a request and was asked to solve a captcha. They
solved the captcha, but upon submitting the request for final
processing, they did so under a different session ID. This is likely due
to multiple machines participating in the execution of the site workflow
and may indicate a serious targeted automation attack.

TrueBooleanIncident: Mismatched
Captcha Session

The user attempted to validate a captcha but did not supply an answer
to validate. There is no interface that allows the user to do this, so they
must be manually executing requests against the captcha validation
API in an attempt to evade the mechanism.

TrueBooleanIncident: No Captcha
Answer Provided

The user has requested an audio version of the captcha challenge, but
audio is not supported and there should not be an interface to ask for
the audio version. The user is likely trying to find a way to more easily
bypass the captcha system.

TrueBooleanIncident: Unsupported
Audio Captcha
Requested

Response Processors: Request Captcha Processor: Incident - Captcha Answer
Automation

Complexity: Low (2.0)

Default Response: 1x = Slow Connection 2-6 seconds and 1 Day Clear Inputs

Cause: A captcha is a special technique used to differentiate between human users, and

automated scripts. This is done through a Turing test, where the user is required to visually

identify characters in a jumbled image and transcribe them into an input. If the user is

unable to complete the challenge in a reasonable amount of time, they are not allowed

to proceed with their original request. Because it is nearly impossible to script the

deciphering of the image, automated scripts generally get stuck and cannot proceed.

Additionally, an audio version is optionally available to allow users who have a visual

handicap to complete the captcha successfully. Captchas are used in two different ways

by the system. They can be explicitly added to any workflow within the protected web

application (such as requiring a captcha to login, or checkout a shopping cart), and they

can be used to test a suspicious user before allowing them to continue using the site

(similar to blocking the user, but with a way for the user to unblock themselves if they

can prove they are not an automated script). Captchas are generally used to resolve

Copyright © 2013, Juniper Networks, Inc.226

WebApp Secure 5.1.3

"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless

of which type of captcha is being used, this incident is generated when the user provides

an abnormal volume of bad solutions to the captcha image. For example, the image may

have said "Hello", but the user attempted 30 different values all of which did not match

"Hello". Because the images can be somewhat difficult to read at times (in order to

ensure a script cannot break them), it is not uncommon for a legitimate user to enter the

wrong value a few times before getting it right, especially if they are unfamiliar with this

type of technique, but after dozens of failed attempts, it is more likely a malicious user.

Behavior: Simply providing a bad solution to the captcha image is not necessarily

malicious. Legitimate users are not always able to solve the captcha on the first try.

However if a large volume of invalid solutions are provided, then it is more likely that a

script is attempting to crack the captcha image through educated guessing and "Brute

Force".

Response Processors: Request Captcha Processor: Incident - No Captcha Answer
Provided

Complexity: Medium (3.0)

Default Response: 1x = Warn User. 2x = 1 Day Block

Cause: A captcha is a special technique used to differentiate between human users, and

automated scripts. This is done through a Turing test, where the user is required to visually

identify characters in a jumbled image and transcribe them into an input. If the user is

unable to complete the challenge in a reasonable amount of time, they are not allowed

to proceed with their original request. Because it is nearly impossible to script the

deciphering of the image, automated scripts generally get stuck and cannot proceed.

Additionally, an audio version is optionally available to allow users who have a visual

handicap to complete the captcha successfully. Captchas are used in two different ways

by the system. They can be explicitly added to any workflow within the protected web

application (such as requiring a captcha to login, or checkout a shopping cart), and they

can be used to test a suspicious user before allowing them to continue using the site

(similar to blocking the user, but with a way for the user to unblock themselves if they

can prove they are not an automated script). Captchas are generally used to resolve

"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless

of which type of captcha is being used, this incident is generated when the user forces

the captcha interface to submit the request without a valid captcha solution. There is

no way to do this without manipulating the logic that controls captcha protected requests.

Behavior: When a hacker is attempting to establish an automated script that is capable

of defeating the captcha, they may use various different techniques. One of these

techniques is to try changing various values used by the web application in the captcha

mechanism in an effort to see if an error can be generated, or an unexpected outcome

can be achieved. This type of probing and reverse engineering is generally performed by

advanced hackers. In this specific case, the attacker attempted to submit the captcha

protected page without actually solving the captcha. Instead they provided an empty

value for the solution parameter. It is not possible to submit an empty solution using the

provided captcha interface, so this is almost guaranteed to be a malicious attempt at

227Copyright © 2013, Juniper Networks, Inc.

Chapter 32: Response Processors

generating an error and obtaining additional details about the captcha implementation

though an "Information Leakage" weakness.

See http://projects.webappsec.org for information on attack types.

ResponseProcessors:RequestCaptchaProcessor: Incident -MultipleCaptchaRequest
Overflow

Complexity: Low (2.0)

Default Response: 1x = 1 Day Clear Inputs.

Cause: A captcha is a special technique used to differentiate between human users, and

automated scripts. This is done through a Turing test, where the user is required to visually

identify characters in a jumbled image and transcribe them into an input. If the user is

unable to complete the challenge in a reasonable amount of time, they are not allowed

to proceed with their original request. Because it is nearly impossible to script the

deciphering of the image, automated scripts generally get stuck and cannot proceed.

Additionally, an audio version is optionally available to allow users who have a visual

handicap to complete the captcha successfully. Captchas are used in two different ways

by the system. They can be explicitly added to any workflow within the protected web

application (such as requiring a captcha to login, or checkout a shopping cart), and they

can be used to test a suspicious user before allowing them to continue using the site

(similar to blocking the user, but with a way for the user to unblock themselves if they

can prove they are not an automated script). Captchas are generally used to resolve

"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless

of which type of captcha is being used, this incident is generated when the user attempts

to submit dozens of captcha protected requests that exceed the configured maximum

for protected request sizes.

Behavior: When a hacker is attempting to establish an automated script that is capable

of defeating the captcha, they may use various different techniques. One of these

techniques is to try changing various values used by the web application in the captcha

mechanism in an effort to see if an error can be generated, or an unexpected outcome

can be achieved. This type of probing and reverse engineering is generally performed by

advanced hackers. In this specific case, the attacker submitted dozens of extremely large

requests, probably in an effort to find a "Buffer Overflow" vulnerability, which would

produce useful error data and potentially open the server up to further exploitation. They

may also be attempting to overload the server and execute a "Denial of Service" attack.

Response Processors: Request Captcha Processor: Incident - Unsupported Audio
Captcha Requested

Complexity: Medium (3.0)

Default Response: 3x = Slow Connection 2-6 seconds and Warn User. 5x = 1 Day Block.

Cause: A captcha is a special technique used to differentiate between human users, and

automated scripts. This is done through a Turing test, where the user is required to visually

identify characters in a jumbled image and transcribe them into an input. If the user is

unable to complete the challenge in a reasonable amount of time, they are not allowed

Copyright © 2013, Juniper Networks, Inc.228

WebApp Secure 5.1.3

http://projects.webappsec.org

to proceed with their original request. Because it is nearly impossible to script the

deciphering of the image, automated scripts generally get stuck and cannot proceed.

Additionally, an audio version is optionally available to allow users who have a visual

handicap to complete the captcha successfully. Captchas are used in two different ways

by the system. They can be explicitly added to any workflow within the protected web

application (such as requiring a captcha to login, or checkout a shopping cart), and they

can be used to test a suspicious user before allowing them to continue using the site

(similar to blocking the user, but with a way for the user to unblock themselves if they

can prove they are not an automated script). Captchas are generally used to resolve

"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless

of which type of captcha is being used, this incident is generated when the user attempts

to request the audio version of a captcha challenge when support for audio captchas

has been explicitly disabled.

Behavior: Solving an image based captcha is exceptionally difficult and requires a great

deal of time and research. Solving an audio captcha however is far less difficult. There

are already multiple open source libraries available for translating speech to text. As

such, it is often necessary to disable the support of "audio" captchas for critical workflows

(such as administrative login dialogs), unless absolutely necessary for accessibility

reasons. This incident occurs when the audio captcha has been disabled, but a user is

attempting to manually request the audio version of the captcha challenge anyway. The

captcha interface does not expose a link to the audio version unless it is explicitly enabled

in configuration, so this would require that the user knows where to look for the audio

version, they understand the filename conventions, and they know how to make the

request manually to download the file. In either case, if audio captchas are not enabled

(through configuration), then this effort will not be successful.

Response Processors: Request Captcha Processor: Incident - Bad Captcha Answer

Complexity: Suspicious (1.0)

Default Response: 10x = Captcha Answer Automation Incident.

Cause: A captcha is a special technique used to differentiate between human users, and

automated scripts. This is done through a Turing test, where the user is required to visually

identify characters in a jumbled image and transcribe them into an input. If the user is

unable to complete the challenge in a reasonable amount of time, they are not allowed

to proceed with their original request. Because it is nearly impossible to script the

deciphering of the image, automated scripts generally get stuck and cannot proceed.

Additionally, an audio version is optionally available to allow users who have a visual

handicap to complete the captcha successfully. Captchas are used in two different ways

by the system. They can be explicitly added to any workflow within the protected web

application (such as requiring a captcha to login, or checkout a shopping cart), and they

can be used to test a suspicious user before allowing them to continue using the site

(similar to blocking the user, but with a way for the user to unblock themselves if they

can prove they are not an automated script). Captchas are generally used to resolve

"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless

of which type of captcha is being used, this incident is generated when the user provides

a bad solution to the captcha image. For example, the image may have said "Hello", but

the user typed "hfii0" instead. Because the images can be somewhat difficult to read at

229Copyright © 2013, Juniper Networks, Inc.

Chapter 32: Response Processors

times (in order to ensure a script cannot break them), it is not uncommon for a legitimate

user to enter the wrong value a few times before getting it right, especially if they are

unfamiliar with this type of technique.

Behavior: Simply providing a bad solution to the captcha image is not necessarily

malicious. Legitimate users are not always able to solve the captcha on the first try.

However if a large volume of invalid solutions are provided, then it is more likely that a

script is attempting to crack the captcha image through educated guessing and "Brute

Force".

Response Processors: Request Captcha Processor: Incident - Mismatched Captcha
Session

Complexity: High (4.0)

Default Response: 1x = Warn User, 2x = 5 Day Clear Inputs.

Cause: A captcha is a special technique used to differentiate between human users, and

automated scripts. This is done through a Turing test, where the user is required to visually

identify characters in a jumbled image and transcribe them into an input. If the user is

unable to complete the challenge in a reasonable amount of time, they are not allowed

to proceed with their original request. Because it is nearly impossible to script the

deciphering of the image, automated scripts generally get stuck and cannot proceed.

Additionally, an audio version is optionally available to allow users who have a visual

handicap to complete the captcha successfully. Captchas are used in two different ways

by the system. They can be explicitly added to any workflow within the protected web

application (such as requiring a captcha to login, or checkout a shopping cart), and they

can be used to test a suspicious user before allowing them to continue using the site

(similar to blocking the user, but with a way for the user to unblock themselves if they

can prove they are not an automated script). Captchas are generally used to resolve

"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless

of which type of captcha is being used, this incident is generated when the user provides

a solution to a captcha that was issued for a different session then their own, as might

be the case in a script that uses minimal human interaction to solve the captcha's, but

everything else is automated

Behavior: When a hacker is attempting to establish an automated script that is capable

of defeating the captcha, they may use various different techniques. One of these

techniques is to try and harvest successfully solves captchas from other users on the

site. This can be done either by infecting those machines with a virus, or by implanting

script into some of the sites pages (possibly through XSS). If this technique is used, then

the captcha that is being solved may not have originated from the same session as the

user who is submitting the solution. This is a dead giveaway that the user is attempting

to defeat the captcha system to automate a specific task.

ResponseProcessors:RequestCaptchaProcessor: Incident -ExpiredCaptchaRequest

Complexity: Suspicious (1.0)

Default Response: None.

Copyright © 2013, Juniper Networks, Inc.230

WebApp Secure 5.1.3

Cause: A captcha is a special technique used to differentiate between human users, and

automated scripts. This is done through a Turing test, where the user is required to visually

identify characters in a jumbled image and transcribe them into an input. If the user is

unable to complete the challenge in a reasonable amount of time, they are not allowed

to proceed with their original request. Because it is nearly impossible to script the

deciphering of the image, automated scripts generally get stuck and cannot proceed.

Additionally, an audio version is optionally available to allow users who have a visual

handicap to complete the captcha successfully. Captchas are used in two different ways

by the system. They can be explicitly added to any workflow within the protected web

application (such as requiring a captcha to login, or checkout a shopping cart), and they

can be used to test a suspicious user before allowing them to continue using the site

(similar to blocking the user, but with a way for the user to unblock themselves if they

can prove they are not an automated script). Captchas are generally used to resolve

"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless

of which type of captcha is being used, this incident is generated when the user provides

a solution to a captcha after the allotted time for solving the captcha has elapsed.

Behavior: When a hacker is attempting to establish an automated script that is capable

of defeating the captcha, they may use various different techniques. One of these

techniques is to run expensive image processing algorithms on the captcha image in

order to identify what the represented value might be. Additionally, a user might attempt

to send the captcha to a warehouse of human captcha solvers. These warehouses

specialize in solving large volumes of captchas at a fairly low price (less then a penny

per captcha). In either case, it can take several minutes to get the correct captcha answer,

and will likely run out the amount of time the user is allowed for solving the captcha. If

using a browser, the input would flat out stop accepting answers, but in a scripted scenario,

the script will likely try and submit the value anyway, because it is unaware of the

expiration. It is possible that this incident would be triggered by a legitimate user, if they

were to refresh the page that was produced after the captcha was solved. This would

effectively cause the captcha to be reprocessed after the expiration time had been

exceeded. As such, this incident on its own is not considered malicious.

Response Processors: Request Captcha Processor: Incident - Captcha Request
Tampering

Complexity: High (4.0)

Default Response: 1x = Warn User. 2x = 5 Day Clear Inputs.

Cause: A captcha is a special technique used to differentiate between human users, and

automated scripts. This is done through a Turing test, where the user is required to visually

identify characters in a jumbled image and transcribe them into an input. If the user is

unable to complete the challenge in a reasonable amount of time, they are not allowed

to proceed with their original request. Because it is nearly impossible to script the

deciphering of the image, automated scripts generally get stuck and cannot proceed.

Additionally, an audio version is optionally available to allow users who have a visual

handicap to complete the captcha successfully. Captchas are used in two different ways

by the system. They can be explicitly added to any workflow within the protected web

application (such as requiring a captcha to login, or checkout a shopping cart), and they

can be used to test a suspicious user before allowing them to continue using the site

231Copyright © 2013, Juniper Networks, Inc.

Chapter 32: Response Processors

(similar to blocking the user, but with a way for the user to unblock themselves if they

can prove they are not an automated script). Captchas are generally used to resolve

"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless

of which type of captcha is being used, this incident is generated when the user provides

a solution to a captcha which is correct, but they have modified the parameter containing

the original request (which is heavily encrypted to prevent tampering).

Behavior: When a hacker is attempting to establish an automated script that is capable

of defeating the captcha, they may use various different techniques. One of these

techniques is to try changing various values used by the web application in the captcha

mechanism in an effort to see if an error can be generated, or an unexpected outcome

can be achieved. This type of probing and reverse engineering is generally performed by

advanced hackers. The parameter that was modified contained the original request data

(before the captcha was issued), it is likely that the attacker is attempting to smuggle a

malicious payload through the system without being detected by any network or web

firewalls. Because this parameter uses heavy encryption and validation, this type of

activity will not produce any useful information or expose any vulnerabilities. Depending

on the value they submitted for the original request data, this may also fall under one of

the other attack categories involving manipulating general inputs, such as a "Buffer

Overflow", "XSS", "Denial of Service", "Fingerprinting", "Format String", "HTTP Response

Splitting", "Integer Overflow", or "SQL injection" attack among many others.

Response Processors: Request Captcha Processor: Incident - Captcha Signature
Tampering

Complexity: High (4.0)

Default Response: 1x = Warn User. 2x = 5 Day Clear Inputs.

Cause: A captcha is a special technique used to differentiate between human users, and

automated scripts. This is done through a Turing test, where the user is required to visually

identify characters in a jumbled image and transcribe them into an input. If the user is

unable to complete the challenge in a reasonable amount of time, they are not allowed

to proceed with their original request. Because it is nearly impossible to script the

deciphering of the image, automated scripts generally get stuck and cannot proceed.

Additionally, an audio version is optionally available to allow users who have a visual

handicap to complete the captcha successfully. Captchas are used in two different ways

by the system. They can be explicitly added to any workflow within the protected web

application (such as requiring a captcha to login, or checkout a shopping cart), and they

can be used to test a suspicious user before allowing them to continue using the site

(similar to blocking the user, but with a way for the user to unblock themselves if they

can prove they are not an automated script). Captchas are generally used to resolve

"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless

of which type of captcha is being used, this incident is generated when the user provides

a solution to a captcha which is correct, but they have modified the integrity checking

signature passed along with the captcha solution.

Behavior: When a hacker is attempting to establish an automated script that is capable

of defeating the captcha, they may use various different techniques. One of these

techniques is to try changing various values used by the web application in the captcha

Copyright © 2013, Juniper Networks, Inc.232

WebApp Secure 5.1.3

mechanism in an effort to see if an error can be generated, or an unexpected outcome

can be achieved. This type of probing and reverse engineering is generally performed by

advanced hackers. Depending on the value they submitted for the original request data,

this may also fall under one of the other attack categories involving manipulating general

inputs, such as a "Buffer Overflow", "XSS", "Denial of Service", "Fingerprinting", "Format

String", "HTTP Response Splitting", "Integer Overflow", or "SQL injection" attack among

many others.

Response Processors: Request Captcha Processor: Incident - Captcha Signature
Spoofing

Complexity: High (4.0)

Default Response: 1x = Warn User. 2x = 5 Day Clear Inputs.

Cause: A captcha is a special technique used to differentiate between human users, and

automated scripts. This is done through a Turing test, where the user is required to visually

identify characters in a jumbled image and transcribe them into an input. If the user is

unable to complete the challenge in a reasonable amount of time, they are not allowed

to proceed with their original request. Because it is nearly impossible to script the

deciphering of the image, automated scripts generally get stuck and cannot proceed.

Additionally, an audio version is optionally available to allow users who have a visual

handicap to complete the captcha successfully. Captchas are used in two different ways

by the system. They can be explicitly added to any workflow within the protected web

application (such as requiring a captcha to login, or checkout a shopping cart), and they

can be used to test a suspicious user before allowing them to continue using the site

(similar to blocking the user, but with a way for the user to unblock themselves if they

can prove they are not an automated script). Captchas are generally used to resolve

"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless

of which type of captcha is being used, this incident is generated when the user provides

a solution to a captcha which is correct, but they have replaced the integrity checking

signature passed along with the captcha solution to one that was used in a previous

captcha solution.

Behavior: When a hacker is attempting to establish an automated script that is capable

of defeating the captcha, they may use various different techniques. One of these

techniques is to try changing various values used by the web application in the captcha

mechanism in an effort to see if an error can be generated, or an unexpected outcome

can be achieved. This type of probing and reverse engineering is generally performed by

advanced hackers. This specific incident generally reflects the behavior of a user who is

trying to submit a request that would normally be protected by a captcha, but they are

trying to trick the system into thinking the captcha was solved correctly, even though it

was not. This is generally looking for a "Insufficient Anti- Automation" weakness in the

captcha handling mechanism.

Response Processors: Request Captcha Processor: Incident - Captcha Cookie
Manipulation

Complexity: Medium (3.0)

233Copyright © 2013, Juniper Networks, Inc.

Chapter 32: Response Processors

Default Response: 1x = Warn User. 2x = 5 Day Clear Inputs.

Cause: A captcha is a special technique used to differentiate between human users, and

automated scripts. This is done through a Turing test, where the user is required to visually

identify characters in a jumbled image and transcribe them into an input. If the user is

unable to complete the challenge in a reasonable amount of time, they are not allowed

to proceed with their original request. Because it is nearly impossible to script the

deciphering of the image, automated scripts generally get stuck and cannot proceed.

Additionally, an audio version is optionally available to allow users who have a visual

handicap to complete the captcha successfully. Captchas are used in two different ways

by the system. They can be explicitly added to any workflow within the protected web

application (such as requiring a captcha to login, or checkout a shopping cart), and they

can be used to test a suspicious user before allowing them to continue using the site

(similar to blocking the user, but with a way for the user to unblock themselves if they

can prove they are not an automated script). Captchas are generally used to resolve

"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless

of which type of captcha is being used, this incident is generated when the user alters

the cookies used to maintain captcha state.

Behavior: When a hacker is attempting to establish an automated script that is capable

of defeating the captcha, they may use various different techniques. One of these

techniques is to try changing various values used by the web application in the captcha

mechanism in an effort to see if an error can be generated, or an unexpected outcome

can be achieved. This type of probing and reverse engineering is generally performed by

advanced hackers. In this specific case, the attacker modified a cookie that is used to

maintain the state of the captcha. The cookie is heavily encrypted, but the attacker may

be attempting to establish a way of either identifying what the value of the captcha is

algorithmically (by analyzing the cookie value), or they may be attempting to assign a

value to the captcha. In either case, this activity generally indicates a user who is trying

to find a way to bypass the captcha. Depending on the value they submitted for the

original request data, this may also fall under one of the other attack categories involving

manipulating general inputs, such as a "Buffer Overflow", "XSS", "Denial of Service",

"Fingerprinting", "Format String", "HTTP Response Splitting", "Integer Overflow", or "SQL

injection" attack among many others.

Response Processors: Request Captcha Processor: Incident - Captcha Image Probing

Complexity: Low (2.0)

Default Response: 1x = Warn User. 2x = 5 Day Block.

Cause: A captcha is a special technique used to differentiate between human users, and

automated scripts. This is done through a Turing test, where the user is required to visually

identify characters in a jumbled image and transcribe them into an input. If the user is

unable to complete the challenge in a reasonable amount of time, they are not allowed

to proceed with their original request. Because it is nearly impossible to script the

deciphering of the image, automated scripts generally get stuck and cannot proceed.

Additionally, an audio version is optionally available to allow users who have a visual

handicap to complete the captcha successfully. Captchas are used in two different ways

by the system. They can be explicitly added to any workflow within the protected web

Copyright © 2013, Juniper Networks, Inc.234

WebApp Secure 5.1.3

application (such as requiring a captcha to login, or checkout a shopping cart), and they

can be used to test a suspicious user before allowing them to continue using the site

(similar to blocking the user, but with a way for the user to unblock themselves if they

can prove they are not an automated script). Captchas are generally used to resolve

"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless

of which type of captcha is being used, this incident is generated when the user attempts

to request a captcha image file for a request that is not being protected by a captcha.

Behavior: In order to find a way to bypass the captcha mechanism, attackers will often

attempt to collect a large number of captcha images for offline analysis. If the attacker

can find a pattern in how the captcha images are issued, or how the filename relates to

the value in the image, then they can effectively bypass the captcha mechanism at will.

In this case, the attacker is guessing arbitrary captcha image filenames, but is attempting

to keep the format of the names consistent with known captcha image URL's. Because

the filename used and the values in the image have no correlation, this technique will

not be successful and will simply waste the attacker's time and resources.

Response Processors: Request Captcha Processor: Incident - Captcha Request Size
Limit Exceeded

Complexity: Suspicious (1.0)

Default Response: 10x = Multiple Captcha Request Overflow Incident.

Cause: A captcha is a special technique used to differentiate between human users, and

automated scripts. This is done through a Turing test, where the user is required to visually

identify characters in a jumbled image and transcribe them into an input. If the user is

unable to complete the challenge in a reasonable amount of time, they are not allowed

to proceed with their original request. Because it is nearly impossible to script the

deciphering of the image, automated scripts generally get stuck and cannot proceed.

Additionally, an audio version is optionally available to allow users who have a visual

handicap to complete the captcha successfully. Captchas are used in two different ways

by the system. They can be explicitly added to any workflow within the protected web

application (such as requiring a captcha to login, or checkout a shopping cart), and they

can be used to test a suspicious user before allowing them to continue using the site

(similar to blocking the user, but with a way for the user to unblock themselves if they

can prove they are not an automated script). Captchas are generally used to resolve

"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless

of which type of captcha is being used, this incident is generated when the user attempts

to submit a captcha protected request that contains a request body larger then the

configured maximum.

Behavior: When a hacker is attempting to establish an automated script that is capable

of defeating the captcha, they may use various different techniques. One of these

techniques is to try changing various values used by the web application in the captcha

mechanism in an effort to see if an error can be generated or if an unexpected outcome

can be achieved. This type of probing and reverse engineering is generally performed by

advanced hackers. In this specific case, the attacker submitted an extremely large request,

probably in an effort to find a "Buffer Overflow" vulnerability, which would produce useful

error data and potentially open the server up to further exploitation. This incident is not

235Copyright © 2013, Juniper Networks, Inc.

Chapter 32: Response Processors

necessarily malicious on its own, as it is possible for a normal user to submit a value that

is larger then the configured maximum, especially if the configured maximum is small,

or if the form protected by the captcha allows file posts.

Response Processors: Request Captcha Processor: Incident - Captcha Disallowed
MultiPart

Complexity: Suspicious (1.0)

Default Response: 10x = Multiple Captcha Disallow Multipart Incident.

Cause: A captcha is a special technique used to differentiate between human users, and

automated scripts. This is done through a Turing test, where the user is required to visually

identify characters in a jumbled image and transcribe them into an input. If the user is

unable to complete the challenge in a reasonable amount of time, they are not allowed

to proceed with their original request. Because it is nearly impossible to script the

deciphering of the image, automated scripts generally get stuck and cannot proceed.

Additionally, an audio version is optionally available to allow users who have a visual

handicap to complete the captcha successfully. Captchas are used in two different ways

by the system. They can be explicitly added to any workflow within the protected web

application (such as requiring a captcha to login, or checkout a shopping cart), and they

can be used to test a suspicious user before allowing them to continue using the site

(similar to blocking the user, but with a way for the user to unblock themselves if they

can prove they are not an automated script). Captchas are generally used to resolve

"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless

of which type of captcha is being used, this incident is generated when the user attempts

to submit a captcha protected request that contains a binary file, and the captcha is

explicitly configured to not allow binary file submission (it has been configured to disallow

multi-part form submissions).

Behavior: When a hacker is attempting to establish an automated script that is capable

of defeating the captcha, they may use various different techniques. One of these

techniques is to try changing various values used by the web application in the captcha

mechanism in an effort to see if an error can be generated, or an unexpected outcome

can be achieved. This type of probing and reverse engineering is generally performed by

advanced hackers. In this specific case, the attacker submitted a binary file in the request

that is being protected. The captcha in this case has been explicitly configured to not

allow Multi-Part form submissions, so this represents unexpected and undesired activity.

Using Multi-Part forms, the attacker can more easily accomplish a "Buffer Overflow"

attack, which would produce useful error data and potentially open the server up to

further exploitation. Additionally, some web applications do not handle the encoding

used for multi-part forms gracefully, so error information may also be obtained from

conflicts arising from the submission type. This is not necessarily a malicious incident on

its own, because it is possible that the user is legitimately submitting a multi-part form,

and just happened to have the captcha activated during the submission. However this

is a very rare case, and still represents a somewhat suspicious client.

ResponseProcessors:RequestCaptchaProcessor: Incident-CaptchaDirectory Indexing

Complexity: Low (2.0)

Copyright © 2013, Juniper Networks, Inc.236

WebApp Secure 5.1.3

Default Response: 1x = Slow Connection 2-6 seconds and 1 Day Block.

Cause: A captcha is a special technique used to differentiate between human users, and

automated scripts. This is done through a Turing test, where the user is required to visually

identify characters in a jumbled image and transcribe them into an input. If the user is

unable to complete the challenge in a reasonable amount of time, they are not allowed

to proceed with their original request. Because it is nearly impossible to script the

deciphering of the image, automated scripts generally get stuck and cannot proceed.

Additionally, an audio version is optionally available to allow users who have a visual

handicap to complete the captcha successfully. Captchas are used in two different ways

by the system. They can be explicitly added to any workflow within the protected web

application (such as requiring a captcha to login, or checkout a shopping cart), and they

can be used to test a suspicious user before allowing them to continue using the site

(similar to blocking the user, but with a way for the user to unblock themselves if they

can prove they are not an automated script). Captchas are generally used to resolve

"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless

of which type of captcha is being used, this incident is generated when the user attempts

to request a directory index from the same fake directory as the captcha images are being

served from.

Behavior: When attempting to either bypass the captcha mechanism, or find a vulnerability

in the server, attackers will often try finding unlinked resources throughout the web site.

The captcha mechanism uses a fake directory in order to serve the images and audio

files that contain the captcha challenge. If the attacker is requesting an arbitrary file

within the same fake directory, they are likely trying to find a "Predictable Resource

Location" vulnerability. In this specific case, the attacker is attempting to get a full file

listing of everything inside the captcha directory. This could potentially be used to get a

massive list of all active captcha URL's, or to find resources that are used in the creation

of captcha challenges. The directory index will not be allowed, so this does not actually

provide the attacker with any useful information.

ResponseProcessors:RequestCaptchaProcessor: Incident-CaptchaDirectoryProbing

Complexity: Low (2.0)

Default Response: 1x = Warn User. 2x = Slow Connection 2-6 seconds and 5 Day Block.

Cause: A captcha is a special technique used to differentiate between human users, and

automated scripts. This is done through a Turing test, where the user is required to visually

identify characters in a jumbled image and transcribe them into an input. If the user is

unable to complete the challenge in a reasonable amount of time, they are not allowed

to proceed with their original request. Because it is nearly impossible to script the

deciphering of the image, automated scripts generally get stuck and cannot proceed.

Additionally, an audio version is optionally available to allow users who have a visual

handicap to complete the captcha successfully. Captchas are used in two different ways

by the system. They can be explicitly added to any workflow within the protected web

application (such as requiring a captcha to login, or checkout a shopping cart), and they

can be used to test a suspicious user before allowing them to continue using the site

(similar to blocking the user, but with a way for the user to unblock themselves if they

can prove they are not an automated script). Captchas are generally used to resolve

237Copyright © 2013, Juniper Networks, Inc.

Chapter 32: Response Processors

"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless

of which type of captcha is being used, this incident is generated when the user attempts

to request an arbitrary file (not a captcha image, but something else) from within the

same fake directory as the captcha images are being served from.

Behavior: When attempting to either bypass the captcha mechanism, or find a vulnerability

in the server, attackers will often try finding unlinked resources throughout the web site.

The captcha mechanism uses a fake directory in order to serve the images and audio

files that contain the captcha challenge. If the attacker is requesting an arbitrary file

within the same fake directory, they are likely trying to find a "Predictable Resource

Location" vulnerability. For example, the attacker might be trying to find a source file in

the captcha serving directory in hopes of actually being able to get the source code behind

how captcha images are generated. Because the directory is fake, the attacker will never

find any of the resources they are looking for.

Response Processors: Request Captcha Processor: Incident - Captcha Parameter
Manipulation

Complexity: Suspicious (1.0)

Default Response: 5x = Multiple Captcha Parameter Manipulation Incident.

Cause: A captcha is a special technique used to differentiate between human users, and

automated scripts. This is done through a Turing test, where the user is required to visually

identify characters in a jumbled image and transcribe them into an input. If the user is

unable to complete the challenge in a reasonable amount of time, they are not allowed

to proceed with their original request. Because it is nearly impossible to script the

deciphering of the image, automated scripts generally get stuck and cannot proceed.

Additionally, an audio version is optionally available to allow users who have a visual

handicap to complete the captcha successfully. Captchas are used in two different ways

by the system. They can be explicitly added to any workflow within the protected web

application (such as requiring a captcha to login, or checkout a shopping cart), and they

can be used to test a suspicious user before allowing them to continue using the site

(similar to blocking the user, but with a way for the user to unblock themselves if they

can prove they are not an automated script). Captchas are generally used to resolve

"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless

of which type of captcha is being used, this incident is generated when the user attempts

to submit multiple solutions for multiple captchas, but they keep modifying the query

parameters that were submitted with the original requests. For example, if the user

submitted a "add product to cart" request, and one of the query parameters was the

item to add, this incident would be triggered if after solving the captcha, the value of that

query parameter was modified to some other value, and this modification happened

dozens of times.

Behavior: Because captcha's prevent automation, attackers will sometimes try and find

ways to abuse the technique used to request the captcha in order to exploit the site. For

example, if the attacker can find a way to submit the same solution over and over again,

but have the web application perform a different action each time, they may be able to

solve the captcha once and still automate the resulting workflow. In this case, the attacker

changed a query parameter that was submitted with the original request. They submitted

Copyright © 2013, Juniper Networks, Inc.238

WebApp Secure 5.1.3

the original request, solved the captcha, changed the query parameter, and then

resubmitted the solved captcha request. In some cases, this might cause the web

application to execute a different operation based on the difference in query parameter

values. For example, if the protected workflow is "add product to cart" on a shopping

site, then the attacker might attempt to submit the same solved captcha repeatedly,

but change the product ID that is being added on each request. This might allow them

to automate the addition of products to a shopping cart, after solving only one captcha

challenge. The captcha mechanism does not allow the modification of query parameters

after the original request has been submitted, so this type of activity will not be successful.

ResponseProcessors:RequestCaptchaProcessor: Incident -CaptchaRequestReplay
Attack

Complexity: Suspicious (1.0)

Default Response: 5x = Multiple Captcha Replay Incident

Cause: A captcha is a special technique used to differentiate between human users, and

automated scripts. This is done through a Turing test, where the user is required to visually

identify characters in a jumbled image and transcribe them into an input. If the user is

unable to complete the challenge in a reasonable amount of time, they are not allowed

to proceed with their original request. Because it is nearly impossible to script the

deciphering of the image, automated scripts generally get stuck and cannot proceed.

Additionally, an audio version is optionally available to allow users who have a visual

handicap to complete the captcha successfully. Captchas are used in two different ways

by the system. They can be explicitly added to any workflow within the protected web

application (such as requiring a captcha to login, or checkout a shopping cart), and they

can be used to test a suspicious user before allowing them to continue using the site

(similar to blocking the user, but with a way for the user to unblock themselves if they

can prove they are not an automated script). Captchas are generally used to resolve

"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless

of which type of captcha is being used, this incident is generated when the user attempts

to submit a captcha solution multiple times and "replay" is explicitly disabled for the

captcha being used.

Behavior: Because captcha's prevent automation, attackers will sometimes try and find

ways to abuse the technique used to request the captcha in order to exploit the site. For

example, if the attacker can find a way to submit the same solution over and over again,

they may be able to solve the captcha once and still automate the resulting workflow.

This is sometimes considered legitimate behavior (as would be expected if the user

refreshed the browser after submitting a successful captcha), however in many cases,

such functionality would make the captcha significantly less effective at preventing

automation. In this case, the attacker resubmitted a request that had already been

successfully validated through a captcha, and "replay" was explicitly disabled for the

captcha. This is not necessarily a malicious incident on its own, because the user may

have accidentally refreshed the browser, however multiple attempts would definitely

represent malicious intent. An example of where a captcha's "replay" could cause a

problem is on a gaming site, where the user is adding fake "money" to their account. In

order to add the fake money, they must solve the captcha. This workflow is protected

with a captcha, because if a user could automate the process, they would be able to add

239Copyright © 2013, Juniper Networks, Inc.

Chapter 32: Response Processors

unlimited funds to their account. If an attacker were able to solve the captcha once, and

continuously resubmit the resulting request, they could effectively add funds over and

over again without resolving a new captcha. This would then allow for automation. Replay

attackers are less of a problem if the web application being protected already has a

method of preventing the same request from being submitted accidentally multiple

times. Such would be the case if the web application maintained state information for

the given session, and recorded the operation after it was successful, then used that

state information to prevent a future occurrence of the operation.

ResponseProcessors:RequestCaptchaProcessor: Incident -MultipleCaptchaReplays

Complexity: Low (2.0)

Default Response: 1x = Warn User, 2x = 1 Day Clear Inputs

Cause: A captcha is a special technique used to differentiate between human users, and

automated scripts. This is done through a Turing test, where the user is required to visually

identify characters in a jumbled image and transcribe them into an input. If the user is

unable to complete the challenge in a reasonable amount of time, they are not allowed

to proceed with their original request. Because it is nearly impossible to script the

deciphering of the image, automated scripts generally get stuck and cannot proceed.

Additionally, an audio version is optionally available to allow users who have a visual

handicap to complete the captcha successfully. Captchas are used in two different ways

by the system. They can be explicitly added to any workflow within the protected web

application (such as requiring a captcha to login, or checkout a shopping cart), and they

can be used to test a suspicious user before allowing them to continue using the site

(similar to blocking the user, but with a way for the user to unblock themselves if they

can prove they are not an automated script). Captchas are generally used to resolve

"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless

of which type of captcha is being used, this incident is generated when the user attempts

to submit a captcha solution multiple times and "replay" is explicitly disabled for the

captcha being used.

Behavior: Because captcha's prevent automation, attackers will sometimes try and find

ways to abuse the technique used to request the captcha in order to exploit the site. For

example, if the attacker can find a way to submit the same solution over and over again,

they may be able to solve the captcha once and still automate the resulting workflow.

This is sometimes considered legitimate behavior (as would be expected if the user

refreshed the browser after submitting a successful captcha), however in many cases,

such functionality would make the captcha significantly less effective at preventing

automation. In this case, the attacker resubmitted a request that had already been

successfully validated through a captcha, and "replay" was explicitly disabled for the

captcha. This is not necessarily a malicious incident on its own, because the user may

have accidentally refreshed the browser, however multiple attempts would definitely

represent malicious intent. An example of where a captcha's "replay" could cause a

problem is on a gaming site, where the user is adding fake "money" to their account. In

order to add the fake money, they must solve the captcha. This workflow is protected

with a captcha, because if a user could automate the process, they would be able to add

unlimited funds to their account. If an attacker were able to solve the captcha once, and

continuously resubmit the resulting request, they could effectively add funds over and

Copyright © 2013, Juniper Networks, Inc.240

WebApp Secure 5.1.3

over again without resolving a new captcha. This would then allow for automation. Replay

attackers are less of a problem if the web application being protected already has a

method of preventing the same request from being submitted accidentally multiple

times. Such would be the case if the web application maintained state information for

the given session, and recorded the operation after it was successful, then used that

state information to prevent a future occurrence of the operation.

ResponseProcessors:RequestCaptchaProcessor: Incident-MultipleCaptchaDisallow
Multipart

Complexity: Low (2.0)

Default Response: 1x = 1 Day Clear Inputs

Cause: A CAPTCHA (Completely Automated Public Turing test to tell Computers and

Humans Apart) is a special technique used to differentiate between human users, and

automated scripts. The user is required to visually identify characters in a jumbled image

and transcribe them into a text box. An audio version is also available, for users with a

visual handicap. If the user is unable to complete the challenge in a reasonable amount

of time, they are not allowed to proceed with their original request. Because it is nearly

impossible to script the deciphering of the image, automated scripts generally get stuck

and cannot proceed. CAPTCHAs are used in two different ways by the System. They can

be explicitly added to any workflow within the protected web application (such as

requiring a CAPTCHA to login, or checkout a shopping cart), and they can be used to test

a suspicious user before allowing them to continue using the site (similar to blocking the

user, but with a way for the user to unblock themselves if they can prove they are not an

automated script). CAPTCHAs are generally used to resolve "Insufficient Anti-Automation"

weaknesses in the protected web application. Regardless of which type of CAPTCHA is

being used, this incident is generated when the user attempts to submit dozens of

CAPTCHA-protected requests that contain binary files, and the CAPTCHAs are explicitly

configured to not allow binary file submission (it has been configured to disallow

multi-part form submissions).

Behavior: When a hacker is attempting to establish an automated script that is capable

of defeating the CAPTCHA, they may use various techniques. One of these techniques

is to try changing various values used by the web application in the CAPTCHA mechanism

in an effort to see if an error can be generated, or an unexpected outcome can be achieved.

This type of probing and reverse-engineering is generally performed by advanced hackers.

In this specific case, the attacker submitted dozens of binary files in the requests that

are being protected. The CAPTCHA in this case has been explicitly configured to not

allow Multi-Part form submissions, so this represents unexpected and undesired activity.

Using Multi-Part forms, the attacker can more easily accomplish a "Buffer Overflow"

attack, which would produce potentially sensitive error data and possibly open the server

up to further exploitation. Additionally, some web applications do not handle the encoding

used for multi-part forms gracefully, so error information may also be obtained from

conflicts arising from the submission type. Because this is happening so frequently from

the same user, it is also possible that the user is attempting to execute a "Denial of

Service" attack.

241Copyright © 2013, Juniper Networks, Inc.

Chapter 32: Response Processors

Response Processors: Request Captcha Processor: Incident - Multiple Captcha
Parameter Manipulation

Complexity: Low (2.0)

Default Response: 1x = Warn User, 2x = 1 Day Clear Inputs

Cause: A CAPTCHA (Completely Automated Public Turing test to tell Computers and

Humans Apart) is a special technique used to differentiate between human users, and

automated scripts. The user is required to visually identify characters in a jumbled image

and transcribe them into a text box. An audio version is also available, for users with a

visual handicap. If the user is unable to complete the challenge in a reasonable amount

of time, they are not allowed to proceed with their original request. Because it is

nearly-impossible to script the deciphering of the image, automated scripts generally

get stuck and cannot proceed. CAPTCHAs are used in two different ways by the System.

They can be explicitly added to any workflow within the protected web application (such

as requiring a CAPTCHA to login, or checkout a shopping cart), and they can be used to

test a suspicious user before allowing them to continue using the site (similar to blocking

the user, but with a way for the user to unblock themselves if they can prove they are not

an automated script). CAPTCHAs are generally used to resolve "Insufficient

Anti-Automation" weaknesses in the protected web application. Regardless of which

type of CAPTCHA is being used, this incident is generated when the user attempts to

submit multiple solutions for multiple CAPTCHAs, but they keep modifying the query

parameters that were submitted with the original requests. For example, if the user

submitted a "add product to cart" request, and one of the query parameters was the

item to add, this incident would be triggered if, after solving the CAPTCHA, the value of

that query parameter was modified to some other value, and this modification happened

dozens of times.

Behavior: Because CAPTCHAs prevent automation, attackers will sometimes try to find

ways to abuse the technique used to request the CAPTCHA in order to exploit the site.

For example, if the attacker can find a way to submit the same solution over and over

again, but have the web application perform a different action each time, they may be

able to solve the CAPTCHA once, and still automate the resulting workflow. In this case,

the attacker changed many query parameters on many different requests that were

protected with a CAPTCHA. They submitted the original request, solved the CAPTCHA,

changed the original query parameters, and then resubmitted the solved CAPTCHA

request. In some cases, this might cause the web application to execute a different

operation based on the difference in query parameter values. For example, if the protected

workflow is "add product to cart" on a shopping site, then the attacker might attempt

to submit the same solved CAPTCHA repeatedly, but change the product ID that is being

added on each request. This might allow them to automate the addition of products to

a shopping cart, after solving only one CAPTCHA challenge. The CAPTCHA mechanism

does not allow the modification of query parameters after the original request has been

submitted, so this type of activity will not be successful. This is not considered malicious

activity right away, because it is possible that a user may accidentally modify a query

parameter; however, when this incident is triggered, it represents a user who has modified

dozens of different query parameters on different CAPTCHA-protected pages.

Copyright © 2013, Juniper Networks, Inc.242

WebApp Secure 5.1.3

Response Processors: CSRF Processor

The CSRF processor is responsible for ensuring that the protected website does not allow

a cross site request forgery attack. CSRF attacks are a type of session hijacking, where

a malicious website redirects a user to a sensitive service call on the target website. For

example, a user might visit a malicious website that has an image tag pointed to the

"deleteAccount" service running on a target website. When a user visits the malicious

website, they are unknowingly calling the "deleteAccount" operation. If they had an active

session on the target site, their account would be deleted.

This processor works by intercepting any request that could potentially be part of a CSRF

attack. This is determined by looking at the referer header being passed in by the client.

The referer header tells the server where the user came from. If the user is navigating

around the actual website legitimately, they will have a referer header on nearly all

requests they make which will match the domain of the site they are navigating. If the

user types the URL in manually, or follows a link from another site, they will not have a

referer. If it's a CSRF attack, there will either be no referer, or a 3rd party domain in the

referer.

In all cases where the referer does not match the domain of the protected site, a special

redirection page will be returned to the client instead of the request they actually asked

for. The redirection page will check to make sure the user is not a victim of a CSRF attack,

and if they are not, it will automatically redirect the user to the original page they

requested.

This processor only protects clients that have "user-agent" headers matching that of a

known browser. This is because CSRF attacks are specifically targeted at average web

users, and they generally stick to the major browsers. So spiders and scripts will bypass

the CSRF processors detection/protection mechanism. This processor also detects the

case where a user has turned off referers (and thus, no requests will contain a referer),

and in that case, will turn off CSRF protection for the client. As such, a user who has

disabled referers will still be susceptible to CSRF, but that should be a very small

percentage (if not zero) of the overall user pool.

In the event that a user issues a request that cannot be validated as not a CSRF attack,

the user will not be automatically redirected. Instead, they will be presented a "This page

has moved" response, and will be asked to click a link to continue to the page they actually

wanted. The link to proceed is randomly positioned on the page to prevent Click Jacking

attacks (where a malicious site overlays legitimate content on top of the target site and

gets the user to click the legitimate content, while also hijacking the click to transparently

activate the content underneath). A special case involves when a 3rd party website opens

the target site in a new window or tab. If the 3rd party site retains ownership of the newly

opened window or tab, the user will be asked to click the "continue" link so that the

original window can be closed and a new window can be opened in its place. This action

breaks the ownership and prevents the 3rd party website from performing actions on

the window (such as closing or redirecting it).

Because it is sometimes expected that a 3rd party site will be making calls into the target

site, it is possible to configure a list of "trusted" 3rd party sites. Any requests issued from

243Copyright © 2013, Juniper Networks, Inc.

Chapter 32: Response Processors

a trusted domain will not be protected against CSRF. This allows the trusted site to host

the target site in an IFRAME or make service calls unimpeded. Be careful who you add

to the trusted domain list, because if the trusted domain is susceptible to XSS or CSRF

itself, then it can be used as a proxy to launch a CSRF attack against your protected sites.

This trust does not apply if the hosting domain is running over SSL, and the target domain

is not running over SSL. If the 3rd party page hosting an IFRAME of the target site is running

in SSL, it must load the SSL version of the target site, otherwise the CSRF protection will

still be applied. It is however fine if the 3rd party site is not SSL protected and the target

site is SSL protected.

Table 31: CSRF Processor Configuration Parameters

Description
Default
ValueTypeParameter

Basic

Whether traffic should be passed through this processor.TrueBooleanProcessor Enabled

Advanced

The response to return if the CSRF mechanism cannot complete the
request due to errors or tampering.

HTTP
Response

ConfigurableBlock Response

A 256 character random string used to ensure that CSRF nonce tokens
are generated differently between different deployments.

RandomStringCSRF Nonce Salt

The name of the query string parameter used to indicate a successfully
validated request after it has been determined that it is not a CSRF
attack. Select a name that will not conflict with a real query parameter
used by the site.

RandomStringCSRF Token Name

CSRF is largely a browser based attack, so to ensure that scripts such
as legitimate spiders are not treated as potential CSRF victims, this
option can be enabled to ignore all non browsers for CSRF protection.

TrueBooleanIgnore Scripts

A list of file suffixes (extensions) that will not be protected by CSRF. By
default, Silverlight binaries are included, because some browsers will
remove the referer for Silverlight embedded content, which may interfere
with CSRF protection and prevent the Silverlight content from loading.

.xap, .xamlCollectionIgnored Extensions

The fake resource to request if the page is being loaded as a remote
script on a third party domain. This is primarily for detection of the attack
and can be any fake resources as long as it does not actually exist on
the server.

CSRF Script
Inclusion
Resource

ConfigurableRemote Script
Resource

The list of domains that are allowed to display the web application in
a frame, reference resources such as images or scripts, or are allowed
to make remote API calls using techniques that are similar to a CSRF
attack. If the trusted domain starts with a period, then it will match any
subdomain before the designated period. For example, .site.com will
match www.site.com, my.new.site.com and site.com.

NoneCollectionTrusted Domains

Copyright © 2013, Juniper Networks, Inc.244

WebApp Secure 5.1.3

Table 31: CSRF Processor Configuration Parameters (continued)

Description
Default
ValueTypeParameter

Since CSRF protection may cause the referer to be removed from the
request, it may be necessary to add any analytic code to the JavaScript
used to detect and stop CSRF attacks. As such, if you use a 3rd party
analytics script, you should put that code in this parameter to capture
the unmodified original request details. The code will be injected into a
script tag, so it must be valid JavaScript or the CSRF protection may
stop functioning correctly.

NoneStringCSRF Extra
JavaScript

The user tampered with the parameters used by the security engine to
prevent CSRF on requests that have an untrusted 3rd party referer. This
is likely in an attempt to find a vulnerability in the CSRF protection
mechanism.

TrueBooleanIncident: CSRF
Parameter
Tampering

The user has accessed an untrusted 3rd party website which contains
an embedded script reference to the protected application. While the
user may not be malicious, this represents a CSRF attack from the
untrusted website against the protected application. Because the attack
was not successful, it is likely being executed by the user who is
attempting to construct the attack vector.

FalseBooleanIncident: CSRF
Remote Script
Inclusion

The user is using what looks like a browser, but they have HTTP referers
disabled. This is not a malicious incident, but it does indicate an unusual
client.

TrueBooleanIncident: HTTP
Referers Disabled

Response Processors: CSRF Processor: Incident - CSRF Parameter Tampering

Complexity: Suspicious (1.0)

Default Response: 10x = Multiple CSRF Parameter Tampering Incident.

Cause: WebApp Secure protects against CSRF attacks by using a special interception

technique. When a request comes in to WebApp Secure, the referer is checked. In the

event that there is a 3rd party referer (the user was following a link from another site),

the interception mechanism kicks in. This involves returning a special page to the user

that validates that the user is intentionally requesting the resource. If the validation is

successful, the user is transparently redirected to the original resource they requested.

If the validation fails, the user is then instructed to manually confirm their intentions, or

return to the page they came from (to prevent the CSRF attack from working). In most

cases, a valid CSRF attack would function in such a way as to hide this manual

confirmation step, so the user would probably never see it (e.g. if the URL was loaded

using an image HTML tag, then the resulting HTML confirmation step would not render,

because its HTML, not an image). This incident is triggered when a user submits a request

with a 3rd party referer, and then manipulates the code of the CSRF interception page

to alter the original data that was submitted. For example, they submit a request that

looks like a CSRF attack (has a 3rd party referer), and then use a tool like Firebug to edit

the query string parameters that would be sent to the server after they manually allowed

the request on the CSRF intercept page.

245Copyright © 2013, Juniper Networks, Inc.

Chapter 32: Response Processors

Behavior: CSRF attacks are generally two-phase. The first phase involves the attacker

establishing a functional CSRF attack. This could take quite a while and involves the

attacker making requests to the protected site, trying all different types of CSRF

techniques. The second phase is when the attacker injects the successful CSRF vector

into a public website. In the second phase, legitimate users are visiting the public website

and unknowingly executing the CSRF attack in the background. It is not useful to flag the

victims of the CSRF attack as hackers, because they may not even know what is going

on. However it is useful to flag the original attack vector establishment, because it may

shed light on who created the "CSRF243"attack. This incident reflects a user who is

manipulating the CSRF prevention mechanism, likely in an attempt to find a way to get

around it.As such, if a user has this incident, they are probably trying to establish a CSRF

attack, and careful attention should be paid to the values they are changing the

parameters to and which URL is being requested (this will help identify what the user is

trying to attack).

ResponseProcessors:CSRFProcessor: Incident -MultipleCSRFParameterTampering

Complexity: Low (2.0)

Default Response: 1x = Captcha, 2x = 1 Day Clear Inputs

Cause: WebApp Secure protects against CSRF attacks by using a special interception

technique. When a request comes in to WebApp Secure, the referer is checked. In the

event that there is a 3rd party referer (the user was following a link from another site),

the interception mechanism kicks in. This involves returning a special page to the user

that validates that the user is intentionally requesting the resource. If the validation is

successful, the user is transparently redirected to the original resource they requested.

If the validation fails, the user is then instructed to manually confirm their intentions, or

return to the page they came from (to prevent the CSRF attack from working). In most

cases, a valid CSRF attack would function in such a way as to hide this manual

confirmation step, so the user would probably never see it (e.g. if the URL was loaded

using an image HTML tag, then the resulting HTML confirmation step would not render,

because its HTML, not an image). This incident is triggered when a user submits dozens

of requests with a 3rd party referers, and then manipulates the code of the CSRF

interception page to alter the original data that was submitted. For example, they submit

a bunch of requests that look like CSRF attacks (they have 3rd party referers), and then

use a tool like Firebug to edit the query string parameters that would be sent to the server

after they manually allowed the requests on the CSRF intercept page.

Behavior: CSRF attacks are generally two-phase. The first phase involves the attacker

establishing a functional CSRF attack. This could take quite a while and involves the

attacker making requests to the protected site, trying all different types of CSRF

techniques. The second phase is when the attacker injects the successful CSRF vector

into a public website. In the second phase, legitimate users are visiting the public website

and unknowingly executing the CSRF attack in the background. It is not useful to flag the

victims of the CSRF attack as hackers, because they may not even know what is going

on. However it is useful to flag the original attack vector establishment, because it may

shed light on who created the "CSRF" attack. This incident reflects a user who is

manipulating the CSRF prevention mechanism, likely in an attempt to find a way to get

around it. As such, if a user has this incident, they are probably trying to establish a CSRF

Copyright © 2013, Juniper Networks, Inc.246

WebApp Secure 5.1.3

attack, and careful attention should be paid to the values they are changing the

parameters to and which URL is being requested (this will help identify what the user is

trying to attack).

Response Processors: CSRF Processor: Incident - CSRF Remote Script Inclusion

Complexity: Informational (0.0)

Default Response: None.

Cause: WebApp Secure protects against CSRF attacks by using a special interception

technique. When a request comes in to WebApp Secure, the referer is checked. In the

event that there is a 3rd party referer (the user was following a link from another site),

the interception mechanism kicks in. This involves returning a special page to the user

that validates that the user is intentionally requesting the resource. If the validation is

successful, the user is transparently redirected to the original resource they requested.

If the validation fails, the user is then instructed to manually confirm their intentions, or

return to the page they came from (to prevent the CSRF attack from working). In most

cases, a valid CSRF attack would function in such a way as to hide this manual

confirmation step, so the user would probably never see it (e.g. if the URL was loaded

using an image HTML tag, then the resulting HTML confirmation step would not render,

because its HTML, not an image). This incident is triggered when a user accesses a page

on a 3rd party website which contains a Javascript tag that loads content from the

protected site. This would normally represent a victim of a CSRF attack, but because

CSRF attacks are blocked, an attacker is unlikely to execute such an attack. Therefore,

it is more probable that the attacker is testing a possible vector to see if it will work and

encountering this incident.

Behavior: CSRF attacks are generally two-phase. The first phase involves the attacker

establishing a functional CSRF attack. This could take quite a while and involves the

attacker making requests to the protected site, trying all different types of CSRF

techniques. The second phase is when the attacker injects the successful CSRF vector

into a public website. In the second phase, legitimate users are visiting the public website

and unknowingly executing the CSRF attack in the background. It is not useful to flag the

victims of the CSRF attack as hackers, because they may not even know what is going

on. However it is useful to flag the original attack vector establishment, because it may

shed light on who created the "CSRF" attack. While this incident would potentially be

fired for any victims of a CSRF attack, CSRF attacks are blocked by this processor, so it

is unlikely that an attacker would ever actually try to use the vector against legitimate

users. As such, it is far more likely that the attacker is still in the first phase and trying to

uncover a successful CSRF vector. Because of this, careful attention should be paid to

the URL that is being requested (this will help identify what the user is trying to exploit).

Response Processors: CSRF Processor: Incident - HTTP Referers Disabled

Complexity: Suspicious (1.0)

Default Response: None.

247Copyright © 2013, Juniper Networks, Inc.

Chapter 32: Response Processors

Cause: The HTTP protocol provides support for a special header called the "referer"

(misspelled on purpose). This header tells the web server where the user just came from.

So if the user visits google and follows a link from google to get to another page, the

request for that second page will contain a "referer" of "http:// www.google.com". Some

browsers provide the option to turn off automatic transmission of the "referer" header.

This would make it impossible for websites to identify the page the user came from. This

incident is triggered whenever a user accesses the website with referers disabled. This

is not necessarily a malicious act, as it could be the result of an excessively paranoid

legitimate user, but it is also somewhat unusual and is often a technique employed by

malicious users.

Behavior: Hackers will often disable the referer header to make it more difficult to monitor

and analyze an attack through the traditional HTTP log files. Many web servers will record

the URL the user is accessing, as well as the referer that was submitted. As such, by

disabling referers, the hacker is able to eliminate a large percentage of the information

collected about the attack.

Response Processors: Header Injection Processor

This processor provides the header injection counter response. It allows extra a custom

header to be defined that is injected into a suspected hackers requests to allow custom

handling.

NOTE: There are noactual triggers for this processor; it is a formof response.

Table 32: Header Injection Processor Configuration Parameters

DescriptionDefault ValueTypeParameter

Basic

Whether traffic should be passed through this
processor.

TrueBooleanProcessor Enabled

Advanced

The default header name to use if one is not specified
in the response configuration.

RandomStringDefault Header Name

The default header value to use if one is not specified
in the response configuration.

TrueStringDefault Header Value

Response Processors: Force Logout Processor

This processor provides the force logout counter response. It strips out and invalidates

the users session tokens logging them out of the site.

Copyright © 2013, Juniper Networks, Inc.248

WebApp Secure 5.1.3

NOTE: Therearenoactual triggers for thisprocessor - it isa formof response.

Table 33: Force Logout Processor Configuration Parameters

DescriptionDefault ValueTypeParameter

Basic

Whether traffic should be passed through this processor.TrueBooleanProcessor Enabled

A collection of names to use for the Application session cookie.CollectionCollectionApplication Session
Cookie

Advanced

Whether to clear any terminated session cookies from the
malicious users browser. This may help the user identify why
they are getting logged off, so unless the application has code
on the client that reads the session cookie value, or the cookie
is used in traffic not protected by the WebApp Secure system,
this option should be turned off.

FalseBooleanClear Session Cookies

Response Processors: Strip Inputs Processor

This processor is used to transparently remove all user input from requests being issued

to the server. This response will make the web application, or the client accessing it, to

appear broken from the users perspective. The web site will also take on a much smaller

attack surface should the client be a vulnerability scanner.

NOTE: There are noactual triggers for this processor; it is a formof response.

Table 34: Strip Inputs Processor Configuration Parameters

DescriptionDefault ValueTypeParameter

Basic

Whether traffic should be passed through this
processor.

TrueBooleanProcessor Enabled

Response Processors: Slow Connection Processor

The slow connection processor is designed to introduce large delays in requests issued

by malicious traffic without impacting the performance of legitimate users. There are no

actual triggers for this processor; it is a form of response.

249Copyright © 2013, Juniper Networks, Inc.

Chapter 32: Response Processors

NOTE: If default minimum andmaximum delay times for the Slow
Connection Processor are set to a value greater than the Backend Response
Timeout (Configuration > Proxy/Backends > Connection Timeout), the

connectionmay timeout, resulting in a 403 error.

Table 35: Slow Connection Processor Configuration Parameters

DescriptionDefault ValueTypeParameter

Basic

Whether traffic should be passed through this
processor.

TrueBooleanProcessor Enabled

Advanced

The default maximum number of milliseconds to
delay malicious requests.

5 SecondsIntegerDefault Maximum Delay

The default minimum number of milliseconds to
delay malicious requests.

500 MillisecondsIntegerDefault Minimum Delay

Response Processors: Warning Processor

The warning processor is designed to allow a warning message to be presented to a user

without completely blocking site access. The warning processor only enables the ability

to respond to a user with a "warning", which would allow them to continue browsing the

page and the site. The warning would be created and activated for a user by the auto

response system, or manually from the console. The existing processor overlays

semi-transparent HTML elements on top of the entire webpage, which temporarily

disables any mouse or keystrokes on the page and, therefore, creating a "modal dialog"

effect. This processor isn't designed to completely stop an attacker from using the

website; it is there to warn them. Given the browser debugging tools available today, an

attacker may be able to dismiss the warning by means of such tools. Any tampering with

the warning's default dismissal behavior (waiting 5 seconds until dismissal button is

automatically enabled and clicking on dismiss button) will be considered an incident

and will be tracked.

Table 36:Warning Processor Configuration Parameters

DescriptionDefault ValueTypeParameter

Basic

Whether traffic should be passed through this processor.TrueBooleanProcessor Enabled

Advanced

Copyright © 2013, Juniper Networks, Inc.250

WebApp Secure 5.1.3

Table 36:Warning Processor Configuration Parameters (continued)

DescriptionDefault ValueTypeParameter

The default message to use in the warning dialog. This can
be defined on a session by session basis, but if no explicit
value is assigned to the warning, this value will be used.

"Your connection has
been detected
performing suspicious
activity. Your traffic is
now being monitored."

StringDefault Warning
Message

The default title to use in the warning dialog. This can be
defined on a session by session basis, but if no explicit
value is assigned to the warning, this value will be used.

Security WarningStringDefault Warning Title

The amount of time in seconds that must elapse before
the warning can be dismissed. This is a soft limit, as an
experienced user may be able to get around enforcement
measures.

10 SecondsIntegerDismissal Delay

The information needed to define the URL and response
used to dismiss a warning.

RandomConfigurableDismissal Resource

The name of the directory where the warning Javascript
and css code will be served from. For example:
warningcode.

RandomStringWarning Directory

The user has attempted to dismiss the warning without
waiting the delay and using the provided mechanism. This
is probably an attack on the warning system.

TrueBooleanIncident: Warning Code
Tampering

Response Processors: Warning Processor: Incident -Warning Code Tampering

Complexity: Medium (3.0)

Default Response: 1x = Logout User, 2x = 5 Day Clear Inputs.

Cause: WebApp Secure is capable of issuing non blocking warning messages to potentially

malicious users. These warning messages are designed to force the user to wait for a

period of time, before they can dismiss the warning and continue using the site. If the

user attempts to exploit or bypass this delay mechanism in order to dismiss the warning

early, this incident will be triggered.

Behavior: Once a hacker has been warned, they are then aware that a security system is

monitoring their activity. This may cause some hackers to investigate what might be

protecting the site. This could involve additional scanning, or it could involve attacking

the warning mechanism directly. This type of behavior generally indicates a hacker with

moderate to advanced skill levels. Depending on what they modify the warning code

input to be, this could represent a simple exploratory test, or the user could be trying to

launch a more complex attack against he warning code handler itself, such as "Buffer

Overflow", "XSS", "Denial of Service", "Fingerprinting", "Format String", "HTTP Response

Splitting", "Integer Overflow", and "SQL injection" among many others.

251Copyright © 2013, Juniper Networks, Inc.

Chapter 32: Response Processors

Response Processors: Application Vulnerability Processor

The application vulnerability processor is designed to block known attack vectors for

select 3rd party applications. By default this processor does nothing. If you host a 3rd

party application such as WordPress, you should enable the configuration parameters

that represent the 3rd party software you are using. This will enable protection for that

software component.

Table 37: Application Vulnerability Processor Configuration Parameters

Description
Default
ValueTypeParameter

Basic

Whether traffic should be analyzed for Joomla
vulnerabilities

FalseBooleanJoomla Vulnerability Protection
Enabled

Whether traffic should be analyzed for PHPBB
vulnerabilities

FalseBooleanPHPBB Vulnerability Protection
Enabled

Whether traffic should be analyzed for Wordpress
vulnerabilities

FalseBooleanWordpress Vulnerability
Protection Enabled

Advanced

Whether to block a request on a positive signature, or
just create an incident

1IntegerMode of Operation

The default message to use in the warning dialog. This
can be defined on a session by session basis, but if no
explicit value is assigned to the warning, this value will
be used.

404 ErrorHTTP ResponseBlock Response

ResponseProcessors:ApplicationVulnerabilityProcessor: Incident -AppVulnerability
Detected

Complexity: Low (2.0)

Default Response: 1x = Slow Connection 2-6 seconds, 3x = Slow Connection 2-6 seconds

and Clear Inputs for 1 day

Cause: The application vulnerability processor is designed to identify known attack vectors

issued to 3rd party applications such as WordPress. This incident indicates that one of

those known attack vectors has been issued by the associated user. The exact nature of

the vector that was identified should be described in the incident details.

Behavior: One of the easiest ways to compromise a web site is to look for 3rd party web

applications such as WordPress. If one is found, the attacker can then look up any known

vulnerabilities in that software and the version of it that is running on the web site. If they

Copyright © 2013, Juniper Networks, Inc.252

WebApp Secure 5.1.3

find vulnerabilities, they can then launch them and potentially compromise the site with

a few minutes with minimal effort.

Response Processors: Support Processor

When a user is blocked or otherwise responded to using one of the counter measures,

this processor provides a way to identify which profile is associated with a user, and to

then allow those responses to be deactivated at the discretion of the IT administrator.

For example, if a user were to get a 404 error when asking for a PDF document linked

from the main site, and they then try to find the file by trying a bunch of different file

names, they may eventually get blocked for performing a directory enumeration attack.

When this happens, the blocked user may contact support for assistance getting access

to the site again.

This processor works by exposing a special administrative URL (defined in configuration)

which the support team can access. When a support request comes in from a blocked

users, the support representative can access this administrative URL which will provide

another URL. The support representative should then provide this second URL to the

affected user. The affected user can then visit that URL and get a special code. This code

can be used to search for the profile and deactivate responses in the Security Monitor

(profile list).

If the affected user gets a code of "00000000000000000000" (all zeros), this means

that the user is not identified as an attacker and therefore is not being blocked or

responded to with a counter response from WebApp Secure. As such, other causes of

the user's inability to access the site should be investigated.

DO NOT GIVE OUT THE ADMINISTRATIVE URL. It is only used to get a fresh URL that is

safe to provide to the affected user. If the administrative URL is leaked to the public, it

should be changed immediately.

The overall workflow is as follows:

1. User is blocked or otherwise responded to with a counter measure.

2. User calls support for assistance.

3. Support accesses the administrative URL.

4. Support copies the newly created URL in the response and provides to the affected

user.

5. The affected user accesses the newly created URL and provides the resulting code

to support.

6. Support or an Admin then logs into the security monitor, clicks on the profile graph to

get a list of profiles, and then searches for the code.

7. Support or Admin reviews user's list of incidents to verify the user was responded to

in error. If so, the Support or Admin disables the responses.

253Copyright © 2013, Juniper Networks, Inc.

Chapter 32: Response Processors

NOTE: Note that the "block" response is by default, configured to return
the code. So if a user has been blocked, steps 3-5 can be omitted, and the
usercansimplyprovide thecodespecified in theblockmessagetosupport.
For all other responses, the full workflow needs to be followed, because
there is no other way to obtain the code.

Table 38: Support Processor Configuration Parameters

Description
Default
ValueTypeParameter

Basic

Whether traffic should be passed through this processor.TrueBooleanProcessor Enabled

Advanced

The URL a support representative would access to get additional
details about how to provide support to users who are having issues
that may be WebApp Secure related. If the value is "ABC", then the
private URL would be http://www.example.com/ABC. It is absolutely
imperative that this URL not be leaked to non-internal users. If it is
leaked, it must be changed immediately.

RandomStringPrivate Support URL

A random value used to ensure that support URLs are not predictable.
This can be any random string 30 characters in length.

RandomStringPublic Support URL Salt

The number of days a public support URL remains valid for. After this
many days, the URL will no longer provide support information. This
is to prevent any issues from a public support URL being leaked.

3IntegerPublic URL Expiration

Response Processors: Cloppy Processor

The Cloppy processor is a joke response built for demonstration purposes. It creates an

animated paperclip in the lower right corner of the website, which belittles and taunts

the attacker. This should never be used on a legitimate threat and is not the default

counter response for any type of behavior. It is provided to demonstrate the diversity of

counter responses WebApp Secure is capable of. You should never activate this response

unless you have a good relationship with the user you are activating it on, and they have

a good sense of humor.

You can configure the message and options cloppy presents both in configuration (the

default messages), or in the response specific config (the XML you define when you

manually activate a response or when you write a rule that activates a response). The

oldest cloppy response will be the one for which the messages are loaded, so if you create

multiple cloppy responses, you can create a dialog of several messages. For example,

try activating cloppy three times with the following config values (create them in the

following order):

Copyright © 2013, Juniper Networks, Inc.254

WebApp Secure 5.1.3

1. Activate Cloppy: <config message="This is the first message”><option label="First

op" url="" /><option label="Second op" url="" /></config>

2. Activate Cloppy: <config message="This is the second message”><option label="First

op" url="" /><option label="Second op" url="" /></config>

3. Activate Cloppy: <config message="This is the third message”><option label="First

op" url="" /><option label="Second op" url="" /></config>

Once you activate the above 3 cloppy responses, you should see that cloppy will present

the "This is the first message" dialog first. Once you click on an option in that dialog, the

next page you load will display "This is the second message", and finally, after clicking

on one of those options, you should get "This is the third message".

Once you click an option in the cloppy’s dialog, it will dismiss that specific cloppy response.

That’s why you are able to stack the responses and get a dialog going.

Table 39: Cloppy Processor Configuration Parameters

DescriptionDefault ValueTypeParameter

Basic

Whether traffic should be passed through this processor. Note
that just because traffic is passing through the processor, does
not mean any users will actually have a Cloppy response
activated on them. As such, simply enabling this processor will
not result in cloppy being activated for any users. You would still
need to manually activate the Cloppy response in the Security
Monitor (or define an auto response rule that activates it, but
that is highly discouraged).

TrueBooleanProcessor Enabled

What do you want cloppy to say when offering help?"It looks like youre an
unsophisticated script
kiddie attempting to
hack this web site"

StringCloppy Message

The list of ways cloppy can help with associated URLs.CollectionCollectionCloppy Options

Advanced

The name of the directory where the binary resources needed
to load cloppy are served from. For example: cloppyfiles. The
name should be selected not to conflict with a real directory at
the top level of the web site.

cloppybinStringCloppy Directory

The name of the directory used to dismiss cloppy. This URL
should be random and not conflict with existing directory names
on the site.

RandomStringCloppy Dismiss
Directory

Response Processors: Login Processor

The login processor is designed to add additional protection to the login dialogs throughout

the protected site. By default, it will not provide any additional protection, and must be

255Copyright © 2013, Juniper Networks, Inc.

Chapter 32: Response Processors

configured to protect specific login forms. Once a login form has been configured, the

processor will begin to monitor the login attempts and start checking for abusive patterns.

This processor is capable of detecting a wide variety of abuse patterns on a login dialog,

as well as stopping these abusive activities. One key protection mechanism is to require

a captcha if a user attempts to login to an account which has experienced more then 3

failed login attempts since the last successful login attempt. This ensures that a malicious

user cannot brute force a specific username, because after 3 failed attempts, the brute

force tool will be stopped by a captcha. This does not represent a counter response, but

instead is built in functionality that applies to all users on the system. So if user "A"

submits 3 bad passwords, and then user "B" submits a password for the same username,

user "B" will get a captcha, as well as user "A" for any additional login attempts they try.

As soon as a user successfully logs into the account, it will take another 3 failed login

attempts before the next captcha is required.

In addition to protecting against a single username being attacked with a brute force

script, the processor also detects "User sharing", "User pooling", "Username scans",

"Multi-User brute force scans". See the incident descriptions for more information on

what these incidents represent and what counter responses will be activated as a result.

In order to configure the Login Processor to protect a login form, edit the "Protected Login

Pages" configuration parameter. Add a new row and provide the following information.

It will be useful to look at the HTML source code of the login form as it will have critical

information you will need to configure protection:

• Name: The name of the login page (this is just for your reference, it can be anything)

• URLPattern: The Regular Expression used to identify a username/password submission.

This pattern should match the "action" attribute of the HTML <FORM> tag wrapping

the login dialog.

• UsernameField Type: The type of inputs used to submit a username. Normally this will

be "POST Parameter", however other options are provided for more specialized login

mechanisms.

• Username Field Name Pattern: A regular expression used to match the name of the

input the username is submitted with. Normally this is "username", but could be other

variations such as "usr", "user", etc. You can simply enter the name of the input in this

field if a regular expression is not required.

• Username Field Pattern Value: A regular expression used to extract the username from

the input value. Normally this should just be "^.*$", but if the username is wrapped in

JSON for example, you may need to create a more complex expression. The username

is considered the first matching parenthesis group in the pattern.

• Username Field Encoding: The type of data encoding used on the username. Normally

this will be "Ascii", however if any client side encoding is performed, other encoding

options are available.

• Password Field Type: The type of inputs used to submit a password. Normally this will

be "POST Parameter", however other options are provided for more specialized login

mechanisms.

Copyright © 2013, Juniper Networks, Inc.256

WebApp Secure 5.1.3

• Password Field Name Pattern: A regular expression used to match the name of the

input the password is submitted with. Normally this is "password", but could be other

variations such as "pwd", "pass", etc. You can simply enter the name of the input in

this field if a regular expression is not required.

• Username Field Pattern Value: A regular expression used to extract the password from

the input value. Normally this should just be "^.*$", but if the password is wrapped in

JSON for example, you may need to create a more complex expression. The password

is considered the first matching parenthesis group in the pattern.

• Password Field Encoding: The type of data encoding used on the password. Normally

this will be "Ascii", however if any client side encoding is performed, other encoding

options are available.

• Failure Pattern Target: In order to identify a failed login attempt, the processor will

search for a specific pattern in the response. This attribute specifies where to search

for that pattern. Normally this would be "Body" to search the HTML body of the

response.

• FailurePattern: The regular expression to search for to check and see if the login attempt

was unsuccessful. Assuming the Failure Pattern Target is "Body", this would be

something like "you have provided an invalid username and password". However the

exact text will need to be set to whatever the site actually returns. View the source of

the response after a failed login and search for the error text, so that you get the most

accurate version possible. Simply copying the text from the rendered page may exclude

embedded HTML tags which will cause the pattern to never match.

• Failure Pattern Condition: Specifies whether finding the failure pattern means the login

was unsuccessful, or whether not finding the pattern means the login was unsuccessful.

• Success Pattern Target: In order to identify a successful login attempt, the processor

will search for a specific pattern in the response. This attribute specifies where to search

for that pattern. Normally this would be "Body" to search the HTML body of the

response.

• Success Pattern: The regular expression to search for to check and see if the login

attempt was successful. Assuming the Success Pattern Target is "Body", this would

be something like "you have successfully logged in". However the exact text will need

to be set to whatever the site actually returns. View the source of the response after

a successful login and search for something that only gets displayed on a successful

login, so that you get the most accurate version possible. Simply copying the text from

the rendered page may exclude embedded HTML tags which will cause the pattern

to never match.

• Success Pattern Condition: Specifies whether finding the success pattern means the

login was successful, or whether not finding the pattern means the login was successful.

• RequireCaptchaAfter: Specifies how many failed login attempts on the same username

before requiring all future login attempts on that username to solve a captcha. Entering

"0" will allow infinite attempts.

Keep in mind that some website implementations allow login information to be posted

to many different URLs. If that is the case, make sure the URL pattern is defined generically

257Copyright © 2013, Juniper Networks, Inc.

Chapter 32: Response Processors

enough to match any URL the user might submit a login request to. Only submissions

that match the URL pattern will be protected.

Once a login form has been configured, it can be tested by attempting to login to the

same username 6 or more times. You should be presented with a captcha. Next, solve

the captcha and log in with the correct password. Then logout and attempt to login to

the same username again. If you do not get a captcha, then the login form is configured

correctly.

Table 40: Login Processor Configuration Parameters

DescriptionDefault ValueTypeParameter

Basic

Whether traffic should be
passed through this
processor. Note that just
because this processor is
enabled, does not mean that
any login forms are being
protected. Login forms will
not be protected until they
are configured in the
"Protected Login Pages"
parameter.

TrueBooleanProcessor Enabled

The list of pages that should
be protected from login and
account abuse. These pages
should reflect the URL's that
accept username's and
passwords and allow login,
not necessarily the pages
that contain login forms. For
example, if every page on the
site had a login form, but they
all submitted to login.php,
then only login.php needs to
be configured in this
processor.

NoneCollectionProtected Login Pages

Advanced

The response to return if the
user issues a request that
either is too large, or uses
multipart and multi-part is
disabled.

400 ErrorHTTP ResponseBad Request Block Response

The response to return if the
user attempts to submit the
validated request multiple
times using the same captcha
answer, and that behavior is
not allowed.

400 ErrorHTTP ResponseBlocked Replay Response

Copyright © 2013, Juniper Networks, Inc.258

WebApp Secure 5.1.3

Table 40: Login Processor Configuration Parameters (continued)

DescriptionDefault ValueTypeParameter

The URL to redirect the user
to if they cancel the captcha.
This should not be to the
same domain, because the
domain is being blocked using
a captcha, and therefore,
canceling would only redirect
to a new captcha. An empty
value will hide the cancel
button,

(empty)StringCancel URL

The name of the directory
where captcha images and
audio files will be served
from. This should not conflict
with any actual directories on
the site.

RandomStringCaptcha Binary Directory

The characters to use when
generating a random captcha
value. Avoid using characters
that can be easily mixed up.
This set of characters is case
sensitive.

abcdefhkmnprwxyz
ABCEFGHJKLMNPQRTWXYZ
234678

StringCaptcha Characters

The maximum number of
seconds the user has to solve
the captcha before the
request is no longer possible.

120IntegerCaptcha Expiration

The name of the cookie to
use to track the active
captchas that have not yet
been solved. The cookie is
only served to the captcha
binary directory.

RandomStringCaptcha State Cookie

The HTML template used to
ask the user to complete a
captcha. This template must
contain specific key words in
order to integrate properly.
Please refer to the manual for
more information.

Default TemplateFileCaptcha Template

The name of the form input
used to transmit the captcha
validation key. This should be
obscure so that users who
have not been required to
enter a captcha cannot
supply bad values to this
input to profile the system.

RandomStringCaptcha Validation Input
Name

259Copyright © 2013, Juniper Networks, Inc.

Chapter 32: Response Processors

Table 40: Login Processor Configuration Parameters (continued)

DescriptionDefault ValueTypeParameter

The response to return if the
user submits a validated
request after the captcha has
expired. This may happen if
the user refreshes the results
of the captcha long after they
have solved it.

400 ErrorHTTP ResponseExpired Captcha Response

The maximum number of
captchas any given user can
be solving at any given time.
This limit can be overcome,
but the majority of users will
not be able to. This is
primarily for performance, as
the more active captchas
that are allowed, the larger
the state cookie becomes.

7IntegerMaximum Active Captchas

The maximum number of
bytes in a request before it is
considered not acceptable
for captcha validation, and
will be blocked.

524288 (500KB)IntegerMaximum Request Size

Whether an audio version of
the captcha is provided to the
user. This may be a
requirement for accessibility,
as vision impaired users
would otherwise be unable
to solve the captcha.

TrueBooleanSupport Audio Version

The text to watermark the
captcha with. This can be
used to prevent the captcha
from being used in a phishing
attack. For example, an
abuser would not be able to
simply display the captcha on
a different site and ask a user
to solve it. The watermark
would tip the user off that the
captcha was not intended for
the site they are visiting. Use
%DOMAIN to use the domain
name as the watermark.

%DOMAINStringWatermark

Copyright © 2013, Juniper Networks, Inc.260

WebApp Secure 5.1.3

Table 40: Login Processor Configuration Parameters (continued)

DescriptionDefault ValueTypeParameter

The user has submitted an
invalid username or
password. This is just an
informational incident and is
used to identify more
complex attacks. It is highly
recommended that this
incident not be disabled, as it
may cause other incidents to
no longer register.

TrueBooleanIncident: Site Invalid Login

The user has submitted a
valid username and password
for an account that has
recently been used by a
different IP. This is just an
informational incident and is
used to identify more
complex attacks. It is highly
recommended that this
incident not be disabled, as it
may cause other incidents to
no longer register.

TrueBooleanIncident: Site Login Multiple
IP

The user has submitted a
valid username and password
for more than one account
recently. This is just an
informational incident and is
used to identify more
complex attacks. It is highly
recommended that this
incident not be disabled, as it
may cause other incidents to
no longer register.

TrueBooleanIncident: Site Login Multiple
Usernames

Response Processors: Login Processor: Incident - Site Invalid Login

Complexity: Suspicious (1.0)

Default Response: 15x (3 or more bad passwords per username) = Site Login Brute Force,

15x (less than 3 bad passwords per username) = Site Login Username Scan, 8x (bad

passwords for same username) = Site Login User Brute Force.

Cause: The login processor is designed to protect the login dialog of the website. It works

by monitoring all login attempts and identifying suspicious and malicious events. This

specific incident is triggered when a user attempts to login with an invalid username and

password. This incident alone is not considered malicious, but is used to perform additional

analysis and may be promoted to a malicious incident if an abusive pattern is identified

(such as many invalid logins representing a brute force attack).

261Copyright © 2013, Juniper Networks, Inc.

Chapter 32: Response Processors

Behavior: This incident simply reflects the case where a user has entered bad login

information. By itself, this cannot be considered malicious as it is extremely common for

a legitimate user to accidentally type their information incorrectly, or to forget their

password. As such, it is only an indication of possible abuse and requires additional

analysis and data before it can be confirmed as malicious or acceptable.

Response Processors: Login Processor: Incident - Site Login Multiple IP

Complexity: Informational (0.0)

Default Response: 3x = Site Login User Sharing

Cause: The login processor is designed to protect the login dialog of the website. It works

by monitoring all login attempts and identifying suspicious and malicious events. This

specific incident is triggered when multiple clients successfully log into the same account.

Depending on the nature of the protected site, this may be perfectly acceptable behavior,

however on some sites this type of behavior can indicate abuse. This incident alone is

not considered malicious, but is used to perform additional analysis and potentially

promote the event as a malicious incident if an abusive pattern is identified.

Behavior: Many web sites provide a way for users to authenticate so that their experience

and data can be customized specifically for them. In the case of this incident, credentials

for one of those accounts have been distributed to multiple clients and two or more of

those clients are logging into the account. Unless the web site expects users to share

credentials, this would generally indicate a situation where the credentials for an account

have been compromised and the account has been hijacked. Additional follow up may

be required to recover the account (such as changing the password or locking the account

until the actual owner contacts the administrators to resolve the issue).

Response Processors: Login Processor: Incident - Site Login Multiple Usernames

Complexity: Suspicious (1.0)

Default Response: 3x = Site Login User Pooling

Cause: The login processor is designed to protect the login dialog of the website. It works

by monitoring all login attempts and identifying suspicious and malicious events. This

specific incident is triggered when a single client successfully authenticates with multiple

distinct usernames. This incident alone is not considered malicious, but is used to perform

additional analysis and potentially promote the event as a malicious incident if an abusive

pattern is identified.

Behavior: There are two possibilities for this incident. Firstly, a single user may have signed

up for multiple accounts on the protected site, and they are simply using those accounts.

On some sites, this alone would be considered malicious, while on other sites, this is

considered perfectly acceptable. For example, an online email provider may allow its

users to sign up for multiple email accounts. On the other hand, a billing web site for your

home utility provider would probably not expect a single household to have multiple

accounts. The other possibility is that a single user has hijacked several other accounts.

This may be more obvious if there is also a "Site Login User Sharing" incident for the

username as well. This would indicate that not only is the malicious user logging into

Copyright © 2013, Juniper Networks, Inc.262

WebApp Secure 5.1.3

multiple accounts, but other users are also logging into those accounts. Generally, an

account should be used by a single user unless the web site has specific rules about

allowing users to share account details.

Response Processors: Login Processor: Incident - Site Login User Sharing

Complexity: Low (2.0)

Default Response: None.

Cause: The login processor is designed to protect the login dialog of the website. It works

by monitoring all login attempts and identifying suspicious and malicious events. This

specific incident is triggered when multiple clients successfully log into the same account.

Depending on the nature of the protected site, this may be perfectly acceptable behavior,

however on some sites this type of behavior can indicate abuse.

Behavior: Many web sites provide a way for users to authenticate so that their experience

and data can be customized specifically for them. In the case of this incident, credentials

for one of those accounts have been distributed to multiple clients and two or more of

those clients are logging into the account. Unless the web site expects users to share

credentials, this would generally indicate a situation where the credentials for an account

have been compromised and the account has been hijacked. Additional follow up may

be required to recover the account (such as changing the password or locking the account

until the actual owner contacts the administrators to resolve the issue).

Response Processors: Login Processor: Incident - Site Login User Pooling

Complexity: Low (2.0)

Default Response: None.

Cause: The login processor is designed to protect the login dialog of the website. It works

by monitoring all login attempts and identifying suspicious and malicious events. This

specific incident is triggered when a single client successfully logs into several different

accounts. Depending on the nature of the protected site, this may be perfectly acceptable

behavior, however on some sites this type of behavior can be harmful.

Behavior: There are two possibilities for this incident. Firstly, a single user may have signed

up for multiple accounts on the protected site, and they are simply using those accounts.

On some sites, this alone would be considered malicious, while on other sites, this is

considered perfectly acceptable. For example, an online email provider may allow its

users to sign up for multiple email accounts. On the other hand, a billing web site for your

home utility provider would probably not expect a single household to have multiple

accounts. The other possibility is that a single user has hijacked several other accounts.

This may be more obvious if there is also a "Site Login User Sharing" incident for the

username as well. This would indicate that not only is the malicious user logging into

multiple accounts, but other users are also logging into those accounts. Generally, an

account should be used by a single user unless the web site has specific rules about

allowing users to share account details.

263Copyright © 2013, Juniper Networks, Inc.

Chapter 32: Response Processors

Response Processors: Login Processor: Incident - Site Login User Brute Force

Complexity: Medium (3.0)

Default Response: 1x = Break Authentication for 1 hour, 2x = Break Authentication for 6

hours, 3x = Clear Inputs for 1 day

Cause: The login processor is designed to protect the login dialog of the website. It works

by monitoring all login attempts and identifying suspicious and malicious events. This

specific incident is triggered when a user attempts to login to the same username many

times with invalid passwords.

Behavior: In this case, the user is probably attempting to brute force the account indicated

in the incident details. Brute force against authentication works by enumerating over a

list of common passwords and testing all of them against the target username. The hope

is that the target user selected a weak password and that password is in the "dictionary"

list of passwords to try. In some cases, a custom brute force tool may be employed, which

enumerates over a list of passwords that were carefully constructed using the targets

personal information (birthdays, anniversaries, names, ages, phone numbers, etc.)

Response Processors: Login Processor: Incident - Site Login Brute Force

Complexity: Medium (3.0)

Default Response: 1x = Slow Connection for 6 hours, 3x = Slow Connection & Break

Authentication for 6 hours

Cause: The login processor is designed to protect the login dialog of the website. It works

by monitoring all login attempts and identifying suspicious and malicious events. This

specific incident is triggered when a user attempts to login against a large number of

different usernames.

Behavior: A common authentication attack is Brute Force. This attack involves submitting

a large number of username and password combinations in an effort to identify users

who have chosen weak passwords. This type of attack is extremely noisy and requires

thousands of requests to execute.

Response Processors: Login Processor: Incident - Site Login Username Scan

Complexity: Medium (3.0)

Default Response: 1x = Captcha for 6 hours, 3x = Clear Inputs & Slow Connection for 1

day

Cause: The login processor is designed to protect the login dialog of the website. It works

by monitoring all login attempts and identifying suspicious and malicious events. This

specific incident is triggered when a user attempts to login against a large number of

different usernames with a small number of passwords for each.

Copyright © 2013, Juniper Networks, Inc.264

WebApp Secure 5.1.3

Behavior: One flaw present in a lot of authentication implementations is that the results

that are returned when submitting an invalid username and password are different then

the results returned when the username is valid but the password is not. By enumerating

over a large number of possible usernames and supplying bad passwords, the attacker

is able to identify which usernames are actually valid in the system. This is one of the first

steps to a large scale brute force attack. Once the user has a list of valid usernames, they

can then launch the brute force attack against just those usernames to make the attack

quicker and harder to identify. A best practice when developing authentication systems

is to ensure that the results that are returned from an invalid username, are the same

results returned when providing a valid username and invalid password. For example,

the error should read "The username and password you supplied could not be found in

our database", instead of "The username you provided does not exist".

Response Processors: Google Map Processor

The Google Map Processor provides a counter response called the “Google Map

Response”. When this response is activated, the user will be shown an overlay dialog

with a google map of their geo location (as resolved from their IP address using MaxMind

Geo IP). It will then recommend 4 google search results on a configured term (default is

‘Criminal Attorney’). The intention is to scare the individual into believing that we know

where they live and plan to attempt prosecution.

The google map response requires several things in order to work. First, you must obtain

a google map API key and set it in configuration. Until you do this, you will not be able to

enable the processor. Once enabled, if you activate the processor on a user, they will only

see the response if WebApp Secure can resolve their geo location from MaxMind GeoIP.

If a geo location cannot be resolved, the map will not be displayed. Additionally, the

google map response is not a default response for any activity, so unless you manually

activate it, or create a custom auto response rule to activate it, it will never be used.

Keep in mind that by activating this response, you are effectively broadcasting your public

google map API key to the attacker. If the attacker decides to exploit this fact, they can

easily drain your google map request and search result quotas. As such, it is important

to get an API key for a junk google development account, so that your quota’s are not

shared with legitimate site functions. You should also not sign up for paid quota extensions

on that particular account, as that could allow the attacker to run up your bill. Just use

the free quotas.

Table 41: Google Map Processor Configuration Parameters

DescriptionDefault ValueTypeParameter

Basic

Whether traffic should be passed through this processor.FalseBooleanProcessor Enabled

The API key issued by Google to authorize the map API
to be used on the domain being protected by WebApp
Secure. This API key should be enabled for both Google
Map API v3, and the Custom Search API.

[Not Set]StringGoogle API Key

265Copyright © 2013, Juniper Networks, Inc.

Chapter 32: Response Processors

Table 41: Google Map Processor Configuration Parameters (continued)

DescriptionDefault ValueTypeParameter

Advanced

The default term to search for localized locations on."Criminal
Attorney"

StringDefault Search Term

The information needed to define the URL and response
used to dismiss a map.

mapdataMap Dismissal
Resource

Dismissal Resource

The name of the directory where the map Javascript and
css code will be served from. For example: mapdata.

mapdataStringMap Directory

Copyright © 2013, Juniper Networks, Inc.266

WebApp Secure 5.1.3

CHAPTER 33

Incident Methods

• List Of Incident Methods on page 267

List Of Incident Methods

NOTE: Parameters wrapped in [] are optional.

Table 42: Incident Methods

ParametersName and Description

incident:stringisIncidentTypeCheck the incident type by either its code or its name.

[month:int]

[day:int]

[year:int]

isIncidentDateCheck to see if an incident occurred on the given month, day and year. The
month, day and year arguments may be left empty to match any value.Note that Jan =
1, and years are in the format YYYY.

start_month:int

start_day:int

start_year:int

end_month:int

end_day:int

end_year:int

isIncidentDateRange Check to see if an incident occurred between two dates. All values
must be defined. Note that Jan = 1, and years are in the format YYYY.

[hour:int]

[minute:int]

[second:int]

isIncidentTimeCheck to see if an incident occurred at a given time. The hour, minute and
second arguments may be left empty to match any value.

267Copyright © 2013, Juniper Networks, Inc.

Table 42: Incident Methods (continued)

ParametersName and Description

start_hour:int

start_minute:int

start_second:int

end_hour:int

end_minute:int

end_second:int

isIncidentTimeRange Check to see if an incident occurred between a given time range.
All values must be specified.

operator:string

value:int

isIncidentCount Check the number of times an incident has occurred against an integer
operation and specified value. Supported operations include (>, <, ==, !=). The results
are: (count [operator] value)

min:int

max:int

isIncidentCountRange Check to see if the number of times an incident has occurred is
within a given range.

search:string

[[caseSensitive]:Boolean]

isIncidentContextSubStringCheck to see if the context XML associated with the incident
contains the provided substring. The search is case sensitive by default, unless the second
parameter is "false".

pattern:string

[[caseSensitive]:Boolean]

isIncidentContextPattern Check to see if the context XML associated with an incident
contains a simple pattern. Supported pattern wild cards include +, ? and *. Pattern
matches are performed case sensitive unless the second parameter to this method is
"false".

[a_block:int]

[b_block:int]

[c_block:int]

[d_block:int]

isIncidentIP Check to see if an incident came from a given IP address. Each parameter
specifies the required value for the specific block of the address. Any of the parameters
can be left empty to match any value.

[a_block_range:string]

[b_block_range:string]

[c_block_range:string]

[d_block_range:string]

isIncidentIPRange Check to see if an incident came from a given IP address range. Each
parameter specifies a range of accepted values for the specific address block. Ranges
are specified in the format: min-max. For example: 10-22, or 0-255

name:stringisIncidentBrowser Check to see if the incident occurred from a given browser. The
parameter expects the canonical name of the browser.

name:stringisIncidentOperatingSystem Check to see if the incident occurred from a given operation
system. The parameter expects the canonical name of the operating system.

Copyright © 2013, Juniper Networks, Inc.268

WebApp Secure 5.1.3

Table 42: Incident Methods (continued)

ParametersName and Description

version:string

[[caseSensitive]:Boolean]

isInicdentBrowserVersion Check to see if the incident occurred from a specified version
of the browser. The check is case sensitive by default, unless the second parameter is
"false". The version could contain any character and should be considered as an arbitrary
user supplied string value.

pattern:string

[[caseSensitive]:Boolean]

isIncidentBrowserVersionPattern Check to see if the incident occurred from a browser
with a version that matches a given simple pattern. Pattern wild cards >include ?, * and
+. The match is done case sensitive unless the second parameter is "false". The version
could contain any character and should be considered as an arbitrary user supplied string
value.

Search:string

[[caseSensitive]:Boolean]

isIncidentBrowserVersionSubStringCheck to see if the incident occurred from a browser
with a version that contains the given sub string. The match is done case sensitive unless
the second parameter is "false". The version could contain any character and should be
considered as an arbitrary user supplied string value.

country:stringisIncidentCountry Check to see if the incident originated from a given country. The
parameter expects a valid 2 character country code, or the canonical name of the country.

latitude:floatisIncidentLatitude Check to see if the incident originated from a specified geographical
latitude. The parameter is expected to be a decimal number between -90.0 and +90.0.

min:float

max:float

isIncidentLatitudeRange Check to see if the incident originated between a specified
geographical latitude range.The parameters are expected to be decimal numbers between
-90.0 and +90.0.

longitude:floatisIncidentLongitude Check to see if the incident originated from a specified geographical
longitude. The parameter is expected to be a decimal number between -90.0 and +90.0.

min:float

max:float

isIncidentLongitudeRange Check to see if the incident originated between a specified
geographical longitude. The parameters are expected to be decimal numbers between
-90.0 and +90.0.

city:string

[caseSensitive]:Boolean

isIncidentCity Check to see if the incident originated in a specified city. The parameter is
expected to be the city name and is case sensitive unless the second parameter is "false".

pattern:string

[caseSensitive]:Boolean

isIncidentCityPattern Check to see if the incident originated from a city that matches a
specified pattern. The supported wild cards are *>, ?, and +. The pattern is case sensitive
unless the second parameter is "false".

search:string

[caseSensitive]:Boolean

isIncidentCitySubString Check to see if the incident originated from a city that contains
a specified sub string. The substring search is done case sensitive unless the second
parameter is "false".

host:string

[caseSensitive]:Boolean

isIncidentHost Check to see if the incident originated in a specified host. The parameter
is expected to be the host name and is case sensitive unless the second parameter is
"false".

pattern:string

[caseSensitive]:Boolean

isIncidentHostPattern Check to see if the incident originated from a host name that
matches a specified pattern. The supported wild cards are *, ?, and +. The pattern is
case sensitive unless the second parameter is "false".

269Copyright © 2013, Juniper Networks, Inc.

Chapter 33: Incident Methods

Table 42: Incident Methods (continued)

ParametersName and Description

search:string

[caseSensitive]:Boolean

isIncidentHostSubString Check to see if the incident originated from a host name that
contains a specified sub string. The substring search is done case sensitive unless the
second parameter is "false".

region:string

[caseSensitive]:Boolean

isIncidentRegionCheck to see if the incident originated in a specified region. The parameter
is expected to be the region name and is case sensitive unless the second parameter is
"false".

pattern:string

[caseSensitive]:Boolean

isIncidentRegionPatternCheck to see if the incident originated from a region that matches
a specified pattern. The supported wild cards are *, ?, and +. The pattern is case sensitive
unless the second parameter is "false".

search:string

[caseSensitive]:Boolean

isIncidentRegionSubString Check to see if the incident originated from a region that
contains a specified sub string. The substring search is done case sensitive unless the
second parameter is "false".

zip:string

[caseSensitive]:Boolean

isIncidentZipCheck to see if the incident originated in a specified zip code. The parameter
is expected to be the zip code and is case sensitive unless the second parameter is "false".
While zip codes should generally be numeric, there is the possibility of foreign zip codes
containing strange characters.

pattern:string

[caseSensitive]:Boolean

isIncidentZipPatternCheck to see if the incident originated from a zip code that matches
a specified pattern. The supported wild cards are *>, ?, and +. The pattern is case sensitive
unless the second parameter is "false".

search:string

[caseSensitive]:Boolean

isIncidentZipSubStringCheck to see if the incident originated from a zip code that contains
a specified sub string. The substring search is done case sensitive unless the second
parameter is "false".

Copyright © 2013, Juniper Networks, Inc.270

WebApp Secure 5.1.3

CHAPTER 34

Captcha Template

• Captcha Template on page 271

Captcha Template

There are several processors that utilize captchas to prevent automation. These

processors include:

• Request Captcha Processor

This processor allows you to attach a captcha to any page on the web application. It

is also responsible for enforcing the "Force Captcha Validation" counter response.

• Login Processor

This processor utilizes captchas to prevent brute force attacks on login dialogs. Once

there have been more than three (3) failed login attempts on a single username (from

any users), any future attempts to login as that user will require a captcha.

When a captcha must be presented, the format in which it is displayed is defined as a

Captcha Template. By default, there is a captcha template defined for both processors

that will work on all websites. In the event that you would like to customize the way the

captcha looks when it is presented (such as wrapping it with the standard template of

the website being protected), the captcha template can be modified. This is done by

accessing the advanced configuration parameters for the two aforementioned processors

and editing the "Captcha Template" parameter.

In order to edit the parameter, it is recommended that you first download a copy of the

existing default template. If you have already made modifications to the template, you

can get the original by selecting the suggestion "Default Unbranded Template", and then

downloading the associated file.

Once you have a copy of the default template, open it in a text editor. You can make any

modifications to the HTML as required, but be sure not to modify the existing JavaScript

or remove any of the existing HTML. To prevent introducing changes that might prevent

the captcha from functioning, it is recommended that modifications be limited to stylistic

changes (do not alter the content of the SCRIPT tags, and do not alter the contents of

the FORM tag). After your modifications, you can upload the new file into the parameter

to update the captcha HTML served by WebApp Secure. It is recommended that you

keep a copy of the modified template to make future modifications easier.

271Copyright © 2013, Juniper Networks, Inc.

You will also notice that there are a few special HTML tags in the template. These tags

are replaced by WebApp Secure before the template is served to the end-user. These

tags reside either in a SCRIPT tag or in a FORM tag, so as long as those elements are not

modified, these tags should continue to function correctly. These special tags include:

• <%captchaDir> The directory name that all captcha images and audio files are served

from.

• <%signature> The file name for the captcha image or audio resource to load.

• <%includeAudio>...<%includeAudio> Displays the content between the open and

closing tags only if audio captchas are enabled.

• <%cancel> The URL to redirect the user to if they cancel the captcha operation.

• <%delay> The number of seconds the user has to complete the captcha before it

expires.

• <%multiPart>...<%multiPart> Displays the content between the opening and closing

tag only if the original request that is being protected by a captcha was a multipart

form submission (vs. a URL encoded form post [by default, forms are URL encoded]).

• <%datasignature> The signature of the data that was originally posted to the page

protected by the captcha. This is used to ensure that the data is not modified after

submission, but before the captcha is solved.

• <%data> The encrypted data submitted to the original page that required a captcha.

This is used so that once the captcha is solved, the original request can be reconstructed

and submitted to the backend servers.

• <%inputname>The name of the input used to identify when a user submits a captcha.

The value for this input name is configurable and should not conflict with any existing

inputs the site uses. A random string of 5 or more characters should be sufficient (but

must be set in configuration so that it can be injected in place of the custom tag when

serving a captcha).

After the new template has been uploaded and saved in configuration, you can test your

changes by triggering the applicable captcha.

• Request Captcha Processor Access the protected page and request

http://www.domain.com/.htaccess which will generate a profile for your session. Find

the new profile in the security monitor and manually activate the "Force Captcha

Validation" response. Then go back to the protected site and make a few more requests

until the captcha shows up.

• Login Processor If the login processor is configured to protect a login dialog on the site,

then simply provide 3 or more invalid passwords for the same username. On the 4th

attempt, you should be presented with the login processor captcha.

Copyright © 2013, Juniper Networks, Inc.272

WebApp Secure 5.1.3

NOTE: Note: Changes to the captcha template aremade to the live
deployment. So if you break the captcha template duringmodifications, it
may cause the captcha to stopworking for someof the users on the site until
the template is repaired.Creatinganew"Page" inconfiguration fora fictitious
URL andmaking the changes on that page first would allow you to test the
modifications without impacting every use on the site.

273Copyright © 2013, Juniper Networks, Inc.

Chapter 34: Captcha Template

Copyright © 2013, Juniper Networks, Inc.274

WebApp Secure 5.1.3

CHAPTER 35

Log Format

• Log Format on page 275

• Incident Log Format on page 275

• Counter Response Log Format on page 276

• Profile Log Format on page 277

Log Format

Webapp Secure is configured to log security incidents to mws-security-alert.log. The

creation of new profiles, incoming incidents, and sent counter responses all have alerts

that can individually be turned on or off. The following section explains the format of

these security log messages.

All security alert log messages have this common format:

<date> <host> [<log level>] [mws-security-alert] [<thread ID>] <message>

Where all of the items in angle brackets will be replaced by information relevant to that

log entry. The <message> portion of each log entry consists of a series of name value

pairs, with the name (unquoted) followed by an equal sign (=) followed by the value (in

quotes).

Incident Log Format

If incident logging is enabled, all incidents at or above the configured incident severity

level will be sent to syslog in mws-security-alert.log.

• MKS_Category - will always have the value "Security Incident" when logging security

incidents

• MKS_Type - a textual name for the type of incident

• MKS_Severity - an integer between 0 and 4 for the severity of the incident (0 being

lowest, 4 being highest)

• MKS_ProfileName - the name of the hacker profile who caused the incident (also

visible in the security monitor)

• MKS_SrcIP - the ip of the hacker who caused the incident

275Copyright © 2013, Juniper Networks, Inc.

• MKS_pubkey - a textual key unique to that hacker profile (also visible in the security

monitor)

• MKS_useragent - the full useragent string of the browser or other program used by the

hacker

• MKS_url - the url used on the request that caused the incident

• MKS_count - the number of times this hacker has caused this same incident

Following the common names will be any incident specific contextual values which are

tracked with the incident. These will vary based on incident type. For example a Query

Parameter Manipulation incident would include the parameter that was changed along

with actual and expected values. Here is a sample log entry:

Apr620:58:36vm1[INFO][mws-security-alert][Thread-49927]MKS_Category="Security
Incident" MKS_Type="Query Parameter Manipulation" MKS_Severity="2"
MKS_ProfileName="Luis 9605" MKS_SrcIP="10.10.10.130"
MKS_pubkey="fkrvpvFNhwoWRgaQiUxS" MKS_useragent="Mozilla/5.0 (Windows NT
6.1; WOW64) AppleWebKit/535.19 (KHTML, like Gecko) Chrome/18.0.1025.142
Safari/535.19" MKS_url="http://www2.testsite.com:80/basket/?action=listing id=3"
MKS_count="1" MKS_actual="2568" MKS_expected="25304" MKS_param="n_idx"

Counter Response Log Format

If counter response logging is enabled, all responses (both autoresponses and manually

activated responses) will be logged to syslog.

• MKS_Category - will always have the value "New Counter Response" when logging

counter responses

• MKS_ResponseCode - the two letter representation of the counter response issued;

for example, "BL" for Blocking response.

• MKS_ResponseName - The full textual representation of the counter response issued;

for example, "Block".

• MKS_ProfileId - the id of the profile that the counter response was issued on. This is

guaranteed to be unique per attacker, and is used to display the attacker's page within

the web UI (http://HOSTNAME/ attackers/PROFILEID).

• MKS_ProfileName - the name of the hacker profile that the counter response was

issued on. (also visible in the security monitor)

• MKS_ResponseCreated - the date and time the response was created.

• MKS_ResponseDelayed - the date and time the response is set to be delayed until.

• MKS_ResponseExpires - the date and time the response is set to expire.

• MKS_ResponseConfig - the configuration used in this counter response.

Here is a sample log entry:

Feb1515:03:28vm1[INFO][mws-security-alert][Thread-214]MKS_Category="NewCounter
Response"MKS_ResponseCode="CP"MKS_ResponseName="ForceCaptchaValidation"
MKS_ProfileId="127780" MKS_ProfileName="Peter 4703"

Copyright © 2013, Juniper Networks, Inc.276

WebApp Secure 5.1.3

MKS_ResponseCreated="2013-02-1515:03:26.576"MKS_ResponseDelayed="2013-02-15
15:03:26.576" MKS_ResponseExpires="null" MKS_ResponseConfig="<config
ix0ix5002='1' />"

Profile Log Format

If profile logging is enabled, any new profile creations will be logged.

• MKS_Category - will always have the value "New Profile" when logging profiles.

• MKS_ProfileId - the id of the profile that was created.

• MKS_ProfileName - the name of the profile that was created.

• MKS_PubKey - the public key of the profile that was created, used for unblocking the

profile via the support processor.

• MKS_GlobalName - the global name given to the profile from Spotlight service. This

entry will only exist if it is a spotlight profile, otherwise it will be omitted.

Here is a sample log entry:

Feb 15 15:03:24 zach-vm [INFO][mws-security-alert][Thread-202]MKS_Category="New
Profile" MKS_ProfileId="127780" MKS_ProfileName="Peter 4703"
MKS_PubKey="XAgpFNhjYrQvlaozu2Gb"

277Copyright © 2013, Juniper Networks, Inc.

Chapter 35: Log Format

Copyright © 2013, Juniper Networks, Inc.278

WebApp Secure 5.1.3

PART 5

Index

• Index on page 281

279Copyright © 2013, Juniper Networks, Inc.

Copyright © 2013, Juniper Networks, Inc.280

WebApp Secure 5.1.3

Index

Symbols
#, comments in configuration statements...................xxi

(), in syntax descriptions..xxi

< >, in syntax descriptions..xx

[], in configuration statements..xxi

{ }, in configuration statements..xxi

| (pipe), in syntax descriptions..xxi

file processor..170

A
activity processors..182

application cookie manipulation............................187

auth cookie tampering...184

auth input parameter tampering...........................183

auth invalid login..185

auth query parameter tampering..........................184

authentication brute force..185

common directory enumeration............................195

cookie protection processor....................................186

duplicate request header..198

duplicate response header.......................................199

error processor...187

header processor..197

illegal method requested...204

illegal request header...199

illegal response header...200

illegal response status..192

method processor...203

missing all headers..200

missing host header..200

missing http protocol..205

missing request header..201

missing response header..201

missing user agent header.......................................202

request header overflow...202

resource enumeration..196

suspicious response status......................................193

unexpected method requested.............................205

unexpected request header....................................203

unexpected response status....................................193

unknown common directory requested..............194

unknown http protocol...206

unknown user directory requested........................194

user directory enumeration......................................195

Akamai Dynamic Site Accelerator

configure support..58

alert service..41

appliance

initial configuration...31

management..21

restart and shutdown...109

terminology...6

appliance deployment...7

applications

edit...52

new...51

patterns..53

assigning the instance and IP

CLI..94

verify...95

web interface...94

Attackers screen..128

autoresponse

overview...143

B
backend server...39

requirements...39

backend servers

define..55

backup

restore..117

backup and recovery

overview...115, 117

backup service...43

fields...44

basic configuration mode...12

available sections...97

braces, in configuration statements................................xxi

brackets

angle, in syntax descriptions......................................xx

square, in configuration statements.......................xxi

C
captcha template..271

CLI

config context...48

import/export..49

initialize configuration..49

281Copyright © 2013, Juniper Networks, Inc.

overview...13, 47

proxy exclusion...50

services context..50

set config parameter..48

system context...50

comments, in configuration statements.......................xxi

components..4

configuration

DNS...34

first time...11

hostname..32

initialize appliance...35

interface...33

restart network..35

TUI steps..31

web interface...11

Configuration

Security Monitor..139

configuration wizard...12

alert service...41

backend server..39

backup service..43

confirmation..44

email alerts...42

SMTP servers..40

Spotlight Secure..44

conventions

text and syntax..xx

Counter Responses screen..135

curly braces, in configuration statements.....................xxi

customer support...xxi

contacting JTAC..xxi

D
Dashboard

Security Monitor overview...123

data sources

CLI...81

DNS settings...34

documentation

comments on..xxi

E
EC2 deployment

CLI..89

overview...10

web interface..90

Editor

overview...147

email alerts..42

expert configuration mode...12

details..98

F
first time configuration..11

font conventions..xx

H
health check URL...116

high availability

configure...65

overview...17, 65

update..69

honeypot processors

access policy processor...156

ajax processor..159

apache configuration requested............................163

apache password file requested............................164

basic authentication brute force.............................167

basic authentication processor..............................162

cookie parameter manipulation.............................169

cookie processor..168

hidden input form processor....................................173

hidden link processor..175

hidden parameter manipulation.............................174

invalid credentials..165

link directory indexing...176

link directory spidering..176

malicious resource request.......................................177

malicious script execution..160

malicious script introspection..................................161

malicious service call..157

malicious spider activity..179

parameter type manipulation..................................173

password cracked..166

protected resource requested.................................166

query parameter manipulation...............................178

query string processor...177

robots processor...179

service directory indexing...157

service directory spider..158

suspicious file exposed..171

suspicious filename...170

suspicious resource enumeration...........................172

hostname, setting...32

how it works...3

Copyright © 2013, Juniper Networks, Inc.282

WebApp Secure 5.1.3

I
incident methods

list..267

Incidents screen...133

initialize appliance..35

interface configuration..33

L
license

add...37

limitations..6

load-balanced environments

options..9

Locations tab..132

log format

counter response...276

incident..275

overview...275

profile..277

login ban

unblock..104

M
managing services...115

manuals

comments on..xxi

master-slave mode...115

multiple web servers

securing...51

N
network placement...7

node types..15

P
parentheses, in syntax descriptions................................xxi

password

change...85

reset..85

phases of detection and response.....................................4

processors

complexity ratings...151

overview...25

proxy exclusion..50

R
RBAC

list of groups and roles..100

report

CLI..79

CLI supported arguments..80

data sources...81

example...82

formatting..81

schedule ..77

schedule overview..27

reporting

overview...27

Reports screen...139

response processors...221

app vulnerability detected.......................................252

application vulnerability processor.......................252

bad captcha answer...229

block processor...222

captcha answer automation...................................226

captcha cookie manipulation.................................233

captcha directory indexing......................................236

captcha directory probing...237

captcha disallowed multipart................................236

captcha image probing...234

captcha parameter manipulation.........................238

captcha request replay attack...............................239

captcha request size limit exceeded....................235

captcha request tampering......................................231

captcha signature spoofing.....................................233

captcha signature tampering..................................232

cloppy processor...254

csrf parameter tampering..245

csrf processor..243

csrf remote script inclusion......................................247

expired captcha request...230

force logout processor...248

Google map processor..265

header injection processor......................................248

http referers disabled...247

login processor...255

mismatched captcha session................................230

muliple captcha parameter manipulation.........242

multiple captcha disallow multipart.....................241

multiple captcha replays..240

multiple captcha request overflow......................228

multiple csrf parameter tampering......................246

no captcha answer provided...................................227

request captcha processor......................................223

site invalid login...261

site login brute force...264

site login multiple ip..262

283Copyright © 2013, Juniper Networks, Inc.

Index

site login multiple uesrnames.................................262

site login user brute force...264

site login user pooling..263

site login user sharing..263

site login username scan..264

slow connection processor......................................249

strips input processor..249

support processor...253

unsupported audio captcha requested..............228

warning code tampering..251

warning processor..250

Responses tab...131

restart networking..35

role-based access control...99

configure...99

S
Search screen..137

secure cluster...10, 15, 61

node types...15

setup..61

update..63

security engine incidents..152

security processors

overview...153

services..5

session cookie tampering..152

Sessions screen...136

SMTP servers...40

Spotlight Secure...44

enable..119

overview...23

SRX integration

configure..73

create filter and terms..72

filters and terms overview..71

overview...19

test...107

SSL to client

enable..56

SSL traffic considerations..9

statistics...112

support, technical See technical support

syntax conventions...xx

system updates...109

Sytstem Status screen...140

T
technical support

contacting JTAC..xxi

third-party load balancer...6

tracking processors

beacon parameter tampering.................................210

beacon session tampering...211

client beacon processor...209

client classification processor.................................215

client fingerprint processor..211

etag beacon processor..207

fingerprint directory indexing...................................214

fingerprint directory probing.....................................214

fingerprint manipulation..215

session etag spoofing...208

U
Updates screen..140

user preferences..103

V
verify connectivity...36

verify installation...87

verify instance is running...95

W
web interface configuration..11

whitelist settings...57

Copyright © 2013, Juniper Networks, Inc.284

WebApp Secure 5.1.3

	Table of Contents
	List of Figures
	List of Tables
	About the Documentation
	Documentation and Release Notes
	Documentation Conventions
	Documentation Feedback
	Requesting Technical Support
	Self-Help Online Tools and Resources
	Opening a Case with JTAC

	Part 1: Overview
	Chapter 1: WebApp Secure
	WebApp Secure Summary
	How It Works
	Four Phases of Detection and Response
	WebApp Secure Features
	WebApp Secure Services
	Limitations
	WebApp Secure Appliance Terminology
	Using WebApp Secure with Third-Party Load Balancer

	Chapter 2: Deployment
	Appliance Deployment Overview
	Placement Between Firewall and Web Servers
	Options for Load-Balanced Environments
	SSL Traffic Considerations
	EC2 Deployment
	Using a Secure Cluster

	Chapter 3: Configuration
	First Time Configuration
	Web Interface Configuration Overview
	About the Configuration Wizard
	Basic vs. Expert Configuration
	Using the CLI

	Chapter 4: Clustering
	Using a Secure Cluster
	Node Types

	Chapter 5: High Availability
	High Availability Overview

	Chapter 6: SRX Integration
	Integration with SRX Overview

	Chapter 7: Appliance Management
	Appliance Management Overview

	Chapter 8: Spotlight Secure
	About Spotlight Secure

	Chapter 9: The Processors
	Processors Overview

	Chapter 10: Reports
	Reporting Overview
	Scheduling a Report Overview

	Part 2: Configuration
	Chapter 11: Initial Tasks
	Initial Appliance Configuration
	TUI Steps
	Setting the Hostname
	Interface Configuration
	Set DNS
	Restart the network
	Initialize the Appliance
	Verify Connectivity
	Install the License

	Chapter 12: Configuration Wizard
	Configuration Wizard: Backend Server
	Backend Server Requirements
	SMTP Servers
	Wizard Alert Service
	Email Alert Requirements
	Wizard Backup Service
	Backup Service Fields
	Wizard: Spotlight Secure
	Wizard Confirmation Page

	Chapter 13: Command Line Interface
	Using the CLI
	CLI: Config
	CLI: Config: Setting a Configuration Parameter
	CLI: Config: Initializing the Configuration
	CLI: Config: Import/Export
	CLI: Config: Configure a Proxy Exclusion
	CLI: Services
	CLI: System

	Chapter 14: Configuration Options
	Securing Multiple Web Servers
	Create a New Application
	Edit Applications
	Application Patterns
	Define Backend Servers
	Enable SSL to the Client
	Whitelist Settings
	Configure Support for Akamai Dynamic Site Accelerator

	Chapter 15: Clustering
	Using a Secure Cluster
	Setting Up Clustering
	Updating the Cluster

	Chapter 16: High Availability
	High Availability Overview
	Configuring High Availability
	Updating with High Availability

	Chapter 17: SRX Integration
	Filters and Terms Configuration Summary for SRX Integration
	Creating SRX Filters and Terms
	Configure the SRX Integration

	Chapter 18: Reports
	Schedule a Report
	The Reports CLI
	Supported arguments
	Data Sources
	Formatting
	Example Report

	Part 3: Administration
	Chapter 19: General Tasks
	Changing the Password
	Resetting the Password

	Chapter 20: Verify
	Verify the Installation

	Chapter 21: EC2 Deployment
	EC2: Deploying Using the Command Line
	EC2: Deploying Using the Web Interface
	Assigning the Instance and IP Using the CLI
	Assigning the Instance and IP Using the Web Interface
	Verify the Instance is Running

	Chapter 22: Configuration Modes and Roles
	Basic Configuration Mode
	Expert Configuration Mode
	Role-Based Administrator Access Control
	Configuring Role-Based Access Control
	RBAC Groups and Roles
	Edit User Preferences
	Unblock Login Ban

	Chapter 23: SRX Integration
	Testing the SRX Integration Configuration

	Chapter 24: Appliance Management
	Restart and Shutdown the Appliance
	System Updates
	Statistics
	Master - Slave Mode
	Managing Services
	Backup and Recovery Overview
	Health Check URL
	Backup and Recovery Overview
	Restoring a Backup

	Chapter 25: Spotlight Secure
	Enabling Spotlight Secure

	Chapter 26: Security Monitor
	The Dashboard
	Attackers
	Responses Tab
	Locations Tab
	Incidents
	Counter Responses
	Sessions
	Search
	Reporting
	Configuration
	System Status
	Updates

	Chapter 27: Autoresponse Defaults and Rule Creation
	Autoresponse Overview
	Editor Overview

	Part 4: Monitoring
	Chapter 28: The Processors
	Complexity Rating Definitions
	Security Engine Incidents
	Session Cookie Spoofing
	Session Cookie Tampering
	Security Processors

	Chapter 29: Honeypot Processors
	Honeypot Processors: Access Policy Processor
	Honeypot Processors: Access Policy Processor: Incidents - Malicious Service Call
	Honeypot Processors: Access Policy Processor: Incidents - Service Directory Indexing
	Honeypot Processors: Access Policy Processor: Incidents - Service Directory Spider
	Honeypot Processors: AJAX Processor
	Honeypot Processors: AJAX Processor: Incidents - Malicious Script Execution
	Honeypot Processors: AJAX Processor: Incidents - Malicious Script Introspection
	Honeypot Processors: Basic Authentication Processor
	Honeypot Processors: Basic Authentication Processor: Incidents - Apache Configuration Requested
	Honeypot Processors: Basic Authentication Processor: Incidents - Apache Password File Requested
	Honeypot Processors: Basic Authentication Processor: Incidents - Invalid Credentials
	Honeypot Processors: Basic Authentication Processor: Incidents - Protected Resource Requested
	Honeypot Processors: Basic Authentication Processor: Incidents - Password Cracked
	Honeypot Processors: Basic Authentication Processor: Incidents - Basic Authentication Brute Force
	Honeypot Processors: Cookie Processor
	Honeypot Processors: Cookie Processor: Incident - Cookie Parameter Manipulation
	Honeypot Processors: File Processor
	Honeypot Processors: File Processor: Incident - Suspicious Filename
	Honeypot Processors: File Processor: Incident - Suspicious File Exposed
	Honeypot Processors: File Processor: Incident - Suspicious Resource Enumeration
	Honeypot Processors: Hidden Input Form Processor
	Honeypot Processors: Hidden Input Form Processor: Incident - Parameter Type Manipulation
	Honeypot Processors: Hidden Input Form Processor: Incident - Hidden Parameter Manipulation
	Honeypot Processors: Hidden Link Processor
	Honeypot Processors: Hidden Link Processor: Incident - Link Directory Indexing
	Honeypot Processors: Hidden Link Processor: Incident - Link Directory Spidering
	Honeypot Processors: Hidden Link Processor: Incident - Malicious Resource Request
	Honeypot Processors: Query String Processor
	Honeypot Processors: Query String Processor: Incident - Query Parameter Manipulation
	Honeypot Processors: Robots Processor
	Honeypot Processors: Robot Processor: Incident - Malicious Spider Activity

	Chapter 30: Activity Processors
	Activity Processors
	Activity Processors: Custom Authentication Processor: Incident - Auth Input Parameter Tampering
	Activity Processors: Custom Authentication Processor: Incident - Auth Query Parameter Tampering
	Activity Processors: Custom Authentication Processor: Incident - Auth Cookie Tampering
	Activity Processors: Custom Authentication Processor: Incident - Authentication Brute Force
	Activity Processors: Custom Authentication Processor: Incident - Auth Invalid Login
	Activity Processors: Cookie Protection Processor
	Activity Processors: Cookie Protection Processor: Incident - Application Cookie Manipulation
	Activity Processors: Error Processor
	Activity Processors: Error Processor: Incident - Illegal Response Status
	Activity Processors: Error Processor: Incident - Suspicious Response Status
	Activity Processors: Error Processor: Incident - Unexpected Response Status
	Activity Processors: Error Processor: Incident - Unknown Common Directory Requested
	Activity Processors: Error Processor: Incident - Unknown User Directory Requested
	Activity Processors: Error Processor: Incident - Common Directory Enumeration
	Activity Processors: Error Processor: Incident - User Directory Enumeration
	Activity Processors: Error Processor: Incident - Resource Enumeration
	Activity Processors: Header Processor
	Activity Processors: Header Processor: Incident - Duplicate Request Header
	Activity Processors: Header Processor: Incident - Duplicate Response Header
	Activity Processors: Header Processor: Incident - Illegal Request Header
	Activity Processors: Header Processor: Incident - Illegal Response Header
	Activity Processors: Header Processor: Incident - Missing All Headers
	Activity Processors: Header Processor: Incident - Missing Host Header
	Activity Processors: Header Processor: Incident - Missing Request Header
	Activity Processors: Header Processor: Incident - Missing Response Header
	Activity Processors: Header Processor: Incident - Missing User Agent Header
	Activity Processors: Header Processor: Incident - Request Header Overflow
	Activity Processors: Header Processor: Incident - Unexpected Request Header
	Activity Processors: Method Processor
	Activity Processors: Method Processor: Incident - Illegal Method Requested
	Activity Processors: Method Processor: Incident - Unexpected Method Requested
	Activity Processors: Method Processor: Incident - Missing HTTP Protocol
	Activity Processors: Method Processor: Incident - Unknown HTTP Protocol

	Chapter 31: Tracking Processors
	Tracking Processors: Etag Beacon Processor
	Tracking Processors: Etag Beacon Processor: Incident - Session Etag Spoofing
	Tracking Processors: Client Beacon Processor
	Tracking Processors: Client Beacon Processor: Incident - Beacon Parameter Tampering
	Tracking Processors: Client Beacon Processor: Incident - Beacon Session Tampering
	Tracking Processors: Client Fingerprint Processor
	Tracking Processors: Client Fingerprint Processor: Incident - Fingerprint Directory Indexing
	Tracking Processors: Client Fingerprint Processor: Incident - Fingerprint Directory Probing
	Tracking Processors: Client Fingerprint Processor: Incident - Fingerprint Manipulation
	Tracking Processors: Client Classification Processor

	Chapter 32: Response Processors
	Response Processors
	Response Processors: Block Processor
	Response Processors: Request Captcha Processor
	Response Processors: Request Captcha Processor: Incident - Captcha Answer Automation
	Response Processors: Request Captcha Processor: Incident - No Captcha Answer Provided
	Response Processors: Request Captcha Processor: Incident - Multiple Captcha Request Overflow
	Response Processors: Request Captcha Processor: Incident - Unsupported Audio Captcha Requested
	Response Processors: Request Captcha Processor: Incident - Bad Captcha Answer
	Response Processors: Request Captcha Processor: Incident - Mismatched Captcha Session
	Response Processors: Request Captcha Processor: Incident - Expired Captcha Request
	Response Processors: Request Captcha Processor: Incident - Captcha Request Tampering
	Response Processors: Request Captcha Processor: Incident - Captcha Signature Tampering
	Response Processors: Request Captcha Processor: Incident - Captcha Signature Spoofing
	Response Processors: Request Captcha Processor: Incident - Captcha Cookie Manipulation
	Response Processors: Request Captcha Processor: Incident - Captcha Image Probing
	Response Processors: Request Captcha Processor: Incident - Captcha Request Size Limit Exceeded
	Response Processors: Request Captcha Processor: Incident - Captcha Disallowed MultiPart
	Response Processors: Request Captcha Processor: Incident - Captcha Directory Indexing
	Response Processors: Request Captcha Processor: Incident - Captcha Directory Probing
	Response Processors: Request Captcha Processor: Incident - Captcha Parameter Manipulation
	Response Processors: Request Captcha Processor: Incident - Captcha Request Replay Attack
	Response Processors: Request Captcha Processor: Incident - Multiple Captcha Replays
	Response Processors: Request Captcha Processor: Incident - Multiple Captcha Disallow Multipart
	Response Processors: Request Captcha Processor: Incident - Multiple Captcha Parameter Manipulation
	Response Processors: CSRF Processor
	Response Processors: CSRF Processor: Incident - CSRF Parameter Tampering
	Response Processors: CSRF Processor: Incident - Multiple CSRF Parameter Tampering
	Response Processors: CSRF Processor: Incident - CSRF Remote Script Inclusion
	Response Processors: CSRF Processor: Incident - HTTP Referers Disabled
	Response Processors: Header Injection Processor
	Response Processors: Force Logout Processor
	Response Processors: Strip Inputs Processor
	Response Processors: Slow Connection Processor
	Response Processors: Warning Processor
	Response Processors: Warning Processor: Incident - Warning Code Tampering
	Response Processors: Application Vulnerability Processor
	Response Processors: Application Vulnerability Processor: Incident - App Vulnerability Detected
	Response Processors: Support Processor
	Response Processors: Cloppy Processor
	Response Processors: Login Processor
	Response Processors: Login Processor: Incident - Site Invalid Login
	Response Processors: Login Processor: Incident - Site Login Multiple IP
	Response Processors: Login Processor: Incident - Site Login Multiple Usernames
	Response Processors: Login Processor: Incident - Site Login User Sharing
	Response Processors: Login Processor: Incident - Site Login User Pooling
	Response Processors: Login Processor: Incident - Site Login User Brute Force
	Response Processors: Login Processor: Incident - Site Login Brute Force
	Response Processors: Login Processor: Incident - Site Login Username Scan
	Response Processors: Google Map Processor

	Chapter 33: Incident Methods
	List Of Incident Methods

	Chapter 34: Captcha Template
	Captcha Template

	Chapter 35: Log Format
	Log Format
	Incident Log Format
	Counter Response Log Format
	Profile Log Format

	Part 5: Index
	Index
	Symbols
	
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	P
	R
	S
	T
	U
	V
	W

