JUuniper

NETWORKS

WebApp Secure 5.5

Published: 2014-06-27

Copyright © 2014, Juniper Networks, Inc.

Juniper Networks, Inc.

1194 North Mathilda Avenue
Sunnyvale, California 94089
USA

408-745-2000
www.juniper.net

Copyright © 2014, Juniper Networks, Inc. All rights reserved.

Juniper Networks, Junos, Steel-Belted Radius, NetScreen, and ScreenOS are registered trademarks of Juniper Networks, Inc. in the United
States and other countries. The Juniper Networks Logo, the Junos logo, and JunosE are trademarks of Juniper Networks, Inc. All other
trademarks, service marks, registered trademarks, or registered service marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change, modify,
transfer, or otherwise revise this publication without notice.

WebApp Secure 5.5
Copyright © 2014, Juniper Networks, Inc.
All rights reserved.

The information in this document is current as of the date on the title page.
YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related limitations through the
year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use with) Juniper Networks
software. Use of such software is subject to the terms and conditions of the End User License Agreement (“EULA”) posted at
http://www.juniper.net/support/eula.html. By downloading, installing or using such software, you agree to the terms and conditions of
that EULA.

ii Copyright © 2014, Juniper Networks, Inc.

http://www.juniper.net/support/eula.html

Table of Contents

About the Documentation Xvii
Documentation and Release Notes i, XVii
Documentation Conventions XVii
Documentation Feedback Xix
Requesting Technical Support i XX
Self-Help Online Tools and Resources n.. XX
OpeningaCase With JTAC i e XX
Part1 Overview
Chapter1 RTA L= 0/ A o o IR =T o U] 3
WEDAPD SECUre OVEIVIEW . . . o ittt e e e e e e e e e 3
Methodology 4
Features and Benefits 4
Key COmMPONENTS . ..ottt e 6
Anatomy and Flow of an HTTP Request /Response 8
Limitations 10
Chapter 2 Deployment e e e et e, n
Appliance Deployment OVErVIEW e N
Placement Between Firewalland Web Servers N
Options for Load-Balanced Environments 13
SSL Traffic Considerations 13
EC2 Deployment 14
Deploying Using the Command Line et 14
Deploying Using the Web Interface i, 15
Assigning the Instance and IP Usingthe CLI. 19
Assigning the Instance and IP Using the Web Interface. 19
Verify the Instance IS RUNNING . . .o oo e e 20
Clustering OVEIVIEW . . . o oo e e e 20
High Availability Overview 21
Chapter 3 Installation and Setupcii ittt i i et et et e e e 23
WebApp Secure Appliance Terminology . . .o oo oo 23
First Time Configuration 24
Initial Appliance Configuration 24
Changing the Password e 25
Resetting the Password 25
Configure Network Interfaces e 26
Set the Hostname 27

Copyright © 2014, Juniper Networks, Inc. iii

WebApp Secure 5.5

Part 2
Chapter 4

Chapter 5

Set DN S . L 27
Initializing the System 27
Verify Connectivity . ..o 28
Install the License 29
Configuring High Availability 30
High Availability Settings e 32
Configuring ClUSteringo 34
Performing Initial Updates 35
Updating the Cluster 35
About the Configuration Wizard 35
Using the Configuration Wizard e i 36
Using WebApp Secure with Third-Party Load Balancer..................... 4]
Verify the Installation 42
Configuration

Configuration OptioNsci ittt i e ettt ettt e e 45
Web Interface Configuration Overview i 46
Edit Web Ul User Preferences e e 46
View Online Help and Product Documentation fromthe Web Ul 47
Basic Configuration Mode 48
Expert Configuration Mode 49
Import/Export (Web Ul) ... 50
Security Engine Configuration 50
Configure Support for Akamai Dynamic Site Accelerator. 51
Security Engine Incident Monitoring 52
Security Engine Server Identityand Cloaking 54
Security Engine Traffic 54
Security Engine Whitelist Settings 55
Proxy/Backends 56
Applications OVEIVIEW 57
Create a New Application i 58
Edit Applications 60
Application Patterns 60
Application Backend Overrides 62
Enable SSLtothe Client 62
PaBES . . 64
NTP SBIVICE . v e 64
Alert SEIVICE . . . 65
Integration with SRX Series Overviewo e 65
Filters and Terms Configuration Summary for SRX Series Integration......... 66
Creating SRX Series Filtersand Terms e 67
Configure the SRX Series Integration 68
Testing the SRX Series Integration Configuration.......................... 70
Managing the Appliancettt i i it it s e i e 73
OV IV BW . o ot 73
Navigating the CLI 74
The CLE: TheSet Command e s 75
The CLI: Generaland Base Commandso v oot ittt e 77

Copyright © 2014, Juniper Networks, Inc.

Table of Contents

The CLI: Configuration Level Commands 81
The CLI: System Level Commandsot 84
CLEConfig Example 86
CLI: Config: Setting a Configuration Parameter............... 87
CLI: Config: Initializing the Configuration 88
CLI: Config: Import/EXport oo 88
CLI: Config: Configure a Proxy Exclusion. 89
System Updates e 90
StatiStiCS . . o 92
High Availability Network Failure Detection, Actions, and Monitoring 95
Unblock Web Ul Login Ban e 97
Health Check URL e e e 97
Self-MoNitoring 98
Self-Monitoring Configuration Variables. 98
Managing and Viewing LOBSttt 103
Log File Destination 104
Backup and Recovery OVEIVIEW oo v e 105
Database Backupand Restore. 107
Chapter 6 Security Intelligencet e e e 109
About Security Intelligence 109
Enable the Spotlight Connector Service. 10
Spotlight Connector Session Cookiesand Locations. N2
About Spotlight Secure 13
Enable Spotlight Secure N4
Chapter 7 Response Rule Configuration.......... ... it it n7
RESPONSE OVeIVIEW . . .o n7
Using the Editor 120
List Of Incident Methods i 121
Chapter 8 =] o] 125
ReEPOrting OVeIVIEW oo 125
Information for Report TYPEeS . . . oo oo 126
Scheduling a Report OVEIVIEWot e 128
Schedule a Report 129
Report History 131
Report Details e 132
REPOM TYPES . . ot e 134
Part 3 Administration
Chapter 9 (€= =T = L 1= 1= 2 141
Changing the Password 141
Resettingthe Password 141
Chapter10 Configuration Modes and ROlESottt iii i et et e e it nernnes 143
Role-Based Administrator AccessControl. 143
Configuring Role-Based Access Control 143
RBAC Groups and ROIES 146
Edit Web Ul User Preferences i 148

Copyright © 2014, Juniper Networks, Inc. \Y

WebApp Secure 5.5

Chapter 11

Part 4
Chapter 12

Chapter 13

TheWeb Ul . ..o i et i et ettt et et a e a e annnnnens 151
WED UL OVEIVIEW . . . e e e e e 151
The Dashboard 152
ATtaCKErS . 157
Attacker Profile Page e 158
INCIdENtS ... 162
Incident Details 163
Counter RESPONSES . ..o ittt e 164
B SIONS &\ttt e 165
Session Details 165
SBAICN L L 166
REPOIS . . 168
Configuration 169
Systermn Status 169
Updates 171
Monitoring
B g L= o Tt =17 o = 175
Processors OVEIVIEWt e e 175
Complexity Rating Definitions i 175
Security Engine Incident Monitoring 176
Session Cookie SPOOfiNg . . oo oo i e 178
Session Cookie TamPENNg . .o v v e 178
Hostname Spoofing Attempt 179
SECUNtY PrOCESSOrS . . oot e 179
[(0] g 123/ o To } fl = o Tal= 1= o] = 181
Honeypot Processors: Access Policy Processor 182
Honeypot Processors: Access Policy Processor: Incidents - Malicious Service

Call .. 183
Honeypot Processors: Access Policy Processor: Incidents - Service Directory

INAEXING oo 183
Honeypot Processors: Access Policy Processor: Incidents - Service Directory

1Y 0] [T 184
Honeypot Processors: AJAX ProCeSSOrt et 185

Honeypot Processors: AJAX Processor: Incidents - Malicious Script Execution . . 186
Honeypot Processors: AJAX Processor: Incidents - Malicious Script

INtrospection 187
Honeypot Processors: Basic Authentication Processor.................... 188
Honeypot Processors: Basic Authentication Processor: Incidents - Apache

Configuration Requested 189
Honeypot Processors: Basic Authentication Processor: Incidents - Apache

Password File Requested 190
Honeypot Processors: Basic Authentication Processor: Incidents - Invalid

Credentialso 191
Honeypot Processors: Basic Authentication Processor: Incidents - Protected

Resource Requested 192

vi

Copyright © 2014, Juniper Networks, Inc.

Table of Contents

Honeypot Processors: Basic Authentication Processor: Incidents - Password

Cracked ... 192
Honeypot Processors: Basic Authentication Processor: Incidents - Basic

Authentication Brute Force 193
Honeypot Processors: CooKie ProCeSSOr . . oo v 194
Honeypot Processors: Cookie Processor: Incident - Cookie Parameter

Manipulation 195
Honeypot Processors: File Processor. e 196
Honeypot Processors: File Processor: Incident - Suspicious Filename 196
Honeypot Processors: File Processor: Incident - Suspicious File Exposed. 197
Honeypot Processors: File Processor: Incident - Suspicious Resource

Enumeration 198
Honeypot Processors: Hidden Input Form Processort .. 198
Honeypot Processors: Hidden Input Form Processor: Incident - Parameter Type

Manipulation 199
Honeypot Processors: Hidden Input Form Processor: Incident - Hidden Parameter

Manipulation 200
Honeypot Processors: Hidden Link Processor. . ..o oo oo 201
Honeypot Processors: Hidden Link Processor: Incident - Link Directory

INAEXING . . o 202
Honeypot Processors: Hidden Link Processor: Incident - Link Directory

1S][0 (=] ¢ 1 7= 202
Honeypot Processors: Hidden Link Processor: Incident - Malicious Resource

REQUEST . . . e 203
Honeypot Processors: Query String Processor. oo i i 203
Honeypot Processors: Query String Processor: Incident - Query Parameter

Manipulation 204
Honeypot Processors: Robots Processor. 205

Honeypot Processors: Robot Processor: Incident - Malicious Spider Activity . . . 205

Chapter 14 ACtiVity ProCeSSOrS . .. v it i et e it et it i e 207
ACTiVity ProCeSSOrS . ..o 208
Activity Processors: Custom Authentication Processor: Incident - Auth Input

Parameter Tamperingt 209
Activity Processors: Custom Authentication Processor: Incident - Auth Query

Parameter Tamperingo 210
Activity Processors: Custom Authentication Processor: Incident - Auth Cookie

TaAMIDEIINE . oottt 210
Activity Processors: Custom Authentication Processor: Incident - Authentication

Brute Force e 21
Activity Processors: Custom Authentication Processor: Incident - Auth Invalid

LOBIN . 21
Activity Processors: Cookie Protection Processor 212
Activity Processors: Cookie Protection Processor: Incident - Application Cookie

Manipulation 213
Activity Processors: Error Processort 213
Activity Processors: Error Processor: Incident - Illegal Response Status 218

Activity Processors: Error Processor: Incident - Suspicious Response Status . . . 219
Activity Processors: Error Processor: Incident - Unexpected Response Status . . 219

Copyright © 2014, Juniper Networks, Inc. Vii

WebApp Secure 5.5

Chapter 15

Chapter 16

Activity Processors:

Error Processor: Incident - Unknown Common Directory

Requested 220
Activity Processors: Error Processor: Incident - Unknown User Directory

Requested 220
Activity Processors: Error Processor: Incident - Common Directory

Enumeration e 221
Activity Processors: Error Processor: Incident - User Directory Enumeration 221
Activity Processors: Error Processor: Incident - Resource Enumeration. 222
Activity Processors: Header ProCessor i o e e 223
Activity Processors: Header Processor: Incident - Duplicate Request Header . . 224
Activity Processors: Header Processor: Incident - Duplicate Response

Header 225
Activity Processors: Header Processor: Incident - Illegal Request Header-. 225
Activity Processors: Header Processor: Incident - lllegal Response Header. ... 226
Activity Processors: Header Processor: Incident - Missing All Headers 226
Activity Processors: Header Processor: Incident - Missing Host Header 227
Activity Processors: Header Processor: Incident - Missing Request Header 227
Activity Processors: Header Processor: Incident - Missing Response Header . . . 228
Activity Processors: Header Processor: Incident - Missing User Agent Header . . 228
Activity Processors: Header Processor: Incident - Request Header Overflow . . . 228
Activity Processors: Header Processor: Incident - Unexpected Request

Header . ..o 229
Activity Processors: Method Processor. 229
Activity Processors: Method Processor: Incident - Illegal Method Requested . . 230
Activity Processors: Method Processor: Incident - Unexpected Method

Requested 231
Activity Processors: Method Processor: Incident - Missing HTTP Protocol. 232
Activity Processors: Method Processor: Incident - Unknown HTTP Protocol . .. 232
Tracking ProCesSSOrs ..o v ittt i e ittt e e et e n i a e eaeannnns 233
Tracking Processors: Etag Beacon ProCessor oo i i i 233
Tracking Processors: Etag Beacon Processor: Incident - Session Etag

SPOOfINE . oo 234
Tracking Processors: Client Beacon ProCessoroovv v i i i i 235
Tracking Processors: Client Beacon Processor: Incident - Beacon Parameter

L= U 10T 1= 236
Tracking Processors: Client Beacon Processor: Incident - Beacon Session

JLIE= U 10T 1= 237
Tracking Processors: Client Fingerprint Processor 237
Tracking Processors: Client Fingerprint Processor: Incident - Fingerprint Directory

INAEXING . . o 240
Tracking Processors: Client Fingerprint Processor: Incident - Fingerprint Directory

ProbiNg . . 240
Tracking Processors: Client Fingerprint Processor: Incident - Fingerprint

Manipulation 241
Tracking Processors: Client Classification Processor 241
RESPONSE PrOCESSONS . v v vttt vttt ettt ettt sttt nnnnn e ersenn 245
RESPONSE ProCESSOrS .« .« . ot t 247
Response Processors: BlOCK Processor. e e 248

viii

Copyright © 2014, Juniper Networks, Inc.

Table of Contents

Response Processors: Request Captcha Processor.t .. 249
Response Processors: Request Captcha Processor: Incident - Captcha Answer
Automation 252
Response Processors: Request Captcha Processor: Incident - No Captcha Answer
Provided 253
Response Processors: Request Captcha Processor: Incident - Multiple Captcha
Request Overflow 254
Response Processors: Request Captcha Processor: Incident - Unsupported
Audio Captcha Requested e 254
Response Processors: Request Captcha Processor: Incident - Bad Captcha
AN S T L 255
Response Processors: Request Captcha Processor: Incident - Mismatched
Captcha SeSSION . . .o 256
Response Processors: Request Captcha Processor: Incident - Expired Captcha
REeqUEST . . . 256
Response Processors: Request Captcha Processor: Incident - Captcha Request
TAMIDEIINE . ottt 257
Response Processors: Request Captcha Processor: Incident - Captcha Signature
TaMPEIING o o 258
Response Processors: Request Captcha Processor: Incident - Captcha Signature
SPOOTINE ottt 259
Response Processors: Request Captcha Processor: Incident - Captcha Cookie
Manipulation 259
Response Processors: Request Captcha Processor: Incident - Captcha Image
ProbinNg ... 260
Response Processors: Request Captcha Processor: Incident - Captcha Request
Size Limit Exceeded 261
Response Processors: Request Captcha Processor: Incident - Captcha Disallowed
MULEIPart .. 262
Response Processors: Request Captcha Processor: Incident - Captcha Directory
INAEXING . . 262
Response Processors: Request Captcha Processor: Incident - Captcha Directory
ProbiNg . . 263
Response Processors: Request Captcha Processor: Incident - Captcha Parameter
Manipulation e 264
Response Processors: Request Captcha Processor: Incident - Captcha Request
Replay Attack 265
Response Processors: Request Captcha Processor: Incident - Multiple Captcha
REPIaYS . o 266
Response Processors: Request Captcha Processor: Incident - Multiple Captcha
Disallow Multipart 267
Response Processors: Request Captcha Processor: Incident - Multiple Captcha
Parameter Manipulation 268
Response Processors: CSRF ProCessor oo e e 269
Response Processors: CSRF Processor: Incident - CSRF Parameter
1= 1] @ =T = 271
Response Processors: CSRF Processor: Incident - Multiple CSRF Parameter
L=V 10T 1= 272

Copyright © 2014, Juniper Networks, Inc. ix

WebApp Secure 5.5

Chapter 17

Chapter 18

Part 5

Response Processors: CSRF Processor: Incident - CSRF Remote Script

INClUSION . . o 273
Response Processors: CSRF Processor: Incident - HTTP Referers Disabled. ... 273
Response Processors: Header Injection Processor.ooovvo oo 274
Response Processors: Force Logout Processor. oo 274
Response Processors: Strip Inputs Processor. i 275
Response Processors: Slow Connection Processoroooviieeeo .. 275
Response Processors: Warning ProCessoro oot 276
Response Processors: Warning Processor: Incident - Warning Code

M NG 277
Response Processors: Application Vulnerability Processor 278
Response Processors: Application Vulnerability Processor: Incident - App

Vulnerability Detected 278
Response Processors: SUpport ProCcessor. . ..o oo oot 279
Response Processors: Cloppy Processor . ..o 280
Response Processors: Login Processor 281
Response Processors: Login Processor: Incident - Site Login Invalid 287
Response Processors: Login Processor: Incident - Site Login Multiple IP 288
Response Processors: Login Processor: Incident - Site Login Multiple

USBIMamIBS . ottt e 288
Response Processors: Login Processor: Incident - Site Login User Sharing 289
Response Processors: Login Processor: Incident - Site Login User Pooling 289
Response Processors: Login Processor: Incident - Site Login User Brute Force . . 290
Response Processors: Login Processor: Incident - Site Login Brute Force. 290
Response Processors: Login Processor: Incident - Site Login Username Scan . . 290
Response Processors: Google Map ProCcessor.o i i i e 291
Captcha Template ... e e et et et 293
CAPTCHA Template e e 293
o = o 1 5 5 = U 297
Access Log Format e 297
Security Log Format e 299
Audit Log Format 301
Firewall Log Format 302
Postgres Log Format e 303
MWS Log Format 304
Index

INAEX . 309

Copyright © 2014, Juniper Networks, Inc.

List of Figures

Part1 Overview

Chapter1 R4 =] o 2 o] o IR =T o 1 | = 3
Figure 1: HTTP Request/Response Flow i 10

Chapter 2 Deployment e e e et e, n
Figure 2: WebApp Secure Placement in the Network - Between Firewall and

WED SEIVEIS . . 12

Figure 3: WebApp Secure Deployment - Connected to Load Balancer......... 13
Figure 4: AWS management Consolet 15
Figure 5. Instance Type o 16
Figure 6: Configure Instance continued 16
Figure 7: Instance, Configure Name 17
Figure 8: Instance, Create Key Pair 17
Figure 9: Instance Create Security Groupot 18
Figure 10: Instance, Review and Launch. 19
Figure 11: Allocate New Addressttt e e 20

Chapter 3 Installation and Setupci ittt e e e 23
Figure 12: Boot Menuo 25
Figure 13: Reset Password 25
Figure 14: Appliance Login SCreen e e e 29
Figure 15: LiCEeNSE TeIMS . . vttt e e e e e e e 30
Figure 16: HA Pair Status 33
Figure 17: Wizard, Configure SMTP Settings, Step3.........., 37
Figure 18: Wizard, Configure Alert Service,Step 4. 38
Figure 19: Wizard, Configure Alert Service,Step 5...... 38
Figure 20: Wizard, Configure Alert Service, SNMP, Step 6. 38
Figure 21: Wizard, Configure Alert Service , Email Contacts, Step 7. 39
Figure 22: Wizard, Configure Backup Service 40
Figure 23: Wizard, Confirmation Page i 41

Part 2 Configuration

Chapter 4 Configuration OptioNScvii it it e ettt it e et 45
Figure 24: User Preferences 47
Figure 25: View Online Helpo 47
Figure 26: View Product GUIdeso 48
Figure 27: Edit Parameter. 49
Figure 28: Whitelists 56
Figure 29: Configured Applications 59
Figure 30: Application Wizard 59

Copyright © 2014, Juniper Networks, Inc. Xi

WebApp Secure 5.5

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Figure 31: Application Dashboard i, 60
Figure 32: URL Pattern 61
Figure 33: Application Patterns e 61
FIgUIE 34 SEIVEIS . . . oot 62
Figure 35: Proxy / Backends. i 63
Figure 36: Add New Page 64
Figure 37: Initialize Filter 67
Figure 38: Create Filter Termo e 67
Figure 39: Bind Filter to Interface 68
Managing the Appliance ...t i et i et e et 73
Figure 40: Dashboard, Updates i 90
Figure 41: Downloading Update i 90
Figure 42: Update Description e 91
Figure 43: Updating the Application.......... 92
Figure 44: CPU Utilization e 93
Figure 45: CPU Load AVErageo oot e e e 93
Figure 46: Memory Utilization 94
Figure 47: Network Traffic o e 94
Figure 48: Proxy Connections 95
Figure 40: Proxy Requests i 95
Figure 50: Blocked LOgiNt 97
Figure 51: Restore BackUpottt 107
Security Intelligence e e e 109
Figure 52: WebApp Secure-Spotlight Connector DataFlow 110
Figure 53: Spotlight Connector Confguration m
Figure 54: Spotlight Connector Session Cookies, N2
Figure 55: Spotlight Connector Locations. 13
Figure 56: Recent Attackers: Global and LocalNames 15
Figure 57: Recent Attackers: Global Names 15
Figure 58: User Preferences: Select Spotlight Name Preference 116
Response Rule Configuration......... ..ottt it iienans 17
Figure 5O: RESPONSES . . . o ottt e n7
Figure B60: Edit RESPONSEo 120
=T Lo] = 125
Figure 61: Reporting Interface 125
Figure 62: Scheduled RepOrtSo e 129
Figure 63: Schedule Report - Scorecard 130
Figure 64: Schedule Report - Country ComparisonOver Time 131
Figure 65: Report Historyo 132
Figure 66: Report Detailso oo 132
Figure 67: Report Details, View 133
Figure 68: Incident List e 134
Figure 69: Executive SUMMaArYot e 135
Figure 70: Incident TYpeS 135
Figure 71: Incident Volume by Hacker. o i i 135
Figure 72: Incident Source Countries o 136

xii

Copyright © 2014, Juniper Networks, Inc.

List of Figures

Figure 73: Last Week’s Incident Activity 136
Figure 74: Weekly Report 137
Figure 75: Top INCident TYpeSt e 137
Figure 76: Top LoCations oot 138
Figure 77: Country Counts Over Timeottt i 138
Part 3 Administration
Chapter 9 General Tasks .o vvii ittt it ittt a ettt a e 141
Figure 78: BOOt MENU oo 141
Figure 79: Reset Password 142
Chapter 10 Configuration Modesand Rolescii ittt ittt it e e aens 143
Figure 80: Users and Groups, Add User. 145
Figure 81: Assigned ROLESot 145
Figure 82: User Preferences e e 149
Chapter 11 B 2 TS24 o 1 151
Figure 83: Date filterwidget 152
Figure 84: Uesr widget 152
Figure 85: Search widget 152
Figure 86: Web Ul Dashboard. i 153
Figure 87: Dashboard - FilterBytab.......... 153
Figure 88: User Preferences e 154
Figure 89: Recent Attackers. 158
Figure 90: Attacker Profile 159
Figure 91: Responses tab-Deactivate.. 160
Figure 92:Incidents Tableo 162
FigUre O3: SBSSIONS . . . ottt 165
Figure 94: System Status, System Alerts Tab 170
Figure 95: System Status, RRD: localhost 170
Figure 96: Raid Status o e 171
Figure 97: RAID Status-MisSing i 171
Figure O8: Updates 172

Copyright © 2014, Juniper Networks, Inc. xiii

WebApp Secure 5.5

Xiv Copyright © 2014, Juniper Networks, Inc.

List of Tables

Part 2
Chapter 4

Chapter 5

Chapter 7

Part 3
Chapter 10

Chapter 11

Part 4
Chapter 13

About the Documentation......... ..ot i i i e xvii
Table T Notice IcoNso XViii
Table 2: Text and Syntax Conventions. xviii
Configuration

Configuration OptioNs . ..o ittt it ittt st sttt 45
Table 3: Luna Control Center ConfigurationChanges. 51
Table 4: WebApp Secure Configuration Settings for Akamai Support.......... 52
Table 5: External Counter Response Service Configuration Parameters. 69
Managing the Appliance ...t i it it e e 73
Table 6: General CLICoOmMmands e 78
Table 7: Base Level CLICommandso e 80
Table 8: Configuration Level CLICommands.o oo oo 81
Table 9: System Level CLICommandsttt e 85
Table 10: Failure Scenariost 96
Table 11: Health Check responses and corresponding meanings. 98
Response Rule Configuration ...ttt i i i eeans 17
Table 12: Response Descriptionso oottt 18
Table 13: Response Editor Fields 121
Table 14: Incident Methods o 121
Administration

Configuration Modes and Rolesciiiiiiii i it e i e e enens 143
Table 15: RBAC Groups and ROLES. e 146
TheWeb Ul . ..ottt i et et it sttt et et s ea e a e aaeeannnnennens 151
Table 16: Web Ul Dashboard Panes i 155
Monitoring

Honeypot ProCessors v i it iii et et et et i a e sn e ansnnennnnns 181
Table 17: Access Policy Processor Configuration Parameters. 182
Table 18: AJAX Processor Configuration Parameters 185
Table 19: Basic Authentication Processor Configuration Parameters 188
Table 20: Cookie Processor Configuration Parameters. 195
Table 21: File Processor Configuration Parameters. 196
Table 22: Hidden Input Form Processor Configuration Parameters........... 199
Table 23: Hidden Link Processor Configuration Parameters. 201

Copyright © 2014, Juniper Networks, Inc. XV

WebApp Secure 5.5

Chapter 14

Chapter 15

Chapter 16

Table 24: Query String Processor Configuration Parameters Parameter Type

Default Value Description. 203
Table 25: Robots Processor Configuration Parameters.. 205
ACtiVity ProCeSSOrS . .. v it i it i ettt e e st e s 207
Table 26: Custom Authentication Processor Configuration Parameters. 208
Table 27: Cookie Protection Processor Configuration Parameters. 212
Table 28: Error Processor Configuration Parameters. 214
Table 29: Header Processor Configuration Parameters. 223
Table 30: Method Processor Configuration Parameters.. 230
Tracking ProCESSOrS v ittt ittt ittt a e et aa s aa e aneanennns 233
Table 31: Etag Beacon Processor Configuration Parameters................ 233
Table 32: Client Beacon Processor Configuration Parameters. 235
Table 33: Client Fingerprint Configuration Parameters. 237
Table 34: Client Classification Configuration Parameters 242
RESPONSE PrOCESSOIS . o vttt ittt s ettt ettt st nnnnnnn s enresnns 245
Table 35: Block Processor Configuration Parameters. 248
Table 36: Request Captcha Processor Configuration Parameters. 249
Table 37: CSRF Processor Configuration Parameters. 270
Table 38: Header Injection Processor Configuration Parameters. 274
Table 39: Force Logout Processor Configuration Parameters 275
Table 40: Strip Inputs Processor Configuration Parameters 275
Table 41: Slow Connection Processor Configuration Parameters............ 276
Table 42: Warning Processor Configuration Parameters 276
Table 43: Application Vulnerability Processor Configuration Parameters. 278
Table 44: Support Processor Configuration Parameters. 280
Table 45: Cloppy Processor Configuration Parameters. 281
Table 46: Login Processor Configuration Parameters 284
Table 47: Google Map Processor Configuration Parameters. 291

XVi

Copyright © 2014, Juniper Networks, Inc.

About the Documentation

« Documentation and Release Notes on page xvii
« Documentation Conventions on page xvii
« Documentation Feedback on page xix

« Requesting Technical Support on page xx

Documentation and Release Notes

To obtain the most current version of all Juniper Networks” technical documentation,
see the product documentation page on the Juniper Networks website at
http://www.juniper.net/techpubs/.

If the information in the latest release notes differs from the information in the
documentation, follow the product Release Notes.

Juniper Networks Books publishes books by Juniper Networks engineers and subject
matter experts. These books go beyond the technical documentation to explore the
nuances of network architecture, deployment, and administration. The current list can
be viewed at http://www.juniper.net/books.

Documentation Conventions

Table 1T on page xviii defines notice icons used in this guide.

Copyright © 2014, Juniper Networks, Inc. Xvii

http://www.juniper.net/techpubs/
http://www.juniper.net/books

WebApp Secure 5.5

Table 1: Notice Icons

Icon Meaning

Informational note

Description

Indicates important features or instructions.

Caution

Indicates a situation that might result in loss of data or hardware damage.

Warning

Alerts you to the risk of personal injury or death.

Laser warning

Alerts you to the risk of personal injury from a laser.

Tip

Indicates helpful information.

Best practice

@
A
4L
é
v
O

Alerts you to a recommended use or implementation.

Table 2 on page xviii defines the text and syntax conventions used in this guide.

Table 2: Text and Syntax Conventions

Convention

Bold text like this

Description

Represents text that you type.

Examples

To enter configuration mode, type the
configure command:

user@host> configure

Fixed-width text like this

Represents output that appears on the
terminal screen.

user@host> show chassis alarms

No alarms currently active

Italic text like this « Introduces or emphasizes important « Apolicy term is a named structure
new terms. that defines match conditions and
« |dentifies guide names. actions.
« Identifies RFC and Internet draft titles. ¢ JUnos OS CLJ User Guide
« RFC1997 BGP Communities Attribute
[talic text like this Represents variables (options for which ~ Configure the machine’s domain name:

you substitute a value) in commands or
configuration statements.

[edit]
root@# set system domain-name
domain-name

Xviii

Copyright © 2014, Juniper Networks, Inc.

About the Documentation

Table 2: Text and Syntax Conventions (continued)

Convention

Text like this

Description Examples

Represents names of configuration « To configure a stub area, include the
statements, commands, files, and stub statement at the [edit protocols
directories; configuration hierarchy levels; ospf area area-id] hierarchy level.

or labels on routing platform « Theconsole portis labeled CONSOLE.
components.

< > (angle brackets)

Encloses optional keywords or variables. stub <default-metric metric>;

| (pipe symbol)

Indicates a choice between the mutually broadcast | multicast
exclusive keywords or variables on either

side of the symbol. The set of choicesis (stringl | string2 | string3)
often enclosed in parentheses for clarity.

(pound sign)

Indicates a comment specified on the rsvp { # Required for dynamic MPLS only
same line as the configuration statement
to which it applies.

[1 (square brackets) Encloses a variable for which you can community name members [
substitute one or more values. community-ids]
Indentionand braces ({}) Identifies a level in the configuration [edit]
hierarchy. routing-options {
static {
; (semicolon) Identifies a leaf statement at a route default {
configuration hierarchy level. nextlhop address;
retain;
1
1
}

GUI Conventions

Bold text like this

Represents graphical userinterface (GUI) « Inthe Logical Interfaces box, select
items you click or select. All Interfaces.

« To cancel the configuration, click
Cancel.

> (bold right angle bracket)

Separates levels in a hierarchy of menu In the configuration editor hierarchy,
selections. select Protocols>Ospf.

Documentation Feedback

We encourage you to provide feedback, comments, and suggestions so that we can
improve the documentation. You can provide feedback by using either of the following
methods:

« Online feedback rating system—On any page at the Juniper Networks Technical
Documentation site at http://www.juniper.net/techpubs/index.html, simply click the
starstorate the content, and use the pop-up form to provide us with information about
your experience. Alternately, you can use the online feedback form at
https://www.juniper.net/cgi-bin/docbugreport/.

Copyright © 2014, Juniper Networks, Inc. Xix

http://www.juniper.net/techpubs/index.html
https://www.juniper.net/cgi-bin/docbugreport/

WebApp Secure 5.5

« E-mail—Sendyour comments to techpubs-comments@juniper.net. Include the document
or topic name, URL or page number, and software version (if applicable).

Requesting Technical Support

Technical product support is available through the Juniper Networks Technical Assistance
Center (JTAC). If you are a customer with an active J-Care or JNASC support contract,
or are covered under warranty, and need post-sales technical support, you can access
our tools and resources online or open a case with JTAC.

« JTAC policies—For a complete understanding of our JTAC procedures and policies,
review the JTAC User Guide located at
http://www.juniper.net/us/en/local/pdf/resource-guides/7100059-en.pdf.

« Product warranties—For product warranty information, visit
http://www.juniper.net/support/warranty/.

« JTAC hours of operation—The JTAC centers have resources available 24 hours a day,
7 days a week, 365 days a year.

Self-Help Online Tools and Resources

For quick and easy problem resolution, Juniper Networks has designed an online
self-service portal called the Customer Support Center (CSC) that provides you with the
following features:

« Find CSC offerings: http://www.juniper.net/customers/support/

« Search for known bugs: http://www2.juniper.net/kb/

« Find product documentation: http://www.juniper.net/techpubs/

« Find solutions and answer questions using our Knowledge Base: http:/kb.juniper.net/

« Download the latest versions of software and review release notes:
http://www.juniper.net/customers/csc/software/

« Search technical bulletins for relevant hardware and software notifications:
http://kb.juniper.net/InfoCenter/

. Join and participate in the Juniper Networks Community Forum:
http://www.juniper.net/company/communities/

« Open a case online in the CSC Case Management tool: http://www.juniper.net/cm/

To verify service entitlement by product serial number, use our Serial Number Entitlement
(SNE) Tool: https://tools.juniper.net/SerialNumberEntitlementSearch/

Opening a Case with JTAC
You can open a case with JTAC on the Web or by telephone.

« Use the Case Management tool in the CSC at http://www.juniper.net/cm/.

. Call1-888-314-JTAC (1-888-314-5822 toll-free in the USA, Canada, and Mexico).

XX Copyright © 2014, Juniper Networks, Inc.

mailto:techpubs-comments@juniper.net?subject=
http://www.juniper.net/us/en/local/pdf/resource-guides/7100059-en.pdf
http://www.juniper.net/support/warranty/
http://www.juniper.net/customers/support/
http://www2.juniper.net/kb/
http://www.juniper.net/techpubs/
http://kb.juniper.net/
http://www.juniper.net/customers/csc/software/
http://kb.juniper.net/InfoCenter/
http://www.juniper.net/company/communities/
http://www.juniper.net/cm/
https://tools.juniper.net/SerialNumberEntitlementSearch/
http://www.juniper.net/cm/

About the Documentation

For international or direct-dial options in countries without toll-free numbers, see
http://www.juniper.net/support/requesting-support.html.

Copyright © 2014, Juniper Networks, Inc. XXi

http://www.juniper.net/support/requesting-support.html

WebApp Secure 5.5

XXii Copyright © 2014, Juniper Networks, Inc.

PART 1

Overview

« WebApp Secure on page 3
« Deployment on page 11

« Installation and Setup on page 23

Copyright © 2014, Juniper Networks, Inc.

WebApp Secure 5.5

2 Copyright © 2014, Juniper Networks, Inc.

CHAPTERI1

WebApp Secure

« WebApp Secure Overview on page 3

« Methodology on page 4

« Features and Benefits on page 4

« Key Components on page 6

. Anatomy and Flow of an HTTP Request / Response on page 8

« Limitations on page 10

WebApp Secure Overview

Related
Documentation

WebApp Secure protects websites from would-be attackers, fraud, and theft. Its Web
intrusion prevention system uses deception to detect, track, profile, and block attackers
inreal time by inserting detection points into your webserver's output to identify attackers
before they do damage. WebApp Secure then tracks detected attackers, profiling their
behavior and deploying countermeasures.

WebApp Secure sits between your webservers and the outside world. It inspects HTTP
and HTTPS traffic and functions as a reverse proxy. WebApp Secure seeks out potential
attack attempts or probes by adding detection points to outbound web traffic and
removing detection points from inbound Web traffic. These detection points are
transparent to common, legitimate users. It then monitors and strips these points from
the requests coming back from the user's browser. Any change to a detection pointis an
indicator of an attempted attack. The system logs incidents to a database of attacker
profiles, and exposes them to the security administrators through a web-based interface.
System administrators can then apply automated abuse-prevention policies, or respond
manually.

. Methodology on page 4
. Features and Benefits on page 4
. Key Components on page 6

« Anatomy and Flow of an HTTP Request / Response on page 8

Copyright © 2014, Juniper Networks, Inc. 3

WebApp Secure 5.5

Methodology

Related
Documentation

WebApp Secure protects web sites from attackers using a proprietary blend of intrusion
deception techniques. Its real-time protection system detects, tracks, profiles, and
defends against hackers. By dynamically inserting detection points, honeypots, and
honeytokens into the code of your web application traffic, WebApp Secure identifies and
stops attackers before they can do damage.

WebApp Secure protects and defends using the following methodology:

« Detect—Detection points are inserted into web application code, creating a virtual
minefield that detects hackers when they manipulate these detection points during
pre-attack reconnaissance.

. Track— WebApp Secure goes beyond the IP address and tracks attackers based on
client fingerprinting techniques.

« Profile—WebApp Secure’s tracking techniques enable attacker profiling. Every attacker
is assigned a name and each incident is recorded, along with a threat level based on
the attacker’s intent and skill.

« Respond and Understand—Once an attacker is detected, an appropriate response can
be deployed manually or automatically in real-time.

« WebApp Secure Overview on page 3
. Features and Benefits on page 4
« Key Components on page 6

« Anatomy and Flow of an HTTP Request / Response on page 8

Features and Benefits

WebApp Secure detects attackers before they have the chance to successfully establish
an attack vector, and blocks them with client-level tracking that does not impact
legitimate users. It works out-of-the-box, so there are no rules to write, and no signatures
to update. It continually profiles attackers as they come onto the scene, and it maintains
a profile of known application abusers and all of their malicious activity.

Ease-of-use deployment

« Acts as a reverse proxy with load balancing
« Available as a hardware appliance with high availability
« Available as a VMware or Amazon Machine Image

« Support for alternate ports (other than 80 and 443)

Secure management

Copyright © 2014, Juniper Networks, Inc.

Chapter 1: WebApp Secure

« Updates are automatically downloaded and available within the Web Ul
« Kernel is hardened, ports are locked-down, and backups are encrypted
« Monitoring is web-based

« Configurationis done through a Web Ul with setup wizards or from the robust Command
Line Interface

« Access control is role-based to allow for multiple administrators
« External authentication providers are supported, including LDAP and RADIUS

« Traffic for multiple applications or domains can be secured without the need for
additional licenses

High Performance

« High availability for hardware version
« Higher throughput using master/slave clustering
« Low latency

. Link aggregation
Alerts, Reporting, Logging

. Alerts are sent by e-mail when specific incidents, incident patterns, or system failures
occur

« SNMP traps are available for system logging
. Reports of attacker activity can be scheduled using the Web Ul or retrieved on-demand

« Audit logs track changes to the system made by administrators and potential
management interface break-in attempts

. Remote system logging, including a custom Device Support Module (DSM) for the
Juniper STRM Series Security Threat Response Manager, is available

« RESTful API for third-party software integration is available
Abuse Recording and Analysis

« Full HTTP Capture—Captures and displays all HTTP traffic for security incidents

. Abuse Profiles—Maintain a profile of known application abusers and all of their malicious
activity against the application

. Tracking and Re-identification—Enables application administrators to re-identify abusive
users and to apply persistent responses, over time, and across sessions—Enhances
tracking capabilities and fingerprinting of detected attackers

« Abuse Responses—Enables administrators to respond to application abuse with
session-specific warnings, blocks, and additional checks; includes one-click automation
of responses during configuration

Copyright © 2014, Juniper Networks, Inc. 5

WebApp Secure 5.5

Related
Documentation

Key Components

« WebApp Secure Overview on page 3
. Methodology on page 4
. Key Components on page 6

. Anatomy and Flow of an HTTP Request / Response on page 8

WebApp Secure includes the following components:
Core Data Types

. Attackers—Attackers, also called hackers and profiles, are the core data type within
WebApp Secure. Attackers can have multiple sessions, locations, environments, and
can trigger multiple Incidents. All data on an attacker is tied back to the same place
for the same malicious behavior. Based on a combination of incidents, or the manual
intervention of the administrator, counter responses are applied to an attacker. Each
attacker is assigned a severity level based on the highest-complexity incident the
attacker has triggered.

« Sessions—Sessions are groups of HTTP requests performed by a user on a protected
web site. There is a one-to-one mapping between a session and a fingerprint. If a
session turns malicious, an attacker profile is created. These sessions can also be
consolidated over time to perform fuzzy-logic matching on traffic patterns.

« Fingerprint—WebApp Secure fingerprints incoming HTTP requests using a proprietary
combination of traditional and non-traditional methods. These fingerprints ensure that
all traffic from the same source is consolidated under the same session and / or
attacker.

. Incidents—An incident is a recorded instance of a particular security threat. The full
HTTP request and response of each incident is recorded and related back to an attacker,
session, environment, and location. For convenience's sake, similar incidents may be
grouped within a 24-hour time period. Incidents have five complexity levels:
informational, suspicious, low, medium, and high. An attacker profile is automatically
created once a session triggers at least one low, medium, or high incident.

. Locations—A location is created by parsing an IP address. Each IP address that is
implicated in an attack, either because it is the attacker's IP address or because it is
the IP address of a proxy server that acted as an intermediary, is geo-coded and the
results, inlcuding the IP address itself, are stored as a location.

« Environments—An environment is created by parsing a user-agent string. Every web
browser, and many common tools and scripts, emit a user-agent header as part of
their request. WebApp Secure parses this header and stores the results as an
environment.

« Counter Responses—A counter response is an alternate HTTP response that will be
served to an attacker. Such responses can be triggered manually by an administrator
who is logged into the Web Ul, or automatically by way of customizable autoresponse
rules that ship with WebApp Secure.

Copyright © 2014, Juniper Networks, Inc.

Chapter 1: WebApp Secure

Security Engine

The Security Engine is the core of WebApp Secure. It consists of several components
that work together to secure your web sites and applications. See “Security Engine
Configuration” on page 50.

« Location Manager—The location manager parses IP addresses, determines which ones
should be implicated in attacks, and stores this information for later use. It also powers
integration with Content Delivery Networks, such as Akamai, which use alternate
headers for IP address information.

« Environment Manager—The environment manager parses user-agent headers and
stores this information for later use.

« Session Manager—The session manager keeps track of activity from each user profile
and maintains fingerprints used to identify unique users, enabling tracking beyond the
IP address.

« Processors—Processors are pluggable modules that provide specific security-related
functionality. A full description of each processor, including all available configuration
options, is available the processors section which begins here “Processors Overview”
on page 175.

Support Services

Services run in the background, performing tasks such as sending alerts, generating
reports, or performing maintenance tasks.

« Alert Service—WebApp Secure can send e-mail alerts to administrators when an
incident of a specified severity is detected. For instance, the system can send out an
e-mail notification to a specific administrator who is on-call if anincident level of critical
is detected, allowing the administrator to respond quickly to the threat. It can also
send alerts to e-mail addresses on a defined schedule, and/or send SNMP traps to
one or more SNMP servers. The initial configuration of the alert service is performed
with the configuration wizard, and these settings are also available through the Services
tab in the Web Ul. See “Using the Configuration Wizard” on page 36.

. Backup Service—Configure the frequency, type, and destination for system backups.
These settings can be configured through the configuration wizard, or through the
Backups section of the Web Ul.See “Using the Configuration Wizard” on page 36.

« Counter Response Service—The counter response service handles the deployment of
responses triggered by incidents. This service is configured to use the response rules.
See “Response Overview” on page 117.

. Database Cleanup Service—This service purges expired data from the database on a
regular schedule.See “CLI: Config: Setting a Configuration Parameter” on page 87.

. External Response Service—The external response service manages the connection
to the Juniper Networks SRX Series Service Gateway, which can be used to perform
external counter responses. See “Configure the SRX Series Integration” on page 68.

« NTP Servers—To keep your appliance clock synchronized to the correct time, WebApp
Secure allows the configuration of NTP servers. The appliance can use suggested

Copyright © 2014, Juniper Networks, Inc. 7

WebApp Secure 5.5

Related .
Documentation

publicly-available NTP server pools, or it can be configured to use an internal NTP
server for timekeeping. See “NTP Service” on page 64.

Self-Monitoring—WebApp Secure can monitor its own status and in the case of a failure,
automatically recover or notify you when there is a non-recoverable event. See
“Self-Monitoring” on page 98 for alert configuration options.

Session Aggregation Service—The session aggregation service attempts to aggregate
sessions on your system, based on common fingerprint attributes.

SMTP Settings—Various parts of the system can send emails. WebApp Secure can
function as its own SMTP server, or you can configure it to use an existing MTA on your
network. See “Using the Configuration Wizard” on page 36.

The Spotlight Connector—The Spotlight Connector provides feeds to the SRX series
for automatically filtering traffic on both network and application layers. WebApp
Secure detects threats and periodically submits data to a component called the
Spotlight Connector. Spotlight Connector publishes the submitted threat data as a
standard feed to the SRX series device. See “Enable the Spotlight Connector Service”
on page 110.

Spotlight Secure—Spotlight Secure is designed to provide additional intelligence. If
enabled, a two-way communication process shares information about attackers and
attacks to and from a Spotlight server run by Juniper Networks. This allows WebApp
Secure to positively identify attackers that have attacked other Juniper customers.
This service also provides additional details about sessions which allows Juniper to
make more informed decisions on how to respond to threats. By default, the service
is turned off. See “Enable Spotlight Secure” on page 114.

WebApp Secure Overview on page 3
Methodology on page 4

Anatomy and Flow of an HT TP Request / Response on page 8

Anatomy and Flow of an HTTP Request / Response

1.

The client issues an HTTP request, either from a web browser, script or tool, to an IP
or hostname that resolves to a WebApp Secure system (it may pass through firewalls
and/or load balancers on the way).

This request is initially handled by a routing proxy that either:

- Inthe case of static files, such as CSS, Javscript, or binary content like images, proxies
directly to the backend server and returns the resource.

« Inthe case of URIs added to the proxy exclusions list (engine.proxy.exclusions
parameter), proxies directly to the backend server and returns the page or resource.

. In the case of all other URIs, proxies to the security engine.

This proxy also performs a regular-expression-based match on the hostname to
determine which configuration options to apply to the request, based on your
application settings. In the event of no match, the global defaults are used.

Copyright © 2014, Juniper Networks, Inc.

Chapter 1: WebApp Secure

3. If the request reaches the security engine, several important managers parse it:

a. Location Manager—The location manager parses the incoming IP address, as well
as |P addresses present in alternate tracking headers, such as the X-Forwarded-For
header.

b. Environment Manager—The environment manager parses the incoming user-agent
header, if present.

c. Session Manager—The session manager attempts to determine if the request
contains the security engine tracking cookie in order to associate this request with
an existing session. If this cookie is not present, the request will be fingerprinted
later.

4. Once these managers parse the request, the counter response service determines if
any counter responses are active on this session and they are attached accordingly.

5. Next, the processors are applied to the request, and incidents are triggered accordingly.
For full information about each processor, consult the processor section that begins
here “Processors Overview” on page 175.

6. Next, a process runs to determine if the request was a URL fuzzing attempt, and
incidents are triggered accordingly.

7. Then, the request is made to the backend server itself.

8. After the backend server returns a response, it passes through security engine again,
where the processors are applied to the response, and incidents are triggered
accordingly. For full information about each processor, consult the processor section
that begins here “Processors Overview” on page 175.

9. Finally, various headers are attached to the response, such as set-cookie (to set the
WebApp Secure tracking cookie) and the response is returned to the client.

Copyright © 2014, Juniper Networks, Inc. 9

WebApp Secure 5.5

Related
Documentation

Limitations

Figure 1: HTTP Request/Response Flow

CileInt
. [[|
| [[1]
T 1 |
| [1 1]
|
Firewall
WebApp Secure
1.........5l
Load Ea‘lancer
Routlng Proxy || Location
H Manager
Pl yl. % O i Environment
i @ @ Manager
i Binary Route Around Secuntv Session
i Content Whitelist Engine | Manager
i
+ Request Response
< Pmcesscrs Processors
Backend &
Server ®

. WebApp Secure Overview on page 3
. Methodology on page 4
. Features and Benefits on page 4

. Key Components on page 6

WebApp Secure has the following limitations:

« As areverse proxy, WebApp Secure is a Layer-7 device, and must be assigned an IP
address. Therefore, Layer-2 bridging functionality (hardware fail-safe) capabilities are
not available, and WebApp Secure should not be physically in-line with protected
application servers; see the high availability section that begins here “High Availability
Overview” on page 21 for information on how to reduce the risk of downtime.

« WebApp Secure only accepts HTTP and HTTPS 1.0 and 1.1 traffic because it is the only
traffic it monitors.

. WebApp Secure is not a network firewall and should not be an edge device. While
firewall capabilities exist on the device, they are not available to the user and are there
to protect the WebApp Secure device itself.

- WebApp Secure does not support NTLM authentication.

Copyright © 2014, Juniper Networks, Inc.

CHAPTER 2

Deployment

« Appliance Deployment Overview on page 11

« Placement Between Firewall and Web Servers on page 11
« Options for Load-Balanced Environments on page 13

« SSL Traffic Considerations on page 13

« EC2 Deployment on page 14

« Deploying Using the Command Line on page 14

« Deploying Using the Web Interface on page 15

« Assigning the Instance and IP Using the CLI on page 19

« Assigning the Instance and IP Using the Web Interface on page 19
« Verify the Instance is Running on page 20

« Clustering Overview on page 20

» High Availability Overview on page 21

Appliance Deployment Overview

The WebApp Secure appliance (The appliance is the software/hardware system. It is
synonymous with WebApp Secure in most contexts.) processes all inbound web requests
and outbound web responses. Outbound responses are modified in ways that are invisible
to the average user; inbound requests are checked to see if the modified responses have
been altered in any way. Any alterations are suspicious and indicate a possible hacker.
Due to its focus on web applications, WebApp Secure only accepts HTTP/HTTPS traffic
andis normally placed between a load balancer and your web applications. Topologically,
you should think of WebApp Secure as a web reverse proxy server.

Placement Between Firewall and Web Servers

WebApp Secure acts as a reverse proxy and actively manipulates traffic between the
protected web application and the Internet. It is deployed between the protected
webserver and the last system which can alter user-facing traffic. This location gives
WebApp Secure full visibility into the HT TP traffic destined for the webservers (including
any errors caused by authentication failures), and lets it inject and strip out any code it
uses in protecting the application. This topology has the added benefit of minimally

Copyright © 2014, Juniper Networks, Inc. n

WebApp Secure 5.5

impacting internal network bandwidth. The following figure shows the WebApp Secure
deployed in its most simple form as a reverse proxy connected to a load balancer.

Figure 2: WebApp Secure Placement in the Network - Between Firewall
and Web Servers

Network]
Client Firewall = === Web Traffic
(7T Load Balancer
4 = =P INTERNET 4 ==» S bypassing
@ 3 WebApp Secure
' = = = = Health Check
]
Firewall
/Balancer
]
' Balancer/WebApp
Secure
Load R ¢~~~ -~~~ ~--- * WebApp
Balancer Q- - - = = = = = = = = = > Secure
Health Check ry
]
]
]
Traffic routed WebApp Secure sending
around WebApp Secure traffic to the
in case of failure Application Server
1
1
1
]
1
Application |\ . _ _ _ __ _ ______ !
Server “ - E
-+
o

Network placement requirements for WebApp Secure are as follows:

« Because WebApp Secure only processes HTTP and HTTPS traffic, it must live behind
a device that can separate Application Layer (Layer 7) traffic.

« In order to prevent a WebApp Secure issue from impacting a protected application,
the upstream device (that is, the router or load balancer) must perform Health Check
monitoring on WebApp Secure over HTTP. If the Health Check fails, the load balancer
or Layer 7 router should pass traffic directly to the protected application servers, rather
than to WebApp Secure.

The actual implementation depends on the user's specific network topology. The following
figure shows a more complex environment with clustered webservers and clustered
appliances.

Copyright © 2014, Juniper Networks, Inc.

Chapter 2: Deployment

Figure 3: WebApp Secure Deployment - Connected to Load Balancer

MNetwaork
Client Firewall CLUSTERED

WEBAPP SECURE
«-=» INTERNET <--->
] t - 4,--.
1 ’

1
1 ’) 1
! ’ Traffic

Firewall/ Load Balanced Processor |

1
1

Bala.ncer Balancer/WebApp WebApp Secure

; Secure Dedicated
; ’ r= # P Master
4 ! ! 1

r
1=
Load AW ¢ = g Traffic L
Balancer lU4aSd_ _ _ _ _ _ _ o Processor 7o
1 "
Health Check O Master/ THTT
toeach t = =* . Processor
WebApp Secure 1 - Traffic
[1
1
Load Balanced traffic ,' - % fr=es
Balancer/App Servers 1)
WebApp Secure bypassed) Traffic
' Processor
r
r
Load Balanced traffic Load Balanced .I‘.‘;Efﬁ?ppﬁi::';gis
routed around WebApp Secure/App
WebApp Secure Servers

in case of failure

WEB APPLICATION SERVERS !

Il = = == Web Traffic
B Q Q B Q Q ,' Load Balancer bypassing
- = WebApp Secure
eee
= === Health Check
= = == Master/Processor

Traffic

£041893

Options for Load-Balanced Environments

WebApp Secure can serve as a load balancer for HTTP and HTTPS web traffic, but we
recommend that a dedicated hardware solution be used in that capacity. Dedicated load
balancers are optimized for that role and will provide higher overall performance.

SSL Traffic Considerations

WebApp Secure includes SSL decryption capabilities to give it visibility into all of the
protected application's traffic. It supports two modes: Passive Decryption and SSL
Termination. In Passive Decryption mode, WebApp Secure decrypts requests for
processing, then re-encrypts them before sending them on to the application server.
HTTPS responses to the user follow the same process, where they are decrypted,
processed, and re-encrypted before returning to the user. In SSL Termination mode, the
appliance serves as an SSL termination point. It decrypts incoming HTTPS traffic,
processes them, then proxies the decrypted requests on to the application. Responses

to the user are received unencrypted from the application server, processed, encrypted,
then passed to the user.

Copyright © 2014, Juniper Networks, Inc. 13

WebApp Secure 5.5

EC2 Deployment

Related
Documentation

The WebApp Secure instance is a private instance. For access, you must provide Juniper
your account ID. You can find your account ID when you log into your AWS account and
select Account Activity. Your account ID is displayed in the top right under your account
name.

. Deploying Using the Command Line on page 14

« Deploying Using the Web Interface on page 15

. Assigning the Instance and IP Using the CLI on page 19

. Assigning the Instance and IP Using the Web Interface on page 19

. Verify the Instance is Running on page 20

Deploying Using the Command Line

You must have an ec2tools environment setup prior to deploying the instance from the
CLI. Please refer to the Amazon documentation for assistance in setting up your
environment.

Next, make sure you have access to the image by entering: ./ec2-describe-images -x self
-0"969756132034"

The output should look similar to the following: IMAGE ami-4d3df524
969756132034/Mykonos Appliance 969756132034 available If you do not see any output
at all then you most-likely don't have access to our instance. Please contact Juniper
Networks support to get help with this issue.

To deploy using the CLI, do the following:

1. Create a security group for the instance.
« ./ec2-add-group Mykonos -d "Mykonos Appliance"
« ./ec2-authorize Mykonos -p 2022
« ./ec2-authorize Mykonos -p 80
« ./ec2-authorize Mykonos -p 443
« ./ec2-authorize Mykonos -p 5000

« ./ec2-authorize Mykonos -p 8080

e NOTE: Itisrecommended that you only allow ports 5000 and 8080 from
known good IPs.

2. You can now deploy the new instance as follows:

Copyright © 2014, Juniper Networks, Inc.

Chapter 2: Deployment

« ./ec2-run-instances 'AMI ID' -k 'KEY PAIR' - t ml.large -g Mykonos

You must replace the AMI ID with the AMI ID listed in Describe Image. In this example,
it would be ami-4d3df524. You must also replace KEY PAIR with the name of the key
pair you are using to access the system.

Deploying Using the Web Interface

To deploy using the Web Interface, do the following:

1. Loginto the AWS management console.

2. Select the Amazon EC2 tab.

3. Click the Launch Instance button under the My Instances section.
4. Select Launch Classic Wizard then click continue.

5. Select the My AMIs tab.

6. Next to Viewing, select Private Images.

7. To theright of the appliance, click the Select button.

Figure 4: AWS management console

Request Instances Wizard Cancel [x

)
L

Choose an Amazon Machine Image (AMI) from one of the tabbed lists below by clicking its Select butten.

Quick Start m Community AMIs

Viewing: | Private Images 3 | 1to 1 of 1 ltems
AMI ID Root Device Name Platform
i8] ami-4d3di524 | ebs 969756132034/Mykonos Appliance {\ Other Linux

8. Change the Instance Type to Large (ml.large).

Copyright © 2014, Juniper Networks, Inc. 15

WebApp Secure 5.5

Figure 5: Instance Type

Request Instances Wizard Cancel [x

INSTANCE DETAILS

Provide the details for your instance(s). You may also decide whether you want to launch your instances as "on-demand" or "spot"
instances.

of I R I TYPE: | | arge (mi.large, 7.5 GB) -

@ Launch Instances

EC2 Instances let you pay for compute capacity by the hour with no long term commitments. This transforms what are
commonly large fixed costs into much smaller variable costs.
Launch into: @ EC2

Availability Zone: | Mo Preference ¢+ |

O Request Spot Instances

9. Click the Continue button. Then click the Continue button again on the next screen.

Figure 6: Configure Instance continued

Request Instances Wizard Cancel |x

INSTANCE DETAILS

Number of Instances: 1

Availability Zone: No Preference

Advanced Instance Options

Here you can choose a specific kernel or RAM disk to use with your instances. You can also choose to enable CloudWatch Detailed
Monitoring or enter data that will be available from your instances once they launch.

Kernel ID: | Use Default | RAM Disk ID: | UseDefault |
Monitoring: [_| Enable CloudWatch detailed menitering for this instance
(additional charges will apply)
User Data:
(sas text
(as file [base64 encoded

Termination

3 [_| Prevention against accidental termination.
Protection: - s '

Shutdown

or:

| Stop : | Choose the behavior when the instance is shutdewn from within the instance.

Back

10. Add a Name to make the instance easily recognizable and click Continue.

Copyright © 2014, Juniper Networks, Inc.

Chapter 2: Deployment

Figure 7: Instance, Configure Name

Request Instances Wizard

Cancel |%

INSTANCE DETAILS

Add tags to your instance to simplify the administration of your EC2 infrastructure. A form of metadata, tags consist of a
case-sensitive key/value pair, are stored in the cloud and are private to your account. You can create user-friendly names
that help you organize, search, and browse your resources. For example, you could define a tag with key = Name and value
= Webserver. You can add up to 10 unique keys to each instance along with an optional value for each key. For more
information, go to Using Tags in the EC2 User Guide.

Key (127 characters maximum) Value (255 char

acters maximum) Remove
Name Mykonos 3
=
Add another Tag. (Maximum of 10)
11. Select or create your Key Pair and click Continue.
Figure 8: Instance, Create Key Pair
Request Instances Wizard Cancel | %

CREATE KEY PAIR

Public/private key pairs allow you to securely connect to your instance after it launches. To create a key pair, enter a name and click
Create & Download your Key Pair. You will then be prompted to save the private key to your computer. Note, you only need to
generate a key pair once - not each time you want to deploy an Amazon EC2 instance.

@ Choose from your existing Key Pairs

Your existing Key Pairs*: | Main 3|

O Create a new Key Pair

O Proceed without a Key Pair

“Back

12. Select Create a New Security Group and enter the following information:
« Group Name: Mykonos

« Group Description: Mykonos Appliance

Copyright © 2014, Juniper Networks, Inc. 17

WebApp Secure 5.5

« Port Range: 2022
. Port Range: 80
- AddRule

. Port Range: 443
- AddRule

« Port Range: 5000
- AddRule

Figure 9: Instance Create Security Group

(O Choose one or more of your existing Security Groups

& Create a new Security Group
Group Name Mykonas
Group Description Mykonos Appliance

Inbound Rules

Create a | Custom TCP rule s TCP
new rule:
Port (Service) Source Action
Port range: [|
2022 0.0.0.0/0 Delete
(e.g., BO or 49152-65535)
80 (HTTP) 0.0.0.0/0 Delete
Source: [0.0.0.000 |
443 (HTTPS) 0.0.0.0/0 Delete
(e.g., 192.168.2.0/24, sg-47ad4B82e, or
1234567890/default) 5000 0.0.0.0/0 Delete

5P Add Rule 8080 (HTTP*) 0.0.0.0/0 Delete

<Back

13. Click the Continue button.

14. Click the Launch button.

18 Copyright © 2014, Juniper Networks, Inc.

Chapter 2: Deployment

Figure 10: Instance, Review and Launch

Request Instances Wizard

O
REVIEW

Please review the information below, then click Launch.

AMI:

Number of Instances:
Availability Zone:
Instance Type:
Instance Class:

Monitoring:

Tenancy:
Kernel ID:
RAM Disk ID:
User Data:

Key Pair Name:

Security Group(s):

< Back

':-\ Other Linux AMI ID ami-4d3df524 (x86_64) Edit AMI
1

No Preference

Large {(m1l.large)

On Demand Edit Instance Details

Termination

Disabled Protection: Disabled
Default
Use Default Shutdown Behavior: Stop
Use Default

Edit Advanced Detalls
Main Edit Key Pair
sg-7ae70112 Edit Firewall

Assigning the Instance and IP Using the CLI

Cancel | X

1. Request a new public IP address: ./ec2-allocate-address Note the IP it returns.

2. Get the Instance ID of the WebApp Secure Instance: ./ec2-describe-instances Locate
the Instance ID of the Appliance.

3. Now you can associate the IP with the WebApp Instance: ./ec2-associate-address IP

-i 'Instance ID'

NOTE: Replace the'lP' with your IP address and the 'Instance ID' with the
ID of your instance.

Assigning the Instance and IP Using the Web Interface

1. Select the Amazon ec2 tab.

2. Select Elastic IPs under Navigation on the left.

3. Click the Allocate New Address button under the Address section.

4. Click Yes, Allocate.

Copyright © 2014, Juniper Networks, Inc.

WebApp Secure 5.5

Figure 11: Allocate New Address

Allocate New Address Cancel | X

Are you sure you want to allocate a new
IP address?
EIP used in: | EC2 =

| Cancel H Yes, Allocate

5. Click Associate Address.
6. Select the Appliance.

7. Click Yes, Associate.

Verify the Instance is Running

Purpose At this point, your instance should be up and running. You can use the web interface or
the CLI tools to verify this.

Action To access your instance, you must have a copy of the key pair you used for the instance.
ssh -i 'PATH TO KEY PAIR' mykonos@'IP' -p 2022

Upon successful login, you will be sent to the mykonos-shell where you can further
configure the appliance

Clustering Overview

Individual WebApp Secure appliances have the ability to work together as one system
in a cluster. Clustering allows traffic to be divided among multiple appliances, effectively
reducing the per-system load. In a clustered network configuration, the master node
holds the database that is populated by one or more traffic processors" In order to
successfully utilize a WebApp Secure cluster, a load-balancer must properly segregate
traffic to each of the defined traffic processing nodes. Each of these traffic nodes must
maintain connectivity with the master in order to operate.

0 NOTE: Clustering should not be confused with High Availability. Clustering
is used to increase throughput (by utilizing multiple processing nodes), and
can reduce the chance that the whole system will fail. Clustering does not
protect the master node from failure as in a High Availability setup; only HA
configurations are set up to include failsafe procedures to designate a new
master when the first one is unavailable.

In a traditional WebApp Secure deployment (one system), the appliance is responsible
for holding its own database as well as processing the traffic. In a clustered deployment,
you have the ability to segregate the database from those systems which will process

20

Copyright © 2014, Juniper Networks, Inc.

Chapter 2: Deployment

incoming requests. During cluster configuration, you will have the ability to designate a
node type for each system. At a minimum, the cluster must have a way to process traffic
and a way to store the relevant information.

Node types are as follows:

« Master: A master node is similar to a single-system deployment in that it holds the
database, and also processes incoming traffic. This satisfies both requirements for a
cluster (database and traffic processor) It is possible to set up a cluster with only one
master node (no additional processing nodes). Additional traffic processing nodes can
be added at a later point in time if desired.

- Dedicated Master: A dedicated master node holds the database similar to a master
node, but it does not have the ability to process traffic. Using a dedicated masterin a
clustered configuration requires the addition of at least one traffic node.

. Traffic Processor: A traffic node is only responsible for processing incoming requests.
It does not contain a database, so a master or a dedicated master node must
accompany a traffic node. The number of traffic nodes you can add to a cluster is
dependent on (1.) the hardware specifications of the master, (2.) the amount of
incoming traffic on protected web application, and (3.) the number of additional traffic
nodes in the cluster. For optimal stability, be sure to monitor the cluster's performance
as you add each traffic node.

High Availability Overview

Related
Documentation

To minimize the risk of downtime, WebApp Secure deployments have the ability to be
placed in a Highly Available (HA) configuration. In this setup, an additional appliance is
on stand-by in the event that the currently-active appliance goes offline. If this happens,
the passive applianceis able to become the new active appliance automatically - without
needing to restart the system. An HA configuration is similar to clustering, with the major
exception being that the passive system has a copy of the services needed to take over
when the master fails. WebApp Secure uses a Virtual IP (VIP) to float between the
currently active system and the current passive system.

0 NOTE: An HA configuration is only available on WebApp Secure dedicated
hardware systems. It is not available in a Virtual Machine installation.

. High Availability Settings on page 32
« Configuring High Availability on page 30

. High Availability Network Failure Detection, Actions, and Monitoring on page 95

Copyright © 2014, Juniper Networks, Inc. 21

WebApp Secure 5.5

22 Copyright © 2014, Juniper Networks, Inc.

CHAPTER 3

Installation and Setup

WebApp Secure Appliance Terminology on page 23
First Time Configuration on page 24

Initial Appliance Configuration on page 24
Changing the Password on page 25
Resetting the Password on page 25
Configure Network Interfaces on page 26
Set the Hostname on page 27

Set DNS on page 27

Initializing the System on page 27

Verify Connectivity on page 28

Install the License on page 29

Configuring High Availability on page 30
High Availability Settings on page 32
Configuring Clustering on page 34
Performing Initial Updates on page 35
Updating the Cluster on page 35

About the Configuration Wizard on page 35
Using the Configuration Wizard on page 36

Using WebApp Secure with Third-Party Load Balancer on page 41

Verify the Installation on page 42

WebApp Secure Appliance Terminology

The following terminology is used in this section:

Appliance—The software/hardware system. It is synonymous with WebApp Secure in

most contexts.

Web UlI-WebApp Secure graphical user interface. In cases referencing the WebApp
Secure system, this term refers to the web-accessible graphical user interface.

HA—High Availability, a configuration that aims to reduce the chance full system failures.

Copyright © 2014, Juniper Networks, Inc.

23

WebApp Secure 5.5

. Backend-In almost all cases (except where explicitly mentioned otherwise) the
backend is defined as the server which houses the web application that is being
protected by WebApp Secure.

. Application—A group of configuration settings that are applied to HTTP traffic based
on a regular-expression-based match on the domain component of the URL. Adding
an application allows you to override global configuration values.

« Page—A group of configuration settings that are applied to HTTP traffic based on a
regular-expression-based match on the path component of the URL. Pages exist
logically under an application. Adding a page allows you to override application
configuration values.

First Time Configuration

Basic configuration of WebApp Secure is a straightforward process utilizing the steps
listed below.

« Configure Network Interfaces on page 26
» Set the Hostname on page 27
« [nitialize the Appliance

At this point, the Web Ul should be active. From the Web Ul, you will:

« Install the License on page 29

« See “About the Configuration Wizard” on page 35

Initial Appliance Configuration

Initial configuration is done through the console in a limited shell. Once WebApp Secure
has been initialized for the first time, you can log into a Web console to finish the initial
setup. You must use the direct console interface to configure the appliance IP address.
Once the system has an IP address, you can use SSH to connect through port 2022.

Use the SSH command.

ssh <machine-ip-address> -p 2022 -l mykonos
« User: mykonos

« Password: mykonosadmin

NOTE: You should immediately change these defaults after you login.

0 NOTE: The credentials used here are the same ones used to access the
Web ULI.

24

Copyright © 2014, Juniper Networks, Inc.

Chapter 3: Installation and Setup

Related . Changing the Password on page 25
D .
ocumentation « Resetting the Password on page 25

. Configure Network Interfaces on page 26

Changing the Password

The system password can only be changed from the underlying Linux command line. To
do this, connect through the console or SSH. You will see the setup utility screen. Navigate
to Quit to exit to the shell. Type passwd and follow the prompts.

Related . Resetting the Password on page 25
Documentation

Resetting the Password

To reset the password, an appliance reboot is required. A boot menu option exists to
reset the user credentials. By default, the appliance will boot normally, but by pressing
any key before the operating system starts booting, you can get to the boot menu.

Figure 12: Boot Menu

ress any key to enter the menu

Boot ing Scientific Linux (2.6.32-279.5.1.e16.x86 64) in 1 seconds...|]

Then you can select the option to reset the password.

Figure 13: Reset Password

GNU GRUE wversion H.97 (638K lower ~ 3143616K upper memory)

Reset Mykonos Password

Scientific Linux (2.6.32-279.5.1.elb6.x86_64)

Use the *+ and 4 keys to select which entry is highlighted.
Press enter to hoot the selected 0S or 'p’ to enter a
password to unlock the next set of features.

0 NOTE: Resetting the password is only necessary if you have completely
forgotten your password. It is not meant for day-to-day password changes.

Copyright © 2014, Juniper Networks, Inc. 25

WebApp Secure 5.5

Related
Documentation

. Changing the Password on page 25

« Configure Network Interfaces on page 26

Configure Network Interfaces

Related
Documentation

The first step in setting up your appliance is to configure the network interface(s). The

number of interfaces that are required depends on the mode in which the appliance will
be operating. If you are using hardware and setting up a HA node, a minimum of 2 network
interfaces must be configured. For all other modes, a minimum of 1interface is required.

When performing the initial setup of a hardware appliance, you will need to connect via
the serial console port. You will need a terminal emulation application to enter commands
through the console.

Serial Port Settings:

. Baud Rate: 115,200 Bd
« Bit Format: 8-N-1

Once loggedin, use the WebApp Secure CLI to configure the network interfaces by running
the command cli from the bash prompt. The CLI is also available through SSH on port
2022 after WebApp Secure is operating.

Then you can configure the interfaces by entering the 'system' level of the CLI, and typing
setinterface <interface> <configuration>. For more information on the syntax to configure
interfaces, see “The CLI: The Set Command” on page 75.

Once you have configured your network interface(s) you must set the management
interface that will be used for the appliance. By default, the management interface is set
to ethO. If this interface is correct then it is already set and you can move on the next
step. If this is not the correct interface to use as the management interface, then you
must run the following command from the root of the CLI.

system set management-interface <interface>

The command above sets the system management interface to the giveninterface. Once
initialized, the management interface is used for all access to the appliance and for all
node communications with the exception of data replication between HA nodes. The
data replication occurs over the interconnect (10GbE interface) only for performance
reasons.

Dedicated Management Interface—Optionally, you can designate an interface to be used
strictly for management of the appliance. This modifies the firewall rules to force all data
services to be sent through the configured interface.

Next, you will set the system hostname. See “Set the Hostname” on page 27.

« The CLI: The Set Command on page 75

26

Copyright © 2014, Juniper Networks, Inc.

Chapter 3: Installation and Setup

Set the Hostname

From within the CLI, set the hostname for the local system by running the following
command:

system set hostname <hostname>
Next, you will review the DNS settings. See “Set DNS” on page 27.

Related . Configure Network Interfaces on page 26

Documentation « The CLI: General and Base Commands on page 77

Set DNS

Use the Network Level CLI Set command to configure DNS settings. If your appliance is
using DHCP, the DNS settings will be inherited from the DHCP request and explicitly
setting the DNS settings can be skipped. If all interfaces will be assigned static IP
addresses, the DNS settings must be set.

Add the IP address of a name server or name servers to use for DNS resolution. You can
pass all name servers as a comma separated list in their order of priority. For example,

set dns nameservers 192.168.0.10,192.168.0.11

Refer to the standard Linux documentation for all parameters you can supply to the set
command.

’ | 4 i S/Redl Hit Eriepie L 0 G —
Next you will initialize the appliance. See “Initializing the System” on page 27.

Related . Initial Appliance Configuration on page 24

Documentation « The CLI: The Set Command on page 75

Initializing the System

After the network interface(s) have been configured and the hostname is set, you are
ready to initialize the appliance.

1. From within the CLI, enter the following command:
system initialize

2. Next, you are prompted to confirm that the management interface is set correctly
and then a warning screen appears, letting you know that the initialization process
will erase all traffic related data on the local appliance. Once you have confirmed that
you understand the warning, the local system begins the reset process which wipes
out all local data and attempts to get the local system into a clean state.

Copyright © 2014, Juniper Networks, Inc. 27

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/s1-networkscripts-interfaces.html

WebApp Secure 5.5

Related
Documentation

Verify Connectivity

3. Once the reset process completes, you are presented with a dialog box that allows
you to select the mode that the appliance will be operating in. The mode selections
are as follows:

. Standalone, Master, Dedicated Master—If you are setting up a Standalone appliance

or a regular Master appliance, simply select the appropriate mode and hit enter.
The initialization process will run and that’s all that is required. See “Clustering
Overview” on page 20 and Node Types and for more information.

High Availability Modes—For HA modes, you are asked the addresses of the two
nodes that will be part of the HA pair. The addresses given should be the IP addresses
assigned to the interconnect interfaces of the two HA nodes. These are the addresses
that will be used for data replication. Once you have given the two addresses a
quick validation process will run to make sure the two nodes are suitable to run in
a HA pair together. If all validation passes then you will be asked for the virtual IP
address and netmask to use as the floating address between the HA nodes. This
virtual IP and netmask should be within the network of another interface already
configured on the system. Otherwise it will not know what physical interface to
associate to. Basic validation will be done on the provided information. If validation
passes, then the HA connection will be established and the reset and initialization
process will be run on both participating appliances. Once both nodes have
completed the initialization process, they will go into a sync period where they will
attempt to sync the replication partition between the two nodes. The time this takes
can vary depending on the speed of the interconnect, but on average it should take
approximately 30 minutes to complete. See “High Availability Overview” on page 21
and “High Availability Settings” on page 32 for more information.

Traffic Processor—If you are configuring a traffic processor, you will be asked for the
address of the master node to use for the traffic processor. Provide the IP address
of the management interface on the master node and that’s all that is required. The
initialization process will validate that the local appliance and the given master
address will work together, and if so, the initialization will proceed as normal.

At the end of the initialization process, you are presented with a dialog window that tells
you whether or not the process was successful, and under certain circumstances, you
may be given recommendations for other settings to change within the configuration. At
this point, you should have a fully set-up appliance.

. Configure Network Interfaces on page 26
. Set the Hostname on page 27

« Verify Connectivity on page 28

Purpose

After all initialization steps have been performed, verify that all network settings are
correct, and that the appliance can be reached from the network. Navigate to the IP or
hostname of the management interface (on SSL), and specify port 5000.

28

Copyright © 2014, Juniper Networks, Inc.

Chapter 3: Installation and Setup

Action Forexample:

. https://10.10.10.104:5000
. https://my-hostname:5000

If you see the appliance login screen, network settings are correctly configured.

Figure 14: Appliance Login Screen

Juniper

Username

Password

Related . Install the License on page 29
Documentation

Install the License

In order to complete WebApp Secure configuration, you must install the license for the
product. Use a web browser to connect to your appliance on port 5000 and log in using
the Administrator credentials. These are the same credentials used for SSH / console
access and for the Web UL.

0 NOTE: The configuration URL is: https://<IP address or hostname>:5000

Examples: https://10.11.12.13:5000 and
https://webappsecure.mydomain.com:5000

Go to the licensing section and follow the prompts:

1. Enter the license key provided to you in the Add a New License field.
2. Click Add.
3. Review the Terms of Service.

4. Click Yes on "l agree to the terms of service" to enable your WebApp Secure product.

Copyright © 2014, Juniper Networks, Inc. 29

WebApp Secure 5.5

Figure 15: License Terms

Please read the licensing terms before proceeding.

1. Definitions

In addition to terms defined elsewhere in this Agreement, this Agreement uses the following defined terms
1.1 "Approved Hardware" means any physical device, system, sub-system, or component thereof that is
certified by Juniper for the purposes of operating Licensed Software and/or Juniper Technology

1.2 "Bug Fix" means any modification or addition to any Licensed Software by Juniper, which is intended to
correct Errors or other unwanted or unintended conditions that cause the Licensed Software to fail,
malfunction, or operate in a manner other than as anticipated or desired.

1.3 "Documentation” means the technical manuals, user guides, and other information, if any, which are
made available by Juniper to Licensee with respect to the Juniper Technology or other Licensed Software,
together with modifications and updates thereto, whether in printed or machine-readable form.

1.4 "Enhancement” means any technology that enhances, improves, or otherwise modifies any Licensed
Software.

1.5 "Error" means an error in any Licensed Software which significantly degrades the Licensed Software as

| agree to the terms of service

H send hardware details to Juniper customer support?

[=] save License

If the license validation step fails, check the network settings, particularly proxy settings
for the network. WebApp Secure must reach the outside world to contact the licensing
server.

Configuring High Availability

Setting up HA Networking

Before you can initialize the system as a HA pair you must first set up the network to
handle the appliances.

1. Login to the appliance as the mykonos user.
2. Set the hostname of the appliance.
cli system set hostname <hostname>

3. To configure the interconnect bond, configure eth4 and eth5 (the 10G ports) to be
slaves to bondO.

cli system set interface eth4 slave true master bondO onboot yes
cli system set interface eth5 slave true master bondO onboot yes
4. Set up the bond.

cli system set interface bondO bootproto static ipaddr <interconnect_ip> netmask
<interconnect_netmask> onboot yes

30 Copyright © 2014, Juniper Networks, Inc.

Chapter 3: Installation and Setup

Configure the management interface on ethO, ethl, eth2 or eth3.

cli system set interface <interface> bootproto static ipaddr <ip> netmask <netmask>
onboot yes

Configure the DNS domain.

cli system set dns domain <dns_domain>

Configure the DNS search comain.

cli system set dns search <search_path>

Configure the DNS nameservers.

cli system set dns nameservers <dnsl1>,<dns2>

9.Assign the interface configured previously as the management interface.

cli system set management-interface <interface>

. Restart networking.

cli system services restart network

0 NOTE: Repeat this process for each of the two appliance instances.

Pair the Nodes

Now that the networking is setup on the appliances, they are ready to be paired into a
HA system.

1.

2.

Enter cli system initialize to enter the initialization process.

A prompt asks you to verify <interface> as the management interface. Confirm, and
wait for the process to finish.

When the Select System Mode menu appears, select HA Master as the mode. Click
OK.

When the Select Interface menu appears, select the previously configured
management interface as the interface (<interface> in the previous section).

When the Select Interface IPs menu appears, enter the two appliance IPs (<ip> in the
previous section).

When the initialization prompts you for the VIP address, enter the VIP address and
netmask. Wait for the process to finish.

Set the NTP server.

cli config set services.ntp.servers <servers>

The HA system should now be complete.

To update an HA system, navigate to the management interface (https://VIP:5000
where VIP is the Virtual IP) and update as described in the System Updates section. The
update will be applied to both systems in the HA pair.

Copyright © 2014, Juniper Networks, Inc. 31

WebApp Secure 5.5

O NOTE: While both the active and passive machines must be on the same
WebApp Secure version to be initially configured in HA mode, appliances
already in HA mode will successfully update together.

0 NOTE: Inthe event that one node of a High Availability pair becomes
unusable, it might be necessary to tell WebApp Secure to rejoin the two
instances. For example, if one node in an HA pair gets initialized (effectively
severing the HA setup) you can run the command sudo mykonos-join
<master-ip> on the initialized machine. This will re-link the two WebApp
Secure instances, enabling the HA pair to become functional again.

Related . High Availability Overview on page 21
D tati
ocumentation « High Availability Settings on page 32

« High Availability Network Failure Detection, Actions, and Monitoring on page 95

High Availability Settings

You configure HA settings during the initialization process. See “Initializing the System”
on page 27. You can use the CLI to change HA settings.

After allowing the Initialization process to complete, you can verify proper HA setup by
navigating to the management interface https://VIP:5000 where VIP is the Virtual IP.
Navigate to High Availability on the left-side menu to observe the status of the HA pair.

32 Copyright © 2014, Juniper Networks, Inc.

Chapter 3: Installation and Setup

Figure 16: HA Pair Status

&

ha-2 (localhost)
Online? Yes Yes
Role Secondary Primary
Device State Connected Connected
Disk State UpToDate UpToDate

Network Send (NS} (?) 105 bytes
Network Receive (NR) (7} 151.0 KB

Disk Write {Dw) (?} 151.1 KB

Disk Read (DR} (?! 154 hytes
Activity Log [AL)(?) 57
Bitmap (BM) (?)

Local Count [LO) (?}

Pending (PE)(?)

Unacknowledged [ua)(?)

Application Pending (ap))

Out of Sync [00s) (7]

., Initiate Manual Failover

WARNING: Since the various HA appliances in a configuration need to
interface with the database, port 5432 will be open. Be sure to restrict access
to this port with your firewall to prevent unwanted incoming connections.
WebApp Secure is not intended to be used as an edge device.

0 NOTE: Iftheinterconnect between an HA pairdrops at any point, it is possible
that both systems will try to assume the active system role. This leads to a
condition known as split-brain, where data is not properly routed through the
pair. To mitigate this, we recommend that you bond the pair using the 10Gb
ports on the front of the appliance. See “The CLI: The Set Command” on
page 75 for information on setting up the bond interface.

Copyright © 2014, Juniper Networks, Inc. 33

WebApp Secure 5.5

Related
Documentation

0 NOTE: You must use the VIP to access the configuration interface. If you
attempt to use the management interface on the passive appliance, you will
see a notification indicating "The Administrative interface is not accessible
on this host because it is the secondary host in a High Availability cluster."

« High Availability Overview on page 21
« Configuring High Availability on page 30

« High Availability Network Failure Detection, Actions, and Monitoring on page 95

Configuring Clustering

0 NOTE: Unlike a traditional cluster, a WebApp Secure cluster does not
automatically balance traffic between each of the nodes. For this reason, a
load balancer is required to be configured to send traffic to each traffic
processing node.

Setting up a cluster is as easy as configuring multiple stand-alone boxes. The first step
is to set up the master. You must set up the master first because you will need to supply
the master's IP when initializing the traffic nodes.

Initialize the appliance like you would any stand-alone appliance - by typing system
initialize from the WebApp Secure CLI. When the prompt for Select System Mode appears,
select Master from the list of available appliance modes. Wait for the process to complete.

The setup process will initialize the master, and once the initialization is complete, you
should be able to navigate to the management interface at https://HOSTNAME:5000.
Once the master is initialized, you can initialize the other appliances as traffic processing
nodes. The steps are similar to the master setup, however you will be prompted to enter
the IP of the master node after selecting Traffic Processor as the appliance mode on the
additional appliances.

When using a clustered appliance configuration, it is important to configure a valid
listening IP address on the Traffic Processor for every application that will use SSL. You
can configure a listening interface by navigating to the Traffic Processor's terminal, and
using system set interface from within the WebApp Secure CLI. For more information on
how to configure an interface, see “The CLI: The Set Command” on page 75. The
application must also be bound to the IP address assigned to that interface. This can be
achieved through the application configuration settings in the Web Ul. To learn how to
create SSL applications, see “Enable SSL to the Client” on page 62.

Once the traffic node is initialized, you can verify the cluster by navigating to the
management interface (https://HOSTNAME:5000) and clicking on System Stats. There
should be a separate tab for each node in the cluster, and an additional tab for the
aggregate cluster data.

34

Copyright © 2014, Juniper Networks, Inc.

Chapter 3: Installation and Setup

0 NOTE: Remember that you must use an external load balancing solution to
point to each traffic processing node, as the cluster will not do this for you.

Related . Updating the Cluster on page 35
Documentation

Performing Initial Updates

Before you perform any additional configuration steps, you should navigate to the Updates
window of the Web UlI. Click the Check for Updates link and install any available updates
for your system. While reasonable efforts are taken to support updates on a running
system, you will always have less risk performing system updates before your system
goes in to production.

Related . Updateson page 171
Documentation

Updating the Cluster

Updating a cluster is similar to updating a stand-alone box. Navigate to Updates in the
management interface on the master node (the traffic nodes have no management
interface) and apply the updates as you would on an individual appliance. The master
node will automatically apply the same update to each of it's traffic processing nodes
in the cluster. There is no need to individually update each appliance.

0 NOTE: The process for updating a cluster will take longer than updating a
single appliance because the same update must be applied to each node.

About the Configuration Wizard

The configuration wizard helps you configure the most commonly used features on the
WebApp Secure appliance, including global backend servers, SMTP settings, alerts, and
backups. A banner at the top of the Web Ul will advise you to run the wizard until your
global backend servers are set.

a WARNING: Upon completion of the wizard, make a note of your backup
encryption key. If you lose this key, no one - including Juniper Support, can
retrieve the information contained in your backups.

0 NOTE: The wizard has approximately 6 steps. The actual number of steps
can increase or decrease depending on your choices within the wizard.

Copyright © 2014, Juniper Networks, Inc. 35

WebApp Secure 5.5

Related . Using the Configuration Wizard on page 36
Documentation

Using the Configuration Wizard

Use the configuration wizard to set up the following:

Global Backend Servers—WebApp Secure can protect an unlimited number of web
applications, each with their own backend server(s). In a separate section, the process
for over-riding backend servers for each application is described. However, you must
define at least one server at the global level. This server will service requests that reach
WebApp Secure but do not match a configured application.

. Server Name—A unigue name that WebApp Secure uses to identify this server. The
name can include any alphanumeric character, "-", and "_", with no white space. Do
not use the server's Fully Qualified Domain Name (FQDN) or a URL. If you are using
VMware, you can use the same name here as you assigned in VMware to avoid
confusion. But that is not required.

« Server Address—Specify the server's IP. WebApp Secure does not support IPv6
addressing at this time.

« HTTP Port—Usually port 80.
« HTTPS Port—Usually port 443.

« Weight—The defaultis 1. This value is used when WebApp Secure is serving as a software
load balancer and represents the relative weight the server has for balancing purposes.

. Backup—The default is NO. This only applies if you are using WebApp Secure as a
software load balancer, and you are designating this server as a backup.

SMTP Server—WebApp Secure can e-mail alerts to your administration team. While the
appliance can serve as its own mail server, we recommend that you use a valid mail
server for your network.

The following SMTP server configurations are supported for e-mail alerts.

« No Security by SSL=False and blank User/Password

« SASL, No TLS: by SSL=False and specified User/Password

« SASL and TLS: by SSL=True and specified User/Password

« No-SASL but TLS: by SSL=True and unspecified User/Password

Use the Wizard to configure SMTP servers, or in the main Web Ul, navigate to Configuration
> Services > SMTP settings and configure the following:

0 NOTE: Afteryou enter the serverinformation, click the Test SMTP Connection
Settings link to make sure the server can be reached.

36 Copyright © 2014, Juniper Networks, Inc.

Chapter 3: Installation and Setup

« SMTP Server Address—Defaults to localhost. Set it to the IP address or FODN of your
mail server if you are using an off-board mail server as recommended.

« SMTP Server Port Number—Defaults to 25. Set it to the port your mail server is listening
on.

« SMTP Username—Defaults to blank, and can remain blank if you are using the on-board
server. Set it to a user with valid access to the mail server.

« SMTP Password—Defaults to blank, and can remain blank if you are using the on-board
server. Set it to the password for the SMTP username.

« SMTP Server SSL—True or False—Set whether or not the SMTP server uses SSL for
connections.

« SMTP Server Timeout—This field defaults to 3000. This indicates how long to try and
send a message before the connection to the SMTP server times out in milliseconds.

« SMTP Server Debug Mode—True or False—Whether to log all SMTP connection and
traffic details. This is very verbose. It is recommended that you only enable this if you're
having issues with emails not being issued.

« Sender Email Address—The email address that emails will use in the from field.

Figure 17: Wizard, Configure SMTP Settings, Step 3

SMTP Default support@mykonossoftware.
Sender: " Ty —

SMTP Server lscalhost
Address: ro— T

SMTP Server
Port:

SMTP
Username:

SMTP
Password:

Alert Service—WebApp Secure can send alerts to an SNMP server or by e-mail to
appropriate personnel. The alert service is optional, and defaults to No. If you choose not
to activate alerts, the Wizard skips to the next section.

Copyright © 2014, Juniper Networks, Inc. 37

WebApp Secure 5.5

Figure 18: Wizard, Configure Alert Service, Step 4

trators when certain activity is detected. If you

Figure 19: Wizard, Configure Alert Service, Step 5

Number of SNMP Servers:

Number of email contacts:

If you choose to activate alerts, you have the option of setting up the number of SNMP
servers to alert and the number of e-mail addresses to which messages are sent. The
default values to both are O.

Figure 20: Wizard, Configure Alert Service , SNMP, Step 6

Server Address:

If you activate SNMP Alerts, the wizard prompts you for the server address and the port
to which alerts are sent.

If you are configuring e-mail alerts, the following fields are required:

« Name: A common name for referencing this e-mail address.

« Email Address: Email address.

« Minimum Severity: Minimum severity level to trigger an e-mail alert to this address.
- Shift Start: Start time for this address in 24 hour format.

« Shift End: End time for this address in 24 hour format.

38

Copyright © 2014, Juniper Networks, Inc.

Chapter 3: Installation and Setup

You are also given the option of having alerts sent on the weekend. You can build complex
schedules by creating multiple entries for the same person. For example,
admin@yourcompany.com could have an entry named admin-weekday that specifies
8 AM to 5 PM, M-F, and a second entry named adminweekend that specified 6 AM to 6
PM.

Figure 21: Wizard, Configure Alert Service , Email Contacts, Step 7

Name:

Email Address:

Minimum Severity:

Shift Start:

0 NOTE: Configuration of advanced features, such as encryption keys, are not
available in the wizard.

Backups—WebApp Secure can perform regular, scheduled backups of all data. You can
select backups using FTP or SSH.

Copyright © 2014, Juniper Networks, Inc. 39

WebApp Secure 5.5

Figure 22: Wizard, Configure Backup Service

Frequency:

Rentention:

FTP Server:
Usenmame:

Password:

S5H Senver;
LIS BaTame:

Password:

The backup service lets you specify the following fields:

. Frequency: How often backups are sent off-board.
. Retention: Number of days to keep off-board backups.

« FTP Service: Whether to use FTP. If set to YES, the server, username, and password
fields are required.

« SSH Service: Whether to use SSH. If set to YES, the server, username, and password
fields are required.

Spotlight Secure —Spotlight Secure provides a way to import malicious profiles from
other subscribers to the service. The service is licensed separately and is enabled by
default, but you can choose to disable it.

Wizard Confirmation Page—Once you have completed the wizard's main steps, you will

see the confirmation page. Here, there is a URL you can use to confirm that the appliance
is performing correctly. You will also see the secret key the appliance generated for your
backups. Whether WebApp Secure is storing backups locally or off-site, you must have

this key.

40 Copyright © 2014, Juniper Networks, Inc.

Chapter 3: Installation and Setup

Figure 23: Wizard, Confirmation Page

Congratulations! You have successfully completed the initial configuration of Junos WebApp
Secure, and your system should be passing traffic now.

Assuming your network settings are correct, you should be able to confirm this by visiting the
URL:

Your backup secret key is:

Please take a moment to store this value someplace safe. If you reinitialize Junos WebApp
Secure, and do not know your backup secret key, nobody — not even Juniper Support — will be
able to recover your backups!

Once you're satisfied that everything's set up the way you'd like, you'll want to point your web

NOTE: The key is actually a link. You may change the value of the key by
clicking this link.

&

0 NOTE: Record the secret key and keep it someplace safe. If you run through
System Initialization again, it will create a new key and you will lose access
toyour backups if you haven't recorded the old key. If you lose this key, Juniper
Support will not be able to recover it or your backups.

0 NOTE: Itis also worthwhile to record other configuration entries in the event
that you perform a configuration re-initialization.
engine.session.encryption_key and engine.session.initialization_vector are
entries needed to maintain the data of currently active users on the protected
application. Itis best practice to write these down, as well. Once configuration
initialization is done, these old values can be set again.

Using WebApp Secure with Third-Party Load Balancer

If you are using the appliance with a third-party load balancer, you must make sure to
tell WebApp Secure to accept the X-Forwarded-For header from the load balancer. If

Copyright © 2014, Juniper Networks, Inc. 41

WebApp Secure 5.5

this is not set, all IPs in the appliance will seem to be coming from the load balancer
directly.

To trust the X-Forwarded-For header, SSH into the appliance, and enter the following:

sudo mykonos-shell config set engine.exclude_forward_addresses
<|P_of_Loadbalancer>

This tells WebApp Secure to trust the header of your load balancer.

Verify the Installation

In order to verify that your WebApp Secure appliance is processing traffic, use the following
URL to access the appliance honeypot and confirm that it replies with a fake .htaccess.

http://<IP or Hostname>/.htaccess

The appliance should reply with something similar to the following. (Note that the actual
fake .htaccess file might not look exactly like the example.)

<files "server_logs.txt" >
AuthUserFile /www/root/.htpasswd
AuthType Basic
AuthName "Error logs"
Require valid-user
</files>

Your initial WebApp Secure configuration is complete. The appliance is ready to start
protecting your applications.

0 NOTE: At this point, WebApp Secure is configured to secure one webserver
application.

42

Copyright © 2014, Juniper Networks, Inc.

PART 2
Configuration

« Configuration Options on page 45

« Managing the Appliance on page 73

« Security Intelligence on page 109

« Response Rule Configuration on page 117

« Reports on page 125

Copyright © 2014, Juniper Networks, Inc.

43

WebApp Secure 5.5

44 Copyright © 2014, Juniper Networks, Inc.

CHAPTER 4

Configuration Options

Web Interface Configuration Overview on page 46

Edit Web Ul User Preferences on page 46

View Online Help and Product Documentation from the Web Ul on page 47
Basic Configuration Mode on page 48

Expert Configuration Mode on page 49

Import/Export (Web Ul) on page 50

Security Engine Configuration on page 50

Configure Support for Akamai Dynamic Site Accelerator on page 51
Security Engine Incident Monitoring on page 52

Security Engine Server Identity and Cloaking on page 54

Security Engine Traffic on page 54

Security Engine Whitelist Settings on page 55

Proxy/Backends on page 56

Applications Overview on page 57

Create a New Application on page 58

Edit Applications on page 60

Application Patterns on page 60

Application Backend Overrides on page 62

Enable SSL to the Client on page 62

Pages on page 64

NTP Service on page 64

Alert Service on page 65

Integration with SRX Series Overview on page 65

Filters and Terms Configuration Summary for SRX Series Integration on page 66
Creating SRX Series Filters and Terms on page 67

Configure the SRX Series Integration on page 68

Testing the SRX Series Integration Configuration on page 70

Copyright © 2014, Juniper Networks, Inc. 45

WebApp Secure 5.5

Web Interface Configuration Overview

The Web interface is used for system configuration, as well as monitoring and reporting.
The initial installation required you to access this interface to license WebApp Secure
and to bring your appliance on-line. You will use this interface for nearly all configuration
options.

The web interface URL is: https://<IP address or hostname>:5000
For example:

« https://10.11.12.13:5000

. https://webappsecure.mydomain.com:5000

Edit Web Ul User Preferences

User Preferences control the appearance of the user interface and how certain information
is displayed. Click the Edit Preferences link at the top right of the Web Ul to access the
User Preferences screen. The following preference settings are available:

0 NOTE: Changes only apply to the currently logged in user.

« Skin: Change the color and overall look of the Web UI.
« Language: At this time, only English is supported.
« Timezone: Change the timezone setting. Note that this field defaults to UTC.

« PromptLevel: Change the amount of help text displayed for each field. If you are familiar
with the product, you might prefer abbreviated help text to lessen the amount of
information on the screen.

. Spotlight Name Preference: If Spotlight is enabled, you can select to have Spotlight
global names displayed in attacker lists and reports. You can also choose to display
only local names or to display both local and global names.

« Auto Refresh: You can enable or disable this setting. Note that Auto refresh affects all
security related screens, including the dashboard, lists of hackers, sessions, locations,
and incidents.

« Refresh Interval: Change the refresh interval. The minimum value you can set here is
10 seconds.

« Records Per Page: Change the number of records to display on a per page basis.

. Debug Mode: You can enable or disable this setting. Certain Web Ul items are hidden
by default. For debugging purposes, you can enable this checkbox to reveal all hidden
items.

46

Copyright © 2014, Juniper Networks, Inc.

Chapter 4: Configuration Options

Figure 24: User Preferences

Skin

Language

Timezone uTC
Prompt Level

Spotlight Name Preference Display Global Names if Available 2

Auto Refresh]

e
Records Per Page

Debug Mode []

View Online Help and Product Documentation from the Web Ul

Online Help (question mark)—When you click the question mark in the bottom left corner
of the Web Ul, a help screen for the selected configuration item appears (context-sensitive
help). By default, the help screen displays within in the Web Ul itself. You can make the
help appear in a new browser window, with a TOC, Index, and Search capabilities, by
holding down the Shift key when you click the question mark.

0 NOTE: Context-sensitive help is not available for all tasks at this time. When
it’'s unavailable, the question mark does not appear.

Figure 25: View Online Help

Product Guides (Help book icon)-When you click Help at the bottom of the navigation
menu in the Web Ul, a window containing links to the product documentation appears.
From this window, you can view HTML and PDF versions of the following:

« Administrator Guide (this guide)—Contains configuration and administration information
required by most administrators.

Copyright © 2014, Juniper Networks, Inc. 47

WebApp Secure 5.5

« Developer Guide—For developers who want to programmatically integrate with WebApp
Secure. This guide contains information about the REST API and writing custom
autoresponse rules.

« Third-Party Attributions—This document contains license information for all third-party
or open-source code contained within WebApp Secure.

NOTE: The Developer Guide and Third-Party Attributions are also available
in plain text.

Figure 26: View Product Guides

Basic Configuration Mode

Related
Documentation

By default, any configuration page navigated to will result in the Basic Configuration page
for that particular section. You can view the various sections of Configuration underneath
the Configuration page on the left side navigation. The available sections are as follows:

« Security Engine: Core Security Engine options, such as health checks, and whitelisting.

« Processors: Security Processors are pluggable modules that process HTTP traffic and
perform actions.

« Services: Services run in the background, performing tasks such as sending alerts,
generating reports, or performing maintenance tasks.

« Proxy / Backends: Core proxy settings, such as backend servers and SSL.

« Applications: By default, the system will secure only one application. Adding multiple
profiles will enable you to protect multiple applications with their own separate settings.

« Backups: Configure backup frequency, retention, and pushes to FTP or SSH servers.

« Logging: Options for logging access on the management interfaces, as well as logging
the various security incidents triggered by WebApp Secure.

. Response Rules: Configure how the system responds to threats, or create custom
response rules.

. Licensing: Add or update licensing information to ensure operation of your system.
« Users and Groups: Add or update user roles and permissions.

« Rest APIl: The WebApp Secure REST API provides programmatic access to the data
available in the system. More information can be found in the WebApp Secure Developer
Guide.

48 Copyright © 2014, Juniper Networks, Inc.

Chapter 4: Configuration Options

Related . Expert Configuration Mode on page 49
Documentation

Expert Configuration Mode

In most cases, using the standard configuration interface should be sufficient. Some
users might prefer editing the configuration parameters at the key-value level. Expert
Mode is a way to view all the configuration attributes from the Web UI. You can reach
Expert Mode window by clicking the Expert Mode button on the upper right side of the
Configuration window in the Web UL.

To edit any configuration parameter, first navigate to the correct parameter name. The
table is ordered alphabetically, and you can browse through the help documentation for
various parameters by using the help keyword in the CLI (mykonos-shell).

Once you find the entry, you can edit it, remove it, or reset it to its default value using the
icons on the left side of the table. When editing a parameter, you are given a text box in
which to make the edit. Some parameters are Base64 encoded (like HTML responses),
but will be displayed in an un-encoded form. Make your changes and click Set Parameter
to save the changes.

Figure 27: Edit Parameter

Edit Parameter

engine.default_response.200.content

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html> <head>

<title> < /title>

</head><body> OK

</body> </html>

Close Set Parameter

Copyright © 2014, Juniper Networks, Inc. 49

WebApp Secure 5.5

a WARNING: Even after you save the parameter, the changes to configuration

have not been saved and set until you click the Save button at the bottom of
the page. If you navigate away from the page before saving the entire
configuration, parameters are note saved.

Related . Basic Configuration Mode on page 48

Documentation

Import/Export (Web Ul)

You can export an XML file containing all configured parameters. Navigation to
Configuration in the Web Ul and click the Import/Export button. Then click the Download
button to begin downloading the XML file.

You can also import an XML configuration file by clicking the Import button and browsing
to the file. Note that the imported file will overwrite your existing configuration.

0 NOTE: A configuration export does not contain system-level settings, such

Related .
Documentation

as networking configuration and license information. Custom autoresponse
rules are also excluded from a configuration export.

CLI: Config: Import/Export on page 88

Security Engine Configuration

The security engine is the core of WebApp Secure. It is responsible for parsing incoming
HTTP requests, tracking session and attacker information, and running the processors.

You can disable the entire security engine if necessary for troubleshooting by clicking the
Disable button.

Related .
Documentation

Configure Support for Akamai Dynamic Site Accelerator on page 51
Security Engine Incident Monitoring on page 52

Security Engine Server Identity and Cloaking on page 54

Security Engine Traffic on page 54

Security Engine Whitelist Settings on page 55

50

Copyright © 2014, Juniper Networks, Inc.

Chapter 4: Configuration Options

Configure Support for Akamai Dynamic Site Accelerator

You can configure WebApp Secure to work with a site that utilizes Akamai Dynamic Site
Accelerator. You will need to make minor changes to your site's configuration in the

Akamai Luna Control Center and in the Content Delivery Network section of the Security
Engine configuration screen in the Web UL.

To make the necessary changes, do the following:

1. Loginto Luna Control Center and select the Configure tab.

2. Click the link corresponding to the desired site configuration under Configuration Name.

3. Onthe next screen, find the currently-active configuration and click Create Version
from... in the right-hand column. Make the following changes:

Table 3: Luna Control Center Configuration Changes

Configuration Section

Honor HTTP Cache-Control and Expires

Headers

Parameter

Cache Control Headers

Value

false (uncheck)

Honor HTTP Cache-Control and Expires

Headers

HTTP Expires Headers

false (uncheck)

Browser Cache Control Headers

Pass through the origin's Cache-Control
headers to the browser

true (select)

Browser Cache Control Headers

Pass through all origin cache control headers

true (select)

Edge Services - General

Enable True Client IP Header

true (check)

Edge Services - General

True Client IP Header Name

True-Client-IP (or other; see
below)

Edge Services - General

Enable Edge Server Identification

false (uncheck)

NOTE: Choosing a name for the True-Client-IP header other than the
default can provide additional security by preventing malicious users from
spoofing this header. Make a note of the value chosen for the header. You
will need to configure it on the WebApp Secure side.

4. After making these changes, scroll to the bottom of the page and activate the new
Akamai configuration as you normally would.

5. Once you have verified that your new Akamai configuration has gone live, log into the
WebApp Secure Web Ul. If you are configuring Akamai support for an application,
browse to that application's configuration page. Otherwise, browse to the Content

Copyright © 2014, Juniper Networks, Inc.

51

WebApp Secure 5.5

Delivery Network section of the Security Engine configuration (or use the Configuration
CLI). Make the following changes:

Table 4: WebApp Secure Configuration Settings for Akamai Support

Parameter ID Parameter Name Value
engine.cdn.akamai.enabled Akamai: Enabled true
engine.cdn.akamai.true_client_ip Akamai: True-Client-IP Header (value specified in Akamai

configuration)

engine.cdn.akamai.incidents.spoofing.enabled = Akamai: Spoofing Incident Enabled true or false

6. Set AkamaiEnabled to true and True-Client-IP Header to the value that you configured
in the Luna Control Center.

NOTE: If you want a security incident to be triggered when a client
attempts to spoof a request through Akamai, you can enable the Akamai
Spoof Attempt incident. This incident carries a severity of Medium and can
be incorporated into custom Autoresponse rules.

NOTE: If WebApp Secure is configured to function alongside Akamai and
a direct request comes in to the web server's backend, a warning will
appear in mws.log, indicating "Unexpected direct access to origin server.
This could be malicious or it could be origin site maintainers doing
checkout." While this could be malicious, it could also be an indication
that the site maintaineris doing work directly with the backend. It is always
safe to confirm these direct backend requests with the webmaster.

Related . Security Engine Configuration on page 50

Documentation

Security Engine Incident Monitoring

While most incidents are triggered by processors, the security engine itself is responsible
for several low-level incidents. These will be found in the Web Ul under Session
Management in the Response Rules page, and can be enabled or disabled through
Configuration > Security Engine > Incident Monitoring.

The following settings are available from Security Engine Incident Monitoring window:

52

Copyright © 2014, Juniper Networks, Inc.

Chapter 4: Configuration Options

« Session Tampering—True or False. WebApp Secure uses an HTTP cookie as one of the
components of its fingerprinting technology. Because the cookie has its own embedded
digital signature, any attempt to fabricate or modify a session cookie will almost always
result in a corrupted signature. If WebApp Secure detects that a cookie being provided
does not have a valid signature, and does not follow the correct format, it will trigger
a Session Cookie Tampering incident.

Default Response: Session Tampering (0004):1x = Logout User, 2x = 1Day Clear Inputs,
3x =5 Day Clear Inputs

« Session Spoofing—True or False. WebApp Secure uses an HTTP cookie as one of the
components of its fingerprinting technology. Because the cookie has its own embedded
digital signature, any attempt to fabricate or modify a session cookie will almost always
result in a corrupted signature. If WebApp Secure detects that a cookie being provided
has an invalid signature, but otherwise uses the correct format, it will trigger a Session
Cookie Spoofing incident.

Default Response: Session Spoofing (0001): 1x = Logout User, 2x = 1 Day Clear Inputs,
3x = 5 Day Clear Inputs

« URL Path Fuzzing—True or False. Whether or not to detect attempted fuzzing attacks
by monitoring the URL Path for characters defined as invalid in RFC 3869.

Default Response: URL Fuzzing (0005): 3x = Slow Connection 2-6 seconds, 6x = Slow
Connection 4-15 seconds, 10x = Escalated Fuzzing Attack Escalated URL Fuzzing Attack
(0006): 1x =1 Day Block

« URL Fragment Fuzzing—True or False. Whether or not to detect attempted fuzzing
attacks by monitoring the URL Path for URL fragments incorrectly submitted to the
server.

Default Response: Same as URL Path Fuzzing

e NOTE: Both URL Path Fuzzing and URL Fragment Fuzzing incidents
contribute to the count for the response.

0 NOTE: WebApp Secure is typically used to protect outward facing web sites
on the public Internet. These resources all have fully qualified domain names

to allow them to be reached by any client on the Internet. But in some cases,
WebApp Secure may be used to protect an internal resource that does not
have a fully qualified domain name. For example, when you are testing
WebApp Secure on an internally available version of your web site which is
soon to be released to the wide world. In this case, you should also include
the parameter engine.incidents.url_fuzzing.allow_locals to your configuration
through the use of Expert Mode. Set the value of
engine.incidents.url_fuzzing.allow_locals to true and save the configuration.
This will prevent false alarms coming from legitimate hits on your internally
facing site.

Copyright © 2014, Juniper Networks, Inc. 53

WebApp Secure 5.5

Related
Documentation

« Security Engine Configuration on page 50

Security Engine Server Identity and Cloaking

Related
Documentation

One of the most important aspects of WebApp Secure's "Intrusion Deception" philosophy
is in blending in with the protected web application. If attackers were aware of the
presence of the product, its efficacy would be negatively impacted.

. Fake Web Root—Several processors use fake exposed configuration files. Where
relevant, this directory will be interpolated into these resources.

. Fake Server Name-This value will be used to generate the "Server" HTTP header and
can be used to mask the actual technology used. For example, if your backend server
runs Apache, you can tell WebApp Secure to identify as Microsoft IIS, and an attacker
will end up trying exploits for Microsoft IS, which, of course, will not work against
Apache.

« Security Engine Configuration on page 50

Security Engine Traffic

This configuration section contains several basic parameters that control how WebApp
Secure processes HTTP traffic and parses HTML, as well as health checks and
fingerprinting.

. Default Character Encoding—Backend servers should specify a character encoding via
the Content-Type HTTP header or a byte-order mark. However, if this does not happen,
or if the security engine does not recognize the character encoding as valid, the default
character encoding is used to parse the response from the backend server.

« Resolve Host Names—Whether or not to perforrn DNS lookups on IP addresses present
in the X-Forwarded-For header. While these lookups do happen out-of-band, they
nonetheless may affect performance.

« Track X-Forwarded-For Addresses—Whether or not to track and record the addresses
provided in the X-Forwarded-For header. These addresses will be added as "Proxy"
locations for a session.

« Health Check URL-WebApp Secure provides for a unique URL, located on the root
directory of any domain proxied through the security engine, to return a 200 response.
The purpose of this is to provide a health check for the security engine itself, in such a
way that the health check will not proxy through to the backend servers.

« Traffic Fingerprinting Enabled—For clients that do not accept HTTP cookies, WebApp
Secure can fingerprint raw HTTP traffic. This will dramatically improve the association
of traffic generated by non-browser clients like scripts or bots.

54

Copyright © 2014, Juniper Networks, Inc.

Chapter 4: Configuration Options

« Session Cookie Expires—One of the ways WebApp Secure tracks clients is with a
standard HTTP session cookie. This parameter controls the expiration date of the
cookie and should be a random date several years in the future.

. Additional Address Tracking Headers—Most proxy servers use the X-Forwarded-For
header to send the IP addresses of each "hop" in the chain of proxies. If you are using
a non-standard proxy server that uses an alternate header, you may specify it here.

Related . Security Engine Configuration on page 50
Documentation

Security Engine Whitelist Settings

There are various types of whitelists to which you can add any valid IP address or CIDR
block. To access the Whitelist screen, do the following:

Navigate to Configuration > Security Engine > Whitelists. The following types of whitelists
are available:

« Trusted IP Addresses: The IP addresses in this list will not trigger incidents. Click Add
New to enter IP addresses to be added to this list.

« X-Forwarded-For Address Exclusions: The IP addresses in this list are stripped of the
X-Forwarded-For header. This effectively trusts that the next IP address in the chain
is a genuine address. Click Add New to enter IP addresses to be added to this list.

Q TIP:

« If you only provide an IP address without a subnet mask, a /32 mask (i.e.
asingle IP address) is implied. If you provide any other mask, it will be used
instead.

« You should enter values in a x.x.x.x/y format (the standard, dotted quad,
ipv4 format).

« Any CIDR block entered in dotted quad notation with a decimal prefix 1-32
is valid (X.x.x.x/X).

Copyright © 2014, Juniper Networks, Inc. 55

WebApp Secure 5.5

Related
Documentation

Proxy/Backends

Figure 28: Whitelists

10.10.20.61

« Security Engine Configuration on page 50

The Proxy/Backends window let you customize how to handle proxying content to and
from WebApp Secure. Request and response timeouts, listening ports, and compression
settings can be set here in addition to other settings.

Configure or use the defaults for the following fields:

- Load Balancer Method—When using WebApp Secure as a load balancer for multiple
application servers, this setting defines how the appliance segregates traffic. The
pulldown list offers these selections:

- Round Robin (default)—-Attempt to contact all servers in a rotational fashion.

- Sticky—Act 'Fair' for the first request of each incoming session, but route to the same
server for each subsequent request using that session.

- IP Hash—Act 'Fair' for the first request of each incoming IP, but route to the same
server for each subsequent request using the same IP.

« HTTP Server Port—The port would you like exposed for incoming HTTP connections.
It is recommended to leave this as the default :80

« Max Request Size—The maximum total size (in MB) for a request that will be allowed
through WebApp Secure to the backend.

« Request Timeout—The timeout limit for client requests. Any request taking longer than
this to transfer data to the server is terminated.

« Response Timeout—The timeout limit for server responses. Any response that takes
longer than this timeout to transfer data to the client is terminated.

56

Copyright © 2014, Juniper Networks, Inc.

Chapter 4: Configuration Options

« Connection Timeout—The maximum time WebApp Secure will wait to get a connection
from the backend server(s).

« HTTP Compression Enabled—True or False—Whether or not to compress (using gzip)
responses as they pass through WebApp Secure

Health Check—Use the fields here to customize how health checks are sent to the servers.

« Request—The raw HTTP request to send to the server.
. Enabled—True or False—Whether or not to enable the Health Check function.

« HTTPS Enabled-True or False—Whether or not health checks should be performed
over HTTPS.

0 NOTE: The health checks will still be performed over plain HTTP.

« Delay—The time WebApp Secure should wait between Health Checks.
. Fail Count—How many health checks fail before the server is marked as unavailable.

« Timeout— How long for WebApp Secure to wait for a response from the server while
issuing a health check.

Servers—see “Application Backend Overrides” on page 62.

Related . Application Backend Overrides on page 62
Documentation

Applications Overview

You may want to secure multiple web applications or web sites using the same
deployment of WebApp Secure. To facilitate this, you can create multiple applications
using the Web Ul or Configuration CLI, each with their own configuration options.

All configuration items in the main sections of the Web Ul are known as global parameters,
except for the Applications section. Each configured application will inherit these global
settings unless you specify that they should be overridden. Likewise, if you change a
setting on the global level, it will be changed in every configured application, unless you
have specifically overridden it.

Adding an application using the Applications configuration menu allows you to override
certain parameters within the context of a given application. When you add an application,
you tell WebApp Secure the following: Any requests whose hostname matches the
regular expression you have specified should be subject to the values you have overridden
within the context of the application configuration. To override a value, click Applications
in the left navigation of the Web Ul, and then click the corresponding link to edit the
desired application. Not all parameters can be overridden; for example, backups-related
configuration is global-only.

When using the configuration CLI, any parameter that does not start with applications.
is a global parameter. You may execute the info command to view information about

Copyright © 2014, Juniper Networks, Inc. 57

WebApp Secure 5.5

Related
Documentation

whether or not a given parameter can be overridden. To override a parameter for an
application in the CLI, you use the application's slug, or short name, to create a prefix.
For example, overriding "processors.basic_auth.enabled" for the application whose slug
is "myapp", can be accomplished by executing the command set
applications.myapp.processors.basic_auth.enabled false.

Since most discrete web applications are on different application servers, the most
commonly overridden parameter is the collection of backend servers.

If your desired configuration requires further granularity, WebApp Secure also allows you
to configure Pages which apply a regular expression to the path component of the URL,
rather than the domain component, and allow a subset application of parameters to be
overridden further.

As an example, let's say that you want to use WebApp Secure to protect
www.example.com and blogs.example.com. You would set up two applications. The
first would specify www\.example\.com as the pattern, and you would specify your web
server as the backend. The second would specify blogs\.example\.com as the pattern,
and you would specify your blog system's application server as the backend. Globally,
since most of your infrastructure uses Apache, you have left the Basic Authentication
Processor enabled on the global level. Your blog site, however, uses Nginx, and so a
honeypot of a fake Apache configuration file would be a dead giveaway. Using the
Applications configuration screen, you can override the setting to disable this processor
for the blog site. Additionally, since the blog site uses WordPress, you might want to
enable the Application Vulnerability Processor -- but not for your www site -- so you can
use the Applications configuration screen to enable the Application Vulnerability Processor
for the blog site.

Continuing the example, let's say that your webmaster is running a campaign using Google
Analytics, and it is found that the Query String Processor is injecting a fake parameter
thatis conflicting with the tracking of this campaign, but only under the "fribjatz" directory
of the www site. Adding a Page with a pattern of "~ /fribjatz(/*)?$" would enable you
to turn off the Query String Processor for any pages on the site that are in the "fribjatz"
directory.

. Pagesonpage 64

« Create a New Application on page 58

Create a New Application

To create a new application within WepApp Secure, do the following:

1. Inthe Web UI, click Configuration > Applications. Here you can view applications that
have already been configured.

6 NOTE: You can reorder applications in the applications list by dragging
and dropping them. Click Save Order to preserve your newly ordered list.

58

Copyright © 2014, Juniper Networks, Inc.

Chapter 4: Configuration Options

Figure 29: Configured Applications

My Application Stuff is happening to things and items of interest

[=| Save Order) Add New Application

2. Enter information into the form to create a new application.

3. Click the Add Application button. This launches the Application Wizard. Fill in the
available fields, and continue to click the Next button until you have completed the
wizard. Based on your entries, the wizard can require three to six steps to complete.

Figure 30: Application Wizard

Please enter a human-readable "friendly name", to be used throughout the interface.

Slug / Short Name:

Please enter a unique, URL-friendly, short identifier comprised of lower-case letters, numbers, and / or underscares ONLY.

Description:

Please {optionally} enter a brief, human-readable description.

1

Maost opplications anly need one pattern. If you are unsure, just leave this '1' here. You can always odd more later.

&0
The TCP port this application should listen on for HTTP traffic (suggested value: 80).

If you would like your application ta be available over 551, check this box.

0 NOTE: If you have already claimed the IP address for SSL, but wish to share
it with other applications that are not using SSL, you need to go into the
Proxy/SSL Settings section in the Applications window and select the listen
IP address on the application that does not have SSL.

Related . Edit Applications on page 60
Documentation

Copyright © 2014, Juniper Networks, Inc. 59

WebApp Secure 5.5

Edit Applications

Related
Documentation

You can edit an existing application by doing the following. If you want to change any
configured application settings, click the Edit/Override Settings icon for the application
in question.

1. Navigate to Configuration > Applications. Existing applications are listed in the
Application screen.

2. To edit an application, click the Edit/Override Settings icon under Actions for the
application in question.

3. This takes you to the dashboard for the application. The dashboard displays which
application settings are overridden and which are inherited. From here, you modify
each setting individually.

Figure 31: Application Dashboard

=
Application Description: Stuff is happening to things and items of interest []

plication is using the backend servers defined at the global level.

) Add New Page

Default character encoding 150-8859-1
Session Spoofing v
Session Tampering @

Track X-Forwarded-For Addresses /

. Create a New Application on page 58

Application Patterns

Application patterns determine which requests get routed to which applications. You
can change each application you've added later by navigating to Configuration >
Applications. Url patterns follow standard Perl Compatible Regular Expressions (PCRE)
syntax.

60

Copyright © 2014, Juniper Networks, Inc.

Chapter 4: Configuration Options

For example:

. Any traffic: . *$
« Any subdomain: “.*\.domain\.com$

. Multiple, or no, subdomains: ~ ((www/|shop)\.) ?7domain\.com$

Figure 32: URL Pattern

HTTPS Enabled

HITP Enaied

Host Regex

Host Case Insensitive

0 NOTE: WebApp Secure processes applications in order. Therefore conflicting
regular expressions will only be processed on the application or page where
it first appears. There are also some suggestions that cover some common
use-cases such as catch-all, subdomains, and so on.

a WARNING: URL patterns and profiles are observed in the order they are
created.

Copyright © 2014, Juniper Networks, Inc. 61

WebApp Secure 5.5

0 NOTE: If SSL is required for this application, you will also need to enable SSL
and ensure that all the required certificates are uploaded and configured

properly.

Application Backend Overrides

When separating applications, one application can reside on a different physical server.
You can define a backend server for this application here. For convenience, WebApp
Secure inherits the global backend server that was used in the global context.

0 NOTE: You do not have to define a backend server at the global level. For
example, you can define backend servers using only Applications. However,
if there is a backend server defined globally, you should not unset it. You can
only change it. There should always be at least one global backend server.
Deleting the last global backend server can cause instability. (If you want to
define backend servers using only Applications, you can skip this wizard setup
step.)

Figure 34: Servers

name address ports.http ports.https weight backup Actions

AlogicalNameHere 10.10.20.99 30 443 1 false i i
®

Related . Proxy/Backends on page 56
Documentation

Enable SSL to the Client

To enable SSL between WebApp Secure and the client, do the following:

1. Inthe Web Ul, navigate to the application for which you want to enable SSL or switch
to the desired application's context.

2. Navigate to Configuration > Applications > My App > Proxy/SSL Settings and enable
SSL to the backend.

3. Upload your SSL certificate and key file.
4. Select a listening interface IP address and HTTP and HTTPS ports.

62 Copyright © 2014, Juniper Networks, Inc.

Chapter 4: Configuration Options

0 NOTE: The combination of port/IP must be unique for the system. If the
system is clustered, an IP must be selected for each node.

5. Whenyou save the SSL configuration in a deployment containing multiple appliances,
the certificate is propagated from the master system to all subsequent systems.

Figure 35: Proxy / Backends

HTTP Port

HTTPS Port

IP Addresses 8 10.10.20.46

S5L Certificate

WARNING: To safeguard against inheriting SSL certificates, WepApp Secure
does not allow SSL at the global level. Therefore, you must configure an
application in order to enable SSL.

a WARNING: Your certificate and key files cannot be password protected. If
they are, WebApp Secure will be unable to read them. You can remove
passwords on your existing certificate by using the openssl program. For
example, openssl rsa -in mykey.pem -out newkey.pem.

o NOTE: Certificates must be in valid PEM (Privacy Enhanced Mail) format.
You can verify the SSL certificate by using the command, openssl verify
<sslcert.crt>. WebApp Secure is only concerned with the validity of the

format. openssl verify might allude to other problems with the certificate,

but other issues do not come into play when used within WebApp Secure.

Copyright © 2014, Juniper Networks, Inc. 63

WebApp Secure 5.5

Pages

Related
Documentation

NTP Service

WebApp Secure supports different configurations for different pages within a protected
application. Fill out the required information and click Add Page to create a new page.

o NOTE: The page nomenclature is used for simplicity. Much like applications,
page contexts can define a set of pages using a RegEx. They aren't restricted
to one actual page on the application.

Figure 36: Add New Page

My Custom Page
S shor e
Description This is just an example page.

RUTLA U (=xample/signup.php (A specific path)

HTTP?
HTTPS?

URI Regex

URI Case Insensitive?

To keep your appliance clock synchronized to the correct time, WebApp Secure allows
the configuration of NTP servers. The appliance can use suggested publicly-available
NTP server pools, or it can be configured to use an internal NTP server for timekeeping.

To configure the NTP service, do the following:

1. Inthe Web Ul, navigate to Configuration > Services > NTP servers.

2. Click the Add New button.

64

Copyright © 2014, Juniper Networks, Inc.

Chapter 4: Configuration Options

3.

4,

Alert Service

A list of servers is displayed with a suggested server selected. Click the Use Suggestion
button to use the recommended server. Otherwise, enter a valid hostname or IP
address of an NTP server in the Server field.

Click Test NTP Server Connection. If the test is successful, click Save.

WebApp Secure can e-mail alerts to your administration team. While the appliance can
serve as its own mail server, we recommend that you use a valid mail server for your
network.

To configure e-mail alerts, do the following:

1.

2.

Related
Documentation

In the Web Ul, navigate to Configuration > Services > Alert Service.
Set Alerts Enabled to True.

Enter the sender e-mail address. This is the address that e-mails will use in the from
field.

In the Contacts section, click the Add New button to enter contact information for
e-mail alerts. You can also select the severity of events that can trigger e-mails as
well at the time-frame for sending e-mail alerts to the contact in guestion.

In the SNMP Addresses section, click the Add New button to enter the address and
port of SNMP managers. The address field defaults to localhost. Set it to the IP address
or FODN of your mail server if you are using an off-board mail server as recommended.
The port defaults to 25. Set it to the port your mail server is listening on. Test your
settings and click Save.

Integration with SRX Series Overview

The SRX series by Juniper is an enterprise-level Secure Gateway for networks. WebApp

Secure has the ability to integrate with this solution, which means it can send IPs to the

SRX series to achieve a block (or other configurable response) at the gateway level. This
effectively allows the SRX series to tap into the identifying metrics produced by WebApp
Secure.

Related . Filters and Terms Configuration Summary for SRX Series Integration on page 66

Documentation

« Creating SRX Series Filters and Terms on page 67

. Configure the SRX Series Integration on page 68

« Testing the SRX Series Integration Configuration on page 70

Copyright © 2014, Juniper Networks, Inc. 65

WebApp Secure 5.5

Filters and Terms Configuration Summary for SRX Series Integration

Related
Documentation

The SRX series uses a pipeline of filters to be applied to incoming packets. Each filter
contains any number of terms that can apply actions to these incoming packets. The
first step in configuring WebApp Secure to work with the SRX series is to configure the
filters and terms required. WebApp Secure will require a valid IPv4 filter. This can be
named anything and can be a filter already set up prior to \WebApp Secure integration.
Remember this filter name, because you will input it into the WebApp Secure appliance
once the SRX series configuration has been completed.

Along with a filter, you must create two terms. Unlike the filter, these terms cannot be
modified by any other service. The first term is the term that IP addresses are added to
in the event of an External Counter Response activation, and whose name will be supplied
to configuration. The second term must be added as a safeguard which will determine
what action to take when no IPs are in the first term. It is recommmended that the second
term be similar to the following:

term jwas_default {
then {
accept;
1

}

This should be placed after the blocking term. It allows all traffic through once the previous
term's action has been changed to next term. Consult the SRX series documentation for
more information on the SRX series and its filters.

0 NOTE: Because the SRX series will drop packets when next termis the action
and no actual next term exists, it is important to have this additional term
below the term which will contain the actual IPs.

a WARNING: Any|Psadded to the WebApp Secure term through the SRX series
CLI,the SRX series GUI, or any other external service besides WebApp Secure,
are not guaranteed to remain in the term.

« Integration with SRX Series Overview on page 65
. Creating SRX Series Filters and Terms on page 67
« Configure the SRX Series Integration on page 68

. Testing the SRX Series Integration Configuration on page 70

66

Copyright © 2014, Juniper Networks, Inc.

Chapter 4: Configuration Options

Creating SRX Series Filters and Terms

To initialize a filter for use with WebApp Secure do the following:

1. Loginto the SRX series through SSH. Then enter cli and next enter configure to put
the cliinto configuration mode.

Figure 37: Initialize Filter

[&8 10102050 - PuTTY ESREER)

2. Next create the filter, term, and a placeholder action. Because each term must have
some sort of action, choose the next term action. This passes the packet on to the
next term in the filter. Although the inside of the term will be replaced by WebApp
Secure, it will allow the filter to be created. To do this enter set firewall family inet filter
my_filter term block then next term. You can enter show firewall to see your
newly-created filter.

Figure 38: Create Filter Term
(B root@my-srx |££|éj

..net filter my filter term block then next term

..net filter my filter term de

0 NOTE: The filter name my_filter and term block are example names. You
canchoose any names you like, but remember them because you will need
to inform \WebApp Secure of your name choices later on in the
configuration.

3. Although the filter is created, it is not set to intercept incoming packets. You must
now bind the filter to an interface. The interface and unit names will be different
depending on your network implementation, but an example is: set interfaces ge-0/0/0

Copyright © 2014, Juniper Networks, Inc. 67

WebApp Secure 5.5

unit O family inet filter input my_filter. After binding to an interface, you should see the
newly created filter appear under the appropriate interface when you enter show
interfaces.

Figure 39: Bind Filter to Interface

EP root@my-srx | = | B ﬁ]

nit 0 family inet filter my filter

4. Save the changes by entering commit. Exit the CLI by entering exit twice (once to exit
configure mode, and once to exit the CLI).

a WARNING: If the blocking term is misplaced after the default (accept)
term, the filter will not commit. Make sure that the accepting termis placed
after the blocking term. Remember: next term needs a next term to switch
to.

Related . Integration with SRX Series Overview on page 65
Documentation . Filters and Terms Configuration Summary for SRX Series Integration on page 66
. Creating SRX Series Filters and Terms on page 67
. Configure the SRX Series Integration on page 68

« Testing the SRX Series Integration Configuration on page 70

Configure the SRX Series Integration

To configure the integration of an SRX series appliance with WebApp Secure, you must
enable the External Counter Response Service, found within the configuration of the
WebApp Secure web interface. Navigate to Configuration > Services > External Response
Server (SRX Integration) and configure the fields described in the table below.

0 NOTE: Afteryou entertheinformation, click the Test SRX Connection Settings
link to make sure the system can be reached.

68 Copyright © 2014, Juniper Networks, Inc.

Chapter 4: Configuration Options

The External Counter Response Service allows the SRX series to send filter requests to
the Appliance, and can be found under the Global section of the WebApp Secure
configuration. It is an Advanced configuration set, so you will need to show the advanced
configuration entries to see the External Counter Response Service configuration category.

I/

WARNING: The configuration category will validate if there is an IP address
or hostname in the corresponding configuration entry,and a filter name along
with a term name, but this does not mean the service is properly working.
Always test the counter response after changing the configuration entries,
explained in the next section.

Be sure to examine the configuration entries available for this service, and fill out all
necessary fields, outlined in the following table.

Table 5: External Counter Response Service Configuration Parameters

Parameter Type Default Value Description

External Counter Boolean False Whether or not to enable this service.

Responses Enabled

Network Address IP (or DNS [Not Set] Required. Either the IP address or the DNS name of the

name) device.

SRX series Password String [Not Set] The password to log into the SRX series.

SRX series Username String [Not Set] The username to log into the SRX series.

Filter Name String [Not Set] Provide a filter name that WebApp Secure will use.

Term Name String [Not Set] The termin the configured filter that WebApp Secure should
add the IPs to. It should not be currently in-use by any other
service, and should only be used for WebApp Secure.

Action(s) to Apply) Collection [collection:1] Choose the actions for the SRX series to take on IPs sent

(Strings) to it by WebApp Secure. When no IPs are blocked on the

SRX series through WebApp Secure, these terms will be
changed to Evaluate Next Term, which will continue to the
next term in the filter. By default, this is set to a collection
of 1, consisting of only discard.

4L

WARNING: When configuring multiple actions to take, be careful not to
populate the collection with conflicting actions. An example of two conflicting
actions arerejectand accept (You cannot reject a connectionand then accept
a connection!.). WebApp Secure has no protection for conflicting actions.
The system will overwrite older actions with newer ones (further down the
collection). An example of non-conflicting actions are log and discard. In this
case, the packets will be logged, and then discarded. For more information
on actions to take, consult the SRX series documentation.

Copyright © 2014, Juniper Networks, Inc.

69

WebApp Secure 5.5

0 NOTE: If the External Counter Response Service is disabled or otherwise
configured incorrectly, blocking a profile through the External Block response
will not work, but will still be shown in the User Interface as a valid Counter
Response.

Related . Integration with SRX Series Overview on page 65
D tati
ocumentation . Filters and Terms Configuration Summary for SRX Series Integration on page 66
. Creating SRX Series Filters and Terms on page 67

« Testing the SRX Series Integration Configuration on page 70

Testing the SRX Series Integration Configuration

Purpose To verify the configuration of the WebApp Secure portion of the SRX series integration,
do the following

Action 1. Create a profile by accessing the .htaccess file (explained in “Verify the Installation”).
2. Navigate to the WebApp Secure web interface and find the newly created profile.
3. Manually activate the Filter on SRX Counter Response.

4. Loginto the SRX series CLI, and run the command show configuration firewall (or
show firewall if in).

You should see a new filter created with the name you gave in configuration, and a new
term within that filter called that you also named within configuration. It should appear
similar to the following (depending on how you set up your filter and actions):

family inet {
filter my_filter {
term block {
from {
address {
10.10.10.10/32;
1
1
then {
reject;
1
1
term default {
then {
accept;
1
1
1
1

In the example above, 10.10.10.10 is the IP of the profile you activated the Counter
Response on. This is telling the SRX series to reject the IP of the profile at the gateway

70 Copyright © 2014, Juniper Networks, Inc.

Chapter 4: Configuration Options

level. Note the default term below the block term which will act as an accept-all in the
case that the block term's action has been changed to next term.

You can also verify the line with the IP address gets deleted when deactivating the Counter
Response.

0 NOTE: When there are no IPs to block, the SRX series defaults to * or All
Traffic. This would effectively block all traffic from that interface! To counter
this, WebApp Secure changes the action from your configured entry to next
term, essentially letting the next term within the filter deal with the traffic.
Because you set up a default term to handle this case (see Configuration),
the next term simply accepts all traffic.

This filter should now look as follows:

family inet {
filter my_filter {
term block {
then next term;
1
term default {
then {
accept;
}
}
1
}

This is indicating that all traffic will be sent through this term, but the action is simply
passing the packet onto the next term in the filter, which is our default term that will
accept all traffic.

Related . Integration with SRX Series Overview on page 65
D tati
ocumentation . Filters and Terms Configuration Summary for SRX Series Integration on page 66
. Creating SRX Series Filters and Terms on page 67

. Configure the SRX Series Integration on page 68

Copyright © 2014, Juniper Networks, Inc. 7

WebApp Secure 5.5

72 Copyright © 2014, Juniper Networks, Inc.

CHAPTERS

Managing the Appliance

« Overview on page 73

« Navigating the CLI on page 74

« The CLI: The Set Command on page 75

« The CLI: General and Base Commands on page 77

« The CLI: Configuration Level Commands on page 81
« The CLI: System Level Commands on page 84

« CLI: Config Example on page 86

« CLI: Config: Setting a Configuration Parameter on page 87
« CLI: Config: Initializing the Configuration on page 88
« CLI: Config: Import/Export on page 88

« CLI: Config: Configure a Proxy Exclusion on page 89
« System Updates on page 90

. Statistics on page 92

« High Availability Network Failure Detection, Actions, and Monitoring on page 95
« Unblock Web Ul Login Ban on page 97

+ Health Check URL on page 97

« Self-Monitoring on page 98

« Self-Monitoring Configuration Variables on page 98
« Managing and Viewing Logs on page 103

« Log File Destination on page 104

. Backup and Recovery Overview on page 105

« Database Backup and Restore on page 107

Overview

The Command Line Interface is a standard tool to perform various management tasks
in the WebApp Secure system. Anything from configuration settings, service statuses
and network settings can be controlled through the CLI. To enter the CLI, SSH into WebApp
Secure and type cli at the bash prompt. You should see the prompt > along with a
welcome message indicating you have successfully entered the CLI.

Copyright © 2014, Juniper Networks, Inc. 73

WebApp Secure 5.5

Related
Documentation

Navigating the CLI

[mykonos@webappsecure ~]$ cli

Welcome to the Junos WebApp Secure CLI

>

0 NOTE: Note: The commands sudo mykonos-shell and cli are analgous; the

latter is a bash alias to the former.

Navigating the CLI on page 74

The CLI: General and Base Commands on page 77
The CLI: Configuration Level Commands on page 81
The CLI: System Level Commands on page 84

The CLI: The Set Command on page 75

The CLI uses different contexts to segregate commands. Currently, there are three
contexts that are available from the root context:

config

Allows you to display or manipulate the WebApp Secure configuration. The CLI provides
an alternate way to edit configurations without the need to navigate through the Web
Ul.

system

Any command that deals with the system as a whole is contained in the system context.
Tasks such as configuration of network interfaces, checking on the appliance services
or executing backups can be done through this context. The system context also
contains the services subcontext.

support

Enter the support level of the CLI. This level provides support features meant for
troubleshooting system problems.

To exit to the last context used, simply type exit or use the keyboard shorcut Ctrl + D.

0 NOTE: At any point, you can enter ? or help to view the available commands

at the current context or help <command> to get contextual help on the
specified command.

[mykonos@webappsecure ~]$ cli

Welcome to the Junos WebApp Secure CLI

74

Copyright © 2014, Juniper Networks, Inc.

Chapter 5: Managing the Appliance

> config

config> help show

Summary: display configuration parameters
Syntax:

show [parameter]

show|compare

Display the value of the given parameter. If no parameter name is given the entire
configuration tree will be displayed.

You can also compare what is currently in memory to what was loaded from disk using the
"compare" flag. To do this use the syntax:

show|compare

config> exit

> exit
[mykonos@webappsecure ~1$ _

Related . The CLI: General and Base Commmands on page 77
D tati
ocumentation « The CLI: Configuration Level Commands on page 81
« The CLI: System Level Commands on page 84

« The CLI: The Set Command on page 75

The CLI: The Set Command

The set command allows you to set the various local system network settings.

o NOTE: The following commands imply you are already in the system context
in the cli.

« Configure Network Interfaces—The syntax for setting network interface attributes is
as follows:

set interface <interface> <attr1> <valuel> <attr2> <value2> ... <attrN> <valueN>

The settings will not take affect immediately and will require a restart of the interface
to actually take affect. You may set multiple attributes on a single interface at one
time. The available attributes can be see by using the tab completion when setting an
interface.

« Configure an Alias Interface—Specify the interface using the following format:

Copyright © 2014, Juniper Networks, Inc. 75

WebApp Secure 5.5

set interface <physical interface>:<alias number>

For example, if you are configuring the first alias on physical device ethO, then the
interface you would give would be eth0:0.

Configure a Vlan Tagged Interface—Specify the interface using the following format:
set interface <physical interface>:<vlan id>

You must also need to set the vlan attribute to true.

Configure a Bonded Interface—Specify the interface using the following format:

set interface bond<bond number>

Configure the bond interface itself as you would any other interface , where
<bond_number>is the number to assign to the bond name. For each physical interface
that will be a part of the bond you will need to set the slave attribute to true and set
the master attribute to the bond interface. For example:

cli system set interface bondO

cli system set interface eth4 slave true master bondO

cli system set interface eth5 slave true master bondO
Configure Hostname Resolution—Use the following syntax:
set dns nameservers <servers>

set dns domain <domain>

set dns search <search>

These settings let you configure how hostnames are resolved by the local system. If
you provide multiple nameservers to use for DNS resolution, they should be separated
by a command and given in the order of priority.

Configure System HTTP Proxy—Use the following syntax:
set proxy <protocol>://[<username>:<password>@]<host>:<port>

To setup a HTTP or HTTPS proxy to use for the local system you would provide the
proxy information in the above format. The <protocol> will determine which one the
proxy is used for, and you can optionally specify a username and password to be used
for connecting to the proxy.

Configure the Management Interface—Specify the interface using the following format:
set management-interface <interface>

Sets the management interface for the local system. All management traffic and
internode communications will be restricted to the given interface. The only exception
to this is HA replication traffic. The replication traffic will only happen on the
interconnect.

Configure the HA Management VIP—Use the following syntax:

set management-vip <ip>/<netmask>

76

Copyright © 2014, Juniper Networks, Inc.

Chapter 5: Managing the Appliance

Set the floating IP address to be used by the management interfaces of the HA pair.
The floating IP address must be a valid IPV4 address and should include the netmask
to be used.

. Configure the HA Traffic VIP(s)—Use the following syntax:

set traffic-vip <name> <ip>/<netmask>

Add a floating IP address to be used by the HA pair for handling of application traffic.
« Configure the Interface Monitor—Use the following syntax:

set ethmonitor <interface>

Set a network interface to be monitored for availability. If the giveninterface is detected
to be down, then a failover event will occur with the HA pair.

« Specify a custom IP route and/or rule - Use the following format:
system set interface <interface> route <route definition>
system set interface <interface> rule <rule definition>

To allow complete IP routing customizability, WebApp Secure allows administrators
to define custom routing rules and routes. Using the above format, you can apply
specific routing behavior to any interface so you can better handle any routing issue
that may arise. Once added, they should be listed with the interface when running
system show interfaces. The routes/rules do not take affect immediately; they require
arestart of the network service the same as any other network interface change. After
restarting the network service you can verify that the routes/rules have taken affect
with the commands ip route list and ip rule list. For information on how to define route
and rule definitions, exit the CLI and type ip route help and ip rule help from the
WebAppSecure bash prompt

Related . The CLI: General and Base Commands on page 77
Documentation
v ! . The CLI: Configuration Level Commands on page 81

« The CLI: System Level Commands on page 84

The CLI: General and Base Commands

When you enter CLI at the bash prompt, this puts you at the base level of the CLI. You
can also jump directly to a specific level or even run a command directly without entering
the interactive mode of the CLI. You do this by providing the full path to what you are
trying to access. For example, to show the current network configuration for interface
ethO you could run the command cli system show ethO directly from the bash prompt.

Command Flags

« Some commands available in the CLI can take various flags to alter the default behavior
of the command. The normal format for these flags is in the form: command | flags

« If you want to pass multiple flags to a command, do so by separating the flags with a
space as follows: command | flagl flag2 flag3

Copyright © 2014, Juniper Networks, Inc. 77

WebApp Secure 5.5

o NOTE: Any unknown or invalid flags passed are ignored.

Special Characters—When passing a value to the CLI that contains special characters
you should wrap the value in quotes. You should also do this for any value or argument
that contains spaces. For example if you are setting the the engine.server_name parameter
in config and you want the value to be Microsoft IS, run the following command: cli config
set engine.server_name "Microsoft IIS" If you do not quote the value the example, then
the parameter would be incorrectly set to the value Microsoft.

The following sections provide lists of commands you can reference when using the CLI.

Table 6: General CLI Commands

Command Syntax Description

color color Changes the display of color in the CLI. By default, only the default terminal foreground color
is used for all output. If enabled then output of certain commands is syntax highlighted to
make it easier to distinguish certain types of information.
Example:
> color
Color Enabled

> color

Color Disabled

echo echo [string] Echos the string passed to it back to the screen. The main purpose of this command is to give
you the ability to provide a status message when writing automated scripts against the CLI.

Example:
> echo Hello, World!

Hello, World!

exit exit Exits the current level of the CLI and returns you to the entry point of that level.
Example:
> system
system> exit

>

78 Copyright © 2014, Juniper Networks, Inc.

Chapter 5: Managing the Appliance

Table 6: General CLI Commands (continued)

Command Syntax Description

help help [topic] Displays help information about the various levels and command available within the CLI.
Example:
> help echo
Summary: echo the given string back to the terminal
Syntax: echo [string]
This is a simple implementation of a echo command.

pager pager Toggles use of the screen pager for output longer than your current screen size. When enabled,
the output of commands are paginated according to the size of your current terminal window.
When disabled, the pagination will not take affect which can make it difficult to view long
output from some commands.
Example:
> pager
Pager Disabled
> pager
Pager Enabled

tee tee Toggles teeing of output to a log file. When enabled, all output displayed inside the CLl is also

logged to a file in the user's home directory.

Example:

> tee

Output logging to /home/mykonos/2014-04-03-19:06:59.697271.log
> tee

Output logging stopped

Copyright © 2014, Juniper Networks, Inc. 79

WebApp Secure 5.5

Table 7: Base Level CLI Commands

Command Syntax

config config [subcommand]

Description

Enter the configuration level of the CLI.
From here you can manage the various
configuration settings used by WebApp
Secure. System specific settings such as
network configuration, or settings that
only affect a limited number of nodes in
a cluster/install are not handled through
the configuration level. For system
specific configuration settings please see
the system level of the CLI.

Example:
> config show engine.enabled
true

Refer to “The CLI: Configuration Level
Commands” on page 81 for details.

system system [subcommand]

Enter the system level of the CLI. The
system level is where all local system
configuration is done and where local
system actions can be performed. This
level is also where HA
actions/configuration is located.

Example:

> system services status
mykonos-security-engine
mykonos-security-engine (pid 9150) is

running...

Refer to “The CLI: System Level
Commands” on page 84 for details.

support support [subcommand]

Enter the support level of the CLI. This
level provides support features meant for
troubleshooting system problems.
Example:

> support bundle

The support bundle has been successfully
sent to the support staff.

Related . The CLI: Configuration Level Commands on page 81

Documentation

« The CLI: System Level Commands on page 84
« The CLI: The Set Command on page 75

80

Copyright © 2014, Juniper Networks, Inc.

Chapter 5: Managing the Appliance

The CLI: Configuration Level Commands

The following section provides a list of configuration level commands you can reference
when using the CLI.

Table 8: Configuration Level CLI Commands

Command Syntax Description

commit commit Commits any outstanding changes to the
configuration settings. If running within a
cluster, this command will also publish the
new configuration settings out to all nodes
in the cluster.
Example:
config> set engine.enabled false

config> commit

1 parameter changed

export export Exports the current saved configuration to a
time-stamped file in the user's home
directory. The exported file is in the correct
format for later re-importing the file back into
the configuration system.

Example:
config> export

Configuration exported to

/home/mykonos/jwas-2014-04-03-19:37:00839423cfg

Copyright © 2014, Juniper Networks, Inc. 81

WebApp Secure 5.5

Table 8: Configuration Level CLI Commands (continued)

Command

info

Syntax

info <parameter>

Description

Display information about the given
parameter, such as the level within the
configuration it can be set at, whether it
inherits from other levels of config, and

possible suggested values for the parameter.

Example:

config> info logging.audit.local

Whether to log audit log entries locally
Parameter: logging.audit.local
Contexts: global

Inheritable: True

Suggestions:

(1) True - Turn on local logging

Value: true

(2) False - Turn off local logging

Value: false

init

init <parameter>

Initializes configuration setting values. If a

parameter name is given, then only the value

of that parameter is initialized.

Available Flag:

« ifempty - Only initialize parameter if the

current value is not set or null.

Example:

config> set engine.enabled false
config> show engine.enabled false
config> init engine.enabled

config> show engine.enabled true

82

Copyright © 2014, Juniper Networks, Inc.

Chapter 5: Managing the Appliance

Table 8: Configuration Level CLI Commands (continued)

Command Syntax Description

set set <parameter> <value> Sets the value of the given configuration
parameter to the value provided.

Available Flags:

« edit - Opens a text editor to change the
value. This is useful when setting
parameters that can take large values such
as response bodies.

« suggestion # - Sets the value of the
parameter to the given suggestion number.
Use the infocommand to lookup what the
available suggestions are and the number
associated with them.

« null - Sets the value of the parameter to
null if allowed.

« ifempty - Only sets the value of the
parameter if its current value is not set or
null.

« json - Parse the given value as json. Useful
for setting multiple attributes at one time
on a parameter.

Example:

config> set processors.block.response |
suggestion 3

config> show processors.block.response
processors.block.response

config> show
processors.block.response.status 403

show show <parameter> Show the value of the given parameter and
any parameters below it. If no parameter is
given, then the entire configuration structure
is returned. The default format returned is
json.

Available Flag:

« flat - Returned data is in dot notation
format rather than json.

Example:

config> show engine.enabled true

Copyright © 2014, Juniper Networks, Inc. 83

WebApp Secure 5.5

Table 8: Configuration Level CLI Commands (continued)

Command Syntax Description
unset unset <parameter> Remove a parameter from configuration.
Available Flag:

« match(<attribute>="<value>") - Remove
all parameters from a collection that have
an attribute of the given name that
matches the given value.

Example:

config> set foo.bar
baz

config> show foo.bar
baz

config> unset foo.bar

Are you sure you want to unset "foo.bar"?
[vIN]:y

config> show foo.bar

config> _

Related . The CLI: General and Base Commmands on page 77
D tati
ocumentation « The CLI: System Level Commands on page 84

« The CLI: The Set Command on page 75

The CLI: System Level Commands

The following section provides a list of system level commands you can reference when
using the CLI.

84 Copyright © 2014, Juniper Networks, Inc.

Chapter 5: Managing the Appliance

Table 9: System Level CLI Commands

Command

set

Syntax

set <setting> <value>

set interface <interface> <attribute>
<value>

set dns <setting> <value>

Description

Sets local system level properties, including
the hostname, network interfaces, DNS
servers, proxy servers and more. For more
information about the various settings
available with this command use help set
for usage information.

Example:
system> set interface eth2 onboot no

See “The CLI: The Set Command” on
page 75 for details.

show

show [category]

Shows system configuration. When given
without a [category], this command will
show the entire system configuration.
Example:

system> show management-interface "ethO"

status

status <item>

Depending on the item supplied, this will
look over the local system for the status of
the component requested. For a list of all
available items to retrieve status
information for, type help status.

Example:
system> status network

system> status ha

unset

unset <setting> <value>

unset interface <interface> <attribute>
<value>

unset dns <setting> <value>

Unsets the given local system configuration.
If allowed to be empty or unset this
command will remove the specified setting
completely. Not all system level properties
are allowed to be unset, such as hostname
and the management interface.

backup

backup

Initiate a system backup. Backups are stored
in /home/mykonos/backups/ directory.

Example:
system> backup

Confirm Backup [y|N]:y

initialize

initialize

Runs the system initialization process.
Example:

[mykonos@webappsecure ~]1$ cli system
initialize

Copyright © 2014, Juniper Networks, Inc.

85

WebApp Secure 5.5

Table 9: System Level CLI Commands (continued)

Command Syntax Description

services services [subcommand] Enter the services level of the CLI. This level
allows you to control the services running
on the local system. The subcommand can
consist of two parts, the action to take, and
the component to take that action.

Actions

« status

o start

o restart

« shutdown

Example:
system> services status nginx
nginx (pid 1614) is running...

NOTE: To see all available components,
type the action, a space, and then hit the
TAB key to see a list of components
available for that action. To restart the
network for interface configurations to
update, type cli system services restart
network.

Related . The CLI: General and Base Commmands on page 77
Documentation « The CLI: Configuration Level Commands on page 81

« The CLI: The Set Command on page 75

CLI: Config Example

Typing config at the CLI prompt will put the CLI into the configuration context.
Configuration values are organized in a hierarchical fashion, with the most general words
located at the beginning of the full configuration attribute string. For example:

services.cleanup.db.enabled

From the entry above, you can see that this parameter is for a service that handles the
cleanup of the database. Specifically, this parameter determines whether the service is
enabled or not.

Within the config context, you can choose to show any portion of the configuration. For
example:

show services.cleanup.db.enabled

In the entry above, the value of the parameter in question is shown. If you want to see all
of the configuration for the DB Cleanup Service, you can enter show services.cleanup.db

86 Copyright © 2014, Juniper Networks, Inc.

Chapter 5: Managing the Appliance

Related
Documentation

to return a JSON object representation of the entire configuration that relates to the DB
Cleanup Service. Likewise, entering only show displays the entire configuration as one
large object.

« Overview on page 73

« The CLI: Configuration Level Commands on page 81

CLI: Config: Setting a Configuration Parameter

Related
Documentation

To set a configuration parameter, enter set PARAMETER.TO.SET VALUETOSETTO. For
example, to enable the DataBase Cleanup Service (which allows you to delete profiles
from WepApp Secure), enter the following:

set services.cleanup.db.enabled true

For more advanced users, you can edit configuration entries with an actual editor. If you
do this, you can append | edit to the end of the set command where your value would
be. The shell will put you into a text editor (VIM by default) where you can make changes
to the configuration values. This is convenient when editing the JSON representation of
a set of configuration entries, such as services.cleanup.db. Make any changes and, in
VIMs Normal Mode, enter wq to write and quit the editor. For more information about
VIM and how to use it, consult the VIM Documentation.

0 NOTE: Youcanchoose to show a portion of the configuration without setting
it by using the keyword show rather than set. For example: show
services.cleanup.db This displays all configurations related to the DataBase
Cleanup Service.

After making any changes, you can compare the new configuration with the last-saved
version by typing entering | compare. A diff is printed to screen, with - indicating original
settings, and + indicating modified settings. For example, changing the DB Cleanup
Service from true to false will yield:

- - - Original Settings

+++ Modified Settings

@@ -2635,7 +2635,7 @@
services.backups.retention: 7
services.backups.secret: WIB25lklsboMM3wOR
services.backups.ssh.enabled: false
-services.cleanup.db.enabled: true
+services.cleanup.db.enabled: false
services.cleanup.db.expiration.history: 2592000
services.cleanup.db.expiration.malicious: 10368000
services.cleanup.db.expiration.session: 2592000

. Overview on page 73

. The CLI: Configuration Level Commands on page 81

Copyright © 2014, Juniper Networks, Inc. 87

WebApp Secure 5.5

CLI: Config: Initializing the Configuration

At some point, it might be necessary to reset all configuration entries to default values.
Todo this, you enter configinit at the root context, or init and commit at the config context.
Once you do that, all entries are reset to their factory defaults.

I/

I/

WARNING: Because configuration initialization resets every parameter to a
default, you might want to record some entries before doing this. Specifically,
engine.session.encryption_key and engine.session.initialization_vector. Those
two entries are needed to maintain the correct session data for
currently-active users. If these values change, you might see false positives
of Session Etag Spoofing, Session Tampering, and Application Cookie
Manipulation incidents, because the corresponding key values have indeed
been manipulated.

WARNING: You should also record the backups encryption key
services.backups.secret. If you reinitialize WebApp Secure, and do not know
your backup secret key, nobody — not even Juniper Support — will be able to
recover your backups.

Initializing the configuration will not reset the autoresponse rule activation or deactivation
state. The state of autoresponse rules is stored in the database. The easiest way to reset
them is to do it manually.

Related . Overview on page 73

Documentation

« The CLI: Configuration Level Commands on page 81

CLI: Config: Import/Export

You can export a configuration image containing all configured parameters. This image
can be imported by the system, letting you make a backup of your system configuration
before making major changes, or to aid in some types of deployment. If you execute a
system initialization from the cli, you can select to keep your configuration upon
re-initialization. However, historical traffic information is not part of the exported
configuration and is therefore not recoverable.

To access the Configuration Import / Export feature, enter cliin an SSH session on the
appliance, and at the prompt enter config export <filename>. The configuration is saved
using the filename given. Similarly, import the configuration by entering config import
<filename>.

88

Copyright © 2014, Juniper Networks, Inc.

Chapter 5: Managing the Appliance

0 NOTE: Because configurations can change from version to version of the
product, importing a configuration exported from an older version of WebApp
Secure can fail.

Related . Import/Export (Web Ul) on page 50
Documentation « Overview on page 73

« The CLI: Configuration Level Commands on page 81

CLI: Config: Configure a Proxy Exclusion

WebApp Secure functions as a reverse proxy. Therefore, all web traffic goes through
WebApp Secure so that it can analyze traffic for attacks. To improve performance, you
can configure WebApp Secure to not process certain types of resources, such as images,
or zip files, for example. To configure an exclusion for certain file extensions that you
want routed around WebApp Secure (as opposed to through it), you can use the
configuration setting described here.

For example, to have WebApp Secure not process any zip files, you can add the zip file
extension to the proxy exclusions list by entering the following command at the WebApp
Secure terminal:

cli set engine.proxy.exclusions zip

Now WebApp Secure will not process zip files.

0 NOTE: Google Web Toolkit utilizes specialized cache files that can conflict
with WebApp Secure. If your protected site utilizes Google Web Toolkit, you
will need to add the file extension of these cache files (typically .cache.html)
to the engine.proxy.exclusions parameter.

Exclusions are not limited to file extensions. You can pass in any regex or standard string
to match the URI. For example, to exclude all xml files from Security Engine processing,
do the following:

1. Navigate to Configuration > Expert Mode.
2. Click the Add Parameter button.

3. For Key enter engine.proxy.exclusions.

4. For Value enter xml.

5. Click Add Parameter. This value is now added to the exclusion list.

0 NOTE: Using the cli, type the following to add the same exclusion: cli config
set engine.proxy.exclusions xml

Copyright © 2014, Juniper Networks, Inc. 89

WebApp Secure 5.5

Related
Documentation

System Updates

As another example, to exclude all html files that end in 6 digits, do the following:
1. Navigate to Configuration > Expert Mode.

2. Click the Add Parameter button.

3. For Key enter engine.proxy.exclusions.

4. For Value enter [0-9]1{63\.htmL.

5. Click Add Parameter. This value is now added to the exclusion list.

O NOTE: Using the cli, type the following to add the same exclusion: cli config
set engine.proxy.exclusions "[0-9]{63}\.html"

« Overview on page 73

Provided WebApp Secure has Internet access, either direct or through a configured proxy,
it will automatically check for software updates every night and download them when
new ones are available. However, the appliance will not automatically apply updates.
For security and stability, an administrator must manually apply updates. The Web Ul
informs the you that there is an update by a banner indicator at the top of the page.

Figure 40: Dashboard, Updates

(&) You have been logged in.

(@ There are system updates available. Click 'Updates' to install them.

While WebApp Secure checks for updates every night, you can force the appliance to
check for updates at any time by clicking the check for updates link under Online Updates.
WepApp Secure will find any available online updates at this time. You can see progress
of the download through a status bar.

Figure 41: Downloading Update

‘WebApp Secure is currently downloading an update file. You will be able to install it when the download is done.

WebApp Secure can also upload updates manually, without an Internet connection.
After uploading the package to the appliance (through the Web Ul's Updates page), it

90

Copyright © 2014, Juniper Networks, Inc.

Chapter 5: Managing the Appliance

will become available to the updates system, and you will be able to apply the update
as described here.

a WARNING: While WebApp Secure is uploading offline updates, you should
stay on the Updates pane until the upload is complete.

If an update is available (either an uploaded offline update or an automatically
downloaded one), you can view the available update package along with any information
about it, including the package name, version, whether or not a reboot is required after
installing the update, a description, and list of changes. After reviewing the changes you
can choose to apply the update by clicking the Update Selected button at the bottom of
the package table.

Figure 42: Update Description

Version Reboot (?)

Junos WebApp Secure Core

DESCRIPTION

Upscaling the resurgent networking exchange solutions, achieving a breakaway systemic
electronic data interchange system synchronization, thereby exploiting technical environments
for mission critical broad based capacity constrained systems. Fundamentally transforming
well designed acticnable information whose semantic content is virtually null. Empowerment
in information design literacy demands the immediate and complete disregard of the entire
contents of this cyberspace communication.

CHANGELOG

9/26/2012
User Guide updated with section explaining offline vs. online updates.

9/23/2012
Administrator can now configure the maximum login attempts on a page before forcing a
captcha response.

9/19/2012
Reports system overhauled. Reports can now be exported from many pages in the security
monitor.

Update Selected

The system will update and you of its progress through a status bar.

Copyright © 2014, Juniper Networks, Inc. 91

WebApp Secure 5.5

Statistics

Figure 43: Updating the Application

&) Update process started.

Your updates are in progress. Please do not leave this page until the update process has completed.

0 NOTE: At this time, it is not possible to roll back to earlier versions of the
appliance software.

Applying Updates Using the CLI

You can also update WebApp Secure using the CLI. Use the following commands to
download, unpack, and install the update.

mykonos-update —d
mykonos-update -l /srv/updates/updates/<updatefile.meta>

mykonos-update —u

0 NOTE: When you use mykonos-update —u, it only updates the system on
which the commandi is run. It will not update members in a cluster or HA pair.
To update those systems, you must run the update command on all members.

WebApp Secure software allows for standard SNMP system monitoring. All statistics
available on a typical Linux system would be available to WebApp Secure through
standard system SNMP mibs. In addition, WebApp Secure currently offers six types of
systems statistics in a form of graphs. They include CPU Utilization, CPU Load Average,
Memory Utilization, Network Traffic, Proxy Connection and Proxy Requests. They can be
accessed through System Status button in the main menu of the Configuration
management interface. Depending on the desired level of details, the statistics can be
viewed for the Last Hour, Last 12 Hours, Last Day, Last Week and, finally, Last Month
(always last 30 days).

Below are the details of the statistics that are available for each type:
CPU Utilization

« Wait - Percentage of CPU time spent in wait (on disk)

« Softirq - Percentage of CPU time spent handling software interrupts

92

Copyright © 2014, Juniper Networks, Inc.

Chapter 5: Managing the Appliance

. System - Percentage of CPU time spent in kernel space

« User - Percentage of CPU time spent in user space

Figure 44: CPU Utilization

CPU Utilization

CPU Load Average

« 1min - CPU Load for the last minute
« 10 min - CPU Load for the last 10 minutes
« 15 min - CPU Load for the last 15 minutes

Figure 45: CPU Load Average

CPU Load Average

yvad average

1o

01 min F 0
05 min rg 3 Cur: 0.04
[15 min Cur: 0.01

Memory Utilization

« Used - Amount of memory used
« Free - Amount of memory free

« Free - Amount of memory free

Copyright © 2014, Juniper Networks, Inc. 93

WebApp Secure 5.5

Figure 46: Memory Utilization

Memory Utilization

O Used
H Free
O Swap

Network Traffic

« QOutbound - Amount of traffic leaving the box

« Inbound - Amount of traffic entering the box
Figure 47: Network Traffic

Network Traffic

second

P
W
=
-
f=

11:40 11:50
B Outbound Avg: 7.10k Cur: 133.2
[J Inbound Avg: 8.89k Cur: 21.14k

Proxy Connections

« Reading - Number of TCP connections reading data
« Waiting - Number of TCP connections waiting

« Writing - Number of TCP connection writing Proxy

94 Copyright © 2014, Juniper Networks, Inc.

Chapter 5: Managing the Appliance

Figure 48: Proxy Connections

Proxy Connections

W
=
—

-
w
c
=
o
w

11:40
[Reading Avg: 0.00
[J Waiting Avg: 00 :
[wWriting Avg: .00 Cur:

Proxy Requests

« Requests - Current number of HTTP/HTTPS requests being processed
Figure 49: Proxy Requests

Proxy Requests

=
v
v
¥
T
A
-
W
T
o
P

B Requests Vi : 0.03 Cur: 0.03 Max:

Master - Slave Mode—In the case of the appliance running in multi-server mode, the
systems statistics will show details for each node in the cluster as well as the key
cumulative data across the entire cluster. Each system will be presented as a tab in the
Web Ul's System Status page with the Aggregate tab being first. The Aggregate tab
always shows CPU Utilization, Network traffic, Proxy connections and Proxy requests
collected from the entire active WebApp Secure cluster.

High Availability Network Failure Detection, Actions, and Monitoring

WebApp Secure high availability systems now have the ability to detect network card
and/or interface failures. When traffic interfaces (or the HA interconnect) goes down,
WebApp Secure can react by failing over to the other system, sending an alert to a
specified contact person, performing both actions, or performing no action.

To instruct WebApp Secure to listen on a certain interface, enter the CLI and type:

Copyright © 2014, Juniper Networks, Inc. 95

WebApp Secure 5.5

cli system set ethmonitor <interface>

Once the command is run, it will add a monitor on the interface and also add it into the
colocation group along with the rest of the data services. Technically, you could add
multiple interfaces to monitor, and the monitored interfaces are the same across both
system in the pair.

In the case of a failure condition described below, the appropriate failover or other action
will take place.

Table 10: Failure Scenarios

Recommended
Symptom Failover Split Brain Action
Loss of yes yes no no none No alerting is
interconnect sent out
directly from
the failure but
an alert will be
sent from
monitoring
based on DRBD
falling out of
sync.
Loss of yes yes no no none none
Monitored
Interface on
Slave
Loss of yes yes yes no none none
Monitored
Interface on
Master
Loss of yes yes no no Connectivity of No traffic will
Monitored traffic be processed.
Interfaces on interfaces
Master and should be fixed
Slave immediately.
Loss of yes yes yes no Connectivity of Some data
Monitored interconnect may be lost in
Interface on interface this state.
Master and should be fixed
Interconnect immediately.
Loss of yes yes no yes Connectivity of None
Interconnect interconnect
and and/or
Management management
Interfaces interfaces
should be fixed
immediately.
96 Copyright © 2014, Juniper Networks, Inc.

Chapter 5: Managing the Applian

ce

Related . High Availability Overview on page 21
D .
ocumentation . High Availability Settings on page 32

. Configuring High Availability on page 30

Unblock Web Ul Login Ban

After six failed login attempts, the IP address in question is blocked from further login
attempts for a period of thirty minutes.

0 NOTE: Once you reach four failed login attempts, you are warned that you
will be banned after two more failed attempts.

Figure 50: Blocked Losgin

Juniper

Login Not Allowed

A system administrator can remove this block before the thirty minute time-frame has

expired by using the following command:

[root@johnsmith-vm mykui]# cli
Welcome to the WebApp Secure CLI
> system

system> unlock_webui

Confirm Unlock [y|N]:y

system> exit

0 NOTE: This command unlocks all locked accounts.

Health Check URL

The Health Check URL lets an external system (typically a load balancer) that confirms
the WebApp Secure system is operating properly. The system will generate a file name

consisting of an arbitrary string of characters; make a note of it. If an HTTP request is

Copyright © 2014, Juniper Networks, Inc.

97

WebApp Secure 5.5

sent to WebApp Secure for this file name, it will return 200 OK, with a code in the body
of the message. The responses are as follows.

Table 11: Health Check responses and corresponding meanings.

Response Meaning

No response

WebApp Secure is offline

200 OK, plus OK

WebApp Secure is fully functional and is protecting your websites

200 OK, plus DISABLED

WebApp Secure is running, but has been disabled or the license has expired

200 OK, plus STAND-BY [...] WebApp Secure is waiting on an external resource. The contents of [...] will

provide additional information

Self-Monitoring

The format of the HTTP request should
be:http://jws_fullyqualifieddomainname_or_IPaddress/filenamegeneratedbyjws

Related
Documentation

WebApp Secure can monitor its own status and in the case of a failure automatically
recover or notify you when there is a non-recoverable event. Optionally, you change
thresholds and settings for self-monitoring alerting parameters. See “Self-Monitoring
Configuration Variables” on page 98 for details.

« For more information about Alerts, see System Status on page 169.

Self-Monitoring Configuration Variables

Monitoring and alerting on key systems when there is a failure helps you to better
understand what is occurring and why. This also helps customer support to troubleshoot
issues. The following categories are checked as part of self-monitoring:

o NOTE: Self-monitoring alerts are only sent to mws.log if the alert service is
enabled and there is at least one contact configured. If the alert service is
not enabled, self-monitoring alerts are not sent. See “Alert Service” on page 65
for instructions to turn this service on.

. disk—Stores the percentage of free disk space per mount point. It runs every 5 minutes.
» load-Stores the five minute load average. It runs every 5 minutes.

. swap-Stores swapcached, swaptotal, and swapfree in KB. It also stores percentused
as a percentage. It runs every 5 minutes.

. raid—Stores the raid status as running' or failed. It only runs on hardware appliances,
and it runs every 10 minutes.

98

Copyright © 2014, Juniper Networks, Inc.

Chapter 5: Managing the Appliance

. sessions—Stores number of sessions in last 24 hours as last24hours, largest session
group in last 24 hours as maxgroupsize, and session with the most request in last 24
hours as maxrequests. It runs once an hour.

« incidents—Stores incidents with the percentage of sessions in the last 24 hours as the
incident name. It runs once an hour.

- logsize—Stores the log file size as log filename. It runs every 5 minutes.

- logging.resources TERM—Stores the number of times the regex is found since the last
time it ran. It runs every 5 minutes.

. appliance—Stores the status of each script returned by /etc/init.d/mykonos-appliance
status. This will also attempt to restart failed services up to the max_restart config
variable. This script runs every 1 minute.

« services—Stores the status of nginx, pyro, postgres. This will also attempt to restart
any of these if they fail up to the max_restart config variable. These scripts run every
minute.

« ha—Stores the ring status and sync status of the disks in HA mode. This will also store
the current master in HA mode.

. interconnect —Stores the latency and packet loss of the interconnect in HA mode.
Configuration variables for monitored categories are as follows:

« Syntax: system.monitor.alert.interval [INTEGER]

Default Value: 7200 - Sets the re-alert interval for non-acknowledged alerts in seconds.
« Syntax: system.monitor.alert.enabled [true|false]

Enable or disable all alerts.
. Syntax: system.monitor.CATEGORY.collect_stats [true|false]

Enables historic stats to be collected for that category.

Default

system.monitor.appliance.collect_stats true
system.monitor.disk.collect_stats true
system.monitor.load.collect_stats true
system.monitor.services.collect_stats true
system.monitor.logging.resources.clientaborted.collect_stats true
system.monitor.logging.resources.outofmemory.collect_stats true
system.monitor.ha.oos.collect_stats true
system.monitor.ha.ring.interconnect.collect_stats true

Copyright © 2014, Juniper Networks, Inc.

99

WebApp Secure 5.5

Setting Default

system.monitor.ha.ring.management.collect_stats true
system.monitor.interconnect.latency.collect_stats true
system.monitor.interconnect.loss.collect_stats true

« Syntax: system.monitor.CATEGORY.threshold [THRESHOLD]

Sets the threshold for the alert to trigger. The threshold is based on the type of check.
For status type checks, there are two options [stopped|failed]. For other checks it
should be a numeric value.

Setting Default

system.monitor.appliance.threshold failed
system.monitor.disk.threshold 85
system.monitor.incidents.threshold 70
system.monitor.load.threshold 10
system.monitor.sessiongroup.threshold 2000
system.monitor.sessions.threshold 10
system.monitor.swap.percentused.threshold 30
system.monitor.services.threshold failed
system.monitor.ha.oos.threshold 10240
system.monitor.ha.ring.interconnect.threshold failed
system.monitor.ha.ring.management.threshold failed
system.monitor.interconnect.latency.threshold 10
system.monitor.interconnect.loss.threshold 25
system.monitor.raid.O.threshold failed

« Syntax: system.monitor.CATEGORY.description [STRING]

100 Copyright © 2014, Juniper Networks, Inc.

Chapter 5: Managing the Appliance

Sets the description used in the alerts. If not set, the system will use the CATEGORY

name.
system.monitor.logging.resources.clientaborted.description Client aborted Errors
system.monitor.logging.resources.outofmemory.description Out of Memory Errors
system.monitor.ha.oos.description The amount of data out of sync between HA nodes in Kibibytes
system.monitor.ha.ring.interconnect.description The status of the interconnect connection between HA nodes
system.monitor.ha.ring.management.description The status of the management connection between HA nodes

« Syntax: system.monitor.CATEGORY.alert.severity [1.0|2.0]|3.0]4.0]

Sets the severity for the alert. These are used when determining who to send the alert
to. You can set your minimum alert level to 3.0. Then for checks with a severity under
3.0, you would not receive an alert.

system.monitor.appliance.alert.severity 4.0
system.monitor.disk.alert.severity 3.0
system.monitor.incidents.alert.severity 3.0
system.monitor.load.alert.severity 2.0
system.monitor.logging.resources.outofmemory.alert.severity 2.0
system.monitor.sessiongroup.alert.severity 2.0
system.monitor.sessions.alert.severity 3.0
system.monitor.services.alert.severity 4.0
system.monitor.ha.oos.alert.severity 3.0
system.monitor.ha.ring.interconnect.alert.severity 4.0
system.monitor.ha.ring.management.alert.severity 4.0
system.monitor.interconnect.latency.alert.severity 3.0
system.monitor.interconnect.loss.alert.severity 4.0
system.monitor.raid.O.alert.severity 4.0

Copyright © 2014, Juniper Networks, Inc. 101

WebApp Secure 5.5

« Syntax: system.monitor.CATEGORY.alert.below_threshold [true|false]

Flips the check so that its a less than (Threshold < Value) check vs the default of a
greater than (Value < Threshold) check.

Setting Default

system.monitor.sessions.last24hours.alert.below_threshold true

« Syntax: system.monitor.CATEGORY.alert.enabled [true|false]
Enable or disable the specific alert.
« Syntax: system.monitor.logging.resources.CATEGORY.filename [PATH TO FILE]

Sets the path to the filename for errors to be searched for.

Setting Default
system.monitor.logging.resources.clientaborted.filename /var/log/mws/mws.log
system.monitor.logging.resources.outofmemory.filename /var/log/mws/mws.log

« Syntax: system.monitor.logging.resources.CATEGORY.regex [REGEX]

Sets the regex for strings to search for in logfile.

Setting Default
system.monitor.logging.resources.clientaborted.regex Client aborted
system.monitor.logging.resources.outofmemory.regex OutOfMemory

« Syntax: system.monitor.CATEGORY.alert.on_change [true|false]

If true, threshold is not used, and an alert is sent if the value changes between checks.

Setting Default
system.monitor.ha.master.alert.on_change true
system.monitor.logging.resources.outofmemory.alert.on_change true

« Syntax: system.monitor.CATEGORY.alert.on_each_change [true|false]

If true, and on_change is set to true, an alert is sent every time the value changes during
checks.

Setting Default

system.monitor.ha.master.alert.on_each_change true

—

02 Copyright © 2014, Juniper Networks, Inc.

Chapter 5: Managing the Appliance

Related . Self-Monitoring on page 98

Documentation
ocumentatio . System Status on page 169

Managing and Viewing Logs

WebApp Secure keeps its log files in the /var/log/mws directory. The log files often
prove useful for troubleshooting if there is ever a problem with the Appliance. WebApp
Secure uses the following logs.

. mws.log: includes all of the systems operational logs. These entries each include a
header that states which service created the log entry. See “mws Log Format” on
page 304.

. access.log: includes details of HT TP transactions that are passing between the outside
user, WebApp Secure, and the protected Application Server. See “Access Log Format”
on page 297.

« audit.log: contains the systems auditing information on who has logged into the system
and might include actions they performed. See “Audit Log Format” on page 301.

. firewall.log: stores information about dropped packets from the iptables firewall. For
various reasons (intentional and/or unintentional) iptables might drop a particular
packet. If this happens, the event's information is logged to firewall.log. See “Firewall
Log Format” on page 302.

. postgres.log: contains logs of manipulations on the schema of the database, as well
as any errors that occurred during database operations. See “Postgres Log Format”
on page 303.

« security.log: all security alerts are sent to the security log file. There are different types
of security incidents that are part of this log: new profiles, security incidents, new
counter responses. See “Security Log Format” on page 299.

By navigating to Configuration > Logging in the Web Ul, you can adjust logging levels for
Access Logging and Security Logging.

0 NOTE: Tochange the default destination of log files, click the Log Destinations
link at the top of the Logging Configuration page.

Set the following for Access Logging:

- Log Level: Off, Basic, Basic with Headers, Basic with Headers and body
« Log requests before processing: True or False

« Logrequests to access log after processing: True or False

. Logresponses to access log before processing: True or False

. Logresponses to access log after processing: True or False

Copyright © 2014, Juniper Networks, Inc. 103

WebApp Secure 5.5

Set the following for Security Logging:

. Logincidents to the syslog: True or False
« Incident severity log level: Informational, Suspicious, Low, Medium, High
« Log Profile Creation: True or False

. Log Response Activation: True or False

Theinformation logged here is usually used for troubleshooting, allowing an administrator
to see exactly what the requests look like before and after processing by WebApp Secure.

Log Retention

Log Retention is located in the Logging section of the Web interface. You can set values
for the following:

- Log File Rotation: The number of logs files to keep. (Log file rotation runs every 10
minutes. If the log file size is over the threshold, then it will be rotated. If not, a check
will occur again in 10 minutes. Note that if the Log File Size is set very low, the logs can
grow to be larger than the maximum log size setting.)

« Log File Size: The maximum size of each file in MB. (Note that changes made to this
field are applied immediately.)

o NOTE: Log File Rotation and Log File Size parameters can be set to O or to
any positive integer value. There are no hard upper limits on these values.
Such limits are wholly dependent on the amount of disk space that is available
for log storage. If you set these values to O, for Log File Rotation, no copies
are saved when a file is rotated. The file is deleted. If Log File Size is set to O,
the log file is truncated every 30 minutes.

Related . Log File Destination on page 104
Documentation

Log File Destination

WebApp Secure keeps its log files in the /var/log/mws directory. You can change the
destination to a remote server for each log file type by clicking the Log Destinations link
at the top of the Configuration > Logging window.

In the Log Destinations window, you can set the following:

« LogAccess Locally: True or False. If you select False, click the Add button beside Access
at the bottom of the window to add the Server IP and Port for the destination of the
log file. Click Test Server Connection to ensure the remote server can be reached.

« Log Security Locally: True or False. If you select False, click the Add button beside
Security at the bottom of the window to add the Server IP and Port for the destination
of the log file. Click Test Server Connection to ensure the remote server can be reached.

104 Copyright © 2014, Juniper Networks, Inc.

Chapter 5: Managing the Appliance

. Log Audit Locally: True or False. If you select False, click the Add button beside Audit
at the bottom of the window to add the Server IP and Port for the destination of the
log file. Click Test Server Connection to ensure the remote server can be reached.

« Log Default Locally: True or False. If you select False, click the Add button beside
Default (Fallback) at the bottom of the window to add the Server IP and Port for the
destination of the log file. Click Test Server Connection to ensure the remote server can
be reached.

Related . Managing and Viewing Logs on page 103
Documentation

Backup and Recovery Overview

System backups are archives of WebApp Secure system information, configuration, and
licensing information, along with a copy of the latest database state. You can configure
backup settings in the Web Ul's by navigating to Configuration > Backups. Enter the
following information in the Backups Configuration window:

« Encryption Key—Enter the user-defined segment of the encryption key that is used to
encrypt backups.

« Retention—Enter the number of days that backups will be kept before being deleted.

« Frequency—Select the frequency for performing backups: Hourly, Daily, Weekly, Monthly
Push via SSH

WebApp Secure can push backups to an SSH server (via SCP). Configure the following
fields to push via SSH.

« Push to SSH-Select True or False

« SSH Server—Enter the SSH server to which backups will be transferred
« SSH Username—Enter the username used for the transfer.

« SSH Password—Enter the password used for the transfer.

« SSH Retries—Enter the times to attempt the transfer before aborting.

O NOTE: Click the Test SSH Connection Settings link to make sure the connection
works.

Push via FTP

WebApp Secure can push backups to an FTP server. Configure the following fields to
push via FTP.

« Push to FTP-Select True or False

« FTP Server—Enter the FTP server to which backups will be transferred

Copyright © 2014, Juniper Networks, Inc. 105

WebApp Secure 5.5

« FTP Username—Enter the username used for the transfer.
« FTP Password—Enter the password used for the transfer.

« FTP Retries—Enter the times to attempt the transfer before aborting.

o NOTE: Click the Test FTP Connection Settings link to make sure the connection
works.

Click Save.

You can invoke a backup from the command line mykonos-shell, by entering system
backup. You will be prompted to confirm, and a file will be created in
/home/mykonos/backups/.

o NOTE: The file will be named
mykonos-<version>-<hostname>-<datetimestamp>.myk

0 NOTE: WebApp Secure stores its backups in the/home/mykonos/backups
directory.

a WARNING: If you change the host name of WebApp Secure, backups made
while using the old host name will no longer be valid. You can, however, revert
back to the old host name, restore the backup, and change the host name
back.

Restoring from a System Backup

To restore from a previously-exported system backup (.myk file), invoke the CLI by typing
cli and then type system restore <path/to/myk_file>.

System backups do include a database backup, but only system settings are restored
upon restoring the backup. To subseqguently restore a database backup that was part of
a system backup, you must separately restore the database using the bash command
sudo mykonos-db restore latest.

0 NOTE: After restoring from a system backup, supplying the latest keyword
to the mykonos-db restore command will restore the database state at the
time of the system backup, and not necessarily the most up-to-date database
backup (chronologically), that is, until another database backup is performed.

106

Copyright © 2014, Juniper Networks, Inc.

Chapter 5: Managing the Appliance

Database Backup and Restore

To restore the data that is displayed in the Monitoring Console from a back up, you must
use the command line utility specialized for the database backups. This does not include
configuration or other system settings, only database information.

0 NOTE: If the data is being restored to the console, a database backup will
need to be specified from /usr/share/msa/database or use the latest option
to restore from the last valid backup.

A restore is run with the following command: sudo mykonos-db <option>
The options for the command above are as follows:

. backup
« restore (filename)
. restore latest

. clean

Figure 51: Restore Backup

ﬂ' mykonos@denmac- o

R T T

Related . Backup and Recovery Overview on page 105
Documentation

Copyright © 2014, Juniper Networks, Inc. 107

WebApp Secure 5.5

108 Copyright © 2014, Juniper Networks, Inc.

CHAPTER 6

Security Intelligence

« About Security Intelligence on page 109

« Enable the Spotlight Connector Service on page 110

« Spotlight Connector Session Cookies and Locations on page 112
» About Spotlight Secure on page 113

. Enable Spotlight Secure on page 114

About Security Intelligence

Security Intelligence describes a security solution comprised of several Juniper Networks
security products. An essential part of the solution is the Spotlight Connector whichis a
virtual appliance. The Spotlight Connector is an on-premise component which serves as
an intermediary between the SRX series and various sources of security intelligence
feeds. The Spotlight Connector publishes the submitted threat data as a standard feed
tothe SRX series device for automatically filtering traffic on both network and application
layers.

WebApp Secure contributes to the effectiveness of Security Intelligence by publishing
attacker information to the Spotlight Connector. The Spotlight Connector can then
determine SRX series security actions to take against known attackers and publish these
actions to SRX series devices.

0 NOTE: Inthe WebApp Secure Web Ul, under the Juniper Spotlight menuitem,
you can choose to enable Spotlight Secure and/or Spotlight Connector if you
are using these services. Both are part of Security Intelligence, although they
are different types of services. Spotlight Secure provides a database of known
attackers to WebApp Secure for use throughout the appliance. See “About
Spotlight Secure” on page 113 for more information.

In overview, the flow of information between components is as follows:

« WebApp Secure sends IP addresses and session cookies to the Spotlight Connector.

. For each IP address or cookie, WebApp Secure suggests a threat level (1-10)and a
time-frame (TTL) in seconds.

Copyright © 2014, Juniper Networks, Inc. 109

WebApp Secure 5.5

« The SRX series reads the updated feeds from the Spotlight Connector, including the
WebApp Secure attacker feed, and takes the configured actions.

Figure 52: WebApp Secure-Spotlight Connector Data Flow

@ g‘*— HTTR/HTTPS == | INTERNET

L=~

Malicious
Users

HTTR/HTTPS

-:'% I
i L ——
Connector

SRX Series

REST API

REST API HTTR/HTTPS

Latest view
of received payloads /—’
Juniper

HTTR/HTTPS WebApp Secure
Backend WebApp Secure
Web Services Attackers Latest

and Responses complete payload

2042237

Related . Enable the Spotlight Connector Service on page 110
Documentation . Spotlight Connector Session Cookies and Locations on page 112
. About Spotlight Secure on page 113

. Enable Spotlight Secure on page 114

Enable the Spotlight Connector Service

The Spotlight Connector service is disabled by default. To enable this service so that
WebApp Secure can send data to the Spotlight Connector, do the following:

1. Inthe Web UI, go to Juniper Spotlight >Spotlight Connector.
2. Inthe Spotlight Connector window, click the Configure button.

3. Enter values for following fields:

110 Copyright © 2014, Juniper Networks, Inc.

Chapter 6: Security Intelligence

. Service Enabled—Select True from the pulldown menu.
« Spotlight Connector URL-This is the URL for the Connector.

- Spotlight Connector Auth Token—A secret token string configured on the Connector
REST API fora WebApp secure appliance authorized to access the Connector. Refer
to your Spotlight Connector documentation for details.

« Spotlight Connector Group Name—A named container for attackers from this
particular WebApp Secure appliance. Every WebApp Secure instance that publishes
to the Connector adds the attacker cookies or IPs to their named group.

. Spotlight Connector SSL Server Certificate— A PEM-formatted SSL certificate from
the Spotlight Connector's REST API server. If the Spotlight Connector URLisHTTPS,
access to the Connector from WebApp Secure will take place using HTTP over SSL.
Note that if the connector administrator wants to use a self-signed server certificate,
the certificate may be exported as a .pem file, and the contents of the file can be
entered into the server certificate configuration value.

Figure 53: Spotlight Connector Confguration

P

Service Enabled

Spotlight Connector URL

Spotlight Connector Auth

Token

Spotlight Connector Group

Name

Spotlight Connector SSL Servel
Certificate

4. Click the Save button to save your configuration.

Related . About Security Intelligence on page 109
D tati
ocumentation « Spotlight Connector Session Cookies and Locations on page 112
. About Spotlight Secure on page 113

. Enable Spotlight Secure on page 114

Copyright © 2014, Juniper Networks, Inc. m

WebApp Secure 5.5

Spotlight Connector Session Cookies and Locations

As part of the overall Security Intelligence solution, WebApp Secure sends information
on malicious cookies and IP session to Spotlight Connector. WebApp Secure recommends
a threat level for the session cookie based on a set of criteria and how malicious the
associated attacker is deemed to be. Note that all sessions are not sent to the Spotlight
Connector, only malicious items.

« Low threat levels (4-5) incorporate IP addresses and hosts where the threat is not as
severe, the malicious activity has not been seen for a long period of time, or there is
evidence of both malicious and non-malicious activity on the same host.

. Medium threat (6-7) levels represent a moderate threat and are unlikely to be
non-malicious.

. High threat levels (8-10) represent severe threats at a very high level of certainty.

To view session cookies and locations sent to the Spotlight Connector, in the WebApp
Secure Web Ul, navigate to Juniper Spotlight > Spotlight Connector. There you will find a
Session Cookies tab and a Locations tab.

Figure 54: Spotlight Connector Session Cookies

Tl Clearlocal Cache W Configure

Enabled
7m, 31sago
Succeeded
2h, 8m ago
Succeeded

Session Cookies (1,806) Locations (1)

“= Refresh this tab

a8 00 1-15 of 1,806

Gina 5288 8.0 rid=25nxMfQ9/jGEKvzFbQdIPg 7m, 43s ago In 21h, 48m
Lorrie 4748 8.0 rid=t 10uUNItMIwGK/SmwYONgQ 25m, 12s ago In 20h, 43m
Agnes 5416 8.0 rid=+6fmObGOXnmoCIYhE4APyrQ 2h, 9m ago In 21h, 50m
Mitchell 1585 8.0 rid=p3y5vaVbLnoDogq7TiwfgZw 2h, 9m ago In 2h, 55m
Gale 6105 8.0 rid=R8w0DGaShrrUptrQdnso0Q 2h, 9m ago In 2h, 56m
Clyde 8519 8.0 rid=40HZ9sDaC1fmrIzeKgxMSg 2h, 9m ago In 19h, 52m
Marcy 5086 8.0 rid=pihHnp/y1c3z4xm0O10E2Yg 2h, 9m ago In 2h, 56m
Mabel 571 8.0 rid=hpOsqbPI3TelS/PmKoVQZA 2h, 9m ago 1h, 4m ago

12

Copyright © 2014, Juniper Networks, Inc.

Chapter 6: Security Intelligence

Figure 55: Spotlight Connector Locations

il Clear Local Cache

Enabled
Tm, 315 ago
Succeeded
2h, 9m ago
Succeeded

Session Cookies (1,806) Locations (1)

“= Refresh this tab

2 00 1-10f1 o0

Description Data Last Update Expires
10.10.0.123 168427643 2h, 9m ago In 21h, 47m

Related . About Security Intelligence on page 109
D tati
ocumentation . Enable the Spotlight Connector Service on page 110
« About Spotlight Secure on page 113

. Enable Spotlight Secure on page 114

About Spotlight Secure

Spotlight Secure provides a database of known attackers to WebApp Secure for use
throughout the appliance. If enabled, a two-way communication process shares
information about attackers and attacks to and from a Spotlight server run by Juniper
Networks. This allows WebApp Secure to positively identify attackers that have attacked
other Juniper customers. This service also provides additional details about sessions
which allows Juniper to make more informed decisions on how to respond to threats. By
default, the service is turned off.

The two-way link enables WebApp Secure to block attackers based only on a unique
and specialized fingerprint gathered by a completely different WebApp Secure installation.
It also provides a mechanism for reporting attacker information gathered on the local
installation to the Global Attacker Database. Because your local WebApp Secure
appliance is relaying information to a central data store, the ability to recognize attacker
quickly and effectively increases as the database grows.

Copyright © 2014, Juniper Networks, Inc. n3

WebApp Secure 5.5

Related
Documentation

Here is an overview of how Spotlight Secure works:

A user gets profiled by WebApp Secure.
WebApp Secure sends a unigue client fingerprint that is unique to that user.

The Spotlight service searches its Global Attacker Database for an attacker with the
same fingerprint.

If a match is found, Spotlight feeds all identifying information on that user to the
WebApp Secure appliance automatically.

If the user is not doing anything malicious, and is not found currently within Spotlight's
database, the fingerprint for the user is still stored within the local session.

If at any point the user becomes malicious and is flagged by WebApp Secure, the
appliance will submit the fingerprint and other data to the Spotlight service forinclusion
in the Global Attacker Database.

Enable Spotlight Secure on page 114
About Security Intelligence on page 109
Enable the Spotlight Connector Service on page 110

Spotlight Connector Session Cookies and Locations on page 112

Enable Spotlight Secure

WebApp Secure builds attacker fingerprints from characteristics of attacker web requests.
This information can then be queried against the Spotlight Secure attacker database to
help identify and report malicious activity. To use this service, you must enable it.

1.

2.

4.

5.

In the WebApp Secure Web Ul, navigate to Juniper Spotlight > Spotlight Secure.

From the Spotlight Enabled pulldown list, select True to enable the service.

0 NOTE: Navigate to Configuration > Processors and scroll down to Tracking
Processors to check that the Client Fingerprint processor is enabled. It is
required for this service.

In the Server Address field, enter the address of the Spotlight server. Once you enter
the address, you click the Test Connection to Spotlight Server link to make sure the
server can be reached.

For the remaining fields, it's recommended that you use the default values.

Click the Save button.

Once an attacker from another site visits a page on your site, a Spotlight profile will be
created for that user. Having attackers from other sites consolidated in the Spotlight
window in the Web Ul does allow you to keep close tabs on them. You can view the
Spotlight profiles from the Spotlight page. Each Spotlight profile will be displayed in a

N4

Copyright © 2014, Juniper Networks, Inc.

Chapter 6: Security Intelligence

row, with information such as their Local Profile name, Global (Spotlight) profile name,
and the first and last times seen both locally and globally.

Figure 56: Recent Attackers: Global and Local Names

Top Attackers Recent Attackers(7) =~ Time Graph Severity Graph

§a8 oo 1-70f7
Req.? ¢ pg® % Er® % FistTime ° LastTime ¢
] Elmer 3842 / Brown 0428 & Low EKCtla52hQUBBSLILISW 10.10.10.242 1mo,8dage 5d,20h ago
@ Ernestine 5614 /Taupe263¢ & Low JL2kQWXSTODMV1mBfamg 10.10.10.218 18d,16mago 3h, 24mago

Madge 5129 & Low aCt5GNbe|NBPEtEKQT4 10.10.10.134 6d,20hago 6d, 20h ago

Queen 1447 Medium Lz460caiWIHFbKIHICNw 10.10.10.149 7d, 3hago 4d, 2h ago

Tami 2366 Medium BIAYASDIIjtIsVvzMRcz

L
L)
L

8/ Mollie 3064 / Cranberry 1332 ¥ Low i * 101010134 1mo,1ldago 4d, 1hago
-
¥ 10.10.10.134 4d, 1h ago 4d, 1h ago
L

Thomas 4024 Medium yUAjjgoPaStaPI7W3tyG ® 10.10.10.149 4d, 2h ago 4d,2h ago

You can view the Spotlight attackers' activities on your system on the Sessions and
Attackers page. They are displayed with the same information as local attackers, and
are indicated by the Spotlight icon next to their name.

Figure 57: Recent Attackers: Global Names

Top Attackers Recent Attackers (7) Time Graph

§a oo 1-70f7

Req.® ¢ @™ T Er.® < FrstTime ¥ LastTime

@] Brown 0428 ¥ Low EkCtla5zhQUSBILILISW ® 10.10.10.242 1mo, 8d ago 5d, 20h ago

8 Cranberry1332 ¥ Low AlgAiMrSz4ASRPEBKdKI * 101010134 imo, 11dago 4d, 1hago

Madge 5129 @ Low aCt5GNbejNPERUEKQT4 * 10.10.10.134 6d,20hago 6d,20hago

Queen 1447 Medium LzdBocalWIHFbKIHICNw * 10.10.10.149 7d, 3h ago 4d, 2h ago

Tami 2366 Medium BIAYASDESjtIsWVvzMRez ® 10.10.10.134 4d, 2h ago 4d, 2h ago
6/ Taupe 2634 @ Low JL2kQWNSTODmVImBfzmg % 10.1010.218 18d,21mago 3h, 29mago

Thomas 4024 Medium yUAjjgoPaStaPI7W3tyG ® 10.10.10.149 4d, 2h ago 4d, 2h ago

On the far left side of the Spotlight Attackers table is a small icon representing the local
threat of the attacker, as it pertains to your site. This is a fast way to scan through the
spotlight profiles and determine which ones might pose an immediate threat to your
system. The severities range from Low to High.

0 NOTE: Throughout the Web Ul, you can start to see Spotlight profiles,
indicated by the Spotlight icon next to their Profile name. You can choose to
display either Local or Global (Spotlight) names (or both) through the User
Preferences screen.

Copyright © 2014, Juniper Networks, Inc. 15

WebApp Secure 5.5

Related
Documentation

Figure 5

Skin Dark (Default)

Language

Timezone uTC

Prompt Level

R LT ST ER S UL I Display Global Names if Available
Display Local Mames Only

8: User Preferences: Select Spotlight Name Preference

Cisplay Both Names, Side by Side (widescreen only!)

Auto Refresh
Refresh Interval
Records Per Page

Debug Mode

About Spotlight Secure on page 113
About Security Intelligence on page 109

Enable the Spotlight Connector Service on page 110

Spotlight Connector Session Cookies and Locations on page 112

16

Copyright © 2014, Juniper Networks, Inc.

CHAPTER?7

Response Rule Configuration

« Response Overview on page 117
« Using the Editor on page 120
« List Of Incident Methods on page 121

Response Overview

To view existing response rules, and to add your own counter response, navigate to
Configuration > Responses in the Web UL.

A counterresponse is composed of a set of rules which define the conditions under which
aresponse should be automatically created and activated for a specific session or profile.
To turn on the counter response service, navigate to Configuration > Services > Counter
Response Service and enable the appropriate responses.

It is possible to have as many rules as needed to protect the system. However, the more
rules, the longer it will take to determine if a new incident matches an event condition.
In addition, the more conditions in the rule, the longer the rule will take to evaluate if the
event condition matches a new malicious incident.

Figure 59: Responses

Name Status Description Actions

Session Management v 2 This autoresponse rule handles the core session management incidents -
generated by the security engine. & read more

Processor: ETag Beacon &2 This autoresponse rule handles incidents generated by the etag beacon -
processor. These incidents are generally triggered when a user attempts to
exploit the tracking mechanism used by the application to re-identify users.
This rule is designed to first slow the user's connection down, and, if the
behavior continues, slow it down even further. & read more

Processor: Application Vulnerability v 3 This autoresponse rule handles incidents generated by the application 9
Processor vulnerability processor. These incidents are generally triggered when a user
attempts to exploit a known vulnerability in a 3rd party application. This rule
is designed to first slow the user's connection down, and, if the behavior
continues, break the application with the clear input response.
& read more

Processor: Access Policy cidents related

all

e rule handle:

0 NOTE: You can view the default responses for each rule by clicking read more
at the bottom of the entry's description in the Web UI.

Copyright © 2014, Juniper Networks, Inc. n7

WebApp Secure 5.5

NOTE: To create your own response, click the Add Autoresponse button at
the top of the window. Creating responses is an advanced task. Refer to the
product’s APl documentation for configuration details.

Table 12: Response Descriptions

Default Response Description

Session Management This response rule triggers if the user attempts to manipulate the WebApp Secure session
tracking cookie.

Application Vulnerability If your web-application uses supported third party applications (like Joomla, Wordpress,

Processor and so on.), this processor will analyze and act on malicious traffic that intends to exploit
them. For more information on which third party tools are supported, refer to the Response
documentation in Web UI.

Login Processor This rule triggers on incidents that are generally triggered by abusive and suspicious activity
targeted at the websites authentication system.

Access Policy Processor This response rule triggers if the user attempts to exploit the fake service exposed by this
processor.
ETag Beacon Processor This response rule triggers if a user attempts to manipulate the WebApp Secure cached

based tracking token.

Basic Authentication Processor This response rule triggers when the user attempts to exploit the fake .htaccess file exposed
by this processor.

Robots Processor This response triggers when the user or malicious spider uses the information in the robots.txt
file for illegitimate purposes.

Hidden Input Form Processor This response rule triggers when the user modifies a hidden form input parameter.
Cookie Processor This response rule triggers when the user attempts to manipulate the value of a cookie.
AJAX Processor This response rule triggers when the user interacts with a fake AJAX function injected into

the web application. If the user reverse engineers the code and manually invokes its behavior,
such as would happen with an automated script or spider, the rule will fire. If the user actually
invokes the Javascript function, the rule will fire.

Header Processor This response rule triggers when the user has unusual headers or header data which a normal
browser or well developed spider would not supply. If the user excludes required headers
such as Host and UserAgent, manipulates their user agent header, overflows headers beyond
RFC standards will cause this rule to activate.

Hidden Link Processor Thisresponse rule triggers when a spider or malicious user attempts to identify unreferenced
resources in a fake directory.

Query Parameter Processor This response rule triggers when a user manipulates the fake query parameter injected by
the system more than 3 times.

18 Copyright © 2014, Juniper Networks, Inc.

Chapter 7: Response Rule Configuration

Table 12: Response Descriptions (continued)

Default Response Description

Method Processor This response rule triggers when a user or spider sends a request with a malicious HTTP
method such as TRACE.

Error Processor This response rule triggers when a user attempts to find unreferenced resources by guessing
file names.

File Processor This response rule triggers when a user attempts to find sensitive files by guessing file names

or changing parts of valid file names.

Warning Processor This response rule triggers when a user attempts to automate the dismissal of the warning
response.

Cookie Protection Processor This response rule triggers when a user attempts to modify the web application session
cookie.

Captcha Processor This response rule triggers when a user attempts to find a way to bypass the captcha

response without solving the captcha.

CSRF Processor This response rule triggers if a user attempts to manipulate the CSRF protection introduced
by the system, potentially to find a filter evasion vulnerability.

Custom Authentication Thisresponse rule triggers if a user attempts to exploit the authentication mechanism offered

Processor by the system.

Client Beacon Processor This response rule triggers when the user attempts to tamper with the client side tracking
logic.

New and Modified Profiles This response rule sends out an alert any time a new profile is created, or a profile elevates
its threat level. The severity of the alert will equal the threat of the new or elevated profile
that triggered the alert.

Returning Profile This response rule sends out an alert any time a profile returns on a subsequent day. For

example, a new hacker is observed on Monday, if the hacker is only active for 1 hour on
Monday, but returns on Tuesday to continue, this rule will issue an alert. The severity of the
alert will equal the threat level of the profile.

New Incident This response rule sends out an alert any time a malicious incident is observed. The severity
of the alert will equal the complexity of the incident. Note that non-malicious incidents are
excluded by default. Setting your alert contact level to "informational" or "suspicious" will
only have an effect when dealing with custom response rules where you manually set these
severity levels.

New Response This response rule sends out an alert any time a new counter response is activated. The
severity of the alert will always equal 1.

Related . Using the Editor on page 120
Documentation

Copyright © 2014, Juniper Networks, Inc. 19

WebApp Secure 5.5

Using the Editor

To create aresponse, open the configuration Web Ul and select the ADD New Rule button.
This will launch the editor which can be used to create and edit a response.

0 NOTE: Creating responses is an advanced task. Refer to the product’s API
documentation for configuration details.

0 NOTE: Once you create a custom rule and save it, the Log tab appears in the
Editor Ul. Note that the information in the Log tab must be manually refreshed.

Figure 60: Edit Response

Events Log

Name
My Autoresponse

Description

Enabled

Safe mode

120

Copyright © 2014, Juniper Networks, Inc.

Chapter 7: Response Rule Configuration

Table 13: Response Editor Fields

Field Description

Name The name of the response.

Description Description of the response and its triggers.

Enabled Sets a response to be active.

Safe Mode Allows the response to activate, but does not actually respond. This setting is for testing

and debugging responses.

Code The actual code that defines the response.
Events The events that will trigger the response.
Log A table which consists of any log statements printed during response execution. Use the

JavaScipt console object to output to an response's log.

API Reference A link to the Autoresponse APl documentation.

List Of Incident Methods

o NOTE: Parameters wrapped in [] are optional.

Table 14: Incident Methods

Name and Description Parameters

isincidentType Check the incident type by either its code or its name.

incident:string

isincidentDate Check to see if an incident occurred on the given month, day and year. The
month, day and year arguments can be left empty to match any value.Note that Jan =
1,and years are in the format YYYY.

[month:int]
[day:int]

[year:int]

isincidentDateRange Check to see if an incident occurred between two dates. All values
must be defined. Note that Jan =1, and years are in the format YYYY.

start_month:int
start_day:int
start_year:int
end_month:int
end_day:int

end_year:int

Copyright © 2014, Juniper Networks, Inc.

121

WebApp Secure 5.5

Table 14: Incident Methods (continued)

Name and Description Parameters

isincidentTime Check to see if an incident occurred at a given time. The hour, minute and
second arguments can be left empty to match any value.

[hour:int]
[minute:int]

[second:int]

isincidentTimeRange Check to see if an incident occurred between a given time range.
All values must be specified.

start_hour:int
start_minute:int
start_second:int
end_hour:int
end_minute:int

end_second:int

isincidentCount Check the number of times an incident has occurred against an integer
operation and specified value. Supported operations include (>, <, ==, |=). The results
are: (count [operator] value)

isincidentCountRange Check to see if the number of times an incident has occurred is
within a given range.

operator:string

value:int

min:int

max:int

isincidentContextSubString Check to see if the context XML associated with the incident
contains the provided substring. The search is case sensitive by default, unless the second
parameter is "false".

search:string

[[caseSensitive]:Boolean]

isincidentContextPattern Check to see if the context XML associated with an incident
contains a simple pattern. Supported pattern wild cards include +, ? and * Pattern
matches are performed case sensitive unless the second parameter to this method is
"false".

pattern:string

[[caseSensitive]:Boolean]

isIncidentIP Check to see if an incident came from a given IP address. Each parameter
specifies the required value for the specific block of the address. Any of the parameters
can be left empty to match any value.

[a_block:int]
[b_block:int]
[c_block:int]

[d_block:int]

isincidentIPRange Check to see if an incident came from a given IP address range. Each
parameter specifies a range of accepted values for the specific address block. Ranges
are specified in the format: min-max. For example: 10-22, or 0-255

[a_block_range:string]
[b_block_range:string]
[c_block_range:string]

[d_block_range:string]

isincidentBrowser Check to see if the incident occurred from a given browser. The
parameter expects the canonical name of the browser.

name:string

122

Copyright © 2014, Juniper Networks, Inc.

Chapter 7: Response Rule Configuration

Table 14: Incident Methods (continued)

Name and Description Parameters

isincidentOperatingSystem Check to see if the incident occurred from a given operation name:string
system. The parameter expects the canonical name of the operating system.

islnicdentBrowserVersion Check to see if the incident occurred from a specified version version:string

of the browser. The check is case sensitive by default, unless the second parameter is

"false". The version could contain any character and should be considered as an arbitrary ~ [[caseSensitive]:Boolean]
user supplied string value.

isincidentBrowserVersionPattern Check to see if the incident occurred from a browser pattern:string

with a version that matches a given simple pattern. Pattern wild cards >include ?, * and

+. The match is done case sensitive unless the second parameter is "false". The version [[caseSensitive]:Boolean]
could contain any character and should be considered as an arbitrary user supplied string

value.

isincidentBrowserVersionSubString Check to see if the incident occurred from a browser Search:string

with a version that contains the given sub string. The match is done case sensitive unless

the second parameter is "false". The version could contain any character and should be [[caseSensitive]:Boolean]
considered as an arbitrary user supplied string value.

isincidentCountry Check to see if the incident originated from a given country. The country:string
parameter expects a valid 2 character country code, or the canonical name of the country.

isIincidentLatitude Check to see if the incident originated from a specified geographical latitude:float
latitude. The parameter is expected to be a decimal number between -90.0 and +90.0.

isincidentLatitudeRange Check to see if the incident originated between a specified min:float
geographical latitude range.The parameters are expected to be decimal numbers between
-90.0 and +90.0. max:float

isincidentLongitude Check to see if the incident originated from a specified geographical longitude:float
longitude. The parameter is expected to be a decimal number between-90.0 and +90.0.

isincidentLongitudeRange Check to see if the incident originated between a specified min:float
geographical longitude. The parameters are expected to be decimal numbers between
-90.0 and +90.0. max:float

isIncidentCity Check to see if the incident originated in a specified city. The parameteris city:string
expected to be the city name and is case sensitive unless the second parameteris "false".
[caseSensitive]:Boolean

isIincidentCityPattern Check to see if the incident originated from a city that matches a pattern:string
specified pattern. The supported wild cards are *>, ?, and +. The patternis case sensitive
unless the second parameter is "false". [caseSensitive]:Boolean

isincidentCitySubString Check to see if the incident originated from a city that contains search:string
a specified sub string. The substring search is done case sensitive unless the second
parameter is "false". [caseSensitive]:Boolean

isincidentHost Check to see if the incident originated in a specified host. The parameter host:string
is expected to be the host name and is case sensitive unless the second parameter is
"false". [caseSensitive]:Boolean

Copyright © 2014, Juniper Networks, Inc. 123

WebApp Secure 5.5

Table 14: Incident Methods (continued)

Name and Description Parameters

isincidentHostPattern Check to see if the incident originated from a host name that
matches a specified pattern. The supported wild cards are * ?, and +. The pattern is
case sensitive unless the second parameter is "false".

pattern:string

[caseSensitive]:Boolean

isincidentHostSubString Check to see if the incident originated from a host name that
contains a specified sub string. The substring search is done case sensitive unless the
second parameter is "false".

search:string

[caseSensitive]:Boolean

isincidentRegion Check to see if the incident originated in a specified region. The parameter
is expected to be the region name and is case sensitive unless the second parameter is
"false".

region:string

[caseSensitive]:Boolean

isincidentRegionPattern Check to see if the incident originated from a region that matches
a specified pattern. The supported wild cards are * 7, and +. The pattern is case sensitive
unless the second parameter is "false".

pattern:string

[caseSensitive]:Boolean

isincidentRegionSubString Check to see if the incident originated from a region that
contains a specified sub string. The substring search is done case sensitive unless the
second parameter is "false".

search:string

[caseSensitive]:Boolean

isincidentZip Check to see if the incident originated in a specified zip code. The parameter
is expected to be the zip code and is case sensitive unless the second parameter is "false".
While zip codes should generally be numeric, there is the possibility of foreign zip codes
containing strange characters.

zip:string

[caseSensitive]:Boolean

isincidentZipPattern Check to see if the incident originated from a zip code that matches
a specified pattern. The supported wild cards are *>, ?,and +. The patternis case sensitive
unless the second parameter is "false".

pattern:string

[caseSensitive]:Boolean

isIncidentZipSubString Check to see if the incident originated from a zip code that contains
a specified sub string. The substring search is done case sensitive unless the second
parameter is "false".

search:string

[caseSensitive]:Boolean

124

Copyright © 2014, Juniper Networks, Inc.

CHAPTER 8

Reports

« Reporting Overview on page 125

« Information for Report Types on page 126
« Scheduling a Report Overview on page 128
« Schedule a Report on page 129

« Report History on page 131

« Report Details on page 132

« Report Types on page 134

Reporting Overview

WebApp Secure has a built-in reporting interface that can be accessed through the Web
Ul, by navigating to the Reports menu item on the left-hand side. Administrators can run
one of many pre-defined reports or schedule a report or access report history. Most
reports can be exported to both PDF and CSV (comma separated value) formats. Reports
that are composed of several disparate visual elements (like the Scorecard) are only
available in PDF format.

Figure 61: Reporting Interface

L2
@

%

Related . Information for Report Types on page 126

D tati
ocumentation « Scheduling a Report Overview on page 128

« Schedule a Report on page 129

Copyright © 2014, Juniper Networks, Inc. 125

WebApp Secure 5.5

« Report History on page 131

. Report Details on page 132

. Report Types on page 134

Information for Report Types

This page in the Web Ul provides access to reports run on demand. Available reports
include:

« Country Comparison Over Time—Click this report type and enter the following
information:

Start Date
End Date
Enter the number of countries to show.

Countries to include: Select Check All or select the check boxes beside the countries
you want included in the report.

Select a Time Zone from the provided list

Click Generate Report

« Incident List—Click this report type and enter the following information:

Select the file type: PDF or CSV
Start Date
End Date

Profiles to include: To include all profiles, leave this field blank. Otherwise, start
typing a name. Once you have entered at least 3 characters, the Web Ul will search
for the matching name.

Incident types to include: Select Check All or select the check boxes beside the
incident types you want included in the report.

Countries to include: Select Check All or select the check boxes beside the countries
you want included in the report.

Restriction to an application: Select a configured application from the list.
The number of incidents to show.
Select a Time Zone from the provided list.

Click Generate Report

« Incidents With Requests and Responses by IP—-Click this report type and enter the
following information:

Select the file type: PDF or CSV
Start Date

126

Copyright © 2014, Juniper Networks, Inc.

Chapter 8: Reports

End Date

|P address of location. Enter the IP address here.

Maximum number of records. Enter the number of records here. The default is 500.

Select a Time Zone from the provided list.

Click Generate Report

« Incidents with Requests and Responses by Profile—-Click this report type and enter the
following information:

« Incidents by Type—-Click this report type and enter the following information:

« Incidents by Type for IP—Click this report type and enter the following information:

Select the file type: PDF or CSV
Start Date
End Date

Hacker profile name. Enter the profile name here.

Maximum number of records. Enter the number of records here. The default is 500.

Select a Time Zone from the provided list.

Click Generate Report

Select the file type: PDF or CSV

Start Date

End Date

Select a Time Zone from the provided list.

Click Generate Report

Select the file type: PDF or CSV

Start Date

End Date

IP address of hacker: Enter the address here.
Select a Time Zone from the provided list.

Click Generate Report

« Scorecard—Click this report type and enter the following information:

« Top IP Addresses—Click this report type and enter the following information:

Select a Time Zone from the provided list.

Click Generate Report

Start Date
End Date

Copyright © 2014, Juniper Networks, Inc.

127

WebApp Secure 5.5

Related
Documentation

- The number of IP addresses to show. The default for this field is 10. The maximum
is 50.

- Select a Time Zone from the provided list.

- Click Generate Report

Top Incident Types—-Click this report type and enter the following information:
- Start Date

- End Date

- The number of incidents to show.

- Incident types to include: Select Check All or select the check boxes beside the
incident types you want included in the report.

- Restriction to an application: Select a configured application from the list.
- Select a Time Zone from the provided list.

- Click Generate Report

Top Locations—Click this report type and enter the following information:

- Start Date

- End Date

- The number of locations to show.

- Restriction to an application: Select a configured application from the list.
- Select a Time Zone from the provided list.

- Click Generate Report

Schedule a Report on page 129
Report History on page 131
Report Details on page 132

Report Types on page 134

Scheduling a Report Overview

The Scheduled Reports screens lets you view all of the reports currently scheduled to
run on the system, add a new report to the list, edit an existing report schedule, edit an
existing report options, or enable/disable an existing report scheduled to run. You can
configure the reporting interface to generate a report on a custom schedule which will
be automatically e-mailed to any e-mail address specified.

128

Copyright © 2014, Juniper Networks, Inc.

Chapter 8: Reports

Figure 62: Scheduled Reports

@ Add Scheduled Report
Schedule Name Report Run Period Format Options To Actions

My Scheduled Scorecard ~ Scorecard Weekly (notapplicable) B time_zone=UTC executive@examplecom @ [[

My Country Report Country Comparison Over Time ~ Monthly 1 Month p: ime_zone=UTC: ycodes=AO,ARAU m ®[a T

Related . Schedule a Report on page 129
Documentation
« Report History on page 131
« Report Details on page 132

« Report Types on page 134

Schedule a Report

To schedule a report, do the following:

1. Select the Schedule Report left navigation link.

2. Click the Add Scheduled Report button at the top right of the Scheduled Reports page.
This brings up a list of reports to run. Choose the report that you want to run on a
repeated basis by following its link.

3. Onthesubsequent page, enter all of the schedule details and report options and then
select Generate Report Schedule .

4. Save the changes.
Most reports share the following items:

« Filetype: The file format that will be used to generate the report. Options usually include
PDF or CSV. Certain reports are only available in PDF.

« Schedule Name: The name of the report schedule that will appear in the reporting
interface.

« Run: The time schedule in hours, weeks, months, or years that the report should run
on.

« Period: The period of time that the report should be run on.
« Send to: The e-mail address that this report should be sent to.

- Enabled: Sets this report schedule to active (YES) or inactive (NO). Inactive reports
will not be run on a scheduled basis.

Copyright © 2014, Juniper Networks, Inc. 129

WebApp Secure 5.5

Figure 63: Schedule Report - Scorecard

File type pdf 3

Timezone

Schedule name My Scheduled Scorecard
Run Weekly :

Send to

Enabled

|=] Add Report Schedule

o NOTE: Individual reports can have various additional options that are specific
to that report. Forinstance the Country Comparison Over Time report contains
a field for the number of countries to show and a list of specific countries to

include.

130 Copyright © 2014, Juniper Networks, Inc.

Chapter 8: Reports

Figure 64: Schedule Report - Country Comparison Over Time

File type

The number of countries to
show (top n)

Countries to include Argentina, Australia, Belgium

. v b3
Timezone

@ Angola
& Argentina

' &% Australia

Schedule name @ Austria

4 Belgium

Run @ Bosnia and Herzegovina

period

Send to

Enabled

[=] Add Report Schedule

Related . Report History on page 131
D tati
ocumentation « Report Details on page 132

. Report Types on page 134

Report History

An archive option, which allows administrators to view all of the historical scheduled
reports that have been run on the system. Previously run reports can be downloaded by
clicking the icon with the green arrow pointing down. Reports can also be deleted, to
save on disk space, by clicking the icon that looks like a trash can.

Copyright © 2014, Juniper Networks, Inc. 131

WebApp Secure 5.5

Figure 65: Report History

Schedule Name Period Format Actions
Scorecard Report Scorecard Weekly 1 Week) (52.5k8) Thu Apr 26 19:31:05 UTC 2012 3
Scorecard Report Scorecard Weekly 1 Week T (54.8 KB) Thu Apr 19 19:30:58 UTC 2012 8
Scorecard Report Scorecard Weekly 1 Week) (48.8 kB) Thu Apr 12 19:30:44 UTC 2012 3
Scorecard Report Scorecard Weekly 1 Week T (48.8 KB) Mon Apr 09 20:05:42 UTC 2012 8

[Delete Al |

Report Details

There are ten different reports that are available either immediately, through the
On-demand Report page, or on a repeated and scheduled basis, through the Scheduled
Report page. Each retrieves different sets of information.

For example, the Country Comparison Over Time report displays a graph showing the
number of incidents per country for the top N number of countries over a specified date
range. Administrators can specify the number of countries to include and the specific
countries toinclude as well. Dates are displayed along the horizontal axis. Incident counts
are displayed along the vertical axis scaled logarithmically. This report is only available
in PDF format.

Figure 66: Report Details

[==Australia == United States — United Kingdom

1000 -

2 2 2o 2@ 2 O @ O @ €@ @ 2 2 © O Q@ @ @ @ O Q Q@ 2 @ @ @Q @ O Q ©Q @ © O
g 9 g 9 o a8 0 aag o ob o e oa 0 b aa s e oo a s
S B A B S B AN B S B A DO B AN B O W NGO B NGO B AN®D O B NG S
o o - ~ o 0o ~ ~ o 0 -~ A~ o 0o <~ ~ 0 0 -~ ~~ 0 0o <~ <~ O O <~ = O 0O = = O
NN NN NN NN N NN NN NN NN N NN NN N NN N N NN N NN NN
g dddaadagddsdaggdadasadagdddsdd
N A A A A R R R R R R e
ARSI BREFEAEEAEEFEEE 3R FEadaddaad g
NN NN M M M M g g w1 N W W W W R 0 ® 0 0w O O O O
S © & & 09 © 0 0 S S S O O 6 0 0 © 6 o 0 0 00 o 6 9 50 o o o 8 & =

132 Copyright © 2014, Juniper Networks, Inc.

Chapter 8: Reports

NOTE: Please note the logarithmic scale on the vertical axis. The distance
between hash marks on the graph vary. For instance the hash marks between
1and 10 increase by 1each time (1, 2, 3, and so on). The hash marks between
10 and 100 increase by 10 (10, 20, 30, and so on). The hash marks between
100 and 1000 increase by 100 (100, 200, 300, and so on). It is used in the
graph above, and in others described below, because the counts can vary
widely and displaying them with a logarithmic scale will allow them to be
compressed into a more readable format. For instance if the graph above
was displayed without a such a scale most of the detail between the 1and
10 hash marks would be compressed to the point where it would not be
readable, as in the graph below.

Figure 67: Report Details, View

Related . Schedule a Report on page 129

Documentation

. Report Details on page 132

. Report Types on page 134

Copyright © 2014, Juniper Networks, Inc.

133

WebApp Secure 5.5

Report Types

« Incident List: This report displays a list of every incident that occurred between the two
given dates. Details for each incident include the type, complexity, count of occurrences,
name of the hacker profile associated with the incident, location of the hacker and the
first and last date of occurrence of that incident. The report can be narrowed to include
only selected profiles, incident types, countries, a single application, and/or a specified
number of incidents by altering the specific options for this report.

Figure 68: Incident List

Incidents from 05-Aug-12 00:00 to 15-Sep-12 00:00 Mykonos System Report

Application: All http/fwww.mykonossoftware.com/

Displaying top 100 out of 107 rows

Incident Name Complexity Count L ocation Profile First Last
Missing User Agent Header Low 39 Macedonia - Unknown Inez 8633 23-Aug-12 15:32 23-Aug-12 15:32
Missing User Agent Header Low 39 China - Shanxi Beatriz 9780 29-Aug-12 07:35 29-Aug-12 07:36
Missing User Agent Header Low Canada - Ontario Mike 6474 29-Aug-12 16:21 29-Aug-12 1748
Missing User Agent Header Low United States - Oklahoma Josie 2020 02-Sep-12 00:00 02-Sep-12 01:55
Missing User Agent Header Low Canada - Ontario Rosemarie 30-Aug-12 18:39 30-Aug-12 18:40
Missing User Agent Header Low United States - California Joshua 7944 08-Aug-12 13:29 08-Aug-12 13:29
Missing User Agent Header Low United States - Washington Darmren 1899 20-Aug-12 13:28 20-Aug-12 13:28

Apache Configuration Requested Low United States - New York Mercedes 5932 04-Sep-12 11:27 04-Sep-12 11:39

MW oW & ;o =

Missing User Agent Header Low China - Beijing Lula 52068 30-Aug-12 14:21 30-Aug-12 1441

« Incidents with Requests and Responses by IP: This report lists the incidents for a given
IP and date range. Details for each incident include: date of the first occurrence, the
user agent string, the request content, the response content, the incident type, and the
count of occurrences.

« Incidents with Requests and Responses by Profile: This report lists the incidents for a
given profile name and date range. Details for each incident include: date of the first
occurrence, the user agent string, the request content, the response content, the incident
type, and the count of occurrences.

« Incidents by Type: This report lists the incidents that have occurred within a given date
range. Details displayed include: the type of each incident that has occurred and the
count for that particular type.

. Incident by Type for IP: This report displays a list of incidents created between the
given dates for a given IP Address. Details on the report include: the name of the incident
type and the count of the number of incident occurrences of that type.

« Scorecard: The scorecard report displays a summary of activity on the protected site.
The executive summary at the top of the page displays the total number of attackers
detected, the number of attackers that have been blocked, and the number of incidents
detected for three time periods. These time periods are: from the beginning of the
appliance to the current date, the last month from the first of the month through the
last of the month, and the last complete week starting from Sunday through Saturday.
Below the executive summary section are four graphs that break out the top five
incident types, the top five hackers by volume, the top five countries by volume, and
the activity of the previous week broken out by day of the week.

134

Copyright © 2014, Juniper Networks, Inc.

Chapter 8: Reports

Figure 69: Executive Summary

Executive Summary Attackers Detected Attackers Blocked Incidents detected
Since Deployment (15-Nov-11 to 30-Apr-12) 1988 34 9100
Last Month (01-Mar-12 to 31-Mar-12) 444 4 875
Last Week (22-Apr-12 to 28-Apr-12) 39 0 47

Figure 70: Incident Types

Incident Types (Top 5)

Number of Incidents

0 10 20 30 40 50 60

Missing Request
Header

Spider Spoofing

Illegal Response
Status

Session Porting

Malicious Resource
Request

Figure 71: Incident Volume by Hacker
Incident Volume by Hacker (Top 5)

Number of Incidents

0.0 25 50 7.5 100 125 15.0

Millie 5732

Elma 9686

Kara 2416

Mattie 4583

Noreen 7811

Copyright © 2014, Juniper Networks, Inc. 135

WebApp Secure 5.5

Figure 72: Incident Source Countries

Incident Source Countries (Top 9)

30

25

Unknown China United Saudi Germany
States Arabia

Figure 73: Last Week’s Incident Activity

Last week's incident activity

25 4
20 -+
Low 15 +
Medium 10
[High
5 o
0

& o,é'

oj\)i‘ @oi‘ «Qe, Q\Zb @o
Below the four graphs is the weekly report section, which lists the counts of incidents
broken out by threat level and totaled. It also includes counts of the number of hackers
who were blocked, the number who were countered with a non blocking response
(such as a slowed connection or a warning), the number of hackers that were not
responded to (because they were not deemed a high enough threat), and the total
number of hackers. This report is only available in PDF format.

136 Copyright © 2014, Juniper Networks, Inc.

Chapter 8: Reports

Figure 74: Weekly Report
Weekly Report

Threat level of Attackers Low Medium High Total
Number of Attackers 11 49 0 60
Responses Deployed Blocking Non-blocking None Total
Number of Responses 0 15 47 62

. Top IP Addresses: The Top IP Addresses report contains up to five graphs, one for each
complexity level, that break down the IP addresses that have caused the most incidents.
If there were no incidents of a given complexity then there will not be a graph for that
complexity. This report is only available in PDF format.

« Top Incident Types: The Top Incident Types report contains a list of the top N incident
types over the specified time period, ordered by number of occurrences. Included on
the list is supplementary detail such as the number of countries, profiles, and IP
addresses related to the type of incident.

Figure 75: Top Incident Types

Top 13 incident types from 01-Jan-12 00:00 to 15-Sep-12 00:00 Mykonos System Report
" . hitp:ifwww_mykonossoftware. com/
Application: All
Missing User Agent Header Occurence 8699 Countries 45
Profles: 1231 IP addresses: 599 _
Missing Host Header QOccurence 6284 Countries 31
Profles: 321 IP addresses. 169 _
Malicious Script Introspection Occurence 169 Countries 16
Profiles: 169 IP addresses: 114 I
Spider Configuration Occurence 150 Countries 10
Requested
Profiles: 131 IP addresses: 65
Query P: ion O 114 Countries 8
Profiles: 11 IP addresses: 11 I

Following the list is a set of graphs each on their own page. Each graph is specific to
onetype of incident on the list and shows the distribution of those incident occurrences
over the selected time period. The time period is shown on the horizontal axis. The
count of occurrences of each type of incident are shown on the vertical axis scaled
logarithmically.

The report can be narrowed to include a specified number of types of incidents or only
a selected set of incidents. It can also be narrowed to only contain data from a specific
application. This report is only available in PDF format.

. Top Locations: This report contains a list of the top N locations ordered by the number
of incidents that originated from each location and timezone during the specified time
interval. Included on the list is supplementary information including the number of
High, Medium, Low, and Indicator level incidents from each location.

Copyright © 2014, Juniper Networks, Inc. 137

WebApp Secure 5.5

Related
Documentation

Figure 76: Top Locations

Top 10 locations between 19-Aug-12 00:00 and 19-Sep-12 00:00

Application: All
Australia Indicators: € Mediums
Lows: 870 Highs:
United States Indicators: 10 Mediums
Lows: 412 Highs:
United Kingdom Indicators: 0 Mediums
Lows: 14 Highs:
China Indicators: 0 Mediums
Lows: 530 Highs:

906

1]

1068

1]

1044

0

1]
1]

hitp:/iwww.mykonossoftware com/

Following the list is a set of graphs each on their own page. Each graph is specific to
one country on the list and shows the distribution of each incident level over the selected
time period. The horizontal axis shows the time period. The count of occurrences of
incidents from a specific country are shown on the vertical axis scaled logarithmically.
This report is only available in PDF format.

Figure 77: Country Counts Over Time

1000

100 |

10+

Counts for Australia over time

« Schedule a Report on page 129
« Report History on page 131
« Report Details on page 132

g88g888sg8882888s888%8s8:s
Qo Q Q Q Q Q@ Q Q@ Q@ Q Q@ Q Q Q Q Q Q Q Q 9 Q Q
o O o O O O 0O 0O 0O o 0o o o 0o o o o o o o o o
NN NN NN NN N NN NN NN NN NN N NN
L T B B B I I I B B B B I B R R B B R B B |
O - A A - - O O O - -
9 @ 9@ W @ @ @ @ @ 9 @ @ @ @ 9 @ ¢ @ o ¥ @ @
L A B - T T R - L T = A T I I)
o o o o o 0 0 A A A A A @ 4 A& @ 3@ (8868 680 686 68989 O® N

‘— Low == Indicator Medium

25-Sep-12 00:00
26-Sep-12 00:00
27-Sep-12 00:00
2B-Sep-12 00:00
29-Sep-12 00:00
30-5ep-12 00:00
01-Oct-12 00:00
02-Oct-12 00:00
03-Oct-12 00:00
04-0ct-12 00:00
05-Oct-12 00:00
06-Oct-12 00:00
07-Oct-12 00:00
08-Oct-12 00:00

138

Copyright © 2014, Juniper Networks, Inc.

PART 3
Administration

« General Tasks on page 141
« Configuration Modes and Roles on page 143

« The Web Ul on page 151

Copyright © 2014, Juniper Networks, Inc. 139

WebApp Secure 5.5

140 Copyright © 2014, Juniper Networks, Inc.

CHAPTER9

General Tasks

« Changing the Password on page 141

« Resetting the Password on page 141

Changing the Password

The system password can only be changed from the underlying Linux command line. To
do this, connect through the console or SSH. You will see the setup utility screen. Navigate
to Quit to exit to the shell. Type passwd and follow the prompts.

Related . Resetting the Password on page 25
Documentation

Resetting the Password

To reset the password, an appliance reboot is required. A boot menu option exists to
reset the user credentials. By default, the appliance will boot normally, but by pressing
any key before the operating system starts booting, you can get to the boot menu.

Figure 78: Boot Menu

ress any key to enter the menu

ooting Scientific Linux (2.6.32-279.5.1.el6.x86_64) in 1 seconds.. I

Then you can select the option to reset the password.

Copyright © 2014, Juniper Networks, Inc. 141

WebApp Secure 5.5

Figure 79: Reset Password

GNU GRUE wversion H.97 (638K lower ~ 3143616K upper memory)

Reset Mykonos Passuword

Scientific Linux (2.6.32-279.5.1.elb6.x86_64)

Use the 1+ and 4 keys to select which entry iz highlighted.
Press enter to boot the selected 05 or 'p’ to enter a
password to unlock the next set of features.

0 NOTE: Resetting the password is only necessary if you have completely
forgotten your password. It is not meant for day-to-day password changes.

Related . Changing the Password on page 25

Documentation
. Configure Network Interfaces on page 26

142 Copyright © 2014, Juniper Networks, Inc.

CHAPTERT1O

Configuration Modes and Roles

Role-Based Administrator Access Control on page 143
« Configuring Role-Based Access Control on page 143

« RBAC Groups and Roles on page 146

» Edit Web Ul User Preferences on page 148

Role-Based Administrator Access Control

Related
Documentation

Role-Based Access Control (RBAC) is a way to assign different levels of administrator
functionality to different users. You can assign roles to various users that exist on a
configured LDAP or RADIUS server. The first step in integrating with your existing LDAP
or RADIUS service is to give WebApp Secure the connection information. In the Web Ul,
navigate to Configuration > Users and Groups and click on Manage Authentication Settings.
On the resulting page, input all information relating to your LDAP or RADIUS server and
click Save. You should now see the corresponding service as "Enabled" under the
Authentication section of Users and Groups. Once the server has been connected to
WebApp Secure, the next step is to configure roles for various users. By default, the user
"mykonos" is enabled and given the role "Super Administrator". To add additional users,
click the Add User link. You will be prompted to enter a Username and will be given a
choice of which groups you want that user to inherit. A complete description of all roles
is available by clicking on View Role Descriptions beneath the Roles dropdown. A more
simplistic table of roles and their corresponding permissions are given in Appendix D,
RBAC Groups and Roles.

« Configuring Role-Based Access Control on page 143

« RBAC Groups and Roles on page 146

Configuring Role-Based Access Control

1. Inthe Web UI, go to Configuration > Users and Groups.
2. Click Manage Authentication Settings.

3. Enter all information relating to your RADIUS or LDAP server as follows:

Copyright © 2014, Juniper Networks, Inc. 143

WebApp Secure 5.5

RADIUS

- RADIUS Enabled—True or False
« RADIUS Server—Enter the FQDN, hostname, or IP address of the RADIUS server.
« RADIUS Secret—Enter the RADIUS shared secret.

« RADIUS Timeout—Enter the timeout, in seconds, for RADIUS operations.
LDAP

- LDAP Enabled—True or False
- LDAP Server—Enter the FODN, hostname, or IP address of the LDAP server.

- LDAP Base DN—Enter the base Distinguished Name (DN) of the highest level tree
on which you wish to support LDAP.

- LDAP TSLS Enabled-True or False—Whether or not to use Transport Layer Security
(TLS) when making LDAP connections.

. LDAP TLS CA Certificate—Enter the CA certificate used to authenticate the certificate
provided by the LDAP server.

. Use LDAP for Authentication-True or False—Whether or not to use LDAP for
Authentication or just for user information.

- LDAP Bind DN—Enter the bind distinguished name (DN) for connecting to the LDAP
server.

- LDAP Bind Password—-Enter the password to be used when binding to the LDAP
server.

. Click Save. You should now see the corresponding service as Enabled under the

Authentication section of Users and Groups.

. The next step is to configure roles for various users. By default, the user mykonos is

enabled and given the role Super Administrator. To add additional users, click the Add
User link.

. You are prompted to enter a Username and you are given a choice of which groups

you want the user to inherit. A complete description of all roles is available by clicking
View Role Descriptions beneath the Roles drop down list. A more simplistic table of
roles and their corresponding permissions can be found in Appendix D, RBAC Groups
and Roles.

144

Copyright © 2014, Juniper Networks, Inc.

Chapter 10: Configuration Modes and Roles

Figure 80: Users and Groups, Add User

Roles

RBAC Administrator, Web Ul Administrator

v x

'EIRBAC Administrator -

.. Security Administrator .
M Security Support Staff

M Security User

M Super Administrator
Web Ul Administrator

Figure 81: Assigned Roles

Username

johndoe RBAC Administrator (System Group: rbacadmin), Web Ul Administrator (System Group: webuiadmin)

mykonos Super Administrator (System Group: superadmin)

o NOTE: Because WebApp Secure doesn't actually create users on the
appliance itself but merely maps the username to the given permissions, the
only way to effectively remove the user is to strip them from all roles. After
removing roles and saving, the entry in the Authorization table is removed.

O NOTE: WebApp Secure doesn't allow the last RBAC Administrator role to
be deleted. Itis possible to remove your own permissions, though, essentially
locking you out of the system. Similarly, re-initializing the configuration
settings will wipe out all user-role mappings, and the mykonos user will be
the only one able to assign roles.

0 NOTE: Any violations of access control (a user trying to access some part of
the system they aren't configured to access) will be logged to the audit log.

Related . Role-Based Administrator Access Control on page 143

D tati
ocumentation « RBAC Groups and Roles on page 146

Copyright © 2014, Juniper Networks, Inc. 145

WebApp Secure 5.5

RBAC Groups and Roles

Thisis a list of all WebApp Secure roles, and their corresponding permissions.

Table 15: RBAC Groups and Roles.

Security

Super Security Support RBAC Web Ul Device Security

Administrator | Administrator | Staff Administrator | Administrator | Administrator | User
CanManage Yes Yes No No Yes No No
Processors
CanManage Yes Yes No No Yes No No
Response
Rules
Can View Yes Yes Yes No Yes Yes Yes
System
Status
Can Edit Yes Yes No No Yes No Yes
Profiles
Can Use Yes No No No Yes No No
Expert Mode
Can Delete Yes Yes No No Yes No Yes
Profiles
CanManage Yes Yes No No Yes Yes No
Logical
Services
Can View Yes Yes Yes No Yes No Yes
Security Data
CanManage Yes No No No Yes Yes No
Licensing
CanManage Yes No No No Yes Yes No
Authentication
CanManage Yes No No No Yes No No
Applications
Can Import Yes No No No Yes No No
Configuration
Can Initialize Yes No No No No Yes No
Applicance

146 Copyright © 2014, Juniper Networks, Inc.

Chapter 10: Configuration Modes and Roles

Table 15: RBAC Groups and Roles. (continued)

Security

Super Security Support RBAC Web Ul Device Security

Administrator | Administrator | Staff Administrator | Administrator | Administrator | User
CanlLoglInto Yes Yes Yes Yes Yes Yes Yes
Web Ul
CanManage Yes No No No Yes Yes No
Backups
Can Activate Yes Yes No No Yes No Yes
Responses
Can Export Yes No No No Yes No No
Configuration
CanManage Yes No No No No Yes No
Physical
Services
CanManage Yes No No No Yes Yes No
Logging
CanManage Yes Yes No No Yes No No
Spotlight
Can Yes Yes No No Yes No Yes
Deactivate
Responses
CanlLoglInto Yes No No No No Yes No
Console
Can Yes Yes No No Yes No Yes
Schedule
Reports
Can Update Yes No No No Yes Yes No
Appliance
CanManage Yes No No No Yes Yes No
High
Availability
Can Yes No No No No Yes No
Configure
Updates
CanManage Yes Yes No No Yes No No
Security
Engine

Copyright © 2014, Juniper Networks, Inc. 147

WebApp Secure 5.5

Table 15: RBAC Groups and Roles. (continued)

Security

Super Security Support RBAC Web Ul Device Security

Administrator | Administrator | Staff Administrator | Administrator | Administrator | User
Can Run Yes Yes Yes No Yes No Yes
Reports
CanManage Yes No No Yes Yes No No
Authorization
CanManage Yes No No No No Yes No
SRX series
Settings
Can Restart Yes No No No No Yes No

Appliance

Edit Web Ul User Preferences

User Preferences control the appearance of the user interface and how certain information
is displayed. Click the Edit Preferences link at the top right of the Web Ul to access the
User Preferences screen. The following preference settings are available:

o NOTE: Changes only apply to the currently logged in user.

« Skin: Change the color and overall look of the Web UlI.
. Language: At this time, only English is supported.
. Timezone: Change the timezone setting. Note that this field defaults to UTC.

« PromptLevel: Change the amount of help text displayed for each field. If you are familiar
with the product, you might prefer abbreviated help text to lessen the amount of
information on the screen.

. Spotlight Name Preference: If Spotlight is enabled, you can select to have Spotlight
global names displayed in attacker lists and reports. You can also choose to display
only local names or to display both local and global names.

« Auto Refresh: You can enable or disable this setting. Note that Auto refresh affects all
security related screens, including the dashboard, lists of hackers, sessions, locations,
and incidents.

- Refresh Interval: Change the refresh interval. The minimum value you can set here is
10 seconds.

- Records Per Page: Change the number of records to display on a per page basis.

. Debug Mode: You can enable or disable this setting. Certain Web Ul items are hidden
by default. For debugging purposes, you can enable this checkbox to reveal all hidden
items.

148

Copyright © 2014, Juniper Networks, Inc.

Chapter 10: Configuration Modes and Roles

Figure 82: User Preferences

Skin

Language

Timezone uTC

Prompt Level

Spotlight Name Preference
Auto Refresh]

Refresh Interval

Records Per Page

Debug Mode []

Copyright © 2014, Juniper Networks, Inc. 149

WebApp Secure 5.5

150 Copyright © 2014, Juniper Networks, Inc.

CHAPTERT

The Web Ul

- Web Ul Overview on page 151

« The Dashboard on page 152

« Attackers on page 157

. Attacker Profile Page on page 158
« Incidents on page 162

« Incident Details on page 163

« Counter Responses on page 164
« Sessions on page 165

« Session Details on page 165

« Search on page 166

« Reports on page 168

« Configuration on page 169

« System Status on page 169

« Updates on page 171

Web Ul Overview

The Web Ul is really two Uls in one. There’s a monitoring portion, which shows you
real-time security-related information about the sites WebApp Secure is protecting, and
a configuration portion, which allows you to configure most aspects of the system without
the need to use the CLI.

In addition to monitoring and configuring WebApp Secure, the Web Ul also provides
several widgets you can use to filter, find, and view information.

Those widgets are as follows:

« The date filter widget—Available on many of the monitoring screens, the date filter
widget allows you to filter lists of data throughout the Web Ul by date, as well as by
configured application. The currently-selected values of each drop-down field are
"sticky" and will persist in a cookie as you move from screen to screen.

Copyright © 2014, Juniper Networks, Inc. 151

WebApp Secure 5.5

Related
Documentation

The Dashboard

Figure 83: Date filter widget

« The user widget—Available throughout the Web Ul, the user widget identifies the
currently-logged-in user, and provides links to logout and to edit your user preferences.

Figure 84: Uesr widget
L A

« The search widget—The search widget is available in the upper right corner of the
Attackers, Sessions, and Incidents screens. This widget is context-aware; that is, you
can search only within the scope mentioned in the box's label.

Figure 85: Search widget

« Edit Web Ul User Preferences on page 46

. Search on page 166

The Dashboard is the page used to display currently monitored incidents, sessions, and
responses. It can be reached by navigating to Dashboard in the left-hand menu, or simply
by clicking the logo in the top left of the window.

152

Copyright © 2014, Juniper Networks, Inc.

Chapter 11: The Web Ul

Figure 86: Web Ul Dashboard
([=la)

Security Console Dashbo: x

€« C f [hitps//mykonos:5

Juniper

The dashboard contains graphs and charts depicting the activity on protected web
applications. By default, the dashboard will display the information gathered from all
configured applications in the past week (7 days), but you can focus on specific
applications or change the date range by using the Filter By: tab near the top right of the
window.

Figure 87: Dashboard - Filter By tab

| Filter

There are other customization options that can be configured per account by clicking
your username in the very top right of the window. Options include setting your timezone,
enabling auto-refresh of data contained in the dashboard, and configuring the number

Copyright © 2014, Juniper Networks, Inc. 153

WebApp Secure 5.5

of records returned per page. Change these preferences to your liking and click Save at
the bottom of the page.

Figure 88: User Preferences

Uses Prafunences = Myker

- c N

The main portion of the dashboard consists of various panes, each containing information
gathered by the Security Engine.

o NOTE: The Web Ul should be compliant with current browsers. While older
browsers might work, we recommend updating to the latest versions for best
functionality. Likewise, we recommend JavaScript be enabled in the browser.
JavaScript is used in the Web Ul to enhance functionality and usability, and
while browsing without JavaScript is possible, it is not recommended. The
Web Ul targets screen resolutions of 1366x768 or higher for normal operations,
and targets 1440x900 when debug mode is enabled.

154 Copyright © 2014, Juniper Networks, Inc.

Chapter 11: The Web Ul

Table 16: Web Ul Dashboard Panes

Detected Attacks This pane displays
a chart that contains all incidents
created (within the filter parameters)
segregated by complexity of the
attacks. It is a good way to visualize
how active your website's attackers
are. You can hover over each portion
of the pie chart to display the actual
number of attacks for each
complexity. This pane also contains
a short list of the most frequent
attacks. Clicking on any attack in the
list will open the Incident Type page
for that particular incident.

Detected Hackers The Detected
Hackers pane displays information on
actual hacker profiles created within
the specified time frame. Each hacker
gets a skill level which segments the
pie chart. As in any other chart, you
can hover over the pie chart to view
specific counts. Additionally, the most
active hackers are displayed in a list
below the chart. Clicking on any of
these hackers will open the Hacker
Profile page for that particular profile.

Copyright © 2014, Juniper Networks, Inc.

155

WebApp Secure 5.5

Table 16: Web Ul Dashboard Panes (continued)

Counter Responses The Counter
Responses pane lists the top
responses that have been recently
triggered by WebApp Secure. The
lower portion of the pane lists
countries in descending order by
incident count. You can click on any
of the counter responses to open the
Counter Response Type page for that
response (explained later), or click on
the specific country to find other
information WebApp Secure has
gathered on that country.

[
=
E
[& |

. =

Malicious Incidents The Malicious
Incidents dashboard pane consists of
a chart depicting the number of
incidents over time. It also stacks
these incidents by complexity.

156

Copyright © 2014, Juniper Networks, Inc.

Chapter 11: The Web Ul

Table 16: Web Ul Dashboard Panes (continued)

Attackers By Day (Attackers By Hour)
This pane contains a graphical
representation of how many detected
hackers were active on the protected
site, separated by day (or separated
by hour if the filter "Last Day" is
currently set).

Sessions By Day (Sessions By Hour)
Similar to the Attackers By Day pane,
the Sessions By Day pane shows the
number of sessions active on the
protected site each day (or each hour
if the filter "Last Day" is set).

0 NOTE: If you would like more horizontal space on any page, you can collapse
the navigation menu by clicking on the double arrow (< <) button to theright
of the menu.

Attackers

The Attackers page contains any information on profiled attackers, and can be accessed
by clicking Attackers in the left navigation menu.

Copyright © 2014, Juniper Networks, Inc. 157

WebApp Secure 5.5

Related
Documentation

Figure 89: Recent Attackers

Top Attackers Recent Attackers (4,030} Time Graph Severity Graph

Refreshing__. w
BB Refresh settings

3@ 00 1150400 QO

profile ¢ Threat ¢ Public ID® 2 LastIP & First Time & Last Time ~

Francesca g Low mpLPERaQIMcayDoDBxpT E5 159.182.137.169 2 minutes, 21 seconds ago 52 seconds ago [«)
2167

Ora 1424 @ Medium LEQdgyuMIbzwyreeFes2 55 130.181.33.61 6 minutes, 10 seconds ago 3 minutes, 23 seconds ago <)}
Lucy 4571 # Medium JXrLenLsfKhFnZjAfNea 189.37.1 6 minutes, 46 seconds ago 6 minutes, 30 seconds ago @
Gena 1208 ¢ Low GsEuUGIgF3cmaKohwolQ =5 29.23.228.107 7 minutes, 41 seconds ago 7 minutes, 41 seconds ago (<]
luliette 208 g Low QiLayUr3jjZjGxX3ILYe 1= 46.255.139.130 10 minutes, 35 seconds 8 minutes, 11 seconds ago @

7U1BOTfrdgFe4KIDZWna 14 minutes, 7 seconds ago 11 minutes, 28 seconds

There are various data views you can navigate through through the tabs near the top of
the page. You can also search for attackers by using the search field in the upper right
side of the page, under the Filter widget.

« Top Attackers This tab contains an ordered list of the most active attackers, calculated
based on a weighting algorithm that takes into account the number of incidents and
their corresponding complexities.

. Recent Attackers This tab displays a table of the most recent profiles active on the
protected system. Each row consists of the Profile name, Threat level, their Public ID
(for use with the Support Processor), the Last IP they used on the system, the First
Time and Last Time they attacked the system, and available actions for that profile.
Clicking on the "eye" icon or the profile name will lead you to the page for that particular
profile. You can also click on a threat level to view other attackers with similar threat,
and you can click on a Last IP to navigate to the Location page for that IP. To keep this
data fresh, the monitor will periodically refresh the page (if Auto-refresh is enabled in
the User Preferences). To stop this from happening, click the alarm clock icon in the
top right corner of the tab to stop refresh.

« Time Graph The Time Graph is a larger version of the same line graph displayed on the
Dashboard.

« Severity Graph This graph is a larger version of the same pie graph displayed on the
Dashboard.

. Attacker Profile Page on page 158

Attacker Profile Page

You can click on an attacker's given name to navigate to that Attacker's Profile page.

158

Copyright © 2014, Juniper Networks, Inc.

Chapter 11: The Web Ul

Figure 90: Attacker Profile

16 days, 17 hours ago
16 days, 17 hours ago
Bt2nhgoomQDDt4QwCidh

Incidents (2) Responses (0} Sessions (1) Locations (1) Environments (3)

“~ Refresh this tab

< 2 00 1-20f2

Incident & Complexity ¢ Count 2 First Time 2 Last Time ~

Apache Configuration Requested & Low 16 days, 17 hours ago 16 days, 17 hours ago xR

Apache Configuration Requested & Low 16 days, 17 hours ago 16 days, 17 hours ago ®

The Attacker Profile page displays any information that pertains to a particular attacker.
At the top of the page you will see the Attacker Card, which contains a short overview of
the profile. This card contains the attacker's assigned name, last IP used, the first and
last date the attacker was active, and the Public ID of the attacker, for use with the
Support Processor in unblocking that profile. On the right side of the card there is a threat
gauge that indicates the current threat of that attacker, where green, yellow, and red
indicate low, medium, and high threat, respectively. The severity icons are displayed as
follows:

« (n/a): 0.0 - None

« :1.0 - Suspicious

« :20-Low

+ :3.0 - Medium

« :14.0-High

Available on the right side of the Attacker Profile page is a quick Actions box, where you

can rapidly perform various profile-related functions such as blocking the attacker,
warning the user, editing the profile, and deleting the profile.

Copyright © 2014, Juniper Networks, Inc. 159

WebApp Secure 5.5

0 NOTE: Deleting the profile will essentially erase all information gathered on
that attacker, and will effectively remove all blocks or other responses on
that profile.

Underneath the attacker card and quick actions box is a series of tabs, where
all of the attacker's specific activity information resides. The Incidents tab
contains a list of all incidents triggered by that attacker. The Incident name,
complexity, count, first and last time triggered are all available for each item
in the list. Additionally you can click the Details icon (the eye) to view more
information about any particular incident.

Responses tab— The Responses tab contains information relating to all of the active and
inactive responses issued to that attacker. Each entry contains the actual name of the
response issued, the configuration (if any) used when issuing the response, the time the
response was created, the delay set (if any), the time the response expires (if at all), the
time the response was finally deactivated (if it has been deactivated).

If the response is active, you can click the Deactivate Response icon (the stop sign under
Actions) to deactivate the response instantly. Alternatively, you can click the Deactivate
Selected button or to deactivate all responses, click the Deactivate All button

Figure 91: Responses tab - Deactivate
€0} Activate New Counter Response = a o0

Config Created Delayed ¥ Expires ~

L) Google Map Just now Never

Slow Cannection max=6000, min=2500 4d, 22h ago 3d, 22h ago 3d, 22h ago

Foree Captcha Validation 4d, 22h ago 4d, 22h ago

@ Deactivate Selected &) Deactivate All

Itisin this tab that you can manually activate Counter Responses on the current attacker.
The available counter responses are:

« Block User To block the user from accessing the protected application completely, you
can activate the Block User counter response. The next time the attacker tries to visit
any page on the application, they will see a configurable message indicating they have
been blocked from accessing the content. If the Support Processor is enabled, they
are also given their Public ID (also shown on the Attacker Profile page for that profile)
that they can give to support if they feel the block was in error.

« Filter on SRX series For more information on what this counter response does, see: SRX
Series Integration. In jest, it feeds a message to an SRX series device that can handle
traffic at the network level.

160

Copyright © 2014, Juniper Networks, Inc.

Chapter 11: The Web Ul

e NOTE: This counter response can be activated without configuring an
external network device, but it will not do anything. WebApp Secure requires
a properly configured external device for this counter response to function

properly.

« Break Authentication Hashes any incoming passwords when attempting to login,
effectively thwarting brute-force attacks that have correct credentials. Even with the
correct password, the login will be unsuccessful.

« Cloppy Activating this counter response will activate an animated paper clip that
intimidates the user with configurable messages. For information on how to customize
this response, see the Cloppy Processor in Processor Reference section.

. Force Captcha Validation The user will be prompted with a Captcha that has to be
solved to continue using the website.

« Google Map The user will be shown a map of lawyers near their determined location.
The search term fed into Google Maps can be configured, see the Google Map Processor
in the Processor Reference section.

« Inject Header The suspected hackers requests will have a custom header injected into
them, useful for tracking.

« Logout User Terminates any current user sessions for this profile on a site.

« Slow Connection The user's requests to the site will be delayed by a configurable
window of milliseconds. This can frustrate the attacker and cause them to abandon
their future attacks. This response can take a <config/> node with 'min' and 'max'
parameters, for example; <config min=1000 max=5000 /> will slow the attackers
requests by 1to 5 seconds.

« Strip Inputs If you suspect the attacker's inputs shouldn't be trusted (such as those
inputs submitted in forms on the site), you can choose to activate this response which
will strip them from all incoming requests. This will also strip any query parameters
from the request URL as well.

« Warn User The next request sent by the attacker will respond with a pop-up warning
message that lets the attacker know he/she is being watched. The warning message
can be configured, see the Warning Processor in the Processor Reference section.

Consecutive requests might be grouped together and are viewable through the Sessions
tab. Each entry in this tab contains the Remote Address used during the session (the IP),
the Browser and Operating System used during the session, the number of Requests
made and Pages returned during that session, the number of Errors generated by the
server in response to requests in that session, as well as the First and Last Active times.
You can also click on the Details icon (the eye) to view more information about any
particular session.

Locations tab—The Locations tab contains a list of all locations used by the attacker. For
each location, you are able to see the Remote Address (IP) associated with that location,
the City, Region, and Country associated with the location (if they can be found), and
the First and Last Active times for the location. Depending on the location, you might

Copyright © 2014, Juniper Networks, Inc. 161

WebApp Secure 5.5

Incidents

also be able to load a map showing that location (if it can be determined) by clicking on
the Map icon. You can also click on the Details icon (the eye) to view more information
on any particular location, including all other attackers that were found to be using the
same location, and other Incidents, Sessions, or Environments used in conjunction with
that location. If WebApp Secure can determine the attacker was using a specific Browser
and Operating System combination, an entry in the Environments tab will be added. Each
entry contains the Browser and Operating System used, along with the full User Agent
string and First and Last active dates. If you want to find other attackers that used the
same Environment, click on the magnifying glass icon. This will bring you to a page where
you can see other Attackers that used this Environment, Incidents produced with this
Environment, Sessions found that were using this Environment, and Locations that used
this Environment.

The Incidents page contains any information on specific incidents that have been triggered,
and offers additional information on all of the incidents that can be detected by WebApp
Secure.

Figure 92: Incidents Table

Most Common Most Recent (9,360) Browse by Complexity Time Graph Severity Graph

Refreshin... 10
BB Refresh settings

@ B3 00 11509360
Incident 2 Attacker & First Time % Last Time ~
Service Directory Spidering Karl 3462 4 Medium 1 1minute, 35 seconds age 1 minute, 35 seconds ago ®

Apache Password File Karl 3462 Low 1 2 minutes, 28 seconds ago 2 minutes, 28 seconds ago
Requested ®

®
Captcha Directory Indexing Lynnette 1107 & Low 1 3 minutes, 28 seconds ago 3 minutes, 28 seconds ago @)
@®

1 4 minutes, 31 seconds age 4 minutes, 31 seconds ago

O NOTE: Incident tables include a column labeled Count which indicates the
number of times a particular attacker performed a specific incident (in the
case where the attacker actually triggered an incident multiple times in quick
succession). However, if enough time has passed, the incident will be given
a new row in the Incident table with separate counts.

There are various data views you can navigate through through the tabs near the top of
the page. You can also search within Incidents by using the search field in the upper right
side of the page, under the Filter widget.

162

Copyright © 2014, Juniper Networks, Inc.

Chapter 11: The Web Ul

« Most Common This tab displays a list of the most frequently triggered incidents in
descending order. Count of triggered incidents of that type is displayed to the right of
each itemin the list, and a graphic depicting the complexity of that incident is visible
to the left. Clicking on a particular incident in this list will bring you to a page with
additional information on that incident. By default, WebApp Secure only displays
malicious incidents (those that might be of direct interest to WebApp Secure users).
If you want to show all incidents triggered, you can click on the Show all incidents link
above the list.

« MostRecent This tab displays a table of the most recent incidents triggered. The incident
name is displayed along with the profile that triggered the incident, the complexity of
that incident, the Count indicating the number of times that incident was triggered at
one time (using the same data), the first and last times the profile activated that
particular incident, and any actions available to the WebApp Secure user regarding
that incident. You can navigate to other pages by using the tab above the table. Here
you can jump to the next page, previous page, first page, and last page by using the
corresponding buttons. You can also jump to a specific page or change the number of
rows returned per page by clicking on the label between the navigation buttons. By
default, only malicious incidents are displayed. To display all malicious and
non-malicious incidents, click the Show all incidents link above the title. To keep this
data fresh, the monitor will periodically refresh the page (if Auto-refresh is enabled in
the User Preferences). To stop this from happening, click the alarm clock icon in the
top right corner of the tab to stop refresh.

- Browse by Complexity For informational purposes, this tab allows you to browse the
list of detectable incidents, grouped by complexity. Clicking on an incident will bring
you to an informational page that contains a description of that incident, and allows
you to search for triggered incidents of that type.

. Time Graph The Time Graph is a larger version of the same bar graph displayed on the
Dashboard.

- Severity Graph This graph is a larger version of the same pie graph displayed on the
Dashboard.

Related . Incident Details on page 163
Documentation

Incident Details

Clicking on a particular incident's name will bring you to the Incident Details page for that
incident. On this page all information about that particular incident is shown.

Copyright © 2014, Juniper Networks, Inc. 163

WebApp Secure 5.5

16 days, 19 hours ago 16 days, 19 hours ago

Description Details Request Response

is a very common web server. As a s wil i ific to Apache, since
good chance that any given web: the use of
file to provide directory-level configurati s dexing options,
i should not be
or a related resource, they should get either a "404 Not
properly-configured installation of Apache may not block
requests for these resources. In such a scenario, a hacker could gain valuable knowledge of the way the server is

configured. Threat Level: Low

Junos WebApp Secure will automatically block any requests for the .htaccess resource, and instead return a fake
version of the file, which contains the directives necessary to password-protect a fake resource. It is safe to assume the request is malicious

Near the top of the page there is an incident infobox that contains a summary of the
incident, including the Attacker that caused the incident, the Location and Environment
that attacker was using, the Session (IP) used when triggering the incident, and the First
and Last times that particular incident occurred. Underneath the infobox there is a series
of tabs that display the Description of the Incident type, Details for the incident (differs
fromincident to incident), and the raw Request and Response objects.

Related . Incidentson page 162
Documentation

Counter Responses

The Counter Responses window contains any information on the various responses
WebApp Secure can issue to potential threats. It contains the following tabs:

Browse by Type Active Responses (5,492) Inactive Responses (4,439)

Refreshin_ 2 L
BB Refresh settings

Q0 1-1505492 ©OQ

Attacker 2 Created ~ Expires &
Tammie 6840 Block User 44 seconds age n 4 days, 23 hours -
Karl 3462 Block User 2 minutes, 48 seconds ago In 4 days, 23 hours =]
Karl 3462 Slow Connection max=6000, min=2500 3 minutes, 47 seconds ago n 23 hours, 56 minutes -
Lynnette 1107 Block User 4 minutes, 40 seconds ago In 23 hours, 55 minutes -
Lynnette 1107 Slow Connection max=6000, min=2500 4 minutes, 40 seconds ago n 23 hours, 55 minutes @
ynnette 1107 Slow Connection max=6000, min=2500 5 minutes, 48 seconds ago n 23 hours, 54 minutes

- Browse by Type In this tab, you can view information on any of the counter responses
WebApp Secure can issue. Clicking on a specific response will take you to a page that

164 Copyright © 2014, Juniper Networks, Inc.

Chapter 11: The Web Ul

explains that response, and allows you to search for profiles that were issued that
response.

« Active Responses In the Active Responses tab, a table displays the most recently
activated responses, along with the profile that the response was issued on, the specific
response issued, any configuration used in that response (blank if there wasn't any),
the time the response was issued, how long to delay the response.

« Inactive Responses The Inactive Responses tab is formatted like the Active Responses
tab, but shows all responses which have been deactivated, either manually or due to
response expiration.

Sessions

When users browse the protected site, similar or back-to-back requests can be grouped
together in a Session. The Sessions page allows you to view each of these browsing
sessions.

Figure 93: Sessions

Malicious Sessions (47) Other Sessions (181) Time Graph

% Refresh this tab

¥§a oo 1-150f47 (Y

Attacker & Remote Address Browser Operating Rel]uﬂsts Pages Errors First Active Last Active Actions
& System £ [E P @ g [P 2 -

Lesa 9502

L]

130.90.162.56 i, Internet s Windows 6 3 2 16 days, 19 16 days, 19 €
* Explorer 9.0 hours ago hours ago

Rosanna 5380

2|

201.36.27.100 o) Unknown o) Unknown 16 6 2 16 days, 20 16 days, 20
= Unknown - hours ago hours ago

[

Herbert 1479 56.30.207.216 ¢ Chrome s Windows 7] 4 2 16 days, 20 16 days, 20

13.0.782.24 hours ago hours ago

8 B8 8

Kathleen
6283

114.192.239.41 .+ Konqueror ¥ NetBSD 16 6 [16 days, 20 16 days, 20
3.5 - hours ago hours ago

The tabs available in the Sessions page show Malicious Sessions, Other (non-malicious)
sessions, and a graph of sessions over time. Each Session entry contains information
including the Attacker the session belongs to (if it was a session with malicious intent),
the Remote Address used during the session (the IP), the Browser and Operating System
used during the session, the number of Requests made and Pages returned during that
session, the number of Errors generated by the server in response to requests in that
session, as well as the First and Last Active times. You can also click on the Details icon
(the eye) to view more information about any particular session.

Related . Session Details on page 165
Documentation

Session Details

Clicking on the Details icon will bring you to the Session Details page for that session. On
this page all information about that particular session is shown.

Copyright © 2014, Juniper Networks, Inc. 165

WebApp Secure 5.5

Related
Documentation

Search

(((')) o 028003 |

9 2
16 days, 20 hours ago 16 days, 20 hours ago

Incidents (1) Locations (1) Environments (2)

% Refresh this tab

) a 00 1-10f1

Incident 2 Attacker 2 Complexity & Count 2 First Time & Last Time -~

Apache Configuration Low] 16 days, 20 hours 16 days, 20 hours [<]
Requested ago ago

Near the top of the page there is a session infobox which contains a summary of the
session, including the Attacker associated with the session, the Last known address (IP)
used in conjunction with the session, the Last Location and Environment used during the
session, and information regarding the number of Requests issued, Pages returned, and
Errors generated by the server as a result of a request. Underneath the infobox is a series
of tabs that display other Incidents, Locations, and Environments used during this browsing
session.

« Sessions on page 165

You can find a particular attacker, incident, or session by using the search functionality

in the Web UI. To search, type the keyword in the Query form field, and optionally modify
the desired date-range (last 7 days by default), applications (all applications by default),
and the scope of your search. The scope caninclude Attackers, Incidents and/or Sessions.

166

Copyright © 2014, Juniper Networks, Inc.

Chapter 11: The Web Ul

Depending on the complexity of your search parameters, it might take a couple seconds
to complete. Once finished, the results will be displayed.

Query I
Date Range
Application

Scope Attackers, Incidents, Sessions

Profile Name Threat Level Public ID @} First Time Last Time
Ella 2360 } Low HC3YIONGRzifdIIY2Dky ¥ 10.10.10.113 2 days, 21 hours ago 2 days, 21 hours ago < >3

Incident Attacker First Time Last Time

Apache Configuration Requested Ella 2360 } Low 2 days, 21 hours ago 2 days, 21 hours ago

Attacker Remote Operating Location Requests Errors First
System Active

10.10.10.113 g Chrome 4w Windows - 2 days, 21 2 days, 21
~ 26.0.1410.43 7 e hours ago hours ago

The following items are indexed in the search (meaning if the string matches any items
in these categories, it is displayed.):

. User Agent

« Browser Name
« Browser Version
« Incident Name
« |IP Address

« Host

« Geographic Region

Copyright © 2014, Juniper Networks, Inc. 167

WebApp Secure 5.5

« Geographic City

. Geographic ZIP

« Country Name

« Country Code

« Profile Name

« Profile Description

« Profile Public ID

. Incident Request Content

. Incident Response Content

Reports

The Reports page is responsible for producing graphical and textual representations of
the activity passed through WebApp Secure.

L2
@

%

Related . Information for Report Types on page 126
Documentation
« Scheduling a Report Overview on page 128
« Report History on page 131

« Report Details on page 132

168 Copyright © 2014, Juniper Networks, Inc.

Chapter 11: The Web Ul

Configuration

The Configuration section of the Web Ul allows you to change numerous aspects of the
software. See Related Topics below.

i import/Export [Expert Mode

I - Core proxy settings, such as backend servers.

Related . Basic Configuration Mode on page 48

Documentation « Processors Overview on page 175
. Configure Support for Akamai Dynamic Site Accelerator on page 51
« Security Engine Incident Monitoring on page 52
« Security Engine Whitelist Settings on page 55
« Proxy/Backends on page 56
« Applications Overview on page 57
. Backup and Recovery Overview on page 105
« Log File Destination on page 104

« Response Overview on page 117

« Configuring Role-Based Access Control on page 143

System Status

When the System Statusicon in the navigation bar on the left side of the Web Ul indicates
there is an Alert, click the icon to access the System Alerts tab in the System Status
window. From the System Alerts tab, you can view and acknowledge alerts. When viewing
an alert, the following information is displayed:

. The time of the incident that triggered the alert.

« The host system on which the incident occurred.

Copyright © 2014, Juniper Networks, Inc. 169

WebApp Secure 5.5

« Adescription of the alert.

« The value of the alert. This value represents something different for each alert type.
The description of the alert tells you what the value means in each case.

« Acheck mark icon you can click to acknowledge the alert. Once you acknowledge it,
itis no longer displayed by default. To display all alerts, including acknowledged alerts,
you can click the Show all alerts link in the System Alerts tab.

Figure 94: System Status, System Alerts Tab

Date Range:

System Alerts 2 RRD: localhost Backend Health Services Routing Table

Time Hostname Alert Value Acknowledge
4d, 23h ago steve-vm Percentage of free disk space available on the root partition 14 \.)

10d, 21h ago steve-vm Number of sessions seen in the last 24 hours o @

The RRD: localhost tab lets you to view performance metrics of your installation. This
includes information on system health, running services, and the routing table.

Figure 95: System Status, RRD: localhost

CPU Utilization CPU Load Average

Memory Utilization Network Traffic

The Backend Health tab displays the status of the security engine and any backend
servers. While the Services tab lists the status of the running services on the system. You
can select the Routing Table tab to view the Kernel IP routing table.

On hardware systems, a RAID Status tab appears in the System Status window. The
following are examples of status information you could see for RAID.

170 Copyright © 2014, Juniper Networks, Inc.

Chapter 11: The Web Ul

Figure 96: Raid Status

Date Range:

System Alerts RRD: Cluster Aggregate RRD: hwo1 Backend Health Services Routing Table

RUNNING RUNNING
ONLINE ONLINE
ONLINE ONLINE
ONLINE ONLINE
ONLINE ONLINE

Figure 97: RAID Status-Missing

Date Range:

System Alerts RRD: Cluster Aggregate RRD: hw01 Backend Health Services Routing Table

DEGRADED RUNNING
MISSING ONLINE
ONLINE ONLINE
ONLINE ONLINE

ONLINE ONLINE

Updates

When updates are available, the Dashboard window alerts you to that fact. Perform
updates to the installation by navigating to the Updates window in the Web Ul. From the
Updates window, you can set the following:

« Online Updates—Enable or Disable automatic update downloads.

. Offline Updates—When an update is available, you can save the update file for uploading
and updating manually at a later time. Browse to the file and click the Upload File
button to upload the update to the system. When it is finished uploading, it will appear
as an Online Update

Copyright © 2014, Juniper Networks, Inc. 17

WebApp Secure 5.5

Figure 98: Updates

® ~
There are no updates ready for installation at this time.

If you would like to apply an update manually, you may use this form to upload the file you have received.

File

Choose File JRlEYEE:)]

Start after upload? []

£, Upload File

172 Copyright © 2014, Juniper Networks, Inc.

PART 4

Monitoring

« The Processors on page 175

« Honeypot Processors on page 181
« Activity Processors on page 207

« Tracking Processors on page 233

« Response Processors on page 245
« Captcha Template on page 293

« Log Format on page 297

Copyright © 2014, Juniper Networks, Inc. 173

WebApp Secure 5.5

174 Copyright © 2014, Juniper Networks, Inc.

CHAPTER 12

The Processors

« Processors Overview on page 175

« Complexity Rating Definitions on page 175

« Security Engine Incident Monitoring on page 176
» Session Cookie Spoofing on page 178

« Session Cookie Tampering on page 178

« Hostname Spoofing Attempt on page 179

« Security Processors on page 179

Processors Overview

WebApp Secure uses a modular approach to securing your application. Each module is

responsible for monitoring, detecting and securing a particular aspect of the application
and/or individual HTTP request/ response. These logical entities are referred to as Security
Processors. Processors are the configurable operators that implement an additional layer
of security between the application/webservers and the end user. They are responsible

foranalyzing the request and response data sent to and from the server and they monitor
anything from the state of injected honey pots to contents of the headers and the body
of the HTTP/HTTPS requests and responses.

Processors can be managed through the system configuration user interface. While some
of the operations can be as simple as incrementing a counter, others are far more
sophisticated and can alter the request and response data so it is important that you
configure processors correctly to ensure web application's security and functionality.

Each processor is monitoring the HTTP stream for particular alterations from what is
considered typical traffic. These alterations are called "triggers". Each security processor
can have several triggers they are responsible for detecting. If matched, the processor
responsible for handling it will generate a security incident. Incident varies by its
complexity, which is explained in the section below.

Complexity Rating Definitions

Complexity is a rating of the skill, effort, and experience necessary to trigger a specific
incident. The following is a description of the rating system:

Copyright © 2014, Juniper Networks, Inc. 175

WebApp Secure 5.5

« Informational (0.0): Informational incidents represent information about the client
that might or might not indicate malicious activity, but are not common. Informational
incidents are used to identify more complex abuse patterns that cannot be identified
from a single request. An example of an informational incident is when the user has
disabled the Referer header.

« Suspicious (1.0): Suspicious incidents represent activity that is abnormal but not
guaranteed to be malicious. This is similar to an informational incident, except that
the event is borderline malicious, not just unusual. Just like informational incidents,
suspicious incidents are used to identify more complex abuse patterns that cannot be
confirmed as malicious from just one request. An example of a suspicious incident is
when the user requests a file that does not exist (404 error).

« Low (2.0): Low complexity incidents represent malicious activity that does not require
any special tools, does not require a deep understanding of application architecture,
and generally can be executed by an unsophisticated threat. An example of a low
complexity incident is when the user modifies a query string parameter in the URL.

« Medium (3.0): Medium complexity incidents represent malicious activity that would
require special tools, advanced browser configuration, scripting, or a understanding of
how web applications are designed and implemented. These types of attacks are
generally not executed by unsophisticated attackers, and are more likely to be targeted
at the protected site, rather than at an arbitrary IP range. An example of a medium
complexity incident is when the user requests the robots.txt spider configuration file
from a browser or a script spoofing its identity as a browser.

« High (4.0): High complexity incidents represent malicious activity that is highly advanced
and requires a deep understanding of web application architecture, implementation,
security features, and multi request workflows. High complexity incidents are generally
far too advanced for an average attacker and usually have a specific target. An example
of a high complexity incident is when a user is able to break the encryption used on
basic authentication password files.

Security Engine Incident Monitoring

While most incidents are triggered by processors, the security engine itself is responsible
for several low-level incidents. These will be found in the Web Ul under Session
Management in the Response Rules page, and can be enabled or disabled through
Configuration > Security Engine > Incident Monitoring.

The following settings are available from Security Engine Incident Monitoring window:

176

Copyright © 2014, Juniper Networks, Inc.

Chapter 12: The Processors

« Session Tampering—True or False. WebApp Secure uses an HTTP cookie as one of the
components of its fingerprinting technology. Because the cookie has its own embedded
digital signature, any attempt to fabricate or modify a session cookie will almost always
result in a corrupted signature. If WebApp Secure detects that a cookie being provided
does not have a valid signature, and does not follow the correct format, it will trigger
a Session Cookie Tampering incident.

Default Response: Session Tampering (0004):1x = Logout User, 2x = 1Day Clear Inputs,
3x =5 Day Clear Inputs

« Session Spoofing—True or False. WebApp Secure uses an HTTP cookie as one of the
components of its fingerprinting technology. Because the cookie has its own embedded
digital signature, any attempt to fabricate or modify a session cookie will almost always
result in a corrupted signature. If WebApp Secure detects that a cookie being provided
has an invalid signature, but otherwise uses the correct format, it will trigger a Session
Cookie Spoofing incident.

Default Response: Session Spoofing (0001): 1x = Logout User, 2x = 1 Day Clear Inputs,
3x = 5 Day Clear Inputs

« URL Path Fuzzing—True or False. Whether or not to detect attempted fuzzing attacks
by monitoring the URL Path for characters defined as invalid in RFC 3869.

Default Response: URL Fuzzing (0005): 3x = Slow Connection 2-6 seconds, 6x = Slow
Connection 4-15 seconds, 10x = Escalated Fuzzing Attack Escalated URL Fuzzing Attack
(0006): 1x =1 Day Block

« URL Fragment Fuzzing—True or False. Whether or not to detect attempted fuzzing
attacks by monitoring the URL Path for URL fragments incorrectly submitted to the
server.

Default Response: Same as URL Path Fuzzing

e NOTE: Both URL Path Fuzzing and URL Fragment Fuzzing incidents
contribute to the count for the response.

0 NOTE: WebApp Secure is typically used to protect outward facing web sites
on the public Internet. These resources all have fully qualified domain names

to allow them to be reached by any client on the Internet. But in some cases,
WebApp Secure may be used to protect an internal resource that does not
have a fully qualified domain name. For example, when you are testing
WebApp Secure on an internally available version of your web site which is
soon to be released to the wide world. In this case, you should also include
the parameter engine.incidents.url_fuzzing.allow_locals to your configuration
through the use of Expert Mode. Set the value of
engine.incidents.url_fuzzing.allow_locals to true and save the configuration.
This will prevent false alarms coming from legitimate hits on your internally
facing site.

Copyright © 2014, Juniper Networks, Inc. 177

WebApp Secure 5.5

Related
Documentation

« Security Engine Configuration on page 50

Session Cookie Spoofing

Complexity: Low (2.0)
Default Response: 1x = Logout User, 2x = 1 Day Clear Inputs, 3x = 5 Day Clear Inputs

Cause: WebApp Secure uses an HT TP cookie as one of the components of its fingerprinting
technology. The session cookie is comprised of an AES-encrypted and base64-encoded
numerical ID and a validation signature. Because the cookie has its own embedded digital
signature, any attempt to fabricate or modify a session cookie will almost always result

in a corrupted signature. If WebApp Secure detects that a cookie being provided has an

invalid signature, but otherwise uses the correct format, it will trigger a "Session Cookie

Spoofing" incident.

Behavior: Session cookies are commonly used by a web application order to facilitate
state. HTTP, by itself, is not a stateful protocol, and without technologies like cookies, a
web application would be unable to correlate requests made by the same user. When
an attacker attempts to modify a cookie, especially when they are careful to follow the
same format constraints as the original value (22 letters and numbers, or 16 hex
characters, and so on), they are attempting to modify their state. If for example, an
attacker were able to successfully guess the session cookie value of another actively
logged in user, they would be able to assume that user's state (including their
authentication and authorization levels). This is referred to by the WASC as a "Credential
and Session Prediction" attack (see Credential and Session Prediction for information.)

Session Cookie Tampering

Complexity: Medium (3.0)
Default Response: 1x = Logout User, 2x = 1 Day Clear Inputs, 3x = 5 Day Clear Inputs

Cause: WebApp Secure uses an HT TP cookie as one of the components of its fingerprinting
technology. The session cookie is comprised of an AES-encrypted and base64-encoded
numerical ID and a validation signature. Because the cookie has its own embedded digital
signature, any attempt to fabricate or modify a session cookie will almost always result
in a corrupted signature. If WebApp Secure detects that a cookie being provided does
not have a valid signature, and does not follow the correct format, it will trigger a "Session
Cookie Tampering" incident.

Behavior: Session cookies are commonly used by a web application order to facilitate
state. HTTP, by itself, is not a stateful protocol, and without technologies like cookies, a
web application would be unable to correlate requests made by the same user. However,
just like form parameters and query string parameters, cookies represent another type
of user-input. Just about any attack that can be accomplished by injecting malicious
values into a form input (SQL injection2, XSS3, Buffer Overflow4, Integer Overflow5, and
so on.), could also potentially be accomplished by injecting malicious values into the
session cookie. An aggressive hacker would likely test for multiple vulnerability types in

178

Copyright © 2014, Juniper Networks, Inc.

http://projects.webappsec.org/w/page/13246918/Credential-and-Session-Prediction

Chapter 12: The Processors

all form inputs, query parameters, and cookies, because these are the inputs most likely
to be insecurely handled.

0 NOTE: Forinformation on the attack types mentioned here, go to The Web
Application Security Consortium Web Site and search for the attack name to
learn more about it.

Hostname Spoofing Attempt

Complexity: Medium (3.0)
Default Response: 1x = 1 Day Block

Cause: WebApp Secure expects certain indexing clients (like Google, Yahoo! and others)
to visit protected sites. These clients are identified by their originating hosts, and those
hostname patterns are defined in the Client Classification Incident options. This incident
is triggered when a client attempts to spoof the hostname of the IP they are originating
from. A forward-confirmed reverse DNS lookup is performed to compare the client
provided hostname with the actual resolved hostname.

Behavior: Manipulating the hostname requires some manipulation of a local DNS cache
and has no legitimate purpose. This type of behavior is possibly related to a user that is
attempting to appear to be scanning a website under the guise of another legitimate
spider. If the user is knowledgeable about WebApp Secure counter response behavior,
they may be attempting to avoid counter responses that are intended for clients which
are not legitimate spiders.

Security Processors

The Security Processors are separated into four groups:

« Honeypot Processors
« Activity Processors
« Tracking Processors

« Response Processors

Honeypot processors contain the logic of injecting the fake vulnerabilities and points of
interest to the hackers with the goal of exposing the attacker prior to them finding an
actual vulnerability on the site. Activity processors are the processors that monitor for
and report any other malicious behavior. These operators watch for malicious activity
based on non-injected points of interest. These typically involve monitoring headers,
errors, input fields, URL sequences, and so on, with the goal of identifying malicious
behavior within the valid application stream.

Activity processors enable monitoring of session traffic. Things like authentication and
cookies are among the types of traffic that become introspected by various activity
processors.

Copyright © 2014, Juniper Networks, Inc. 179

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

WebApp Secure 5.5

Tracking processors, allow for more advanced tracking of the attackers. These processors
attempt to collect additional data based on behavioral characteristics and unique
attacker's environment information. These "fingerprints" become a basis for the "hacker
database" used in detecting attackers from the first request they make.

Response processors are the processors that are used for generating response to the
end user. If turned on, these can be used to either manually or automatically (depending
on the configuration) respond to a hacker as soon as their activity is detected. In case of
an automated response, these can be tuned to match more or less any conditionincluding
but not limited to frequency of occurrence, complexity, types of incidents triggered.

180

Copyright © 2014, Juniper Networks, Inc.

CHAPTER 13

Honeypot Processors

Honeypot Processors: Access Policy Processor on page 182

Honeypot Processors: Access Policy Processor: Incidents - Malicious Service
Call on page 183

Honeypot Processors: Access Policy Processor: Incidents - Service Directory
Indexing on page 183

Honeypot Processors: Access Policy Processor: Incidents - Service Directory
Spider on page 184

Honeypot Processors: AJAX Processor on page 185
Honeypot Processors: AJAX Processor: Incidents - Malicious Script Execution on page 186

Honeypot Processors: AJAX Processor: Incidents - Malicious Script
Introspection on page 187

Honeypot Processors: Basic Authentication Processor on page 188

Honeypot Processors: Basic Authentication Processor: Incidents - Apache Configuration
Requested on page 189

Honeypot Processors: Basic Authentication Processor: Incidents - Apache Password
File Requested on page 190

Honeypot Processors: Basic Authentication Processor: Incidents - Invalid
Credentials on page 191

Honeypot Processors: Basic Authentication Processor: Incidents - Protected Resource
Requested on page 192

Honeypot Processors: Basic Authentication Processor: Incidents - Password
Cracked on page 192

Honeypot Processors: Basic Authentication Processor: Incidents - Basic Authentication
Brute Force on page 193

Honeypot Processors: Cookie Processor on page 194

Honeypot Processors: Cookie Processor: Incident - Cookie Parameter
Manipulation on page 195

Honeypot Processors: File Processor on page 196
Honeypot Processors: File Processor: Incident - Suspicious Filename on page 196

Honeypot Processors: File Processor: Incident - Suspicious File Exposed on page 197

Copyright © 2014, Juniper Networks, Inc. 181

WebApp Secure 5.5

« Honeypot Processors: File Processor: Incident - Suspicious Resource
Enumeration on page 198

« Honeypot Processors: Hidden Input Form Processor on page 198

» Honeypot Processors: Hidden Input Form Processor: Incident - Parameter Type
Manipulation on page 199

« Honeypot Processors: Hidden Input Form Processor: Incident - Hidden Parameter
Manipulation on page 200

« Honeypot Processors: Hidden Link Processor on page 201

« Honeypot Processors: Hidden Link Processor: Incident - Link Directory
Indexing on page 202

» Honeypot Processors: Hidden Link Processor: Incident - Link Directory
Spidering on page 202

« Honeypot Processors: Hidden Link Processor: Incident - Malicious Resource
Request on page 203

« Honeypot Processors: Query String Processor on page 203

« Honeypot Processors: Query String Processor: Incident - Query Parameter
Manipulation on page 204

« Honeypot Processors: Robots Processor on page 205

« Honeypot Processors: Robot Processor: Incident - Malicious Spider Activity on page 205

Honeypot Processors: Access Policy Processor

This processor injects fake permission data into the clientaccesspolicy.xml file of the
web application's domain. The fake access policy references a fake service and grants
a random domain access to call it. If the service is ever called, or any files are ever
requested in the directory the service is supposedly contained in, an incident can be
created. Under normal conditions, no user will ever see the clientaccesspolicy.xml file,
and therefore be unaware of the URL to the fake service or the directory it resides in. In
the cases where a Silverlight object is legitimately requesting clientaccesspolicy.xml
from the protected domain in order to access a known service, it will not create anincident,
because the service being called is defined with real access directives.

Table 17: Access Policy Processor Configuration Parameters

Parameter Default Value | Description

Basic

Processor Enabled Boolean True Whether or not to enable this process for https traffic.

Advanced

Fake Service String Random The fake service the user requested.

Incident: Malicious Service Call Boolean True The user manually entered the URL into the browser and
accessed the service that way. They did not call the
function.

182 Copyright © 2014, Juniper Networks, Inc.

Chapter 13: Honeypot Processors

Table 17: Access Policy Processor Configuration Parameters (continued)

Parameter

Incident: Service Directory
Indexing

Type Default Value | Description

Boolean True The user asked for a file index on the directory that
contains the fake service.

Incident: Service Directory
Spider

Boolean True The user is issuing requests for resources inside the
directory that contains the fake service. Since the directory
does not exist, all of these types of requests are
unintended and malicious.

Honeypot Processors: Access Policy Processor: Incidents - Malicious Service Call

Complexity: Medium (3.0)
Default Response: 1x = 5 day Clear Inputs

Cause: WebApp Secure adds a fake cookie to the websites it protects. The cookie is
intended to look as though it is part of the applications overall functionality, and is often
selected to appear vulnerable (such as naming the cookie 'debug' or 'admin' and giving
ita numerical or Boolean value). The "Cookie Parameter Manipulation" incident is triggered
whenever the fake cookie value changes its value.

Behavior: Modifying the inputs of a page is the foundation of a large variety of attack
vectors. Basically, if you want to get the backend server to do something different, you
need to supply different input values (either by cookie, query string, URL, or form
parameters). Depending on what value the user chose for the input, the attack could fall
under large number of vectors, including "Buffer Overflow", "XSS", "Denial of Service",
"Fingerprinting", "Format String", "HTTP Response Splitting", "Integer Overflow", and
"SQL injection" among many others. A common practice is to first spider the website,
then test every single input on the site for a specific set of vulnerabilities. For example,
the user might first index the site, then visit each page on the site, then test every exposed
input (cookie, query string, and form inputs) with a list of SQL injection tests. These tests
are designed to break the resulting page if the input is vulnerable. As such, the entire
process (which caninvolve thousands of requests) can be automated and return a clean
report on which inputs should be targeted. Because a WebApp Secure cookie looks just
like a normal application cookie, a spider that tests all inputs will eventually test the fake
cookie as well. This means that if there is a large volume of this incident, it is likely due
to such an automated process. It should be assumed that the values tested against the
fake cookie, have also been tested against the rest of the cookies on the site.

o NOTE: For information on the attack types mentioned here, go to The Web
Application Security Consortium Web Site and search for the attack name to
learn more about it.

Honeypot Processors: Access Policy Processor: Incidents - Service Directory Indexing

Complexity: Medium (3.0)

Copyright © 2014, Juniper Networks, Inc. 183

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

WebApp Secure 5.5

Default Response: 1x = 5 day Block

Cause: Originally, embedded HTML technologies such as Flash and Java, were not able
to communicate with third party domains. This was a security constraint to prevent a
malicious Java or Flash object from performing unwanted actions against a site other
then the one hosting the object (for example, a Java applet that brute forces a Gmail
login in the background). This limitation was eventually decreased in order to facilitate
more complex mash-ups of information from a variety of sources. However to prevent
any untrusted websites from abusing this new capability, a resource called the
"clientaccesspolicy.xml" was introduced. Now, when a plugin object wants to
communicate with a different domain, it will first request "clientaccesspolicy.xml" from
that domain. If the file specifies that the requesting domain is allowed to access the
specified resource, then the plugin object will be given permission to communicate directly
with the third party. The clientaccesspolicy.xml therefore provides a convenient reference
for hackers when trying to scope the attack surface of the website. For example, there
can be a vulnerable service listed in clientaccesspolicy.xml, but that service cannot be
referenced anywhere else on the site. So unless the hacker looks at clientaccesspolicy.xml,
they would never even know the service existed. WebApp Secure will inject a fake service
definitioninto the clientaccesspolicy.xml file in order to identify which users are manually
probing the file for information. The "Service Directory Indexing" incident will be triggered
if the user attempts to get a file listing from the directory the fake service is supposedly
located in.

Behavior: Attempting to get a file listing from the directory where the potentially vulnerable
service is located is likely in an effort to identify other unreferenced vulnerable services,
or possibly even data or source files used by the service. Such a request represents a "
Directory Indexing" attack, and is generally performed while attempting to establish a
full understanding of a websites attack surface.

Honeypot Processors: Access Policy Processor: Incidents - Service Directory Spider

Complexity: Medium (3.0)
Default Response: 1x = 5 day Block

Cause: Originally, embedded HTML technologies such as Flash and Java, were not able
to communicate with third party domains. This was a security constraint to prevent a
malicious Java or Flash object from performing unwanted actions against a site other
then the one hosting the object (for example, a Java applet that brute forces a Gmail
login in the background). This limitation was eventually decreased in order to facilitate
more complex mash-ups of information from a variety of sources. However to prevent
any untrusted websites from abusing this new capability, a resource called the
"clientaccesspolicy.xml" was introduced. Now, when a plugin object wants to
communicate with a different domain, it will first request "clientaccesspolicy.xml" from
that domain. If the file specifies that the requesting domain is allowed to access the
specified resource, then the plugin object will be given permission to communicate directly
with the third party. The clientaccesspolicy.xml therefore provides a convenient reference
for hackers when trying to scope the attack surface of the website. For example, there
can be a vulnerable service listed in clientaccesspolicy.xml, but that service cannot be
referenced anywhere else on the site. So unless the hacker looks at clientaccesspolicy.xml,

184

Copyright © 2014, Juniper Networks, Inc.

Chapter 13: Honeypot Processors

they would never even know the service existed. WebApp Secure will inject a fake service
definitioninto the clientaccesspolicy.xml file in order to identify which users are manually
probing the file forinformation. The "Service Directory Spidering" incident will be triggered
if the user attempts to request a random file inside the directory the fake service is
supposedly located in.

Behavior: Requesting a random file from the directory where the potentially vulnerable
serviceis supposedly located is likely in an effort to identify other unreferenced resources.
This could include configuration files, other services, data files, and so on. Usually an
attacker will first attempt to get a full directory index (which only takes one request),
but if that fails, the only other technique is to guess the filenames (which could take
thousands of requests). Because guessing the file names can take so many requests,
there are several publicly available tools that can enumerate over a large list of common
file and directory names in a matter of minutes. This type of behavior is an attempt to
exploit a server for "Predictable Resource Location" vulnerabilities, and is generally done
while the attack is trying to scope the web applications attack surface.

e NOTE: For information on the attack types mentioned here, go to The Web
Application Security Consortium Web Site and search for the attack name to
learn more about it.

Honeypot Processors: AJAX Processor

A mistake commonly made by web developers is to consolidate every JavaScript file
used by their website into a single file. They then reference that one file from every page
on the site, regardless of whether it needs all of the code defined in the file. This is an
optimization trick that works, but exposes potential vulnerabilities. The goal is to get the
browser to cache all of the external JavaScript, so that you don't need to keep
downloading additional code as you navigate the site. Consider the case where one of
the pages on the site contains an administrative console written with AJAX technology.
In the administrative page, there is a JavaScript file that contains code for managing
users of the site (creating user, deleting users, getting user details, and so on). Normally
only administrators would visit this page, and they would be the only ones who can see
this code. Once all JavaScript on the site is consolidated however, these types of sensitive
functions tend to get mixed into the rest of the safer functions. Hackers look for these
types of functions in order to find both the administrative page that uses them, as well
as exploit the function itself. The goal of this trap is to emulate this common mistake
and entice hackers into attempting to exploit the "sensitive looking" function.

Table 18: AJAX Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this
processor.

Copyright © 2014, Juniper Networks, Inc. 185

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

WebApp Secure 5.5

Table 18: AJAX Processor Configuration Parameters (continued)

Parameter Type Default Value Description

Advanced

Inject Script Enabled Boolean True Whether to inject the fake Javascript code into
HTML responses.

Service Configurable AJAX Service The fake service to expose.

Incident: Malicious Script Boolean True The user executed the fake JavaScript function.

Execution

Incident: Malicious Script Boolean True The user manually entered the URL into the

Introspection

browser and accessed the service that way. They
did not call the function.

Honeypot Processors: AJAX Processor: Incidents - Malicious Script Execution

Complexity: Medium (3.0)

Default Response: 1x = Slow Connection 2-6 seconds and permanent Clear Inputs in 10
minutes.

Cause: WebApp Secure injects a fake JavaScript file into the websites it protects. This
fake JavaScript file is designed to look as though it is intended for administrative use only,
but has been mistakenly linked in with non administrative pages. The JavaScript file
exposes an AJAX function that communicates with a potentially vulnerable fake service.
If the user attempts to invoke this function using a tool like Firebug, this incident will be
triggered.

Behavior: It is common practice to create a few single JavaScript files that contain the
majority of the code your site needs, and then importing that code into all of the pages.
This increases the performance of the site, because the user can download and cache
all the JavaScript at once, rather then having to re-download all or some of it again on
every page change. However in some cases, developers mistakenly include sensitive
administrative functions in with common functions needed by unauthenticated users.
Forexample, a developer might include an "addUser" function into a file that also contains
a "changelmageOnHover" function. The "addUser" function can only be called from an
administrative Ul (behind a login), while the hover image effect would be called on a lot
of different pages. Hackers often look through all of the various Javascript files being
included on the pages of a website in order to find references to other services that might
be vulnerable. Once a function has been identified, the hacker will attempt to find a way
to exploit the service the function uses. Because the attacker is actually executing the
function instead of attempting to directly communicate with the potentially vulnerable
service, this is likely a less sophisticated attack. They are more then likely just trying to
determineif the service actually exists, and if they can call it without being authenticated,
however depending on the values they supplied as arguments to the function, this could
be a number of different attack types, including "Abuse of Functionality", "Buffer

186

Copyright © 2014, Juniper Networks, Inc.

Chapter 13: Honeypot Processors

Overflow", "Denial of Service", "Format String", "Integer Overflows", "OS Commanding",
and "SOQL Injection."

0 NOTE: Forinformation on the attack types mentioned here, go to The Web
Application Security Consortium Web Site and search for the attack name to
learn more about it.

Honeypot Processors: AJAX Processor: Incidents - Malicious Script Introspection

Complexity: Medium (3.0)

Default Response: 1x = Slow Connection 2-6 seconds and Captcha. 2x = Slow Connection
4-14 seconds and permanent Block in 10 minutes.

Cause: WebApp Secure injects a fake JavaScript file into the websites it protects. This
fake JavaScript file is designed to look as though it is intended for administrative use only,
but has been mistakenly linked in with non administrative pages. The JavaScript file
exposes an AJAX function that communicates with a potentially vulnerable fake service.
If the user manually inspects the code of the function and attempts to exploit the service
it uses directly (without calling the function itself), this incident will be triggered.

Behavior: To improve performance of a website, by minimizing the number of HTTP
requests (and taking advantage of browser-side caching), web developers commonly
combine most of their JavaScript code into just a few files, which are then included in
the HTML of the entire site. However, in some cases, developers mistakenly include
sensitive administrative functions in with common functions needed by unauthenticated
users. For example, a developer might include an "addUser" function into a file that also
contains a "changelmageOnHover" function. The "addUser" function can only be called
from an administrative Ul (behind a login), while the hover image effect would be called
on a lot of different pages. Hackers often look through all of the various Javascript files
being included on the pages of a website in order to find references to other services that
might be vulnerable. Once a function has been identified, the hacker will attempt to find
a way to exploit the service the function uses. Unlike the malicious script execution
incident, here the attacker has actually dissected the fake AJAX function and attempted
to directly exploit the service it uses. This is a more sophisticated attack then actually
calling the Javascript function, because it requires that the user understand Javascript
logic. Depending on what values they are sending to the service, this could be in an effort
to perform any number of exploits, including Abuse of Functionality", "Buffer Overflow",
"Denial of Service", "Format String", "Integer Overflows", "OS Commanding", and "SQL
Injection."

0 NOTE: For information on the attack types mentioned here, go to The Web
Application Security Consortium Web Site and search for the attack name to
learn more about it.

Copyright © 2014, Juniper Networks, Inc. 187

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

WebApp Secure 5.5

Honeypot Processors: Basic Authentication Processor

The basic authentication processor is responsible for emulating a vulnerable
authentication mechanism in the web application. This is done by publicly exposing fake
server configuration files (.htaccess and .htpasswd) that appear to be protecting a
resource with basic authentication (a part of the HTTP protocol). To the attacker, the
site will appear to be exposing a sensitive administrative script on the site, with weak
password protection. As the malicious user identifies the availability of such publicly
exposed files, they are walked through a series of steps that emulate exposing an
additional piece of information. As the final step, if they end up breaking the weakly
authenticated password, they will be considered a high threat.

NOTE: This processor should only be used when the site is using Apache as
front end webservers due to particular files involved (.htaccess and
.htpasswd) being specific to Apache webserver.)

NOTE: Browsers often ignore the body content of HTTP responses if the
status code is anything other than 200. For best compatibility with different
browser versions, you might want to use a 200 status code when uploading
responses such as images or executable code.

Table 19: Basic Authentication Processor Configuration Parameters

Parameter Type Default Value Description

Basic Whether traffic should be passed through this
processor.

Processor Enabled Boolean True

Advanced

Authorized Users Collection Collection A list of authorized user accounts.

Protected Resource URL String [random The fake protected resource.

resource]

Protected Resource Response String [random status] The HTTP status to return when accessing the

Status resource.

Randomization Salt String Random Arandom set of characters used to salt the
generation of code. Any value is fine here.

Incident: Password Cracked Boolean True The user has successfully accessed a fake
protected resource using a cracked username and
password.

188

Copyright © 2014, Juniper Networks, Inc.

Chapter 13: Honeypot Processors

Table 19: Basic Authentication Processor Configuration Parameters (continued)

Parameter Type Default Value Description

Incident: Apache Configuration Boolean True The user has requested the apache directory
Requested configuration file .htaccess.

Incident: Apache Password File Boolean True The user has requested the apache password file
Requested .htpasswd

Incident: Invalid Credentials Boolean True The user has attempted to login to access the fake

file protected by basic authentication, but failed.

Incident: Protected Resource Boolean True The user has requested a fake file which is
Requested protected by basic authentication.

Honeypot Processors: Basic Authentication Processor: Incidents - Apache Configuration
Requested

Complexity: Low (2.0)
Default Response: none.

Cause: Apache is a webserver used by many websites on the Internet. As a result, hackers
will often look for vulnerabilities specific to apache, because there is a good chance any
given website is probably running apache. One such vulnerability involves the use of an
.htaccess22 file to provide directory level configuration (such as default 404 messages,
password protected resources, directory indexing options, and so on...), while not
sufficiently protecting the .htaccess file itself. By convention, any resource that provides
directory level configuration should not be exposed to the public. This means that if a
user requests .htaccess or a related resource, they should get either a 404 or a 403 error.
Unfortunately, not all webservers are configured correctly to block requests for these
resources. In such a scenario, a hacker could gain valuable intelligence on the way the
server is configured.

Behavior: Hackers will often attempt to get the .htaccess file from various directories on
a website in an effort to find valuable information about how the server is configured.
This is usually done to find a "Server Misconfiguration" weakness that might expose a
"Credential/Session Prediction", "OS Commanding", "Path Traversal", or "URL Redirector
Abuse" vulnerability among others. The fact that an .htaccess file is even exposed is a
"Server Misconfiguration" vulnerability in itself. In this specific case, the attacker is asking
for a different resource that is related to .htaccess. They are requesting a user database
file for a password protected resource defined in .htaccess. This file is generally named
".htpasswd". The user either opened the .htaccess file and found the reference to
.htpasswd, or they simply tried .htpasswd to see if anything came back (with or without
asking for .htaccess). Either way, this behavior is involved in the establishment of a
"Credential/Session Prediction" vulnerability. The request for .htpasswd is usually
performed while attempting to establish the scope of the websites attack surface,
although sometimes is not performed until trying to identify a valid attack vector.

Copyright © 2014, Juniper Networks, Inc. 189

WebApp Secure 5.5

0 NOTE: For information on the attack types mentioned here, go to The Web
Application Security Consortium Web Site and search for the attack name to
learn more about it.

Honeypot Processors: Basic Authentication Processor: Incidents - Apache Password
File Requested

Complexity: Low (2.0)
Default Response: 1x = Slow Connection 2-6 seconds.

Cause: Apache is a webserver used by many websites on the Internet. As a result, hackers
will often look for vulnerabilities specific to apache, because there is a good chance any
given website is probably running apache. One such vulnerability involves the use of an
.htaccess28 file to provide directory level configuration (such as default 404 messages,
password protected resources, directory indexing options, and so on...), while not
sufficiently protecting the .htaccess file itself. By convention, any resource that provides
directory level configuration should not be exposed to the public. This means that if a
user requests .htaccess or a related resource, they should get either a 404 or a 403 error.
Unfortunately, not all webservers are configured correctly to block requests for these
resources. In such a scenario, a hacker could gain valuable intelligence on the way the
server is configured. WebApp Secure will automatically block any requests for the
.htaccess resource, and return a fake version of the file. The fake version of the file will
contain the directives necessary to password protect a fake resource. These directives
allude to the existence of a user database file that contains usernames and encrypted
passwords. The "Apache Password File Requested" incident will trigger in the event that
the user requests the fake user database file (generally named .htpasswd).

Behavior: Hackers will often attempt to get the .htaccess file from various directories on
a website in an effort to find valuable information about how the server is configured.
This is usually done to find a "Server Misconfiguration" weakness that might expose a
"Credential/Session Prediction","OS Commanding", "Path Traversal", or "URL Redirector
Abuse" vulnerability among others. The fact that an .htaccess file is even exposed is a
"Server Misconfiguration" vulnerability in itself. In this specific case, the attacker is asking
for a different resource that is related to .htaccess. They are requesting a user database
file for a password protected resource defined in .htaccess. This file is generally named
".htpasswd". The user either opened the .htaccess file and found the reference to
.htpasswd, or they simply tried .htpasswd to see if anything came back (with or without
asking for .nhtaccess). Either way, this behavior is involved in the establishment of a
"Credential/Session Prediction" vulnerability. The request for .htpasswd is usually
performed while attempting to establish the scope of the websites attack surface,
although sometimes is not performed until trying to identify a valid attack vector.

0 NOTE: For information on the attack types mentioned here, go to The Web
Application Security Consortium Web Site and search for the attack name to
learn more about it.

190 Copyright © 2014, Juniper Networks, Inc.

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

Chapter 13: Honeypot Processors

Honeypot Processors: Basic Authentication Processor: Incidents - Invalid Credentials

Complexity: Medium (3.0)

Default Response: 1x = Slow Connection 2-6 seconds. 15x = Basic Authentication
Bruteforce Incident.

Cause: Apacheis a webserver used by many websites on the Internet. As a result, hackers
will often look for vulnerabilities specific to apache, because there is a good chance any
given website is probably running apache. One such vulnerability involves the use of an
.htaccess34 file to provide directory level configuration (such as default 404 messages,
password protected resources, directory indexing options, and so on), while not sufficiently
protecting the .htaccess file itself. By convention, any resource that provides directory
level configuration should not be exposed to the public. This means that if a user requests
.htaccess or a related resource, they should get either a 404 or a 403 error. Unfortunately,
not all webservers are configured correctly to block requests for these resources. In such
a scenario, a hacker could gain valuable intelligence on the way the server is configured.
WebApp Secure will automatically block any requests for the .htaccess resource, and
return a fake version of the file. The fake version of the file will contain the directives
necessary to password protect a fake resource. Should the user request the password
protected resource, WebApp Secure will simulate the correct authentication method
defined in .htaccess, and simulate the existence of the fake resource. The "Invalid
Credentials" incident will trigger in the event that the user requests the fake password
protected file and supplies an invalid username and password (as would be the case if
they requested the file in a browser and guessed a username and password at the login
prompt).

Behavior: Hackers will often attempt to get the .htaccess file from various directories on
a website in an effort to find valuable information about how the server is configured.
This is usually done to find a "Server Misconfiguration" weakness that might expose a
"Credential/Session Prediction", "OS Commanding", "Path Traversal", or "URL Redirector
Abuse" vulnerability among others. The fact that an .htaccess file is even exposed is a
"Server Misconfiguration" vulnerability in itself. In this specific case, the attacker is asking
for a different resource that is referenced only from .htaccess. The fake resource is
password protected, and the user has attempted to authenticate with bad credentials.
Thisis most likely in an effort to guess a valid username and password combination, such
as "admin:admin", or "guest:guest". It can also be part of a larger brute force attempt,
where the attacker tries a long list of possible combinations. This is a poor method for
locating valid usernames and passwords, because the user database file .htpasswd is
actually exposed (albeit fake). So a brute force attack (represented by a large quantity
of this incident type) generally means the attacker is less sophisticated.

0 NOTE: Forinformation on the attack types mentioned here, go to The Web
Application Security Consortium Web Site and search for the attack name to
learn more about it.

Copyright © 2014, Juniper Networks, Inc. 191

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

WebApp Secure 5.5

Honeypot Processors: Basic Authentication Processor: Incidents - Protected Resource
Requested

Complexity: Low (2.0)
Default Response: 1x = Slow Connection 2-6 seconds.

Cause: Apacheis a webserver used by many websites on the Internet. As a result, hackers
will often look for vulnerabilities specific to apache, because there is a good chance any
given website is probably running apache. One such vulnerability involves the use of an
.htaccess file to provide directory level configuration (such as default 404 messages,
password protected resources, directory indexing options, and so on), while not sufficiently
protecting the .htaccess file itself. By convention, any resource that provides directory
level configuration should not be exposed to the public. This means that if a user requests
.htaccess or a related resource, they should get either a 404 or a 403 error. Unfortunately,
not all webservers are configured correctly to block requests for these resources. In such
a scenario, a hacker could gain valuable intelligence on the way the server is configured.
WebApp Secure will automatically block any requests for the .htaccess resource, and
return a fake version of the file. The fake version of the file will contain the directives
necessary to password protect a fake resource. Should the user request the password
protected resource, WebApp Secure will simulate the correct authentication method
defined in .htaccess, and simulate the existence of the fake resource. The "Protected
Resource Requested" incident will trigger in the event that the user requests the fake
password protected file and does not supply a username and password (as would be
the case if they requested the file in a browser and canceled the login prompt).

Behavior: Hackers will often attempt to get the .htaccess file from various directories on
a website in an effort to find valuable information about how the server is configured.
This is usually done to find a "Server Misconfiguration" weakness that might expose a
"Credential/Session Prediction", "OS Commanding", "Path Traversal", or "URL Redirector
Abuse" vulnerability among others. The fact that an .htaccess file is even exposed is a
"Server Misconfiguration" vulnerability in itself. In this specific case, the attacker is asking
for a different resource that is referenced only from .htaccess. The resource is password
protected, but the user has not yet tried to supply credentials. This is most likely in an
attempt to see if the password protected file actually exists.

o NOTE: For information on the attack types mentioned here, go to The Web
Application Security Consortium Web Site and search for the attack name to
learn more about it.

Honeypot Processors: Basic Authentication Processor: Incidents - Password Cracked

Complexity: High (4.0)

Default Response: 1x = Permanent Block.

192 Copyright © 2014, Juniper Networks, Inc.

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

Chapter 13: Honeypot Processors

Cause: Apache is a webserver used by many websites on the Internet. As a result, hackers
will often look for vulnerabilities specific to apache, because there is a good chance any
given website is probably running apache. One such vulnerability involves the use of an
.htaccess46 file to provide directory level configuration (such as default 404 messages,
password protected resources, directory indexing options, and so on.), while not
sufficiently protecting the .htaccess file itself. By convention, any resource that provides
directory level configuration should not be exposed to the public. This means that if a
user requests .htaccess or a related resource, they should get either a 404 or a 403 error.
Unfortunately, not all webservers are configured correctly to block requests for these
resources. In such a scenario, a hacker could gain valuable intelligence on the way the
server is configured. WebApp Secure will automatically block any requests for the
.htaccess resource, and return a fake version of the file. The fake version of the file will
contain the directives necessary to password protect a fake resource. The directives will
also allude to the existence of a password database file. If the attacker requests the
password database file, and then uses a tool such John The Ripper to crack one of the
encrypted passwords, they will be able to authenticate against the fake protected resource
successfully. Should the user request the password protected resource, and supply a
valid username and password combination (as defined in the password database), the
"Password Cracked" incident will be triggered.

Behavior: Hackers will often attempt to get the .htaccess file from various directories on
a website in an effort to find valuable information about how the server is configured.
This is usually done to find a "Server Misconfiguration" weakness that might expose a
"Credential/Session Prediction", "OS Commanding", "Path Traversal", or "URL Redirector
Abuse" vulnerability among others. The fact that an .htaccess file is even exposed is a
"Server Misconfiguration" vulnerability in itself. In this specific case, the attacker is asking
for a different resource that is referenced only from .htaccess. The fake resource is
password protected, and the user has supplied valid authentication credentials. The only
way to obtain valid credentials is to either brute force the login (which would be the case
if there were excessive numbers of "Invalid Credential" incidents), or to access the fake
password database file (usually .htpasswd) and crack one of the encrypted passwords
using an encryption cracking tool. This represents the final and most complicated step
in a successful "Credential/Session Prediction" exploit, and is usually performed long
after the attack surface of the site has been fully scoped. Unless there are excessive
numbers of "Invalid Credential" incidents, which would be the case in a brute force attack,
the user must have also requested ".htpasswd", and therefore should also have an
"Apache Password File Requested" incident. If this incident is missing, then the hacker
has likely established two independent profiles in WebApp Secure.

0 NOTE: Forinformation on the attack types mentioned here, go to The Web
Application Security Consortium Web Site and search for the attack name to
learn more about it.

Honeypot Processors: Basic Authentication Processor: Incidents - Basic Authentication
Brute Force

Complexity: Medium (3.0)

Copyright © 2014, Juniper Networks, Inc. 193

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

WebApp Secure 5.5

Default Response: 1X - CAPTCHA; 2x = Permanent Block.

Cause: Apache is a very common webserver. As a result, hackers will often look for
vulnerabilities specific to Apache, because there is a good chance that any given website
is running Apache. One such vulnerability involves the use of an .htaccess file to provide
directory-level configuration (password-protected resources, directory indexing options,
and so on), while not sufficiently protecting the .htaccess file itself. By convention,
configuration files should not be exposed to the public — so if a user requests .htaccess
or a related resource, they should get either a "404 Not Found" or "403 Forbidden" error.
Unfortunately, an improperly-configured installation of Apache cannot block requests
for these resources. In such a scenario, a hacker could gain valuable knowledge of the
way the server is configured. WebApp Secure will automatically block any requests for
the .htaccess resource, and instead return a fake version of the file, which contains the
directives necessary to password-protect a fake resource. Should the user request the
password-protected resource, WebApp Secure will simulate the correct authentication
method defined in .htaccess, and simulate the existence of the fake resource. The "Basic
Authentication Brute Force" incident will trigger in the event that the user requests the
fake passwordprotected file and repeatedly supplies an invalid username and password
(as would be the case if the user were guessing various username and password
combinations).

Behavior: Hackers will often attempt to get the .htaccess file from various directories on
a website in an effort to find valuable information about how the server is configured.
This is usually done to find a "Server Misconfiguration" weakness that might expose a
"Credential/Session Prediction", "OS Commanding", "Path Traversal", or "URL Redirector
Abuse" vulnerability among others.

0 NOTE: Forinformation on the attack types mentioned here, go to The Web
Application Security Consortium Web Site and search for the attack name to
learn more about it.

In this specific case, the attacker is requesting a different resource that is referenced only
from .htaccess. The fake resource is password-protected, and the user has attempted
to authenticate with a large number of bad credentials. This is most likely in an effort to
guess a valid username and password combination, such as "admin:admin", or
"guest:guest". Thisis a poor method for locating valid usernames and passwords, because
the user database file .htpasswd is actually exposed (albeit fake). So a brute force attack
generally means the attacker is less sophisticated. Because the password-protected file
is not referenced from anywhere outside of .htaccess, this incident should not happen
unless an "Apache Configuration Requested" incident has occurred first. If that is not the
case, then the hacker has likely established two independent profiles in WebApp Secure.
This type of behavior is generally performed when attempting to establish a successful
attack vector.

Honeypot Processors: Cookie Processor

Cookies are used by web applications to maintain state for a given user. They consist of
key/value pairs that are passed around in headers and also stored client side. Each

194

Copyright © 2014, Juniper Networks, Inc.

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

Chapter 13: Honeypot Processors

key/value pair has various attributes including which domains it is valid for, what paths
within those domains, as well as security restrictions and expiration information. Because
this is the primary way for a web application to maintain a session, hackers will often try
to manipulate cookie values manually in an effort to escalate access or hijack someone
else's session. All of the attacks applicable to modifying form parameters are also
applicable to modifying cookie parameters. It can be possible, although unlikely, to find
an SQL injection flaw in a cookie parameter.

Table 20: Cookie Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether or not to enable this process for http
traffic.

Advanced

Cookie String Cookie The fake cookie to use.

Incident: Cookie Parameter Boolean True The user modified the value of a cookie which

Manipulation should never be modified.

Honeypot Processors: Cookie Processor: Incident - Cookie Parameter Manipulation

Complexity: Medium (3.0)

Default Response: 1x = Slow Connection 2-6 seconds and permanent Clear Inputs in 10
minutes.

Cause: WebApp Secure adds a fake cookie to the websites it protects. The cookie is
intended to look as though it is part of the applications overall functionality, and is often
selected to appear vulnerable (such as naming the cookie 'debug' or 'admin' and giving
itanumerical or Boolean value). The "Cookie Parameter Manipulation" incident is triggered
whenever the fake cookie value changes its value.

Behavior: Modifying the inputs of a page is the foundation of a large variety of attack
vectors. Basically, if you want to get the backend server to do something different, you
need to supply different input values (either by cookie, query string, URL, or form
parameters). Depending on what value the user chose for the input, the attack could fall
under large number of vectors, including "Buffer Overflow", "XSS5", "Denial of Service",
"Fingerprinting", "Format String", "HTTP Response Splitting", "Integer Overflow", and
"SQL injection" among many others. A common practice is to first spider the website,
then test every single input on the site for a specific set of vulnerabilities. For example,
the user might first index the site, then visit each page on the site, then test every exposed
input (cookie, query string, and form inputs) with a list of SQL injection tests. These tests
are designed to break the resulting page if the input is vulnerable. As such, the entire
process (which caninvolve thousands of requests) can be automated and return a clean
report on which inputs should be targeted. Because WebApp Secure cookie looks just

Copyright © 2014, Juniper Networks, Inc. 195

WebApp Secure 5.5

like a normal application cookie, a spider that tests all inputs will eventually test the fake
cookie as well. This means that if there is a large volume of this incident, it is likely due
to such an automated process. It should be assumed that the values tested against the
fake cookie, have also been tested against the rest of the cookies on the site.

0 NOTE: For information on the attack types mentioned here, go to The Web
Application Security Consortium Web Site and search for the attack name to
learn more about it.

Honeypot Processors: File Processor

When developing websites, administrators will often rename files in order to make room
for a newer version of the file. They can also archive older files. A common vulnerability
is the case where these older files are left in the web accessible directories, and they
contain non static resources. For example, consider the case where a developer renames
shopping_cart.php to shopping_cart.php.bak. If an attacker looks for php files and tries
to access all of them with a .bak extension, they can stumble across the backup file.
Because the server is not configured to parse .bak files as php files, it will serve the
unexecuted script source code to the client. This technique canyield database credentials,
system credentials, as well as expose more serious vulnerabilities in the code itself. The
goal of this processor is to detect when a user is attempting to find unreferenced files.

Table 21: File Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this
Processor.

Advanced

Block Response Configurable HTTP Response The response to return when a request is blocked

due to a matching suspicious token rule with
blocking enabled.

Suspicious Tokens Collection Collection The configured suspicious extensions.

Incident: Suspicious File Boolean True A file which has a suspicious filename is publicly
Exposed available.

Incident: Suspicious Filename Boolean True A file with a filename that contains a suspicious

token was requested.

Honeypot Processors: File Processor: Incident - Suspicious Filename

Complexity: Suspicious (1.0)

196 Copyright © 2014, Juniper Networks, Inc.

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

Chapter 13: Honeypot Processors

Default Response: 10x = Suspicious Resource Enumeration Incident.

Cause: WebApp Secure has a list of file tokens which represent potentially sensitive files.
For example, developers will often rename source files with a ".bck" extension during
debugging, and sometimes they forget to delete the backup after they are done. Hackers
often look for these left over source files. WebApp Secure is configured to look for any
request to a file with a ".bck" extension (as well as any other configured extensions), and
trigger this incident if the file does not exist. An incident will not be triggered if the file
does in fact exist, and the extension is not configured to block the response. This is to
avoid legitimate files being flagged as suspicious filenames.

Behavior: There are specific files that many websites host, that contain valuable
information for a hacker. These files generally include data such as passwords, SOL
schema's, source code, and so on. When hackers try to breach a site, they will often check
to see if they can locate some of these special files in order to make their jobs easier. For
example, if a hacker sees that the home page is called "index.php", they can try and
request "index.php.bak", because if it exists, it will be returned as raw source code. This
is usually an effort to exploit a "Predictable Resource Location" vulnerability. Because
this incident is only created if the file being requested does not actually exist, it does not
represent a successful exploit.

0 NOTE: For information on the attack types mentioned here, go to The Web
Application Security Consortium Web Site and search for the attack name to
learn more about it.

Honeypot Processors: File Processor: Incident - Suspicious File Exposed

Complexity: Suspicious (1.0)
Default Response: 10x = Suspicious Resource Enumeration Incident.

Cause: WebApp Secure has a list of file tokens which represent potentially sensitive files.
For example, developers will often rename source files with a ".bck" extension during
debugging, and sometimes they forget to delete the backup after they are done. Hackers
often look for these left over source files. WebApp Secure is configured to look for any
request to a file with a ".bck" extension (as well as any other configured extensions), and
trigger this incident if the extension is configured as illegal. This incident will only be
triggered if the file actually exists, and the request reaches the backend server. For
example, the user might request "database.sqgl". If the .sgl extension is configured to
block, and the file actually exists on the server, this incident will be generated. If
"database.sgl" does not exist, then only a "Suspicious Filename" incident will be created.

Behavior: There are specific files that many websites host, that contain valuable
information for a hacker. These files generally include data such as passwords, SOL
schema's, source code, and so on. When hackers try to breach a site, they will often check
to see if they can locate some of these special files in order to make their jobs easier. For
example, if a hacker sees that the home page is called "index.php", they can try and
request "index.php.bak", because if it exists, it will be returned as raw source code. This

Copyright © 2014, Juniper Networks, Inc. 197

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

WebApp Secure 5.5

is usually an effort to exploit a "Predictable Resource Location" vulnerability. This incident
is only triggered when the user requested a file that would otherwise have been
successfully returned, if it were not blocked by WebApp Secure. For example, the user
might request "database.sgl" and actually get a 200 response from the server indicating
that the file exists and is accessible to everyone. However if the system is configured to
mark the ".sgl" extension as illegal, then WebApp Secure will block the request. This
prevents the sensitive file from potentially being exposed to an actual malicious user. If
this incident occurs, the server administrator should immediately remove the sensitive
file or change its permissions so it is no longer publicly accessible.

Honeypot Processors: File Processor: Incident - Suspicious Resource Enumeration

Complexity: Low (2.0)
Default Response: 1x = 5 day Block.

Cause: WebApp Secure has a list of file tokens which represent potentially sensitive files.
For example, developers will often rename source files with a ".bck" extension during
debugging, and sometimes they forget to delete the backup after they are done. Hackers
often look for these left over source files. WebApp Secure is configured to look for any
request to a file with a ".bck" extension (as well as any other configured extensions), and
trigger a Suspicious Filename incident if the file does not exist. Should the suspicious
filename incident be triggered several times, this incident will then be triggered.

Behavior: There are specific files that many websites host, that contain valuable
information for a hacker. These files generally include data such as passwords, SOL
schema's, source code, and so on... When hackers try to breach a site, they will often
check to see if they can locate some of these special files in order to make their jobs
easier. For example, if a hacker sees that the home page is called "index.php", they can
try and request "index.php.bak", because if it exists, it will be returned as raw source code.
This is usually an effort to exploit a "Predictable Resource Location" vulnerability. The
first few times a user requests a filename containing a suspicious token, they will only
get "Suspicious Filename" incidents. However if they request a large volume of filenames
with suspicious tokens, then the "Suspicious Resource Enumeration" incident is generated.
This incident represents a user who is actively scanning the site with very aggressive
tactics to find unlinked and sensitive data.

0 NOTE: For information on the attack types mentioned here, go to The Web
Application Security Consortium Web Site and search for the attack name to
learn more about it.

Honeypot Processors: Hidden Input Form Processor

Many webmasters create forms which post to a common form handling service; using
hidden fields to indicate how the service should handle the data. A common hacking
technique is to look for these hidden parameters and see if there is any way to change
the behavior of the service by manipulating its input parameters. This processor is

198

Copyright © 2014, Juniper Networks, Inc.

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

Chapter 13: Honeypot Processors

responsible for injecting a fake hidden input into forms in HTML responses and ensuring
that when those values are posted back to the server, they have not been modified.

Table 22: Hidden Input Form Processor Configuration Parameters

Default

Parameter Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this processor.

Advanced

Hidden Input Parameter Collection Collection The possible hidden inputs on a page.

Inject Input Enabled Boolean True Whether to inject hidden inputs into HTML forms.

Maximum Injections Integer 3 The maximum number of fake hidden parameters that will
be added to any given URL.

Strip Fake Input Boolean True Whether to remove the fake input value from the posted
form results before proxying the request to the backend
servers. This should only be turned off if there is some
additional security implemented on the form, where its
contents are signed on the client and validated on the server.

Incident: Hidden Parameter Boolean True The user submitted the form and the value of the injected

Manipulation parameter is not what was expected.

Incident: Hidden Input Type Boolean True The user submitted the form and the value of the injected

Manipulation parameter is not what was expected. It was also modified

to post a file.

Honeypot Processors: Hidden Input Form Processor: Incident - Parameter Type
Manipulation

Complexity: High (4.0)
Default Response: 1x = Permanent Clear Inputs.

Cause: WebApp Secure inspects outgoing traffic for HTML forms with a "POST" method
type. Forms that post to a local URL (within the same domain), will be modified to include
a fake hidden input with a defined value. The input is intended to look as though it was
always part of the form, and is often selected to appear vulnerable (such as naming the
input 'debug' or 'loglevel' and giving it a numerical or Boolean value). The input will
however, always be assigned a value that can be represented as a string of characters
(in other words, not binary data). The "Parameter Type Manipulation" incident is triggered
whenever the fake hidden input is modified from its originally assigned value in order to
submit a multipart file.

Copyright © 2014, Juniper Networks, Inc. 199

WebApp Secure 5.5

Behavior: Modifying the inputs of a page is the foundation of a large variety of attack
vectors. Basically, if you want to get the backend server to do something different, you
need to supply different input values (either by cookie, query string, URL, or form
parameters). Depending on what value the user chose for the input, the attack could fall
under large number of vectors, including "Buffer Overflow", "XSS", "Denial of Service",
"Fingerprinting", "Format String", "HTTP Response Splitting", "Integer Overflow", and
"SQL injection" among many others. Unlike a normal "Hidden Parameter Manipulation"
incident, this version is triggered when the user changes the encoding of the form and
submits the hidden input as a file post. This is likely in an attempt to either achieve a
"Buffer Overflow", or to exploit a filter evasion weakness, that might have otherwise
blocked the value being submitted. A commmon practice is to first spider the website, then
test every single input on the site for a specific set of vulnerabilities. For example, the
user might first index the site, then visit each page on the site, then test every exposed
input (cookie, query string, and form inputs) with a list of SQOL injection tests. These tests
are designed to break the resulting page if the input is vulnerable. As such, the entire
process (which caninvolve thousands of requests) can be automated and return a clean
report on which inputs should be targeted. Because WebApp Secure injects several fake
inputs, a spider that tests all inputs will eventually test the fake input as well. This means
that if thereis a large volume of thisincident, it is likely due to such an automated process.
It should be assumed that the values tested against the fake input, have also been tested
against the rest of the inputs on the site.

0 NOTE: For information on the attack types mentioned here, go to The Web
Application Security Consortium Web Site and search for the attack name to
learn more about it.

Honeypot Processors: Hidden Input Form Processor: Incident - Hidden Parameter

Manipulation

Complexity: Medium (3.0)
Default Response: 1x = Slow Connection 2-6 seconds. 2x = Logout User. 3x = Clear Inputs.

Cause: WebApp Secure inspects outgoing traffic for HTML forms with a "POST" method
type. Forms that post to a local URL (within the same domain), will be modified to include
a fake hidden input with a defined value. The input is intended to look as though it was
always part of the form, and is often selected to appear vulnerable (such as naming the
input 'debug' or 'loglevel' and giving it a numerical or Boolean value). The "Hidden
Parameter Manipulation" incident is triggered whenever the fake hidden input is modified
from its originally assigned value.

Behavior: Modifying the inputs of a page is the foundation of a large variety of attack
vectors. Basically, if you want to get the backend server to do something different, you
need to supply different input values (either by cookie, query string, URL, or form
parameters). Depending on what value the user chose for the input, the attack could fall
under large number of vectors, including "Buffer Overflow", "XSS", "Denial of Service",
"Fingerprinting", "Format String", "HTTP Response Splitting", "Integer Overflow", and
"SQL injection" among many others. A common practice is to first spider the website,

200

Copyright © 2014, Juniper Networks, Inc.

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

Chapter 13: Honeypot Processors

then test every single input on the site for a specific set of vulnerabilities. For example,
the user might first index the site, then visit each page on the site, then test every exposed
input (cookie, query string, and form inputs) with a list of SQOL injection tests. These tests
are designed to break the resulting page if the input is vulnerable. As such, the entire
process (which caninvolve thousands of requests) can be automated and return a clean
report on which inputs should be targeted. Because WebApp Secure injects several fake
inputs, a spider that tests all inputs will eventually test the fake input as well. This means
thatif thereis a large volume of thisincident, it is likely due to such an automated process.
It should be assumed that the values tested against the fake input, have also been tested
against the rest of the inputs on the site.

0 NOTE: Forinformation on the attack types mentioned here, go to The Web
Application Security Consortium Web Site and search for the attack name to
learn more about it.

Honeypot Processors: Hidden Link Processor

When trying to exploit a site, hackers will often scan the contents of the site in search of
directories and files that are of interest. Because this activity is done at the source level,
the hacker finds every file referenced, whereas when a user views a website, they can
only see the links that are visible according to the HTML. This processor injects a fake
link into documents that references a file that looks interesting. The link is injected in
such a way that prevents it from being rendered when the browser loads the page. This
means that no normal user would ever find/click on the link, but that a scanner or hacker
who is looking at the source code likely will.

Table 23: Hidden Link Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this
processor.

Advanced

Hidden Links Configurable Hidden Links The set of hidden links that can be injected into
the site.

Inject Link Enabled Boolean True Whether to inject the link into HTTP responses.

Incident: Link Directory Indexing Boolean True The user requested a directory index on one of the
fake parent directories of the linked file.

Incident: Link Directory Spidering Boolean True The user requested a resource inside the fake

directory of the linked file.

Copyright © 2014, Juniper Networks, Inc. 201

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

WebApp Secure 5.5

Table 23: Hidden Link Processor Configuration Parameters (continued)

Parameter Type Default Value Description
Incident: Malicious Resource Boolean True The user requested the fake linked resource.
Request

Honeypot Processors: Hidden Link Processor: Incident - Link Directory Indexing

Complexity: Low (2.0)
Default Response: 1x = Slow Connection 2-6 seconds and 1 day Block.

Cause: WebApp Secure injects a hidden link into pages on the protected web application.
This link is not exposed visually to users of the website. In order to find the link, a user
would need to manually inspect the source code of the page. If a user finds the hidden
link code in the HTML, and attempts to get a directory file listing from the directory the
link points to, this incident will be triggered.

Behavior: A common technique for hackers when scoping the attack surface of a website
is to spider the site and collect the locations of all of its pages. This is generally done
using a simple script that looks for URL's in the returned HTML of the home page, then
requests those pages and checks for URL's in their source, and so forth. Legitimate search
engine spiders will do this as well. But the difference between a legitimate spider and a
malicious user, is how aggressively they will use the newly discovered URL to derive other
URLs. This incident triggers when the user goes beyond just checking the linked URL, but
instead also attempts to get a file listing from the directory the URL points to. A legitimate
spider would not do this, because it is considered fairly invasive. This activity is generally
looking for a "Directory Indexing" weakness on the server, in an effort to locate unlinked
and possibly sensitive resources.

Honeypot Processors: Hidden Link Processor: Incident - Link Directory Spidering

Complexity: Low (2.0)
Default Response: 1x = Slow Connection 2-6 seconds and 5 day Block in 6 minutes.

Cause: WebApp Secure injects a hidden link into pages on the protected web application.
This link is not exposed visually to users of the website. In order to find the link, a user
would need to manually inspect the source code of the page. If a user finds the hidden
link code in the HTML, and attempts to request some other arbitrary file in the same fake
directory as the link, this incident will be triggered.

Behavior: A common technique for hackers when scoping the attack surface of a website
is to spider the site and collect the locations of all of its pages. This is generally done
using a simple script that looks for URL's in the returned HTML of the home page, then
requests those pages and checks for URL's in their source, and so forth. Legitimate search
engine spiders will do this as well. But the difference between a legitimate spider and a
malicious user, is how aggressively they will use the newly discovered URL to derive other
URLs. This incident triggers when the user goes beyond just checking the linked URL, but
instead also attempts to request one or more arbitrary files inside the same directory as

202

Copyright © 2014, Juniper Networks, Inc.

Chapter 13: Honeypot Processors

the file referenced by the hidden link. A legitimate spider would not do this, because it is
considered fairly invasive. This activity is generally looking for a "Directory Indexing"
weakness on the server, or a "Predictable Resource Location" vulnerability, in an effort
to locate unlinked and possibly sensitive resources.

o NOTE: For information on the attack types mentioned here, go to The Web
Application Security Consortium Web Site and search for the attack name to
learn more about it.

Honeypot Processors: Hidden Link Processor: Incident - Malicious Resource Request

Complexity: Suspicious (1.0)
Default Response: 1x = Slow Connection 2-6 seconds and 5 day Block in 6 minutes.

Cause: WebApp Secure injects a hidden link into pages on the protected web application,
which is only discoverable through manual source code inspection. If a user discovers
the hidden link, and attempts to request the file it references, this incident will be triggered.

Behavior: When scoping the attack surface of a website, hackers commonly spider the
siteand collect the locations of all pages. Spidering can be performed with the assistance
of simple scripts that look for URLs in the returned HTML of the home page, then request
those pages and check for URLs in their source, and so forth. Legitimate search engine
spiders will do this as well — but the difference between legitimate spiders and malicious
users liesin how aggressively they will use the newly discovered URL to derive other URLSs.
This incident triggers when the user simply requests the hidden link URL. Because this
can also be triggered by a legitimate search engine spider, this type of incident is not
considered malicious on its own.

Honeypot Processors: Query String Processor

Hackers tend to manipulate the values of query string parameters in order to get the
application to behave differently. The goal of this processor is to add fake query string
parameters to some of the links and forms in the page, and verify that they do not get
modified when accessed by the user.

Table 24: Query String Processor Configuration Parameters Parameter Type Default Value
Description

Default
Parameter Value Description
Basic
Processor Enabled Boolean True Whether traffic should be passed through this processor.
Advanced

Copyright © 2014, Juniper Networks, Inc. 203

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

WebApp Secure 5.5

Table 24: Query String Processor Configuration Parameters Parameter Type Default Value
Description (continued)

Default

Parameter Value Description

Fake Parameters Collection Collection The collection of fake parameters to add to the links which already
have parameters.

Inject Parameter Boolean True Whether to inject query string parameters on URLs in HTTP responses.
Enabled

Maximum Injections Integer 3 Whether to inject query string parameters on URLs in HT TP responses.
Randomization Token String [Not Set] Some websites use complex redirection rules or modify query string

parameters of static links using javascript on the client. In these
situations, the randomization of fake query parameter values can be
problematic. To resolve the issue, you can either update the list of fake
parameters so that it does not include randomized tokens, or you can
define arandomization token name here. If you define a randomization
token, then the data used to randomize which value is selected will be
transfered as an additional query string parameter by this name. It is
recommended that you leave this field empty unless you experience
a lot of fake positives on query parameter manipulation incidents
shortly after setting up Webapp Secure to protect a website.

Strip Fake Input Boolean True Whether to remove the fake input value from the query string before
proxying the request to the backend servers. This should only be turned
off if there is some additional security implemented on the site, where
links are signed on the client and validated on the server.

Incident: Query Boolean True The user manually modified the value of a query string parameter.
Parameter Manipulation

Honeypot Processors: Query String Processor: Incident - Query Parameter Manipulation

Complexity: Low (2.0)
Default Response: 3x = Slow Connection 2-6 seconds. 5x = 1day Clear Inputs.

Cause: WebApp Secure injects a fake query parameter into some of the links of the
protected website. This query parameter has a known value, and should never change,
becauseitis not part of the actual web application. If a user modifies the query parameter
value, this incident will be triggered.

Behavior: Query parameters represent the most visible form of user input a web application
exposes. They are clearly visible in the address bar, and can be easily changed by even
an inexperienced user. However most users do not attempt to change values directly in
the query string, unless they are trying to perform some action the website does not
normally expose through its interface, or does not make sufficiently easy. Because it is
so easy for a normal user to accidentally change a query parameter, this incident alone
is not considered strictly malicious. However depending on the value that is submitted,
this could be part of a number of different exploit attempts, including "Buffer Overflow",

204 Copyright © 2014, Juniper Networks, Inc.

Chapter 13: Honeypot Processors

"XSS", "Denial of Service", "Fingerprinting", "Format String", "HT TP Response Splitting",
"Integer Overflow", and "SOL injection".

o NOTE: Forinformation on the attack types mentioned here, go to The Web
Application Security Consortium Web Site and search for the attack name to
learn more about it.

Honeypot Processors: Robots Processor

The Robots.txt proxy processor is responsible for catching malicious spiders that do not
behave in accordance with established standards for spidering. Hackers often utilize the
extra information sites expose to spiders, and then use that information to access
resources normally not linked from the public site. Because this activity is effectively
breaking established standards for spidering, this processor will also identify hackers
who are using the information maliciously.

Table 25: Robots Processor Configuration Parameters

Parameter Type Default Value | Description

Basic

Processor Enabled Boolean Boolean True Whether traffic should be passed through this processor.
Advanced

Fake Disallowed Directories String Random The path to a fake directory to add to the disallow rules in

the robots.txt file. This path should be completely fake
and not overlap with actual directories.

Incident: Malicious Spider
Activity

Boolean True The user requested a resource which was restricted in the
spider rules file, indicating this user is not a good spider,
but is spidering the site anyway.

Honeypot Processors: Robot Processor: Incident - Malicious Spider Activity

Complexity: Low (2.0)
Default Response: 1x = Captcha and Slow Connection 2-6 seconds. 6x = 1 day Block.

Cause: One of the standard resources that just about every website should expose is
called robots.txt. This resource is used by search engines to instruct them on how to
spider the website. Two of the more important directives are "allow" and "disallow".
These directives are used to identify which directories a spider should index, and which
directories it should stay away from. Good practice for any website is to lock down any
resource that should not be exposed. However some web masters simply add a "disallow"
statement so that those resources do not get indexed and therefore are never found by
users. This technigue does not work, because attackers will often access robots.txt and
intentionally traverse the "disallow" directories in search of vulnerabilities. So in effect,

Copyright © 2014, Juniper Networks, Inc. 205

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

WebApp Secure 5.5

the listing of such directories is basically pointing hackers in the direction of the most
sensitive resources on the site. WebApp Secure will intercept requests for robots.txt and
either generate a completely fake robots.txt file (if one does not exist), or modify the
existing version by injecting a fake directory as a disallow directive. The "Malicious Spider
Activity" incident is triggered whenever a user attempts to request a resource in the fake
disallow directory, or attempts to perform a directory index on the disallow directory.

Behavior: Requesting robots.txt occurs in two different scenarios. The first is where a
legitimate spider, such as Google, attempts to index the website. In this case, the robots.txt
file will be requested, and no requests from that client will be issued to the disallow
directories. In the second scenario, a malicious user requests robots.txt and then indexes
some or all of the disallow directories. In this specific case, the user has requested
robots.txt to obtain the list of disallow directories, and then started searching for resources
in those directories. This activity is performed to find a "Predictable Resource Location"
vulnerability. Because spidering a directory tends to be a noisy process (lots of requests),
there are likely to be many of these incidents if there are any. The sum of occurrences of
this incident represent the type of activity the user is performing to index a directory. The
set of URL's for which this incident is triggered, represent the filenames the malicious
user is testing for. For example, if they were searching for PDF files that contain stock
information, there would be an incident for each filename with a PDF extension they tried
torequest. Thereisavery strong chance that if the filename was requested in the disallow
directory, it was probably requested in every other directory on the site as well. This type
of behavior is generally observed while the client is attempting to establish the overall
attack surface of the website (or in the case of a legitimate spider, they are attempting
to establish the desired index limitations).

206

Copyright © 2014, Juniper Networks, Inc.

CHAPTER 14

Activity Processors

Activity Processors on page 208

Activity Processors: Custom Authentication Processor: Incident - Auth Input Parameter
Tampering on page 209

Activity Processors: Custom Authentication Processor: Incident - Auth Query Parameter
Tampering on page 210

Activity Processors: Custom Authentication Processor: Incident - Auth Cookie
Tampering on page 210

Activity Processors: Custom Authentication Processor: Incident - Authentication Brute
Force on page 211

Activity Processors: Custom Authentication Processor: Incident - Auth Invalid
Login on page 211

Activity Processors: Cookie Protection Processor on page 212

Activity Processors: Cookie Protection Processor: Incident - Application Cookie
Manipulation on page 213

Activity Processors: Error Processor on page 213

Activity Processors: Error Processor: Incident - Illegal Response Status on page 218
Activity Processors: Error Processor: Incident - Suspicious Response Status on page 219
Activity Processors: Error Processor: Incident - Unexpected Response Status on page 219

Activity Processors: Error Processor: Incident - Unknown Common Directory
Requested on page 220

Activity Processors: Error Processor: Incident - Unknown User Directory
Requested on page 220

Activity Processors: Error Processor: Incident - Common Directory
Enumeration on page 221

Activity Processors: Error Processor: Incident - User Directory Enumeration on page 221
Activity Processors: Error Processor: Incident - Resource Enumeration on page 222
Activity Processors: Header Processor on page 223

Activity Processors: Header Processor: Incident - Duplicate Request Header on page 224
Activity Processors: Header Processor: Incident - Duplicate Response Header on page 225

Activity Processors: Header Processor: Incident - Illegal Request Header on page 225

Copyright © 2014, Juniper Networks, Inc. 207

WebApp Secure 5.5

« Activity Processors: Header Processor: Incident - lllegal Response Header on page 226
« Activity Processors: Header Processor: Incident - Missing All Headers on page 226

« Activity Processors: Header Processor: Incident - Missing Host Header on page 227

« Activity Processors: Header Processor: Incident - Missing Request Header on page 227
« Activity Processors: Header Processor: Incident - Missing Response Header on page 228
« Activity Processors: Header Processor: Incident - Missing User Agent Header on page 228
« Activity Processors: Header Processor: Incident - Request Header Overflow on page 228

« Activity Processors: Header Processor: Incident - Unexpected Request
Header on page 229

« Activity Processors: Method Processor on page 229
« Activity Processors: Method Processor: Incident - lllegal Method Requested on page 230

« Activity Processors: Method Processor: Incident - Unexpected Method
Requested on page 231

« Activity Processors: Method Processor: Incident - Missing HTTP Protocol on page 232

« Activity Processors: Method Processor: Incident - Unknown HT TP Protocol on page 232

Activity Processors

The custom authentication processor is designed to add strong and secure authentication
to any page in the protected application. The authentication processor also logs malicious
activity like invalid logins and modifying cookies or query parameters.

Table 26: Custom Authentication Processor Configuration Parameters

Default

Parameter Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this processor.

User Accounts Collection [collection:0] The list of valid user accounts to use for this processor.

Advanced

Auth Cookie Name String Random The name of the authentication cookie.

Login Page Timeout Integer 10 Minutes The number of seconds a login page can be used before it
times out. This is intended to prevent attacks based on
watching network traffic. It should be as short as is tolerable.

MDS5 Script Name String Random The name of the Javascript resource that contains the MD5
code.

Session Timeout Integer 1Hour The number of seconds a session can be idle before it times
out.

208 Copyright © 2014, Juniper Networks, Inc.

Chapter 14: Activity Processors

Table 26: Custom Authentication Processor Configuration Parameters (continued)

Parameter

Default

Value Description

Incident: Auth Cookie
Tampering

Boolean True The user has modified the cookie used to manage custom
authentication, probably in an attempt to expose sensitive
information or bypass access restrictions.

Incident: Auth Input
Parameter Tampering

Boolean True The user has modified the parameters used to manage custom
authentication, probably in an attempt to expose sensitive
information or bypass the authentication mechanism.

Incident: Auth Invalid Login

Boolean True The user has attempted to login but supplied invalid
credentials, this could be perfectly normal, but large numbers
of this type of incident would indicate a brute force attack.

Incident: Auth Query
Parameter Tampering

Boolean True The user has modified the query parameters that were
submitted when the user was asked to originally login. This
is likely in an attempt to probe the authentication mechanism
for exploits.

Activity Processors:

Tampering

Custom Authentication Processor: Incident - Auth Input Parameter

Complexity: Medium (3.0)
Default Response: 3x = Warn User, 5x = Captcha. 9x = 1day Clear Inputs.

Cause: WebApp Secure provides the capability of password protecting any URL on the
protected site. This means that if a user attempts to access that URL, they will be
prompted to enter a username and password before the original request is allowed to
be completed. This incident is triggered when a user attempts to manipulate the hidden
form parameters used to handle authentication.

Behavior: Manipulating hidden input fields in a form, for whatever reason is generally
considered malicious. In this case, because the form is being used to password protect
aresource, it is likely that the attacker is trying to bypass the authentication by finding a
vulnerability in the authentication mechanism. Depending on the modified value they
submit, they could be attempting to launch a "Buffer Overflow", "XSS", "Denial of Service",
"Fingerprinting", "Format String", "HT TP Response Splitting", "Integer Overflow", or "SOL
injection" attack among many others.

o NOTE: Forinformation on the attack types mentioned here, go to The Web
Application Security Consortium Web Site and search for the attack name to
learn more about it.

Copyright © 2014, Juniper Networks, Inc. 209

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

WebApp Secure 5.5

Activity Processors: Custom Authentication Processor: Incident - Auth Query Parameter

Tampering

Complexity: Low (2.0)
Default Response: 1x = Warn User. 2x = 1day Clear Inputs.

Cause: WebApp Secure provides the capability of password protecting any URL on the
protected site. This means that if a user attempts to access that URL, they will be
prompted to enter a username and password before the original request is allowed to
be completed. This incident is triggered when a user attempts to manipulate the query
parameters that were submitted with the original unauthenticated request, after
authentication has been completed.

Behavior: Manipulating query parameters after authenticating is not very easy to do
without a third party tool, and has no legitimate purpose. As such, this type of behavior
is most likely related to a user who is trying to smuggle a malicious payload through a
network or web firewall. Depending on the value the user submits for the modified query
string, they could be attempting a "Buffer Overflow", "XSS", "Denial of Service",
"Fingerprinting", "Format String", "HT TP Response Splitting", "Integer Overflow", or "SOL
injection" attack among many others. One interesting note is that the user has actually
authenticated in order to cause this incident. As such, it is also likely that the account for
which the user authenticated has been compromised and should be updated (with a
new password). Although it is possible that the true owner of the account has executed
the malicious action, and should therefore potentially be banned.

o NOTE: For information on the attack types mentioned here, go to The Web
Application Security Consortium Web Site and search for the attack name to
learn more about it.

Activity Processors: Custom Authentication Processor: Incident - Auth Cookie

Tampering

Complexity: Medium (3.0)
Default Response: 1x = Warn User, 2x = Captcha. 3x = 1 day Strip Inputs.

Cause: WebApp Secure provides the capability of password protecting any URL on the
protected site. This means that if a user attempts to access that URL, they will be
prompted to enter a username and password before the original request is allowed to
be completed. This incident is triggered when a user attempts to manipulate the cookie
used to maintain the authenticated session once the user logs in.

Behavior: Manipulating cookies is not easy to do without a third party tool, and has no
legitimate purpose. As such, this type of behavior is most likely related to a user who is
trying to perform a "Credential/Session Prediction" attack, or execute an input based
attack such as a "Buffer Overflow", "XSS", "Denial of Service", "Fingerprinting", "Format
String", "HTTP Response Splitting", "Integer Overflow", or "SQL injection" attack among

210

Copyright © 2014, Juniper Networks, Inc.

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

Chapter 14: Activity Processors

many others. One interesting note is that the user has actually authenticated in order to
cause this incident. As such, it is also likely that the account for which the user
authenticated has been compromised and should be updated (with a new password).
Although it is possible that the true owner of the account has executed the malicious
action, and should therefore potentially be banned.

0 NOTE: For information on the attack types mentioned here, go to The Web
Application Security Consortium Web Site and search for the attack name to
learn more about it.

Activity Processors: Custom Authentication Processor: Incident - Authentication Brute
Force

Complexity: Medium (3.0)
Default Response: 1x = Captcha. 2x = 1 day Block.

Cause: WebApp Secure provides the capability of password protecting any URL on the
protected site. This means that if a user attempts to access that URL, they will be
prompted to enter a username and password before the original request is allowed to
be completed. This incident is triggered when a user submits a large volume of invalid
username and password combinations.

Behavior: Submitting a single invalid username or password is likely a user typo, and is
not necessarily malicious. However it does represent a security event, and a large number
of these events can represent a more serious threat such as "Brute Force". It is possible
however, that the invalid username or password might also be an attack vector targeted
at the authentication mechanism such as a "Buffer Overflow", "XSS", "Denial of Service",
"Fingerprinting", "Format String", "HT TP Response Splitting", "Integer Overflow", or "SOL
injection" attack among many others. This incident is a higher level incident that gets
tripped when dozens of "Auth Invalid Login" incidents are created. As such, it does not
contain much information about the actual accounts being targeted. If more detail is
desired, the underlying "Auth Invalid Login" incidents should be reviewed. These incidents
are only suspicious (not considered malicious on their own), so the filtering option will
need to be set to show non malicious incidents.

0 NOTE: For information on the attack types mentioned here, go to The Web
Application Security Consortium Web Site and search for the attack name to
learn more about it.

Activity Processors: Custom Authentication Processor: Incident - Auth Invalid Login

Complexity: Suspicious (1.0)

Default Response: 20x = Authentication Brute Force Incident.

Copyright © 2014, Juniper Networks, Inc. 21

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

WebApp Secure 5.5

Cause: WebApp Secure provides the capability of password protecting any URL on the
protected site. This means that if a user attempts to access that URL, they will be
prompted to enter a username and password before the original request is allowed to
be completed. This incident is triggered when a user submits an invalid username or
password. Thisincident alone is not necessarily malicious, as it is possible for a legitimate
user to accidentally type their username or password incorrectly.

Behavior: Submitting a single invalid username or password is likely a user typo, and is
not necessarily malicious. However it does represent a security event, and a large number
of these events can represent a more serious threat such as "Brute Force". It is possible
however, that the invalid username or password might also be an attack vector targeted
at the authentication mechanism such as a "Buffer Overflow", "XSS", "Denial of Service",
"Fingerprinting", "Format String", "HT TP Response Splitting", "Integer Overflow", or "SOL
injection" attack among many others. So if the value specified for the username and
password does not look like a legitimate username and password (they are too long, or
contain unusual characters), then this incident can be more serious. However, even in
this case, the user is more likely to submit dozens of invalid credentials (not just one),
and there is a different incident for that scenario.

0 NOTE: For information on the attack types mentioned here, go to The Web
Application Security Consortium Web Site and search for the attack name to
learn more about it.

Activity Processors: Cookie Protection Processor

This processor is responsible for protecting a set of application cookies from modification
or assignment by the user.

Table 27: Cookie Protection Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this processor.

Protected Cookies Collection Collection The name of the protected cookie.

Advanced

Protected Cookie Signature String Random The suffix to add to the protected cookie names when

Suffix generating a signature cookie. For example, if the
protected cookie is PHPSESSID and the suffix is_MX, then
the signature for PHPSESSID would be in a cookie named
PHPSESSID_MX.

Incident: Application Cookie Boolean True The user either attempted to modify one of the protected

Manipulation

cookies, or attempted to assign a new value.

212

Copyright © 2014, Juniper Networks, Inc.

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

Chapter 14: Activity Processors

Activity Processors: Cookie Protection Processor: Incident - Application Cookie
Manipulation

Complexity: Low (2.0)
Default Response: 1x = Warn User and Logout User. 2x = 5 day Clear Inputs.

Cause: WebApp Secure is designed to provide additional protection to cookies used by
the web application for tracking user sessions. This is done by issuing a signature cookie
any time the web application issues a "protected cookie" (which cookies to protect is
defined in configuration). The signature cookie ties the application cookie (such as
PHPSESSID) to the WebApp Secure session cookie. If any of the 3 cookies are modified
(WebApp Secure session cookie, signature cookie, or the actual application cookie), then
this incident will be triggered, and the application cookie will be terminated (effectively
terminating the users session). This prevents any users from manually creating a session
cookie, hijacking another users cookie, or manipulating an existing cookie.

Behavior: Manipulation of cookies is generally performed in order to hijack another user's
session. However because cookies represent another type of application input,
modifications could also be performed to attempt other exploits. If the modified value
resembles a legitimate value for the application cookie, then this is likely a session hijacking
attempt. If the cookie contains other values that are clearly not valid, then it is more then
likely an attack on generic application inputs such as a "Buffer Overflow", "XSS", "Denial
of Service", "Fingerprinting", "Format String", "HTTP Response Splitting", "Integer
Overflow", and "SOQL injection" attack among many others.

o NOTE: For information on the attack types mentioned here, go to The Web
Application Security Consortium Web Site and search for the attack name to
learn more about it.

Activity Processors: Error Processor

Errors and their contents play a big part in hacking a website. When a hacker obtains an
error message, it provides useful information, the very least of which is that the attacker
found a way to do something unintended in the web application and the server executed
code tohandleit. As such, when a user attempts to hack a website, they frequently induce
and receive error messages. Often these error messages are very unusual and are not
common when a normal user visits the site. For example, the error code 400 (Bad
Request) isreturned when the raw data in a request does not follow the HTTP standards.
While it is possible to get a 400 error by typing invalid characters into the URL, the majority
of these errors are caused by third party software (usually not a browser), improperly
communicating with the server. A hacker might for example, manually construct a
malicious request and forget to include the "Host" header. The goal of this processor is
to record unusual and unexpected errors as incidents. This processor will also monitor
all 404 errors and attempt to identify Commmon Directory Enumeration and User Directory
Enumeration.

Copyright © 2014, Juniper Networks, Inc. 213

http://projects.webappsec.org/w/page/13246927/FrontPage
http://projects.webappsec.org/w/page/13246927/FrontPage

WebApp Secure 5.5

Table 28: Error Processor Configuration Parameters

Parameter Type Default Value Description
Basic
Processor Enabled Boolean True Whether traffic should be

passed through this processor.

Legitimate Error Detection Boolean True Whether to attempt to

Enabled identify errorsin the protected
web applications so that they
can be ignored.

Advanced

Error Cache Expiration Integer 43200 (12 hours) The number of seconds to
cache an error condition so
that subsequent matching
error conditions from other
users can be identified. The
less traffic the site sees on a
regular basis, the higher this
value must be. The
recommended default is for
sites that see several
thousand users a day or more.

Error Cache Size Integer 50 The number of error
conditions to cache for each
level of specificity. If too many
error conditions are
encountered in a short period
of time, this will prevent the
tracking code from consuming
too much memory. Errors at
the full URL with query string
specificity will cache this
many conditions, at the URL
only level it will cache twice
this many, and at the filename
level, it will cache 3 times as
many as this value.

Filename Only Expiration Integer 259200 (3 days) The number of seconds that
an error must not be
encountered on a filename
regardless of its location
before an ignored error starts
being recorded again.

214 Copyright © 2014, Juniper Networks, Inc.

Chapter 14: Activity Processors

Table 28: Error Processor Configuration Parameters (continued)

Parameter

Filename Only Threshold

Type

Integer

Default Value

70

Description

The maximum number of
unique users who can hit a
specific filename, regardless
of location, and get the same
error before it stops being
recorded as suspicious (zero
= do not track based on
filename).

URL With Query Expiration

Integer

259200 (3 days)

The number of seconds that
an error must not be
encountered on the full URL
with query string before an
ignored error starts being
recorded again.

URL With Query Threshold

Integer

30

The maximum number of
unigue users who can hit a full
URL including query string and
get the same error before it
stops being recorded as
suspicious (zero = do not
track based on full URL).

URL Without Query Expiration

Integer

259200 (3 days)

The number of seconds that
an error must not be
encountered on the URL
excluding query string before
an ignored error starts being
recorded again.

URL Without Query Threshold

Integer

50

The maximum number of
unique users who can hit a
URL excluding query string
and get the same error before
it stops being recorded as
suspicious (zero = do not
track based on URL).

100 Continue

Configurable

HTTP Status Codes

Continue.

101 Switching Protocols

Configurable

HTTP Status Codes

Switching Protocols.

102 Processing

Configurable

HTTP Status Codes

Processing.

300 Multiple Choices

Configurable

HTTP Status Codes

Multiple Choices.

301 Moved Permanently

Configurable

HTTP Status Codes

Moved Permanently.

302 Found

Configurable

HTTP Status Codes

Found.

303 See Other

Configurable

HTTP Status Codes

See Other.

Copyright © 2014, Juniper Networks, Inc.

215

WebApp Secure 5.5

Table 28: Error Processor Configuration Parameters (continued)

Parameter Type Default Value Description

304 Not Modified Configurable HTTP Status Codes Not Modified

305 Use Proxy Configurable HTTP Status Codes Use Proxy.

306 Switch Proxy Configurable HTTP Status Codes Switch Proxy.

307 Temporary Redirect Configurable HTTP Status Codes Switch Proxy.

400 Bad Request Configurable HTTP Status Codes Bad Request

401 Unauthorized Configurable HTTP Status Codes Unauthorized.

402 Payment Required Configurable HTTP Status Codes Payment Required.

403 Forbidden Configurable HTTP Status Codes Forbidden

404 Not Found Configurable HTTP Status Codes Not Found

405 Method Not Allowed Configurable HTTP Status Codes Not allowed.

406 Not Acceptable Configurable HTTP Status Codes Not acceptable.

407 Proxy Authentication Configurable HTTP Status Codes Proxy Authentication Required
Required

408 Reqguest Timeout Configurable HTTP Status Codes Request Timeout.

409 Conflict Configurable HTTP Status Codes Conflict.

410 Gone Configurable HTTP Status Codes Gone.

411 Length Required Configurable HTTP Status Codes Length Required.

412 Precondition Failed Configurable HTTP Status Codes Precondition Failed.

413 Request Entity Too Large Configurable HTTP Status Codes Request Entity Too Large.
414 Request-URI Too Long Configurable HTTP Status Codes Request-URI Too Long.
415 Unsupported Media Type Configurable HTTP Status Codes Unsupported Media Type.
416 Requested Range Not Configurable HTTP Status Codes Requested Range Not
Satisfiable Satisfiable.

417 Expectation Failed Configurable HTTP Status Codes Expectation Failed.

418 I'm a teapot Configurable HTTP Status Codes 418 I'm a teapot

216

Copyright © 2014, Juniper Networks, Inc.

Chapter 14: Activity Processors

Table 28: Error Processor Configuration Parameters (continued)

Parameter Type Default Value Description

422 Unprocessable Entity Configurable HTTP Status Codes Unprocessable Entity.

423 Locked Configurable HTTP Status Codes Locked.

424 Failed Dependency Configurable HTTP Status Codes Failed Dependency.

425 Unordered Collection Configurable HTTP Status Codes Unordered Collection

426 Upgrade Required Configurable HTTP Status Codes Upgrade Required

449 Retry With Configurable HTTP Status Codes Retry With

450 Blocked by Windows Configurable HTTP Status Codes Blocked by Windows Parental
Parental Controls Controls.

500 Internal Server Error Configurable HTTP Status Codes Internal Server Error

501 Not Implemented Configurable HTTP Status Codes Not Implemented

502 Bad Gateway Configurable HTTP Status Codes Bad Gateway

503 Service Unavailable Configurable HTTP Status Codes Service Unavailable

504 Gateway Timeout Configurable HTTP Status Codes Gateway Timeout

505 HTTP Version Not Configurable HTTP Status Codes HTTP Version Not Supported
Supported

506 Variant Also Negotiates ~ Configurable HTTP Status Codes Variant Also Negotiates

507 Insufficient Storage Configurable HTTP Status Codes Insufficient Storage

509 Bandwidth Limit Configurable HTTP Status Codes Bandwidth Limit Exceeded
Exceeded

510 Not Extended Configurable HTTP Status Codes Not Extended

Incident: Illegal Response Boolean True The userissued arequest that

Status

resulted in an error status
code that is considered
suspicious and possibly
malicious.

Copyright © 2014, Juniper Networks, Inc.

217

WebApp Secure 5.5

Table 28: Error Processor Configuration Parameters (continued)

Parameter

Incident: Suspicious
Response Status

Type

Boolean

Default Value

True

Description

The userissued arequest that
resulted in a known error

status code generally involved
in malicious behavior. On its
own this is not enough to
classify abuse, but patterns of
this indicator can lead to
higher level malicious
incidents.

Incident: Unexpected
Response Status

Boolean True The userissued arequest that
resulted in an unknown error
status code and could

represent a successful exploit.

Incident: Unknown Common Boolean True
Directory Requested

The user has requested a
directory that does not exist.
The directory is in a list of
common directory names, so
itis likely that this request is
in an attempt to find a
directory that is not linked
from the site.

Incident: Unknown User
Directory Requested

The user has requested a
directory for a specific system
user that does not exist. The
username is in a list of
common usernames, so it is
likely that this request is in an
attempt to identify a user
account thatis not linked from
the site.

Boolean True

Activity Processors: Error Processor: Incident - Illegal Response Status

Complexity: Suspicious (1.0)
Default Response: None.

Cause: WebApp Secure monitors the various status codes returned by the protected
website and compares them to a configurable list of know and acceptable status codes.
Some status codes are expected during normal usage of the site (such as 200 - OK, or
403 - Not Modified), but some status codes are much less common for a normal user
(such as 500 - Server Error, or 404 - File Not Found). When a user issues a request that
results in a status code that is marked as Suspicious or Illegal in this parameter, the
corresponding incident is triggered. If the code is not in this collection, the Unknown
incident is triggered.

Behavior: In the process of attempting to find vulnerabilities on a webserver, hackers will
often encounter errors. Just a single error or two is likely not a problem, because even

218

Copyright © 2014, Juniper Networks, Inc.

Chapter 14: Activity Processors

legitimate users accidentally type a URL incorrectly on occasion. However when excessive
numbers of unexpected status codes are returned, the behavior of the user can be
narrowed down and classified as malicious. The actual vulnerability an attacker is looking
for, can be identified through the status codes they are being returned. For example, if
the user is getting a lot of 404 errors, they are likely searching for unlinked files
("Predictable Resource Location"). If the user is getting a lot of 500 errors, they can be
trying to establish a successful "SQL Injection" or "XSS150" vulnerability.

Activity Processors: Error Processor: Incident - Suspicious Response Status

Complexity: Suspicious (1.0)
Default Response: 10x 404 = Resource Enumeration Incident.

Cause: WebApp Secure monitors the various status codes returned by the protected
website and compares them to a configurable list of know and acceptable status codes.
Some status codes are expected during normal usage of the site (such as 200 - OK, or
403 - Not Modified), but some status codes are much less common for a normal user
(such as 500 - Server Error, or 404 - File Not Found). When a user issues a request that
results in a status code that is marked as Suspicious or Illegal in this parameter, the
corresponding incident is triggered. If the code is not in this collection, the Unknown
incident is triggered.

Behavior: In the process of attempting to find vulnerabilities on a webserver, hackers will
often encounter errors. Just a single error or two is likely not a problem, because even
legitimate users accidentally type a URL incorrectly on occasion. However when excessive
numbers of unexpected status codes are returned, the behavior of the user can be
narrowed down and classified as malicious. The actual vulnerability the attacker is looking
for can be identified through the status codes they are being returned. For example, if
the user is getting a lot of 404 errors, they are likely searching for unlinked files
("Predictable Resource Location"). If the user is getting a lot of 500 errors, they can be
trying to establish a successful "SQL Injection" or "XSS" vulnerability. In the case of this
incident, the user is getting an unexpected status code. This is likely because of a bug in
the web application which the user has found and is attempting to exploit. The URL this
incident is created for, should be reviewed to determine why it would be responding with
a non standard status code. If the status code is intentionally non-standard, but is
acceptable behavior, then the custom status code should be added to the list of known
and accepted status codes in config.

Activity Processors: Error Processor: Incident - Unexpected Response Status

Complexity: Suspicious (1.0)
Default Response: None.

Cause: WebApp Secure monitors the various status codes returned by the protected
website and compares them to a configurable list of known and acceptable status codes.
Some status codes are expected during normal usage of the site (such as "200 OK" or
"304 Not Modified"), but some status codes are much less common for a normal user
(such as "500 Internal Server Error" or "404 Not Found"). When a user issues a request

Copyright © 2014, Juniper Networks, Inc. 219

WebApp Secure 5.5

Activity Processors:

which results in a status code that is not known and does not have any associated
configuration, this incident will be triggered.

Behavior: In the process of attempting to find vulnerabilities on a webserver, hackers will
often encounter errors. Just a single error or two is likely not a problem, because even
legitimate users accidentally type a URL incorrectly on occasion. However when excessive
numbers of unexpected status codes are returned, the behavior of the user can be
narrowed down and classified as malicious. The actual vulnerability the attacker is looking
for can be identified through the status codes they are being returned. For example, if
the user is getting a lot of 404 errors, they are likely searching for unlinked files
("Predictable Resource Location"). If the user is getting a lot of 500 errors, they can be
trying to establish a successful "SQL Injection" or "XSS" vulnerability. In the case of this
incident, the user is getting an unexpected status code. This is likely because of a bug in
the web application which the user has found and is attempting to exploit. The URL this
incident is created for, should be reviewed to determine why it would be responding with
a non standard status code. If the status code is intentionally non-standard, but is
acceptable behavior, then the custom status code should be added to the list of known
and accepted status codes in config.

Error Processor: Incident - Unknown Common Directory Requested

Activity Processors:

Complexity: Suspicious (1.0)
Default Response: 5x = Common Directory Enumeration Incident

Cause: This incident is triggered when a user requests a directory on the server that does
not exist, and that directory name is in a list of commonly used directory names (for
example: http://www.example.com/public/ where "public" is not a real directory).

Behavior: Often times, administrators will upload sensitive content onto a webserver in
an obscure location and not link to that content anywhere on the site. The assumption
is that the content is private because no one will find it. However humans are somewhat
predictable, soit's actually quite common for two administrators to pick the same
"obscure" location to place sensitive content. As such, hackers have compiled a list of
the most commonly chosen directory names where sensitive content is often stored,
and they will basically test every name in the list to see if a site has a directory by that
name. If it does, the attacker is able to locate and obtain that sensitive content. An
example of a tool that allows attackers to quickly identify hidden directories is called
"DirBuster" (https.//www.owasp.org/index.php/Category:OWASP_DirBuster_Project).

Error Processor: Incident - Unknown User Directory Requested

Complexity: Suspicious (1.0)
Default Response: 5x = User Directory Enumeration Incident

Cause: Many webservers allow the users on the system to maintain publicly accessible
web directories. These directories are generally accessible from the root directory of the
website followed by a tilde and the username. For example, if the webserver had a user
named ‘george’, that user could serve content from http://www.example.com/~george/.
This incident is triggered when an attacker requests a user directory on the server that

220

Copyright © 2014, Juniper Networks, Inc.

Chapter 14: Activity Processors

does not exist, and that user directory name is in a list of commonly used usernames (for
example: http://www.example.com/~root/ where "root" is not a real user directory).

Behavior: Often times, administrators will upload sensitive content onto a webserver in
an obscure location and not link to that content anywhere on the site. The assumption
is that the content is private because no one will find it. However humans are somewhat
predictable, so it's actually quite commmon for two administrators to pick the same
"obscure" location to place sensitive content. As such, hackers have compiled a list of
the most commonly chosen directory names where sensitive content is often stored,
and they will basically test every name in the list to see if a site has a directory by that
name. If it does, the attacker is able to locate and obtain that sensitive content. In this
specific case, the attacker is testing for default user directories for users with predictable
names (such as ‘root', ‘guest’, ‘nobody', and so on...). An example of a tool that allows
attackers to quickly identify hidden user directories is called "DirBuster"
(https://www.owasp.org/index.php/ Category:OWASP_DirBuster_Project).

Activity Processors: Error Processor: Incident - Common Directory Enumeration

Complexity: Medium (3.0)

Default Response: 1x = Slow Connection 2-6 seconds & Captcha, 2x = Slow Connection
2-6 seconds & 1day Block

Cause: This incident is triggered when a user requests a directory on the server that does
not exist, and that directory name is in a list of commonly used directory names (for
example: http://www.example.com/public/ where "public" is not a real directory).
Specifically, this incident is triggered when the user requests many different commonly
named directories, as would be the case if they were testing for a large list of possible
directory names.

Behavior: Often times, administrators will upload sensitive content onto a webserver in
an obscure location and not link to that content anywhere on the site. The assumption
is that the content is private because no one will find it. However humans are somewhat
predictable, so it's actually quite common for two administrators to pick the same
"obscure" location to place sensitive content. As such, hackers have compiled a list of
the most commonly chosen directory names where sensitive content is often stored,
and they will basically test every name in the list to see if a site has a directory by that
name. If it does, the attacker is able to locate and obtain that sensitive content. An
example of a tool that allows attackers to quickly identify hidden directories is called
"DirBuster" (https:.//www.owasp.org/index.php/Category:OWASP_DirBuster_Project).

Activity Processors: Error Processor: Incident - User Directory Enumeration

Complexity: Medium (3.0)

Default Response: 1x = Slow Connection 2-6 seconds & Captcha, 2x = Slow Connection
2-6 seconds & 1day Block

Cause: Many webservers allow the users on the system to maintain publically accessible
web directories. These directories are generally accessible from the root directory of the
website followed by a tilde and the username. For example, if the webserver had a user

Copyright © 2014, Juniper Networks, Inc. 221

WebApp Secure 5.5

named ‘george’, that user could serve content from http://www.example.com/~george/.
This incident is triggered when an attacker requests a user directory on the server that
does not exist, and that user directory name is in a list of commonly used usernames (for
example: http://www.example.com/~root/ where "root" is not a real user directory).
Specifically, thisincidentis triggered when an attacker requests many different username
directories, as would be the case if they were testing for a large list of possible usernames.

Behavior: Often times, administrators will upload sensitive content onto a webserver in
an obscure location and not link to that content anywhere on the site. The assumption
is that the content is private because no one will find it. However humans are somewhat
predictable, soit's actually quite common for two administrators to pick the same
"obscure" location to place sensitive content. As such, hackers have compiled a list of
the most commonly chosen directory names where sensitive content is often stored,
and they will basically test every name in the list to see if a site has a directory by that
name. If it does, the attacker is able to locate and obtain that sensitive content. In this
specific case, the attacker is testing for default user directories for users with predictable
names (such as ‘root’', ‘guest’, ‘nobody', and so on). An example of a tool that allows
attackers to quickly identify hidden user directories is called "DirBuster"
(https:.//www.owasp.org/index.php/ Category:OWASP_DirBuster_Project).

Activity Processors: Error Processor: Incident - Resource Enumeration

Complexity: Low (2.0)
Default Response: 1x = 5 day Block.

Cause: WebApp Secure has a list of file tokens which represent potentially sensitive files.
For example, developers will often rename source files with a ".bck" extension during
debugging, and sometimes they forget to delete the backup after they are done. Hackers
often look for these left over source files. WebApp Secure is configured to look for any
request to a file with a ".bck" extension (as well as any other configured extensions), and
trigger a Suspicious Filename incident if the file does not exist. Should the suspicious
filename incident be triggered several times, this incident will then be triggered.

Behavior: There are specific files that many websites host, that contain valuable
information for a hacker. These files generally include data such as passwords, SOL
schema's, source code, and so on. When hackers try to breach a site, they will often check
to see if they can locate some of these special files in order to make their jobs easier. For
example, if a hacker sees that the home page is called "index.php", they can try and
request "index.php.bak", because if it exists, it will be returned as raw source code. This
is usually an effort to exploit a "Predictable Resource Location68" vulnerability.
Automated scanners will generally test all of these types of extensions (.bck, .bak, .zip,
.tar, .gz, and so on...) against every legitimate file that is located through simple spidering.
The first few times a user requests a filename containing a suspicious token, they will
only get "Suspicious Filename" incidents. However if they request a large volume of
filenames with suspicious tokens, then the "Suspicious Resource Enumeration" incident
is generated. This incident represents a user who is actively scanning the site with very
aggressive tactics to find unlinked and sensitive data.

222

Copyright © 2014, Juniper Networks, Inc.

Chapter 14: Activity Processors

Activity Processors

: Header Processor

A useful technique when attacking a site is to determine what software the site is using.
This is known as fingerprinting the server. There are many methods used, but the basic
idea is to look for signatures that identify various products. For example, it might be a
known signature that Apache always lists the Date response header before the
Last-Modified response header. If very few other servers follow this same pattern, then
checking to see which header comes first could be used as a means of identifying if
Apache is being used or not. Other key methods include looking for Server or X-Powered-By
headers that actually specify the software being used. The goal of this processor is to
eliminate headers as a means of fingerprinting a server.

You can allow local machine names (non-FQDN's) in the host header by setting the
parameter engine.incidents.url_fuzzing.allow_locals to true using Expert Mode or the CLI.
By default, any HTTP 1.1 requests without a host header will be considered a URL
manipulation because of how nginx handles lack of a host header. The reason for this
difference is because the host header is required in HTTP 1.1 requests, but not required
inHTTP 1.0 requests. When the nginx proxy sends the request to security engine, it realizes
that the HTTP 1.1 request is invalid and adds host: localhost to the request. The URL
fuzzing logic considers this malicious, as a host of 'localhost' is suspicious.

e NOTE: While the goal of this processor is mainly to prevent fingerprinting, it
can also catch some malicious behavior and erroneous behavior in the
protected applications (potentially as a result of an exploit). As such, the
following incidents are recognized by the processor.

Table 29: Header Processor Configuration Parameters

Parameter

Default
Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this processor.

Advanced

Header Mixing Enabled Boolean False Whether this processor should shuffle the order of
response headers to avoid exposing identifiable
information.

Request Header Stripping Boolean False Whether this processor should strip unnecessary headers

Enabled in request packets to avoid sending malicious data to the

server.

Response Header Stripping
Enabled

Boolean False Whether this processor should strip unnecessary response
headers to avoid giving away identifiable information.

Copyright © 2014, Juniper Networks, Inc. 223

WebApp Secure 5.5

Table 29: Header Processor Configuration Parameters (continued)

Parameter

Default
Value

Description

Maximum Header Length Integer 8192 The maximum allowed length of a header in bytes. If
header stripping is enabled, then any headers that exceed
this length will be removed from the request before
proxying.

Known Request Headers Collection Collection A list of known request headers.

Known Response Headers Collection Collection A list of known Response headers.

Incident: Duplicate Request Boolean False The application returned multiple instances of the same

Header header, which it is never expected to do.

Incident: Duplicate Response Boolean False The user provided multiple instances of the same header,

Header and the header does not usually allow multiples.

Incident: Illegal Request Header = Boolean False The user provided a request header which is known to be
involved in malicious activity.

Incident: lllegal Response Header Boolean False The application returned a response header which it is
never supposed to return.

Incident: Missing All Headers Boolean True The user issued a request which has no headers at all.
This incident only triggers on HTTP 1.1 requests (not on
HTTP 1.0 requests).

Incident: Missing Host Header Boolean True The application returned a response which is missing a
required header. This incident only triggers on HTTP 1.1
requests (not on HTTP 1.0 requests).

Incident: Missing Request Header Boolean False The user issued a request which is missing a required
header.

Incident: Missing Response Boolean False The application returned a response which is missing a

Header required header.

Incident: Missing User Agent Boolean False The user issued a request which is missing a required

Header header.

Incident: Request Header Boolean True The user issued a request which contained a header that

Overflow was longer then the allowed maximum.

Incident: Unexpected Request Boolean False The user issued a request which contains an unexpected

Header

and unknown header.

Activity Processors: Header Processor: Incident - Duplicate Request Header

Complexity: Informational (0.0)

224

Copyright © 2014, Juniper Networks, Inc.

Chapter 14: Activity Processors

Default Response: None

Cause: WebApp Secure monitors all of the request headers sent from the client to the
web application. According to the HTTP RFC, no client should ever provide more the one
copy of a specific header. For example, clients should not send multiple Host headers.
However there are a few exceptions, such as the Cookie header, which can be configured
to allow multiples. If the user sends multiple headers that are not configured explicitly
to allow duplicates, then this incident will be triggered.

Behavior: Sending duplicate headers of the same type can be caused by several different
things. It is either an attempt to profile the webserver and see how it reacts, an attempt
to smuggle malicious data into the headers (because a firewall might not look at
subsequent copies of the same header), or possibly just be a poorly programmed web
client. In either case, it represents unusual activity that sets the user aside from everyone
else. It signifies that the user is suspicious and is doing something average users do not
do.

Activity Processors: Header Processor: Incident - Duplicate Response Header

Complexity: Informational (0.0)
Default Response: None

Cause: Secure monitors all of the response headers sent from the server to the client.
According to the HTTP RFC, no server should ever provide more the one copy of a specific
header. For example, servers should not send multiple "Content-Length" headers. However
there are a few exceptions, such as the "Set-Cookie" header, which can be configured
to allow multiples. If the server attempts to return multiple headers of the same type,
which are not configured explicitly to allow duplicates, then this incident will be triggered.

Behavior: The RFC does not allow for servers to return multiple headers of the same type,
with a few exceptions, such as Set-Cookie. If the server does return duplicates for a
header that normally does not support duplicates, then there is either a bug in the web
application, or the user has successfully executed a "Response Splitting158" attack. In
either case, the service located at the URL this incident is triggered for should probably
be reviewed for response splitting vulnerabilities or bugs that would cause duplicate
response headers to be returned.

Activity Processors: Header Processor: Incident - Illegal Request Header

Complexity: Suspicious (1.0)
Default Response: None.

Cause: WebApp Secure monitors all of the request headers included by clients. It has a
list of known request headers that should never be accepted. This list is configurable,
and by default, includes any headers known to be exclusively involved in malicious activity.
Should a user include one of the illegal headers, this incident will be triggered. Because
the list of illegal headers is configurable, it cannot be guaranteed that the request that
contained the header is strictly malicious, but it does signify that the client is doing
something highly unusual.

Copyright © 2014, Juniper Networks, Inc. 225

WebApp Secure 5.5

Behavior: Some HTTP headers can be used in order to get the server to do something it
isn't designed to do. For example, the "max-forwards" header can be used to specify
how many hops within the internal network the request should make beforeiit is dropped.
An attacker could use this header to identify how many network devices are between
themselves and the target webserver. Because the list of illegal headers is customizable,
the type of behavior the header relates to can vary. However this type of behavior is
generally performed when scoping the attack surface of the website.

Activity Processors: Header Processor: Incident - Illegal Response Header

Complexity: Informational (0.0)
Default Response: None.

Cause: WebApp Secure monitors all of the response headers sent to the client from the
web application. It has a list of known response headers that should never be returned.
This list is configurable, and by default, includes any headers known to compromise the
server's identity or security. Should the server return one of theillegal headers, this incident
will be triggered. Because the list of illegal headers is configurable, it cannot be guaranteed
that the request that contained the header is strictly malicious, but it does signify that
something unusual has taken place. This can even represent a hackers successful attempt
to exploit a backend service.

Behavior: There is a strict set of HTTP response headers that browsers understand and
can actually use. Any headers returned by the server outside of the standard set could
potentially expose information about the server or its software. Some headers can even
be used to execute more complex attacks. In order to protect the server in the event of
a serious issue (such as a "Response Splitting159" attack), some headers can be
configured as illegal. Because the set is configurable, it is not straight forward as to what
the actual header means or what vulnerability it might be targeted at.

Activity Processors: Header Processor: Incident - Missing All Headers

Complexity: Low (2.0)
Default Response: 1x = Slow Connection 2-6 seconds and Captcha.

Cause: Most legitimate web browsers and tools submit at least a few headers with each
HTTPrequest. Headers are used to provide valuable information to the server when trying
to construct a response, such as what type of browser the user is using, or what domain
name they are trying to access. If a user submits a request that does not contain any
headers at all, this incident will be triggered. Note that this incident only triggerson HTTP
1.1 requests (not on HTTP 1.0 requests). Also note that "X-" headers are not counted as
headers for this incident.

Behavior: Not providing any headers at all is generally an activity performed when probing
anIP toseeifitis running a webserver. The user will submit a minimal request containing
1line of text, and see if the response given back from the server isan HTTP response. If
so, the attacker has confirmed that the IP is hosting a webserver on the given port. In
many cases, the attacker will also be able to identify which webserver is running, and if

226

Copyright © 2014, Juniper Networks, Inc.

Chapter 14: Activity Processors

that webserver has any known vulnerabilities. Such information can then be used to
attack the webserver directly.

Activity Processors: Header Processor: Incident - Missing Host Header

Complexity: Low (2.0)
Default Response: 1x = Slow Connection 2-6 seconds and Captcha.

Cause: All legitimate web browsers submit a Host header with each HTTP request. The
host header contains the value entered into the address bar as the server. This could be
either the server IP address or the domain name. In either case, it will always be provided.
If a user submits a request that does not contain a Host header, this incident will be
triggered. Note that this incident only triggers on HTTP 1.1 requests (not on HTTP 1.0
requests).

Behavior: Not providing a host header is generally an activity performed when trying to
scope the attack surface of the website. Some webservers are configured to host different
websites from the same IP address, based on which domain name is supplied. Hackers
will often attempt to send a request without a host header to see if the server will serve
back a default website. If the default website is not the main website, this can provide
additional pages the attacker can attempt to exploit. This could be considered a "Server
Misconfiguration" weakness, but can also be a legitimate design choice for the webserver
and its applications. It does not necessarily expose a vulnerability as long as the default
web application is secure. Because all major browsers submit host headers on every
request, the user would need to take advantage of a more complex tool, such as a raw
dataclient, or HTTP debugging proxy to manually construct a request that does not have
a host header. As such, this activity is almost always malicious. In a few cases, some
legitimate monitoring tools can omit this header, but those tools should be added to the
trusted IP list in configuration.

Activity Processors: Header Processor: Incident - Missing Request Header

Complexity: Low (2.0)
Default Response: None.

Cause: WebApp Secure monitors all of the request headers sent from the client to the
server. It also maintains a list of headers which are required for all HTTP requests (such
as Host and User-Agent). If one of the required headers is not included in a request, this
incident will be triggered.

Behavior: Every legitimate client will always supply specific headers such as "Host" and
"User-Agent". If a client does not provide these headers, then the client is likely not a
legitimate user. There are several different cases of not legitimate clients, such as hacking
tools, manually crafted HT TP requests using something like Putty, or a network diagnostic
tool such as nagios. Because there are a few cases that are not necessarily malicious
(such as nagios), the incident itself is not necessarily malicious. It does however exclude
the user from being a legitimate web browser doing the intended actions allowed by the
web application.

Copyright © 2014, Juniper Networks, Inc. 227

WebApp Secure 5.5

Activity Processors: Header Processor: Incident - Missing Response Header

Complexity: Informational (0.0)
Default Response: None.

Cause: WebApp Secure monitors all of the response headers sent from the server to the
client. It also maintains a list of headers which are required for all HTTP responses (such
as Content-Type). If one of the required headers is not included in a response, this incident
will be triggered.

Behavior: If the serveris acting correctly, it should always return all of the required response
headers. Ifitis missing a response header, thisis likely due to a bug in the web application,
or a successfully executed "Response Splitting"attack. In either case, the service located
at the URL this incident is triggered for, should probably be reviewed for either response
splitting vulnerabilities, or bugs that would cause abnormal HTTP responses (such as
dropping the connection immediately after sending the status code).

Activity Processors: Header Processor: Incident - Missing User Agent Header

Complexity: Low (2.0)
Default Response: 1x = Slow Connection 2-6 seconds and Captcha.

Cause: Most legitimate web browsers and tools submit a User-Agent header with each
HTTPrequest. The user agent header contains information that identifies which software
the user is using to access the website, whether that software it is Googlebot, Firefox,
Safari, or another piece of software. If a user submits a request that does not contain a
User-Agent header, this incident will be triggered.

Behavior: Not providing a user-agent header is generally an activity performed trying to
evade detection. The user agent header provides identifying information that could be
used by the webserver to track requests made by the same user. It can also provide
information about the user's personal computer. Sometimes, hackers will replace the
user agent string with another user agent string that is perfectly legitimate, but for a
different environment than the one they are actually using. Some legitimate users also
take this measure as a general security practice; therefore, as long as at least some value
is submitted for the user-agent, it cannot be guaranteed to be a malicious act. However,
in the case of the header being absent, a user would have had to take advantage of a
tool or debugging proxy in order to filter the traffic. This is almost always performed
during the course of a malicious action. Some tools such as network heath monitors can
also trigger this incident, because they are doing something normal users should not do,
but they are considered trusted. In this case, the IP addresses of those tools should be
added to the configuration trusted IP whitelist.

Activity Processors: Header Processor: Incident - Request Header Overflow

Complexity: Suspicious (1.0)

Default Response: 3x = Compound Request Header Overflow Incident.

228 Copyright © 2014, Juniper Networks, Inc.

Chapter 14: Activity Processors

Cause: WebApp Secure monitors all of the request headers sent from the client to the
server. It has a configured limit that defines how long any individual header is allowed to
be. After 3 or more headers are submitted that exceed the limit, this incident will be
triggered.

Behavior: While not as commmon as form inputs or query parameter inputs, some web
applications actually use the values submitted in headers within their code base. If these
values are treated incorrectly, such as not being validated before being used in an SOL
statement, they potentially expose the same set of vulnerabilities a form input might. As
such a hacker who is attempting to execute a "Buffer Overflow162" attack might do so
by attempting to provide an excessively long value in a header. They can also use an
excessively long header value to craft a complex "SOL Injection" attack. Because the
user submitted multiple headers which exceeded the defined limit, the intentions of the
user are more likely to be malicious. It is less likely that a poorly crafted browser plug-in
would overflow multiple headers, despite the possibility that it might overflow a single
one. Because there is a possibility that a legitimate user with a poorly-written browser
plugin can cause a header of unusual length to be submitted, this incident cannot be
guaranteed to be malicious from just a single case.

Activity Processors: Header Processor: Incident - Unexpected Request Header

Complexity: Informational (0.0)
Default Response: None

Cause: WebApp Secure monitors all of the request headers included by clients. It has a
list of known request headers that should be accepted. This list includes all of the headers
defined in the HTTP RFC document, which means that if any additional headers are
passed, it is part of some non standard HTTP extension. Should a user include a non
standard header, this incident will be triggered. It is not necessarily a malicious action on
its own, but it does signify that the client is unusual in some way (and potentially
malicious) and therefore warrants additional monitoring.

Behavior: When attackers are trying to exploit a server, one of the technigues is to attempt
to profile what software the server is running. This can be partially accomplished by
observing how the server reacts to various types of headers. For example, if the attacker
knows that a specific third party web application has a feature where it behaves differently
if you send a header "X-No-Auth", then a hacker might send "X-No- Auth" to the site just
to see what happens. While this could represent a higher level attack on a specific
application; sending non standard headers is more likely part of the hacker's effort to
scope the attack surface of the website. This incident alone cannot be deemed malicious
because some users have browser plug-ins installed that automatically include non
standard headers with requests to some sites. Additionally, some AJAX sites also pass
around custom headers as part of their expected protocol.

Activity Processors: Method Processor

GET and POST are two very well known HTTP request methods. A request method is a
keyword that tells the server what type of request the user is making. In the case of a
GET, the user is requesting a resource. In the case of a POST, the user is submitting data

Copyright © 2014, Juniper Networks, Inc. 229

WebApp Secure 5.5

toaresource. There are however, several other supported request methods which include
HEAD, PUT, DELETE, TRACE, and OPTIONS. These methods are intended to divide the
types of requests into more granular operation. In almost all web application
implementations, the PUT, DELETE, TRACE and OPTIONS methods are all left
unimplemented. Unfortunately, some systems provide default implementations for
things such as TRACE and OPTIONS. As a result, some administrators accidentally expose
unprotected services. Hackers often try these different request methods to identify servers
which support them, and therefore can be vulnerable.

Table 30: Method Processor Configuration Parameters

Parameter Type Default Value Description

Basic Whether traffic should be
passed through this processor.

Processor Enabled Boolean True

Advanced

Block Unknown Methods Boolean True Whether to block requests
that contain unknown HTTP
methods.

Block Unknown Protocol Boolean True Whether to block requests
that contain unknown HTTP
protocols.

Known Methods Collection Collection The list of known HTTP
methods. Also allows you to
customize the action to take
for each occurrence of the
known HTTP method.

Incident: Illegal Method Boolean True The user issued a request

Requested using an HTTP method which
is considered illegal.

Incident: Unexpected Method Boolean True The user issued a request

Requested using a request method other
then GET, POST, and HEAD,
which resulted ina server error.

Incident: Missing HTTP Boolean True No protocol specified in GET

Protocol line.

Incident: Unknown HTTP Boolean True Non standard protocol

Protocol specifiedin GET line (anything

except 0.9,1.0,1.1).

Activity Processors: Method Processor: Incident - Illegal Method Requested

Complexity: Low (2.0)

230 Copyright © 2014, Juniper Networks, Inc.

Chapter 14: Activity Processors

Default Response: 1x = Slow Connection 2-6 seconds and 1 Day Clear Inputs in 10 minutes

Cause: HTTP supports several different "methods" of submitting data to a webserver.
These methods generally include "GET", "POST", and "HEAD", and less commonly "PUT",
"DELETE","TRACE", and "OPTIONS". WebApp Secure monitors all of the methods used
by a user when issuing HTTP requests, and compares them to a configured list of known
and allowed HTTP methods. If the user submits a request that uses a method which is
not in the list of known methods, this incident will be triggered.

Behavior: HTTP methods allow the webserver to handle user provided data in different
ways. However some of the supported methods are somewhat insecure and should not
be supported unless absolutely necessary. In a few cases, methods which are not standard
toHTTP are used by third party web applications. When an attacker is looking for a known
vulnerability, they canissue requests using some of these custom defined HT TP methods
to see if the server accepts or rejects the request. If the server accepts the request, then
the software is likely installed. This type of activity is generally performed when scoping
the attack surface of the web application. It is possible that if a third-party web application
is legitimately installed and is using customn HTTP methods, that those methods will
need to be added to the list of configured HTTP methods so as not to flag users who are
using those applications. In either case, because it is possible for this incident to happen
without malicious intent, it is considered only suspicious.

Activity Processors: Method Processor: Incident - Unexpected Method Requested

Complexity: Suspicious (1.0)
Default Response: None.

Cause: HTTP supports several different "methods" of submitting data to a webserver.
These methods generally include "GET", "POST", and "HEAD", and less commonly "PUT",
"DELETE","TRACE", and "OPTIONS". WebApp Secure monitors all of the methods used
by a user when issuing HTTP requests, and compares them to a configured list of known
and allowed HTTP methods. If the user submits a request that uses a method which is
not in the list of known methods, this incident will be triggered.

Behavior: HTTP methods allow the webserver to handle user provided data in different
ways. However some of the supported methods are somewhat insecure and should not
be supported unless absolutely necessary. In a few cases, methods which are not standard
toHTTP are used by third party web applications. When an attacker is looking for a known
vulnerability, they canissue requests using some of these custom defined HT TP methods
to see if the server accepts or rejects the request. If the server accepts the request, then
the software is likely installed. This type of activity is generally performed when scoping
the attack surface of the web application. It is possible that if a third party web application
is legitimately installed and is using custom HTTP methods, that those methods will
need to be added to the list of configured HTTP methods so as not to flag users who are
using those applications. In either case, because it is possible for this incident to happen
without malicious intent, it is considered only suspicious.

Copyright © 2014, Juniper Networks, Inc. 231

WebApp Secure 5.5

Activity Processors: Method Processor: Incident - Missing HTTP Protocol

Complexity: Medium (3.0)
Default Response: 1x = Slow Connection 2-6 seconds & 1 Hour Clear Inputs

Cause: HTTP comes in several different versions. These are specified in each request
issued by a client to the webserver. The acceptable standard versions are 0.9, 1.0, and
1.1. Any other protocol represents a nonstandard HT TP request issued by a non-standard
HTTP client. Under nearly every legitimate use-case, there is no reason to either omit the
protocol or to provide one that is not standard. This incident triggers whenever a user
submits a request that is completely missing a protocol version. This would represent a
clear violation of the HTTP protocol RFC specifications.

Behavior: This incident is likely to occur whenever the attacker is attempting to create a
custom attack script against the website. They can have either forgotten to include a
protocol value, or they are intentionally omitting it to prevent intended functionality by
one of the devices that processes the request. For example, an attacker can try to submit
arequest without a protocol in an effort to break security devices protecting the webserver.
These security devices might not be able to handle non-standard protocols correctly,
and as a result, can allow malicious requests to reach the backend unmodified.

Activity Processors: Method Processor: Incident - Unknown HTTP Protocol

Complexity: Medium (3.0)
Default Response: 1x = Slow Connection 2-6 seconds & 1 Hour Clear Inputs

Cause: HTTP comes in several different versions. These are specified in each request
issued by a client to the webserver. The acceptable standard versions are 0.9, 1.0, and
1.1. Any other protocol represents a nonstandard HT TP request issued by a non-standard
HTTP client. Under nearly every legitimate use-case, there is no reason to either omit the
protocol or to provide one that is not standard. This incident triggers whenever a user
submits a request that contains an unknown protocol version. This would represent a
clear violation of the HTTP protocol RFC specifications. The only time this should be
acceptable behavior, is if the web application intentionally utilizes a non-standard
protocol, however this should rarely, if ever, be the case.

Behavior: This incident is likely to occur whenever the attacker is attempting to create a
custom attack script against the website. They can have either mistyped the protocol
value, or they are intentionally using a non-standard value to prevent intended
functionality by one of the devices that processes the request. For example, an attacker
can try to submit a request with an invalid protocol of 11.1 in an effort to break security
devices protecting the webserver. These security devices might not be able to handle
non-standard protocols correctly, and as a result, can allow malicious requests to reach
the backend unmodified.

232 Copyright © 2014, Juniper Networks, Inc.

CHAPTER 15

Tracking Processors

Tracking Processors:

Tracking Processors: Etag Beacon Processor on page 233

Tracking Processors: Etag Beacon Processor: Incident - Session Etag
Spoofing on page 234

Tracking Processors: Client Beacon Processor on page 235

Tracking Processors: Client Beacon Processor: Incident - Beacon Parameter
Tampering on page 236

Tracking Processors: Client Beacon Processor: Incident - Beacon Session
Tampering on page 237

Tracking Processors: Client Fingerprint Processor on page 237

Tracking Processors: Client Fingerprint Processor: Incident - Fingerprint Directory
Indexing on page 240

Tracking Processors: Client Fingerprint Processor: Incident - Fingerprint Directory
Probing on page 240

Tracking Processors: Client Fingerprint Processor: Incident - Fingerprint
Manipulation on page 241

Tracking Processors: Client Classification Processor on page 241

Etag Beacon Processor

This processor is not intended to identify hacking activity, but instead is intended to help
resolve a potential vulnerability in the proxy. Because session tracking in the proxy is done
using cookies, it is possible for an attacker to clear their cookies in order to be recognized
by the proxy as a new user. This means that if we identify that someone is a hacker, they

can shed that classification simply by clearing their cookies. To help resolve this
vulnerability, this processor attempts to store identifying information in the browsers

JavaScript persistence mechanism. It then uses this information to attempt to identify
new sessions as being created by the same user as a previous session. If successful, a
hacker who clears their cookies and obtains a new session will be re-associated with the

previous session shortly afterwards.

Table 31: Etag Beacon Processor Configuration Parameters

Parameter

Basic

Type Default Value Description

Copyright © 2014, Juniper Networks, Inc.

WebApp Secure 5.5

Table 31: Etag Beacon Processor Configuration Parameters (continued)

Parameter Type Default Value Description

Processor Enabled Boolean True Whether traffic should be passed through this processor.
Advanced

Beacon Resource Configurable Random The resource to use for tracking.

Inject Beacon Enabled Boolean True Whether a reference to the beacon resource should be

automatically injected into HTML responses.

Revalidation Frequency

Integer 180 (3 Minutes) How often in seconds to re-validate the old stored etag
and re-associate that session with the current one. This
value should not be left too short, because it will cause
the browser to constantly re-request the fake resource
and make the tracking technigue more visible.

Incident: Session Etag
Spoofing

Boolean True The user has provided a fake ETag value which is not a
valid session.

Tracking Processors: Etag Beacon Processor: Incident - Session Etag Spoofing

Complexity: Medium (3.0)
Default Response: 1x = Slow Connection 2-6 seconds, 3x = Slow Connection 4-15 seconds.

Cause: The HTTP protocol supports many different types of client side resource caching
in order toincrease performance. One of these caching mechanisms uses a special header
called "E-Tag" to identify when the client already has a valid copy of a resource. When
a user requests a resource for the first time, the server has the option of returning an
E-Tag header. This header contains a key that represents the version of the file that was
returned (ex. an MD5 hash of the file contents). On subsequent requests for the same
resource, the client will provide the last E-Tag it was given for that resource. If the server
identifies that both the provided E-Tag, and the actual E-Tag of the file are the same,
then it will respond with a 403 status code (Not Modified), and the client will display the
last copy it successfully downloaded. This prevents the client from downloading the
same version of a resource over and over again. In the event that the E-Tag value does
not match, the server will return a new copy of the resource and a new E-Tag value.
WebApp Secure takes advantage of this caching mechanism to store a tracking token
on the client. It does this by injecting a fake embedded resource reference (such as an
image or a JavaScript file) into some of the pages on the protected site. When the browser
loads these pages, it will automatically request the embedded resources in the
background. The fake resource that was injected by WebApp Secure, will supply a special
E-Tag value that contains a tracking token. As the user continues to navigate around the
site, each time they load a page that contains a reference to the fake resource, the browser
will automatically transmit the previously received E-Tag to the server. This allows
WebApp Secure to correlate the requests, even if other tracking mechanisms such as
cookies are not successful. The E-Tag value returned by the fake resource, which contains
the tracking token, is also digitally signed and encrypted, much like the WebApp Secure

234

Copyright © 2014, Juniper Networks, Inc.

Chapter 15: Tracking Processors

session cookie. This prevents a user from successfully guessing a valid E-Tag token, or
attempting to provide an arbitrary value without being detected. If an invalid E-Tag is
supplied for the fake resource, a "Session ETag Spoofing" incident is triggered.

Behavior: There are very few cases where the E-Tag caching mechanism is part of an
attack vector, so this incident would almost exclusively represent a user who is attempting
to evade tracking or exploit the tracking method to their advantage. For example, if a
user identifies the E-Tag tracking mechanism, they can provide alternate values in order
to generate errors in the tracking logic and potentially disconnect otherwise correlated
traffic. They can also attempt to guess other valid values in order to correlate otherwise
nonrelated traffic (such as a hacker attempting to group other legitimate users into their
traffic). While this is a highly unlikely attack vector, it could loosely be classified as a
"Credential and Session Prediction" attack. It is also possible, though unlikely, that once
an attacker identifies the dynamic nature of the E-Tag header for the fake resource, they
can also launch a series of other attacks based on input manipulation. This could include
testing for SOL injection, XSS, Buffer Overflow, Integer Overflow, and HTTP Response
Splitting among others. However these would be attacks directly against WebApp Secure,
and not against the protected web application.

Tracking Processors: Client Beacon Processor

The client beacon processor is intended to digitally tag users for later identification by
for embedding a tracking token into the client. There are configurable parameters that
administrators can use to configure each type of storage mechanisms that are used track
malicious users.

Table 32: Client Beacon Processor Configuration Parameters

Parameter

Default

Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this processor.
Advanced

Flash Storage Enabled Boolean True Whether to use the flash shared data API to track the user.

|IE UserData Storage Boolean True Whether to use Internet explorers userData storage AP to track
Enabled the user.

Local Storage Enabled Boolean True Whether to use Javascript local storage to track the user.
Private Storage Enabled Boolean True Whether to track users between private browsing mode and

normal browsing mode in Firefox. A collection of names to use
for the Application session cookie.

Copyright © 2014, Juniper Networks, Inc. 235

WebApp Secure 5.5

Table 32: Client Beacon Processor Configuration Parameters (continued)

Default

Parameter Value Description

Silverlight Storage Enabled Boolean True Whether to use the Silverlight storage api to track the user. The
Silverlight storage APl is unique in that it is exposed across all
browsers. If this beacon is enabled and the user has Silverlight
installed, this beacon can track the user even if they switch

browsers.
Window Name Storage Boolean True Whether to use the window.name property of the browser
Enabled window to track the user.
Resource Extensions Collection Collection A collection of resource extensions to use for the processor.
Script Refresh Delay Integer 3600 (1 The amount of time in seconds to cache the randomly generated
Hour) set of beacon scripts. After this amount of time, the beacon

scripts will change.

Script Variations Integer 30 The number of random variations of the beacon script to cache,
and then to select from on each request.

Incident: Beacon Parameter Boolean True The user has issued a request to the session tracking service

Tampering which appears to be manually crafted. Thisis likely inan attempt
to spoof another users session, or to exploit the applications
session management. This would never happen under normal

usage.
Incident: Beacon Session Boolean True The user has altered the data stored on the client in an effort to
Tampering prevent tracking. They have altered the data in such a way as

to remain consistent with the same data format. This would
never happen under normal usage.

Tracking Processors: Client Beacon Processor: Incident - Beacon Parameter Tampering

Complexity: Medium (3.0)
Default Response: 1x = 5 day Clear Inputs in 10 minutes

Cause: WebApp Secure uses a special persistent token that inserts itself in multiple
locations throughout the client. When a user returns to the site later on, these tokens are
transmitted back to the server. This allows the server to correlate the traffic issued by
the same user, even if the requests are weeks apart. This incident is triggered when the
user manipulates the token data being transmitted to the server on a subsequent visit.
They manipulated the data in such a way as to break the expected formatting for the
token.

Behavior: Attempts to manipulate and spoof the tracking tokens are generally performed
when the attacker is trying to figure out what the token is used for and potentially evade
tracking. Because the format of the token is completely wrong, this is likely a generic
input attack, where the user is attempting to find a vulnerability in the code that handles
the token. This could include a "Buffer Overflow", "XSS", "Denial of Service",

236 Copyright © 2014, Juniper Networks, Inc.

Chapter 15: Tracking Processors

"Fingerprinting", "Format String", "HT TP Response Splitting", "Integer Overflow", or "SOL
injection" attack among many others. The content of the manipulated token should be
reviewed to better understand what type of attack the user was attempting, however
because the tokens are heavily encrypted and validated, this incident does not represent
a threat to the security of the system tracking mechanism.

Tracking Processors: Client Beacon Processor: Incident - Beacon Session Tampering

Complexity: Medium (3.0)
Default Response: 1x = 5 day Clear Inputs in 10 minutes.

Cause: WebApp Secure uses a special persistent token that inserts itself in multiple
locations throughout the client. When a user returns to the site later on, these tokens are
transmitted back to the server. This allows the server to correlate the traffic issued by
the same user, even if the requests are weeks apart. This incident is triggered when the
user manipulates the token data being transmitted to the server on a subsequent visit.
They manipulated the data in such a way as to remain consistent with the correct
formatting for the token, but the token itself is not valid and was never issued by the
server.

Behavior: Attempts to manipulate and spoof the tracking tokens are generally performed
when the attacker is trying to figure out what the token is used for and potentially evade
tracking. If they are assuming it's used for session management, this might also be a part
of a"Credential/Session Prediction" attack. Because the format of the submitted modified
token is still consistent with the format expected, this is not likely a generic input attack.
It also does not represent any threat to the system, as the modified token is simply ignored.

Tracking Processors: Client Fingerprint Processor

This processor is designed to collect uniguely identifying information from requests issued
by a user. This information is then compared to the information collected about other
sessions in the system. If a match is identified, the two sessions are merged. This allows
session association to work even if all storage mechanisms used by the other tracking
processors are cleared. Some of the uniquely identifying information includes the browser
plugin list, the system font list, time skew, time-zone, user-agent, system language, and
so on.

Table 33: Client Fingerprint Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean False Whether traffic should be
passed through this
processor.

Exclude Rules Collection [collection:0] The fingerprint association

rules to ignore.

Copyright © 2014, Juniper Networks, Inc. 237

WebApp Secure 5.5

Table 33: Client Fingerprint Configuration Parameters (continued)

Parameter Type Default Value Description

Excluded Collectors Collection [collection:0] The data points to prevent
collection of on the client.

Hash Fingerprint Data Boolean False Whether to hash the raw
fingerprint data points before
storing them. This prevents
the recorded data from being
used to obtain the original
information about the client
and reduces the overall
storage size requirements. If
collecting Pll data is a
concern, thisis a
recommended option, as it
will eliminate any PIl data in
place of hashed versions of
that data which cannot be
reversed.

Page Injection Enabled Boolean True Whether the fingerprint script
should be injected into the
requested page.

Advanced

Binary Resource Directory String (randomized) The fake directory where
binary resources required by
the fingerprinting script are
served from.

Data Obfuscation Key String (randomized) The key used to prevent easy
reading of the submitted
fingerprint data. This should
be alphanumeric and at least
8 unique characters long,
duplicate characters are
allowed, but do not count
toward the total 8.

Fingerprint Scope Key String (randomized) The key used to store
fingerprint data. If this key is
changed, all previously stored
fingerprint data will be lost
and the system will begin
collecting fresh fingerprint
data.

Fingerprint Submission HTTP Response text/plain 200 OK The response to return when

Response a user attempts to submit a
fingerprint in the background.
The user will not see this
response unless they are
using a debug proxy.

238 Copyright © 2014, Juniper Networks, Inc.

Chapter 15: Tracking Processors

Table 33: Client Fingerprint Configuration Parameters (continued)

Parameter Type Default Value Description

Fingerprint Tracking Cookie
Name

String

(randomized)

The name of the cookie used
on the client to ensure we
don't submit multiple copies
of the same fingerprinting
data. This can be anything,
but should not overlap with a
legitimate cookie being used
on the site.

Hash Fingerprint Data

Boolean

False

Whether to hash the raw
fingerprint data points before
storing them. This prevents
the recorded data from being
used to obtain the original
information about the client
and reduces the overall
storage size requirements. If
collecting Pll data is a
concern, thisis a
recommended option, as it
will eliminate any PIl data in
place of hashed versions of
that data which cannot be
reversed.

Script Filename

String

(randomized)

The filename to use when
serving the fingerprint script
to the client.

Submission Filename

String

(randomized)

The filename where
fingerprint data should be
submitted back to the server

Incident: Fingerprint Directory
Indexing

Boolean

True

The user requested a
directory index listing on the
fake directory used to serve
binary resources required by
the fingerprinting script. Since
this is a fake directory, the
request represents a
malicious action.

Incident: Fingerprint Directory
Probing

Boolean

True

The user requested a random
file within the fake directory
used to serve binary resources
required by the fingerprinting
script. Since only files we
specifically reference in the
fingerprinting script should be
requested, this represents a
malicious action.

Copyright © 2014, Juniper Networks, Inc.

239

WebApp Secure 5.5

Table 33: Client Fingerprint Configuration Parameters (continued)

Parameter

Incident: Fingerprint
Manipulation

Type Default Value Description

Boolean True The user submitted fingerprint
data to the server which was
not properly formatted. This
likely means that the user was
manipulating the
fingerprinting data or spoofed
it entirely.

Tracking Processors: Client Fingerprint Processor: Incident - Fingerprint Directory

Indexing

Complexity: Low (2.0)
Default Response: n/a

Cause: The client fingerprint processor is designed to obtain a semi-unique identifier from
the clients rendering engine. The fingerprint is a hash of data obtained through JavaScript
such as the plugin list, time zone, and screen resolution. In order to calculate a fingerprint,
some binary resources such as flash objects might be required. These resources will be
served from a known fake directory. This incident is triggered if the user attempts to get
a directory index listing from the known fake resource directory.

Behavior: If an attacker discovers the script being used to collect and submit the fingerprint
data, they might be interested to know what else is in the directory where fingerprint
binary resources are served. As such, they can request a directory index listing from the
fake directory. Because the directory is fake, there are no files to list, but the simply action
of attempting to get the list is indicative of abusive behavior. If an attacker is able to
obtain a directory index listing, they can attempt to exploit some of the other resources
in the directory, or gain information about the website that can otherwise not be available.
Any attempts to index the directory will result in a 403, which will yield no useful
information to the attacker. This is usually part of a spidering effort and targets
"Predictable Resource Location" vulnerabilities.

Tracking Processors: Client Fingerprint Processor: Incident - Fingerprint Directory

Probing

Complexity: Low (2.0)
Default Response: n/a

Cause: The client fingerprint processor is designed to obtain a semi-unique identifier from
the clients rendering engine. The fingerprint is a hash of data obtained through JavaScript
such as the plugin list, time zone, and screen resolution. In order to calculate a fingerprint,
some binary resources such as flash objects might be required. These resources will be
served from a known fake directory. This incident is triggered if the user attempts to
request a file in the fake directory that does not exist. In other words, they are looking for
a specific file that does not exist within a fake directory.

240

Copyright © 2014, Juniper Networks, Inc.

Chapter 15: Tracking Processors

Behavior: If an attacker discovers the script being used to collect and submit the fingerprint
data, they might be interested to know what else is in the directory where fingerprint
resources are served from. As such, they can request specific files they think they be
inside the fake directory. Because the directory is fake, there are no actual files available,
but the simply action of attempting to get a resource that does not exist in a fake directory
is indicative of abusive behavior. This type of attack is generally targeted at "Predictable
Resource Location" vulnerabilities.

Tracking Processors: Client Fingerprint Processor: Incident - Fingerprint Manipulation

Complexity: Medium (3.0)
Default Response: n/a

Cause: The client fingerprint processor is designed to obtain a semi-unique identifier from
the clients rendering engine. The fingerprint is a hash of data obtained through JavaScript
such as the plugin list, time zone, and screen resolution. This incident is triggered when
the user attempts to submit an invalid fingerprint.

Behavior: Normally, the fingerprinting code will be allowed to execute on the client without
any problems. However if an attacker discovers the fingerprinting code, they might try to
spoof fingerprints of other users, or simply try to exploit the fingerprint service. To do this,
they can create a fake fingerprint value and submit it to the server in the same way that
legitimate fingerprints are submitted. It likely would not be clear to the attacker as to
what the value is used for, or how the value is consumed by the server, so this type of
activity would be purely exploratory. Once the attacker identifies a valid fingerprint that
was not generated from their rendering engine, they will likely continue to statically submit
that same fingerprint on all transactions. Once that happens, it will not be possible to
identify the manipulated fingerprint. So this incident should come early in the attack, but
will stop once the attacker has reached their goal. In such a case, the attacker is simply
trying to disguise their true identity. If the modified fingerprint is not alpha numeric and
contains special characters, then the attacker is probably attempting to launch a targeted
attack against the way the service consumes the data, such as a "SQL Injection", "XSS",
or "Buffer Overflow" attack.

Tracking Processors: Client Classification Processor

The client classification processor is designed to detect popular legitimate search engine
bots. These types of bots are notorious for performing aggressive spider activity on
websites, and often this activity can trigger security related incidents. Using this processor
to define the conditions used to identify such bots, allows the system to ignore security
incidents from those clients. This will remove search engine related false positives, as
well as prevent errors in indexed and cached results. The popular search engines are
included by default, but if additional search engines should be allowed, new rules can
be created. Be careful not to define a rule that will match clients other than the targeted
search engine bot. The less specific the conditions of a rule, the easier it will be for an
attacker to spoof the search engine and circumvent detection. It is critical that DNS be
enabled on WebApp Secure to achieve effective classification of search engines. Not
enabling DNS and leaving this processor turned on, can result in some attackers not being
identified.

Copyright © 2014, Juniper Networks, Inc. 241

WebApp Secure 5.5

If a client is classified as a search engine based on one of the defined rules, then that
client will not be able to generate incidents, and additionally:

« Query String Processor will be turned off for that user (no query param injections)

« Hidden Link Processor will be turned off for that user (no hidden link injections)

This is done to ensure that the results cached by the search engine bot do not include
fake code that can changein the future, and thus end up flagging clients who are following
legitimate search engine links. Classification rules are made up of a series of patterns to
run against various attributes of the client:

« |P Address

« Hostname

« User Agent

« Country Code
« City

« Region

. Header Name and Value

At least one pattern must be specified on at least one attribute, however you can specify
patterns for as many attributes as the bot will allow. For example, if the bot changes its
|P address constantly, then you should not define a pattern for the IP. However if the
hostname always ends in google.com, then a pattern of [.]google[.]Jcom$ could be
assigned to the “Hostname” attribute. If the user agent always contains “googlebot”,
then “googlebot” could be assigned as the user agent pattern. Here is an example of a
complete pattern for the Googlebot search engine spider:

Hostname Pattern: [.]google(bot) ?[.]Jcom$

User Agent Pattern: (adsbot.google|googlebot|Google[JWeb[
]Preview|Mediapartners-Google)

Country Pattern: US

Region Pattern: (California|Georgia)

0 NOTE: It would be extremely difficult for an attacker to spoof values for all
of those attributes which would match the patterns. For example, spoofing
the reverse DNS lookup to end in “.google.com” would require serious effort,
and would require insecure DNS configuration on behalf of the WebApp
Secure administrator. Ideally every rule should include either an “ip” or
“hostname” pattern.

Table 34: Client Classification Configuration Parameters

Parameter Type Default Value Description

Basic

242 Copyright © 2014, Juniper Networks, Inc.

Chapter 15: Tracking Processors

Table 34: Client Classification Configuration Parameters (continued)

Parameter Type Default Value Description
Processor Enabled Boolean False Whether traffic should be passed through this
processor.

Classification Rules

Client Type String (none) The name of the type of client being identified.

IP Pattern String (none) The IP address pattern to require (if any).

Hostname Pattern String (none) The hostname pattern to require (if any) if DNS is
enabled.

User Agent Pattern String (none) The user agent pattern to require (if any).

Country Pattern String (none) The country pattern to require (if any).

City Pattern String (none) The city pattern to require (if any).

Region Pattern String (none) The region pattern to require (if any).

Header Name Pattern String (none) A pattern used to identify a required header name
(if any).

Header Value Pattern String (none) A pattern used to verify the value of a header that

matches the header name pattern (if any).

Copyright © 2014, Juniper Networks, Inc. 243

WebApp Secure 5.5

244 Copyright © 2014, Juniper Networks, Inc.

CHAPTER 16

Response Processors

Response Processors on page 247

Response Processors: Block Processor on page 248

Response Processors: Request Captcha Processor

Response Processors: Request Captcha Processor
Automation on page 252

Response Processors: Request Captcha Processor
Provided on page 253

on page 249

:Incident - Captcha Answer

:Incident - No Captcha Answer

Response Processors: Request Captcha Processor: Incident - Multiple Captcha Request

Overflow on page 254

Response Processors: Request Captcha Processor
Captcha Requested on page 254

Response Processors: Request Captcha Processor:

Answer on page 255

Response Processors: Request Captcha Processor:

Session on page 256

Response Processors: Request Captcha Processor:

Request on page 256

Response Processors: Request Captcha Processor:

Tampering on page 257

Response Processors: Request Captcha Processor:

Tampering on page 258

Response Processors: Request Captcha Processor:

Spoofing on page 259

Response Processors: Request Captcha Processor:

Manipulation on page 259

Response Processors: Request Captcha Processor:

Probing on page 260

Response Processors: Request Captcha Processor:

Limit Exceeded on page 261

Response Processors: Request Captcha Processor:

MultiPart on page 262

. Incident - Unsupported Audio

Incident - Bad Captcha

Incident - Mismatched Captcha

Incident - Expired Captcha

Incident - Captcha Request

Incident - Captcha Signature

Incident - Captcha Signature

Incident - Captcha Cookie

Incident - Captcha Image

Incident - Captcha Request Size

Incident - Captcha Disallowed

Copyright © 2014, Juniper Networks, Inc.

245

WebApp Secure 5.5

Response Processors: Request Captcha Processor: Incident - Captcha Directory
Indexing on page 262

Response Processors: Request Captcha Processor: Incident - Captcha Directory
Probing on page 263

Response Processors: Request Captcha Processor: Incident - Captcha Parameter
Manipulation on page 264

Response Processors: Request Captcha Processor: Incident - Captcha Request Replay
Attack on page 265

Response Processors: Request Captcha Processor: Incident - Multiple Captcha
Replays on page 266

Response Processors: Request Captcha Processor: Incident - Multiple Captcha Disallow
Multipart on page 267

Response Processors: Request Captcha Processor: Incident - Multiple Captcha
Parameter Manipulation on page 268

Response Processors: CSRF Processor on page 269

Response Processors: CSRF Processor: Incident - CSRF Parameter
Tampering on page 271

Response Processors: CSRF Processor: Incident - Multiple CSRF Parameter
Tampering on page 272

Response Processors: CSRF Processor: Incident - CSRF Remote Script
Inclusion on page 273

Response Processors: CSRF Processor: Incident - HTTP Referers Disabled on page 273
Response Processors: Header Injection Processor on page 274

Response Processors: Force Logout Processor on page 274

Response Processors: Strip Inputs Processor on page 275

Response Processors: Slow Connection Processor on page 275

Response Processors: Warning Processor on page 276

Response Processors: Warning Processor: Incident - Warning Code
Tampering on page 277

Response Processors: Application Vulnerability Processor on page 278

Response Processors: Application Vulnerability Processor: Incident - App Vulnerability
Detected on page 278

Response Processors: Support Processor on page 279

Response Processors: Cloppy Processor on page 280

Response Processors: Login Processor on page 281

Response Processors: Login Processor: Incident - Site Login Invalid on page 287
Response Processors: Login Processor: Incident - Site Login Multiple IP on page 288

Response Processors: Login Processor: Incident - Site Login Multiple
Usernames on page 288

Response Processors: Login Processor: Incident - Site Login User Sharing on page 289

246

Copyright © 2014, Juniper Networks, Inc.

Chapter 16: Response Processors

« Response Processors: Login Processor: Incident - Site Login User Pooling on page 289
« Response Processors: Login Processor: Incident - Site Login User Brute Force on page 290
« Response Processors: Login Processor: Incident - Site Login Brute Force on page 290
« Response Processors: Login Processor: Incident - Site Login Username Scan on page 290

« Response Processors: Google Map Processor on page 291

Response Processors

The processors in this section are responsible for issuing the various counter responses
to malicious users on a server protected by WebApp Secure. A response is activated
when WebApp Secure believes intervention is required between the profiled user and
the webserver. This response can manifest into any of the types fully explained below.

Response Methodology: When WebApp Secure believes a response is required, the type
of response issued depends on the type of behavior the malicious user exhibited to receive
the response. For example, users that WebApp Secure think are automated tools will
likely get issued a CAPTCHA response, whereas it is obvious that a real malicious user
(not a bot) will be able to solve a CAPTCHA. In the second case, adding a 2 to 6 second
slow might be more effective at wasting the hacker's time. Another factor that comes
into play when issuing counter responses is risk level. If WebApp Secure believes a user
is of no immediate risk to the system, it might only activate those responses which still
allow the user to browse the site somehow, such as the Warning response or Slow
Connection response. This way, WebApp Secure can monitor that user and gather
additional information to properly assess their risk level. If WebApp Secure believes the
user is a danger to the system, it will issue a more severe response, such as stripping out
all inputs on every request or outright blocking the profile. Some responses might not
get issued right away. For example, an incident can produce "a permanent block in 20
minutes". The reason for this delay in the counter response is that WebApp Secure uses
this buffer time to gather some last-minute information on the profile before issuing the
final response. WebApp Secure will respond instantly if it perceives immediate threat to
the integrity of the system, but instances where this is not the case allow WebApp Secure
to profile the attacker for a bit longer. The end result will be a more complete look at the
attacker and his/her habits.

Types of Responses: Certain response processors are self-explanitory, such as the Block
Processor (the user will see that they are blocked). Other responses are "invisible" in that
there are no manifestations of the response visible to the user. An example of an invisible
response processor is the Strip Inputs Processor. This processor will simply Block
Processor 125 remove all values from all inputs on any form submitted because WebApp
Secure has determined that the user's input can no longer be trusted. On the user-end,
they will see nothing that will indicate to them that this response is active (until they
figure out that all inputs are not being recognized).

Response Activation: Responses get automatically activated according to rules set forth
within WebApp Secure. These rules are outlined for each incident a user can trigger, and
are described in the documentation for each processor. The default response for each

incident isdocumented in the User Guide, and will look something like, "Default Response:
1x = Warn User. 2x = 1 Day Block". The 'Ix' or '2x' indicate the number of incidents of that

Copyright © 2014, Juniper Networks, Inc. 247

WebApp Secure 5.5

type triggered. For this example, triggering this incident once results in the Warning
Processor being activated. If the same incident is triggered again on the same profile, the
user then gets a 1 day block through the Block Processor.

0 NOTE: You might want to disable automatic counter responses entirely. If
this is the case, changing the configuration parameter Auto Response
Activation Enabled to False will prevent any new automatic activations, but
will not hinder your ability to manually activate responses on profiles.
(Configuration > Global Configuration > Auto Response Service > Auto Response
Activation Enabled = False)

Compounding and Overriding Responses

- Warning - There is no need to warn someone when they are already blocked.

. Captcha - If the user is ever unblocked (or the block expires), they will be prompted to
solve the captcha.

. Cloppy - If they are ever unblocked (or the block expires) Cloppy will appear.

. Google Maps - If the user is ever unblocked (or the block expires), they will be shown
the Google map.

Captcha overrides:

. Warning - WebApp Secure will warn after they solve the captcha.
« Cloppy - Cloppy will appear after they solve the captcha.

« Google Maps - The Google map will be shown after they solve the captcha.
Strip Inputs overrides:

« Break Authentication - It is redundant, as WebApp Secure is already stripping login
credentials.

Response Processors: Block Processor

The block processor is actually a form of auto response. When this processor is enabled,
it will allow the security system to block a response with "Blocked!" message sent back
to the user.

o NOTE: There are no actual triggers for this processor; it is a form of response.

Table 35: Block Processor Configuration Parameters

Parameter Type Default Value Description

Basic

248 Copyright © 2014, Juniper Networks, Inc.

Chapter 16: Response Processors

Table 35: Block Processor Configuration Parameters (continued)

Parameter Type Default Value Description

Processor Enabled Boolean True Whether traffic should be passed through this
processor.

Advanced

Block Response Configurable HTTP Response The response to return to the user when they
are blocked.

Response Processors: Request Captcha Processor

The Captcha processor is designed to protect specific pages in a web application from
automation. This is done by using a "Captcha" challenge, where the user is required to
transcribe random characters from an obscured image or muffled audio file in order to
complete the request. Theintent is that a human would be capable of correctly answering
the challenge, while an automated script with no human intervention would be unable
to do so. This assumes that the image is obscured enough that text recognition software
is not effective, and the audio file significantly distorted to defeat speech-to-text software.
Requiring such user interaction is somewhat disruptive, so it should be utilized only for
pages that are prime automation targets (such as contact forms, registration pages,
login pages, and so on.). Furthermore, these captcha challenges can be customized to
fit the style of the application it is protecting.

Table 36: Request Captcha Processor Configuration Parameters

Default
Parameter Value Description
Basic
Processor Enabled Boolean True Whether traffic should be passed through this processor.
Protected Pages Collection None A collection of protected pages.
Advanced
Bad Request Block HTTP 400HTTP Theresponse to return if the user issues a request that either is too
Response Response Response large, or uses multipart and multi-part is disabled.
Blocked Replay Response String Random The response to return if the user attempts to submit the validated
Value request multiple times using the same captcha answer, and that
behavior is not allowed.
Captcha Binary Directory ~ String Random The name of the directory where captcha images and audio files will
Value be served from. This should not conflict with any actual directories on
the site.

Copyright © 2014, Juniper Networks, Inc. 249

WebApp Secure 5.5

Table 36: Request Captcha Processor Configuration Parameters (continued)

Default

Parameter Value Description

Captcha Characters String Random The characters to use when generating arandom captcha value. Avoid
Value using characters that can be easily mixed up. This set of characters is

case sensitive.

Captcha State Cookie String Random The name of the cookie to use to track the active captchas that have

Name Value not yet been solved. The cookie is only served to the captcha binary
directory.

Captcha Validation Input ~ String Random The name of the form input used to transmit the captcha validation

Name Value key. This should be obscure so that users who have not been required
to enter a captcha cannot supply bad values to this input to profile
the system.

Maximum Active Integer 7 The maximum number of captchas any given user can be solving at

Captchas any given time. This limit can be overcome, but the majority of users

will not be able to. Thisis primarily for performance, as the more active
captchas that are allowed, the larger the state cookie becomes.

Support Audio Version Boolean True Whether an audio version of the captcha is provided to the user. This
can be a requirement for accessibility, as vision impaired users would
otherwise be unable to solve the captcha.

Watermark String Random The text to watermark the captcha with. This can be used to prevent
Value the captcha from being used in a phishing attack. For example, an
abuser would not be able to simply display the captcha on a different
site and ask a user to solve it. The watermark would tip the user off
that the captcha was not intended for the site they are visiting. Use
%DOMAIN to use the domain name as the watermark.

Cancel URL String None The URL to redirect the user to if they cancel the captcha. This should
not be to the same domain, because the domain is being blocked using
a captcha, and therefore, canceling would only redirect to a new
captcha. An empty value will hide the cancel button.

Captcha Expiration Integer 2 minutes The maximum number of seconds the user has to solve the captcha
before the request is no longer possible.

Expired Captcha HTTP 400HTTP Theresponse to return if the user submits a validated request after
Response Response Response the captcha has expired. This can happen if the user refreshes the
results of the captcha long after they have solved it.

Maximum Request Size Integer 500kb The maximum number of bytes in a request before it is considered not
acceptable for captcha validation, and will be blocked.

Incident: Bad Captcha Boolean False The user was asked to solve a captcha and entered the wrong value.
Answer This could be a normal user error, or it could be the results of failed
abuse.

250 Copyright © 2014, Juniper Networks, Inc.

Chapter 16: Response Processors

Table 36: Request Captcha Processor Configuration Parameters (continued)

Parameter

Default
Value

Description

Incident: Captcha Cookie Boolean True The user submitted a request and was asked to solve a captcha. They

Manipulation then modified the state cookie used to track captchas, making it invalid.
This is likely in an attempt to find a way to bypass the captcha
validation mechanism.

Incident: Captcha Boolean True The user has requested a directory index in the directory that serves

Directory Indexing the captcha images and audio files. This is likely in an attempt to get
a list of all active captchas or to identify how the captchas are
generated.

Incident: Captcha Boolean True The user has requested a random file inside the directory that serves

Directory Probing the captcha images and audio files. This is likely in an attempt to find
an exploitable service or sensitive file that can help bypass the captcha
validation mechanism.

Incident: Captcha Boolean True The user has submitted a multipart form post to the protected page,

Disallowed MultiPart which has been configured as a disallowed option. This is likely in an
attempt to find an edge case the captcha validation mechanism is not
expecting.

Incident: Captchalmage Boolean True The user is probing the directory used to serve captcha images. This

Probing is likely in an attempt to find hidden files or a way to invoke errors from
the captcha serving logic.

Incident: Captcha Boolean True The user has submitted a request with a valid captcha, but they

Parameter Manipulation modified the query string parameters. This could be in an attempt to
change the output of executing the request without requiring the user
to re-validate with another captcha.

Incident: Captcha Boolean True The user has attempted to submit the same request multiple times

Request Replay Attack with the same captcha answer. In order words, they solved the captcha
once and issued the resulting request multiple times.

Incident: Captcha Boolean True The user has submitted a request to the protected page which contains

Request Size Limit more data thenis allowed. This might be an attempt to reduce system

Exceeded performance by issuing expensive requests, or it can be an indicator
of a more complex attack.

Incident: Captcha Boolean True The user submitted a request and was asked to solve a captcha. They

Request Tampering introspected the page containing the captcha and altered the serialized
request data (the data from the original request before the captcha
prompt). They then submitted a valid captcha using the modified
request data. This is likely in an attempt to abuse the captcha system
and identify a bypass technique.

Incident: Captcha Boolean True The user submitted a request and was asked to solve a captcha. They

Signature Spoofing

introspected the page containing the captcha and provided a validation
key from a previously solved captcha. This is likely in an attempt to
submit multiple requests under the validation of the first.

Copyright © 2014, Juniper Networks, Inc.

251

WebApp Secure 5.5

Table 36: Request Captcha Processor Configuration Parameters (continued)

Parameter

Default

Value Description

Incident: Captcha
Signature Tampering

Boolean True The user submitted a request and was asked to solve a captcha. They
introspected the page containing the captcha and provided a fake
validation key. This is likely in an attempt to bypass the captcha
validation mechanism.

Incident: Expired Captcha
Request

Boolean True The user submitted a request and was given a set window of time to
solve a captcha. The user solved the captcha and submitted the
request for final processing after the window of time expired. This is
likely an indication of a packet replay attack, where the user attempts
toinvoke the business logic of the protected page multiple times under
the same captcha validation.

Incident: Mismatched
Captcha Session

Boolean True The user submitted a request and was asked to solve a captcha. They
solved the captcha, but upon submitting the request for final
processing, they did so under a different session ID. This is likely due
to multiple machines participating in the execution of the site workflow
and can indicate a serious targeted automation attack.

Incident: No Captcha
Answer Provided

Boolean True The user attempted to validate a captcha but did not supply an answer
to validate. There is no interface that allows the user to do this, so they
must be manually executing requests against the captcha validation
APl in an attempt to evade the mechanism.

Incident: Unsupported
Audio Captcha
Requested

Boolean True The user has requested an audio version of the captcha challenge, but
audio is not supported and there should not be an interface to ask for
the audio version. The user is likely trying to find a way to more easily
bypass the captcha system.

Response Processors: Request Captcha Processor: Incident - Captcha Answer

Automation

Complexity: Low (2.0)
Default Response: 1x = Slow Connection 2-6 seconds and 1 Day Clear Inputs

Cause: A captcha is a special technique used to differentiate between human users, and
automated scripts. Thisis done through a Turing test, where the user is required to visually
identify characters in a jumbled image and transcribe them into an input. If the user is
unable to complete the challenge in a reasonable amount of time, they are not allowed
to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed.
Additionally, an audio version is optionally available to allow users who have a visual
handicap to complete the captcha successfully. Captchas are used in two different ways
by the system. They can be explicitly added to any workflow within the protected web
application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site
(similar to blocking the user, but with a way for the user to unblock themselves if they
can prove they are not an automated script). Captchas are generally used to resolve

252

Copyright © 2014, Juniper Networks, Inc.

Chapter 16: Response Processors

"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless
of which type of captcha is being used, this incident is generated when the user provides
an abnormal volume of bad solutions to the captcha image. For example, the image
might have said "Hello", but the user attempted 30 different values all of which did not
match "Hello". Because the images can be somewhat difficult to read at times (in order
to ensure a script cannot break them), it is not uncommon for a legitimate user to enter
the wrong value a few times before getting it right, especially if they are unfamiliar with
this type of technique, but after dozens of failed attempts, it is more likely a malicious
user.

Behavior: Simply providing a bad solution to the captcha image is not necessarily
malicious. Legitimate users are not always able to solve the captcha on the first try.
However if a large volume of invalid solutions are provided, then it is more likely that a
script is attempting to crack the captcha image through educated guessing and "Brute
Force".

Response Processors: Request Captcha Processor: Incident - No Captcha Answer
Provided

Complexity: Medium (3.0)
Default Response: 1x = Warn User. 2x = 1 Day Block

Cause: A captcha is a special technique used to differentiate between human users, and
automated scripts. Thisis done through a Turing test, where the user is required to visually
identify characters in a jumbled image and transcribe them into an input. If the user is
unable to complete the challenge in a reasonable amount of time, they are not allowed
to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed.
Additionally, an audio version is optionally available to allow users who have a visual
handicap to complete the captcha successfully. Captchas are used in two different ways
by the system. They can be explicitly added to any workflow within the protected web
application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site
(similar to blocking the user, but with a way for the user to unblock themselves if they
can prove they are not an automated script). Captchas are generally used to resolve
"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless
of which type of captcha is being used, this incident is generated when the user forces
the captcha interface to submit the request without a valid captcha solution. There is
no way to do this without manipulating the logic that controls captcha protected requests.

Behavior: When a hacker is attempting to establish an automated script that is capable
of defeating the captcha, they can use various different techniques. One of these
technigues is to try changing various values used by the web application in the captcha
mechanism in an effort to see if an error can be generated, or an unexpected outcome
can be achieved. This type of probing and reverse engineering is generally performed by
advanced hackers. In this specific case, the attacker attempted to submit the captcha
protected page without actually solving the captcha. Instead they provided an empty
value for the solution parameter. It is not possible to submit an empty solution using the
provided captcha interface, so this is almost guaranteed to be a malicious attempt at

Copyright © 2014, Juniper Networks, Inc. 253

WebApp Secure 5.5

generating an error and obtaining additional details about the captcha implementation
though an "Information Leakage" weakness.

See http:/projects.webappsec.org for information on attack types.

Response Processors: Request Captcha Processor: Incident - Multiple Captcha Request
Overflow

Complexity: Low (2.0)
Default Response: 1x = 1 Day Clear Inputs.

Cause: A captcha is a special technique used to differentiate between human users, and
automated scripts. Thisis done through a Turing test, where the user is required to visually
identify characters in a jumbled image and transcribe them into an input. If the user is
unable to complete the challenge in a reasonable amount of time, they are not allowed
to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed.
Additionally, an audio version is optionally available to allow users who have a visual
handicap to complete the captcha successfully. Captchas are used in two different ways
by the system. They can be explicitly added to any workflow within the protected web
application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site
(similar to blocking the user, but with a way for the user to unblock themselves if they
can prove they are not an automated script). Captchas are generally used to resolve
"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless
of which type of captcha is being used, this incident is generated when the user attempts
to submit dozens of captcha protected requests that exceed the configured maximum
for protected request sizes.

Behavior: When a hacker is attempting to establish an automated script that is capable
of defeating the captcha, they can use various different technigues. One of these
technigues is to try changing various values used by the web application in the captcha
mechanism in an effort to see if an error can be generated, or an unexpected outcome
can be achieved. This type of probing and reverse engineering is generally performed by
advanced hackers. In this specific case, the attacker submitted dozens of extremely large
requests, probably in an effort to find a "Buffer Overflow" vulnerability, which would
produce useful error data and potentially open the server up to further exploitation. They
might also be attempting to overload the server and execute a "Denial of Service" attack.

Response Processors: Request Captcha Processor: Incident - Unsupported Audio
Captcha Requested

Complexity: Medium (3.0)
Default Response: 3x = Slow Connection 2-6 seconds and Warn User. 5x = 1 Day Block.

Cause: A captcha is a special technique used to differentiate between human users, and
automated scripts. Thisis done through a Turing test, where the user is required to visually
identify characters in a jumbled image and transcribe them into an input. If the user is

unable to complete the challenge in a reasonable amount of time, they are not allowed

254 Copyright © 2014, Juniper Networks, Inc.

http://projects.webappsec.org

Chapter 16: Response Processors

to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed.
Additionally, an audio version is optionally available to allow users who have a visual
handicap to complete the captcha successfully. Captchas are used in two different ways
by the system. They can be explicitly added to any workflow within the protected web
application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site
(similar to blocking the user, but with a way for the user to unblock themselves if they
can prove they are not an automated script). Captchas are generally used to resolve
"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless
of which type of captcha is being used, this incident is generated when the user attempts
to request the audio version of a captcha challenge when support for audio captchas
has been explicitly disabled.

Behavior: Solving an image based captcha is exceptionally difficult and requires a great
deal of time and research. Solving an audio captcha however is far less difficult. There
are already multiple open source libraries available for translating speech to text. As
such, it is often necessary to disable the support of "audio" captchas for critical workflows
(such as administrative login dialogs), unless absolutely necessary for accessibility
reasons. This incident occurs when the audio captcha has been disabled, but a user is
attempting to manually request the audio version of the captcha challenge anyway. The
captchainterface does not expose a link to the audio version unless it is explicitly enabled
in configuration, so this would require that the user knows where to look for the audio
version, they understand the filename conventions, and they know how to make the
request manually to download the file. In either case, if audio captchas are not enabled
(through configuration), then this effort will not be successful.

Response Processors: Request Captcha Processor: Incident - Bad Captcha Answer

Complexity: Suspicious (1.0)
Default Response: 10x = Captcha Answer Automation Incident.

Cause: A captcha is a special technique used to differentiate between human users, and
automated scripts. This is done through a Turing test, where the user is required to visually
identify characters in a jumbled image and transcribe them into an input. If the user is
unable to complete the challenge in a reasonable amount of time, they are not allowed
to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed.
Additionally, an audio version is optionally available to allow users who have a visual
handicap to complete the captcha successfully. Captchas are used in two different ways
by the system. They can be explicitly added to any workflow within the protected web
application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site
(similar to blocking the user, but with a way for the user to unblock themselves if they
can prove they are not an automated script). Captchas are generally used to resolve
"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless
of which type of captcha is being used, this incident is generated when the user provides
a bad solution to the captcha image. For example, the image might have said "Hello",
but the user typed "hfii0" instead. Because the images can be somewhat difficult to read

Copyright © 2014, Juniper Networks, Inc. 255

WebApp Secure 5.5

at times (in order to ensure a script cannot break them), it is not uncommon for a
legitimate user to enter the wrong value a few times before getting it right, especially if
they are unfamiliar with this type of technique.

Behavior: Simply providing a bad solution to the captcha image is not necessarily
malicious. Legitimate users are not always able to solve the captcha on the first try.
However if a large volume of invalid solutions are provided, then it is more likely that a
script is attempting to crack the captcha image through educated guessing and "Brute
Force".

Response Processors: Request Captcha Processor: Incident - Mismatched Captcha

Session

Complexity: High (4.0)
Default Response: 1x = Warn User, 2x = 5 Day Clear Inputs.

Cause: A captcha is a special technique used to differentiate between human users, and
automated scripts. Thisis done through a Turing test, where the user is required to visually
identify characters in a jumbled image and transcribe them into an input. If the user is
unable to complete the challenge in a reasonable amount of time, they are not allowed
to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed.
Additionally, an audio version is optionally available to allow users who have a visual
handicap to complete the captcha successfully. Captchas are used in two different ways
by the system. They can be explicitly added to any workflow within the protected web
application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site
(similar to blocking the user, but with a way for the user to unblock themselves if they
can prove they are not an automated script). Captchas are generally used to resolve
"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless
of which type of captcha is being used, this incident is generated when the user provides
a solution to a captcha that was issued for a different session then their own, as might
be the case in a script that uses minimal human interaction to solve the captcha's, but
everything else is automated

Behavior: When a hacker is attempting to establish an automated script that is capable
of defeating the captcha, they might use various different technigues. One of these
techniques is to try and harvest successfully solves captchas from other users on the
site. This can be done either by infecting those machines with a virus, or by implanting
script into some of the sites pages (possibly through XSS). If this technique is used, then
the captcha that is being solved might not have originated from the same session as the
user who is submitting the solution. This is a dead giveaway that the user is attempting
to defeat the captcha system to automate a specific task.

Response Processors: Request Captcha Processor: Incident - Expired Captcha Request

Complexity: Suspicious (1.0)

Default Response: None.

256

Copyright © 2014, Juniper Networks, Inc.

Chapter 16: Response Processors

Cause: A captcha is a special technique used to differentiate between human users, and
automated scripts. Thisis done through a Turing test, where the user is required to visually
identify characters in a jumbled image and transcribe them into an input. If the user is
unable to complete the challenge in a reasonable amount of time, they are not allowed
to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed.
Additionally, an audio version is optionally available to allow users who have a visual
handicap to complete the captcha successfully. Captchas are used in two different ways
by the system. They can be explicitly added to any workflow within the protected web
application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site
(similar to blocking the user, but with a way for the user to unblock themselves if they
can prove they are not an automated script). Captchas are generally used to resolve
"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless
of which type of captcha is being used, this incident is generated when the user provides
a solution to a captcha after the allotted time for solving the captcha has elapsed.

Behavior: When a hacker is attempting to establish an automated script that is capable
of defeating the captcha, they can use various different techniques. One of these
techniques is to run expensive image processing algorithms on the captcha image in
order to identify what the represented value might be. Additionally, a user might attempt
to send the captcha to a warehouse of human captcha solvers. These warehouses
specialize in solving large volumes of captchas at a fairly low price (less then a penny
per captcha). In either case, it can take several minutes to get the correct captcha answer,
and will likely run out the amount of time the user is allowed for solving the captcha. If
using a browser, the input would flat out stop accepting answers, but in a scripted scenario,
the script will likely try and submit the value anyway, because it is unaware of the
expiration. It is possible that this incident would be triggered by a legitimate user, if they
were to refresh the page that was produced after the captcha was solved. This would
effectively cause the captcha to be reprocessed after the expiration time had been
exceeded. As such, this incident on its own is not considered malicious.

Response Processors: Request Captcha Processor: Incident - Captcha Request
Tampering

Complexity: High (4.0)
Default Response: 1x = Warn User. 2x = 5 Day Clear Inputs.

Cause: A captcha is a special technique used to differentiate between human users, and
automated scripts. Thisis done through a Turing test, where the user is required to visually
identify characters in a jumbled image and transcribe them into an input. If the user is
unable to complete the challenge in a reasonable amount of time, they are not allowed
to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed.
Additionally, an audio version is optionally available to allow users who have a visual
handicap to complete the captcha successfully. Captchas are used in two different ways
by the system. They can be explicitly added to any workflow within the protected web
application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site

Copyright © 2014, Juniper Networks, Inc. 257

WebApp Secure 5.5

(similar to blocking the user, but with a way for the user to unblock themselves if they
can prove they are not an automated script). Captchas are generally used to resolve
"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless
of which type of captcha is being used, this incident is generated when the user provides
a solution to a captcha whichis correct, but they have modified the parameter containing
the original request (which is heavily encrypted to prevent tampering).

Behavior: When a hacker is attempting to establish an automated script that is capable
of defeating the captcha, they can use various different technigues. One of these
technigues is to try changing various values used by the web application in the captcha
mechanism in an effort to see if an error can be generated, or an unexpected outcome
can be achieved. This type of probing and reverse engineering is generally performed by
advanced hackers. The parameter that was modified contained the original request data
(before the captcha was issued), it is likely that the attacker is attempting to smuggle a
malicious payload through the system without being detected by any network or web
firewalls. Because this parameter uses heavy encryption and validation, this type of
activity will not produce any useful information or expose any vulnerabilities. Depending
on the value they submitted for the original request data, this can also fall under one of
the other attack categories involving manipulating general inputs, such as a "Buffer
Overflow", "XSS", "Denial of Service", "Fingerprinting", "Format String", "HT TP Response
Splitting", "Integer Overflow", or "SQL injection" attack among many others.

Response Processors: Request Captcha Processor: Incident - Captcha Signature

Tampering

Complexity: High (4.0)
Default Response: 1x = Warn User. 2x = 5 Day Clear Inputs.

Cause: A captcha is a special technigue used to differentiate between human users, and
automated scripts. Thisis done through a Turing test, where the useris required to visually
identify characters in a jumbled image and transcribe them into an input. If the user is
unable to complete the challenge in a reasonable amount of time, they are not allowed
to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed.
Additionally, an audio version is optionally available to allow users who have a visual
handicap to complete the captcha successfully. Captchas are used in two different ways
by the system. They can be explicitly added to any workflow within the protected web
application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site
(similar to blocking the user, but with a way for the user to unblock themselves if they
can prove they are not an automated script). Captchas are generally used to resolve
"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless
of which type of captcha is being used, this incident is generated when the user provides
a solution to a captcha which is correct, but they have modified the integrity checking
signature passed along with the captcha solution.

Behavior: When a hacker is attempting to establish an automated script that is capable
of defeating the captcha, they can use various different techniques. One of these
technigues is to try changing various values used by the web application in the captcha

258

Copyright © 2014, Juniper Networks, Inc.

Chapter 16: Response Processors

mechanism in an effort to see if an error can be generated, or an unexpected outcome
can be achieved. This type of probing and reverse engineering is generally performed by
advanced hackers. Depending on the value they submitted for the original request data,
this can also fall under one of the other attack categories involving manipulating general
inputs, such as a "Buffer Overflow", "XSS", "Denial of Service", "Fingerprinting", "Format
String", "HTTP Response Splitting", "Integer Overflow", or "SOL injection" attack among
many others.

Response Processors: Request Captcha Processor: Incident - Captcha Signature
Spoofing

Complexity: High (4.0)
Default Response: 1x = Warn User. 2x = 5 Day Clear Inputs.

Cause: A captcha is a special technique used to differentiate between human users, and
automated scripts. This is done through a Turing test, where the useris required to visually
identify characters in a jumbled image and transcribe them into an input. If the user is
unable to complete the challenge in a reasonable amount of time, they are not allowed
to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed.
Additionally, an audio version is optionally available to allow users who have a visual
handicap to complete the captcha successfully. Captchas are used in two different ways
by the system. They can be explicitly added to any workflow within the protected web
application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site
(similar to blocking the user, but with a way for the user to unblock themselves if they
can prove they are not an automated script). Captchas are generally used to resolve
"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless
of which type of captcha is being used, this incident is generated when the user provides
a solution to a captcha which is correct, but they have replaced the integrity checking
signature passed along with the captcha solution to one that was used in a previous
captcha solution.

Behavior: When a hacker is attempting to establish an automated script that is capable
of defeating the captcha, they can use various different techniques. One of these
technigues is to try changing various values used by the web application in the captcha
mechanism in an effort to see if an error can be generated, or an unexpected outcome
can be achieved. This type of probing and reverse engineering is generally performed by
advanced hackers. This specific incident generally reflects the behavior of a user who is
trying to submit a request that would normally be protected by a captcha, but they are
trying to trick the system into thinking the captcha was solved correctly, even though it
was not. This is generally looking for a "Insufficient Anti- Automation" weakness in the
captcha handling mechanism.

Response Processors: Request Captcha Processor: Incident - Captcha Cookie
Manipulation

Complexity: Medium (3.0)

Copyright © 2014, Juniper Networks, Inc. 259

WebApp Secure 5.5

Default Response: 1x = Warn User. 2x = 5 Day Clear Inputs.

Cause: A captcha is a special technique used to differentiate between human users, and
automated scripts. Thisis done through a Turing test, where the useris required to visually
identify characters in a jumbled image and transcribe them into an input. If the user is
unable to complete the challenge in a reasonable amount of time, they are not allowed
to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed.
Additionally, an audio version is optionally available to allow users who have a visual
handicap to complete the captcha successfully. Captchas are used in two different ways
by the system. They can be explicitly added to any workflow within the protected web
application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site
(similar to blocking the user, but with a way for the user to unblock themselves if they
can prove they are not an automated script). Captchas are generally used to resolve
"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless
of which type of captcha is being used, this incident is generated when the user alters
the cookies used to maintain captcha state.

Behavior: When a hacker is attempting to establish an automated script that is capable
of defeating the captcha, they can use various different techniques. One of these
technigues is to try changing various values used by the web application in the captcha
mechanism in an effort to see if an error can be generated, or an unexpected outcome
can be achieved. This type of probing and reverse engineering is generally performed by
advanced hackers. In this specific case, the attacker modified a cookie that is used to
maintain the state of the captcha. The cookie is heavily encrypted, but the attacker might
be attempting to establish a way of either identifying what the value of the captcha is
algorithmically (by analyzing the cookie value), or they can be attempting to assign a
value to the captcha. In either case, this activity generally indicates a user who is trying
to find a way to bypass the captcha. Depending on the value they submitted for the
original request data, this can also fall under one of the other attack categories involving
manipulating general inputs, such as a "Buffer Overflow", "XSS", "Denial of Service",
"Fingerprinting", "Format String", "HTTP Response Splitting", "Integer Overflow", or "SQL
injection" attack among many others.

Response Processors: Request Captcha Processor: Incident - Captcha Image Probing

Complexity: Low (2.0)
Default Response: 1x = Warn User. 2x = 5 Day Block.

Cause: A captcha is a special technique used to differentiate between human users, and
automated scripts. This is done through a Turing test, where the user is required to visually
identify characters in a jumbled image and transcribe them into an input. If the user is
unable to complete the challenge in a reasonable amount of time, they are not allowed
to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed.
Additionally, an audio version is optionally available to allow users who have a visual
handicap to complete the captcha successfully. Captchas are used in two different ways
by the system. They can be explicitly added to any workflow within the protected web

260

Copyright © 2014, Juniper Networks, Inc.

Chapter 16: Response Processors

application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site
(similar to blocking the user, but with a way for the user to unblock themselves if they
can prove they are not an automated script). Captchas are generally used to resolve
"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless
of which type of captcha is being used, this incident is generated when the user attempts
to request a captcha image file for a request that is not being protected by a captcha.

Behavior: In order to find a way to bypass the captcha mechanism, attackers will often
attempt to collect a large number of captcha images for offline analysis. If the attacker
can find a pattern in how the captcha images are issued, or how the filename relates to
the value in the image, then they can effectively bypass the captcha mechanism at will.
In this case, the attacker is guessing arbitrary captcha image filenames, but is attempting
to keep the format of the names consistent with known captcha image URL's. Because
the filename used and the values in the image have no correlation, this technigque will
not be successful and will simply waste the attacker's time and resources.

Response Processors: Request Captcha Processor: Incident - Captcha Request Size
Limit Exceeded

Complexity: Suspicious (1.0)
Default Response: 10x = Multiple Captcha Request Overflow Incident.

Cause: A captcha is a special technique used to differentiate between human users, and
automated scripts. Thisis done through a Turing test, where the user is required to visually
identify characters in a jumbled image and transcribe them into an input. If the user is
unable to complete the challenge in a reasonable amount of time, they are not allowed
to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed.
Additionally, an audio version is optionally available to allow users who have a visual
handicap to complete the captcha successfully. Captchas are used in two different ways
by the system. They can be explicitly added to any workflow within the protected web
application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site
(similar to blocking the user, but with a way for the user to unblock themselves if they
can prove they are not an automated script). Captchas are generally used to resolve
"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless
of which type of captcha is being used, this incident is generated when the user attempts
to submit a captcha protected request that contains a request body larger then the
configured maximum.

Behavior: When a hacker is attempting to establish an automated script that is capable
of defeating the captcha, they can use various different techniques. One of these
technigues is to try changing various values used by the web application in the captcha
mechanism in an effort to see if an error can be generated or if an unexpected outcome
can be achieved. This type of probing and reverse engineering is generally performed by
advanced hackers. In this specific case, the attacker submitted an extremely large request,
probably in an effort to find a "Buffer Overflow" vulnerability, which would produce useful
error data and potentially open the server up to further exploitation. This incident is not

Copyright © 2014, Juniper Networks, Inc. 261

WebApp Secure 5.5

necessarily malicious on its own, as it is possible for a normal user to submit a value that
is larger then the configured maximum, especially if the configured maximum is small,
or if the form protected by the captcha allows file posts.

Response Processors: Request Captcha Processor: Incident - Captcha Disallowed
MultiPart

Complexity: Suspicious (1.0)
Default Response: 10x = Multiple Captcha Disallow Multipart Incident.

Cause: A captcha is a special technique used to differentiate between human users, and
automated scripts. Thisis done through a Turing test, where the user is required to visually
identify characters in a jumbled image and transcribe them into an input. If the user is
unable to complete the challenge in a reasonable amount of time, they are not allowed
to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed.
Additionally, an audio version is optionally available to allow users who have a visual
handicap to complete the captcha successfully. Captchas are used in two different ways
by the system. They can be explicitly added to any workflow within the protected web
application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site
(similar to blocking the user, but with a way for the user to unblock themselves if they
can prove they are not an automated script). Captchas are generally used to resolve
"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless
of which type of captcha is being used, this incident is generated when the user attempts
to submit a captcha protected request that contains a binary file, and the captcha is
explicitly configured to not allow binary file submission (it has been configured to disallow
multi-part form submissions).

Behavior: When a hacker is attempting to establish an automated script that is capable
of defeating the captcha, they can use various different techniques. One of these
technigues is to try changing various values used by the web application in the captcha
mechanism in an effort to see if an error can be generated, or an unexpected outcome
can be achieved. This type of probing and reverse engineering is generally performed by
advanced hackers. In this specific case, the attacker submitted a binary file in the request
that is being protected. The captcha in this case has been explicitly configured to not
allow Multi-Part form submissions, so this represents unexpected and undesired activity.
Using Multi-Part forms, the attacker can more easily accomplish a "Buffer Overflow"
attack, which would produce useful error data and potentially open the server up to
further exploitation. Additionally, some web applications do not handle the encoding
used for multi-part forms gracefully, so error information can also be obtained from
conflicts arising from the submission type. This is not necessarily a malicious incident on
its own, because it is possible that the user is legitimately submitting a multi-part form,
and just happened to have the captcha activated during the submission. However this
is a very rare case, and still represents a somewhat suspicious client.

Response Processors: Request Captcha Processor: Incident - Captcha Directory Indexing

Complexity: Low (2.0)

262 Copyright © 2014, Juniper Networks, Inc.

Chapter 16: Response Processors

Default Response: 1x = Slow Connection 2-6 seconds and 1 Day Block.

Cause: A captcha is a special technique used to differentiate between human users, and
automated scripts. Thisis done through a Turing test, where the useris required to visually
identify characters in a jumbled image and transcribe them into an input. If the user is
unable to complete the challenge in a reasonable amount of time, they are not allowed
to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed.
Additionally, an audio version is optionally available to allow users who have a visual
handicap to complete the captcha successfully. Captchas are used in two different ways
by the system. They can be explicitly added to any workflow within the protected web
application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site
(similar to blocking the user, but with a way for the user to unblock themselves if they
can prove they are not an automated script). Captchas are generally used to resolve
"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless
of which type of captcha is being used, this incident is generated when the user attempts
torequest a directory index from the same fake directory as the captcha images are being
served from.

Behavior: When attempting to either bypass the captcha mechanism, or find a vulnerability
in the server, attackers will often try finding unlinked resources throughout the website.
The captcha mechanism uses a fake directory in order to serve the images and audio
files that contain the captcha challenge. If the attacker is requesting an arbitrary file
within the same fake directory, they are likely trying to find a "Predictable Resource
Location" vulnerability. In this specific case, the attacker is attempting to get a full file
listing of everything inside the captcha directory. This could potentially be used to get a
massive list of all active captcha URL's, or to find resources that are used in the creation
of captcha challenges. The directory index will not be allowed, so this does not actually
provide the attacker with any useful information.

Response Processors: Request Captcha Processor: Incident - Captcha Directory Probing

Complexity: Low (2.0)
Default Response: 1x = Warn User. 2x = Slow Connection 2-6 seconds and 5 Day Block.

Cause: A captchais a special technigue used to differentiate between human users, and
automated scripts. Thisis done through a Turing test, where the user is required to visually
identify characters in a jumbled image and transcribe them into an input. If the user is
unable to complete the challenge in a reasonable amount of time, they are not allowed
to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed.
Additionally, an audio version is optionally available to allow users who have a visual
handicap to complete the captcha successfully. Captchas are used in two different ways
by the system. They can be explicitly added to any workflow within the protected web
application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site
(similar to blocking the user, but with a way for the user to unblock themselves if they
can prove they are not an automated script). Captchas are generally used to resolve

Copyright © 2014, Juniper Networks, Inc. 263

WebApp Secure 5.5

"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless
of which type of captcha is being used, this incident is generated when the user attempts
to request an arbitrary file (not a captcha image, but something else) from within the
same fake directory as the captcha images are being served from.

Behavior: When attempting to either bypass the captcha mechanism, or find a vulnerability
in the server, attackers will often try finding unlinked resources throughout the website.
The captcha mechanism uses a fake directory in order to serve the images and audio
files that contain the captcha challenge. If the attacker is requesting an arbitrary file
within the same fake directory, they are likely trying to find a "Predictable Resource
Location" vulnerability. For example, the attacker might be trying to find a source file in
the captcha serving directory in hopes of actually being able to get the source code behind
how captcha images are generated. Because the directory is fake, the attacker will never
find any of the resources they are looking for.

Response Processors: Request Captcha Processor: Incident - Captcha Parameter

Manipulation

Complexity: Suspicious (1.0)
Default Response: 5x = Multiple Captcha Parameter Manipulation Incident.

Cause: A captcha is a special technique used to differentiate between human users, and
automated scripts. This is done through a Turing test, where the user is required to visually
identify characters in a jumbled image and transcribe them into an input. If the user is
unable to complete the challenge in a reasonable amount of time, they are not allowed
to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed.
Additionally, an audio version is optionally available to allow users who have a visual
handicap to complete the captcha successfully. Captchas are used in two different ways
by the system. They can be explicitly added to any workflow within the protected web
application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site
(similar to blocking the user, but with a way for the user to unblock themselves if they
can prove they are not an automated script). Captchas are generally used to resolve
"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless
of which type of captcha is being used, this incident is generated when the user attempts
to submit multiple solutions for multiple captchas, but they keep modifying the query
parameters that were submitted with the original requests. For example, if the user
submitted a "add product to cart" request, and one of the query parameters was the
item to add, this incident would be triggered if after solving the captcha, the value of that
query parameter was modified to some other value, and this modification happened
dozens of times.

Behavior: Because captcha's prevent automation, attackers will sometimes try and find
ways to abuse the technique used to request the captcha in order to exploit the site. For
example, if the attacker can find a way to submit the same solution over and over again,
but have the web application perform a different action each time, they might be able
to solve the captcha once and still automate the resulting workflow. In this case, the
attacker changed a query parameter that was submitted with the original request. They

264

Copyright © 2014, Juniper Networks, Inc.

Chapter 16: Response Processors

submitted the original request, solved the captcha, changed the query parameter, and
then resubmitted the solved captcha request. In some cases, this might cause the web
application to execute a different operation based on the difference in query parameter
values. For example, if the protected workflow is "add product to cart" on a shopping
site, then the attacker might attempt to submit the same solved captcha repeatedly,
but change the product ID that is being added on each request. This might allow them
to automate the addition of products to a shopping cart, after solving only one captcha
challenge. The captcha mechanism does not allow the modification of query parameters
after the original request has been submitted, so this type of activity will not be successful.

Response Processors: Request Captcha Processor: Incident - Captcha Request Replay
Attack

Complexity: Suspicious (1.0)
Default Response: 5x = Multiple Captcha Replay Incident

Cause: A captcha is a special technique used to differentiate between human users, and
automated scripts. Thisis done through a Turing test, where the user is required to visually
identify characters in a jumbled image and transcribe them into an input. If the user is
unable to complete the challenge in a reasonable amount of time, they are not allowed
to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed.
Additionally, an audio version is optionally available to allow users who have a visual
handicap to complete the captcha successfully. Captchas are used in two different ways
by the system. They can be explicitly added to any workflow within the protected web
application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site
(similar to blocking the user, but with a way for the user to unblock themselves if they
can prove they are not an automated script). Captchas are generally used to resolve
"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless
of which type of captcha is being used, this incident is generated when the user attempts
to submit a captcha solution multiple times and "replay" is explicitly disabled for the
captcha being used.

Behavior: Because captcha's prevent automation, attackers will sometimes try and find
ways to abuse the technique used to request the captcha in order to exploit the site. For
example, if the attacker can find a way to submit the same solution over and over again,
they might be able to solve the captcha once and still automate the resulting workflow.
This is sometimes considered legitimate behavior (as would be expected if the user
refreshed the browser after submitting a successful captcha), however in many cases,
such functionality would make the captcha significantly less effective at preventing
automation. In this case, the attacker resubmitted a request that had already been
successfully validated through a captcha, and "replay" was explicitly disabled for the
captcha. This is not necessarily a malicious incident on its own, because the user can
have accidentally refreshed the browser, however multiple attempts would definitely
represent malicious intent. An example of where a captcha's "replay" could cause a
problem is on a gaming site, where the user is adding fake "money" to their account. In
order to add the fake money, they must solve the captcha. This workflow is protected
with a captcha, because if a user could automate the process, they would be able to add

Copyright © 2014, Juniper Networks, Inc. 265

WebApp Secure 5.5

unlimited funds to their account. If an attacker were able to solve the captcha once, and
continuously resubmit the resulting request, they could effectively add funds over and
over again without resolving a new captcha. This would then allow for automation. Replay
attackers are less of a problem if the web application being protected already has a
method of preventing the same request from being submitted accidentally multiple
times. Such would be the case if the web application maintained state information for
the given session, and recorded the operation after it was successful, then used that
state information to prevent a future occurrence of the operation.

Response Processors: Request Captcha Processor: Incident - Multiple Captcha Replays

Complexity: Low (2.0)
Default Response: 1x = Warn User, 2x = 1 Day Clear Inputs

Cause: A captcha is a special technique used to differentiate between human users, and
automated scripts. This is done through a Turing test, where the useris required to visually
identify characters in a jumbled image and transcribe them into an input. If the user is
unable to complete the challenge in a reasonable amount of time, they are not allowed
to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed.
Additionally, an audio version is optionally available to allow users who have a visual
handicap to complete the captcha successfully. Captchas are used in two different ways
by the system. They can be explicitly added to any workflow within the protected web
application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site
(similar to blocking the user, but with a way for the user to unblock themselves if they
can prove they are not an automated script). Captchas are generally used to resolve
"Insufficient Anti-Automation" weaknesses in the protected web application. Regardless
of which type of captcha is being used, this incident is generated when the user attempts
to submit a captcha solution multiple times and "replay" is explicitly disabled for the
captcha being used.

Behavior: Because captcha's prevent automation, attackers will sometimes try and find
ways to abuse the technique used to request the captcha in order to exploit the site. For
example, if the attacker can find a way to submit the same solution over and over again,
they might be able to solve the captcha once and still automate the resulting workflow.
This is sometimes considered legitimate behavior (as would be expected if the user
refreshed the browser after submitting a successful captcha), however in many cases,
such functionality would make the captcha significantly less effective at preventing
automation. In this case, the attacker resubmitted a request that had already been
successfully validated through a captcha, and "replay" was explicitly disabled for the
captcha. This is not necessarily a malicious incident on its own, because the user can
have accidentally refreshed the browser, however multiple attempts would definitely
represent malicious intent. An example of where a captcha's "replay" could cause a
problem is on a gaming site, where the user is adding fake "money" to their account. In
order to add the fake money, they must solve the captcha. This workflow is protected
with a captcha, because if a user could automate the process, they would be able to add
unlimited funds to their account. If an attacker were able to solve the captcha once, and
continuously resubmit the resulting request, they could effectively add funds over and

266

Copyright © 2014, Juniper Networks, Inc.

Chapter 16: Response Processors

over again without resolving a new captcha. This would then allow for automation. Replay
attackers are less of a problem if the web application being protected already has a
method of preventing the same request from being submitted accidentally multiple
times. Such would be the case if the web application maintained state information for
the given session, and recorded the operation after it was successful, then used that
state information to prevent a future occurrence of the operation.

Response Processors: Request Captcha Processor: Incident - Multiple Captcha Disallow
Multipart

Complexity: Low (2.0)
Default Response: 1x = 1 Day Clear Inputs

Cause: A CAPTCHA (Completely Automated Public Turing test to tell Computers and
Humans Apart) is a special technigue used to differentiate between human users, and
automated scripts. The user is required to visually identify characters in a jumbled image
and transcribe them into a text box. An audio version is also available, for users with a
visual handicap. If the user is unable to complete the challenge in a reasonable amount
of time, they are not allowed to proceed with their original request. Because it is nearly
impossible to script the deciphering of the image, automated scripts generally get stuck
and cannot proceed. CAPTCHAs are used in two different ways by the System. They can
be explicitly added to any workflow within the protected web application (such as
requiring a CAPTCHA to login, or checkout a shopping cart), and they can be used to test
a suspicious user before allowing them to continue using the site (similar to blocking the
user, but with a way for the user to unblock themselves if they can prove they are not an
automated script). CAPTCHAs are generally used to resolve "Insufficient Anti-Automation"
weaknesses in the protected web application. Regardless of which type of CAPTCHA is
being used, this incident is generated when the user attempts to submit dozens of
CAPTCHA-protected requests that contain binary files, and the CAPTCHASs are explicitly
configured to not allow binary file submission (it has been configured to disallow
multi-part form submissions).

Behavior: When a hacker is attempting to establish an automated script that is capable
of defeating the CAPTCHA, they can use various techniques. One of these techniques is
to try changing various values used by the web application in the CAPTCHA mechanism
inan effort to see if an error can be generated, or an unexpected outcome can be achieved.
This type of probing and reverse-engineering is generally performed by advanced hackers.
In this specific case, the attacker submitted dozens of binary files in the requests that
are being protected. The CAPTCHA in this case has been explicitly configured to not
allow Multi-Part form submissions, so this represents unexpected and undesired activity.
Using Multi-Part forms, the attacker can more easily accomplish a "Buffer Overflow"
attack, which would produce potentially sensitive error data and possibly open the server
up to further exploitation. Additionally, some web applications do not handle the encoding
used for multi-part forms gracefully, so error information can also be obtained from
conflicts arising from the submission type. Because this is happening so frequently from
the same user, it is also possible that the user is attempting to execute a "Denial of
Service" attack.

Copyright © 2014, Juniper Networks, Inc. 267

WebApp Secure 5.5

Response Processors: Request Captcha Processor: Incident - Multiple Captcha
Parameter Manipulation

Complexity: Low (2.0)
Default Response: 1x = Warn User, 2x = 1 Day Clear Inputs

Cause: A CAPTCHA (Completely Automated Public Turing test to tell Computers and
Humans Apart) is a special technigue used to differentiate between human users, and
automated scripts. The user is required to visually identify characters in a jumbled image
and transcribe them into a text box. An audio version is also available, for users with a
visual handicap. If the user is unable to complete the challenge in a reasonable amount
of time, they are not allowed to proceed with their original request. Because it is
nearly-impossible to script the deciphering of the image, automated scripts generally
get stuck and cannot proceed. CAPTCHAS are used in two different ways by the System.
They can be explicitly added to any workflow within the protected web application (such
as requiring a CAPTCHA to login, or checkout a shopping cart), and they can be used to
test a suspicious user before allowing them to continue using the site (similar to blocking
the user, but with a way for the user to unblock themselves if they can prove they are not
an automated script). CAPTCHAS are generally used to resolve "Insufficient
Anti-Automation" weaknesses in the protected web application. Regardless of which
type of CAPTCHA is being used, this incident is generated when the user attempts to
submit multiple solutions for multiple CAPTCHAS, but they keep modifying the query
parameters that were submitted with the original requests. For example, if the user
submitted a "add product to cart" request, and one of the query parameters was the
item to add, this incident would be triggered if, after solving the CAPTCHA, the value of
that query parameter was modified to some other value, and this modification happened
dozens of times.

Behavior: Because CAPTCHASs prevent automation, attackers will sometimes try to find
ways to abuse the technique used to request the CAPTCHA in order to exploit the site.
For example, if the attacker can find a way to submit the same solution over and over
again, but have the web application perform a different action each time, they might be
able to solve the CAPTCHA once, and still automate the resulting workflow. In this case,
the attacker changed many query parameters on many different requests that were
protected with a CAPTCHA. They submitted the original request, solved the CAPTCHA,
changed the original query parameters, and then resubmitted the solved CAPTCHA
request. In some cases, this might cause the web application to execute a different
operation based on the difference in query parameter values. For example, if the protected
workflow is "add product to cart" on a shopping site, then the attacker might attempt
to submit the same solved CAPTCHA repeatedly, but change the product ID that is being
added on each request. This might allow them to automate the addition of products to
a shopping cart, after solving only one CAPTCHA challenge. The CAPTCHA mechanism
does not allow the modification of query parameters after the original request has been
submitted, so this type of activity will not be successful. This is not considered malicious
activity right away, because it is possible that a user can accidentally modify a query
parameter; however, when thisincident is triggered, it represents a user who has modified
dozens of different query parameters on different CAPTCHA-protected pages.

268

Copyright © 2014, Juniper Networks, Inc.

Chapter 16: Response Processors

Response Processors: CSRF Processor

The CSRF processor is responsible for ensuring that the protected website does not allow
a cross site request forgery attack. CSRF attacks are a type of session hijacking, where

a malicious website redirects a user to a sensitive service call on the target website. For
example, a user might visit a malicious website that has an image tag pointed to the
"deleteAccount" service running on a target website. When a user visits the malicious
website, they are unknowingly calling the "deleteAccount" operation. If they had an active
session on the target site, their account would be deleted.

This processor works by intercepting any request that could potentially be part of a CSRF
attack. This is determined by looking at the referer header being passed in by the client.
The referer header tells the server where the user came from. If the user is navigating
around the actual website legitimately, they will have a referer header on nearly all
requests they make which will match the domain of the site they are navigating. If the
user types the URL in manually, or follows a link from another site, they will not have a
referer. If it's a CSRF attack, there will either be no referer, or a third party domain in the
referer.

In all cases where the referer does not match the domain of the protected site, a special
redirection page will be returned to the client instead of the request they actually asked
for. The redirection page will check to make sure the user is not a victim of a CSRF attack,
and if they are not, it will automatically redirect the user to the original page they
requested.

This processor only protects clients that have "user-agent" headers matching that of a
known browser. This is because CSRF attacks are specifically targeted at average web
users, and they generally stick to the major browsers. So spiders and scripts will bypass
the CSRF processors detection/protection mechanism. This processor also detects the
case where a user has turned off referers (and thus, no requests will contain a referer),
and in that case, will turn off CSRF protection for the client. As such, a user who has
disabled referers will still be susceptible to CSRF, but that should be a very small
percentage (if not zero) of the overall user pool.

In the event that a user issues a request that cannot be validated as not a CSRF attack,
the user will not be automatically redirected. Instead, they will be presented a "This page
has moved" response, and will be asked to click a link to continue to the page they actually
wanted. The link to proceed is randomly positioned on the page to prevent Click Jacking
attacks (where a malicious site overlays legitimate content on top of the target site and
gets the user to click the legitimate content, while also hijacking the click to transparently
activate the content underneath). A special case involves when a third party website
opens the target site in a new window or tab. If the third party site retains ownership of
the newly opened window or tab, the user will be asked to click the "continue" link so
that the original window can be closed and a new window can be opened in its place.
This action breaks the ownership and prevents the third party website from performing
actions on the window (such as closing or redirecting it).

Because it is sometimes expected that a third party site will be making calls into the
target site, it is possible to configure a list of "trusted" third party sites. Any requests

Copyright © 2014, Juniper Networks, Inc. 269

WebApp Secure 5.5

issued from a trusted domain will not be protected against CSRF. This allows the trusted
site to host the target site in an IFRAME or make service calls unimpeded. Be careful who
you add to the trusted domain list, because if the trusted domain is susceptible to XSS
or CSRF itself, then it can be used as a proxy to launch a CSRF attack against your
protected sites. This trust does not apply if the hosting domain is running over SSL, and
the target domain is not running over SSL. If the third party page hosting an IFRAME of
the target site is running in SSL, it must load the SSL version of the target site, otherwise
the CSRF protection will still be applied. It is however fine if the third party site is not SSL
protected and the target site is SSL protected.

Table 37: CSRF Processor Configuration Parameters

Default

Parameter Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this processor.

Advanced

Block Response Configurable HTTP The response to return if the CSRF mechanism cannot complete the

Response request due to errors or tampering.

CSRF Nonce Salt String Random A 256 character random string used to ensure that CSRF nonce tokens
are generated differently between different deployments.

CSRF Token Name String Random The name of the query string parameter used to indicate a successfully
validated request after it has been determined that it is not a CSRF
attack. Select a name that will not conflict with a real query parameter
used by the site.

lgnore Scripts Boolean True CSRF is largely a browser based attack, so to ensure that scripts such
as legitimate spiders are not treated as potential CSRF victims, this
option can be enabled to ignore all non browsers for CSRF protection.

Ignored Extensions Collection xap, .xaml A list of file suffixes (extensions) that will not be protected by CSRF. By
default, Silverlight binaries are included, because some browsers will
remove the referer for Silverlight embedded content, which can interfere
with CSRF protection and prevent the Silverlight content from loading.

Remote Script Configurable CSRF Script The fake resource to request if the page is being loaded as a remote

Resource Inclusion script on a third party domain. This is primarily for detection of the attack

Resource and can be any fake resources as long as it does not actually exist on
the server.

Trusted Domains Collection None The list of domains that are allowed to display the web application in

a frame, reference resources such as images or scripts, or are allowed
to make remote API calls using techniques that are similar to a CSRF
attack. If the trusted domain starts with a period, then it will match any
subdomain before the designated period. For example, .site.com will
match www.site.com, my.new.site.com and site.com.

270 Copyright © 2014, Juniper Networks, Inc.

Chapter 16: Response Processors

Table 37: CSRF Processor Configuration Parameters (continued)

Default
Parameter Value Description
CSRF Extra String None Since CSRF protection can cause the referer to be removed from the
JavaScript request, it can be necessary to add any analytic code to the JavaScript

used to detect and stop CSRF attacks. As such, if you use a third party
analytics script, you should put that code in this parameter to capture

the unmodified original request details. The code will be injected into a
script tag, so it must be valid JavaScript or the CSRF protection can stop
functioning correctly.

Incident: CSRF Boolean True The user tampered with the parameters used by the security engine to

Parameter prevent CSRF on requests that have an untrusted third party referer.

Tampering This is likely in an attempt to find a vulnerability in the CSRF protection
mechanism.

Incident: CSRF Boolean False The user has accessed an untrusted third party website which contains

Remote Script an embedded script reference to the protected application. While the

Inclusion user might not be malicious, this represents a CSRF attack from the

untrusted website against the protected application. Because the attack
was not successful, it is likely being executed by the user who is
attempting to construct the attack vector.

Incident: HTTP Boolean True The user is using what looks like a browser, but they have HTTP referers
Referers Disabled disabled. Thisis not a malicious incident, but it does indicate an unusual
client.

Response Processors: CSRF Processor: Incident - CSRF Parameter Tampering

Complexity: Suspicious (1.0)
Default Response: 10x = Multiple CSRF Parameter Tampering Incident.

Cause: WebApp Secure protects against CSRF attacks by using a special interception
technique. When a request comes in to WebApp Secure, the referer is checked. In the
event that there is a third party referer (the user was following a link from another site),
the interception mechanism kicks in. This involves returning a special page to the user
that validates that the user is intentionally requesting the resource. If the validation is
successful, the user is transparently redirected to the original resource they requested.
If the validation fails, the user is then instructed to manually confirm their intentions, or
return to the page they came from (to prevent the CSRF attack from working). In most
cases, a valid CSRF attack would function in such a way as to hide this manual
confirmation step, so the user would probably never see it (for example if the URL was
loaded using an image HTML tag, then the resulting HTML confirmation step would not
render, because its HTML, not an image). This incident is triggered when a user submits
a request with a third party referer, and then manipulates the code of the CSRF
interception page to alter the original data that was submitted. For example, they submit
arequest that looks like a CSRF attack (has a third party referer), and then use a tool
like Firebug to edit the query string parameters that would be sent to the server after
they manually allowed the request on the CSRF intercept page.

Copyright © 2014, Juniper Networks, Inc. 271

WebApp Secure 5.5

Behavior: CSRF attacks are generally two-phase. The first phase involves the attacker
establishing a functional CSRF attack. This could take quite a while and involves the
attacker making requests to the protected site, trying all different types of CSRF
techniques. The second phase is when the attacker injects the successful CSRF vector
into a public website. In the second phase, legitimate users are visiting the public website
and unknowingly executing the CSRF attack in the background. It is not useful to flag the
victims of the CSRF attack as hackers, because they might not even know what is going
on. However it is useful to flag the original attack vector establishment, because it can
shed light on who created the "CSRF243"attack. This incident reflects a user who is
manipulating the CSRF prevention mechanism, likely in an attempt to find a way to get
around it.As such, if a user has this incident, they are probably trying to establish a CSRF
attack, and careful attention should be paid to the values they are changing the
parameters to and which URL is being requested (this will help identify what the user is
trying to attack).

Response Processors: CSRF Processor: Incident - Multiple CSRF Parameter Tampering

Complexity: Low (2.0)
Default Response: 1x = Captcha, 2x = 1 Day Clear Inputs

Cause: WebApp Secure protects against CSRF attacks by using a special interception
technigue. When a request comes in to WebApp Secure, the referer is checked. In the
event that there is a third party referer (the user was following a link from another site),
the interception mechanism kicks in. This involves returning a special page to the user
that validates that the user is intentionally requesting the resource. If the validation is
successful, the user is transparently redirected to the original resource they requested.
If the validation fails, the user is then instructed to manually confirm their intentions, or
return to the page they came from (to prevent the CSRF attack from working). In most
cases, a valid CSRF attack would function in such a way as to hide this manual
confirmation step, so the user would probably never see it (for example if the URL was
loaded using an image HTML tag, then the resulting HTML confirmation step would not
render, because its HTML, not an image). This incident is triggered when a user submits
dozens of requests with a third party referers, and then manipulates the code of the CSRF
interception page to alter the original data that was submitted. For example, they submit
a bunch of requests that look like CSRF attacks (they have third party referers), and then
use a tool like Firebug to edit the query string parameters that would be sent to the server
after they manually allowed the requests on the CSRF intercept page.

Behavior: CSRF attacks are generally two-phase. The first phase involves the attacker
establishing a functional CSRF attack. This could take quite a while and involves the
attacker making requests to the protected site, trying all different types of CSRF
techniques. The second phase is when the attacker injects the successful CSRF vector
into a public website. In the second phase, legitimate users are visiting the public website
and unknowingly executing the CSRF attack in the background. It is not useful to flag the
victims of the CSRF attack as hackers, because they might not even know what is going
on. However it is useful to flag the original attack vector establishment, because it can
shed light on who created the "CSRF" attack. This incident reflects a user who is
manipulating the CSRF prevention mechanism, likely in an attempt to find a way to get
around it. As such, if a user has this incident, they are probably trying to establish a CSRF

272

Copyright © 2014, Juniper Networks, Inc.

Chapter 16: Response Processors

attack, and careful attention should be paid to the values they are changing the
parameters to and which URL is being requested (this will help identify what the user is
trying to attack).

Response Processors: CSRF Processor: Incident - CSRF Remote Script Inclusion

Complexity: Informational (0.0)
Default Response: None.

Cause: WebApp Secure protects against CSRF attacks by using a special interception
techniqgue. When a request comes in to WebApp Secure, the referer is checked. In the
event that there is a third party referer (the user was following a link from another site),
the interception mechanism kicks in. This involves returning a special page to the user
that validates that the user is intentionally requesting the resource. If the validation is
successful, the user is transparently redirected to the original resource they requested.
If the validation fails, the user is then instructed to manually confirm their intentions, or
return to the page they came from (to prevent the CSRF attack from working). In most
cases, a valid CSRF attack would function in such a way as to hide this manual
confirmation step, so the user would probably never see it (for example if the URL was
loaded using an image HTML tag, then the resulting HTML confirmation step would not
render, because its HTML, not animage). This incident is triggered when a user accesses
a page on a third party website which contains a Javascript tag that loads content from
the protected site. This would normally represent a victim of a CSRF attack, but because
CSREF attacks are blocked, an attacker is unlikely to execute such an attack. Therefore,

it is more probable that the attacker is testing a possible vector to see if it will work and
encountering this incident.

Behavior: CSRF attacks are generally two-phase. The first phase involves the attacker
establishing a functional CSRF attack. This could take quite a while and involves the
attacker making requests to the protected site, trying all different types of CSRF
technigues. The second phase is when the attacker injects the successful CSRF vector
into a public website. In the second phase, legitimate users are visiting the public website
and unknowingly executing the CSRF attack in the background. It is not useful to flag the
victims of the CSRF attack as hackers, because they might not even know what is going
on. However it is useful to flag the original attack vector establishment, because it can
shed light on who created the "CSRF" attack. While this incident would potentially be
fired for any victims of a CSRF attack, CSRF attacks are blocked by this processor, so it
is unlikely that an attacker would ever actually try to use the vector against legitimate
users. As such, it is far more likely that the attacker is still in the first phase and trying to
uncover a successful CSRF vector. Because of this, careful attention should be paid to
the URL that is being requested (this will help identify what the user is trying to exploit).

Response Processors: CSRF Processor: Incident - HTTP Referers Disabled

Complexity: Suspicious (1.0)

Default Response: None.

Copyright © 2014, Juniper Networks, Inc. 273

WebApp Secure 5.5

Cause: The HTTP protocol provides support for a special header called the "referer"
(misspelled on purpose). This header tells the webserver where the user just came from.
So if the user visits google and follows a link from google to get to another page, the
request for that second page will contain a "referer" of "http:// www.google.com". Some
browsers provide the option to turn off automatic transmission of the "referer" header.
This would make it impossible for websites to identify the page the user came from. This
incident is triggered whenever a user accesses the website with referers disabled. This
is not necessarily a malicious act, as it could be the result of an excessively paranoid
legitimate user, but it is also somewhat unusual and is often a technigue employed by
malicious users.

Behavior: Hackers will often disable the referer header to make it more difficult to monitor
and analyze an attack through the traditional HT TP log files. Many webservers will record
the URL the user is accessing, as well as the referer that was submitted. As such, by
disabling referers, the hacker is able to eliminate a large percentage of the information
collected about the attack.

Response Processors: Header Injection Processor

This processor provides the header injection counter response. It allows extra a custom
header to be defined that is injected into a suspected hackers requests to allow custom
handling.

e NOTE: There are no actual triggers for this processor; it is a form of response.

Table 38: Header Injection Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this
Processor.

Advanced

Default Header Name String Random The default header name to use if one is not specified

in the response configuration.

Default Header Value String True The default header value to use if one is not specified
in the response configuration.

Response Processors: Force Logout Processor

This processor provides the force logout counter response. It strips out and invalidates
the users session tokens logging them out of the site.

274 Copyright © 2014, Juniper Networks, Inc.

Chapter 16: Response Processors

o NOTE: There are no actual triggers for this processor - itis a form of response.

Table 39: Force Logout Processor Configuration Parameters

Parameter Type Default Value | Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this processor.
Application Session Collection Collection A collection of names to use for the Application session cookie.
Cookie

Advanced

Clear Session Cookies Boolean False Whether to clear any terminated session cookies from the

malicious users browser. This can help the user identify why
they are getting logged off, so unless the application has code
on the client that reads the session cookie value, or the cookie
is used in traffic not protected by the WebApp Secure system,
this option should be turned off.

Response Processors: Strip Inputs Processor

This processor is used to transparently remove all user input from requests being issued
to the server. This response will make the web application, or the client accessing it, to
appear broken from the users perspective. The website will also take on a much smaller
attack surface should the client be a vulnerability scanner.

0 NOTE: There are no actual triggers for this processor; it is a form of response.

Table 40: Strip Inputs Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this
processor.

Response Processors: Slow Connection Processor

The slow connection processor is designed to introduce large delays in requests issued
by malicious traffic without impacting the performance of legitimate users. There are no
actual triggers for this processor; it is a form of response.

Copyright © 2014, Juniper Networks, Inc. 275

WebApp Secure 5.5

o NOTE: If default minimum and maximum delay times for the Slow
Connection Processor are set to a value greater than the Backend Response
Timeout (Configuration > Proxy/Backends > Connection Timeout), the
connection can timeout, resulting in a 403 error.

Table 41: Slow Connection Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this
processor.

Advanced

Default Maximum Delay Integer 5 Seconds The default maximum number of milliseconds to

delay malicious requests.

Default Minimum Delay Integer 500 Milliseconds The default minimum number of milliseconds to
delay malicious requests.

Response Processors: Warning Processor

The warning processor is designed to allow a warning message to be presented to a user
without completely blocking site access. The warning processor only enables the ability
to respond to a user with a "warning", which would allow them to continue browsing the
page and the site. The warning would be created and activated for a user by the auto
response system, or manually from the console. The existing processor overlays
semi-transparent HTML elements on top of the entire webpage, which temporarily
disables any mouse or keystrokes on the page and, therefore, creating a "modal dialog"
effect. This processor isn't designed to completely stop an attacker from using the
website; it is there to warn them. Given the browser debugging tools available today, an
attacker might be able to dismiss the warning by means of such tools. Any tampering
with the warning's default dismissal behavior (waiting 5 seconds until dismissal button
is automatically enabled and clicking on dismiss button) will be considered an incident
and will be tracked.

Table 42: Warning Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this processor.
Advanced

276 Copyright © 2014, Juniper Networks, Inc.

Chapter 16: Response Processors

Table 42: Warning Processor Configuration Parameters (continued)

Parameter

Default Warning
Message

Type Default Value Description
String "Your connection has The default message to use in the warning dialog. This can
been detected be defined on a session by session basis, but if no explicit

performing suspicious value is assigned to the warning, this value will be used.
activity. Your traffic is
now being monitored."

Default Warning Title

String Security Warning The default title to use in the warning dialog. This can be
defined on a session by session basis, but if no explicit
value is assigned to the warning, this value will be used.

Dismissal Delay

Integer 10 Seconds The amount of time in seconds that must elapse before
the warning can be dismissed. This is a soft limit, as an
experienced user might be able to get around enforcement
measures.

Dismissal Resource

Configurable Random The information needed to define the URL and response
used to dismiss a warning.

Warning Directory

String Random The name of the directory where the warning Javascript
and css code will be served from. For example:
warningcode.

Incident: Warning Code
Tampering

Boolean True The user has attempted to dismiss the warning without
waiting the delay and using the provided mechanism. This
is probably an attack on the warning system.

Response Processors: Warning Processor: Incident - Warning Code Tampering

Complexity: Medium (3.0)
Default Response: 1x = Logout User, 2x = 5 Day Clear Inputs.

Cause: WebApp Secure is capable of issuing non blocking warning messages to potentially
malicious users. These warning messages are designed to force the user to wait for a
period of time, before they can dismiss the warning and continue using the site. If the
user attempts to exploit or bypass this delay mechanism in order to dismiss the warning
early, this incident will be triggered.

Behavior: Once a hacker has been warned, they are then aware that a security system is
monitoring their activity. This can cause some hackers to investigate what might be
protecting the site. This could involve additional scanning, or it could involve attacking
the warning mechanism directly. This type of behavior generally indicates a hacker with
moderate to advanced skill levels. Depending on what they modify the warning code
input to be, this could represent a simple exploratory test, or the user could be trying to
launch a more complex attack against he warning code handler itself, such as "Buffer
Overflow", "XSS", "Denial of Service", "Fingerprinting", "Format String", "HTTP Response
Splitting", "Integer Overflow", and "SQL injection" among many others.

Copyright © 2014, Juniper Networks, Inc. 277

WebApp Secure 5.5

Response Processors: Application Vulnerability Processor

The application vulnerability processor is designed to block known attack vectors for
select third party applications. By default this processor does nothing. If you host a third
party application such as WordPress, you should enable the configuration parameters
that represent the third party software you are using. This will enable protection for that
software component.

Table 43: Application Vulnerability Processor Configuration Parameters

Default
Parameter Value Description
Basic
Joomla Vulnerability Protection Boolean False Whether traffic should be analyzed for Joomla
Enabled vulnerabilities
PHPBB Vulnerability Protection Boolean False Whether traffic should be analyzed for PHPBB
Enabled vulnerabilities
Wordpress Vulnerability Boolean False Whether traffic should be analyzed for Wordpress
Protection Enabled vulnerabilities
Advanced
Mode of Operation Integer 1 Whether to block a request on a positive signature, or
just create an incident
Block Response HTTP Response 404 Error The default message to use in the warning dialog. This

can be defined on a session by session basis, but if no
explicit value is assigned to the warning, this value will
be used.

Response Processors: Application Vulnerability Processor: Incident - App Vulnerability
Detected

Complexity: Low (2.0)

Default Response: 1x = Slow Connection 2-6 seconds, 3x = Slow Connection 2-6 seconds
and Clear Inputs for 1day

Cause: The application vulnerability processor is designed to identify known attack vectors
issued to third party applications such as WordPress. This incident indicates that one of
those known attack vectors has been issued by the associated user. The exact nature of
the vector that was identified should be described in the incident details.

Behavior: One of the easiest ways to compromise a website is to look for third party web
applications such as WordPress. If one is found, the attacker can then look up any known
vulnerabilities in that software and the version of it that is running on the website. If they

278 Copyright © 2014, Juniper Networks, Inc.

Chapter 16: Response Processors

find vulnerabilities, they can then launch them and potentially compromise the site with
a few minutes with minimal effort.

Response Processors: Support Processor

When a user is blocked or otherwise responded to using one of the countermeasures,
this processor provides a way to identify which profile is associated with a user, and to
then allow those responses to be deactivated at the discretion of the IT administrator.
For example, if a user were to get a 404 error when asking for a PDF document linked
from the main site, and they then try to find the file by trying a bunch of different file
names, they can eventually get blocked for performing a directory enumeration attack.
When this happens, the blocked user can contact support for assistance getting access
to the site again.

This processor works by exposing a special administrative URL (defined in configuration)
which the support team can access. When a support request comes in from a blocked
users, the support representative can access this administrative URL which will provide
another URL. The support representative should then provide this second URL to the
affected user. The affected user can then visit that URL and get a special code. This code
can be used to search for the profile and deactivate responses in the Web Ul (profile list).

If the affected user gets a code of "O0000000000000000000Q" (all zeros), this means
that the user is not identified as an attacker and therefore is not being blocked or
responded to with a counter response from WebApp Secure. As such, other causes of
the user's inability to access the site should be investigated.

DO NOT GIVE OUT THE ADMINISTRATIVE URL. It is only used to get a fresh URL that is
safe to provide to the affected user. If the administrative URL is leaked to the public, it
should be changed immediately.

The overall workflow is as follows:

1. User is blocked or otherwise responded to with a countermeasure.
2. User calls support for assistance.
3. Support accesses the administrative URL.

4. Support copies the newly created URL in the response and provides to the affected
user.

5. The affected user accesses the newly created URL and provides the resulting code
to support.

6. Support or an Admin then logs into the Web Ul, clicks on the profile graph to get a list
of profiles, and then searches for the code.

7. Support or Admin reviews user's list of incidents to verify the user was responded to
in error. If so, the Support or Admin disables the responses.

Copyright © 2014, Juniper Networks, Inc. 279

WebApp Secure 5.5

0 NOTE: Note that the "block" response is by default, configured to return
the code. So if a user has been blocked, steps 3-5 can be omitted, and the
user can simply provide the code specified in the block message to support.
For all other responses, the full workflow needs to be followed, because

there is no other way to obtain the code.

Table 44: Support Processor Configuration Parameters

Parameter

Default
Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this processor.
Advanced
Private Support URL String Random The URL a support representative would access to get additional

details about how to provide support to users who are having issues
that can be WebApp Secure related. If the value is "ABC", then the
private URL would be http://www.example.com/ABC. It is absolutely
imperative that this URL not be leaked to non-internal users. If it is
leaked, it must be changed immediately.

Public Support URL Salt

String Random Arandom value used to ensure that support URLs are not predictable.
This can be any random string 30 characters in length.

Public URL Expiration

Integer 3 The number of days a public support URL remains valid for. After this
many days, the URL will no longer provide support information. This
is to prevent any issues from a public support URL being leaked.

Response Processors: Cloppy Processor

The Cloppy processor is a joke response built for demonstration purposes. It creates an
animated paperclip in the lower right corner of the website, which belittles and taunts
the attacker. This should never be used on a legitimate threat and is not the default
counter response for any type of behavior. It is provided to demonstrate the diversity of
counter responses WebApp Secure is capable of. You should never activate this response
unless you have a good relationship with the user you are activating it on, and they have
a good sense of humor.

You can configure the message and options cloppy presents both in configuration (the
default messages), or in the response specific config (the XML you define when you
manually activate a response or when you write a rule that activates a response). The
oldest cloppy response will be the one for which the messages are loaded, so if you create
multiple cloppy responses, you can create a dialog of several messages. For example,
try activating cloppy three times with the following config values (create them in the
following order):

280

Copyright © 2014, Juniper Networks, Inc.

Chapter 16: Response Processors

1. Activate Cloppy: <config message="This is the first message”><option label="First
op" url=""/><option label="Second op" url="" /></config>

2. Activate Cloppy: <config message="This is the second message”><option label="First
op" url=""/><option label="Second op" url="" /></config>

3. Activate Cloppy: <config message="This is the third message” ><option label="First
op" url=""/><option label="Second op" url="" /></config>

Once you activate the above 3 cloppy responses, you should see that cloppy will present
the "This is the first message" dialog first. Once you click on an option in that dialog, the
next page you load will display "This is the second message", and finally, after clicking
on one of those options, you should get "This is the third message".

Oncevyou click an optionin the cloppy’s dialog, it will dismiss that specific cloppy response.
That's why you are able to stack the responses and get a dialog going.

Table 45: Cloppy Processor Configuration Parameters

Parameter Type Default Value Description
Basic
Processor Enabled Boolean True Whether traffic should be passed through this processor. Note

that just because traffic is passing through the processor, does
not mean any users will actually have a Cloppy response
activated on them. As such, simply enabling this processor will
not result in cloppy being activated for any users. You would still
need to manually activate the Cloppy response in the Web Ul
(or define an auto response rule that activates it, but that is

highly discouraged).
Cloppy Message String "It looks like you'rean What do you want cloppy to say when offering help?
unsophisticated script
kiddie attempting to
hack this website"
Cloppy Options Collection Collection The list of ways cloppy can help with associated URLs.
Advanced
Cloppy Directory String cloppybin The name of the directory where the binary resources needed
to load cloppy are served from. For example: cloppyfiles. The
name should be selected not to conflict with a real directory at
the top level of the website.
Cloppy Dismiss String Random The name of the directory used to dismiss cloppy. This URL
Directory should be random and not conflict with existing directory names

on the site.

Response Processors: Login Processor

The login processor is designed to add additional protection to the login dialogs throughout
the protected site. By default, it will not provide any additional protection, and must be

Copyright © 2014, Juniper Networks, Inc. 281

WebApp Secure 5.5

configured to protect specific login forms. Once a login form has been configured, the
processor will begin to monitor the login attempts and start checking for abusive patterns.

This processor is capable of detecting a wide variety of abuse patterns on a login dialog,
as well as stopping these abusive activities. One key protection mechanism is to require
a captcha if a user attempts to login to an account which has experienced more than 3
failed login attempts since the last successful login attempt. This ensures that a malicious
user cannot brute force a specific username, because after 3 failed attempts, the brute
force tool will be stopped by a captcha. This does not represent a counter response, but
instead is built in functionality that applies to all users on the system. So if user "A"
submits 3 bad passwords, and then user "B" submits a password for the same username,
user "B" will get a captcha, as well as user "A" for any additional login attempts they try.
As soon as a user successfully logs into the account, it will take another 3 failed login
attempts before the next captcha is required.

In addition to protecting against a single username being attacked with a brute force
script, the processor also detects "User sharing", "User pooling", "Username scans'",
"Multi-User brute force scans". See the incident descriptions for more information on
what these incidents represent and what counter responses will be activated as a result.
In order to configure the Login Processor to protect a login form, edit the "Protected Login
Pages" configuration parameter. Add a new row and provide the following information.
It will be useful to look at the HTML source code of the login form as it will have critical
information you will need to configure protection:

. Name: The name of the login page (this is just for your reference, it can be anything)

« URL Pattern: The Regular Expression used to identify a username/password submission.
This pattern should match the "action" attribute of the HTML <FORM> tag wrapping
the login dialog.

« Username Field Type: The type of inputs used to submit a username. Normally this will
be "POST Parameter", however other options are provided for more specialized login
mechanisms.

« Username Field Name Pattern: A regular expression used to match the name of the
input the username is submitted with. Normally this is "username", but could be other
variations such as "usr", "user", and so on. You can simply enter the name of the input
in this field if a regular expression is not required.

« Username Field Value Pattern: A regular expression used to extract the username from
the input value. Normally this should just be "~.*$", but if the username is wrapped in
JSON forexample, you might need to create a more complex expression. The username
is considered the first matching parenthesis group in the pattern.

« Username Field Encoding: The type of data encoding used on the username. Normally
this will be "Ascii", however if any client side encoding is performed, other encoding
options are available.

. Password Field Type: The type of inputs used to submit a password. Normally this will
be "POST Parameter", however other options are provided for more specialized login
mechanisms.

282

Copyright © 2014, Juniper Networks, Inc.

Chapter 16: Response Processors

. Password Field Name Pattern: A regular expression used to match the name of the
input the password is submitted with. Normally this is "password", but could be other
variations such as "pwd", "pass", and so on. You can simply enter the name of the
input in this field if a regular expression is not required.

. Password Field Value Pattern: A regular expression used to extract the password from
the input value. Normally this should just be "~.*$", but if the password is wrapped in
JSON for example, you might need to create a more complex expression. The password
is considered the first matching parenthesis group in the pattern.

. Password Field Encoding: The type of data encoding used on the password. Normally
this will be "Ascii", however if any client side encoding is performed, other encoding
options are available.

« Failure Pattern Target: In order to identify a failed login attempt, the processor will
search for a specific pattern in the response. This attribute specifies where to search
for that pattern. Normally this would be "Body" to search the HTML body of the
response.

« Failure Pattern: The regular expression to search for to check and see if the login attempt
was unsuccessful. Assuming the Failure Pattern Target is "Body", this would be
something like "you have provided an invalid username and password". However the
exact text will need to be set to whatever the site actually returns. View the source of
the response after a failed login and search for the error text, so that you get the most
accurate version possible. Simply copying the text from the rendered page can exclude
embedded HTML tags which will cause the pattern to never match.

« Failure Pattern Condition: Specifies whether finding the failure pattern means the login
was unsuccessful, or whether not finding the pattern means the login was unsuccessful.

« Success Pattern Target: In order to identify a successful login attempt, the processor
will search for a specific pattern in the response. This attribute specifies where to search
for that pattern. Normally this would be "Body" to search the HTML body of the
response.

« Success Pattern: The regular expression to search for to check and see if the login
attempt was successful. Assuming the Success Pattern Target is "Body", this would
be something like "you have successfully logged in". However the exact text will need
to be set to whatever the site actually returns. View the source of the response after
a successful login and search for something that only gets displayed on a successful
login, so that you get the most accurate version possible. Simply copying the text from
the rendered page can exclude embedded HTML tags which will cause the pattern to
never match.

« Success Pattern Condition: Specifies whether finding the success pattern means the
login was successful, or whether not finding the pattern means the login was successful.

« Require Captcha After: Specifies how many failed login attempts on the same username
before requiring all future login attempts on that username to solve a captcha. Entering
"0" will allow infinite attempts.

Keep in mind that some website implementations allow login information to be posted
to many different URLSs. If that is the case, make sure the URL pattern is defined generically

Copyright © 2014, Juniper Networks, Inc. 283

WebApp Secure 5.5

enough to match any URL the user might submit a login request to. Only submissions

that match the URL pattern will be protected.

Once a login form has been configured, it can be tested by attempting to login to the
same username 4 or more times. You should be presented with a captcha. Next, solve
the captcha and log in with the correct password. Then logout and attempt to login to
the same username again. If you do not get a captcha, then the login form is configured
correctly.

Table 46: Login Processor Configuration Parameters

Parameter

Basic

Type

Default Value

Description

Processor Enabled

Boolean

True

Whether traffic should be
passed through this
processor. Note that just
because this processor is
enabled, does not mean that
any login forms are being
protected. Login forms will
not be protected until they
are configured in the
"Protected Login Pages"
parameter.

Protected Login Pages

Collection

None

The list of pages that should
be protected from login and
account abuse. These pages
should reflect the URL's that
accept username's and
passwords and allow login,
not necessarily the pages
that contain login forms. For
example, if every page on the
site had a login form, but they
all submitted to login.php,
then only login.php needs to
be configured in this
processor.

Advanced

Bad Request Block Response

HTTP Response

400 Error

The response to return if the
user issues a request that
either is too large, or uses
multipart and multi-part is
disabled.

Blocked Replay Response

HTTP Response

400 Error

The response to return if the
user attempts to submit the
validated request multiple
times using the same captcha
answer, and that behavior is
not allowed.

284

Copyright © 2014, Juniper Networks, Inc.

Chapter 16: Response Processors

Table 46: Login Processor Configuration Parameters (continued)

Parameter

Cancel URL

Type

String

Default Value

(empty)

Description

The URL to redirect the user
to if they cancel the captcha.
This should not be to the
same domain, because the
domainis being blocked using
a captcha, and therefore,
canceling would only redirect
to a new captcha. An empty
value will hide the cancel
button,

Captcha Binary Directory

String

Random

The name of the directory
where captcha images and
audio files will be served
from. This should not conflict
with any actual directories on
the site.

Captcha Characters

String

abcdefhkmnprwxyz
ABCEFGHJKLMNPQRTWXYZ
234678

The characters to use when
generating arandom captcha
value. Avoid using characters
that can be easily mixed up.
This set of characters is case
sensitive.

Captcha Expiration

Integer

120

The maximum number of
seconds the user has to solve
the captcha before the
request is no longer possible.

Captcha State Cookie

String

Random

The name of the cookie to
use to track the active
captchas that have not yet
been solved. The cookie is
only served to the captcha
binary directory.

Captcha Template

File

Default Template

The HTML template used to
ask the user to complete a
captcha. This template must
contain specific key words in
order to integrate properly.
Please refer to the manual for
more information.

Captcha Validation Input
Name

String

Random

The name of the form input
used to transmit the captcha
validation key. This should be
obscure so that users who
have not been required to
enter a captcha cannot
supply bad values to this
input to profile the system.

Copyright © 2014, Juniper Networks, Inc.

285

WebApp Secure 5.5

Table 46: Login Processor Configuration Parameters (continued)

Parameter Type Default Value Description

Expired Captcha Response HTTP Response 400 Error The response to return if the
user submits a validated
request after the captcha has
expired. This can happen if
the user refreshes the results
of the captcha long after they
have solved it.

Maximum Active Captchas Integer 7 The maximum number of
captchas any given user can
be solving at any given time.
This limit can be overcome,
but the majority of users will
not be able to. This is
primarily for performance, as
the more active captchas
that are allowed, the larger
the state cookie becomes.

Maximum Request Size Integer 524288 (512KB) The maximum number of
bytes in a request before it is
considered not acceptable
for captcha validation, and
will be blocked.

Support Audio Version Boolean True Whether an audio version of
the captchais provided to the
user. This can be a
requirement for accessibility,
as vision impaired users
would otherwise be unable
to solve the captcha.

Watermark String %DOMAIN The text to watermark the
captcha with. This can be
used to prevent the captcha
from being used in a phishing
attack. For example, an
abuser would not be able to
simply display the captcha on
a different site and ask a user
to solve it. The watermark
would tip the user off that the
captchawas not intended for
the site they are visiting. Use
%DOMAIN to use the domain
name as the watermark.

286 Copyright © 2014, Juniper Networks, Inc.

Chapter 16: Response Processors

Table 46: Login Processor Configuration Parameters (continued)

Parameter

Incident: Site Invalid Login

Type Default Value Description

Boolean True The user has submitted an
invalid username or
password. This is just an
informational incident and is
used to identify more
complex attacks. It is highly
recommended that this
incident not be disabled, as it
can cause other incidents to
no longer register.

Incident: Site Login Multiple
P

Boolean True The user has submitted a
valid username and password
or an invalid username and
password foranaccount that
has recently been used by a
different IP. This is just an
informational incident and is
used to identify more
complex attacks. It is highly
recommended that this
incident not be disabled, as it
can cause other incidents to
no longer register.

Incident: Site Login Multiple
Usernames

Boolean True The user has submitted a
valid username and password
for more than one account
recently. This is just an
informational incident and is
used to identify more
complex attacks. It is highly
recommended that this
incident not be disabled, as it
can cause other incidents to
no longer register.

Response Processors: Login Processor: Incident - Site Login Invalid

Complexity: Suspicious (1.0)

Default Response: 16x (3 or more bad passwords per username) = Site Login Brute Force,
16x (less than 3 bad passwords per username) = Site Login Username Scan, 9x (bad
passwords for same username) = Site Login User Brute Force.

Cause: The login processor is designed to protect the login dialog of the website. It works
by monitoring all login attempts and identifying suspicious and malicious events. This
specific incident is triggered when a user attempts to login with an invalid username and
password. Thisincident alone is not considered malicious, but is used to perform additional
analysis and can be promoted to a malicious incident if an abusive pattern is identified
(such as many invalid logins representing a brute force attack).

Copyright © 2014, Juniper Networks, Inc. 287

WebApp Secure 5.5

Behavior: This incident simply reflects the case where a user has entered bad login
information. By itself, this cannot be considered malicious as it is extremely common for
a legitimate user to accidentally type their information incorrectly, or to forget their
password. As such, it is only an indication of possible abuse and requires additional
analysis and data before it can be confirmed as malicious or acceptable.

Response Processors: Login Processor: Incident - Site Login Multiple IP

Complexity: Informational (0.0)
Default Response: 3x = Site Login User Sharing

Cause: The login processor is designed to protect the login dialog of the website. It works
by monitoring all login attempts and identifying suspicious and malicious events. This
specificincident is triggered when multiple clients successfully log into the same account.
Depending on the nature of the protected site, this might be perfectly acceptable behavior,
however on some sites this type of behavior can indicate abuse. This incident alone is
not considered malicious, but is used to perform additional analysis and potentially
promote the event as a malicious incident if an abusive pattern is identified. Note that
invalid login attempts from different subnets can also trigger this incident.

Behavior: Many websites provide a way for users to authenticate so that their experience
and data can be customized specifically for them. In the case of this incident, credentials
for one of those accounts have been distributed to multiple clients and two or more of
those clients are logging into the account. Unless the website expects users to share
credentials, this would generally indicate a situation where the credentials for an account
have been compromised and the account has been hijacked. Additional follow up might
berequired torecover the account (such as changing the password or locking the account
until the actual owner contacts the administrators to resolve the issue).

Response Processors: Login Processor: Incident - Site Login Multiple Usernames

Complexity: Suspicious (1.0)
Default Response: 3x = Site Login User Pooling

Cause: The login processor is designed to protect the login dialog of the website. It works
by monitoring all login attempts and identifying suspicious and malicious events. This
specificincident is triggered when a single client successfully authenticates with multiple
distinct usernames. This incident alone is not considered malicious, but is used to perform
additional analysis and potentially promote the event as a malicious incident if an abusive
pattern is identified.

Behavior: There are two possibilities for this incident. Firstly, a single user might have
signed up for multiple accounts on the protected site, and they are simply using those
accounts. On some sites, this alone would be considered malicious, while on other sites,
this is considered perfectly acceptable. For example, an online e-mail provider can allow
its users to sign up for multiple e-mail accounts. On the other hand, a billing website for
your home utility provider would probably not expect a single household to have multiple
accounts. The other possibility is that a single user has hijacked several other accounts.
This can be more obvious if there is also a "Site Login User Sharing" incident for the

288

Copyright © 2014, Juniper Networks, Inc.

Chapter 16: Response Processors

username as well. This would indicate that not only is the malicious user logging into
multiple accounts, but other users are also logging into those accounts. Generally, an
account should be used by a single user unless the website has specific rules about
allowing users to share account details.

Response Processors: Login Processor: Incident - Site Login User Sharing

Complexity: Low (2.0)
Default Response: None.

Cause: The login processor is designed to protect the login dialog of the website. It works
by monitoring all login attempts and identifying suspicious and malicious events. This
specificincident is triggered when multiple clients successfully log into the same account.
Depending on the nature of the protected site, this can be perfectly acceptable behavior,
however on some sites this type of behavior can indicate abuse.

Behavior: Many websites provide a way for users to authenticate so that their experience
and data can be customized specifically for them. In the case of this incident, credentials
for one of those accounts have been distributed to multiple clients and two or more of
those clients are logging into the account. Unless the website expects users to share
credentials, this would generally indicate a situation where the credentials for an account
have been compromised and the account has been hijacked. Additional follow up can
berequired torecover the account (such as changing the password or locking the account
until the actual owner contacts the administrators to resolve the issue).

Response Processors: Login Processor: Incident - Site Login User Pooling

Complexity: Low (2.0)
Default Response: None.

Cause: The login processor is designed to protect the login dialog of the website. It works
by monitoring all login attempts and identifying suspicious and malicious events. This
specific incident is triggered when a single client successfully logs into several different
accounts. Depending on the nature of the protected site, this can be perfectly acceptable
behavior, however on some sites this type of behavior can be harmful.

Behavior: There are two possibilities for this incident. Firstly, a single user might have
signed up for multiple accounts on the protected site, and they are simply using those
accounts. On some sites, this alone would be considered malicious, while on other sites,
this is considered perfectly acceptable. For example, an online e-mail provider can allow
its users to sign up for multiple e-mail accounts. On the other hand, a billing website for
your home utility provider would probably not expect a single household to have multiple
accounts. The other possibility is that a single user has hijacked several other accounts.
This can be more obvious if there is also a "Site Login User Sharing" incident for the
username as well. This would indicate that not only is the malicious user logging into
multiple accounts, but other users are also logging into those accounts. Generally, an
account should be used by a single user unless the website has specific rules about
allowing users to share account details.

Copyright © 2014, Juniper Networks, Inc. 289

WebApp Secure 5.5

Response Processors: Login Processor: Incident - Site Login User Brute Force

Complexity: Medium (3.0)

Default Response: 1x = Break Authentication for 1 hour, 2x = Break Authentication for 6
hours, 3x = Clear Inputs for 1 day

Cause: The login processor is designed to protect the login dialog of the website. It works
by monitoring all login attempts and identifying suspicious and malicious events. This
specific incident is triggered when a user attempts to login with the same username 9
or more times with invalid passwords.

Behavior: In this case, the useris probably attempting to brute force the account indicated
in the incident details. Brute force against authentication works by enumerating over a
list of common passwords and testing all of them against the target username. The hope
is that the target user selected a weak password and that password is in the "dictionary"
list of passwords to try. In some cases, a custom brute force tool can be employed, which
enumerates over a list of passwords that were carefully constructed using the targets
personal information (birthdays, anniversaries, names, ages, phone numbers, and soon.)

Response Processors: Login Processor: Incident - Site Login Brute Force

Complexity: Medium (3.0)

Default Response: 1x = Slow Connection for 6 hours, 3x = Slow Connection & Break
Authentication for 6 hours

Cause: The login processor is designed to protect the login dialog of the website. It works
by monitoring all login attempts and identifying suspicious and malicious events. This
specific incident is triggered when a user completes 16 or more login attempts, each with
a different username.

Behavior: Acommon authentication attack is Brute Force. This attack involves submitting
a large number of username and password combinations in an effort to identify users
who have chosen weak passwords. This type of attack is extremely noisy and requires
thousands of requests to execute.

Response Processors: Login Processor: Incident - Site Login Username Scan

Complexity: Medium (3.0)

Default Response: 1x = Captcha and Slow Connection for 6 hours, 3x = Clear Inputs and
Slow Connection for 1 day

Cause: The login processor is designed to protect the login dialog of the website. It works
by monitoring all login attempts and identifying suspicious and malicious events. This
specific incident is triggered when a user attempts to login against 16 or more different
usernames with a small number of passwords for each.

290 Copyright © 2014, Juniper Networks, Inc.

Chapter 16: Response Processors

Behavior: One flaw present in a lot of authentication implementations is that the results
that are returned when submitting an invalid username and password are different then
the results returned when the username is valid but the password is not. By enumerating
over a large number of possible usernames and supplying bad passwords, the attacker
is able to identify which usernames are actually valid in the system. This is one of the first
steps to a large scale brute force attack. Once the user has a list of valid usernames, they
can then launch the brute force attack against just those usernames to make the attack
quicker and harder to identify. A best practice when developing authentication systems
is to ensure that the results that are returned from an invalid username, are the same
results returned when providing a valid username and invalid password. For example,
the error should read "The username and password you supplied could not be found in
our database", instead of "The username you provided does not exist".

Response Processors: Google Map Processor

The Google Map Processor provides a counter response called the “Google Map
Response”. When this response is activated, the user will be shown an overlay dialog
with a google map of their geo location (as resolved from their IP address using MaxMind
Geo IP). It will then recommend 4 google search results on a configured term (default is
‘Criminal Attorney’). The intention is to scare the individual into believing that we know
where they live and plan to attempt prosecution.

The google map response requires several things in order to work. First, you must obtain
a google map API key and set it in configuration. Until you do this, you will not be able to
enable the processor. Once enabled, if you activate the processor on a user, they will only
see the response if WebApp Secure can resolve their geo location from MaxMind GeolP.
If a geo location cannot be resolved, the map will not be displayed. Additionally, the
google map response is not a default response for any activity, so unless you manually
activate it, or create a custom auto response rule to activate it, it will never be used.

Keep in mind that by activating this response, you are effectively broadcasting your public
google map API key to the attacker. If the attacker decides to exploit this fact, they can
easily drain your google map request and search result quotas. As such, it is important
to get an APl key for a junk google development account, so that your quota’s are not
shared with legitimate site functions. You should also not sign up for paid quota extensions
on that particular account, as that could allow the attacker to run up your bill. Just use
the free quotas.

Table 47: Google Map Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean False Whether traffic should be passed through this processor.
Google API Key String [Not Set] The API key issued by Google to authorize the map API

to be used on the domain being protected by WebApp
Secure. This API key should be enabled for both Google
Map API v3, and the Places Search API.

Copyright © 2014, Juniper Networks, Inc. 291

WebApp Secure 5.5

Table 47: Google Map Processor Configuration Parameters (continued)

Parameter Type Default Value Description
Advanced
Default Search Term String "Criminal The default term to search for localized locations on.
Attorney"
Dismissal Resource Map Dismissal mapdata The information needed to define the URL and response
Resource used to dismiss a map.
Map Directory String mapdata The name of the directory where the map Javascript and

css code will be served from. For example: mapdata.

292 Copyright © 2014, Juniper Networks, Inc.

CHAPTER 17

Captcha Template

« CAPTCHA Template on page 293

CAPTCHA Template

There are several processors that utilize captchas to prevent automation. These
processors include:

« Request Captcha Processor

This processor allows you to attach a captcha to any page on the web application. It
is also responsible for enforcing the "Force Captcha Validation" counter response

« Login Processor

This processor utilizes captchas to prevent brute force attacks on login dialogs. Once
there have been more than three (3) failed login attempts on a single username (from
any users), any future attempts to login as that user will require a captcha.

When a captcha must be presented, the format in which it is displayed is defined as a
Captcha Template. By default, there is a captcha template defined for both processors
that will work on all websites. In the event that you would like to customize the way the
captcha looks when it is presented (such as wrapping it with the standard template of
the website being protected), the captcha template can be modified. This is done by
accessing the advanced configuration parameters for the two aforementioned processors
and editing the "Captcha Template" parameter.

In order to edit the parameter, we recommend that you first download a copy of the
existing default template. If you have already made modifications to the template, you
can get the original by selecting the suggestion "Default Unbranded Template", and then
downloading the associated file.

Once you have a copy of the default template, open it in a text editor. You can make any
modifications to the HTML as required, but be sure not to modify the existing JavaScript
or remove any of the existing HTML. To prevent introducing changes that might prevent
the captcha from functioning, we recommend that modifications be limited to stylistic
changes (do not alter the content of the SCRIPT tags, and do not alter the contents of
the FORM tag). After your modifications, you can upload the new file into the parameter
to update the captcha HTML served by WebApp Secure. It is recommended that you
keep a copy of the modified template to make future modifications easier.

Copyright © 2014, Juniper Networks, Inc. 293

WebApp Secure 5.5

You will also notice that there are a few special HTML tags in the template. These tags
are replaced by WebApp Secure before the template is served to the end-user. These
tags reside either in a SCRIPT tag or in a FORM tag, so as long as those elements are not
modified, these tags should continue to function correctly. These special tags include:

« <9%captchaDir> The directory name that all captcha images and audio files are served
from.

« <%signature> The file name for the captcha image or audio resource to load.

« <%includeAudio>...<%includeAudio> Displays the content between the open and
closing tags only if audio captchas are enabled.

« <%cancel> The URL to redirect the user to if they cancel the captcha operation.

« <%delay> The number of seconds the user has to complete the captcha before it
expires.

« <%multiPart>...<%multiPart> Displays the content between the opening and closing
tag only if the original request that is being protected by a captcha was a multipart
form submission (vs. a URL encoded form post [by default, forms are URL encoded]).

« <%datasignature> The signature of the data that was originally posted to the page
protected by the captcha. This is used to ensure that the data is not modified after
submission, but before the captcha is solved.

. <%data> The encrypted data submitted to the original page that required a captcha.
Thisis used so that once the captcha is solved, the original request can be reconstructed
and submitted to the backend servers.

« <%inputname> The name of the input used to identify when a user submits a captcha.
The value for this input name is configurable and should not conflict with any existing
inputs the site uses. A random string of 5 or more characters should be sufficient (but
must be set in configuration so that it can be injected in place of the custom tag when
serving a captcha).

After the new template has been uploaded and saved in configuration, you can test your
changes by triggering the applicable captcha.

« Request Captcha Processor Access the protected page and request
http://www.domain.com/htaccess which will generate a profile for your session. Find
the new profile in the Web Ul and manually activate the "Force Captcha Validation"
response. Then go back to the protected site and make a few more requests until the
captcha shows up.

« Login Processor If the login processor is configured to protect a login dialog on the site,
then simply provide 3 or more invalid passwords for the same username. On the 4th
attempt, you should be presented with the login processor captcha.

294

Copyright © 2014, Juniper Networks, Inc.

Chapter 17: Captcha Template

0 NOTE: Note: Changes to the captcha template are made to the live
deployment. So if you break the captcha template during modifications, it
can cause the captcha to stop working for some of the users on the site until
the templateis repaired. Creating a new "Page" in configuration for a fictitious
URL and making the changes on that page first would allow you to test the
modifications without impacting every use on the site.

Copyright © 2014, Juniper Networks, Inc. 295

WebApp Secure 5.5

296 Copyright © 2014, Juniper Networks, Inc.

CHAPTER 18

Log Format

« Access Log Format on page 297

« Security Log Format on page 299
« Audit Log Format on page 301

« Firewall Log Format on page 302

« Postgres Log Format on page 303

« mws Log Format on page 304

Access Log Format

WebApp Secure lets you configure logging for all traffic coming to and from the box. All
of this communication between the clients and WebApp Secure will be sent to access.log.
Depending on the type of access logging enabled in the WebApp Secure configuration,
there are some different formats the log entries can take.

« Basic

<date_utc> <hostname> [<log_level>] [mws-access][<thread>]
key:<uniqgue_request_key>, PHASE _<"REQUEST” or "RESPONSE">_<"PRE or
"POST">_PROCESS, <proxy_client_ip>, <url>

. Basic with Headers

<date_utc> <hostname> [<log_level>] [mws-access][<thread>]
key:<unique_request_key>, PHASE _<"REQUEST” or "RESPONSE">_<"PRE or
"POST">_PROCESS, <proxy_client_ip>, <url>

<header_name>: <header_value>

<header_name>: <header_value>

<header_name>: <header_value>
« Basic with Headers and Body

<date_utc> <hostname> [<log_level>] [mws-access][<thread>]
key:<unique_request_key>, PHASE _<"REQUEST” or "RESPONSE">_<"PRE or
"POST">_PROCESS, <proxy_client_ip>, <url>

<header_name>: <header_value>

<header_name>: <header_value>

Copyright © 2014, Juniper Networks, Inc. 297

WebApp Secure 5.5

<header_name>: <header_value>
(blank line)

<body_content>
Field definitions:

. <date_utc>-The date of the log entry, in UTC.
. <hostname>-The hostname of the appliance.

« <log_level>—The importance level of a log entry. Can be TRACE, DEBUG, INFO, WARN,
or ERROR.

« <thread>-The specific thread that is handling the request or response. It might take
the form of [se-request-#], where # is the thread number, or [pool-#-thread-#], where
represents the pool and thread number, respectively.

« <unigue_request_key>-This is a key used to uniquely identify requests. It can be useful
when searching for a specific request in a large file.

« <"REQUEST" or "RESPONSE”>-Whether the HTTP packet is a client request, or a
server response.

« <”PRE"or"POST”>-Whether the HTTP packet is being logged before or after Security
Engine processes it (and potentially manipulates it).

« <proxy_client_ip>—The incoming client IP. Since WebApp Secure works around a Nginx
proxy, the client IP will most-likely be "127.0.0.1".

« <url>=The full request or response URL.

. <header_name>-The name of a header sent in a request or response. There can be
multiple headers in an HTTP packet.

. <header_value>-The value of a header sent in a request or response. There can be
multiple headers in an HTTP packet.

« <body_content>-The full content of the body in requests that contain a body. In the
case of GET, for example, there will most likely not be a body.

Examples:
Basic

Mar 19 21:11:47 webappsecure [INFO][mws-access][se-request-6]
keycE5a2300- 8367476 Sfad734aBa2440PHASE REQUEST. PRE PROCESSZOhn/zacwminesiseoret 80 aisediats

Basic with Headers

Mar 19 19:48:14 webappsecure [INFO][mws-access][se-request-25]
key12521298-13f1-4019-8e21-c6046cf2dac7PHASE REQUEST,_POST_PROCESS,1270.01http//1020.053:80/
GET / HTTP/1.1 host: 10.20.0.53 x-forwarded-for: 213.85.244.190, 10.20.1.23
x-myk-request-info: http, HTTP/1.1, 80 x-myk-appid: default x-myk-port: 80 x-myk-use-ssl:
false x-myk-ssl: false connection: close user-agent: Mozilla/5.0 (X11 U Linux x86_64 en-us)

298

Copyright © 2014, Juniper Networks, Inc.

Chapter 18: Log Format

AppleWebKit/532+ (KHTML, like Gecko) Safari/419.3 Midori/0.1.8 x-myk-access-log-id:
12521298-13f1-4019-8e21-c6046¢cf2dac7

Basic with Headers and Body

Mar 19 19:48:14 webappsecure [INFO][mws-access][se-request-13]
key:cfde0089-2093-4bad-a8f5-555ac29ef4b6PHASE REQUEST, POST, PROCESS]27001http:/1020053:80/
POST / HTTP/1.1 host: 10.20.0.53 x-forwarded-for: 213.85.244.190, 10.20.1.23
x-myk-request-info: http, HTTP/1.1, 80 x-myk-appid: default x-myk-port: 80 x-myk-use-ssl:
false x-myk-ssl: false connection: close user-agent: tsung content-type:
application/x-www-form-urlencoded content-length: 3009 x-myk-access-log-id:
cfde0089-2b93-4bad-a8f5-555ac29ef4b6

data=bWIZXR5cGVz0jl2Mzowl HBsdWdpbnM6MTASNjowlL HRpbWV6b2510jMEMCxjb252b2xI0jQ10j

Related . Security Log Format on page 299
Documentation « Audit Log Format on page 301
. Firewall Log Format on page 302
« Postgres Log Format on page 303

« mws Log Format on page 304

Security Log Format

Webapp Secure is configured to log security incidents to mws-security.log. All security
alerts should be sent to security.log (previously named security-alert.log). There are
different types of security incidents that will be a part of this log: new profiles, security
incidents, new counter responses. The following section explains the format of these
security log messages.

« New profile

<date_utc> <hostname> [<log_level>][mws-security-alert][<service>]
MKS_Category="New Profile" MKS_Profileld="<profile_id>"
MKS_ProfileName="<profile_name>" MKS_PubKey="<pubkey>"

« Security incidents

<date_utc> <hostname> [<log_level>][mws-security-alert][<service>]
MKS_Category="Security Incident" MKS_Type="<incident>" MKS_Severity="<severity>"
MKS_ProfileName="<profile_name>" MKS_SrcIP="<source_ip>"
MKS_PubKey="<pubkey>" MKS_useragent="<user_agent>" MKS_url="<url>"
MKS_count="<count>" MKS_fakeresponse="<fake_response>"

- New counter responses

<date_utc> <hostname> [<log_level>][mws-security-alert][<service>]
MKS_Category="New Counter Response" MKS_ResponseCode="<response_code>"
MKS_ResponseName="<response_name>" MKS_Profileld="<profile_id>"
MKS_ProfileName="<profile_name>" MKS_ResponseCreated="<created_date>"
MKS_ResponseDelayed="<delay_date>" MKS_ResponseExpires="<expiration_date>"
MKS_ResponseConfig="<response_config>"

Copyright © 2014, Juniper Networks, Inc. 299

WebApp Secure 5.5

Field definitions:

. <date_utc>-The date of the log entry, in UTC.
. <hostname>-The hostname of the appliance.

. <log_level>—The importance level of a log entry. Can be TRACE, DEBUG, INFO, WARN,
or ERROR.

. <service>—The WebApp Secure service that triggered the security log entry. Possible
services include:

- [auto-response]--The auto response service will most likely generate New Counter
Response log entries.

- [traffic-info]-- The traffic information service will usually generate New Incident and
New Profile log entries in security.log.

. <profile_id>—The numerical ID assigned to the Profile that caused the security alert,
or the profile ID that received a Response.

. <profile_name>-The friendly name assigned to the Profile that caused the security
alert, or the Profile that received a Response. For example, "Bob 1234".

. <pubkey>— The Public ID that can be used in conjunction with the Support_Processor
to unblock Profiles. For example, "tTtHvXuby4gxNVmPlelE".

« <incident>-The name of the incident that triggered this security alert.

« <severity>-The numerical severity of the incident that triggered this security alert. This
can be a number from 0O to 4, inclusive.

. <source_ip>—The IP the request that generated this alert originated from.
« <user_agent>—The client's user agent string that generated this alert.
« <url>-The client's user agent string that generated this alert.

« <count>—The number of times the profile triggered this incident. This is used for certain
incidents to decide whether or not to elevate the profile or increase the responses on
the profile.

. <fake_response>—Whether or not (true or false) the response sent back to the client
was a fake one created by WebApp Secure.

. <response_code>-The numerical code for the response issued. For example, "13007".

. <response_name>-The friendly name for the response issued on the profile indicated
in the alert.

. <created_date>-The date and time the response was created.
. <delay_date>-The date and time the response is set to be delayed until.
. <expiration_date>-The date and time the response is set to expire.

. <response_config>—The configuration used in this response. Displayed as an XML-like
node.

Logfile Example.

300

Copyright © 2014, Juniper Networks, Inc.

Chapter 18: Log Format

Related
Documentation

Audit Log Format

Mar 19 18:20:04 my-vm [INFO][mws-security-alert][traffic-info] MKS_Category="New
Profile" MKS_Profileld="197382" MKS_ProfileName="Sandy 5021"
MKS_PubKey="c0tcXdDevOXMwwOu30uD" Mar 19 18:20:04 my-vm
[INFO][mws-security-alert][auto-response] MKS_Category="New Counter Response"
MKS_ResponseCode="SL" MKS_ResponseName="Slow Connection"
MKS_Profileld="197180" MKS_ProfileName="Rhoda 4027"
MKS_ResponseCreated="2014-03-1918:20:00.583" MKS_ResponseDelayed="2014-03-19
18:20:00.583" MKS_ResponseExpires="2014-03-20 18:20:00.583"
MKS_ResponseConfig="<configix0ix4002="1'min='2500"'max='6000'/>"Mar1918:20:05
my-vm [INFO][mws-security-alert][traffic-info] MKS_Category="Security Incident"
MKS_Type="Apache Configuration Requested" MKS_Severity="2"
MKS_ProfileName="Janelle 3524" MKS_SrcIP="10.20.1.23"
MKS_pubkey="ami4U5RExf4d4NO59xxT" MKS_useragent="Mozilla/5.0 (X11 U Linux
x86_64 pl-PL rv:1.9.2.13) Gecko/20101206 Ubuntu/10.04 (lucid) Firefox/3.6.13"
MKS_url="http://10.20.0.53:80/.htaccess" MKS_count="1" MKS_fakeresponse="true"

« Access Log Format on page 297

« Audit Log Format on page 301

« Firewall Log Format on page 302
. Postgres Log Format on page 303

« mws Log Format on page 304

The audit log contains log entries that indicate non-idempotent (state changing) actions
performed on WebApp Secure. For example:

. Configuration additions, changes, deletions, insertions
« Manual Response deactivations

. Login attempts and notices

« Applying license keys

. User permissionviolations (attempted actions by users that are not allowed to perform
such actions) will all be shown in audit.log. This log is a good candidate for regular
auditing (hence the name), as it will allow administrators to see various changes or
other activity that took place on the appliance, along with identifiers that indicate who
took the action.

The format of audit log messages is as follows:
<date_utc> <hostname> [mws-audit][<log_level>] [<api_key>] <message >
Field definitions:

. <api_key >-The key used to perform the action described in the <message>.

Copyright © 2014, Juniper Networks, Inc. 301

WebApp Secure 5.5

Related
Documentation

. <message>—The message. Can indicate any of the previously mentioned actions. In
the case oflogins, an additional field shows the user the person logged in as, as well
as the IP they were connecting from.

Logfile Example:

Jan 2216:14:23 my-jwas [mws-audit][INFO] [mykonos] [10.10.0.117] Logged in successfully
Jan 2319:16:22 my-jwas [mws-audit][INFO] [ea77722a8516b0d1135abb19b1982852]
Deactivate response 1832840420318015488 Feb 7 20:29:51 my-jwas [mws-audit][INFO]
[mykonos] [10.10.0.113] Login failed. Attempt: 1 Feb 14 19:02:54 my-jwas
[mws-audit][INFO][mykonos] Changed configuration parameters:
services.spotlight.enabled, services.spotlight.server_address

« Access Log Format on page 297

« Security Log Format on page 299

« Firewall Log Format on page 302

. Postgres Log Format on page 303

.« mws Log Format on page 304

Firewall Log Format

This log stores information about dropped packets from the iptables firewall. For various
reasons (intentional and/or unintentional) iptables might drop a particular packet. If this
happens, the event's information is logged to firewall.log. From each log entry, you can
find the incoming interface, the outgoing interface, the source address, and other
information related to the packet that was dropped. The format of firewall log files is as
follows:

<date_utc> <hostname> kernel: IPTABLES <event>: <message>
Field definitions:

. <date_utc>-The date and time in UTC.
« <hostname>-The hostname of the machine.

. <event>—Theevent being logged. Currently only exhibits "Dropped" packets, although
there is no restriction on the event that can be logged.

. <message>— The message, in standard iptables log format.

Example:

Mar 19 18:49:32 myjwas kernel: IPTABLES Dropped: IN=ethO OUT=
MAC=00:0c:29:cf:4d:c8:2c:21:72:¢6:99:08:08:00 SRC=10.10.0.117 DST=10.20.0.53 LEN=40
TOS=0x00 PREC=0x00 TTL=63 ID=51749 DF PROTO=TCP SPT=51093 DPT=5000
WINDOW=0 RES=0x00 RST URGP=0 Mar 19 20:56:59 myjwas kernel: IPTABLES Dropped:
IN=ethO OUT= MAC=ff:ff:ff:ff.ff:ff:00:0c:29:0f:48:ec:08:00 SRC=0.0.0.0
DST=255.255.255.255 LEN=337 TOS=0x10 PREC=0x00 TTL=128 ID=0 PROTO=UDP
SPT=68 DPT=67 LEN=317 Mar 20 11:03:24 myjwas kernel: IPTABLES Dropped: IN=ethO

302

Copyright © 2014, Juniper Networks, Inc.

Chapter 18: Log Format

OUT= MAC=00:0c:29:cf:4d:c8:2c:21:72:c6:99:08:08:00 SRC=10.10.0.17 DST=10.20.0.53
LEN=52TOS=0x00 PREC=0x00 TTL=126ID=18544 DF PROTO=TCP SPT=53543DPT=443
WINDOW=8192 RES=0x00 SYN URGP=0 Mar 20 11:03:25 myjwas kernel: IPTABLES
Dropped: IN=ethO OUT=MAC=00:0c:29:cf:4d:c8:2c:21:72:c6:99:08:08:00 SRC=10.10.0.17
DST=10.20.0.53 LEN=52 TOS=0x00 PREC=0x00 TTL=126 ID=18545 DF PROTO=TCP
SPT=53544 DPT=443 WINDOW=8192 RES=0x00 SYN URGP=0 Mar 20 11:03:27 myjwas
kernel: IPTABLES Dropped: IN=ethO OUT=MAC=00:0c:29:cf:4d:c8:2c:21:72:c6:99:08:08:00
SRC=10.10.0.17 DST=10.20.0.53 LEN=52 TOS=0x00 PREC=0x00 TTL=126 ID=18561 DF
PROTO=TCP SPT=53543 DPT=443 WINDOW=8192 RES=0x00 SYN URGP=0

Related . AccesslogFormaton page 297
Documentation « Security Log Format on page 299
« Audit Log Format on page 301
. Postgres Log Format on page 303

« mws Log Format on page 304

Postgres Log Format

WebApp Secure uses postgres for its permanent data store. postgres.log contains logs
of manipulations on the schema of the database, as well as any errors that occurred
during database operations. For more information on postgres, go to
http://www.postgresql.org/docs/9.0/static/runtime-config-logging.html . The format of
the posgres log file is as follows:

<date_utc> <hostname> postgres[<pid>]:[<group_id>] <sqgl_error_code> <session_id>
<message_type>: <message>

Field definitions:

. <date_utc>-The date and time in UTC.
. <hostname>-The hostname of the machine.
. <pid>—The process ID of the postgres instance.

« <group_id>— A set of two numbers, a major number and a minor number, respectively,
that represent a piece of a log. Since postgres logs the statements that generated
errors, these statements are issued as separate log lines, and in order to distinguish
multiple lines of logs with each other, we look at the time, major group number, and
minor group number. For example, if a major group number is 22 and a minor group
number is 2, that log entry is the second line of output from a postgres log. To find all
other lines that go with this line, look for other lines that were output at the same time
with the same major group number. For example, [22-1], [22-3], [22-4] would all be
log lines that belong to the line that has [22-2] (provided they happened at the same
<date_utc>.

. <sgl_error_code>—The SQL error code. Used with the documented table at
http://www.postgresgl.org/docs/9.0/static/errcodes-appendix.html which explains
each error code and the meaning.

Copyright © 2014, Juniper Networks, Inc. 303

http://www.postgresql.org/docs/9.0/static/runtime-config-logging.html
.
http://www.postgresql.org/docs/9.0/static/errcodes-appendix.html

WebApp Secure 5.5

Related
Documentation

mws Log Format

. <session_id>—A somewhat unique session identifier that can be used to search for
specific lines in the log.

. <message_type>-The type of the message. Can be LOG, WARNING, ERROR, or
STATEMENT.

« <message>—The message.
Example:

Feb 24 14:58:08 webappsecure postgres[7694]: [10-1] 42701 530b5e00.1e0Oe ERROR:
column "requests" of relation "sessiongroup" already exists Feb 24 14:58:08 webappsecure
postgres[7694]: [10-2] 42701 530b5e00.1e0e STATEMENT: ALTER TABLE sessiongroup
ADD COLUMN requests bigint DEFAULT O; Feb 24 16:52:41 webappsecure postgres[12501]:
[48-1] 42703 530b7873.30d5 ERROR: column it.description does not exist at character 35
Feb2416:52:41webappsecure postgres[12501]: [48-2] 42703 530b7873.30d5 STATEMENT:
SELECT it.itid, it.code, it.name, it.description FROM incidenttype AS it Mar 4 16:18:00
webappsecure postgres[13931]: [743-1] 01000 5315d18a.366b WARNING: skipping
"pg_tablespace" --- only superuser can vacuum it Mar 5 13:12:40 webappsecure
postgres[21640]: [20-1] 08P01531647dc.5488 LOG: unexpected EOF on client connection

« Access Log Format on page 297
« Security Log Format on page 299
« Audit Log Format on page 301

. Firewall Log Format on page 302

. mws Log Format on page 304

mws.log is the main log file for most WebApp Secure logging needs. All messages that
don't have a specific log location are sent, by default, to mws.log. The format of the
mws.log is as follows:

<utc_date><hostname>[<log_level>][<service_name>][<service_component>]<log message>
Field definitions:

« <utc_date>-The date of the log entry, in UTC.

« <log_level>—The importance level of a log entry. Can be TRACE, DEBUG, INFO, WARN,
or ERROR.

. <service_name>—The WebApp Secure service that generated the log entry. Possible
service names include:

304

Copyright © 2014, Juniper Networks, Inc.

Chapter 18: Log Format

- mws-cluster-services -- Various smaller services that don't warrant a completely
separate service are logged within this context. The term 'Cluster Services' is used
as a way to reference certain services that should only have one instance in the case
of a clustered WebApp Secure configuration. This is different from 'Local Services',
described below.

- mws-services -- All local services are logged through this context. A 'Local Service'
(service for short) is any service that must be running on each instance of WebApp
Secure in a clustered configuration.

. mws-security-engine -- Messages that don't belong to a specific service, but rather
deal with the core engine of WebApp Secure itself.

- mws-ui -- All messages that are sent from the Ul. Things like spawning U HTTP
worker threads and handling Ul functionality are parts of this service.

- mws-updates -- All messages that are sent during an upgrade. This service facilitates
migrating from an older version of WebApp Secure to a newer version.

- mws-backups -- Messages that are sent from the backup service. This service creates
backups automatically.

- mws-reports-api -- Messages that are sent from the reporting service. This service
is responsible for running both on-demand and scheduled reports.

- Mmws-pyro -- Pyro is used for interprocess communication.

« <service_component> —The specific component thatisissuing the log message. There
are many components, but a few of the major services and their components are listed
here:

- [mws-cluster-services][db-cleanup] -- The DB cleanup service deletes traffic
information stored in the database after they reach their configurable expiration
date (specified in WebApp Secure Configuration). The information available to this
service includes statistics information, malicious traffic, and non-malicious traffic.
Each type of information has their own separate configuration.

- [mws-cluster-services][auto-response] -- The auto response service is the service
responsible for delivering automated responses to profiles that have activated a set
of incidents. The rules in which the auto response service are activated against can
be turned on and off through the Web Ul under Configuration > Response Rules.

- [mws-cluster-services][traffic-info] -- The traffic information service is used to
control the requests and responses within the WebApp Secure system. Incoming
requests are put into a processing queue and pulled off for processing in chunks by
the traffic info service.

« <log_message> — The message. This can be anything, but usually contains information
to help you narrow down problems or confirm certain events have occurred as they
should.

0 NOTE: Some log entries might not have an applicable service or component,
like core security engine log messages. In this case, the fields are not displayed.

Copyright © 2014, Juniper Networks, Inc. 305

WebApp Secure 5.5

0 NOTE: Due to complications, currently all log entries with [mws-ui] do not
have a <log_level>.

Example:

Mar 19 18:42:38 my-jwas-instance [INFO][mws-cluster-services][db-cleanup] Database
cleanup completed. Removed record count: O Mar 19 19:42:16 my-jwas-instance [mws-ui]:
spawned uUWSGI worker 1 (pid: 11209, cores: 1) Mar 19 20:18:26 my-jwas-instance
[INFO][mws-security-engine] Server startup in 3080 ms

Related . AccesslogFormat on page 297
D .
ocumentation « Security Log Format on page 299
« Audit Log Format on page 301

. Firewall Log Format on page 302

306 Copyright © 2014, Juniper Networks, Inc.

PART 5

Index

« Index on page 309

Copyright © 2014, Juniper Networks, Inc. 307

WebApp Secure 5.5

308 Copyright © 2014, Juniper Networks, Inc.

INndex

Symbols

#, comments in configuration statements.................. XiX

(), in syntax descriptions......

< >,in syntax descriptions

[1, in configuration statements........cccooeeveveverevecrrecnne XiX

{ 1, in configuration statements........cccooeeveveenevcneveenne. XiX

| (pipe), in syntax descriptions.......c.ceeveeeveseerneennns XiX

A

ACTIVITY PrOCESSOIS....oicicicteieece e
application cookie manipulation
auth cookie tampPering......eeeneeeeeeeseennns
auth input parameter tampering........ccecveeevenee. 209
auth iNvValid lO8iN......eecseeeereeeee s 21
auth query parameter tampering......cecvevvenne.
authentication brute force......eeecceccecrenee
common directory enumeration....
cookie protection proCeSSOor........eeeeveeevereennns
duplicate request header........ccovveeveverevecrrennnn
duplicate response header.........eeevveeeeeennnns
EITOI PIrOCESSON .uveievcrrrerteseesessessessessssssessessssssssssesasses
header PrOCESSON......eeeceeeeeerre s
illegal method requested.........ccoeevecereenererrevenennns
illegal request header.....
illegal response header
illegal response Status.......cceeceeveeseeeseeseseeennnns
MEthOd ProOCESSON. ...t
MISSING all NEAAEIS......eeeeeee e
MIssiNg host header......cveereeeree s
missing http protoCol.....ceecece e 232
missing request header.......eneneneeneneens 227
MISSING response Neader.......eeneeneeereissenees 228
missing user agent header......eveecesesennees 228
request header overflow......cccceeeeeeeeeenns 228
resource enuMEration. ... 222
SUSPICIOUS response status.....ceeeceneeeeeeenas 219
unexpected method requested.........ccoceeeeeerenennee. 231
unexpected request header.......eveveveeeernennne 229
unexpected response Status.......eeeveeeseenenns 219
unknown common directory requested............. 220
unknown http protocol.......vcenecesecceeeenes 232

unknown user directory requested.........ccouun... 220

user directory enumeration.......cceeeeceveereeeseeeens 221
Akamai Dynamic Site Accelerator

folo] a1 [={V](=I={U] o] o]0 FR 51
ALEIM SEIVICE ..t aen 65
LIS s 169
appliance

initial configuration.......ccvreneneneneseseneeeeseeneene 24

TEIrMINOLOBY ..ot
appliance deployment
applications

I 60

NIEW .coeteereieiesstsesssssessssesssessssssessssssssssessssssesssssssnssesssnsnsnes 58

PATLEINS ...ttt 60
architecture and key components

SEIVICES e tiereeereereeseeeeeesesesesesesssssssssssesesesesasessssssssssssenesenens 6
assigning the instance and IP

CLlittttteeeeeteee ettt bbb bbb bees 19

VEITY ettt 20

WED INTEIMACE. ... 19
attacker profile PAE.....ccoveveveeveerree s 158
ATTACKEIS SCIEEN.....e ettt 157
B
backend servers

AEFINE e 62
backup

LTSy (0 (= TR 107
backup and recovery

OVEIVIEW...eieeerereeaerreresesesessssssssssssesesesesesssssssssssssssnsnenens 105
basic configuration mode

available SeCctions.......nec s 48
braces, in configuration statements.......ccccoovernninnee XiX
brackets

angle, in syntax descriptions........ccevveeneeeieneienne XiX

square, in configuration statements.........ccccoeueeueee. XiX
C
captcha template........ceeeeeeeeeee s 293
CLI

CONFIG CONEEXL ..ottt 86

configuration level commands.........ccooeeeeeereverennns 81

general and base commands........ceeeeeereeeens 77

IMPOIT/EXPOIM ...t

initialize configuration....

NAVIBATING. ..ot

OVEINVIEW .eetrerereeieistsesesesessssssssasssasese st ssesssssssssasanns

ProXY EXClUSION....cicteeveteecteeee et sesssenes

SEt COMMEANG....ccc s

Copyright © 2014, Juniper Networks, Inc.

309

WebApp Secure 5.5

set config parameter..... e 87 H
system level commands.......eeevecesecrseeeeseens 84 health cheCk URL.......eevesceee e 97
cluster high availability
[t Y 7= (U 34 network failure detection.......cccecnecceccieennns 95
CLUSEEING OVEIVIEW....oeeecteeeree et 20 overview...
comments, in configuration statements..........ccooeuu..e. XiX SETEINES s
configuration U] L0 Lo (=P
DINS ettt bne 27 high availability modes.........ccoeveeecescereeeseeeeene 27
FIrST HIMB e 24 honeypot processors
hostname........ ACCESS POLICY PrOCESSON....cucvcvcrcveeririreisssrererereesenens 182
initialization AJAX PIOCESSON c.eoeirerereeereereseesessssesesssssssssesesssassseseses 185
NEtWOrK iNterface...... e 26 apache configuration requested........ccoevvervennnee. 189
WED INtErface..... e 46 apache password file requested..........ccouuureuennee. 190
Configuration basic authentication brute force........cccunueneene. 193
basic authentication processor.......ccceevevveneee 188
cookie parameter manipulation..........eee. 195
cookie processor
conventions file PrOCESSON ..ttt et
text and SYNTaX... e xviii hidden input form processor.........eeeeeeeeenane. 198
counter response hidden link ProCESSOr ... 201
OVEIVIEW. ettt ssssss s sss s sens N7 hidden parameter manipulation.........cccoceuevune.... 200
Counter Responses WINAOW.......c.cceeereveeeeseseseeeenenenns 164 invalid credentials.......eceeenceceeeeeseeseens 1901
curly braces, in configuration statements..........c........ XiX link directory iNndexing........ccceveveveeveeseesrenneeeeene 202
[S[UIS (0] aT=T GEYU] 0] 0 Yo] 0 XX link directory spidering....... ..202
CONLACTING JTAC..... e XX mMaliCious resource requUESt......eecerneerisnsens 203
malicious script eXeCUtioN.....eveceeeceeeeceennns 186
D malicious script introspection.......eeeeeeeeenee. 187
DaShDOAI......c.ccuiieeceeeeeee et esanans 152 malicious service Call.....vcnenereeeie e 183
dedicated management interface.......ceveeeenenee. 26 malicious spider actiVity....eeereeeeeeseeennnns 205
DeVvelopers GUIAE....... et sees 47 parameter type manipulation.........cccoeveeeeeennnae 199
DNS settings PASSWOrd CraCKed.......oeeerneneeereerrenssesseeesseesnees 192
documentation protected resource requested........cvcveenveennina, 192
COMIMENTS ONetirtiirieirireeiseeise et Xix query parameter manipulation.........ccccovvenenee. 204
query StrNE ProCESSOT.....cvreerererreseresessssssssseseens 203
E TODOLS PIrOCESSON .c.oveoeeeeeereeeeerereseeeeesseesereessesssnesesesenes 205
EC2 deployment service directory iNAEXING. ..o oeecoseeeceseseesneens 183
[TR 14 service directory (< o]0 [T SO 184
OVEIVIBW ...ttt sss s s sss s ssassssesenes 14 suspicious file exposed .. 197
WED INTEITACE...... s 15 SUSPICIOUS fil@NamMBu....eceececeeeceeeeeee s 196
Editor SUSPICIOUS resource enuMeration............ 198
OVEIVIEW....ueiiieteteteee sttt ss sttt 120 hostname spoofing attempt......eecvecceeccereeens
expert configuration mode ROStNAME, SEHHING.....cvvvvvverveveverereeeseesseeseeeeeeeeeeeeeeeeseeeeeesesesese
Lo 1Y 0= 1 T 49 HTTP request/response diagram
F |
features and DENEfitS... s 4 aa] 0T 7= o o) s A 50
first time configuration... [aleiTo=lalao =] =1 163
font conVeNtioNS....... s XViii incident methods
LISttt 121
310 Copyright © 2014, Juniper Networks, Inc.

Index

([Tt =T} £ OO 162 processors
INIHIALIZE SYSTEMueeieceeecee e 27 complexity ratingsS..... e 175
OVEIVIEW..eviieirerereresssessssssesaresesesesssssssssesssssssssssssasassnes 175
L product documEeNtatioN.......eeeeeveesee s 47
LDAP DIOAUCT OVEIVIEW. ... seeeeeeseeeeseeeeeeeeeeseeeseenes 3
SEHINGS e 143 PrOXY EXCLUSION..uouumrviveenessesesssssissssssssssssssssssssssssssssssssssnnens 89
license proxy-backends
= U [0 PO 29 (ol) 1= T =TSO 56
lIMILAtIONS....ce s 10
load-balanced environments R
(0] 014 (o] o 1= TR 13 RADIUS
log files SETEINES e 143
destinatioNS......c.ceceeee s 104 RBAC
Managing and VIEWING.......oocueeereenerernenesesnsesesnsens 103 list of groups and roles.......eeneeeneneeseeere s 146
log format report
BCCESS vttt s bbb saes 297 AETAILS. i 132
FIF@WALL et 302 1 (0] Y25 TR 131
INCIAENT .. ses 301 SCHEAULE ..t 129
ITIWS.ootecteeetete et b b s bbb s bbb bbb st bsanans 304 SChedule OVEIVIEW....... e 128
0101 4= €=U 303 L] T A 1Y/ 1T 134
LTSI U] 1 Y2 299 reporting
login ban ON-AEMANG....irerrire et eesseeens 126
UNDBLOCK ettt sae s 97 OVEIVIBW ..ottt sssssssssssssssasesenns 125
ST 00 =TT U 168
M FESPONSE PrOCESSONS....oucveiererersisssessssssssessssssssssessssssssssns 247
manuals app vulnerability detected.......ccoeeveeereverrerenenne. 278
COMIMENTS ONueriiiiricririise et XiX application vulnerability processor.........ccccvuue... 278
MELNOAOLOBY ...t bes 4 bad captCha anSWET ...
multiple webservers DLOCK PrOCESSON........ovovvmemssmsssssneeeeeeseesessssssssssssssssssen
SECUNNE . eetearieereserreese et sassees 57 captcha answer automation........eeeeecvevenennee.
captcha cookie manipulation .
N captcha directory indeXing.......cccoevveerveverneneennnenns
network interface configuration captcha directory probing............ceeonereeeiens
management iNterface..... e 26 captcha disallowed multipart......cnmeeene. 262
Network placement..........eeecee e 1 captcha iMage ProDING. ... eeeeeeeeeeeeeeeeeeeseessesseen 260
NI I Y= £/ ol 64 captcha parameter manipulation........co..... 264
captcha request replay attacK.......ccoeoeeeeveveeenne. 265
O captcha request size limit exceeded..................... 261
online help captcha request tampPering.......coeoneeeersrern 257
QUESEION MAIK..uiiieitieieieee e 47 captcha signature SPOOFING... ..o 259
captcha signature tampering......ceveereeenenne 258
ClOPPY PIrOCESSON ..t resss s 280
csrf parameter tampering.......eveeeeseveennenns 271
(01T B o] (0 To(=1=1To] TR 269
csrf remote script inclusion........ccccecccnenee. 273
expired captcha request.......ceveeneceeeeenne 256
force lOogOUt PrOCESSON ... ieennees 274
GOO0ElE MAP PrOCESSO...cuiveeerreereresreseresressesesaesns 291
header injection ProCesSOor......veeveeeeeeenenns 274
Copyright © 2014, Juniper Networks, Inc. 3N

WebApp Secure 5.5

http referers disabled..........cccooveeveveeeccveveesccee, SESSIONS. .ottt rrreteest s bt s s es bbb nas s s sesanaanas 165
(0] =4 g T o] {0 (=11 Yo] (T Spotlight Connector
mismatched captcha session.... F= {0 1) ST
muliple captcha parameter cookies and location
MANIPULATION ..t 268 Spotlight Secure
multiple captcha disallow multipart................... 267 ADOULce e 13
multiple captcha replays.....veeeccnecceseenne. 266 ENADLE.c.ce s N4
multiple captcha request overflow.................... 254 SRX series integration
multiple csrf parameter tampering.......cccoeceueeee. 272 CONTIBUI.ceceecce e 68
no captcha answer provided create filter and terms....... ...67
request captcha proCessor.....eeeeeeereeeeeenees filters and terms OVervieW........eeeeeececeseseneeens 66
site INvalid lOZiN.....ccreeeee e OVEIVIEW ..ttt sesssssss s sssssesssss s sessssssessssssasassens 65
site login brute force.....vceeeeceesee L1 PO 70
site login MULLIPLE IP. et SSL to client
site login multiple uesrnames.......ooeeeeeeevevenenne. 288 ENADLE. e 62
site login user brute force.... e 290 SSL traffic considerationS.......eeeceeeecesee e 13
site login user pooling statistics
site login user sharing support, technical See technical support
site login username SCan......orreeeereeneeneeeens 290 SYNtaxX CONVENTIONS. ... XVili
slow connection ProCeSSOr......eeereenererseeeeenne 275 System Status SCreen..... e 169
Strips iINPUL ProCESSOT.....vcveceeree e 275 SYStEM UPALES.....ccececeee et 90
[S{8] 0] ool g ull o] (o Tel=1S1] o] SR 279
unsupported audio captcha requested.............. 254 T
warning code tampPeriNg.......veeoneeessrersssesenss 277 technical support
WaArNING PrOCESSONcucvevererereeesaeresesesesessssssssesesesens 276 CONtACING JTAC..... s XX
RESPONSES taD......ovovvvvveverereresesseeeeeeeeesseeseeseeseeesese e 158 third-party load DalanCer. ... 41
role-based acCesS CONTIO ... enriiereeseressssssssienes 143 tracking processors
CONTIBUIE....oovoee e sssssssss s 143 beacon parameter tampering..........eeeeeeeees
beacon session tampering.......eeeereeeenens
S client beacon pProCesSor.......eceecereeieeseseeens
SEAICH WINAOW.....oceececeectcese ettt sesssens 166 client classification processor....
secure cluster client fingerprint processor......ocvecveverereennn.
U] 00 1=} (=TSR RT PP 35 etag beacon ProCeSSOr..... s
security engine fingerprint directory iNdexing........cccceeveereeeerereenenae
Content Delivery Network (CDN)...ccoeveveereeisseneens 50 fingerprint directory probing......cccccovvcenininenne
incident MONItOrNG.....cooveevivireerereeeereeees 52,176 fingerprint manipulation.........ccccccvevreevenenesicenn,
server identity and cloaking........ccoeeeeveeereeerereeenne 54 session etag SPOOTING....cceneereeeeseereeeereens
TrATFIC s 54 TrATTIC s
Whitelist SEttiNgS....cvcvveeeeecree e 55
Security Intelligence U
ADOUL....ooooeeeeesessseseee e sessssssssssssssssssssssesssssssssssssssnens 109 updates
security processors [T A 1= STV 35
overview UDAAtES SCIEEN....eeceetr ettt enanaes 171
SEUF-NEALING ...ttt USEr Preferences......cesisssssesisesisnins 46, 148
SElf-MONITONING. ...t 98
configuration variables.............eeeeeeeeeen 08 \'
server identity and Cloaking. ... 50 verify connectivity
session cookie TAMPENNG ..t 178 verify iNStallation..... s
SESSION dELAILS .. sssssessssssssssssssssnnns 165 verify instance is rUNNING.......oooons 20
312 Copyright © 2014, Juniper Networks, Inc.

Index

W

web interface configuration.......ceeeeneceseeeeeennne 46

widgets
data filter e 151
SEAICKN...cctecee et 151
US Bl etiririesssesessesseseresesesssssssssesessesasesensssassssessssssssnsnssnsnsasns 151

Copyright © 2014, Juniper Networks, Inc.

313

WebApp Secure 5.5

314 Copyright © 2014, Juniper Networks, Inc.

	Table of Contents
	List of Figures
	List of Tables
	About the Documentation
	Documentation and Release Notes
	Documentation Conventions
	Documentation Feedback
	Requesting Technical Support
	Self-Help Online Tools and Resources
	Opening a Case with JTAC

	Part 1: Overview
	Chapter 1: WebApp Secure
	WebApp Secure Overview
	Methodology
	Features and Benefits
	Key Components
	Anatomy and Flow of an HTTP Request / Response
	Limitations

	Chapter 2: Deployment
	Appliance Deployment Overview
	Placement Between Firewall and Web Servers
	Options for Load-Balanced Environments
	SSL Traffic Considerations
	EC2 Deployment
	Deploying Using the Command Line
	Deploying Using the Web Interface
	Assigning the Instance and IP Using the CLI
	Assigning the Instance and IP Using the Web Interface
	Verify the Instance is Running
	Clustering Overview
	High Availability Overview

	Chapter 3: Installation and Setup
	WebApp Secure Appliance Terminology
	First Time Configuration
	Initial Appliance Configuration
	Changing the Password
	Resetting the Password
	Configure Network Interfaces
	Set the Hostname
	Set DNS
	Initializing the System
	Verify Connectivity
	Install the License
	Configuring High Availability
	High Availability Settings
	Configuring Clustering
	Performing Initial Updates
	Updating the Cluster
	About the Configuration Wizard
	Using the Configuration Wizard
	Using WebApp Secure with Third-Party Load Balancer
	Verify the Installation

	Part 2: Configuration
	Chapter 4: Configuration Options
	Web Interface Configuration Overview
	Edit Web UI User Preferences
	View Online Help and Product Documentation from the Web UI
	Basic Configuration Mode
	Expert Configuration Mode
	Import/Export (Web UI)
	Security Engine Configuration
	Configure Support for Akamai Dynamic Site Accelerator
	Security Engine Incident Monitoring
	Security Engine Server Identity and Cloaking
	Security Engine Traffic
	Security Engine Whitelist Settings
	Proxy/Backends
	Applications Overview
	Create a New Application
	Edit Applications
	Application Patterns
	Application Backend Overrides
	Enable SSL to the Client
	Pages
	NTP Service
	Alert Service
	Integration with SRX Series Overview
	Filters and Terms Configuration Summary for SRX Series Integration
	Creating SRX Series Filters and Terms
	Configure the SRX Series Integration
	Testing the SRX Series Integration Configuration

	Chapter 5: Managing the Appliance
	Overview
	Navigating the CLI
	The CLI: The Set Command
	The CLI: General and Base Commands
	The CLI: Configuration Level Commands
	The CLI: System Level Commands
	CLI: Config Example
	CLI: Config: Setting a Configuration Parameter
	CLI: Config: Initializing the Configuration
	CLI: Config: Import/Export
	CLI: Config: Configure a Proxy Exclusion
	System Updates
	Statistics
	High Availability Network Failure Detection, Actions, and Monitoring
	Unblock Web UI Login Ban
	Health Check URL
	Self-Monitoring
	Self-Monitoring Configuration Variables
	Managing and Viewing Logs
	Log File Destination
	Backup and Recovery Overview
	Database Backup and Restore

	Chapter 6: Security Intelligence
	About Security Intelligence
	Enable the Spotlight Connector Service
	Spotlight Connector Session Cookies and Locations
	About Spotlight Secure
	Enable Spotlight Secure

	Chapter 7: Response Rule Configuration
	Response Overview
	Using the Editor
	List Of Incident Methods

	Chapter 8: Reports
	Reporting Overview
	Information for Report Types
	Scheduling a Report Overview
	Schedule a Report
	Report History
	Report Details
	Report Types

	Part 3: Administration
	Chapter 9: General Tasks
	Changing the Password
	Resetting the Password

	Chapter 10: Configuration Modes and Roles
	Role-Based Administrator Access Control
	Configuring Role-Based Access Control
	RBAC Groups and Roles
	Edit Web UI User Preferences

	Chapter 11: The Web UI
	Web UI Overview
	The Dashboard
	Attackers
	Attacker Profile Page
	Incidents
	Incident Details
	Counter Responses
	Sessions
	Session Details
	Search
	Reports
	Configuration
	System Status
	Updates

	Part 4: Monitoring
	Chapter 12: The Processors
	Processors Overview
	Complexity Rating Definitions
	Security Engine Incident Monitoring
	Session Cookie Spoofing
	Session Cookie Tampering
	Hostname Spoofing Attempt
	Security Processors

	Chapter 13: Honeypot Processors
	Honeypot Processors: Access Policy Processor
	Honeypot Processors: Access Policy Processor: Incidents - Malicious Service Call
	Honeypot Processors: Access Policy Processor: Incidents - Service Directory Indexing
	Honeypot Processors: Access Policy Processor: Incidents - Service Directory Spider
	Honeypot Processors: AJAX Processor
	Honeypot Processors: AJAX Processor: Incidents - Malicious Script Execution
	Honeypot Processors: AJAX Processor: Incidents - Malicious Script Introspection
	Honeypot Processors: Basic Authentication Processor
	Honeypot Processors: Basic Authentication Processor: Incidents - Apache Configuration Requested
	Honeypot Processors: Basic Authentication Processor: Incidents - Apache Password File Requested
	Honeypot Processors: Basic Authentication Processor: Incidents - Invalid Credentials
	Honeypot Processors: Basic Authentication Processor: Incidents - Protected Resource Requested
	Honeypot Processors: Basic Authentication Processor: Incidents - Password Cracked
	Honeypot Processors: Basic Authentication Processor: Incidents - Basic Authentication Brute Force
	Honeypot Processors: Cookie Processor
	Honeypot Processors: Cookie Processor: Incident - Cookie Parameter Manipulation
	Honeypot Processors: File Processor
	Honeypot Processors: File Processor: Incident - Suspicious Filename
	Honeypot Processors: File Processor: Incident - Suspicious File Exposed
	Honeypot Processors: File Processor: Incident - Suspicious Resource Enumeration
	Honeypot Processors: Hidden Input Form Processor
	Honeypot Processors: Hidden Input Form Processor: Incident - Parameter Type Manipulation
	Honeypot Processors: Hidden Input Form Processor: Incident - Hidden Parameter Manipulation
	Honeypot Processors: Hidden Link Processor
	Honeypot Processors: Hidden Link Processor: Incident - Link Directory Indexing
	Honeypot Processors: Hidden Link Processor: Incident - Link Directory Spidering
	Honeypot Processors: Hidden Link Processor: Incident - Malicious Resource Request
	Honeypot Processors: Query String Processor
	Honeypot Processors: Query String Processor: Incident - Query Parameter Manipulation
	Honeypot Processors: Robots Processor
	Honeypot Processors: Robot Processor: Incident - Malicious Spider Activity

	Chapter 14: Activity Processors
	Activity Processors
	Activity Processors: Custom Authentication Processor: Incident - Auth Input Parameter Tampering
	Activity Processors: Custom Authentication Processor: Incident - Auth Query Parameter Tampering
	Activity Processors: Custom Authentication Processor: Incident - Auth Cookie Tampering
	Activity Processors: Custom Authentication Processor: Incident - Authentication Brute Force
	Activity Processors: Custom Authentication Processor: Incident - Auth Invalid Login
	Activity Processors: Cookie Protection Processor
	Activity Processors: Cookie Protection Processor: Incident - Application Cookie Manipulation
	Activity Processors: Error Processor
	Activity Processors: Error Processor: Incident - Illegal Response Status
	Activity Processors: Error Processor: Incident - Suspicious Response Status
	Activity Processors: Error Processor: Incident - Unexpected Response Status
	Activity Processors: Error Processor: Incident - Unknown Common Directory Requested
	Activity Processors: Error Processor: Incident - Unknown User Directory Requested
	Activity Processors: Error Processor: Incident - Common Directory Enumeration
	Activity Processors: Error Processor: Incident - User Directory Enumeration
	Activity Processors: Error Processor: Incident - Resource Enumeration
	Activity Processors: Header Processor
	Activity Processors: Header Processor: Incident - Duplicate Request Header
	Activity Processors: Header Processor: Incident - Duplicate Response Header
	Activity Processors: Header Processor: Incident - Illegal Request Header
	Activity Processors: Header Processor: Incident - Illegal Response Header
	Activity Processors: Header Processor: Incident - Missing All Headers
	Activity Processors: Header Processor: Incident - Missing Host Header
	Activity Processors: Header Processor: Incident - Missing Request Header
	Activity Processors: Header Processor: Incident - Missing Response Header
	Activity Processors: Header Processor: Incident - Missing User Agent Header
	Activity Processors: Header Processor: Incident - Request Header Overflow
	Activity Processors: Header Processor: Incident - Unexpected Request Header
	Activity Processors: Method Processor
	Activity Processors: Method Processor: Incident - Illegal Method Requested
	Activity Processors: Method Processor: Incident - Unexpected Method Requested
	Activity Processors: Method Processor: Incident - Missing HTTP Protocol
	Activity Processors: Method Processor: Incident - Unknown HTTP Protocol

	Chapter 15: Tracking Processors
	Tracking Processors: Etag Beacon Processor
	Tracking Processors: Etag Beacon Processor: Incident - Session Etag Spoofing
	Tracking Processors: Client Beacon Processor
	Tracking Processors: Client Beacon Processor: Incident - Beacon Parameter Tampering
	Tracking Processors: Client Beacon Processor: Incident - Beacon Session Tampering
	Tracking Processors: Client Fingerprint Processor
	Tracking Processors: Client Fingerprint Processor: Incident - Fingerprint Directory Indexing
	Tracking Processors: Client Fingerprint Processor: Incident - Fingerprint Directory Probing
	Tracking Processors: Client Fingerprint Processor: Incident - Fingerprint Manipulation
	Tracking Processors: Client Classification Processor

	Chapter 16: Response Processors
	Response Processors
	Response Processors: Block Processor
	Response Processors: Request Captcha Processor
	Response Processors: Request Captcha Processor: Incident - Captcha Answer Automation
	Response Processors: Request Captcha Processor: Incident - No Captcha Answer Provided
	Response Processors: Request Captcha Processor: Incident - Multiple Captcha Request Overflow
	Response Processors: Request Captcha Processor: Incident - Unsupported Audio Captcha Requested
	Response Processors: Request Captcha Processor: Incident - Bad Captcha Answer
	Response Processors: Request Captcha Processor: Incident - Mismatched Captcha Session
	Response Processors: Request Captcha Processor: Incident - Expired Captcha Request
	Response Processors: Request Captcha Processor: Incident - Captcha Request Tampering
	Response Processors: Request Captcha Processor: Incident - Captcha Signature Tampering
	Response Processors: Request Captcha Processor: Incident - Captcha Signature Spoofing
	Response Processors: Request Captcha Processor: Incident - Captcha Cookie Manipulation
	Response Processors: Request Captcha Processor: Incident - Captcha Image Probing
	Response Processors: Request Captcha Processor: Incident - Captcha Request Size Limit Exceeded
	Response Processors: Request Captcha Processor: Incident - Captcha Disallowed MultiPart
	Response Processors: Request Captcha Processor: Incident - Captcha Directory Indexing
	Response Processors: Request Captcha Processor: Incident - Captcha Directory Probing
	Response Processors: Request Captcha Processor: Incident - Captcha Parameter Manipulation
	Response Processors: Request Captcha Processor: Incident - Captcha Request Replay Attack
	Response Processors: Request Captcha Processor: Incident - Multiple Captcha Replays
	Response Processors: Request Captcha Processor: Incident - Multiple Captcha Disallow Multipart
	Response Processors: Request Captcha Processor: Incident - Multiple Captcha Parameter Manipulation
	Response Processors: CSRF Processor
	Response Processors: CSRF Processor: Incident - CSRF Parameter Tampering
	Response Processors: CSRF Processor: Incident - Multiple CSRF Parameter Tampering
	Response Processors: CSRF Processor: Incident - CSRF Remote Script Inclusion
	Response Processors: CSRF Processor: Incident - HTTP Referers Disabled
	Response Processors: Header Injection Processor
	Response Processors: Force Logout Processor
	Response Processors: Strip Inputs Processor
	Response Processors: Slow Connection Processor
	Response Processors: Warning Processor
	Response Processors: Warning Processor: Incident - Warning Code Tampering
	Response Processors: Application Vulnerability Processor
	Response Processors: Application Vulnerability Processor: Incident - App Vulnerability Detected
	Response Processors: Support Processor
	Response Processors: Cloppy Processor
	Response Processors: Login Processor
	Response Processors: Login Processor: Incident - Site Login Invalid
	Response Processors: Login Processor: Incident - Site Login Multiple IP
	Response Processors: Login Processor: Incident - Site Login Multiple Usernames
	Response Processors: Login Processor: Incident - Site Login User Sharing
	Response Processors: Login Processor: Incident - Site Login User Pooling
	Response Processors: Login Processor: Incident - Site Login User Brute Force
	Response Processors: Login Processor: Incident - Site Login Brute Force
	Response Processors: Login Processor: Incident - Site Login Username Scan
	Response Processors: Google Map Processor

	Chapter 17: Captcha Template
	CAPTCHA Template

	Chapter 18: Log Format
	Access Log Format
	Security Log Format
	Audit Log Format
	Firewall Log Format
	Postgres Log Format
	mws Log Format

	Part 5: Index
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

