
Junos WebApp Secure 5.0

User Guide

Junos WebApp Secure 5.0 User Guide
This guide provides an overview of the Junos WebApp Secure system, explains its functions, and includes
directions for deploying and configuring the appliance for use in a network. It also outlines how to properly use
the software included.

This guide is split up into multiple sections, briefly outlined below:
1. Introduction -- Briefly explains Junos WebApp Secure and it's parts, and outlines help and support

information.

2. Deployment Overview -- Instructions on how to place Junos WebApp Secure in your network.

3. Installation -- Steps to set up Junos WebApp Secure on the software side so it can start processing traffic.

4. Configuring -- Steps through the wizard and explains how to start customizing Junos WebApp Secure to
your liking.

5. Managing the Appliance -- How to perform actions such as restarting the services and viewing the logs.

6. Processor Reference -- Enumerates functionality of all processors, and provides descriptions for each
incident they can produce.

7. Reporting -- How to use the reporting feature to output documents that summarize attacks between
customizable dates.

8. Using the Web UI -- How to get around the web-based User Interface.

9. Auto-Response Configuration -- How to fine-tune how auto responses are performed.

10. Command Line Interface -- Explains how to perform various tasks from the Junos WebApp Secure
command line.

iii

Other Documentation Formats vii

1. Introduction 1
1.1. Overview ... 1

1.1.1. Summary .. 1
1.1.2. Why is it Unique as a Security Product? .. 1
1.1.3. What Does the Software Do? .. 1
1.1.4. What traffic does it inspect? .. 2
1.1.5. How is it managed? .. 2

1.2. Major Components .. 2
1.3. Features and Services ... 2
1.4. Support ... 4

2. Deployment Overview 5
2.1. Appliance Network Placement .. 5

2.1.1. Between Firewall and Web Servers ... 5
2.2. Creating a Test Configuration ... 6

2.2.1. Initial Configuration and Testing ... 7
2.2.2. Larger-Scale Testing ... 7

2.3. Options for Load-Balanced Environments ... 7
2.4. SSL Traffic Consideration .. 7
2.5. Limitations ... 8
2.6. Platform Requirements .. 8
2.7. EC2 Deployment ... 8

2.7.1. Deploying the Junos WebApp Secure Instance ... 8
2.7.2. Assigning the Instance and IP ... 14
2.7.3. Accessing the Instance ... 15

3. Appliance Installation 16
3.1. Terminology ... 16
3.2. Initial Setup ... 16

3.2.1. Changing the Password .. 17
3.2.2. Resetting the Password .. 17

3.3. First Time Configuration ... 17
3.4. TUI Steps .. 18

3.4.1. Network Configuration ... 18
3.5. Licensing ... 22

4. Configuring Junos WebApp Secure 24
4.1. Configuration Wizard .. 24

4.1.1. Wizard: Backend Servers .. 25
4.1.2. Wizard: Backend Server Configuration ... 25
4.1.3. Wizard: SMTP Servers .. 26
4.1.4. Wizard: Alert Service .. 27
4.1.5. Wizard: Backup Service .. 29
4.1.6. Wizard: Junos Spotlight Secure ... 30
4.1.7. Wizard: Confirmation Page .. 31

4.2. Verify the Installation .. 31
4.3. Health Check URL ... 32
4.4. What's Next? ... 32
4.5. Basic vs. Expert Configuration .. 33
4.6. Basic Configuration .. 34
4.7. Expert Mode Configuration ... 35

iv

4.8. Junos WebApp Secure CLI .. 36
4.8.1. CLI: config .. 37
4.8.2. CLI: services .. 38
4.8.3. CLI: system .. 39

4.9. Role-Based Access Control .. 39

5. Additional Configuration Options 41
5.1. Securing Multiple Web Servers ... 41

5.1.1. Application Patterns .. 42
5.1.2. Backend Servers .. 43
5.1.3. Pages ... 44

5.2. Configuring SSL .. 44
5.2.1. Enabling SSL to the Client .. 44

5.3. Clustering .. 46
5.3.1. Node Types .. 46
5.3.2. Setting up Clustering ... 47
5.3.3. Updating the Cluster ... 48

5.4. High Availability ... 49
5.4.1. Configuring HA ... 49
5.4.2. Updating with HA .. 52

5.5. SRX Integration ... 52
5.5.1. Summary .. 52
5.5.2. Creating SRX Filter and Terms .. 53
5.5.3. Configuration .. 55
5.5.4. Testing ... 56

6. Managing the Appliance 58
6.1. Restart/Shutdown .. 58
6.2. System Updates .. 58
6.3. System Statistics ... 61

6.3.1. Master-Slave Mode ... 64
6.4. Troubleshooting and Maintenance .. 64

6.4.1. Managing Services .. 64
6.4.2. Managing and Viewing Logs .. 64

6.5. Backup and Recovery .. 65
6.5.1. Restoring a Backup .. 66

6.6. Junos Spotlight Secure .. 66
6.6.1. Enabling Spotlight ... 67

7. Using Security Monitor 69
7.1. Dashboard ... 69
7.2. Attackers ... 73
7.3. Incidents ... 77
7.4. Counter Responses ... 78
7.5. Sessions ... 79
7.6. Search .. 80
7.7. Reporting .. 82
7.8. Configuration ... 83
7.9. System Status ... 83
7.10. Updates ... 84
7.11. Help .. 84

8. Processor Reference 85

v

8.1. Complexity Definitions .. 85
8.2. Security Engine Incidents ... 86

8.2.1. Session Cookie Spoofing .. 86
8.2.2. Session Cookie Tampering .. 86

8.3. Security Processors ... 87
8.4. Honeypot Processors ... 87

8.4.1. Access Policy Processor ... 87
8.4.2. Ajax Processor ... 90
8.4.3. Basic Authentication Processor .. 92
8.4.4. Cookie Processor .. 98
8.4.5. File Processor .. 99
8.4.6. Hidden Input Form Processor .. 101
8.4.7. Hidden Link Processor .. 104
8.4.8. Query String Processor ... 105
8.4.9. Robots Processor .. 107

8.5. Activity Processors ... 109
8.5.1. Custom Authentication Processor ... 109
8.5.2. Cookie Protection Processor .. 112
8.5.3. Error Processor ... 113
8.5.4. Header Processor ... 121
8.5.5. Method Processor ... 128

8.6. Tracking Processors ... 129
8.6.1. Etag Beacon Processor ... 129
8.6.2. Client Beacon Processor ... 131
8.6.3. Client Fingerprint Processor ... 133
8.6.4. Client Classification Processor ... 136

8.7. Response Processors .. 138
8.7.1. About Responses .. 138
8.7.2. Block Processor .. 139
8.7.3. Request Captcha Processor .. 140
8.7.4. CSRF Processor ... 158
8.7.5. Header Injection Processor .. 163
8.7.6. Force Logout Processor .. 164
8.7.7. Strip Inputs Processor ... 164
8.7.8. Slow Connection Processor ... 165
8.7.9. Warning Processor .. 165
8.7.10. Application Vulnerability Processor ... 167
8.7.11. Support Processor ... 168
8.7.12. Cloppy Processor .. 169
8.7.13. Login Processor .. 171
8.7.14. Google Map Processor .. 178

9. Reporting 180
9.1. On-Demand Reporting ... 180
9.2. Report Schedules .. 180
9.3. Scheduling a Report .. 181
9.4. Report History ... 183
9.5. Report Details .. 183
9.6. Reports CLI ... 191

9.6.1. Supported arguments .. 192

10. Autoresponse Configuration 195

vi

10.1. Using the Editor ... 197

A. Incident Methods 200

B. Captcha Template 204

C. Log Format 206
C.1. Incident Log Format .. 206
C.2. Counter Response Log Format .. 207
C.3. Profile Log Format .. 207

D. RBAC Groups and Roles 208

vii

Other Documentation Formats
The Junos WebApp Secure User Guide is displayed in HTML and exposed through the Help page in the Web
UI, but additional formats can be downloaded from below.

Table 1. Available User Guide Formats

PDF (.pdf) eBook (.epub) Text (.txt)

1 2
3

User_Guide.epub
User_Guide.txt

Chapter 1.

1

Introduction

1.1. Overview

1.1.1. Summary
Junos WebApp Secure is a product that secures websites against hackers, fraud and theft. Its web intrusion
prevention system uses deception to detect, track, profile and block hackers in real-time. Unlike signature-
based approaches, Junos WebApp Secure is the first technology that pro-actively inserts detection points to
identify attackers before they do damage - and without false positives. Junos WebApp Secure goes beyond
the IP address to track the individual attacker, profile their behavior and deploy counter measures. With Junos
WebApp Secure, administrators are liberated from writing rules, analyzing massive log files or monitoring
another console. Junos WebApp Secure neutralizes threats as they occur, preventing the loss of data and
saving companies millions of dollars from fraud or lost revenue.

1.1.2. Why is it Unique as a Security Product?
The software uses deception-based techniques that make attacking a website protected by Junos WebApp
Secure more time consuming, tedious, and costly. The software inserts detection points into your web server's
output to browsers. The detection points do not affect your web server (it never sees them), nor do they
appear on user screens. The detection points are monitored and stripped from the requests coming back
from the user's browser. Any change to a detection point is an indicator of a hacking attempt; this triggers the
deception response. Would-be hackers are deceived into wasting time attempting to penetrate the application
using 'dummy' information, and thusly do not continue exploring other areas for security holes.

Junos WebApp Secure sits between your web servers and the outside world. It adds detection points to
outbound web traffic and removes them from inbound web traffic; thus, it works with any web-hosting system.
There is no need to alter a single line of code on the website or web application. Annoying false positives
are eliminated; Junos WebApp Secure only looks at points it has inserted. Legitimate users never see these
and have no reason to modify them; thus when a detection point is triggered, there is no chance it is a false
positive.

1.1.3. What Does the Software Do?
There are four main phases within Junos WebApp Secure.

Table 1.1. The phases of Junos WebApp Secure

Step 1: Detect Junos WebApp Secure uses traps to detect attackers before they are able
to formulate attacks. These detection points detect when attackers are doing
reconnaissance on your site, looking for vulnerabilities to exploit.

Step 2: Track Persistent tokens and fingerprinting will track - not only IPs - but browsers, software,
and scripts.

What traffic does it inspect?

2

Step 3: Profile Junos WebApp Secure creates a smart profile of the threats, helping you understand
the threat and determine the best way to respond.

Step 4: Respond After detecting, tracking, and profiling the threat, Junos WebApp Secure gives
you many choices in how to respond to the attacker. You may wish to slow his
connection causing him to waste valuable time, warn him that he are being watched,
or completely block him from your application.

1.1.4. What traffic does it inspect?
Junos WebApp Secure software inspects only HTTP and HTTPS traffic. It functions as a reverse proxy.

1.1.5. How is it managed?
The system logs incidents to a database of attacker profiles, and exposes them to the security administrators
through a web-based interface. System administrators can apply automated abuse-prevention policies, or
respond manually.

1.2. Major Components
Major system components include:
• The HTTP/HTTPS Gateway Proxy for accepting and translating raw traffic and interacting with the

defensive security layer. This is core to having the system serve as an in-line proxy. This layer is also
responsible for SSL encryption, decryption, and compression.

• The Security Engine and Profile Database, core components for managing all aspects of run-time
security.

• The Response Rules Engine for automating responses to in-violation behavior in real time.

• A Web Interface that provides real-time monitoring, system configuration, reporting, and charting.

• Processors - objects that contain specific security instructions for the Security Engine as well as logic to
detect and interpret malicious behavior.

1.3. Features and Services
Junos WebApp Secure comes with many features including:

Features and Services

3

• Processors A library of HTTP processors that implement specific abuse detection points in application
code. Detection points identify abusive users who are trying to establish attack vectors such as SQL
injection, cross-site scripting, and cross-site request forgery.

• HTTP Capture Captures, logs, and displays HTTP traffic for security incidents.

• Counter Responses Enables administrators to respond to application abuse with session-specific
warnings, blocks, and additional checks.

• Abuse Profiles Maintains a historical profile of known application abusers and all of their malicious activity
against the application, for analysis and sharing.

• Tagging and Re-identification Enables application administrators to re-identify abusive users and apply
persistent responses, over time and across sessions.

• Web User Interface Web-based monitoring and analysis interface allows administrators to drill into
application sessions, security incidents, and abuse profiles. As well as, manage and monitor manual and
automated responses and configure the system.

• Software and Hardware Delivery Support Distributed as VMWare Virtual Machine image, or as a
hardware appliance.

• SSL Inspection Passive decryption or termination.

• Multi-application Protection Single system processes and secures traffic for multiple application domains.

There are also various services that run in the background. Major services include:

Alert Service
The system can be configured to send email alerts to administrators when an incident of a specified
severity is detected. For instance, the system could send out an email notification to a specific admin who
is on call if an incident level of critical is detected, allowing the admin to respond quickly to the threat.

Junos WebApp Secure can send Alerts to email addresses on a defined schedule, and / or send SNMP
traps to one or more SNMP servers. The initial configuration of the Alert Service can be performed
with the Configuration Wizard, but if you need to change these settings, they are available through the
"Services" tab of Configuration.

Auto Response Service
Allows administrators to turn the Auto Response service on or off.

Backup Service
This menu configures the backup service. Administrators can configure the frequency, type, and
destination for system backups. These settings can also be configured through the Configuration Wizard.

Database Cleanup Service
Administrators can configure how often the database cleanup service runs for sessions, profiles, and
incidents through this option.

Security Engine Service
Configures the memory, database, and fingerprinting used by the security engine.

Session Consolidation Service
Administrators can configure how and when the system consolidates user sessions.

Support

4

Statistical Service
Configures how the system logs statistical data.

Junos Spotlight Secure
Junos Spotlight Secure is designed to provide additional intelligence to Juniper. If enabled, Juniper will
share information about attackers and attacks it is observing with the spotlight server run by Juniper
Networks. Juniper will also consume information from the Spotlight service. This allows customers to pro-
actively identify attackers (that have attacked other Juniper customers) before they have an opportunity to
do anything malicious. This service also provides additional details about sessions which will allow Juniper
to make better decisions on how to respond to threats.

Spotlight is in the Beta phase currently and is not recommended for general use. Only turn the spotlight
service on if you would like to participate in the beta program. No additional steps need to be taken
on your part beyond enabling the service. By default, the service is turned off. If you would like more
information about the Spotlight service, please contact Juniper Networks.

1.4. Support
For any issues or questions contact Juniper Support:

• 1-888-314-5822 (toll free, US & Canada)

• Juniper Support Contact Information1

For those outside the US and Canada, there are regional numbers available through the above URL.

http://www.juniper.net/customers/support/

Chapter 2.

5

Deployment Overview
Junos WebApp Secure processes all inbound web requests and outbound web responses. Outbound
responses are modified in ways that are invisible to the average user; inbound requests are checked to see
if the modified responses have been altered in any way. Alterations like this are suspicious, and indicate a
possible hacker. Due to its focus on web applications, Junos WebApp Secure only accepts HTTP/HTTPS
traffic and is normally placed between a load balancer and your web applications. Topologically, the best
way to look at the Junos WebApp Secure Appliance is as a Web Reverse Proxy Server. Using this technique
makes the design resistant to failure of the appliance hardware.

2.1. Appliance Network Placement

2.1.1. Between Firewall and Web Servers
Junos WebApp Secure acts as a reverse proxy and actively manipulates traffic between the protected web
application and the Internet. It is deployed between the protected web server and the last system which can
alter user-facing traffic. This location gives Junos WebApp Secure full visibility into the HTTP traffic destined
for the web servers (including any errors caused by authentication failures), and lets it inject and strip out any
code it uses in protecting the application.

This topology has the added benefit of minimum impact on internal network bandwidth.

The network placement requirements also include:

Creating a Test Configuration

6

• Junos WebApp Secure only processes HTTP and HTTPS traffic, therefore it must live behind a device that
can separate Application Layer (Layer 7) traffic.

• In order to prevent a Junos WebApp Secure problem from impacting a protected application, the upstream
device (i.e., the router or load balancer) must perform Health Check monitoring on Junos WebApp Secure
over HTTP. If the Health Check fails, the load balancer or Layer 7 router should pass traffic directly to the
protected application servers, rather than to Junos WebApp Secure.

The actual implementation depends on the user's specific network topology. The first figure shows the Junos
WebApp Secure deployed in its most simple form as a reverse proxy connected to a load balancer. The
following figure shows a more complex environment with clustered web servers and clustered appliances.

2.2. Creating a Test Configuration
Junos WebApp Secure acts as a reverse proxy and is deployed between the protected web server and the
load balancer. This location gives Junos WebApp Secure full visibility into the HTTP traffic destined for the
web servers (including any errors caused by authentication failures), and lets it inject and strip out any code it
uses in protecting the application.

Initial Configuration and Testing

7

With this topology, the web server remains in production, at its normal (private) IP address. You are creating
a small 'island' of system(s) which access the web server through Junos WebApp Secure; all production
traffic continues to flow in the normal manner. Your Junos WebApp Secure appliance is set up as it will be for
production; this makes it easy to go live when you are ready.

2.2.1. Initial Configuration and Testing
One (or more) test systems must be configured so that they see the web server at the IP address of the Junos
WebApp Secure appliance, 172.25.1.120. This can be done with either a local split-DNS or the local Hosts file.

2.2.2. Larger-Scale Testing
When you are ready to scale up testing, your split DNS can be configured so that outside users 'see' the
web server directly, but all inside users (i.e. employees) receive the Junos WebApp Secure IP address when
accessing the web server. This lets you thoroughly test and evaluate before going live.

2.3. Options for Load-Balanced Environments
Junos WebApp Secure can serve as a load balancer for HTTP and HTTPS web traffic, however it is
recommended that a dedicated hardware solution be used in that capacity. Dedicated load balancers are
optimized for that role and will provide higher overall performance.

2.4. SSL Traffic Consideration
Junos WebApp Secure includes SSL decryption capabilities to give it visibility into all of the protected
application's traffic, and supports two modes: Passive Decryption and SSL Termination.

In Passive Decryption mode, Junos WebApp Secure decrypts requests for processing, then re-encrypts
them before sending them on to the application server. HTTPS responses to the user follow the same
process, where they are decrypted, processed, and re-encrypted before returning to the user.

In SSL Termination mode, the appliance serves as an SSL termination point. It decrypts incoming HTTPS
traffic, processes them, then proxies the decrypted requests on to the application. Responses to the user are
received unencrypted from the application server, processed, encrypted, then passed to the user.

Limitations

8

Details of SSL configuration are covered fully in Section 5.2, “Configuring SSL”.

Note
You will need a copy of the certificate on Junos WebApp Secure (in PEM format) in order to
process SSL traffic.

2.5. Limitations
• Junos WebApp Secure does not support hardware fail open capability itself and should not be physically in

line with protected application servers.

• Junos WebApp Secure only accepts HTTP and HTTPS 1.0 and 1.1 traffic.

• It is not a network firewall and should not be an edge device.

• Junos WebApp Secure does not support NTLM authentication.

2.6. Platform Requirements
Junos WebApp Secure records suspicious activity to disk by default and requires fast and reliable disk
access. The volume of disk access can increase dramatically when extended logging is turned on. Junos
WebApp Secure can come installed on the dedicated hardware box, or as a virtual machine under VMware.
When deploying in a virtual environment, be sure the selected disk is logically close enough to the virtual
machine that it can maintain the required throughput even when backups or other disk-intensive operations
are underway.

Table 2.1. Hardware Requirements

Virtual (VMWare) EC2 (AMI)

Minimum Recommended

CPU 2 vcores, >2 GHz 4 vcores, >2.4 GHz

RAM 8 GB per VM 16 GB per VM

Disk Size 30 GB 60 GB

Disk I/O Tier 2 or better Tier 2 or better

M1 Large Instance1

These are minimum specifications and should provide sufficient performance for most applications. However,
application traffic and server load can vary widely. Your site may require higher performance hardware or
virtual hardware to adequately handle the load.

2.7. EC2 Deployment

2.7.1. Deploying the Junos WebApp Secure Instance
The Junos WebApp Secure instance is a private instance -- for access to it you will have to provide Juniper
your account id.

You can find your account id once you have logged into your AWS account, and have selected 'Account
Activity'. Your account id is displayed in the top right under your account name.

http://aws.amazon.com/ec2/instance-types/

Deploying the Junos WebApp Secure Instance

9

2.7.1.1. Deploying via Command Line
You need to have an ec2tools environment setup prior to deploying the instance from the CLI. Please refer to
the Amazon documentation2 for assistance in setting up your environment.

First, make sure you have access to our image by typing: ./ec2-describe-images -x self -o
"969756132034"

The output will look similar to the following: IMAGE ami-4d3df524 969756132034/Mykonos Appliance
969756132034 available

If you do not see any output at all then you most-likely don't have access to our instance. Please contact
Juniper Networks support to get help with this issue.

Now, we need to create a security group for the instance:
• ./ec2-add-group Mykonos -d "Mykonos Appliance"

• ./ec2-authorize Mykonos -p 2022

• ./ec2-authorize Mykonos -p 80

• ./ec2-authorize Mykonos -p 443

• ./ec2-authorize Mykonos -p 5000

• ./ec2-authorize Mykonos -p 8080

Note
We recommend you only allow ports 5000 and 8080 from known good IPs.

You can now deploy the new instance as follows: ./ec2-run-instances 'AMI ID' -k 'KEY PAIR' -
t m1.large -g Mykonos

You need to replace the 'AMI ID' with the AMI ID listed in 'Describe Image', in this case it would be
'ami-4d3df524'. You will also need to replace 'KEY PAIR' with the name of the key pair you would like to use to
access the system.

2.7.1.2. Deploying via Web Interface
Log into the AWS management console:

• Select the 'Amazon EC2' tab

• Select 'Instances' from the navigation on the left

• Click the 'Launch Instance' button under the My Instances section

• Select 'Launch Classic Wizard' then click continue

• Select the 'My AMIs' tab

• Next to Viewing, change it to 'Private Images'

2 http://aws.amazon.com/developertools/351

http://aws.amazon.com/developertools/351
http://aws.amazon.com/developertools/351

Deploying the Junos WebApp Secure Instance

10

• Click 'Select' on the Appliance

• Change the instance type to 'Large (m1.large)'

• Click 'Continue'

• Click 'Continue'

Deploying the Junos WebApp Secure Instance

11

• Add a name if you would like to

• Click 'Continue'

Deploying the Junos WebApp Secure Instance

12

• Select or create your key pair

• Click 'Continue'

• Select 'Create a new Security Group'

• Group Name: Mykonos

• Group Description: Mykonos Appliance

• Port Range: 2022

• Add Rule

• Port Range: 80

• Add Rule

• Port Range: 443

• Add Rule

• Port Range: 5000

• Add Rule

Deploying the Junos WebApp Secure Instance

13

Note
We recommend you only allow port 5000 from known good IPs

• Click 'Continue'

• Click 'Launch'

Assigning the Instance and IP

14

2.7.2. Assigning the Instance and IP

2.7.2.1. Assigning via CLI
First, we need to request a new public IP address: ./ec2-allocate-address

Note the IP it returns; we will need that in a moment. We need to get the Instance ID of the Mykonos Instance:
./ec2-describe-instances

Look through the list and find the Instance ID of the Appliance. We can now associate the IP with the Mykonos
Instance: ./ec2-associate-address IP -i 'Instance ID'

Just replace the 'IP' with your IP address and the 'Instance ID' with the ID of your instance.

2.7.2.2. Assigning via the Web Interface
• Select the 'Amazon ec2' tab

• Select 'Elastic IPs' under Navigation on the left

• Click 'Allocate New Address' button under the Address section

• Click 'Yes, Allocate'

Accessing the Instance

15

• Click 'Associate Address'

• Select the Appliance

• Click 'Yes, Associate'

2.7.3. Accessing the Instance
At this point, your instance should be up and running. You can use the web interface or the CLI tools to verify
this. To access your instance you need to have a copy of the key pair you used for the instance. ssh -i
'PATH TO KEY PAIR' mykonos@'IP' -p 2022

You should be granted access, and the TUI will be launched for you. From there, you can configure the
appliance.

Chapter 3.

16

Appliance Installation
Junos WebApp Secure is a software appliance (operating system, utilities, and application software) that is
installed directly on Juniper-sourced hardware, or may be installed as a VMWare Virtual Machine. It can also
be installed in a Cloud environment. For a Virtual Machine installation, please follow VMware's procedures
to install the .ova file through the vSphere application. For a Cloud installation, please see your vendor's
documentation.

3.1. Terminology
Appliance

The software/hardware system. It is synonymous with 'Junos WebApp Secure' most contexts.

Application
The protected webapp. Also can reference the web server program, whether it is Apache, JBOSS,
Microsoft, or other web serving software.

GUI
Graphical User Interface. In cases referencing the Junos WebApp Secure system, it is likely this term
refers to the Web Interface.

HA
High Availability, a configuration that aims to reduce the chance the entire system fails.

TUI
Text User Interface, usually invoked on the command line via "sudo setup".

3.2. Initial Setup
Initial configuration is done through the console in a limited shell. Once Junos WebApp Secure has been
initialized for the first time, the administrator can log into a Web console to finish the initial setup. Once the
setup is complete, Junos WebApp Secure will be protecting your applications. You must use the direct console
interface to configure the appliance IP address. Once the system has an IP address, you can use SSH to
connect via port 2022.

Use the SSH command:

ssh <machine_IP_address> -p 2022 -l mykonos

Default login credentials for the console are:

• User: mykonos

• Password: mykonosadmin

Important
You should change the default login and password immediately after installation.

Changing the Password

17

3.2.1. Changing the Password
The system password can only be changed from the underlying Linux command line. To do this, connect via
the console or SSH. You will see the setup utility screen; navigate to 'Quit' to exit to the shell. Type 'passwd'
and follow the prompts.

3.2.2. Resetting the Password
To reset the mykonos password, an appliance reboot is required. A boot menu option exists to reset the
mykonos user credentials. By default, the appliance will boot normally, but by pressing any key before the
operating system starts booting, you can get to the boot menu.

At this point, you can choose the option to reset the mykonos password.

3.3. First Time Configuration
Basic configuration of Junos WebApp Secure is straightforward. The following steps are executed via the
console and the Text User Interface (TUI):

• Set the host name

• Set up networking

• Restart networking

• Initialize the appliance

At this point, the web interface should be active. From it, you will:

• License the appliance

TUI Steps

18

• Run the installation wizard

• Perform a basic appliance test

3.4. TUI Steps
The following steps are performed through the Text User Interface. This is initially done via the serial console,
however the TUI is available through SSH once the Appliance is operating.

3.4.1. Network Configuration
The minimum requirements for the appliance's network setup are to set a hostname and configure a network
interface.

3.4.1.1. Setting the Hostname
To configure the network interface, first enter the TUI and select "Network Configuration" from the menu. From
here, enter the "Set Hostname" menu and enter the system's hostname.

Network Configuration

19

3.4.1.2. Interface Configuration
Once the hostname is set, open the "Configure Interfaces" menu and enter the network settings for the
appliance's network interface.

• Interface - Select network interface

• Use DHCP - Check to use DHCP; uncheck for fixed IP address

• IP Address - Specify a fixed IP address (if DHCP is unchecked)

• Netmask - Specify the netmask

• Gateway - Specify network gateway IP address

• On Boot - Select to start the interface at boot time

Network Configuration

20

3.4.1.3. Set DNS
Select DNS settings from the network menu, and enter appropriate values.

3.4.1.4. Restart the network
After the Hostname and network interface information has been set, you must restart networking to have the
changes take effect.

Network Configuration

21

3.4.1.5. Initialize the Appliance
Now you are ready to initialize the appliance's services. Open the TUI menu and select the "Initialize
Appliance" from the menu.

The Appliance typically takes 3 to 5 minutes to initialize, depending on available resources. Once initialization
is complete, the administrator will have access to the Web interface where they can finish the initial
configuration.

Licensing

22

Important
Initialization sets the system to a "default" state and will overwrite any existing configurations.
If this is the first time you're configuring the Appliance it will not be an issue. However, if you
are rerunning the initialization on an existing system, be aware this will reset it to defaults,
deleting any existing data on the Appliance. For existing systems, see Section 4.8.1.2,
“Configuration Import / Export”.

3.4.1.6. Verify Connectivity
After all initialization steps have been performed, verify that all network settings are correct, and that the
appliance can be reached from the network. Navigate to the ip or hostname assigned to the appliance (on
SSL), and specify port 5000.

For example:
• https://10.10.10.104:5000

• https://my-hostname:5000

If you see the following dialog, network settings are correctly configured.

3.5. Licensing
In order to complete Junos WebApp Secure configuration, you will need to install the license for your product.
Use a web browser to connect to your appliance on port 5000 and log in using the Admin's credentials.

Note
The configuration url is: https://<IP address or hostname>:5000

Examples:
• https://10.11.12.13:5000

• https://junoswebappsecure.mydomain.com:5000

1. Go to the Licensing section and follow the prompts.

Licensing

23

2. Enter the license key supplied by your Sales Engineer or Account Manager in the Add a New License
field.

3. Click Add.

4. Review the Terms of Service.

5. Click Yes on "I agree to the terms of service" to enable your Junos WebApp Secure product.

If the license validation step fails, check the network settings, particularly proxy settings for the network. Junos
WebApp Secure has to reach the outside world to contact the licensing server.

Chapter 4.

24

Configuring Junos WebApp Secure
The Web interface is used for system configuration, as well as monitoring and reporting. The initial installation
required you to access this interface to license Junos WebApp Secure and bring your appliance on-line. You
will use this interface for nearly all configuration options.

The web interface URL is: https://<IP address or hostname>:5000

Examples:
• https://10.11.12.13:5000

• https://junoswebappsecure.mydomain.com:5000

Note
Log into the Web interface using the "mykonos" account. If you have not changed the
password, the default is "mykonosadmin" and we strongly recommend you change it.

4.1. Configuration Wizard
The Configuration Wizard gives you a simple way to configure the most commonly used basic features on the
Junos WebApp Secure appliance, including defining one or more web applications to protect, alerting, and
backups. During the initial configuration, the Appliance received network connectivity, its license, and was
initialized. However, it needs to have one or more Backend Servers (web applications) defined in order to
protect live traffic.

The Wizard walks you through setting up Backend Servers, SMTP Settings, Alerts, and Backups. When
you've completed the Wizard, it will give show you a confirmation page and some additional steps, such as
pointing your Load Balancer to the Appliance, you may wish to perform.

Warning
Upon completion of the Wizard, PLEASE make a note of your backup encryption key. If you
lose this key, NOBODY, not even Juniper Support, can retrieve the information contained in
your backups!

Note
When using the system's default mail server, users should set a valid hostname and ensure
that the mail configuration observes all best practices for setting up a mail server.

The Wizard has a minimum of 6 steps. The actual number of steps may increase depending on your choices,
such as defining multiple applications to protect.

Wizard: Backend Servers

25

4.1.1. Wizard: Backend Servers
Junos WebApp Secure functions as a reverse proxy, sitting in front of your web application. Junos WebApp
Secure can protect an arbitrary number of application servers. In order for us to process traffic, you must
specify at least one backend server to which we will proxy traffic. The default is 1 and should suffice in most
applications. If Junos WebApp Secure will serve as a software load balancer, rather than using a dedicated
hardware solution, multiple servers can be configured at this time.

4.1.2. Wizard: Backend Server Configuration
Each Backend Server you configure here requires the following information:
• Server Name: A unique name that Junos WebApp Secure uses to identify this server. The name can

include any alphanumeric character, "-", and "_", with no whitespace. Do not use the server's Fully Qualified
Domain Name (FQDN) or a URL. If you are using VMware, you may wish to use the same name here as
you assigned in VMware, to avoid confusion. This is not necessary, however.

• Server Address: Specify the server's IP.Junos WebApp Secure does not support IPv6 addressing at this
time.

• HTTP Port: Usually port 80.

• HTTPS Port: Usually port 443.

• Weight: Defaults to 1. This value is used when Junos WebApp Secure is serving as a software load
balancer and represents the relative "weight" the server has for balancing purposes.

• Backup: Defaults to NO. This only applies if you are using Junos WebApp Secure as a software load
balancer and designates this server as a backup.

Wizard: SMTP Servers

26

4.1.3. Wizard: SMTP Servers
Junos WebApp Secure can email alerts to your administration team. While the appliance can serve as its own
mail server, we recommend that you use a valid mail server for your network.

SMTP Configuration supports the following fields:
• SMTP Default Sender: This will be the "From:" address in email alerts. The address should be valid for

your network so alert mails won't be mis-categorized as spam.

• SMTP Server Address: Defaults to localhost. Set it to the IP address or FQDN of your mail server if you
are using an off-board mail server as recommended.

• SMTP Server Port Number: Defaults to 25. Set it to the port your mail server is listening on.

• SMTP Username: Defaults to blank, and may remain blank if you are using the on-board server. Set it to a
user with valid access to the mail server.

• SMTP Password: Defaults to blank, and may remain blank if you are using the on-board server. Set it to
password for the SMTP username supplied above.

Wizard: Alert Service

27

4.1.4. Wizard: Alert Service
Junos WebApp Secure can send alerts to an SNMP server or via email to appropriate personnel. The alert
service is optional, and defaults to "No." If you choose not to activate alerts, the Wizard will skip to the next
section.

If you choose to activate alerts, it will give you the option of setting up the number of SNMP servers to alert
and the number of email addresses to which messages will be sent. The defaults to both are 0.

Wizard: Alert Service

28

If you have chosen to activate SNMP Alerts, the wizard will prompt for the server address and port to send the
alerts to.

If you have chosen to activate email alerts, the Wizard will walk you through setting up each email address to
which the Appliance will send alerts to.

Email alerts require the following fields:
• Name: A common name for referencing this email address

• Email Address: Email address

• Minimum Severity: Minimum severity level to trigger an email alert to this address

• Shift Start: Start time for this address in 24 hour format.

• Shift End: End time for this address in 24 hour format.

You are also given the option of having it send alerts on the weekend. Note that you can build complex
schedules by creating multiple entries for the same person. For example, admin@yourcompany.com could
have an entry named admin-weekday that specified 8 AM to 5 PM, M-F, and a second entry named admin-
weekend that specified 6 AM to 6 PM.

Wizard: Backup Service

29

Note
Configuration of advanced features, such as encryption keys, are not available in the Wizard.

4.1.5. Wizard: Backup Service
Junos WebApp Secure can perform regular, scheduled backups of all of its data. We strongly recommend that
you turn backups on. You can select backup via FTP or SSH.

The Backup Service lets you specify the following fields:
• Frequency: How often backups are sent off-board

• Retention: Number of days to keep off-board backups

• FTP Service: Whether to use FTP. If set to YES, the server, username, and password fields are required.

• SSH Service: Whether to use SSH. If set to YES, the server, username, and password fields are required.

Wizard: Junos Spotlight Secure

30

4.1.6. Wizard: Junos Spotlight Secure
Junos Spotlight Secure provides a way to import malicious profiles from other subscribers to the service.
For more information about Spotlight, see Section 6.6, “Junos Spotlight Secure”. The service is enabled by
default, but you can choose to disable it at this point.

Wizard: Confirmation Page

31

4.1.7. Wizard: Confirmation Page
Once you have completed the Wizard's main steps, you will see the confirmation page, where you will see
the URL you can use to confirm the appliance is performing correctly. You will also see the secret key the
appliance generated for your backups. Whether Junos WebApp Secure is storing backups locally or off-site,
you MUST have this key. Note that the key is actually a link. You must click on it and confirm acceptance of
the key.

Important
Record the secret key and keep it someplace safe. If you run through System Initialization
again (See section 3) it will create a new key and you will lose access to your backups if you
haven't recorded the old key. If you lose this key, Juniper Support will not be able to recover it
or your backups.

4.2. Verify the Installation
In order to verify that your Junos WebApp Secure appliance is processing traffic, use the following URL to
access the appliance honeypot and confirm that it replies with a fake .htaccess.

http://<IP or Hostname>/.htaccess

The appliance should reply with something similar to the following. Note that the actual fake .htaccess file may
not look exactly like this example.

Health Check URL

32

<files "server_logs.txt">
 AuthUserFile /www/root/.htpasswd
 AuthType Basic
 AuthName "Error logs"
 Require valid-user
</files>

Congratulations! Your initial Junos WebApp Secure configuration is complete and the appliance is ready to
start protecting your applications.

4.3. Health Check URL
The Health Check URL lets an external system (typically a load balancer) confirm that the Junos WebApp
Secure system is operating properly. The system will generate a file name consisting of an arbitrary string of
characters; make a note of it. If an HTTP request is sent to Junos WebApp Secure for this file name, it will
return 200 OK, with a code in the body of the message. The responses are below.

Table 4.1. Health Check responses and corresponding meanings.

Response Meaning

No response Junos WebApp Secure is offline

200 OK, plus OK Junos WebApp Secure is fully functional and is protecting your web sites

200 OK, plus DISABLED Junos WebApp Secure is running, but has been disabled or the license has
expired

200 OK, plus STAND BY
[...]

Junos WebApp Secure is waiting on an external resource. The contents of [...]
will provide additional information

The format of the HTTP request should be:

http://jws_fullyqualifieddomainname_or_IPaddress/filenamegeneratedbyjws

4.4. What's Next?
Junos WebApp Secure is now configured to secure one web server application. If you have multiple web
server applications, or would like to configure the system differently on a per-page basis, please refer to
Section 5.1, “Securing Multiple Web Servers” to add or edit applications.

Your system is now installed and has its basic configuration parameters set. In the next section, you will learn
how to protect multiple web sites and modify your protection settings.

Basic vs. Expert Configuration

33

4.5. Basic vs. Expert Configuration

Junos WebApp Secure is widely configurable with numerous settings to optimize it for your environment.
Once you've completed the Wizard, the Appliance will route traffic through a default application profile
to the designated backend servers. This default profile is simple, but adequate for many applications.
However, there are still hundreds of options available to further customize the Appliance to meet your specific
requirements.

Junos WebApp Secure has two configuration modes accessible from the Configuration button on the Web
interface. Basic Mode gives you access to all of the Appliance's features with a wide range of customizations
through a user friendly interface and is recommended for most situations. Expert mode, on the other hand,
gives you access to the deepest levels of the Appliance's configuration presented in a key:value pair format.
Expert mode is just that: best used by experts who are comfortable making multiple changes at once. Basic
mode is recommended for most users and most applications.

Important
When using Expert Mode, be sure to click the "Save" button when you are done making
changes. Unlike Basic Mode, Expert Mode does NOT save the configuration to the engine
after each parameter is modified; it lets you make multiple changes at once and then write
the entire configuration image as one transaction.

Note
The Configuration UI, by default, will only display the simplest of configuration options. Select
the "Advanced" filter to display all of the options.

Basic Configuration

34

4.6. Basic Configuration

By default, any configuration page navigated to will result in the Basic Configuration page for that particular
section. You can view the various sections of Configuration underneath the "Configuration" page on the left-
side navigation. The available sections are:
• Security Engine - Core Security Engine options, such as health checks, and whitelisting.

• Processors - Security Processors are pluggable modules that process HTTP traffic and perform actions.
See Chapter 8, Processor Reference for a reference of processors available.

• Services - Services run in the background, performing tasks such as sending alerts, generating reports, or
performing maintenance tasks.

• Proxy / Backends - Core proxy settings, such as backend servers and SSL.

• Apps & Pages - By default, the system will secure only one application. Adding multiple profiles will enable
you to protect multiple applications with their own separate settings. For help on how to set up applications
and pages, see Section 5.1, “Securing Multiple Web Servers”.

• Backups - Configure backup frequency, retention, and pushes to FTP or SSH servers. See Section 6.5,
“Backup and Recovery”.

• Logging - Options for logging access on the management interfaces, as well as logging the various security
incidents triggered by JWAS. See Section 6.4.2, “Managing and Viewing Logs”.

• Response Rules - Configure how the system responds to threats, or create custom response rules.

• Licensing - Add or update licensing information to ensure operation of your system. See Section 3.5,
“Licensing” for more information.

• Users and Groups - Add or update user roles and permissions. For more information, see Section 4.9,
“Role-Based Access Control”

Expert Mode Configuration

35

4.7. Expert Mode Configuration

In most cases, using the standard configuration interface should be sufficient. Some users might prefer editing
the configuration parameters at the key-value level. Expert Mode is a convenient way to get at the actual
configuration attributes via the Web UI. You can reach Expert Mode by clicking on the Expert Mode button on
the upper right side of the Configuration Page.

To edit any configuration parameter, first navigate to the correct parameter name. The table is ordered
alphabetically, and you can browse through the help documentation for various parameters by using the 'help'
keyword in the JWAS CLI (mykonos-shell). For more information on the JWAS CLI, visit Section 4.8, “Junos
WebApp Secure CLI”.

Once you found the correct entry, you can edit the entry, remove the entry, or reset the entry to it's default
value using the icons on the left side of the table.

When editing a parameter, you are given a text box in which to make the edit. Some parameters are Base64
encoded (like HTML responses), but will be displayed in an un-encoded form. Simply make the changes
desired and click "Set Parameter" to save the changes.

Junos WebApp Secure CLI

36

Important
Although you did save the parameter, the changes to configuration have not been saved and
set until you click the "Save" button at the bottom of the page! If you navigate away from the
page before saving the entire configuration, any parameters set will not be saved!

4.8. Junos WebApp Secure CLI
While the Web-based configuration handles most configuration needs, Junos WebApp Secure comes with a
command line interface that allows changes to the appliance configuration. This allows further automation,
and may be more comfortable to server administrators who are used to command line environments.

You can access the command line configuration via the shell, by entering "sudo mykonos-shell" from the
command line. You will then be greeted with the welcome message "Welcome to the Junos WebApp Secure
CLI", and prompted for a command.

There are currently three main systems within the JWAS CLI; config, services, and system. config
allows you to access the appliance configuration, services allows you to perform tasks on the various
background services functioning on the appliance, and system allows you to shutdown or reboot the
appliance.

CLI: config

37

Note
At any point, you can type ? or help to view the available commands at the current context,
or help <command> to get contextual help on the specified command. You can also show
information on a particular parameter by using the info command. For example, info
services.cleanup.db.enabled. Pressing Ctrl + D or typing exit will leave the
context you are currently in, or exit the CLI. The CLI also has full tab-complete support.

4.8.1. CLI: config
Typing 'config' at the CLI prompt will switch the CLI into the configuration context. The prompt will change to
"config>" and you will then be able to begin manipulating configuration entries.

Configuration values are organized in a hierarchical fashion, with the most general words located at the
beginning of the full configuration attribute string. For example:

services.cleanup.db.enabled

From the entry we can gather that this parameter is for a service that handles the cleanup of the database.
Specifically, this parameter determines whether the service is enabled or not.

Within the config context, we can choose to "show" any portion of the configuration. For example, typing,
"show services.cleanup.db.enabled" will only show us the value of that parameter. However, if we
wish to see all of the configuration for the DB Cleanup Service, we can "show services.cleanup.db"
to return a JSON object representation of the entire configuration that relates to the DB Cleanup Service.
Likewise, just typing "show" will display the entire configuration as one large object.

4.8.1.1. Setting a Configuration Parameter
To set a configuration parameter, simply type "set PARAMETER.TO.SET VALUETOSETTO". For example,
to enable the DataBase Cleanup Service (which allows you to delete profiles from JWAS), type "set
services.cleanup.db.enabled true".

For more advanced users, it might be advantageous in some cases to edit configuration entries with an
actual editor. If this is desired, you can append | edit to the end of the set command where your desired
value would be. The shell will drop you into a text editor (VIM by default) where you can make changes to the
configuration values. This is handy when editing the JSON representation of a set of configuration entries,
such as services.cleanup.db. Make any changes and, in VIMs Normal Mode, type :wq to write and quit
the editor. For more information about VIM and how to use it, consult the VIM Documentation page1.

Note
You can choose to show a portion of the configuration without setting it by using the keyword
'show' instead of 'set'. For example: show services.cleanup.db This will show all
configuration related to the DataBase Cleanup Service.

After making any changes, you can compare the new configuration with the last-saved version by typing show
| compare. A diff will be printed to screen, with '-' indicating original settings, and '+' indicating modified
settings. For example, changing the DB Cleanup Service from true to false will yield:

1 http://www.vim.org/docs.php

http://www.vim.org/docs.php
http://www.vim.org/docs.php

CLI: services

38

--- Original Settings
+++ Modified Settings
@@ -2635,7 +2635,7 @@
 services.backups.retention: 7
 services.backups.secret: WIB25lkIsbMM3wOR
 services.backups.ssh.enabled: false
-services.cleanup.db.enabled: true
+services.cleanup.db.enabled: false
 services.cleanup.db.expiration.history: 2592000
 services.cleanup.db.expiration.malicious: 10368000
 services.cleanup.db.expiration.session: 2592000

4.8.1.2. Configuration Import / Export
Junos WebApp Secure lets you export a configuration "Image" containing every parameter you've specified.
These images can be imported by the system, letting you make a backup of your system configuration before
making major changes, or to aid in some types of deployment. The exported configuration is a standard XML
document which you can hand edit. However hand editing is not recommended since it introduces the risk of
corrupting your configuration.

To access the Configuration Import / Export feature, type 'sudo mykonos-shell' in an SSH session on the
appliance, and at the prompt enter, 'config export <filename>'. The configuration will be saved using
the filename given. Similarly, import configuration by typing 'config import <filename>'.

Important
Because configuration entires can change from version to version, importing a configuration
exported from an older version of Junos WebApp Secure may fail.

Note
If you execute a System Initialization from the TUI, you can use an imported configuration
to bring your system back to its previous running configuration. However, historical traffic
information will still be lost.

4.8.2. CLI: services
The services context will allow you to manage the various background processes that are running on the
appliance. From this context, you can start, restart, and stop the services, as well as check the status
of the services. An example output is given below:

service> status
nginx_management (pid 13749) is running...
mykonos-datastore (pid 13759) is running...
mykonos-api (pid 13844) is running...
mykonos-ui (pid 13866) is running...
mykonos-services (pid 13876) is running...
mykonos-cluster-services (pid 13924) is running...
mykonos-reports-api (pid 13960) is running...
mykonos-security-engine (pid 14347) is running...

CLI: system

39

4.8.3. CLI: system
Within the system context, commands exist to restore from a supplied backup, or reboot and shutdown
the system.

4.9. Role-Based Access Control
Role-Based Access Control (RBAC) is an approach to distribute different levels of functionality to separate
users of a system. Junos WebApp Secure adopts this policy by allowing administrators to assign roles to
various users that exist on a configured LDAP or RADIUS server.

The first step in integrating with your existing LDAP or RADIUS service is to give Junos WebApp Secure the
connection information. In the web UI, navigate to 'Configuration >> Users and Groups' and click on 'Manage
Authentication Settings'. On the resulting page, input all information relating to your LDAP or RADIUS server
and click 'Save'. You should now see the corresponding service as "Enabled" under the Authentication section
of Users and Groups.

Once the server has been connected to JWAS, the next step is to configure roles for various users. By default,
the user "mykonos" is enabled and given the role "Super Administrator". To add additional users, click the
'Add User' link. You will be prompted to enter a Username and will be given a choice of which groups you
want that user to inherit. A complete description of all roles is available by clicking on 'View Role Descriptions'
underneath the Roles dropdown. A more simplistic table of roles and their corresponding permissions are
given in Appendix D, RBAC Groups and Roles.

Role-Based Access Control

40

Because JWAS doesn't actually create users on the appliance itself but merely maps the username to the
given permissions, the only way to effectively "Remove" the user is to strip them from all roles. After removing
roles and saving, the entry in the Authorization table should be removed.

Important
Junos WebApp Secure doesn't allow the last 'RBAC Administrator' role to be deleted,
to prevent anyone from gaining access to the system. It is possible to remove your own
permissions, though, essentially locking you out of the system. Similarly, re-initializing the
configuration settings will wipe out all user-role mappings, and the 'mykonos' user will be the
only one able to assign roles.

Note
, Any violations of access control (a user trying to access some part of the system they aren't
configured to access) will be logged to the audit log. For more information on logging, see
Section 6.4.2, “Managing and Viewing Logs”.

Chapter 5.

41

Additional Configuration Options
All of the following configuration options are not required for normal operation, but may be desired based on
the environment in which JWAS resides.

5.1. Securing Multiple Web Servers
In more complex environments, it might be required to separate functionality into multiple applications, each
with their own settings and configuration. The "Apps and Pages" section of the UI can help manage multiple
applications/URL patterns from a single JWAS instance.

To create a new application within JWAS, simply navigate to 'Configuration >> Apps & Pages'. Displayed on
this page are any already-configured applications, along with a form to create a new application. Filling out the
required fields will create a new application.

Application Patterns

42

Note
When editing any created applications, you will be placed in the context for that application,
and will remain there until you explicitly change the context. Inside a context, any
configuration values changed will be applied to the application selected. You can see which
context you are currently in (and change it) by navigating near the top right corner of any
configuration page. A "Configuration Context" dropdown will display the current context, and
you can change the context via this dropdown as well.

Note that the Configuration Context is maintained separately from the Dashboard's "Filter"
context.

5.1.1. Application Patterns

Application patterns determine which requests get routed to which applications. You can change each
application you've added later by navigating to 'Configuration >> Apps & Pages'. Url patterns follow standard
Perl Regular Expression (PCRE) syntax.

For example:
• Any traffic: ^.*$

• Any subdomain: ^.*\.domain\.com$

• Multiple, or no, subdomains: ^((www|shop)\.)?domain\.com$

Backend Servers

43

Note
Junos WebApp Secure processes applications in order, so conflicting regular expressions will
only be processed on the application or page where it FIRST appears.

There are also some suggestions that cover some common use-cases such as catch-all, subdomains, etc.

Important
URL patterns and profiles are observed in the order they are created/arranged.

Note
If SSL is required for this application, you will also need to enable SSL and ensure that all the
required certificates are uploaded and configured as described in the section, Section 5.2,
“Configuring SSL”.

5.1.2. Backend Servers

When separating applications, one of them might reside on a different physical server. You can define a
backend server for this application here. For convenience JWAS imported the existing backend server that
was used in the global context.

Pages

44

5.1.3. Pages

Junos WebApp Secure supports different configurations for different pages within a protected application. Fill
out the required information and click 'Add Page' to create a new page.

Note
The 'page' nomenclature is used for simplicity. Much like applications, page contexts can
define a set of pages using a RegEx. They aren't restricted to one actual page on the app.

5.2. Configuring SSL

5.2.1. Enabling SSL to the Client
To enable SSL between Junos WebApp Secure and the client, first navigate to the application for which
you want to enable SSL, or switch to the desired application's context. Then, navigate to 'Configuration >>
Proxy / Backends >> SSL'. Enable SSL to the backend, upload your SSL certificate and Key file, then select
a listening interface IP address, and finally, HTTP and HTTPS ports. The combination of port/IP must be
unique for the system. If the system is clustered, an IP must be selected for each node. Upon saving the
SSL configuration in a deployment containing multiple appliances, the certificate will be propagated from the
master system to all supplementary systems.

Enabling SSL to the Client

45

Important
To safeguard against inheriting SSL certificates, JWAS does NOT allow SSL at the Global
level. Thus, you must configure an application in order to enable SSL. See, Section 5.1,
“Securing Multiple Web Servers” for more information on applications.

Clustering

46

Important
Your certificate and key files MUST NOT be password protected, as Junos WebApp Secure
will be unable to read them. You can remove passwords on your existing certificate by using
the openssl program. For example, "openssl rsa -in mykey.pem -out newkey.pem"

Note
Certificates must be in valid PEM (Privacy Enhanced Mail) format. You can verify SSL
certificate validity by using the command, openssl verify <sslcert.crt>. JWAS only
cares about the validity of the format. openssl verify might allude to other problems with
the certificate, but those do not come into play when used within JWAS.

5.3. Clustering
Individual Junos WebApp Secure appliances have the ability to work together as one system, in a cluster.
Clustering allows traffic to be divided among multiple appliances, effectively reducing per-system load. In a
clustered network configuration, the "master" node holds the database that will be populated by one or more
"traffic processors". In order to successfully utilize a Junos WebApp Secure cluster, a load-balancer must
properly segregate traffic to each of the defined traffic processing nodes. Each of these traffic nodes must
maintain connectivity with the master in order to operate.

Important
Clustering should not be confused with High Availability! Clustering would be used to
increase throughput (by utilizing multiple processing nodes), and can reduce the chance that
the whole system will fail. Clustering does not protect the master node from failure as in a
High Availability setup; only HA configurations are set up to include failsafe procedures to
designate a new master when the first one is unavailable.

5.3.1. Node Types
In a traditional Junos WebApp Secure deployment (one system), the appliance is responsible for holding its
own database as well as processing the traffic. In a clustered deployment, you have the ability to segregate
the database from those systems which will process incoming requests. During cluster configuration, you
will have the ability to designate a node type for each system. At a minimum, the cluster must have a way to
process traffic, and a way to store the relevant information.

• Master

A Master node is similar to a single-system deployment in that it holds the database, and also processes
incoming traffic. This satisfies both requirements for a cluster (database and traffic processor), so it is
possible to set up a cluster with only one Master node (no additional processing nodes). Additional traffic
processing nodes can be added at a later point in time if desired.

• Dedicated Master

Setting up Clustering

47

A Dedicated Master node holds the database similar to a Master node, but does not have the ability to
process traffic. Using a Dedicated Master in a clustered configuration requires the addition of at least one
Traffic node.

• Traffic Processor

A Traffic node is only responsible for processing incoming requests. It does not contain a database, so a
Master or Dedicated Master node must accompany a Traffic node. The number of Traffic nodes you can
add to a cluster is dependent on (1.) the hardware specifications of the Master, (2.) the amount of incoming
traffic on protected web application, and (3.) the number of additional Traffic nodes in the cluster. For
optimal stability, be sure to monitor the cluster's performance as you add each Traffic node.

5.3.2. Setting up Clustering

Important
Unlike a traditional cluster, a Junos WebApp Secure cluster does not automatically balance
traffic between each of the nodes. For this reason, a load balancer is required to be
configured to send traffic to each traffic processing node.

Setting up a cluster is as easy as configuring multiple stand-alone boxes. The first step is to set up the master.
You must set up the master first because you will need to supply the master's IP when initializing the traffic
nodes. To initialize a master, simply choose "Master" or "Dedicated Master" from the TUI setup menu ('sudo
setup').

Updating the Cluster

48

Setup will initialize the master, and once complete you should be able to navigate to the management
interface at https://HOSTNAME:5000. Once the master is initialized, you can initialize the other appliances as
traffic processing nodes. The steps are similar to the master setup, however you will be prompted to enter the
IP of the master node.

Once the traffic node is initialized, you can verify the cluster by navigating to the management interface
(https://HOSTNAME:5000) and clicking on "System Stats". There should be a separate tab for each node in
the cluster, and an additional tab for the aggregate cluster data.

Note
Remember: you must use an external load balancing solution to point to each traffic
processing node, as the cluster will not do this for you!

5.3.3. Updating the Cluster
Updating a cluster is similar to updating a stand-alone box. Navigate to "Updates" in the management
interface on the master node (the traffic nodes have no management interface) and apply the updates as you

High Availability

49

would on an individual appliance (see Section 6.2, “System Updates”). The master node will automatically
apply the same update to each of it's traffic processing nodes in the cluster; there is no need to individually
update each appliance.

Note
The process for updating a cluster will take longer than updating a single appliance, as the
same update has to be applied to each node.

5.4. High Availability
To minimize the risk of downtime, Junos WebApp Secure deployments have the ability to be placed in a
Highly Available (HA) configuration. In this setup, an additional appliance is on stand-by in the event that the
currently-active appliance goes offline. If this happens, the passive appliance is able to become the new active
appliance automatically - without needing to restart the system. An HA configuration is similar to Clustering,
with the major exception being that the passive system has a copy of the services needed to take over when
the Master fails. Junos WebApp Secure uses a Virtual IP (VIP) to float between the currently active system
and the current passive system.

Note
An HA configuration is only available on the Junos WebApp Secure dedicated hardware
systems -- it is not available in a Virtual Machine installation.

5.4.1. Configuring HA
If your appliance is HA-ready, you will see two additional modes available on the "Select Appliance Mode"
screen during appliance Initialization. On the active appliance (the one that will be the primary appliance),
enter TUI setup by typing "sudo setup". Select "Initialize Appliance" and select either "HA Master" or "HA
Dedicated Master" for the mode. A distinction on these modes are available below:

• HA Master

If the appliance is in HA Master mode, it will act as a stand-alone system. The system's database will
be stored on this node, and will be replicated/mirrored to the passive appliance (configured later). The
appliance will also be able to process traffic like a standard installation.

• HA Dedicated Master

Just like in Clustering, the Dedicated Master has no way to process traffic by itself. It only contains the
database and essential services to talk to the other appliances. If you would like a Junos WebApp Secure
Cluster configured for HA, you can select this mode to prevent the master from processing any traffic. Keep
in mind you will need to utilize Clustering to configure at least one Traffic Processing node. A copy of the
master will still exist on the passive system.

Configuring HA

50

Once a mode is selected, you will have to bind the appliance to an interface. Keep in mind that this must be
the same interface that will accept incoming connections to the appliances, and will be the same interface that
the VIP is on. The HA interconnect interface can only be used as a link between HA appliances.

After selecting the interface, you will be prompted to enter the IPs belonging to the HA pair. This will include
the IP of the current master (the active appliance) as well as the IP of the appliance to fail-over to (the passive
appliance).

Note
Be sure that each of the appliances are on the same Junos WebApp Secure version (invoke
"mykonos-get-version" from the appliance's command line). Appliances not on the same
version as the master will need to be manually updated to the HA master's version before
continuing on.

Configuring HA

51

Next, you will be prompted to enter the Virtual IP (VIP) that the system will use as the IP of the currently-
active system. You may enter either the standard or CIDR bitmask (for example, 255.255.255.0 or /24) for the
netmask.

After allowing the Initialization process to complete, you can verify proper HA setup by navigating to the
management interface ("https://VIP:5000 where VIP is the Virtual IP"). Navigate to 'High Availability' on the
left-hand menu to observe the status of the HA pair.

Updating with HA

52

Important
Since the various HA appliances in a configuration need to interface with the database,
port 5432 will be open! Be sure to restrict access to this port with your firewall to prevent
unwanted incoming connections. Junos WebApp Secure is NOT intended to be used as an
edge device.

Note
If the interconnect between an HA pair drops at any point, it is possible that both systems will
try to assume the Active system role. This leads to a condition known as split-brain, wherein
data will not properly be routed through the pair. To mitigate this, it is recommended to bond
the pair using the 10Gb ports on the front of the appliance. Follow the steps in the Network
Configuration section of the TUI to setup the bond and then configure it as you would any
other interface.

Note
You must use the VIP to access the configuration interface. If you attempt to use the
management interface on the passive appliance, you will see a notification indicating "The
Administrative interface is not accessible on this host because it is the secondary host in a
High Availability cluster."

5.4.2. Updating with HA
To update an HA system, navigate to the management interface (https://VIP:5000 where VIP is the Virtual IP)
and update as described in the "System Updates" chapter. The update will be applied to both systems in the
HA pair.

Note
While both the active and passive machines must be on the same Junos WebApp Secure
version to be initially configured in HA mode, appliances already in HA mode will successfully
update together.

5.5. SRX Integration
The SRX series by Juniper is an enterprise-level Secure Gateway for networks. Junos WebApp Secure has
the ability to integrate with this solution, which means it can send IPs to the SRX to achieve a block (or other
configurable response) at the gateway level. This effectively allows the SRX to tap into the identifying metrics
produced by Junos Web App Secure.

5.5.1. Summary
The Juniper SRX uses a pipeline of filters to be applied to incoming packets. Each filter contains any number
of terms that can apply actions to these incoming packets. The first step in configuring Junos WebApp
Secure to work with the SRX is to configure the filters and terms required. Junos WebApp will require a valid

Creating SRX Filter and Terms

53

IPv4 filter. This can be named anything and can be a filter already set up prior to Junos WebApp Secure
integration. Remember this filter name, because it will need to be inputted into the Junos WebApp Secure
appliance once the SRX configuration has been completed. Along with a filter, Junos WebApp Secure needs
two terms to be created. Unlike the filter, these terms cannot be modified by any other service. The first term
will be the term that IP addresses are added to in the event of an External Counter Response activation
(explained later in this section), and whose name will be supplied to configuration. The second term must
be added as a safeguard which will determine what action to take when NO IPs are in the first term. It is
recommended that the second term be something like:

term jwas_default {
 then {
 accept;
 }
}

It should be placed after the 'blocking term', and will allow all traffic through once the previous term's action
has been changed to 'next term'. Consult the Juniper SRX Manual for more information on the SRX and its
filters.

Important
Because the SRX will drop packets when 'next term' is the action and no actual next term
exists, it is important to have this additional term below the term which will house the actual
IPs.

Warning
Any IPs added to the JWAS term through the SRX CLI, the SRX GUI, or any other external
service besides Junos WebApp Secure are not guaranteed to remain in the term.

5.5.2. Creating SRX Filter and Terms
To initialize a filter for use with Junos WebApp Secure:
1. Log onto the SRX via SSH. Once inside, type 'cli', and then 'configure' to set the cli into

configuration mode.

2. Create the filter, term, and a placeholder action. Because each term must have some sort of action,
we will choose the 'next term' action -- this will simply pass the packet on to the next term in the filter.
Although the inside of the term will be replaced by Junos WebApp Secure, it will allow us to create the
filter. Accomplish this by typing "set firewall family inet filter my_filter term block
then next term". Press enter to create the filter, then type "show firewall" to see your newly-created
filter.

Creating SRX Filter and Terms

54

Note
The filter name "my_filter" and term "block" are example names. You may choose any
names you like, but remember them because you will need to inform Junos WebApp
Secure of your name choices later on in the configuration.

3. Although the filter is created, it is not set to intercept incoming packets. You must now bind the filter to
an interface. The interface and unit names will be different depending on your network implementation,
but an example is: 'set interfaces ge-0/0/0 unit 0 family inet filter input
my_filter'. For more information on interface binding, consult the SRX Manual. After binding to an
interface, you should see the newly created filter show up under the appropriate interface when typing,
'show interfaces'.

4. Be sure to commit. Do this by typing 'commit'. This will save the changes you made. You can now exit the
CLI by typing 'exit' twice (once to exit configure mode, and once to exit the CLI).

Configuration

55

Important
If the 'blocking term' is misplaced after the 'default (accept) term', the filter will not
commit. Double check that the accepting term is placed after the blocking term.
Remember: 'next term' needs a next term to switch to!

5.5.3. Configuration
To configure the integration of an SRX appliance with Junos WebApp Secure, you need to enable the
External Counter Response Service, found within the configuration of the Junos WebApp Secure web
interface. The External Counter Response Service allows the SRX to send filter requests to the Appliance,
and can be found under the Global section of the Junos WebApp Secure configuration; it is an Advanced
configuration set, so you will need to show the advanced configuration entries to see the External Counter
Response Service configuration category.

Warning
The configuration category will validate if there is an IP address or hostname in the
corresponding configuration entry, and a filter name along with a term name, but this does not
mean the service is properly working! Always test the counter response after changing the
configuration entries, explained in the next section.

Be sure to examine the configuration entries available for this service, and fill out all necessary fields, outlined
below:

Table 5.1. External Counter Response Service Configuration Parameters

Parameter Type Default Value Description

Advanced

External Counter
Responses Enabled

Boolean False Whether or not to enable this service.

Network Address IP (or
DNS
name)

[Not Set] Required! Either the IP address or the DNS
name of the device.

SRX Password String [Not Set] The password to log into the SRX

SRX Username String [Not Set] The username to log into the SRX

Filter Name String [Not Set] Provide a filter name that Junos WebApp
Secure will use.

Term Name String [Not Set] Which term in the configured filter should
Junos WebApp Secure add the IPs too? It
should not be currently in-use by any other
service, and should only be used for Junos
WebApp Secure.

Action(s) to Apply) Collection
(Strings)

[collection:1] Choose the actions for the SRX to take on IPs
sent to it by Junos WebApp Secure. When no
IPs are blocked on the SRX through Junos

Testing

56

Parameter Type Default Value Description
WebApp Secure, these terms will be changed
to 'Evaluate Next Term', which will continue to
the next term in the filter. By default, this is set
to a collection of 1, consisting of only 'discard'.

Important
When configuring multiple actions to take, be careful not to populate the collection with
conflicting actions. An example of two conflicting actions are "reject" and "accept" (you cannot
reject a connection and then accept a connection!). Junos WebApp Secure has no protection
for conflicting actions -- the system will overwrite older actions with newer ones (further down
the collection). An example of non-conflicting actions are "log" and "discard". In this case, the
packets will be logged, and then discarded. For more information on actions to take, consult
the Juniper SRX Manual.

Note
If the External Counter Response Service is disabled or otherwise configured incorrectly,
blocking a profile via the External Block response will not work, but will still be shown in the
User Interface as a valid Counter Response.

5.5.4. Testing
To verify the configuration of the Junos WebApp Secure portion of the SRX integration:
1. Create a profile by hitting the .htaccess file (explained in Section 4.2, “Verify the Installation”).

2. Navigate to the Junos WebApp Secure web interface and look for the newly created profile.

3. Manually activate a "Filter on SRX" Counter Response.

4. Log into the SRX CLI, and run the command, show configuration firewall (or show firewall if
in configuration context).

5. You should see a new filter created with the name you gave in configuration, and a new term within
that filter called that you also named within configuration. It should look something like the following
(depending on how you set up your filter and actions):

family inet {
 filter my_filter {
 term block {
 from {
 address {
 10.10.10.10/32;
 }
 }
 then {
 reject;
 }
 }
 term default {
 then {

Testing

57

 accept;
 }
 }
 }
}

where 10.10.10.10 is the IP of the profile you activated the Counter Response on. This is telling the
SRX to reject the IP of the profile at the gateway level. Note the default term below the block term which
will act as an accept-all in the case that the block term's action has been changed to 'next term'.

6. You can also verify the line with the IP address gets deleted when deactivating the Counter Response.

Note
When there are no IPs to block, the SRX defaults to '*' or "All Traffic". This would
effectively block all traffic from that interface! To counter this, Junos WebApp Secure
changes the action from your configured entry to 'next term', essentially letting the next
term within the filter deal with the traffic. Because you set up a default term to handle this
case (see Section 5.5.3, “Configuration”), the next term simply accepts all traffic.

The filter should now look like this:

family inet {
 filter my_filter {
 term block {
 then next term;
 }
 term default {
 then {
 accept;
 }
 }
 }
}

This is indicating that all traffic will be sent through this term, but the action is simply passing the packet
onto the next term in the filter, which is our default term that will accept all traffic.

Chapter 6.

58

Managing the Appliance
A few management tasks are organized into the Text User Interface, or TUI for short. You can reach the TUI
via SSH to your appliance on port 2022. Normal console login will take the administrator directly to the TUI,
but if you are at a shell prompt you can start the TUI with the command: sudo setup. From here you can
initialize the appliance (essentially reformatting it to the state it was shipped), configure network components
of the appliance (see, Section 3.4.1, “Network Configuration” for more information on this), and send a set of
information to support staff.

6.1. Restart/Shutdown
To safely shutdown or reboot the appliance, ssh into the appliance and invoke the mykonos-shell by typing
"system shutdown" or "system reboot". For more information on the JWAS CLI (mykonos-shell), see
Section 4.8, “Junos WebApp Secure CLI”.

6.2. System Updates
Provided Junos WebApp Secure has internet access, either direct or through a configured proxy, it will
automatically check for software updates every night and download them when new ones are available.
However, the appliance will not automatically apply updates. For security and stability, they need to be
manually applied by an administrator.

The UI informs the user that there is an update by a banner indicator at the top of the page.

While Junos WebApp Secure checks for updates every night, you can force the appliance to check for
updates at any time by clicking the "check for updates" link under "Online Updates". JWAS will fetch any
available online updates at this time. The update is download in chunks, in case the download is halted
for some reason (like loss of internet connection). If connection is interrupted the download will resume
downloading the next available chunk until the update is completely downloaded. You can see progress of the
download via a status bar indicating the chunk that is currently being downloaded.

System Updates

59

Junos WebApp Secure also has the ability to upload updates manually, without an internet connection. After
uploading the package to the appliance (via the Web UI's 'Updates' page), it will become available to the
updates system, and you will be able to apply the update as described below.

Important
While Junos WebApp Secure is uploading offline updates, you should stay on the Updates
pane until the upload is complete.

If an update is available (either an uploaded offline update or an automatically downloaded one), you can
view the available update package along with any information about it, including the package name, version,
whether or not a reboot is required after installing the update, a description, and list of changes. After
reviewing the changes you can choose to apply the update by clicking the 'Update Selected' button at the
bottom of the package table.

System Updates

60

The system will update and inform the user of its progress via a status bar.

System Statistics

61

Note
At this time, it is not possible to roll back to earlier versions of the Appliance software.

6.3. System Statistics
The Junos WebApp Secure software allows for standard SNMP system monitoring. All statistics available on a
typical Linux system would be available to Junos WebApp Secure customers through standard system SNMP
mibs.

In addition, Junos WebApp Secure currently offers six types of systems statistics in a form of graphs. They
include CPU Utilization, CPU Load Average, Memory Utilization, Network Traffic, Proxy Connection and Proxy
Requests. They can be access via System Status button in the top menu of the Configuration management
interface.

Depending on the desired level of details, the statistics can be viewed for the Last Hour, Last 12 Hours, Last
Day, Last Week and, finally, Last Month (always last 30 days).

Below are the details of the statistics that are available for each type:

CPU Utilization
• Wait - Percentage of CPU time spent in wait (on disk)

• Softirq - Percentage of CPU time spent handling software interrupts

• System - Percentage of CPU time spent in kernel space

• User - Percentage of CPU time spent in user space

CPU Load Average
• 1 min - CPU Load for the last minute

• 10 min - CPU Load for the last 10 minutes

System Statistics

62

• 15 min - CPU Load for the last 15 minutes

Memory Utilization
• Used - Amount of memory used

• Free - Amount of memory free

• Swap - Amount of swap used

Network Traffic
• Outbound - Amount of traffic leaving the box

• Inbound - Amount of traffic entering the box

System Statistics

63

Proxy Connections
• Reading - Number of TCP connections reading data

• Waiting - Number of TCP connections waiting

• Writing - Number of TCP connection writing

Proxy Requests
• Requests - Current number of HTTP/HTTPS requests being processed

Master-Slave Mode

64

6.3.1. Master-Slave Mode
In the case of the appliance running in multi-server mode, the systems statistics will show details for each
node in the cluster as well as the key cumulative data across the entire cluster. Each system will be presented
as a tab in the Configuration UI's system status page with Aggregate tab being first. The Aggregate tab always
shows CPU Utilization, Network traffic, Proxy connections and Proxy requests collected from the entire active
Junos WebApp Secure cluster.

6.4. Troubleshooting and Maintenance

6.4.1. Managing Services
Junos WebApp Secure runs on top of an optimized, hardened, Linux installation and is very stable in normal
operation. The core of Junos WebApp Secure are several programs that run as services, "daemons" in Linux
parlance, that work in concert to defend your web applications.

The services context in the JWAS CLI lets you check the status of Junos WebApp Secure services, or start,
stop, or restart, them, if necessary. Note that these are all console functions, and not accessed through the
Web interface. For more information on how to use the JWAS CLI, see: Section 4.8, “Junos WebApp Secure
CLI”

6.4.2. Managing and Viewing Logs
Junos WebApp Secure keeps its log files in the /var/log/mws directory. The log files often prove useful for
troubleshooting if there is ever a problem with the Appliance. Junos WebApp Secure uses the following logs:

• audit.log

contains the systems auditing information on who has logged into the system and might include actions they
performed.

• mws.log

includes all of the systems operational logs. These entries each include a header that states which service
created the log entry.

Backup and Recovery

65

• access.log

includes details of HTTP transactions that are passing between the outside user, Junos WebApp Secure,
and the protected Application Server.

• security-alert.log

Contains all of the security-related incidents produced by the appliance, including new Profiles, new
Security Incidents, and newly-invoked Counter Responses. For specific formatting and example log
messages, see Appendix C, Log Format

The administrator can adjust logging levels for HTTP access that are logged to mws-access.log, using the
"Logging" section of the Web interface configuration. Be default, Junos WebApp Secure doesn't log the details
of URL requests. However, it can be set to one of three levels.

• URL Only

• URL and Headers

• Full HTTP Packets

The information logged here is usually used for troubleshooting, allowing an administrator to see exactly what
the requests look like before and after processing by the Junos WebApp Secure.

6.5. Backup and Recovery
The administrator can adjust the backup settings in the Web UI's configuration by navigating to 'Configuration
>> Backups'. Junos WebApp Secure stores its Backups in the /home/mykonos/backups directory.

You can invoke a backup from the command line mykonos-shell, by typing 'system backup'. You will be
prompted to confirm, and a file will be created in /home/mykonos/backups/. For more information about the
JWAS CLI (mykonos-shell), visit Section 4.8, “Junos WebApp Secure CLI”.

Restoring a Backup

66

Note
The file will be named mykonos-<version>-<hostname>-<datetimestamp>.myk

6.5.1. Restoring a Backup
To restore the data that is displayed in the Monitoring Console from a back up, users must use the command
line utility specialized for the database backups. This does not include configuration or other system settings,
only database information.

Note
If the data is being restored to the Console, a database backup will need to be specified
from /usr/share/msa/database or use the "latest" option to restore from the last valid backup.

This is run with the following command: sudo mykonos-db <option>

The options to this command are:

• backup

• restore (filename)

• restore latest

• clean

6.6. Junos Spotlight Secure
Junos Spotlight Secure -- or simply, "Spotlight" provides a database of known attackers to Junos WebApp
Secure, for use throughout the appliance. This two-way link enables JWAS to block attackers based only on
a unique and specialized fingerprint gathered by a completely different JWAS installation, and also provides
a mechanism for reporting attacker information gathered on the local installation to the Global Attacker
Database. Because your local Junos WebApp Secure appliance is relaying information to a central data store,
the ability to recognize attacker quickly and effectively increases as the database grows.

Here is how Junos Spotlight Secure works:
1. A user gets profiled by Junos WebApp Secure.

2. JWAS sends a unique client fingerprint that is unique to that user.

3. The Spotlight service searches its Global Attacker Database for an attacker with the same fingerprint.

Enabling Spotlight

67

4. If a match is found, Spotlight feeds all identifying information on that user to the Junos WebApp Secure
appliance automatically.

5. If the user is not doing anything malicious, and is not found currently within Spotlight's database, the
fingerprint for the user is still stored within the local session.

6. If at any point the user becomes malicious and is flagged by JWAS, the appliance will submit the
fingerprint and other data to the Spotlight service for inclusion in the Global Attacker Database.

6.6.1. Enabling Spotlight
To enable the Junos Spotlight Secure service on your appliance, navigate to "Spotlight" on the left hand
navigation menu in the Junos WebApp Secure Web UI. Click on the "Enable" button in the top right corner of
the page. You can optionally choose to customize some of the submission and resolution intervals (using the
"Configure" button), but for most applications the defaults should be okay.

Once an attacker from another site visits a page on your site, a Spotlight Profile will be created for that user.
Unlike local Profiles, Spotlight Profiles aren't automatically considered malicious -- they haven't harmed your
site... yet! Having attackers from other sites consolidated on the Spotlight page in the UI does allow you to
keep close tabs on them. You can view the Spotlight profiles from the Spotlight page. Each Spotlight profile
will be displayed in a row, with information such as their Local Profile name, Global (Spotlight) Profile name,
and the first and last times seen both locally and globally.

You can view the Spotlight attackers' activities on your system on the Sessions and Attackers page. They will
be displayed with the same information as local attackers, and will be indicated by the Spotlight icon next to
their name.

Enabling Spotlight

68

Note
Throughout the Web UI, you may start to see Spotlight Profiles, indicated by the Spotlight
icon next to their Profile name. You can choose to display either Local or Spotlight name (or
even both) through the User Preferences page (click on the logged in user name in the top
right corner of any page).

On the far left side of the Spotlight Attackers table is a small icon representing the local threat of the attacker,
as it pertains to your site. This is a fast way to scan through the spotlight profiles and determine which ones
might pose an immediate threat to your system. The severities range from 0 or 'None' to 4 or 'High'.

Chapter 7.

69

Using Security Monitor

7.1. Dashboard
The Dashboard is the page used to display currently monitored incidents, sessions, and responses. It can be
reached by navigating to "Dashboard" on the left-hand menu, or simply by clicking the logo in the top left of
the window.

The dashboard contains graphs and charts depicting the activity on protected web applications. By default, the
dashboard will display the information gathered from all configured applications in the past week (7 days), but
you can focus on specific applications or change the date range by using the "Filter By:" tab near the top right
of the window.

Dashboard

70

There are other customization options that can be configured per account by clicking your username in the
very top right of the window. Options include setting your timezone, enabling auto-refresh of data contained in
the dashboard, and configuring the number of records returned per page. Change these preferences to your
liking and click "Save" at the bottom of the page to save these settings.

The main portion of the dashboard consists of various panes, each containing information gathered by the
Security Engine. What follows is a description of each pane.

Dashboard

71

Note
The Web UI was created to be compliant with current browsers. While older browsers
might work, we recommend updating to the latest versions for best functionality. Likewise,
it is recommended JavaScript be enabled in the browser. JavaScript is used in the UI to
enhance functionality and usability, and while browsing without JavaScript is possible, it is not
recommended.

Table 7.1. Security Monitor Dashboard Panes

Detected Attacks

This pane displays a chart that contains all incidents
created (within the filter parameters) segregated
by complexity of the attacks. It is a good way to
visualize how active your website's attackers are.
You can hover over each portion of the pie chart
to display the actual number of attacks for each
complexity. This pane also contains a short list of
the most frequent attacks. Clicking on any attack
in the list will open the Incident Type page for that
particular incident (explained later).

Detected Hackers

The Detected Hackers pane displays information on
actual hacker profiles created within the specified
time frame. Each hacker gets a skill level which
segments the pie chart. As in any other chart, you
can hover over the pie chart to view specific counts.
Additionally, the most active hackers are displayed
in a list below the chart. Clicking on any of these
hackers will open the Hacker Profile page for that
particular profile (explained later)

Dashboard

72

Counter Responses

The Counter Responses pane lists the top
responses that have been recently triggered by
Junos WebApp Secure. The lower portion of the
pane lists countries in descending order by response
count. You can click on any of the counter responses
to open the Counter Response Type page for that
response (explained later), or click on the specific
country to find other information Junos WebApp
Secure has gathered on that country.

Malicious Incidents

The Malicious Incidents dashboard pane consists of
a chart depicting the number of incidents over time. It
also stacks these incidents by complexity.

Attackers By Day (Attackers By Hour)

This pane contains a graphical representation of how
many detected hackers were active on the protected
site, separated by day (or separated by hour if the
filter "Last Day" is currently set).

Attackers

73

Sessions By Day (Sessions By Hour)

Similar to the Attackers By Day pane, the Sessions
By Day pane shows the number of sessions active
on the protected site each day (or each hour if the
filter "Last Day" is set).

Note
If you would like more horizontal space on any page, you can collapse the navigation menu
by clicking on the double arrow (<<) button to the right of the menu.

7.2. Attackers
The Attackers page contains any information on profiled attackers, and can be accessed by clicking on
"Attackers" in the left navigation menu.

There are various data views you can navigate through via the tabs near the top of the page. You can also
search for Attackers by using the search field in the upper right side of the page, under the "Filter" widget.

• Top Attackers

The "Top Attackers" tab will contain an ordered list of the most active attackers, calculated based on a
weighting algorithm that takes into account the number of incidents and their corresponding complexities.

• Recent Attackers

Attackers

74

This tab will display a table of the most recent profiles active on the protected system. Each row consists
of the Profile name, Threat level, their Public ID (for use with the Support Processor), the Last IP they
used on the system, the First Time and Last Time they attacked the system, and available actions for that
profile. Clicking on the "eye" icon or the profile name will lead you to the page for that particular profile. You
can also click on a threat level to view other attackers with similar threat, and you can click on a Last IP to
navigate to the Location page for that IP. To keep this data fresh, the monitor will periodically refresh the
page (if Auto-refresh is enabled in the User Preferences). To stop this from happening, click the alarm clock
icon in the top right corner of the tab to stop refresh.

• Time Graph

The Time Graph is a larger version of the same line graph displayed on the Dashboard.

• Severity Graph

This graph is a larger version of the same pie graph displayed on the Dashboard.

At any point on this page, you can click on an attacker's given name to navigate to that Attacker's Profile
page.

The Attacker Profile page displays any information that pertains to a particular attacker. At the top of the page
you will see the Attacker Card, which contains a short overview of the profile. This card contains the attacker's
assigned name, last IP used, the first and last date the attacker was active, and the Public ID of the attacker,
for use with the Support Processor in unblocking that profile. On the right side of the card there is a threat
gauge that indicates the current threat of that attacker, where green, yellow, and red indicate low, medium,
and high threat, respectively. The severity icons are displayed as follows:
• (n/a): 0.0 - None

• : 1.0 - Suspicious

Attackers

75

• : 2.0 - Low

• : 3.0 - Medium

• : 4.0 - High

Available on the right side of the Attacker Profile page is a Quick Actions box, where you can rapidly perform
various profile-related functions such as blocking the attacker, warning the user, editing the profile, and
deleting the profile.

Note
Deleting the profile will essentially erase all information gathered on that attacker, and will
effectively remove all blocks or other responses on that profile.

Underneath the attacker card and quick actions box is a series of tabs, where all of the attacker's specific
activity information resides. The Incidents tab contains a list of all incidents triggered by that attacker.
The Incident name, complexity, count, first and last time triggered are all available for each item in the list.
Additionally you can click the Details icon (the eye) to view more information about any particular incident.
See: Section 7.3, “Incidents” for more information on the incidents.

The Responses tab contains information relating to all of the active and inactive responses issued to that
attacker. Each entry contains the actual name of the response issued, the configuration (if any) used when
issuing the response, the time the response was created, the delay set (if any), the time the response expires
(if at all), the time the response was finally deactivated (if it has been deactivated). If the response is active,
you can click the Deactivate Response icon (the stop sign) to deactivate the response instantly. For more
information about Counter Responses, see: Section 7.4, “Counter Responses”. It is in this tab that you can
manually activate Counter Responses on the current attacker. The available counter responses are:
• Block User

To block the user from accessing the protected application completely, you can activate the Block User
counter response. The next time the attacker tries to visit any page on the application, they will see a
configurable message indicating they have been blocked from accessing the content. If the Support
Processor is enabled, they are also given their Public ID (also shown on the Attacker Profile page for that
profile) that they can give to support if they feel the block was in error.

• Filter on SRX

For more information on what this counter response does, see: Section 5.5, “SRX Integration”. In jest, it
feeds a message to an SRX device that can handle traffic at the network level.

Note
This counter response can be activated without configuring an external network device,
but it will not do anything. Junos WebApp Secure requires a properly configured external
device for this counter response to function properly.

• Break Authentication

Hashes any incoming passwords when attempting to login, effectively thwarting brute-force attacks that
have correct credentials. Even with the correct password, the login will be unsuccessful.

Attackers

76

• Cloppy

Activating this counter response will activate an animated paper clip that intimidates the user with
configurable messages. For information on how to customize this response, see the Cloppy Processor in
Chapter 8, Processor Reference.

• Force Captcha Validation

The user will be prompted with a Captcha that has to be solved to continue using the website.

• Google Map

The user will be shown a map of lawyers near their determined location. The search term fed into Google
Maps can be configured, see the Google Map Processor in Chapter 8, Processor Reference.

• Inject Header

The suspected hackers requests will have a custom header injected into them, useful for tracking.

• Logout User

Terminates any current user sessions for this profile on a site.

• Slow Connection

The user's requests to the site will be delayed by a configurable window of milliseconds. This can frustrate
the attacker and cause them to abandon their future attacks. This response can take a <config /> node
with 'min' and 'max' parameters, for example; <config min=1000 max=5000 /> will slow the attackers
requests by 1 to 5 seconds.

• Strip Inputs

If you suspect the attacker's inputs shouldn't be trusted (such as those inputs submitted in forms on the
site), you can choose to activate this response which will strip them from all incoming requests. This will
also strip any query parameters from the request url as well.

• Warn User

The next request sent by the attacker will respond with a pop-up warning message that lets the attacker
know he/she is being watched. The warning message can be configured, see the Warning Processor in
Chapter 8, Processor Reference.

Consecutive requests might be grouped together and are viewable via the Sessions tab. Each entry in this
tab contains the Remote Address used during the session (the IP), the Browser and Operating System used
during the session, the number of Requests made and Pages returned during that session, the number of
Errors generated by the server in response to requests in that session, as well as the First and Last Active
times. You can also click on the Details icon (the eye) to view more information about any particular session.
For more information on sessions, see: Section 7.5, “Sessions”.

The Locations tab contains a list of all locations used by the attacker. For each location, you are able to see
the Remote Address (IP) associated with that location, the City, Region, and Country associated with the
location (if they can be found), and the First and Last Active times for the location. Depending on the location,
you might also be able to load a map showing that location (if it can be determined) by clicking on the Map
icon. You can also click on the Details icon (the eye) to view more information on any particular location,

Incidents

77

including all other attackers that were found to be using the same location, and other Incidents, Sessions, or
Environments used in conjunction with that location.

If Junos WebApp Secure can determine the attacker was using a specific Browser and Operating System
combination, an entry in the Environments tab will be added. Each entry contains the Browser and Operating
System used, along with the full User Agent string and First and Last active dates. If you wish to find other
attackers that used the same Environment, click on the magnifying glass icon. This will bring you to a page
where you can see other Attackers that used this Environment, Incidents produced with this Environment,
Sessions found that were using this Environment, and Locations that used this Environment.

7.3. Incidents
The Incidents page contains any information on specific incidents that have been triggered, and offers
additional information on all of the incidents that can be detected by Junos WebApp Secure.

There are various data views you can navigate through via the tabs near the top of the page. You can also
search within Incidents by using the search field in the upper right side of the page, under the "Filter" widget.

• Most Common

As the title implies, the "Most Common" tab will display a list of the most frequently triggered incidents in
descending order. Count of triggered incidents of that type is displayed to the right of each item in the list,
and a graphic depicting the complexity of that incident is visible to the left. Clicking on a particular incident
in this list will bring you to a page with additional information on that incident. By default, Junos WebApp
Secure only displays malicious incidents (those that might be of direct interest to Junos WebApp Secure
users). If you wish to show all incidents triggered, you can click on the link above the list entitled, "Show all
incidents".

• Most Recent

This tab will display a table of the most recent incidents triggered. The incident name is displayed along
with the profile that triggered the incident, the complexity of that incident, the Count indicating the number
of times that incident was triggered at one time (using the same data), the first and last times the profile
activated that particular incident, and any actions available to the Junos WebApp Secure user regarding
that incident. You can navigate to other pages by using the tab above the table. Here you can jump to the
next page, previous page, first page, and last page by using the corresponding buttons. You can also jump
to a specific page or change the number of rows returned per page by clicking on the label between the
navigation buttons. By default, only malicious incidents are displayed. To display all malicious and non-
malicious incidents, click on the link above the title labeled, "Show all incidents". To keep this data fresh, the

Counter Responses

78

monitor will periodically refresh the page (if Auto-refresh is enabled in the User Preferences). To stop this
from happening, click the alarm clock icon in the top right corner of the tab to stop refresh.

• Browse by Complexity

For informational purposes, this tab allows you to browse the list of detectable incidents, grouped by
complexity. Clicking on an incident will bring you to an informational page that contains a description of that
incident, and allows you to search for triggered incidents of that type.

• Time Graph

The Time Graph is a larger version of the same bar graph displayed on the Dashboard.

• Severity Graph

This graph is a larger version of the same pie graph displayed on the Dashboard.

Clicking on a particular incident's name will bring you to the Incident Details page for that incident. On this
page all information about that particular incident is shown.

Near the top of the page there is an incident infobox that contains a summary of the incident, including the
Attacker that caused the incident, the Location and Environment that attacker was using, the Session (IP)
used when triggering the incident, and the First and Last times that particular incident occurred. Underneath
the infobox there is a series of tabs that display the Description of the Incident type, Details for the incident
(differs from incident to incident), and the raw Request and Response objects.

7.4. Counter Responses
The Counter Responses page contains any information on the various responses Junos WebApp Secure can
issue to potential threats.

Sessions

79

• Browse by Type

In this tab, you can view information on any of the counter responses Junos WebApp Secure can issue.
Clicking on a spicific response will take you to a page that explains that response, and allows you to search
for profiles that were issued that response.

• Active Responses

In the Active Responses tab, a table displays the most recently activated responses, along with the profile
that the response was issued on, the specific response issued, any configuration used in that response
(blank if there wasn't any), the time the response was issued, how long to delay the response,

• Inactive Responses

The Inactive Responses tab is formatted like the Active Responses tab, but shows all responses which
have been deactivated, either manually or due to response expiration.

7.5. Sessions
When users browse the protected site, similar or back-to-back requests can be grouped together in a Session.
The Sessions page allows you to view each of these browsing sessions.

The tabs available in the Sessions page show Malicious Sessions, Other (non-malicious) sessions, and a
graph of sessions over time. Each Session entry contains information including the Attacker the session
belongs to (if it was a session with malicious intent), the Remote Address used during the session (the IP),

Search

80

the Browser and Operating System used during the session, the number of Requests made and Pages
returned during that session, the number of Errors generated by the server in response to requests in that
session, as well as the First and Last Active times. You can also click on the Details icon (the eye) to view
more information about any particular session (explained below).

Clicking on the Details icon will bring you to the Session Details page for that session. On this page all
information about that particular session is shown.

Near the top of the page there is a session infobox which contains a summary of the session, including the
Attacker associated with the session, the Last known address (IP) used in conjunction with the session, the
Last Location and Environment used during the session, and information regarding the number of Requests
issued, Pages returned, and Errors generated by the server as a result of a request. Underneath the infobox is
a series of tabs that display other Incidents, Locations, and Environments used during this browsing session.

7.6. Search
Junos WebApp Secure makes it easy to find a particular attacker, incident, or session by using the search
functionality in the security monitor.

Search

81

To search, simply type the keyword in the Query form field, and optionally modify the desired date-range (last
7 days by default), applications (all applications by default), and the scope of your search. The scope can
include Attackers, Incidents and/or Sessions. Depending on the complexity of your search parameters, it
might take a couple seconds to complete. Once finished, the results will be displayed.

The following items are indexed in the search (meaning if the string matches any items in these categories it
will be displayed.):
• User Agent

• Browser Name

• Browser Version

Reporting

82

• Incident Name

• IP Address

• Host

• Geographic Region

• Geographic City

• Geographic ZIP

• Country Name

• Country Code

• Profile Name

• Profile Description

• Profile Public Key

• Incident Request Content

• Incident Response Content

7.7. Reporting

The Reports page is responsible for producing graphical and textual representations of the activity passed
through Junos WebApp Secure. For more information, refer to Chapter 9, Reporting.

Configuration

83

7.8. Configuration

Configuration section of the security monitor allows you to change numerous aspects of the software. For
more information, refer to Chapter 4, Configuring Junos WebApp Secure.

7.9. System Status

System Status allow you to view performance metrics of your installation. For more information, refer to
Section 6.3, “System Statistics”.

Updates

84

7.10. Updates

Perform updates to the installation by navigating to this page. For more information, refer to Section 6.2,
“System Updates”.

7.11. Help

The Help page will contain any documents relating to the functionality and customizations of the appliance. All
documents are available in HTML, PDF, EPUB, and plain text formats.
• User Guide

The User Guide is this document. Everything from a description of the software to in-depth configuration is
covered in this guide.

• Developer Guide

The Developer guide walks you through creation of custom software that interfaces withJunos WebApp
Secure. Custom Auto Response creation and REST API utilization are explained in this document.

• Third-Party Attributions

The Attributions document contains a list of all third-party products we use in this software installation along
with their licenses.

Chapter 8.

85

Processor Reference
Junos WebApp Secure uses a modular approach to securing your application. Each module is responsible
for monitoring, detecting and securing a particular aspect of the application and/or individual HTTP request/
response. These logical entities are referred to as Security Processors.

Processors are the configurable operators that implement an additional layer of security between the
application/web servers and the end user. They are responsible for analyzing the request and response
data sent to and from the server and monitor anything from the state of injected honey pots to contents of
the headers and body of the HTTP/HTTPS requests and responses. Processors can be managed through
the system configuration user interface. While some of the operations may be as simple as incrementing a
counter, others are far more sophisticated and may alter the request and response data so it is important that
administrators configure processors correctly to ensure web application's security and functionality.

Each processor is monitoring the HTTP stream for particular alterations from what is considered typical
traffic. These alterations are called "triggers". Each security processor may have several triggers they are
responsible for detecting. If matched, the processor responsible for handling it will generate a security
incident. Incident varies by its complexity, which is explained in the section below.

8.1. Complexity Definitions
Complexity is a rating of the skill, effort, and experience necessary to trigger a specific incident. The following
is a description of the rating system:

Informational (0.0)
Informational incidents represent information about the client that may or may not indicate malicious
activity, but are not common. Informational incidents are used to identify more complex abuse patterns
that cannot be identified from a single request. An example of an informational incident is when the user
has disabled the Referer header.

Suspicious (1.0)
Suspicious incidents represent activity that is abnormal but not guaranteed to be malicious. This is similar
to an informational incident, except that the event is borderline malicious, not just unusual. Just like
informational incidents, suspicious incidents are used to identify more complex abuse patterns that cannot
be confirmed as malicious from just one request. An example of a suspicious incident is when the user
requests a file that does not exist (404 error).

Low (2.0)
Low complexity incidents represent malicious activity that does not require any special tools, does
not require a deep understanding of application architecture, and generally can be executed by an
unsophisticated threat. An example of a low complexity incident is when the user modifies a query string
parameter in the URL.

Medium (3.0)
Medium complexity incidents represent malicious activity that would require special tools, advanced
browser configuration, scripting, or a understanding of how web applications are designed and
implemented. These types of attacks are generally not executed by unsophisticated attackers, and are
more likely to be targeted at the protected site, rather than at an arbitrary IP range. An example of a
medium complexity incident is when the user requests the robots.txt spider configuration file from a
browser or a script spoofing its identity as a browser.

Security Engine Incidents

86

High (4.0)
High complexity incidents represent malicious activity that is highly advanced and requires a deep
understanding of web application architecture, implementation, security features, and multi request
workflows. High complexity incidents are generally far too advanced for an average attacker and usually
have a specific target. An example of a high complexity incident is when a user is able to break the
encryption used on basic authentication password files.

8.2. Security Engine Incidents
While the majority of all incidents produced will be produced by a processor, a few of them are handled by the
Security Engine directly. These will be found in the UI under "Session Management" in the Response Rules
page, and can be enabled or disabled through 'Configuration >> Security Engine >> Incident Monitoring'.

8.2.1. Session Cookie Spoofing
Complexity: Low (2.0)

Default Response: 1x = Logout User, 2x = 1 Day Clear Inputs, 3x = 5 Day Clear Inputs

Cause: Junos WebApp Secure uses an HTTP cookie as one of the components of its fingerprinting
technology. The session cookie is comprised of an AES-encrypted and base64-encoded numerical ID and a
validation signature. Because the cookie has its own embedded digital signature, any attempt to fabricate or
modify a session cookie will almost always result in a corrupted signature. If Junos WebApp Secure detects
that a cookie being provided has an invalid signature, but otherwise uses the correct format, it will trigger a
"Session Cookie Spoofing" incident.

Behavior: Session cookies are commonly used by a web application order to facilitate state. HTTP, by
itself, is not a stateful protocol, and without technologies like cookies, a web application would be unable to
correlate requests made by the same user. When an attacker attempts to modify a cookie, especially when
they are careful to follow the same format constraints as the original value (eg. 22 letters and numbers, or
16 hex characters, etc...), they are attempting to modify their state. If for example, an attacker were able to
successfully guess the session cookie value of another actively logged in user, they would be able to assume
that user's state (including their authentication and authorization levels). This is referred to by the WASC as a
"Credential and Session Prediction1" attack.

8.2.2. Session Cookie Tampering
Complexity: Medium (3.0)

Default Response: 1x = Logout User, 2x = 1 Day Clear Inputs, 3x = 5 Day Clear Inputs

Cause: Junos WebApp Secure uses an HTTP cookie as one of the components of its fingerprinting
technology. The session cookie is comprised of an AES-encrypted and base64-encoded numerical ID and a
validation signature. Because the cookie has its own embedded digital signature, any attempt to fabricate or
modify a session cookie will almost always result in a corrupted signature. If Junos WebApp Secure detects
that a cookie being provided does not have a valid signature, and does not follow the correct format, it will
trigger a "Session Cookie Tampering" incident.

Behavior: Session cookies are commonly used by a web application order to facilitate state. HTTP, by
itself, is not a stateful protocol, and without technologies like cookies, a web application would be unable to

1 http://projects.webappsec.org/w/page/13246918/Credential-and-Session-Prediction

http://projects.webappsec.org/w/page/13246918/Credential-and-Session-Prediction
http://projects.webappsec.org/w/page/13246918/Credential-and-Session-Prediction

Security Processors

87

correlate requests made by the same user. However, just like form parameters and querystring parameters,
cookies represent another type of user-input. Just about any attack that can be accomplished by injecting
malicious values into a form input (SQL injection2, XSS3, Buffer Overflow4, Integer Overflow5, etc...), could
also potentially be accomplished by injecting malicious values into the session cookie. An aggressive hacker
would likely test for multiple vulnerability types in all form inputs, query parameters, and cookies, because
these are the inputs most likely to be insecurely handled.

8.3. Security Processors
The Security Processors are separated into four groups:

• Honeypot Processors

• Activity Processors

• Tracking Processors

• Response Processors

Honeypot processors contain the logic of injecting the fake vulnerabilities and points of interest to the
hackers with the goal of exposing the attacker prior to them finding an actual vulnerability on the site. Activity
processors are the processors that monitor for and report any other malicious behavior. These operators
watch for malicious activity based on non-injected points of interest. These typically involve monitoring
headers, errors, input fields, URL sequences, etc, with the goal of identifying malicious behavior within the
valid application stream.

Activity processors enable monitoring of session traffic. Things like authentication and cookies are among the
types of traffic that become introspected by various activity processors.

Tracking processors, allow for more advanced tracking of the attackers. These processors attempt to collect
additional data based on behavioral characteristics and unique attacker's environment information. These
"fingerprints" become a basis for the "hacker database" used in detecting attackers from the first request they
make.

Finally, Response processors are the processors that are used for generating response to the end user. If
turned on, these can be used to either manually or automatically (depending on the configuration) respond to
a hacker as soon as their activity is detected. In case of an automated response, these can be tuned to match
more or less any condition including but not limited to frequency of occurrence, complexity, types of incidents
triggered.

8.4. Honeypot Processors

8.4.1. Access Policy Processor
This processor injects fake permission data into the clientaccesspolicy.xml file of the web application's
domain. The fake access policy references a fake service and grants a random domain access to call it. If
the service is ever called, or any files are ever requested in the directory the service is supposedly contained
in, an incident can be created. Under normal conditions, no user will ever see the clientaccesspolicy.xml file,

2 http://projects.webappsec.org/SQL-Injection
3 http://projects.webappsec.org/Cross-Site+Scripting
4 http://projects.webappsec.org/Buffer-Overflow
5 http://projects.webappsec.org/Integer-Overflows

http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Integer-Overflows

Access Policy Processor

88

and therefore be unaware of the URL to the fake service or the directory it resides in. In the cases where a
Silverlight object is legitimately requesting clientaccesspolicy.xml from the protected domain in order to access
a known service, it will not create an incident, because the service being called is defined with real access
directives.

8.4.1.1. Configuration

Table 8.1. Access Policy Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether or not to enable this process for https
traffic.

Advanced

Fake Service String Random The fake service the user requested.

Incident: Malicious
Service Call

Boolean True The user manually entered the URL into the
browser and accessed the service that way.
They did not call the function.

Incident: Service
Directory Indexing

Boolean True The user asked for a file index on the directory
that contains the fake service.

Incident: Service
Directory Spider

Boolean True The user is issuing requests for resources
inside the directory that contains the fake
service. Since the directory does not exist, all
of these types of requests are unintended and
malicious.

8.4.1.2. Incidents

8.4.1.2.1. Malicious Service Call
Complexity: Medium (3.0)

Default Response: 1x = 5 day Clear Inputs

Cause: Junos WebApp Secure adds a fake cookie to the websites it protects. The cookie is intended to look
as though it is part of the applications overall functionality, and is often selected to appear vulnerable (such
as naming the cookie 'debug' or 'admin' and giving it a numerical or Boolean value). The "Cookie Parameter
Manipulation" incident is triggered whenever the fake cookie value changes its value.

Behavior: Modifying the inputs of a page is the foundation of a large variety of attack vectors. Basically,
if you want to get the backend server to do something different, you need to supply different input values
(either by cookie, query string, url, or form parameters). Depending on what value the user chose for the input,
the attack could fall under large number of vectors, including "Buffer Overflow", "XSS", "Denial of Service",
"Fingerprinting", "Format String", "HTTP Response Splitting", "Integer Overflow", and "SQL injection" among
many others. A common practice is to first spider the website, then test every single input on the site for a
specific set of vulnerabilities. For example, the user might first index the site, then visit each page on the site,
then test every exposed input (cookie, query string, and form inputs) with a list of SQL injection tests. These
tests are designed to break the resulting page if the input is vulnerable. As such, the entire process (which

Access Policy Processor

89

can involve thousands of requests) can be automated and return a clean report on which inputs should be
targeted. Because a Junos WebApp Secure cookie looks just like a normal application cookie, a spider that
tests all inputs will eventually test the fake cookie as well. This means that if there is a large volume of this
incident, it is likely due to such an automated process. It should be assumed that the values tested against the
fake cookie, have also been tested against the rest of the cookies on the site.

8.4.1.2.2. Service Directory Indexing
Complexity: Medium (3.0)

Default Response: 1x = 5 day Block

Cause: Originally, embedded HTML technologies such as Flash and Java, were not able to communicate
with 3rd party domains. This was a security constraint to prevent a malicious Java or Flash object from
performing unwanted actions against a site other then the one hosting the object (for example, a Java
applet that brute forces a Gmail login in the background). This limitation was eventually decreased in order
to facilitate more complex mash-ups of information from a variety of sources. However to prevent any
untrusted websites from abusing this new capability, a resource called the "clientaccesspolicy.xml" was
introduced. Now, when a plugin object wants to communicate with a different domain, it will first request
"clientaccesspolicy.xml" from that domain. If the file specifies that the requesting domain is allowed to
access the specified resource, then the plugin object will be given permission to communicate directly
with the 3rd party. The clientaccesspolicy.xml therefore provides a convenient reference for hackers when
trying to scope the attack surface of the website. For example, there may be a vulnerable service listed in
clientaccesspolicy.xml, but that service may not be referenced anywhere else on the site. So unless the
hacker looks at clientaccesspolicy.xml, they would never even know the service existed. Junos WebApp
Secure will inject a fake service definition into the clientaccesspolicy.xml file in order to identify which users
are manually probing the file for information. The "Service Directory Indexing" incident will be triggered if the
user attempts to get a file listing from the directory the fake service is supposedly located in.

Behavior: Attempting to get a file listing from the directory where the potentially vulnerable service is located
is likely in an effort to identify other unreferenced vulnerable services, or possibly even data or source files
used by the service. Such a request represents a " Directory Indexing6" attack, and is generally performed
while attempting to establish a full understanding of a websites attack surface.

8.4.1.2.3. Service Directory Spider
Complexity: Medium (3.0)

Default Response: 1x = 5 day Block

Cause: Originally, embedded HTML technologies such as Flash and Java, were not able to communicate
with 3rd party domains. This was a security constraint to prevent a malicious Java or Flash object from
performing unwanted actions against a site other then the one hosting the object (for example, a Java
applet that brute forces a Gmail login in the background). This limitation was eventually decreased in order
to facilitate more complex mash-ups of information from a variety of sources. However to prevent any
untrusted websites from abusing this new capability, a resource called the "clientaccesspolicy.xml" was
introduced. Now, when a plugin object wants to communicate with a different domain, it will first request
"clientaccesspolicy.xml" from that domain. If the file specifies that the requesting domain is allowed to
access the specified resource, then the plugin object will be given permission to communicate directly
with the 3rd party. The clientaccesspolicy.xml therefore provides a convenient reference for hackers when
trying to scope the attack surface of the website. For example, there may be a vulnerable service listed in

6 http://projects.webappsec.org/w/page/13246922/Directory-Indexing

http://projects.webappsec.org/w/page/13246922/Directory-Indexing
http://projects.webappsec.org/w/page/13246922/Directory-Indexing

Ajax Processor

90

clientaccesspolicy.xml, but that service may not be referenced anywhere else on the site. So unless the
hacker looks at clientaccesspolicy.xml, they would never even know the service existed. Junos WebApp
Secure will inject a fake service definition into the clientaccesspolicy.xml file in order to identify which users
are manually probing the file for information. The "Service Directory Spidering" incident will be triggered if the
user attempts to request a random file inside the directory the fake service is supposedly located in.

Behavior: Requesting a random file from the directory where the potentially vulnerable service is supposedly
located is likely in an effort to identify other unreferenced resources. This could include configuration files,
other services, data files, etc... Usually an attacker will first attempt to get a full directory index (which only
takes one request), but if that fails, the only other technique is to guess the filenames (which could take
thousands of requests). Because guessing the file names can take so many requests, there are several
publicly available tools that can enumerate over a large list of common file and directory names in a matter
of minutes. This type of behavior is an attempt to exploit a server for "Predictable Resource Location7"
vulnerabilities, and is generally done while the attack is trying to scope the web applications attack surface.

8.4.2. Ajax Processor
A mistake commonly made by web developers is to consolidate every JavaScript file used by their website
into a single file. They then reference that one file from every page on the site, regardless of whether it
needs all of the code defined in the file. This is an optimization trick that works, but exposes potential
vulnerabilities. The goal is to get the browser to cache all of the external JavaScript, so that you don't need
to keep downloading additional code as you navigate the site. Consider the case where one of the pages on
the site contains an administrative console written with AJAX technology. In the administrative page, there is
a JavaScript file that contains code for managing users of the site (creating user, deleting users, getting user
details, etc...). Normally only administrators would visit this page, and they would be the only ones who can
see this code. Once all JavaScript on the site is consolidated however, these types of sensitive functions tend
to get mixed into the rest of the safer functions. Hackers look for these types of functions in order to find both
the administrative page that uses them, as well as exploit the function itself. The goal of this trap is to emulate
this common mistake and entice hackers into attempting to exploit the "sensitive looking" function.

8.4.2.1. Configuration

Table 8.2. Ajax Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this
processor.

Advanced

Inject Script Enabled Boolean True Whether to inject the fake Javascript code into
HTML responses.

Service ConfigurableAJAX Service The fake service to expose.

Incident: Malicious
Script Execution

Boolean True The user executed the fake JavaScript
function

Incident: Malicious
Script Introspection

Boolean True The user manually entered the URL into the
browser and accessed the service that way.
They did not call the function.

7 http://projects.webappsec.org/Predictable-Resource-Location

http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/Predictable-Resource-Location

Ajax Processor

91

8.4.2.2. Incidents

8.4.2.2.1. Malicious Script Execution
Complexity: Medium (3.0)

Default Response: 1x = Slow Connection 2-6 seconds and permanent Clear Inputs in 10 minutes.

Cause: Junos WebApp Secure injects a fake JavaScript file into the websites it protects. This fake
JavaScript file is designed to look as though it is intended for administrative use only, but has been mistakenly
linked in with non administrative pages. The JavaScript file exposes an AJAX function that communicates
with a potentially vulnerable fake service. If the user attempts to invoke this function using a tool like Firebug,
this incident will be triggered.

Behavior: It is common practice to create a few single JavaScript files that contain the majority of the code
your site needs, and then importing that code into all of the pages. This increases the performance of the
site, because the user can download and cache all the JavaScript at once, rather then having to re-download
all or some of it again on every page change. However in some cases, developers mistakenly include
sensitive administrative functions in with common functions needed by unauthenticated users. For example, a
developer might include an "addUser" function into a file that also contains a "changeImageOnHover" function.
The "addUser" function may only be called from an administrative UI (behind a login), while the hover image
effect would be called on a lot of different pages. Hackers often look through all of the various Javascript files
being included on the pages of a website in order to find references to other services that might be vulnerable.
 Once a function has been identified, the hacker will attempt to find a way to exploit the service the function
uses. Because the attacker is actually executing the function instead of attempting to directly communicate
with the potentially vulnerable service, this is likely a less sophisticated attack. They are more then likely just
trying to determine if the service actually exists, and if they can call it without being authenticated, however
depending on the values they supplied as arguments to the function, this could be a number of different attack
types, including "Abuse of Functionality8", "Buffer Overflow9", "Denial of Service10", "Format String11", "Integer
Overflows12", "OS Commanding13", and "SQL Injection14"

8.4.2.2.2. Malicious Script Introspection
Complexity: Medium (3.0)

Default Response: 1x = Slow Connection 2-6 seconds and Captcha. 2x = Slow Connection 4-14 seconds
and permanent Block in 10 minutes.

Cause: Junos WebApp Secure injects a fake JavaScript file into the websites it protects. This fake
JavaScript file is designed to look as though it is intended for administrative use only, but has been mistakenly
linked in with non administrative pages. The JavaScript file exposes an AJAX function that communicates
with a potentially vulnerable fake service. If the user manually inspects the code of the function and attempts
to exploit the service it uses directly (without calling the function itself), this incident will be triggered.

Behavior: To improve performance of a website, by minimizing the number of HTTP requests (and taking
advantage of browser-side caching), web developers commonly combine most of their JavaScript code into

8 http://projects.webappsec.org/Abuse-of-Functionality
9 http://projects.webappsec.org/Buffer-Overflow
10 http://projects.webappsec.org/Denial-of-Service
11 http://projects.webappsec.org/Format-String
12 http://projects.webappsec.org/Integer-Overflows
13 http://projects.webappsec.org/OS-Commanding
14 http://projects.webappsec.org/SQL-Injection

http://projects.webappsec.org/Abuse-of-Functionality
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/OS-Commanding
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Abuse-of-Functionality
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/OS-Commanding
http://projects.webappsec.org/SQL-Injection

Basic Authentication Processor

92

just a few files, which are then included in the HTML of the entire site. However, in some cases, developers
mistakenly include sensitive administrative functions in with common functions needed by unauthenticated
users. For example, a developer might include an "addUser" function into a file that also contains a
"changeImageOnHover" function. The "addUser" function may only be called from an administrative UI
(behind a login), while the hover image effect would be called on a lot of different pages. Hackers often look
through all of the various Javascript files being included on the pages of a website in order to find references
to other services that might be vulnerable. Once a function has been identified, the hacker will attempt to
find a way to exploit the service the function uses. Unlike the malicious script execution incident, here the
attacker has actually dissected the fake AJAX function and attempted to directly exploit the service it uses.
This is a more sophisticated attack then actually calling the Javascript function, because it requires that the
user understand Javascript logic. Depending on what values they are sending to the service, this could be in
an effort to perform any number of exploits, including Abuse of Functionality15", "Buffer Overflow16", "Denial of
Service17", "Format String18", "Integer Overflows19", "OS Commanding20", and "SQL Injection21"

8.4.3. Basic Authentication Processor
The basic authentication processor is responsible for emulating a vulnerable authentication mechanism in the
web application. This is done by publicly exposing fake server configuration files (.htaccess and .htpasswd)
that appear to be protecting a resource with basic authentication (a part of the HTTP protocol). To the attacker,
the site will appear to be exposing a sensitive administrative script on the site, with weak password protection.
As the malicious user identifies the availability of such publicly exposed files, they are walked through a series
of steps that emulate exposing an additional piece of information. As the final step, if they end up breaking the
weakly authenticated password, they will be considered a high threat.

Note
Note: This processor should only be used when the site is using Apache as front end web
servers due to particular files involved (.htaccess and .htpasswd) being specific to Apache
web server.)

Note
Browsers often ignore the body content of HTTP responses if the status code is anything
except 200. For best compatibility with different browser versions, you may wish to use a 200
status code when uploading responses such as images or executable code.

8.4.3.1. Configuration

Table 8.3. Basic Authentication Processor Configuration Parameters

Parameter Type Default Value Description

Basic

15 http://projects.webappsec.org/Abuse-of-Functionality
16 http://projects.webappsec.org/Buffer-Overflow
17 http://projects.webappsec.org/Denial-of-Service
18 http://projects.webappsec.org/Format-String
19 http://projects.webappsec.org/Integer-Overflows
20 http://projects.webappsec.org/OS-Commanding
21 http://projects.webappsec.org/SQL-Injection

http://projects.webappsec.org/Abuse-of-Functionality
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/OS-Commanding
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Abuse-of-Functionality
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/OS-Commanding
http://projects.webappsec.org/SQL-Injection

Basic Authentication Processor

93

Parameter Type Default Value Description

Processor Enabled Boolean True Whether traffic should be passed through this
processor.

Advanced

Authorized Users Collection Collection A list of authorized user accounts.

Protected Resource
URL

String [random resource] The fake protected resource.

Protected Resource
Response Status

String [random status] The HTTP status to return when accessing
the resource.

Randomization Salt String Random A random set of characters used to salt the
generation of code. Any value is fine here.

Incident: Cracked
Authentication

Boolean True The user has successfully accessed a fake
protected resource using a cracked username
and password.

Incident: Directory
Configuration
Requested

Boolean True The user has requested the apache directory
configuration file .htaccess.

Incident: Directory
Passwords
Requested

Boolean True The user has requested the apache password
file .htpasswd

Incident: Invalid
Credentials

Boolean True The user has attempted to login to access the
fake file protected by basic authentication, but
failed.

Incident: Protected
Resource Requested

Boolean True The user has requested a fake file which is
protected by basic authentication

8.4.3.2. Incidents

8.4.3.2.1. Apache Configuration Requested
Complexity: Low (2.0)

Default Response: none.

Cause: Apache is a web server used by many websites on the internet. As a result, hackers will often look
for vulnerabilities specific to apache, since there is a good chance any given website is probably running
apache. One such vulnerability involves the use of an .htaccess22 file to provide directory level configuration
(such as default 404 messages, password protected resources, directory indexing options, etc...), while
not sufficiently protecting the .htaccess file itself. By convention, any resource that provides directory level
configuration should not be exposed to the public. This means that if a user requests .htaccess or a related
resource, they should get either a 404 or a 403 error. Unfortunately, not all web servers are configured
correctly to block requests for these resources. In such a scenario, a hacker could gain valuable intelligence
on the way the server is configured.

Behavior: Hackers will often attempt to get the .htaccess file from various directories on a website in an
effort to find valuable information about how the server is configured. This is usually done to find a "Server

22 http://httpd.apache.org/docs/current/howto/htaccess.html

http://httpd.apache.org/docs/current/howto/htaccess.html
http://projects.webappsec.org/Server-Misconfiguration
http://httpd.apache.org/docs/current/howto/htaccess.html

Basic Authentication Processor

94

Misconfiguration23" weakness that might expose a "Credential/Session Prediction24", "OS Commanding25",
"Path Traversal26", or "URL Redirector Abuse27" vulnerability among others. The fact that an .htaccess file is
even exposed is a "Server Misconfiguration" vulnerability in itself. In this specific case, the attacker is asking
for a different resource that is related to .htaccess. They are requesting a user database file for a password
protected resource defined in .htaccess. This file is generally named ".htpasswd". The user either opened
the .htaccess file and found the reference to .htpasswd, or they simply tried .htpasswd to see if anything came
back (with or without asking for .htaccess). Either way, this behavior is involved in the establishment of a
"Credential/Session Prediction" vulnerability. The request for .htpasswd is usually performed while attempting
to establish the scope of the websites attack surface, although sometimes is not performed until trying to
identify a valid attack vector.

8.4.3.2.2. Apache Password File Requested
Complexity: Low (2.0)

Default Response: 1x = Slow Connection 2-6 seconds.

Cause: Apache is a web server used by many websites on the internet. As a result, hackers will often
look for vulnerabilities specific to apache, since there is a good chance any given website is probably
running apache. One such vulnerability involves the use of an .htaccess28 file to provide directory level
configuration (such as default 404 messages, password protected resources, directory indexing options,
etc...), while not sufficiently protecting the .htaccess file itself. By convention, any resource that provides
directory level configuration should not be exposed to the public. This means that if a user requests .htaccess
or a related resource, they should get either a 404 or a 403 error. Unfortunately, not all web servers are
configured correctly to block requests for these resources. In such a scenario, a hacker could gain valuable
intelligence on the way the server is configured. Junos WebApp Secure will automatically block any requests
for the .htaccess resource, and return a fake version of the file. The fake version of the file will contain
the directives necessary to password protect a fake resource. These directives allude to the existence
of a user database file that contains usernames and encrypted passwords. The "Apache Password File
Requested" incident will trigger in the event that the user requests the fake user database file (generally
named .htpasswd).

Behavior: Hackers will often attempt to get the .htaccess file from various directories on a website in an
effort to find valuable information about how the server is configured. This is usually done to find a "Server
Misconfiguration29" weakness that might expose a "Credential/Session Prediction30", "OS Commanding31",
"Path Traversal32", or "URL Redirector Abuse33" vulnerability among others. The fact that an .htaccess file is
even exposed is a "Server Misconfiguration" vulnerability in itself. In this specific case, the attacker is asking
for a different resource that is related to .htaccess. They are requesting a user database file for a password
protected resource defined in .htaccess. This file is generally named ".htpasswd". The user either opened
the .htaccess file and found the reference to .htpasswd, or they simply tried .htpasswd to see if anything came
back (with or without asking for .htaccess). Either way, this behavior is involved in the establishment of a
"Credential/Session Prediction" vulnerability. The request for .htpasswd is usually performed while attempting

23 http://projects.webappsec.org/Server-Misconfiguration
24 http://projects.webappsec.org/Credential-and-Session-Prediction
25 http://projects.webappsec.org/OS-Commanding
26 http://projects.webappsec.org/Path-Traversal
27 http://projects.webappsec.org/URL-Redirector-Abuse
28 http://httpd.apache.org/docs/current/howto/htaccess.html
29 http://projects.webappsec.org/Server-Misconfiguration
30 http://projects.webappsec.org/Credential-and-Session-Prediction
31 http://projects.webappsec.org/OS-Commanding
32 http://projects.webappsec.org/Path-Traversal
33 http://projects.webappsec.org/URL-Redirector-Abuse

http://projects.webappsec.org/Server-Misconfiguration
http://projects.webappsec.org/Credential-and-Session-Prediction
http://projects.webappsec.org/OS-Commanding
http://projects.webappsec.org/Path-Traversal
http://projects.webappsec.org/URL-Redirector-Abuse
http://httpd.apache.org/docs/current/howto/htaccess.html
http://projects.webappsec.org/Server-Misconfiguration
http://projects.webappsec.org/Server-Misconfiguration
http://projects.webappsec.org/Credential-and-Session-Prediction
http://projects.webappsec.org/OS-Commanding
http://projects.webappsec.org/Path-Traversal
http://projects.webappsec.org/URL-Redirector-Abuse
http://projects.webappsec.org/Server-Misconfiguration
http://projects.webappsec.org/Credential-and-Session-Prediction
http://projects.webappsec.org/OS-Commanding
http://projects.webappsec.org/Path-Traversal
http://projects.webappsec.org/URL-Redirector-Abuse
http://httpd.apache.org/docs/current/howto/htaccess.html
http://projects.webappsec.org/Server-Misconfiguration
http://projects.webappsec.org/Credential-and-Session-Prediction
http://projects.webappsec.org/OS-Commanding
http://projects.webappsec.org/Path-Traversal
http://projects.webappsec.org/URL-Redirector-Abuse

Basic Authentication Processor

95

to establish the scope of the websites attack surface, although sometimes is not performed until trying to
identify a valid attack vector.

8.4.3.2.3. Invalid Credentials
Complexity: Medium (3.0)

Default Response: 1x = Slow Connection 2-6 seconds. 15x = Basic Authentication Bruteforce Incident.

Cause: Apache is a web server used by many websites on the internet. As a result, hackers will often
look for vulnerabilities specific to apache, since there is a good chance any given website is probably
running apache. One such vulnerability involves the use of an .htaccess34 file to provide directory level
configuration (such as default 404 messages, password protected resources, directory indexing options,
etc...), while not sufficiently protecting the .htaccess file itself. By convention, any resource that provides
directory level configuration should not be exposed to the public. This means that if a user requests .htaccess
or a related resource, they should get either a 404 or a 403 error. Unfortunately, not all web servers are
configured correctly to block requests for these resources. In such a scenario, a hacker could gain valuable
intelligence on the way the server is configured. Junos WebApp Secure will automatically block any requests
for the .htaccess resource, and return a fake version of the file. The fake version of the file will contain the
directives necessary to password protect a fake resource. Should the user request the password protected
resource, Junos WebApp Secure will simulate the correct authentication method defined in .htaccess, and
simulate the existence of the fake resource. The "Invalid Credentials" incident will trigger in the event that the
user requests the fake password protected file and supplies an invalid username and password (as would be
the case if they requested the file in a browser and guessed a username and password at the login prompt).

Behavior: Hackers will often attempt to get the .htaccess file from various directories on a website in an
effort to find valuable information about how the server is configured. This is usually done to find a "Server
Misconfiguration35" weakness that might expose a "Credential/Session Prediction36", "OS Commanding37",
"Path Traversal38", or "URL Redirector Abuse39" vulnerability among others. The fact that an .htaccess file is
even exposed is a "Server Misconfiguration" vulnerability in itself. In this specific case, the attacker is asking
for a different resource that is referenced only from .htaccess. The fake resource is password protected, and
the user has attempted to authenticate with bad credentials. This is most likely in an effort to guess a valid
username and password combination, such as "admin:admin", or "guest:guest". It may also be part of a
larger brute force attempt, where the attacker tries a long list of possible combinations. This is a poor method
for locating valid usernames and passwords, especially since the user database file .htpasswd is actually
exposed (albeit fake). So a brute force attack (represented by a large quantity of this incident type) generally
means the attacker is less sophisticated.

8.4.3.2.4. Protected Resource Requested
Complexity: Low (2.0)

Default Response: 1x = Slow Connection 2-6 seconds.

Cause: Apache is a web server used by many websites on the internet. As a result, hackers will often
look for vulnerabilities specific to apache, since there is a good chance any given website is probably
running apache. One such vulnerability involves the use of an .htaccess40 file to provide directory level

34 http://httpd.apache.org/docs/current/howto/htaccess.html
35 http://projects.webappsec.org/Server-Misconfiguration
36 http://projects.webappsec.org/Credential-and-Session-Prediction
37 http://projects.webappsec.org/OS-Commanding
38 http://projects.webappsec.org/Path-Traversal
39 http://projects.webappsec.org/URL-Redirector-Abuse
40 http://httpd.apache.org/docs/current/howto/htaccess.html

http://httpd.apache.org/docs/current/howto/htaccess.html
http://projects.webappsec.org/Server-Misconfiguration
http://projects.webappsec.org/Server-Misconfiguration
http://projects.webappsec.org/Credential-and-Session-Prediction
http://projects.webappsec.org/OS-Commanding
http://projects.webappsec.org/Path-Traversal
http://projects.webappsec.org/URL-Redirector-Abuse
http://httpd.apache.org/docs/current/howto/htaccess.html
http://httpd.apache.org/docs/current/howto/htaccess.html
http://projects.webappsec.org/Server-Misconfiguration
http://projects.webappsec.org/Credential-and-Session-Prediction
http://projects.webappsec.org/OS-Commanding
http://projects.webappsec.org/Path-Traversal
http://projects.webappsec.org/URL-Redirector-Abuse
http://httpd.apache.org/docs/current/howto/htaccess.html

Basic Authentication Processor

96

configuration (such as default 404 messages, password protected resources, directory indexing options,
etc...), while not sufficiently protecting the .htaccess file itself. By convention, any resource that provides
directory level configuration should not be exposed to the public. This means that if a user requests .htaccess
or a related resource, they should get either a 404 or a 403 error. Unfortunately, not all web servers are
configured correctly to block requests for these resources. In such a scenario, a hacker could gain valuable
intelligence on the way the server is configured. Junos WebApp Secure will automatically block any requests
for the .htaccess resource, and return a fake version of the file. The fake version of the file will contain the
directives necessary to password protect a fake resource. Should the user request the password protected
resource, Junos WebApp Secure will simulate the correct authentication method defined in .htaccess, and
simulate the existence of the fake resource. The "Protected Resource Requested" incident will trigger in the
event that the user requests the fake password protected file and does not supply a username and password
(as would be the case if they requested the file in a browser and canceled the login prompt).

Behavior: Hackers will often attempt to get the .htaccess file from various directories on a website in an
effort to find valuable information about how the server is configured. This is usually done to find a "Server
Misconfiguration41" weakness that might expose a "Credential/Session Prediction42", "OS Commanding43",
"Path Traversal44", or "URL Redirector Abuse45" vulnerability among others. The fact that an .htaccess file is
even exposed is a "Server Misconfiguration" vulnerability in itself. In this specific case, the attacker is asking
for a different resource that is referenced only from .htaccess. The resource is password protected, but the
user has not yet tried to supply credentials. This is most likely in an attempt to see if the password protected
file actually exists.

8.4.3.2.5. Password Cracked
Complexity: High (4.0)

Default Response: 1x = Permanent Block.

Cause: Apache is a web server used by many websites on the internet. As a result, hackers will often
look for vulnerabilities specific to apache, since there is a good chance any given website is probably
running apache. One such vulnerability involves the use of an .htaccess46 file to provide directory level
configuration (such as default 404 messages, password protected resources, directory indexing options,
etc...), while not sufficiently protecting the .htaccess file itself. By convention, any resource that provides
directory level configuration should not be exposed to the public. This means that if a user requests .htaccess
or a related resource, they should get either a 404 or a 403 error. Unfortunately, not all web servers are
configured correctly to block requests for these resources. In such a scenario, a hacker could gain valuable
intelligence on the way the server is configured. Junos WebApp Secure will automatically block any requests
for the .htaccess resource, and return a fake version of the file. The fake version of the file will contain the
directives necessary to password protect a fake resource. The directives will also allude to the existence
of a password database file. If the attacker requests the password database file, and then uses a tool such
John The Ripper47 to crack one of the encrypted passwords, they will be able to authenticate against the fake
protected resource successfully. Should the user request the password protected resource, and supply a
valid username and password combination (as defined in the password database), the "Password Cracked"
incident will be triggered.

41 http://projects.webappsec.org/Server-Misconfiguration
42 http://projects.webappsec.org/Credential-and-Session-Prediction
43 http://projects.webappsec.org/OS-Commanding
44 http://projects.webappsec.org/Path-Traversal
45 http://projects.webappsec.org/URL-Redirector-Abuse
46 http://httpd.apache.org/docs/current/howto/htaccess.html
47 http://www.openwall.com/john/

http://projects.webappsec.org/Server-Misconfiguration
http://projects.webappsec.org/Server-Misconfiguration
http://projects.webappsec.org/Credential-and-Session-Prediction
http://projects.webappsec.org/OS-Commanding
http://projects.webappsec.org/Path-Traversal
http://projects.webappsec.org/URL-Redirector-Abuse
http://httpd.apache.org/docs/current/howto/htaccess.html
http://www.openwall.com/john/
http://projects.webappsec.org/Server-Misconfiguration
http://projects.webappsec.org/Credential-and-Session-Prediction
http://projects.webappsec.org/OS-Commanding
http://projects.webappsec.org/Path-Traversal
http://projects.webappsec.org/URL-Redirector-Abuse
http://httpd.apache.org/docs/current/howto/htaccess.html
http://www.openwall.com/john/

Basic Authentication Processor

97

Behavior: Hackers will often attempt to get the .htaccess file from various directories on a website in an
effort to find valuable information about how the server is configured. This is usually done to find a "Server
Misconfiguration48" weakness that might expose a "Credential/Session Prediction49", "OS Commanding50",
"Path Traversal51", or "URL Redirector Abuse52" vulnerability among others. The fact that an .htaccess file is
even exposed is a "Server Misconfiguration" vulnerability in itself. In this specific case, the attacker is asking
for a different resource that is referenced only from .htaccess. The fake resource is password protected,
and the user has supplied valid authentication credentials. The only way to obtain valid credentials is to
either brute force the login (which would be the case if there were excessive numbers of "Invalid Credential"
incidents), or to access the fake password database file (usually .htpasswd) and crack one of the encrypted
passwords using an encryption cracking tool. This represents the final and most complicated step in a
successful "Credential/Session Prediction" exploit, and is usually performed long after the attack surface of the
site has been fully scoped. Unless there are excessive numbers of "Invalid Credential" incidents, which would
be the case in a brute force attack, the user must have also requested ".htpasswd", and therefore should also
have an "Apache Password File Requested" incident. If this incident is missing, then the hacker has likely
established two independent profiles in Junos WebApp Secure.

8.4.3.2.6. Basic Authentication Bruteforce
Complexity: Medium (3.0)

Default Response: 1X - CAPTCHA; 2x = Permanent Block.

Cause: Apache is a very common web server. As a result, hackers will often look for vulnerabilities specific
to Apache, since there is a good chance that any given website is running Apache. One such vulnerability
involves the use of an .htaccess file to provide directory-level configuration (password-protected resources,
directory indexing options, etc...), while not sufficiently protecting the .htaccess file itself. By convention,
configuration files should not be exposed to the public — so if a user requests .htaccess or a related resource,
they should get either a "404 Not Found" or "403 Forbidden" error. Unfortunately, an improperly-configured
installation of Apache may not block requests for these resources. In such a scenario, a hacker could gain
valuable knowledge of the way the server is configured.

Junos WebApp Secure will automatically block any requests for the .htaccess resource, and instead return
a fake version of the file, which contains the directives necessary to password-protect a fake resource.
Should the user request the password-protected resource, Junos WebApp Secure will simulate the correct
authentication method defined in .htaccess, and simulate the existence of the fake resource. The "Basic
Authentication Brute Force" incident will trigger in the event that the user requests the fake password-
protected file and repeatedly supplies an invalid username and password (as would be the case if the user
were guessing various username and password combinations).

Behavior: Hackers will often attempt to get the .htaccess file from various directories on a website in an
effort to find valuable information about how the server is configured. This is usually done to find a "Server
Misconfiguration53" weakness that might expose a "Credential/Session Prediction54", "OS Commanding55",
"Path Traversal56", or "URL Redirector Abuse57" vulnerability among others.

48 http://projects.webappsec.org/Server-Misconfiguration
49 http://projects.webappsec.org/Credential-and-Session-Prediction
50 http://projects.webappsec.org/OS-Commanding
51 http://projects.webappsec.org/Path-Traversal
52 http://projects.webappsec.org/URL-Redirector-Abuse
53 http://projects.webappsec.org/Server-Misconfiguration
54 http://projects.webappsec.org/Credential-and-Session-Prediction
55 http://projects.webappsec.org/OS-Commanding
56 http://projects.webappsec.org/Path-Traversal
57 http://projects.webappsec.org/URL-Redirector-Abuse

http://projects.webappsec.org/Server-Misconfiguration
http://projects.webappsec.org/Server-Misconfiguration
http://projects.webappsec.org/Credential-and-Session-Prediction
http://projects.webappsec.org/OS-Commanding
http://projects.webappsec.org/Path-Traversal
http://projects.webappsec.org/URL-Redirector-Abuse
http://projects.webappsec.org/Server-Misconfiguration
http://projects.webappsec.org/Server-Misconfiguration
http://projects.webappsec.org/Credential-and-Session-Prediction
http://projects.webappsec.org/OS-Commanding
http://projects.webappsec.org/Path-Traversal
http://projects.webappsec.org/URL-Redirector-Abuse
http://projects.webappsec.org/Server-Misconfiguration
http://projects.webappsec.org/Credential-and-Session-Prediction
http://projects.webappsec.org/OS-Commanding
http://projects.webappsec.org/Path-Traversal
http://projects.webappsec.org/URL-Redirector-Abuse
http://projects.webappsec.org/Server-Misconfiguration
http://projects.webappsec.org/Credential-and-Session-Prediction
http://projects.webappsec.org/OS-Commanding
http://projects.webappsec.org/Path-Traversal
http://projects.webappsec.org/URL-Redirector-Abuse

Cookie Processor

98

In this specific case, the attacker is requesting a different resource that is referenced only from .htaccess.
The fake resource is password-protected, and the user has attempted to authenticate with a large number
of bad credentials. This is most likely in an effort to guess a valid username and password combination,
such as "admin:admin", or "guest:guest". This is a poor method for locating valid usernames and passwords,
especially since the user database file .htpasswd is actually exposed (albeit fake). So a brute force attack
generally means the attacker is less sophisticated.

Because the password-protected file is not referenced from anywhere outside of .htaccess, this incident
should not happen unless an "Apache Configuration Requested" incident has occurred first. If that is not the
case, then the hacker has likely established two independent profiles in Junos WebApp Secure. This type of
behavior is generally performed when attempting to establish a successful attack vector.

8.4.4. Cookie Processor
Cookies are used by web applications to maintain state for a given user. They consist of key/value pairs that
are passed around in headers and also stored client side. Each key/value pair has various attributes including
which domains it is valid for, what paths within those domains, as well as security restrictions and expiration
information. Because this is the primary way for a web application to maintain a session, hackers will often
try to manipulate cookie values manually in an effort to escalate access or hijack someone else's session. All
of the attacks applicable to modifying form parameters are also applicable to modifying cookie parameters. It
may even be possible, although unlikely, to find an SQL injection flaw in a cookie parameter.

8.4.4.1. Configuration

Table 8.4. Cookie Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether or not to enable this process for http
traffic.

Advanced

Cookie String Cookie The fake cookie to use.

Incident: Cookie
Parameter
Manipulation

Boolean True The user modified the value of a cookie which
should never be modified.

8.4.4.2. Incidents

8.4.4.2.1. Cookie Parameter Manipulation
Complexity: Medium (3.0)

Default Response: 1x = Slow Connection 2-6 seconds and permanent Clear Inputs in 10 minutes.

Cause: Junos WebApp Secure adds a fake cookie to the websites it protects. The cookie is intended to look
as though it is part of the applications overall functionality, and is often selected to appear vulnerable (such
as naming the cookie 'debug' or 'admin' and giving it a numerical or Boolean value). The "Cookie Parameter
Manipulation" incident is triggered whenever the fake cookie value changes its value.

File Processor

99

Behavior: Modifying the inputs of a page is the foundation of a large variety of attack vectors. Basically, if
you want to get the backend server to do something different, you need to supply different input values (either
by cookie, query string, url, or form parameters). Depending on what value the user chose for the input, the
attack could fall under large number of vectors, including "Buffer Overflow58", "XSS59", "Denial of Service60",
"Fingerprinting61", "Format String62", "HTTP Response Splitting63", "Integer Overflow64", and "SQL injection65"
among many others. A common practice is to first spider the website, then test every single input on the site
for a specific set of vulnerabilities. For example, the user might first index the site, then visit each page on
the site, then test every exposed input (cookie, query string, and form inputs) with a list of SQL injection tests.
 These tests are designed to break the resulting page if the input is vulnerable. As such, the entire process
(which can involve thousands of requests) can be automated and return a clean report on which inputs should
be targeted. Because Junos WebApp Secure cookie looks just like a normal application cookie, a spider that
tests all inputs will eventually test the fake cookie as well. This means that if there is a large volume of this
incident, it is likely due to such an automated process. It should be assumed that the values tested against
the fake cookie, have also been tested against the rest of the cookies on the site.

8.4.5. File Processor
When developing websites, administrators will often rename files in order to make room for a newer version of
the file. They may also archive older files. A common vulnerability is the case where these older files are left in
the web accessible directories, and they contain non static resources. For example, consider the case where
a developer renames shopping_cart.php to shopping_cart.php.bak. If an attacker looks for php files and tries
to access all of them with a .bak extension, they may stumble across the backup file. Because the server is
not configured to parse .bak files as php files, it will serve the unexecuted script source code to the client. This
technique can yield database credentials, system credentials, as well as expose more serious vulnerabilities
in the code itself. The goal of this processor is to detect when a user is attempting to find unreferenced files.

8.4.5.1. Configuration

Table 8.5. File Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this
processor.

Advanced

Block Response ConfigurableHTTP Response The response to return when a request is
blocked due to a matching suspicious token
rule with blocking enabled.

Suspicious Tokens Collection Collection The configured suspicious extensions.

Incident: Suspicious
File Exposed

Boolean True A file which has a suspicious filename is
publicly available.

58 http://projects.webappsec.org/Buffer-Overflow
59 http://projects.webappsec.org/Cross-Site+Scripting
60 http://projects.webappsec.org/Denial-of-Service
61 http://projects.webappsec.org/Fingerprinting
62 http://projects.webappsec.org/Format-String
63 http://projects.webappsec.org/HTTP-Response-Splitting
64 http://projects.webappsec.org/Integer-Overflows
65 http://projects.webappsec.org/SQL-Injection

http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection

File Processor

100

Parameter Type Default Value Description

Incident: Suspicious
Filename

Boolean True A file with a filename that contains a
suspicious token was requested.

8.4.5.2. Incidents

8.4.5.2.1. Suspicious Filename
Complexity: Suspicious (1.0)

Default Response: 10x = Suspicious File Enumeration Incident.

Cause: Junos WebApp Secure has a list of file tokens which represent potentially sensitive files. For
example, developers will often rename source files with a ".bck" extension during debugging, and sometimes
they forget to delete the backup after they are done. Hackers often look for these left over source files. Junos
WebApp Secure is configured to look for any request to a file with a ".bck" extension (as well as any other
configured extensions), and trigger this incident if the file does not exist. An incident will not be triggered if the
file does in fact exist, and the extension is not configured to block the response. This is to avoid legitimate files
being flagged as suspicious filenames.

Behavior: There are specific files that many websites host, that contain valuable information for a hacker.
These files generally include data such as passwords, SQL schema's, source code, etc... When hackers try
to breach a site, they will often check to see if they can locate some of these special files in order to make
their jobs easier. For example, if a hacker sees that the home page is called "index.php", they may try and
request "index.php.bak", because if it exists, it will be returned as raw source code. This is usually an effort
to exploit a "Predictable Resource Location66" vulnerability. Automated scanners will generally test all of these
types of extensions (.bck, .bak, .zip, .tar, .gz, etc...) against every legitimate file that is located through simple
spidering. Because this incident is only created if the file being requested does not actually exist, it does not
represent a successful exploit.

8.4.5.2.2. Suspicious File Exposed
Complexity: Suspicious (1.0)

Default Response: 10x = Suspicious Resource Enumeration Incident.

Cause: Junos WebApp Secure has a list of file tokens which represent potentially sensitive files. For
example, developers will often rename source files with a ".bck" extension during debugging, and sometimes
they forget to delete the backup after they are done. Hackers often look for these left over source files. Junos
WebApp Secure is configured to look for any request to a file with a ".bck" extension (as well as any other
configured extensions), and trigger this incident if the extension is configured as illegal. This incident will only
be triggered if the file actually exists, and it is configured to be blocked by default. For example, the user might
request "database.sql". If the .sql extension is configured to block, and the file actually exists on the server,
this incident will be generated. If "database.sql" does not exist, then only a "Suspicious Filename" incident will
be created.

Behavior: There are specific files that many websites host, that contain valuable information for a hacker.
These files generally include data such as passwords, SQL schema's, source code, etc... When hackers try
to breach a site, they will often check to see if they can locate some of these special files in order to make
their jobs easier. For example, if a hacker sees that the home page is called "index.php", they may try and
request "index.php.bak", because if it exists, it will be returned as raw source code. This is usually an effort

66 http://projects.webappsec.org/Predictable-Resource-Location

http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/Predictable-Resource-Location

Hidden Input Form Processor

101

to exploit a "Predictable Resource Location67" vulnerability. Automated scanners will generally test all of
these types of extensions (.bck, .bak, .zip, .tar, .gz, etc...) against every legitimate file that is located through
simple spidering. This incident is only triggered when the user requested a file that would otherwise have
been successfully returned, if it were not blocked by Junos WebApp Secure. For example, the user might
request "database.sql" and actually get a 200 response from the server indicating that the file exists and is
accessible to everyone. However if the system is configured to mark the ".sql" extension as illegal, then Junos
WebApp Secure will block the request and trigger this incident. This prevents the sensitive file from potentially
being exposed to an actual malicious user. If this incident occurs, the server administrator should immediately
remove the sensitive file or change its permissions so it is no longer publicly accessible.

8.4.5.2.3. Suspicious Resource Enumeration
Complexity: Low (2.0)

Default Response: 1x = 5 day Block.

Cause: Junos WebApp Secure has a list of file tokens which represent potentially sensitive files. For
example, developers will often rename source files with a ".bck" extension during debugging, and sometimes
they forget to delete the backup after they are done. Hackers often look for these left over source files. Junos
WebApp Secure is configured to look for any request to a file with a ".bck" extension (as well as any other
configured extensions), and trigger a Suspicious Filename incident if the file does not exist. Should the
suspicious filename incident be triggered several times, this incident will then be triggered.

Behavior: There are specific files that many websites host, that contain valuable information for a hacker.
These files generally include data such as passwords, SQL schema's, source code, etc... When hackers try
to breach a site, they will often check to see if they can locate some of these special files in order to make
their jobs easier. For example, if a hacker sees that the home page is called "index.php", they may try and
request "index.php.bak", because if it exists, it will be returned as raw source code. This is usually an effort
to exploit a "Predictable Resource Location68" vulnerability. Automated scanners will generally test all of these
types of extensions (.bck, .bak, .zip, .tar, .gz, etc...) against every legitimate file that is located through simple
spidering. The first few times a user requests a filename containing a suspicious token, they will only get
"Suspicious Filename" incidents. However if they request a large volume of filenames with suspicious tokens,
then the "Suspicious Resource Enumeration" incident is generated. This incident represents a user who is
actively scanning the site with very aggressive tactics to find unlinked and sensitive data.

8.4.6. Hidden Input Form Processor
Many webmasters create forms which post to a common form handling service; using hidden fields to indicate
how the service should handle the data. A common hacking technique is to look for these hidden parameters
and see if there is any way to change the behavior of the service by manipulating its input parameters. This
processor is responsible for injecting a fake hidden input into forms in HTML responses and ensuring that
when those values are posted back to the server, they have not been modified.

8.4.6.1. Configuration

Table 8.6. Hidden Input Form Processor Configuration Parameters

Parameter Type Default Value Description

Basic

67 http://projects.webappsec.org/Predictable-Resource-Location
68 http://projects.webappsec.org/Predictable-Resource-Location

http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/Predictable-Resource-Location

Hidden Input Form Processor

102

Parameter Type Default Value Description

Processor Enabled Boolean True Whether traffic should be passed through this
processor.

Advanced

Hidden Input
Parameter

Collection Collection The possible hidden inputs on a page.

Inject Input Enabled Boolean True Whether to inject hidden inputs into HTML
forms.

Maximum Injections Integer 3 The maximum number of fake hidden
parameters that will be added to any given
URL.

Strip Fake Input Boolean True Whether to remove the fake input value from
the posted form results before proxying the
request to the backend servers. This should
only be turned off if there is some additional
security implemented on the form, where
its contents are signed on the client and
validated on the server.

Incident: Hidden
Parameter
Manipulation

Boolean True The user submitted the form and the value
of the injected parameter is not what was
expected.

Incident: Hidden Input
Type Manipulation

Boolean True The user submitted the form and the value
of the injected parameter is not what was
expected. It was also modified to post a file.

8.4.6.2. Incidents

8.4.6.2.1. Parameter Type Manipulation
Complexity: High (4.0)

Default Response: 1x = Permanent Clear Inputs.

Cause: Junos WebApp Secure inspects outgoing traffic for HTML forms with a "POST" method type. Forms
that post to a local URL (within the same domain), will be modified to include a fake hidden input with a
defined value. The input is intended to look as though it was always part of the form, and is often selected to
appear vulnerable (such as naming the input 'debug' or 'loglevel' and giving it a numerical or Boolean value).
The input will however, always be assigned a value that can be represented as a string of characters (in other
words, not binary data). The "Parameter Type Manipulation" incident is triggered whenever the fake hidden
input is modified from its originally assigned value in order to submit a multipart file.

Behavior: Modifying the inputs of a page is the foundation of a large variety of attack vectors. Basically, if
you want to get the backend server to do something different, you need to supply different input values (either
by cookie, query string, url, or form parameters). Depending on what value the user chose for the input, the
attack could fall under large number of vectors, including "Buffer Overflow69", "XSS70", "Denial of Service71",

69 http://projects.webappsec.org/Buffer-Overflow
70 http://projects.webappsec.org/Cross-Site+Scripting
71 http://projects.webappsec.org/Denial-of-Service

http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service

Hidden Input Form Processor

103

"Fingerprinting72", "Format String73", "HTTP Response Splitting74", "Integer Overflow75", and "SQL injection76"
among many others. Unlike a normal "Hidden Parameter Manipulation" incident, this version is triggered when
the user changes the encoding of the form and submits the hidden input as a file post. This is likely in an
attempt to either achieve a "Buffer Overflow", or to exploit a filter evasion weakness, that might have otherwise
blocked the value being submitted. A common practice is to first spider the website, then test every single
input on the site for a specific set of vulnerabilities. For example, the user might first index the site, then visit
each page on the site, then test every exposed input (cookie, query string, and form inputs) with a list of SQL
injection tests. These tests are designed to break the resulting page if the input is vulnerable. As such, the
entire process (which can involve thousands of requests) can be automated and return a clean report on
which inputs should be targeted. Because Junos WebApp Secure injects several fake inputs, a spider that
tests all inputs will eventually test the fake input as well. This means that if there is a large volume of this
incident, it is likely due to such an automated process. It should be assumed that the values tested against
the fake input, have also been tested against the rest of the inputs on the site.

8.4.6.2.2. Hidden Parameter Manipulation
Complexity: Medium (3.0)

Default Response: 1x = Slow Connection 2-6 seconds. 2x = Logout User. 3x = Clear Inputs.

Cause: Junos WebApp Secure inspects outgoing traffic for HTML forms with a "POST" method type. Forms
that post to a local URL (within the same domain), will be modified to include a fake hidden input with a
defined value. The input is intended to look as though it was always part of the form, and is often selected to
appear vulnerable (such as naming the input 'debug' or 'loglevel' and giving it a numerical or Boolean value).
The "Hidden Parameter Manipulation" incident is triggered whenever the fake hidden input is modified from its
originally assigned value.

Behavior: Modifying the inputs of a page is the foundation of a large variety of attack vectors. Basically, if
you want to get the backend server to do something different, you need to supply different input values (either
by cookie, query string, url, or form parameters). Depending on what value the user chose for the input, the
attack could fall under large number of vectors, including "Buffer Overflow77", "XSS78", "Denial of Service79",
"Fingerprinting80", "Format String81", "HTTP Response Splitting82", "Integer Overflow83", and "SQL injection84"
among many others. A common practice is to first spider the website, then test every single input on the site
for a specific set of vulnerabilities. For example, the user might first index the site, then visit each page on
the site, then test every exposed input (cookie, query string, and form inputs) with a list of SQL injection tests.
 These tests are designed to break the resulting page if the input is vulnerable. As such, the entire process
(which can involve thousands of requests) can be automated and return a clean report on which inputs should
be targeted. Because Junos WebApp Secure injects several fake inputs, a spider that tests all inputs will
eventually test the fake input as well. This means that if there is a large volume of this incident, it is likely due
to such an automated process. It should be assumed that the values tested against the fake input, have also
been tested against the rest of the inputs on the site.

72 http://projects.webappsec.org/Fingerprinting
73 http://projects.webappsec.org/Format-String
74 http://projects.webappsec.org/HTTP-Response-Splitting
75 http://projects.webappsec.org/Integer-Overflows
76 http://projects.webappsec.org/SQL-Injection
77 http://projects.webappsec.org/Buffer-Overflow
78 http://projects.webappsec.org/Cross-Site+Scripting
79 http://projects.webappsec.org/Denial-of-Service
80 http://projects.webappsec.org/Fingerprinting
81 http://projects.webappsec.org/Format-String
82 http://projects.webappsec.org/HTTP-Response-Splitting
83 http://projects.webappsec.org/Integer-Overflows
84 http://projects.webappsec.org/SQL-Injection

http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection

Hidden Link Processor

104

8.4.7. Hidden Link Processor
When trying to exploit a site, hackers will often scan the contents of the site in search of directories and files
that are of interest. Because this activity is done at the source level, the hacker finds every file referenced,
whereas when a user views a website, they can only see the links that are visible according to the HTML. This
processor injects a fake link into documents that references a file that looks interesting. The link is injected in
such a way that prevents it from being rendered when the browser loads the page. This means that no normal
user would ever find/click on the link, but that a scanner or hacker who is looking at the source code likely will.

8.4.7.1. Configuration

Table 8.7. Hidden Link Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this
processor.

Advanced

Hidden Links ConfigurableHidden Links The set of hidden links that can be injected
into the site.

Inject Link Enabled Boolean True Whether to inject the link into HTTP
responses.

Incident: Link
Directory Indexing

Boolean True The user requested a directory index on one
of the fake parent directories of the linked file.

Incident: Link
Directory Spidering

Boolean True The user requested a resource inside the fake
directory of the linked file.

Incident: Malicious
Resource Request

Boolean True The user requested the fake linked resource.

8.4.7.2. Incidents

8.4.7.2.1. Link Directory Indexing
Complexity: Low (2.0)

Default Response: 1x = Slow Connection 2-6 seconds and 1 day Block.

Cause: Junos WebApp Secure injects a hidden link into pages on the protected web application. This link is
not exposed visually to users of the website. In order to find the link, a user would need to manually inspect
the source code of the page. If a user finds the hidden link code in the HTML, and attempts to get a directory
file listing from the directory the link points to, this incident will be triggered.

Behavior: A common technique for hackers when scoping the attack surface of a website is to spider the site
and collect the locations of all of its pages. This is generally done using a simple script that looks for URL's in
the returned HTML of the home page, then requests those pages and checks for URL's in their source, and
so forth. Legitimate search engine spiders will do this as well. But the difference between a legitimate spider
and a malicious user, is how aggressively they will use the newly discovered URL to derive other URLs. This
incident triggers when the user goes beyond just checking the linked URL, but instead also attempts to get a

Query String Processor

105

file listing from the directory the URL points to. A legitimate spider would not do this, because it is considered
fairly invasive. This activity is generally looking for a "Directory Indexing85"weakness on the server, in an effort
to locate unlinked and possibly sensitive resources.

8.4.7.2.2. Link Directory Spidering
Complexity: Low (2.0)

Default Response: 1x = Slow Connection 2-6 seconds and 5 day Block in 6 minutes.

Cause: Junos WebApp Secure injects a hidden link into pages on the protected web application. This link is
not exposed visually to users of the website. In order to find the link, a user would need to manually inspect
the source code of the page. If a user finds the hidden link code in the HTML, and attempts to request some
other arbitrary file in the same fake directory as the link, this incident will be triggered.

Behavior: A common technique for hackers when scoping the attack surface of a website is to spider the site
and collect the locations of all of its pages. This is generally done using a simple script that looks for URL's
in the returned HTML of the home page, then requests those pages and checks for URL's in their source,
and so forth. Legitimate search engine spiders will do this as well. But the difference between a legitimate
spider and a malicious user, is how aggressively they will use the newly discovered URL to derive other URLs.
This incident triggers when the user goes beyond just checking the linked URL, but instead also attempts
to request one or more arbitrary files inside the same directory as the file referenced by the hidden link. A
legitimate spider would not do this, because it is considered fairly invasive. This activity is generally looking
for a "Directory Indexing86" weakness on the server, or a "Predictable Resource Location"87 vulnerability, in an
effort to locate unlinked and possibly sensitive resources.

8.4.7.2.3. Malicious Resource Request
Complexity: Suspicious (1.0)

Default Response: 1x = Slow Connection 2-6 seconds and 5 day Block in 6 minutes.

Cause: Junos WebApp Secure injects a hidden link into pages on the protected web application, which is
only discoverable through manual source code inspection. If a user discovers the hidden link, and attempts to
request the file it references, this incident will be triggered.

Behavior: When scoping the attack surface of a website, hackers commonly spider the site and collect the
locations of all pages. Spidering can be performed with the assistance of simple scripts that look for URLs in
the returned HTML of the home page, then request those pages and check for URLs in their source, and so
forth. Legitimate search engine spiders will do this as well — but the difference between legitimate spiders and
malicious users lies in how aggressively they will use the newly discovered URL to derive other URLs.

This incident triggers when the user simply requests the hidden link URL. Because this can also be triggered
by a legitimate search engine spider, this type of incident is not considered malicious on its own.

8.4.8. Query String Processor
Hackers tend to manipulate the values of query string parameters in order to get the application to behave
differently. The goal of this processor is to add fake query string parameters to some of the links and forms in
the page, and verify that they do not get modified when accessed by the user.

85 http://projects.webappsec.org/Directory-Indexing
86 http://projects.webappsec.org/Directory-Indexing
87 http://projects.webappsec.org/Predictable-Resource-Location

http://projects.webappsec.org/Directory-Indexing
http://projects.webappsec.org/Directory-Indexing
http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/Directory-Indexing
http://projects.webappsec.org/Directory-Indexing
http://projects.webappsec.org/Predictable-Resource-Location

Query String Processor

106

8.4.8.1. Configuration

Table 8.8. Query String Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this
processor.

Advanced

Fake Parameters Collection Collection The collection of fake parameters to add to
the links which already have parameters.

Inject Parameter
Enabled

Boolean True Whether to inject query string parameters on
urls in HTTP responses.

Maximum Injections Integer 3 Whether to inject query string parameters on
urls in HTTP responses.

Randomization Token String [Not Set] Some websaites use complex redirection
rules or modify query string parameters of
static links using javascript on the client. In
these situations, the randomization of fake
query parameter values may be problematic.
To resolve the issue, you can either update
the list of fake parameters so that it does not
include randomized tokens, or you can define
a randomization token name here. If you
define a randomization token, then the data
used to randomize which value is selected
will be transfered as an additional query string
parameter by this name. It is recommended
that you leave this field empty unless you
experience a lot of fake positives on query
parameter manipulation incidents shortly after
setting up Junos Webapp Secure to protect a
website.

Strip Fake Input Boolean True Whether to remove the fake input value from
the query string before proxying the request
to the backend servers. This should only be
turned off if there is some additional security
implemented on the site, where links are
signed on the client and validated on the
server.

Incident: Query
Parameter
Manipulation

Boolean True The user manually modified the value of a
query string parameter.

Robots Processor

107

8.4.8.2. Incidents

8.4.8.2.1. Query Parameter Manipulation
Complexity: Low (2.0)

Default Response: 3x = Slow Connection 2-6 seconds. 5x = 1 day Clear Inputs.

Cause: Junos WebApp Secure injects a fake query parameter into some of the links of the protected web
site. This query parameter has a known value, and should never change, because it is not part of the actual
web application. If a user modifies the query parameter value, this incident will be triggered.

Behavior: Query parameters represent the most visible form of user input a web application exposes. They
are clearly visible in the address bar, and can be easily changed by even an inexperienced user. However
most users do not attempt to change values directly in the query string, unless they are trying to perform some
action the website does not normally expose through its interface, or does not make sufficiently easy. Because
it is so easy for a normal user to accidentally change a query parameter, this incident alone is not considered
strictly malicious. However depending on the value that is submitted, this could be part of a number of different
exploit attempts, including "Buffer Overflow88", "XSS89", "Denial of Service90", "Fingerprinting91", "Format
String92", "HTTP Response Splitting93", "Integer Overflow94", and "SQL injection95".

8.4.9. Robots Processor
The Robots.txt proxy processor is responsible for catching malicious spiders that do not behave in accordance
with established standards for spidering. Hackers often utilize the extra information sites expose to spiders,
and then use that information to access resources normally not linked from the public site. Because this
activity is effectively breaking established standards for spidering, this processor will also identify hackers who
are using the information maliciously.

8.4.9.1. Configuration

Table 8.9. Robots Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this
processor.

Advanced

Fake Disallowed
Directories

String Random The path to a fake directory to add to the
disallow rules in the robots.txt file. This path
should be completely fake and not overlap
with actual directories

88 http://projects.webappsec.org/Buffer-Overflow
89 http://projects.webappsec.org/Cross-Site+Scripting
90 http://projects.webappsec.org/Denial-of-Service
91 http://projects.webappsec.org/Fingerprinting
92 http://projects.webappsec.org/Format-String
93 http://projects.webappsec.org/HTTP-Response-Splitting
94 http://projects.webappsec.org/Integer-Overflows
95 http://projects.webappsec.org/SQL-Injection

http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection

Robots Processor

108

Parameter Type Default Value Description

Incident: Malicious
Spider Activity

Boolean True The user requested a resource which was
restricted in the spider rules file, indicating this
user is not a good spider, but is spidering the
site anyway.

8.4.9.2. Incidents

8.4.9.2.1. Malicious Spider Activity
Complexity: Low (2.0)

Default Response: 1x = Captcha and Slow Connection 2-6 seconds. 6x = 1 day Block.

Cause: One of the standard resources that just about every website should expose is called robots.txt. This
resource is used by search engines to instruct them on how to spider the website. Two of the more important
directives are "allow" and "disallow". These directives are used to identify which directories a spider should
index, and which directories it should stay away from. Good practice for any website is to lock down any
resource that should not be exposed. However some web masters simply add a "disallow" statement so that
those resources do not get indexed and therefore are never found by users. This technique does not work,
because attackers will often access robots.txt and intentionally traverse the "disallow" directories in search of
vulnerabilities. So in effect, the listing of such directories is basically pointing hackers in the direction of the
most sensitive resources on the site. Junos WebApp Secure will intercept requests for robots.txt and either
generate a completely fake robots.txt file (if one does not exist), or modify the existing version by injecting a
fake directory as a disallow directive. The "Malicious Spider Activity" incident is triggered whenever a user
attempts to request a resource in the fake disallow directory, or attempts to perform a directory index on the
disallow directory.

Behavior: Requesting robots.txt occurs in two different scenarios. The first is where a legitimate spider, such
as Google, attempts to index the website. In this case, the robots.txt file will be requested, and no requests
from that client will be issued to the disallow directories. In the second scenario, a malicious user requests
robots.txt and then indexes some or all of the disallow directories. In this specific case, the user has requested
robots.txt to obtain the list of disallow directories, and then started searching for resources in those directories.
 This activity is performed to find a "Predictable Resource Location96" vulnerability. Because spidering a
directory tends to be a noisy process (lots of requests), there are likely to be many of these incidents if there
are any. The sum of occurrences of this incident represent the type of activity the user is performing to index
a directory. The set of URL's for which this incident is triggered, represent the filenames the malicious user is
testing for. For example, if they were searching for PDF files that contain stock information, there would be an
incident for each filename with a PDF extension they tried to request. There is a very strong chance that if the
filename was requested in the disallow directory, it was probably requested in every other directory on the site
as well. This type of behavior is generally observed while the client is attempting to establish the overall attack
surface of the website (or in the case of a legitimate spider, they are attempting to establish the desired index
limitations).

96 http://projects.webappsec.org/Predictable-Resource-Location

http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/Predictable-Resource-Location

Activity Processors

109

8.5. Activity Processors

8.5.1. Custom Authentication Processor
The custom authentication processor is designed to add strong and secure authentication to any page in
the protected application. The authentication processor also logs malicious activity like invalid logins and
modifying cookies or query parameters.

8.5.1.1. Configuration

Table 8.10. Custom Authentication Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this
processor.

User Accounts Collection [collection:0] The list of valid user accounts to use for this
processor.

Advanced

Auth Cookie Name String Random The name of the authentication cookie.

Login Page Timeout Integer 10 Minutes The number of seconds a login page can be
used before it times out. This is intended to
prevent attacks based on watching network
traffic. It should be as short as is tolerable.

MD5 Script Name String Random The name of the Javascript resource that
contains the MD5 code.

Session Timeout Integer 1 Hour The number of seconds a session can be idle
before it times out.

Incident: Auth Cookie
Tampering

Boolean True The user has modified the cookie used to
manage custom authentication, probably in
an attempt to expose sensitive information or
bypass access restrictions.

Incident: Auth Input
Parameter Tampering

Boolean True The user has modified the parameters used
to manage custom authentication, probably in
an attempt to expose sensitive information or
bypass the authentication mechanism.

Incident: Auth Invalid
Login

Boolean True The user has attempted to login but supplied
invalid credentials, this could be perfectly
normal, but large numbers of this type of
incident would indicate a brute force attack.

Incident: Auth Query
Parameter Tampering

Boolean True The user has modified the query parameters
that were submitted when the user was asked
to originally login. This is likely in an attempt
to probe the authentication mechanism for
exploits.

Custom Authentication Processor

110

8.5.1.2. Incidents

8.5.1.2.1. Auth Input Parameter Tampering
Complexity: Medium (3.0)

Default Response: 3x = Warn User, 5x = Captcha. 9x = 1 day Clear Inputs.

Cause: Junos WebApp Secure provides the capability of password protecting any URL on the protected
site. This means that if a user attempts to access that URL, they will be prompted to enter a username
and password before the original request is allowed to be completed. This incident is triggered when a user
attempts to manipulate the hidden form parameters used to handle authentication.

Behavior: Manipulating hidden input fields in a form, for whatever reason is generally considered malicious.
 In this case, since the form is being used to password protect a resource, it is likely that the attacker is trying
to bypass the authentication by finding a vulnerability in the authentication mechanism. Depending on the
modified value they submit, they could be attempting to launch a "Buffer Overflow97", "XSS98", "Denial of
Service99", "Fingerprinting100", "Format String101", "HTTP Response Splitting102", "Integer Overflow103", or "SQL
injection104" attack among many others.

8.5.1.2.2. Auth Query Parameter Tampering
Complexity: Low (2.0)

Default Response: 1x = Warn User. 2x = 1 day Clear Inputs.

Cause: Junos WebApp Secure provides the capability of password protecting any URL on the protected
site. This means that if a user attempts to access that URL, they will be prompted to enter a username
and password before the original request is allowed to be completed. This incident is triggered when a user
attempts to manipulate the query parameters that were submitted with the original unauthenticated request,
after authentication has been completed.

Behavior: Manipulating query parameters after authenticating is not very easy to do without a 3rd party
tool, and has no legitimate purpose. As such, this type of behavior is most likely related to a user who is
trying to smuggle a malicious payload through a network or web firewall. Depending on the value the user
submits for the modified query string, they could be attempting a "Buffer Overflow105", "XSS106", "Denial of
Service107", "Fingerprinting108", "Format String109", "HTTP Response Splitting110", "Integer Overflow111", or
"SQL injection112" attack among many others. One interesting note is that the user has actually authenticated
in order to cause this incident. As such, it is also likely that the account for which the user authenticated has

97 http://projects.webappsec.org/Buffer-Overflow
98 http://projects.webappsec.org/Cross-Site+Scripting
99 http://projects.webappsec.org/Denial-of-Service
100 http://projects.webappsec.org/Fingerprinting
101 http://projects.webappsec.org/Format-String
102 http://projects.webappsec.org/HTTP-Response-Splitting
103 http://projects.webappsec.org/Integer-Overflows
104 http://projects.webappsec.org/SQL-Injection
105 http://projects.webappsec.org/Buffer-Overflow
106 http://projects.webappsec.org/Cross-Site+Scripting
107 http://projects.webappsec.org/Denial-of-Service
108 http://projects.webappsec.org/Fingerprinting
109 http://projects.webappsec.org/Format-String
110 http://projects.webappsec.org/HTTP-Response-Splitting
111 http://projects.webappsec.org/Integer-Overflows
112 http://projects.webappsec.org/SQL-Injection

http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection

Custom Authentication Processor

111

been compromised and should be updated (with a new password). Although it is possible that the true owner
of the account has executed the malicious action, and should therefore potentially be banned.

8.5.1.2.3. Auth Cookie Tampering
Complexity: Medium (3.0)

Default Response: 1x = Warn User, 2x = Captcha. 3x = 1 day Strip Inputs.

Cause: Junos WebApp Secure provides the capability of password protecting any URL on the protected
site. This means that if a user attempts to access that URL, they will be prompted to enter a username and
password before the original request is allowed to be completed. This incident is triggered when a user
attempts to manipulate the cookie used to maintain the authenticated session once the user logs in.

Behavior: Manipulating cookies is not easy to do without a 3rd party tool, and has no legitimate purpose.
As such, this type of behavior is most likely related to a user who is trying to perform a "Credential/Session
Prediction113" attack, or execute an input based attack such as a "Buffer Overflow114", "XSS115", "Denial of
Service116", "Fingerprinting117", "Format String118", "HTTP Response Splitting119", "Integer Overflow120", or
"SQL injection121" attack among many others. One interesting note is that the user has actually authenticated
in order to cause this incident. As such, it is also likely that the account for which the user authenticated has
been compromised and should be updated (with a new password). Although it is possible that the true owner
of the account has executed the malicious action, and should therefore potentially be banned.

8.5.1.2.4. Authentication Brute Force
Complexity: Medium (3.0)

Default Response: 1x = Captcha. 2x = 1 day Block.

Cause: Junos WebApp Secure provides the capability of password protecting any URL on the protected
site. This means that if a user attempts to access that URL, they will be prompted to enter a username
and password before the original request is allowed to be completed. This incident is triggered when a user
submits a large volume of invalid username and password combinations.

Behavior: Submitting a single invalid username or password is likely a user typo, and is not necessarily
malicious. However it does represent a security event, and a large number of these events may represent a
more serious threat such as "Brute Force122". It is possible however, that the invalid username or password
might also be an attack vector targeted at the authentication mechanism such as a "Buffer Overflow123",
"XSS124", "Denial of Service125", "Fingerprinting126", "Format String127", "HTTP Response Splitting128", "Integer

113 http://projects.webappsec.org/Credential-and-Session-Prediction
114 http://projects.webappsec.org/Buffer-Overflow
115 http://projects.webappsec.org/Cross-Site+Scripting
116 http://projects.webappsec.org/Denial-of-Service
117 http://projects.webappsec.org/Fingerprinting
118 http://projects.webappsec.org/Format-String
119 http://projects.webappsec.org/HTTP-Response-Splitting
120 http://projects.webappsec.org/Integer-Overflows
121 http://projects.webappsec.org/SQL-Injection
122 http://projects.webappsec.org/Brute-Force
123 http://projects.webappsec.org/Buffer-Overflow
124 http://projects.webappsec.org/Cross-Site+Scripting
125 http://projects.webappsec.org/Denial-of-Service
126 http://projects.webappsec.org/Fingerprinting
127 http://projects.webappsec.org/Format-String
128 http://projects.webappsec.org/HTTP-Response-Splitting

http://projects.webappsec.org/Credential-and-Session-Prediction
http://projects.webappsec.org/Credential-and-Session-Prediction
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Brute-Force
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/Credential-and-Session-Prediction
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Brute-Force
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting

Cookie Protection Processor

112

Overflow129", or "SQL injection130" attack among many others. This incident is a higher level incident that
gets tripped when dozens of "Auth Invalid Login" incidents are created. As such, it does not contain much
information about the actual accounts being targeted. If more detail is desired, the underlying "Auth Invalid
Login" incidents should be reviewed. These incidents are only suspicious (not considered malicious on their
own), so the filtering option will need to be set to show non malicious incidents.

8.5.1.2.5. Auth Invalid Login
Complexity: Suspicious (1.0)

Default Response: 20x = Authentication Brute Force Incident.

Cause: Junos WebApp Secure provides the capability of password protecting any URL on the protected
site. This means that if a user attempts to access that URL, they will be prompted to enter a username
and password before the original request is allowed to be completed. This incident is triggered when a user
submits an invalid username or password. This incident alone is not necessarily malicious, as it is possible for
a legitimate user to accidentally type their username or password incorrectly.

Behavior: Submitting a single invalid username or password is likely a user typo, and is not necessarily
malicious. However it does represent a security event, and a large number of these events may represent a
more serious threat such as "Brute Force131". It is possible however, that the invalid username or password
might also be an attack vector targeted at the authentication mechanism such as a "Buffer Overflow132",
"XSS133", "Denial of Service134", "Fingerprinting135", "Format String136", "HTTP Response Splitting137", "Integer
Overflow138", or "SQL injection139" attack among many others. So if the value specified for the username
and password does not look like a legitimate username and password (they are too long, or contain unusual
characters), then this incident may be more serious. However, even in this case, the user is more likely to
submit dozens of invalid credentials (not just one), and there is a different incident for that scenario.

8.5.2. Cookie Protection Processor
This processor is responsible for protecting a set of application cookies from modification or assignment by
the user.

8.5.2.1. Configuration

Table 8.11. Cookie Protection Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this
processor.

129 http://projects.webappsec.org/Integer-Overflows
130 http://projects.webappsec.org/SQL-Injection
131 http://projects.webappsec.org/Brute-Force
132 http://projects.webappsec.org/Buffer-Overflow
133 http://projects.webappsec.org/Cross-Site+Scripting
134 http://projects.webappsec.org/Denial-of-Service
135 http://projects.webappsec.org/Fingerprinting
136 http://projects.webappsec.org/Format-String
137 http://projects.webappsec.org/HTTP-Response-Splitting
138 http://projects.webappsec.org/Integer-Overflows
139 http://projects.webappsec.org/SQL-Injection

http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Brute-Force
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Brute-Force
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection

Error Processor

113

Parameter Type Default Value Description

Protected Cookies Collection Collection The name of the protected cookie.

Advanced

Protected Cookie
Signature Suffix

String Random The suffix to add to the protected cookie
names when generating a signature cookie.
For example, if the protected cookie is
PHPSESSID and the suffix is _MX, then
the signature for PHPSESSID would be in a
cookie named PHPSESSID_MX.

Incident: Application
Cookie Manipulation

Boolean True The user either attempted to modify one of the
protected cookies, or attempted to assign a
new value.

8.5.2.2. Incidents

8.5.2.2.1. Application Cookie Manipulation
Complexity: Low (2.0)

Default Response: 1x = Warn User and Logout User. 2x = 5 day Clear Inputs.

Cause: Junos WebApp Secure is designed to provide additional protection to cookies used by the web
application for tracking user sessions. This is done by issuing a signature cookie any time the web application
issues a "protected cookie"(which cookies to protect is defined in configuration). The signature cookie ties
the application cookie (such as PHPSESSID) to the Junos WebApp Secure session cookie. If any of the
3 cookies are modified (Junos WebApp Secure session cookie, signature cookie, or the actual application
cookie), then this incident will be triggered, and the application cookie will be terminated (effectively
terminating the users session). This prevents any users from manually creating a session cookie, hijacking
another users cookie, or manipulating an existing cookie.

Behavior: Manipulation of cookies is generally performed in order to hijack another user's session. However
because cookies represent another type of application input, modifications could also be performed to
attempt other exploits. If the modified value resembles a legitimate value for the application cookie, then this
is likely a session hijacking attempt. If the cookie contains other values that are clearly not valid, then it is
more then likely an attack on generic application inputs such as a "Buffer Overflow140", "XSS141", "Denial of
Service142", "Fingerprinting143", "Format String144", "HTTP Response Splitting145", "Integer Overflow146", and
"SQL injection147" attack among many others.

8.5.3. Error Processor
Errors and their contents play a big part in hacking a website. When a hacker obtains an error message,
it provides useful information, the very least of which is that the attacker found a way to do something

140 http://projects.webappsec.org/Buffer-Overflow
141 http://projects.webappsec.org/Cross-Site+Scripting
142 http://projects.webappsec.org/Denial-of-Service
143 http://projects.webappsec.org/Fingerprinting
144 http://projects.webappsec.org/Format-String
145 http://projects.webappsec.org/HTTP-Response-Splitting
146 http://projects.webappsec.org/Integer-Overflows
147 http://projects.webappsec.org/SQL-Injection

http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection

Error Processor

114

unintended in the web application and the server executed code to handle it. As such, when a user attempts
to hack a website, they frequently induce and receive error messages. Often these error messages are
very unusual and are not common when a normal user visits the site. For example, the error code 400 (Bad
Request) is returned when the raw data in a request does not follow the HTTP standards. While it is possible
to get a 400 error by typing invalid characters into the URL, the majority of these errors are caused by 3rd
party software (usually not a browser), improperly communicating with the server. A hacker might for example,
manually construct a malicious request and forget to include the "Host" header. The goal of this processor is to
record unusual and unexpected errors as incidents.

This processor will also monitor all 404 errors and attempt to identify Common Directory Enumeration and
User Directory Enumeration.

8.5.3.1. Configuration

Table 8.12. Error Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this
processor.

Legitimate Error
Detection Enabled

Boolean True Whether to attempt to identify errors in the
protected web applications so that they can be
ignored.

Advanced

Error Cache
Expiration

Integer 43200 (12 hours) The number of seconds to cache an error
condition so that subsequent matching error
conditions from other users can be identified.
The less traffic the site sees on a regular
basis, the higher this value must be. The
recommended default is for sites that see
several thousand users a day or more.

Error Cache Size Integer 50 The number of error conditions to cache for
each level of specificity. If too many error
conditions are encountered in a short period
of time, this will prevent the tracking code from
consuming too much memory. Errors at the
full URL with query string specificity will cache
this many conditions, at the URL only level it
will cache twice this many, and at the filename
level, it will cache 3 times as many as this
value.

Filename Only
Expiration

Integer 259200 (3 days) The number of seconds that an error must not
be encountered on a filename regardless of its
location before an ignored error starts being
recorded again.

Filename Only
Threshold

Integer 70 The maximum number of unique users who
can hit a specific filename, regardless of
location, and get the same error before it

Error Processor

115

Parameter Type Default Value Description
stops being recorded as suspicious (zero = do
not track based on filename).

URL With Query
Expiration

Integer 259200 (3 days) The number of seconds that an error must not
be encountered on the full URL with query
string before an ignored error starts being
recorded again.

URL With Query
Threshold

Integer 30 The maximum number of unique users who
can hit a full URL including query string and
get the same error before it stops being
recorded as suspicious (zero = do not track
based on full url).

URL Without Query
Expiration

Integer 259200 (3 days) The number of seconds that an error must not
be encountered on the URL excluding query
string before an ignored error starts being
recorded again.

URL Without Query
Threshold

Integer 50 The maximum number of unique users who
can hit a URL excluding query string and get
the same error before it stops being recorded
as suspicious (zero = do not track based on
url).

100 Continue ConfigurableError Status Continue.

101 Switching
Protocols

ConfigurableError Status Switching Protocols.

102 Processing ConfigurableError Status Processing.

300 Multiple Choices ConfigurableError Status Multiple Choices.

301 Moved
Permanently

ConfigurableError Status Moved Permanently.

302 Found ConfigurableError Status Found.

303 See Other ConfigurableError Status See Other.

304 Not Modified ConfigurableError Status Not Modified.

305 Use Proxy ConfigurableError Status Use Proxy.

306 Switch Proxy ConfigurableError Status Switch Proxy.

307 Temporary
Redirect

ConfigurableError Status Switch Proxy.

400 Bad Request ConfigurableError Status Bad Request.

401 Unauthorized ConfigurableError Status Unauthorized.

402 Payment
Required

ConfigurableError Status Payment Required.

403 Forbidden ConfigurableError Status Forbidden.

404 Not Found ConfigurableError Status Not Found.

405 Method Not
Allowed

ConfigurableError Status Not allowed.

Error Processor

116

Parameter Type Default Value Description

406 Not Acceptable ConfigurableError Status Not acceptable.

407 Proxy
Authentication
Required

ConfigurableError Status Proxy Authentication Required.

408 Request Timeout ConfigurableError Status Request Timeout.

409 Conflict ConfigurableError Status Conflict.

410 Gone ConfigurableError Status Gone.

411 Length Required ConfigurableError Status Length Required.

412 Precondition
Failed

ConfigurableError Status Precondition Failed.

413 Request Entity
Too Large

ConfigurableError Status Request Entity Too Large.

414 Request-URI Too
Long

ConfigurableError Status Request-URI Too Long.

415 Unsupported
Media Type

ConfigurableError Status Unsupported Media Type.

416 Requested
Range Not Satisfiable

ConfigurableError Status Requested Range Not Satisfiable.

417 Expectation
Failed

ConfigurableError Status Expectation Failed.

418 I'm a teapot ConfigurableError Status 418 I'm a teapot.

422 Unprocessable
Entity

ConfigurableError Status Unprocessable Entity.

423 Locked ConfigurableError Status Locked.

424 Failed
Dependency

ConfigurableError Status Failed Dependency.

425 Unordered
Collection

ConfigurableError Status Unordered Collection.

426 Upgrade
Required

ConfigurableError Status Upgrade Required.

449 Retry With ConfigurableError Status Retry With.

450 Blocked by
Windows Parental
Controls

ConfigurableError Status Blocked by Windows Parental Controls.

500 Internal Server
Error

ConfigurableError Status Internal Server Error.

501 Not Implemented ConfigurableError Status Not Implemented.

502 Bad Gateway ConfigurableError Status Bad Gateway.

503 Service
Unavailable

ConfigurableError Status Service Unavailable.

504 Gateway Timeout ConfigurableError Status Gateway Timeout.

Error Processor

117

Parameter Type Default Value Description

505 HTTP Version
Not Supported

ConfigurableError Status HTTP Version Not Supported.

506 Variant Also
Negotiates

ConfigurableError Status Variant Also Negotiates.

507 Insufficient
Storage

ConfigurableError Status Insufficient Storage.

509 Bandwidth Limit
Exceeded

ConfigurableError Status Bandwidth Limit Exceeded.

510 Not Extended ConfigurableError Status Not Extended.

Incident: Illegal
Response Status

Boolean True The user issued a request that resulted in an
error status code that is considered suspicious
and possibly malicious.

Incident: Suspicious
Response Status

Boolean True The user issued a request that resulted in a
known error status code generally involved
in malicious behavior. On its own this is not
enough to classify abuse, but patterns of this
indicator may lead to higher level malicious
incidents.

Incident: Unexpected
Response Status

Boolean True The user issued a request that resulted in
an unknown error status code and could
represent a successful exploit.

Incident: Unknown
Common Directory
Requested

Boolean True The user has requested a directory that does
not exist. The directory is in a list of common
directory names, so it is likely that this request
is in an attempt to find a directory that is not
linked from the site.

Incident: Unknown
User Directory
Requested

Boolean True The user has requested a directory for a
specific system user that does not exist. The
username is in a list of common usernames,
so it is likely that this request is in an attempt
to identify a user account that is not linked
from the site.

8.5.3.2. Incidents

8.5.3.2.1. Illegal Response Status
Complexity: Suspicious (1.0)

Default Response: None.

Cause: Junos WebApp Secure monitors the various status codes returned by the protected website and
compares them to a configurable list of know and acceptable status codes. Some status codes are expected
during normal usage of the site (such as 200 - OK, or 403 - Not Modified), but some status codes are much
less common for a normal user (such as 500 - Server Error, or 404 - File Not Found). When a user issues a
request that results in a status code that is configured as illegal, then this incident will be triggered.

Error Processor

118

Behavior: In the process of attempting to find vulnerabilities on a web server, hackers will often encounter
errors. Just a single error or two is likely not a problem, because even legitimate users accidentally type a
URL incorrectly on occasion. However when excessive numbers of unexpected status codes are returned,
the behavior of the user can be narrowed down and classified as malicious. The actual vulnerability an
attacker is looking for, can be identified through the status codes they are being returned. For example,
if the user is getting a lot of 404 errors, they are likely searching for unlinked files ("Predictable Resource
Location148"). If the user is getting a lot of 500 errors, they may be trying to establish a successful "SQL
Injection149" or "XSS150" vulnerability.

8.5.3.2.2. Suspicious Response Status
Complexity: Suspicious (1.0)

Default Response: 10x 404 = Resource Enumeration Incident.

Cause: Junos WebApp Secure monitors the various status codes returned by the protected website and
compares them to a configurable list of know and acceptable status codes. Some status codes are expected
during normal usage of the site (such as 200 - OK, or 403 - Not Modified), but some status codes are much
less common for a normal user (such as 500 - Server Error, or 404 - File Not Found). When a user issues a
request which results in a status code that is not known and does not have any associated configuration, this
incident will be triggered.

Behavior: In the process of attempting to find vulnerabilities on a web server, hackers will often encounter
errors. Just a single error or two is likely not a problem, because even legitimate users accidentally type a
URL incorrectly on occasion. However when excessive numbers of unexpected status codes are returned,
the behavior of the user can be narrowed down and classified as malicious. The actual vulnerability the
attacker is looking for can be identified through the status codes they are being returned. For example,
if the user is getting a lot of 404 errors, they are likely searching for unlinked files ("Predictable Resource
Location151"). If the user is getting a lot of 500 errors, they may be trying to establish a successful "SQL
Injection152" or "XSS153" vulnerability. In the case of this incident, the user is getting an unexpected status
code. This is likely because of a bug in the web application which the user has found and is attempting to
exploit. The URL this incident is created for, should be reviewed to determine why it would be responding with
a non standard status code. If the status code is intentionally non-standard, but is acceptable behavior, then
the custom status code should be added to the list of known and accepted status codes in config.

8.5.3.2.3. Unexpected Response Status
Complexity: Suspicious (1.0)

Default Response: None.

Cause: Junos WebApp Secure monitors the various status codes returned by the protected website and
compares them to a configurable list of known and acceptable status codes. Some status codes are expected
during normal usage of the site (such as "200 OK" or "304 Not Modified"), but some status codes are much
less common for a normal user (such as "500 Internal Server Error" or "404 Not Found"). When a user issues
a request which results in a status code that is not known and does not have any associated configuration,
this incident will be triggered.

148 http://projects.webappsec.org/Predictable-Resource-Location
149 http://projects.webappsec.org/SQL-Injection
150 http://projects.webappsec.org/Cross-Site+Scripting
151 http://projects.webappsec.org/Predictable-Resource-Location
152 http://projects.webappsec.org/SQL-Injection
153 http://projects.webappsec.org/Cross-Site+Scripting

http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Cross-Site+Scripting

Error Processor

119

Behavior: In the process of attempting to find vulnerabilities on a web server, hackers will often encounter
errors. Just a single error or two is likely not a problem, because even legitimate users accidentally type a
URL incorrectly on occasion. However when excessive numbers of unexpected status codes are returned,
the behavior of the user can be narrowed down and classified as malicious. The actual vulnerability the
attacker is looking for can be identified through the status codes they are being returned. For example,
if the user is getting a lot of 404 errors, they are likely searching for unlinked files ("Predictable Resource
Location154"). If the user is getting a lot of 500 errors, they may be trying to establish a successful "SQL
Injection155" or "XSS156" vulnerability. In the case of this incident, the user is getting an unexpected status
code. This is likely because of a bug in the web application which the user has found and is attempting to
exploit. The URL this incident is created for, should be reviewed to determine why it would be responding with
a non standard status code. If the status code is intentionally non-standard, but is acceptable behavior, then
the custom status code should be added to the list of known and accepted status codes in config.

In the case of this incident, the user is getting an unexpected status code. This is likely because of a bug in
the web application which the user has found and is attempting to exploit. The URL this incident is created
for should be reviewed to determine why it would be responding with an unexpected status code. If the status
code is intentionally non-standard, but is acceptable behavior, then the custom status code should be added
to the list of known and accepted status codes in config.

8.5.3.2.4. Unknown Common Directory Requested
Complexity: Suspicious (1.0)

Default Response: 5x = Common Directory Enumeration Incident

Cause: This incident is triggered when a user requests a directory on the server that does not exist, and that
directory name is in a list of commonly used directory names (for example: http://www.example.com/public/
where "public" is not a real directory).

Behavior: Often times, administrators will upload sensitive content onto a web server in an obscure location
and not link to that content anywhere on the site. The assumption is that the content is private because no one
will find it. However humans are somewhat predictable, so it's actually quite common for two administrators to
pick the same "obscure" location to place sensitive content. As such, hackers have compiled a list of the most
commonly chosen directory names where sensitive content is often stored, and they will basically test every
name in the list to see if a site has a directory by that name. If it does, the attacker is able to locate and obtain
that sensitive content. An example of a tool that allows attackers to quickly identify hidden directories is called
"DirBuster" (https://www.owasp.org/index.php/Category:OWASP_DirBuster_Project).

8.5.3.2.5. Unknown User Directory Requested
Complexity: Suspicious (1.0)

Default Response: 5x = User Directory Enumeration Incident

Cause: Many web servers allow the users on the system to maintain publicly accessible web directories.
These directories are generally accessible from the root directory of the website followed by a tilde and the
username. For example, if the web server had a user named ‘george', that user could serve content from
http://www.example.com/~george/. This incident is triggered when an attacker requests a user directory on the
server that does not exist, and that user directory name is in a list of commonly used usernames (for example:
http://www.example.com/~root/ where "root" is not a real user directory).

154 http://projects.webappsec.org/Predictable-Resource-Location
155 http://projects.webappsec.org/SQL-Injection
156 http://projects.webappsec.org/Cross-Site+Scripting

http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Cross-Site+Scripting

Error Processor

120

Behavior: Often times, administrators will upload sensitive content onto a web server in an obscure location
and not link to that content anywhere on the site. The assumption is that the content is private because no one
will find it. However humans are somewhat predictable, so it's actually quite common for two administrators
to pick the same "obscure" location to place sensitive content. As such, hackers have compiled a list of the
most commonly chosen directory names where sensitive content is often stored, and they will basically test
every name in the list to see if a site has a directory by that name. If it does, the attacker is able to locate
and obtain that sensitive content. In this specific case, the attacker is testing for default user directories
for users with predictable names (such as ‘root', ‘guest', ‘nobody', etc...). An example of a tool that allows
attackers to quickly identify hidden user directories is called "DirBuster" (https://www.owasp.org/index.php/
Category:OWASP_DirBuster_Project).

8.5.3.2.6. Common Directory Enumeration
Complexity: Medium (3.0)

Default Response: 1x = Slow Connection 2-6 seconds & Captcha, 2x = Slow Connection 2-6 seconds & 1
day Block

Cause: This incident is triggered when a user requests a directory on the server that does not exist, and that
directory name is in a list of commonly used directory names (for example: http://www.example.com/public/
where "public" is not a real directory). Specifically, this incident is triggered when the user requests many
different commonly named directories, as would be the case if they were testing for a large list of possible
directory names.

Behavior: Often times, administrators will upload sensitive content onto a web server in an obscure location
and not link to that content anywhere on the site. The assumption is that the content is private because no one
will find it. However humans are somewhat predictable, so it's actually quite common for two administrators to
pick the same "obscure" location to place sensitive content. As such, hackers have compiled a list of the most
commonly chosen directory names where sensitive content is often stored, and they will basically test every
name in the list to see if a site has a directory by that name. If it does, the attacker is able to locate and obtain
that sensitive content. An example of a tool that allows attackers to quickly identify hidden directories is called
"DirBuster" (https://www.owasp.org/index.php/Category:OWASP_DirBuster_Project).

8.5.3.2.7. User Directory Enumeration
Complexity: Medium (3.0)

Default Response: 1x = Slow Connection 2-6 seconds & Captcha, 2x = Slow Connection 2-6 seconds & 1
day Block

Cause: Many web servers allow the users on the system to maintain publically accessible web directories.
These directories are generally accessible from the root directory of the website followed by a tilde and the
username. For example, if the web server had a user named ‘george', that user could serve content from
http://www.example.com/~george/. This incident is triggered when an attacker requests a user directory on the
server that does not exist, and that user directory name is in a list of commonly used usernames (for example:
http://www.example.com/~root/ where "root" is not a real user directory). Specifically, this incident is triggered
when an attacker requests many different username directories, as would be the case if they were testing for a
large list of possible usernames.

Behavior: Often times, administrators will upload sensitive content onto a web server in an obscure location
and not link to that content anywhere on the site. The assumption is that the content is private because no one
will find it. However humans are somewhat predictable, so it's actually quite common for two administrators
to pick the same "obscure" location to place sensitive content. As such, hackers have compiled a list of the

Header Processor

121

most commonly chosen directory names where sensitive content is often stored, and they will basically test
every name in the list to see if a site has a directory by that name. If it does, the attacker is able to locate
and obtain that sensitive content. In this specific case, the attacker is testing for default user directories
for users with predictable names (such as ‘root', ‘guest', ‘nobody', etc...). An example of a tool that allows
attackers to quickly identify hidden user directories is called "DirBuster" (https://www.owasp.org/index.php/
Category:OWASP_DirBuster_Project).

8.5.3.2.8. Resource Enumeration
Complexity: Low (2.0)

Default Response: 1x = 1 day Slow Connection 2-6 seconds & Captcha, 2x = Slow Connection 2-6 seconds
& 1 day Block

Cause: Junos WebApp Secure monitors the various status codes returned by the protected website and
compares them to a configurable list of known and acceptable status codes. Some status codes are expected
during normal usage of the site (such as "200 OK" or "304 Not Modified"), but some status codes are much
less common for a normal user (such as "500 Internal Server Error" or "404 Not Found"). When a user issues
multiple requests for different resources that result in a "404 Not Found" error, this incident will be triggered.

Behavior: When hackers are looking for places to exploit in a website, they will often scan the site for
common file names that may exist, but that aren't linked to the main home page. For example, a password
file, or a configuration interface, or a license file that might contain version information. To do this, the attacker
will look for these files by testing a list of known URLs. If any of the URLs come back with a 200 status
code, the hacker confirms their existence and can potentially exploit them. This behavior is targeted towards
"Predictable Resource Location157" vulnerabilities.

If a legitimate user is attempting to type in a URL, it is quite possible that they may type the URL incorrectly
and cause a 404. For this reason, just a few 404 errors cannot be deemed malicious on their own. However,
the process of blindly looking for a large list of files is quite noisy and will generate a large volume of 404
errors. When there is a sufficient number of 404 errors, the activity can be considered malicious.

8.5.4. Header Processor
A useful technique when attacking a site is to determine what software the site is using. This is known as
fingerprinting the server. There are many methods used, but the basic idea is to look for signatures that
identify various products. For example, it might be a known signature that Apache always lists the "Date"
response header before the "Last-Modified" response header. If very few other servers follow this same
pattern, then checking to see which header comes first could be used as a means of identifying if Apache
is being used or not. Other key methods include looking for "Server" or "X-Powered-By" headers that
actually specify the software being used. The goal of this processor is to eliminate headers as a means of
fingerprinting a server.

Important
While the goal of this processor is mainly to prevent fingerprinting, it may also catch some
malicious behavior and erroneous behavior in the protected applications (potentially as a
result of an exploit). As such, the following incidents are recognized by the processor.

157 http://projects.webappsec.org/Predictable-Resource-Location

http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/Predictable-Resource-Location

Header Processor

122

8.5.4.1. Configuration

Table 8.13. Header Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this
processor.

Advanced

Header Mixing
Enabled

Boolean True Whether this processor should shuffle the
order of response headers to avoid exposing
identifiable information.

Request Header
Stripping Enabled

Boolean True Whether this processor should strip
unnecessary headers in request packets to
avoid sending malicious data to the server

Response Header
Stripping Enabled

Boolean True Whether this processor should strip
unnecessary response headers to avoid
giving away identifiable information

Maximum Header
Length

Integer 8192 The maximum allowed length of a header
in bytes. If header stripping is enabled, then
any headers that exceed this length will be
removed from the request before proxying.

Known Request
Headers

Collection Collection A list of known request headers.

Known Response
Headers

Collection Collection A list of known Response headers

Incident: Duplicate
Request Header

Boolean True The application returned multiple instances of
the same header, which it is never expected to
do.

Incident: Duplicate
Response Header

Boolean False The user provided multiple instances of the
same header, and the header does not usually
allow multiples.

Incident: Illegal
Request Header

Boolean True The user provided a request header which is
known to be involved in malicious activity.

Incident: Illegal
Response Header

Boolean True The application returned a response header
which it is never supposed to return.

Incident: Missing All
Headers

Boolean True The user issued a request which has no
headers at all.

Incident: Missing Host
Header

Boolean True The application returned a response which is
missing a required header.

Incident: Missing
Request Header

Boolean True The user issued a request which is missing a
required header.

Incident: Missing
Response Header

Boolean True The application returned a response which is
missing a required header.

Header Processor

123

Parameter Type Default Value Description

Incident: Missing User
Agent Header

Boolean True The user issued a request which is missing a
required header.

Incident: Request
Header Overflow

Boolean True The user issued a request which contained
a header that was longer then the allowed
maximum.

Incident: Unexpected
Request Header

Boolean False The user issued a request which contains an
unexpected and unknown header.

8.5.4.2. Incidents

8.5.4.2.1. Duplicate Request Header
Complexity: Informational (0.0)

Default Response: None.

Cause: Junos WebApp Secure monitors all of the request headers sent from the client to the web application.
 According to the HTTP RFC, no client should ever provide more the one copy of a specific header. For
example, clients should not send multiple "Host" headers. However there are a few exceptions, such as the
"Cookie" header, which can be configured to allow multiples. If the user sends multiple headers that are not
configured explicitly to allow duplicates, then this incident will be triggered.

Behavior: Sending duplicate headers of the same type can be caused by several different things. It is either
an attempt to profile the web server and see how it reacts, an attempt to smuggle malicious data into the
headers (because a firewall might not look at subsequent copies of the same header), or possibly just be a
poorly programmed web client. In either case, it represents unusual activity that sets the user aside from
everyone else. It signifies that the user is suspicious and is doing something average users do not do.

8.5.4.2.2. Duplicate Response Header
Complexity: Informational (0.0)

Default Response: None

Cause: Junos WebApp Secure monitors all of the response headers sent from the server to the
client. According to the HTTP RFC, no server should ever provide more the one copy of a specific header.
 For example, servers should not send multiple "Content-Length" headers. However there are a few
exceptions, such as the "Set-Cookie" header, which can be configured to allow multiples. If the server
attempts to return multiple headers of the same type, which are not configured explicitly to allow duplicates,
then this incident will be triggered.

Behavior: The RFC does not allow for servers to return multiple headers of the same type, with a few
exceptions, such as "Set-Cookie". If the server does return duplicates for a header that normally does not
support duplicates, then there is either a bug in the web application, or the user has successfully executed
a "Response Splitting158" attack. In either case, the service located at the URL this incident is triggered for
should probably be reviewed for response splitting vulnerabilities or bugs that would cause duplicate response
headers to be returned.

158 http://projects.webappsec.org/HTTP-Response-Splitting

http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/HTTP-Response-Splitting

Header Processor

124

8.5.4.2.3. Illegal Request Header
Complexity: Suspicious (1.0)

Default Response: None.

Cause: Junos WebApp Secure monitors all of the request headers included by clients. It has a list of known
request headers that should never be accepted. This list is configurable, and by default, includes any headers
known to be exclusively involved in malicious activity. Should a user include one of the illegal headers, this
incident will be triggered. Because the list of illegal headers is configurable, it cannot be guaranteed that the
request that contained the header is strictly malicious, but it does signify that the client is doing something
highly unusual.

Behavior: Some HTTP headers can be used in order to get the server to do something it isn't designed
to do. For example, the "max-forwards" header can be used to specify how many hops within the internal
network the request should make before it is dropped. An attacker could use this header to identify how many
network devices are between themselves and the target web server. Because the list of illegal headers is
customizable, the type of behavior the header relates to can vary. However this type of behavior is generally
performed when scoping the attack surface of the website.

8.5.4.2.4. Illegal Response Header
Complexity: Informational (0.0)

Default Response: None.

Cause: Junos WebApp Secure monitors all of the response headers sent to the client from the web
application. It has a list of known response headers that should never be returned. This list is configurable,
and by default, includes any headers known to compromise the server's identity or security. Should the
server return one of the illegal headers, this incident will be triggered. Because the list of illegal headers is
configurable, it cannot be guaranteed that the request that contained the header is strictly malicious, but it
does signify that something unusual has taken place. This may even represent a hackers successful attempt
to exploit a backend service.

Behavior: There is a strict set of HTTP response headers that browsers understand and can actually use.
 Any headers returned by the server outside of the standard set could potentially expose information about
the server or its software. Some headers can even be used to execute more complex attacks. In order to
protect the server in the event of a serious issue (such as a "Response Splitting159"attack), some headers can
be configured as illegal. Because the set is configurable, it is not straight forward as to what the actual header
means or what vulnerability it might be targeted at.

8.5.4.2.5. Missing All Headers
Complexity: Low (2.0)

Default Response: 1x = Slow Connection 2-6 seconds and Captcha.

Cause: Most legitimate web browsers and tools submit at least a few headers with each HTTP request.
Headers are used to provide valuable information to the server when trying to construct a response, such as
what type of browser the user is using, or what domain name they are trying to access. If a user submits a
request that does not contain any headers at all, this incident will be triggered.

Behavior: Not providing any headers at all, is generally an activity performed when probing an IP to see
if it is running a web server. The user will submit a minimal request containing 1 line of text, and see if the

159 http://projects.webappsec.org/HTTP-Response-Splitting

http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/HTTP-Response-Splitting

Header Processor

125

response given back from the server is an HTTP response. If so, the attacker has confirmed that the IP is
hosting a web server on the given port. In many cases, the attacker will also be able to identify which web
server is running, and if that web server has any known vulnerabilities. Such information can then be used to
attack the web server directly.

8.5.4.2.6. Missing Host Header
Complexity: Low (2.0)

Default Response: 1x = Slow Connection 2-6 seconds and Captcha.

Cause: All legitimate web browsers submit a Host header with each HTTP request. The host header contains
the value entered into the address bar as the server. This could be either the server IP address or the domain
name. In either case, it will always be provided. If a user submits a request that does not contain a Host
header, this incident will be triggered.

Behavior: Not providing a host header is generally an activity performed when trying to scope the attack
surface of the website. Some web servers are configured to host different websites from the same IP
address, based on which domain name is supplied. Hackers will often attempt to send a request without
a host header to see if the server will serve back a default website. If the default website is not the main
website, this may provide additional pages the attacker can attempt to exploit. This could be considered a
"Server Misconfiguration160" weakness, but may also be a legitimate design choice for the web server and its
applications. It does not necessarily expose a vulnerability as long as the default web application is secure.
Because all major browsers submit host headers on every request, the user would need to take advantage
of a more complex tool, such as a raw data client, or HTTP debugging proxy to manually construct a request
that does not have a host header. As such, this activity is almost always malicious. In a few cases, some
legitimate monitoring tools may omit this header, but those tools should be added to the trusted IP list in
configuration.

8.5.4.2.7. Missing Request Header
Complexity: Low (2.0)

Default Response: None.

Cause: Junos WebApp Secure monitors all of the request headers sent from the client to the server. It also
maintains a list of headers which are required for all HTTP requests (such as Host and User-Agent). If one of
the required headers is not included in a request, this incident will be triggered.

Behavior: Every legitimate client will always supply specific headers such as "Host" and "User-Agent". If a
client does not provide these headers, then the client is likely not a legitimate user. There are several different
cases of not legitimate clients, such as hacking tools, manually crafted HTTP requests using something like
Putty, or a network diagnostic tool such as nagios. Because there are a few cases that are not necessarily
malicious (such as nagios), the incident itself is not necessarily malicious. It does however exclude the user
from being a legitimate web browser doing the intended actions allowed by the web application.

8.5.4.2.8. Missing Response Header
Complexity: Informational (0.0)

Default Response: None.

160 http://projects.webappsec.org/Server-Misconfiguration

http://projects.webappsec.org/Server-Misconfiguration
http://projects.webappsec.org/Server-Misconfiguration

Header Processor

126

Cause: Junos WebApp Secure monitors all of the response headers sent from the server to the client. It also
maintains a list of headers which are required for all HTTP responses (such as Content-Type). If one of the
required headers is not included in a response, this incident will be triggered.

Behavior: If the server is acting correctly, it should always return all of the required response headers. If it
is missing a response header, this is likely due to a bug in the web application, or a successfully executed
"Response Splitting161"attack. In either case, the service located at the URL this incident is triggered for,
should probably be reviewed for either response splitting vulnerabilities, or bugs that would cause abnormal
HTTP responses (such as dropping the connection immediately after sending the status code).

8.5.4.2.9. Missing User Agent Header
Complexity: Low (2.0)

Default Response: 1x = Slow Connection 2-6 seconds and Captcha.

Cause: Most legitimate web browsers and tools submit a User-Agent header with each HTTP request.
The user agent header contains information that identifies which software the user is using to access the
website, whether that software it is Googlebot, Firefox, Safari, or another piece of software... If a user submits
a request that does not contain a User-Agent header, this incident will be triggered.

Behavior: Not providing a user-agent header is generally an activity performed trying to evade detection.
The user agent header provides identifying information that could be used by the web server to track requests
made by the same user. It may also provide information about the user's personal computer. Sometimes,
hackers will replace the user agent string with another user agent string that is perfectly legitimate, but for a
different environment than the one they are actually using. Some legitimate users also take this measure as a
general security practice; therefore, as long as at least some value is submitted for the user-agent, it cannot
be guaranteed to be a malicious act.

However, in the case of the header being absent, a user would have had to take advantage of a tool or
debugging proxy in order to filter the traffic. This is almost always performed during the course of a malicious
action. Some tools such as network heath monitors may also trigger this incident, because they are doing
something normal users should not do, but they are considered trusted. In this case, the IP addresses of
those tools should be added to the configuration trusted IP whitelist.

8.5.4.2.10. Request Header Overflow
Complexity: Suspicious (1.0)

Default Response: 3x = Compound Request Header Overflow Incident.

Cause: Junos WebApp Secure monitors all of the request headers sent from the client to the server. It has
a configured limit that defines how long any individual header is allowed to be. After 3 or more headers are
submitted that exceed the limit, this incident will be triggered.

Behavior: While not as common as form inputs or query parameter inputs, some web applications actually
use the values submitted in headers within their code base. If these values are treated incorrectly, such as not
being validated before being used in an SQL statement, they potentially expose the same set of vulnerabilities
a form input might. As such a hacker who is attempting to execute a "Buffer Overflow162" attack might do
so by attempting to provide an excessively long value in a header. They may also use an excessively long
header value to craft a complex "SQL Injection163" attack. Because the user submitted multiple headers which
exceeded the defined limit, the intentions of the user are more likely to be malicious. It is less likely that a

161 http://projects.webappsec.org/HTTP-Response-Splitting
162 http://projects.webappsec.org/Buffer-Overflow
163 http://projects.webappsec.org/SQL-Injection

http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/SQL-Injection

Header Processor

127

poorly crafted browser plug-in would overflow multiple headers, despite the possibility that it might overflow a
single one.

Because there is a possibility that a legitimate user with a poorly-written browser plugin may cause a header
of unusual length to be submitted, this incident cannot be guaranteed to be malicious from just a single case.

8.5.4.2.11. Compound Request Header Overflow
Complexity: Medium (3.0)

Default Response: 1x = Captcha, 2x = 1 Day Clear Inputs.

Cause: Junos WebApp Secure monitors all of the request headers sent from the client to the server, which
are then compared with a configured limit that defines how long any individual header is allowed to be. After 3
or more headers are submitted that exceed the limit, this incident will be triggered.

Behavior: While not as common as form inputs or query parameter inputs, some web applications actually
use the values submitted in headers within their codebase. If these values are treated incorrectly, such as not
being validated before being used in an SQL statement, they potentially expose the same set of vulnerabilities
as a form input. A hacker who is attempting a "Buffer Overflow164" attack might do so by attempting to provide
an excessively long value in a header. They may also use an excessively long header value to craft a
complex "SQL Injection165" attack.

Because the user submitted multiple headers which exceeded the defined limit, the intentions of the user
are more likely to be malicious. It is less likely that a poorly-crafted browser plugin would overflow multiple
headers, despite the possibility that it might overflow a single one.

8.5.4.2.12. Unexpected Request Header
Complexity: Informational (0.0)

Default Response: None

Cause: Junos WebApp Secure monitors all of the request headers included by clients. It has a list of known
request headers that should be accepted. This list includes all of the headers defined in the HTTP RFC
document, which means that if any additional headers are passed, it is part of some non standard HTTP
extension. Should a user include a non standard header, this incident will be triggered. It is not necessarily
a malicious action on its own, but it does signify that the client is unusual in some way (and potentially
malicious) and therefore warrants additional monitoring.

Behavior: When attackers are trying to exploit a server, one of the techniques is to attempt to profile what
software the server is running. This can be partially accomplished by observing how the server reacts to
various types of headers. For example, if the attacker knows that a specific 3rd party web application has
a feature where it behaves differently if you send a header "X-No-Auth", then a hacker might send "X-No-
Auth" to the site just to see what happens. While this could represent a higher level attack on a specific
application; sending non standard headers is more likely part of the hacker's effort to scope the attack surface
of the website. This incident alone cannot be deemed malicious because some users have browser plug-ins
installed that automatically include non standard headers with requests to some sites. Additionally, some
AJAX sites also pass around custom headers as part of their expected protocol.

This incident alone cannot be deemed malicious because some users have browser plug-ins installed that
automatically include non-standard headers with requests to some sites. Additionally, some AJAX sites utilize
custom headers as part of their expected protocol.

164 http://projects.webappsec.org/Buffer-Overflow
165 http://projects.webappsec.org/SQL-Injection

http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/SQL-Injection

Method Processor

128

8.5.5. Method Processor
GET and POST are two very well known HTTP request methods. A request method is a keyword that tells
the server what type of request the user is making. In the case of a GET, the user is requesting a resource.
In the case of a POST, the user is submitting data to a resource. There are however, several other supported
request methods which include HEAD, PUT, DELETE, TRACE, and OPTIONS. These methods are intended
to divide the types of requests into more granular operation. In almost all web application implementations,
the PUT, DELETE, TRACE and OPTIONS methods are all left unimplemented. Unfortunately, some systems
provide default implementations for things such as TRACE and OPTIONS. As a result, some administrators
accidentally expose unprotected services. Hackers often try these different request methods to identify servers
which support them, and therefore may be vulnerable.

8.5.5.1. Configuration

Table 8.14. Method Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this
processor.

Advanced

Block Unknown
Methods

Boolean True Whether to block requests that contain
unknown HTTP methods.

Known Methods Collection Collection The list of known HTTP methods. Also allows
you to customize the action to take for each
occurrence of the known HTTP method.

Incident: Illegal
Method Requested

Boolean True The user issued a request using an HTTP
method which is considered illegal.

Incident: Unexpected
Method Requested

Boolean True The user issued a request using a request
method other then GET, POST, and HEAD,
which resulted in a server error.

8.5.5.2. Incidents

8.5.5.2.1. Illegal Method Requested
Complexity: Low (2.0)

Default Response: 1x = Slow Connection 2-6 seconds and 1 Day Clear Inputs in 10 minutes

Cause: HTTP supports several different "methods"of submitting data to a web server. These methods
generally include "GET", "POST", and "HEAD", and less commonly "PUT", "DELETE", "TRACE", and
"OPTIONS". Junos WebApp Secure monitors all of the methods used by a user when issuing HTTP requests,
and compares them to a configured list of known and allowed HTTP methods. If the user submits a request
that uses a method which is not in the list of known methods, this incident will be triggered.

Behavior: HTTP methods allow the web server to handle user provided data in different ways. However
some of the supported methods are somewhat insecure and should not be supported unless absolutely
necessary. In a few cases, methods which are not standard to HTTP are used by 3rd party web applications.

Tracking Processors

129

 When an attacker is looking for a known vulnerability, they may issue requests using some of these custom
defined HTTP methods to see if the server accepts or rejects the request. If the server accepts the request,
then the software is likely installed. This type of activity is generally performed when scoping the attack
surface of the web application. It is possible that if a third-party web application is legitimately installed and
is using custom HTTP methods, that those methods will need to be added to the list of configured HTTP
methods so as not to flag users who are using those applications. In either case, because it is possible for
this incident to happen without malicious intent, it is considered only suspicious.

8.5.5.2.2. Unexpected Method Requested
Complexity: Suspicious (1.0)

Default Response: None.

Cause: HTTP supports several different "methods"of submitting data to a web server. These methods
generally include "GET", "POST", and "HEAD", and less commonly "PUT", "DELETE", "TRACE", and
"OPTIONS". Junos WebApp Secure monitors all of the methods used by a user when issuing HTTP requests,
and compares them to a configured list of known and allowed HTTP methods. If the user submits a request
that uses a method which is not in the list of known methods, this incident will be triggered.

Behavior: HTTP methods allow the web server to handle user provided data in different ways. However
some of the supported methods are somewhat insecure and should not be supported unless absolutely
necessary. In a few cases, methods which are not standard to HTTP are used by 3rd party web applications.
 When an attacker is looking for a known vulnerability, they may issue requests using some of these custom
defined HTTP methods to see if the server accepts or rejects the request. If the server accepts the request,
then the software is likely installed. This type of activity is generally performed when scoping the attack
surface of the web application. It is possible that if a 3rd party web application is legitimately installed and
is using custom HTTP methods, that those methods will need to be added to the list of configured HTTP
methods so as not to flag users who are using those applications. In either case, because it is possible for
this incident to happen without malicious intent, it is considered only suspicious.

8.6. Tracking Processors

8.6.1. Etag Beacon Processor
This processor is not intended to identify hacking activity, but instead is intended to help resolve a potential
vulnerability in the proxy. Because session tracking in the proxy is done using cookies, it is possible for an
attacker to clear their cookies in order to be recognized by the proxy as a new user. This means that if we
identify that someone is a hacker, they can shed that classification simply by clearing their cookies. To help
resolve this vulnerability, this processor attempts to store identifying information in the browsers JavaScript
persistence mechanism. It then uses this information to attempt to identify new sessions as being created
by the same user as a previous session. If successful, a hacker who clears their cookies and obtains a new
session will be re-associated with the previous session shortly afterwards.

8.6.1.1. Configuration

Table 8.15. Etag Beacon Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Etag Beacon Processor

130

Parameter Type Default Value Description

Processor Enabled Boolean True Whether traffic should be passed through this
processor.

Advanced

Beacon Resource ConfigurableRandom The resource to use for tracking.

Inject Beacon
Enabled

Boolean True Whether a reference to the beacon resource
should be automatically injected into HTML
responses.

Revalidation
Frequency

Integer 180 (3 Minutes) How often in seconds to re-validate the old
stored etag and re-associate that session with
the current one. This value should not be left
too short, because it will cause the browser to
constantly re-request the fake resource and
make the tracking technique more visible.

Incident: Session
Etag Spoofing

Boolean True The user has provided a fake ETag value
which is not a valid session.

8.6.1.2. Incidents

8.6.1.2.1. Session Etag Spoofing
Complexity: Medium (3.0)

Default Response: 1x = Slow Connection 2-6 seconds, 3x = Slow Connection 4-15 seconds.

Cause: The HTTP protocol supports many different types of client side resource caching in order to increase
performance. One of these caching mechanisms uses a special header called "E-Tag" to identify when
the client already has a valid copy of a resource. When a user requests a resource for the first time, the
server has the option of returning an E-Tag header. This header contains a key that represents the version
of the file that was returned (ex. an MD5 hash of the file contents). On subsequent requests for the same
resource, the client will provide the last E-Tag it was given for that resource. If the server identifies that both
the provided E-Tag, and the actual E-Tag of the file are the same, then it will respond with a 403 status code
(Not Modified), and the client will display the last copy it successfully downloaded. This prevents the client
from downloading the same version of a resource over and over again. In the event that the E-Tag value does
not match, the server will return a new copy of the resource and a new E-Tag value. Junos WebApp Secure
takes advantage of this caching mechanism to store a tracking token on the client. It does this by injecting
a fake embedded resource reference (such as an image or a JavaScript file) into some of the pages on the
protected site. When the browser loads these pages, it will automatically request the embedded resources in
the background. The fake resource that was injected by Junos WebApp Secure, will supply a special E-Tag
value that contains a tracking token. As the user continues to navigate around the site, each time they load
a page that contains a reference to the fake resource, the browser will automatically transmit the previously
received E-Tag to the server. This allows Junos WebApp Secure to correlate the requests, even if other
tracking mechanisms such as cookies are not successful. The E-Tag value returned by the fake resource,
which contains the tracking token, is also digitally signed and encrypted, much like the Junos WebApp Secure
session cookie. This prevents a user from successfully guessing a valid E-Tag token, or attempting to provide
an arbitrary value without being detected. If an invalid E-Tag is supplied for the fake resource, a "Session E-
Tag Spoofing" incident is triggered.

Behavior: There are very few cases where the E-Tag caching mechanism is part of an attack vector, so
this incident would almost exclusively represent a user who is attempting to evade tracking or exploit the

Client Beacon Processor

131

tracking method to their advantage. For example, if a user identifies the E-Tag tracking mechanism, they may
provide alternate values in order to generate errors in the tracking logic and potentially disconnect otherwise
correlated traffic. They may also attempt to guess other valid values in order to correlate otherwise non-
related traffic (such as a hacker attempting to group other legitimate users into their traffic). While this is a
highly unlikely attack vector, it could loosely be classified as a "Credential and Session Prediction166" attack.
It is also possible, though unlikely, that once an attacker identifies the dynamic nature of the E-Tag header
for the fake resource, they may also launch a series of other attacks based on input manipulation. This could
include testing for SQL injection167, XSS168, Buffer Overflow169, Integer Overflow170, and HTTP Response
Splitting171 among others. However these would be attacks directly against Junos WebApp Secure, and not
against the protected web application.

8.6.2. Client Beacon Processor
The client beacon processor is intended to digitally tag users for later identification by for embedding a
tracking token into the client. There are configurable parameters that administrators can use to configure each
type of storage mechanisms that are used track malicious users.

8.6.2.1. Configuration

Table 8.16. Client Beacon Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this
processor.

Advanced

Flash Storage
Enabled

Boolean True Whether to use the flash shared data API to
track the user.

IE UserData Storage
Enabled

Boolean True Whether to use internet explorers userData
storage API to track the user

Local Storage
Enabled

Boolean True Whether to use Javascript local storage to
track the user.

Private Storage
Enabled

Boolean True Whether to track users between private
browsing mode and normal browsing mode in
Firefox. A collection of names to use for the
Application session cookie.

Silverlight Storage
Enabled

Boolean True Whether to use the Silverlight storage api
to track the user. The Silverlight storage
API is unique in that it is exposed across all
browsers. If this beacon is enabled and the
user has Silverlight installed, this beacon can
track the user even if they switch browsers.

166 http://projects.webappsec.org/w/page/13246918/Credential-and-Session-Prediction
167 http://projects.webappsec.org/SQL-Injection
168 http://projects.webappsec.org/Cross-Site+Scripting
169 http://projects.webappsec.org/Buffer-Overflow
170 http://projects.webappsec.org/Integer-Overflows
171 http://projects.webappsec.org/HTTP-Response-Splitting

http://projects.webappsec.org/w/page/13246918/Credential-and-Session-Prediction
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/w/page/13246918/Credential-and-Session-Prediction
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/HTTP-Response-Splitting

Client Beacon Processor

132

Parameter Type Default Value Description

Window Name
Storage Enabled

Boolean True Whether to use the window.name property of
the browser window to track the user.

Resource Extensions Collection Collection A collection of resource extensions to use for
the processor.

Script Refresh Delay Integer 3600 (1 Hour) The amount of time in seconds to cache the
randomly generated set of beacon scripts.
After this amount of time, the beacon scripts
will change.

Script Variations Integer 30 The number of random variations of the
beacon script to cache, and then to select
from on each request.

Incident: Beacon
Parameter Tampering

Boolean True The user has issued a request to the session
tracking service which appears to be manually
crafted. This is likely in an attempt to spoof
another users session, or to exploit the
applications session management. This would
never happen under normal usage.

Incident: Beacon
Session Tampering

Boolean True The user has altered the data stored on the
client in an effort to prevent tracking. They
have altered the data in such a way as to
remain consistent with the same data format.
This would never happen under normal
usage.

8.6.2.2. Incidents

8.6.2.2.1. Beacon Parameter Tampering
Complexity: Medium (3.0)

Default Response: 1x = 5 day Clear Inputs in 10 minutes

Cause: Junos WebApp Secure uses a special persistent token that inserts itself in multiple locations
throughout the client. When a user returns to the site later on, these tokens are transmitted back to the
server. This allows the server to correlate the traffic issued by the same user, even if the requests are weeks
apart. This incident is triggered when the user manipulates the token data being transmitted to the server on a
subsequent visit. They manipulated the data in such a way as to break the expected formatting for the token.

Behavior: Attempts to manipulate and spoof the tracking tokens are generally performed when the attacker
is trying to figure out what the token is used for and potentially evade tracking. Because the format of
the token is completely wrong, this is likely a generic input attack, where the user is attempting to find a
vulnerability in the code that handles the token. This could include a "Buffer Overflow172", "XSS173", "Denial
of Service174", "Fingerprinting175", "Format String176", "HTTP Response Splitting177", "Integer Overflow178",

172 http://projects.webappsec.org/Buffer-Overflow
173 http://projects.webappsec.org/Cross-Site+Scripting
174 http://projects.webappsec.org/Denial-of-Service
175 http://projects.webappsec.org/Fingerprinting
176 http://projects.webappsec.org/Format-String

http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String

Client Fingerprint Processor

133

or "SQL injection179" attack among many others. The content of the manipulated token should be reviewed
to better understand what type of attack the user was attempting, however because the tokens are heavily
encrypted and validated, this incident does not represent a threat to the security of the system tracking
mechanism.

8.6.2.2.2. Beacon Session Tampering
Complexity: Medium (3.0)

Default Response: 1x = 5 day Clear Inputs in 10 minutes.

Cause: Junos WebApp Secure uses a special persistent token that inserts itself in multiple locations
throughout the client. When a user returns to the site later on, these tokens are transmitted back to the
server. This allows the server to correlate the traffic issued by the same user, even if the requests are weeks
apart. This incident is triggered when the user manipulates the token data being transmitted to the server on a
subsequent visit. They manipulated the data in such a way as to remain consistent with the correct formatting
for the token, but the token itself is not valid and was never issued by the server.

Behavior: Attempts to manipulate and spoof the tracking tokens are generally performed when the attacker
is trying to figure out what the token is used for and potentially evade tracking. If they are assuming it's used
for session management, this might also be a part of a "Credential/Session Prediction180" attack. Because the
format of the submitted modified token is still consistent with the format expected, this is not likely a generic
input attack. It also does not represent any threat to the system, as the modified token is simply ignored.

8.6.3. Client Fingerprint Processor
This processor is designed to collect uniquely identifying information from requests issued by a user. This
information is then compared to the information collected about other sessions in the system. If a match
is identified, the two sessions are merged. This allows session association to work even if all storage
mechanisms used by the other tracking processors are cleared. Some of the uniquely identifying information
includes the browser plugin list, the system font list, time skew, time-zone, user-agent, system language, etc…

8.6.3.1. Configuration

Table 8.17. Client Fingerprint Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean False Whether traffic should be passed through this
processor.

Exclude Rules Collection [collection:0] The fingerprint association rules to ignore.

Excluded Collectors Collection [collection:0] The data points to prevent collection of on the
client.

Hash Fingerprint Data Boolean False Whether to hash the raw fingerprint data
points before storing them. This prevents
the recorded data from being used to obtain

177 http://projects.webappsec.org/HTTP-Response-Splitting
178 http://projects.webappsec.org/Integer-Overflows
179 http://projects.webappsec.org/SQL-Injection
180 http://projects.webappsec.org/Credential-and-Session-Prediction

http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Credential-and-Session-Prediction
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Credential-and-Session-Prediction

Client Fingerprint Processor

134

Parameter Type Default Value Description
the original information about the client and
reduces the overall storage size requirements.
If collecting PII data is a concern, this is a
recommended option, as it will eliminate any
PII data in place of hashed versions of that
data which cannot be reversed.

Page Injection
Enabled

Boolean True Whether the fingerprint script should be
injected into the requested page.

Advanced

Binary Resource
Directory

String (randomized) The fake directory where binary resources
required by the fingerprinting script are served
from.

Data Obfuscation Key String (randomized) The key used to prevent easy reading of the
submitted fingerprint data. This should be
alphanumeric and at least 8 unique characters
long, duplicate characters are allowed, but do
not count toward the total 8.

Fingerprint Scope
Key

String (randomized) The key used to store fingerprint data. If
this key is changed, all previously stored
fingerprint data will be lost and the system will
begin collecting fresh fingerprint data.

Fingerprint
Submission
Response

HTTP
Response

text/plain 200 OK The response to return when a user attempts
to submit a fingerprint in the background. The
user will not see this response unless they are
using a debug proxy.

Fingerprint Tracking
Cookie Name

String (randomized) The name of the cookie used on the client
to ensure we don't submit multiple copies
of the same fingerprinting data. This can
be anything, but should not overlap with a
legitimate cookie being used on the site.

Hash Fingerprint Data Boolean False Whether to hash the raw fingerprint data
points before storing them. This prevents
the recorded data from being used to obtain
the original information about the client and
reduces the overall storage size requirements.
If collecting PII data is a concern, this is a
recommended option, as it will eliminate any
PII data in place of hashed versions of that
data which cannot be reversed.

Script Filename String (randomized) The filename to use when serving the
fingerprint script to the client.

Submission Filename String (randomized) The filename where fingerprint data should be
submitted back to the server.

Incident: Fingerprint
Directory Indexing

Boolean True The user requested a directory index listing
on the fake directory used to serve binary
resources required by the fingerprinting script.

Client Fingerprint Processor

135

Parameter Type Default Value Description
Since this is a fake directory, the request
represents a malicious action.

Incident: Fingerprint
Directory Probing

Boolean True The user requested a random file within the
fake directory used to serve binary resources
required by the fingerprinting script. Since
only files we specifically reference in the
fingerprinting script should be requested, this
represents a malicious action.

Incident: Fingerprint
Manipulation

Boolean True The user submitted fingerprint data to the
server which was not properly formatted. This
likely means that the user was manipulating
the fingerprinting data or spoofed it entirely.

8.6.3.2. Incidents

8.6.3.2.1. Fingerprint Directory Indexing
Complexity: Low (2.0)

Default Response: n/a

Cause: The client fingerprint processor is designed to obtain a semi-unique identifier from the clients
rendering engine. The fingerprint is a hash of data obtained through JavaScript such as the plugin list, time
zone, and screen resolution. In order to calculate a fingerprint, some binary resources such as flash objects
may be required. These resources will be served from a known fake directory. This incident is triggered if the
user attempts to get a directory index listing from the known fake resource directory.

Behavior: If an attacker discovers the script being used to collect and submit the fingerprint data, they may
be interested to know what else is in the directory where fingerprint binary resources are served. As such,
they may request a directory index listing from the fake directory. Because the directory is fake, there are no
files to list, but the simply action of attempting to get the list is indicative of abusive behavior.

If an attacker is able to obtain a directory index listing, they may attempt to exploit some of the other resources
in the directory, or gain information about the website that may otherwise not be available. Any attempts to
index the directory will result in a 403, which will yield no useful information to the attacker. This is usually part
of a spidering effort and targets "Predictable Resource Location181" vulnerabilities.

8.6.3.2.2. Fingerprint Directory Probing
Complexity: Low (2.0)

Default Response: n/a

Cause: The client fingerprint processor is designed to obtain a semi-unique identifier from the clients
rendering engine. The fingerprint is a hash of data obtained through JavaScript such as the plugin list, time
zone, and screen resolution. In order to calculate a fingerprint, some binary resources such as flash objects
may be required. These resources will be served from a known fake directory. This incident is triggered if the
user attempts to request a file in the fake directory that does not exist. In other words, they are looking for a
specific file that does not exist within a fake directory.

181 http://projects.webappsec.org/Predictable-Resource-Location

http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/Predictable-Resource-Location

Client Classification Processor

136

Behavior: If an attacker discovers the script being used to collect and submit the fingerprint data, they may
be interested to know what else is in the directory where fingerprint resources are served from. As such, they
may request specific files they think they be inside the fake directory. Because the directory is fake, there are
no actual files available, but the simply action of attempting to get a resource that does not exist in a fake
directory is indicative of abusive behavior. This type of attack is generally targeted at "Predictable Resource
Location182" vulnerabilities.

8.6.3.2.3. Fingerprint Manipulation
Complexity: Medium (3.0)

Default Response: n/a

Cause: The client fingerprint processor is designed to obtain a semi-unique identifier from the clients
rendering engine. The fingerprint is a hash of data obtained through JavaScript such as the plugin list, time
zone, and screen resolution. This incident is triggered when the user attempts to submit an invalid fingerprint.

Behavior: Normally, the fingerprinting code will be allowed to execute on the client without any problems.
However if an attacker discovers the fingerprinting code, they may try to spoof fingerprints of other users, or
simply try to exploit the fingerprint service. To do this, they may create a fake fingerprint value and submit it to
the server in the same way that legitimate fingerprints are submitted.

It likely would not be clear to the attacker as to what the value is used for, or how the value is consumed by
the server, so this type of activity would be purely exploratory. Once the attacker identifies a valid fingerprint
that was not generated from their rendering engine, they will likely continue to statically submit that same
fingerprint on all transactions. Once that happens, it will not be possible to identify the manipulated fingerprint.
So this incident should come early in the attack, but will stop once the attacker has reached their goal. In such
a case, the attacker is simply trying to disguise their true identity.

If the modified fingerprint is not alpha numeric and contains special characters, then the attacker is probably
attempting to launch a targeted attack against the way the service consumes the data, such as a "SQL
Injection183", "XSS184", or "Buffer Overflow185" attack.

8.6.4. Client Classification Processor
The client classification processor is designed to detect popular legitimate search engine bots. These types
of bots are notorious for performing aggressive spider activity on websites, and often this activity can trigger
security related incidents. Using this processor to define the conditions used to identify such bots, allows the
system to ignore security incidents from those clients. This will remove search engine related false positives,
as well as prevent errors in indexed and cached results. The popular search engines are included by default,
but if additional search engines should be allowed, new rules can be created. Be careful not to define a rule
that will match clients other than the targeted search engine bot. The less specific the conditions of a rule, the
easier it will be for an attacker to spoof the search engine and circumvent detection. It is critical that DNS be
enabled on JWAS to achieve effective classification of search engines. Not enabling DNS and leaving this
processor turned on, may result in some attackers not being identified.

If a client is classified as a search engine based on one of the defined rules, then that client will not be able to
generate incidents, and additionally:
• Query String Processor will be turned off for that user (no query param injections)

182 http://projects.webappsec.org/Predictable-Resource-Location
183 http://projects.webappsec.org/SQL-Injection
184 http://projects.webappsec.org/Cross-Site+Scripting
185 http://projects.webappsec.org/Buffer-Overflow

http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Buffer-Overflow

Client Classification Processor

137

• Hidden Link Processor will be turned off for that user (no hidden link injections)

This is done to ensure that the results cached by the search engine bot do not include fake code that may
change in the future, and thus end up flagging clients who are following legitimate search engine links.

Classification rules are made up of a series of patterns to run against various attributes of the client:
• IP Address

• Hostname

• User Agent

• Country Code

• City

• Region

• Header Name and Value

At least one pattern must be specified on at least one attribute, however you can specify patterns for as
many attributes as the bot will allow. For example, if the bot changes its IP address constantly, then you
should not define a pattern for the IP. However if the hostname always ends in google.com, then a pattern of
[.]google[.]com$ could be assigned to the “Hostname” attribute. If the user agent always contains “googlebot”,
then “googlebot” could be assigned as the user agent pattern. Here is an example of a complete pattern for
the Googlebot search engine spider:

 Hostname Pattern: [.]google(bot)?[.]com$
 User Agent Pattern: (adsbot.google|googlebot|Google[]Web[]Preview|Mediapartners-Google)
 Country Pattern: US
 Region Pattern: (California|Georgia)

Note
It would be extremely difficult for an attacker to spoof values for all of those attributes
which would match the patterns. For example, spoofing the reverse DNS lookup to end in
“.google.com” would require serious effort, and would require insecure DNS configuration
on behalf of the JWAS administrator. Ideally every rule should include either an “ip” or
“hostname” pattern.

8.6.4.1. Configuration

Table 8.18. Client Classification Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean False Whether traffic should be passed through this
processor.

Classification Rules

Client Type String (none) The name of the type of client being identified.

Response Processors

138

Parameter Type Default Value Description

IP Pattern String (none) The IP address pattern to require (if any).

Hostname Pattern String (none) The hostname pattern to require (if any) if
DNS is enabled.

User Agent Pattern String (none) The user agent pattern to require (if any).

Country Pattern String (none) The country pattern to require (if any).

City Pattern String (none) The city pattern to require (if any).

Region Pattern String (none) The region pattern to require (if any).

Header Name Pattern String (none) A pattern used to identify a required header
name (if any).

Header Value Pattern String (none) A pattern used to verify the value of a header
that matches the header name pattern (if any).

8.7. Response Processors

8.7.1. About Responses
The processors in this section are responsible for issuing the various counter responses to malicious users on
a server protected by Junos WebApp Secure. A response is activated when Junos WebApp Secure believes
intervention is required between the profiled user and the webserver. This response can manifest into any of
the types fully explained below.

8.7.1.1. Response Methodology
When Junos WebApp Secure believes a response is required, the type of response issued depends on the
type of behavior the malicious user exhibited to receive the response. For example, users that Junos WebApp
Secure think are automated tools will likely get issued a CAPTCHA response, whereas it is obvious that a real
malicious user (not a bot) will be able to solve a CAPTCHA. In the second case, adding a 2 to 6 second slow
might be more effective at wasting the hacker's time.

Another factor that comes into play when issuing counter responses is risk level. If Junos WebApp Secure
believes a user is of no immediate risk to the system, it might only activate those responses which still allow
the user to browse the site somehow, such as the Warning response or Slow Connection response. This
way, Junos WebApp Secure can monitor that user and gather additional information to properly assess their
risk level. If Junos WebApp Secure believes the user is a danger to the system, it will issue a more severe
response, such as stripping out all inputs on every request or outright blocking the profile.

Some responses might not get issued right away. For example, an incident may produce "a permanent block
in 20 minutes". The reason for this delay in the counter response is that Junos WebApp Secure uses this
buffer time to gather some last-minute information on the profile before issuing the final response. Junos
WebApp Secure will respond instantly if it perceives immediate threat to the integrity of the system, but
instances where this is not the case allow Junos WebApp Secure to profile the attacker for a bit longer. The
end result will be a more complete look at the attacker and his/her habits.

8.7.1.2. Types of Responses
Certain response processors are self-explanitory, such as the Block Processor (the user will see that they
are blocked). Other responses are "invisible" in that there are no manifestations of the response visible to the

Block Processor

139

user. An example of an invisible response processor is the Strip Inputs Processor. This processor will simply
remove all values from all inputs on any form submitted because Junos WebApp Secure has determined that
the user's input can no longer be trusted. On the user-end, they will see nothing that will indicate to them that
this response is active (until they figure out that all inputs are not being recognized).

8.7.1.3. Response Activation
Responses get automatically activated according to rules set forth within Junos WebApp Secure. These rules
are outlined for each incident a user can trigger, and are described in the documentation for each processor.
The default response for each incident is documented in the User Guide, and will look something like, "Default
Response: 1x = Warn User. 2x = 1 Day Block". The '1x' or '2x' indicate the number of incidents of that type
triggered. For this example, triggering this incident once results in the Warning Processor being activated.
If the same incident is triggered again on the same profile, the user then gets a 1 day block via the Block
Processor.

Note
You may wish to completely disable automatic counter responses entirely. If this is the case,
changing the configuration parameter "Auto Response Activation Enabled" to 'False' will
prevent any new automatic activations, but will not hinder your ability to manually activate
responses on profiles. (Configuration >> Global Configuration >> Auto Response Service >>
"Auto Response Activation Enabled = False")

8.7.1.4. Compounding and Overriding Responses
• Warning - There is no need to warn someone when they are already blocked.

• Captcha - If the user is ever unblocked (or the block expires), they will be prompted to solve the captcha.

• Cloppy - If they are ever unblocked (or the block expires) Cloppy will appear.

• Google Maps - If the user is ever unblocked (or the block expires), they will be shown the Google map.

Captcha overrides:
• Warning - Junos WebApp Secure will warn after they solve the captcha.

• Cloppy - Cloppy will appear after they solve the captcha.

• Google Maps - The Google map will be shown after they solve the captcha.

Strip Inputs overrides:
• Break Authentication - It is redundant, as Junos WebApp Secure is already stripping login credentials.

8.7.2. Block Processor
The block processor is actually a form of auto response. When this processor is enabled, it will allow the
security system to block a response with "Blocked!" message sent back to the user.

Note
There are no actual triggers for this processor; it is a form of response.

Request Captcha Processor

140

8.7.2.1. Configuration

Table 8.19. Block Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this
processor.

Advanced

Block Response ConfigurableHTTP Response The response to return to the user when they
are blocked.

8.7.3. Request Captcha Processor
The Captcha processor is designed to protect specific pages in a web application from automation. This is
done by using a "Captcha" challenge, where the user is required to transcribe random characters from an
obscured image or muffled audio file in order to complete the request. The intent is that a human would be
capable of correctly answering the challenge, while an automated script with no human intervention would
be unable to do so. This assumes that the image is obscured enough that text recognition software is not
effective, and the audio file significantly distorted to defeat speech-to-text software. Requiring such user
interaction is somewhat disruptive, so it should be utilized only for pages that are prime automation targets
(such as contact forms, registration pages, login pages, etc.).

Furthermore, these captcha challenges can be customized to fit the style of the application it is protecting. For
more information on how to customize a captcha, see the Captcha Template documentation in the appendix of
the user guide.

8.7.3.1. Configuration

Table 8.20. Request Captcha Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this
processor.

Protected Pages Collection None A collection of protected pages.

Advanced

Bad Request Block
Response

HTTP
Response

400 HTTP Response The response to return if the user issues a
request that either is too large, or uses multi-
part and multi-part is disabled.

Blocked Replay
Response

String Random Value The response to return if the user attempts to
submit the validated request multiple times
using the same captcha answer, and that
behavior is not allowed.

Captcha Binary
Directory

String Random Value The name of the directory where captcha
images and audio files will be served from.

Request Captcha Processor

141

Parameter Type Default Value Description
This should not conflict with any actual
directories on the site.

Captcha Characters String Random Value The characters to use when generating a
random captcha value. Avoid using characters
that can be easily mixed up. This set of
characters is case sensitive.

Captcha State Cookie
Name

String Random Value The name of the cookie to use to track the
active captchas that have not yet been solved.
The cookie is only served to the captcha
binary directory.

Captcha Validation
Input Name

String Random Value The name of the form input used to transmit
the captcha validation key. This should be
obscure so that users who have not been
required to enter a captcha cannot supply bad
values to this input to profile the system.

Maximum Active
Captchas

Integer 7 The maximum number of captchas any given
user can be solving at any given time. This
limit can be overcome, but the majority of
users will not be able to. This is primarily for
performance, as the more active captchas
that are allowed, the larger the state cookie
becomes.

Support Audio
Version

Boolean True Whether an audio version of the captcha
is provided to the user. This may be a
requirement for accessibility, as vision
impaired users would otherwise be unable to
solve the captcha.

Watermark String Random Value The text to watermark the captcha with. This
can be used to prevent the captcha from
being used in a phishing attack. For example,
an abuser would not be able to simply display
the captcha on a different site and ask a user
to solve it. The watermark would tip the user
off that the captcha was not intended for the
site they are visiting. Use %DOMAIN to use
the domain name as the watermark.

Cancel URL String None The URL to redirect the user to if they cancel
the captcha. This should not be to the same
domain, because the domain is being blocked
using a captcha, and therefore, canceling
would only redirect to a new captcha. An
empty value will hide the cancel button.

Captcha Expiration Integer 2 minutes The maximum number of seconds the user
has to solve the captcha before the request is
no longer possible.

Expired Captcha
Response

HTTP
Response

400 HTTP Response The response to return if the user submits
a validated request after the captcha

Request Captcha Processor

142

Parameter Type Default Value Description
has expired. This may happen if the user
refreshes the results of the captcha long after
they have solved it.

Maximum Request
Size

Integer 500kb The maximum number of bytes in a request
before it is considered not acceptable for
captcha validation, and will be blocked.

Incident: Bad Captcha
Answer

Boolean False The user was asked to solve a captcha and
entered the wrong value. This could be a
normal user error, or it could be the results of
failed abuse.

Incident: Captcha
Cookie Manipulation

Boolean True The user submitted a request and was asked
to solve a captcha. They then modified the
state cookie used to track captchas, making
it invalid. This is likely in an attempt to find
a way to bypass the captcha validation
mechanism.

Incident: Captcha
Directory Indexing

Boolean True The user has requested a directory index in
the directory that serves the captcha images
and audio files. This is likely in an attempt to
get a list of all active captchas or to identify
how the captchas are generated.

Incident: Captcha
Directory Probing

Boolean True The user has requested a random file inside
the directory that serves the captcha images
and audio files. This is likely in an attempt
to find an exploitable service or sensitive file
that may help bypass the captcha validation
mechanism.

Incident: Captcha
Disallowed MultiPart

Boolean True The user has submitted a multipart form
post to the protected page, which has been
configured as a disallowed option. This is
likely in an attempt to find an edge case
the captcha validation mechanism is not
expecting.

Incident: Captcha
Image Probing

Boolean True The user is probing the directory used to
serve captcha images. This is likely in an
attempt to find hidden files or a way to invoke
errors from the captcha serving logic.

Incident: Captcha
Parameter
Manipulation

Boolean True The user has submitted a request with a valid
captcha, but they modified the query string
parameters. This could be in an attempt to
change the output of executing the request
without requiring the user to re-validate with
another captcha.

Incident: Captcha
Request Replay
Attack

Boolean True The user has attempted to submit the same
request multiple times with the same captcha
answer. In order words, they solved the

Request Captcha Processor

143

Parameter Type Default Value Description
captcha once and issued the resulting request
multiple times.

Incident: Captcha
Request Size Limit
Exceeded

Boolean True The user has submitted a request to the
protected page which contains more data
then is allowed. This is may be an attempt
to reduce system performance by issuing
expensive requests, or it may be an indicator
of a more complex attack.

Incident: Captcha
Request Tampering

Boolean True The user submitted a request and was asked
to solve a captcha. They introspected the
page containing the captcha and altered the
serialized request data (the data from the
original request before the captcha prompt).
They then submitted a valid captcha using
the modified request data. This is likely in an
attempt to abuse the captcha system and
identify a bypass technique.

Incident: Captcha
Signature Spoofing

Boolean True The user submitted a request and was asked
to solve a captcha. They introspected the
page containing the captcha and provided
a validation key from a previously solved
captcha. This is likely in an attempt to submit
multiple requests under the validation of the
first.

Incident: Captcha
Signature Tampering

Boolean True The user submitted a request and was asked
to solve a captcha. They introspected the
page containing the captcha and provided a
fake validation key. This is likely in an attempt
to bypass the captcha validation mechanism.

Incident: Expired
Captcha Request

Boolean True The user submitted a request and was given
a set window of time to solve a captcha. The
user solved the captcha and submitted the
request for final processing after the window
of time expired. This is likely an indication of a
packet replay attack, where the user attempts
to invoke the business logic of the protected
page multiple times under the same captcha
validation.

Incident: Mismatched
Captcha Session

Boolean True The user submitted a request and was asked
to solve a captcha. They solved the captcha,
but upon submitting the request for final
processing, they did so under a different
session ID. This is likely due to multiple
machines participating in the execution of
the site workflow and may indicate a serious
targeted automation attack.

Request Captcha Processor

144

Parameter Type Default Value Description

Incident: No Captcha
Answer Provided

Boolean True The user attempted to validate a captcha
but did not supply an answer to validate.
There is no interface that allows the user to
do this, so they must be manually executing
requests against the captcha validation API in
an attempt to evade the mechanism.

Incident: Unsupported
Audio Captcha
Requested

Boolean True The user has requested an audio version
of the captcha challenge, but audio is not
supported and there should not be an
interface to ask for the audio version. The
user is likely trying to find a way to more easily
bypass the captcha system.

8.7.3.2. Incidents

8.7.3.2.1. Captcha Answer Automation
Complexity: Low (2.0)

Default Response: 1x = Slow Connection 2-6 seconds and 1 Day Clear Inputs

Cause: A captcha is a special technique used to differentiate between human users, and automated scripts.
This is done through a Turing test, where the user is required to visually identify characters in a jumbled image
and transcribe them into an input. If the user is unable to complete the challenge in a reasonable amount of
time, they are not allowed to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed. Additionally, an audio
version is optionally available to allow users who have a visual handicap to complete the captcha successfully.
Captchas are used in two different ways by the system. They can be explicitly added to any workflow within
the protected web application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site (similar to blocking the
user, but with a way for the user to unblock themselves if they can prove they are not an automated script).
 Captchas are generally used to resolve "Insufficient Anti-Automation186" weaknesses in the protected web
application. Regardless of which type of captcha is being used, this incident is generated when the user
provides an abnormal volume of bad solutions to the captcha image. For example, the image may have said
"Hello", but the user attempted 30 different values all of which did not match "Hello". Because the images can
be somewhat difficult to read at times (in order to ensure a script cannot break them), it is not uncommon for a
legitimate user to enter the wrong value a few times before getting it right, especially if they are unfamiliar with
this type of technique, but after dozens of failed attempts, it is more likely a malicious user.

Behavior: Simply providing a bad solution to the captcha image is not necessarily malicious.Legitimate
users are not always able to solve the captcha on the first try. However if a large volume of invalid solutions
are provided, then it is more likely that a script is attempting to crack the captcha image through educated
guessing and "Brute Force187".

8.7.3.2.2. No Captcha Answer Provided
Complexity: Medium (3.0)

186 http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
187 http://projects.webappsec.org/Brute-Force

http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/Brute-Force
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/Brute-Force

Request Captcha Processor

145

Default Response: 1x = Warn User. 2x = 1 Day Block

Cause: A captcha is a special technique used to differentiate between human users, and automated scripts.
This is done through a Turing test, where the user is required to visually identify characters in a jumbled image
and transcribe them into an input. If the user is unable to complete the challenge in a reasonable amount of
time, they are not allowed to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed. Additionally, an audio
version is optionally available to allow users who have a visual handicap to complete the captcha successfully.
Captchas are used in two different ways by the system. They can be explicitly added to any workflow within
the protected web application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site (similar to blocking the
user, but with a way for the user to unblock themselves if they can prove they are not an automated script).
 Captchas are generally used to resolve "Insufficient Anti-Automation188" weaknesses in the protected web
application. Regardless of which type of captcha is being used, this incident is generated when the user forces
the captcha interface to submit the request without a valid captcha solution. There is no way to do this without
manipulating the logic that controls captcha protected requests.

Behavior: When a hacker is attempting to establish an automated script that is capable of defeating the
captcha, they may use various different techniques. One of these techniques is to try changing various values
used by the web application in the captcha mechanism in an effort to see if an error can be generated, or an
unexpected outcome can be achieved.This type of probing and reverse engineering is generally performed
by advanced hackers. In this specific case, the attacker attempted to submit the captcha protected page
without actually solving the captcha. Instead they provided an empty value for the solution parameter. It is not
possible to submit an empty solution using the provided captcha interface, so this is almost guaranteed to be
a malicious attempt at generating an error and obtaining additional details about the captcha implementation
though an "Information Leakage189"weakness.

8.7.3.2.3. Multiple Captcha Request Overflow
Complexity: Low (2.0)

Default Response: 1x = 1 Day Clear Inputs.

Cause: A captcha is a special technique used to differentiate between human users, and automated scripts.
This is done through a Turing test, where the user is required to visually identify characters in a jumbled image
and transcribe them into an input. If the user is unable to complete the challenge in a reasonable amount of
time, they are not allowed to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed. Additionally, an audio
version is optionally available to allow users who have a visual handicap to complete the captcha successfully.
Captchas are used in two different ways by the system. They can be explicitly added to any workflow within
the protected web application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site (similar to blocking the
user, but with a way for the user to unblock themselves if they can prove they are not an automated script).
 Captchas are generally used to resolve "Insufficient Anti-Automation190" weaknesses in the protected web
application. Regardless of which type of captcha is being used, this incident is generated when the user
attempts to submit dozens of captcha protected requests that exceed the configured maximum for protected
request sizes.

Behavior: When a hacker is attempting to establish an automated script that is capable of defeating the
captcha, they may use various different techniques. One of these techniques is to try changing various values

188 http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
189 http://projects.webappsec.org/Information-Leakage
190 http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation

http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/Information-Leakage
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/Information-Leakage
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation

Request Captcha Processor

146

used by the web application in the captcha mechanism in an effort to see if an error can be generated, or an
unexpected outcome can be achieved.This type of probing and reverse engineering is generally performed by
advanced hackers. In this specific case, the attacker submitted dozens of extremely large requests, probably
in an effort to find a "Buffer Overflow191" vulnerability, which would produce useful error data and potentially
open the server up to further exploitation. They may also be attempting to overload the server and execute a
"Denial of Service192" attack.

8.7.3.2.4. Unsupported Audio Captcha Requested
Complexity: Medium (3.0)

Default Response: 3x = Slow Connection 2-6 seconds and Warn User. 5x = 1 Day Block.

Cause: A captcha is a special technique used to differentiate between human users, and automated scripts.
This is done through a Turing test, where the user is required to visually identify characters in a jumbled image
and transcribe them into an input. If the user is unable to complete the challenge in a reasonable amount of
time, they are not allowed to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed. Additionally, an audio
version is optionally available to allow users who have a visual handicap to complete the captcha successfully.
Captchas are used in two different ways by the system. They can be explicitly added to any workflow within
the protected web application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site (similar to blocking the
user, but with a way for the user to unblock themselves if they can prove they are not an automated script).
 Captchas are generally used to resolve "Insufficient Anti-Automation193" weaknesses in the protected web
application. Regardless of which type of captcha is being used, this incident is generated when the user
attempts to request the audio version of a captcha challenge when support for audio captchas has been
explicitly disabled.

Behavior: Solving an image based captcha is exceptionally difficult and requires a great deal of time and
research. Solving an audio captcha however is far less difficult. There are already multiple open source
libraries available for translating speech to text. As such, it is often necessary to disable the support of
"audio" captchas for critical workflows (such as administrative login dialogs), unless absolutely necessary for
accessibility reasons. This incident occurs when the audio captcha has been disabled, but a user is attempting
to manually request the audio version of the captcha challenge anyway. The captcha interface does not
expose a link to the audio version unless it is explicitly enabled in configuration, so this would require that the
user knows where to look for the audio version, they understand the filename conventions, and they know
how to make the request manually to download the file. In either case, if audio captchas are not enabled
(through configuration), then this effort will not be successful.

8.7.3.2.5. Bad Captcha Answer
Complexity: Suspicious (1.0)

Default Response: 10x = Captcha Answer Automation Incident.

Cause: A captcha is a special technique used to differentiate between human users, and automated scripts.
This is done through a Turing test, where the user is required to visually identify characters in a jumbled image
and transcribe them into an input. If the user is unable to complete the challenge in a reasonable amount of
time, they are not allowed to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed. Additionally, an audio

191 http://projects.webappsec.org/Buffer-Overflow
192 http://projects.webappsec.org/Denial-of-Service
193 http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation

http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation

Request Captcha Processor

147

version is optionally available to allow users who have a visual handicap to complete the captcha successfully.
Captchas are used in two different ways by the system. They can be explicitly added to any workflow within
the protected web application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site (similar to blocking the
user, but with a way for the user to unblock themselves if they can prove they are not an automated script).
 Captchas are generally used to resolve "Insufficient Anti-Automation194" weaknesses in the protected web
application. Regardless of which type of captcha is being used, this incident is generated when the user
provides a bad solution to the captcha image. For example, the image may have said "Hello", but the user
typed "hfii0"instead. Because the images can be somewhat difficult to read at times (in order to ensure a
script cannot break them), it is not uncommon for a legitimate user to enter the wrong value a few times before
getting it right, especially if they are unfamiliar with this type of technique.

Behavior: Simply providing a bad solution to the captcha image is not necessarily malicious. Legitimate
users are not always able to solve the captcha on the first try. However if a large volume of invalid solutions
are provided, then it is more likely that a script is attempting to crack the captcha image through educated
guessing and "Brute Force195".

8.7.3.2.6. Mismatched Captcha Session
Complexity: High (4.0)

Default Response: 1x = Warn User, 2x = 5 Day Clear Inputs.

Cause: A captcha is a special technique used to differentiate between human users, and automated scripts.
This is done through a Turing test, where the user is required to visually identify characters in a jumbled image
and transcribe them into an input. If the user is unable to complete the challenge in a reasonable amount of
time, they are not allowed to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed. Additionally, an audio
version is optionally available to allow users who have a visual handicap to complete the captcha successfully.
Captchas are used in two different ways by the system. They can be explicitly added to any workflow within
the protected web application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site (similar to blocking the
user, but with a way for the user to unblock themselves if they can prove they are not an automated script).
 Captchas are generally used to resolve "Insufficient Anti-Automation196" weaknesses in the protected web
application. Regardless of which type of captcha is being used, this incident is generated when the user
provides a solution to a captcha that was issued for a different session then their own, as might be the case in
a script that uses minimal human interaction to solve the captcha's, but everything else is automated

Behavior: When a hacker is attempting to establish an automated script that is capable of defeating
the captcha, they may use various different techniques. One of these techniques is to try and harvest
successfully solves captchas from other users on the site. This can be done either by infecting those
machines with a virus, or by implanting script into some of the sites pages (possibly through XSS). If this
technique is used, then the captcha that is being solved may not have originated from the same session as
the user who is submitting the solution. This is a dead giveaway that the user is attempting to defeat the
captcha system to automate a specific task.

8.7.3.2.7. Expired Captcha Request
Complexity: Suspicious (1.0)

194 http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
195 http://projects.webappsec.org/Brute-Force
196 http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation

http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/Brute-Force
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/Brute-Force
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation

Request Captcha Processor

148

Default Response: None.

Cause: A captcha is a special technique used to differentiate between human users, and automated scripts.
This is done through a Turing test, where the user is required to visually identify characters in a jumbled image
and transcribe them into an input. If the user is unable to complete the challenge in a reasonable amount of
time, they are not allowed to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed. Additionally, an audio
version is optionally available to allow users who have a visual handicap to complete the captcha successfully.
Captchas are used in two different ways by the system. They can be explicitly added to any workflow within
the protected web application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site (similar to blocking the
user, but with a way for the user to unblock themselves if they can prove they are not an automated script).
 Captchas are generally used to resolve "Insufficient Anti-Automation197" weaknesses in the protected web
application. Regardless of which type of captcha is being used, this incident is generated when the user
provides a solution to a captcha after the allotted time for solving the captcha has elapsed.

Behavior: When a hacker is attempting to establish an automated script that is capable of defeating the
captcha, they may use various different techniques. One of these techniques is to run expensive image
processing algorithms on the captcha image in order to identify what the represented value might be.
Additionally, a user might attempt to send the captcha to a warehouse of human captcha solvers. These
warehouses specialize in solving large volumes of captchas at a fairly low price (less then a penny per
captcha). In either case, it can take several minutes to get the correct captcha answer, and will likely run
out the amount of time the user is allowed for solving the captcha. If using a browser, the input would flat
out stop accepting answers, but in a scripted scenario, the script will likely try and submit the value anyway,
because it is unaware of the expiration. It is possible that this incident would be triggered by a legitimate user,
if they were to refresh the page that was produced after the captcha was solved. This would effectively cause
the captcha to be reprocessed after the expiration time had been exceeded. As such, this incident on its own
is not considered malicious.

8.7.3.2.8. Captcha Request Tampering
Complexity: High (4.0)

Default Response: 1x = Warn User. 2x = 5 Day Clear Inputs.

Cause: A captcha is a special technique used to differentiate between human users, and automated scripts.
This is done through a Turing test, where the user is required to visually identify characters in a jumbled image
and transcribe them into an input. If the user is unable to complete the challenge in a reasonable amount of
time, they are not allowed to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed. Additionally, an audio
version is optionally available to allow users who have a visual handicap to complete the captcha successfully.
Captchas are used in two different ways by the system.They can be explicitly added to any workflow within
the protected web application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site (similar to blocking the
user, but with a way for the user to unblock themselves if they can prove they are not an automated script).
 Captchas are generally used to resolve "Insufficient Anti-Automation198" weaknesses in the protected web
application. Regardless of which type of captcha is being used, this incident is generated when the user
provides a solution to a captcha which is correct, but they have modified the parameter containing the original
request (which is heavily encrypted to prevent tampering).

197 http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
198 http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation

http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation

Request Captcha Processor

149

Behavior: When a hacker is attempting to establish an automated script that is capable of defeating the
captcha, they may use various different techniques. One of these techniques is to try changing various values
used by the web application in the captcha mechanism in an effort to see if an error can be generated, or an
unexpected outcome can be achieved. This type of probing and reverse engineering is generally performed by
advanced hackers. The parameter that was modified contained the original request data (before the captcha
was issued), it is likely that the attacker is attempting to smuggle a malicious payload through the system
without being detected by any network or web firewalls. Because this parameter uses heavy encryption
and validation, this type of activity will not produce any useful information or expose any vulnerabilities.
Depending on the value they submitted for the original request data, this may also fall under one of the other
attack categories involving manipulating general inputs, such as a "Buffer Overflow199", "XSS200", "Denial of
Service201", "Fingerprinting202", "Format String203", "HTTP Response Splitting204", "Integer Overflow205", or
"SQL injection206"attack among many others.

8.7.3.2.9. Captcha Signature Tampering
Complexity: High (4.0)

Default Response: 1x = Warn User. 2x = 5 Day Clear Inputs.

Cause: A captcha is a special technique used to differentiate between human users, and automated scripts.
This is done through a Turing test, where the user is required to visually identify characters in a jumbled image
and transcribe them into an input. If the user is unable to complete the challenge in a reasonable amount of
time, they are not allowed to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed. Additionally, an audio
version is optionally available to allow users who have a visual handicap to complete the captcha successfully.
Captchas are used in two different ways by the system. They can be explicitly added to any workflow within
the protected web application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site (similar to blocking the
user, but with a way for the user to unblock themselves if they can prove they are not an automated script).
 Captchas are generally used to resolve "Insufficient Anti-Automation207" weaknesses in the protected web
application. Regardless of which type of captcha is being used, this incident is generated when the user
provides a solution to a captcha which is correct, but they have modified the integrity checking signature
passed along with the captcha solution.

Behavior: When a hacker is attempting to establish an automated script that is capable of defeating the
captcha, they may use various different techniques. One of these techniques is to try changing various values
used by the web application in the captcha mechanism in an effort to see if an error can be generated, or an
unexpected outcome can be achieved. This type of probing and reverse engineering is generally performed
by advanced hackers. Depending on the value they submitted for the original request data, this may also fall
under one of the other attack categories involving manipulating general inputs, such as a "Buffer Overflow208",
"XSS209", "Denial of Service210", "Fingerprinting211", "Format String212", "HTTP Response Splitting213", "Integer
Overflow214", or "SQL injection215" attack among many others.

199 http://projects.webappsec.org/Buffer-Overflow
200 http://projects.webappsec.org/Cross-Site+Scripting
201 http://projects.webappsec.org/Denial-of-Service
202 http://projects.webappsec.org/Fingerprinting
203 http://projects.webappsec.org/Format-String
204 http://projects.webappsec.org/HTTP-Response-Splitting
205 http://projects.webappsec.org/Integer-Overflows
206 http://projects.webappsec.org/SQL-Injection
207 http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
208 http://projects.webappsec.org/Buffer-Overflow
209 http://projects.webappsec.org/Cross-Site+Scripting

http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting

Request Captcha Processor

150

8.7.3.2.10. Captcha Signature Spoofing
Complexity: High (4.0)

Default Response: 1x = Warn User. 2x = 5 Day Clear Inputs.

Cause: A captcha is a special technique used to differentiate between human users, and automated scripts.
This is done through a Turing test, where the user is required to visually identify characters in a jumbled image
and transcribe them into an input. If the user is unable to complete the challenge in a reasonable amount of
time, they are not allowed to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed. Additionally, an audio
version is optionally available to allow users who have a visual handicap to complete the captcha successfully.
Captchas are used in two different ways by the system. They can be explicitly added to any workflow within
the protected web application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site (similar to blocking the
user, but with a way for the user to unblock themselves if they can prove they are not an automated script).
 Captchas are generally used to resolve "Insufficient Anti-Automation216" weaknesses in the protected web
application. Regardless of which type of captcha is being used, this incident is generated when the user
provides a solution to a captcha which is correct, but they have replaced the integrity checking signature
passed along with the captcha solution to one that was used in a previous captcha solution.

Behavior: When a hacker is attempting to establish an automated script that is capable of defeating the
captcha, they may use various different techniques. One of these techniques is to try changing various values
used by the web application in the captcha mechanism in an effort to see if an error can be generated, or an
unexpected outcome can be achieved. This type of probing and reverse engineering is generally performed
by advanced hackers. This specific incident generally reflects the behavior of a user who is trying to submit
a request that would normally be protected by a captcha, but they are trying to trick the system into thinking
the captcha was solved correctly, even though it was not. This is generally looking for a "Insufficient Anti-
Automation217" weakness in the captcha handling mechanism.

8.7.3.2.11. Captcha Cookie Manipulation
Complexity: Medium (3.0)

Default Response: 1x = Warn User. 2x = 5 Day Clear Inputs.

Cause: A captcha is a special technique used to differentiate between human users, and automated scripts.
This is done through a Turing test, where the user is required to visually identify characters in a jumbled image
and transcribe them into an input. If the user is unable to complete the challenge in a reasonable amount of
time, they are not allowed to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed. Additionally, an audio
version is optionally available to allow users who have a visual handicap to complete the captcha successfully.
Captchas are used in two different ways by the system. They can be explicitly added to any workflow within
the protected web application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site (similar to blocking the
user, but with a way for the user to unblock themselves if they can prove they are not an automated script).

210 http://projects.webappsec.org/Denial-of-Service
211 http://projects.webappsec.org/Fingerprinting
212 http://projects.webappsec.org/Format-String
213 http://projects.webappsec.org/HTTP-Response-Splitting
214 http://projects.webappsec.org/Integer-Overflows
215 http://projects.webappsec.org/SQL-Injection
216 http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
217 http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation

http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation

Request Captcha Processor

151

 Captchas are generally used to resolve "Insufficient Anti-Automation218" weaknesses in the protected web
application. Regardless of which type of captcha is being used, this incident is generated when the user alters
the cookies used to maintain captcha state.

Behavior: When a hacker is attempting to establish an automated script that is capable of defeating the
captcha, they may use various different techniques. One of these techniques is to try changing various values
used by the web application in the captcha mechanism in an effort to see if an error can be generated, or an
unexpected outcome can be achieved. This type of probing and reverse engineering is generally performed
by advanced hackers. In this specific case, the attacker modified a cookie that is used to maintain the state of
the captcha. The cookie is heavily encrypted, but the attacker may be attempting to establish a way of either
identifying what the value of the captcha is algorithmically (by analyzing the cookie value), or they may be
attempting to assign a value to the captcha. In either case, this activity generally indicates a user who is trying
to find a way to bypass the captcha. Depending on the value they submitted for the original request data,
this may also fall under one of the other attack categories involving manipulating general inputs, such as a
"Buffer Overflow219", "XSS220", "Denial of Service221", "Fingerprinting222", "Format String223", "HTTP Response
Splitting224", "Integer Overflow225", or "SQL injection226" attack among many others.

8.7.3.2.12. Captcha Image Probing
Complexity: Low (2.0)

Default Response: 1x = Warn User. 2x = 5 Day Block.

Cause: A captcha is a special technique used to differentiate between human users, and automated scripts.
This is done through a Turing test, where the user is required to visually identify characters in a jumbled image
and transcribe them into an input. If the user is unable to complete the challenge in a reasonable amount of
time, they are not allowed to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed. Additionally, an audio
version is optionally available to allow users who have a visual handicap to complete the captcha successfully.
Captchas are used in two different ways by the system. They can be explicitly added to any workflow within
the protected web application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site (similar to blocking the
user, but with a way for the user to unblock themselves if they can prove they are not an automated script).
 Captchas are generally used to resolve "Insufficient Anti-Automation227" weaknesses in the protected web
application. Regardless of which type of captcha is being used, this incident is generated when the user
attempts to request a captcha image file for a request that is not being protected by a captcha.

Behavior: In order to find a way to bypass the captcha mechanism, attackers will often attempt to collect
a large number of captcha images for offline analysis. If the attacker can find a pattern in how the captcha
images are issued, or how the filename relates to the value in the image, then they can effectively bypass
the captcha mechanism at will. In this case, the attacker is guessing arbitrary captcha image filenames, but
is attempting to keep the format of the names consistent with known captcha image URL's. Because the
filename used and the values in the image have no correlation, this technique will not be successful and will
simply waste the attacker's time and resources.

218 http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
219 http://projects.webappsec.org/Buffer-Overflow
220 http://projects.webappsec.org/Cross-Site+Scripting
221 http://projects.webappsec.org/Denial-of-Service
222 http://projects.webappsec.org/Fingerprinting
223 http://projects.webappsec.org/Format-String
224 http://projects.webappsec.org/HTTP-Response-Splitting
225 http://projects.webappsec.org/Integer-Overflows
226 http://projects.webappsec.org/SQL-Injection
227 http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation

http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation

Request Captcha Processor

152

8.7.3.2.13. Captcha Request Size Limit Exceeded
Complexity: Suspicious (1.0)

Default Response: 10x = Multiple Captcha Request Overflow Incident.

Cause: A captcha is a special technique used to differentiate between human users, and automated scripts.
This is done through a Turing test, where the user is required to visually identify characters in a jumbled image
and transcribe them into an input. If the user is unable to complete the challenge in a reasonable amount of
time, they are not allowed to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed. Additionally, an audio
version is optionally available to allow users who have a visual handicap to complete the captcha successfully.
Captchas are used in two different ways by the system. They can be explicitly added to any workflow within
the protected web application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site (similar to blocking the
user, but with a way for the user to unblock themselves if they can prove they are not an automated script).
 Captchas are generally used to resolve "Insufficient Anti-Automation228" weaknesses in the protected web
application. Regardless of which type of captcha is being used, this incident is generated when the user
attempts to submit a captcha protected request that contains a request body larger then the configured
maximum.

Behavior: When a hacker is attempting to establish an automated script that is capable of defeating the
captcha, they may use various different techniques. One of these techniques is to try changing various values
used by the web application in the captcha mechanism in an effort to see if an error can be generated or if an
unexpected outcome can be achieved. This type of probing and reverse engineering is generally performed
by advanced hackers. In this specific case, the attacker submitted an extremely large request, probably in an
effort to find a "Buffer Overflow229" vulnerability, which would produce useful error data and potentially open
the server up to further exploitation. This incident is not necessarily malicious on its own, as it is possible
for a normal user to submit a value that is larger then the configured maximum, especially if the configured
maximum is small, or if the form protected by the captcha allows file posts.

8.7.3.2.14. Captcha Disallowed MultiPart
Complexity: Suspicious (1.0)

Default Response: 10x = Multiple Captcha Disallow Multipart Incident.

Cause: A captcha is a special technique used to differentiate between human users, and automated scripts.
This is done through a Turing test, where the user is required to visually identify characters in a jumbled image
and transcribe them into an input. If the user is unable to complete the challenge in a reasonable amount of
time, they are not allowed to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed. Additionally, an audio
version is optionally available to allow users who have a visual handicap to complete the captcha successfully.
Captchas are used in two different ways by the system. They can be explicitly added to any workflow within
the protected web application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site (similar to blocking
the user, but with a way for the user to unblock themselves if they can prove they are not an automated
script). Captchas are generally used to resolve "Insufficient Anti-Automation230" weaknesses in the protected
web application. Regardless of which type of captcha is being used, this incident is generated when the
user attempts to submit a captcha protected request that contains a binary file, and the captcha is explicitly
configured to not allow binary file submission (it has been configured to disallow multi-part form submissions).

228 http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
229 http://projects.webappsec.org/Buffer-Overflow
230 http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation

http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation

Request Captcha Processor

153

Behavior: When a hacker is attempting to establish an automated script that is capable of defeating the
captcha, they may use various different techniques. One of these techniques is to try changing various
values used by the web application in the captcha mechanism in an effort to see if an error can be generated,
or an unexpected outcome can be achieved.This type of probing and reverse engineering is generally
performed by advanced hackers. In this specific case, the attacker submitted a binary file in the request
that is being protected. The captcha in this case has been explicitly configured to not allow Multi-Part form
submissions, so this represents unexpected and undesired activity. Using Multi-Part forms, the attacker can
more easily accomplish a "Buffer Overflow231"attack, which would produce useful error data and potentially
open the server up to further exploitation. Additionally, some web applications do not handle the encoding
used for multi-part forms gracefully, so error information may also be obtained from conflicts arising from
the submission type. This is not necessarily a malicious incident on its own, because it is possible that the
user is legitimately submitting a multi-part form, and just happened to have the captcha activated during the
submission.However this is a very rare case, and still represents a somewhat suspicious client.

8.7.3.2.15. Captcha Directory Indexing
Complexity: Low (2.0)

Default Response: 1x = Slow Connection 2-6 seconds and 1 Day Block.

Cause: A captcha is a special technique used to differentiate between human users, and automated scripts.
This is done through a Turing test, where the user is required to visually identify characters in a jumbled image
and transcribe them into an input. If the user is unable to complete the challenge in a reasonable amount of
time, they are not allowed to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed. Additionally, an audio
version is optionally available to allow users who have a visual handicap to complete the captcha successfully.
Captchas are used in two different ways by the system. They can be explicitly added to any workflow within
the protected web application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site (similar to blocking the
user, but with a way for the user to unblock themselves if they can prove they are not an automated script).
 Captchas are generally used to resolve "Insufficient Anti-Automation232" weaknesses in the protected web
application. Regardless of which type of captcha is being used, this incident is generated when the user
attempts to request a directory index from the same fake directory as the captcha images are being served
from.

Behavior: When attempting to either bypass the captcha mechanism, or find a vulnerability in the server,
attackers will often try finding unlinked resources throughout the web site. The captcha mechanism uses a
fake directory in order to serve the images and audio files that contain the captcha challenge. If the attacker is
requesting an arbitrary file within the same fake directory, they are likely trying to find a "Predictable Resource
Location233" vulnerability. In this specific case, the attacker is attempting to get a full file listing of everything
inside the captcha directory. This could potentially be used to get a massive list of all active captcha URL's, or
to find resources that are used in the creation of captcha challenges. The directory index will not be allowed,
so this does not actually provide the attacker with any useful information.

8.7.3.2.16. Captcha Directory Probing
Complexity: Low (2.0)

Default Response: 1x = Warn User. 2x = Slow Connection 2-6 seconds and 5 Day Block.

231 http://projects.webappsec.org/Buffer-Overflow
232 http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
233 http://projects.webappsec.org/Predictable-Resource-Location

http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/Predictable-Resource-Location

Request Captcha Processor

154

Cause: A captcha is a special technique used to differentiate between human users, and automated scripts.
This is done through a Turing test, where the user is required to visually identify characters in a jumbled image
and transcribe them into an input. If the user is unable to complete the challenge in a reasonable amount of
time, they are not allowed to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed. Additionally, an audio
version is optionally available to allow users who have a visual handicap to complete the captcha successfully.
Captchas are used in two different ways by the system. They can be explicitly added to any workflow within
the protected web application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site (similar to blocking the
user, but with a way for the user to unblock themselves if they can prove they are not an automated script).
 Captchas are generally used to resolve "Insufficient Anti-Automation234" weaknesses in the protected web
application. Regardless of which type of captcha is being used, this incident is generated when the user
attempts to request an arbitrary file (not a captcha image, but something else) from within the same fake
directory as the captcha images are being served from.

Behavior: When attempting to either bypass the captcha mechanism, or find a vulnerability in the server,
attackers will often try finding unlinked resources throughout the web site. The captcha mechanism uses a
fake directory in order to serve the images and audio files that contain the captcha challenge. If the attacker is
requesting an arbitrary file within the same fake directory, they are likely trying to find a "Predictable Resource
Location235" vulnerability. For example, the attacker might be trying to find a source file in the captcha serving
directory in hopes of actually being able to get the source code behind how captcha images are generated.
Because the directory is fake, the attacker will never find any of the resources they are looking for.

8.7.3.2.17. Captcha Parameter Manipulation
Complexity: Suspcious (1.0)

Default Response: 5x = Multiple Captcha Parameter Manipulation Incident.

Cause: A captcha is a special technique used to differentiate between human users, and automated scripts.
This is done through a Turing test, where the user is required to visually identify characters in a jumbled image
and transcribe them into an input. If the user is unable to complete the challenge in a reasonable amount of
time, they are not allowed to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed. Additionally, an audio
version is optionally available to allow users who have a visual handicap to complete the captcha successfully.
Captchas are used in two different ways by the system. They can be explicitly added to any workflow within
the protected web application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site (similar to blocking the
user, but with a way for the user to unblock themselves if they can prove they are not an automated script).
 Captchas are generally used to resolve "Insufficient Anti-Automation236" weaknesses in the protected web
application. Regardless of which type of captcha is being used, this incident is generated when the user
attempts to submit multiple solutions for multiple captchas, but they keep modifying the query parameters that
were submitted with the original requests. For example, if the user submitted a "add product to cart" request,
and one of the query parameters was the item to add, this incident would be triggered if after solving the
captcha, the value of that query parameter was modified to some other value, and this modification happened
dozens of times.

Behavior: Because captcha's prevent automation, attackers will sometimes try and find ways to abuse the
technique used to request the captcha in order to exploit the site. For example, if the attacker can find a way

234 http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
235 http://projects.webappsec.org/Predictable-Resource-Location
236 http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation

http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation

Request Captcha Processor

155

to submit the same solution over and over again, but have the web application perform a different action each
time, they may be able to solve the captcha once and still automate the resulting workflow. In this case, the
attacker changed a query parameter that was submitted with the original request. They submitted the original
request, solved the captcha, changed the query parameter, and then resubmitted the solved captcha request.
 In some cases, this might cause the web application to execute a different operation based on the difference
in query parameter values. For example, if the protected workflow is "add product to cart" on a shopping site,
then the attacker might attempt to submit the same solved captcha repeatedly, but change the product ID that
is being added on each request. This might allow them to automate the addition of products to a shopping
cart, after solving only one captcha challenge. The captcha mechanism does not allow the modification of
query parameters after the original request has been submitted, so this type of activity will not be successful.

8.7.3.2.18. Captcha Request Replay Attack
Complexity: Suspicious (1.0)

Default Response: 5x = Multiple Captcha Replay Incident

Cause: A captcha is a special technique used to differentiate between human users, and automated scripts.
This is done through a Turing test, where the user is required to visually identify characters in a jumbled image
and transcribe them into an input. If the user is unable to complete the challenge in a reasonable amount of
time, they are not allowed to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed. Additionally, an audio
version is optionally available to allow users who have a visual handicap to complete the captcha successfully.
Captchas are used in two different ways by the system. They can be explicitly added to any workflow within
the protected web application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site (similar to blocking the
user, but with a way for the user to unblock themselves if they can prove they are not an automated script).
 Captchas are generally used to resolve "Insufficient Anti-Automation237" weaknesses in the protected web
application. Regardless of which type of captcha is being used, this incident is generated when the user
attempts to submit a captcha solution multiple times and "replay" is explicitly disabled for the captcha being
used.

Behavior: Because captcha's prevent automation, attackers will sometimes try and find ways to abuse the
technique used to request the captcha in order to exploit the site. For example, if the attacker can find a
way to submit the same solution over and over again, they may be able to solve the captcha once and still
automate the resulting workflow. This is sometimes considered legitimate behavior (as would be expected
if the user refreshed the browser after submitting a successful captcha), however in many cases, such
functionality would make the captcha significantly less effective at preventing automation. In this case, the
attacker resubmitted a request that had already been successfully validated through a captcha, and "replay"
was explicitly disabled for the captcha. This is not necessarily a malicious incident on its own, because the
user may have accidentally refreshed the browser, however multiple attempts would definitely represent
malicious intent. An example of where a captcha's "replay" could cause a problem is on a gaming site, where
the user is adding fake "money" to their account. In order to add the fake money, they must solve the captcha.
 This workflow is protected with a captcha, because if a user could automate the process, they would be able
to add unlimited funds to their account. If an attacker were able to solve the captcha once, and continuously
resubmit the resulting request, they could effectively add funds over and over again without resolving a new
captcha. This would then allow for automation. Replay attackers are less of a problem if the web application
being protected already has a method of preventing the same request from being submitted accidentally
multiple times. Such would be the case if the web application maintained state information for the given
session, and recorded the operation after it was successful, then used that state information to prevent a
future occurrence of the operation.

237 http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation

http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation

Request Captcha Processor

156

8.7.3.2.19. Multiple Captcha Replays
Complexity: Low (2.0)

Default Response: 1x = Warn User, 2x = 1 Day Clear Inputs

Cause: A captcha is a special technique used to differentiate between human users, and automated scripts.
This is done through a Turing test, where the user is required to visually identify characters in a jumbled image
and transcribe them into an input. If the user is unable to complete the challenge in a reasonable amount of
time, they are not allowed to proceed with their original request. Because it is nearly impossible to script the
deciphering of the image, automated scripts generally get stuck and cannot proceed. Additionally, an audio
version is optionally available to allow users who have a visual handicap to complete the captcha successfully.
Captchas are used in two different ways by the system. They can be explicitly added to any workflow within
the protected web application (such as requiring a captcha to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site (similar to blocking the
user, but with a way for the user to unblock themselves if they can prove they are not an automated script).
 Captchas are generally used to resolve "Insufficient Anti-Automation238" weaknesses in the protected web
application. Regardless of which type of captcha is being used, this incident is generated when the user
attempts to submit a captcha solution multiple times and "replay" is explicitly disabled for the captcha being
used.

Behavior: Because captcha's prevent automation, attackers will sometimes try and find ways to abuse the
technique used to request the captcha in order to exploit the site. For example, if the attacker can find a
way to submit the same solution over and over again, they may be able to solve the captcha once and still
automate the resulting workflow. This is sometimes considered legitimate behavior (as would be expected
if the user refreshed the browser after submitting a successful captcha), however in many cases, such
functionality would make the captcha significantly less effective at preventing automation. In this case, the
attacker resubmitted a request that had already been successfully validated through a captcha, and "replay"
was explicitly disabled for the captcha. This is not necessarily a malicious incident on its own, because the
user may have accidentally refreshed the browser, however multiple attempts would definitely represent
malicious intent. An example of where a captcha's "replay" could cause a problem is on a gaming site, where
the user is adding fake "money" to their account. In order to add the fake money, they must solve the captcha.
 This workflow is protected with a captcha, because if a user could automate the process, they would be able
to add unlimited funds to their account. If an attacker were able to solve the captcha once, and continuously
resubmit the resulting request, they could effectively add funds over and over again without resolving a new
captcha. This would then allow for automation. Replay attackers are less of a problem if the web application
being protected already has a method of preventing the same request from being submitted accidentally
multiple times. Such would be the case if the web application maintained state information for the given
session, and recorded the operation after it was successful, then used that state information to prevent a
future occurrence of the operation.

8.7.3.2.20. Multiple Captcha Disallow Multipart
Complexity: Low (2.0)

Default Response: 1x = 1 Day Clear Inputs

Cause: A CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) is a
special technique used to differentiate between human users, and automated scripts. The user is required to
visually identify characters in a jumbled image and transcribe them into a text box. An audio version is also
available, for users with a visual handicap. If the user is unable to complete the challenge in a reasonable

238 http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation

http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation

Request Captcha Processor

157

amount of time, they are not allowed to proceed with their original request. Because it is nearly impossible to
script the deciphering of the image, automated scripts generally get stuck and cannot proceed.

CAPTCHAs are used in two different ways by the System. They can be explicitly added to any workflow within
the protected web application (such as requiring a CAPTCHA to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site (similar to blocking the
user, but with a way for the user to unblock themselves if they can prove they are not an automated script).
CAPTCHAs are generally used to resolve "Insufficient Anti-Automation239" weaknesses in the protected web
application.

Regardless of which type of CAPTCHA is being used, this incident is generated when the user attempts to
submit dozens of CAPTCHA-protected requests that contain binary files, and the CAPTCHAs are explicitly
configured to not allow binary file submission (it has been configured to disallow multi-part form submissions).

Behavior: When a hacker is attempting to establish an automated script that is capable of defeating the
CAPTCHA, they may use various techniques. One of these techniques is to try changing various values used
by the web application in the CAPTCHA mechanism in an effort to see if an error can be generated, or an
unexpected outcome can be achieved. This type of probing and reverse-engineering is generally performed
by advanced hackers.

In this specific case, the attacker submitted dozens of binary files in the requests that are being protected.
The CAPTCHA in this case has been explicitly configured to not allow Multi-Part form submissions, so
this represents unexpected and undesired activity. Using Multi-Part forms, the attacker can more easily
accomplish a "Buffer Overflow240" attack, which would produce potentially sensitive error data and possibly
open the server up to further exploitation. Additionally, some web applications do not handle the encoding
used for multi-part forms gracefully, so error information may also be obtained from conflicts arising from the
submission type. Because this is happening so frequently from the same user, it is also possible that the user
is attempting to execute a "Denial of Service241" attack.

8.7.3.2.21. Multiple Captcha Parameter Manipulation
Complexity: Low (2.0)

Default Response: 1x = Warn User, 2x = 1 Day Clear Inputs

Cause: A CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) is a
special technique used to differentiate between human users, and automated scripts. The user is required to
visually identify characters in a jumbled image and transcribe them into a text box. An audio version is also
available, for users with a visual handicap. If the user is unable to complete the challenge in a reasonable
amount of time, they are not allowed to proceed with their original request. Because it is nearly-impossible to
script the deciphering of the image, automated scripts generally get stuck and cannot proceed.

CAPTCHAs are used in two different ways by the System. They can be explicitly added to any workflow within
the protected web application (such as requiring a CAPTCHA to login, or checkout a shopping cart), and they
can be used to test a suspicious user before allowing them to continue using the site (similar to blocking the
user, but with a way for the user to unblock themselves if they can prove they are not an automated script).
CAPTCHAs are generally used to resolve "Insufficient Anti-Automation242" weaknesses in the protected web
application.

239 http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
240 http://projects.webappsec.org/w/page/13246916/Buffer%20Overflow
241 http://projects.webappsec.org/w/page/13246921/Denial%20of%20Service
242 http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation

http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/w/page/13246916/Buffer%20Overflow
http://projects.webappsec.org/w/page/13246921/Denial%20of%20Service
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation
http://projects.webappsec.org/w/page/13246916/Buffer%20Overflow
http://projects.webappsec.org/w/page/13246921/Denial%20of%20Service
http://projects.webappsec.org/w/page/13246938/Insufficient%20Anti-automation

CSRF Processor

158

Regardless of which type of CAPTCHA is being used, this incident is generated when the user attempts to
submit multiple solutions for multiple CAPTCHAs, but they keep modifying the query parameters that were
submitted with the original requests. For example, if the user submitted a "add product to cart" request,
and one of the query parameters was the item to add, this incident would be triggered if, after solving the
CAPTCHA, the value of that query parameter was modified to some other value, and this modification
happened dozens of times.

Behavior: Because CAPTCHAs prevent automation, attackers will sometimes try to find ways to abuse the
technique used to request the CAPTCHA in order to exploit the site. For example, if the attacker can find a
way to submit the same solution over and over again, but have the web application perform a different action
each time, they may be able to solve the CAPTCHA once, and still automate the resulting workflow.

In this case, the attacker changed many query parameters on many different requests that were protected
with a CAPTCHA. They submitted the original request, solved the CAPTCHA, changed the original query
parameters, and then resubmitted the solved CAPTCHA request. In some cases, this might cause the web
application to execute a different operation based on the difference in query parameter values. For example,
if the protected workflow is "add product to cart" on a shopping site, then the attacker might attempt to submit
the same solved CAPTCHA repeatedly, but change the product ID that is being added on each request. This
might allow them to automate the addition of products to a shopping cart, after solving only one CAPTCHA
challenge.

The CAPTCHA mechanism does not allow the modification of query parameters after the original request has
been submitted, so this type of activity will not be successful.

This is not considered malicious activity right away, because it is possible that a user may accidentally modify
a query parameter; however, when this incident is triggered, it represents a user who has modified dozens of
different query parameters on different CAPTCHA-protected pages.

8.7.4. CSRF Processor
The CSRF processor is responsible for ensuring that the protected website does not allow a cross site request
forgery attack. CSRF attacks are a type of session hijacking, where a malicious website redirects a user to a
sensitive service call on the target website. For example, a user might visit a malicious website that has an
image tag pointed to the "deleteAccount" service running on a target website. When a user visits the malicious
website, they are unknowingly calling the "deleteAccount" operation. If they had an active session on the
target site, their account would be deleted.

This processor works by intercepting any request that could potentially be part of a CSRF attack. This is
determined by looking at the referrer header being passed in by the client. The referrer header tells the server
where the user came from. If the user is navigating around the actual website legitimately, they will have a
referrer header on nearly all requests they make which will match the domain of the site they are navigating.
If the user types the URL in manually, or follows a link from another site, they will not have a referrer. If it's a
CSRF attack, there will either be no referrer, or a 3rd party domain in the referrer.

In all cases where the referrer does not match the domain of the protected site, a special redirection page will
be returned to the client instead of the request they actually asked for. The redirection page will check to make
sure the user is not a victim of a CSRF attack, and if they are not, it will automatically redirect the user to the
original page they requested.

This processor only protects clients that have "user-agent" headers matching that of a known browser. This is
because CSRF attacks are specifically targeted at average web users, and they generally stick to the major
browsers. So spiders and scripts will bypass the CSRF processors detection/protection mechanism. This
processor also detects the case where a user has turned off referrers (and thus, no requests will contain

CSRF Processor

159

a referrer), and in that case, will turn off CSRF protection for the client. As such, a user who has disabled
referrers will still be susceptible to CSRF, but that should be a very small percentage (if not zero) of the overall
user pool.

In the event that a user issues a request that cannot be validated as not a CSRF attack, the user will not be
automatically redirected. Instead, they will be presented a "This page has moved" response, and will be asked
to click a link to continue to the page they actually wanted. The link to proceed is randomly positioned on the
page to prevent Click Jacking attacks (where a malicious site overlays legitimate content on top of the target
site and gets the user to click the legitimate content, while also hijacking the click to transparently activate the
content underneath). A special case involves when a 3rd party website opens the target site in a new window
or tab. If the 3rd party site retains ownership of the newly opened window or tab, the user will be asked to click
the "continue" link so that the original window can be closed and a new window can be opened in its place.
This action breaks the ownership and prevents the 3rd party website from performing actions on the window
(such as closing or redirecting it).

Because it is sometimes expected that a 3rd party site will be making calls into the target site, it is possible
to configure a list of "trusted" 3rd party sites. Any requests issued from a trusted domain will not be protected
against CSRF. This allows the trusted site to host the target site in an IFRAME or make service calls
unimpeded. Be careful who you add to the trusted domain list, because if the trusted domain is susceptible to
XSS or CSRF itself, then it can be used as a proxy to launch a CSRF attack against your protected sites. This
trust does not apply if the hosting domain is running over SSL, and the target domain is not running over SSL.
If the 3rd party page hosting an IFRAME of the target site is running in SSL, it must load the SSL version of
the target site, otherwise the CSRF protection will still be applied. It is however fine if the 3rd party site is not
SSL protected and the target site is SSL protected.

8.7.4.1. Configuration

Table 8.21. CSRF Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this
processor.

Advanced

Block Response ConfigurableHTTP Response The response to return if the CSRF
mechanism cannot complete the request due
to errors or tampering.

CSRF Nonce Salt String Random A 256 character random string used to ensure
that CSRF nonce tokens are generated
differently between different deployments.

CSRF Token Name String Random The name of the query string parameter used
to indicate a successfully validated request
after it has been determined that it is not a
CSRF attack. Select a name that will not
conflict with a real query parameter used by
the site

Ignore Scripts Boolean True CSRF is largely a browser based attack, so to
ensure that scripts such as legitimate spiders
are not treated as potential CSRF victims,

CSRF Processor

160

Parameter Type Default Value Description
this option can be enabled to ignore all non
browsers for CSRF protection.

Ignored Extensions Collection .xap, .xaml A list of file suffixes (extensions) that will
not be protected by CSRF. By default,
Silverlight binaries are included, because
some browsers will remove the referrer for
Silverlight embedded content, which may
interfere with CSRF protection and prevent
the Silverlight content from loading.

Remote Script
Resource

ConfigurableCSRF Script Inclusion
Resource

The fake resource to request if the page is
being loaded as a remote script on a third
party domain. This is primarily for detection of
the attack and can be any fake resources as
long as it does not actually exist on the server.

Trusted Domains Collection None The list of domains that are allowed to display
the web application in a frame, reference
resources such as images or scripts, or are
allowed to make remote API calls using
techniques that are similar to a CSRF attack.
If the trusted domain starts with a period,
then it will match any subdomain before the
designated period. For example, .site.com will
match www.site.com, my.new.site.com and
site.com.

CSRF Extra
JavaScript

String None Since CSRF protection may cause the referrer
to be removed from the request, it may be
necessary to add any analytic code to the
JavaScript used to detect and stop CSRF
attacks. As such, if you use a 3rd party
analytics script, you should put that code
in this parameter to capture the unmodified
original request details. The code will be
injected into a script tag, so it must be valid
JavaScript or the CSRF protection may stop
functioning correctly.

Incident: CSRF
Parameter Tampering

Boolean True The user tampered with the parameters
used by the security engine to prevent CSRF
on requests that have an untrusted 3rd
party referer. This is likely in an attempt to
find a vulnerability in the CSRF protection
mechanism.

Incident: CSRF
Remote Script
Inclusion

Boolean False The user has accessed an untrusted 3rd party
website which contains an embedded script
reference to the protected application. While
the user may not be malicious, this represents
a CSRF attack from the untrusted website
against the protected application. Because
the attack was not successful, it is likely being

CSRF Processor

161

Parameter Type Default Value Description
executed by the user who is attempting to
construct the attack vector.

Incident: HTTP
Referrers Disabled

Boolean True The user is using what looks like a browser,
but they have HTTP referrers disabled. This
is not a malicious incident, but it does indicate
an unusual client

8.7.4.2. Incidents

8.7.4.2.1. CSRF Parameter Tampering
Complexity: Suspicious (1.0)

Default Response: 10x = Multiple CSRF Parameter Tampering Incident.

Cause: Junos WebApp Secure protects against CSRF attacks by using a special interception technique.
When a request comes in to Junos WebApp Secure, the referrer is checked. In the event that there is a
3rd party referrer (the user was following a link from another site), the interception mechanism kicks in.
This involves returning a special page to the user that validates that the user is intentionally requesting the
resource. If the validation is successful, the user is transparently redirected to the original resource they
requested. If the validation fails, the user is then instructed to manually confirm their intentions, or return to
the page they came from (to prevent the CSRF attack from working). In most cases, a valid CSRF attack
would function in such a way as to hide this manual confirmation step, so the user would probably never see
it (e.g. if the URL was loaded using an image HTML tag, then the resulting HTML confirmation step would
not render, because its HTML, not an image). This incident is triggered when a user submits a request with a
3rd party referrer, and then manipulates the code of the CSRF interception page to alter the original data that
was submitted. For example, they submit a request that looks like a CSRF attack (has a 3rd party referrer),
and then use a tool like Firebug to edit the query string parameters that would be sent to the server after they
manually allowed the request on the CSRF intercept page.

Behavior: CSRF attacks are generally two-phase. The first phase involves the attacker establishing a
functional CSRF attack. This could take quite a while and involves the attacker making requests to the
protected site, trying all different types of CSRF techniques. The second phase is when the attacker injects
the successful CSRF vector into a public website. In the second phase, legitimate users are visiting the public
website and unknowingly executing the CSRF attack in the background. It is not useful to flag the victims of
the CSRF attack as hackers, because they may not even know what is going on. However it is useful to flag
the original attack vector establishment, because it may shed light on who created the "CSRF243"attack. This
incident reflects a user who is manipulating the CSRF prevention mechanism, likely in an attempt to find a
way to get around it.As such, if a user has this incident, they are probably trying to establish a CSRF attack,
and careful attention should be paid to the values they are changing the parameters to and which URL is
being requested (this will help identify what the user is trying to attack).

8.7.4.2.2. Multiple CSRF Parameter Tampering
Complexity: Low (2.0)

Default Response: 1x = Captcha, 2x = 1 Day Clear Inputs

243 http://projects.webappsec.org/Cross-Site-Request-Forgery

http://projects.webappsec.org/Cross-Site-Request-Forgery
http://projects.webappsec.org/Cross-Site-Request-Forgery

CSRF Processor

162

Cause: Junos WebApp Secure protects against CSRF attacks by using a special interception technique.
When a request comes in to Junos WebApp Secure, the referrer is checked. In the event that there is a
3rd party referrer (the user was following a link from another site), the interception mechanism kicks in.
This involves returning a special page to the user that validates that the user is intentionally requesting the
resource. If the validation is successful, the user is transparently redirected to the original resource they
requested. If the validation fails, the user is then instructed to manually confirm their intentions, or return to the
page they came from (to prevent the CSRF attack from working). In most cases, a valid CSRF attack would
function in such a way as to hide this manual confirmation step, so the user would probably never see it (e.g.
if the URL was loaded using an image HTML tag, then the resulting HTML confirmation step would not render,
because its HTML, not an image). This incident is triggered when a user submits dozens of requests with a
3rd party referrers, and then manipulates the code of the CSRF interception page to alter the original data that
was submitted. For example, they submit a bunch of requests that look like CSRF attacks (they have 3rd party
referrers), and then use a tool like Firebug to edit the query string parameters that would be sent to the server
after they manually allowed the requests on the CSRF intercept page.

Behavior: CSRF attacks are generally two-phase. The first phase involves the attacker establishing a
functional CSRF attack. This could take quite a while and involves the attacker making requests to the
protected site, trying all different types of CSRF techniques. The second phase is when the attacker injects
the successful CSRF vector into a public website. In the second phase, legitimate users are visiting the public
website and unknowingly executing the CSRF attack in the background. It is not useful to flag the victims of
the CSRF attack as hackers, because they may not even know what is going on. However it is useful to flag
the original attack vector establishment, because it may shed light on who created the "CSRF244"attack. This
incident reflects a user who is manipulating the CSRF prevention mechanism, likely in an attempt to find a
way to get around it. As such, if a user has this incident, they are probably trying to establish a CSRF attack,
and careful attention should be paid to the values they are changing the parameters to and which URL is
being requested (this will help identify what the user is trying to attack).

8.7.4.2.3. CSRF Remote Script Inclusion
Complexity: Informational (0.0)

Default Response: None.

Cause: Junos WebApp Secure protects against CSRF attacks by using a special interception technique.
When a request comes in to Junos WebApp Secure, the referrer is checked. In the event that there is a
3rd party referrer (the user was following a link from another site), the interception mechanism kicks in.
This involves returning a special page to the user that validates that the user is intentionally requesting the
resource. If the validation is successful, the user is transparently redirected to the original resource they
requested. If the validation fails, the user is then instructed to manually confirm their intentions, or return to
the page they came from (to prevent the CSRF attack from working). In most cases, a valid CSRF attack
would function in such a way as to hide this manual confirmation step, so the user would probably never see
it (e.g. if the URL was loaded using an image HTML tag, then the resulting HTML confirmation step would not
render, because its HTML, not an image). This incident is triggered when a user accesses a page on a 3rd
party website which contains a Javascript tag that loads content from the protected site. This would normally
represent a victim of a CSRF attack, but because CSRF attacks are blocked, an attacker is unlikely to execute
such an attack. Therefore, it is more probable that the attacker is testing a possible vector to see if it will work
and encountering this incident.

Behavior: CSRF attacks are generally two-phase. The first phase involves the attacker establishing a
functional CSRF attack. This could take quite a while and involves the attacker making requests to the
protected site, trying all different types of CSRF techniques. The second phase is when the attacker injects

244 http://projects.webappsec.org/Cross-Site-Request-Forgery

http://projects.webappsec.org/Cross-Site-Request-Forgery
http://projects.webappsec.org/Cross-Site-Request-Forgery

Header Injection Processor

163

the successful CSRF vector into a public website. In the second phase, legitimate users are visiting the public
website and unknowingly executing the CSRF attack in the background. It is not useful to flag the victims of
the CSRF attack as hackers, because they may not even know what is going on. However it is useful to flag
the original attack vector establishment, because it may shed light on who created the "CSRF245"attack. While
this incident would potentially be fired for any victims of a CSRF attack, CSRF attacks are blocked by this
processor, so it is unlikely that an attacker would ever actually try to use the vector against legitimate users.
As such, it is far more likely that the attacker is still in the first phase and trying to uncover a successful CSRF
vector. Because of this, careful attention should be paid to the URL that is being requested (this will help
identify what the user is trying to exploit).

8.7.4.2.4. HTTP Referers Disabled
Complexity: Suspicious (1.0)

Default Response: None.

Cause: The HTTP protocol provides support for a special header called the "referer" (misspelled on purpose).
This header tells the web server where the user just came from. So if the user visits google and follows a
link from google to get to another page, the request for that second page will contain a "referer" of "http://
www.google.com". Some browsers provide the option to turn off automatic transmission of the "referer"
header. This would make it impossible for websites to identify the page the user came from. This incident is
triggered whenever a user accesses the website with referers disabled. This is not necessarily a malicious
act, as it could be the result of an excessively paranoid legitimate user, but it is also somewhat unusual and is
often a technique employed by malicious users.

Behavior: Hackers will often disable the referer header to make it more difficult to monitor and analyze an
attack through the traditional HTTP log files. Many web servers will record the URL the user is accessing, as
well as the referer that was submitted. As such, by disabling referers, the hacker is able to eliminate a large
percentage of the information collected about the attack.

8.7.5. Header Injection Processor
This processor provides the header injection counter response. It allows extra a custom header to be defined
that is injected into a suspected hackers requests to allow custom handling.

Note
There are no actual triggers for this processor; it is a form of response.

8.7.5.1. Configuration

Table 8.22. Header Injection Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this
processor.

Advanced

245 http://projects.webappsec.org/Cross-Site-Request-Forgery

http://projects.webappsec.org/Cross-Site-Request-Forgery
http://projects.webappsec.org/Cross-Site-Request-Forgery

Force Logout Processor

164

Parameter Type Default Value Description

Default Header Name String Random The default header name to use if one is not
specified in the response configuration.

Default Header Value String True The default header value to use if one is not
specified in the response configuration.

8.7.6. Force Logout Processor
This processor provides the force logout counter response. It strips out and invalidates the users session
tokens logging them out of the site.

Note
There are no actual triggers for this processor - it is a form of response.

8.7.6.1. Configuration

Table 8.23. Force Logout Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this
processor.

Application Session
Cookie

Collection Collection A collection of names to use for the
Application session cookie

Advanced

Clear Session
Cookies

Boolean False Whether to clear any terminated session
cookies from the malicious users browser.
This may help the user identify why they are
getting logged off, so unless the application
has code on the client that reads the session
cookie value, or the cookie is used in traffic
not protected by the Junos WebApp Secure
system, this option should be turned off.

8.7.7. Strip Inputs Processor
This processor is used to transparently remove all user input from requests being issued to the server.
This response will make the web application, or the client accessing it, to appear broken from the users
perspective. The website will also take on a much smaller attack surface should the client be a vulnerability
scanner.

Note
There are no actual triggers for this processor; it is a form of response.

Slow Connection Processor

165

8.7.7.1. Configuration

Table 8.24. Strip Inputs Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this
processor.

8.7.8. Slow Connection Processor
The slow connection processor is designed to introduce large delays in requests issued by malicious traffic
without impacting the performance of legitimate users.

Note
There are no actual triggers for this processor; it is a form of response.

8.7.8.1. Configuration

Table 8.25. Slow Connection Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this
processor.

Advanced

Default Maximum
Delay

Integer 5 Seconds The default maximum number of milliseconds
to delay malicious requests.

Default Minimum
Delay

Integer 500 MilliSeconds The default minimum number of milliseconds
to delay malicious requests.

8.7.9. Warning Processor
The warning processor is designed to allow a warning message to be presented to a user without completely
blocking site access. The warning processor only enables the ability to respond to a user with a "warning",
which would allow them to continue browsing the page and the site. The warning would be created and
activated for a user by the auto response system, or manually from the console. The existing processor
overlays semi-transparent HTML elements on top of the entire webpage, which temporarily disables any
mouse or keystrokes on the page and, therefore, creating a "modal dialog" effect. This processor isn't
designed to completely stop an attacker from using the website; it is there to warn them. Given the browser
debugging tools available today, an attacker may be able to dismiss the warning by means of such tools.
Any tampering with the warning's default dismissal behavior (waiting 5 seconds until dismissal button is
automatically enabled and clicking on dismiss button) will be considered an incident and will be tracked.

Warning Processor

166

8.7.9.1. Configuration

Table 8.26. Warning Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this
processor.

Advanced

Default Warning
Message

String "Your connection
has been detected
performing suspicious
activity. Your traffic
is now being
monitored."

The default message to use in the warning
dialog. This can be defined on a session
by session basis, but if no explicit value is
assigned to the warning, this value will be
used.

Default Warning Title String Security Warning The default title to use in the warning dialog.
This can be defined on a session by session
basis, but if no explicit value is assigned to the
warning, this value will be used.

Dismissal Delay Integer 10 Seconds The amount of time in seconds that must
elapse before the warning can be dismissed.
This is a soft limit, as an experienced user
may be able to get around enforcement
measures.

Dismissal Resource ConfigurableRandom The information needed to define the URL and
response used to dismiss a warning.

Warning Directory String Random The name of the directory where the warning
Javascript and css code will be served from.
For example: warningcode.

Incident: Warning
Code Tampering

Boolean True The user has attempted to dismiss the
warning without waiting the delay and using
the provided mechanism. This is probably an
attack on the warning system.

8.7.9.2. Incidents

8.7.9.2.1. Warning Code Tampering
Complexity: Medium (3.0)

Default Response: 1x = Logout User, 2x = 5 Day Clear Inputs.

Cause: Junos WebApp Secure is capable of issuing non blocking warning messages to potentially malicious
users. These warning messages are designed to force the user to wait for a period of time, before they
can dismiss the warning and continue using the site. If the user attempts to exploit or bypass this delay
mechanism in order to dismiss the warning early, this incident will be triggered.

Behavior: Once a hacker has been warned, they are then aware that a security system is monitoring their
activity. This may cause some hackers to investigate what might be protecting the site. This could involve

Application Vulnerability Processor

167

additional scanning, or it could involve attacking the warning mechanism directly. This type of behavior
generally indicates a hacker with moderate to advanced skill levels. Depending on what they modify the
warning code input to be, this could represent a simple exploratory test, or the user could be trying to launch
a more complex attack against he warning code handler itself, such as "Buffer Overflow246", "XSS247", "Denial
of Service248", "Fingerprinting249", "Format String250", "HTTP Response Splitting251", "Integer Overflow252", and
"SQL injection253" among many others.

8.7.10. Application Vulnerability Processor
The application vulnerability processor is designed to block known attack vectors for select 3rd party
applications. By default this processor does nothing. If you host a 3rd party application such as WordPress,
you should enable the configuration parameters that represent the 3rd party software you are using. This will
enable protection for that software component.

8.7.10.1. Configuration

Table 8.27. Application Vulnerability Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Joomla Vulnerability
Protection Enabled

Boolean False Whether traffic should be analyzed for Joomla
vulnerabilities

PHPBB Vulnerability
Protection Enabled

Boolean False Whether traffic should be analyzed for PHPBB
vulnerabilities

Wordpress
Vulnerability
Protection Enabled

Boolean False Whether traffic should be analyzed for
Wordpress vulnerabilities

Advanced

Mode of Operation Integer 1 Whether to block a request on a positive
signature, or just create an incident

Block Response HTTP
Response

404 Error The default message to use in the warning
dialog. This can be defined on a session
by session basis, but if no explicit value is
assigned to the warning, this value will be
used.

8.7.10.2. Incidents

8.7.10.2.1. App Vulnerability Detected
Complexity: Low (2.0)

246 http://projects.webappsec.org/Buffer-Overflow
247 http://projects.webappsec.org/Cross-Site+Scripting
248 http://projects.webappsec.org/Denial-of-Service
249 http://projects.webappsec.org/Fingerprinting
250 http://projects.webappsec.org/Format-String
251 http://projects.webappsec.org/HTTP-Response-Splitting
252 http://projects.webappsec.org/Integer-Overflows
253 http://projects.webappsec.org/SQL-Injection

http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/Buffer-Overflow
http://projects.webappsec.org/Cross-Site+Scripting
http://projects.webappsec.org/Denial-of-Service
http://projects.webappsec.org/Fingerprinting
http://projects.webappsec.org/Format-String
http://projects.webappsec.org/HTTP-Response-Splitting
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/SQL-Injection

Support Processor

168

Default Response: 1x = Slow Connection 2-6 seconds, 3x = Slow Connection 2-6 seconds and Clear Inputs
for 1 day

Cause: The application vulnerability processor is designed to identify known attack vectors issued to 3rd
party applications such as WordPress. This incident indicates that one of those known attack vectors has
been issued by the associated user. The exact nature of the vector that was identified should be described in
the incident details.

Behavior: One of the easiest ways to compromise a website is to look for 3rd party web applications such
as WordPress. If one is found, the attacker can then look up any known vulnerabilities in that software and
the version of it that is running on the website. If they find vulnerabilities, they can then launch them and
potentially compromise the site with a few minutes with minimal effort.

8.7.11. Support Processor
When a user is blocked or otherwise responded to using one of the counter measures, this processor provides
a way to identify which profile is associated with a user, and to then allow those responses to be deactivated
at the discretion of the IT administrator. For example, if a user were to get a 404 error when asking for a
PDF document linked from the main site, and they then try to find the file by trying a bunch of different file
names, they may eventually get blocked for performing a directory enumeration attack. When this happens,
the blocked user may contact support for assistance getting access to the site again.

This processor works by exposing a special administrative URL (defined in configuration) which the support
team can access. When a support request comes in from a blocked users, the support representative can
access this administrative URL which will provide another URL. The support representative should then
provide this second URL to the affected user. The affected user can then visit that URL and get a special
code. This code can be used to search for the profile and deactivate responses in the Security Monitor (profile
list).

If the affected user gets a code of "00000000000000000000" (all zeros), this means that the user is not
identified as an attacker and therefore is not being blocked or responded to with a counter response from
Junos WebApp Secure. As such, other causes of the user's inability to access the site should be investigated.

DO NOT GIVE OUT THE ADMINISTRATIVE URL! It is only used to get a fresh URL that is safe to
provide to the affected user. If the administrative URL is leaked to the public, it should be changed
immediately.

So the overall workflow is as follows:
1. User is blocked or otherwise responded to with a counter measure.

2. User calls support for assistance.

3. Support accesses the administrative URL.

4. Support copies the newly created URL in the response and provides to the affected user.

5. The affected user accesses the newly created URL and provides the resulting code to support.

6. Support or an Admin then logs into the security monitor, clicks on the profile graph to get a list of profiles,
and then searches for the code.

7. Support or Admin reviews user's list of incidents to verify the user was responded to in error. If so, the
Support or Admin disables the responses.

Cloppy Processor

169

Note that the "block" response is by default, configured to return the code. So if a user has been blocked,
steps 3-5 can be omitted, and the user can simply provide the code specified in the block message to support.
For all other responses, the full workflow needs to be followed, because there is no other way to obtain the
code.

8.7.11.1. Configuration

Table 8.28. Support Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through this
processor.

Advanced

Private Support URL String Random The URL a support representative would
access to get additional details about how
to provide support to users who are having
issues that may be Junos WebApp Secure
related. If the value is "ABC", then the private
URL would be http://www.example.com/ABC.
It is absolutely imperative that this URL
not be leaked to non-internal users. If it is
leaked, it must be changed immediately.

Public Support URL
Salt

String Random A random value used to ensure that support
URLs are not predictable. This can be any
random string 30 characters in length.

Public URL Expiration Integer 3 The number of days a public support URL
remains valid for. After this many days,
the URL will no longer provide support
information. This is to prevent any issues from
a public support URL being leaked.

8.7.12. Cloppy Processor
The Cloppy processor is a joke response built for demonstration purposes. It creates an animated paperclip in
the lower right corner of the website, which belittles and taunts the attacker. This should never be used on a
legitimate threat and is not the default counter response for any type of behavior. It is provided to demonstrate
the diversity of counter responses Junos WebApp Secure is capable of. You should never activate this
response unless you have a good relationship with the user you are activating it on, and they have a good
sense of humor.

You can configure the message and options cloppy presents both in configuration (the default messages),
or in the response specific config (the XML you define when you manually activate a response or when you
write a rule that activates a response). The oldest cloppy response will be the one for which the messages
are loaded, so if you create multiple cloppy responses, you can create a dialog of several messages. For
example, try activating cloppy three times with the following config values (create them in the following order):

1. Activate Cloppy: <config message="This is the first message"><option label="First op" url="" /><option
label="Second op" url="" /></config>

Cloppy Processor

170

2. Activate Cloppy: <config message="This is the second message"><option label="First op" url="" /><option
label="Second op" url="" /></config>

3. Activate Cloppy: <config message="This is the third message"><option label="First op" url="" /><option
label="Second op" url="" /></config>

Once you activate the above 3 cloppy responses, you should see that cloppy will present the "This is the first
message" dialog first. Once you click on an option in that dialog, the next page you load will display "This
is the second message", and finally, after clicking on one of those options, you should get "This is the third
message".

Once you click an option in cloppys dialog, it will dismiss that specific cloppy response. Thats why you are
able to stack the responses and get a dialog going.

8.7.12.1. Configuration

Table 8.29. Cloppy Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean True Whether traffic should be passed through
this processor. Note that just because traffic
is passing through the processor, does not
mean any users will actually have a Cloppy
response activated on them. As such, simply
enabling this processor will not result in cloppy
being activated for any users. You would
still need to manually activate the Cloppy
response in the Security Monitor (or define an
auto response rule that activates it, but that is
highly discouraged).

Cloppy Message String "It looks like youre an
unsophisticated script
kiddie attempting to
hack this website"

What do you want cloppy to say when offering
help?

Cloppy Options Collection Collection The list of ways cloppy can help with
associated URLs.

Advanced

Cloppy Directory String cloppybin The name of the directory where the binary
resources needed to load cloppy are served
from. For example: cloppyfiles. The name
should be selected not to conflict with a real
directory at the top level of the website.

Cloppy Dismiss
Directory

String Random The name of the directory used to dismiss
cloppy. This URL should be random and not
conflict with existing directory names on the
site.

Login Processor

171

8.7.13. Login Processor
The login processor is designed to add additional protection to the login dialogs throughout the protected
site. By default, it will not provide any additional protection, and must be configured to protect specific login
forms. Once a login form has been configured, the processor will begin to monitor the login attempts and start
checking for abusive patterns.

This processor is capable of detecting a wide variety of abuse patterns on a login dialog, as well as stopping
these abusive activities. One key protection mechanism is to require a captcha if a user attempts to login to
an account which has experienced more then 3 failed login attempts since the last successful login attempt.
This ensures that a malicious user cannot brute force a specific username, because after 3 failed attempts,
the brute force tool will be stopped by a captcha. This does not represent a counter response, but instead is
built in functionality that applies to all users on the system. So if user "A" submits 5 bad passwords, and then
user "B" submits a password for the same username, user "B" will get a captcha, as well as user "A" for any
additional login attempts they try. As soon as a user successfully logs into the account, it will take another 3
failed login attempts before the next captcha is required.

In addition to protecting against a single username being attacked with a brute force script, the processor also
detects "User sharing", "User pooling", "Username scans", "Multi-User brute force scans". See the incident
descriptions for more information on what these incidents represent and what counter responses will be
activated as a result.

In order to configure the Login Processor to protect a login form, edit the "Protected Login Pages"
configuration parameter. Add a new row and provide the following information. It will be useful to look at the
HTML source code of the login form as it will have critical information you will need to configure protection:
• Name: The name of the login page (this is just for your reference, it can be anything)

• URL Pattern: The Regular Expression used to identify a username/password submission. This pattern
should match the "action" attribute of the HTML <FORM> tag wrapping the login dialog.

• Username Field Type: The type of inputs used to submit a username. Normally this will be "POST
Parameter", however other options are provided for more specialized login mechanisms.

• Username Field Name Pattern: A regular expression used to match the name of the input the username
is submitted with. Normally this is "username", but could be other variations such as "usr", "user", etc... You
can simply enter the name of the input in this field if a regular expression is not required.

• Username Field Pattern Value: A regular expression used to extract the username from the input value.
Normally this should just be "^.*$", but if the username is wrapped in JSON for example, you may need to
create a more complex expression. The username is considered the first matching parenthesis group in the
pattern.

• Username Field Encoding: The type of data encoding used on the username. Normally this will be "Ascii",
however if any client side encoding is performed, other encoding options are available.

• Password Field Type: The type of inputs used to submit a password. Normally this will be "POST
Parameter", however other options are provided for more specialized login mechanisms.

• Password Field Name Pattern: A regular expression used to match the name of the input the password is
submitted with. Normally this is "password", but could be other variations such as "pwd", "pass", etc… You
can simply enter the name of the input in this field if a regular expression is not required.

• Username Field Pattern Value: A regular expression used to extract the password from the input value.
Normally this should just be "^.*$", but if the password is wrapped in JSON for example, you may need to

Login Processor

172

create a more complex expression. The password is considered the first matching parenthesis group in the
pattern.

• Password Field Encoding: The type of data encoding used on the password. Normally this will be "Ascii",
however if any client side encoding is performed, other encoding options are available.

• Failure Pattern Target: In order to identify a failed login attempt, the processor will search for a specific
pattern in the response. This attribute specifies where to search for that pattern. Normally this would be
"Body" to search the HTML body of the response.

• Failure Pattern: The regular expression to search for to check and see if the login attempt was
unsuccessful. Assuming the Failure Pattern Target is "Body", this would be something like "you have
provided an invalid username and password". However the exact text will need to be set to whatever the
site actually returns. View the source of the response after a failed login and search for the error text, so that
you get the most accurate version possible. Simply copying the text from the rendered page may exclude
embedded HTML tags which will cause the pattern to never match.

• Failure Pattern Condition: Specifies whether finding the failure pattern means the login was unsuccessful,
or whether not finding the pattern means the login was unsuccessful.

• Success Pattern Target: In order to identify a successful login attempt, the processor will search for a
specific pattern in the response. This attribute specifies where to search for that pattern. Normally this would
be "Body" to search the HTML body of the response.

• Success Pattern: The regular expression to search for to check and see if the login attempt was
successful. Assuming the Success Pattern Target is "Body", this would be something like "you have
successfully logged in". However the exact text will need to be set to whatever the site actually returns.
View the source of the response after a successful login and search for something that only gets displayed
on a successful login, so that you get the most accurate version possible. Simply copying the text from the
rendered page may exclude embedded HTML tags which will cause the pattern to never match.

• Success Pattern Condition: Specifies whether finding the success pattern means the login was
successful, or whether not finding the pattern means the login was successful.

• Require Captcha After: Specifies how many failed login attempts on the same username before requiring
all future login attempts on that username to solve a captcha. Entering "0" will allow infinite attempts.

Keep in mind that some website implementations allow login information to be posted to many different URLs.
If that is the case, make sure the URL pattern is defined generically enough to match any URL the user might
submit a login request to. Only submissions that match the URL pattern will be protected.

Once a login form has been configured, it can be tested by attempting to login to the same username 6 or
more times. You should be presented with a captcha. Next, solve the captcha and log in with the correct
password. Then logout and attempt to login to the same username again. If you do not get a captcha, then the
login form is configured correctly.

8.7.13.1. Configuration

Table 8.30. Login Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Login Processor

173

Parameter Type Default Value Description

Processor Enabled Boolean True Whether traffic should be passed through
this processor. Note that just because this
processor is enabled, does not mean that any
login forms are being protected. Login forms
will not be protected until they are configured
in the "Protected Login Pages" parameter.

Protected Login
Pages

Collection None The list of pages that should be protected
from login and account abuse. These
pages should reflect the URL's that accept
username's and passwords and allow login,
not necessarily the pages that contain login
forms. For example, if every page on the site
had a login form, but they all submitted to
login.php, then only login.php needs to be
configured in this processor.

Advanced

Bad Request Block
Response

HTTP
Response

400 Error The response to return if the user issues a
request that either is too large, or uses multi-
part and multi-part is disabled.

Blocked Replay
Response

HTTP
Response

400 Error The response to return if the user attempts to
submit the validated request multiple times
using the same captcha answer, and that
behavior is not allowed.

Cancel URL String (empty) The URL to redirect the user to if they cancel
the captcha. This should not be to the same
domain, because the domain is being blocked
using a captcha, and therefore, canceling
would only redirect to a new captcha. An
empty value will hide the cancel button

Captcha Binary
Directory

String Random The name of the directory where captcha
images and audio files will be served from.
This should not conflict with any actual
directories on the site.

Captcha Characters String abcdefhkmnprwxyz
ABCEFGHJKLMNPQRTWXYZ
234678

The characters to use when generating a
random captcha value. Avoid using characters
that can be easily mixed up. This set of
characters is case sensitive.

Captcha Expiration Integer 120 The maximum number of seconds the user
has to solve the captcha before the request is
no longer possible.

Captcha State Cookie String Random The name of the cookie to use to track the
active captchas that have not yet been solved.
The cookie is only served to the captcha
binary directory.

Captcha Template File Default Template The HTML template used to ask the user
to complete a captcha. This template must

Login Processor

174

Parameter Type Default Value Description
contain specific key words in order to integrate
properly. Please refer to the manual for more
information.

Captcha Validation
Input Name

String Random The name of the form input used to transmit
the captcha validation key. This should be
obscure so that users who have not been
required to enter a captcha cannot supply bad
values to this input to profile the system.

Expired Captcha
Response

HTTP
Response

400 Error The response to return if the user submits
a validated request after the captcha
has expired. This may happen if the user
refreshes the results of the captcha long after
they have solved it.

Maximum Active
Captchas

Integer 7 The maximum number of captchas any given
user can be solving at any given time. This
limit can be overcome, but the majority of
users will not be able to. This is primarily for
performance, as the more active captchas
that are allowed, the larger the state cookie
becomes.

Maximum Request
Size

Integer 524288 (500KB) The maximum number of bytes in a request
before it is considered not acceptable for
captcha validation, and will be blocked.

Support Audio
Version

Boolean True Whether an audio version of the captcha
is provided to the user. This may be a
requirement for accessibility, as vision
impaired users would otherwise be unable to
solve the captcha.

Watermark String %DOMAIN The text to watermark the captcha with. This
can be used to prevent the captcha from
being used in a phishing attack. For example,
an abuser would not be able to simply display
the captcha on a different site and ask a user
to solve it. The watermark would tip the user
off that the captcha was not intended for the
site they are visiting. Use %DOMAIN to use
the domain name as the watermark.

Incident: Site Invalid
Login

Boolean True The user has submitted an invalid username
or password. This is just an informational
incident and is used to identify more complex
attacks. It is highly recommended that this
incident not be disabled, as it may cause other
incidents to no longer register.

Incident: Site Login
Multiple IP

Boolean True The user has submitted a valid username and
password for an account that has recently
been used by a different IP. This is just
an informational incident and is used to

Login Processor

175

Parameter Type Default Value Description
identify more complex attacks. It is highly
recommended that this incident not be
disabled, as it may cause other incidents to no
longer register.

Incident: Site Login
Multiple Usernames

Boolean True The user has submitted a valid username and
password for more than one account recently.
This is just an informational incident and is
used to identify more complex attacks. It is
highly recommended that this incident not be
disabled, as it may cause other incidents to no
longer register.

8.7.13.2. Incidents

8.7.13.2.1. Site Invalid Login
Complexity: Suspicious (1.0)

Default Response: 15x (3 or more bad passwords per username) = Site Login Brute Force, 15x (less than 3
bad passwords per username) = Site Login Username Scan, 8x (bad passwords for same username) = Site
Login User Brute Force

Cause: The login processor is designed to protect the login dialog of the website. It works by monitoring all
login attempts and identifying suspicious and malicious events. This specific incident is triggered when a user
attempts to login with an invalid username and password. This incident alone is not considered malicious, but
is used to perform additional analysis and may be promoted to a malicious incident if an abusive pattern is
identified (such as many invalid logins representing a brute force attack).

Behavior: This incident simply reflects the case where a user has entered bad login information. By itself,
this cannot be considered malicious as it is extremely common for a legitimate user to accidentally type their
information incorrectly, or to forget their password. As such, it is only an indication of possible abuse and
requires additional analysis and data before it can be confirmed as malicious or acceptable.

8.7.13.2.2. Site Login Multiple IP
Complexity: Informational (0.0)

Default Response: 3x = Site Login User Sharing

Cause: The login processor is designed to protect the login dialog of the website. It works by monitoring
all login attempts and identifying suspicious and malicious events. This specific incident is triggered when
multiple clients successfully log into the same account. Depending on the nature of the protected site, this
may be perfectly acceptable behavior, however on some sites this type of behavior can indicate abuse. This
incident alone is not considered malicious, but is used to perform additional analysis and potentially promote
the event as a malicious incident if an abusive pattern is identified.

Behavior: Many websites provide a way for users to authenticate so that their experience and data can
be customized specifically for them. In the case of this incident, credentials for one of those accounts have
been distributed to multiple clients and two or more of those clients are logging into the account. Unless the
website expects users to share credentials, this would generally indicate a situation where the credentials for
an account have been compromised and the account has been hijacked. Additional follow up may be required

Login Processor

176

to recover the account (such as changing the password or locking the account until the actual owner contacts
the administrators to resolve the issue).

8.7.13.2.3. Site Login Multiple Usernames
Complexity: Suspicious (1.0)

Default Response: 3x = Site Login User Pooling

Cause: The login processor is designed to protect the login dialog of the website. It works by monitoring
all login attempts and identifying suspicious and malicious events. This specific incident is triggered when a
single client successfully authenticates with multiple distinct usernames. This incident alone is not considered
malicious, but is used to perform additional analysis and potentially promote the event as a malicious incident
if an abusive pattern is identified.

Behavior: There are two possibilities for this incident. Firstly, a single user may have signed up for multiple
accounts on the protected site, and they are simply using those accounts. On some sites, this alone would
be considered malicious, while on other sites, this is considered perfectly acceptable. For example, an online
email provider may allow its users to sign up for multiple email accounts. On the other hand, a billing website
for your home utility provider would probably not expect a single household to have multiple accounts. The
other possibility is that a single user has hijacked several other accounts. This may be more obvious if there
is also a "Site Login User Sharing" incident for the username as well. This would indicate that not only is the
malicious user logging into multiple accounts, but other users are also logging into those accounts. Generally,
an account should be used by a single user unless the website has specific rules about allowing users to
share account details.

8.7.13.2.4. Site Login User Sharing
Complexity: Low (2.0)

Default Response: None.

Cause: The login processor is designed to protect the login dialog of the website. It works by monitoring
all login attempts and identifying suspicious and malicious events. This specific incident is triggered when
multiple clients successfully log into the same account. Depending on the nature of the protected site, this
may be perfectly acceptable behavior, however on some sites this type of behavior can indicate abuse.

Behavior: Many websites provide a way for users to authenticate so that their experience and data can
be customized specifically for them. In the case of this incident, credentials for one of those accounts have
been distributed to multiple clients and two or more of those clients are logging into the account. Unless the
website expects users to share credentials, this would generally indicate a situation where the credentials for
an account have been compromised and the account has been hijacked. Additional follow up may be required
to recover the account (such as changing the password or locking the account until the actual owner contacts
the administrators to resolve the issue).

8.7.13.2.5. Site Login User Pooling
Complexity: Low (2.0)

Default Response: None.

Cause: The login processor is designed to protect the login dialog of the website. It works by monitoring
all login attempts and identifying suspicious and malicious events. This specific incident is triggered when a
single client successfully logs into several different accounts. Depending on the nature of the protected site,
this may be perfectly acceptable behavior, however on some sites this type of behavior can be harmful.

Login Processor

177

Behavior: There are two possibilities for this incident. Firstly, a single user may have signed up for multiple
accounts on the protected site, and they are simply using those accounts. On some sites, this alone would
be considered malicious, while on other sites, this is considered perfectly acceptable. For example, an online
email provider may allow its users to sign up for multiple email accounts. On the other hand, a billing website
for your home utility provider would probably not expect a single household to have multiple accounts. The
other possibility is that a single user has hijacked several other accounts. This may be more obvious if there
is also a "Site Login User Sharing" incident for the username as well. This would indicate that not only is the
malicious user logging into multiple accounts, but other users are also logging into those accounts. Generally,
an account should be used by a single user unless the website has specific rules about allowing users to
share account details.

8.7.13.2.6. Site Login User Brute Force
Complexity: Medium (3.0)

Default Response: 1x = Break Authentication for 1 hour, 2x = Break Authentication for 6 hours, 3x = Clear
Inputs for 1 day

Cause: The login processor is designed to protect the login dialog of the website. It works by monitoring all
login attempts and identifying suspicious and malicious events. This specific incident is triggered when a user
attempts to login to the same username many times with invalid passwords.

Behavior: In this case, the user is probably attempting to brute force the account indicated in the incident
details. Brute force against authentication works by enumerating over a list of common passwords and testing
all of them against the target username. The hope is that the target user selected a weak password and
that password is in the "dictionary" list of passwords to try. In some cases, a custom brute force tool may
be employed, which enumerates over a list of passwords that were carefully constructed using the targets
personal information (birthdays, anniversaries, names, ages, phone numbers, etc...)

8.7.13.2.7. Site Login Brute Force
Complexity: Medium (3.0)

Default Response: 1x = Slow Connection for 6 hours, 3x = Slow Connection & Break Authentication for 6
hours

Cause: The login processor is designed to protect the login dialog of the website. It works by monitoring all
login attempts and identifying suspicious and malicious events. This specific incident is triggered when a user
attempts to login against a large number of different usernames.

Behavior: A common authentication attack is Brute Force. This attack involves submitting a large number of
username and password combinations in an effort to identify users who have chosen weak passwords. This
type of attack is extremely noisy and requires thousands of requests to execute.

8.7.13.2.8. Site Login Username Scan
Complexity: Medium (3.0)

Default Response: 1x = Captcha for 6 hours, 3x = Clear Inputs & Slow Connection for 1 day

Cause: The login processor is designed to protect the login dialog of the website. It works by monitoring all
login attempts and identifying suspicious and malicious events. This specific incident is triggered when a user
attempts to login against a large number of different usernames with a small number of passwords for each.

Google Map Processor

178

Behavior: One flaw present in a lot of authentication implementations is that the results that are returned
when submitting an invalid username and password are different then the results returned when the username
is valid but the password is not. By enumerating over a large number of possible usernames and supplying
bad passwords, the attacker is able to identify which usernames are actually valid in the system. This is one
of the first steps to a large scale brute force attack. Once the user has a list of valid usernames, they can then
launch the brute force attack against just those usernames to make the attack quicker and harder to identify.
A best practice when developing authentication systems is to ensure that the results that are returned from
an invalid username, are the same results returned when providing a valid username and invalid password.
For example, the error should read "The username and password you supplied could not be found in our
database", instead of "The username you provided does not exist".

8.7.14. Google Map Processor
The Google Map Processor provides a counter response called the “Google Map Response”. When this
response is activated, the user will be shown an overlay dialog with a google map of their geo location (as
resolved from their IP address using MaxMind Geo IP). It will then recommend 4 google search results on a
configured term (default is ‘Criminal Attorney’). The intention is to scare the individual into believing that we
know where they live and plan to attempt prosecution.

The google map response requires several things in order to work. First, you must obtain a google map API
key and set it in configuration. Until you do this, you will not be able to enable the processor. Once enabled,
if you activate the processor on a user, they will only see the response if Junos WebApp Secure can resolve
their geo location from MaxMind GeoIP. If a geo location cannot be resolved, the map will not be displayed.
Additionally, the google map response is not a default response for any activity, so unless you manually
activate it, or create a custom auto response rule to activate it, it will never be used.

Keep in mind that by activating this response, you are effectively broadcasting your public google map API
key to the attacker. If the attacker decides to exploit this fact, they can easily drain your google map request
and search result quotas. As such, it is important to get an API key for a junk google development account,
so that your quota’s are not shared with legitimate site functions. You should also not sign up for paid quota
extensions on that particular account, as that could allow the attacker to run up your bill. Just use the free
quotas.

8.7.14.1. Configuration

Table 8.31. Google Map Processor Configuration Parameters

Parameter Type Default Value Description

Basic

Processor Enabled Boolean False Whether traffic should be passed through this
processor.

Google API Key String [Not Set] The API key issued by Google to authorize
the map API to be used on the domain being
protected by Junos WebApp Secure. This API
key should be enabled for both Google Map
API v3, and the Custom Search API.

Advanced

Default Search Term String "Criminal Attorney" The default term to search for localized
locations on.

Google Map Processor

179

Parameter Type Default Value Description

Dismissal Resource Map
Dismissal
Resource

mapdata The information needed to define the URL and
response used to dismiss a map.

Map Directory String mapdata The name of the directory where the map
Javascript and css code will be served from.
For example: mapdata.

Chapter 9.

180

Reporting
The system has a built-in reporting interface that can be accessed through the Web UI, by navigating to
"Reports" menu item on the left-hand side. Administrators can run one of many pre-defined reports or
schedule a report or access report history. Most reports can be exported to both PDF and CSV (comma
separated value) formats. Reports that are composed of several disparate visual elements (like the
Scorecard) are only available in PDF format.

9.1. On-Demand Reporting
This page provides access to reports run on demand. Available reports include:

• Country Comparison Over Time

• Incident List

• Incidents With Requests and Responses by IP

• Incidents with Requests and Responses by Profile

• Incidents by Type

• Incidents by Type for IP

• Scorecard

• Top IP Addresses

• Top Incident Types

• Top Locations

9.2. Report Schedules
Allows administrators to view all of the reports currently scheduled to run on the system, add a new report to
the list, edit an existing report schedule, edit an existing report options, or enable/disable an existing report
scheduled to run.

Scheduling a Report

181

9.3. Scheduling a Report
Administrators can configure the reporting interface to generate a report on a custom schedule which will be
automatically emailed to any email address specified.

To create a scheduled report select the "Schedule Report" left navigation link and then click the "Add
Scheduled Report" button at the top right of the Scheduled Reports page. This will bring up a list of reports to
run, choose the report that you want to run on a repeated basis by following its link.

On the subsequent page enter all of the schedule details and report options and then select "Generate Report
Schedule" and save the changes.

Most reports share the following options in common:

File type
The file format that will be used to generate the report. Options usually include PDF or CSV. Certain
reports are only available in PDF.

Schedule Name
The name of the report schedule that will appear in the reporting interface.

Run
The time schedule in hours, weeks, months, or years that the report should run on.

Period
The period of time that the report should be run on.

Send to
The email address that this report should be sent to.

Enabled
Sets this report schedule to active (YES) or inactive (NO). Inactive reports will not be run on a scheduled
basis.

Scheduling a Report

182

Individual reports may have various additional options that are specific to that report. For instance the Country
Comparison Over Time report contains a field for the number of countries to show and a list of specific
countries to include.

Report History

183

9.4. Report History
An archive option, which allows administrators to view all of the historical scheduled reports that have been
run on the system. Previously run reports can be down-loaded by clicking the icon with the green arrow
pointing down. Reports can also be deleted, to save on disk space, by clicking the icon that looks like a trash
can.

9.5. Report Details
There are ten different reports that are available either immediately, through the On-demand Report page,
or on a repeated and scheduled basis, through the Scheduled Report page. Each retrieves different sets of
information.

Report Details

184

Country Comparison Over Time
This report displays a graph showing the number of incidents per country for the top N number of
countries over a specified date range. Administrators can specify the number of countries to include and
the specific countries to include as well. Dates are displayed along the horizontal axis. Incident counts are
displayed along the vertical axis scaled logarithmically.

This report is only available in PDF format.

Report Details

185

Note
Please note the logarithmic scale on the vertical axis. The distance between hash marks
on the graph vary. For instance the hash marks between 1 and 10 increase by 1 each
time (1, 2, 3 ...). The hash marks between 10 and 100 increase by 10 (10, 20, 30 ...). The
hash marks between 100 and 1000 increase by 100 (100, 200, 300 ...). It is used in the
graph above, and in others described below, because the counts may vary widely and
displaying them with a logarithmic scale will allow them to be compressed into a more
readable format. For instance if the graph above was displayed without a such a scale
most of the detail between the 1 and 10 hash marks would be compressed to the point
where it would not be readable, as in the graph below.

Incident List
The incident list report displays a list of every incident that occurred between the two given dates. Details
for each incident include the type, complexity, count of occurrences, name of the hacker profile associated
with the incident, location of the hacker and the first and last date of occurrence of that incident.

The report can be narrowed to include only selected profiles, incident types, countries, a single
application, and/or a specified number of incidents by altering the specific options for this report.

Incidents with Requests and Responses by IP
This report lists the incidents for a given IP and date range. Details for each incident include: date of the
first occurrence, the user agent string, the request content, the response content, the incident type, and
the count of occurrences.

Report Details

186

Incidents with Requests and Responses by Profile
This report lists the incidents for a given profile name and date range. Details for each incident include:
date of the first occurrence, the user agent string, the request content, the response content, the incident
type, and the count of occurrences.

Incidents by Type
This report lists the incidents that have occurred within a given date range. Details displayed include: the
type of each incident that has occurred and the count for that particular type.

Incident by Type for IP
This report displays a list of incidents created between the given dates for a given IP Address. Details on
the report include: the name of the incident type and the count of the number of incident occurrences of
that type.

Scorecard
The scorecard report displays a summary of activity on the protected site. The executive summary at the
top of the page displays the total number of attackers detected, the number of attackers that have been
blocked, and the number of incidents detected for three time periods. These time periods are: from the
beginning of of the appliance to the the current date, the last month from the first of the month through the
last of the month, and the last complete week starting from Sunday through Saturday.

Below the executive summary section are four graphs that break out the top five incident types, the top
five hackers by volume, the top five countries by volume, and the activity of the previous week broken out
by day of the week.

Report Details

187

Report Details

188

Below the four graphs is the weekly report section, which lists the counts of incidents broken out by threat
level and totaled. It also includes counts of the number of hackers who were blocked, the number who
were countered with a non blocking response (such as a slowed connection or a warning), the number of
hackers that were not responded to (because they were not deemed a high enough threat), and the total
number of hackers.

Report Details

189

This report is only available in PDF format.

Top IP Addresses
The Top IP Addresses report will contain up to five graphs, one for each complexity level, that break down
the IP addresses that have caused the most incidents. If there were no incidents of a given complexity
then there will not be a graph for that complexity.

This report is only available in PDF format.

Top Incident Types
The Top Incident Types report contains a list of the top N incident types over the specified time period,
ordered by number of occurrences. Included on the list is supplementary detail such as the number of
countries, profiles, and IP addresses related to the type of incident.

Following the list is a set of graphs each on their own page. Each graph is specific to one type of incident
on the list and shows the distribution of those incident occurrences over the selected time period. The time
period is shown on the horizontal axis. The count of occurrences of each type of incident are shown on
the vertical axis scaled logarithmically.

Note
View above note in Country Comparison Over Time report section for explanation of a
logarithmic scale.

Report Details

190

The report can be narrowed to include a specified number of types of incidents or only a selected set of
incidents. It can also be narrowed to only contain data from a specific application.

This report is only available in PDF format.

Top Locations
This report contains a list of the top N locations ordered by the number of incidents that originated from
each location during the specified time interval. Included on the list is supplementary information including
the number of High, Medium, Low, and Indicator level incidents from each location.

Following the list is a set of graphs each on their own page. Each graph is specific to one country on the
list and shows the distribution of each incident level over the selected time period. The horizontal axis
shows the time period. The count of occurrences of incidents from a specific country are shown on the
vertical axis scaled logarithmically.

Reports CLI

191

Note
View above note in Country Comparison Over Time report section for explanation of a
logarithmic scale.

This report is only available in PDF format.

9.6. Reports CLI
Junos WebApp Secure contains a Command Line Interface (CLI), which provides users with access to the
primary data sources. The CLI allows users to generate complex reports based on the data gathered by the
security engine for the purpose of reporting and data analysis. The interface can be run by executing the
following command:

sudo mykonos-reports-cli

Note
To get a list of required and optional arguments, refer to the man pages at: man mykonos-
reports-cli

Supported arguments

192

To generate a report, users need to specify the following:

• A data source.

• An optional format.

• Any parameters necessary to filter the data.

• Any other output arguments.

When fully constructed, a command to generate a report would look similar to this:

sudo mykonos-reports-cli -d=Datasource --format=true/false --parameter

Using the –h option in the CLI will bring up a help page with all of the available filters and parameters; a list of
parameters is also available at the end of this document.

9.6.1. Supported arguments
The command line interface provides access to the raw information that the system uses. The following are
the main arguments provided for accessing, outputting, and formatting the data returned by the CLI:

-d=<data source name>
Define which data source to get data from (from the list of available data sources).

Supported arguments

193

-h
Get help documentation for the specified data source. This includes the accepted arguments and resulting
fields.

-o=<path>
Output data to a specified file (if not specified, then output is to console).

-f=<text|csv|xml|html>
The format to use when outputting the data from the data source, supported formats are: CSV, XML,
HTML or text.

-l
Get the list of all supported data sources and their names.

-i=<index>
Specify the starting index for the result set.

-m=<max>
Specify the maximum number of records to return.

-s=<fields>
Specify the sorting to apply to any data being read from the data source.

9.6.1.1. Data Sources
The CLI provides users with the following data sources In order to access the data generated by the security
engine and generate reports. The full list of Data sources can be viewed at any time with the -l option and a
Data source can be loaded through the -d= argument:

Browser
Data source that exposes information about known and detectable browsers.

Country
Data source that exposes information about known countries.

Environment
Data source that exposes information about environments.

Incident
Data source that exposes information about incidents.

IncidentType
Data source that exposes information about known incident types.

IpAddress
Exposes IP Address information.

Location
Data source that exposes information about locations.

OperatingSystem
Data source that exposes information about known and detectable operating systems.

Supported arguments

194

Profile
Data source that exposes information about profiles.

Response
Data source that exposes types of responses (counter attacks).

Session
Data source that exposes information about sessions.

9.6.1.2. Formatting
All reports are generated with the default columns and sorting. Users may reformat any report or change
the sorting for the columns by supplying any optional filtering arguments when the report is generated. To
generate a report that has all of the profile and session count data from the session’s data source, users
would include the following arguments in the command to add those columns:

sudo mykonos-reports-cli -d=Session --include-default=true --include-counts=true

To generate a report that excludes the default columns, but still contains the session counts data, users would
simply run this command with the default option set to false:

sudo mykonos-reports-cli -d=Session --include-default=false --include-counts=true

9.6.1.3. Example Report
The CLI allows users to combine filtering arguments for data sources to create complex and detailed reports.
These arguments follow the format:

--argumentName="Value"

For example, if a user wanted a report that displayed a list of all the sessions created after 09/12/2010, that
also were from a client that used Windows XP, the following algorithm would be used:

sudo mykonos-reports-cli -d=Session --createdStartDate='09/12/2010 01:01 am' --
environmentId=200

Chapter 10.

195

Autoresponse Configuration

An autoresponse is composed of a set of rules which define the conditions under which a counter response
should be automatically created and activated for a specific session or profile. It is possible to have as many
rules as needed to protect the system. However, the more rules, the longer it will take to determine if a new
incident matches an event condition. In addition, the more conditions in the rule, the longer the rule will take to
evaluate if the event condition matches a new incident.

Note
You can view the default responses for each rule by clicking 'read more' at the bottom of the
entry's description in the UI.

Table 10.1. Autoresponse Descriptions

Default
Autoresponse

Description

Session
Management

This autoresponse rule triggers if the user attempts to manipulate the Junos WebApp Secure
session tracking cookie.

Application
Vulnerability
Processor

If your web-application uses supported 3rd party applications (like Joomla, Wordpress,
etc.), this processor will analyze and act on malicious traffic that intends to exploit them.
For more information on which 3rd party tools are supported, refer to the AutoResponse
documentation in Security Monitor.

Login
Processor

This rule triggers on incidents that are generally triggered by abusive and suspicious activity
targeted at the websites authentication system.

Access
Policy
Processor

This autoresponse rule triggers if the user attempts to exploit the fake service exposed by
this processor.

ETag Beacon
Processor

This autoresponse rule triggers if a user attempts to manipulate the Junos WebApp Secure
cached based tracking token.

Basic
Authentication
Processor

This autoresponse rule triggers when the user attempts to exploit the fake .htaccess file
exposed by this processor.

196

Default
Autoresponse

Description

Robots
Processor

This autoresponse triggers when the user or malicious spider uses the information in the
robots.txt file for illegitimate purposes.

Hidden
Input Form
Processor

This autoresponse rule triggers when the user modifies a hidden form input parameter.

Cookie
Processor

This autoresponse rule triggers when the user attempts to manipulate the value of a cookie.

AJAX
Processor

This autoresponse rule triggers when the user interacts with a fake AJAX function injected
into the web application. If the user reverse engineers the code and manually invokes its
behavior, such as would happen with an automated script or spider, the rule will fire. If the
user actually invokes the Javascript function, the rule will fire.

Header
Processor

This autoresponse rule triggers when the user has unusual headers or header data which
a normal browser or well developed spider would not supply. If the user excludes required
headers such as Host and UserAgent, mannipulates their user agent header, overflows
headers beyond RFC standards will cause this rule to activate.

Hidden Link
Processor

This autoresponse rule triggers when a spider or malicious user attempts to identify
unreferenced resources in a fake directory.

Query
Parameter
Processor

This autoresponse rule triggers when a user manipulates the fake query parameter injected
by the system more than 3 times.

Method
Processor

This autoresponse rule triggers when a user or spider sends a request with a malicious
HTTP method such as TRACE.

Error
Processor

This autoresponse rule triggers when a user attempts to find unreferenced resources by
guessing file names.

File
Processor

This autoresponse rule triggers when a user attempts to find sensitive files by guessing file
names or changing parts of valid file names.

Warning
Processor

This autoresponse rule triggers when a user attempts to automate the dismissal of the
warning response.

Cookie
Protection
Processor

This autoresponse rule triggers when a user attempts to modify the web application session
cookie.

Captcha
Processor

This autoresponse rule triggers when a user attempts to find a way to bypass the captcha
response without solving the captcha.

CSRF
Processor

This autoresponse rule triggers if a user attempts to manipulate the CSRF protection
introduced by the system, potentially to find a filter evasion vulnerability.

Custom
Authentication
Processor

This autoresponse rule triggers if a user attempts to exploit the authentication mechanism
offered by the system.

Client
Beacon
Processor

This autoresponse rule triggers when the user attempts to tamper with the client side
tracking logic.

Using the Editor

197

Default
Autoresponse

Description

New and
Modified
Profiles

This autoresponse rule sends out an alert any time a new profile is created, or a profile
elevates its threat level. The severity of the alert will equal the threat of the new or elevated
profile that triggered the alert.

Returning
Profile

This autoresponse rule sends out an alert any time a profile returns on a subsequent day.
For example, a new hacker is observed on Monday, if the hacker is only active for 1 hour on
Monday, but returns on Tuesday to continue, this rule will issue an alert. The severity of the
alert will equal the threat level of the profile.

New Incident This autoresponse rule sends out an alert any time a new incident is observed. The severity
of the alert will equal the complexity of the incident.

New
Response

This autoresponse rule sends out an alert any time a new counter response is activated. The
severity of the alert will always equal 1.

10.1. Using the Editor
To create an autoresponse, open the configuration UI and select the "ADD New Rule" button. This will launch
the editor which can be used to create and edit an autoresponse:

Using the Editor

198

Table 10.2. Autoresponse Editor Fields

Field Description

Name The name of the autoresponse.

Description Description of the autoresponse and its triggers.

Enabled Sets an autoresponse to be active.

Safe Mode allows the autoresponse to activate, but does not actually respond. This setting is for testing
and debugging autoresponses.

Code The actual code that defines the autoresponse.

Events the events that will trigger the autoresponse.

Log A table which consists of any log statements printed during autoresponse execution. Use the
JavaScipt console object to output to an autoresponse's log

Using the Editor

199

Field Description

API
Reference

A link to the Autoresponse API documentation.

200

Appendix A. Incident Methods

Note
Parameters wrapped in [] are optional.

Table A.1. Incident Methods

Name & Description Parameters

isIncidentType
Check the incident type by either its code or its name.

incident:string

isIncidentDate
Check to see if an incident occurred on the given month, day and year. The
month, day and year arguments may be left empty to match any value.Note that
Jan = 1, and years are in the format YYYY.

[month:int]

[day:int]

[year:int]

isIncidentDateRange
Check to see if an incident occurred between two dates. All values must be
defined. Note that Jan = 1, and years are in the format YYYY.

start_month:int

start_day:int

start_year:int

end_month:int

end_day:int

end_year:int

isIncidentTime
Check to see if an incident occurred at a given time. The hour, minute and
second arguments may be left empty to match any value.

[hour:int]

[minute:int]

[second:int]

isIncidentTimeRange
Check to see if an incident occurred between a given time range. All values
must be specified.

start_hour:int

start_minute:int
start_second:int

end_hour:int

end_minute:int

end_second:int

isIncidentCount
Check the number of times an incident has occurred against an integer
operation and specified value. Supported operations include (>, <, ==, !=). The
results are: (count [operator] value)

operator:string

value:int

isIncidentCountRange min:int

max:int

201

Name & Description Parameters
Check to see if the number of times an incident has occurred is within a given
range.

isIncidentContextSubString
Check to see if the context XML associated with the incident contains the
provided substring. The search is case sensitive by default, unless the second
parameter is "false"

search:string

[[caseSensitive]:Boolean]

isIncidentContextPattern
Check to see if the context XML associated with an incident contains a simple
pattern. Supported pattern wild cards include +, ? and *. Pattern matches are
performed case sensitive unless the second parameter to this method is "false".

pattern:string

[[caseSensitive]:Boolean]

isIncidentIP
Check to see if an incident came from a given IP address. Each parameter
specifies the required value for the specific block of the address. Any of the
parameters can be left empty to match any value.

[a_block:int]

[b_block:int]

[c_block:int]

[d_block:int]

isIncidentIPRange
Check to see if an incident came from a given IP address range. Each
parameter specifies a range of accepted values for the specific address block.
Ranges are specified in the format: min-max. For example: 10-22, or 0-255

[a_block_range:string]

[b_block_range:string]

[c_block_range:string]

[d_block_range:string]

isIncidentBrowser
Check to see if the incident occurred from a given browser. The parameter
expects the canonical name of the browser.

name:string

isIncidentOperatingSystem
Check to see if the incident occurred from a given operation system. The
parameter expects the canonical name of the operating system.

name:string

isInicdentBrowserVersion
Check to see if the incident occurred from a specified version of the browser.
The check is case sensitive by default, unless the second parameter is "false".
The version could contain any character and should be considered as an
arbitrary user supplied string value.

version:string

[[caseSensitive]:Boolean]

isIncidentBrowserVersionPattern
Check to see if the incident occurred from a browser with a version that matches
a given simple pattern. Pattern wild cards >include ?, * and +. The match is done
case sensitive unless the second parameter is "false". The version could contain
any character and should be considered as an arbitrary user supplied string
value.

pattern:string

[[caseSensitive]:Boolean]

isIncidentBrowserVersionSubString
Check to see if the incident occurred from a browser with a version that contains
the given sub string. The match is done case sensitive unless the second
parameter is "false". The version could contain any character and should be
considered as an arbitrary user supplied string value.

Search:string

[[caseSensitive]:Boolean]

isIncidentCountry country:string

202

Name & Description Parameters
Check to see if the incident originated from a given country. The parameter
expects a valid 2 character country code, or the canonical name of the country.

isIncidentLatitude
Check to see if the incident originated from a specified geographical latitude.
The parameter is expected to be a decimal number between -90.0 and +90.0

latitude:float

isIncidentLatitudeRange
Check to see if the incident originated between a specified geographical latitude
range.The parameters are expected to be decimal numbers between -90.0 and
+90.0.

min:float

max:float

isIncidentLongitude
Check to see if the incident originated from a specified geographical longitude.
The parameter is expected to be a decimal number between -90.0 and +90.0

longitude:float

isIncidentLongitudeRange
Check to see if the incident originated between a specified geographical
longitude. The parameters are expected to be decimal numbers between -90.0
and +90.0.

min:float

max:float

isIncidentCity
Check to see if the incident originated in a specified city. The parameter is
expected to be the city name and is case sensitive unless the second parameter
is "false"

city:string

[caseSensitive]:Boolean

isIncidentCityPattern
Check to see if the incident originated from a city that matches a specified
pattern. The supported wild cards are *>, ?, and +. The pattern is case sensitive
unless the second parameter is "false".

pattern:string

[caseSensitive]:Boolean

isIncidentCitySubString
Check to see if the incident originated from a city that contains a specified sub
string. The substring search is done case sensitive unless the second parameter
is "false"

search:string

[caseSensitive]:Boolean

isIncidentHost
Check to see if the incident originated in a specified host. The parameter
is expected to be the host name and is case sensitive unless the second
parameter is "false"

host:string

[caseSensitive]:Boolean

isIncidentHostPattern
Check to see if the incident originated from a host name that matches a
specified pattern. The supported wild cards are *, ?, and +. The pattern is case
sensitive unless the second parameter is "false".

pattern:string

[caseSensitive]:Boolean

isIncidentHostSubString
Check to see if the incident originated from a host name that contains a
specified sub string. The substring search is done case sensitive unless the
second parameter is "false"

search:string

[caseSensitive]:Boolean

isIncidentRegion
Check to see if the incident originated in a specified region. The parameter
is expected to be the region name and is case sensitive unless the second
parameter is "false"

region:string

[caseSensitive]:Boolean

isIncidentRegionPattern pattern:string

203

Name & Description Parameters
Check to see if the incident originated from a region that matches a specified
pattern. The supported wild cards are *, ?, and +. The pattern is case sensitive
unless the second parameter is "false".

[caseSensitive]:Boolean

isIncidentRegionSubString
Check to see if the incident originated from a region that contains a specified
sub string. The substring search is done case sensitive unless the second
parameter is "false"

search:string

[caseSensitive]:Boolean

isIncidentZip
Check to see if the incident originated in a specified zip code. The parameter is
expected to be the zip code and is case sensitive unless the second parameter
is "false". While zip codes should generally be numeric, there is the possibility of
foreign zip codes containing strange characters.

zip:string

[caseSensitive]:Boolean

isIncidentZipPattern
Check to see if the incident originated from a zip code that matches a specified
pattern. The supported wild cards are *>, ?, and +. The pattern is case sensitive
unless the second parameter is "false".

pattern:string

[caseSensitive]:Boolean

isIncidentZipSubString
Check to see if the incident originated from a zip code that contains a specified
sub string. The substring search is done case sensitive unless the second
parameter is "false"

search:string

[caseSensitive]:Boolean

204

Appendix B. Captcha Template
There are several processors that utilize captchas to prevent automation. These processor include:

• Request Captcha Processor

This processor allows you to attach a captcha to any page on the web application. It is also responsible for
enforcing the "Force Captcha Validation" counter response.

• Login Processor

This processor utilizes captchas to prevent brute force attacks on login dialogs. Once there have been more
than three (3) failed login attempts on a single username (from any users), any future attempts to login as
that user will require a captcha.

When a captcha must be presented, the format in which it is displayed is defined as a Captcha Template. By
default, there is a captcha template defined for both processors that will work on all websites. In the event
that you would like to customize the way the captcha looks when it is presented (such as wrapping it with
the standard template of the website being protected), the captcha template can be modified. This is done
by accessing the advanced configuration parameters for the two aforementioned processors and editing the
"Captcha Template" parameter.

In order to edit the parameter, it is recommended that you first download a copy of the existing default
template. If you have already made modifications to the template, you can get the original by selecting the
suggestion "Default Unbranded Template", and then downloading the associated file.

Once you have a copy of the default template, open it in a text editor. You can make any modifications to the
HTML as required, but be sure not to modify the existing JavaScript or remove any of the existing HTML.
To prevent introducing changes that might prevent the captcha from functioning, it is recommended that
modifications be limited to stylistic changes (do not alter the content of the SCRIPT tags, and do not alter the
contents of the FORM tag). After your modifications, you can upload the new file into the parameter to update
the captcha HTML served by Junos WebApp Secure. It is recommended that you keep a copy of the modified
template to make future modifications easier.

You will also notice that there are a few special HTML tags in the template. These tags are replaced by Junos
WebApp Secure before the template is served to the end-user. These tags reside either in a SCRIPT tag or in
a FORM tag, so as long as those elements are not modified, these tags should continue to function correctly.
These special tags include:
• <%captchaDir>

The directory name that all captcha images and audio files are served from.

• <%signature>

The file name for the captcha image or audio resource to load.

• <%includeAudio> </%includeAudio>

Displays the content between the open and closing tags only if audio captchas are enabled.

• <%cancel>

The URL to redirect the user to if they cancel the captcha operation.

• <%delay>

205

The number of seconds the user has to complete the captcha before it expires.

• <%multiPart> </%multiPart>

Displays the content between the opening and closing tag only if the original request that is being protected
by a captcha was a multipart form submission (vs. a URL encoded form post [by default, forms are URL
encoded]).

• <%datasignature>

The signature of the data that was originally posted to the page protected by the captcha. This is used to
ensure that the data is not modified after submission, but before the captcha is solved.

• <%data>

The encrypted data submitted to the original page that required a captcha. This is used so that once the
captcha is solved, the original request can be reconstructed and submitted to the backend servers.

• <%inputname>

The name of the input used to identify when a user submits a captcha. The value for this input name is
configurable and should not conflict with any existing inputs the site uses. A random string of 5 or more
characters should be sufficient (but must be set in configuration so that it can be injected in place of the
custom tag when serving a captcha).

After the new template has been uploaded and saved in configuration, you can test your changes by triggering
the applicable captcha.
• Request Captcha Processor

Access the protected page and request http://www.domain.com/.htaccess which will generate a profile
for your session. Find the new profile in the security monitor and manually activate the "Force Captcha
Validation" response. Then go back to the protected site and make a few more requests until the captcha
shows up.

• Login Processor

If the login processor is configured to protect a login dialog on the site, then simply provide 3 or more invalid
passwords for the same username. On the 4th attempt, you should be presented with the login processor
captcha.

Note: Changes to the captcha template are made to the live deployment. So if you break the captcha template
during modifications, it may cause the captcha to stop working for some of the users on the site until the
template is repaired. Creating a new "Page" in configuration for a fictitious URL and making the changes on
that page first would allow you to test the modifications without impacting every use on the site.

206

Appendix C. Log Format
Junos Webapp Secure is configured to log security incidents to mws-security-alert.log. The creation of new
profiles, incoming incidents, and sent counter responses all have alerts that can individually be turned on or
off. The following section explains the format of these security log messages.

All security alert log messages have this common format:

<date> <host> [<log level>][mws-security-alert][<thread id>] <message>

where all of the items in angle brackets will be replaced by information relevant to that log entry. The
<message> portion of each log entry consists of a series of name value pairs, with the name (unquoted)
followed by an equal sign (=) followed by the value (in quotes).

C.1. Incident Log Format
If incident logging is enabled, all incidents at or above the configured incident severity level will be sent to
syslog in mws-security-alert.log.

MKS_Category - will always have the value "Security Incident" when logging security incidents

MKS_Type - a textual name for the type of incident

MKS_Severity - an integer between 0 and 4 for the severity of the incident (0 being lowest, 4 being
highest)

MKS_ProfileName - the name of the hacker profile who caused the incident (also visible in the security
monitor)

MKS_SrcIP - the ip of the hacker who caused the incident

MKS_pubkey - a textual key unique to that hacker profile (also visible in the security monitor)

MKS_useragent - the full useragent string of the browser or other program used by the hacker

MKS_url - the url used on the request that caused the incident

MKS_count - the number of times this hacker has caused this same incident

Following the common names will be any incident specific contextual values which are tracked with the
incident. These will vary based on incident type. For example a Query Parameter Manipulation incident would
include the parameter that was changed along with actual and expected values.

Here is a sample log entry:

Apr 6 20:58:36 vm1 [INFO][mws-security-alert][Thread-49927] MKS_Category="Security Incident"
MKS_Type="Query Parameter Manipulation" MKS_Severity="2" MKS_ProfileName="Luis 9605"
MKS_SrcIP="10.10.10.130" MKS_pubkey="fkrvpvFNhwoWRgaQiUxS" MKS_useragent="Mozilla/5.0
(Windows NT 6.1; WOW64) AppleWebKit/535.19 (KHTML, like Gecko) Chrome/18.0.1025.142 Safari/535.19"
MKS_url="http://www2.testsite.com:80/basket/?action=listing&id=3" MKS_count="1" MKS_actual="2568"
MKS_expected="25304" MKS_param="n_idx"

Counter Response Log Format

207

C.2. Counter Response Log Format
If counter response logging is enabled, all responses (both autoresponses and manually activated responses)
will be logged to syslog.

MKS_Category - will always have the value "New Counter Response" when logging counter responses

MKS_ResponseCode - the two letter representation of the counter response issued; for example, "BL" for
Blocking response.

MKS_ResponseName - The full textual representation of the counter response issued; for example,
"Block".

MKS_ProfileId - the id of the profile that the counter response was issued on. This is guaranteed to be
unique per attacker, and is used to display the attacker's page within the web UI (http://HOSTNAME/
attackers/PROFILEID).

MKS_ProfileName - the name of the hacker profile that the counter response was issued on. (also visible
in the security monitor)

MKS_ResponseCreated - the date and time the response was created.

MKS_ResponseDelayed - the date and time the response is set to be delayed until.

MKS_ResponseExpires - the date and time the response is set to expire.

MKS_ResponseConfig - the configuration used in this counter response.

Here is a sample log entry:

Feb 15 15:03:28 vm1 [INFO][mws-security-alert][Thread-214] MKS_Category="New Counter
Response" MKS_ResponseCode="CP" MKS_ResponseName="Force Captcha Validation"
MKS_ProfileId="127780" MKS_ProfileName="Peter 4703" MKS_ResponseCreated="2013-02-15
15:03:26.576" MKS_ResponseDelayed="2013-02-15 15:03:26.576" MKS_ResponseExpires="null"
MKS_ResponseConfig="<config ix0ix5002='1' />"

C.3. Profile Log Format
If profile logging is enabled, any new profile creations will be logged.

MKS_Category - will always have the value "New Profile" when logging profiles.

MKS_ProfileId - the id of the profile that was created.

MKS_ProfileName - the name of the profile that was created.

MKS_PubKey - the public key of the profile that was created, used for unblocking the profile via the
support processor.

MKS_GlobalName - the global name given to the profile from Spotlight service. This entry will only exist if
it is a spotlight profile, otherwise it will be omitted.

Here is a sample log entry:

Feb 15 15:03:24 zach-vm [INFO][mws-security-alert][Thread-202] MKS_Category="New Profile"
MKS_ProfileId="127780" MKS_ProfileName="Peter 4703" MKS_PubKey="XAgpFNhjYrQvlaozu2Gb"

208

Appendix D. RBAC Groups and Roles
This is a list of all Junos WebApp Secure roles, and the cooresponding permissions they each have.

Table D.1. RBAC Groups and Roles.

Super
Administrator

Security
Administrator

Security
Support
Staff

RBAC
Administrator

Web UI
Administrator

Device
Administrator

Security
User

Can Manage
Processors

YES YES NO NO YES NO NO

Can Manage
Response
Rules

YES YES NO NO YES NO NO

Can View
System
Status

YES YES YES NO YES YES YES

Can Edit
Profiles

YES YES NO NO YES NO YES

Can Use
Expert Mode

YES NO NO NO YES NO NO

Can Delete
Profiles

YES YES NO NO YES NO YES

Can Manage
Logical
Services

YES YES NO NO YES YES NO

Can View
Security
Data

YES YES YES NO YES NO YES

Can Manage
Licensing

YES NO NO NO YES YES NO

Can Manage
Authentication

YES NO NO NO YES YES NO

Can Manage
Applications

YES YES NO NO YES NO NO

Can Import
Configuration

YES NO NO NO YES NO NO

Can Initialize
Applicance

YES NO NO NO NO YES NO

Can Log Into
Web UI

YES YES YES YES YES YES YES

Can Manage
Backups

YES NO NO NO YES YES NO

Can Activate
Responses

YES YES NO NO YES NO YES

209

Can Export
Configuration

YES NO NO NO YES NO NO

Can Manage
Physical
Services

YES NO NO NO NO YES NO

Can Manage
Logging

YES NO NO NO YES YES NO

Can Manage
Spotlight

YES YES NO NO YES NO NO

Can
Deactivate
Responses

YES YES NO NO YES NO YES

Can Log Into
Console

YES NO NO NO NO YES NO

Can
Schedule
Reports

YES YES NO NO YES NO YES

Can Update
Appliance

YES NO NO NO YES YES NO

Can Manage
High
Availability

YES NO NO NO YES YES NO

Can
Configure
Updates

YES NO NO NO NO YES NO

Can Manage
Security
Engine

YES YES NO NO YES NO NO

Can Run
Reports

YES YES YES NO YES NO YES

Can Manage
Authorization

YES NO NO YES YES NO NO

Can Manage
SRX
Settings

YES NO NO NO NO YES NO

Can Restart
Appliance

YES NO NO NO NO YES NO

	User Guide
	Table of Contents
	Other Documentation Formats
	Chapter 1. Introduction
	1.1. Overview
	1.1.1. Summary
	1.1.2. Why is it Unique as a Security Product?
	1.1.3. What Does the Software Do?
	1.1.4. What traffic does it inspect?
	1.1.5. How is it managed?

	1.2. Major Components
	1.3. Features and Services
	1.4. Support

	Chapter 2. Deployment Overview
	2.1. Appliance Network Placement
	2.1.1. Between Firewall and Web Servers

	2.2. Creating a Test Configuration
	2.2.1. Initial Configuration and Testing
	2.2.2. Larger-Scale Testing

	2.3. Options for Load-Balanced Environments
	2.4. SSL Traffic Consideration
	2.5. Limitations
	2.6. Platform Requirements
	2.7. EC2 Deployment
	2.7.1. Deploying the Junos WebApp Secure Instance
	2.7.1.1. Deploying via Command Line
	2.7.1.2. Deploying via Web Interface

	2.7.2. Assigning the Instance and IP
	2.7.2.1. Assigning via CLI
	2.7.2.2. Assigning via the Web Interface

	2.7.3. Accessing the Instance

	Chapter 3. Appliance Installation
	3.1. Terminology
	3.2. Initial Setup
	3.2.1. Changing the Password
	3.2.2. Resetting the Password

	3.3. First Time Configuration
	3.4. TUI Steps
	3.4.1. Network Configuration
	3.4.1.1. Setting the Hostname
	3.4.1.2. Interface Configuration
	3.4.1.3. Set DNS
	3.4.1.4. Restart the network
	3.4.1.5. Initialize the Appliance
	3.4.1.6. Verify Connectivity

	3.5. Licensing

	Chapter 4. Configuring Junos WebApp Secure
	4.1. Configuration Wizard
	4.1.1. Wizard: Backend Servers
	4.1.2. Wizard: Backend Server Configuration
	4.1.3. Wizard: SMTP Servers
	4.1.4. Wizard: Alert Service
	4.1.5. Wizard: Backup Service
	4.1.6. Wizard: Junos Spotlight Secure
	4.1.7. Wizard: Confirmation Page

	4.2. Verify the Installation
	4.3. Health Check URL
	4.4. What's Next?
	4.5. Basic vs. Expert Configuration
	4.6. Basic Configuration
	4.7. Expert Mode Configuration
	4.8. Junos WebApp Secure CLI
	4.8.1. CLI: config
	4.8.1.1. Setting a Configuration Parameter
	4.8.1.2. Configuration Import / Export

	4.8.2. CLI: services
	4.8.3. CLI: system

	4.9. Role-Based Access Control

	Chapter 5. Additional Configuration Options
	5.1. Securing Multiple Web Servers
	5.1.1. Application Patterns
	5.1.2. Backend Servers
	5.1.3. Pages

	5.2. Configuring SSL
	5.2.1. Enabling SSL to the Client

	5.3. Clustering
	5.3.1. Node Types
	5.3.2. Setting up Clustering
	5.3.3. Updating the Cluster

	5.4. High Availability
	5.4.1. Configuring HA
	5.4.2. Updating with HA

	5.5. SRX Integration
	5.5.1. Summary
	5.5.2. Creating SRX Filter and Terms
	5.5.3. Configuration
	5.5.4. Testing

	Chapter 6. Managing the Appliance
	6.1. Restart/Shutdown
	6.2. System Updates
	6.3. System Statistics
	6.3.1. Master-Slave Mode

	6.4. Troubleshooting and Maintenance
	6.4.1. Managing Services
	6.4.2. Managing and Viewing Logs

	6.5. Backup and Recovery
	6.5.1. Restoring a Backup

	6.6. Junos Spotlight Secure
	6.6.1. Enabling Spotlight

	Chapter 7. Using Security Monitor
	7.1. Dashboard
	7.2. Attackers
	7.3. Incidents
	7.4. Counter Responses
	7.5. Sessions
	7.6. Search
	7.7. Reporting
	7.8. Configuration
	7.9. System Status
	7.10. Updates
	7.11. Help

	Chapter 8. Processor Reference
	8.1. Complexity Definitions
	8.2. Security Engine Incidents
	8.2.1. Session Cookie Spoofing
	8.2.2. Session Cookie Tampering

	8.3. Security Processors
	8.4. Honeypot Processors
	8.4.1. Access Policy Processor
	8.4.1.1. Configuration
	8.4.1.2. Incidents
	8.4.1.2.1. Malicious Service Call
	8.4.1.2.2. Service Directory Indexing
	8.4.1.2.3. Service Directory Spider

	8.4.2. Ajax Processor
	8.4.2.1. Configuration
	8.4.2.2. Incidents
	8.4.2.2.1. Malicious Script Execution
	8.4.2.2.2. Malicious Script Introspection

	8.4.3. Basic Authentication Processor
	8.4.3.1. Configuration
	8.4.3.2. Incidents
	8.4.3.2.1. Apache Configuration Requested
	8.4.3.2.2. Apache Password File Requested
	8.4.3.2.3. Invalid Credentials
	8.4.3.2.4. Protected Resource Requested
	8.4.3.2.5. Password Cracked
	8.4.3.2.6. Basic Authentication Bruteforce

	8.4.4. Cookie Processor
	8.4.4.1. Configuration
	8.4.4.2. Incidents
	8.4.4.2.1. Cookie Parameter Manipulation

	8.4.5. File Processor
	8.4.5.1. Configuration
	8.4.5.2. Incidents
	8.4.5.2.1. Suspicious Filename
	8.4.5.2.2. Suspicious File Exposed
	8.4.5.2.3. Suspicious Resource Enumeration

	8.4.6. Hidden Input Form Processor
	8.4.6.1. Configuration
	8.4.6.2. Incidents
	8.4.6.2.1. Parameter Type Manipulation
	8.4.6.2.2. Hidden Parameter Manipulation

	8.4.7. Hidden Link Processor
	8.4.7.1. Configuration
	8.4.7.2. Incidents
	8.4.7.2.1. Link Directory Indexing
	8.4.7.2.2. Link Directory Spidering
	8.4.7.2.3. Malicious Resource Request

	8.4.8. Query String Processor
	8.4.8.1. Configuration
	8.4.8.2. Incidents
	8.4.8.2.1. Query Parameter Manipulation

	8.4.9. Robots Processor
	8.4.9.1. Configuration
	8.4.9.2. Incidents
	8.4.9.2.1. Malicious Spider Activity

	8.5. Activity Processors
	8.5.1. Custom Authentication Processor
	8.5.1.1. Configuration
	8.5.1.2. Incidents
	8.5.1.2.1. Auth Input Parameter Tampering
	8.5.1.2.2. Auth Query Parameter Tampering
	8.5.1.2.3. Auth Cookie Tampering
	8.5.1.2.4. Authentication Brute Force
	8.5.1.2.5. Auth Invalid Login

	8.5.2. Cookie Protection Processor
	8.5.2.1. Configuration
	8.5.2.2. Incidents
	8.5.2.2.1. Application Cookie Manipulation

	8.5.3. Error Processor
	8.5.3.1. Configuration
	8.5.3.2. Incidents
	8.5.3.2.1. Illegal Response Status
	8.5.3.2.2. Suspicious Response Status
	8.5.3.2.3. Unexpected Response Status
	8.5.3.2.4. Unknown Common Directory Requested
	8.5.3.2.5. Unknown User Directory Requested
	8.5.3.2.6. Common Directory Enumeration
	8.5.3.2.7. User Directory Enumeration
	8.5.3.2.8. Resource Enumeration

	8.5.4. Header Processor
	8.5.4.1. Configuration
	8.5.4.2. Incidents
	8.5.4.2.1. Duplicate Request Header
	8.5.4.2.2. Duplicate Response Header
	8.5.4.2.3. Illegal Request Header
	8.5.4.2.4. Illegal Response Header
	8.5.4.2.5. Missing All Headers
	8.5.4.2.6. Missing Host Header
	8.5.4.2.7. Missing Request Header
	8.5.4.2.8. Missing Response Header
	8.5.4.2.9. Missing User Agent Header
	8.5.4.2.10. Request Header Overflow
	8.5.4.2.11. Compound Request Header Overflow
	8.5.4.2.12. Unexpected Request Header

	8.5.5. Method Processor
	8.5.5.1. Configuration
	8.5.5.2. Incidents
	8.5.5.2.1. Illegal Method Requested
	8.5.5.2.2. Unexpected Method Requested

	8.6. Tracking Processors
	8.6.1. Etag Beacon Processor
	8.6.1.1. Configuration
	8.6.1.2. Incidents
	8.6.1.2.1. Session Etag Spoofing

	8.6.2. Client Beacon Processor
	8.6.2.1. Configuration
	8.6.2.2. Incidents
	8.6.2.2.1. Beacon Parameter Tampering
	8.6.2.2.2. Beacon Session Tampering

	8.6.3. Client Fingerprint Processor
	8.6.3.1. Configuration
	8.6.3.2. Incidents
	8.6.3.2.1. Fingerprint Directory Indexing
	8.6.3.2.2. Fingerprint Directory Probing
	8.6.3.2.3. Fingerprint Manipulation

	8.6.4. Client Classification Processor
	8.6.4.1. Configuration

	8.7. Response Processors
	8.7.1. About Responses
	8.7.1.1. Response Methodology
	8.7.1.2. Types of Responses
	8.7.1.3. Response Activation
	8.7.1.4. Compounding and Overriding Responses

	8.7.2. Block Processor
	8.7.2.1. Configuration

	8.7.3. Request Captcha Processor
	8.7.3.1. Configuration
	8.7.3.2. Incidents
	8.7.3.2.1. Captcha Answer Automation
	8.7.3.2.2. No Captcha Answer Provided
	8.7.3.2.3. Multiple Captcha Request Overflow
	8.7.3.2.4. Unsupported Audio Captcha Requested
	8.7.3.2.5. Bad Captcha Answer
	8.7.3.2.6. Mismatched Captcha Session
	8.7.3.2.7. Expired Captcha Request
	8.7.3.2.8. Captcha Request Tampering
	8.7.3.2.9. Captcha Signature Tampering
	8.7.3.2.10. Captcha Signature Spoofing
	8.7.3.2.11. Captcha Cookie Manipulation
	8.7.3.2.12. Captcha Image Probing
	8.7.3.2.13. Captcha Request Size Limit Exceeded
	8.7.3.2.14. Captcha Disallowed MultiPart
	8.7.3.2.15. Captcha Directory Indexing
	8.7.3.2.16. Captcha Directory Probing
	8.7.3.2.17. Captcha Parameter Manipulation
	8.7.3.2.18. Captcha Request Replay Attack
	8.7.3.2.19. Multiple Captcha Replays
	8.7.3.2.20. Multiple Captcha Disallow Multipart
	8.7.3.2.21. Multiple Captcha Parameter Manipulation

	8.7.4. CSRF Processor
	8.7.4.1. Configuration
	8.7.4.2. Incidents
	8.7.4.2.1. CSRF Parameter Tampering
	8.7.4.2.2. Multiple CSRF Parameter Tampering
	8.7.4.2.3. CSRF Remote Script Inclusion
	8.7.4.2.4. HTTP Referers Disabled

	8.7.5. Header Injection Processor
	8.7.5.1. Configuration

	8.7.6. Force Logout Processor
	8.7.6.1. Configuration

	8.7.7. Strip Inputs Processor
	8.7.7.1. Configuration

	8.7.8. Slow Connection Processor
	8.7.8.1. Configuration

	8.7.9. Warning Processor
	8.7.9.1. Configuration
	8.7.9.2. Incidents
	8.7.9.2.1. Warning Code Tampering

	8.7.10. Application Vulnerability Processor
	8.7.10.1. Configuration
	8.7.10.2. Incidents
	8.7.10.2.1. App Vulnerability Detected

	8.7.11. Support Processor
	8.7.11.1. Configuration

	8.7.12. Cloppy Processor
	8.7.12.1. Configuration

	8.7.13. Login Processor
	8.7.13.1. Configuration
	8.7.13.2. Incidents
	8.7.13.2.1. Site Invalid Login
	8.7.13.2.2. Site Login Multiple IP
	8.7.13.2.3. Site Login Multiple Usernames
	8.7.13.2.4. Site Login User Sharing
	8.7.13.2.5. Site Login User Pooling
	8.7.13.2.6. Site Login User Brute Force
	8.7.13.2.7. Site Login Brute Force
	8.7.13.2.8. Site Login Username Scan

	8.7.14. Google Map Processor
	8.7.14.1. Configuration

	Chapter 9. Reporting
	9.1. On-Demand Reporting
	9.2. Report Schedules
	9.3. Scheduling a Report
	9.4. Report History
	9.5. Report Details
	9.6. Reports CLI
	9.6.1. Supported arguments
	9.6.1.1. Data Sources
	9.6.1.2. Formatting
	9.6.1.3. Example Report

	Chapter 10. Autoresponse Configuration
	10.1. Using the Editor

	Appendix A. Incident Methods
	Appendix B. Captcha Template
	Appendix C. Log Format
	C.1. Incident Log Format
	C.2. Counter Response Log Format
	C.3. Profile Log Format

	Appendix D. RBAC Groups and Roles

