
Chapter 1

Integrating Third-Party Network Devices
into the SRC Network with the SRC CLI

This chapter describes how to use the SRC CLI to integrate third-party network
devices into the SRC network. You can use the CLI to configure the SRC software on
a Solaris platform or on a C-series platform.

You can also use SRC configuration applications to configure the SRC software on a
Solaris platform. See Chapter 2, Integrating Third-Party Network Devices into the SRC
Network on a Solaris Platform.

The chapter contains the following topics:

� Overview of Integrating Network Devices into the SRC Network on page 3

� Logging In Subscribers and Creating Sessions on page 5

� Configuration Tasks for Integrating Third-Party Network Devices on page 9

� Setting Up Script Services on page 10

� Adding Objects for Network Devices on page 10

� Setting Up SAE Communities on page 12

� Configuring SAE Properties for the Event Notification API on page 14

� Developing Initialization Scripts for Network Devices on page 15

� Using SNMP to Retrieve Information from Network Devices on page 18

� Using the NIC Resolver on page 18

Overview of Integrating Network Devices into the SRC Network

You can integrate third-party routers and other network devices into your SRC
network. The SAE provides a driver that you can use to integrate the SAE with a
third-party device. This device driver uses the session store to store and replicate
subscriber and service session data within a community of SAEs.

To log in subscribers to the SAE, you use assigned IP subscribers or event
notification from an IP address manager.
Overview of Integrating Network Devices into the SRC Network � 3

SRC-PE 1.0.x Integration Guide

4 �
To activate services and provision policies on the device, you use script services.
You can also activate aggregate services for subscribers. However, you cannot
activate normal services that require policies to be provisioned on the device.

SAE Communities
For SAE redundancy in an SRC network, you can have a community of two or more
SAEs. SAEs in a community are given the role of either active SAE or passive SAE.
The active SAE manages the connection to the network device and keeps session
data up to date within the community. Figure 1 shows a typical SAE community.

Figure 1: SAE Community

When an SAE starts, it negotiates with other SAEs to determine which SAE controls
the network device. The SAE community manager and members of the community
select the active SAE.

A passive SAE needs to take over as active SAE in any of the following cases:

� The active SAE shuts down. In this case, the active SAE notifies the passive
SAEs, and one of the passive SAEs takes over as active SAE.

� A passive SAE does not receive a keepalive message from the active SAE within
the keepalive interval. In this case, the passive SAE attempts to become the
active SAE.

Storing Session Data
To aid in recovering from an SAE failover, the SAE stores subscriber and service
session data. When the SAE manages a network device, session data is stored in
the SAE host’s file system. The SRC component that controls the storage of session
data on the SAE is called the session store. The session store queues data and then
writes the data to session store files on the SAE host’s disk. Once the data is written
to disk, it can survive a server reboot.

For more information, see Storing Subscriber and Service Session Data in SRC-PE
Network Guide, Chapter 2, Configuring the SAE with the SRC CLI.

��
��

��
�

��	
�����
�� ���
��

����
��
�	���

�������
��
�	���

�������
��
�	���

���
�� ��

��
������	�
��	����
���
��
Overview of Integrating Network Devices into the SRC Network

Chapter 1: Integrating Third-Party Network Devices into the SRC Network with the SRC CLI
Using Script Services to Provision Third-Party Devices
You use script services to activate services and provision policies on third-party
network devices. A script service is a service into which you can insert or reference
a script. You write a script that will activate services and provision policies on the
third-party device, and then you insert the script into the script service or reference
the script in the service. When the SAE activates a service, it runs the script. The
script provisions policies on the device using a means that the device supports. You
can also include an interface in the script that causes the SAE to send authentication
and tracking events when it activates, modifies, or deactivates a script service
session.

The SAE core API includes two interfaces for creating a script:

� ScriptService—Defines a service provider interface (SPI) that the script service
must implement. The implementation of the ScriptService interface activates,
modifies, or deactivates the service.

� ServiceSessionInfo—Provides a callback interface into the SAE and provides
information about the service session to the script service.

For information about the ScriptService interface and the ServiceSessionInfo
interface, see the script service documentation in the SRC software distribution in
the folder SDK/doc/sae or in the SAE core API documentation on the Juniper
Networks Web site at

http://www.juniper.net/techpubs/software/management/sdx/api-index.html

You can write the script in Java or Jython.

Logging In Subscribers and Creating Sessions

You can use two mechanisms to obtain subscriber address requests and other
information and to set up a pseudointerface on the network device. (You must
choose one mechanism; you cannot mix them.)

1. Assigned IP subscriber. The SAE learns about a subscriber through
subscriber-initiated activities, such as activating a service through the portal or
through the SRC SOAP Gateway (SRC-SG).

With this method, you use the assigned IP subscriber login type along with the
network interface collector (NIC) to map IP addresses to the SAE.

2. Event notification from an IP address manager. The SAE learns about
subscribers through notifications from an external IP address manager, such as
a DHCP server or a RADIUS server.

With this method, you use the event notification application programming
interface (API). The API provides an interface to the IP address manager, and
lets the IP address manager notify the SAE of events such as IP address
assignments.
Logging In Subscribers and Creating Sessions � 5

SRC-PE 1.0.x Integration Guide

6 �
Assigned IP Subscribers
With the assigned IP subscriber method of logging in subscribers and creating
sessions, the SRC software uses IP address pools along with network information
collector (NIC) resolvers to provide mapping of IP addresses to SAEs. You configure
the static address pools or dynamically discovered address pools in the virtual
router configuration for a network device. These pools are published in the NIC. The
NIC maps subscriber IP addresses in requests received through the portal or SRC-SG
to the SAE that currently manages that network device.

Login Interactions with Assigned IP Subscribers
This section describes login interactions for assigned IP subscribers. In the example
shown in Figure 2, the subscriber activates a service through a portal. You could
also have the subscriber activate a service through the SRC-SG.

Figure 2: Login Interactions with Assigned IP Subscribers

The sequence of events for logging in and creating sessions for assigned IP
subscribers is:

1. The subscriber logs in to the portal.

2. The portal sends the subscriber’s IP address to the NIC.

3. Based on the IP address, the NIC looks up the subscriber’s SAE, network
device, and interface name, and returns this information to the portal.

4. The portal sends a getSubscriber message to the SAE. The message includes
the subscriber’s IP address, network device, and interface name.

5. The SAE creates an assigned IP subscriber and performs a subscriber login.
Specifically, it:

a. Runs the subscriber classification script with the IP address of the
subscriber. (Use the ASSIGNEDIP login type in subscriber classification
scripts.)

b. Loads the subscriber profile.

c. Runs the subscriber authorization plug-ins.

����
��
�	���

��
��

��
�

�����	��

�� ���
���� !
�"#���
#�� ���
�

�� �"#���
#��
 ����
� 	�
 ���	�� �

$� ���% ��	���� ���
��%

�	��&��� ��'� �

(� �"#���
#�� !
 ������� �

)� ��	�"#���
#��*!% ��	����
 ���
��%
�	��&��� ��'�+��

,� ����
��
 ���
�
�� �

�

-!�

��
������	�
��	����
���
��
Logging In Subscribers and Creating Sessions

Chapter 1: Integrating Third-Party Network Devices into the SRC Network with the SRC CLI
d. Runs the subscriber tracking plug-ins.

e. Creates a subscriber session and stores the session data in the session
store file.

6. The SAE pushes service policies for the subscriber session to the network
device.

Because the SAE is not notified when the subscriber logs out, the assigned IP idle
timer begins when no service is active. The SAE removes the interface subscriber
session when the timeout period ends.

Event Notification from an IP Address Manager
With the event notification method of logging in subscribers and creating
subscriber sessions, the subscriber logs in to the network device and obtains an IP
address through an address server, usually a DHCP server. The SAE receives
notifications about the subscriber, such as the subscriber’s IP address, from an
event notification application that is installed on the DHCP server.

To use this method of logging in subscribers, you can use the event notification API
to create the application that notifies the SAE when events occur between the
DHCP server and the network device. You can also use Monitoring Agent, an
application that was created with the event notification API and that monitors
DHCP or RADIUS messages for DHCP or RADIUS servers. See SRC Application
Library Guide, Chapter 27, Integrating IP Address Managers with the SAE.

Login with Event Notification
This section describes login interactions by means of event notifications.

Figure 3: Login Interactions with Event Notification Application

./�
������

��
��

��
�

�� ���
�	 ����
����

����	
��	
&
��	
��
����
��	
��

����
��
�	���

�� ./� .
������*+��
$� ./� 0�1"��	*+��

(� ./� 2&&��*+��
)� ./� ���*+��

,� !�3� �

4� �"#���
#�� ���
�

�� !�	�����	�
./� ��5*+

���

�
��
������	�

��	����
���
��
Logging In Subscribers and Creating Sessions � 7

SRC-PE 1.0.x Integration Guide

8 �
The sequence of events for logging in subscribers and creating sessions is:

1. The DHCP client in the subscriber’s computer sends a DHCP discover request
to the DHCP server.

2. The DHCP server sends a DHCP offer to the subscriber’s DHCP client.

3. The DHCP client sends a DHCP request to the DHCP server.

4. The DHCP server acknowledges the request by sending a DHCP Ack message
to the DHCP client.

5. The event notification application that is running on the DHCP server intercepts
the DHCP Ack message.

6. The event notification application sends an ipUp message to the SAE that
notifies the SAE that an IP address is up.

7. The SAE performs a subscriber login. Specifically, it:

a. Runs the subscriber classification script.

b. Loads the subscriber profile.

c. Runs the subscriber authorization plug-ins.

d. Runs the subscriber tracking plug-ins.

e. Creates a subscriber session and stores the session in the session store file.

8. The SAE can start script services.

The ipUp event should be sent with a timeout set to the DHCP lease time. The
DHCP server sends an ipUp event for each Ack message sent to the client. The SAE
restarts the timeout each time it receives an ipUp event.

If the client explicitly releases the DHCP address (that is, it sends a DHCP release
event), the DHCP server sends an ipDown event. If the client does not renew the
address, the lease expires on the DHCP server and the timeout expires on the SAE.
Logging In Subscribers and Creating Sessions

Chapter 1: Integrating Third-Party Network Devices into the SRC Network with the SRC CLI
Configuration Tasks for Integrating Third-Party Network Devices

To integrate third-party devices into your SRC network, complete the following
tasks:

� Write a script and add a script service that references the script.

See Setting Up Script Services on page 10.

� Add objects for the devices.

See Adding Objects for Network Devices on page 10.

� Configure an SAE community.

See Setting Up SAE Communities on page 12.

� (Optional) Configure SAE properties for the Event Notification API if you are
using the event notification method to log in subscribers.

See Configuring SAE Properties for the Event Notification API on page 14.

� Configure the session store.

See Storing Subscriber and Service Session Data in SRC-PE Network Guide,
Chapter 2, Configuring the SAE with the SRC CLI.

� If you are using the event notification method to log in subscribers, integrate
the SAE with an IP address manager. There are two ways to do so:

� Use the event notification API to create an application that notifies the SAE
when events occur between the DHCP server and the network device.

See the event notification API documentation in the SRC software
distribution in the folder SDK/doc/sae or in the SAE CORBA remote API
documentation on the Juniper Networks Web site at

http://www.juniper.net/techpubs/software/management/sdx/api-index.html

� Use Monitoring Agent, an application that was created with the event
notification API and that monitors DHCP or RADIUS messages for DHCP or
RADIUS servers.

See SRC Application Library Guide, Chapter 27, Integrating IP Address
Managers with the SAE.
Configuration Tasks for Integrating Third-Party Network Devices � 9

SRC-PE 1.0.x Integration Guide

10 �
Setting Up Script Services

To set up script services:

1. Write a script that implements the ScriptService interface, a service provider
interface (SPI) for the SAE.

See SRC-PE Services and Policies Guide, Chapter 1, Managing Services with the
SRC CLI.

See the script service documentation in the SRC software distribution in the
folder SDK/doc/sae or in the SAE core API documentation on the Juniper
Networks Web site at

http://www.juniper.net/techpubs/software/management/sdx/api-index.html

2. Add a script service that references the script.

See SRC-PE Services and Policies Guide, Chapter 1, Managing Services with the
SRC CLI.

Adding Objects for Network Devices

For each network device that the SAE manages, add a router object and virtual
router object.

Use the following configuration statements to add a router object:

shared network device name {
description description;
management-address management-address;
device-type (junose| junos| pcmm| proxy);
qos-profile [qos-profile...];

}

To add a router object:

1. From configuration mode, access the configuration statements that configure
network devices. This sample procedure uses proxy_device as the name of the
router.

user@host# edit shared network device proxy_device

2. (Optional) Add a description for the router object.

[edit shared network device proxy_device]
user@host# set description description

3. (Optional) Add the IP address of the router object.

[edit shared network device proxy_device]
user@host# set management-address management-address
Setting Up Script Services

Chapter 1: Integrating Third-Party Network Devices into the SRC Network with the SRC CLI
4. Set the type of device that you are adding to proxy.

[edit shared network device proxy_device]
user@host# set device-type proxy

5. (Optional) Verify your configuration.

[edit shared network device proxy_device]
user@host# show
description "Third-party router";
management-address 192.168.9.25;
device-type proxy;
interface-classifier {
 rule rule-0 {
 script #;
 }
}

Adding Virtual Router Objects
Use the following configuration statements to add a virtual router:

shared network device name virtual-router name {
sae-connection [sae-connection...];
snmp-read-community snmp-read-community;
snmp-write-community snmp-write-community;
scope [scope...];
tracking-plug-in [tracking-plug-in...];

}

To add a virtual router:

1. From configuration mode, access the configuration statements for virtual
routers. This sample procedure uses proxy_device as the name of the router
object. For third-party devices, use the name default for the virtual router.

user@host# edit shared network device proxy_device virtual-router default

2. Specify the addresses of SAEs that can manage this router. This step is required
for the SAE to work with the router.

[edit shared network device proxy_device virtual-router default]
user@host# set sae-connection [sae-connection...]

3. (Optional) Specify an SNMP community name for SNMP read-only operations
for this virtual router.

[edit shared network device proxy_device virtual-router default]
user@host# set snmp-read-community snmp-read-community

4. (Optional) Specify an SNMP community name for SNMP write operations for
this virtual router.

[edit shared network device proxy_device virtual-router default]
user@host# set snmp-write-community snmp-write-community
Adding Objects for Network Devices � 11

SRC-PE 1.0.x Integration Guide

12 �
5. (Optional) Specify service scopes assigned to this virtual router. The scopes are
available for subscribers connected to this virtual router for selecting
customized versions of services.

[edit shared network device proxy_device virtual-router default]
user@host# set scope [scope...]

6. (Optional) Specify the plug-ins that track interfaces that the SAE manages on
this virtual router.

[edit shared network device proxy_device virtual-router default]
user@host# set tracking-plug-in [tracking-plug-in...]

7. (Optional) Verify your configuration.

[edit shared network device proxy_device virtual-router default]
user@host# show
sae-connection 10.8.221.45;
snmp-read-community ********;
snmp-write-community ********;
scope POP-Toronto;
tracking-plug-in flexRadius;

Setting Up SAE Communities

You can configure the following for SAE communities:

� Define the members of an SAE community by adding the IP addresses of SAEs
in the community to the virtual router object of the network device in the
directory. Use the sae-connection option.

See Adding Virtual Router Objects on page 11.

� Configure parameters for the SAE community manager.

See Configuring the SAE Community Manager on page 12.

� Specify the name of the community manager.

See Specifying the Community Manager in the SAE Device Driver on page 14.

� If there is a firewall in the network, configure the firewall to allow SAE
messages through.

Configuring the SAE Community Manager
Use the following configuration statements to configure the SAE community
manager that manages third-party network device communities:

shared sae configuration external-interface-features name CommunityManager {
keepalive-interval keepalive-interval;
threads threads;
acquire-timeout acquire-timeout;
blackout-time blackout-time;

}

Setting Up SAE Communities

Chapter 1: Integrating Third-Party Network Devices into the SRC Network with the SRC CLI
To configure the community manager:

1. From configuration mode, access the configuration statements for the
community manager. In this sample procedure, sae_mgr is the name of the
community manager.

user@host# edit shared sae configuration external-interface-features sae_mgr
CommunityManager

2. Specify the interval between keepalive messages sent from the active SAE to
the passive members of the community.

[edit shared sae configuration external-interface-features sae_mgr
CommunityManager]
user@host# set keepalive-interval keepalive-interval

3. Specify the number of threads that are allocated to manage the community.
You generally do not need to change this value.

[edit shared sae configuration external-interface-features sae_mgr
CommunityManager]
user@host# set threads threads

4. Specify the amount of time an SAE waits for a remote member of the
community when it is acquiring a distributed lock. You generally do not need to
change this value.

[edit shared sae configuration external-interface-features sae_mgr
CommunityManager]
user@host# set acquire-timeout acquire-timeout

5. Specify the amount of time that an active SAE must wait after it shuts down
before it can try to become the active SAE of the community again.

[edit shared sae configuration external-interface-features sae_mgr
CommunityManager]
user@host# set blackout-time blackout-time

6. (Optional) Verify the configuration of the SAE community manager.

[edit shared sae configuration external-interface-features sae_mgr
CommunityManager]
user@host# show
CommunityManager {
 keepalive-interval 30;
 threads 5;
 acquire-timeout 15;
 blackout-time 30;
}

Setting Up SAE Communities � 13

SRC-PE 1.0.x Integration Guide

14 �
Specifying the Community Manager in the SAE Device Driver
Use the following configuration statements to specify the community manager in
the SAE device driver.

shared sae configuration driver third-party {
sae-community-manager sae-community-manager;

}

To specify the community manager:

1. From configuration mode, access the configuration statements for the
third-party device driver.

user@host# edit shared sae configuration driver third-party

2. Specify the name of the community manager.

[edit shared sae configuration driver third-party]
user@host# set sae-community-manager sae-community-manager

3. (Optional) Verify the configuration of the third-party device driver.

[edit shared sae configuration driver third-party]
user@host# show
sae-community-manager sae_mgr;

Configuring SAE Properties for the Event Notification API

Use the following configuration statements to configure properties for the event
notification API:

shared sae configuration external-interface-features name EventAPI {
retry-time retry-time;
retry-limit retry-limit;
threads threads;

}

To configure properties for the event notification API:

1. From configuration mode, access the configuration statements for the event
notification API. In this sample procedure, event_api is the name of the Event
API configuration.

user@host# edit shared sae configuration external-interface-features event_api
EventAPI

2. Specify the amount of time between attempts to send events that could not be
delivered.

[edit shared sae configuration external-interface-features event_api EventAPI]
user@host# set retry-time retry-time
Configuring SAE Properties for the Event Notification API

Chapter 1: Integrating Third-Party Network Devices into the SRC Network with the SRC CLI
3. Specify the number of times an event fails to be delivered before the event is
discarded.

[edit shared sae configuration external-interface-features event_api EventAPI]
user@host# set retry-limit retry-limit

4. Specify the number of threads allocated to process events.

[edit shared sae configuration external-interface-features event_api EventAPI]
user@host# set threads threads

5. (Optional) Verify the configuration of the event notification API properties.

[edit shared sae configuration external-interface-features event_api
EventAPI]
user@host# show
EventAPI {
 retry-time 300;
 retry-limit 5;
 threads 5;
}

Developing Initialization Scripts for Network Devices

When the SAE establishes a connection with a network device, it can run a script to
customize the setup of the connection. These scripts are run when the connection
between a network device and the SAE is established and again when the
connection is dropped.

We provide the IorPublisher script in the /opt/UMC/sae/lib folder. The IorPublisher
script publishes the interoperable object reference (IOR) of the SAE in the directory
so that a NIC can associate a router with an SAE.

Interface Object Fields
Scripts for network devices interact with the SAE through an interface object called
Ssp. The SAE exports a number of fields through the interface object to the script
and expects the script to provide the entry point to the SAE.

Table 4 describes the fields that the SAE exports.

Table 4: Exported Fields

Ssp Attribute Description

Ssp.properties System properties object (class: java.util.Properties)—The properties
should be treated as read-only by the script.

Ssp.errorLog Error logger—Use the SsperrorLog.printIn (message) to send error
messages to the log.

Ssp.infoLog Info logger—Use the Ssp.infoLog.printIn (message) to send informational
messages to the log.

Ssp.debugLog Debug logger—Use the Ssp.debugLog.printIn (message) to send debug
messages to the log.
Developing Initialization Scripts for Network Devices � 15

SRC-PE 1.0.x Integration Guide

16 �
The script must set the field Ssp.routerInit to a factory function that instantiates a
router initialization object:

� <VRName>—Name of the virtual router object that has been configured for
the network device in the format: virtualRouterName@RouterName

� <virtualIp>—Virtual IP address of the SAE (string, dotted decimal; for
example: 192.168.254.1)

� <realIp>—Real IP address of the SAE (string, dotted decimal; for example,
192.168.1.20)

� <VRIp>—IP address of the virtual router (string, dotted decimal)

� <transportVR>—Name of the virtual router

The factory function must implement the following interface:

Ssp.routerInit(VRName,
virtualIp,
realIp,
VRIp,
transportVR)

The factory function returns an interface object that is used to set up and tear down
a connection. A common case of a factory function is the constructor of a class.

The factory function is called directly after a connection is established. In case of
problems, an exception should be raised that leads to the termination of the
connection.

Required Methods
Instances of the interface object must implement the following methods:

� setup()—Is called when the connection is established and is operational. In case
of problems, an exception should be raised that leads to the termination of the
connection.

� shutdown()—Is called when the connection is terminated to the virtual router.
This method should not raise any exceptions in case of problems.

Example: Initialization Script
The following script defines a router initialization class named SillyRouterInit. The
interface class does not implement any useful functionality. The interface class just
writes messages to the infoLog when the router connection is created or
terminated.

class SillyRouterInit:
 def __init__(self, vrName, virtualIp, realIp, vrIp, transportVr):
 """ initialize router initialization object """
 self.vrName = vrName
 Ssp.infoLog.printin("SillyRouterInit created")
Developing Initialization Scripts for Network Devices

Chapter 1: Integrating Third-Party Network Devices into the SRC Network with the SRC CLI
 def setup(self):
 """ initialize connection to router """
 Ssp.infoLog.printin("Setup connection to VR %(vrName)s" %
 vars(self))

 def shutdown(self):
 """ shutdown connection to router """
 Ssp.infoLog.printin("Shutdown connection to VR %(vrName)s" %
 vars(self))

#
publish interface object to Ssp core
#
Ssp.routerInit = SillyRouterInit

Copying Initialization Scripts to the C-series Platform
If you use a script that is not provided with the SRC software, you need to use the
file copy command to copy your script to the C-series platform. For example:

user@host> file copy ftp://user@myserver/routerinit.py /opt/UMC/sae/lib
Password:

Specifying Initialization Scripts on the SAE
Use the following configuration statements to specify initialization scripts for
third-party devices:

shared sae configuration driver scripts {
extension-path extension-path;
general general;

}

To configure initialization scripts for third-party devices:

1. From configuration mode, access the configuration statements that configure
initialization scripts.

user@host# edit shared sae configuration driver scripts

2. Specify the initialization script for third-party devices.

[edit shared sae configuration driver scripts]
user@host# set general general

3. Configure a path to scripts that are not in the default location, /opt/UMC/sae/lib.

[edit shared sae configuration driver scripts]
user@host# set extension-path extension-path

4. (Optional) Verify your initialization script configuration.

[edit shared sae configuration driver scripts]
user@host# show
Developing Initialization Scripts for Network Devices � 17

SRC-PE 1.0.x Integration Guide

18 �
Using SNMP to Retrieve Information from Network Devices

You can use SNMP to retrieve information from a network device. For example, if
you create a script that uses SNMP, specify the SNMP communities that are on the
network device.

We recommend that you specify SNMP communities for each virtual router object.
(See Adding Virtual Router Objects on page 11.) You can also configure global default
SNMP communities.

Configuring Global SNMP Communities in the SRC Software
You can configure global default SNMP communities that are used if a VR does not
exist on the router or the community strings have not been configured for the VR.

Use the following configuration statements to configure global default SNMP
communities:

shared sae configuration driver snmp {
read-only-community-string read-only-community-string;
read-write-community-string read-write-community-string;

}

To configure global default SNMP communities:

1. From configuration mode, access the configuration statements that configure
default SNMP communities.

user@host# edit shared sae configuration driver snmp

2. Configure the default SNMP community string used for read access to the
router.

[edit shared sae configuration driver snmp]
user@host# set read-only-community-string read-only-community-string

3. Configure the default SNMP community string used for write access to the
router.

[edit shared sae configuration driver snmp]
user@host# set read-write-community-string read-write-community-string

Using the NIC Resolver

If you are using the assigned IP subscriber method of logging in subscribers, and
you are using the NIC to determine the subscriber’s SAE, you need to configure a
resolver on the NIC. The OnePopDynamicIp sample configuration data supports this
scenario. The OnePopDynamicIp configuration supports one point of presence
(POP) and provides no redundancy. The realm for this configuration accommodates
the situation in which IP pools are configured locally on each virtual router object.

You can access the OnePopDynamicIp configuration in the SRC CLI. See SRC-PE
Network Guide, Chapter 14, Configuring NIC with the SRC CLI for information about
configuring NIC scenarios.
Using SNMP to Retrieve Information from Network Devices

	Integrating Third-Party Network Devices into the SRC Network with the SRC CLI
	Overview of Integrating Network Devices into the SRC Network
	SAE Communities
	Storing Session Data
	Using Script Services to Provision Third-Party Devices

	Logging In Subscribers and Creating Sessions
	Assigned IP Subscribers
	Login Interactions with Assigned IP Subscribers

	Event Notification from an IP Address Manager
	Login with Event Notification

	Configuration Tasks for Integrating Third-Party Network Devices
	Setting Up Script Services
	Adding Objects for Network Devices
	Adding Virtual Router Objects

	Setting Up SAE Communities
	Configuring the SAE Community Manager
	Specifying the Community Manager in the SAE Device Driver

	Configuring SAE Properties for the Event Notification API
	Developing Initialization Scripts for Network Devices
	Interface Object Fields
	Required Methods
	Example: Initialization Script
	Copying Initialization Scripts to the C-series Platform
	Specifying Initialization Scripts on the SAE

	Using SNMP to Retrieve Information from Network Devices
	Configuring Global SNMP Communities in the SRC Software

	Using the NIC Resolver

