
Chapter 15

Defining and Acquiring Values for
Parameters

This chapter provides information about how the SAE acquires values for policies.
Topics include:

� Parameters and Substitutions on page 399

� Value Acquisition for Single Subscriptions on page 400

� Value Acquisition for Multiple Subscriptions on page 402

� Defining Parameters on page 403

� Formatting Substitutions on page 405

� Roles on page 405

� Expressions on page 406

� Adding Comments to Substitutions on page 411

� Validating Substitutions on page 412

� Example: Parameter Value Substitution on page 412

Parameters and Substitutions

Each subscriber who uses the SRC network must appear in the directory. You do not
need to configure a policy for each subscriber, however. You can define a smaller
number of policies that contain parameters. A parameter is a general definition for a
property, such as an IP address, and is analogous to a variable in a computer
program.

The SRC software defines some global parameters and system (runtime)
parameters in the policy repository. You can also define your own global parameters
in the policy repository, your own local parameters in policy groups, and your own
local parameters in other specified items, such as services. See Chapter 8, Overview
of Using Local and Global Parameters.
Parameters and Substitutions � 399

SRC-PE 1.0.x Services and Policies Guide

400 �
When the SAE activates a subscription to a service for a subscriber, it constructs an
exact policy for that subscriber by obtaining specific values for parameters. The SAE
acquires one or more values for each parameter from a number of different
sources. These sources can also contain local parameters for which other sources
can provide specific values. The SAE selects a value based on a ranking of sources
from specific to general. The process of providing a value or a new definition for a
parameter is a substitution.

One or more sources can define a parameter as fixed. Fixing prevents acquisition of
values from more specific sources in the ranking list. For example, if a parameter is
fixed in a subscription for a parent subscriber, a subordinate subscriber cannot
provide a more specific value for a parameter in the subscription it inherits from the
parent. If a parameter is fixed in more than one place, the SAE uses the setting in
the source that is classified as more general.

You can fix a parameter without specifying a value. Doing so specifies that the value
for the parameter cannot come from a more general source than the one that
contains the fixed setting and that a value will be available at some point. For
example, you could fix the value of the system parameter interface_speed in the
service scope to prevent more specific sources in the ranking list, such as
subscribers, from providing a value for this parameter. The SAE could acquire an
actual value for this parameter when it starts managing an interface.

The SAE fixes global and system parameters at a set point in the acquisition chain.
Consequently, the SAE can acquire values for these types of parameters only from a
service scope, from information the SAE obtains when it starts managing an
interface, or from the default value in the global parameter definition.

When you are designing policies, services, portals, and applications, you need to
consider how you will use substitutions throughout the software. As a simple
example, you can define the general settings for a rate limiter in a policy, insert a
parameter for a rate in the policy, and provide specific values for the rate in each
service that uses this policy. In a more complex example, you can use parameters
and substitutions to track the use of a particular service by different departments in
an enterprise (see Example: Parameter Value Substitution on page 412).

Value Acquisition for Single Subscriptions

When a subscriber has a single subscription to a service, the SAE ranks sources in
the following order when it selects values for parameters:

1. The service sessions associated with the subscriber

2. The subscriber’s subscription to a service and then the subscriber

3. Each parent subscriber’s subscription and then the parent subscriber

4. The value-added services in order of the precedences defined for their
associated service scopes

5. The default values for the local parameters in the policy group

6. Fixed settings of all global parameters defined in the policy repository
Value Acquisition for Single Subscriptions

Chapter 15: Defining and Acquiring Values for Parameters
7. The service scopes, in order of precedence for each of the services. See:

� Restricting and Customizing Services for Subscribers on page 27 in Chapter 1,
Managing Services with the SRC CLI.

� Restricting and Customizing Services for Subscribers on page 82in Chapter 2,
Managing Services on a Solaris Platform.

8. Values for system parameters that are available only when the SAE starts
managing the interface (for example, actual bandwidth rates)

9. The default values for global parameters defined in the policy repository

Figure 41 illustrates how the SAE selects values for a subscriber with one
subscription to a service.

Figure 41: Value Acquisition for Single Subscriptions

�������

���	
�
	

��������	�
��	
�
��������������
���

��������	�
��	
�
��������������
���

��������	�
��	
�
��������������
���

���
���������
��

�������������
�������������	��������

�������������
�������������	��

�������������
������������������

��
��
��
�

������	�
�������
����
����������	���

 �������
���!�	���������	���

���
������
�������
�����
������������

"�������		�����
����
����������	���

������	�
�������
���
����������	���

 ��������������
��������
�����
������������
Value Acquisition for Single Subscriptions � 401

SRC-PE 1.0.x Services and Policies Guide

402 �
Value Acquisition for Multiple Subscriptions

A subscriber can have multiple subscriptions, each with different service
parameters, to the same service. When a subscriber has multiple subscriptions to
the same service, each subscription has a different name. The name is determined
by the parameters. Different subscribers can have subscriptions with the same
name.

As described previously, the SAE considers the subscriptions of parent subscribers
when it acquires parameters for the policy of a subordinate subscriber who has one
subscription to a service. When acquiring parameters for the policy of a subordinate
subscriber who has multiple subscriptions to a service, however, the SAE considers
the parent subscriber’s subscription only if it has the same name as the subordinate
subscriber’s subscription.

Figure 42 shows an example that illustrates this concept.

Figure 42: Value Acquisition for Multiple Subscriptions

In this example, an enterprise called Acme contains a site called Ottawa that
contains an access called Primary. The access has a subscription called Gold:Eng to
the service called Gold; the site has a subscription called Gold:Acct to the same
service; and the enterprise has two subscriptions, Gold:Eng and Gold:Acct, to the
service.

When the IT manager activates the Gold:Eng subscription for the access, the SAE
will consider the parameters in the subscriptions Gold:Eng for the access and the
enterprise; however, the SAE will not consider the parameters in the subscriptions
called Gold:Acct for the site or the enterprise.

The SAE acquires parameters from other sources in the same way whether the
subscriber has multiple subscriptions to a service or a single subscription to a
service (see Value Acquisition for Single Subscriptions on page 400).

�������

���	
�
	

��������	�
��#
��$�%��

��������	�
��#
��$�&��	

��
�'
()
�

��������	�
��#
��$�&��	

%�	��������&���

��	��*		�+�

&������,�����!

��������	�
��#
��$�%��
Value Acquisition for Multiple Subscriptions

Chapter 15: Defining and Acquiring Values for Parameters
Defining Parameters

You can define parameters for different items in the SRC software. Depending on
the item, you can define parameters with the SRC CLI, with LDAP clients, with SRC
applications, or with other applications through SRC APIs.

Table 26 shows the items for which you can define parameters and the methods
you can use to define parameters for these items. See the documentation specified
in the table for information about how to define parameters for each item.

Table 26: Parameter Definitions

Items That Contain Parameter
Definitions

Methods by Which You Can Define
the Parameter

Documentation That Describes How
to Define Parameters

Global parameters, which you define in
the runtime parameters in the policy
repository folder.

SRC CLI

Policy Editor

SDX Admin

Chapter 8, Overview of Using Local and
Global Parameters

Local parameters, which you define in
policy groups.

SRC CLI

Policy Editor

Chapter 8, Overview of Using Local and
Global Parameters

System parameters, which are contained
in the runtime parameters folder in the
policy repository folder.

Subscriber sessions

SRC network–values obtained when the
SAE starts managing an interface

Table 24 on page 194

Value-added services in order of the
precedence associated with the scopes
associated with the service

LDAP client

SDX Admin

Setting Parameters for Value-Added
Services on page 53

Restricting and Customizing Services for
Subscribers on page 82

Services in order of the precedence
associated with the scopes associated
with the service

SRC CLI Setting Parameter Values for Services on
page 8

Restricting and Customizing Services for
Subscribers on page 27

Subscribers SRC CLI

LDAP client

SDX Admin

Subscriber Manager

SRC-PE Subscribers and Subscriptions
Guide, Chapter 14, Configuring
Subscribers and Subscriptions with the
SRC CLI

SRC-PE Subscribers and Subscriptions
Guide, Chapter 13, Configuring
Subscribers and Subscriptions with SDX
Admin

SRC Application Library Guide, Chapter 4,
Managing Subscribers with SOAP
Defining Parameters � 403

SRC-PE 1.0.x Services and Policies Guide

404 �
Subscriptions SRC CLI

SDX Admin

Residential portal or enterprise service
portal

Dynamic Service Activator

Subscriber Manager

SAE’s CORBA remote API

SRC-PE Subscribers and Subscriptions
Guide, Chapter 14, Configuring
Subscribers and Subscriptions with the
SRC CLI

SRC-PE Subscribers and Subscriptions
Guide, Chapter 13, Configuring
Subscribers and Subscriptions with SDX
Admin

SRC-PE Subscribers and Subscriptions
Guide, Chapter 15, Overview of the
Residential Portal

SRC-PE Subscribers and Subscriptions
Guide, Chapter 25, Overview of Enterprise
Service Portals

SRC Application Library Guide, Chapter 3,
Activating Services with SOAP

SRC Application Library Guide, Chapter 4,
Managing Subscribers with SOAP

SRC software distribution in the folder
SDK/doc/sae or in the SAE CORBA remote
API documentation on the Juniper
Networks Web site at

http://www.juniper.net/techpubs/
software/management/sdx/
api-index.html

Sessions Residential portal

Dynamic Service Activator

SAE’s CORBA remote interface

SRC-PE Subscribers and Subscriptions
Guide, Chapter 15, Overview of the
Residential Portal

SRC Application Library Guide, Chapter 3,
Activating Services with SOAP

SRC software distribution in the folder
SDK/doc/sae or in the SAE CORBA remote
API documentation on the Juniper
Networks Web site at

http://www.juniper.net/techpubs/
software/management/sdx/
api-index.html

Table 26: Parameter Definitions (continued)

Items That Contain Parameter
Definitions

Methods by Which You Can Define
the Parameter

Documentation That Describes How
to Define Parameters
Defining Parameters

Chapter 15: Defining and Acquiring Values for Parameters
Formatting Substitutions

Some SRC components handle the substitution syntax for you. For example, Policy
Editor allows you to enter settings in fields, and it formats these settings in the
correct syntax. In addition, IT managers or residential subscribers can enter
settings through portals, and the portal formats these items in the correct syntax.
You must enter some substitutions in SDX Admin using the correct syntax,
however. Similarly, if you develop a portal that uses substitutions, you must use the
correct syntax in the code for that portal.

A substitution has the following syntax:

[!]<parameterName>[:<role>]*=[<expression>]
[//<comment>]

� !—Fixes the substitution

� <parameterName>—Name of the parameter; either a name that you define
or a name that is specified by the SRC software. If you are defining a
substitution for a global parameter, make sure that the case of the parameter
name in the substitution matches the case of the global parameter.

� <role>—Category of the parameter (see Roles on page 405)

� <expression>—A definition for the parameter (see Expressions on page 406)

� //<comment>—A comment about a substitution that appears on a new line
after the substitution syntax (see Adding Comments to Substitutions on page 411)

Roles

Parameters fall into different categories, known as roles in SDX Admin and types in
the Policy Editor. For example, a parameter that defines an IP address has the role
address. For more information about roles, see Table 26 on page 403.
Formatting Substitutions � 405

SRC-PE 1.0.x Services and Policies Guide

406 �
Expressions

An expression in a parameter definition can take one the following values:

� An explicit value; for example, 1000000

� Another parameter; for example, a parameter called bodDestPort

� A mathematical expression that can include a combination of:

� Parameters

� Numbers—Integers and floating point numbers

� Strings

� IPv4 addresses

� Ranges of numbers, strings, and addresses

� Lists of values, such as lists of protocols

� Maps—List of pairs of attributes and corresponding values

� One keyword, not

� Separators

� Operators

For example, x == 1 ? rate : 2*rate

The syntax for mathematical expressions is based primarily on Java syntax,
although a few items use a proprietary syntax. When evaluating mathematical
expressions, the SRC software:

� Follows a defined order for the precedence of operators (see Using Operators on
page 408).

� Performs all evaluations in long integer format until it finds an argument or
result that is in Java floating point number format. Subsequently, the software
performs evaluations in Java double floating point number format.

� Evaluates only subordinate expressions that meet the conditions for evaluation.

� Evaluates only subordinate expressions that contain numbers and not
parameters.

� Stops the evaluation and substitutes the partial evaluation if an argument in
double floating number format becomes an argument to an operator that
takes only integers.

� Behaves in the same way as a Java evaluation if intermediate evaluations
exceed or fall below the long integer range or the double floating point number
range.
Expressions

Chapter 15: Defining and Acquiring Values for Parameters
� Follows the Java rules for raising exceptions. For example, the software raises an
exception if:

� An evaluation involves a division by zero.

� Literal numbers exceed the long integer limit or the double floating point
number limit.

The following sections describe how to format the items that you can use in an
expression.

Formatting Numbers
Observe the following rules when you are formatting numbers:

� Enter a digit after the decimal point in a floating point number. For example,
you can use the number 4.0, but not the number 4.

� Do not enter characters that specify the type of number after that number. For
example, do not enter the character L after a number to indicate that the
number is a long integer.

Formatting Strings
Use Java syntax for strings; enclose strings in double quotation marks.

Example—“engineering”

Observe the following rules when you are formatting strings:

� Do not use octal escape sequences in strings. For example, do not use the
escape sequence /137 in a string.

� Do not use Unicode escape sequences. For example, do not use the escape
sequence \u80A6 in a string.

Using IPv4 Addresses
Use the following format for IP addresses:

<string>.<string>.<string>.<string> | ‘<string>.<string>.<string>.<string>’
<string> is a set of digits in the range 0–255

Example—‘192.0.2.1’

Single quotation marks around an item indicate that it represents an address;
however, for IPv4 addresses, the quotation marks are optional.

Specifying Ranges
To specify a range of numbers, strings, and addresses, use two dots between the
arguments.

Example—192.0.2.1..192.0.3.1
Expressions � 407

SRC-PE 1.0.x Services and Policies Guide

408 �
Formatting Lists
To specify a list of values, enclose a set of subordinate expressions separated by
commas in a pair of square brackets.

Example—[ip, icmp, ftp]

Formatting Maps
Maps are used to specify values that have optional and interdependent attributes.
For example, when you define an application object through the Enterprise
Manager portal, you can select a number of attributes and specify particular values
for them. Depending on the value of the attribute, other attributes are possible or
required.

To format a map, specify a list of pairs of attributes and corresponding values.
Separate the pairs with commas, and enclose the list in curly brackets (braces).

Example—{applicationProtocol="ftp”, sourcePort=123, inactivityTimeout=60}

Using Keywords
The SRC software ignores all Java keywords in substitutions, so that you can use
Java keywords for identifiers such as variable names, function names, and attribute
names in maps. The SRC software accepts one keyword, not, which is used to
indicate conditions that do not match a specified value. For more information about
the not keyword, see the Using Operators on page 408.

Using Separators
You cannot use a dot (.) as a separator. You can use other Java separators in the
ways that Java supports.

Using Operators
Table 27 shows the operations and corresponding operators that the SRC software
supports for substitutions. Most of the operators are Java operators, although a few
operators are proprietary. You cannot use Java operators that do not appear in this
table.

Table 27: Operations That You Can Use in Expressions

Operation Operator
Number of
Arguments

Result If Different
from Java
Conventions

Conditions for
Evaluation Example

Bitwise AND of the
arguments

& Two Both arguments must
be integers

234567 & 876543

Bitwise exclusive OR
of the arguments

^ Two Both arguments must
be integers

234567 ^ 876543

Bitwise inclusive OR of
the arguments

| Two Both arguments must
be integers

234567 | 876543

Bitwise negation of the
argument

~ One Argument must be an
integer

–234567
Expressions

Chapter 15: Defining and Acquiring Values for Parameters
Difference between
two arguments

– Two Both arguments must
be numbers

876543 – 234567

Division of the first
argument by the
second argument

/ Two Result of operation in
double format

Both arguments must
be numbers

589 / 756

Equal == Two Nonzero number if the
arguments are equal

Both arguments must
be numbers

rate==5

Greater than > Two Nonzero integer if the
first argument is
greater than the
second argument

Both arguments must
be numbers

rate>5

Greater than or equal
to

>= Two Nonzero integer if the
first argument is
greater than or equal
to the second
argument

Both arguments must
be numbers

rate>=5

If... then... else...
operation

?: Three If the first argument is
nonzero, then the
result is the second
argument, else the
result is the third
argument

First argument must
be a number

“x == 1 ? rate :
2*rate”

Less than < Two Nonzero integer if the
first argument is less
than the second
argument

Both arguments must
be numbers

rate<5

Less than or equal to <= Two Nonzero integer if the
first argument is less
than or equal to the
second argument

Both arguments must
be numbers

rate<=5

Logical AND && Two Nonzero integer if
both the arguments
are nonzero

Both arguments must
be numbers

x == 1 && y >= 5

Logical NOT !() One Zero if the argument is
nonzero

All arguments must be
numbers

 ! x ==y

Logical OR || Two Nonzero integer if at
least one of the
arguments is nonzero

Both arguments must
be numbers

x==1 || y>=5

Maximum of the
arguments, max() =
–infinity

max() Zero or more All arguments must be
numbers

max (1, 3, 2, 4)

Minimum of the
arguments, min() =
+infinity

min() Zero or more All arguments must be
numbers

min (1, 3, 2, 4)

Negation – One Argument must be a
number

–5

Not equal != Two Nonzero integer if the
arguments are not
equal

Both arguments must
be numbers

rate !=5

Table 27: Operations That You Can Use in Expressions (continued)

Operation Operator
Number of
Arguments

Result If Different
from Java
Conventions

Conditions for
Evaluation Example
Expressions � 409

SRC-PE 1.0.x Services and Policies Guide

410 �
The precedence of the Java operators is the same as the precedence in Java; if you
are unsure of the precedence of the operators, you can use parentheses to ensure
that the software evaluates expressions in the desired way. For example, the
following logical OR expression does not need parentheses.

x==1 || y>=5

You can, however, include parentheses as follows:

(x==1) || (y>=5)

Not match not One None – expressions
with this operator
cannot be evaluated

not 192.0.2.1

Product of the
arguments

* Two Both arguments must
be numbers

rate*2

Raise the first
argument to the power
of the second
argument

** Two Both arguments must
be numbers

2**16

Range from the first
argument to the
second argument

.. Two None—expressions
with this operator
cannot be evaluated

0..49

Remainder of division
of the first argument
by the second
argument

% Two Both arguments must
be integers

5%2

Round off the
argument to the
closest number

round() One Integer closest to the
argument

Argument must be
numbers

round(986532.654)

Round the argument
down

floor() One Biggest integer less
than or equal to the
argument

Argument must be
numbers

floor (986532.654)

Round the argument
up

ceiling() One Smallest integer
greater than or equal
to the argument

Argument must be
numbers

ceiling (986532.654)

Shift the first
argument left by the
number of bits in the
second argument

<< Two Both arguments must
be integers

986532 << 2

Shift the first
argument right by the
number of bits in the
second argument

>> Two Both arguments must
be integers

986532 >>2

Sum of the arguments + One or two Both arguments must
be numbers

876 + 345

+855

Table 27: Operations That You Can Use in Expressions (continued)

Operation Operator
Number of
Arguments

Result If Different
from Java
Conventions

Conditions for
Evaluation Example
Expressions

Chapter 15: Defining and Acquiring Values for Parameters
The following list shows the precedence of the operators from lowest precedence to
highest precedence:

� not

� ..

� ?:

� ||

� &&

� |

� ^

� &

� ==, !=

� <,>,<=,>=

� <<,>>

� +,– (binary)

� *,/,%

� **

� +,– (unary)

� ~,!

Adding Comments to Substitutions

You can add a comment on the last line of the substitution. To do so:

1. Place the Java single-line comment marker (//) at the end of the last line of the
substitution.

2. Enter the comment.

There is no limit to the length of the comment you can enter. You do not need
to use the new line marker in comments. Any text that follows the comment
marker, regardless of how many lines the text spans, is treated as part of the
comment.

Example—//This parameter specifies the QoS rate for this service.

The SRC software supports only the Java single-line comment marker. You cannot
use the comment marker for multiple lines or comment markers for other
languages.
Adding Comments to Substitutions � 411

SRC-PE 1.0.x Services and Policies Guide

412 �
Validating Substitutions

You can validate substitutions with Policy Editor, SDX Admin, and the Enterprise
portal. For example, if you enter a substitution for a value-added service with SDX
Admin, you can validate that substitution with SDX Admin.

When validating substitutions, the SRC software:

� Checks the syntax of substitutions. For example, if you incorrectly specify a
range by using 3 dots between the arguments instead of 2 dots, the SRC
software returns an error.

� Does not check the arguments that you specify for an operator. For example, in
the expression 192.0.2.16/28 the software recognizes the forward slash (/) as a
division operator, but does not check that the arguments are appropriate for
division.

This feature allows SRC components, such as the policy engine, to interpret the
expression 192.0.2.16/28 as an IP address and mask rather than a division
operation.

� Does not check for consistent use of roles in parameters in a chain of
substitutions. For example, consider the following situation:

1. You define in a policy group a local parameter x with the role network and
an expression of y (x:network =y).

2. You define in a service a parameter y with the role rate and a value of 123
(y:rate =123).

The software will substitute the value of 123 for x, even though 123 is a
rate and not an address. Eventually, however, the substitution will cause
problems, and a component such as the policy engine or the SAE will reject
the value.

Example: Parameter Value Substitution

This section provides an example of how to use parameters and substitutions. It
contains the following sections:

� Setting Up a Service That Uses Parameters on page 412

� Acquiring the Parameter Values on page 426

Setting Up a Service That Uses Parameters
In this example, we will create a value-added service that provides a gold-level
quality of service. We will then subscribe this service to a department subnet in an
enterprise network and be able to track and charge the department for the volume
of bandwidth used. Figure 43 shows the network in our example.
Validating Substitutions

Chapter 15: Defining and Acquiring Values for Parameters
Figure 43: Network Used in Parameter Substitution Example

From the service provider’s perspective, the service provider’s network is on the
inside, and the enterprise network is on the outside. Ingress traffic flows from the
enterprise network to the service provider’s network. Egress traffic flows from the
service provider’s network to the enterprise network. The engineering department
subnet in the enterprise network is the subnet that we will subscribe to the
gold-level service and track.

The example uses two types of parameters (note that SDX Admin uses the term role
in place of type):

� rate—Used to scale the rate limiter

� network—Used to specify IP subnets in classify conditions

��
�'
((
-

��
����
�����
����

%����������
�.(/�/(/((0(-

�����

&��
��	���

�&%

���
������

����
��	+
�1

�
������

��
����
�
��

�������

������
Example: Parameter Value Substitution � 413

SRC-PE 1.0.x Services and Policies Guide

414 �
Summary of Procedure
The following is a summary of the procedure we will use to set up the example.

1. Create a policy group called tierpolicy that classifies packets based on source
and destination subnets and applies a rate limit action to those packets. The
tierpolicy policy group contains three local parameters:

� inside—Parameter of type network; used to specify a subnet

� outside—Parameter of type network; used to specify a subnet

� qos—Parameter of type rate; used to scale the rate limiter

2. Create a value-added service called GoldMetered, and assign tierpolicy as the
policy group. In the GoldMetered service, configure the following parameter
substitution:

� qos—Fix to 50% of the interface_speed parameter. (interface_speed is a
global runtime parameter that the SAE fills in with the actual speed of the
router interface.)

� dept—Create a parameter called dept that is parameter type (role) network.

� outside—Set to dept (short for department), which effectively renames the
outside parameter to dept.

� inside—Set to any.

3. Create an enterprise subscriber, and configure the following parameter
substitution:

� eng—Create a parameter called eng (short for engineering department)
that is parameter type (role) network, and set the value to 192.0.2.22/28.

4. Subscribe the subscriber to the GoldMetered service, and configure the
following parameter substitution:

� dept—Set to eng.
Example: Parameter Value Substitution

Chapter 15: Defining and Acquiring Values for Parameters
Creating a Policy Group
Use Policy Editor to create a policy group.

1. Create a policy group called tierpolicy.

2. Create the following local parameters, which are parameters that will be used
only with tierpolicy.

� inside—Network parameter with a default value of any; any is a global
parameter with value 0.0.0.0/0, which matches any network

� outside—Network parameter with a default value of any; any is a global
parameter with value 0.0.0.0/0, which matches any network

� qos—Rate parameter
Example: Parameter Value Substitution � 415

SRC-PE 1.0.x Services and Policies Guide

416 �
3. Create two policy lists, one for the ingress side of the interface, and one for the
egress side of the interface.

4. Create two policy rules, one for ingress traffic and one for egress traffic.
Example: Parameter Value Substitution

Chapter 15: Defining and Acquiring Values for Parameters
5. In the egress policy rule, which applies to traffic coming from the service
provider network to the enterprise, create a condition that matches IP packets
on source and destination networks:

� source network=inside

� destination network=outside

6. Also in the egress policy rule, create a rate-limit action that does the following:

� Sets the committed rate to the qos parameter.

� Sets the committed burst to the maximum of either 100 ms burst at
committed rate (qos*0.1) in bytes (/8) or 16384.

� Sets the peak burst to 16384.

� Forwards all committed traffic.

� Filters all uncommitted traffic.
Example: Parameter Value Substitution � 417

SRC-PE 1.0.x Services and Policies Guide

418 �
7. In the ingress policy rule, which applies to traffic coming from the enterprise
network, create a condition that matches IP packets on source and destination
networks:

� source network=outside

� destination network=inside
Example: Parameter Value Substitution

Chapter 15: Defining and Acquiring Values for Parameters
8. Also in the ingress policy rule, create a rate-limit action that does the following:

� Sets the committed rate to the qos local parameter.

� Sets the committed burst to the maximum of either 100 ms burst at the
committed rate (qos*0.1) in bytes (/8) or 16384.

� Scales the peak rate and burst by 1.5.

� Marks committed and conformed traffic with different marks (1 and 2).

� Drops all traffic that exceeds the rate limit.
Example: Parameter Value Substitution � 419

SRC-PE 1.0.x Services and Policies Guide

420 �
The policy group should now look like this:
Example: Parameter Value Substitution

Chapter 15: Defining and Acquiring Values for Parameters
Creating a Value-Added Service
Use SDX Admin to create a value-added service.

1. Create a value-added service called GoldMetered, and assign tierpolicy as the
policy group.

2. Select the Parameter tab of the GoldMetered service, and add the following
parameters to the substitution table:

� dept—Create a parameter called dept that is parameter type (role) network.
This is the subnet of the department that the service will apply to.

� qos—Fix the qos parameter to 50% of the interface_speed parameter.
(interface_speed is a global runtime parameter that the SAE fills in with the
actual speed of the router interface).

� outside—Set the outside parameter to the value dept, which effectively
renames the outside parameter to dept.

� inside—Set the inside parameter to a value of any, which applies to any
subnet inside the service provider’s network.
Example: Parameter Value Substitution � 421

SRC-PE 1.0.x Services and Policies Guide

422 �
 Example: Parameter Value Substitution

Chapter 15: Defining and Acquiring Values for Parameters
Creating an Enterprise Subscriber
The next step is to create an enterprise subscriber. Within the subscriber definition,
create a parameter called eng that is parameter type (role) network, and set the
value of eng to 192.0.2.22/28.

You create a subscriber by using SDX Admin or another directory client. You can
create the eng parameter with SDX Admin or the sample enterprise service portal.

1. In SDX Admin, create an enterprise subscriber called ABCInc.

2. Create the eng parameter as part of the subscriber definition. You can perform
this step by using either SDX Admin or the sample enterprise service portal.

� To create the eng parameter in SDX Admin, select the Parameter tab of the
ABCInc subscriber, and add the eng parameter to the substitution table.
Example: Parameter Value Substitution � 423

SRC-PE 1.0.x Services and Policies Guide

424 �
� To create the eng parameter in the sample enterprise service portal, select
the Departments tab, add eng to the department field, and enter
192.0.2.22/28 as the network address of the department.

Subscribing ABCInc to the GoldMetered Service
Next, subscribe the ABCInc subscriber to the GoldMetered service. You can perform
this step by using SDX Admin or the sample enterprise service portal.

In the sample enterprise service portal:

1. Select ABCInc. in the navigation pane.

2. Select the Services tab.

The Services pane appears.
Example: Parameter Value Substitution

Chapter 15: Defining and Acquiring Values for Parameters
3. Click Subscribe in the GoldMetered service row.

4. Select the Subscriptions tab.

The Subscriptions pane appears.
Example: Parameter Value Substitution � 425

SRC-PE 1.0.x Services and Policies Guide

426 �
5. In the dept= field of the Service Parameters box, set the value of the dept
parameter to eng.

Acquiring the Parameter Values
Once the SRC software has gone through the parameter value acquisition process,
the three original parameters in the tierpolicy policy group have the following
values:

� inside=0.0.0.0/0

This value was acquired from the global parameter any that was defined in the
service definition.

� outside=192.0.2.22/28

This value was acquired as follows:

� outside=dept—Acquired from the service definition

� dept=eng—Acquired from the subscription

� eng=192.0.2.22/28—Acquired from the enterprise subscriber definition

� qos=500,000

This value was acquired from the service definition where the value of qos was
set to 50% of the interface_speed parameter. An interface_speed value of
1,000,000 was acquired from the router. If qos=50% of the interface speed,
then the qos value is 500,000.

The rest of the rate-limit values are calculated based on the 500,000 value of
qos.
Example: Parameter Value Substitution

Chapter 15: Defining and Acquiring Values for Parameters
Figure 44 shows the values of the ingress and egress policies that are applied to the
router in our sample network.

Figure 44: Policies Applied to the Sample Network

��
�'
((
.

��
����
�����
����

%����������
�.(/�/(/((0(-

�����

&��
��	���

���
������

����
��	+
�1

�
������

��
����
�
��

�����������
	�
,�
	
�
��2�3,

�&�2��.(/�/(/((0('
�&�2��/�/�/�0���!�

4
���		�����	��2�'������
4
���		�������	�2���)-�

,��1���	��2��'�����
,��1�����	�2���)-�

4
���		�����	�
��2����1��
4
��
�������	�
��2����1�(

%����������	�
��2����	��

����������
	�
,�
	
�
��2�3,
�&�2��/�/�/�0�����!�
�&�2��.(/�/(/((0(-
4
���		�����	��2�'������
4
���		�������	�2���)-�
4
���		�����	�
��2��
�+���
4
��
�������	�
��2����	��
%����������	�
��2����	��

�&%
Example: Parameter Value Substitution � 427

SRC-PE 1.0.x Services and Policies Guide

428 �
 Example: Parameter Value Substitution

	Defining and Acquiring Values for Parameters
	Parameters and Substitutions
	Value Acquisition for Single Subscriptions
	Value Acquisition for Multiple Subscriptions
	Defining Parameters
	Formatting Substitutions
	Roles
	Expressions
	Formatting Numbers
	Formatting Strings
	Using IPv4 Addresses
	Specifying Ranges
	Formatting Lists
	Formatting Maps
	Using Keywords
	Using Separators
	Using Operators

	Adding Comments to Substitutions
	Validating Substitutions
	Example: Parameter Value Substitution
	Setting Up a Service That Uses Parameters
	Summary of Procedure
	Creating a Policy Group
	Creating a Value-Added Service
	Creating an Enterprise Subscriber
	Subscribing ABCInc to the GoldMetered Service

	Acquiring the Parameter Values

