
Chapter 16

Developing Applications That Use NIC

This chapter describes how to develop an external application to interact with a
network information collector (NIC). Topics include:

� External Application Requirements for NIC on page 261

� External Non-Java Applications That Use NIC on page 261

� External Java Applications That Use NIC on page 263

� Updating Information About Address Pools on page 269

External Application Requirements for NIC

If you write an external application to use NIC to perform a resolution, you can
include NIC functionality in one of the following ways:

� For non-Java applications, use the interface module NicAccess, an IDL file that
provides access to the NIC locator feature. The NIC locator can resolve the value
of one or more keys.

� For Java applications, include the NIC proxy client libraries to use NIC in
client/server mode.

� For Java applications, include the NIC proxy client libraries and the NIC host
client libraries to use NIC in local host mode.

External Non-Java Applications That Use NIC

If you write an application in a language other than Java, you can use the NIC access
interface module, a simplified CORBA interface, to perform one or more
resolutions. By using this interface you can access through CORBA NIC locators, NIC
proxies that run within the NIC host. The configuration properties for NIC locators
are similar to those for NIC proxies in applications such as aggregate services and
the sample residential portal.

For information about the NIC access interface module, see the API documentation
in the SRC software distribution in the folder SDK/doc/idl/nic or on the Juniper
Networks Web site at

http://www.juniper.net/techpubs/software/management/sdx/api-index.html
External Application Requirements for NIC � 261



SRC-PE 1.0.x Network Guide

262 �
Creating a NIC Locator to Include with a Non-Java Application
A NIC locator provides the same functionality as a NIC proxy, but is designed to
work with non-Java applications.

You use the NIC access interface module to include NIC locators with your
application by compiling the IDL file with your application files.

To use the NIC access interface module to create NIC locators:

1. Connect to the directory.

2. Obtain a CORBA reference to the NIC access interface from one of the
following:

� The access IOR provided in the directory in the dynamic configuration DN
under the hostname—typically, host/demohost.

You can read this information from SDX Admin from a host under
ou=dynamicConfiguration, ou=Configuration, o=Management, o=umc.

� A corbaloc URL in the format:

corbaloc::<host>:8810/Access

3. From the NIC access interface module, obtain a NIC locator, as identified by
NicFeature. For example:

feature = access.getLocatorFeature(nicNameSpace); //nicNameSpace example
“/nicLocators/ip”

In the NIC configuration scenarios, the syntax for a NIC locator is
/nicLocators/<NIC key type> where.

� nicLocators— Specifies all of the NIC locators in a NIC host.

� <NIC key type>— Specifies the type of data that the key provides for the NIC
resolution, such as ip, login, DN.

To view information about the NIC locators included in a NIC scenario, see
Chapter 20, Reviewing the NIC Configuration.

4. Search for the key. For example:

feature.lookupSingle(NicLocatorKey key) //NicLocatorKey is coming from the IDL

For information about the NIC access interface module, see the API documentation
in the SRC software distribution in the folder SDK/doc/idl/nic or on the Juniper
Networks Web site at

http://www.juniper.net/techpubs/software/management/sdx/api-index.html
External Non-Java Applications That Use NIC



Chapter 16: Developing Applications That Use NIC
External Java Applications That Use NIC

If you write an external Java application that interacts with a NIC, include NIC
libraries in the application. These libraries are for NIC proxies and local NIC hosts.
These libraries are located in the SRC distribution under SDK/lib/nic.

Typically, each NIC resolution process requires one NIC proxy. For example, the
OnePopLogin sample data includes two resolution processes:

� Mapping of a subscriber’s IP address to the subscriber’s login name

� Mapping of the subscriber’s login name to the SAE reference

An application that uses both these resolution processes would require two NIC
proxies.

The NIC proxy provides a simple Java interface, the NIC application programming
interface (API). You configure the NIC proxy to communicate with one resolver. For
efficiency if you use NIC in client/server mode, the NIC proxy caches the results of
resolution requests so it can respond to future requests for the same key without
contacting the resolver.

The SRC software includes a factory interface, the NIC factory, to allow applications
to instantiate, access, and remove NIC proxies. It also includes JAR files for NIC
client and NIC host libraries.

Developing a Java Application to Communicate with a NIC Proxy
You must configure an application to communicate with a NIC proxy.

If you are using Java Runtime Environment (JRE) 1.3 or higher, you must include in
your application the Java archive (JAR) files, which are in the SRC software
distribution in the folder /SDK/lib/ with your application:

Configuration tasks that use the API calls to communicate with the NIC proxy are:

1. Instantiating a Configuration Manager on page 264

2. Passing a Reference to the Configuration Manager to the NIC Factory on
page 264

3. Instantiating the NIC Factory Class on page 264

4. (Optional) Initializing Logging on page 265

5. Instantiating the NIC Proxy on page 266

6. Managing a Resolution Request on page 266

7. Deleting Invalid Results from the NIC Proxy’s Cache on page 268

8. Removing the NIC Proxies on page 268
External Java Applications That Use NIC � 263



SRC-PE 1.0.x Network Guide

264 �
For more information about the API calls, see the online documentation in the SRC
software distribution in the folder /SDK/doc/nic or on the Juniper Networks Web site
at

http://www.juniper.net/techpubs/software/management/sdx/api-index.html

Instantiating a Configuration Manager
The application must instantiate a configuration manager.

To enable the application to instantiate a configuration manager to obtain a NIC
instance from the NIC factory:

� Call one of the following methods:

� For some applications (other than Web applications), in which you must
define the system property -DConfig.bootstrapFilename, you can call the
following method:

ConfigMgr configMgr = ConfigMgrFactory.getConfigMgr();

� For Web applications, you can instantiate the configuration manager as
follows:

ConfigMgr configMgr = ConfigMgrFactory.getConfigMgr(properties);

� properties—java.util.Properties object, typically the bootstrap file,
which contains all the configuration properties for the NIC proxy.

Passing a Reference to the Configuration Manager to the NIC Factory
To pass a reference to the configuration manager to the NIC factory class:

� Call the following method in the application:

NicFactory.setConfigManager(configMgr);

Instantiating the NIC Factory Class
The way you instantiate the NIC factory depends on the object request broker (ORB)
configuration:

� If the NIC proxy uses the default ORB, call the following method in the
application:

NicFactory nicFactory = NicFactory.getInstance();

This code instantiates a new NIC factory. Unless the NicFactory.destroy method
has been called, subsequent calls to this method will return the instantiated NIC
factory.
External Java Applications That Use NIC



Chapter 16: Developing Applications That Use NIC
� If the NIC proxy does not use the default ORB, call the following method:

NicFactory.initialize(props);
NicFactory nicFactory = NicFactory.getInstance();

� props—java.util.Properties object, which contains the ORB properties for
the NIC proxy. For example, if the NIC proxy uses JacORB but JacORB is not
the default ORB, the ORB properties are:

org.omg.CORBA.ORBClass=org.jacorb.orb.ORB
org.omg.CORBA.ORBSingletonClass=org.jacorb.orb.ORBSingleton

This code will instantiate a new NIC factory using the specified ORB. Unless the
application has called the NicFactory.destroy method, subsequent calls to the
getInstance() method will return the instantiated NIC factory. However, if the
application has called the destroy() method, it must recall the initialize()
method before it can call the getInstance() method.

For information about the NicFactory.destroy method, see Removing the NIC
Proxies on page 268.

Initializing Logging
You must initialize logging only if you want to view the logging information
produced by the NIC proxy.

To enable the application to initialize logging:

� Call the following method:

Log.init(configMgr, configNameSpace);

� configMgr—Instance of the configuration manager, the value returned from
the getConfigMgr() method

� configNameSpace—String that specifies the configuration namespace
where you defined the logging properties

� If you define the logging properties in the bootstrap file, specify the
root namespace, “/”.

Log.init(configMgr, "/");

� If you define the logging properties in the directory, specify the
namespace relative to the property
Config.net.juniper.smgt.lib.config.staticConfigDN, which you configure
in the bootstrap file.

Log.init(configMgr, "/Applications/Quota");
External Java Applications That Use NIC � 265



SRC-PE 1.0.x Network Guide

266 �
Instantiating the NIC Proxy
To enable the application to instantiate a NIC proxy:

� Call the following method:

NIC nicProxy = nicFactory.getNicComponent(nicNameSpace, configMgr)

Alternatively, if the expected data value (specified for the property nic.value in
the NIC proxy configuration) is an SAE reference, you can call the following
method:

SaeLocator nicProxy = nicFactory.getSaeLocator(nicNameSpace, configMgr);

� nicFactory—Instance of the NIC factory

� nicNameSpace—String that specifies the configuration namespace where
you defined the properties for the NIC proxy

� If you define the NIC properties in the bootstrap file, specify the root
namespace, “/”.

NIC nicProxy = nicFactory.getNicComponent("/", configMgr)

� If you define the properties in the directory, specify the namespace
relative to the property
Config.net.juniper.smgt.lib.config.staticConfigDN, which you specified
in the bootstrap file.

NIC nicProxy = nicFactory.getNicComponent("/Applications/Quota",
configMgr)

� configMgr—Instance of the configuration manager, the value returned from
the getConfigMgr() method

Managing a Resolution Request
To enable the application to submit a resolution request and obtain the associated
values:

1. Construct a NicKey object to enable the application to pass the data key to the
NIC proxy:

NicKey nicKey = new NicKey(stringKey);

� stringKey—Data key for which you want to find corresponding values.

For the syntax of allowed data types, see Chapter 18, NIC Resolution
Process.
External Java Applications That Use NIC



Chapter 16: Developing Applications That Use NIC
2. If the resolution process specifies constraints that you wish to provide in the
resolution request, add them to the NicKey object:

NicKey.addConstraint(constName, constValue);

� constName—Name of the constraint.

For the allowed data types and their syntax, see Chapter 18, NIC Resolution
Process.

� constValue—Specific value of the constraint.

For the allowed syntax for the data types, see Chapter 18, NIC Resolution
Process.

3. Call a method that starts the resolution process.

For example, you can call a method specified in the NIC interface:

NicValue val = nicProxy.lookupSingle(nicKey);

Alternatively, if the expected data value is an SAE reference, you can call the
following method:

SaeId saeId = nicProxy.lookupSae(nicKey);

4. Call the getValue method to access the string representation of the data value
obtained by the NIC proxy.

String val=val.getValue();

Alternatively, if the expected data value is an SAE reference:

String val=saeId.getValue();

5. (Optional) Call a method to get intermediate values obtained during a
resolution.

� Call the getIntermediateValue method if the application expects only one
value. This method takes the name of a data type and returns as a string
the first value it finds.

String getIntermediateValue(String dataTypeName){};

For information about data types, see Chapter 18, NIC Resolution Process.
External Java Applications That Use NIC � 267



SRC-PE 1.0.x Network Guide

268 �
� Call the getIntermediateValues or getAllIntermediateValues method if the
application expects multiple values. These methods take the name of a data
type and return values as follows:

� The getIntermediateValues method returns a list of values as a string
array.

String[] getIntermediateValues(String dataTypeName){};

For information about data types, see Chapter 18, NIC Resolution Process.

� The getAllIntermediateValues method returns a map of all intermediate
values for the request. The key for the map is the name of the network
data type, and the value of the map is a string array of the intermediate
values.

Map getAllIntermediateValues();

Deleting Invalid Results from the NIC Proxy’s Cache
If the application receives an exception when using values that the NIC proxy
returned for a specific key, it must inform the NIC proxy to delete this entry from its
cache.

To enable the application to inform the NIC proxy to delete an entry from its cache:

� Call the following method:

nicProxy.invalidateLookup(nicKey, nicValue);

� nicKey—Data key that you want to remove from the cache

� nicValue—Optional data value that corresponds to this key

If the application passes a null data value to the NIC proxy, the NIC proxy
removes all the values associated with the data key from its cache.

Removing the NIC Proxies
Make sure that before your application shuts down, it removes the NIC proxy
instances to release resources for other software processes.

To remove one NIC proxy instance:

� Call the following method:

NicProxy.destroy();

To remove all NIC proxy instances, call the following method:

NicFactory.destroy();
External Java Applications That Use NIC



Chapter 16: Developing Applications That Use NIC
Updating Information About Address Pools

If you associate an existing address pool with an interface and you do not want to
wait for this new information to be propagated based on the Cache Entry Age
property of the NIC proxy or the Event Life Expectancy property of the agents, then
you must manually clear the NIC proxy cache.

To clear the NIC proxy cache when an application is deployed in a J2EE container
that supports Java Management Extension (JMX) software, do one of the following:

� Use the NicProxyMgmt MBean.

� Restart the application.

� Restart the application server.

For information about modifying the NIC proxy cache properties, see Chapter 13,
Configuring Applications to Communicate with an SAE.

For information about modifying the event life expectancy for agents, see
Chapter 20, Reviewing the NIC Configuration.
Updating Information About Address Pools � 269



SRC-PE 1.0.x Network Guide

270 �
 Updating Information About Address Pools


	Developing Applications That Use NIC
	External Application Requirements for NIC
	External Non-Java Applications That Use NIC
	Creating a NIC Locator to Include with a Non-Java Application

	External Java Applications That Use NIC
	Developing a Java Application to Communicate with a NIC Proxy
	Instantiating a Configuration Manager
	Passing a Reference to the Configuration Manager to the NIC Factory
	Instantiating the NIC Factory Class
	Initializing Logging
	Instantiating the NIC Proxy
	Managing a Resolution Request
	Deleting Invalid Results from the NIC Proxy’s Cache
	Removing the NIC Proxies


	Updating Information About Address Pools


