
Chapter 11

Configuring Authorization and
Accounting Plug-Ins with SDX
Configuration Editor

This chapter describes how to configure accounting and authorization plug-ins with
SDX Configuration Editor. It also describes how to configure global and default
retailer event publishers.

You can also configure plug-ins with the SRC CLI. See Chapter 12, Configuring
Accounting and Authentication Plug-Ins with the SRC CLI.

Topics in this chapter include:

� Configuring Tracking Plug-Ins on page 152

� Configuring Authorization Plug-Ins on page 160

� Using RADIUS Plug-In Fields on page 170

� Configuring UDP Ports for RADIUS Plug-Ins on page 174

� Creating RADIUS Peers on page 175

� Defining RADIUS Packets for Flexible RADIUS Plug-Ins with SDX Configuration
Editor on page 176

� Configuring Event Publishers on page 184
� 151

SRC-PE 1.0.x Subscribers and Subscriptions Guide

152 �
Configuring Tracking Plug-Ins

This section shows how to configure the tracking plug-ins described in Table 16.

By default, the fileAcct plug-in instance tracks all subscriber and service sessions
and writes all available attributes to a file. You can use this plug-in instance or create
new one.

The overall steps to configure a tracking plug-in are:

1. Create and configure a plug-in instance in the plug-in pool. The following
sections show how to create and configure an instance for each type of tracking
plug-in.

2. Configure an event publisher to publish events to the plug-in instance.

See Configuring Event Publishers on page 184.

NOTE: When you use the NAS-Port attribute in tracking plug-ins, the SAE calculates
the NAS-Port value based on the NAS-Port-Id value that it receives from the
JUNOSe router. You can change the NAS-Port format in the JUNOSe software.
However, because the SAE has no indication of which format is configured on the
JUNOSe router, the calculation of the NAS-Port attribute is correct only if the router
uses the default configuration.

Table 16: Tracking Plug-Ins

Plug-In Description

Basic RADIUS
accounting

Sends accounting information to an external RADIUS accounting server or a group of redundant servers.

Java class name—net.juniper.smgt.sae.plugin.RadiusTrackingPluginEventListener

Custom RADIUS
accounting

Provides customized functions that can also be found in the flexible RADIUS accounting plug-ins.
Custom plug-ins are internal plug-ins that are designed to deliver better system performance than the
flexible RADIUS plug-ins. You can extend this plug-in by using the RADIUS client library.

Java class name—net.juniper.smgt.sae.plugin.CustomRadiusAccouting

Flat file accounting Writes tracking information to a file in comma-separated format.

Java class name—net.juniper.smgt.sae.plugin.FileTrackingPluginEventListener

Flexible RADIUS
accounting

Performs the same functions as the basic RADIUS accounting plug-in, but also lets you customize
RADIUS accounting packets that the SAE sends to RADIUS servers. You can specify which fields are
included in RADIUS accounting packets and what information is contained in the fields.

Java class name—net.juniper.smgt.sae.plugin.FlexibleRadiusTrackingPluginEventListener

PCMM
record-keeping
server plug-in

Sends accounting information to an external PCMM record-keeping server (RKS). See Configuring PCMM
Record-Keeping Server Plug-Ins in SRC-PE Solutions Guide, Chapter 6, Configuring the SAE for a PCMM
Environment with SDX Configuration Editor.

Java class name—net.juniper.smgt.sae.plugin.RksEventListener

QoS profile tracking Ensures that as a subscriber activates and deactivates services, the correct QoS profile is attached to the
subscriber interface. See SRC-PE Solutions Guide, Chapter 1, Managing Tiered and Premium Services
with QoS on JUNOSe Routers.

Java class name—net.juniper.smgt.sae.plugin.qtp.QosProfileTrackingPluginEventListener
Configuring Tracking Plug-Ins

Chapter 11: Configuring Authorization and Accounting Plug-Ins with SDX Configuration Editor
Configuring Flat File Accounting Plug-Ins
Flat file accounting plug-ins write information to a file in a comma-separated
format. The SRC software has a default flat file accounting plug-in instance called
fileAcct. The fileAcct instance logs all possible attributes for 24-hour periods in the
file var/acct/log. You can modify the fileAcct instance, use it as is, or create a new
instance.

Another item that you can configure for flat files is the names of the headers that
appear in the file. See Configuring Headers for Flat File Accounting Plug-Ins on
page 156.

To create flat-file accounting plug-in instances:

1. In the Plug-In Pool area of the Plug-Ins pane, create a flat file accounting
instance as described in Creating Plug-In Instances on page 143.

The instance appears in the Plug-In Pool area.

2. Fill in the fields for the plug-in instance as described below.

Filename
� Name and location of the file to which the SAE writes accounting information.

The SAE names accounting files by appending the timestamp for the start of
the accounting period.

� Value—Path and name of file

� Default—var/acct/log

� Property name—File

Template
� Name of a template that defines header names for attributes listed in

accounting files. See Configuring Headers for Flat File Accounting Plug-Ins on
page 156.

� Value—Name of the template in the format FileAccounting.<template name>

� Default—FileAccounting.std

� Property name—Template
Configuring Tracking Plug-Ins � 153

SRC-PE 1.0.x Subscribers and Subscriptions Guide

154 �
Interval [hour]
� Number of hours of information stored in each accounting file. When the

interval expires, the SAE closes the file, renames it to the archive name, and
creates a new file.

� Accounting files are aligned with midnight of the day the SAE process starts. If
the interval is 24 hours, the SAE starts a new file at midnight every day
beginning on the day that the SAE starts.

� If the interval is a divisor of 24 hours (for example, 15 minutes, 30
minutes, 1 hour), there is a repeatable pattern of file starts. For example, if
the interval is set to 6 hours, the SAE creates a new file at midnight, 6 am,
12 am, and 6 pm every day.

� If the interval is not a divisor of 24, then the file-start times shift each day
to different times of the day.

� If the SAE is restarted, the schedule for creating accounting files is reset to start
at midnight.

� Value—Integer in the format <hour>[“:”<minute>]; there are no restrictions
on interval length, but we recommend that you set a value that is a divisor of
24 hours

� Default—24

� Property name—Interval

Fields
� Attributes to be recorded as fields in the accounting file.

� Value—Comma-separated list of any of the following attributes:

� NAS_ID—Identifier of the SAE (configurable)

� PA_ACCOUNTING_ID—Accounting ID attribute from LDAP

� PA_AGGR_ACCOUNTING_ID—Accounting ID of the subscriber who started
the aggregate service session

� PA_AGGR_AUTH_USER_ID—Subscriber ID that was used to authenticate
the aggregate service session

� PA_AGGR_LOGIN_NAME—Login name of subscriber who started the
aggregate service session

� PA_AGGR_SESSION_ID—Accounting session ID of the aggregate service
session

� PA_AGGR_USER_DN—Subscriber profile DN of the subscriber who started
the aggregate service session

� PA_AGGR_USER_IP—IP address of the subscriber who started the
aggregate service session

� PA_AUTH_USER_ID—Subscriber ID used for service authentication

� PA_DOMAIN—Domain for secondary authentication

� PA_DOWNSTREAM_BANDWIDTH—Downstream bandwidth for the service

� PA_EVENT_TIME—Timestamp when the event was created
Configuring Tracking Plug-Ins

Chapter 11: Configuring Authorization and Accounting Plug-Ins with SDX Configuration Editor
� PA_EVENT_TIME_MILLISECOND—Number of milliseconds since midnight
1970-01-01 UTC

� PA_IF_INDEX—SNMP index of the router interface

� PA_IF_RADIUS_CLASS—RADIUS class of the router interface

� PA_IF_SESSION_ID—Session ID assigned by the router

� PA_IN_OCTETS—Number of octets received from the subscriber (64 bit)

� PA_IN_PACKETS—Number of packets received from the subscriber (64 bit)

� PA_INTERFACE_ALIAS—Alias of router interface

� PA_INTERFACE_DESCR—Description of router interface

� PA_INTERFACE_NAME—Name of router interface

� PA_LOGIN_ID—Subscriber’s login ID

� PA_LOGIN_NAME—Name of logged-in subscriber

� PA_NAS_IP—IP address that the router uses for accounting

� PA_NAS_INET_ADDRESS—IP address of the router that uses a byte array
instead of an integer

� PA_NAS_PORT—Identifier that the router uses to identify the interface to
RADIUS

� PA_OPERATIONAL—Flag that identifies whether an interface was
operational at the time of the tracking event

� PA_OUT_OCTETS—Number of octets sent to the subscriber (64 bit)

� PA_OUT_PACKETS—Number of packets sent to the subscriber (64 bit)

� PA_PASSWORD—Password for secondary authentication

� PA_PORT_ID—Identifier of the physical interface (VirtualRouter@ERX
interface slot/port.sub)

� PA_PRIMARY_USER_NAME—pppLoginName or public DhcpUserName

� PA_PROPERTY—Session property

� PA_RADIUS_CLASS—RADIUS class attribute

� PA_REPLY_MESSAGE—Message that a plug-in returns to the SAE during
authorization

� PA_RETAILER_DN—Retailer DN associated with the domain

� PA_ROUTER_NAME—Name of the router

� PA_SERVICE_BUNDLE—RADIUS vendor-specific attribute (VSA) that a user
authorization plug-in returns to the SAE

� PA_SERVICE_NAME—Name of SAE service

� PA_SERVICE_SCOPE—List of service scopes

� PA_SERVICE_SESSION_NAME—Name of dynamic service session

� PA_SERVICE_SESSION_TAG—Tag string assigned to dynamic service
session

� PA_SESSION_ID—Session ID assigned by the SAE

� PA_SESSION_TIMEOUT—Number of seconds that the session is up
Configuring Tracking Plug-Ins � 155

SRC-PE 1.0.x Subscribers and Subscriptions Guide

156 �
� PA_SESSION_VOLUME_QUOTA—Amount of data that a subscriber is
allowed to upload or download

� PA_SSP_HOST—Hostname of the SAE server

� PA_SUBSCRIPTION_NAME—Name of the subscription

� PA_SUBSTITUTION—Parameter substitution set by a service or user
authorization plug-in

� PA_TERMINATE_CAUSE—RADIUS termination cause (See RFC
2866—RADIUS Accounting (June 2000)—for possible values.)

� PA_TERMINATE_TIME—Time to end a subscriber session

� PA_UID—Subscriber ID used for secondary authentication

� PA_UPSTREAM_BANDWIDTH—Upstream bandwidth for the service

� PA_USER_DN—DN of the subscriber profile

� PA_USER_INET_ADDRESS—IP address of the subscriber that uses a byte
array instead of an integer

� PA_USER_IP_ADDRESS—IP address of subscriber

� PA_USER_MAC_ADDRESS—MAC address of DHCP subscriber session

� PA_USER_SESSION_ID—RADIUS session ID for the subscriber session

� PA_USER_TYPE—Type of subscriber session: ASSIGNEDIP, AUTHINTF,
INTF, ADDR, AUTHADDR, PORTAL

� PA_USER_RADIUS_CLASS—RADIUS class of the subscriber session that is
associated with the service session

� STATUS—Accounting status: start, stop, and interim

� Default—STATUS,NAS_ID,PA_SSP_HOST,PA_ROUTER_NAME,
PA_INTERFACE_NAME,PA_INTERFACE_ALIAS,PA_INTERFACE_DESCR,
PA_PORT_ID,PA_USER_IP_ADDRESS,PA_LOGIN_NAME,PA_ACCOUNTING_ID,
PA_AUTH_USER_ID,PA_IF_RADIUS_CLASS,PA_IF_SESSION_ID,
PA_SERVICE_NAME,PA_RADIUS_CLASS,PA_EVENT_TIME,PA_SESSION_ID,
PA_TERMINATE_CAUSE,PA_SESSION_TIME,PA_IN_OCTETS,PA_OUT_OCTETS,
PA_IN_PACKETS,PA_OUT_PACKETS,PA_NAS_IP,PA_USER_MAC_ADDRESS,
PA_SERVICE_SESSION_NAME,PA_SERVICE_SESSION_TAG,PA_USER_TYPE,
PA_USER_RADIUS_CLASS,PA_USER_SESSION_ID

� Property name—Fields

Configuring Headers for Flat File Accounting Plug-Ins
When the SAE writes data to a flat file, it writes into the first line the headers that
identify the attributes in the file. For example, in the following accounting file, the
first line lists headers for all attribute fields in the file, and the following lines list the
actual data in each field:

Accounting Status,NAS ID,SSP Host,Router Name,Interface Name,Interface
Alias,Interface Description,NAS port ID,User IP Address,User ID,User Accounting
ID,User Authentication ID,INTF Radius Class,INTF,SessionId, Service Name,Radius
Class,Timestamp,SessionId, Terminate Cause,Session Time,Input Octets,Output
Octets,Input Packets,Output Packets,NAS IP,User Mac address,Service Session
Name,Service Session Tag,User Session Type,User Session Radius Class,User
Session ID
Configuring Tracking Plug-Ins

Chapter 11: Configuring Authorization and Accounting Plug-Ins with SDX Configuration Editor
start,SSP.uelmo,uelmo,default@erx7_ssp57,FastEthernet1/1.1,,IP1/1.1,default@erx7
_ssp57 FastEthernet1/1:65535, 10.10.10.20,pebbles@virneo.net,,,,erx fastEthernet
1/1:0001048619,Video-Gold,Video-Gold,Fri Jan 30 14:23:29 EDT 2004,
VideoGold:null:1064946209182, 0,0,0,0,0,0, 10.10.7.17,,,,PPP,,
pebbles:1064946144841

You can assign your own names to the headers that appear in the file. To do so, you
define the header names in a template and then set up file accounting plug-in
instances to use the template. The default template, FileAccounting.std, defines
header names for all possible attributes. You can use the default template or create
your own templates.

To set up a file accounting template:

1. In the File-Acct Template tab, create a File Accounting Attributes instance as
described in Creating Plug-In Instances on page 143.

The new instance appears.

2. Define header names in the attribute table in the format property=value,
where property is the attribute name and value is the header name that you
want to assign to the attribute. Configure the attribute table as follows:

� To add an attribute, type the attribute definition in the format
property=value in the field below the attribute table, and click Add.

� To modify an attribute, select the attribute, make your changes in the field
below the attribute table, and click Modify.

� To delete an attribute, select the attribute, and click Delete.
Configuring Tracking Plug-Ins � 157

SRC-PE 1.0.x Subscribers and Subscriptions Guide

158 �
Configuring Basic RADIUS Accounting Plug-Ins
You can use basic RADIUS accounting plug-ins to send accounting information to
an external RADIUS accounting server or to a group of redundant servers. To
communicate with nonredundant servers, you need to create multiple instances of
the plug-in.

To set up basic RADIUS accounting plug-ins:

1. In the Plug-In Pool area of the Plug-Ins pane, create a basic RADIUS accounting
plug-in instance as described in Creating Plug-In Instances on page 143.

The instance appears in the Plug-In Pool area.

2. Fill in the fields for the plug-in instance as described in Using RADIUS Plug-In
Fields on page 170.

3. In the Peer Group area, create at least one RADIUS peer to use as the default
peer. See Creating RADIUS Peers on page 175.

Configuring Flexible RADIUS Accounting Plug-Ins
Flexible RADIUS accounting plug-ins provide the same features as basic RADIUS
accounting plug-ins. In addition, they allow you to customize RADIUS accounting
packets that the SAE sends to RADIUS servers. You can specify which fields are
included in the RADIUS accounting packets and what information is contained in
the fields.

You can also extend custom RADIUS plug-ins to perform the same functions as the
flexible RADIUS plug-ins. These custom plug-ins are also internal plug-ins, but are
designed to deliver better system performance. See Configuring Custom RADIUS
Accounting-Plug-Ins on page 159.
Configuring Tracking Plug-Ins

Chapter 11: Configuring Authorization and Accounting Plug-Ins with SDX Configuration Editor
To set up flexible RADIUS accounting plug-ins:

1. In the Plug-In Pool area of the Plug-Ins pane, create a flexible RADIUS
accounting plug-in instance as described in Creating Plug-In Instances on
page 143.

The instance appears in the Plug-In Pool area.

2. Fill in the fields for the plug-in instance as described in Using RADIUS Plug-In
Fields on page 170.

3. In the Peer Group area, create at least one peer to use as the default peer. See
Creating RADIUS Peers on page 175.

4. (Optional) Assign a RADIUS packet template to the instance, or create a packet
definition for the instance. See Defining RADIUS Packets for Flexible RADIUS
Plug-Ins with SDX Configuration Editor on page 176.

Configuring Custom RADIUS Accounting-Plug-Ins
The custom RADIUS accounting plug-ins provide the same functions as the flexible
RADIUS accounting plug-ins, but are designed to deliver better system
performance. To use a custom plug-in, you must provide a Java class that
implements the SPI defined in the RADIUS client library. Use this SPI to specify
which fields and field values to include in RADIUS accounting packets. The RADIUS
client library is part of the SAE core API.

See the documentation for the RADIUS client library in the SRC software
distribution in the folder SDK/doc/sae/net/juniper/smgt/sae/radiuslib or in the SAE
Core API documentation on the Juniper Networks Web site at

http://www.juniper.net/techpubs/software/management/sdx/api-index.html
Configuring Tracking Plug-Ins � 159

SRC-PE 1.0.x Subscribers and Subscriptions Guide

160 �
For a sample implementation, see the following directory in the SRC software
distribution:
SDK/plugin/java/src/net/juniper/smgt/sample/radiuslib/RadiusPacketHandlerImpl.java.

To set up custom RADIUS accounting plug-ins:

1. In the Plug-In Pool area of the Plug-Ins pane, create a custom RADIUS
accounting plug-in instance as described in Creating Plug-In Instances on
page 143.

The instance appears in the Plug-In Pool area.

2. Fill in the plug-in instance fields as described in Using RADIUS Plug-In Fields on
page 170.

3. In the Peer Group area, create at least one peer to use as the default peer. See
Creating RADIUS Peers on page 175.

Configuring Authorization Plug-Ins

This section shows how to configure the authorization plug-ins described in
Table 17. Because authentication and authorization are similar, the plug-in user
interface does not distinguish between them. However, when you configure
plug-ins, you need to set them up to perform the correct behavior, either
authentication or authorization.
Configuring Authorization Plug-Ins

Chapter 11: Configuring Authorization and Accounting Plug-Ins with SDX Configuration Editor
You can configure multiple authorization plug-ins. The plug-ins are called in an
arbitrary order, and each plug-in can return authorization values. (If multiple
plug-ins return a session-timeout value, the smallest value is used.) Authorization
succeeds if all plug-in calls succeed.

The overall steps to configure an authorization plug-in are:

1. Create and configure a plug-in instance in the plug-in pool. The following
sections show how to create and configure an instance for each type of
authorization plug-in.

2. Configure an event publisher to publish events to the plug-in instance.

See Configuring Event Publishers on page 184.

Limiting Subscribers on Router Interfaces
You can limit the number of authenticated subscribers who connect to an IP
interface on the router. This plug-in does not limit the number of unauthenticated
subscribers who connect to an IP interface, and does not limit the number of
subscribers who connect to a physical or link-layer interface. In the case of
subscriber interfaces, the plug-in limits the number of authenticated subscribers on
the subscriber interface but not on the underlying primary IP interface.

To set up a plug-in that limits the number of subscribers interfaces:

1. In the Plug-In Pool area of the Plug-Ins pane, create a Limit number of
subscribers on interface plug-in instance as described in Creating Plug-In
Instances on page 143.

Table 17: Authorization Plug-Ins

Plug-In Description

Basic RADIUS
authentication

Sends authentication information to an external RADIUS authentication server or a group of redundant
servers.

Java class name—net.juniper.smgt.sae.plugin.RadiusAuthPluginEventListener

Custom RADIUS
authentication

Provides customized functions that can also be found in the flexible RADIUS authentication plug-ins.
Custom plug-ins are internal plug-ins that are designed to deliver better system performance than the
flexible RADIUS plug-ins. You can extend this plug-in by using the RADIUS client library.

Java class name—net.juniper.smgt.sae.plugin.CustomRadiusAuth

Flexible RADIUS
authentication

Performs the same functions as the basic RADIUS authentication plug-in, but also lets you customize
RADIUS authentication packets that the SAE sends to RADIUS servers. You can specify which fields are
included in RADIUS authentication packets and what information is contained in the fields.

Java class name—net.juniper.smgt.sae.plugin.FlexibleRadiusAuthPluginEventListener

LDAP authentication Performs authentication against different directories using different authentication methods. There are
two LDAP authentication plug-ins: one authenticates subscribers, and the second authenticates SRC
administrators so that they can access the SAE Web Admin application.

Java class name of the subscriber authentication plug-in—net.juniper.smgt.sae.plugin.LdapAuthenticator

Java class name of the administrator authentication plug-in—net.juniper.smgt.sae.plugin.adminLdap

Limiting subscribers Limits the number of authenticated subscribers who connect to an IP interface on the router.

Java class name—net.juniper.smgt.sae.plugin.LimitNumSubscriberPerIntfAuthPluginListener
Configuring Authorization Plug-Ins � 161

SRC-PE 1.0.x Subscribers and Subscriptions Guide

162 �
The instance appears in the Plug-In Pool area.

2. Fill in the number of authenticated subscribers that you want connected to an
interface simultaneously.

Number of concurrent users per interface
� Number of authenticated subscribers who can connect to an IP interface on the

router simultaneously.

� Value—Integer in the range 0–2147483647

� Default—1

� Property name—max_user

Configuring Basic RADIUS Authentication Plug-Ins
You can use basic RADIUS authentication plug-ins to send authentication
information to an external RADIUS accounting server or a group of redundant
servers. To communicate with nonredundant servers, you need to create additional
instances of the plug-in.

To set up basic RADIUS authentication plug-ins:

1. In the Plug-In Pool area of the Plug-Ins pane, create a basic RADIUS
authentication plug-in instance as described in Creating Plug-In Instances on
page 143.
Configuring Authorization Plug-Ins

Chapter 11: Configuring Authorization and Accounting Plug-Ins with SDX Configuration Editor
The instance appears in the Plug-In Pool area.

2. Fill in the fields for the plug-in instance as described in Using RADIUS Plug-In
Fields on page 170.

3. In the Peer Group area, create at least one RADIUS peer to use as the default
peer. See Creating RADIUS Peers on page 175.

Configuring Flexible RADIUS Authentication Plug-Ins
Flexible RADIUS authentication plug-ins provide the same features as basic RADIUS
authentication plug-ins. In addition, they allow you to customize RADIUS
authentication packets that the system sends to RADIUS servers and specify which
fields are included in the RADIUS authentication packets and what information is
contained in the fields.

You can also extend custom RADIUS plug-ins to perform the same functions as the
flexible RADIUS plug-ins. These custom plug-ins are also internal plug-ins, but are
designed to deliver better system performance. See Configuring Custom RADIUS
Authentication Plug-Ins on page 164.
Configuring Authorization Plug-Ins � 163

SRC-PE 1.0.x Subscribers and Subscriptions Guide

164 �
To set up flexible RADIUS authentication plug-ins:

1. In the Plug-In Pool area of the Plug-Ins pane, create a flexible RADIUS
authentication plug-in instance as described in Creating Plug-In Instances on
page 143.

The instance appears in the Plug-In Pool area.

2. Fill in the plug-in instance fields as described in Using RADIUS Plug-In Fields on
page 170.

3. In the Peer Group area, create at least one peer to use as the default peer. See
Creating RADIUS Peers on page 175.

4. (Optional) Assign a RADIUS packet template to the instance, or create a packet
definition for the instance. See Defining RADIUS Packets for Flexible RADIUS
Plug-Ins with SDX Configuration Editor on page 176.

Configuring Custom RADIUS Authentication Plug-Ins
The custom RADIUS authentication plug-ins provide the same functions as the
flexible RADIUS authentication plug-ins, but are designed to deliver better system
performance. To use a custom plug-in, you must provide a Java class which
implements the SPI defined in the RADIUS client library. Use this SPI to specify
which fields and field values to include in RADIUS accounting packets. The RADIUS
client library is part of the SAE core API.
Configuring Authorization Plug-Ins

Chapter 11: Configuring Authorization and Accounting Plug-Ins with SDX Configuration Editor
See the documentation for the RADIUS client library in the SRC software
distribution in the folder SDK/doc/sae/net/juniper/smgt/sae/radiuslib or the SAE core
API documentation on the Juniper Networks Web site at

http://www.juniper.net/techpubs/software/management/sdx/api-index.html

For a sample implementation, see the following directory in the SRC software
distribution:
SDK/plugin/java/src/net/juniper/smgt/sample/radiuslib/RadiusPacketHandlerImpl.java.

To set up custom RADIUS authentication plug-ins:

1. In the Plug-In Pool area of the Plug-Ins pane, create a custom RADIUS
authentication plug-in instance as described in Creating Plug-In Instances on
page 143.

The instance appears in the Plug-In Pool area.

2. Fill in the plug-in instance fields as described in Using RADIUS Plug-In Fields on
page 170.

3. In the Peer Group area, create at least one peer to use as the default peer. See
Creating RADIUS Peers on page 175.
Configuring Authorization Plug-Ins � 165

SRC-PE 1.0.x Subscribers and Subscriptions Guide

166 �
Configuring LDAP Authentication Plug-Ins
To create LDAP authentication plug-ins:

1. In the Plug-In Pool area of the Plug-Ins pane, create an Ldap authenticator
plug-in instance as described in Creating Plug-In Instances on page 143.

The instance appears in the Plug-In Pool area.

2. Fill in the plug-in instance fields as described below.
Configuring Authorization Plug-Ins

Chapter 11: Configuring Authorization and Accounting Plug-Ins with SDX Configuration Editor
Method
� LDAP authentication method that the SAE uses.

� Value

� search—SAE searches the directory for the username that the subscriber
enters, retrieves the found object, and compares the password stored in the
object with the provided password.

You can store passwords in clear text or encrypted (hashed) format by
using the crypt (UNIX /etc/passwd), SHA, or MD5 algorithms. The format
for a hashed password is:

{crypt}hashed password, {sha}base64 SHA password, or {md5}base64
MD5 password.

� bind—SAE performs a directory search, retrieves the DN of the found
object, and tries to bind this DN and the password that the subscriber
provides.

If you specify the bind method, the plug-in uses the provided username
and password to authenticate the directory (bind).

You can store passwords in clear text or encrypted (hashed) format by
using the crypt (UNIX /etc/passwd), SHA, or MD5 algorithms. You must use
an encryption method that the directory supports.

� Guidelines—Both search and bind have different implications for system
security and performance. When you design the system, consider:

� search—Because the SAE retrieves passwords from the directory, the
directory must allow read access to the password. Allowing read access can
be a security risk because an attacker may be able to read passwords in
subscriber profiles. However, to lower the risk of password exposure, you
can store passwords in encrypted (hashed) form.

� bind—SAE sends the password to the directory for authentication. The
advantage is that passwords never need to be read from the directory.
However, passwords are sent in clear text, and an attacker could intercept
them.

Bind is a relatively expensive operation that can affect system
performance.

� Default—search

� Property name—method

LDAP Server
� Comma-separated list of IP addresses or hostnames of the LDAP authentication

server.

� Value—IP address

� Default—127.0.0.1

� Property name—host
Configuring Authorization Plug-Ins � 167

SRC-PE 1.0.x Subscribers and Subscriptions Guide

168 �
Bind DN
� DN used to authenticate access to the directory.

� Value—DN

� Default—cn=ssp, ou=Components, o=Operators, <base>

� Property name—bindDN

Bind Password
� Password that the SAE uses to authenticate its access to the directory to search

for the subscriber profile. If you do not specify a bind DN or bind password, the
SAE uses anonymous access.

� Value—Characters that make up the password; SDX Configuration Editor
encodes the secret using base64

� Default—ssp

� Property name—bindPW

Search Filter
� Additional LDAP search filter that the SAE uses to search the directory for the

subscriber profile. The initial search uses a search filter in the form
(&(nameAttribute=userName) filter). The search is successful when the
username and the filter match.

� Value—Search filter syntax defined in RFC 2254—The String Representation of
LDAP Search Filters (December 1997)

� Default—(objectClass=umcSubscriber)

� Property name—filter

Secured LDAP protocol
� Secure protocol used for LDAP connections with the directory. LDAPS, the only

protocol supported, causes communication with the directory to be encrypted
with Secure Sockets Layer (SSL).

� Value—LDAPS

� Default—LDAPS

� Property name—securityProtocol

Search Base DN
� Base DN for searching entries in the directory. If you do not specify a base DN,

the SAE uses the DN of the associated retailer object.

� If you do not specify the base DN, the SAE takes a username in the form
subscriber@domain and maps domain to a retailer object by comparing
domain with the domain names stored in the retailer object. There are two
special cases:

� If domain is empty, first the virtual router name and then the name default
are tried.

� If a retailer defines * (asterisk) as a domain name, it is used to map all
domains that cannot be mapped directly.
Configuring Authorization Plug-Ins

Chapter 11: Configuring Authorization and Accounting Plug-Ins with SDX Configuration Editor
� Value—DN

� Default—No value

� Property name—baseDN

Name Attribute
� Name of the directory attribute that holds the username.

� Value—Attribute name

� Default—uniqueID

� Property name—nameAttr

Password Attribute
� Name of the directory attribute that stores the password.

� Value—Directory attribute name

� Default—userPassword

� Property name—pwdAttr

Service Bundle Attribute
� Name of the directory attribute that contains the name of the service bundle

that is used for subscriber authentication. This value is made available to the
subscriber classification process and can be used to select the subscriber profile
to load.

� Value—Directory attribute name

� Default—No value

� Property name—serviceBundleAttr

Session Volume Quota
� Name of the LDAP attribute that contains the value of the session volume

quota. The LDAP plug-in sets the session volume quota to this value.

� Value—Name of LDAP attribute.

� Default—No value

� Property name—sessionVolumeQuotaAttr

Timeout
� Maximum time the SAE waits for a response from a directory server. If the

directory server does not respond to the request, the request fails and the SAE
logs an error message.

� Value—Number of milliseconds in the range 0–2147483647

� Default—5000

� Property name—operationTimeout
Configuring Authorization Plug-Ins � 169

SRC-PE 1.0.x Subscribers and Subscriptions Guide

170 �
Using RADIUS Plug-In Fields

This section describes the fields in RADIUS plug-ins.

Append Acct-Status-Type Attribute
� Specifies whether or not the plug-in includes the Acct-Status-Type attribute in a

RADIUS accounting request packet.

� Values—Yes or No

� Default—Yes

� Property name —setAcctStatusType

Bind Address
� Source IP address that the plug-in uses to communicate with the RADIUS

server.

� Value—IP address; if you do not specify an address, the global default address is
used. The SAE automatically sets the global default address when you run the
etc/config command during initial configuration of the SAE. The property for
the global address is the AccountingMgr.local.address property in the
/opt/UMC/sae/etc/default.properties file.

� Default—No value

� Property name—local.address

Calling Station Id
� Specifies whether the SAE sends the MAC address of the subscriber in the

Calling-Station-Id attribute.

� Value—Send Mac address or Do not use

� Default—Do not use

� Property name—CallingStationId

Class Path for RADIUS Packet Handler
� List of URLs that identify a location from which Java classes are loaded when

the plug-in is initialized. Commas separate each URL in the list.

� Value—<class path>

� Guideline—If no value is specified, the SAE loads Java classes specified in the
class path for the SAE, including the /opt/UMC/sae/lib directory.

� Default—No value

� Property name —handler.classpath

Default peer
� Name of the RADIUS server to which the SAE sends accounting packets.

� Value—Name of the server as defined in the RADIUS peer configuration

� Default—No value

� Property name—defaultPeer
Using RADIUS Plug-In Fields

Chapter 11: Configuring Authorization and Accounting Plug-Ins with SDX Configuration Editor
Error handling
� Configures the way the SAE handles errors.

� Value

� ignore—Ignores incorrect definitions and logs them for debugging
purposes

� strict—Logs errors and discards the affected RADIUS packet

� Default—ignore

� Property name—attr_error

Failover failback timer
� Controls if and when the SAE attempts to fail back to the default peer.

� Value—Integer

� Number of seconds in the range 1–2147483647 after a failover that the
SAE attempts to fail back

� 0—SAE always attempts to fail back

� –1—SAE never attempts to fail back

� Default— –1

� Property name—failbackTimer

Java Class of RADIUS Packet Handler
� Name of the Java class that implements the RadiusPacketHandler interface in

the RADIUS Client Library.

� Value—<class name>

� Default—No value

� Example—net.juniper.smgt.radius.RadiusPacketHandlerImpl

� Property name —handler.class

Load Balancing Mode
� Selects the mode for load-balancing RADIUS servers.

� Value—Failover, round-robin

� Failover—SAE sends requests to the RADIUS server configured as the
default peer. If the default peer fails, the SAE uses the next server
configured in the peer group. The SAE cycles through the configured
RADIUS servers as needed.

� Round-robin—SAE alternates requests between all RADIUS servers
configured in the peer group.

� Default—Failover

� Property name—loadBalancingMode
Using RADIUS Plug-In Fields � 171

SRC-PE 1.0.x Subscribers and Subscriptions Guide

172 �
Max Queue Length
� Maximum number of unacknowledged RADIUS messages that the plug-in

receives from the RADIUS server before it discards new messages.

� Value—Integer in the range 0–2147483647

� Default—10000

� Property name—local.maxWaitingQueueLength

NASIP
� Value of the NAS-Ip attribute.

� Value—SSP local IP, RADIUS client IP

� SSP local IP—IP address of the SAE

� RADIUS client IP—IP address of the virtual router

� Default—No value

� Property name—local.NASIP

Require Mandatory Attributes
� Specifies whether or not a RADIUS authentication or accounting request must

contain all mandatory RADIUS attributes before sending the request packet.

� Values—Yes or No

� Default—Yes

� Property name—forceMandatoryAttr

Retry interval [ms]
� Time the SAE waits for a response from a RADIUS server before it resends the

RADIUS packet. The SAE keeps sending RADIUS packets until either the server
acknowledges the packet or the maximum timeout is reached.

� Value—Number of milliseconds in the range 0–2147483647

� Default—3000

� Property name—local.retryInterval

Template
� Name of a template that defines sets of RADIUS attributes included in

accounting messages. You define templates in the RADIUS tab of SDX
Configuration Editor. See Defining RADIUS Packets for Flexible RADIUS Plug-Ins
with SDX Configuration Editor on page 176.

� Value—Name of the template in the format RadiusPacket.<template name>;
you can enter only one template name

� Default—RadiusPacket.sdtAcct

� Property name—RadiusPacket.<template name>
Using RADIUS Plug-In Fields

Chapter 11: Configuring Authorization and Accounting Plug-Ins with SDX Configuration Editor
Timeout [ms]
� Maximum time the SAE waits for a response from a RADIUS server. If the

RADIUS server does not respond to the request, the request fails and the SAE
logs an error message.

� Value—Number of milliseconds in the range 0–9223372036854775807

� Default—10000

� Property name—local.timeout

UDP Port
� Source UDP port or a pool of ports that the plug-in uses to communicate with

the RADIUS server.

� Value—You can enter a single port number, a pool of port numbers, or a list of
port numbers and port ranges. If you do not specify a UDP port, the global
default port is used (see Configuring UDP Ports for RADIUS Plug-Ins on
page 174).

� Port number in the range 1–65535

� A range of ports in the format port-port; for example, 7000-7003

� A comma-separated list of port numbers and port ranges

� Default—No value

� Example—7000-7003, 7006, 7007-7009

� Property name—local.port

Username
� Value of the User-Name attribute (RADIUS attribute [1]).

� Value—One of the following:

� Login Name—Name used for login

� Accounting ID—Value stored in the subscriber profile

� Auth User Name—Name used to authenticate a service

� Manager ID—Value of the manager ID in the service subscription; use this
setting to identify subscribers to enterprise services. Manager ID is the
value of modifiersName in the subscription; if modifiersName does not
exist, manager ID is the value of creatorsName.

� modifiersName—Contains DN of the administrator who last modified
the entry in the directory

� creatorsName—Contains DN of the administrator who created the
entry in the directory

� Default—Login Name

� Property name—Username
Using RADIUS Plug-In Fields � 173

SRC-PE 1.0.x Subscribers and Subscriptions Guide

174 �
Configuring UDP Ports for RADIUS Plug-Ins

In RADIUS packets that RADIUS plug-ins send to a RADIUS server, the plug-in uses
an identifier field to match requests to replies. This field provides for a maximum of
256 identifiers. Once all identifiers are used, the plug-in cannot send any more
requests until it receives replies that match the requests already sent. In high-load
systems, this limit can slow performance.

To overcome this limitation, you can configure a pool of UDP ports for RADIUS
plug-ins. Having a pool of ports allows RADIUS plug-ins to create one queue per
port to wait for RADIUS replies. Each queue can wait for 256 RADIUS packets. The
RADIUS plug-ins send RADIUS packets through the pool of ports in a round-robin
mode.

You can configure a global source UDP port or pool of ports that RADIUS plug-ins
use to communicate with RADIUS servers. You can also configure UDP ports for
each plug-in instance. If you do not configure a UDP port for a plug-in instance, the
plug-in uses the global UDP port.

Configuring Global UDP Ports
To configure global UDP ports with SDX Configuration Editor:

1. In the navigation pane, select a directory configuration object for the SAE that
you want to configure.

2. Select the Miscellaneous tab, and expand the Global RADIUS UDP Port
section.

3. Fill in the field as described in Global RADIUS UDP Port Field on page 174.

Global RADIUS UDP Port Field
Use the field in this section to specify a global UPD port for RADIUS plug-ins.

UDP Port
� Source UDP port or a pool of ports that RADIUS plug-ins use to communicate

with RADIUS servers.

� Value—You can enter a single port number, a pool of port numbers, or a list of
port numbers and port ranges.

� Port number in the range 1–65535

� A range of ports in the format port-port; for example, 7000-7003

� A comma-separated list of port numbers and port ranges
Configuring UDP Ports for RADIUS Plug-Ins

Chapter 11: Configuring Authorization and Accounting Plug-Ins with SDX Configuration Editor
� Default—18130

� Example—7000-7003, 7006, 7007-7009

� Property name—AccountingMgr.local.port

Creating RADIUS Peers

RADIUS peers are instances of RADIUS servers. If you define multiple servers, the
SAE uses them in cases of failover or as alternate routers for load-balancing
purposes.

RADIUS peers are configured in the peer group for each RADIUS plug-in instance. To
create a RADIUS peer:

1. In the Peer Group area of a RADIUS plug-in instance, select Radius Peer and
click Create a New Instance of.

The Create New Instance dialog box appears.

2. Assign a name to the instance, and click OK.

The new peer instance appears in the Peer Group area.

3. Fill in the fields as described below.

Server Address
� IP address of the RADIUS server to which the SAE sends accounting data.

� Value—IP address

� Default—No value

� Property name—peer.#.remote.address

NOTE: If you configure more than one RADIUS peer in a plug-in instance that has
the same properties, the SNMP counters for the plug-in will not update correctly.
The reason is that the software does not know which RADIUS peer to send
updates to.
Creating RADIUS Peers � 175

SRC-PE 1.0.x Subscribers and Subscriptions Guide

176 �
Server Port
� Port used for RADIUS accounting packets. RADIUS accounting servers typically

use UDP port 1813 or 1646.

� Value—Valid UDP port

� Default—1813

� Property name—peer.#.remote.port

Secret
� Password that is shared with the RADUS server. You must configure the same

secret on the RADIUS server.

� Value—Shared secret; SDX Configuration Editor encodes the secret using
BASE-64

� Default—No value

� Property name—peer.#.remote.password

Defining RADIUS Packets for Flexible RADIUS Plug-Ins with SDX Configuration
Editor

Flexible RADIUS accounting and authentication plug-ins allow you to define the
content of RADIUS packets that the SAE sends to RADIUS servers. You can specify
which attributes are included in different types of RADIUS packets (for example,
session start or stop requests, or accounting on or off requests). You can also specify
what information is contained in the attribute fields.

In SDX Configuration Editor, there are two ways to define RADIUS packets for
flexible RADIUS accounting and authentication plug-ins:

� Define attributes in a template and then apply the template to flexible RADIUS
accounting and authentication plug-in instances. You can apply the same
template to multiple plug-in instances, but each plug-in instance can use only
one template.

� Define attributes in the packet definition configuration of a flexible plug-in
instance. These definitions override definitions in packet templates. You can
use these packet definitions to exclude attributes that come from the template.
To do so, you define the value of the attribute that you want to exclude as None.

Creating and Using RADIUS Templates
The SDX software comes with two default templates:

� stdAcct—Defines RADIUS accounting packets and is used in the default RADIUS
flexible accounting plug-in instance flexRadiusAcct

� stdAuth—Defines RADIUS authentication packets and is used in the default
RADIUS flexible authentication plug-in instance flexRadiusAuth
Defining RADIUS Packets for Flexible RADIUS Plug-Ins with SDX Configuration Editor

Chapter 11: Configuring Authorization and Accounting Plug-Ins with SDX Configuration Editor
You can use these templates as they are, modify them, or create new templates.

To create a template:

1. In the RADIUS tab, select Template from the drop-down list, and click Create a
New Instance of.

The Create a New Instance dialog box appears.

2. Assign a name to the template instance, and click OK.

The instance appears in the Radius Packet Template area.

3. Configure RADIUS attributes in the template as described in the next section.

4. Configure a plug-in instance to use the template by entering the name of the
template in the format RadiusPacket.<template name> in the Template field
of the plug-in instance configuration.

You can apply a template to multiple plug-in instances, but each plug-in
instance can use only one template.

Configuring RADIUS Attributes
Attribute instances define attributes for a specific type of RADIUS packet. The name
that you assign to an attribute instance specifies the type of packet to which the
attribute definition is applied. Table 18 lists the available packet types.

Table 18: RADIUS Attribute Instance Names

Attribute Instance
(Packet-Type) Type of RADIUS Packet to Which Attribute Definition Is Applied

acct Any accounting request

auth Any authentication request

authresp Any authorization response

off Accounting-Off requests

on Accounting-On requests

onoff Accounting-On or Accounting-Off requests

start Start requests

startstop Start, Stop, or Interim Update requests
Defining RADIUS Packets for Flexible RADIUS Plug-Ins with SDX Configuration Editor � 177

SRC-PE 1.0.x Subscribers and Subscriptions Guide

178 �
Use the steps below to configure attribute instances. You can follow them from
within a RADIUS template or within a plug-in instance configuration.

You can configure attribute instances in a RADIUS template or within a plug-in
instance configuration. To create and configure attribute instances for a:

� Template—Follow these steps in the Attributes configuration section of a
template.

� Plug-in instance—Follow these steps in the Radius Packet Definition of a plug-in
instance.

1. Select Radius Attributes from the drop-down list, and click Create a New
Instance of.

The Create a New Instance dialog box appears.

2. Assign a name that specifies the RADIUS packet type to which the attribute
definition applies (see Table 18), and click OK.

A new attribute table of properties (RADIUS attributes) and values (the value
assigned to an attribute) appears.

3. Configure the attribute table as follows:

� To add an attribute, type the attribute definition in the format
property=value in the field below the attribute table, and click Add.

� To modify an attribute, select the attribute, make your changes in the field
below the attribute table, and click Modify.

� To delete an attribute, select the attribute, and click Delete.

stop Stop or Interim Update requests

svcacct Service Session Start, Stop, or Interim requests

svcresp Any service authorization response

svcstart Service Session Start requests

svcstop Service Session Stop or Interim requests

useracct User Session Start, Stop, or Interim requests

userresp Any user authorization response

userstart User Session Start requests

userstop User Session Stop, or Interim requests

Table 18: RADIUS Attribute Instance Names (continued)

Attribute Instance
(Packet-Type) Type of RADIUS Packet to Which Attribute Definition Is Applied
Defining RADIUS Packets for Flexible RADIUS Plug-Ins with SDX Configuration Editor

Chapter 11: Configuring Authorization and Accounting Plug-Ins with SDX Configuration Editor
Property
� RADIUS attribute.

� Value—Standard RADIUS attribute or JUNOSe VSA specified as follows:

� Standard RADIUS attribute name or number as defined in RFC
2865—Remote Authentication Dial In User Service (RADIUS) (June 2000),
RFC 2866—RADIUS Accounting (June 2000), or RFC 2869—RADIUS
Extensions (June 2000). For a full list, see
www.iana.org/assignments/radius-types

� JUNOSe VSA in one of the following formats:

Vendor-Specific.4874.<vsa#>.<type>

26.4874.<vsa#>.<type>

where <type> is one of the following:

� text—Indicates that the value is 1–253 octets containing UTF-8
encoded characters

� string—Indicates that the value is 1–253 octets containing binary data

� address—Indicates that the value is a 32-bit value

� integer—Indicates that the value is a 32-bit unsigned value

� time—Indicates that the value is a 32-bit unsigned value, seconds since
00:00:00 UTC, January 1, 1970

For example, 26.4874.50.text sets a value for Session-Volume-Quota VSA 26-50.

� Default—No value

� Property name—<id>[.<type>]
Defining RADIUS Packets for Flexible RADIUS Plug-Ins with SDX Configuration Editor � 179

SRC-PE 1.0.x Subscribers and Subscriptions Guide

180 �
Value
� Defines the values of RADIUS attributes. Most values can be sent from the SAE

to the plug-in. Some of the values can also be returned by the plug-in.

� Value—Standard values (see Table 19) or an expression

� Expressions are evaluated with Python. For example: lowWord(inOctets)
extracts the lower 32 bits of the 64-bit inOctets counter.

� You can define multiple values for an expression in a comma-separated list.

� Default—No value

� Property name—<expression>

Table 19: Standard Values for RADIUS Attributes

Value Type of Plug-In Comments

accountingId User and service tracking

authUserId Service tracking

dhcp User and service tracking Provides access to DHCP packet. See Table 14 on page 113
for details.

domain Authorization

eventTime User and service tracking Seconds since 1970-01-01T00:00Z

ifRadiusClass User and service tracking

ifSessionId User and service tracking

inOctets Service tracking 64-bit counter

inPackets Service tracking

interfaceAlias User and service tracking

interfaceDescr User and service tracking

interfaceName User and service tracking

localNasId All Configured NAS-ID

localNasIp All Configured NAS-IP

loginId User and service authorization ID provided by the subscriber; the loginId value is not
separated into UID and domain name.

loginName User and service tracking Name that the subscriber uses to log in to portal

nasIp User and service tracking NAS IP address of the router

nasPort User and service tracking 32-bit integer

outOctets Service tracking 64-bit counter

outPackets Service tracking

password User and service authorization

portId User and service tracking ID of the port on the JUNOSe router; for example,
FastEthernet 3/1:2001

primaryUserName User and service tracking Name that the subscriber uses for DHCP/PPP authentication

radiusClass User tracking, user and service
authorization

For service tracking, this value is taken from the RADIUS
Access-Accept response. If the response does not contain a
value, the RADIUS class defined in the service definition is
used.

This attribute can be set by an authorization response.
Defining RADIUS Packets for Flexible RADIUS Plug-Ins with SDX Configuration Editor

Chapter 11: Configuring Authorization and Accounting Plug-Ins with SDX Configuration Editor
replyMessage User and service authorization This attribute can only be set.

routerName User and service tracking

serviceBundle User tracking and
authorization

This attribute can be set by an authorization response.

serviceName Service tracking Sets an arbitrary attribute (for example, class) to the name of
the service.

serviceSessionName Service tracking Named service session; empty for default session

serviceSessionTag Service tracking

sessionId User and service tracking

sessionTime User and service tracking

sessionTimeout User tracking, user and service
authorization

This attribute can be set by an authorization response.

sessionVolumeQuota User authorization This attribute can only be set. It is sent for session tracking
events and can be returned by service authorization events.
It can be set and retrieved through the portal API and can
also be defined through an LDAP attribute in the service
definition.

If the attribute is defined multiple times, the following
precedence is observed:

1. Service definition (lowest)

2. Authorization

3. API call (highest)

NOTE: The SAE does not enforce a volume quota directly; it
only makes the attribute available to an external application
that can control the volume quota.

setAcctInterimTime User authorization Integer

setAuthVirtualRouterName DHCP authorization Text

setIdleTimeout(ATTR) User authorization

setLoadServices(ATTR) User authorization This attribute can only be set.

setPoolName DHCP authorization Text

setRadiusClass(ATTR) User and service authorization

setReplyMessage(ATTR) User and service authorization

setSessionTimeout(ATTR) User and service authorization

setServiceBundle(ATTR) User authorization

setSessionVolumeQuota(ATTR) User authorization

setSubstitution User authorization Text. Substitutions can be set only for service sessions.

setTerminateTime User authorization Text

setUserIpAddress DHCP authorization Integer

sspHost User and service tracking

terminateCause User and service tracking

uid User and service authorization

userDn User and service tracking

Table 19: Standard Values for RADIUS Attributes (continued)

Value Type of Plug-In Comments
Defining RADIUS Packets for Flexible RADIUS Plug-Ins with SDX Configuration Editor � 181

SRC-PE 1.0.x Subscribers and Subscriptions Guide

182 �
More About Using Flexible RADIUS Packet Definitions
This section shows some of the ways you can use flexible RADIUS packet
definitions. Remember that the name of the attribute instance determines the type
of RADIUS packet in which the packet definition is used.

� To use the Challenge Handshake Authentication Protocol (CHAP) to
authenticate subscribers, include the Chap-Password and optionally the
Chap-Challenge attributes in authentication requests. (We recommend that you
use Chap-Password only. Use Chap-Challenge only if required.) To use a CHAP
password, include the following in attribute instance auth:

Chap-Password = password

� To cause the Calling-Station-Id attribute to use the subscriber’s MAC address:

Calling-Station-Id = userMacAddress

� To set the value to prefix N followed by the service name and the prefix S
followed by the service session name:

'N'+serviceName, 'S'+serviceSessionName

� To construct a value for the Nas-Port-Id attribute by concatenating the value of
routerName, a space, and the Nas-Port-ID on the router:

Nas-Port-Id=routerName + “ “ + portId

For example, the constructed value might be:

default@phoenix FastEthernet 4/2

� The following example sets the User-Name attribute as follows:

� Sets the value to accountingId, or

� If accountingId is empty, sets the value to loginName, or

� If loginName is also empty, sets the value to NN

User-Name = accountingId or loginName or “NN”

� To extract the lower 32 bits of the 64-bit inOctet counter:

Acct-Input-Octets = lowWord(inOctets)

userIpAddress User and service tracking

userMacAddress User and service tracking

userRadiusClass Service tracking RADIUS class of associated subscriber session

userSessionId Service tracking RADIUS session ID of associated subscriber session

Table 19: Standard Values for RADIUS Attributes (continued)

Value Type of Plug-In Comments
Defining RADIUS Packets for Flexible RADIUS Plug-Ins with SDX Configuration Editor

Chapter 11: Configuring Authorization and Accounting Plug-Ins with SDX Configuration Editor
� To set the counter fields in the RADIUS packet to the appropriate 32-bit values:

RadiusPacket.std.svcstop.Acct-Input-Octets = lowWord(inOctets)
RadiusPacket.std.svcstop.Acct-Output-Octets = lowWord(outOctets)
RadiusPacket.std.svcstop.Acct-Input-Packets = inPackets
RadiusPacket.std.svcstop.Acct-Output-Packets = outPackets

RadiusPacket.std.svcstop.Acct-Input-Gigawords = highWord(inOctets)
RadiusPacket.std.svcstop.Acct-Output-Gigawords = highWord(outOctets)

� The inOctets and outOctets are 64-bit values and must be split into lower
32-bit (Acct-*-Octets) and upper 32-bit (Acct-*-Gigawords) values.

� The inPacket and outPacket counters are 32-bit values and can be assigned
directly.

Setting Values in Authentication Response Packets
You can use some special attribute values to set values in authentication response
packets. For example:

� setRadiusClass(ATTR)

� setSessionTimeout(ATTR)

� setSessionVolumeQuota(ATTR)

Table 19 on page 180 lists the type of packets (authresp, userresp, or svcresp) in
which you can use these values.

When the RADIUS client finds one of these attribute values in an authentication
response, it binds ATTR to the current attribute and executes the defined
expression. The expression calls one of the available set methods to set the value in
the plug-in event.

Below are some examples.

� To set a session timeout:

Session-Timeout = setSessionTimeout(ATTR)

� To set the RADIUS class:

Class = setRadiusClass(ATTR)

� To set the service bundle in VSA 31:

26.4874.31.text = setServiceBundle(ATTR)

� To set the session volume quota:

26.4874.50.text = setSessionVolumeQuota(ATTR)
Defining RADIUS Packets for Flexible RADIUS Plug-Ins with SDX Configuration Editor � 183

SRC-PE 1.0.x Subscribers and Subscriptions Guide

184 �
Selecting IP Address Pools Using DHCP Response Packets
For DHCP subscribers, you can set up RADIUS authorization plug-ins to return to the
router attributes that can be used to select a DHCP address such as framed IP
address and pool. You can also set up the name of the virtual router on which the
address pool is located and select a fixed address for each subscriber.

� Framed IP address—Selects the pool from which the address is allocated; if the
framed IP address is not available, the DHCP server allocates the next available
address in the pool; use the setUserIpAddress value.

� Framed IP pool—Name of the address pool on the router from which an IP
address is assigned; use the setPoolName value.

� Virtual router name—Name of the virtual router on which the address pool is
located; use the setAuthVirtualRouterName value.

You can also select a fixed address for each subscriber. If you identify subscribers by
port information (for example, NAS-IP and NAS-Port), the authorization response
can select a fixed IP address for each subscriber.

Configuring Event Publishers

This section shows how to configure event publishers. It covers the following tasks:

� Configuring Global and Default Retailer Event Publishers on page 185

� Configuring Service-Specific Event Publishers on page 187

� Configuring Retailer-Specific Event Publishers on page 188

� Configuring Virtual Router–Specific Event Publishers on page 188

NOTE: Parameters set in the DHCP profile override parameters set by DHCP
authorization plug-ins.
Configuring Event Publishers

Chapter 11: Configuring Authorization and Accounting Plug-Ins with SDX Configuration Editor
Configuring Global and Default Retailer Event Publishers
You can use SDX Configuration Editor to configure global and default retailer event
publishers. To do so:

1. Access the plug-in configuration as described in Accessing the Plug-In
Configuration on page 141.

2. In the Plug-In Event Publishers area, enter a comma-separated list of plug-in
instances in each event publisher field that you want to configure.

Global User Authorization Plug-ins
� Authorize all subscriber sessions. These plug-in instances are called after a

subscriber profile is loaded but before a subscriber session is started. The SAE
calls these plug-ins for each subscriber who logs in to a portal.

� These plug-in instances cannot perform authentication, because passwords are
not available at this point in the login process. Therefore, if you specify plug-in
instances that perform authentication, login requests will fail.

� Value—Comma-separated list of plug-in instances

� Default—No value

� Property name—User.auth.plugins

Default Retailer Authentication Plug-ins
� Authenticate subscribers who are assigned to retailer objects that do not specify

an authentication plug-in. These plug-ins are called when a subscriber logs in to
the domain. The authentication process for portal (Web) logins maps the
supplied domain name to a retailer object.

� If you do not specify default retailer authentication plug-ins or retailer-specific
plug-ins, subscribers are admitted without authentication.

� Value—Comma-separated list of plug-in instances
Configuring Event Publishers � 185

SRC-PE 1.0.x Subscribers and Subscriptions Guide

186 �
� Default—ldapAuth

� Property name—Retailer.auth.plugins

Default Retailer DHCP Authentication Plug-ins
� Authenticate DHCP address requests for subscribers who are assigned to

retailer objects that do not specify a DHCP authorization plug-in. These plug-ins
are called when the SAE receives a DHCP discover request from a client that
has its username and password cached in the SAE. The username and
password can either be cached persistently in the directory or temporarily in
memory during a switch from an unauthenticated to an authenticated address.

� Value—Comma-separated list of plug-in instances

� Default—No value

� Property name—Retailer.dhcpauth.plugins

Global DHCP Authorization Plug-ins
� Authorize all DHCP address requests for all DHCP subscribers who log in to a

portal. These plug-in instances are called for both authenticated and
unauthenticated address requests.

� Value—Comma-separated list of plug-in instances

� Default—No value

� Property name—Dhcp.auth.plugins

Global Service Authorization Plug-ins
� Authorize all service sessions. These plug-ins are called before a service session

is started, and are called for every service session started by any SAE
subscriber.

� Value—Comma-separated list of plug-in instances

� Default—No value

� Property name—Service.auth.plugins

Global Subscription Authorization Plug-ins
� Authorize subscribers to change their subscriptions. These plug-ins are called

when a subscriber tries to modify, subscribe to, or unsubscribe from a
subscription.

� Value—Comma-separated list of plug-in instances

� Default—No value

� Property name—Subscription.auth.plugins

Global User Tracking Plug-ins
� Track all subscriber sessions. These plug-in instances are called for every

subscriber session that is started and stopped. They are called after a subscriber
session has started and when the session is stopped.

� Value—Comma-separated list of plug-in instances
Configuring Event Publishers

Chapter 11: Configuring Authorization and Accounting Plug-Ins with SDX Configuration Editor
� Default—fileAcct

� Property name—User.tracking.plugins

Global Service Tracking Plug-ins
� Track all service sessions. These plug-in instances are called for every service

session that is started and stopped. They are called after a service session
starts, when the service session stops, and during interim updates.

� Value—Comma-separated list of plug-in instances

� Default—fileAcct

� Property name—Service.tracking.plugins

Global Interface Tracking Plug-ins
� Track all interfaces that the SAE manages. You can set up the publisher to send

interface tracking events to plug-in instances or to a network information
collector (NIC) SAE plug-in agent. These plug-in instances and/or NIC SAE
plug-in agents are called for every managed interface that is started and
stopped. They are called after an interface comes up, when new policies are
installed on the interface, and when the interface goes down.

� Value—Comma-separated list of plug-in instances or NIC SAE plug-in agents

� Default—No value

� Property name—Interface.tracking.plugins

Embedded AdminServer Authorization Plug-ins
� Authorize administrators to connect to the embedded Web server, which is used

to access SAE Web Admin.

� Value—Comma-separated list of plug-in instances

� Default—adminLdap

� Property name—AdminServer.realm.auth.plugins

Configuring Service-Specific Event Publishers
In the value-added services definition in SDX Admin, you can configure two event
publishers for a service:

� Authorization plug-ins—Authenticate subscribers of the service and/or authorize
service sessions for this service. These plug-in instances are called before a
subscription to this service is activated.

� Tracking plug-ins—Track service sessions of this service. These plug-in
instances are called when a service session is started and stopped and during
interim updates.

You configure these event publishers in the SSP Services window in SDX Admin.
See SRC-PE Services and Policies Guide, Chapter 2, Managing Services on a Solaris
Platform.
Configuring Event Publishers � 187

SRC-PE 1.0.x Subscribers and Subscriptions Guide

188 �
Configuring Retailer-Specific Event Publishers
In the retailer definition in SDX Admin, you can configure three event publishers for
a retailer:

� Authentication plug-ins—Authenticate subscribers who log in to the domains of
the retailer. These plug-in instances are called when a subscriber tries to log in
to the SAE through the portal login.

If you do not specify retailer-specific authentication plug-ins, the default retailer
authentication plug-ins are called. If you do not specify default retailer
authentication plug-ins, subscribers are admitted without authentication.

� Tracking plug-ins—Track sessions of subscribers who log in to the domains of
the retailer. These plug-in instances are called after a subscriber session has
started and when the session is stopped.

� DHCP authorization plug-ins—Authenticate DHCP address requests for
subscribers who log in to the domains of the retailer.

You configure these event publishers in the Retailer pane in SDX Admin. See Adding
Retailers on page 236.

Configuring Virtual Router–Specific Event Publishers
In the virtual router definition in SDX Admin, you can configure an
interface-tracking plug-in event publisher for a virtual router. These plug-in
instances are called when a managed interface is started and stopped. They are
called after an interface comes up, when new policies are installed on the interface,
and when the interface goes down.

You configure this event publisher in the VirtualRouter pane in SDX Admin. For
information about configuring virtual routers for JUNOSe routers, see SRC-PE
Network Guide, Chapter 6, Using JUNOSe Routers in the SRC Network with a Solaris
Platform. For information about configuring virtual routers for JUNOS routing
platforms, see SRC-PE Network Guide, Chapter 8, Using JUNOS Routing Platforms in
the SRC Network with a Solaris Platform.
Configuring Event Publishers

	Configuring Authorization and Accounting Plug-Ins with SDX Configuration Editor
	Configuring Tracking Plug-Ins
	Configuring Flat File Accounting Plug-Ins
	Configuring Headers for Flat File Accounting Plug-Ins

	Configuring Basic RADIUS Accounting Plug-Ins
	Configuring Flexible RADIUS Accounting Plug-Ins
	Configuring Custom RADIUS Accounting-Plug-Ins

	Configuring Authorization Plug-Ins
	Limiting Subscribers on Router Interfaces
	Configuring Basic RADIUS Authentication Plug-Ins
	Configuring Flexible RADIUS Authentication Plug-Ins
	Configuring Custom RADIUS Authentication Plug-Ins
	Configuring LDAP Authentication Plug-Ins

	Using RADIUS Plug-In Fields
	Configuring UDP Ports for RADIUS Plug-Ins
	Configuring Global UDP Ports
	Global RADIUS UDP Port Field

	Creating RADIUS Peers
	Defining RADIUS Packets for Flexible RADIUS Plug-Ins with SDX Configuration Editor
	Creating and Using RADIUS Templates
	Configuring RADIUS Attributes
	More About Using Flexible RADIUS Packet Definitions
	Setting Values in Authentication Response Packets
	Selecting IP Address Pools Using DHCP Response Packets

	Configuring Event Publishers
	Configuring Global and Default Retailer Event Publishers
	Configuring Service-Specific Event Publishers
	Configuring Retailer-Specific Event Publishers
	Configuring Virtual Router-Specific Event Publishers

