Abbreviated Table of Contents

About This Guide ... xix

Part 1 Juniper Networks Hardware and Software
Chapter 1 Juniper Networks Router Overview 3
Chapter 2 Cheat Sheet for the CLI Commands 13
Chapter 3 Work with Problems on Your Network 25

Part 2 Junos operating system (Junos OS) in the Network
Chapter 4 Stop and Start Junos OS ... 29
Chapter 5 Display Junos OS Information 35
Chapter 6 Check Router Configuration 39
Chapter 7 Upgrade Junos OS .. 49
Chapter 8 Reinstall Junos OS .. 63

Part 3 Verify Your Network Topology
Chapter 9 Verify Juniper Networks Routers 81
Chapter 10 Verify Physical Interfaces on the Router....................... 93
Chapter 11 Verify the IS-IS Protocol and Adjacencies 103
Chapter 12 Verify the OSPF Protocol and Neighbors 115
Chapter 13 Verify the BGP Protocol and Peers 145
Chapter 14 Verify the Routing Engine CPU Memory 157
Chapter 15 Verify Traffic and Packets Through the Router 169
Chapter 16 Use the ping and traceroute Commands 179
Chapter 17 Use MIBs .. 185

Part 4 Gather System Management Information
Chapter 18 Display Basic Chassis Information 205
Chapter 19 Display and Locate Files and Directories 209
Chapter 20 Check Time on a Router .. 217
Chapter 21 Check User Accounts and Permissions 225

Part 5 Search Log Messages
Chapter 22 Track Normal Operations 237
Chapter 23 Track Error Conditions ... 249
Chapter 24 Collect Crash Data .. 271
Part 6 Appendix
Part 7 Index
Index ... 293
Table of Contents

About This Guide .. xix
 Objectives ... xix
 Audience ... xx
 Supported Routing Platforms ... xx
 Using the Index .. xx
 Using the Examples in This Manual xxi
 Merging a Full Example ... xxi
 Merging a Snippet ... xxii
 Documentation Conventions ... xxii
 Documentation Feedback ... xxiii
 Requesting Technical Support .. xxiii
 Self-Help Online Tools and Resources xxiii
 Opening a Case with JTAC ... xxiv

Part 1 Juniper Networks Hardware and Software

Chapter 1 Juniper Networks Router Overview 3
 Juniper Networks Router Introduction 3
 Router Architecture for M-series Routers and T-series Platforms 4
 Data Flow Through the Packet Forwarding Engine 5
 Data Flow Through an M-series Router 6
 Data Flow Through a T-series Routing Platform 7
 Hardware Components .. 8
 Chassis ... 9
 Flexible PIC Concentrators ... 9
 Physical Interface Cards ... 9
 Routing Engine .. 10
 Power Supplies ... 10
 Cooling System ... 10
 Monitor Hardware Components 10

Chapter 2 Cheat Sheet for the CLI Commands 13
 CLI Operational Mode Top-Level Commands 13
 CLI Configuration Mode Top-Level Commands 15
 Load a Configuration Using Copy and Paste Commands 18
 Load a Configuration from a File to a Router 18
 Load a Configuration Using the display set Command 20
 CLI Keyboard Shortcuts .. 21
 Manage Output at the ---(more)--- Prompt 22
Chapter 3 Work with Problems on Your Network .. 25
 Working with Problems on Your Network ... 25
 Isolate a Broken Network Connection .. 25

Part 2 Junos operating system (Junos OS) in the Network

Chapter 4 Stop and Start Junos OS ... 29
 Stopping and Starting Junos OS ... 29
 Stop the Junos OS .. 29
 Reboot the Junos OS .. 30
 Restart a Junos OS Process .. 31
 Display Information About Software Processes 31
 Restart a Junos OS Process .. 32
 Check That the Process Has Restarted .. 33

Chapter 5 Display Junos OS Information ... 35
 Displaying Junos OS Information ... 35
 Display Junos OS Information .. 35
 Display Version Information for Junos OS Packages 36

Chapter 6 Check Router Configuration ... 39
 Checklist for Checking the Router Configuration 39
 Display the Current Active Router Configuration 39
 Display a Specific Configuration Hierarchy .. 43
 Display Additional Information about the Configuration 44

Chapter 7 Upgrade Junos OS ... 49
 Checklist for Upgrading Junos OS .. 49
 Logging Information Before You Upgrade Junos OS 50
 Log the Software Version Information .. 51
 Log the Hardware Version Information .. 51
 Log the Active Configuration ... 52
 Log the Interfaces on the Router ... 53
 Log the BGP, IS-IS, and OSPF Adjacency Information 53
 Log the System Storage Information ... 55
 Back Up the Currently Running and Active File System 55
 Download Junos OS .. 56
 Upgrade Junos OS ... 59
 Copy Junos OS to the Router .. 59
 Add New Software .. 59
 Start the New Software ... 60
 After You Upgrade Junos operating system (Junos OS) 60
 Compare Information Logged Before and After the Upgrade 60
 Back Up the New Software .. 61

Chapter 8 Reinstall Junos OS .. 63
 Checklist for Reinstalling Junos OS ... 63
 Before You Reinstall Junos OS ... 64
 Log the Software Version Information .. 65
 Log the Hardware Version Information .. 66
Log the Chassis Environment Information .. 67
Log the System Boot-Message Information 68
Log the Active Configuration ... 70
Log the Interfaces on the Router ... 70
Log the BGP, IS-IS, and OSPF Adjacency Information 71
Log the System Storage Information ... 72
Back Up the Currently Running and Active File System 73
Have the Boot Floppy or PCMCIA Card Ready 73
Reinstall the Junos OS ... 74
Reconfigure the Junos OS ... 74
Configure Names and Addresses .. 74
Example: Configuring the Root Password 75
Check Network Connectivity .. 76
Copy Backup Configurations to the Router 76
After You Reinstall Junos OS ... 76
Compare Information Logged Before and After the Reinstall 76
Back Up the New Software ... 77

Part 3 Verify Your Network Topology

Chapter 9 Verify Juniper Networks Routers 81
Checklist for Verifying Juniper Networks Routers 81
Check Router Components ... 82
Check the Router Component Status .. 83
Check the Router Craft Interface ... 83
Check the Component LEDs .. 84
Display Detailed Component Environmental Information 85
Display Detailed Operational Information About Components 86
Gather Component Alarm Information ... 87
Display the Current Router Alarms .. 87
Display Error Messages in the Messages Log File 88
Display Error Messages in the Chassis Process Log File 88
Verify the Component Problem .. 89
Fix the Problem .. 89
Contact JTAC .. 90
Return the Failed Component .. 90

Chapter 10 Verify Physical Interfaces on the Router 93
Checklist for Verifying Physical Interfaces on a Router 93
Check Physical Interfaces on a Router ... 93
Display Summary Interface Information 94
Display Detailed Interface Information 95
Display Real-Time Statistics about a Physical Interface 99
Check System Logging ... 101

Chapter 11 Verify the IS-IS Protocol and Adjacencies 103
Checklist for Verifying the IS-IS Protocol and Adjacencies 103
Verifying the IS-IS Configuration on a Router in a Network 104
Check the Configuration of a Level 1/Level 2 Router 105
Check the Configuration of a Level 1 Router 108
Chapter 12 Verify the OSPF Protocol and Neighbors 115
- Checklist for Verifying the OSPF Protocol and Neighbors 115
- Verify the OSPF Protocol 116
 - Check OSPF on an ASBR 118
 - Check OSPF on an ABR 122
 - Check OSPF on a Stub Router 126
- Check OSPF Neighbors 128
 - Verify OSPF Neighbors 129
 - Examine the OSPF Link-State Database 131
 - Examine OSPF Routes 135
 - Examine the Forwarding Table 139
- Examine Link-State Advertisements in Detail 139
 - Examine a Type 1 Router LSA 140
 - Examine a Type 3 Summary LSA 141
 - Examine a Type 4 ASBR Summary LSA 141
 - Examine a Type 5 AS External LSA 142
 - Examine Type 7 NSSA External LSA 143

Chapter 13 Verify the BGP Protocol and Peers 145
- Checklist for Verifying the BGP Protocol and Peers 145
- Verify the BGP Protocol 146
- Verify BGP Peers 148
- Examine BGP Routes and Route Selection 149
 - Examine the Local Preference Selection 151
 - Examine the Multiple Exit Discriminator Route Selection 152
 - Examine the EBGP over IBGP Selection 153
 - Examine the IGP Cost Selection 154
- Examine Routes in the Forwarding Table 155

Chapter 14 Verify the Routing Engine CPU Memory 157
- Checklist for Verifying the Routing Engine CPU Memory 157
- Check the Routing CPU Memory Usage 157
 - Check Overall CPU and Memory Usage 158
 - Check Routing Protocol Process (rpd) Memory Usage 161
 - Display Tasks 164

Chapter 15 Verify Traffic and Packets Through the Router 169
- Checklist for Verifying Traffic and Packets through the Router 169
- Monitoring Traffic Through the Router or Switch 170
 - Displaying Real-Time Statistics About All Interfaces on the Router or Switch 170
 - Displaying Real-Time Statistics About an Interface on the Router or Switch 171
- Verify Packets 172
 - Monitor Packets Sent from and Received by the Routing Engine 172
 - Display Key IP Header Information 173
<table>
<thead>
<tr>
<th>Chapter 16</th>
<th>Use the ping and traceroute Commands ... 179</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Checklist for Using the ping and traceroute Commands 179</td>
</tr>
<tr>
<td></td>
<td>Check the Accessibility of Two Routers on the Edge 179</td>
</tr>
<tr>
<td></td>
<td>Use Loopback Addresses .. 180</td>
</tr>
<tr>
<td></td>
<td>Use Interface Addresses ... 181</td>
</tr>
<tr>
<td></td>
<td>Examples of Unsuccessful ping and traceroute Commands 182</td>
</tr>
<tr>
<td>Chapter 17</td>
<td>Use MIBs .. 185</td>
</tr>
<tr>
<td></td>
<td>Checklist for Using MIBs .. 185</td>
</tr>
<tr>
<td></td>
<td>Determine Which MIBs Are Supported by a Juniper Release 186</td>
</tr>
<tr>
<td></td>
<td>Run Snmpwalk from an NMS System to a Juniper Router 187</td>
</tr>
<tr>
<td></td>
<td>Use SNMP Trace Operations to Monitor a Router 188</td>
</tr>
<tr>
<td></td>
<td>Configure Trace Operations for SNMP ... 188</td>
</tr>
<tr>
<td></td>
<td>Query a MIB With SNMPGet ... 189</td>
</tr>
<tr>
<td></td>
<td>Display the Output for SNMP Trace Operations 190</td>
</tr>
<tr>
<td></td>
<td>Monitor Memory Usage on a Router .. 190</td>
</tr>
<tr>
<td></td>
<td>Check Memory Utilization on Chassis Components 191</td>
</tr>
<tr>
<td></td>
<td>Check Memory Utilization per Process ... 193</td>
</tr>
<tr>
<td></td>
<td>Monitor CPU Utilization .. 196</td>
</tr>
<tr>
<td></td>
<td>Check CPU Utilization ... 196</td>
</tr>
<tr>
<td></td>
<td>Check CPU Utilization per Process .. 198</td>
</tr>
<tr>
<td></td>
<td>Retrieve Version Information about Router Software Components 201</td>
</tr>
</tbody>
</table>

Part 4 Gather System Management Information

Chapter 18 Display Basic Chassis Information ... 205
| | Checklist for Displaying Basic Chassis Information 205 |
| | Display Basic Chassis Information ... 205 |

Chapter 19 Display and Locate Files and Directories ... 209
	Checklist for Displaying and Locating Files and Directories on a Router 209
	Copy a File on a Routing Engine .. 210
	Copy a File from One Routing Engine to Another 210
	Copy Files between the Local Router and a Remote System 211
	Maintain a Single Configuration File for Both Routing Engines 212
	Configure the New Group ... 212
	Apply the New Group .. 214
	List Files and Directories on a Router 215
	Display File Contents ... 215
	Rename a File on a Router ... 215
	Delete a File on a Router ... 216

Chapter 20 Check Time on a Router ... 217
	Checklist for Checking Time on a Router 217
	Check the Time on a Router .. 218
	Check How Long Router Components Have Been Up 218
	Check the NTP Peers .. 221
Chapter 21: Check User Accounts and Permissions

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checklist for Checking User Accounts and Permissions</td>
<td>225</td>
</tr>
<tr>
<td>Understand User Accounts and Permissions</td>
<td>226</td>
</tr>
<tr>
<td>Check Users Logged In To a Router</td>
<td>226</td>
</tr>
<tr>
<td>Check for Users in Configuration Mode</td>
<td>227</td>
</tr>
<tr>
<td>Check the Commands That Users Are Entering</td>
<td>228</td>
</tr>
<tr>
<td>Configure the Log File for Tracking CLI Commands</td>
<td>228</td>
</tr>
<tr>
<td>Display the Configured Log File</td>
<td>229</td>
</tr>
<tr>
<td>Log a User Out of the Router</td>
<td>230</td>
</tr>
<tr>
<td>Check When the Last Configuration Change Occurred</td>
<td>231</td>
</tr>
<tr>
<td>Configure Configuration Change Tracking</td>
<td>231</td>
</tr>
<tr>
<td>Display the Configured Log File</td>
<td>231</td>
</tr>
<tr>
<td>Force a Message to Logged-In User Terminals</td>
<td>232</td>
</tr>
<tr>
<td>Check RADIUS Server Connectivity</td>
<td>233</td>
</tr>
</tbody>
</table>

Part 5: Search Log Messages

Chapter 22: Track Normal Operations

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checklist for Tracking Normal Operations</td>
<td>237</td>
</tr>
<tr>
<td>Configure System Logging</td>
<td>238</td>
</tr>
<tr>
<td>Log Messages to a Local Log File</td>
<td>239</td>
</tr>
<tr>
<td>Log Information to a Remote Host</td>
<td>240</td>
</tr>
<tr>
<td>Log Information to a User Terminal</td>
<td>241</td>
</tr>
<tr>
<td>Log Information to a Router Console</td>
<td>241</td>
</tr>
<tr>
<td>Configure the Number and Size of Log Files</td>
<td>242</td>
</tr>
<tr>
<td>Log BGP State Transition Events</td>
<td>243</td>
</tr>
<tr>
<td>Display a Log File</td>
<td>245</td>
</tr>
<tr>
<td>Monitor Messages in Near-Real Time</td>
<td>246</td>
</tr>
<tr>
<td>Stop Monitoring Log Files</td>
<td>247</td>
</tr>
</tbody>
</table>

Chapter 23: Track Error Conditions

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checklist for Tracking Error Conditions</td>
<td>249</td>
</tr>
<tr>
<td>Configure Routing Protocol Process Tracing</td>
<td>251</td>
</tr>
<tr>
<td>Configure Routing Protocol Process Tracing</td>
<td>251</td>
</tr>
<tr>
<td>Configure Routing Protocol Tracing for a Specific Routing Protocol</td>
<td>254</td>
</tr>
<tr>
<td>Monitor Trace File Messages Written in Near-Real Time</td>
<td>255</td>
</tr>
<tr>
<td>Stop Trace File Monitoring</td>
<td>256</td>
</tr>
<tr>
<td>Configure BGP-Specific Options</td>
<td>256</td>
</tr>
<tr>
<td>Display Detailed BGP Protocol Information</td>
<td>256</td>
</tr>
<tr>
<td>Diagnose BGP Session Establishment Problems</td>
<td>258</td>
</tr>
<tr>
<td>Configure IS-IS-Specific Options</td>
<td>259</td>
</tr>
<tr>
<td>Displaying Detailed IS-IS Protocol Information</td>
<td>259</td>
</tr>
<tr>
<td>Displaying Sent or Received IS-IS Protocol Packets</td>
<td>261</td>
</tr>
<tr>
<td>Analyzing IS-IS Link-State PDUs in Detail</td>
<td>262</td>
</tr>
<tr>
<td>Configure OSPF-Specific Options</td>
<td>264</td>
</tr>
<tr>
<td>Diagnose OSPF Session Establishment Problems</td>
<td>264</td>
</tr>
<tr>
<td>Analyze OSPF Link-State Advertisement Packets in Detail</td>
<td>268</td>
</tr>
</tbody>
</table>
Chapter 24 Collect Crash Data .. 271
 Checklist for Collecting Crash Data 271
 Understand Crash Data Collection 273
 Collect Crash Data for a Routing Engine Kernel 273
 Check the Routing Engine Core Files 274
 List the Core Files .. 274
 Compress the vmcore File .. 275
 Log Software Version Information 275
 Open a Case with JTAC ... 276
 Collect Crash Data for Routing Engine Daemons 277
 Check for Daemon Core Files .. 277
 List the Daemon Core Files ... 278
 Compress the Daemon Core Files 279
 Log Software Version Information 280
 Open a Case with JTAC ... 280
 Collect Crash Data for the Packet Forwarding Engine Microkernel . 281
 Display the Crash Stack Traceback and Registration Information . 282
 Clear the NVRAM Contents ... 286
 Check Packet Forwarding Engine Microkernel Core Files 287
 List the Core Files Generated by the Crash 287
 Compress the Core Files ... 288
 Log Software Version Information 288
 Open a Case with JTAC ... 289

Part 6 Appendix

Part 7 Index

Index ... 293
List of Figures

<table>
<thead>
<tr>
<th>Part 1</th>
<th>Juniper Networks Hardware and Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Juniper Networks Router Overview</td>
</tr>
<tr>
<td>Figure 1: Router Architecture</td>
<td>4</td>
</tr>
<tr>
<td>Figure 2: Routing and Forwarding Table Updates</td>
<td>5</td>
</tr>
<tr>
<td>Figure 3: Data Flow Through an M40e Router</td>
<td>6</td>
</tr>
<tr>
<td>Figure 4: Data Flow Through a T640 Routing Node</td>
<td>7</td>
</tr>
</tbody>
</table>

Chapter 3	Work with Problems on Your Network	25
Figure 5: Process for Diagnosing Problems in Your Network	26	
Figure 6: Network with a Problem	26	

<table>
<thead>
<tr>
<th>Part 3</th>
<th>Verify Your Network Topology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 11</td>
<td>Verify the IS-IS Protocol and Adjacencies</td>
</tr>
<tr>
<td>Figure 7: Levels in an IS-IS Network Topology</td>
<td>104</td>
</tr>
<tr>
<td>Figure 8: IS-IS Network Topology with Details</td>
<td>105</td>
</tr>
<tr>
<td>Figure 9: IS-IS Network Topology</td>
<td>112</td>
</tr>
</tbody>
</table>

Chapter 12	Verify the OSPF Protocol and Neighbors	115
Figure 10: Multi-Area OSPF Network Topology	116	
Figure 11: OSPF Network Topology with Details	118	
Figure 12: OSPF Network Topology	128	
Figure 13: LSA Flooding Scopes	131	

Chapter 13	Verify the BGP Protocol and Peers	145
Figure 14: BGP Configuration Topology	147	
Figure 15: BGP Network Topology	148	
Figure 16: BGP Network Topology	150	

| Chapter 16 | Use the ping and traceroute Commands | 179 |
| Figure 17: Topology for ping and traceroute Command Examples | 180 |

Chapter 17	Use MIBs	185
Figure 18: Chassis MIB Tree	191	
Figure 19: System Application MIB Tree	193	
Figure 20: Chassis MIB Tree	196	
Figure 21: System Application MIB Tree	198	

<table>
<thead>
<tr>
<th>Part 5</th>
<th>Search Log Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 24</td>
<td>Collect Crash Data</td>
</tr>
<tr>
<td>Figure 22: Three Areas Where a Software Crash Can Occur</td>
<td>273</td>
</tr>
</tbody>
</table>
List of Tables

About This Guide ... xix
Table 1: Notice Icons .. xxii

Part 1 Juniper Networks Hardware and Software
Chapter 1 Juniper Networks Router Overview 3
Table 2: Maximum Number of Routers per Rack 9
Table 3: Operational Mode CLI Commands for Router Monitoring . 11

Chapter 2 Cheat Sheet for the CLI Commands 13
Table 4: CLI Operational Mode Top-Level Commands 13
Table 5: CLI Configuration Mode Commands 15
Table 6: Options for the load Command 18
Table 7: CLI Keyboard Shortcuts 21
Table 8: Keyboard Shortcuts at the ---(more)--- Prompt 22

Chapter 3 Work with Problems on Your Network 25
Table 9: Checklist for Working with Problems on Your Network ... 25

Part 2 Junos operating system (Junos OS) in the Network
Chapter 4 Stop and Start Junos OS 29
Table 10: Checklist for Stopping and Starting the Junos OS 29
Table 11: Show System Processes Extensive Output Fields 32
Table 12: Options to Restart a Junos OS Process 33

Chapter 5 Display Junos OS Information 35
Table 13: Checklist for Displaying Junos OS Information 35

Chapter 6 Check Router Configuration 39
Table 14: Checklist for Checking the Router Configuration 39

Chapter 7 Upgrade Junos OS 49
Table 15: Checklist for Upgrading Junos OS 49

Chapter 8 Reinstall Junos OS 63
Table 16: Checklist for Reinstalling Junos OS 63

Part 3 Verify Your Network Topology
Chapter 9 Verify Juniper Networks Routers 81
Table 17: Checklist for Verifying Juniper Networks Routers 81
Table 18: Craft Interface Components for the M-series Routers and T-series Platforms .. 83
Table 19: Component LED Location on the Router or Platform 85
Table 20: CLI Commands for Detailed Component Environment Status 86
Table 21: CLI Commands for Detailed Operational Status of Components 87

Chapter 10 Verify Physical Interfaces on the Router 93
Table 22: Checklist for Verifying Physical Interfaces on a Router 93
Table 23: Interface Types Supported by the Junos OS 98
Table 24: Monitor Interface Output Control Keys 101

Chapter 11 Verify the IS-IS Protocol and Adjacencies 103
Table 25: Checklist for Verifying the IS-IS Protocol and Adjacencies 103

Chapter 12 Verify the OSPF Protocol and Neighbors 115
Table 26: Checklist for Verifying the OSPF Protocol and Neighbors 115
Table 27: Output Fields for the show ospf neighbor Command 130

Chapter 13 Verify the BGP Protocol and Peers 145
Table 28: Checklist for Verifying the BGP Protocol and Peers 145

Chapter 14 Verify the Routing Engine CPU Memory 157
Table 29: Checklist for Verifying the Routing Engine CPU Memory 157

Chapter 15 Verify Traffic and Packets Through the Router 169
Table 30: Checklist for Verifying Traffic and Packets through the Router . 169
Table 31: Output Control Keys for the monitor interface Command 172

Chapter 16 Use the ping and traceroute Commands 179
Table 32: Checklist for Using the ping and traceroute Commands 179

Chapter 17 Use MIBs .. 185
Table 33: Checklist for Using MIBs 185

Part 4 Gather System Management Information
Chapter 18 Display Basic Chassis Information 205
Table 34: Checklist for Displaying Basic Chassis Information 205
Table 35: Output fields for the show chassis hardware command 207

Chapter 19 Display and Locate Files and Directories 209
Table 36: Checklist for Displaying and Locating Files and Directories on a
Router ... 209

Chapter 20 Check Time on a Router 217
Table 37: Checklist for Checking Time on a Router 217
Table 38: Sample Output Fields for the show ntp status Command ... 222

Chapter 21 Check User Accounts and Permissions 225
Table 39: Checklist for Checking User Accounts and Permissions 225
Table 40: Description of Output Fields for the show system users Command 227
Table 41: Severity Levels .. 229

Part 5 Search Log Messages
Chapter 22 Track Normal Operations 237
Table 42: Checklist for Tracking Normal Operations .. 237
Table 43: Junos System Logging Facilities ... 239
Table 44: System Log Message Severity Levels ... 240
Table 45: Six States of a BGP Session .. 243

Chapter 23
Track Error Conditions ... 249
Table 46: Checklist for Tracking Error Conditions .. 249
Table 47: Routing Protocol Daemon Tracing Flags ... 252
Table 48: Standard Trace Options for Routing Protocols 255
Table 49: BGP Protocol Tracing Flags ... 257
Table 50: IS-IS Protocol Tracing Flags ... 260
Table 51: OSPF Protocol Tracing Flags ... 265

Chapter 24
Collect Crash Data .. 271
Table 52: Checklist for Collecting Crash Data ... 271
Table 53: Major Routing Engine Daemons .. 278
Table 54: NVRAM Location on the Microkernel of the Packet Forwarding Engine Components .. 282
About This Guide

This preface provides the following guidelines for using the Junos® operating system (Junos OS) Baseline Network Operations Guide:

- Objectives on page xix
- Audience on page xx
- Supported Routing Platforms on page xx
- Using the Index on page xx
- Using the Examples in This Manual on page xxi
- Documentation Conventions on page xxii
- Documentation Feedback on page xxiii
- Requesting Technical Support on page xxiii

Objectives

This guide provides operational information helpful for the most basic tasks associated with running a network configured with Juniper Networks products. This guide is not directly related to any particular release of the Junos operating system (Junos OS).

For information about configuration statements and guidelines related to the commands described in this reference, see the following configuration guides:

- Junos System Basics Configuration Guide—Describes Juniper Networks routing platforms, and provides information about how to configure basic system parameters, supported protocols and software processes, authentication, and a variety of utilities for managing your router on the network.
- Junos OS CLI User Guide—Describes how to use the Junos OS command-line interface (CLI) to configure, monitor, and manage Juniper Networks routing platforms.

For information about related tasks performed by Network Operations Center (NOC) personnel, see the following network operations guides:

- Junos Interfaces Network Operations Guide
- Junos Hardware Network Operations Guide
NOTE: To obtain the most current version of this manual, see the product documentation page on the Juniper Networks Web site, located at http://www.juniper.net/.

Audience

This guide is designed for Network Operations Center (NOC) personnel who monitor a Juniper Networks M Series or T Series routing platform.

To use this guide, you need a broad understanding of networks in general, the Internet in particular, networking principles, and network configuration. You must also be familiar with one or more of the following Internet routing protocols:

- Border Gateway Protocol (BGP)
- Routing Information Protocol (RIP)
- Intermediate System-to-Intermediate System (IS-IS)
- Open Shortest Path First (OSPF)
- Internet Control Message Protocol (ICMP) router discovery
- Internet Group Management Protocol (IGMP)
- Distance Vector Multicast Routing Protocol (DVMRP)
- Protocol-Independent Multicast (PIM)
- Multiprotocol Label Switching (MPLS)
- Resource Reservation Protocol (RSVP)
- Simple Network Management Protocol (SNMP)

Supported Routing Platforms

For the features described in this manual, Junos OS currently supports the following routing platforms:

- M Series
- MX Series
- T Series

Using the Index

This guide contains a complete index. For a list and description of glossary terms, see the *Junos OS Comprehensive Index and Glossary*.
Using the Examples in This Manual

If you want to use the examples in this manual, you can use the `load merge` or the `load merge relative` command. These commands cause the software to merge the incoming configuration into the current candidate configuration. The example does not become active until you commit the candidate configuration.

If the example configuration contains the top level of the hierarchy (or multiple hierarchies), the example is a full example. In this case, use the `load merge` command.

If the example configuration does not start at the top level of the hierarchy, the example is a snippet. In this case, use the `load merge relative` command. These procedures are described in the following sections.

Merging a Full Example

To merge a full example, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration example into a text file, save the file with a name, and copy the file to a directory on your routing platform.

 For example, copy the following configuration to a file and name the file `ex-script.conf`. Copy the `ex-script.conf` file to the `/var/tmp` directory on your routing platform.

   ```
   system {
     scripts {
       commit {
         file ex-script.xsl;
       }
     }
   }
   interfaces {
     fxp0 {
       disable;
       unit 0 {
         family inet {
           address 10.0.0.1/24;
         }
       }
     }
   }
   ```

2. Merge the contents of the file into your routing platform configuration by issuing the `load merge` configuration mode command:

   ```
   [edit]
   user@host# load merge /var/tmp/ex-script.conf
   load complete
   ```
Merging a Snippet

To merge a snippet, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration snippet into a text file, save the file with a name, and copy the file to a directory on your routing platform. For example, copy the following snippet to a file and name the file ex-script-snippet.conf. Copy the ex-script-snippet.conf file to the /var/tmp directory on your routing platform.

```
commit {
    file ex-script-snippet.xsl; }
```

2. Move to the hierarchy level that is relevant for this snippet by issuing the following configuration mode command:

```
[edit]
user@host# edit system scripts
[edit system scripts]
```

3. Merge the contents of the file into your routing platform configuration by issuing the load merge relative configuration mode command:

```
[edit system scripts]
user@host# load merge relative /var/tmp/ex-script-snippet.conf
load complete
```

For more information about the load command, see the CLI User Guide.

Documentation Conventions

Table 1 on page xxii defines notice icons used in this guide.

Table 1: Notice Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Meaning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Informational note</td>
<td>Indicates important features or instructions.</td>
</tr>
<tr>
<td></td>
<td>Caution</td>
<td>Indicates a situation that might result in loss of data or hardware damage.</td>
</tr>
<tr>
<td></td>
<td>Warning</td>
<td>Alerts you to the risk of personal injury or death.</td>
</tr>
<tr>
<td></td>
<td>Laser warning</td>
<td>Alerts you to the risk of personal injury from a laser.</td>
</tr>
</tbody>
</table>
Documentation Feedback

We encourage you to provide feedback, comments, and suggestions so that we can improve the documentation. You can send your comments to techpubs-comments@juniper.net, or fill out the documentation feedback form at https://www.juniper.net/cgi-bin/docbugreport/. If you are using e-mail, be sure to include the following information with your comments:

- Document or topic name
- URL or page number
- Software release version (if applicable)

Requesting Technical Support

Technical product support is available through the Juniper Networks Technical Assistance Center (JTAC). If you are a customer with an active J-Care or JNASC support contract, or are covered under warranty, and need post-sales technical support, you can access our tools and resources online or open a case with JTAC.

- Product warranties—For product warranty information, visit http://www.juniper.net/support/warranty/.
- JTAC hours of operation—The JTAC centers have resources available 24 hours a day, 7 days a week, 365 days a year.

Self-Help Online Tools and Resources

For quick and easy problem resolution, Juniper Networks has designed an online self-service portal called the Customer Support Center (CSC) that provides you with the following features:

- Find CSC offerings: http://www.juniper.net/customers/support/
- Search for known bugs: http://www2.juniper.net/kb/
- Find product documentation: http://www.juniper.net/techpubs/
- Find solutions and answer questions using our Knowledge Base: http://kb.juniper.net/
- Download the latest versions of software and review release notes: http://www.juniper.net/customers/csc/software/
- Search technical bulletins for relevant hardware and software notifications: https://www.juniper.net/alerts/
• Join and participate in the Juniper Networks Community Forum:
 http://www.juniper.net/company/communities/

• Open a case online in the CSC Case Management tool: http://www.juniper.net/cm/

To verify service entitlement by product serial number, use our Serial Number Entitlement (SNE) Tool: https://tools.juniper.net/SerialNumberEntitlementSearch/

Opening a Case with JTAC

You can open a case with JTAC on the Web or by telephone.

• Use the Case Management tool in the CSC at http://www.juniper.net/cm/.

• Call 1-888-314-JTAC (1-888-314-5822 toll-free in the USA, Canada, and Mexico).

For international or direct-dial options in countries without toll-free numbers, see http://www.juniper.net/support/requesting-support.html.
PART 1

Juniper Networks Hardware and Software

- Juniper Networks Router Overview on page 3
- Cheat Sheet for the CLI Commands on page 13
- Work with Problems on Your Network on page 25
CHAPTER 1

Juniper Networks Router Overview

This chapter provides a general overview of Juniper Networks M-series and T-series routers and routing platforms:

- Juniper Networks Router Introduction on page 3
- Router Architecture for M-series Routers and T-series Platforms on page 4
- Data Flow Through the Packet Forwarding Engine on page 5
- Data Flow Through an M-series Router on page 6
- Data Flow Through a T-series Routing Platform on page 7
- Hardware Components on page 8
- Monitor Hardware Components on page 10
- Operational Mode CLI Commands for Router Monitoring on page 11

Juniper Networks Router Introduction

Each Juniper Networks M-series and T-series routing platform is a complete routing system that supports a variety of high-speed interfaces (including SONET/SDH, Ethernet, and ATM) for large networks and network applications. Juniper Networks routers share common Junos OS, features, and technology for compatibility across platforms.

Application-specific integrated circuits (ASICs) form a definitive part of the router design and enable the router to achieve data forwarding rates that match current fiber-optic capacity. All M-series routers use the Internet Processor II ASIC, which performs the route lookup function and several types of packet processing, such as filtering, policing, rate limiting, and sampling. The T-series platforms use the new T-series Internet Processor for route lookups and notification forwarding.

This topic provides a general overview of Juniper Networks M-series and T-series routers and routing platforms:

- Router Architecture for M-series Routers and T-series Platforms on page 4
- Data Flow Through the Packet Forwarding Engine on page 5
- Data Flow Through an M-series Router on page 6
- Data Flow Through a T-series Routing Platform on page 7
Router Architecture for M-series Routers and T-series Platforms

The router architecture of each Juniper Networks M-series router and T-series platform cleanly separates routing and control functions from packet forwarding operations, thereby eliminating bottlenecks and permitting the router to maintain a high level of performance. Each router consists of two major architectural components:

- The Routing Engine, which provides Layer 3 routing services and network management.
- The Packet Forwarding Engine, which provides all operations necessary for transit packet forwarding.

The Routing Engine and Packet Forwarding Engine perform their primary tasks independently, while constantly communicating through a high-speed internal link. This arrangement provides streamlined forwarding and routing control and the capability to run Internet-scale networks at high speeds.

Figure 1 on page 4 illustrates the relationship between the Routing Engine and the Packet Forwarding Engine.

Figure 1: Router Architecture

![Diagram of Router Architecture]

The Routing Engine consists of an Intel-based PCI platform running Junos OS. For more information about Junos OS, see “CLI Operational Mode Top-Level Commands” on page 13, “CLI Configuration Mode Top-Level Commands” on page 15 and the Junos® OS CLI User Guide.

The Routing Engine constructs and maintains one or more routing tables. From the routing tables, the Routing Engine derives a table of active routes, called the forwarding table, which is then copied into the Packet Forwarding Engine.

The design of the Internet Processor II and T-series Internet Processor ASICs allows the forwarding table in the Packet Forwarding Engine to be updated without interrupting forwarding performance (see Figure 2 on page 5).
The Packet Forwarding Engine uses ASICs to perform Layer 2 and Layer 3 packet switching, route lookups, and packet forwarding. On M-series routers, the Packet Forwarding Engine includes the router midplane (on an M40 router, the backplane), Flexible PIC Concentrators (FPCs), Physical Interface Cards (PICs), and other components, unique to each router, that handle forwarding decisions.

The T-series platforms feature multiple Packet Forwarding Engines, up to a maximum of 16 for the T640 Internet routing node and 8 for the T320 Internet router. Each FPC has one or two Packet Forwarding Engines, each with its own memory buffer. Each Packet Forwarding Engine maintains a high-speed link to the Routing Engine. For information about T-series platforms, see the T640 Internet Routing Node Hardware Guide and the T320 Internet Router Hardware Guide.

Data Flow Through the Packet Forwarding Engine

You can understand the function of the Packet Forwarding Engine by following the flow of a packet through the router: first into a PIC, then through the switching fabric, and finally out another PIC for transmission on a network link. Generally, the data flows through the Packet Forwarding Engine as follows:

1. Packets enter the router through incoming PIC interfaces, which contain controllers that perform media-specific processing.
2. The PICs pass the packets to the FPCs, where they are divided into cells and are distributed to the router’s buffer memory.
3. The Packet Forwarding Engine performs route lookups, forwards the notification to the destination port, reassembles the cells into packets, and sends them to the destination port on the outgoing PIC.
4. The PIC performs encapsulation and other media-specific processing, and sends the packets out into the network.
Data Flow Through an M-series Router

Figure 3 on page 6 illustrates the flow of data packets through an M-series router, using the M40e router architecture as an example. In this example, data flows in the following sequence:

1. A packet enters through the incoming PIC, which parses and de-encapsulates the packet, then passes it to the FPC.

2. On the FPC, the Packet Director ASIC distributes packets to the active I/O Manager ASICS, where each is divided into cells and sent across the midplane to the Switching and Forwarding Modules (SFMs). (On the M40e router, only one SFM is online at a time.) In addition, the behavior aggregate (BA) classifier determines the forwarding treatment for each packet.

3. When cells arrive at an SFM, the Distributed Buffer Manager ASIC writes them into packet buffer memory, which is distributed evenly across the router’s FPCs. The Distributed Buffer Manager ASIC also extracts information needed for route lookups and passes the information to the Internet Processor II ASIC.

4. The Internet Processor II ASIC performs the lookup in the full forwarding table, and finds the outgoing interface and specific next hop for each packet. In addition, the Internet Processor II ASIC performs filtering, policing, sampling and multfield classification, if configured.

5. The forwarding table forwards all unicast packets that do not have options and any multicast packets that have been previously cached. Packets with options are sent to the Routing Engine for resolution.

6. After the Internet Processor II has determined the next hop, it notifies a second Distributed Buffer Manager ASIC, which forwards the notification to the outgoing FPC. Queueing policy and rewrites occur at this time on the egress router. A pointer to the packet is queued at the outgoing port.
7. When the packet pointer reaches the front of the queue and is ready for transmission, the cells are read from packet buffer memory and are reassembled into the packet, which is passed to the outgoing PIC interface.

8. The PIC performs media-specific processing and sends the packet into the network.

Data Flow Through a T-series Routing Platform

Figure 4 on page 7 illustrates the data flow through a T640 routing node. In this example, data flows in the following sequence:

1. Packets enter through an incoming PIC and are passed to the Packet Forwarding Engine on the originating FPC.

2. The Layer2/Layer 3 Packet Processing ASIC parses the packets and divides them into cells. In addition, the behavior aggregate (BA) classifier determines the forwarding treatment for each packet.

3. The network-facing Switch Fabric ASIC places the lookup key in a notification and passes it to the T-series Internet Processor.

4. The Switch Fabric ASIC also passes the data cells to the Queuing and Memory Interface ASICs for buffering on the FPC.
5. The T-series Internet Processor performs the route lookup and forwards the notification to the Queuing and Memory Interface ASIC. In addition, if configured filtering, policing, sampling and multfield classification, are performed at this time.

6. The Queuing and Memory Interface ASIC sends the notification to the switch-fabric-facing Switch Interface ASIC, which sends bandwidth requests through the switch fabric to the destination port, and issues read requests to the Queuing and Memory Interface ASIC to begin reading data cells out of memory.

7. The Switch Interface ASIC on the destination FPC sends bandwidth grants through the switch fabric to the originating Switch Interface ASIC.

8. Upon receipt of each grant, the originating Switch Interface ASIC sends a cell through the switch fabric to the destination Packet Forwarding Engine.

9. On the destination Packet Forwarding Engine, the switch-fabric-facing Switch Interface ASIC receives the data cells, places the lookup key in a notification, and forwards the notification to the T-series Internet Processor.

10. The T-series Internet Processor performs the route lookup and forwards the notification to the Queuing and Memory Interface ASIC, which forwards it to the network-facing Switch Interface ASIC.

11. The Switch Interface ASIC sends requests to the Queuing and Memory Interface ASIC to read the data cells out of memory, and passes the cells to the Layer2/Layer 3 Packet Processing ASIC, which reassembles the cells into packets, performs the necessary Layer 2 encapsulation, and sends the packets to the outgoing PIC. Queuing policy and rewrites occur at this time on the egress router.

12. The PIC passes the packets into the network.

For more information about the M-series routers and T-series platforms, see the router platform-specific hardware guide, and the Junos Hardware Network Operations Guide.

Hardware Components

Each Juniper Networks router consists of a chassis and a set of components, including FPCs, PICs, Routing Engines, power supplies, cooling system, and cable management system. Many of the components are field-replaceable units. The following major components are discussed in this topic:

- Chassis on page 9
- Flexible PIC Concentrators on page 9
- Physical Interface Cards on page 9
- Routing Engine on page 10
- Power Supplies on page 10
- Cooling System on page 10
Chassis

Chassis dimensions are listed in the physical specifications table for each router. For more information about chassis dimensions, see the router platform-specific hardware guide.

Each Juniper Networks router features a rigid sheet metal chassis that houses all of the router components. The chassis are designed to install into a variety of racks, including standard 19-inch equipment racks, telco center-mount racks, and four-post racks and cabinets. See Table 2 on page 9 for the maximum number of each router type that can be installed into a rack. Each chassis includes mounting ears or support posts to facilitate rack mounting, and one or more points for connecting an electrostatic discharge (ESD) wrist strap for use when servicing the router.

Table 2: Maximum Number of Routers per Rack

<table>
<thead>
<tr>
<th>Router or Routing Node</th>
<th>Maximum in Standard Rack</th>
</tr>
</thead>
<tbody>
<tr>
<td>T640</td>
<td>2</td>
</tr>
<tr>
<td>T320</td>
<td>3</td>
</tr>
<tr>
<td>M160</td>
<td>2</td>
</tr>
<tr>
<td>M40e</td>
<td>2</td>
</tr>
<tr>
<td>M40</td>
<td>2</td>
</tr>
<tr>
<td>M20</td>
<td>5</td>
</tr>
<tr>
<td>M5 and M10</td>
<td>14</td>
</tr>
</tbody>
</table>

Each chassis includes a midplane (called the backplane on an M40 router). The midplane transfers data packets to and from the FPCs, distributes power to router components, and provides signal connectivity to the router components for system monitoring and control.

Flexible PIC Concentrators

The FPCs house the PICs used in the router and connect them to other router components. FPCs install into the front of the router in either a vertical or horizontal orientation, depending on the router. A compatible FPC can be installed into any available FPC slot, regardless of the PICs it contains. If a slot is not occupied by an FPC, a blank FPC panel must be installed to shield the empty slot and allow cooling air to circulate properly through the FPC card cage. For information about FPCs, see the specific hardware guide.

Physical Interface Cards

Juniper Networks M-series routers and T-series platforms use PICs to connect to a wide variety of network media. PICs receive incoming packets from the network and transmit outgoing packets to the network, performing framing and line-speed signaling for their
specific media type. Before transmitting outgoing data packets, the PICs encapsulate the packets received from the FPCs. Each PIC is equipped with an ASIC that performs control functions specific to the PIC’s media type. For information about PICs, see the specific PIC guide.

Routing Engine

The Routing Engine consists of an Intel-based PCI platform running the Junos OS. The Routing Engine maintains the routing tables used by the router in which it is installed and controls the routing protocols on the router. The T640 routing node, and the T320, M160, M40e, and M20 routers support up to two Routing Engines, while the M40, M10, and M5 routers support a single Routing Engine.

Each Routing Engine consists of a CPU; SDRAM for storage of the routing and forwarding tables and other processes; a compact flash disk for primary storage of software images, configuration files, and microcode; a hard disk for secondary storage; a PC card slot (on some M40 routers, a floppy disk) for storage of software upgrades; and interfaces for out-of-band management access.

Power Supplies

Each Juniper Networks M-series router, T-series platform, or MX-series router has one to four load-sharing power supplies depending on the platform. If a power supply in a redundant configuration is removed or fails, the other power supplies assume the electrical load. For more information about the power supplies in each router, see the router platform-specific hardware guide.

The power supplies are connected to the router midplane, which distributes the different output voltages throughout the router and its components. Some routers can operate using either AC or DC power; other routers operate with DC power only. For information about the type of power used by each router, see the platform-specific hardware guide.

Cooling System

Each Juniper Networks M-series router and T-series platform features a cooling system designed to keep all router components within recommended operating temperature limits. If one component of the cooling system fails or is removed, the system automatically adjusts the speed of the remaining components to keep the temperature within the acceptable range. The cooling system for each router is unique and can consist of fans, impellers, and air filters. For information about the cooling system components of each router, see the “Major Hardware Components” table in the router platform-specific hardware guide.

Monitor Hardware Components

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTE: If the System Control Board (SCB), System and Switch Board (SSB), or Forwarding Engine Board (FEB) is not running, information about chassis components is not available through the command-line interface (CLI).</td>
</tr>
</tbody>
</table>
To use the CLI to monitor Juniper Networks routers, follow these steps:

1. Log in to the router. The CLI operational mode prompt (>) appears.

 If the operational mode prompt does not appear when you log in to the router, type cli to start the Junos OS and enter operational mode. The prompt changes to >, indicating that you are in operational mode.

2. Use one of the operational mode CLI commands listed in “Operational Mode CLI Commands for Router Monitoring” on page 11 to monitor router hardware.

Operational Mode CLI Commands for Router Monitoring

Purpose

Use the operational mode CLI commands listed in Table 3 on page 11 to monitor router hardware.

Action

Table 3: Operational Mode CLI Commands for Router Monitoring

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show version</td>
<td>Displays the router hostname, model number, and version of Junos OS running on the router.</td>
</tr>
<tr>
<td>show chassis firmware</td>
<td>Displays the version of firmware running on the SCB, SFM, SSB, FEB, and FPCs.</td>
</tr>
<tr>
<td>show chassis hardware</td>
<td>Displays an inventory of the hardware components installed in the router, including the component name, version, part number, serial number, and a brief description.</td>
</tr>
<tr>
<td>show chassis environment</td>
<td>Displays environmental information about the router chassis, including the temperature and status.</td>
</tr>
<tr>
<td>show chassis environment component-name</td>
<td>Displays more detailed environmental information for the following router components: FPCs, Front Panel Module (FPM), Miscellaneous Subsystem (MCS), PFE Clock Generator (PCG), Power Entry Module (PEM) or power supply, control board, SONET clock generator (SCG), Switch Interface Board (SIB), Routing Engine, and SFM. This command works only on the M40e, M160, and T320 routers, and the T640 routing node.</td>
</tr>
<tr>
<td>show chassis craft-interface</td>
<td>Displays operational status information about the router, including the alarm status and LED status of major components.</td>
</tr>
<tr>
<td>show chassis alarms</td>
<td>Displays the current router component alarms that have been generated, including the date, time, severity level, and description.</td>
</tr>
<tr>
<td>show chassis component-name</td>
<td>Displays more detailed operational status information about the FPCs, Routing Engine, FEB, SCB, SFMs, and SSB router components, including the temperature of air passing by the Switch Plane Processor (SPP) card and the Switch Plane Router (SPR) card (the two SFM serial components), in degrees Centigrade. The command displays the total CPU DRAM and SRAM being used by the SFM processor. The command output displays the time that the SFM became active and how long the SFM has been up and running. A small uptime can indicate a problem.</td>
</tr>
</tbody>
</table>
Table 3: Operational Mode CLI Commands for Router Monitoring (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show log messages</td>
<td>Displays the contents of the messages system log file that records messages generated by component operational events, including error messages generated by component failures. To monitor the messages file in real time, use the monitor start messages CLI command. This command displays the new entries in the file until you stop monitoring by using the monitor stop messages CLI command.</td>
</tr>
<tr>
<td>show log chassisd</td>
<td>Displays the contents of the chassis daemon (chassisd) log file that keeps track of the state of each chassis component To monitor the chassisd file in real time, use the monitor start chassisd CLI command. This command displays the new entries in the file until you stop monitoring by using the monitor stop chassisd CLI command.</td>
</tr>
</tbody>
</table>
| request support information | Use this command when you contact the Juniper Networks Technical Assistance Center (JTAC) about your component problem. This command is the equivalent of using the following CLI commands (see “Contact JTAC” on page 90):
 - show version
 - show chassis firmware
 - show chassis hardware
 - show chassis environment
 - show interfaces extensive (for each configured interface)
 - show configuration (excluding any SECRET-DATA)
 - show system virtual-memory |

Contact JTAC If you cannot determine the cause of a problem or need additional assistance, contact JTAC at http://www.juniper.net/cm/ or at 1-888-314-JTAC (within the United States) or 1-408-745-9500 (from outside the United States). For details on the information you need to provide for JTAC, see “Contact JTAC” on page 90. For steps to return a failed component, see “Return the Failed Component” on page 90.
CHAPTER 2

Cheat Sheet for the CLI Commands

This chapter provides quick reference information for the Junos OS command-line interface (CLI). For more detailed information about using the CLI, see the CLI User Guide.

- CLI Operational Mode Top-Level Commands on page 13
- CLI Configuration Mode Top-Level Commands on page 15
- Load a Configuration Using Copy and Paste Commands on page 18
- CLI Keyboard Shortcuts on page 21
- Manage Output at the ---(more)--- Prompt on page 22

CLI Operational Mode Top-Level Commands

In operational mode, you enter commands to monitor and diagnose the software, network connectivity, and the router. When you log in to the router and the CLI starts, you are at the top level of the CLI operational mode. At this level, there are several broad groups of CLI commands. Table 4 on page 13 lists the top-level CLI operational mode commands and describes the options available for each command. The commands are listed in alphabetical order.

Table 4: CLI Operational Mode Top-Level Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| **clear** | Clear statistics and protocol database information. Syntax: `clear (arp | bgp | firewall | helper | igmp | ike | ilmi | interfaces | ipsec | ipv6 | isis | ldp | log | mpls | msdp | multicast | ospf | pim | rip | ripng | route | rsvp |snmp | system | vrrp)`
| **configure** | Enter CLI configuration mode. Alternative commands: `configure <exclusive> <private>` | | | | | |
| **file** | Perform file manipulation operations, such as copy, delete, list, rename, and show. Syntax: `file (compare | copy | delete | list | rename | show)` |
| **help** | Provide help information. Syntax: `help (reference | syslog | topic)` |
Table 4: CLI Operational Mode Top-Level Commands (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>Monitor a log file or interface traffic in real time.</td>
</tr>
<tr>
<td>Syntax:</td>
<td>monitor (interface</td>
</tr>
<tr>
<td>mtrace</td>
<td>Display trace information about a multicast path from a source to a receiver.</td>
</tr>
<tr>
<td>Syntax:</td>
<td>mtrace (from-source</td>
</tr>
<tr>
<td>ping</td>
<td>Verify IP connectivity to another IP host or Asynchronous Transfer Mode (ATM) connectivity (ping ATM) using Operation Administration and Maintenance (OAM) cells to an ATM endstation.</td>
</tr>
<tr>
<td>Syntax:</td>
<td>ping host <interface source-interface > <bypass-routing> <count requests > <do-not-fragment> <interval seconds > <pattern string> <record-route> <routing-instance routing-instance-name > <size bytes > <strict> <tos type-of-service> <ttl value > <vila route > <rapid</td>
</tr>
<tr>
<td>Syntax:</td>
<td>ping atm interface <count count > <end-to-end</td>
</tr>
<tr>
<td>Syntax:</td>
<td>ping vpn-interface vpn-interface host <local echo-address></td>
</tr>
<tr>
<td>pipe</td>
<td>Filter the output of an operational mode or configuration mode command.</td>
</tr>
<tr>
<td>Syntax:</td>
<td></td>
</tr>
<tr>
<td>quit</td>
<td>Log out from the CLI process.</td>
</tr>
<tr>
<td>Syntax:</td>
<td>quit</td>
</tr>
<tr>
<td>request</td>
<td>Make system-level requests, such as halt or reboot the router, load software packages, and back up the router’s file systems.</td>
</tr>
<tr>
<td>Syntax:</td>
<td>request system (halt</td>
</tr>
<tr>
<td>restart</td>
<td>Restart the router hardware or software processes.</td>
</tr>
<tr>
<td>Syntax:</td>
<td>restart (fpc</td>
</tr>
<tr>
<td>set</td>
<td>Set CLI properties, the router’s date and time, and the craft interface display text.</td>
</tr>
<tr>
<td>Syntax:</td>
<td>set (chassis</td>
</tr>
<tr>
<td>show</td>
<td>Show information about all aspects of the software, including interfaces and routing protocols.</td>
</tr>
<tr>
<td>Syntax:</td>
<td>show (accounting</td>
</tr>
<tr>
<td>ssh</td>
<td>Open a secure shell to another host.</td>
</tr>
<tr>
<td>Syntax:</td>
<td>ssh host <bypass-routing> <routing-instance routing-instance-name > <source address> <vpn-interface vpn-interface > <v1</td>
</tr>
</tbody>
</table>
Table 4: CLI Operational Mode Top-Level Commands (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>Start a software process. Syntax: <code>start shell</code></td>
</tr>
<tr>
<td>telnet</td>
<td>Start a telnet session to another host. Syntax: `telnet host <8bit> <bypass-routing> <inet</td>
</tr>
<tr>
<td>test</td>
<td>Run various diagnostic debugging commands. Syntax: `test (configuration</td>
</tr>
<tr>
<td>traceroute</td>
<td>Trace the route to a remote host. Syntax: `traceroute host <as-number-lookup> <bypass-routing> <gateway address> <inet</td>
</tr>
</tbody>
</table>

CLI Configuration Mode Top-Level Commands

In configuration mode, you configure the Junos OS by creating a hierarchy of configuration statements. You can do this using the CLI or by creating a text (ASCII) file that contains the statement hierarchy. (The statement hierarchy is identical in both the CLI and the text configuration file.) You can configure all properties of the Junos OS, including interfaces, general routing information, routing protocols, and user access, as well as several system hardware properties. When you have finished entering the configuration statements, you commit them, which activates the configuration on the router.

Table 5 on page 15 lists each CLI configuration mode command and describes the options available for each command. The commands are organized alphabetically.

Table 5: CLI Configuration Mode Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>activate</td>
<td>Remove the <code>inactive:</code> tag from a statement, effectively reading the statement or identifier to the configuration. Statements or identifiers that have been activated take effect when you next issue the <code>commit</code> command. Syntax: `activate (statement-path</td>
</tr>
<tr>
<td>annotate</td>
<td>Add comments to a configuration. Syntax: <code>annotate <statement-path> "comment-string"</code></td>
</tr>
<tr>
<td>commit</td>
<td>Commit the set of changes to the database and cause the changes to take operational effect. Syntax: <code>commit <and-quit> <check> <confirmed <minutes>> <synchronize></code></td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>copy</td>
<td>Make a copy of an existing statement in the configuration. Syntax: <code>copy < statement-path> identifier1 to identifier2</code></td>
</tr>
<tr>
<td>deactivate</td>
<td>Add the inactive: tag to a statement, effectively commenting out the statement or identifier from the configuration. Statements or identifiers marked as inactive do not take effect when you issue the <code>commit</code> command. Syntax: `deactivate (statement-path</td>
</tr>
<tr>
<td>delete</td>
<td>Delete a statement or identifier. All subordinate statements and identifiers contained within the specified statement path are deleted with it. Syntax: `delete (statement-path</td>
</tr>
<tr>
<td>edit</td>
<td>Move inside the specified statement hierarchy. If the statement does not exist, it is created. Syntax: <code>edit < statement-path></code></td>
</tr>
<tr>
<td>exit</td>
<td>Exit the current level of the statement hierarchy, returning to the level prior to the last <code>edit</code> command, or exit from configuration mode. The <code>quit</code> and <code>exit</code> commands are synonyms. Syntax: <code>exit <configuration-mode></code></td>
</tr>
<tr>
<td>help</td>
<td>Display help about available configuration statements. Syntax: `help (apropos</td>
</tr>
<tr>
<td>insert</td>
<td>Insert an identifier into an existing hierarchy. Syntax: `insert < statement-path> identifier1 (before</td>
</tr>
<tr>
<td>load</td>
<td>Load a configuration from an ASCII configuration file or from terminal input. Your current location in the configuration hierarchy is ignored when the load operation occurs. Syntax: `load (merge</td>
</tr>
<tr>
<td>quit</td>
<td>Exit the current level of the statement hierarchy, returning to the level prior to the last <code>edit</code> command, or exit from configuration mode. The <code>quit</code> and <code>exit</code> commands are synonyms. Syntax: <code>quit <configuration-mode></code></td>
</tr>
<tr>
<td>rename</td>
<td>Rename an existing configuration statement or identifier. Syntax: <code>rename < statement-path> identifier1 to identifier2</code></td>
</tr>
</tbody>
</table>
Table 5: CLI Configuration Mode Commands *(continued)*

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rollback</td>
<td>Return to a previously committed configuration. The software saves the last 10 committed configurations, including the rollback number, date, time, and name of the user who issued the commit configuration command. rollback 0 erases any configuration changes made to the current candidate configuration. The currently operational Junos OS configuration is stored in the file <code>juniper.conf</code>, and the last three committed configurations are stored in the files <code>juniper.conf.1.gz</code>, <code>juniper.conf.2.gz</code>, and <code>juniper.conf.3.gz</code>. These four files are located in the directory <code>/config/</code>, which is on the router’s flash drive. The remaining six previous committed configurations, the files <code>juniper.conf.4.gz</code> through <code>juniper.conf.9.gz</code>, are stored in the directory <code>/var/db/config/</code>, which is on the router’s hard disk. Syntax: <code>rollback < number></code></td>
</tr>
<tr>
<td>run</td>
<td>Run an operational mode CLI command without exiting from configuration mode. Syntax: <code>run < operation-command></code></td>
</tr>
<tr>
<td>save</td>
<td>Save the configuration to an ASCII file in the user’s home directory (by default) or to the user’s terminal session. The statement hierarchy and the contents of the current level of the statement hierarchy (and below) are saved. This allows a section of the configuration to be saved, while fully specifying the statement hierarchy. Syntax: `save filename</td>
</tr>
<tr>
<td>set</td>
<td>Create a statement hierarchy and set identifier values. This is similar to the edit command except that your current level in the hierarchy does not change, and you can set identifier values, while the edit command only allows access to a statement path. Syntax: `set (statement-path</td>
</tr>
<tr>
<td>show</td>
<td>Display the current configuration. Syntax: `show (statement-path</td>
</tr>
<tr>
<td>status</td>
<td>Display the users currently editing the configuration. Syntax: <code>status</code></td>
</tr>
<tr>
<td>top</td>
<td>Return to the top level of configuration command mode, indicated by the <code>[edit]</code> banner, or execute a command from the top level of the configuration. Syntax: <code>top < configuration-command></code></td>
</tr>
<tr>
<td>up</td>
<td>Move up one level in the statement hierarchy. Syntax: <code>up < number></code></td>
</tr>
<tr>
<td>update</td>
<td>Update a private database. For more information on the update command, see the Junos System Basics and Services Command Reference. Syntax: <code>update</code></td>
</tr>
</tbody>
</table>
Load a Configuration Using Copy and Paste Commands

You can load configurations using the copy and paste commands in the following ways:

1. **Load a Configuration from a File to a Router on page 18**
2. **Load a Configuration Using the display set Command on page 20**

Load a Configuration from a File to a Router

Purpose

You can create a file, copy the file to the local router, and then load the file into the CLI. After you have loaded the file, you can commit it to activate the configuration on the router, or you can edit the configuration interactively using the CLI and commit it at a later time.

Action

To load a configuration from a file, follow these steps:

1. Create the configuration in a file using a text editor such as Notepad, making sure that the syntax of the configuration file is correct. See the Junos System Basics and Services Command Reference, for information about testing the syntax of a configuration file.

2. In the text file, use an option to perform the required action. The following table lists and describes some options. For an example of a text file, see “What It Means”.

Table 6: Options for the load Command

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>merge</td>
<td>Combines the current configuration and the configuration in filename or the one that you type at the terminal. A merge operation is useful when you are adding a new section to an existing configuration. If the existing configuration and the incoming configuration contain conflicting statements, the statements in the incoming configuration override those in the existing configuration.</td>
</tr>
<tr>
<td>override</td>
<td>Discards the current candidate configuration and loads the configuration in filename or the one that you type at the terminal. When you use the override option and commit the configuration, all system processes reparse the configuration. You can use the override option at any level of the hierarchy.</td>
</tr>
<tr>
<td>replace</td>
<td>Searches for the replace tags, deletes the existing statements of the same name, if any, and replaces them with the incoming configuration. If there is no existing statement of the same name, the replace operation adds the statements marked with the replace tag to the configuration. Note: For this operation to work, you must include replace tags in the text file or configuration you type at the terminal.</td>
</tr>
</tbody>
</table>

3. Enter **Ctrl+a** to select all the text, and **Ctrl+c** to copy the contents of the text file to the clipboard.

4. On the router, enter configuration mode:

```
user@host> edit
[edit]
user@host#
```
5. Load the configuration file:

 user@host> load merge terminal

6. At the prompt, paste the contents of the clipboard using the mouse and the paste icon.

 [edit]
 user@host# load merge terminal
 [Type \^D at a new line to end input]
 > Paste the contents of the clipboard here<

7. Press Enter.

8. Enter Ctrl+d.

9. Commit the configuration to activate it on the router, or you can edit the configuration interactively using the CLI and commit it at a later time.

Sample Output The following is an example of a text file with the replace option:

```
interfaces {
  replace:
    so-0/0/0 {
      unit 0 {
        family inet {
          address 10.1.34.1/30;
        }
      }
    }
}

protocols {
  replace:
    isis {
      interface so-0/0/0 {
        level 1 metric 10;
        level 2 disable;
      }
      interface fxp0.0 {
        disable;
      }
      interface lo0.0;
    }
}
```

The following output is for Step 4 through Step 8:

```
[edit]
user@R1# load merge terminal
[Type \^D at a new line to end input]
interfaces {
  replace:
    so-0/0/0 {
      unit 0 {
        family inet {
          address 10.1.34.1/30;
        }
      }
    }
}

protocols {
  replace:
```
isis {
 interface so-0/0/1.0 {
 level 1 metric 10;
 level 2 disable;
 }
 interface fxp0.0 {
 disable;
 }
 interface lo0.0;
}

load complete

Meaning The sample output shows a configuration loaded from a text file with the replace option. For more information about loading a configuration, see the Junos System Basics Configuration Guide.

Load a Configuration Using the display set Command

Purpose In configuration mode only, you can display the configuration as a series of configuration mode commands required to recreate the configuration. This is useful for users who are not familiar with how to use configuration mode commands or for users who wish to cut, paste, and edit the displayed configuration. In addition, you can duplicate the configuration of one router to another.

Action To load a configuration from the local router to a target router, follow these steps:

1. On the local router, enter configuration mode:

 user@R1> edit
 [edit]
 user@host#

2. Go to the hierarchy level you want to copy. For example:

 [edit]
 user@R1# edit interfaces

3. Display the series of configuration commands required to recreate the configuration. For example:

 [edit interfaces]
 user@R1# show | display set
 set interfaces so-0/0/0 unit 0 family inet accounting destination-class-usage
 set interfaces so-0/0/0 unit 0 family inet address 10.1.12.1/30
 set interfaces fxp0 unit 0 family inet address 10.168.70.143/21
 set interfaces lo0 unit 0 family inet address 10.0.0.1/32
 set interfaces lo0 unit 0 family iso address 49.0002.1000.0000.0003.00

4. Copy each line of the configuration individually from the local router to the target router. In the target router, you must be at the top level of the configuration and in configuration mode. For example:

 mwazna@R2> edit
 Entering configuration mode
 [edit]
mwazna@R2# set interfaces so-0/0/0 unit 0 family inet accounting destination-class-usage

5. Continue cutting and pasting each line of the configuration.
6. Commit the configuration to activate it on the router, or you can edit the configuration interactively using the CLI and commit it at a later time.

CLI Keyboard Shortcuts

In the CLI, you can use keyboard sequences to move around and edit a command line. You can also use keyboard sequences to scroll through a list of recently executed commands.

Table 15 on page 23 lists some of the CLI keyboard sequences.

Table 7: CLI Keyboard Shortcuts

<table>
<thead>
<tr>
<th>Keyboard sequence</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl+b</td>
<td>Move the cursor back one character.</td>
</tr>
<tr>
<td>Esc+b or Alt+b</td>
<td>Move the cursor back one word.</td>
</tr>
<tr>
<td>Ctrl+f</td>
<td>Move the cursor forward one character.</td>
</tr>
<tr>
<td>Esc+f or Alt+f</td>
<td>Move the cursor forward one word.</td>
</tr>
<tr>
<td>Ctrl+a</td>
<td>Move the cursor to the beginning of the command line.</td>
</tr>
<tr>
<td>Ctrl+e</td>
<td>Move the cursor to the end of the command line.</td>
</tr>
<tr>
<td>Ctrl+h, Delete, or Backspace</td>
<td>Delete the character before the cursor.</td>
</tr>
<tr>
<td>Ctrl+d</td>
<td>Delete the character at the cursor.</td>
</tr>
<tr>
<td>Ctrl+k</td>
<td>Delete the all characters from the cursor to the end of the command line.</td>
</tr>
<tr>
<td>Ctrl+u or Ctrl+x</td>
<td>Delete the all characters from the command line.</td>
</tr>
<tr>
<td>Ctrl+w, Esc+Backspace, or Alt+Backspace</td>
<td>Delete the word before the cursor.</td>
</tr>
<tr>
<td>Esc+d or Alt+d</td>
<td>Delete the word after the cursor.</td>
</tr>
<tr>
<td>Ctrl+y</td>
<td>Insert the most recently deleted text at the cursor.</td>
</tr>
<tr>
<td>Ctrl+i</td>
<td>Redraw the current line.</td>
</tr>
<tr>
<td>Ctrl+p</td>
<td>Scroll backward through the list of recently executed commands.</td>
</tr>
<tr>
<td>Ctrl+n</td>
<td>Scroll forward through the list of recently executed commands.</td>
</tr>
</tbody>
</table>
Table 7: CLI Keyboard Shortcuts (continued)

<table>
<thead>
<tr>
<th>Keyboard sequence</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl+r</td>
<td>Search the CLI history incrementally in reverse order for lines matching the search string.</td>
</tr>
<tr>
<td>Esc+/ or Alt+/</td>
<td>Search the CLI history for words for which the current word is a prefix.</td>
</tr>
<tr>
<td>Esc-1 through Esc-9 or Alt-1 through Alt-9</td>
<td>Specify the number of times to execute a keyboard sequence.</td>
</tr>
</tbody>
</table>

Manage Output at the ---(more)--- Prompt

If the output is longer than the screen length, it appears one screen at a time with the UNIX ---(more)--- prompt at the end of the screen. The ---(more)--- prompt indicates that more output is available. The following table lists the keyboard sequences you can use at the ---(more)--- prompt.

Table 8: Keyboard Shortcuts at the ---(more)--- Prompt

<table>
<thead>
<tr>
<th>Keyboard Shortcut</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter, Return, k, Ctrl+m, Ctrl+n, or down arrow</td>
<td>Scroll down one line.</td>
</tr>
<tr>
<td>Tab, d, Ctrl+d, or Ctrl+x</td>
<td>Scroll down one-half screen.</td>
</tr>
<tr>
<td>Space or Ctrl+f</td>
<td>Scroll down one whole screen.</td>
</tr>
<tr>
<td>Ctrl+e or g</td>
<td>Scroll down to the bottom of the output.</td>
</tr>
<tr>
<td>n (or no-more)</td>
<td>Display the output all at once instead of one screen at a time.</td>
</tr>
<tr>
<td>j, Ctrl-h, Ctrl-p, or up arrow</td>
<td>Scroll up one line.</td>
</tr>
<tr>
<td>u or Ctrl-u</td>
<td>Scroll up one-half screen.</td>
</tr>
<tr>
<td>b or Ctrl-b</td>
<td>Scroll up one whole screen.</td>
</tr>
<tr>
<td>Ctrl-a or g</td>
<td>Scroll up to the bottom of the output.</td>
</tr>
<tr>
<td>/string</td>
<td>Search forward for a string.</td>
</tr>
<tr>
<td>?string</td>
<td>Search backward for a string.</td>
</tr>
<tr>
<td>n</td>
<td>Repeat previous search for a string.</td>
</tr>
<tr>
<td>m or M (or</td>
<td>match string)</td>
</tr>
<tr>
<td>e or E (or</td>
<td>except string)</td>
</tr>
<tr>
<td>Ctrl-C, q, Q, or Ctrl-k</td>
<td>Interrupt the display of output.</td>
</tr>
</tbody>
</table>
Table 8: Keyboard Shortcuts at the ---(more)--- Prompt (continued)

<table>
<thead>
<tr>
<th>Keyboard Shortcut</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>H (Same as specifying</td>
<td>hold)</td>
</tr>
<tr>
<td>c or C</td>
<td>Clear any match conditions and display the complete output.</td>
</tr>
<tr>
<td>Ctrl-l</td>
<td>Redraw the output on the screen.</td>
</tr>
<tr>
<td>s or S (or</td>
<td>save filename)</td>
</tr>
</tbody>
</table>
CHAPTER 3

Work with Problems on Your Network

This chapter describes how to work with problems on your network. It discusses troubleshooting basics, using an example network, and includes the commands you might use to diagnose problems with the router and network.

- Working with Problems on Your Network on page 25
- Isolate a Broken Network Connection on page 25

Working with Problems on Your Network

Problem This checklist provides links to troubleshooting basics, an example network, and includes a summary of the commands you might use to diagnose problems with the router and network.

Table 9: Checklist for Working with Problems on Your Network

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Isolate a Broken Network Connection” on page 25</td>
<td>ping (ip-address</td>
</tr>
<tr>
<td>1. Identify the Symptoms</td>
<td>show < configuration</td>
</tr>
<tr>
<td>2. Isolate the Causes</td>
<td>[edit] delete routing options static route destination-prefix commit and-quit show route destination-prefix</td>
</tr>
<tr>
<td>3. Take Appropriate Action</td>
<td>show route (ip-address</td>
</tr>
<tr>
<td>4. Evaluate the Solution</td>
<td></td>
</tr>
</tbody>
</table>

Isolate a Broken Network Connection

Purpose By applying the standard four-step process illustrated in Figure 5 on page 26, you can isolate a failed node in the network.
Before you embark on the four-step process, however, it is important that you are prepared for the inevitable problems that occur on all networks. While you might find a solution to a problem by simply trying a variety of actions, you can reach an appropriate solution more quickly if you are systematic in your approach to the maintenance and monitoring of your network. To prepare for problems on your network, understand how the network functions under normal conditions, have records of baseline network activity, and carefully observe the behavior of your network during a problem situation.

Figure 5: Process for Diagnosing Problems in Your Network

Figure 6 on page 26 shows the network topology used in this topic to illustrate the process of diagnosing problems in a network.

The network in Figure 6 on page 26 consists of two autonomous systems (ASs), AS 65001 includes two routers, and AS 65002 includes three routers. The border router (R1) in AS 65001 announces aggregated prefixes 100.100/24 to the AS 65002 network. The problem in this network is that R6 does not have access to R5 because of a loop between R2 and R6.

To isolate a failed connection in your network, follow these steps:
PART 2

Junos operating system (Junos OS) in the Network

- Stop and Start Junos OS on page 29
- Display Junos OS Information on page 35
- Check Router Configuration on page 39
- Upgrade Junos OS on page 49
- Reinstall Junos OS on page 63
CHAPTER 4

Stop and Start Junos OS

This chapter describes how to stop and start the Junos OS after it has been installed. (See Table 10 on page 29.)

- Stopping and Starting Junos OS on page 29
- Stop the Junos OS on page 29
- Reboot the Junos OS on page 30
- Restart a Junos OS Process on page 31

Stopping and Starting Junos OS

This checklist provides the links to tasks for stopping and starting the Junos OS after it has been installed, and a summary of the commands used in those tasks. (See Table 10 on page 29.)

Table 10: Checklist for Stopping and Starting the Junos OS

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Stop the Junos OS on page 29</td>
<td>request system halt</td>
</tr>
<tr>
<td>2. Reboot the Junos OS on page 30</td>
<td>request system reboot</td>
</tr>
</tbody>
</table>

“Restart a Junos OS Process” on page 31

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Display Information About Software Processes on page 31</td>
<td>show system processes extensive</td>
</tr>
<tr>
<td>2. Restart a Junos OS Process on page 32</td>
<td>restart (class-of-service</td>
</tr>
<tr>
<td>3. Check That the Process Has Restarted on page 33</td>
<td>show system processes extensive</td>
</tr>
</tbody>
</table>

Stop the Junos OS

Purpose To avoid damage to the file system, gracefully shut down the Junos OS before powering down the router. If you have configured a backup Routing Engine, it must be shut down before the master Routing Engine.
Action

To stop the Junos OS, use the following Junos OS command-line interface (CLI) operational mode command:

```
user@host> request system halt
```

Sample Output

```
user@host> request system halt
Halt the system ? [yes,no] (no) yes
shutdown: [pid 3110]
Shut down NOW!
*** FINAL System shutdown message from root@host ***
System going down IMMEDIATELY

user@host> Dec 17 17:28:40 init: syslogd (PID 2514) exited with status=0 Normal
Exit
Waiting (max 60 seconds) for system process 'bufdaemon' to stop...stopped
Waiting (max 60 seconds) for system process 'syncer' to stop...stopped
syncing disks... 4
done
Uptime: 3h31m41s
ata0: resetting devices .. done
The operating system has halted.
Please press any key to reboot.
```

Meaning

The sample output shows that all system process have stopped and the operating system was halted immediately. For more detailed information on the `request system halt` command, see the Junos System Basics and Services Command Reference.

Reboot the Junos OS

Purpose

Reboot Junos OS after a software upgrade and occasionally to recover from an error condition.

Action

To reboot the Junos OS, use the following Junos OS CLI operational mode command:

```
user@host> request system reboot
```

Sample Output

```
Reboot the system ? [yes,no] (no) yes
shutdown: [pid 845]
Shut down NOW!
*** FINAL System shutdown message from root@host ***
System going down IMMEDIATELY

user@host> Dec 17 17:34:20 init: syslogd (PID 409) exited with status=0 Normal
Exit
Waiting (max 60 seconds) for system process 'bufdaemon' to stop...stopped
Waiting (max 60 seconds) for system process 'syncer' to stop...stopped
syncing disks... 10 6
done
Uptime: 2m45s
ata0: resetting devices .. done
Rebooting...
```

Meaning

The sample output shows the final stages of the system shutdown and the execution of the reboot. Reboot requests are recorded to the system log files, which you can view with the `show log messages` command. You can view the process names with the `show system processes` command. For more information about the `show system processes` command,
see “Check That the Process Has Restarted” on page 33. For more detailed information about rebooting your system, see the Junos System Basics and Services Command Reference.

Restart a Junos OS Process

Purpose
Restart a Junos OS process when you need to recover from an error condition

NOTE:
Never restart any of the software processes unless instructed to do so by a customer support engineer.

To restart a Junos OS process, follow these steps:

1. Display Information About Software Processes on page 31
2. Restart a Junos OS Process on page 32
3. Check That the Process Has Restarted on page 33

Display Information About Software Processes

Purpose
Display information about software processes to begin diagnosing an error condition.

Action
To display information about the software processes that are running on the router, use the following Junos OS CLI operational mode command:

```bash
user@host> show system processes extensive
```

Sample Output

```bash
user@host> show system processes extensive
last pid: 750; load averages: 0.00, 0.00, 0.00 up 0+00:58:50 18:34:17
52 processes: 1 running, 51 sleeping
Mem: 50M Active, 19M Inact, 38M Wired, 264K Cache, 86M Buf, 642M Free
Swap: 768M Total, 768M Free

PID  USERNAME  PRI  NICE  SIZE    RES  STATE  TIME  WCPU  CPU  COMMAND
546  root      10   0   9096K  1720K  nanslp 0:21 0.00% 0.00%  chassisd
668 root     32   0  21716K  828K RUN   0:00 0.00% 0.00%  top
...
```

Meaning
The sample output shows the central processing unit (CPU) utilization and lists the processes in order of CPU utilization.
Table 11 on page 32 lists and describes the output fields included in the sample output for the `show processes extensive` command. The fields are listed in alphabetical order.

Table 11: Show System Processes Extensive Output Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMAND</td>
<td>Command that is running.</td>
</tr>
<tr>
<td>CPU</td>
<td>Raw (unweighted) CPU usage. The value of this field is used to sort the</td>
</tr>
<tr>
<td></td>
<td>processes in the output.</td>
</tr>
<tr>
<td>lastpid</td>
<td>Last process identifier assigned to the process.</td>
</tr>
<tr>
<td>loadaverages</td>
<td>Three load averages, followed by the current time.</td>
</tr>
<tr>
<td>Mem</td>
<td>Information about physical and virtual memory allocation.</td>
</tr>
<tr>
<td>NICE</td>
<td>UNIX “nice” value. The nice value allows a process to change it’s final</td>
</tr>
<tr>
<td></td>
<td>scheduling priority.</td>
</tr>
<tr>
<td>PID</td>
<td>Process identifier.</td>
</tr>
<tr>
<td>PRI</td>
<td>Current kernel scheduling priority of the process. A lower number indicates</td>
</tr>
<tr>
<td></td>
<td>a higher priority.</td>
</tr>
<tr>
<td>processes</td>
<td>Number of existing processes and the number of processes in each state</td>
</tr>
<tr>
<td></td>
<td>(sleeping, running, starting, zombies, and stopped).</td>
</tr>
<tr>
<td>RES</td>
<td>Current amount of resident memory, in KB.</td>
</tr>
<tr>
<td>SIZE</td>
<td>Total size of the process (text, data, and stack), in KB.</td>
</tr>
<tr>
<td>STATE</td>
<td>Current state of the process (sleep, wait, run, idle, zombi, or stop).</td>
</tr>
<tr>
<td>Swap</td>
<td>Information about physical and virtual memory allocation.</td>
</tr>
<tr>
<td>USERNAME</td>
<td>Owner of the process.</td>
</tr>
<tr>
<td>WCPU</td>
<td>Weighted CPU usage.</td>
</tr>
</tbody>
</table>

For more details, see “Checklist for Verifying the Routing Engine CPU Memory” on page 157, and the [Junos System Basics Configuration Guide](#).

Restart a Junos OS Process

Action

To restart a Junos OS process, use the following Junos OS CLI operational mode command and include the process you wish to restart. For example:

```plaintext
user@host> restart routing
```
Sample Output

```
user@host> restart routing
Routing protocol daemon started, pid 751
```

Meaning

The sample output shows that the routing protocol daemon was restarted and the process identification (PID) was changed from 685 in the previous sample output to 751.

Table 12 on page 33 lists and describes the options available for the `restart` command.

Table 12: Options to Restart a Junos OS Process

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>class-of-service</td>
<td>Restart the class-of-service process, which controls the router's class-of-service configuration.</td>
</tr>
<tr>
<td>gracefully</td>
<td>Restart the software process by sending the equivalent of a UNIX SIGTERM signal.</td>
</tr>
<tr>
<td>immediately</td>
<td>Immediately restart the process by sending the equivalent of a UNIX SIGKILL signal.</td>
</tr>
<tr>
<td>interface-control</td>
<td>Restart the interface process, which controls the router's physical interface devices and logical interfaces.</td>
</tr>
<tr>
<td>mib-process</td>
<td>Restart the Management Information Base (MIB) II process, which provides the router's MIB II agent.</td>
</tr>
<tr>
<td>network-access-service</td>
<td>Restart the network access process, which provides the router's Challenge Handshake Authentication Process (CHAP) authentication service.</td>
</tr>
<tr>
<td>remote-operations</td>
<td>Restart the remote operations process, which provides the ping and traceroute MIBs.</td>
</tr>
<tr>
<td>routing</td>
<td>Restart the routing protocol process, which controls the routing protocols that run on the router and maintains the routing tables.</td>
</tr>
<tr>
<td>sampling</td>
<td>Restart the sampling process, which performs packet sampling and cflowd export.</td>
</tr>
<tr>
<td>snmp</td>
<td>Restart the Simple Network Management Process (SNMP) process, which provides the router's SNMP master agent.</td>
</tr>
<tr>
<td>soft</td>
<td>Reread and reactivate the configuration without completely restarting the software processes. For example, Border Gateway Protocol (BGP) peers stay up and the routing table stays constant. This option is the equivalent of a UNIX SIGHUP signal; omitting this option is the equivalent of a UNIX SIGTERM (kill) operation.</td>
</tr>
</tbody>
</table>

Check That the Process Has Restarted

Purpose

After you have entered the `restart` command to restart a process, make sure that the process is up and running.
Action To check that a process has restarted, use the following Junos OS CLI operational mode command:

```
user@host> show system processes extensive
```

Sample Output 1

```
user@host> show system processes extensive
last pid: 750; load averages: 0.00, 0.00, 0.00 up 0+00:58:50 18:34:17
52 processes: 1 running, 51 sleeping
Mem: 50M Active, 19M Inact, 38M Wired, 264K Cache, 86M Buf, 642M Free
Swap: 768M Total, 768M Free

PID  USERNAME  PRI  NICE  SIZE    RES  STATE  TIME  WCPU  CPU COMMAND
685 root 2 0 12716K 3840K kqread 0:01 0.00% 0.00% rpd
```

Sample Output 2

```
user@host> show system processes extensive
last pid: 758; load averages: 0.00, 0.00, 0.00 up 0+01:01:48 18:37:15
52 processes: 1 running, 51 sleeping
Mem: 51M Active, 19M Inact, 38M Wired, 156K Cache, 86M Buf, 642M Free
Swap: 768M Total, 768M Free

PID  USERNAME  PRI  NICE  SIZE    RES  STATE  TIME  WCPU  CPU COMMAND
751 root 2 0 1280K 3024K kqread 0:00 0.00% 0.00% rpd
```

Meaning The sample output shows that the routing protocol process (rpd) was restarted because the process identifier (PID) of the process was renamed from 685, as shown in the Sample Output 1, to 751 as shown in Sample Output 2.
CHAPTER 5

Display Junos OS Information

This chapter describes how to display the hostname and version information for the Junos OS running on a router.

- Displaying Junos OS Information on page 35
- Display Junos OS Information on page 35
- Display Version Information for Junos OS Packages on page 36

Displaying Junos OS Information

Purpose

This checklist provides the commands for displaying the hostname and version information for the Junos OS running on a router. (See Table 13 on page 35.)

Action

Table 13: Checklist for Displaying Junos OS Information

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Display Junos OS Information" on page 35</td>
<td>show version</td>
</tr>
<tr>
<td>"Display Version Information for Junos OS Packages" on page 36</td>
<td>show version brief</td>
</tr>
</tbody>
</table>

Display Junos OS Information

Purpose

Display Junos OS information and status to determine if the version of Junos OS that you are running supports particular features or hardware. You can also determine whether particular software bugs will affect your version of Junos OS.

Action

To display Junos OS information, use the following Junos OS command-line interface (CLI) operational mode command:

```
user@host> show version
```
Sample Output

user@host> show version
Hostname: my-router.net
Model: m160
JUNOS Base OS boot [5.5R2.3]
JUNOS Base OS Software Suite [5.5R2.3]
JUNOS Kernel Software Suite [5.5R2.3]
JUNOS Packet Forwarding Engine Support [5.5R2.3]
JUNOS Routing Software Suite [5.5R2.3]
JUNOS Online Documentation [5.5R2.3]
JUNOS Crypto Software Suite [5.5R2.3]
KERNEL 5.5R2.3 #0 built by builder on 2002-11-21 22:56:20 UTC
MGD release 5.5R2.3 built by builder on 2002-11-21 22:36:05 UTC
CLI release 5.5R2.3 built by builder on 2002-11-21 22:33:44 UTC
CHASSISD release 5.5R2.3 built by builder on 2002-11-21 22:32:10 UTC
DCD release 5.5R2.3 built by builder on 2002-11-21 22:30:06 UTC
RPD release 5.5R2.3 built by builder on 2002-11-21 22:37:08 UTC
SNMPD release 5.5R2.3 built by builder on 2002-11-21 22:43:14 UTC
MIB2D release 5.5R2.3 built by builder on 2002-11-21 22:36:10 UTC
APSD release 5.5R2.3 built by builder on 2002-11-21 22:32:07 UTC
VRRPD release 5.5R2.3 built by builder on 2002-11-21 22:43:26 UTC
ALARM release 5.5R2.3 built by builder on 2002-11-21 22:32:01 UTC
PFED release 5.5R2.3 built by builder on 2002-11-21 22:36:53 UTC
CRAFTD release 5.5R2.3 built by builder on 2002-11-21 22:33:59 UTC
SAMPLED release 5.5R2.3 built by builder on 2002-11-21 22:43:01 UTC
ILMID release 5.5R2.3 built by builder on 2002-11-21 22:35:17 UTC
RMOPD release 5.5R2.3 built by builder on 2002-11-21 22:37:01 UTC
COSD release 5.5R2.3 built by builder on 2002-11-21 22:33:50 UTC
KMD release 5.5R2.3 built by builder on 2002-11-21 22:35:21 UTC
FSAD release 5.5R2.3 built by builder on 2002-11-21 22:34:14 UTC
SERVICED release 5.5R2.3 built by builder on 2002-11-21 22:43:07 UTC
IRSD release 5.5R2.3 built by builder on 2002-11-21 22:35:21 UTC
NASD release 5.5R2.3 built by builder on 2002-11-21 22:36:47 UTC
FUD release 5.5R2.3 built by builder on 2002-11-21 22:34:17 UTC
PPMD release 5.5R2.3 built by builder on 2002-11-21 22:36:58 UTC
LMPD release 5.5R2.3 built by builder on 2002-11-21 22:36:03 UTC
RTSPD release 5.5R2.3 built by builder on 2002-11-21 22:42:58 UTC
SMARTD release 5.5R2.3 built by builder on 2002-11-21 22:47:50 UTC
jkernel-dd release 5.5R2.3 built by builder on 2002-11-21 22:27:20 UTC
jroute-dd release 5.5R2.3 built by builder on 2002-11-21 22:27:34 UTC
jcrypto-dd release 5.5R2.3 built by builder on 2002-11-21 22:27:46 UTC

Meaning
The sample output shows the hostname, the version information for the Junos OS packages installed on the machine, and the version information for each software process.

Display Version Information for Junos OS Packages

Purpose
Display version information for Junos OS packages to determine if they support particular features or hardware. You can also determine whether particular software bugs will affect your version of Junos OS.

Action
To display brief information and status for the kernel and Packet Forwarding Engine, use the following CLI operational mode command:

user@host> show version brief

The following sample output is for worldwide nonencrypted Junos OS:
Sample Output

```
user@host> show version brief
Hostname: my-router.net
Model: m10
JUNOS Base OS boot [5.5R2.3]
JUNOS Base OS Software Suite [5.5R2.3]
JUNOS Kernel Software Suite [5.5R2.3]
JUNOS Packet Forwarding Engine Support [5.5R2.3]
JUNOS Routing Software Suite [5.5R2.3]
JUNOS Online Documentation [5.5R2.3]
```

The following sample output is for Canada and USA encrypted Junos OS:

```
user@host> show version brief
Hostname: my-router.net
Model: m10
JUNOS Base OS boot [5.5R2.3]
JUNOS Base OS Software Suite [5.5R2.3]
JUNOS Kernel Software Suite [5.5R2.3]
JUNOS Packet Forwarding Engine Support [5.5R2.3]
JUNOS Routing Software Suite [5.5R2.3]
JUNOS Online Documentation [5.5R2.3]
JUNOS Crypto Software Suite [5.5R2.3]
```

Meaning

The sample output shows version information for the Junos OS packages installed on the router. If the **Junos Crypto Software Suite** is listed, the router has Canada and USA encrypted Junos OS. If the **Junos Crypto Software Suite** is not listed, the router is running worldwide nonencrypted Junos OS.
CHAPTER 6

Check Router Configuration

This chapter describes how to check the configuration on your router.

- Checklist for Checking the Router Configuration on page 39
- Display the Current Active Router Configuration on page 39
- Display a Specific Configuration Hierarchy on page 43
- Display Additional Information about the Configuration on page 44

Checklist for Checking the Router Configuration

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Table 14 on page 39 provides links and commands for checking the router configurations.</th>
</tr>
</thead>
</table>

Action

Table 14: Checklist for Checking the Router Configuration

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Display the Current Active Router Configuration” on page 39</td>
<td>show configuration</td>
</tr>
<tr>
<td>“Display a Specific Configuration Hierarchy” on page 43</td>
<td>show configuration statement-path</td>
</tr>
<tr>
<td>“Display Additional Information about the Configuration” on page 44</td>
<td>[edit] show <hierarchy-level></td>
</tr>
</tbody>
</table>

Display the Current Active Router Configuration

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Examine the current active router configuration.</th>
</tr>
</thead>
</table>

Action

To display the current, active router configuration, use the following command-line interface (CLI) operational mode command:

user@host> show configuration
Sample Output

user@host> show configuration
version "10.4R2";
groups {
global {
system {
 host-name potter;
 domain-name harry.potter.net;
 domain-search [harry.potter.net potter.net hryptr.net];
 backup-router 10.110.12.254;
 time-zone America/Los_Angeles;
 authentication-order [tacplus password radius];
 root-authentication {
 encrypted-password "1OFf5.$I7.kUgMmx/4WkwUAG"; # SECRET-DATA
 }
 name-server {
 172.17.28.101;
 172.17.28.100;
 }
 radius-server {
 10.168.5.73 {
 secret "9Nd-YoDjq.PT4oZjik5T369pBIhS1L7dC"; # SECRET-DATA
 timeout 5;
 retry 3;
 }
 }
 tacplus-server {
 10.168.5.73 {
 secret "9.539IRSM8701lMX-2gqmfTz6"; # SECRET-DATA
 timeout 15;
 single-connection;
 }
 }
 login {
 class superuser-local {
 permissions all;
 }
 class wheel {
 permissions [admin clear field floppy interfacemaintenance
 network reset routing shell snmp system trace view];
 }
 class readonly {
 permissions [interface network routing system trace view];
 }
 }
 user rpe {
 uid 1230;
 class superuser;
 shell csh;
 authentication {
 encrypted-password FN5oyk/qZO7F2; # SECRET-DATA
 }
 }...

static-host-mapping {
 crater sysid 0102.5524.5045;
badlands sysid 0102.5524.5046;

services {
 finger;
 ftp;
 rlogin;
 rsh;
 ssh;
 telnet;
}
syslog {
 user * {
 any emergency;
 }
 host log {
 any notice;
 pfe info;
 interactive-commands any;
 }
 file messages {
 any notice;
 authorization info;
 pfe info;
 archive world-readable;
 }
 file security {
 interactive-commands any;
 archive world-readable;
 }
 file white_bx {
 daemon notice;
 archive size 40m world-readable;
 }
}
processes {
 routing enable;
 snmp enable;
 tnp-process enable;
 ntp enable;
 inet-process enable;
 mib-process enable;
 management enable;
 watchdog enable;
}
ntp {
 boot-server ntp.juniper.net;
 server 172.17.27.46;
}
chassis {
 dump-on-panic;
}
snmp {
 location "Systest lab";
 contact "Brian Matheson";
 interface fxp0.0;
 community public {
 authorization read-only;
 }
 community private {

authorization read-write;
}
}
}
}

routing-options {
 static {
 /* corporate and alpha net */
 route 172.16.0.0/12 {
 next-hop 10.168.14.254;
 retain;
 no-readvertise; [...] Output truncated...
 }
 }
}
}
}
}
}

re1;

apply-groups [global re0 re1];

chassis {
 fpc 0 {
 pic 0 {
 mlfr-uni-nni-bundles 4;
 }
 }
}

interfaces {
 ls-0/0/0:0 {
 encapsulation multilink-frame-relay-uni-nni;
 unit 0 {
 dci 100;
 family inet {
 address 10.53.99.2/32 {
 destination 10.53.99.1;
 }
 }
 }
 }
}

t1-0/1:0:1 {
 encapsulation multilink-frame-relay-uni-nni;
 unit 0 {
 family mlfr-uni-nni {
 bundle ls-0/0/0:0;
 }
 }
}

routing-options {
 static {
 route 10.1.1.0/24 next-hop 10.53.99.1;
 }
 autonomous-system 69;
 forwarding-table {
 export pplb;
 }
}

protocols {
bgp {
 disable;
 group int {
 type internal;
 neighbor 10.255.14.30;
 [...Output truncated...]
 }
}
isis {
 disable;
 interface all {
 level 1 disable;
 }
 interface fxp0.0 {
 disable;
 }
}
inactive: ospf {
 traffic-engineering;
 reference-bandwidth 4g;
 area 0.0.0.0 {
 interface all;
 interface fxp0.0 {
 disable;
 }
 }
}
policy-options {
 policy-statement pplb {
 then {
 load-balance per-packet;
 }
 }
}
[...Output truncated...]

Meaning The sample output shows the current, active configuration for the router. When displaying the configuration, the CLI indents each subordinate hierarchy level, inserts braces to indicate the beginning and end of each hierarchy level, and places semicolons at the end of statements that are at the lowest level of the hierarchy.

The configuration statements appear in a fixed order. Interfaces appear alphabetically by type, and then in numerical order by slot number, Physical Interface Card (PIC) number, and port number.

Display a Specific Configuration Hierarchy

Purpose To examine a specific configuration hierarchy in the active router configuration.

Action To view a specific configuration hierarchy, use the following CLI operational mode command;

user@host> show configuration statement-path
Sample Output

```
user@host>  show configuration protocols bgp
  group ebgp {
    type external;
    peer-as 65001;
    neighbor 10.168.20.1;
  }
```

Meaning The sample output shows the active configuration under the [protocol bgp] hierarchy level.

Display Additional Information about the Configuration

Purpose You can display additional information when you are not sure of the meaning of configuration statements and what permission bits are required to add and modify them.

Action To display additional information about the entire configuration, use the following CLI configuration mode command:

```
user@host#  show | display detail
```

To display additional information about a specific hierarchy, use the following CLI configuration mode command:

```
user@host#  show <hierarchy-level> | display detail
```

The following sample output is for the first command. The output for a particular hierarchy appears similar to its section in this sample output.
Sample Output

user@host> edit
user@host# show | display detail
#
version: Software version information
require: system
version "3.4R1 [tlim]"
system {
host-name: Host name for this router
match: ^[[:alnum:]._-]+$
require: system
host-name router-name;
domain-name: Domain name for this router
match: ^[[:alnum:]._-]+$
require: system
domain-name isp.net;
backup-router: Address of router to use while booting
backup-router 10.168.100.1;
root-authentication {
encrypted-password: Crypted password string
encrypted-password "1BYJQE$/ocQof8pmcm7MSGK0"; # SECRET-DATA
}
name-server: DNS name servers
require: system
name-server {
name-server: DNS name server address
name-server 208.197.1.0;
}
login {
class: User name (login)
match: ^[[:alnum:]_-.]+$
class superuser {
permissions: Set of permitted operation categories
permissions all;
}
...
services: System services
require: system
services {
services: Service name

Chapter 6: Check Router Configuration
##
ftp;
##
services: Service name
##
telnet;
##
}
syslog {
##
file-name: File to record logging data
##
file messages {
##
Facility type
Level name
##
any notice;
##
Facility type
Level name
##
authorization info;
}
}
}
chassis {
alarm {
sonet {
##
lol: Loss of light
alias: loss-of-light
##
lol red;
}
}
}
}
}
interfaces {
##
Interface name
##
at-2/1/1 {
atm-options {
##
vpi: Virtual path index
range: 0 .. 255
maximum-vcs: Maximum number of virtual circuits on this VP
##
vpi 0 maximum-vcs 512;
}
##
unit: Logical unit number
range: 0 .. 16384
##
unit 0 {
##
vci: ATM point-to-point virtual circuit identifier ([vpi.]vci)
match: ^([[:digit:]]+)\{0,1\}[:digit:]+\$
##
vci 0.128;
The sample output shows additional information that includes the help string explaining each configuration statement, and the permission bits required to add and modify the configuration statement.
As new features become available or as software problems are fixed, you might periodically upgrade the router software. (See .)

- Checklist for Upgrading Junos OS on page 49
- Logging Information Before You Upgrade Junos OS on page 50
- Upgrade Junos OS on page 59
- After You Upgrade Junos operating system (Junos OS) on page 60

Table 15: Checklist for Upgrading Junos OS

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Logging Information Before You Upgrade Junos OS” on page 50</td>
<td>show version</td>
</tr>
<tr>
<td>1. Log the Software Version Information on page 51</td>
<td>show chassis hardware</td>
</tr>
<tr>
<td>2. Log the Hardware Version Information on page 51</td>
<td>show configuration</td>
</tr>
<tr>
<td>3. Log the Active Configuration on page 52</td>
<td>show interface terse</td>
</tr>
<tr>
<td>4. Log the Interfaces on the Router on page 53</td>
<td>show bgp summary</td>
</tr>
<tr>
<td>5. Log the BGP, IS-IS, and OSPF Adjacency Information on page 53</td>
<td>show isis adjacency brief</td>
</tr>
<tr>
<td>6. Log the System Storage Information on page 55</td>
<td>show ospf neighbor brief</td>
</tr>
<tr>
<td>7. Back Up the Currently Running and Active File System on page 55</td>
<td>request system snapshot</td>
</tr>
<tr>
<td>8. Download Junos OS on page 56</td>
<td>http://www.juniper.net/support</td>
</tr>
</tbody>
</table>

“Upgrade Junos OS” on page 59
Table 15: Checklist for Upgrading Junos OS (continued)

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Copy Junos OS to the Router on page 59</td>
<td>file copy ftp://username:prompt@ftp.hostname.net/jinstall-package-name /var/tmp/jinstall-package-name</td>
</tr>
<tr>
<td>2. Add New Software on page 59</td>
<td>request system software add/var/tmp/jinstall-package-name</td>
</tr>
<tr>
<td>3. Start the New Software on page 60</td>
<td>request system reboot</td>
</tr>
</tbody>
</table>

“After You Upgrade Junos operating system (Junos OS)” on page 60

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
</table>
| 1. Compare Information Logged Before and After the Upgrade on page 60 | show version | save filename
show chassis hardware | save filename
show configuration | save filename
show interface terse | save filename
show bgp summary | save filename
show isis adjacency brief | save filename
show ospf neighbor brief | save filename
show system storage | save filename |
| 2. Back Up the New Software on page 61 | request system snapshot |

Logging Information Before You Upgrade Junos OS

Purpose

Before you upgrade the Junos OS, it is important to log information about the existing system so that after the upgrade you can compare the same information to verify that all components are installed and working as expected. Also, during the process of logging information, you might find an existing problem that you did not know about and might have thought was caused by the upgrade.

In all the logging steps, you can use your terminal program to save the output from the commands, or use the `save` command to redirect the output to an external file.

To save the output to a file on another machine, use the following Junos OS command-line interface (CLI) operational mode command:

```
user@host> command | save filename
```

By default, the file is placed in your home directory on the router. To redirect the output to a file on another machine, change the filename to include the path to that machine and file. For information about how you can specify the filename, see the Junos System Basics and Services Command Reference.

The following example stores the output of the `show version` command in a file:

```
user@host> show version | save filename
Wrote 1143 lines of output to ‘filename’
```

To log important information about your system, follow these steps:

1. **Log the Software Version Information on page 51**
2. **Log the Hardware Version Information on page 51**
3. Log the Active Configuration on page 52
4. Log the Interfaces on the Router on page 53
5. Log the BGP, IS-IS, and OSPF Adjacency Information on page 53
6. Log the System Storage Information on page 55
7. Back Up the Currently Running and Active File System on page 55
8. Download Junos OS on page 56

Log the Software Version Information

Action To log the Junos OS version information, use the following Junos OS CLI operational mode command:

```
user@host> show version | save filename
```

Sample Output
```
user@host> show version | save test
Wrote 39 lines of output to 'test'

user@host> show version
Hostname: my-router.net
Model: m10
JUNOS Base OS boot [5.0R5]
JUNOS Base OS Software Suite [5.0R5]
JUNOS Kernel Software Suite [5.0R5]
JUNOS Routing Software Suite [5.0R5]
JUNOS Packet Forwarding Engine Support [5.0R5]
JUNOS Crypto Software Suite [5.0R5]
JUNOS Online Documentation [5.0R5]
KERNEL 5.0R5 #0 built by builder on 2002-03-02 05:10:28 UTC
MCD release 5.0R5 built by builder on 2002-03-02 04:45:32 UTC
CLI release 5.0R5 built by builder on 2002-03-02 04:44:22 UTC
CHASSISD release 5.0R5 built by builder on 2002-03-02 04:43:37 UTC
DCD release 5.0R5 built by builder on 2002-03-02 04:42:47 UTC
RPD release 5.0R5 built by builder on 2002-03-02 04:41:17 UTC
SNMPD release 5.0R5 built by builder on 2002-03-02 04:52:26 UTC
MIB2D release 5.0R5 built by builder on 2002-03-02 04:45:37 UTC
APSD release 5.0R5 built by builder on 2002-03-02 04:43:31 UTC
VRRPD release 5.0R5 built by builder on 2002-03-02 04:52:34 UTC
ALARMD release 5.0R5 built by builder on 2002-03-02 04:43:24 UTC
PFED release 5.0R5 built by builder on 2002-03-02 04:46:06 UTC
CRAFTD release 5.0R5 built by builder on 2002-03-02 04:44:30 UTC
SAMPLED release 5.0R5 built by builder on 2002-03-02 04:52:20 UTC
ILMED release 5.0R5 built by builder on 2002-03-02 04:45:21 UTC
BPRELAYD release 5.0R5 built by builder on 2002-03-02 04:42:41 UTC
RMOPD release 5.0R5 built by builder on 2002-03-02 04:46:11 UTC
jkernel-dd release 5.0R5 built by builder on 2002-03-02 04:41:07 UTC
jroute-dd release 5.0R5 built by builder on 2002-03-02 04:41:21 UTC
jdocs-dd release 5.0R5 built by builder on 2002-03-02 04:39:11 UTC

Meaning  The sample output shows the hostname, router model, and the different Junos software packages, processes, and documents.

Log the Hardware Version Information

Action  To log the router chassis hardware version information, use the following Junos OS CLI operational mode command:
The output for the M-series routers varies depending on the chassis components of each router. All routers have a chassis, midplanes or backplanes, power supplies, and Flexible PIC Concentrators (FPCs). Refer to the hardware guides for information about the different chassis components.

The sample output shows the hardware inventory for an M160 router with a chassis serial number of 101. For each component, the output shows the version number, part number, serial number, and description.

Log the Active Configuration

To log the active configuration on the router, use the following Junos OS CLI operational mode command:

```
user@host> show configuration | save filename
```
Sample Output

user@host> show configuration | save test
Wrote 4076 lines of output to 'test'

user@host> show configuration
system {
  host-name lab8;
  domain-name juniper.net;
  backup-router 10.1.1.254;
    time-zone America/Los_Angeles;
  default-address-selection;
  dump-on-panic;
  name-server {
    [...Output truncated...]
}

Meaning
The sample output shows the configuration currently running on the router, which is the last committed configuration.

Log the Interfaces on the Router

Action
To log the interfaces on the router, use the following Junos OS CLI operational mode command:

user@host> show interface terse | save filename

Sample Output

user@host> show interface terse | save test
Wrote 81 lines of output to 'test'

user@host> show interface terse
Interface       Admin Link Proto Local             Remote
at-1/3/0        up    up                        
at-1/3/0.0      up    up   inet  1.0.0.1           --> 1.0.0.2
  iso
fxp0            up    up                        
fxp0.0          up    up   inet  10.168.5.59/24
gre             up    up                        
ipip            down  up                        
lo0             up    up                        
lo0.0           up    up   inet  127.0.0.1         --> 0/0
  iso 47.0005.80ff.f800.0000.0108.0001.1921.6800.5059.00
so-1/2/0        up    down                      
so-1/2/1        down  down                      
so-1/2/2        down  down                      
so-1/2/3        down  down                      
so-2/0/0        up    up                        
so-2/0/0.0      up    up   inet  1.2.3.4           --> 1.2.3.5
  iso

[...Output truncated...]

Meaning
The sample output shows summary information about the physical and logical interfaces on the router.

Log the BGP, IS-IS, and OSPF Adjacency Information

Purpose
The following commands log useful information about the Border Gateway Protocol (BGP), Intermediate System-to-Intermediate System (IS-IS), and Open Shortest Path First (OSPF) protocols. If you have other protocols installed, such as Multiprotocol...
Label Switching (MPLS), Resource Reservation Protocol (RSVP), or Protocol Independent Multicast (PIM), you also might log summary information for them.

**Action**
To log protocol peer information, use the following Junos OS CLI operational mode commands:

```bash
user@host> show bgp summary | save filename
user@host> show isis adjacency brief | save filename
user@host> show ospf neighbor brief | save filename
```

**Sample Output 1**
```
user@host> show bgp summary | save test
Wrote 45 lines of output to 'test'

user@host> show bgp summary
Groups: 1 Peers: 1 Down peers: 0
Table Tot Paths Act Paths Suppressed History Damp State Pending
inet.0 4 4 0 0 0 0 0
Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn
State|Active/Received/Damped...
9.9.3.1 2 2627 2628 0 0 21:50:12 4/4/0
0/0/0
```

**Sample Output 2**
```
user@host> show isis adjacency brief | save test
Wrote 10 lines of output to 'test'

user@host> show isis adjacency brief
IS-IS adjacency database:
Interface System L State Hold (secs) SNPA
so-1/0/0.0 1921.6800.5067 2 Up 13
so-1/1/0.0 1921.6800.5067 2 Up 25
so-1/2/0.0 1921.6800.5067 2 Up 20
so-1/3/0.0 1921.6800.5067 2 Up 19
so-2/0/0.0 1921.6800.5066 2 Up 19
so-2/1/0.0 1921.6800.5066 2 Up 17
so-2/2/0.0 1921.6800.5066 2 Up 20
so-2/3/0.0 1921.6800.5066 2 Up 20
so-5/0/0.0 ranier 2 Up 17
```

**Sample Output 3**
```
user@host> show ospf neighbor brief | save test
Wrote 10 lines of output to 'test'

user@host> show ospf neighbor brief
Address Intf State ID Pri Dead
10.168.254.225 fxp3.0 2Way 10.250.240.32 128 36
10.168.254.230 fxp3.0 Full 10.250.240.8 128 38
10.168.254.229 fxp3.0 Full 10.250.240.35 128 33
10.1.1.129 fxp2.0 Full 10.250.240.12 128 37
10.1.1.131 fxp2.0 Full 10.250.240.11 128 38
10.1.2.1 fxp1.0 Full 10.250.240.9 128 32
10.1.2.81 fxp0.0 Full 10.250.240.10 128 33
```

**Meaning**
Sample output 1 displays summary information about BGP and its neighbors. Sample output 2 displays information about IS-IS neighbors. Sample output 3 displays information about all OSPF neighbors.
Log the System Storage Information

**Action**

To log system storage statistics for the amount of free disk space in the router’s file system, use the following Junos OS CLI operational mode command:

```
user@host> show system storage | save filename
```

**Sample Output**

```
user@host> show system storage | save test
Wrote 14 lines of output to 'test'
```

```
user@host> show system storage
```

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>1K-blocks</th>
<th>Used</th>
<th>Avail</th>
<th>Capacity</th>
<th>Mounted on</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/ad0s1a</td>
<td>65687</td>
<td>26700</td>
<td>33733</td>
<td>44%</td>
<td>/</td>
</tr>
<tr>
<td>devfs</td>
<td>16</td>
<td>16</td>
<td>0</td>
<td>100%</td>
<td>/dev/</td>
</tr>
<tr>
<td>/dev/vn1</td>
<td>9310</td>
<td>9310</td>
<td>0</td>
<td>100%</td>
<td>/packages/mnt/jbase</td>
</tr>
<tr>
<td>/dev/vn2</td>
<td>8442</td>
<td>8442</td>
<td>0</td>
<td>100%</td>
<td>/packages/mnt/jkernel-5.0R5.1</td>
</tr>
<tr>
<td>/dev/vn3</td>
<td>11486</td>
<td>11486</td>
<td>0</td>
<td>100%</td>
<td>/packages/mnt/jpe-5.0R5.1</td>
</tr>
<tr>
<td>/dev/vn4</td>
<td>5742</td>
<td>5742</td>
<td>0</td>
<td>100%</td>
<td>/packages/mnt/jroute-5.0R5.1</td>
</tr>
<tr>
<td>/dev/vn5</td>
<td>1488</td>
<td>1488</td>
<td>0</td>
<td>100%</td>
<td>/packages/mnt/jcrypto-5.0R5.1</td>
</tr>
<tr>
<td>/dev/vn6</td>
<td>792</td>
<td>792</td>
<td>0</td>
<td>100%</td>
<td>/packages/mnt/jdocs-5.0R5.1</td>
</tr>
<tr>
<td>mfs:2373</td>
<td>1015815</td>
<td>3</td>
<td>934547</td>
<td>0%</td>
<td>/tmp</td>
</tr>
<tr>
<td>/dev/ad0s1e</td>
<td>25263</td>
<td>11</td>
<td>23231</td>
<td>0%</td>
<td>/config</td>
</tr>
<tr>
<td>procfs</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>100%</td>
<td>/proc</td>
</tr>
<tr>
<td>/dev/ad1s1f</td>
<td>9825963</td>
<td>1811085</td>
<td>7228801</td>
<td>20%</td>
<td>/var</td>
</tr>
</tbody>
</table>

**Meaning**
The sample output shows statistics about the amount of free disk space in the router's file system. Values are displayed in 1024-byte (1-KB) blocks.

Back Up the Currently Running and Active File System

**Action**

To back up the currently running and active file system so that you can recover to a known, stable environment in case there is a problem during the upgrade, use the following Junos OS CLI operational mode command:

```
user@host> request system snapshot
```

**Sample Output**

```
user@host> request system snapshot
umount: /altroot: not currently mounted
Copying / to /altroot.. (this may take a few minutes)
unmount: /altconfig: not currently mounted
Copying /config to /altconfig.. (this may take a few minutes)
The following filesystems were archived: /config
```

**Meaning**
The root file system is backed up to `/altroot`, and `/config` is backed up to `/altconfig`. The root and `/config` file systems are on the router’s internal flash drive, and the `/altroot` and `/altconfig` file systems are on the router’s hard drive.

---

**NOTE:** After you issue the `request system snapshot` command, you cannot return to the previous version of the software because the running and backup copies of the software are identical.
Download Junos OS

NOTE: To download the Junos OS packages, you must have a service contract and an access account. Try to download the software packages a few days before you intend to install them, as you may need to verify your service contract and access account. If you need help obtaining an account, contact your Juniper Networks sales representative or send an e-mail to logistics@juniper.net.

Action To download the software packages from the Juniper Networks Support Web site, follow these steps:

1. Enter the following site address:
   http://www.juniper.net/support
   The following screen appears.

2. In Login to Support Center, enter your login and password.
The customer support center screen appears.

3. From Download Software, select the M- & T-series link. The Software Download screen appears.

4. From Available Releases, click the software release you want.
The Software to Download screen appears.

5. Click the software package you want to download. The Save As screen appears.

6. Click Save to download the software packages. Download the software packages to a server, not to the router.

**Meaning** Each Junos OS Release consists of the following software packages:

- **jbase**—Additions to the operating system
- **jkernel**—Operating system package
- **jroute**—Software that runs on the Routing Engine
- **jpfe**—Software that runs on the Packet Forwarding Engine
• **jdocs**—Documentation for the software
• **jcrypto**—Security software (in domestic software only)

---

**NOTE:** If you are upgrading to Release 5.0 from Release 4.x or downgrading from Release 5.0 to Release 4.x, use the `jinstall` package.

Downgrading from Release 5.0 to Release 4.x can be a two-step process. For more information, see *Junos System Basics Configuration Guide*

---

You also can upgrade the software packages individually but this is not recommended. When upgrading to a new release, you must install the entire package; do not upgrade packages individually unless instructed to do so by the Juniper Networks Technical Assistance Center (JTAC).

Two sets of Junos OS packages are provided: one for customers in the United States and Canada, and another for worldwide customers. The worldwide version does not include any capabilities that provide encryption of data leaving the router. Otherwise, the two packages are identical.

---

### Upgrade Junos OS

**Purpose**

As new features become available or as software problems are fixed, you might periodically upgrade the router software.

To upgrade Junos OS, follow these steps:

1. [Copy Junos OS to the Router on page 59](#)
2. [Add New Software on page 59](#)
3. [Start the New Software on page 60](#)

---

### Copy Junos OS to the Router

**Action**

Copy the software packages from the server to the router. We recommend that you copy them to the `/var/tmp` directory, which is on the rotating medium (hard disk) and is a large file system. Use the following CLI command:

```
user@host> file copy ftp://username:prompt@ftp.hostname.net/jinstall-package-name/var/tmp/jinstall-package-name
```

---

### Add New Software

**Action**

To add new software packages, use the following Junos OS CLI operational mode command:

```
user@host> request system software add /var/tmp/jinstall-package-name
```

*package-name* is the full URL to the file and *release-number* is the major software release number; for example, 4.2R1. Before the new software is added, the existing software is automatically deleted.
Sample Output

user@host> request system software add /var/tmp/jinstall-5.2R2.3-domestic.tgz
Installing package '/var/tmp/jinstall-5.2R2.3-domestic.tgz
Auto-deleting old jroute...
Auto-deleting old jdocs...
Auto-deleting old jpfe...
Auto-deleting old jkernel...
Adding JUNOS base software 5.2R2.3
Adding jkernel...
Adding jpfe...
Adding jdocs...
Adding jroute...
NOTICE: uncommitted changes have been saved in
/var/db/config/juniper.conf.pre-install
Saving package file in /var/sw/pkg/jinstall-5.2R2.3-domestic.tgz

Start the New Software

Purpose After you have added new software packages, you must reboot the router for the new software to take effect.

Action To reboot the router to complete the upgrade, use the following Junos OS CLI operational mode command:

user@host> request system reboot

After You Upgrade Junos operating system (Junos OS)

To verify that the new version of Junos OS is running as expected after the upgrade, follow these steps:

1. Compare Information Logged Before and After the Upgrade on page 60
2. Back Up the New Software on page 61

Compare Information Logged Before and After the Upgrade

Purpose Compare the operation of the system before and after the upgrade to ensure that everything is working as expected.

Action To obtain system information, use the following Junos OS CLI operational mode commands:

user@host> show version
user@host> show chassis hardware
user@host> show configuration
user@host> show interface terse
user@host> show bgp summary
user@host> show isis adjacency brief
Compare the information from these commands with the information you logged before the upgrade.

**Back Up the New Software**

**Purpose**  After a week or so, when you are satisfied that the new software is running successfully, we recommend that you back up the upgraded software.

**Action**  To back up the upgraded software, use the following Junos OS CLI operational mode command:

```
user@host> request system snapshot
```

The root file system is backed up to `/altroot`, and `/config` is backed up to `/altconfig`. The root and `/config` file systems are on the router’s internal flash drive, and the `/altroot` and `/altconfig` file systems are on the router’s hard drive.

**NOTE:**  After you issue the `request system snapshot` command, you cannot return to the previous version of the software because the running and backup copies of the software are identical.
CHAPTER 8

Reinstall Junos OS

If the Junos OS becomes damaged, you must reinstall it.

- Checklist for Reinstalling Junos OS on page 63
- Before You Reinstall Junos OS on page 64
- Reinstall the Junos OS on page 74
- Reconfigure the Junos OS on page 74
- After You Reinstall Junos OS on page 76

Checklist for Reinstalling Junos OS

Table 16 on page 63 provides links and commands for reinstalling Junos OS.

Table 16: Checklist for Reinstalling Junos OS

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Before You Reinstall Junos OS” on page 64</td>
<td>show version</td>
</tr>
<tr>
<td>1. Log the Software Version Information on page 65</td>
<td>show chassis hardware</td>
</tr>
<tr>
<td>2. Log the Hardware Version Information on page 66</td>
<td>show chassis environment</td>
</tr>
<tr>
<td>3. Log the Chassis Environment Information on page 67</td>
<td>show system boot-messages</td>
</tr>
<tr>
<td>4. Log the System Boot-Message Information on page 68</td>
<td>show configuration</td>
</tr>
<tr>
<td>5. Log the Active Configuration on page 70</td>
<td>show interface terse</td>
</tr>
<tr>
<td>6. Log the Interfaces on the Router on page 70</td>
<td>show bgp summary</td>
</tr>
<tr>
<td>7. Log the BGP, IS-IS, and OSPF Adjacency Information on page 71</td>
<td>show isis adjacency brief</td>
</tr>
<tr>
<td>8. Log the System Storage Information on page 72</td>
<td>show ospf neighbor brief</td>
</tr>
<tr>
<td>9. Back Up the Currently Running and Active File System on page 73</td>
<td>request system snapshot</td>
</tr>
</tbody>
</table>
### Table 16: Checklist for Reinstalling Junos OS  *(continued)*

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.</td>
<td><a href="http://www.juniper.net/support">http://www.juniper.net/support</a></td>
</tr>
<tr>
<td>&quot;Reinstall the Junos OS&quot; on page 74</td>
<td>Insert the floppy and reboot the system.</td>
</tr>
<tr>
<td>&quot;Reconfigure the Junos OS&quot; on page 74</td>
<td></td>
</tr>
<tr>
<td>1. Configure Names and Addresses on page 74</td>
<td>Log in as root. Start the CLI. Enter configuration mode: configure</td>
</tr>
<tr>
<td></td>
<td>set system host-name host-name</td>
</tr>
<tr>
<td></td>
<td>set system domain-name domain-name</td>
</tr>
<tr>
<td></td>
<td>set interfaces fxp0 unit 0 family inet address address/prefix-length</td>
</tr>
<tr>
<td></td>
<td>set system backup-router address</td>
</tr>
<tr>
<td></td>
<td>set system name-server address</td>
</tr>
<tr>
<td>2. Example: Configuring the Root Password on page 75</td>
<td>set system root-authentication plain-text-password</td>
</tr>
<tr>
<td></td>
<td>set system root-authentication encrypted-password password</td>
</tr>
<tr>
<td></td>
<td>set system root-authentication ssh-rsa key</td>
</tr>
<tr>
<td></td>
<td>commit</td>
</tr>
<tr>
<td></td>
<td>exit</td>
</tr>
<tr>
<td>3. Check Network Connectivity on page 76</td>
<td>ping address</td>
</tr>
<tr>
<td>4. Copy Backup Configurations to the Router on page 76</td>
<td>file copy var/tmp</td>
</tr>
<tr>
<td></td>
<td>configure</td>
</tr>
<tr>
<td></td>
<td>[edit] load merge /config/filename or load replace /config/filename</td>
</tr>
<tr>
<td></td>
<td>[edit] commit</td>
</tr>
</tbody>
</table>

### “After You Reinstall Junos OS” on page 76

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Compare Information Logged Before and After the Reinstall on page 76</td>
<td>show version</td>
</tr>
<tr>
<td></td>
<td>show chassis hardware</td>
</tr>
<tr>
<td></td>
<td>show chassis environment</td>
</tr>
<tr>
<td></td>
<td>show system boot-messages</td>
</tr>
<tr>
<td></td>
<td>show configuration</td>
</tr>
<tr>
<td></td>
<td>show interfaces terse</td>
</tr>
<tr>
<td></td>
<td>show bgp summary</td>
</tr>
<tr>
<td></td>
<td>show isis adjacency brief</td>
</tr>
<tr>
<td></td>
<td>show ospf neighbor brief</td>
</tr>
<tr>
<td></td>
<td>show system storage</td>
</tr>
<tr>
<td>2. Back Up the New Software on page 77</td>
<td>request system snapshot</td>
</tr>
</tbody>
</table>

### Before You Reinstall Junos OS

**Purpose**  Before you reinstall the Junos OS, it is important to log information about the existing system so that after the reinstall you can verify that all software components are installed.
and working as expected. Also, while logging information, you might find an existing problem that you did not know about and might have thought was caused by the reinstall.

In all of the logging steps, you can use your terminal program to save the output from the commands, or use the `save` command to redirect the output to an external file.

To save the output to a file on another machine, use the following Junos OS command-line interface (CLI) operational mode command:

```
user@host> command | save filename
```

By default, the file is placed in your home directory on the router. To redirect the output to a file on another machine, change the filename to include the path to that machine and file. For information about how you can specify the filename, see the *Junos System Basics and Services Command Reference*.

The following example stores the output of the `show version` command in a file:

```
user@host> show version | save filename
Wrote 1143 lines of output to 'filename'
```

To log important information about your system, follow these steps:

1. Log the Software Version Information on page 65
2. Log the Hardware Version Information on page 66
3. Log the Chassis Environment Information on page 67
4. Log the System Boot-Message Information on page 68
5. Log the Active Configuration on page 70
6. Log the Interfaces on the Router on page 70
7. Log the BGP, IS-IS, and OSPF Adjacency Information on page 71
8. Log the System Storage Information on page 72
9. Back Up the Currently Running and Active File System on page 73
10. Have the Boot Floppy or PCMCIA Card Ready on page 73

**Log the Software Version Information**

**Action** To log the Junos OS version information, use the following Junos OS CLI operational mode command:

```
user@host> show version | save filename
```
Sample Output

user@host> show version | save test
Wrote 39 lines of output to 'test'

user@host> show version
Hostname: my-router.net
Model: m10
JUNOS Base OS boot [5.0R5]
JUNOS Base OS Software Suite [5.0R5]
JUNOS Kernel Software Suite [5.0R5]
JUNOS Routing Software Suite [5.0R5]
JUNOS Packet Forwarding Engine Support [5.0R5]
JUNOS Crypto Software Suite [5.0R5]
JUNOS Online Documentation [5.0R5]
KERNEL 5.0R5 #0 built by builder on 2002-03-02 05:10:28 UTC
MGD release 5.0R5 built by builder on 2002-03-02 04:45:32 UTC
CLI release 5.0R5 built by builder on 2002-03-02 04:44:22 UTC
CHASSISD release 5.0R5 built by builder on 2002-03-02 04:43:37 UTC
DCD release 5.0R5 built by builder on 2002-03-02 04:42:47 UTC
RPD release 5.0R5 built by builder on 2002-03-02 04:46:17 UTC
SNMPD release 5.0R5 built by builder on 2002-03-02 04:52:26 UTC
MIB2D release 5.0R5 built by builder on 2002-03-02 04:45:37 UTC
APSD release 5.0R5 built by builder on 2002-03-02 04:43:31 UTC
VRRPD release 5.0R5 built by builder on 2002-03-02 04:52:34 UTC
ALARM release 5.0R5 built by builder on 2002-03-02 04:43:24 UTC
PFED release 5.0R5 built by builder on 2002-03-02 04:46:06 UTC
CRAFTD release 5.0R5 built by builder on 2002-03-02 04:44:30 UTC
SAMPLED release 5.0R5 built by builder on 2002-03-02 04:52:20 UTC
ILMID release 5.0R5 built by builder on 2002-03-02 04:45:21 UTC
BPRELAYD release 5.0R5 built by builder on 2002-03-02 04:42:41 UTC
RMOPD release 5.0R5 built by builder on 2002-03-02 04:46:11 UTC
jkernel-dd release 5.0R5 built by builder on 2002-03-02 04:41:07 UTC
jroute-dd release 5.0R5 built by builder on 2002-03-02 04:41:21 UTC
jdocs-dd release 5.0R5 built by builder on 2002-03-02 04:39:11 UTC

Meaning

The sample output shows the hostname, router model, and the different Junos OS packages, processes, and documents.

Log the Hardware Version Information

Purpose

You should log hardware version information in the rare event that a router cannot successfully reboot and you cannot obtain the Routing Engine serial number. The Routing Engine serial number is necessary for Juniper Networks Technical Assistance Center (JTAC) to issue a return to manufacturing authorization (RMA). Without the Routing Engine serial number, an onsite technician must be dispatched to issue the RMA.

Action

To log the router chassis hardware version information, use the following Junos OS CLI operational mode command:

user@host> show chassis hardware | save filename

Sample Output

The output for the M-series routers varies depending on the chassis components of each router. All routers have a chassis, midplanes or backplanes, power supplies, and Flexible PIC Concentrators (FPCs). Refer to the hardware guides for information about the different chassis components.

user@host> show chassis hardware | save test
Wrote 43 lines of output to 'test'
### User@host> show chassis hardware

<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td></td>
<td>101</td>
<td>M160</td>
<td></td>
</tr>
<tr>
<td>Midplane</td>
<td>REV 02</td>
<td>710-001245</td>
<td>S/N AB4107</td>
<td></td>
</tr>
<tr>
<td>FPM CMB</td>
<td>REV 01</td>
<td>710-001642</td>
<td>S/N AA2911</td>
<td></td>
</tr>
<tr>
<td>FPM Display</td>
<td>REV 01</td>
<td>710-001647</td>
<td>S/N AA2999</td>
<td></td>
</tr>
<tr>
<td>CIP</td>
<td>REV 02</td>
<td>710-001593</td>
<td>S/N AA9563</td>
<td></td>
</tr>
<tr>
<td>PEM 0</td>
<td>REV 01</td>
<td>740-001243</td>
<td>S/N KJ35769</td>
<td>DC</td>
</tr>
<tr>
<td>PEM 1</td>
<td>REV 01</td>
<td>740-001243</td>
<td>S/N KJ35765</td>
<td>DC</td>
</tr>
<tr>
<td>PCG 0</td>
<td>REV 01</td>
<td>710-001568</td>
<td>S/N AA9794</td>
<td></td>
</tr>
<tr>
<td>PCG 1</td>
<td>REV 01</td>
<td>710-001568</td>
<td>S/N AA9804</td>
<td></td>
</tr>
<tr>
<td>Host 1</td>
<td></td>
<td>da000004f8d57001</td>
<td></td>
<td>teknor</td>
</tr>
<tr>
<td>MCS 1</td>
<td>REV 03</td>
<td>710-001226</td>
<td>S/N AA9777</td>
<td></td>
</tr>
<tr>
<td>SFM 0 SPP</td>
<td>REV 04</td>
<td>710-001228</td>
<td>S/N AA2975</td>
<td></td>
</tr>
<tr>
<td>SFM 1 SPP</td>
<td>REV 04</td>
<td>710-001228</td>
<td>S/N AA2860</td>
<td></td>
</tr>
<tr>
<td>SFM 0 SPR</td>
<td>REV 02</td>
<td>710-001224</td>
<td>S/N AA9838</td>
<td>Internet Processor I</td>
</tr>
<tr>
<td>SFM 1 SPR</td>
<td>REV 01</td>
<td>710-001224</td>
<td>S/N AB0139</td>
<td>Internet Processor I</td>
</tr>
<tr>
<td>FPC 0</td>
<td>REV 03</td>
<td>710-001255</td>
<td>S/N AA9806</td>
<td>FPC Type 1</td>
</tr>
<tr>
<td>CPU</td>
<td>REV 02</td>
<td>710-001217</td>
<td>S/N AA9590</td>
<td></td>
</tr>
<tr>
<td>PIC 1</td>
<td>REV 05</td>
<td>750-000616</td>
<td>S/N AA1527</td>
<td>1x OC-12 ATM, MM</td>
</tr>
<tr>
<td>PIC 2</td>
<td>REV 05</td>
<td>750-000616</td>
<td>S/N AA1535</td>
<td>1x OC-12 ATM, MM</td>
</tr>
<tr>
<td>PIC 3</td>
<td>REV 01</td>
<td>750-000616</td>
<td>S/N AA1519</td>
<td>1x OC-12 ATM, MM</td>
</tr>
<tr>
<td>FPC 1</td>
<td>REV 02</td>
<td>710-001611</td>
<td>S/N AA9523</td>
<td>FPC Type 2</td>
</tr>
<tr>
<td>CPU</td>
<td>REV 02</td>
<td>710-001217</td>
<td>S/N AA9571</td>
<td></td>
</tr>
<tr>
<td>PIC 0</td>
<td>REV 03</td>
<td>750-001900</td>
<td>S/N AA9626</td>
<td>1x STM-16 SDH, SMIR</td>
</tr>
<tr>
<td>PIC 1</td>
<td>REV 01</td>
<td>710-002381</td>
<td>S/N AD3633</td>
<td>2x G/E, 1000 BASE-SX</td>
</tr>
<tr>
<td>FPC 2</td>
<td></td>
<td></td>
<td></td>
<td>FPC Type OC192</td>
</tr>
<tr>
<td>CPU</td>
<td>REV 03</td>
<td>710-001217</td>
<td>S/N AB3329</td>
<td>1x OC-192 SM SR-2</td>
</tr>
</tbody>
</table>

**Meaning**: The sample output shows the hardware inventory for an M160 router with a chassis serial number of 101. For each component, the output shows the version number, part number, serial number, and description.

### Log the Chassis Environment Information

**Action**: To log the router chassis environment information, use the following Junos OS CLI operational mode command:

```
user@host> show chassis environment | save filename
```

**Sample Output**: The following example shows output from the `show chassis environment` command for an M5 router:

```
user@m5-host> show chassis environment | save test
Wrote 14 lines of output to 'test'
```

```
user@m5-host> show chassis environment
```

<table>
<thead>
<tr>
<th>Class</th>
<th>Item</th>
<th>Status</th>
<th>Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>Power Supply A</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power Supply B</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>Temp</td>
<td>FPC Slot 0</td>
<td>OK</td>
<td>32 degrees C / 89 degrees F</td>
</tr>
<tr>
<td></td>
<td>FEB</td>
<td>OK</td>
<td>31 degrees C / 87 degrees F</td>
</tr>
<tr>
<td></td>
<td>PS Intake</td>
<td>OK</td>
<td>26 degrees C / 78 degrees F</td>
</tr>
<tr>
<td></td>
<td>PS Exhaust</td>
<td>OK</td>
<td>31 degrees C / 87 degrees F</td>
</tr>
<tr>
<td>Fans</td>
<td>Left Fan 1</td>
<td>OK</td>
<td>Spinning at normal speed</td>
</tr>
<tr>
<td></td>
<td>Left Fan 2</td>
<td>OK</td>
<td>Spinning at normal speed</td>
</tr>
<tr>
<td>Fan</td>
<td>Status</td>
<td>Speed</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>Left Fan 3</td>
<td>OK</td>
<td>Spinning at normal speed</td>
<td></td>
</tr>
<tr>
<td>Left Fan 4</td>
<td>OK</td>
<td>Spinning at normal speed</td>
<td></td>
</tr>
</tbody>
</table>

**Meaning**  
The sample output shows the environmental information about the router chassis, including the temperature and information about the fans, power supplies, and Routing Engine.

**Log the System Boot-Message Information**

**Action**  
To log the system boot-message information, use the following Junos OS CLI operational mode command:

```
user@host> show system boot-messages | save filename
```
Sample Output

user@host> show system boot-messages | save test
Wrote 80 lines of output to 'test'

user@host> show system boot-messages

Copyright (c) 1992-1998 FreeBSD Inc.
Copyright (c) 1996-2000 Juniper Networks, Inc.
All rights reserved.
The Regents of the University of California. All rights reserved.

JUNOS 4.1-20000216-Zf8469 #0: 2000-02-16 12:57:28 UTC

tlim@single.juniper.net:/p/build/20000216-0905/4.1/release_kernel/sys/compile/GENERIC
CPU: Pentium Pro (332.55-MHz 686-class CPU)
  Origin = "GenuineIntel"  Id = 0x66a  Stepping=10

  Features=0x183f9ff-fpu,vme,de,pse,tsc,mtrr,orp,mca,cx8,sep,mxv,mmx,dx24>
Teknor CPU Card Recognized
real memory = 805306368 (786432K bytes)
avail memory = 786280448 (767852K bytes)

Probing for devices on PCI bus 0:
chip0 <generic PCI bridge (vendor=8086 device=7192 subclass=0)> rev 3 class 60000
  on pci0:0:0
chip1 <Intel 82371AB IDE Interface> rev 1 class 60100 on pci0:7:0
chip2 <Intel 82371AB USB Interface> rev 1 class c0000 int d irq 11 on pci0:7:1
smbo <Intel 82371AB SMB controller> rev 1 class 68000 on pci0:7:3
pcic0 <TI PCI-1131 PCI-CardBus Bridge> rev 1 class 67000 int a irq 11 on pci0:13:0
T1113 PCI Config Reg: [pci only][FUNC0pci int]
pcic1 <TI PCI-1131 PCI-CardBus Bridge> rev 1 class 67000 int b irq 12 on pci0:13:1
T1113 PCI Config Reg: [pci only][FUNC1pci int]
fxp0 <Intel EtherExpress Pro 10/100 Ethernet> rev 8 class 20000 int a irq 12 on
  pci0:16:0
chip4 <generic PCI bridge (vendor=1011 device=0022 subclass=4)> rev 4 class 60400
  on pci0:17:0
fxp1 <Intel EtherExpress Pro 10/100 Ethernet> rev 8 class 20000 int a irq 10 on
  pci0:19:0
Probing for devices on PCI bus 1:mcs0 <Miscellaneous Control Subsystem> rev 12
  class 60000 int a irq 12 on pci1:13:0
fxp2 <Intel EtherExpress Pro 10/100 Ethernet> rev 8 class 20000 int a irq 10 on
  pci1:14:0
Probing for devices on the ISA bus:
s0 at 0x60-0x6f irq 1 on motherboard
sc0: EGA color <16 virtual consoles, flags=0x0>
ed0 not found at 0x300
ed1 not found at 0x280
ed2 not found at 0x340
psm0 not found at 0x60
si00 at 0x3f8-0x3ff irq 4 flags 0x20010 on isa
si00: type 16550A, console
si01 at 0x3e8-0x3ef irq 5 flags 0x20000 on isa
si01: type 16550A
si02 at 0x2f8-0x2ff irq 3 flags 0x20000 on isa
si02: type 16550A
pcic0 at 0x3e0-0x3e1 on isa
PCI-Card ctrlr(0) TI PCI-1131 [CardBus bridge mode] (5 mem & 2 I/O windows)
  pcic0: slot 0 controller I/O address 0x3e0
  npx0 flags 0x1 on motherboard
npx0: INT 16 interface
fcd0: direction bit not set
fcd0: cmd 3 failed at out byte 1 of 3
Log the Active Configuration

Action To log the active configuration on the router, use the following Junos OS CLI operational mode command:

```
user@host> show configuration | save filename
```

Sample Output

```
user@host> show configuration | save test
Wrote 4076 lines of output to 'test'

user@host> show configuration

system {
 host-name lab8;
 domain-name juniper.net;
 backup-router 10.1.1.254;
 time-zone America/Los_Angeles;
 default-address-selection;
 dump-on-panic;
 name-server {
 [...Output truncated...]
```

Meaning The sample output shows the configuration currently running on the router, which is the last committed configuration.

Log the Interfaces on the Router

Action To log the interfaces on the router, use the following Junos OS CLI operational mode command:

```
user@host> show interface terse | save filename
```
Sample Output

```
user@host> show interfaces terse | save test
Wrote 81 lines of output to 'test'

user@host> show interfaces terse
Interface Admin Link Proto Local Remote
at-1/3/0 up up
at-1/3/0.0 up up inet 1.0.0.1 --> 1.0.0.2
iso
fxp0 up up
fxp0.0 up up inet 10.168.5.59/24
gre down up
ipip down up
lo0 up up
lo0.0 up up inet 127.0.0.1 --> 0/0
iso
so-1/2/0 up down
so-1/2/1 down down
so-1/2/2 down down
so-1/2/3 down down
so-2/0/0 up up
so-2/0/0.0 up up inet 1.2.3.4 --> 1.2.3.5
iso
[...Output truncated...]
```

**Meaning**
The sample output displays summary information about the physical and logical interfaces on the router.

Log the BGP, IS-IS, and OSPF Adjacency Information

**Purpose**
The following commands log useful information about Border Gateway Protocol (BGP), Intermediate System-to-Intermediate System (IS-IS), and Open Shortest Path First (OSPF) protocols. If you have other protocols installed, such as Multiprotocol Label Switching (MPLS), Resource Reservation Protocol (RSVP), or Protocol Independent Multicast (PIM), you also might log summary information for them.

**Action**
To log the protocol peer information, use the following Junos OS CLI operational mode commands:

```
user@host> show bgp summary | save filename
user@host> show isis adjacency brief | save filename
user@host> show ospf neighbor brief | save filename
```
Sample Output 1  user@host> show bgp summary | save test
Wrote 45 lines of output to 'test'

user@host> show bgp summary
Groups: 1 Peers: 1 Down peers: 0

<table>
<thead>
<tr>
<th>Table</th>
<th>Tot Paths</th>
<th>Act Paths</th>
<th>Suppressed</th>
<th>History Damp</th>
<th>State</th>
<th>Pending</th>
</tr>
</thead>
<tbody>
<tr>
<td>inet.0</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peer</th>
<th>AS</th>
<th>InPkt</th>
<th>OutPkt</th>
<th>OutQ</th>
<th>Flaps</th>
<th>Last Up/Dwn</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.9.3.1</td>
<td></td>
<td>2</td>
<td>2628</td>
<td>0</td>
<td>0</td>
<td>21:50:12 4/4/0</td>
</tr>
</tbody>
</table>

Sample Output 2  user@host> show isis adjacency brief | save test
Wrote 7 lines of output to 'test'

user@host> show isis adjacency brief
IS-IS adjacency database:

<table>
<thead>
<tr>
<th>Interface</th>
<th>System</th>
<th>L State</th>
<th>Hold (secs)</th>
<th>SNPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>so-1/0/0.0</td>
<td>1921.6800.5067</td>
<td>2</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>so-1/1/0.0</td>
<td>1921.6800.5067</td>
<td>2</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>so-1/2/0.0</td>
<td>1921.6800.5067</td>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>so-1/3/0.0</td>
<td>1921.6800.5067</td>
<td>2</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>so-2/0/0.0</td>
<td>1921.6800.5066</td>
<td>2</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>so-2/1/0.0</td>
<td>1921.6800.5066</td>
<td>2</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>so-2/2/0.0</td>
<td>1921.6800.5066</td>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>so-2/3/0.0</td>
<td>1921.6800.5066</td>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>so-5/0/0.0</td>
<td>ranier</td>
<td>2</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Sample Output 3  user@host> show ospf neighbor brief | save test
Wrote 10 lines of output to 'test'

user@host> show ospf neighbor brief

<table>
<thead>
<tr>
<th>Address</th>
<th>Intf</th>
<th>State</th>
<th>ID</th>
<th>Pri</th>
<th>Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.168.254.225</td>
<td>fxp3.0</td>
<td>2Way</td>
<td>10.250.240.32</td>
<td>128</td>
<td>36</td>
</tr>
<tr>
<td>10.168.254.230</td>
<td>fxp3.0</td>
<td>Full</td>
<td>10.250.240.8</td>
<td>128</td>
<td>38</td>
</tr>
<tr>
<td>10.168.254.229</td>
<td>fxp3.0</td>
<td>Full</td>
<td>10.250.240.35</td>
<td>128</td>
<td>33</td>
</tr>
<tr>
<td>10.1.1.129</td>
<td>fxp2.0</td>
<td>Full</td>
<td>10.250.240.12</td>
<td>128</td>
<td>37</td>
</tr>
<tr>
<td>10.1.1.131</td>
<td>fxp2.0</td>
<td>Full</td>
<td>10.250.240.11</td>
<td>128</td>
<td>38</td>
</tr>
<tr>
<td>10.1.2.1</td>
<td>fxp1.0</td>
<td>Full</td>
<td>10.250.240.9</td>
<td>128</td>
<td>32</td>
</tr>
<tr>
<td>10.1.2.81</td>
<td>fxp0.0</td>
<td>Full</td>
<td>10.250.240.10</td>
<td>128</td>
<td>33</td>
</tr>
</tbody>
</table>

Meaning  Sample output 1 displays summary information about BGP and its neighbors. Sample output 2 displays information about IS-IS neighbors. Sample output 3 displays information about all OSPF neighbors.

Log the System Storage Information

Action  To log the system storage statistics for the amount of free disk space in the router’s file system, use the following Junos OS CLI operational mode command:

user@host> show system storage | save filename
The sample output displays statistics about the amount of free disk space in the router's file system. Values are displayed in 1024-byte (1-KB) blocks.

Back Up the Currently Running and Active File System

To back up the currently running and active file system so that you can recover to a known, stable environment in case there is a problem during the reinstall, use the following Junos OS CLI operational mode command:

```
user@host> request system snapshot
```

The root file system is backed up to /altroot, and /config is backed up to /altconfig. The root and /config file systems are on the router’s internal flash drive, and the /altroot and /altconfig file systems are on the router’s hard drive.

**Meaning**

The sample output displays statistics about the amount of free disk space in the router’s file system. Values are displayed in 1024-byte (1-KB) blocks.

**NOTE:** After you issue the `request system snapshot` command, you cannot return to the previous version of the software because the running and backup copies of the software are identical.

Have the Boot Floppy or PCMCIA Card Ready

To have available the removable medium that shipped with the router (also called a boot floppy) or the Personal Computer Memory Card International Association (PCMCIA) card. If you do not have a boot floppy, contact customer support at http://www.juniper.net/support.
Reinstall the Junos OS

**Action**  
To reinstall the Junos OS, follow these steps:

1. Insert the removable medium (boot floppy) into the router.
2. Reboot the router, either by power-cycling it or by issuing the `request system reboot` command from the CLI.
3. At the following prompt, type **y**:  
   **WARNING:** The installation will erase the contents of your disk. Do you wish to continue (y/n)?
   The router copies the software from the removable medium onto your system, occasionally displaying status messages. This can take up to 10 minutes.
4. Remove the removable medium when prompted.
   The router reboots from the primary boot device on which the software is installed. When the reboot is complete, the router displays the login prompt.

Reconfigure the Junos OS

**Purpose**  
After you have reinstalled the software, you must copy the router’s configuration files back to the router. (You also can configure the router from scratch, as described in *Junos System Basics Configuration Guide*) However, before you can copy the configuration files, you must establish network connectivity.

To reconfigure the software, follow these steps:

1. **Configure Names and Addresses on page 74**
2. **Example: Configuring the Root Password on page 75**
3. **Check Network Connectivity on page 76**
4. **Copy Backup Configurations to the Router on page 76**

Configure Names and Addresses

**Action**  
To configure the machine name, domain name, and various addresses, follow these steps:

1. Log in as **root**. There is no password.
2. Start the CLI:
   ```
 root# cli
 root@>
   ```
3. Enter configuration mode:
   ```
 cli> configure
 [edit]
 root@#
   ```
4. Configure the name of the machine. If the name includes spaces, enclose the entire name in quotation marks (" "):  
   ```
 root@# configure
 hostname ""
5. Configure the machine’s domain name:

 [edit]
 root@# set system domain-name domain-name

6. Configure the IP address and prefix length for the router’s management Ethernet interface:

 [edit]
 root@# set interfaces fxp0 unit 0 family inet address address / prefix-length

7. Configure the IP address of a default router. This system is called the backup router because it is used only while the routing protocol process is not running.

 [edit]
 root@# set system backup-router address

8. Configure the IP address of a Domain Name Server (DNS) server:

 [edit]
 root@# set system name-server address

Example: Configuring the Root Password

Junos OS is preinstalled on the router. When the router is powered on, it is ready to be configured. Initially, you log in as the user “root” with no password. To set the root password, you have several options: enter a clear-text password that the system will encrypt, enter a password that is already encrypted, or enter an ssh public key string.

To set the root password, follow these steps:

1. To enter a clear-text password that the system will encrypt, use the following command to set the root password:

 [edit]
 root@# set root-authentication plain-text-password
 New Password: type password here
 Retype new password: retype password here

2. To enter a password that is already encrypted, use the following command to set the root password:

 [edit]
 root@# set system root-authentication encrypted-password password

3. To enter an ssh public string, use the following command to set the root password:

 [edit]
 root@# set system root-authentication ssh-rsa key

4. Commit the changes:

 [edit]
 root@# commit

5. Exit from configuration mode:
Check Network Connectivity

Purpose
Establish that the router has network connectivity.

Action
To check that the router has network connectivity, issue a ping command to a system on the network:

```
root@> ping address
```

If there is no response, verify that there is a route to the address using the show route command. If the address is outside your fxp0 subnet, add a static route. Once the backup configuration is loaded and committed, the static route is no longer needed and should be deleted.

Copy Backup Configurations to the Router

Action
To copy backup configurations to the router, follow these steps:

1. To copy the existing configuration and any backup configurations back onto the router, use the file copy command. Place the files in the /var/tmp directory.

```
user@host> filecopy var/tmp/filename
```

2. Load and activate the desired configuration:

```
root@> configure
[edit]
root@# load merge/config/filename or load replace/config/filename
[edit]
root@# commit
```

After You Reinstall Junos OS

To verify that the new version of the Junos OS is running as expected after the reinstall, follow these steps:

1. Compare Information Logged Before and After the Reinstall on page 76
2. Back Up the New Software on page 77

Compare Information Logged Before and After the Reinstall

Purpose
Compare the operation of the system before and after the reinstall to ensure that everything is working as expected.

Action
To obtain system information, use the following commands:

```
user@host> show version
user@host> show chassis hardware
user@host> show chassis environment
```
user@host> show system boot-messages
user@host> show configuration
user@host> show interface terse
user@host> show bgp summary
user@host> show isis adjacency brief
user@host> show ospf neighbor brief
user@host> show system storage

Compare the information from these commands with the information you obtained before the reinstall.

Back Up the New Software

Purpose
After a week or so, when you are satisfied that the new software is running successfully, we recommend that you back up the reinstalled software.

Action
To back up the reinstalled software, use the following Junos OS CLI operational mode command:

```
user@host> request system snapshot
```

The root file system is backed up to `/altroot`, and `/config` is backed up to `/altconfig`. The root and `/config` file systems are on the router’s internal flash drive, and the `/altroot` and `/altconfig` file systems are on the router’s hard drive.

NOTE: After you issue the `request system snapshot` command, you cannot return to the previous version of the software because the running and backup copies of the software are identical.
PART 3

Verify Your Network Topology

- Verify Juniper Networks Routers on page 81
- Verify Physical Interfaces on the Router on page 93
- Verify the IS-IS Protocol and Adjacencies on page 103
- Verify the OSPF Protocol and Neighbors on page 115
- Verify the BGP Protocol and Peers on page 145
- Verify the Routing Engine CPU Memory on page 157
- Verify Traffic and Packets Through the Router on page 169
- Use the ping and traceroute Commands on page 179
- Use MIBs on page 185
CHAPTER 9

Verify Juniper Networks Routers

This chapter describes how to check the hardware components of Juniper Networks routers on your network.

- Checklist for Verifying Juniper Networks Routers on page 81
- Check Router Components on page 82
- Check the Router Component Status on page 83
- Gather Component Alarm Information on page 87
- Verify the Component Problem on page 89
- Fix the Problem on page 89
- Contact JTAC on page 90
- Return the Failed Component on page 90

Checklist for Verifying Juniper Networks Routers

Purpose
Table 17 on page 81 provides links and commands for verifying Juniper Networks routers.

Action

Table 17: Checklist for Verifying Juniper Networks Routers

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Check Router Components” on page 82</td>
<td></td>
</tr>
<tr>
<td>1. Check the Router Component Status on page 83</td>
<td></td>
</tr>
<tr>
<td>a. Check the Router Craft Interface on page 83</td>
<td>show chassis craft-interface</td>
</tr>
<tr>
<td>b. Check the Component LEDs on page 84</td>
<td>show chassis craft-interface</td>
</tr>
<tr>
<td>c. Display Detailed Component Environmental Information on page 85</td>
<td>show chassis environment component-name</td>
</tr>
<tr>
<td>d. Display Detailed Operational Information About Components on page 86</td>
<td>show chassis component-name</td>
</tr>
<tr>
<td>2. Gather Component Alarm Information on page 87</td>
<td></td>
</tr>
</tbody>
</table>
Table 17: Checklist for Verifying Juniper Networks Routers (continued)

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Display the Current Router Alarms on page 87</td>
<td><code>show chassis alarms</code></td>
</tr>
<tr>
<td>b. Display Error Messages in the Messages Log File on page 88</td>
<td><code>show log messages</code></td>
</tr>
<tr>
<td>c. Display Error Messages in the Messages Log File on page 88</td>
<td><code>show log chassisd</code></td>
</tr>
<tr>
<td>3. Verify the Component Problem on page 89</td>
<td>Make sure that the component is well seated in its slot and connected to the router midplane. Perform a swap test on the component with a problem.</td>
</tr>
<tr>
<td>4. Fix the Problem on page 89</td>
<td>Take action and correct the problem. For example, replace a dirty air filter, clean a fiber-optic cable, connect the component securely to the midplane, or reset the component. Otherwise, escalate the alarm condition and contact JTAC. Do not straighten bent pins.</td>
</tr>
<tr>
<td>5. Contact JTAC on page 90</td>
<td><code>request support information</code></td>
</tr>
<tr>
<td></td>
<td>`request support information</td>
</tr>
<tr>
<td>6. Return the Failed Component on page 90</td>
<td><code>show chassis hardware</code></td>
</tr>
<tr>
<td></td>
<td>Obtain a Return Material Authorization (RMA) number from JTAC. You can send e-mail to support@juniper.net or call 1-888-314-JTAC (within the United States) or 1-408-745-9500 (from outside the United States).</td>
</tr>
</tbody>
</table>

Check Router Components

Purpose
When you monitor router components, you are making sure that there are no hardware problems with the router. In the event of a minor problem, you can try to fix it. For more difficult situations, you can call for assistance from the Juniper Networks Technical Assistance Center (JTAC).

Action
To monitor M-series and T-series router components, follow these steps:

1. Check the Router Component Status on page 83
2. Gather Component Alarm Information on page 87
3. Verify the Component Problem on page 89
4. Fix the Problem on page 89
5. Contact JTAC on page 90
6. Return the Failed Component on page 90
Check the Router Component Status

Purpose When you check the router craft interface, the component LEDs, and the environmental and operational information, you are either physically inspecting the components or obtaining output about their status from commands you issue from the command-line interface (CLI).

To check router component status, follow these steps:

1. [Check the Router Craft Interface on page 83](#)
2. [Check the Component LEDs on page 84](#)
3. [Display Detailed Component Environmental Information on page 85](#)
4. [Display Detailed Operational Information About Components on page 86](#)

Check the Router Craft Interface

Purpose To confirm that the craft interface is functioning properly by checking the alarm indicator status or by checking the craft interface physically.

Action To check the craft interface information for router status, do one of the following:

- Use the following CLI command:

  ```
  user@host> show chassis craft-interface
  ```
 The command output displays the router alarm indicator status, the LCD display information (router name, router uptime, and status message that rotate at 2-second intervals), and the major component LED status.

- Physically look at the router craft interface. [Table 18 on page 83](#) shows the component characteristics of the craft interface for each M-series router and T-series platform.

Table 18: Craft Interface Components for the M-series Routers and T-series Platforms

<table>
<thead>
<tr>
<th>Component</th>
<th>M5 and M10</th>
<th>M20</th>
<th>M40</th>
<th>M40e</th>
<th>M160</th>
<th>T320</th>
<th>T640</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm LEDs</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Lamp test button</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Alarm cutoff button</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Alarm relay contacts</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Link and activity status lights</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCD display and navigation buttons</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Routing Engine ports</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 18: Craft Interface Components for the M-series Routers and T-series Platforms (continued)

<table>
<thead>
<tr>
<th>Component</th>
<th>MS and M10</th>
<th>M20</th>
<th>M40</th>
<th>M40e</th>
<th>M160</th>
<th>T320</th>
<th>T640</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routing Engine LEDs</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Host module LEDs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Host subsystem LEDs</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Interface Card (PIC) online and offline buttons</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexible PIC Concentrator (FPC) LEDs</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FPC offline buttons</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FPC online buttons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Switch Interface Board (SIB) LEDs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Check the Component LEDs

Purpose
To confirm that the component LEDs are functioning properly by checking either that the output messages, physically checking the craft interface or examining the LEDs on the component faceplate.

Action
To check the component LED status, do one of the following:

- Use the following CLI command:
  ```bash
  user@host> show chassis craft-interface
  ```

The output shows the messages that are currently displayed on the craft interface (for routers that have a display on the craft interface).

 For examples of sample output, see the *Junos System Basics and Services Command Reference*.

- Physically look at the craft interface. You see the following component LEDs: Routing Engine, FPCs, PICs, host module (for M40e and M160 routers), and host subsystem and SIB (for T-series platforms).

- Look at the LEDs on the component faceplate. Table 19 on page 85 describes where the LEDs are located on the router or platform.
Table 19: Component LED Location on the Router or Platform

<table>
<thead>
<tr>
<th>Component</th>
<th>LED Location on the Router</th>
<th>Router or Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB</td>
<td>On the Control Board (CB) faceplate.</td>
<td>T320 router and T640 routing node</td>
</tr>
<tr>
<td>FPC</td>
<td>On the FPC faceplate at the front of the router.</td>
<td>M20, M40, M40e, and M160 routers</td>
</tr>
<tr>
<td>Host module</td>
<td>On the craft interface. Remove the component cover.</td>
<td>M40e and M160 routers</td>
</tr>
<tr>
<td>MCS</td>
<td>On the Miscellaneous Control System (MCS) faceplate at the rear of the router. Remove the component cover.</td>
<td>M40e and M160 routers</td>
</tr>
<tr>
<td>PIC</td>
<td>On the craft interface. On the PIC faceplate at the front of the router.</td>
<td>M5 and M10 routers All other routers</td>
</tr>
<tr>
<td>PCG</td>
<td>On the PFE clock generator (PCG) faceplate at the rear of the router. Remove the component cover.</td>
<td>M40e and M160 routers</td>
</tr>
<tr>
<td>Power supply</td>
<td>On the power supply faceplate at the bottom rear of the router.</td>
<td>All routers</td>
</tr>
<tr>
<td>Routing Engine</td>
<td>On the rear Routing Engine panel. On the craft interface.</td>
<td>M20 router M20, M40, M40e, and M160 routers</td>
</tr>
<tr>
<td>SCB</td>
<td>On the System Control Board (SCB) faceplate at the front of the router, vertical in the middle of the FPC card cage.</td>
<td>M40 router</td>
</tr>
<tr>
<td>SCG</td>
<td>On the SONET Clock Generator (SCG) faceplate.</td>
<td>T320 router and T640 routing node</td>
</tr>
<tr>
<td>SFM</td>
<td>On the Switching and Forwarding Module (SFM) faceplate at the rear of the router. Remove the component cover.</td>
<td>M40e and M160 routers</td>
</tr>
<tr>
<td>SIB</td>
<td>On the SIB faceplate.</td>
<td>T320 router and T640 routing node</td>
</tr>
<tr>
<td>SSB</td>
<td>On the System and Switch Board (SSB) faceplate at the top front of the router.</td>
<td>M20 router</td>
</tr>
</tbody>
</table>

Display Detailed Component Environmental Information

Purpose
To check the component environmental information for the uptime to determine if it is functioning properly.

Action
To display detailed environmental status information about a component, use the following CLI command:

```
user@host> show chassis environment component-name
```

The command output displays the temperature of the air passing by the component, in degrees Centigrade. It also displays the total percentage of CPU, interrupt, heap space,
and buffer space being used by the component processor, including the total DRAM available to the component processor. The command output displays the time when the component started running and how long the component has been running. A short uptime can indicate a problem with the component.

For examples of sample output, see the Junos System Basics and Services Command Reference.

Table 20 on page 86 lists the operational mode CLI commands that display more detailed information for each router and platform component.

Table 20: CLI Commands for Detailed Component Environment Status

<table>
<thead>
<tr>
<th>Component</th>
<th>Operational Mode CLI Command</th>
<th>Router or Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB</td>
<td><code>show chassis environment cb</code></td>
<td>T320 and T640 platforms</td>
</tr>
<tr>
<td>Forwarding Engine Board (FEB)</td>
<td><code>show chassis feb</code></td>
<td>M5 and M10 routers</td>
</tr>
<tr>
<td>FPC</td>
<td><code>show chassis environment fpc</code></td>
<td>M40e and M160 routers, and T-series platforms</td>
</tr>
<tr>
<td>Front panel module (FPM) or craft interface</td>
<td><code>show chassis environment fpm</code></td>
<td>M40e and M160 routers, and T-series platforms</td>
</tr>
<tr>
<td>MCS</td>
<td><code>show chassis environment mcs</code></td>
<td>M40e and M160 routers</td>
</tr>
<tr>
<td>PCG</td>
<td><code>show chassis environment pcg</code></td>
<td>M40e and M160 routers</td>
</tr>
<tr>
<td>Power Entry Module (PEM) or power supply</td>
<td><code>show chassis environment pem</code></td>
<td>M40e and M160 routers, and T-series platforms</td>
</tr>
<tr>
<td>Routing Engine</td>
<td><code>show chassis environment routing-engine</code></td>
<td>M40e and M160 routers, and T-series platforms</td>
</tr>
<tr>
<td>SONET Clock Generator (SCG)</td>
<td><code>show chassis environment scg</code></td>
<td>T320 and T640 platforms</td>
</tr>
<tr>
<td>SFM</td>
<td><code>show chassis environment sfm</code></td>
<td>M40e and M160 routers</td>
</tr>
<tr>
<td>SIG</td>
<td><code>show chassis environment sib</code></td>
<td>T320 and T640 platforms</td>
</tr>
</tbody>
</table>

Display Detailed Operational Information About Components

Purpose
To check the component environmental information for the uptime to determine if it is functioning properly.

Action
To display detailed operational information about a component, use the following CLI command:

```
user@host> show chassis component-name
```

The command output displays the temperature of the air passing by the component, in degrees Centigrade and Fahrenheit. It displays the total percentage of CPU, interrupt,
heap space, and buffer space being used by the component processor, including the total DRAM available to the component processor. The command output displays the time when the component started running and how long the component has been running. A short uptime can indicate a problem with the component.

For examples of sample output, see the Junos System Basics and Services Command Reference.

Table 21 on page 87 lists the components for which you can display more detailed operational status information.

Table 21: CLI Commands for Detailed Operational Status of Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Operational Mode CLI Command</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEB</td>
<td>show chassis feb</td>
<td>M5 and M10 routers</td>
</tr>
<tr>
<td>FPC</td>
<td>show chassis fpc</td>
<td>M40e and M160 routers, and T-series platforms</td>
</tr>
<tr>
<td>Routing Engine</td>
<td>show chassis routing-engine</td>
<td>M40e and M160 routers, and T-series platforms</td>
</tr>
<tr>
<td>SCB</td>
<td>show chassis scb</td>
<td>M40 routers</td>
</tr>
<tr>
<td>SFM</td>
<td>show chassis sfm</td>
<td>M40e and M160 routers</td>
</tr>
<tr>
<td>SSB</td>
<td>show chassis ssb</td>
<td>M20 routers</td>
</tr>
<tr>
<td>Switch Processor Mezzanine Board (SPMB)</td>
<td>show chassis spmb</td>
<td>T320 and T640 platforms</td>
</tr>
</tbody>
</table>

Gather Component Alarm Information

Purpose
When you obtain information about component alarms and error messages, you determine when a problem with a component first appeared and the details of the situation.

To gather component alarm information, follow these steps:

1. Display the Current Router Alarms on page 87
2. Display Error Messages in the Messages Log File on page 88
3. Display Error Messages in the Chassis Process Log File on page 88

Display the Current Router Alarms

Purpose
To determine the details of the alarms and when they first appeared in the component.

Action
To display the current router component alarms, use the following CLI command:

```
user@host> show chassis alarms
```
The command output displays the number of alarms currently active, the time when the alarm began, the severity level, and an alarm description. Note the date and time of an alarm so that you can correlate it with error messages in the messages system log file.

For examples of sample output, see the Junos System Basics and Services Command Reference.

Display Error Messages in the Messages Log File

Purpose
To determine the details of the error messages in the Messages Log File.

Action
To display router component error messages in the messages system log file, use the following CLI command:

```
user@host> show log messages
```

The messages system log file records the time the failure or event occurred, the severity level, a code, and a message description. Error messages in the messages system log file are logged at least 5 minutes before and after the alarm event.

To search for specific information in the log file, use the | match component-name command; for example, use show log messages | match fpc. If there is a space in the component name, enclose the component name in quotation marks; for example, | match “power supply”.

To search for multiple items in the log file, use the | match command followed by the multiple items, separated by the | (pipe), and enclosed in quotation marks; for example, | match “fpc | sfm | kernel | tnp”.

To monitor the messages file in real time, use the monitor start messages CLI command. This command displays the new entries in the file until you stop monitoring by using the monitor stop messages CLI command.

For more information about system log messages, see the Junos System Log Messages Reference.

Display Error Messages in the Chassis Process Log File

Purpose
To determine the details of the error messages in the Chassis Process Log File.

Action
To display router component errors in the chassis process (chassisd) system log file, use the following CLI command:

```
user@host> show log chassisd
```

The chassis process (chassisd) log file tracks the state of each chassis component. For examples of sample output, see the Junos System Basics and Services Command Reference.

To search for specific information in the log file, use the | match component-name command; for example, show log messages | match fpc. If there is a space in the
component name, enclose the component name in quotation marks; for example, \texttt{match "power supply"}.

To search for multiple items in the log file, use the \texttt{match} command followed by the multiple items, separated by the | (pipe), and enclosed in quotation marks; for example, \texttt{match "fpc | sfm | kernel | tnp"}.

To monitor the \texttt{chassisd} file in real time, use the \texttt{monitor start chassisd} CLI command. This command displays the new entries in the file until you stop monitoring by using the \texttt{monitor stop chassisd} CLI command.

\subsection*{Verify the Component Problem}

\begin{tabular}{|p{2cm}|p{15cm}|}
 \hline
 \textbf{Purpose} & Test a component only if it is not associated with a previously reported router component failure case and if testing will not compromise the integrity of the router and other components. \\
 \hline
 \textbf{Action} & To verify component failure: \\
 & 1. Make sure that the component is well seated in its slot and connected to the router midplane. \\
 & 2. Perform a swap test on the component that has failed or has a problem. Take the component offline if necessary, remove it, and replace it with one that you know works. If the replaced component works, it confirms that there was a problem with the component you removed. \\
 \hline
 \end{tabular}

\textbf{NOTE:} Before performing a swap test, always check for bent pins in the midplane and check the component for stuck pins in the connector. Pins stuck in the component connector can damage other good slots during a swap test.

\subsection*{Fix the Problem}

\begin{tabular}{|p{2cm}|p{15cm}|}
 \hline
 \textbf{Problem} & If the router alarm condition is your responsibility, take action and correct it. \\
 \hline
 \textbf{Solution} & For example, replace a dirty air filter, clean a fiber-optic cable, connect the component securely to the midplane, or reset the component. Otherwise, escalate the alarm condition and contact JTAC. \\
 \hline
 \end{tabular}

\textbf{NOTE:} Do not straighten component pins. If the pins on a component are bent, return the component with a Return Material Authorization (RMA). Straightening the pins may cause intermittent problems in the future.
Contact JTAC

If you cannot determine the cause of a problem or need additional assistance, contact JTAC at support@juniper., or at 1-888-314-JTAC (within the United States) or 1-408-745-9500 (from outside the United States).

To provide JTAC with information about the system, use the following CLI command:

```
user@host> request support information
```

Include the command output in your support request.

Because the output of this command is generally quite long, you can redirect the output to a file by using the following CLI command:

```
user@host> request support information | save filename
```

The `request support information` command is a combination of the following CLI operational mode commands:

- `show version`—Displays version information for the Junos OS packages and the software for each software process.
- `show chassis firmware`—Displays the version levels of the firmware running on the SCB, SFM, SSB, FEB, and FPCs.
- `show chassis hardware`—Displays a list of all components installed in the router chassis. The output includes the component name, version, part number, serial number, and a brief description.
- `show chassis environment`—Displays environmental information about the router chassis, including the temperature and information about the fans, power supplies, and Routing Engine.
- `show interfaces extensive`—Displays static status information about router interfaces.
- `show configuration` (excluding any `SECRET-DATA`)—Displays the configuration that currently is running on the router, which is the last committed configuration. If you have modified the configuration since you last committed it, the configuration information displayed by the `show configuration` command will be different from that displayed with the `show` command from the `[edit]` hierarchy level in Junos OS CLI configuration mode.
- `show system virtual-memory`—Displays the usage of Junos kernel memory, listed first by size of allocation and then by type of usage.

Return the Failed Component

To return a failed component, follow these steps:

1. Determine the part number and serial number of the component. To list the numbers for all components installed in the chassis, use the following CLI command:

```
user@host> show chassis hardware
```
If the component does not appear in the hardware inventory listing, check the failed component for the attached serial number ID label.

NOTE: The cooling system components (fans and impellers) do not have serial numbers. Therefore, you will not see a serial number listed in the hardware inventory or a serial number ID label on the component.

2. Obtain a Return Material Authorization (RMA) number from JTAC. You can send e-mail to support@juniper.net, or call 1-888-314-JTAC (within the United States) or 1-408-745-9500 (from outside the United States).

Provide the following information in your e-mail message or during the telephone call:

- Part number, description, and serial number of the component
- Your name, organization name, telephone number, fax number, and e-mail address
- Shipping address for the replacement component, including a contact name, phone number, and e-mail address
- Description of the failure, including log messages

The support representative will validate your request and issue an RMA number for the return of the component

3. Pack the router or component for shipment, as described in the appropriate router hardware guide. Label the package with the corresponding RMA number.
CHAPTER 10

Verify Physical Interfaces on the Router

This chapter describes how to check the physical interfaces on a Juniper Networks router.

- Checklist for Verifying Physical Interfaces on a Router on page 93
- Check Physical Interfaces on a Router on page 93
- Display Real-Time Statistics about a Physical Interface on page 99
- Check System Logging on page 101

Checklist for Verifying Physical Interfaces on a Router

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Table 22 on page 93 provides links and commands for verifying physical interfaces on a router.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td></td>
</tr>
</tbody>
</table>

Table 22: Checklist for Verifying Physical Interfaces on a Router

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Check Physical Interfaces on a Router” on page 93</td>
<td>show interfaces terse</td>
</tr>
<tr>
<td>1. Display Summary Interface Information on page 94</td>
<td>show interfaces terse interface-name</td>
</tr>
<tr>
<td>2. Display Detailed Interface Information on page 95</td>
<td>show interfaces interface-name extensive</td>
</tr>
<tr>
<td>“Display Real-Time Statistics about a Physical Interface” on page 99</td>
<td>monitor interface interface-name</td>
</tr>
<tr>
<td>“Check System Logging” on page 101</td>
<td>show log messages</td>
</tr>
</tbody>
</table>

Check Physical Interfaces on a Router

| Purpose | When you check the physical interfaces on a router, you gather information to quickly diagnose problems. |
To check the physical interfaces on a router, follow these steps:

1. Display Summary Interface Information on page 94
2. Display Detailed Interface Information on page 95

Display Summary Interface Information

Purpose By displaying a summary of the interfaces on a router, you begin the process of isolating problems when they occur.

Action To display a summary of all interfaces on a router or a specific group of interfaces, use one of the following Junos OS command-line interface (CLI) operational mode commands:

```
user@host> show interfaces terse
user@host> show interfaces terse interface-name
```

Sample Output

The following sample output shows all interfaces on a router:

```
user@host> show interfaces terse
Interface               Admin Link Proto Local                 Remote
so-5/0/0                up    down
13-6/0/0                up    down
13-6/0/1                up    down
13-6/0/2                up    down
13-6/0/3                up    down
at-6/1/0                up    down
fe-7/0/0                up    up
fe-7/0/0.0              up    up   vpls
fe-7/0/1                up    up
fe-7/0/2                up    up
fe-7/0/3                up    up
t3-7/1/0                up    down
t3-7/1/1                up    down
t3-7/1/2                up    down
t3-7/1/3                up    down
dsc                     up    up
fxp0                    up    up
fxp0.0                  up    up   inet 10.168.4.32/24
fxp1                    up    up
t3-7/1/0.0              up    up   tnp 4
gre                     up    up
ipip                    up    up
lo0                     up    up
lo0.0                   up    up   inet 127.0.0.1           --> 0/0
lsi                     up    up
mtun                    up    up
pimd                    up    up
pime                    up    up
tap                     up    up
```

The following sample output is for a specific group of SONET interfaces on a router:
Sample Output

```
user@host> show interfaces terse so*
so-0/0/0        up    up
so-0/0/0.1      up    down inet  10.1.13.2/30
iso
so-0/0/0.2      up    down inet  10.1.23.2/30
iso
so-0/0/0.4      up    down inet  10.1.34.1/30
iso
so-0/0/0.5      up    up   inet  10.1.35.1/30
iso
so-0/0/1        up    up
so-0/0/2        up    up
so-0/0/3        up    up
iso
i
"
Sample Output

user@host> show interfaces at-7/0/0 extensive

Physical interface: at-7/0/0, Enabled, Physical link is Up
Interface index: 101, SNMP ifIndex: 106, Generation: 100
Description: bangkok51 at-1/1/0
Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, SONET mode,
Speed: OC12, Loopback: None,
   Payload scrambler: Enabled
Device flags   : Present Running
Link flags     : None
Hold-times     : Up 0 ms, Down 0 ms
Current address: 00:90:69:10:c7:72
Last flapped   : 2002-05-23 12:12:18 PDT (1d 03:20 ago)
Statistics last cleared: Never
Traffic statistics:
Input bytes : 9526697  744 bps
Output bytes : 10458384  496 bps
Input packets: 129969  0 pps
Output packets: 126940  0 pps
Input errors:
   Errors: 0, Drops: 0, Invalid VCs: 0, Framing errors: 0, Policed discards: 0, L3 incompletes: 0,
   L2 channel errors: 0, L2 mismatch timeouts: 0
Output errors:
   Carrier transitions: 0, Errors: 0, Drops: 0, Aged packets: 0
SONET alarms   : None
SONET defects  : None
SONET PHY:  
   PLL Lock 0 0 OK
   PHY Light 0 0 OK
SONET section:
   BIP-B1 1  9
   SEF 0 0 OK
   LOS 0 0 OK
   LOF 0 0 OK
   ES-S 1
   SES-S 0
   SEFS-S 0
SONET line:
   BIP-B2 1 183
   REI-L 1 323
   RDI-L 0 0 OK
   AIS-L 0 0 OK
   BERR-SF 0 0 OK
   BERR-SD 0 0 OK
   ES-L 1
   SES-L 0
   UAS-L 0
   ES-LFE 1
   SES-LFE 0
   UAS-LFE 0
SONET path:
   BIP-B3 1  31
   REI-P 1 216
   LOP-P 0 0 OK
   AIS-P 0 0 OK
   RDI-P 0 0 OK
   UNEQ-P 0 0 OK
   PLM-P 0 0 OK
ES-P                      1
SES-P                     0
UAS-P                     0
ES-PFE                    1
SES-PFE                   0
UAS-PFE                   0

Received SONET overhead:
F1      : 0x00, J0      : 0x00, K1      : 0x00, K2      : 0x00
S1      : 0x00, C2      : 0x13, C2(cmp) : 0x13, F2      : 0x00
Z3      : 0x00, Z4      : 0x00, S1(cmp) : 0x00, V5      : 0x00
V5(cmp) : 0x00

Transmitted SONET overhead:
F1      : 0x00, J0      : 0x01, K1      : 0x00, K2      : 0x00
S1      : 0x00, C2      : 0x13, F2      : 0x00, Z3      : 0x00
Z4      : 0x00, V5      : 0x00

ATM status:
HCS state:     Sync
LOC      :       OK

ATM Statistics:
Uncorrectable HCS errors: 77, Correctable HCS errors: 5, Tx cell
FIFO overruns: 0,
Rx cell FIFO overruns: 1, Rx cell FIFO underruns: 0, Input cell
count: 421980,
Output cell count: 139110927341, Output idle cell count: 1671702365,
Output VC queue drops: 0,
Input no buffers: 0, Input length errors: 0, Input timeouts: 0,
Input invalid VCs: 143301,
Input bad CRCs: 0, Input OAM cell no buffers: 0
Packet Forwarding Engine configuration:

<table>
<thead>
<tr>
<th>Limit</th>
<th>CoS transmit queue</th>
<th>Bandwidth</th>
<th>Buffer</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 best-effort</td>
<td>low</td>
<td>0 bps</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>low expedited-forwarding</td>
<td>none</td>
<td>0 bps</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>low assured-forwarding</td>
<td>none</td>
<td>0 bps</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>low network-control</td>
<td>none</td>
<td>0 bps</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Logical interface at-7/0/0.100 (Index 49) (SNMP ifIndex 143) (Generation 76)
Flags: Point-To-Point Inverse-ARP SNMP-Traps Encapsulation: ATM-SNAP

Traffic statistics:
Input bytes : 9993
Output bytes : 16246
Input packets: 151
Output packets: 136

Local statistics:
Input bytes : 9993
Output bytes : 16246
Input packets: 151
Output packets: 136

Transit statistics:
Input bytes : 0 bps
Output bytes : 0 bps
Input packets: 0 pps
Output packets: 0 pps

Protocol inet, MTU: 4470, Flags: None, Generation: 200 Route table: 0
Addresses, Flags: Is-Preferred Is-Primary
  Destination: 10.9.140.1, Local: 10.9.140.2, Broadcast:
Unspecified, Generation: 106
Protocol iso, MTU: 4470, Flags: None, Generation: 201 Route table: 0
Protocol mpls, MTU: 4458, Flags: None, Generation: 202 Route table: 0
VCI 0.200
Flags: Active, Inverse-ARP, OAM, Shaping
VBR, Peak: 12mbps, Sustained: 10mbps, Burst size: 24, Queue length: 0
OAM, Period 10 sec, Up count: 5, Down count: 4
Total down time: 0 sec, Last down: Never
ATM per-VC transmit statistics:
Tail queue packet drops: 0
OAM FS cell statistics:
Total received: 49, Total sent: 49
Loopback received: 49, Loopback sent: 49
Last received: 00:00:08, Last sent: 00:00:08
RDI received: 0, RDI sent: 0
AIS received: 0
Traffic statistics:
Input bytes : 9993
Output bytes : 16246
Input packets: 151
Output packets: 136

Meaning
The sample output shows static status information about this particular ATM interface.
For examples of sample output for supported interfaces, see the Junos Network Interfaces Configuration Guide.

Table 23 on page 98 lists the interface types supported by the Junos OS and shows the interface name as it appears in the output.

### Table 23: Interface Types Supported by the Junos OS

<table>
<thead>
<tr>
<th>Interface Group</th>
<th>Interface Type</th>
<th>Format of interface-name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM</td>
<td>ATM</td>
<td>at-fpc/pic/port</td>
</tr>
<tr>
<td>Channelized</td>
<td>Channelized DS3 to DS0</td>
<td>ds-fpc/pic/port:tchannel:ds-0 channel t1</td>
</tr>
<tr>
<td></td>
<td>Channelized DS3 to DS1</td>
<td>t1-fpc/pic/port:channel t1</td>
</tr>
<tr>
<td></td>
<td>Channelized E1</td>
<td>ds-fpc/pic/port:ds-0 channel e1</td>
</tr>
<tr>
<td></td>
<td>Channelized OC3 to T1</td>
<td>t3-fpc/pic/port:channel</td>
</tr>
<tr>
<td></td>
<td>Channelized OC12 to DS3</td>
<td>e1-fpc/pic/port:channel</td>
</tr>
<tr>
<td>T1, T3, E1, E3</td>
<td>E1</td>
<td>e1-fpc/pic/port</td>
</tr>
<tr>
<td></td>
<td>E3</td>
<td>e3-fpc/pic/port</td>
</tr>
<tr>
<td></td>
<td>T1</td>
<td>t1-fpc/pic/port</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>t3-fpc/pic/port</td>
</tr>
<tr>
<td>Ethernet</td>
<td>Aggregated Ethernet</td>
<td>ae-fpc/pic/port</td>
</tr>
<tr>
<td></td>
<td>Fast Ethernet</td>
<td>fe-fpc/pic/port</td>
</tr>
<tr>
<td></td>
<td>Gigabit Ethernet</td>
<td>ge-fpc/pic/port</td>
</tr>
<tr>
<td></td>
<td>10-Gigabit Ethernet</td>
<td>ge-fpc/pic/port</td>
</tr>
<tr>
<td></td>
<td>Internal Ethernet</td>
<td>fxp</td>
</tr>
<tr>
<td></td>
<td>Management Ethernet</td>
<td>fxp</td>
</tr>
<tr>
<td>Multilink</td>
<td>Frame Relay</td>
<td>ml-fpc/pic/port</td>
</tr>
<tr>
<td></td>
<td>PPP</td>
<td>ml-fpc/pic/port</td>
</tr>
</tbody>
</table>
Table 23: Interface Types Supported by the Junos OS (continued)

<table>
<thead>
<tr>
<th>Interface Group</th>
<th>Interface Type</th>
<th>Format of interface-name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SONET/SDH</td>
<td>Aggregated SONET/SDH</td>
<td>as-fpc/pic/port</td>
</tr>
<tr>
<td></td>
<td></td>
<td>so-fpc/pic/port</td>
</tr>
<tr>
<td>Other</td>
<td>Encryption</td>
<td>es-fpc/pic/port:es</td>
</tr>
<tr>
<td></td>
<td>GRE tunnel</td>
<td>gr-fpc/pic/port</td>
</tr>
<tr>
<td></td>
<td>IP-IP tunnel</td>
<td>ip-fpc/pic/port</td>
</tr>
<tr>
<td></td>
<td>Loopback</td>
<td>lo</td>
</tr>
</tbody>
</table>

Display Real-Time Statistics about a Physical Interface

**Purpose**  
Displaying real-time statistics about a physical interface is useful when you need to narrow down possible causes of an interface problem. The monitor command checks for and displays common interface failures, indicates whether loopback is detected, and shows any increases in framing errors.

**NOTE:** If you are accessing the router from the console connection, make sure you set the CLI terminal type using the set cliterminal command.

**Action**  
To display real-time statistics about a physical interface, use the following Junos OS CLI operational mode command:

```
user@host> monitor interface interface-name
```
Sample Output

user@host> monitor interface so-0/0/0
router1                         Seconds: 19              Time: 15:46:29
Interface: so-0/0/0, Enabled, Link is Up
Encapsulation: PPP, Keepalives, Speed: OC48
Traffic statistics:
- Input packets: 6045 (0 pps) [11]
- Input bytes: 6290065 (0 bps) [13882]
- Output packets: 10376 (0 pps) [10]
- Output bytes: 10365540 (0 bps) [9418]

Encapsulation statistics:
- Input keepalives: 1901 [2]
- Output keepalives: 1901 [2]

NCP state: Opened
LCP state: Opened

Error statistics:
- Input errors: 0 [0]
- Input drops: 0 [0]
- Input framing errors: 0 [0]
- Policed discards: 0 [0]
- L3 incompletes: 0 [0]
- L2 channel errors: 0 [0]
- L2 mismatch timeouts: 0 [0]
- Carrier transitions: 1 [0]
- Output errors: 0 [0]
- Output drops: 0 [0]
- Aged packets: 0 [0]

Active alarms: None
Active defects: None

SONET error counts/seconds:
- LOS count 1 [0]
- LOF count 1 [0]
- SEF count 1 [0]
- ES-S 0 [0]
- SES-S 0 [0]

SONET statistics:
- BIP-B1: 458871 [0]
- BIP-B2: 460072 [0]
- REI-L: 465610 [0]
- BIP-B3: 458978 [0]
- REI-P: 458773 [0]

Received SONET overhead:
- F1: 0x00 0x00 0x00 0x00
- K2: 0x00 0x00 0x00 0x00
- C2(cmp): 0x00 0x00 0x00 0x00
- Z4: 0x00 0x00 0x00 0x00

Transmitted SONET overhead:
- F1: 0x00 0x00 0x00 0x00
- K2: 0x00 0x00 0x00 0x00
- F2: 0x00 0x00 0x00 0x00

Meaning The sample output displays real-time statistics about the physical interface (updating them every second), the amount that each field has changed since you started the command or since you cleared the counters by using the C key. It also checks for and displays common interface failures, such as SONET/SDH and T3 alarms, detected loopbacks, and increases in framing errors.
To control the output of the command while it is running, use the keys shown in Table 24 on page 101.

Table 24: Monitor Interface Output Control Keys

<table>
<thead>
<tr>
<th>Key</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Display information about the next interface. The <code>monitor interface</code> command scrolls through the physical or logical interfaces in the same order that they are displayed by the <code>show interfaces terse</code> command.</td>
</tr>
<tr>
<td>I</td>
<td>Display information about a different interface. The command prompts you for the name of a specific interface.</td>
</tr>
<tr>
<td>F</td>
<td>Freeze the display, halting the display of updated statistics.</td>
</tr>
<tr>
<td>T</td>
<td>Thaw the display, resuming the display of updated statistics.</td>
</tr>
<tr>
<td>C</td>
<td>Clear (zero) the current delta counters since <code>monitor interface</code> was started. It does not clear the cumulative counter.</td>
</tr>
<tr>
<td>Q</td>
<td>Stop the <code>monitor interface</code> command.</td>
</tr>
</tbody>
</table>

Check System Logging

Purpose

By looking through the messages file for any entries pertaining to the interface that you are interested in, you can further investigate a problem with an interface.

Action

To check system logging, use the following Junos OS CLI operational mode command:

```
user@host> show log messages | match interface-name
```

Sample Output

```
user@host> show log messages | match so-0/3/1
May 2 12:10:58 router rpd[729]: RPD ISIS ADJDOWN: IS-IS lost L2 adjacency to ABC-CORE-RTR1 on so-0/3/1.0, reason: Interface Down
May 2 12:11:27 router mib2d[575]: SNMP_TRAP_LINK_DOWN: ifIndex 25, ifAdminStatus up(1), ifOperStatus down(2), ifName so-0/3/1
May 2 12:11:27 router rpd[729]: RPD ISIS ADJDOWN: IS-IS lost L2 adjacency to ABC-CORE-RTR1 on so-0/3/1.0, reason: Interface Down
May 2 12:11:31 router rpd[729]: RPD LDP NBRDOWN: LDP neighbor 130.81.4.109 (so-0/3/1.0) is down
```

Meaning

The sample output shows entries in the messages file pertaining to the SONET interface, so-0/3/1, and its Intermediate System-to-Intermediate System (IS-IS) adjacencies and Label Distribution Protocol (LDP) neighbors. The entries indicate that the interface went down on May 2 at 12:11:27, and that both the IS-IS adjacency and the LDP neighbor are down.
Verify the IS-IS Protocol and Adjacencies

This chapter describes how to check whether the Intermediate System-to-Intermediate System (IS-IS) protocol is configured correctly on a Juniper Networks router and that the proper adjacencies are formed in a network.

- Checklist for Verifying the IS-IS Protocol and Adjacencies on page 103
- Verifying the IS-IS Configuration on a Router in a Network on page 104
- Displaying the Status of IS-IS Adjacencies on page 112

Checklist for Verifying the IS-IS Protocol and Adjacencies

**Purpose**
Table 25 on page 103 provides links and commands for verifying the IS-IS protocol and adjacencies.

**Action**

Table 25: Checklist for Verifying the IS-IS Protocol and Adjacencies

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Verifying the IS-IS Configuration on a Router in a Network” on page 104</td>
<td></td>
</tr>
</tbody>
</table>
| 1. Check the Configuration of a Level 1/Level 2 Router on page 105 | [edit protocols isis] show
[edit protocols isis] run show isis interface
[edit] edit interfaces
[edit interfaces] show |
| 2. Check the Configuration of a Level 1 Router on page 108 | [edit protocols isis] show
[edit protocols isis] run show isis interface
[edit] edit interfaces
[edit interfaces] show |
| 3. Check the Configuration of a Level 2 Router on page 110 | [edit protocols isis] show
[edit protocols isis] run show isis interface
[edit] edit interfaces
[edit interfaces] show |
| “Displaying the Status of IS-IS Adjacencies” on page 112 | |
| 1. Verifying Adjacent Routers | show isis adjacency |
Table 25: Checklist for Verifying the IS-IS Protocol and Adjacencies (continued)

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Examine a Route</td>
<td>show route destination-prefix</td>
</tr>
<tr>
<td></td>
<td>show route detail destination-prefix</td>
</tr>
<tr>
<td></td>
<td>show isis route destination-prefix</td>
</tr>
<tr>
<td>3. Examine the Forwarding Table</td>
<td>show route forwarding-table destination destination-prefix</td>
</tr>
<tr>
<td>4. Examine the Link-State Database</td>
<td>show isis database</td>
</tr>
<tr>
<td>5. Examine a Link-State PDU Header</td>
<td>show isis database extensive</td>
</tr>
</tbody>
</table>

Verifying the IS-IS Configuration on a Router in a Network

**Purpose**

For IS-IS to run on a router (intermediate system) in your network, you must enable IS-IS on the router, configure a network entity title (NET) on the loopback interface (lo0), and configure `family iso` on all interfaces on which you want to run IS-IS. When you enable IS-IS on a router, Level 1 and Level 2 are enabled by default.

Figure 7 on page 104 illustrates an example of routers at different levels in an IS-IS topology.

Figure 7: Levels in an IS-IS Network Topology

The network in Figure 7 on page 104 is organized hierarchically and consists of Level 2, Level 1/Level 2, and Level 1 routers in one autonomous system (AS) divided into four areas: 49.0001, 49.0002, 49.0003, and 49.0004. The Level 2 routers route toward other autonomous systems. The Level 1/Level 2 routers route between areas and to other
autonomous systems. The Level 1 routers route within an area, and when the destination is outside the local area, they route toward a Level1/Level2 system.

In the following topics, the configuration of the various types of routers is examined.

Figure 8 on page 105 provides more details about the IS-IS network topology in Figure 7 on page 104 so that you can verify the configuration output of the various routers.

Figure 8: IS-IS Network Topology with Details

To verify that IS-IS is configured correctly on routers at different levels, follow these steps:

1. Check the Configuration of a Level 1/Level 2 Router on page 105
2. Check the Configuration of a Level 1 Router on page 108
3. Check the Configuration of a Level 2 Router on page 110

Check the Configuration of a Level 1/Level 2 Router

Purpose Check the configuration of a Level 1/Level 2 router.

Action To verify the IS-IS configuration of a Level 1/Level 2 router in your network, enter the following Junos OS command-line interface (CLI) commands:

user@host# [edit protocols isis] show
user@host# [edit protocols isis]
user@host# run show isis interface
user@host# [edit] edit interfaces
user@host# [edit interfaces] show
The following output is for an IS-IS configuration on R2, a Level 1/Level 2 router in the network shown.
Sample Output

```plaintext
[edit protocols isis]
user@R2# show
interface so-0/0/0.0 {
 level 2 metric 10;
 level1disable;
}
interface so-0/0/1.0 {
 level 2 disable;
 level 1 metric 10;
}
interface so-0/0/2.0 {
 level 2 metric 10;
 level1disable;
}
interface fxp0.0 {
 disable;
}
interface lo0.0;

[edit protocols isis]
user@R2# run show isis interface
IS-IS interface database:
+----------------+----------------+----------------+----------------+----------------+
<table>
<thead>
<tr>
<th>Interface</th>
<th>L</th>
<th>CirID</th>
<th>Level 1 DR</th>
<th>Level 2 DR</th>
<th>L1/L2 Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0.0</td>
<td>0</td>
<td>0x1</td>
<td>Passive</td>
<td>Passive</td>
<td>0/0</td>
</tr>
<tr>
<td>so-0/0/0.0</td>
<td>2</td>
<td>0x1</td>
<td>Disabled</td>
<td>Point to Point</td>
<td>10/10</td>
</tr>
<tr>
<td>so-0/0/1.0</td>
<td>3</td>
<td>0x1</td>
<td>Point to Point</td>
<td>Point to Point</td>
<td>10/10</td>
</tr>
<tr>
<td>so-0/0/2.0</td>
<td>2</td>
<td>0x1</td>
<td>Disabled</td>
<td>Point to Point</td>
<td>10/10</td>
</tr>
</tbody>
</table>
[edit interfaces]
user@R2# show
so-0/0/0 {
 unit 0 {
 family inet {
 address 10.1.12.2/30;
 }
 family iso;
 }
}
so-0/0/1 {
 unit 0 {
 family inet {
 address 10.1.23.1/30;
 }
 family iso;
 }
}
so-0/0/2 {
 unit 0 {
 family inet {
 address 10.1.26.1/30;
 }
 family iso;
 }
}
lo0 {
 unit 0 {
 family inet {
 address 10.0.0.2/32;
 }
 }
}
```

Meaning

The sample output shows a basic configuration of IS-IS on R2, a Level 1/Level 2 router. The basic configuration is at the [edit protocols isis] and [edit interfaces] hierarchy levels.

At the [edit protocols isis] level, five interfaces are included: so-0/0/0, so-0/0/1, so-0/0/2, fpx0, and the loopback interface (lo0). Two interfaces, so-0/0/0.0 and so-0/0/2.0, have Level 1 disabled, making them Level 2 interfaces. One interface, so-0/0/1.0, has Level 2 disabled, making it a Level 1 interface. The management interface (fpx0) is disabled so that IS-IS packets are not sent over it, and the loopback interface (lo0) is included because it becomes a point of connection from the router to the IS-IS network.

At the [edit interfaces] hierarchy level, all of the interfaces included in the [edit protocols isis] hierarchy level are configured with family iso, and the loopback interface (lo0) is configured with the NET address 49.0002.1000.0000.0002.00. Every router in an IS-IS network must have at least one NET address that identifies a point of connection to the IS-IS network. The NET address is generally configured on the loopback interface (lo0). Routers that participate in multiple areas can have multiple NET addresses.

Check the Configuration of a Level 1 Router

Purpose

To check the configuration of a Level 1 router.

Action

To check the configuration of a Level 1 router, enter the following CLI commands:

```
user@host# [edit protocols isis] show
user@host# [edit protocols isis] run show isis interface
user@host# [edit] edit interfaces
user@host# [edit interfaces] show
```

The following sample output is for R4, a Level 1 router in the network shown in The following output is for an IS-IS configuration on R2, a Level 1/Level 2 router in the network shown.
Sample Output

```plaintext
[edit protocols isis]
user@R4# show
level 2 disable;
interface so-0/0/2.0 {
 level 1 metric 10;
}
interface fxp0.0 {
 disable;
}
interface lo0.0;
[edit protocols isis]
user@R4# run show isis interface
IS-IS interface database:
Interface L CirID Level 1 DR Level 2 DR L1/L2 Metric
lo0.0 0 0x1 Passive Passive 0/0
so-0/0/2.0 1 0x1 Point to Point Disabled 10/10
[edit interfaces]
user@R4# show
so-0/0/2 {
 unit 0 {
 family inet {
 address 10.1.45.1/30;
 }
 family iso;
 }
}
lo0 {
 unit 0 {
 family inet {
 address 10.0.0.4/32;
 }
 family iso {
 address 49.0001.1000.0000.0004.00;
 }
 }
}
```

Meaning

The sample output shows a basic configuration of IS-IS on R4, a Level 1 router. The basic configuration is at the [edit protocols isis] and [edit interfaces] hierarchy levels.

At the [edit protocols isis] hierarchy level, three interfaces are included: so-0/0/2.0, fxp0, and the loopback interface (lo0). Level 2 is disabled on the router, making it a Level 1 router that sends packets within its local area, 49.0001. When a packet destination is outside the local area, R4 establishes an adjacency with the nearest Level 1/Level 2 router (R5) that forwards the packets. For more information about adjacencies, see “Displaying the Status of IS-IS Adjacencies” on page 112.

One interface, so-0/0/2.0, is configured for IS-IS. The management interface (fxp0) is disabled so that IS-IS packets are not sent over it, and the loopback interface (lo0) is included because it becomes a point of connection from the router to the IS-IS network.

At the [edit interfaces] hierarchy level, the interface included in the [edit protocols isis] hierarchy level is also configured with family iso, and the loopback interface (lo0) is
configured with the NET address of 49.0001.1000.0000.0004.00. Every router in an IS-IS network must have at least one NET address that identifies a point of connection to the IS-IS network. The NET address is generally configured on the loopback interface (lo0). Routers that participate in multiple areas can have multiple NET addresses.

Check the Configuration of a Level 2 Router

**Purpose**
Check the configuration of a Level 2 router.

**Action**
To check the configuration of a Level 2 router, enter the following CLI commands:

```
user@host# [edit protocols isis] show
user@host# [edit protocols isis] run show isis interface
user@host# [edit] edit interfaces
user@host# [edit interfaces] show
```

The following sample output is for R6, a Level 2 router in the network shown.
Sample Output

```
[edit protocols isis]
user@R6# show
level1disable;
interface so-0/0/0.0 {
 level 2 metric 10;
}
interface so-0/0/2.0 {
 level 2 metric 10;
}
interface fdp0.0 {
 disable;
}
interface lo0.0;

[edit protocols isis]
user@R6# run show isis interface
IS-IS interface database:
<table>
<thead>
<tr>
<th>Interface</th>
<th>L CirID</th>
<th>Level 1 DR</th>
<th>Level 2 DR</th>
<th>L1/L2 Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0.0</td>
<td>0</td>
<td>Passive</td>
<td>Passive</td>
<td>0/0</td>
</tr>
<tr>
<td>so-0/0/0.0</td>
<td>2</td>
<td>0x1 Disabled</td>
<td>Point to Point</td>
<td>10/10</td>
</tr>
<tr>
<td>so-0/0/2.0</td>
<td>2</td>
<td>0x1 Disabled</td>
<td>Point to Point</td>
<td>10/10</td>
</tr>
</tbody>
</table>

[edit interfaces]
user@R6# show
so-0/0/0 { unit 0 {
 family inet {
 address 10.1.56.2/30;
 }
 family iso;
}
}
so-0/0/2 { unit 0 {
 family inet {
 address 10.1.16.2/30;
 }
 family iso;
}
}
lo0 { unit 0 {
 family inet {
 address 10.0.0.6/32;
 }
 family iso {
 address 49.0003.0000.0000.0006.00;
 }
}
}
```

Meaning

The sample output shows a basic configuration of IS-IS on R6, a Level 2 router. The basic configuration is at the [edit protocols isis] and [edit interfaces] hierarchy levels.

At the [edit protocols isis] level, four interfaces are included: so-0/0/0.0, so-0/0/2.0, fdp0, and the loopback interface (lo0). Level 1 is disabled on the two SONET/SDH interfaces, making this a Level 2 router that routes between areas and toward other ASs.
The management interface (fxp0) is disabled so that IS-IS packets are not sent over it, and the loopback interface (lo0) is included because it becomes a point of connection from the router to the IS-IS network.

At the [edit interfaces] hierarchy level, the interfaces included in the [edit protocols isis] hierarchy level are also configured with family iso, and the loopback interface (lo0) is configured with the NET address of 49.0003.1000.0000.0006.00. Every router in an IS-IS network must have at least one NET address that identifies a point of connection to the IS-IS network. The NET address is generally configured on the loopback interface (lo0). Routers that participate in multiple areas can have multiple NET addresses.

**Related Documentation**

- Example: Configuring Multi-Level IS-IS

### Displaying the Status of IS-IS Adjacencies

**Purpose**  
Assuming that all the routers are correctly configured for IS-IS, you can verify which neighbors are adjacent and able to exchange IS-IS data. In addition, you can examine the set of routes installed in the forwarding table to verify that the routing protocol process (rpd) has relayed the correct information into the forwarding table.

Figure 9 on page 112 illustrates the example IS-IS topology used for the procedures in this topic.

**Figure 9: IS-IS Network Topology**

The network consists of Level 1 and Level 2 adjacencies. Level 1 adjacencies are within areas 49.0001 and 49.0002. Level 2 adjacencies occur between all directly connected...
Level 2 routers regardless of which area they are in. For example, R5 is in area 49.0001, R6 is in area 49.0003, R1 is in area 49.0004, and R2 is in area 49.0002. The network in Figure 9 on page 112 should have the following adjacencies:

- Level 2 adjacencies between all directly connected Level 2 routers (R1, R2, R5, and R6).
- Level 1 adjacencies between routers in area 49.0001 (R4 and R5) and between routers in area 49.0002 (R2 and R3).

To verify that routers are adjacent and able to exchange IS-IS data, follow these steps:
CHAPTER 12

Verify the OSPF Protocol and Neighbors

This chapter describes how to check whether the Open Shortest Path First protocol (OSPF) is configured correctly on a Juniper Networks router, the proper adjacencies are formed in a network, and the appropriate link-state advertisements (LSAs) are flooded throughout different parts of the OSPF autonomous system (AS).

- Checklist for Verifying the OSPF Protocol and Neighbors on page 115
- Verify the OSPF Protocol on page 116
- Check OSPF Neighbors on page 128
- Examine Link-State Advertisements in Detail on page 139

Checklist for Verifying the OSPF Protocol and Neighbors

| Purpose | You can use the commands provided in Table 26 on page 115 for verifying the OSPF protocol and neighbors. |

Action

Table 26: Checklist for Verifying the OSPF Protocol and Neighbors

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Verify the OSPF Protocol” on page 116</td>
<td></td>
</tr>
</tbody>
</table>
| 1. Check OSPF on an ASBR on page 118 | show configuration  
show ospf interface |
| 2. Check OSPF on an ABR on page 122 | show configuration  
show ospf interface |
| 3. Check OSPF on a Stub Router on page 126 | show configuration  
show ospf interface |
| “Check OSPF Neighbors” on page 128 | |
| 1. Verify OSPF Neighbors on page 129 | show ospf neighbor |
| 2. Examine the OSPF Link-State Database on page 131 | show ospf database |
| 3. Examine OSPF Routes on page 135 | show route destination-prefix  
show ospf database |
Table 26: Checklist for Verifying the OSPF Protocol and Neighbors (continued)

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Examine the Forwarding Table on page 139</td>
<td>show route destination-prefix extensive show route forwarding-table destination destination-prefix</td>
</tr>
<tr>
<td>5. Examine Link-State Advertisements in Detail on page 139</td>
<td></td>
</tr>
<tr>
<td>a. Examine a Type 1 Router LSA on page 140</td>
<td>show ospf database router extensive</td>
</tr>
<tr>
<td>b. Examine a Type 3 Summary LSA on page 141</td>
<td>show ospf database netsummary extensive</td>
</tr>
<tr>
<td>c. Examine a Type 4 ASBR Summary LSA on page 141</td>
<td>show ospf database asbrsummary extensive</td>
</tr>
<tr>
<td>d. Examine a Type 5 AS External LSA on page 142</td>
<td>show ospf database extern extensive</td>
</tr>
<tr>
<td>e. Examine Type 7 NSSA External LSA on page 143</td>
<td>show ospf database nssa extensive</td>
</tr>
</tbody>
</table>

Verify the OSPF Protocol

**Purpose**  
For OSPF to run on a router in your network, you must include the interfaces that run OSPF at the [edit protocols ospf] hierarchy level and, for those interfaces, the family inet statement must be included at the [edit interfaces interface-name unit logical-unit-number] hierarchy level.

Figure 10 on page 116 illustrates an example an OSPF autonomous system (AS) consisting of multiple areas and different types of OSPF routers.

Figure 10: Multi-Area OSPF Network Topology
The AS in Figure 10 on page 116 is organized hierarchically around a backbone area, 0.0.0.0. Portions of the network are designated as separate areas: 0.0.0.1, 0.0.0.2, and 0.0.0.3. The backbone is the connecting point for all other areas, and each area must attach to the backbone in at least one location. OSPF is based on the concept of a link-state database in which each OSPF router attempts to form adjacencies with its OSPF neighbor. Once the adjacencies are in place, each router generates and floods LSAs into the network. The LSAs are placed into the link-state database on each router where the shortest path first (SPF) algorithm is calculated to find the best path to each end node in the network.

All non-backbone areas (0.0.0.1, 0.0.0.2, and 0.0.0.3) contain routers internal to that area (R1, R5, and R6) as well as a single area border router (ABR) (R2, R3, and R4). Internal routers generate LSAs within their area. The ABR translates these internal LSAs into summary LSAs that represent the LSAs within its non-backbone area and floods the summary LSAs to the backbone. The ABR is also responsible for generating summary LSAs that represent the backbone LSAs and injecting them into its attached areas. Because the ABR belongs to more than one area, it maintains a separate topological database for each area to which it is connected.

In Figure 10 on page 116, the ABRs belong to different non-backbone areas. R2 is in area 0.0.0.1, a not-so-stubby area (NSSA); R3 is in area 0.0.0.3; and R4 is in area 0.0.0.2, a stub area.

The NSSA (0.0.0.1) consists of two routers: R1 and R2. An NSSA allows external routes to be flooded within its area. These routes are then leaked to other areas within the AS. However, external routes learned from other areas within the AS do not enter the NSSA.

The stub area (0.0.0.2) consists of two routers: R4 and R5. A stub area does not allow external routes to be flooded within its area. A stub area is useful when much of the AS consists of external LSAs because it reduces the size of the topological database within the stub area and subsequently the amount of memory required by the routers in the area.

Area 0.0.0.3 is a non-backbone area consisting of two routers: R3 and R6.

External Routers A and B reside outside the AS. When an OSPF router exchanges routing information with routers in other ASs, that router is called an autonomous system boundary router (ASBR). The ASBRs shown in Figure 10 on page 116 are R1 and R6.

Figure 11 on page 118 provides interface and IP address information for the example OSPF network topology used for the procedures in this topic.
To verify that OSPF is configured correctly on routers in different areas of the network, follow these steps:

1. **Check OSPF on an ASBR on page 118**
2. **Check OSPF on an ABR on page 122**
3. **Check OSPF on a Stub Router on page 126**

### Check OSPF on an ASBR

**Purpose**
To verify the OSPF configuration on an ASBR router.

**Action**
To verify the OSPF configuration on an ASBR router in your network, enter the following Junos OS command-line interface (CLI) operational mode commands:

```plaintext
user@host> show configuration
user@host> show ospf interface
```

The following sample output is for an OSPF configuration on R1, an ASBR router shown in Figure 11 on page 118:
Sample Output

```
user@R1> show configuration
[...Output truncated...]
interfaces {
 so-0/0/0 {
 unit 0 {
 family inet {
 address 10.1.12.1/30;
 }
 }
 }
 so-0/0/2 {
 unit 0 {
 family inet {
 address 10.1.13.1/30;
 }
 }
 }
 lo0 {
 unit 0 {
 family inet {
 address 10.0.0.1/32;
 }
 }
 }
}

routing-options {
 static {
 route 10.0.0.100/32 next-hop 10.1.13.2;
 }
 router-id 10.0.0.1;
}
protocols {
 ospf {
 export export-to-ospf;
 area 0.0.0.1 {
 nssa;
 interface so-0/0/0.0;
 interface lo0.0 {
 passive;
 }
 }
 }
}

policy-options {
 policy-statement export-to-ospf {
 term external-router {
 from {
 route-filter 10.0.0.100/32 exact;
 }
 then accept;
 }
 }
}
```

user@R1> show ospf interface

<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Area</th>
<th>DR ID</th>
<th>BDR ID</th>
<th>Nbrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0.0</td>
<td>DROther</td>
<td>0.0.0.1</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
</tr>
</tbody>
</table>
so-0/0/0.0      PtToPt      0.0.0.1      0.0.0.0      0.0.0.0      1

The following sample output is for an OSPF configuration on R6, an ASBR router shown in Figure 11 on page 118:
Sample Output

```
user@R6> show configuration
[...Output truncated...]
interfaces {
 so-0/0/0 {
 unit 0 {
 family inet {
 address 10.1.56.2/30;
 }
 }
 }
 so-0/0/3 {
 unit 0 {
 family inet {
 address 10.1.36.2/30;
 }
 }
 }
 lo0 {
 unit 0 {
 family inet {
 address 10.0.0.6/32;
 }
 }
 }
}
routing-options {
 static {
 [...Output truncated...]
 route 10.0.0.101/32 next-hop 10.1.56.1;
 }
 router-id 10.0.0.6;
}
protocols {
 ospf {
 export export-to-ospf;
 area 0.0.0.3 {
 interface so-0/0/3.0;
 interface lo0.0 {
 passive;
 }
 }
 }
}
policy-options {
 policy-statement export-to-ospf {
 term external-router {
 from {
 route-filter 10.0.0.101/32 exact;
 }
 then accept;
 }
 }
}
user@R6> show ospf interface
<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Area</th>
<th>DR ID</th>
<th>BDR ID</th>
<th>Nbrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0.0</td>
<td>DROther</td>
<td>0.0.0.3</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
</tr>
<tr>
<td>so-0/0/3.0</td>
<td>PtToPt</td>
<td>0.0.0.3</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1</td>
</tr>
</tbody>
</table>
```
Meaning

The sample output shows a basic OSPF configuration at the [edit protocols ospf] and [edit interfaces] hierarchy levels on the R1 and R6 ASBR routers. In addition, both routers have an export policy, export-to-ospf, configured. The export policy allows external routes to be injected into the OSPF database and communicated throughout the AS.

R1 has two interfaces included at the [edit protocols ospf] hierarchy level: so-0/0/0 and the loopback interface (lo0). Both interfaces have the family inet statement included at the [edit interfaces] hierarchy level and are in area 0.0.0.1. Area 0.0.0.1 is attached to the backbone through R2, an ABR.

In addition, R1 has the nssa statement included at the [edit protocols ospf] hierarchy level indicating that it is an ASBR running in an NSSA. An NSSA allows external routes from outside the AS to be flooded within it. In this instance, the routes learned from external router B through the export policy export-to-ospf are injected into the R1 OSPF database and communicated throughout the AS. For more information on OSPF routes, see “Examine OSPF Routes” on page 135.

R6 has two interfaces included at the [edit protocols ospf] hierarchy level: so-0/0/3 and the loopback interface (lo0). Both interfaces have the family inet statement included at the [edit interfaces] hierarchy level and are in area 0.0.0.3. Area 0.0.0.3 is attached to the backbone through R3, an ABR. In addition, external router B is attached to R6 which has the export policy export-to-ospf configured. The export policy allows external routes to be injected into the R6 OSPF database and communicated throughout the AS.

Both routers (R1 and R6) have the router ID configured manually to avoid possible problems when the OSPF router ID (RID) changes: for example, when multiple loopback addresses are configured. The RID uniquely identifies the router within the OSPF network. It is transmitted within the LSAs used to populate the link-state database and calculate the shortest-path tree. In a link-state network, it is important that two routers do not share the same RID value, otherwise IP routing problems may occur.

An ASBR exchanges routing information with routers in other autonomous systems. ASBRs advertise externally learned routes throughout the AS. With the exception of routers in stub areas, any router in the AS—an internal router, an area border router, or a backbone router—can be an ASBR.

See the Junos Routing Protocols Configuration Guide for more information on configuring OSPF on a router.

Check OSPF on an ABR

Purpose
To verify the OSPF configuration on an ABR router.

Action
To verify the OSPF configuration on an ABR router in your network, enter the following Junos OS CLI operational mode commands:

user@host> show configuration
user@host> show ospf interface

The following sample output is for an OSPF configuration on R2, an NSSA ABR shown in Figure 11 on page 118:
### Sample Output

```plaintext
user@R2> show configuration
[...Output truncated...]
interfaces {
 so-0/0/0 {
 unit 0 {
 family inet {
 address 10.1.12.2/30;
 }
 }
 }
 so-0/0/1 {
 unit 0 {
 family inet {
 address 10.1.23.1/30;
 }
 }
 }
 so-0/0/3 {
 unit 0 {
 family inet {
 address 10.1.24.1/30;
 }
 }
 }
 lo0 {
 unit 0 {
 family inet {
 address 10.0.0.2/32;
 }
 }
 }
}
routing-options {
 router-id 10.0.0.2;
}
protocols {
 ospf {
 area 0.0.0.1 {
 nssa {
 default-lsa default-metric 10;
 }
 interface so-0/0/0.0;
 }
 area 0.0.0.0 {
 interface so-0/0/3.0;
 interface so-0/0/1.0;
 interface lo0.0 {
 passive;
 }
 }
 }
}
user@R2> show ospf interface
<table>
<thead>
<tr>
<th>Interface</th>
<th>State</th>
<th>Area</th>
<th>DR ID</th>
<th>BDR ID</th>
<th>Nbrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0.0</td>
<td>DRother</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0</td>
</tr>
<tr>
<td>so-0/0/1.0</td>
<td>PtToPt</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>0.0.0.0</td>
<td>1</td>
</tr>
</tbody>
</table>
```
Sample Output

The following sample output is for an OSPF configuration on R3, an ABR shown in Verify the OSPF Protocol:

```
user@R3> show configuration
interfaces {
 so-0/0/0 {
 unit 0 {
 family inet {
 address 10.1.34.1/30;
 }
 }
 }
 so-0/0/1 {
 unit 0 {
 family inet {
 address 10.1.23.2/30;
 }
 }
 }
 so-0/0/3 {
 unit 0 {
 family inet {
 address 10.1.36.1/30;
 }
 }
 }
 lo0 {
 unit 0 {
 family inet {
 address 10.0.0.3/32;
 }
 }
 }
}
routing-options {
 router-id 10.0.0.3;
}
protocols {
 ospf {
 area 0.0.0.0 {
 interface so-0/0/0.0;
 interface so-0/0/1.0;
 interface lo0.0 {
 passive;
 }
 }
 area 0.0.0.3 {
 interface so-0/0/3.0;
 }
 }
}
```

```
user@R3> show ospf interface
Interface State Area DR ID BDR ID Nbrs
lo0.0 DRoother 0.0.0.0 0.0.0.0 0.0.0.0 0
so-0/0/0.0 PtToPt 0.0.0.0 0.0.0.0 0.0.0.0 1
```
Sample Output

The following sample output is for an OSPF configuration on R4, an ABR shown in Figure 11 on page 118:

```
user@R4> show configuration
[...Output truncated...]
interfaces {
 so-0/0/0 {
 unit 0 {
 family inet {
 address 10.1.34.2/30;
 }
 }
 }
 so-0/0/2 {
 unit 0 {
 family inet {
 address 10.1.45.1/30;
 }
 }
 }
 so-0/0/3 {
 unit 0 {
 family inet {
 address 10.1.24.2/30;
 }
 }
 }
 lo0 {
 unit 0 {
 family inet {
 address 10.0.0.4/32;
 }
 }
 }
}
routing-options {
 router-id 10.0.0.4;
}
protocols {
 ospf {
 area 0.0.0.0 {
 interface so-0/0/0.0;
 interface so-0/0/3.0;
 interface lo0.0 {
 passive;
 }
 }
 area 0.0.0.2 {
 stub default-metric 10;
 interface so-0/0/2.0;
 }
 }
}

user@R4> show ospf interface
```
Meaning

The sample output shows a basic OSPF configuration at the [edit protocols ospf] and [edit interfaces] hierarchy levels on the R2, R3, and R4 ABR routers.

R2 has four interfaces included at the [edit protocols ospf] hierarchy level, and those interfaces have the family inet statement included at the [edit interfaces] hierarchy level. Three interfaces—so-0/0/1.0, so-0/0/3.0, and the loopback (lo0) interface—are in the backbone (0.0.0.0). One interface, so-0/0/0.0, is in the NSSA (0.0.0.1). Because R2 has one interface configured for an NSSA, external routes learned from outside the AS (through R1) are redistributed throughout the network. For more information on OSPF routes, see “Examine OSPF Routes” on page 135.

R3 has four interfaces included at the [edit protocols ospf] hierarchy level, and those interfaces have the family inet statement included at the [edit interfaces] hierarchy level. Three interfaces—so-0/0/0.0, so-0/0/1.0, and the loopback (lo0) interface—are in the backbone (0.0.0.0). One interface, so-0/0/3.0, is in a non-backbone area (0.0.0.3).

R4 has four interfaces included at the [edit protocols ospf] hierarchy level, and those interfaces have the family inet statement included at the [edit interfaces] hierarchy level. Two interfaces, so-0/0/0.0 and so-0/0/3.0, are in the backbone (0.0.0.0). One interface, so-0/0/2.0, is in the stub area (0.0.0.2). Because internal routers within a stub area do not receive external LSA information, they must rely on either direct static routes or a default route to get to external destinations. A default route can be statically configured on the internal router or learned from the stub ABR. To advertise a default LSA from the stub ABR, include the stub default-metric statement at the [edit protocols ospf area area-id] hierarchy level to activate the default route.

All routers (R2, R3, and R4) have the router ID configured manually to avoid possible problems when the OSPF router ID (RID) changes; for example, when multiple loopback addresses are configured. The RID uniquely identifies the router within the OSPF network. It is transmitted within the LSAs used to populate the link-state database and calculate the shortest-path tree. In a link-state network, it is important that two routers do not share the same RID value, otherwise IP routing problems may occur.

An ABR belongs to more than one area and maintains a separate topological database for each area to which it is connected. For more information on the OSPF database, see “Examine the OSPF Link-State Database” on page 131.

See the Junos Routing Protocols Configuration Guide for more information on configuring OSPF on a router.

Check OSPF on a Stub Router

Purpose  To verify the OSPF configuration on a stub router.
Action  To verify the OSPF configuration on a stub router in your network, enter the following commands:

    user@host> show configuration
    user@host> show ospf interface

The following sample output is for an OSPF configuration on R5, a stub router shown in Figure 11 on page 118:

Sample Output

```
user@R5> show configuration
 [...Output truncated...]
interfaces {
 so-0/0/2 {
 unit 0 {
 family inet {
 address 10.1.45.2/30;
 }
 }
 }
 lo0 {
 unit 0 {
 family inet {
 address 10.0.0.5/32;
 }
 }
 }
}
routing-options {
 router-id 10.0.0.5;
}
protocols {
 ospf {
 area 0.0.0.2 {
 stub;
 interface so-0/0/2.0;
 interface lo0.0 {
 passive;
 }
 }
 }
}

user@R5> show ospf interface
Interface State Area DR ID BDR ID Nbrs
lo0.0 D_Rother 0.0.0.2 0.0.0.0 0.0.0.0 0
so-0/0/2.0 PtToPt 0.0.0.2 0.0.0.0 0.0.0.0 1
```

Meaning  The sample output shows a basic OSPF configuration at the [edit protocols ospf] and [edit interfaces] hierarchy levels on R5, a stub router.

R5 has two interfaces included at the [edit protocols ospf] hierarchy level, and those interfaces have the family inet statement included at the [edit interfaces] hierarchy level. Both interfaces, so-0/0/2.0 and the loopback interface (lo0), are in the stub area (0.0.0.2).

R5 has the router ID configured manually to avoid possible problems when the OSPF router ID (RID) changes; for example, when multiple loopback addresses are configured.
The RID uniquely identifies the router within the OSPF network. It is transmitted within the LSAs used to populate the link-state database and calculate the shortest-path tree. In a link-state network, it is important that two routers do not share the same RID value, otherwise IP routing problems may occur.

A stub area does not allow AS external advertisements to flood within that area. R5 relies on a default route (0.0.0.0/0) to reach destinations outside the AS. The default route can be statically configured on R5 or advertised by an ABR (R4). In this network, the default LSA is advertised by R4.

A stub area is useful if you want to reduce the size of the topological database and therefore the amount of memory required from the routers in the stub area. However, some restrictions apply to a stub area. You cannot create a virtual link through a stub area, and a stub area cannot contain an ASBR.

Check OSPF Neighbors

**Purpose**
Assuming that all the routers are correctly configured for OSPF, you can verify which neighbors are adjacent and what type of LSAs are contained in the OSPF link-state database. In addition, you can examine the set of routes installed in the forwarding table to verify that the routing protocol process (rpd) has relayed the correct information into the forwarding table.

Figure 12 on page 128 illustrates an example OSPF network topology used in this topic.

Figure 12: OSPF Network Topology

The network consists of various types of routers that form adjacencies with neighboring OSPF routers. Once these adjacencies are in place, each router generates and floods LSAs into the network. The LSAs are placed into the link-state database on each router.
where the shortest path first (SPF) algorithm is calculated to find the best path to each router in the network. The network in Figure 12 on page 128 should have the following adjacencies and LSA distribution:

- ABR routers R2, R3, and R4 should form adjacencies with routers in all areas to which they are connected (0.0.0.0, 0.0.0.1, 0.0.0.2, and 0.0.0.3). See “Check OSPF on an ABR” on page 122.
- Internal routers (R1, R5, and R6) should form adjacencies with routers inside their local area only. See “Check OSPF on a Stub Router” on page 126 and “Check OSPF on an ASBR” on page 118.
- Backbone area 0.0.0.0 should have Type 1, Type 3, Type 4, and Type 5 LSAs.
- NSSA area 0.0.0.1 should have Type 1, Type 3, and Type 7 LSAs.
- Stub area 0.0.0.2 should have Type 1 and Type 3 LSAs.
- Area 0.0.0.3 should have Type 1, Type 3, Type 4, and Type 5 LSAs.

To verify that routers are adjacent and have the correct exchange of LSAs, follow these steps:

1. Verify OSPF Neighbors on page 129
2. Examine the OSPF Link-State Database on page 131
3. Examine OSPF Routes on page 135
4. Examine the Forwarding Table on page 139

**Verify OSPF Neighbors**

**Purpose** To verify that routers are adjacent and able to exchange OSPF data.

**Action** To verify that routers are adjacent and able to exchange OSPF data, enter the following CLI operational mode command:

```
user@host> show ospf neighbor
```

The following sample output shows the adjacencies that formed for all routers in Figure 12 on page 128:
Sample Output

```
user@R1> show ospf neighbor
Address Interface State ID Pri Dead
10.1.12.2 so-0/0/0.0 Full 10.0.0.2 128 36
```
```
user@R2> show ospf neighbor
Address Interface State ID Pri Dead
10.1.23.2 so-0/0/1.0 Full 10.0.0.3 128 32
10.1.24.2 so-0/0/3.0 Full 10.0.0.4 128 33
10.1.12.1 so-0/0/0.0 Full 10.0.0.1 128 33
```
```
user@R3> show ospf neighbor
Address Interface State ID Pri Dead
10.1.34.2 so-0/0/0.0 Full 10.0.0.4 128 36
10.1.23.1 so-0/0/1.0 Full 10.0.0.2 128 38
10.1.36.2 so-0/0/3.0 Full 10.0.0.6 128 33
```
```
user@R4> show ospf neighbor
Address Interface State ID Pri Dead
10.1.34.1 so-0/0/0.0 Full 10.0.0.3 128 31
10.1.24.1 so-0/0/3.0 Full 10.0.0.2 128 36
10.1.45.2 so-0/0/2.0 Full 10.0.0.5 128 39
```
```
user@R5> show ospf neighbor
Address Interface State ID Pri Dead
10.1.45.1 so-0/0/2.0 Full 10.0.0.4 128 35
```
```
user@R6> show ospf neighbor
Address Interface State ID Pri Dead
10.1.36.1 so-0/0/3.0 Full 10.0.0.3 128 31
```

Meaning

The sample output shows that ABR routers R2, R3, and R4 have formed adjacencies with routers in all areas to which they are directly connected. Internal routers (R1, R5, and R6) have formed an adjacency with the other router inside their local area.

Adjacencies are formed after OSPF hello packets are sent and received by neighbors. Adjacencies determine the type of LSA's sent and received, and what topological database updates are sent. When adjacencies are established, pairs of adjacent routers synchronize their topological databases.

Table 27 on page 130 lists and describes the fields in the `show ospf neighbor` command.

Table 27: Output Fields for the show ospf neighbor Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>Address of the neighbor.</td>
</tr>
<tr>
<td>Interface</td>
<td>Interface through which the neighbor is reachable.</td>
</tr>
<tr>
<td>State</td>
<td>State of the neighbor. It can be Attempt, Down, Exchange, ExStart, Full, Init, Loading, or 2 Way.</td>
</tr>
<tr>
<td>ID</td>
<td>Router ID of the neighbor.</td>
</tr>
</tbody>
</table>
Table 27: Output Fields for the show ospf neighbor Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pri</td>
<td>Priority of the neighbor to become the designated router. Only used on broadcast networks during designated router elections. By default, set to 128, indicating the highest priority and the most likely router to be elected designated router.</td>
</tr>
<tr>
<td>Dead</td>
<td>Number of seconds until the neighbor becomes unreachable.</td>
</tr>
</tbody>
</table>

Examine the OSPF Link-State Database

**Purpose** You can determine if the correct types of LSAs are sent and received throughout the OSPF network by examining the entire OSPF link-state database. Figure 13 on page 131 illustrates the flooding scope of LSAs generated and flooded in the example OSPF network.

Figure 13: LSA Flooding Scopes

This network should have the following distribution of LSAs:

- Backbone area **0.0.0.0** should have Type 1, Type 3, Type 4, and Type 5 LSAs.
- NSSA area **0.0.0.1** should have Type 1, Type 3, and Type 7 LSAs.
- Stub area **0.0.0.2** should have Type 1 and Type 3 LSAs.
- Area **0.0.0.3** should have Type 1, Type 3, Type 4, and Type 5 LSAs.
Because all routers in this network have SONET interfaces configured for Point-to-Point (PPP) encapsulation, all OSPF adjacencies are point-to-point, which results in Type 2 network LSAs not appearing in this network. Type 2 network LSAs are only advertised by a designated router, which is only present on broadcast or non-broadcast multiaccess (NBMA) networks.

**Action**  To determine if the correct LSAs appear in the different areas of the OSPF AS, enter the following CLI operational mode command:

```
user@host> show ospf database
```
### Sample Output

user@R2> show ospf database

OSPF link state database,  area 0.0.0.0

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Opt</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>10.0.0.2</td>
<td>10.0.0.2</td>
<td>0x80000049</td>
<td>1555</td>
<td>0x2</td>
<td>0xd72a</td>
<td>84</td>
</tr>
<tr>
<td>Router</td>
<td>10.0.0.3</td>
<td>10.0.0.3</td>
<td>0x80000038</td>
<td>1395</td>
<td>0x2</td>
<td>0xef0e</td>
<td>84</td>
</tr>
<tr>
<td>Router</td>
<td>10.0.0.4</td>
<td>10.0.0.4</td>
<td>0x80000041</td>
<td>914</td>
<td>0x2</td>
<td>0x46a9</td>
<td>84</td>
</tr>
<tr>
<td>Summary</td>
<td>10.0.0.1</td>
<td>10.0.0.2</td>
<td>0x80000047</td>
<td>1855</td>
<td>0x2</td>
<td>0xf509</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.0.0.5</td>
<td>10.0.0.4</td>
<td>0x80000038</td>
<td>1995</td>
<td>0x2</td>
<td>0xe5d2</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.0.1.12.0</td>
<td>10.0.0.2</td>
<td>0x80000047</td>
<td>786</td>
<td>0x2</td>
<td>0x5d98</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.1.36.0</td>
<td>10.0.0.4</td>
<td>0x80000035</td>
<td>2426</td>
<td>0x2</td>
<td>0x727c</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.1.45.0</td>
<td>10.0.0.4</td>
<td>0x80000035</td>
<td>1021</td>
<td>0x2</td>
<td>0xf8e3</td>
<td>28</td>
</tr>
</tbody>
</table>

OSPF link state database,  area 0.0.0.1

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Opt</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>10.0.0.1</td>
<td>10.0.0.1</td>
<td>0x80000058</td>
<td>858</td>
<td>0x0</td>
<td>0x5c26</td>
<td>60</td>
</tr>
<tr>
<td>Router</td>
<td>10.0.0.2</td>
<td>10.0.0.2</td>
<td>0x80000048</td>
<td>1986</td>
<td>0x0</td>
<td>0xeccbd</td>
<td>48</td>
</tr>
<tr>
<td>Summary</td>
<td>10.0.0.2</td>
<td>10.0.0.2</td>
<td>0x80000039</td>
<td>1686</td>
<td>0x0</td>
<td>0x1cf2</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.0.0.3</td>
<td>10.0.0.2</td>
<td>0x80000038</td>
<td>2286</td>
<td>0x0</td>
<td>0x1eef</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.0.0.4</td>
<td>10.0.0.2</td>
<td>0x80000038</td>
<td>955</td>
<td>0x0</td>
<td>0x14f8</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.0.0.5</td>
<td>10.0.0.2</td>
<td>0x80000038</td>
<td>186</td>
<td>0x0</td>
<td>0x14f6</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.0.0.6</td>
<td>10.0.0.2</td>
<td>0x80000038</td>
<td>2155</td>
<td>0x0</td>
<td>0xaff</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.1.23.0</td>
<td>10.0.0.2</td>
<td>0x80000046</td>
<td>655</td>
<td>0x0</td>
<td>0x4e9</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.1.24.0</td>
<td>10.0.0.2</td>
<td>0x80000046</td>
<td>486</td>
<td>0x0</td>
<td>0xf8f3</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.1.34.0</td>
<td>10.0.0.2</td>
<td>0x80000039</td>
<td>1255</td>
<td>0x0</td>
<td>0xae40</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.1.36.0</td>
<td>10.0.0.2</td>
<td>0x80000039</td>
<td>55</td>
<td>0x0</td>
<td>0x9854</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.1.45.0</td>
<td>10.0.0.2</td>
<td>0x80000039</td>
<td>1086</td>
<td>0x0</td>
<td>0x35ae</td>
<td>28</td>
</tr>
<tr>
<td>NSSA</td>
<td>0.0.0.0</td>
<td>10.0.0.2</td>
<td>0x80000044</td>
<td>2455</td>
<td>0x0</td>
<td>0x8d21</td>
<td>36</td>
</tr>
</tbody>
</table>

OSPF AS SCOPE link state database

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Opt</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extern</td>
<td>10.0.0.100</td>
<td>10.0.0.2</td>
<td>0x8000005e</td>
<td>1386</td>
<td>0x2</td>
<td>0xcf20</td>
<td>36</td>
</tr>
<tr>
<td>Extern</td>
<td>10.0.0.101</td>
<td>10.0.0.6</td>
<td>0x8000002b</td>
<td>333</td>
<td>0x2</td>
<td>0x9791</td>
<td>36</td>
</tr>
</tbody>
</table>

user@ R3 > show ospf database

OSPF link state database,  area 0.0.0.0

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Opt</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>10.0.0.2</td>
<td>10.0.0.2</td>
<td>0x80000049</td>
<td>1668</td>
<td>0x2</td>
<td>0xd72a</td>
<td>84</td>
</tr>
<tr>
<td>Router</td>
<td>10.0.0.3</td>
<td>10.0.0.3</td>
<td>0x80000038</td>
<td>1506</td>
<td>0x2</td>
<td>0xef0e</td>
<td>84</td>
</tr>
<tr>
<td>Router</td>
<td>10.0.0.4</td>
<td>10.0.0.4</td>
<td>0x80000041</td>
<td>1027</td>
<td>0x2</td>
<td>0x46a9</td>
<td>84</td>
</tr>
<tr>
<td>Summary</td>
<td>10.0.0.1</td>
<td>10.0.0.2</td>
<td>0x80000047</td>
<td>1968</td>
<td>0x2</td>
<td>0x5d98</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.0.0.5</td>
<td>10.0.0.4</td>
<td>0x8000003c</td>
<td>2227</td>
<td>0x2</td>
<td>0xd72c</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.0.0.6</td>
<td>10.0.0.3</td>
<td>0x80000033</td>
<td>2106</td>
<td>0x2</td>
<td>0xe5d2</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.1.12.0</td>
<td>10.0.0.2</td>
<td>0x80000047</td>
<td>900</td>
<td>0x2</td>
<td>0x5d98</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.1.36.0</td>
<td>10.0.0.3</td>
<td>0x80000036</td>
<td>6</td>
<td>0x2</td>
<td>0x707d</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.1.45.0</td>
<td>10.0.0.4</td>
<td>0x8000003d</td>
<td>1134</td>
<td>0x2</td>
<td>0xf8e3</td>
<td>28</td>
</tr>
<tr>
<td>ASBRSum</td>
<td>10.0.0.1</td>
<td>10.0.0.2</td>
<td>0x80000046</td>
<td>468</td>
<td>0x2</td>
<td>0xe915</td>
<td>28</td>
</tr>
<tr>
<td>ASBRSum</td>
<td>10.0.0.6</td>
<td>10.0.0.3</td>
<td>0x80000032</td>
<td>1638</td>
<td>0x2</td>
<td>0x9791</td>
<td>36</td>
</tr>
</tbody>
</table>

OSPF link state database,  area 0.0.0.3

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Opt</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>10.0.0.3</td>
<td>10.0.0.3</td>
<td>0x80000036</td>
<td>2406</td>
<td>0x2</td>
<td>0x3542</td>
<td>48</td>
</tr>
<tr>
<td>Router</td>
<td>10.0.0.6</td>
<td>10.0.0.6</td>
<td>0x8000002f</td>
<td>445</td>
<td>0x2</td>
<td>0x1850</td>
<td>60</td>
</tr>
<tr>
<td>Summary</td>
<td>10.0.0.1</td>
<td>10.0.0.3</td>
<td>0x80000036</td>
<td>906</td>
<td>0x2</td>
<td>0x1cf1</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.0.0.2</td>
<td>10.0.0.3</td>
<td>0x80000036</td>
<td>738</td>
<td>0x2</td>
<td>0x9854</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.0.0.3</td>
<td>10.0.0.3</td>
<td>0x80000036</td>
<td>1806</td>
<td>0x2</td>
<td>0xf917</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.0.0.4</td>
<td>10.0.0.3</td>
<td>0x80000036</td>
<td>1038</td>
<td>0x2</td>
<td>0xf915</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.0.0.5</td>
<td>10.0.0.3</td>
<td>0x80000036</td>
<td>306</td>
<td>0x2</td>
<td>0xf913</td>
<td>28</td>
</tr>
</tbody>
</table>
Meaning

The sample output shows that all the ABRs have the correct distribution of LSAs. Area 0.0.0.0 for all routers has Type 1 router, Type 3 summary, and Type 4 ASBR summary LSAs. Each ABR has an OSPF AS scope link-state database that includes Type 5 external LSAs.

Note that Type 2 network LSAs are not found in this topology because both broadcast or NMBA network types are not present.

NSSA area 0.0.0.1, in the output for R2, has Type 1 router, Type 3 summary, and Type 7 NSSA LSAs. Stub area 0.0.0.2, in the output for R4, has Type 1 router and Type 3 summary LSAs. Non-backbone area 0.0.0.3, in the output for R3, has Type 1 router, Type 3 summary, Type 4 ASBR, and Type 5 external LSAs.
All areas have a Type 1 router LSA because the Type 1 LSA is generated for each router that has interfaces in that area. Because this LSA has an area flooding scope, it remains within its own particular area and is not seen in other areas. For example, in the link-state database for area 0.0.0.2, there are two router LSAs: one for R4 and one for R5.

The ABR for that area places the routing information contained within the Type 1 LSA into a Type 3 summary or Type 4 ASBR summary LSA and forwards it across the area boundary. Whether the area receives a Type 3 or Type 4 summary LSA depends on whether the area is a stub area. Type 3 summary LSAs appear in all areas, but Type 4 LSAs only appear in non-stub areas as indicated in the link-state databases for areas 0.0.0.1, 0.0.0.2, and 0.0.0.3.

Each ABR router has a Type 5 AS external LSA used to advertise any networks external to the OSPF AS. This LSA is flooded by the ABRs to each non-stub router in the entire AS. For example, within area 0.0.0.0, Type 5 LSAs exist for areas 0.0.0.1 and 0.0.0.3. Both of these areas are connected to routers (external router A and external router B) from other ASs, which results in the injection of external routes into the OSPF AS. However, there are no Type 5 LSAs in stub areas 0.0.0.1 and 0.0.0.2.

A Type 7 NSSA external LSA appears in NSSA area 0.0.0.1 and is used within the NSSA to advertise an external router. This LSA is flooded to each router in the NSSA and is not sent to other adjacent areas. For example, only area 0.0.0.1 has a Type 7 LSA. Because a Type 7 LSA does not traverse area boundaries, the ABR in the NSSA (R2) translates the Type 7 LSA into a Type 5 LSA that is forwarded to all areas (with the exception of stub areas).

The sample output shows that each router has two databases, indicating that it is an ABR between the backbone and a non-backbone, stub, or NSSA area. All of the addresses preceded by an asterisk (*) are LSAs that originated with the router from which the output was taken.

Examine OSPF Routes

**Purpose**
You can determine if the LSAs that appear in the link-state database of a router are correct by examining the route to the destination. In this step, three routes are examined. The first example shows the route from R5 to external router A, the second shows the route from R6 to external router A, and the third shows the route from R4 to R6.

**Action**
To examine a route in an OSPF AS, enter one or all of the following CLI commands:

```
user@host> show route destination-prefix
user@host> show ospf database
```

**Sample Output 1**
The following sample output shows the path from R5 to external router A:
Sample Output

user@R5> show route 10.0.0.100
inet.0: 23 destinations, 25 routes (23 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
0.0.0.0/0  *[OSPF/10] 01:58:42, metric 11
   > via so-0/0/2.0

user@R5> show ospf database
OSPF link state database, area 0.0.0.2

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Opt</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router</td>
<td>10.0.0.4</td>
<td>10.0.0.4</td>
<td>0x8000002b</td>
<td>140</td>
<td>0x0</td>
<td>0x81fe</td>
<td>48</td>
</tr>
<tr>
<td>Router</td>
<td>*10.0.0.5</td>
<td>10.0.0.5</td>
<td>0x8000001f</td>
<td>526</td>
<td>0x0</td>
<td>0x78f3</td>
<td>60</td>
</tr>
<tr>
<td>Summary</td>
<td>0.0.0.0</td>
<td>10.0.0.4</td>
<td>0x80000005</td>
<td>32</td>
<td>0x0</td>
<td>0x73cf</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.0.0.1</td>
<td>10.0.0.4</td>
<td>0x8000002b</td>
<td>2132</td>
<td>0x0</td>
<td>0x4acf</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.0.0.2</td>
<td>10.0.0.4</td>
<td>0x8000002b</td>
<td>1940</td>
<td>0x0</td>
<td>0x36e3</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.0.0.3</td>
<td>10.0.0.4</td>
<td>0x8000002a</td>
<td>1832</td>
<td>0x0</td>
<td>0x2eef</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.0.0.4</td>
<td>10.0.0.4</td>
<td>0x8000002b</td>
<td>1640</td>
<td>0x0</td>
<td>0x1efb</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.0.0.6</td>
<td>10.0.0.4</td>
<td>0x8000002b</td>
<td>1340</td>
<td>0x0</td>
<td>0x1cfb</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.1.12.0</td>
<td>10.0.0.4</td>
<td>0x8000002b</td>
<td>1232</td>
<td>0x0</td>
<td>0xb15f</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.1.23.0</td>
<td>10.0.0.4</td>
<td>0x8000002b</td>
<td>1040</td>
<td>0x0</td>
<td>0x38ce</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.1.24.0</td>
<td>10.0.0.4</td>
<td>0x8000002b</td>
<td>932</td>
<td>0x0</td>
<td>0x27e0</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.1.34.0</td>
<td>10.0.0.4</td>
<td>0x8000002b</td>
<td>740</td>
<td>0x0</td>
<td>0xb845</td>
<td>28</td>
</tr>
<tr>
<td>Summary</td>
<td>10.1.36.0</td>
<td>10.0.0.4</td>
<td>0x8000002b</td>
<td>632</td>
<td>0x0</td>
<td>0xac4e</td>
<td>28</td>
</tr>
</tbody>
</table>

Sample Output 2
The following sample output shows the route from R6 to external router A:
Sample Output

user@R6> show route 10.0.0.100
inet.0: 29 destinations, 31 routes (29 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
10.0.0.100/32 * [OSPF/150] 16:52:11, metric 0, tag 0
> via so-0/0/3.0

user@R6> show ospf database
OSPF link state database, area 0.0.0.3
Type       ID               Adv Rtr           Seq      Age  Opt  Cksum  Len
Router   10.0.0.3         10.0.0.3         0x8000001d   502  0x2  0x6639  48
Router  *10.0.0.6         10.0.0.6         0x80000019   807  0x2  0x443a  60
Summary  10.0.0.1         10.0.0.3         0x8000001c  1570  0x2  0x50d7  28
Summary  10.0.0.2         10.0.0.3         0x8000001c  1402  0x2  0x3ceb  28
Summary  10.0.0.3         10.0.0.3         0x80000019  2470  0x2  0x2efc  28
Summary  10.0.0.4         10.0.0.3         0x80000019  1702  0x2  0x2ef5  28
Summary  10.0.0.5         10.0.0.3         0x80000019  970  0x2  0x2ef8  28
Summary  10.1.12.0        10.0.0.3         0x8000001c  1270  0x2  0x2ef8  28
Summary  10.1.23.0        10.0.0.3         0x8000001c  1102  0x2  0x34e0  28
Summary  10.1.24.0        10.0.0.3         0x8000001c  2002  0x2  0x33df  28
Summary  10.1.34.0        10.0.0.3         0x8000001c  802  0x2  0x2ef8  28
Summary  10.1.45.0        10.0.0.3         0x8000001c  1870  0x2  0x2ef8  28
ASBRSum  10.0.0.1         10.0.0.3         0x8000001c  370  0x2  0x2ef8  28
ASBRSum  10.0.0.2         10.0.0.3         0x8000001c  70  0x2  0x2ef8  28

OSPF AS SCOPE link state database
Type       ID               Adv Rtr           Seq      Age  Opt  Cksum  Len
Extern  *10.0.0.101 10.0.0.6 0x80000015 807  0x2  0xc37b  36
Extern  10.1.13.0  10.0.0.2  0x80000041 234  0x2  0x481e  36
Extern  10.1.15.0  10.0.0.2  0x80000041 233  0x2  0x3232  36
Extern  100.168.64.0  10.0.0.2  0x80000041 82  0x2  0xe0f7  36

Sample Output 3  The following sample output shows the route from R4 to R6:
Sample Output

user@R4> show route 10.0.0.6
inet.0: 27 destinations, 31 routes (27 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both
10.0.0.6/32      * [OSPF/10]  17:02:28, metric 2
    > via so-0/0/0.0

user@R4> show ospf database
OSPF link state database, area 0.0.0.0
Type       ID               Adv Rtr           Seq      Age  Opt  Cksum  Len
Router  10.0.0.2         10.0.0.2         0x8000002f   632  0x2  0xc10   84
Router  10.0.0.3         10.0.0.3         0x8000001e  2271  0x2  0x24f3  84
Router  10.0.0.4         10.0.0.4         0x80000022  1582  0x2  0x848a  84
Summary  10.0.0.1         10.0.0.2         0x80000010  789  0x2  0x2aee  28
Summary  10.0.0.1         10.0.0.3         0x8000001f  1533  0x2  0x2aee  28
Summary  10.0.0.1         10.0.0.4         0x80000021  1189  0x0  0x5ec5  28
Summary  10.0.0.3         10.0.0.4         0x80000018  1282  0x0  0x20f9  28
Summary  10.0.0.4         10.0.0.4         0x80000012  1489  0x0  0x32f3  28
Summary  10.0.0.4         10.0.0.5         0x80000013  1685  0x0  0x8463  28
Summary  10.0.0.4         10.0.0.6         0x8000001f  2089  0x0  0x35c5  28
ASBRSum  10.0.0.1         10.0.0.2         0x8000002b  1533  0x0  0x140e  28
ASBRSum  10.0.0.4         10.0.0.4         0x80000021   889  0x0  0x4ad9  28
ASBRSum  10.0.0.4         10.0.0.5         0x8000001f  1489  0x0  0x32f3  28
ASBRSum  10.0.0.5         10.0.0.5         0x8000001f  1789  0x0  0x35c5  28
ASBRSum  10.0.0.6         10.0.0.3         0x80000018  2402  0x0  0x140e  28
ASBRSum  10.0.0.6         10.0.0.4         0x80000021   910  0x0  0xc37b  28
Summary  10.0.0.0        10.0.0.0        0x8000001a   302  0x0  0x180e  28
Summary  10.0.0.1        10.0.0.0        0x8000001f   289  0x0  0x4cc3  28
Summary  10.0.0.2        10.0.0.0        0x8000001a   289  0x0  0x4cc3  28
Summary  10.0.0.3        10.0.0.0        0x8000001a   289  0x0  0x4cc3  28
Summary  10.0.0.4        10.0.0.0        0x8000001f   289  0x0  0x4cc3  28
Summary  10.0.0.5        10.0.0.0        0x8000001a   289  0x0  0x4cc3  28
Summary  10.0.0.6        10.0.0.0        0x8000001a   289  0x0  0x4cc3  28
ASBRSum  10.0.0.0        10.0.0.1        0x80000018  1533  0x0  0x140e  28
ASBRSum  10.0.0.0        10.0.0.2        0x80000018  1533  0x0  0x140e  28
ASBRSum  10.0.0.0        10.0.0.3        0x80000018  1533  0x0  0x140e  28
ASBRSum  10.0.0.0        10.0.0.4        0x80000018  1533  0x0  0x140e  28
ASBRSum  10.0.0.0        10.0.0.5        0x80000018  1533  0x0  0x140e  28
ASBRSum  10.0.0.0        10.0.0.6        0x80000018  1533  0x0  0x140e  28
OSPF AS SCOPE link state database
Type       ID               Adv Rtr           Seq      Age  Opt  Cksum  Len
Extern  10.0.0.100       10.0.0.2         0x80000002  484  0x2  0x804  36
Extern  10.0.0.101       10.0.0.6         0x80000002  910  0x2  0xc37b 36
Extern  10.0.0.102       10.0.0.2         0x80000002  333  0x2  0x481e 36
Extern  10.0.0.103       10.0.0.2         0x80000002  333  0x2  0x481e 36
Extern  10.0.0.104       10.0.0.2         0x80000002  333  0x2  0x481e 36

Meaning

Sample output 1 shows an OSPF default route (0.0.0.0/0) with a preference value of 10. In the area 0.0.0.2 link-state database, a Type 3 summary LSA advertises the default route.

Sample output 2 shows an OSPF route with a preference value of 150. In the AS scope link-state database, an external Type 5 LSA indicates that the route from R6 to external router A is through R2, the advertising router. By default, routes resulting from OSPF external LSAs are installed with a preference value of 150.

Sample output 3 shows an OSPF route with a preference value of 10. In the area 0.0.0.0 link-state database, a summary Type 3 LSA indicates that the route from R4 to R6 is through R3, the advertising router.
The LSAs placed into the link-state database are used by the router to run the Dijkstra algorithm (also called the shortest path first algorithm). This computation uses the link-state database as a source, resulting in a loop-free topology using the best metric from the local router to all nodes in the OSPF network.

### Examine the Forwarding Table

**Purpose** You can display the set of routes installed in the forwarding table to verify that the routing protocol process (rpd) has relayed the correct information into the forwarding table. This is especially important when there are network problems, such as connectivity. In this procedure, you verify that the routes displayed in Step 2 appear in the forwarding table for router R5.

**Action** To examine the forwarding table for a router, enter the following CLI command:

```
user@host> show route forwarding-table destination destination-prefix
```

#### Sample Output

```
user@R5> show route forwarding-table destination 10.0.0.3
Routing table: inet
Internet:
 Destination Type RtRef Next hop Type Index NhRef Netif
 10.0.0.3/32 user 0 10.1.15.0 ucst 285 7 so-0/0/1.0
user@R5> show route forwarding-table destination 10.0.0.3
Routing table: inet
Internet:
 Destination Type RtRef Next hop Type Index NhRef Netif
 10.0.0.3/32 user 0 10.1.56.0 ucst 281 9 so-0/0/0.0
```

**Meaning** The sample output shows the selected next hop between routers R5 and R3 sent from the inet routing table and installed into the forwarding table. The first instance shows the route through R1 and the second instance shows the route through R6. In both instances, the preferred route displayed in Step 2 is installed in the forwarding table.

In general, the sample output includes the destination address and destination type, the next-hop address and next-hop type, the number of references to the next hop, an index number into an internal next-hop database, and the interface used to reach the next hop.

### Examine Link-State Advertisements in Detail

You can obtain important information about the routers in your network by examining LSAs in detail.

To examine OSPF LSAs, follow these steps:

1. Examine a Type 1 Router LSA on page 140
2. Examine a Type 3 Summary LSA on page 141
3. Examine a Type 4 ASBR Summary LSA on page 141
4. Examine a Type 5 AS External LSA on page 142
5. Examine Type 7 NSSA External LSA on page 143
Examine a Type 1 Router LSA

**Purpose**  To examine a Type 1 router LSA, enter the following CLI operational mode command:

```
user@host> show ospf database router extensive
```

**Sample Output**

```
user@R1> show ospf database router extensive
OSPF link state database, area 0.0.0.1
Type ID Adv Rtr Seq Age Opt Cksum Len
Router *10.0.0.1 10.0.0.1 0x8000005a 1180 0x0 0x5828 60
 bits 0x2, link count 3
 id 10.0.0.1, data 255.255.255.255, Type Stub (3)
 TOS count 0, TOS 0 metric 0
 id 10.0.0.2, data 10.1.12.1, Type PointToPoint (1)
 TOS count 0, TOS 0 metric 1
 id 10.1.12.0, data 255.255.255.252, Type Stub (3)
 TOS count 0, TOS 0 metric 1
 Gen timer 00:30:19
 Aging timer 00:40:19
 Installed 00:19:40 ago, expires in 00:40:20, sent 00:19:38 ago
 Ours
Router 10.0.0.2 10.0.0.2 0x8000004b 679 0x0 0xe6c0 48
 bits 0x3, link count 2
 id 10.0.0.1, data 10.1.12.2, Type PointToPoint (1)
 TOS count 0, TOS 0 metric 1
 id 10.1.12.0, data 255.255.255.252, Type Stub (3)
 TOS count 0, TOS 0 metric 1
 Aging timer 00:48:40
 Installed 00:11:16 ago, expires in 00:48:41, sent 3w0d 23:33:12 ago
```

**Meaning**  The sample output shows the details of two router LSAs: the first for R1 (*10.0.0.1) and the second for R2 (10.0.0.2). The asterisk (*) indicates that the LSA was generated by R1. You can also determine ownership of the LSA by the last line of the output in this case, ours.

Each time the LSA is updated, the sequence (seq) field increments, indicating that the router has the most recent version of the LSA. Values range from 0x80000001 to 0x7FFFFFFF. If the sequence field is not incrementing, there may be problems with the connection.

The bits field is set to 0x2 in the first LSA and 0x3 in the second LSA. When the bits field is set to 0x2, the originating router (R1) is an ASBR. When the bits field is set to 0x3, the originating router (R2) is both ABR and ASBR.

R1 has three links connected to area 0.0.0.1 shown by the link count field that is set to a value of 3. The Type field shows that R1 has a single point-to-point link to R2 and two links advertised as stub networks.

Each OSPF router generates a single Type 1 LSA to describe the status and cost (metric) of all links on the router. This LSA is flooded to each router in the OSPF area. It is defined as having an area scope, so it is not flooded across an area boundary.
Examine a Type 3 Summary LSA

**Purpose**
To examine a Type 3 summary LSA, enter the following CLI operational mode command:

**Action**
```
user@host> show ospf database netsummary extensive
```

**Sample Output**
```
user@R2> show ospf database netsummary extensive
 OSPF link state database, area 0.0.0.0
 Type ID Adv Rtr Seq Age Opt Cksum Len
Summary *10.0.0.1 10.0.0.2 0x80000043 529 0x2 0xfd05 28
 mask 255.255.255.255
 TOS 0x0, metric 1
 Gen timer 00:34:13
 Aging timer 00:51:10
 Installed 00:08:49 ago, expires in 00:51:11, sent 00:08:47 ago
 Ours,

[...Output truncated...]
 OSPF link state database, area 0.0.0.1
[...Output truncated...]
Summary *10.0.0.5 10.0.0.2 0x80000047 2198 0x0 0xf506 28
 mask 255.255.255.255
 TOS 0x0, metric 2
 Gen timer 00:07:19
 Aging timer 00:23:22
 Installed 00:36:38 ago, expires in 00:23:22, sent 00:36:36 ago
 Ours,
```

**Meaning**
The sample output shows that R2 is an ABR because it contains two databases: one for the backbone area 0.0.0.0 and one for area 0.0.0.1. Within the backbone area, the summary LSA *10.0.0.1 is generated from R2 as indicated by the asterisk (*) next to the link-state ID field, and ours in the last line of the LSA. The cost to transmit data out of the interface is 1, as indicated by the metric field.

Within area 0.0.0.1, the summary LSA *10.0.0.5 is generated by R2 and has a metric of 2, which is the cost to R5 from R2. Before calculating the SPF algorithm, the local router (R2) must add an additional metric of 1 to the existing metric of 1. The additional metric of 1 must be added because there is another router between R2 and R5 (R4).

Each time the LSA is updated, the sequence (seq) field increments, indicating that the router has the most recent version of the LSA. Values range from 0x80000001 to 0x7FFFFFFF. If the sequence field is not incrementing, there may be problems with the connection.

Examine a Type 4 ASBR Summary LSA

**Purpose**
To examine a Type 4 ASBR summary LSA, enter the following CLI operational mode command:

**Action**
```
user@host> show ospf database asbrsummary extensive
```
Sample Output

user@R3> show ospf database asbrsummary extensive
    OSPF link state database, area 0.0.0.0
[...Output truncated...]
ASBRSum *10.0.0.6 10.0.0.3 0x80000042 1023 0x2 0xb943 28
    mask 0.0.0.0
    TOS 0x0, metric 1
    Gen timer 00:27:57
    Aging timer 00:42:57
    Installed 00:17:03 ago, expires in 00:42:57, sent 00:17:01 ago
    Ours,
[...Output truncated...]

Meaning

The sample output shows that an LSA within the backbone area, *10.0.0.6, is generated by ASBR R3, as indicated by the asterisk (*) next to the link-state ID field and ours in the last line of the LSA.

Each time the LSA is updated, the sequence (seq) field increments, indicating that the router has the most recent version of the LSA. Values range from 0x80000001 to 0x7FFFFFFF. If the sequence field is not incrementing, there may be problems with the connection.

Because the router ID of all the ASBR summary LSAs is a full 32-bit value, the network mask is not needed and is set to a value of 0.0.0.0. The metric for the LSA within the backbone area is set to 1, which is the cost to the advertising router (R3) from the originating router (R6). The metric is calculated before the SPF algorithm is calculated.

In general, each ABR that must transmit information about an ASBR from one OSPF area into another generates a Type 4 LSA. This LSA is flooded to each router in the OSPF area. A Type 4 LSA is defined as having an area scope so that another ABR does not reflood it across the area boundary.

Examine a Type 5 AS External LSA

Purpose

To examine a Type 5 AS external LSA, enter the following CLI operational mode command:

Action

user@host> show ospf database extern extensive
Sample Output

user@R2> show ospf database extern extensive
OSPF AS SCOPE link state database
Type       ID               Adv Rtr            Seq       Age  Opt  Cksum  Len
Extern *10.0.0.100 10.0.0.2 0x80000047 1377  0x2  0xfd09  36
mask 255.255.255.255
Type2, TOS 0x0,  metric 0, fwd addr 10.0.0.1, tag 0.0.0.0
Gen timer 00:21:02
Aging timer 00:37:02
Installed 00:22:57 ago, expires in 00:37:03, sent 00:22:55 ago
Ours,
[...Output truncated...]

Meaning
The sample output shows one Type 5 external LSA, *10.0.0.100. The status of the router represented by this LSA is indicated by the fwd addr field, which shows that it does not belong to any particular OSPF area. The forwarding address provides the address toward which packets should be sent to reach the external router (10.0.0.1). R1 is the ASBR with the connection to external router A.

The mask field represents the subnet mask associated with the advertised router. It is used with the link-state ID field (10.0.0.100), which encapsulates the network address in a Type 5 LSA. This LSA has a metric value of 0, the default value, indicating that this is a Type 2 external metric. Thus, any local router should use the default metric (0) when performing an SPF algorithm.

Each time the LSA is updated, the sequence (seq) field increments, indicating that the router has the most recent version of the LSA. Values range from 0x800000001 to 0x7FFFFFFF. If the sequence field is not incrementing, there may be problems with the connection.

In general, each ASBR generates a Type 5 LSA to advertise any routers external to the OSPF AS. This LSA is flooded to each non-stub router in the entire AS.

Examine Type 7 NSSA External LSA

Purpose
To examine a Type 7 NSSA external LSA, enter the following CLI operational mode command:

Action    user@host> show ospf database nssa extensive
Sample Output

user@R1> show ospf database nssa extensive
          OSPF link state database, area 0.0.0.1

<table>
<thead>
<tr>
<th>Type</th>
<th>ID</th>
<th>Adv Rtr</th>
<th>Seq</th>
<th>Age</th>
<th>Opt</th>
<th>Cksum</th>
<th>Len</th>
</tr>
</thead>
</table>
| [...Output truncated...]
| NSSA  | *10.0.0.100       | 10.0.0.1 | 0x8000003b | 843 | 0x8 | 0xa566 | 36 |
|       | mask 255.255.255  |          |     |     |     |       |     |
|       | Type2, TOS 0x0,   | metric 0 | fwd addr 10.0.0.1, tag 0.0.0.0 |
|       | Gen timer 00:35:56|          |     |     |     |       |     |
|       | Aging timer 00:45:56|         |     |     |     |       |     |
|       | Installed 00:14:03 ago, expires in 00:45:57, sent 00:14:01 ago |

Meaning

The sample output shows that the LSA belongs to a single NSSA, 0.0.0.1, and was generated by R1. This router has a metric value of 0, which is the default, and is listed as a Type 2 external metric. Any local router must use the default metric as the total cost for the route when performing an SPF calculation. The default metric of the route must be added to the cost to reach the advertising ASBR. This value then represents the total cost for the route.

In general, each ASBR within the NSSA generates a Type 7 LSA to advertise any routers external to the OSPF AS. This LSA is flooded to each router within the NSSA (R2). Because the LSA has only an area flooding scope, it is not sent into other adjacent areas. For each Type 7 LSA received, the ABR (R2) translates the information into a Type 5 LSA and sends the information into the backbone. The other backbone routers do not know that the original information came from an NSSA. The Type 5 LSA is then flooded to each non-stub router in the entire AS.
Verify the BGP Protocol and Peers

This chapter describes how to check whether the Border Gateway Protocol (BGP) is configured correctly on a Juniper Networks router in your network, the internal Border Gateway Protocol (IBGP) and exterior Border Gateway Protocol (EBGP) sessions are properly established, the external routes are advertised and received correctly, and the BGP path selection process is working properly.

- Checklist for Verifying the BGP Protocol and Peers on page 145
- Verify the BGP Protocol on page 146
- Verify BGP Peers on page 148
- Examine BGP Routes and Route Selection on page 149
- Examine Routes in the Forwarding Table on page 155

Checklist for Verifying the BGP Protocol and Peers

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Table 28 on page 145 provides links and commands for verifying whether the Border Gateway Protocol (BGP) is configured correctly on a Juniper Networks router in your network, the internal Border Gateway Protocol (IBGP) and exterior Border Gateway Protocol (EBGP) sessions are properly established, the external routes are advertised and received correctly, and the BGP path selection process is working properly.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td>Table 28: Checklist for Verifying the BGP Protocol and Peers</td>
</tr>
</tbody>
</table>

**Table 28: Checklist for Verifying the BGP Protocol and Peers**

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>“Verify the BGP Protocol” on page 146</strong></td>
<td></td>
</tr>
<tr>
<td>1. Verify BGP on an Internal Router</td>
<td>show configuration</td>
</tr>
<tr>
<td>2. Verify BGP on a Border Router</td>
<td>show configuration</td>
</tr>
<tr>
<td><strong>“Verify BGP Peers” on page 148</strong></td>
<td></td>
</tr>
<tr>
<td>1. Check That BGP Sessions Are Up</td>
<td>show bgp summary</td>
</tr>
<tr>
<td>2. Verify That a Neighbor is Advertising a Particular Route</td>
<td>show route advertising-protocol bgp neighbor-address</td>
</tr>
<tr>
<td>3. Verify That a Particular BGP Route Is Received on Your Router</td>
<td>show route receive-protocol bgp neighbor-address</td>
</tr>
</tbody>
</table>
Table 28: Checklist for Verifying the BGP Protocol and Peers *(continued)*

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Examine BGP Routes and Route Selection” on page 149</td>
<td><strong>show route destination-prefix</strong>  &lt; detail &gt;</td>
</tr>
<tr>
<td>1. Examine the Local Preference Selection on page 151</td>
<td><strong>show route destination-prefix</strong>  &lt; detail &gt;</td>
</tr>
<tr>
<td>2. Examine the Multiple Exit Discriminator Route Selection on page 152</td>
<td><strong>show route destination-prefix</strong>  &lt; detail &gt;</td>
</tr>
<tr>
<td>3. Examine the EBGP over IBGP Selection on page 153</td>
<td><strong>show route destination-prefix</strong>  &lt; detail &gt;</td>
</tr>
<tr>
<td>4. Examine the IGP Cost Selection on page 154</td>
<td><strong>show route destination-prefix</strong>  &lt; detail &gt;</td>
</tr>
<tr>
<td>“Examine Routes in the Forwarding Table” on page 155</td>
<td><strong>show route forwarding-table</strong></td>
</tr>
</tbody>
</table>

**Verify the BGP Protocol**

**Purpose**
For BGP to run on a router in your network, you must define the local autonomous system (AS) number, configure at least one group, and include information about at least one peer in the group. If the peer is an EBGP peer, include the peer’s AS number. For all peers, include either the peer’s interface IP address or loopback (lo0) IP address. When configuring BGP on an interface, you must also include the **family inet** statement at the [edit interfaces interface-name unit logical-unit-number] hierarchy level.

Figure 14 on page 147 illustrates the example configurations used in this topic.
The network in Figure 14 on page 147 consists of two directly connected ASs. IP addresses included in the network diagram are as follows:

- **10.12.1**—AS 65001 external IP address on R1
- **10.145.2**—AS 65001 external IP address on R5
- **10.0.0.1**—Internal loopback (lo0) IP address for R1
- **10.0.0.5**—Internal loopback (lo0) IP address for R5
- **10.1.2.2**—AS 65002 external IP address on R2
- **10.1.45.1**—AS 65002 external IP address on R5
- **10.0.0.2**—Internal loopback (lo0) address for R2
- **10.0.0.3**—Internal loopback (lo0) address for R3
- **10.0.0.4**—Internal loopback (lo0) address for R4
- **10.0.0.6**—Internal loopback (lo0) address for R6

All routers within each AS maintain an IBGP session between each router in that AS. R1 and R5 have an IBGP session through their loopback (lo0) interfaces: 10.0.0.1 and 10.0.0.5. R2, R3, R4, and R6 maintain IBGP sessions between each other through their loopback (lo0) interfaces: 10.0.0.2, 10.0.0.3, 10.0.0.4, and 10.0.0.6.
The two routers in AS 65001 each contain one EBGP link to AS 65002 (R2 and R4) over which they announce aggregated prefixes: 100.100/16. Routers at the edge of a network that communicate directly with routers in other networks are called border routers. Border routers use EBGP to exchange routing information between networks.

Adjacent BGP routers are referred to as neighbors or peers. Peers can be internal or external to the AS. Internal and external peers are configured slightly differently. In general, internal peers communicate using the loopback (lo0) interface, and external peers communicate through the shared interface. See Figure 14 on page 147 for the loopback (lo0) and interface information.

To verify the BGP configuration of a router in your network, follow these steps:

Verify BGP Peers

**Purpose**

Assuming that all the routers are correctly configured for BGP, you can verify if IBGP and EBGP sessions are properly established, external routes are advertised and received correctly, and the BGP path selection process is working properly.

Figure 15 on page 148 illustrates an example BGP network topology used in this topic.

The network consists of two directly connected ASs consisting of external and internal peers. The external peers are directly connected through a shared interface and are
running EBGP. The internal peers are connected through their loopback (lo0) interfaces through IBGP. AS 65001 is running OSPF and AS 65002 is running IS-IS as its underlying IGP. IBGP routers do not have to be directly connected, the underlying IGP allows neighbors to reach one another.

The two routers in AS 65001 each contain one EBGP link to AS 65002 (R2 and R4) over which they announce aggregated prefixes: 100.100.1.0, 100.100.2.0, 100.100.3.0, and 100.100.4.0. Also, R1 and R5 are injecting multiple exit discriminator (MED) values of 5 and 10, respectively, for some routes.

The internal routers in both ASs are using a full mesh IBGP topology. A full mesh is required because the networks are not using confederations or route reflectors, so any routes learned through IBGP are not distributed to other internal neighbors. For example, when R3 learns a route from R2, R3 does not distribute that route to R6 because the route is learned through IBGP, so R6 must have a direct BGP connection to R2 to learn the route.

In a full mesh topology, only the border router receiving external BGP information distributes that information to other routers within its AS. The receiving router does not redistribute that information to other IBGP routers in its own AS.

From the point of view of AS 65002, the following sessions should be up:

- The four routers in AS 65002 should have IBGP sessions established with each other.
- R2 should have an EBGP session established with R1.
- R4 should have an EBGP session established with R5.

To verify BGP peers, follow these steps:

---

**Examine BGP Routes and Route Selection**

**Purpose** You can examine the BGP path selection process to determine the single, active path when BGP receives multiple routes to the same destination prefix.
The network in Figure 16 on page 150 shows that R1 and R5 announce the same aggregate routes to R2 and R4, which results in R2 and R4 receiving two routes to the same destination prefix. The route selection process on R2 and R4 determines which of the two BGP routes received is active and advertised to the other internal routers (R3 and R6).

Before the router installs a BGP route, it must make sure that the BGP next-hop attribute is reachable. If the BGP next hop cannot be resolved, the route is not installed. When a BGP route is installed in the routing table, it must go through a path selection process if multiple routes exist to the same destination prefix. The BGP path selection process proceeds in the following order:

1. Route preference in the routing table is compared. For example, if an OSPF and a BGP route exist for a particular destination, the OSPF route is selected as the active route because the OSPF route has a default preference of 110, while the BGP route has a default preference of 170.

2. Routes are compared for local preference. The route with the highest local preference is preferred. For example, see “Examine the Local Preference Selection” on page 151.

3. The AS path attribute is evaluated. The shorter AS path is preferred.

4. The origin code is evaluated. The lowest origin code is preferred (I (IGP) < E (EGP) < ? (Incomplete)).
5. The MED value is evaluated. By default, if any of the routes are advertised from the same neighboring AS, the lowest MED value is preferred. The absence of a MED value is interpreted as a MED of 0. For an example, see “Examine the Multiple Exit Discriminator Route Selection” on page 152.

6. The route is evaluated as to whether it is learned through EBGP or IBGP. EBGP learned routes are preferred to IBGP learned routes. For an example, see “Examine the EBGP over IBGP Selection” on page 153.

7. If the route is learned from IBGP, the route with the lowest IGP cost is preferred. For an example, see “Examine the IGP Cost Selection” on page 154. The physical next hop to the IBGP peer is installed according to the following three rules:
   a. After BGP examines the inet.0 and inet.3 routing tables, the physical next hop of the route with the lowest preference is used.
   b. If the preference values in the inet.0 and the inet.3 routing tables are a tie, the physical next hop of the route in the inet.3 routing table is used.
   c. When a preference tie exists in the same routing table, the physical next hop of the route with more paths is installed.

8. The route reflection cluster list attribute is evaluated. The shortest length cluster list is preferred. Routes without a cluster list are considered to have a cluster list length of 0.

9. The router ID is evaluated. The route from the peer with the lowest router ID is preferred (usually the loopback address).

10. The peer address value is examined. The peer with the lowest peer IP address is preferred.

To determine the single, active path when BGP receives multiple routes to the same destination prefix, enter the following Junos OS CLI operational mode command:

```
user@host> show route destination-prefix < detail >
```

The following steps illustrate the inactive reason displayed when BGP receives multiple routes to the same destination prefix and one route is selected as the single, active path:

1. Examine the Local Preference Selection on page 151
2. Examine the Multiple Exit Discriminator Route Selection on page 152
3. Examine the EBGP over IBGP Selection on page 153
4. Examine the IGP Cost Selection on page 154

**Examine the Local Preference Selection**

**Purpose** To examine a route to determine if local preference is the selection criteria for the single, active path.

**Action** To examine a route to determine if local preference is the selection criteria for the single, active path, enter the following Junos OS CLI operational mode command:
user@host> show route destination-prefix < detail >

Sample Output

user@R4> show route 100.100.1.0 detail
inet.0: 20 destinations, 24 routes (20 active, 0 holddown, 0 hidden)
100.100.1.0/24 (2 entries, 1 announced)
  *BGP  Preference: 170/-201
      Source: 10.0.0.2
      Next hop: 10.1.24.1 via so-0/0/3.0, selected
      Protocol next hop: 10.0.0.2 Indirect next hop: 8644000 277
      State: <Active Int Ext>
      Local AS: 65002 Peer AS: 65002
      Age: 2:22:34  Metric: 5  Metric2: 10
      Task: BGP_65002.10.0.0.2+179
      Announcement bits (3): 0-KRT 3-BGP.0.0.0.0+179 4-Resolve inet.0
      AS path: 65001I
      Localpref: 200
      Router ID: 10.0.0.2

BGP  Preference: 170/-101
      Source: 10.1.45.2
      Next hop: 10.1.45.2 via so-0/0/2.0, selected
      State: <Ext>
      Inactive reason: Local Preference
      Local AS: 65002 Peer AS: 65001
      Age: 2w0d 1:28:31  Metric: 10
      Task: BGP_65001.10.1.45.2+179
      AS path: 65001I
      Localpref: 100
      Router ID: 10.0.0.5

Meaning  The sample output shows that R4 received two instances of the 100.100.1.0 route: one from 10.0.0.2 (R2) and one from 10.1.45.2 (R5). R4 selected the path from R2 as its active path, as indicated by the asterisk (*). The selection is based on the local preference value contained in the Localpref field. The path with the highest local preference is preferred. In the example, the path with the higher local preference value is the path from R2, 200.

The reason that the route from R5 is not selected is in the Inactive reason field, in this case, Local Preference.

Note that the two paths are from the same neighboring network: AS 65001.

Examine the Multiple Exit Discriminator Route Selection

Purpose  To examine a route to determine if the MED is the selection criteria for the single, active path.

Action  To examine a route to determine if the MED is the selection criteria for the single, active path, enter the following Junos OS CLI operational mode command:

user@host> show route destination-prefix < detail >
Sample Output

user@R4> show route 100.100.2.0 detail
inet.0: 20 destinations, 24 routes (20 active, 0 holddown, 0 hidden)
100.100.2.0/24 (2 entries, 1 announced)
  *BGP
     Preference: 170/-101
     Source: 10.0.0.2
     Next hop: 10.1.24.1 via so-0/0/3.0, selected
     Protocol next hop: 10.0.0.2 Indirect next hop: 8644000 277
     State: <Active Int Ext>
     Local AS: 65002 Peer AS: 65002
     Age: 2:32:01    Metric: 5    Metric2: 10
     Task: BGP_65002.10.0.0.2+179
     Announcement bits (3): 0-KRT 3-BGP.0.0.0.0+179 4-Resolve inet.0
     AS path: 65001I
     Localpref: 100
     Router ID: 10.0.0.2
  BGP
     Preference: 170/-101
     Source: 10.1.45.2
     Next hop: 10.1.45.2 via so-0/0/2.0, selected
     State: <NotBest Ext>
     Inactive reason: Not Best in its group
     Local AS: 65002 Peer AS: 65001
     Age: 2w0d 1:37:58    Metric: 10
     Task: BGP_65001.10.1.45.2+179
     AS path: 65001I
     Localpref: 100
     Router ID: 10.0.0.5

Meaning  The sample output shows that R4 received two instances of the 100.100.2.0 route: one from 10.0.0.2 (R2), and one from 10.1.45.2 (R5). R4 selected the path from R2 as its active route, as indicated by the asterisk (*). The selection is based on the MED value contained in the Metric field. The path with the lowest MED value is preferred. In the example, the path with the lowest MED value (5) is the path from R2. Note that the two paths are from the same neighboring network: AS 65001.

The reason that the inactive path is not selected is displayed in the Inactive reason: field, in this case, Not Best in its group. The wording is used because the Junos OS uses the process of deterministic MED selection, by default.

Examine the EBGP over IBGP Selection

Purpose  To examine a route to determine if EBGP is selected over IBGP as the selection criteria for the single, active path.

Action  To examine a route to determine if EBGP is selected over IBGP as the selection criteria for the single, active path, enter the following Junos OS CLI operational mode command:

  user@host> show route destination-prefix < detail >
Sample Output

user@R4> show route 100.100.3.0 detail
inet.0: 20 destinations, 24 routes (20 active, 0 holddown, 0 hidden)
100.100.3.0/24 (2 entries, 1 announced)
  *BGP
  Preference: 170/-101
  Source: 10.1.45.2
  Next hop: 10.1.45.2 via so-0/0/2.0, selected
  State: <Active Ext>
  Local AS: 65002 Peer AS: 65001
  Age: 5d 0:31:25
  Task: BGP_65001.10.1.45.2+179
  Announcement bits (3): 0-KRT 3-BGP.0.0.0.0+179 4-Resolve inet.0
  AS path: 65001 I
  Localpref: 100
  Router ID: 10.0.0.5
  BGP
  Preference: 170/-101
  Source: 10.0.0.2
  Next hop: 10.1.24.1 via so-0/0/3.0, selected
  Protocol next hop: 10.0.0.2 Indirect next hop: 8644000 277
  State: <NotBest Int Ext>
  Inactive reason: Interior > Exterior > Exterior via Interior
  Local AS: 65002 Peer AS: 65002
  Age: 2:48:18 Metric2: 10
  Task: BGP_65002.10.0.0.2+179
  AS path: 65001 I
  Localpref: 100
  Router ID: 10.0.0.2

Meaning

The sample output shows that R4 received two instances of the 100.100.3.0 route: one from 10.1.45.2 (R5) and one from 10.0.0.2 (R2). R4 selected the path from R5 as its active path, as indicated by the asterisk (*). The selection is based on a preference for routes learned from an EBGP peer over routes learned from an IBGP. R5 is an EBGP peer.

You can determine if a path is received from an EBGP or IBGP peer by examining the Local As and Peer As fields. For example, the route from R5 shows the local AS is 65002 and the peer AS is 65001, indicating that the route is received from an EBGP peer. The route from R2 shows that both the local and peer AS is 65002, indicating that it is received from an IBGP peer.

The reason that the inactive path is not selected is displayed in the Inactive reason field, in this case, Interior > Exterior > Exterior via Interior. The wording of this reason shows the order of preferences applied when the same route is received from two routers. The route received from a strictly internal source (IGP) is preferred first, the route received from an external source (EBGP) is preferred next, and any route which comes from an external source and is received internally (IBGP) is preferred last.

Examine the IGP Cost Selection

Purpose

To examine a route to determine if EBGP is selected over IBGP as the selection criteria for the single, active path.
Action
To examine a route to determine if EBGP is selected over IBGP as the selection criteria for the single, active path, enter the following Junos OS CLI operational mode command:

```
user@host> show route destination-prefix < detail >
```

Sample Output

```
user@R6> show route 100.100.4.0 detail
inet.0: 18 destinations, 20 routes (18 active, 0 holddown, 0 hidden)
100.100.4.0/24 (2 entries, 1 announced)
 *BGP Preference: 170/-101
 Source: 10.0.0.4
 Next hop: 10.1.46.1 via so-0/0/1.0, selected
 Protocol next hop: 10.0.0.4 Indirect next hop: 864c000 276
 State: <Active Int Ext>
 Local AS: 65002 Peer AS: 65002
 Age: 2:16:11 Metric2: 10
 Task: BGP_65002.10.0.0.4+4120
 Announcement bits (2): 0-KRT 4-Resolve inet.0
 AS path: 65001I
 Localpref: 100
 Router ID: 10.0.0.4

 BGP Preference: 170/-101
 Source: 10.0.0.2
 Next hop: 10.1.46.1 via so-0/0/1.0, selected
 Next hop: 10.1.36.1 via so-0/0/3.0
 Protocol next hop: 10.0.0.2 Indirect next hop: 864c0b0 278
 State: <NotBest Int Ext>
 Inactive reason: IGP metric
 Local AS: 65002 Peer AS: 65002
 Age: 2:16:03 Metric2: 20
 Task: BGP_65002.10.0.0.2+179
 AS path: 65001I
 Localpref: 100
 Router ID: 10.0.0.2
```

Meaning
The sample output shows that R6 received two instances of the 100.100.4.0 route: one from 10.0.0.4 (R4) and one from 10.0.0.2 (R2). R6 selected the path from R4 as its active route, as indicated by the asterisk (*). The selection is based on the IGP metric, displayed in the Metric2 field. The route with the lowest IGP metric is preferred. In the example, the path with the lowest IGP metric value is the path from R4, with an IGP metric value of 10, while the path from R2 has an IGP metric of 20. Note that the two paths are from the same neighboring network: AS 65001.

The reason that the inactive path was not selected is displayed in the Inactive reason field, in this case, IGP metric.

Examine Routes in the Forwarding Table

Purpose
When you run into problems, such as connectivity problems, you may need to examine routes in the forwarding table to verify that the routing protocol process has relayed the correct information into the forwarding table.

Action
To display the set of routes installed in the forwarding table, enter the following Junos OS CLI operational mode command:
### Sample Output

```
user@R2> show route forwarding-table
Routing table: inet
Internet:
<table>
<thead>
<tr>
<th>Destination</th>
<th>Type</th>
<th>RtRef</th>
<th>Next hop</th>
<th>Type</th>
<th>Index</th>
<th>NhRef</th>
<th>Netif</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>perm</td>
<td>0</td>
<td>10.0.0.2</td>
<td>rjct</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10.0.0.3/32</td>
<td>user</td>
<td>1</td>
<td>10.1.23.0</td>
<td>ucst</td>
<td>282</td>
<td>4</td>
<td>so-0/0/1.0</td>
</tr>
<tr>
<td>10.0.0.4/32</td>
<td>user</td>
<td>1</td>
<td>10.1.24.0</td>
<td>ucst</td>
<td>290</td>
<td>7</td>
<td>so-0/0/3.0</td>
</tr>
<tr>
<td>10.0.0.6/32</td>
<td>user</td>
<td>1</td>
<td>10.1.24.0</td>
<td>ucst</td>
<td>290</td>
<td>7</td>
<td>so-0/0/3.0</td>
</tr>
<tr>
<td>10.1.12.0/30</td>
<td>intf</td>
<td>1</td>
<td>ff.3.0.21</td>
<td>ucst</td>
<td>278</td>
<td>6</td>
<td>so-0/0/0.0</td>
</tr>
<tr>
<td>10.1.12.0/32</td>
<td>dest</td>
<td>0</td>
<td>10.1.12.0</td>
<td>recv</td>
<td>280</td>
<td>1</td>
<td>so-0/0/0.0</td>
</tr>
<tr>
<td>10.1.12.2/32</td>
<td>intf</td>
<td>0</td>
<td>10.1.12.2</td>
<td>locl</td>
<td>277</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10.1.12.3/32</td>
<td>dest</td>
<td>0</td>
<td>10.1.12.3</td>
<td>bcst</td>
<td>279</td>
<td>1</td>
<td>so-0/0/0.0</td>
</tr>
<tr>
<td>10.1.23.0/30</td>
<td>intf</td>
<td>0</td>
<td>ff.3.0.21</td>
<td>ucst</td>
<td>282</td>
<td>4</td>
<td>so-0/0/1.0</td>
</tr>
<tr>
<td>10.1.23.0/32</td>
<td>dest</td>
<td>0</td>
<td>10.1.23.0</td>
<td>recv</td>
<td>284</td>
<td>1</td>
<td>so-0/0/1.0</td>
</tr>
<tr>
<td>10.1.23.1/32</td>
<td>intf</td>
<td>0</td>
<td>10.1.23.1</td>
<td>locl</td>
<td>281</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10.1.23.3/32</td>
<td>dest</td>
<td>0</td>
<td>10.1.23.3</td>
<td>bcst</td>
<td>283</td>
<td>1</td>
<td>so-0/0/1.0</td>
</tr>
<tr>
<td>10.1.24.0/30</td>
<td>intf</td>
<td>0</td>
<td>ff.3.0.21</td>
<td>ucst</td>
<td>290</td>
<td>7</td>
<td>so-0/0/3.0</td>
</tr>
<tr>
<td>10.1.24.0/32</td>
<td>dest</td>
<td>0</td>
<td>10.1.24.0</td>
<td>recv</td>
<td>292</td>
<td>1</td>
<td>so-0/0/3.0</td>
</tr>
<tr>
<td>10.1.24.1/32</td>
<td>intf</td>
<td>0</td>
<td>10.1.24.1</td>
<td>locl</td>
<td>289</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10.1.24.3/32</td>
<td>dest</td>
<td>0</td>
<td>10.1.24.3</td>
<td>bcst</td>
<td>291</td>
<td>1</td>
<td>so-0/0/3.0</td>
</tr>
<tr>
<td>10.1.36.0/30</td>
<td>user</td>
<td>0</td>
<td>10.1.23.0</td>
<td>ucst</td>
<td>282</td>
<td>4</td>
<td>so-0/0/1.0</td>
</tr>
<tr>
<td>10.1.46.0/30</td>
<td>user</td>
<td>0</td>
<td>10.1.24.0</td>
<td>ucst</td>
<td>290</td>
<td>7</td>
<td>so-0/0/3.0</td>
</tr>
<tr>
<td>100.100.1.0/24</td>
<td>user</td>
<td>0</td>
<td>10.1.12.0</td>
<td>ucst</td>
<td>278</td>
<td>6</td>
<td>so-0/0/0.0</td>
</tr>
<tr>
<td>100.100.2.0/24</td>
<td>user</td>
<td>0</td>
<td>10.1.12.0</td>
<td>ucst</td>
<td>278</td>
<td>6</td>
<td>so-0/0/0.0</td>
</tr>
<tr>
<td>100.100.3.0/24</td>
<td>user</td>
<td>0</td>
<td>10.1.12.0</td>
<td>ucst</td>
<td>278</td>
<td>6</td>
<td>so-0/0/0.0</td>
</tr>
<tr>
<td>100.100.4.0/24</td>
<td>user</td>
<td>0</td>
<td>10.1.12.0</td>
<td>ucst</td>
<td>278</td>
<td>6</td>
<td>so-0/0/0.0</td>
</tr>
</tbody>
</table>

[...Output truncated...]
```

### Meaning

The sample output shows the network-layer prefixes and their next hops installed in the forwarding table. The output includes the same next-hop information as in the `show route detail` command (the next-hop address and interface name). Additional information includes the destination type, the next-hop type, the number of references to this next hop, and an index into an internal next-hop database. (The internal database contains additional information used by the Packet Forwarding Engine to ensure proper encapsulation of packets sent out an interface. This database is not accessible to the user.

For detailed information about the meanings of the various flags and types fields, see the Junos Routing Protocols and Policies Command Reference.
CHAPTER 14

Verify the Routing Engine CPU Memory

This chapter describes how to verify the Routing Engine CPU memory on your Juniper Networks router.

- Checklist for Verifying the Routing Engine CPU Memory on page 157
- Check the Routing CPU Memory Usage on page 157

Checklist for Verifying the Routing Engine CPU Memory

**Purpose**
Table 29 on page 157 provides links and commands for verifying the routing engine CPU memory.

**Action**

Table 29: Checklist for Verifying the Routing Engine CPU Memory

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Check the Routing CPU Memory Usage” on page 157</td>
<td></td>
</tr>
<tr>
<td>1. Check Overall CPU and Memory Usage on page 158</td>
<td>show system process extensive</td>
</tr>
<tr>
<td>2. Check Routing Protocol Process (rpd) Memory Usage on page 161</td>
<td>show route summary show task memory detail</td>
</tr>
<tr>
<td>3. Display Tasks on page 164</td>
<td>show task show task memory show task task-name</td>
</tr>
</tbody>
</table>

Check the Routing CPU Memory Usage

**Purpose**
Software processes on the router can consume a considerable amount of CPU and memory. The routing protocol process (rpd) can consume enormous amounts of memory to store information needed for the operation of routing and related protocols, such as Border Gateway Protocol (BGP), Open Shortest Path First (OSPF), Intermediate System-to-Intermediate System (ISIS), Resource Reservation Protocol (RSVP), Label Distribution Protocol (LDP), and Multiprotocol Label Switching (MPLS).
To verify the traffic passing through the router and check memory utilization, follow these steps:

1. **Check Overall CPU and Memory Usage on page 158**
2. **Check Routing Protocol Process (rpd) Memory Usage on page 161**
3. **Display Tasks on page 164**

### Check Overall CPU and Memory Usage

**Purpose**

You can display exhaustive system process information about software processes that are running on the router and have controlling terminals. This command is equivalent to the UNIX `top` command. However, the UNIX `top` command shows real-time memory usage, with the memory values constantly changing, while the `show system processes extensive` command provides a snapshot of memory usage in a given moment.

**Action**

To check overall CPU and memory usage, enter the following Junos OS command-line interface (CLI) command:

```
user@host> show system processes extensive
```
user@R1> show system processes extensive
last pid: 5251; load averages: 0.00, 0.00, 0.00 up 4+20:22:16 10:44:41
58 processes: 1 running, 57 sleeping
Mem: 57M Active, 54M Inact, 17M Wired, 184K Cache, 35M Buf, 118M Free
Swap: 512M Total, 512M Free

<table>
<thead>
<tr>
<th>PID</th>
<th>USERNAME</th>
<th>PRI</th>
<th>NICE</th>
<th>SIZE</th>
<th>RES</th>
<th>STATE</th>
<th>TIME</th>
<th>WCPU</th>
<th>CPU</th>
<th>COMMAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>4480</td>
<td>root</td>
<td>2</td>
<td>0</td>
<td>3728K</td>
<td>1908K</td>
<td>select</td>
<td>231:17</td>
<td>2.34%</td>
<td>2.34%</td>
<td>chassisd</td>
</tr>
<tr>
<td>4500</td>
<td>root</td>
<td>2</td>
<td>0</td>
<td>1896K</td>
<td>952K</td>
<td>select</td>
<td>0:36</td>
<td>0.00%</td>
<td>0.00%</td>
<td>fud</td>
</tr>
<tr>
<td>4505</td>
<td>root</td>
<td>2</td>
<td>0</td>
<td>1380K</td>
<td>736K</td>
<td>select</td>
<td>0:35</td>
<td>0.00%</td>
<td>0.00%</td>
<td>irsd</td>
</tr>
<tr>
<td>4481</td>
<td>root</td>
<td>2</td>
<td>0</td>
<td>1864K</td>
<td>872K</td>
<td>select</td>
<td>0:32</td>
<td>0.00%</td>
<td>0.00%</td>
<td>alrm</td>
</tr>
<tr>
<td>4488</td>
<td>root</td>
<td>2</td>
<td>0</td>
<td>8464K</td>
<td>4600K</td>
<td>kqread</td>
<td>0:28</td>
<td>0.00%</td>
<td>0.00%</td>
<td>rpd</td>
</tr>
<tr>
<td>4501</td>
<td>root</td>
<td>2</td>
<td>-15</td>
<td>1560K</td>
<td>968K</td>
<td>select</td>
<td>0:21</td>
<td>0.00%</td>
<td>0.00%</td>
<td>pfmd</td>
</tr>
<tr>
<td>4505</td>
<td>root</td>
<td>2</td>
<td>0</td>
<td>1380K</td>
<td>736K</td>
<td>select</td>
<td>0:35</td>
<td>0.00%</td>
<td>0.00%</td>
<td>mib2d</td>
</tr>
<tr>
<td>4481</td>
<td>root</td>
<td>2</td>
<td>0</td>
<td>1864K</td>
<td>872K</td>
<td>select</td>
<td>0:32</td>
<td>0.00%</td>
<td>0.00%</td>
<td>alrm</td>
</tr>
<tr>
<td>4501</td>
<td>root</td>
<td>2</td>
<td>-15</td>
<td>1560K</td>
<td>968K</td>
<td>select</td>
<td>0:21</td>
<td>0.00%</td>
<td>0.00%</td>
<td>pfmd</td>
</tr>
<tr>
<td>4505</td>
<td>root</td>
<td>2</td>
<td>0</td>
<td>1380K</td>
<td>736K</td>
<td>select</td>
<td>0:35</td>
<td>0.00%</td>
<td>0.00%</td>
<td>mib2d</td>
</tr>
<tr>
<td>4481</td>
<td>root</td>
<td>2</td>
<td>0</td>
<td>1864K</td>
<td>872K</td>
<td>select</td>
<td>0:32</td>
<td>0.00%</td>
<td>0.00%</td>
<td>alrm</td>
</tr>
<tr>
<td>4501</td>
<td>root</td>
<td>2</td>
<td>-15</td>
<td>1560K</td>
<td>968K</td>
<td>select</td>
<td>0:21</td>
<td>0.00%</td>
<td>0.00%</td>
<td>pfmd</td>
</tr>
<tr>
<td>4505</td>
<td>root</td>
<td>2</td>
<td>0</td>
<td>1380K</td>
<td>736K</td>
<td>select</td>
<td>0:35</td>
<td>0.00%</td>
<td>0.00%</td>
<td>mib2d</td>
</tr>
<tr>
<td>4481</td>
<td>root</td>
<td>2</td>
<td>0</td>
<td>1864K</td>
<td>872K</td>
<td>select</td>
<td>0:32</td>
<td>0.00%</td>
<td>0.00%</td>
<td>alrm</td>
</tr>
<tr>
<td>4501</td>
<td>root</td>
<td>2</td>
<td>-15</td>
<td>1560K</td>
<td>968K</td>
<td>select</td>
<td>0:21</td>
<td>0.00%</td>
<td>0.00%</td>
<td>pfmd</td>
</tr>
<tr>
<td>4505</td>
<td>root</td>
<td>2</td>
<td>0</td>
<td>1380K</td>
<td>736K</td>
<td>select</td>
<td>0:35</td>
<td>0.00%</td>
<td>0.00%</td>
<td>mib2d</td>
</tr>
<tr>
<td>4481</td>
<td>root</td>
<td>2</td>
<td>0</td>
<td>1864K</td>
<td>872K</td>
<td>select</td>
<td>0:32</td>
<td>0.00%</td>
<td>0.00%</td>
<td>alrm</td>
</tr>
<tr>
<td>4501</td>
<td>root</td>
<td>2</td>
<td>-15</td>
<td>1560K</td>
<td>968K</td>
<td>select</td>
<td>0:21</td>
<td>0.00%</td>
<td>0.00%</td>
<td>pfmd</td>
</tr>
<tr>
<td>4505</td>
<td>root</td>
<td>2</td>
<td>0</td>
<td>1380K</td>
<td>736K</td>
<td>select</td>
<td>0:35</td>
<td>0.00%</td>
<td>0.00%</td>
<td>mib2d</td>
</tr>
<tr>
<td>4481</td>
<td>root</td>
<td>2</td>
<td>0</td>
<td>1864K</td>
<td>872K</td>
<td>select</td>
<td>0:32</td>
<td>0.00%</td>
<td>0.00%</td>
<td>alrm</td>
</tr>
<tr>
<td>4501</td>
<td>root</td>
<td>2</td>
<td>-15</td>
<td>1560K</td>
<td>968K</td>
<td>select</td>
<td>0:21</td>
<td>0.00%</td>
<td>0.00%</td>
<td>pfmd</td>
</tr>
<tr>
<td>4505</td>
<td>root</td>
<td>2</td>
<td>0</td>
<td>1380K</td>
<td>736K</td>
<td>select</td>
<td>0:35</td>
<td>0.00%</td>
<td>0.00%</td>
<td>mib2d</td>
</tr>
<tr>
<td>4481</td>
<td>root</td>
<td>2</td>
<td>0</td>
<td>1864K</td>
<td>872K</td>
<td>select</td>
<td>0:32</td>
<td>0.00%</td>
<td>0.00%</td>
<td>alrm</td>
</tr>
<tr>
<td>4501</td>
<td>root</td>
<td>2</td>
<td>-15</td>
<td>1560K</td>
<td>968K</td>
<td>select</td>
<td>0:21</td>
<td>0.00%</td>
<td>0.00%</td>
<td>pfmd</td>
</tr>
<tr>
<td>4505</td>
<td>root</td>
<td>2</td>
<td>0</td>
<td>1380K</td>
<td>736K</td>
<td>select</td>
<td>0:35</td>
<td>0.00%</td>
<td>0.00%</td>
<td>mib2d</td>
</tr>
<tr>
<td>4481</td>
<td>root</td>
<td>2</td>
<td>0</td>
<td>1864K</td>
<td>872K</td>
<td>select</td>
<td>0:32</td>
<td>0.00%</td>
<td>0.00%</td>
<td>alrm</td>
</tr>
<tr>
<td>4501</td>
<td>root</td>
<td>2</td>
<td>-15</td>
<td>1560K</td>
<td>968K</td>
<td>select</td>
<td>0:21</td>
<td>0.00%</td>
<td>0.00%</td>
<td>pfmd</td>
</tr>
<tr>
<td>4505</td>
<td>root</td>
<td>2</td>
<td>0</td>
<td>1380K</td>
<td>736K</td>
<td>select</td>
<td>0:35</td>
<td>0.00%</td>
<td>0.00%</td>
<td>mib2d</td>
</tr>
<tr>
<td>4481</td>
<td>root</td>
<td>2</td>
<td>0</td>
<td>1864K</td>
<td>872K</td>
<td>select</td>
<td>0:32</td>
<td>0.00%</td>
<td>0.00%</td>
<td>alrm</td>
</tr>
</tbody>
</table>
Meaning

The sample output shows the amount of virtual memory used by the Routing Engine and software processes. For example, 118 MB of physical memory is free and 512 MB of the swap file is free, indicating that the router is not short of memory. The processes field shows that most of the 58 processes are in the sleeping state, with 1 in the running state. The process or command that is running is the top command.

The commands column lists the processes that are currently running. For example, the chassis process (chassisd) has a process identifier (PID) of 4480, with a current priority (PRI) of 2. A lower priority number indicates a higher priority.

The processes are listed according to level of activity, with the most active process at the top of the output. For example, the chassis (chassisd) process is consuming the largest amount of CPU resource at 2.34 percent.

The memory field (Mem) shows the virtual memory managed by the Routing Engine and used by processes. The value in the memory field is in KB and MB, and is broken down as follows:

- **Active**—Memory that is allocated and actually in use by programs.
- **Inact**—Memory that is either allocated but not recently used or memory that was freed by programs. Inactive memory is still mapped in the address space of one or more processes and, therefore, counts toward the resident set size of those processes.
- **Wired**—Memory that is not eligible to be swapped, and is usually used for Routing Engine memory structures or memory physically locked by a process.
- **Cache**—Memory that is not associated with any program and does not need to be swapped before being reused.
- **Buf**—The size of the memory buffer used to hold data recently called from disk.
- **Free**—Memory that is not associated with any programs. Memory freed by a process can become Inactive, Cache, or Free, depending on the method used by the process to free the memory.

When the system is under memory pressure, the pageout process reuses memory from the free, cache, inactive and, if necessary, active pages.

The Swap field shows the total swap space available and how much is unused. In the example, the output shows 512 MB of total swap space and 512 MB of free swap space.

Finally, the memory usage of each process is listed. The SIZE field indicates the size of the virtual address space, and the RES field indicates the amount of the program in physical memory, which is also known as RSS or Resident Set Size. In the sample output, the chassis (chassisd) process has 3728 KB of virtual address space and 1908 KB of physical memory.
For additional information about the `show system processes extensive` command, see “Stopping and Starting Junos OS” on page 29.

Check Routing Protocol Process (rpd) Memory Usage

**Purpose**  
When you notice a lot of memory usage, you can obtain detailed information about the memory utilization of routing tasks to get an idea of what is going on. The routing process (rpd) is the main task that uses Routing Engine memory.

**Action**  
To check routing process memory usage, enter the following Junos OS CLI operational mode commands:

```bash
user@host> show route summary
user@host> show task memory detail
```
Sample Output

```
user@host> show route summary
Autonomous system number: 209
Router ID: 205.175.0.170
inet.0: 179783 destinations, 898393 routes (179771 active, 146 holddown, 157 hidden)
 Direct: 17 routes, 17 active
 Local: 18 routes, 18 active
 BGP: 896632 routes, 178010 active
 IS-IS: 1694 routes, 1694 active
inet.2: 8766 destinations, 22700 routes (8766 active, 124 holddown, 73 hidden)
 Direct: 17 routes, 17 active
 Local: 18 routes, 18 active
 BGP: 20939 routes, 7006 active
 IS-IS: 1694 routes, 1694 active
inet.3: 1614 destinations, 1719 routes (1614 active, 0 holddown, 0 hidden)
 IS-IS: 1694 routes, 1694 active
iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
 Direct: 1 routes, 1 active
mpls.0: 371 destinations, 371 routes (371 active, 0 holddown, 0 hidden)
 MPLS: 3 routes, 3 active
 RSVP: 303 routes, 303 active
 LDP: 65 routes, 65 active

user@R1> show task memory detail
------------------------- Overall Memory Report -------------------------
 Size TP Allocs Mallocs AllocBytes MaxAllocs MaxBytes FreeBytes
12 8140 186959 2341188 200824 2409888 254972
16 4061 182 67888 4586 73376 5840
16 T - - - 393571 6297136 -
20 688588 51 13772780 14274080 423956
[...Output truncated...]
8192 P 91 - 745472 195 1597440 -
12288 P - - 12288 -
block 5 - 137200 14 137732 6160
pool 50 - 896 100 1792 3200
alloc 8 383744 10 397365 9472
------------------------ Allocator Memory Report ------------------------
 Name Size Alloc DTP Alloc Blocks AllocBytes Blocks MaxAllocs
patricia_root_struct 8 12 7741 92892 8130 97560
sockaddr_un.i802 8 12 24 24 2 24
sockaddr_un.tag 8 12 371 4452 995 11940
if_addr_entry 8 12 - 12 1 12
gw_entry_list 8 12 - 12 1 12
isis_proto_list 8 12 25 300 30 360
struct krt_scb 12 16 4 64 6 96
ldp_rt_data 12 16 61 976 133 2128
config_list 12 16 2353 37648 2353 37648
TED NodeInfo 12 16 845 13520 907 14512
isis_area_addr 12 16 544 8704 612 9792
isis_nh_list 12 16 237 3792 922 14752
isis_tsi 12 16 17 272 19 304
```
<table>
<thead>
<tr>
<th>Name</th>
<th>Allocs</th>
<th>Bytes</th>
<th>MaxAllocs</th>
<th>MaxBytes</th>
<th>FuncCalls</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT.local</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>RSVP</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2048</td>
<td>156084</td>
</tr>
<tr>
<td>BGP_Group_Tweak-RTClien</td>
<td>2</td>
<td>24</td>
<td>2</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>LDP</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>KRT Request</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>16</td>
<td>446888</td>
</tr>
<tr>
<td>BGP_Group_Packet-Design</td>
<td>2</td>
<td>24</td>
<td>2</td>
<td>24</td>
<td>38</td>
</tr>
<tr>
<td>MPLS</td>
<td>22272</td>
<td>1221566</td>
<td>12272</td>
<td>1221784</td>
<td>228522</td>
</tr>
<tr>
<td>BGP.0.0.0.179</td>
<td>186419</td>
<td>2237028</td>
<td>192292</td>
<td>2307504</td>
<td>282141119</td>
</tr>
<tr>
<td>IS-IS 1/0./var/run/ppmd</td>
<td>1</td>
<td>66536</td>
<td>43</td>
<td>103916</td>
<td>69536231</td>
</tr>
<tr>
<td>IS-IS</td>
<td>2407</td>
<td>361372</td>
<td>5887</td>
<td>446076</td>
<td>889294754</td>
</tr>
<tr>
<td>BGP RT Background</td>
<td>3</td>
<td>66556</td>
<td>3</td>
<td>66556</td>
<td>3</td>
</tr>
<tr>
<td>SNMP Subagent./var/run/</td>
<td>-</td>
<td>24</td>
<td>1</td>
<td>9144</td>
<td>367702</td>
</tr>
<tr>
<td>KRT</td>
<td>2</td>
<td>205616</td>
<td>3</td>
<td>207900</td>
<td>10</td>
</tr>
<tr>
<td>ASPaths</td>
<td>13901</td>
<td>1581544</td>
<td>18023</td>
<td>2067605</td>
<td>293868769</td>
</tr>
<tr>
<td>RT</td>
<td>27</td>
<td>556</td>
<td>28</td>
<td>580</td>
<td>2815</td>
</tr>
<tr>
<td>Scheduler</td>
<td>194</td>
<td>2604</td>
<td>199</td>
<td>2684</td>
<td>41382</td>
</tr>
<tr>
<td>--Anonymous--</td>
<td>4294944918</td>
<td>4293764616</td>
<td>4294967294</td>
<td>4294967292</td>
<td>45560848</td>
</tr>
<tr>
<td>--System--</td>
<td>38565</td>
<td>3547432</td>
<td>38684</td>
<td>35487048</td>
<td>235115763</td>
</tr>
</tbody>
</table>

Dynamically allocated memory: 485789696
Maximum: 541736960
Program data+BSS memory: 2101248
Maximum: 2101248
Page data overhead: 3039232
Maximum: 3039232
Page directory size: 512000
Maximum: 512000

Total bytes in use: 491442176 (70% of available memory)

**Meaning**

The sample output shows summary statistics about the entries in the routing table (show route summary command) and the memory usage breakdown (show task memory detail command) for the routing process (rpd). The two commands provide a comprehensive picture of the memory utilization of the routing protocol process.

The **show route summary** command shows the number of routes in the various routing tables. In the sample output, the routing tables represented are `inet.0`, `inet.2`, `inet.3`, `iso.0`, and `mpls.0`. Within each routing table, all of the active, hold-down, and hidden destinations and routes are summarized for all the protocols from which routes are learned. Routes are in the **hold-down** state prior to being declared inactive, and **hidden** routes are not used because of routing policy. Routes in the **hold-down** and **hidden** states are still using memory because they appear in the routing table.
In addition, routes are summarized in the following categories: those directly connected to the network (Direct), local routes (Local), and routes learned from configured routing protocols, such as BGP and IS-IS.

The `show task memory detail` command lists the data structures within the tasks run by the routing protocol process (rpd). Tasks are enabled depending on the router’s configuration. For example, `isis_area_addr` is a data structure resulting from the IS-IS configuration. The `AllocBytes` field indicates the highest amount of memory used by the data structure. For example, the `isis_area_addr` data structure has 544 blocks of allocated memory, each block is allocated a value of 16 bytes, resulting in allocated bytes of 8704. The maximum allocated blocks and bytes are high-water marks for a data structure. For more information on displaying task-related information, see “Display Tasks” on page 164.

The `Total bytes in use` field shows the total amount of memory used by the routing protocol process (rpd).

**Display Tasks**

**Purpose**        You can display information about tasks to further your investigation of a memory problem on the router.

**Action**         To display a list of tasks that are enabled on the router, enter the following Junos OS CLI operational mode commands:

```
user@host> show task
user@host> show task memory
user@host> show task task-name
```
### Sample Output

**show task**

<table>
<thead>
<tr>
<th>Pri</th>
<th>Task Name</th>
<th>Pro</th>
<th>Port</th>
<th>So</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>LMP Client</td>
<td>17</td>
<td>&lt;&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>IF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>INET6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>INET</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>ISO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Memory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>RPD Unix Domain Server./var/run/rpd_serv.local</td>
<td>21</td>
<td>&lt;&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>RPD Unix Domain Server./var/run/rpd_serv.local</td>
<td>20</td>
<td>&lt;&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>RPD Unix Domain Server./var/run/rpd_serv.local</td>
<td>19</td>
<td>&lt;&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>RPD Unix Domain Server./var/run/rpd_server_communication</td>
<td>16 &lt;Accept&gt;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>RPD Server.0.0.0.0+666</td>
<td>666</td>
<td>15</td>
<td>&lt;&gt;</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Aggregate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>RT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>ICMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Router-Advertisement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>ICMPv6</td>
<td>58</td>
<td>9</td>
<td>&lt;&gt;</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>OSPFv2 I/O./var/run/ppmd_control</td>
<td>12</td>
<td>&lt;&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>12vpn global task</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>BGP RT Background</td>
<td></td>
<td></td>
<td></td>
<td>LowPrio</td>
</tr>
<tr>
<td>40</td>
<td>BGP.::+179</td>
<td>179</td>
<td>23</td>
<td>&lt;&gt;</td>
<td>Accept LowPrio</td>
</tr>
<tr>
<td>40</td>
<td>BGP.0.0.0.0+179</td>
<td>179</td>
<td>22</td>
<td>&lt;&gt;</td>
<td>Accept LowPrio</td>
</tr>
<tr>
<td>40</td>
<td>BFD 1/0./var/run/bfdd_control</td>
<td>11</td>
<td>&lt;&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>OSPF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>BGP_65001.10.0.0.5+3531</td>
<td>3531</td>
<td>18</td>
<td>LowPrio</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>BGP_65002.10.1.12.2+1224</td>
<td>1224</td>
<td>25</td>
<td>LowPrio</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>BGP_Group_internal</td>
<td></td>
<td></td>
<td></td>
<td>LowPrio</td>
</tr>
<tr>
<td>50</td>
<td>BGP_Group_toR2</td>
<td></td>
<td></td>
<td></td>
<td>LowPrio</td>
</tr>
<tr>
<td>50</td>
<td>TED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>ASPaths</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Resolve inet.0</td>
<td></td>
<td></td>
<td></td>
<td>LowPrio</td>
</tr>
<tr>
<td>60</td>
<td>KStat</td>
<td>13</td>
<td>&lt;&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>KRT Request</td>
<td>7</td>
<td>&lt;&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>KRT Ifstate</td>
<td>255</td>
<td>6</td>
<td>&lt;&gt;</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>KRT</td>
<td>255</td>
<td>5</td>
<td>&lt;&gt;</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Redirect</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>MGMT.local</td>
<td>24</td>
<td>&lt;&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>MGMT_Listen./var/run/rpd_mgmt</td>
<td>14</td>
<td>&lt;&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>SNMP Subagent./var/run/snmpd_stream</td>
<td>10</td>
<td>&lt;&gt;</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**show task memory**

<table>
<thead>
<tr>
<th>Memory</th>
<th>Size (kB)</th>
<th>Percentage</th>
<th>When</th>
</tr>
</thead>
<tbody>
<tr>
<td>Currently In Use:</td>
<td>3490</td>
<td>1%</td>
<td>now</td>
</tr>
<tr>
<td>Maximum Ever Used:</td>
<td>3535</td>
<td>1%</td>
<td>04/02/04 11:54:46</td>
</tr>
<tr>
<td>Available:</td>
<td>220623</td>
<td>100%</td>
<td>now</td>
</tr>
</tbody>
</table>

**show task io**

<table>
<thead>
<tr>
<th>Task Name</th>
<th>Reads</th>
<th>Writes</th>
<th>Rcvd</th>
<th>Sent</th>
<th>Dropped</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMP Client</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IF</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>INET6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>INET</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ISO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Memory</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RPD Unix Domain Server./var/ru</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RPD Unix Domain Server./var/ru</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RPD Unix Domain Server./var/ru</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The sample output shows a list of routing, routing protocol, and interface tasks that are currently running on the router (show task), a summary of memory utilization (show task memory), and the memory utilization of a particular task (show task io). Tasks can be baseline tasks performed regardless of the router configuration, and other tasks that depend on the router configuration. For example, the BGP_Group_internal task is the result of the configuration of BGP on the router, while the INET6 task is a base task associated with the routing process (rpd).

Each task in the show task command output has a priority and a task name. For example, the current priority is 10 for LMP Client and 80 for IF Delete. A lower number indicates a higher priority.

Some tasks have flags attached to them. For example, the BGP.0.0.0.0+179 task has two flags, Accept and LowPrio. The Accept flag indicates that the task is waiting for incoming connections, and the LowPrio flag indicates that the task will be dispatched to read its socket after other, higher priority tasks. Two additional flags are Connect, which indicates that a task is waiting for a connection to complete, and Delete, which indicates that a task has been deleted and is being cleaned up.

The show task io command shows the statistics gathered for each IO operation. The counters show the following:
• **Reads**—This counter increments when a datagram arrives on a connected socket of the task and the task's read callback is called.

• **Writes**—This counter increments when a connected socket of a task becomes writable and the tasks's callback is called.

• **Rcvd**—This counter increments when the task calls the Routing Engine to read a datagram from a socket which may or may not be connected.

• **Sent**—This counter increments when a task attempts to read or write a datagram on an existing or nonexisting socket.

• **Drops**—This counter increments when a task attempts to read or write a datagram through the Routing Engine on a prebuilt socket, but the request fails for any reason.
This chapter describes how to verify traffic and packets entering and passing through your Juniper Networks router.

- Checklist for Verifying Traffic and Packets through the Router on page 169
- Monitoring Traffic Through the Router or Switch on page 170
- Verify Packets on page 172

### Checklist for Verifying Traffic and Packets through the Router

**Purpose**
Table 30 on page 169 provides links and commands for verifying traffic and packets through the router.

**Action**

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;Monitoring Traffic Through the Router or Switch&quot; on page 170</td>
<td></td>
</tr>
<tr>
<td>1. Displaying Real-Time Statistics About All Interfaces on the Router or Switch on page 170</td>
<td>monitor interface traffic</td>
</tr>
<tr>
<td>2. Displaying Real-Time Statistics About an Interface on the Router or Switch on page 171</td>
<td>monitor interface interface-name</td>
</tr>
<tr>
<td>&quot;Verify Packets&quot; on page 172</td>
<td></td>
</tr>
<tr>
<td>1. Monitor Packets Sent from and Received by the Routing Engine on page 172</td>
<td>monitor traffic interface interface-name</td>
</tr>
<tr>
<td>2. Display Key IP Header Information on page 173</td>
<td>show firewall log</td>
</tr>
<tr>
<td>3. Show Packet Count When a Firewall Filter Is Configured with the Count Option on page 174</td>
<td>show firewall filter filter-name</td>
</tr>
<tr>
<td>4. Display Traffic from the Point of View of the Packet Forwarding Engine on page 175</td>
<td>show pfe statistics traffic</td>
</tr>
</tbody>
</table>
Monitoring Traffic Through the Router or Switch

To help with the diagnosis of a problem, display real-time statistics about the traffic passing through physical interfaces on the router or switch.

To display real-time statistics about physical interfaces, perform these tasks:

1. Displaying Real-Time Statistics About All Interfaces on the Router or Switch on page 170
2. Displaying Real-Time Statistics About an Interface on the Router or Switch on page 171

Displaying Real-Time Statistics About All Interfaces on the Router or Switch

**Purpose**
Display real-time statistics about traffic passing through all interfaces on the router or switch.

**Action**
To display real-time statistics about traffic passing through all interfaces on the router or switch:

```
user@host> monitor interface traffic
```

**Sample Output**

```
user@host> monitor interface traffic
host name Seconds: 15 Time: 12:31:09
Interface Link Input packets (pps) Output packets (pps)
so-1/0/0 Down 0 (0) 0 (0)
so-1/1/0 Down 0 (0) 0 (0)
so-1/1/1 Down 0 (0) 0 (0)
so-1/1/2 Down 0 (0) 0 (0)
so-1/1/3 Down 0 (0) 0 (0)
t3-1/2/0 Down 0 (0) 0 (0)
t3-1/2/1 Down 0 (0) 0 (0)
t3-1/2/2 Down 0 (0) 0 (0)
t3-1/2/3 Down 0 (0) 0 (0)
s0-2/0/0 Up 211035 (1) 36778 (0)
s0-2/0/1 Up 192753 (1) 36782 (0)
s0-2/0/2 Up 211020 (1) 36779 (0)
s0-2/0/3 Up 211029 (1) 36776 (0)
s0-2/1/0 Up 189378 (1) 36349 (0)
s0-2/1/1 Down 0 (0) 18747 (0)
s0-2/1/2 Down 0 (0) 16078 (0)
s0-2/1/3 Up 0 (0) 80338 (0)
at-2/3/0 Up 0 (0) 0 (0)
at-2/3/1 Down 0 (0) 0 (0)

Meaning
The sample output displays traffic data for active interfaces and the amount that each field has changed since the command started or since the counters were cleared by using the C key. In this example, the `monitor interface` command has been running for 15 seconds since the command was issued or since the counters last returned to zero.
Displaying Real-Time Statistics About an Interface on the Router or Switch

Purpose
Display real-time statistics about traffic passing through an interface on the router or switch.

Action
To display traffic passing through an interface on the router or switch, use the following Junos OS CLI operational mode command:

```
user@host> monitor interface interface-name
```

Sample Output

```
user@host> monitor interface so-0/0/1
Next='n', Quit='q' or ESC, Freeze='f', Thaw='t', Clear='c', Interface='i'
R1
Interface: so-0/0/1, Enabled, Link is Up
Encapsulation: PPP, Keepalives, Speed: OC3 Traffic statistics:
  Input bytes: 5856541 (88 bps)
  Output bytes: 6271468 (96 bps)
  Input packets: 157629 (0 pps)
  Output packets: 157024 (0 pps)
Encapsulation statistics:
  Input keepalives: 42353
  Output keepalives: 42320
LCP state: Opened
Error statistics:
  Input errors: 0
  Input drops: 0
  Input framing errors: 0
  Input runts: 0
  Input giants: 0
  Policed discards: 0
  L3 incompletes: 0
  L2 channel errors: 0
  L2 mismatch timeouts: 0
  Carrier transitions: 1
  Output errors: 0
  Output drops: 0
  Aged packets: 0
Active alarms : None
Active defects: None
SONET error counts/seconds:
  LOS count 1
  LOF count 1
  SEF count 1
  ES-S 77
  SES-S 77
SONET statistics:
  BIP-B1 0
  BIP-B2 0
  REI-L 0
  BIP-B3 0
  REI-P 0
Received SONET overhead: F1 : 0x00 J0 : 0xZ
```

Meaning
The sample output shows the input and output packets for a particular SONET interface (so-0/0/1). The information can include common interface failures, such as SONET/SDH...
and T3 alarms, loopbacks detected, and increases in framing errors. For more information, see “Checklist for Tracking Error Conditions” on page 249.

To control the output of the command while it is running, use the keys shown in Table 31 on page 172.

Table 31: Output Control Keys for the monitor interface Command

<table>
<thead>
<tr>
<th>Action</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display information about the next interface. The <code>monitor interface</code> command scrolls through the physical or logical interfaces in the same order that they are displayed by the <code>show interfaces terse</code> command.</td>
<td>N</td>
</tr>
<tr>
<td>Display information about a different interface. The command prompts you for the name of a specific interface.</td>
<td>I</td>
</tr>
<tr>
<td>Freeze the display, halting the display of updated statistics.</td>
<td>F</td>
</tr>
<tr>
<td>Thaw the display, resuming the display of updated statistics.</td>
<td>T</td>
</tr>
<tr>
<td>Clear (zero) the current delta counters since <code>monitor interface</code> was started. It does not clear the accumulative counter.</td>
<td>C</td>
</tr>
<tr>
<td>Stop the <code>monitor interface</code> command.</td>
<td>Q</td>
</tr>
</tbody>
</table>

See the Junos OS Operational Mode Commands for details on using match conditions with the `monitor traffic` command.

Verify Packets

Purpose

You can check the flow of packets to and from the router to further your investigation of issues on the router.

To verify packets, follow these steps:

1. **Monitor Packets Sent from and Received by the Routing Engine** on page 172
2. **Display Key IP Header Information** on page 173
3. **Show Packet Count When a Firewall Filter Is Configured with the Count Option** on page 174
4. **Display Traffic from the Point of View of the Packet Forwarding Engine** on page 175

Monitor Packets Sent from and Received by the Routing Engine

Purpose

To print packet headers transmitted through network interfaces sent from or received by the Routing Engine.

Action

To print packet headers transmitted through network interfaces sent from or received by the Routing Engine, enter the following Junos OS CLI operational mode command:

```
user@host> monitor traffic interface interface-name
```
Sample Output

```
user@R1> monitor traffic interface so-0/0/1
verbose output suppressed, use <detail> or <extensive> for full protocol decode
Listening on so-0/0/1, capture size 96 bytes
11:23:01.666720  In IP 10.1.15.2 > OSPF-ALL.MCAST.NET: OSPFv2 Hello length: 48
11:23:01.666884 Out IP 10.1.15.1 > OSPF-ALL.MCAST.NET: OSPFv2 Hello length: 48
11:23:01.681330 Out IP 10.0.0.1.bgp > 10.0.0.5:3813: P 3821434885:3821434904(19) ack 165811073 win 16417 <nop,nop,timestamp 42120056 42108995>: BGP, length: 19
11:23:01.682041 In IP 10.0.0.5.3813 > 10.0.0.1.bgp: P 1:20(19) ack 19 win 16398 <nop,nop,timestamp 42111985 42120056>: BGP, length: 19
11:23:01.781132 Out IP 10.0.0.1.bgp > 10.0.0.5.3813: . ack 20 win 16398 <nop,nop,timestamp 42120066 42111985>
11:23:03.996629  In LCP echo request            (type 0x09  id 0x67  len 0x0008)
11:23:03.996645 Out LCP echo reply              (type 0x0a  id 0x67  len 0x0008)
11:23:04.801130 Out LCP echo request            (type 0x09  id 0x6d  len 0x0008)
11:23:04.801694  In LCP echo reply              (type 0x0a  id 0x6d  len 0x0008)
^C
11 packets received by filter
0 packets dropped by kernel
```

Meaning

The sample output shows the actual packets entering and leaving the Routing Engine, not the transit packets passing through the router. You can use this information to diagnose issues such as Point-to-Point Protocol negotiation, Border Gateway Protocol negotiation, and Open Shortest Path First hellos.

The `monitor traffic` command is similar to the UNIX `tcpdump` command. For more information about the `monitor traffic` command, see the Junos System Basics and Services Command Reference.

CAUTION: Use the monitor traffic command to diagnose problems on your router. Do not to leave this command on because it consumes Routing Engine resources.

Display Key IP Header Information

Purpose

To display key IP header information when you have a firewall configured with a `log` action.

Action

To display key IP header information if you have a firewall configured with a `log` action, enter the following Junos OS CLI operational mode command:

```
user@host> show firewall log
```
Sample Output

```bash
user@R1> show firewall log

<table>
<thead>
<tr>
<th>Time</th>
<th>Filter</th>
<th>Interface</th>
<th>Pro</th>
<th>Source address</th>
<th>Destination address</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:08:04</td>
<td>pfe</td>
<td>so-1/1/0.0</td>
<td>ICM</td>
<td>123.168.10.65</td>
<td>123.168.10.66:24373</td>
</tr>
<tr>
<td>16:08:03</td>
<td>pfe</td>
<td>so-1/1/0.0</td>
<td>ICM</td>
<td>123.168.10.65</td>
<td>123.168.10.66:29531</td>
</tr>
<tr>
<td>16:08:02</td>
<td>pfe</td>
<td>so-1/1/0.0</td>
<td>ICM</td>
<td>123.168.10.65</td>
<td>123.168.10.66:27265</td>
</tr>
<tr>
<td>16:08:01</td>
<td>pfe</td>
<td>so-1/1/0.0</td>
<td>ICM</td>
<td>123.168.10.65</td>
<td>123.168.10.66:27265</td>
</tr>
<tr>
<td>16:07:59</td>
<td>pfe</td>
<td>so-1/1/0.0</td>
<td>ICM</td>
<td>123.168.10.65</td>
<td>123.168.10.66:58572</td>
</tr>
<tr>
<td>16:07:58</td>
<td>pfe</td>
<td>so-1/1/0.0</td>
<td>ICM</td>
<td>123.168.10.65</td>
<td>123.168.10.66:56307</td>
</tr>
<tr>
<td>16:07:57</td>
<td>pfe</td>
<td>so-1/1/0.0</td>
<td>ICM</td>
<td>123.168.10.65</td>
<td>123.168.10.66:60185</td>
</tr>
<tr>
<td>16:07:56</td>
<td>pfe</td>
<td>so-1/1/0.0</td>
<td>ICM</td>
<td>123.168.10.65</td>
<td>123.168.10.66:6502</td>
</tr>
<tr>
<td>16:07:55</td>
<td>pfe</td>
<td>so-1/1/0.0</td>
<td>ICM</td>
<td>123.168.10.65</td>
<td>123.168.10.66:1600</td>
</tr>
<tr>
<td>16:07:54</td>
<td>pfe</td>
<td>so-1/1/0.0</td>
<td>ICM</td>
<td>123.168.10.65</td>
<td>123.168.10.66:5298</td>
</tr>
<tr>
<td>16:07:53</td>
<td>pfe</td>
<td>so-1/1/0.0</td>
<td>ICM</td>
<td>123.168.10.65</td>
<td>123.168.10.66:24373</td>
</tr>
<tr>
<td>16:07:52</td>
<td>sample-test</td>
<td>so-1/1/0.0</td>
<td>ICM</td>
<td>123.168.10.65</td>
<td>123.168.10.66:24373</td>
</tr>
<tr>
<td>16:07:51</td>
<td>sample-test</td>
<td>so-1/1/0.0</td>
<td>OSP</td>
<td>212.0.0.5:48</td>
<td>123.168.10.65:56307</td>
</tr>
<tr>
<td>16:07:51</td>
<td>sample-test</td>
<td>so-1/1/0.0</td>
<td>ICM</td>
<td>123.168.10.65</td>
<td>123.168.10.66:29531</td>
</tr>
<tr>
<td>16:07:51</td>
<td>sample-test</td>
<td>so-1/1/0.0</td>
<td>ICM</td>
<td>123.168.10.65</td>
<td>123.168.10.66:27265</td>
</tr>
</tbody>
</table>
```

Meaning

The sample output shows key IP header information about firewall filters on the router. The source and destination addresses of packets provide important information when you investigate problems on the router.

The `Filter` field contains information about how a packet traveled through the router before it was handled by either the Routing Engine or the Packet Forwarding Engine.

- If the filter name appears in the `Filter` field, the Routing Engine handled the packet. For example, `sample-test` is a firewall filter configured at the `[edit firewall]` hierarchy level.
- If the word `pfe` appears in the `Filter` field, the Packet Forwarding Engine handled the packet. The Packet Forwarding Engine receives information about the name of the firewall filter.

All packets were accepted (A). Other actions are discard (D) and reject (R).

The `Interface` column shows that all packets came through `so-1/1/0.0`, and `icm` or `osp` are the represented protocols. Other possible protocol names are: `egp`, `gre`, `ipip`, `pim`, `resp`, `tcp`, or `udp`.

Show Packet Count When a Firewall Filter Is Configured with the Count Option

Purpose
To show the packet count when a firewall filter is configured with the `count` option.

Action
To show the packet count when a firewall filter is configured with the `count` option, enter the following Junos OS CLI operational mode command:

```
user@host> show firewall filter filter-name
```

The following sample output shows the `icmp` filter incrementing:
Sample Output

user@R1> show firewall filter icmp
Filter: icmp
Counters:
Name Bytes Packets
count-icmp 252 3

The following sample output shows a configuration of the `count` option:

[edit]
user@R1# show firewall filter icmp
term a {
 from {
 protocol icmp;
 }
 then count count-icmp;
}
term b {
 then accept;
}

Meaning The sample output shows that the packet matched a criteria in the `icmp` filter and the filter had a count action applied to it.

Display Traffic from the Point of View of the Packet Forwarding Engine

Purpose To display traffic from the point of view of the Packet Forwarding Engine.

Action To display traffic from the point of view of the Packet Forwarding Engine, enter the following Junos OS CLI operational mode command:

user@host> show pfe statistics traffic

The following sample output was taken before packets were sent:
Sample Output

user@R2> show pfe statistics traffic
PFE Traffic statistics:
635392 packets input (0 packets/sec)
829862 packets output (0 packets/sec)
PFE Local Traffic statistics:
579278 local packets input
773747 local packets output
0 software input high drops
0 software input medium drops
0 software input low drops
1 software output drops
0 hardware input drops
PFE Local Protocol statistics:
0 hdlc keepalives
0 atm oam
0 fr lmi
254613 ppp lcp/ncp
0 ospf hello
0 rsvp hello
107203 isis iih
PFE Hardware Discard statistics:
0 timeout
0 truncated key
0 bits to test
0 data error
0 stack underflow
0 stack overflow
0 normal discard
0 extended discard
0 invalid iif
0 info cell drops
0 fabric drops

The following sample output was taken after 100 packets were sent to router R2:
Sample Output

user@R2> show pfe statistics traffic
PFE Traffic statistics:
 635595 packets input (2 packets/sec)
 829990 packets output (2 packets/sec)
PFE Local Traffic statistics:
 579373 local packets input
 773869 local packets output
 0 software input high drops
 0 software input medium drops
 0 software input low drops
 1 software output drops
 0 hardware input drops
PFE Local Protocol statistics:
 0 hdlc keepalives
 0 atm oam
 0 fr lmi
 254655 ppp lcp/ncp
 0 ospf hello
 0 rsvp hello
 107220 isis iih
PFE Hardware Discard statistics:
 0 timeout
 0 truncated key
 0 bits to test
 0 data error
 0 stack underflow
 0 stack overflow
 100 normal discard
 0 extended discard
 0 invalid iif
 0 info cell drops
 0 fabric drops

Meaning The sample output shows the number and rate of packets entering and leaving the Packet Forwarding Engine. For example, the 100 packets sent to R2 were discarded due to a route that had a discard next hop configured, as shown in the PFE Hardware Discard statistics field. All counters increased as a result of the 100 packets.
CHAPTER 16

Use the ping and traceroute Commands

This chapter describes how to use the `ping` command to check the availability of various routers in a network topology, and how to use the `traceroute` command to check the path that packets travel between routers.

- Checklist for Using the ping and traceroute Commands on page 179
- Check the Accessibility of Two Routers on the Edge on page 179
- Examples of Unsuccessful ping and traceroute Commands on page 182

Checklist for Using the ping and traceroute Commands

Purpose

Table 32 on page 179 provides commands for using the `ping` command to check the availability of various routers in a network topology, and how to use the `traceroute` command to check the path that packets travel between routers.

Action

Table 32: Checklist for Using the ping and traceroute Commands

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Check the Accessibility of Two Routers on the Edge” on page 179</td>
<td></td>
</tr>
<tr>
<td>“Use Loopback Addresses” on page 180</td>
<td><code>ping remote-host count requests</code></td>
</tr>
<tr>
<td></td>
<td><code>traceroute remote-host</code></td>
</tr>
<tr>
<td>“Use Interface Addresses” on page 181</td>
<td><code>ping interface-address count requests</code></td>
</tr>
<tr>
<td></td>
<td><code>traceroute interface-address</code></td>
</tr>
</tbody>
</table>

“Examples of Unsuccessful ping and traceroute Commands” on page 182

Check the Accessibility of Two Routers on the Edge

Purpose

This topic provides examples of how to use the `ping` command to check the reachability of various routers in a network topology, and how to use the `traceroute` command to check the path that packets travel between routers. The topology shown in Figure 17 on page 180 illustrates these commands.
The network in Figure 17 on page 180 consists of two autonomous systems (ASs). AS 65001 includes two routers, and AS 65002 includes three routers. The border router (R1) in AS 65001 announces aggregated prefixes 100.100.0.0/24 to the AS 65002 network.

To check the reachability of routers and the path to the routers, follow these steps:

1. Use Loopback Addresses on page 180
2. Use Interface Addresses on page 181

Use Loopback Addresses

Purpose You can ping one router from another router by specifying the other router’s loopback address as the IP address in the ping and traceroute commands. In this step, R6 and R5 both ping and traceroute each other.

Action To ping and traceroute between R5 and R6, enter the following Junos OS command-line interface (CLI) operational mode commands:

```
user@host> ping remote-host count requests
user@host> traceroute remote-host
```

The following sample output is from R6 to R5, as shown in the network topology in Figure 17 on page 180:
Sample Output

user@R6> ping 10.0.0.5 count 3
PING 10.0.0.6 (10.0.0.6): 56 data bytes
64 bytes from 10.0.0.6: icmp_seq=0 ttl=255 time=0.298 ms
64 bytes from 10.0.0.6: icmp_seq=1 ttl=255 time=0.237 ms
64 bytes from 10.0.0.6: icmp_seq=2 ttl=255 time=0.273 ms
--- 10.0.0.6 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.237/0.269/0.298/0.025 ms

user@R6> traceroute 10.0.0.5
traceroute to 10.0.0.5 (10.0.0.5), 30 hops max, 40 byte packets
1 10.1.26.1 (10.1.26.1) 0.626 ms 0.530 ms 0.489 ms
2 10.1.12.1 (10.1.12.1) 0.546 ms 0.534 ms 0.507 ms
3 10.0.0.5 (10.0.0.5) 0.749 ms 0.694 ms 0.686 ms

user@R5> ping 10.0.0.6 count 3
PING 10.0.0.6 (10.0.0.6): 56 data bytes
64 bytes from 10.0.0.6: icmp_seq=0 ttl=253 time=0.875 ms
64 bytes from 10.0.0.6: icmp_seq=1 ttl=253 time=0.815 ms
64 bytes from 10.0.0.6: icmp_seq=2 ttl=253 time=0.819 ms
--- 10.0.0.6 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.815/0.836/0.875/0.027 ms

user@R5> traceroute 10.0.0.6
traceroute to 10.0.0.6 (10.0.0.6), 30 hops max, 40 byte packets
1 10.1.15.1 (10.1.15.1) 0.635 ms 39.951 ms 0.526 ms
2 10.1.12.2 (10.1.12.2) 0.555 ms 0.535 ms 0.515 ms
3 10.0.0.6 (10.0.0.6) 0.769 ms 0.720 ms 0.674 ms

Meaning
The sample output shows a successful ping and traceroute between the R6 and R5 loopback (lo0) addresses. The ping is successful because the loopback addresses of both routers are advertised to their directly connected neighbors.

The output for the traceroute command shows the path from R6 to R5, which is through R2.

NOTE: A ping command might lose packets due to rate limiting of Internet Message Control Protocol (ICMP) packets on the specified host.

Use Interface Addresses

Purpose
You can ping interfaces on remote routers.

Action
To ping and traceroute between R5 and R6, enter the following Junos OS CLI operational mode commands:

user@host> ping interface-address count requests
user@host> traceroute interface-address
Sample Output

user@R6> ping 10.1.15.2 count 3
PING 10.1.15.2 (10.1.15.2): 56 data bytes
64 bytes from 10.1.15.2: icmp_seq=0 ttl=253 time=2.738 ms
64 bytes from 10.1.15.2: icmp_seq=1 ttl=253 time=0.858 ms
64 bytes from 10.1.15.2: icmp_seq=2 ttl=253 time=0.849 ms
--- 10.1.15.2 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.849/1.482/2.738/0.888 ms

user@R6> traceroute 10.1.15.2
traceroute to 10.1.15.2 (10.1.15.2), 30 hops max, 40 byte packets
1 10.1.26.1 (10.1.26.1) 0.617 ms 0.534 ms 0.500 ms
2 10.1.12.1 (10.1.12.1) 3.500 ms 0.543 ms 0.508 ms
3 10.1.15.2 (10.1.15.2) 0.699 ms 0.700 ms 0.672 ms

user@R5> ping 10.1.36.2 count 3
PING 10.1.36.2 (10.1.36.2): 56 data bytes
64 bytes from 10.1.36.2: icmp_seq=0 ttl=253 time=0.890 ms
64 bytes from 10.1.36.2: icmp_seq=1 ttl=253 time=0.857 ms
64 bytes from 10.1.36.2: icmp_seq=2 ttl=253 time=3.264 ms
--- 10.1.36.2 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.857/1.670/3.264/1.127 ms

user@R5> traceroute 10.1.36.2
traceroute to 10.1.36.2 (10.1.36.2), 30 hops max, 40 byte packets
1 10.1.15.1 (10.1.15.1) 0.636 ms 7.979 ms 0.497 ms
2 10.1.12.2 (10.1.12.2) 0.544 ms 0.547 ms 0.512 ms
3 10.1.36.2 (10.1.36.2) 0.729 ms 0.696 ms 0.672 ms

Meaning

The sample output shows a successful ping and traceroute between the interfaces on R6 and R5. The ping is successful because the interface addresses of both routers are advertised to their directly connected neighbors.

The output for the traceroute command shows the path from R6 to R5, which is through R2.

NOTE: A ping command might lose packets due to rate limiting of ICMP packets on the specified host.

Examples of Unsuccessful ping and traceroute Commands

Purpose

When the ping or traceroute commands are unsuccessful, it is useful to understand the output.

Action

To ping and traceroute between R5 and R6, enter the following Junos OS CLI operational mode commands:

```bash
user@host> ping interface-address count requests
user@host> traceroute interface-address
```
Sample Output 1

```
user@R6> ping 10.1.15.2 count 3
PING 10.1.15.2 (10.1.15.2): 56 data bytes
36 bytes from 10.1.26.1: Time to live exceeded
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
 4 5 00 0054 3648 0 0000 01 01 465c 10.1.26.2 10.1.15.2
36 bytes from 10.1.26.1: Time to live exceeded
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
 4 5 00 0054 364b 0 0000 01 01 4659 10.1.26.2 10.1.15.2
36 bytes from 10.1.26.1: Time to live exceeded
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
 4 5 00 0054 364f 0 0000 01 01 4655 10.1.26.2 10.1.15.2
^C
--- 10.1.15.2 ping statistics ---
3 packets transmitted, 0 packets received, 100% packet loss
```

```
user@R6> ping 10.0.0.5 count 3
PING 10.0.0.5 (10.0.0.5): 56 data bytes
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
^C
--- 10.0.0.5 ping statistics ---
3 packets transmitted, 0 packets received, 100% packet loss
```

```
user@R6> ping 10.1.15.2
PING 10.1.15.2 (10.1.15.2): 56 data bytes
^C
--- 10.1.15.2 ping statistics ---
4 packets transmitted, 0 packets received, 100% packet loss
```

Sample Output 2

```
user@R6> traceroute 10.1.15.2
traceroute to 10.1.15.2 (10.1.15.2), 30 hops max, 40 byte packets
1 10.1.26.1 (10.1.26.1) 0.626 ms 0.526 ms 0.494 ms
2 10.1.26.2 (10.1.26.2) 0.521 ms 0.529 ms 0.509 ms
3 10.1.26.1 (10.1.26.1) 0.516 ms 0.536 ms 0.523 ms
4 10.1.26.2 (10.1.26.2) 0.528 ms 0.547 ms 0.524 ms
5 10.1.26.1 (10.1.26.1) 0.532 ms 0.549 ms 0.535 ms
6 10.1.26.2 (10.1.26.2) 0.547 ms 0.566 ms 0.543 ms
7 10.1.26.1 (10.1.26.1) 0.551 ms 0.569 ms 0.538 ms
8 10.1.26.2 (10.1.26.2) 0.557 ms 0.580 ms 0.567 ms
9 10.1.26.1 (10.1.26.1) 0.570 ms 0.598 ms 0.570 ms

user@R6> traceroute 10.1.15.2
traceroute to 10.1.15.2 (10.1.15.2), 30 hops max, 40 byte packets
1 10.1.36.1 (10.1.36.1) 0.651 ms 7.834 ms 0.506 ms
2 10.1.23.1 (10.1.23.1) 0.536 ms 0.538 ms 0.504 ms
3 * * *
4 * * *
5 *\^C
```

Meaning Sample output 1 shows three instances of the ping command not succeeding. In the first instance, the packets exceed the time-to-live value, which is decremented to 1, indicating that packets are being rejected possibly because of a loop. In the second instance, the
local router does not know the route to the host. In the third instance, there is no route to the IP address, which might be due to packets being lost on a remote router.

Sample output 2 shows two instances of the traceroute command not succeeding. In the first instance, there is a loop between shared interfaces on R6 and R2, as indicated by the 10.1.26.1 and 10.1.26.2 appearing repeatedly. In the second instance, the path goes through R3 (10.1.36.1) to R2 (10.1.23.1) when it times out, as indicated by the asterisk (*). The timeout might be due to the absence of a route to the remote interface.
CHAPTER 17

Use MIBs

This chapter describes how to determine which Management Information Bases (MIBs) are supported by a Juniper Networks release, and how to query enterprise-specific and standard MIBs to retrieve management information for the various hardware and software components of a Juniper Networks router.

- Checklist for Using MIBs on page 185
- Determine Which MIBs Are Supported by a Juniper Release on page 186
- Run Snmpwalk from an NMS System to a Juniper Router on page 187
- Use SNMP Trace Operations to Monitor a Router on page 188
- Monitor Memory Usage on a Router on page 190
- Monitor CPU Utilization on page 196
- Retrieve Version Information about Router Software Components on page 201

Checklist for Using MIBs

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Table 33 on page 185 provides links commands for using standard MIBs to retrieve management information for the various hardware and software components of a Juniper Networks router.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td></td>
</tr>
</tbody>
</table>

Table 33: Checklist for Using MIBs

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Determine Which MIBs Are Supported by a Juniper Release” on page 186</td>
<td>http://www.juniper.net/techpubs/software/index.html</td>
</tr>
<tr>
<td>“Run Snmpwalk from an NMS System to a Juniper Router” on page 187</td>
<td>snmpwalk [common arguments] hostname community object-id</td>
</tr>
<tr>
<td>“Use SNMP Trace Operations to Monitor a Router” on page 188</td>
<td></td>
</tr>
</tbody>
</table>
| 1. Configure Trace Operations for SNMP on page 188 | [edit]
| | edit snmp set traceoptions flag pdu commit and-quit |
| 2. Query a MIB With SNMPGet on page 189 | snmpget hostname community oid |
Table 33: Checklist for Using MIBs *(continued)*

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Display the Output for SNMP Trace Operations on page 190</td>
<td><code>show log snmp</code></td>
</tr>
<tr>
<td>Monitor Memory Usage on a Router on page 190</td>
<td><code>snmpwalk [common arguments] hostname community object-id show chassis routing-engine</code></td>
</tr>
<tr>
<td>1. Check Memory Utilization on Chassis Components on page 191</td>
<td><code>snmpwalk [common arguments] hostname community object-id</code></td>
</tr>
<tr>
<td>2. Check Memory Utilization per Process on page 193</td>
<td><code>snmpwalk [common arguments] hostname community object-id</code></td>
</tr>
<tr>
<td>Monitor CPU Utilization on page 196</td>
<td><code>snmpwalk [common arguments] hostname community object-id</code></td>
</tr>
<tr>
<td>1. Check CPU Utilization on page 196</td>
<td><code>snmpwalk [common arguments] hostname community object-id</code></td>
</tr>
<tr>
<td>2. Check CPU Utilization per Process on page 198</td>
<td><code>snmpwalk [common arguments] hostname community object-id</code></td>
</tr>
<tr>
<td>Retrieve Version Information about Router Software Components on page 201</td>
<td><code>snmpwalk [common arguments] hostname community object-id</code></td>
</tr>
</tbody>
</table>

Determine Which MIBs Are Supported by a Juniper Release

Purpose
When you update the router software, you might also want to update the corresponding MIBs. Links to the MIBs related to a release are located in the *Junos OS Installation and Upgrade Guide*. This guide lists the Juniper-specific enterprise MIBs, and provides a link to Simple Network Management Protocol (SNMP) standards that list the standard MIBs supported by the Junos OS.

In addition, a tar file that contains all the Juniper Networks enterprise-specific MIBs is included in the Junos OS package for each release.

Action
To determine MIBs supported by a Juniper release, follow these steps:

1. Enter the following URL into the address line of your browser:
 http://www.juniper.net/techpubs/software/index.html
2. Select the release you are interested in.
3. From *Junos Configuration Guides*, select *Network Management*.
4. From the table of contents, select *Junos Networks Enterprise-Specific MIBs*.
5. From the table of contents, select *SNMP Overview*.
6. From *SNMP Overview*, select *SNMP Standards*.
Run Snmpwalk from an NMS System to a Juniper Router

Purpose
Snmpwalk is an SNMP application that you can use to query a MIB for information about the functioning of a router in your network. Snmpwalk uses GetNext requests to retrieve the specified information. Object identifiers (OIDs) are used to query the MIB. If the OID argument is not present, Snmpwalk searches MIB-2.

Action
To run Snmpwalk for a specific OID, from a management station that has access to the router, and using a tool such as Snmpwalk, enter the following command:

```
user-nms# snmpwalk [common arguments] hostname community object-id
```

Sample Output

```
user-nms % snmpwalk-Os-M/volume/~/mibs-malltp1public.1.3.6.1.2.1.4
ipForwarding.0 = forwarding(1)
ipDefaultTTL.0 = 64
ipInReceives.0 = Counter32: 9262713
ipInHdrErrors.0 = Counter32: 0
ipInAddrErrors.0 = Counter32: 0
ipForwDatagrams.0 = Counter32: 614171
ipInUnknownProtos.0 = Counter32: 0
ipInDiscards.0 = Counter32: 0
ipInDelivers.0 = Counter32: 8648408
ipOutRequests.0 = Counter32: 1226483
ipOutDiscards.0 = Counter32: 0
ipOutNoRoutes.0 = Counter32: 0
ipReasmTimeout.0 = 60
ipReasmReqds.0 = Counter32: 0
ipReasmOKs.0 = Counter32: 0
ipReasmFails.0 = Counter32: 0
ipFragOKs.0 = Counter32: 0
ipFragFails.0 = Counter32: 0
ipAdEntAddr.10.0.0.1 = IpAddress: 10.0.0.1
ipAdEntAddr.10.1.12.1 = IpAddress: 10.1.12.1
ipAdEntAddr.10.1.15.1 = IpAddress: 10.1.15.1
ipAdEntAddr.10.168.70.143 = IpAddress: 10.168.70.143
[...Output truncated...]
```

Meaning
The sample output shows that the user is on a network management station (`user-nms %`) that has access to the router, `tp1`. In the command, the following options are used:

- **Os**—Deletes all but the last symbolic part of the OID `sysUpTime.0`. For example, Timeticks: (14096763) 1 day, 15:09:27.63.
- **-M**—Compiles the MIB and gives a path or location to the MIBs.
- **-m**—Uses the files in the directory pointed to by the `-M` option.
- **all**—Uses all the files in the directory pointed to by the `-M` option.

In addition, the command includes the hostname `tp1`, the community string `public`, and the OID `1.3.6.1.2.1.4`.

The OID in this example is from RFC 2096, *IP Forwarding Table MIB*, which displays multipath IP routes that have the same network number but different network masks.
Before you can retrieve SNMP information from a router, you must have the minimum SNMP configuration for that router. Following is the minimum SNMP configuration required:

```plaintext
[edit]
snmp {
    community public {
        authorization read-only;
    }
}
```

With this configuration, the system responds to SNMP Get, GetNext, and GetBulk commands that contain the community string `public`.

For more detailed information on configuring SNMP on a router, see the Junos Network Management Configuration Guide.

Use SNMP Trace Operations to Monitor a Router

Purpose

Tracing operations record more detailed messages about the operation of SNMP, such as the various types of routing protocol packets sent and received, and routing policy actions. In this topic, traceoptions are configured on a router, a MIB object is queried through a network management station, and the action of the query is verified with a log file on the router.

NOTE: Traceoptions, in general, requires extra router resources. It is recommended that you do not leave it on permanently.

To use SNMP traceoptions to monitor a router, follow these steps:

1. Configure Trace Operations for SNMP on page 188
2. Query a MIB With SNMPGet on page 189
3. Display the Output for SNMP Trace Operations on page 190

Configure Trace Operations for SNMP

Purpose

Define tracing for SNMP to access more granular information about the packets sent and received through SNMP.

Action

To configure SNMP tracing operations, follow these steps:

1. In configuration mode, go to the following hierarchy level:
   ```plaintext
   [edit]
   user@R1# edit snmp
   ```

2. Configure trace operations:
   ```plaintext
   [edit snmp]
   user@R1# set traceoptions flag pdu
   ```
3. Commit the configuration:

```
commit
commit complete
Exiting configuration mode
```

Sample Output

```
user@R1> show configuration snmp
view all { 
  oid .1 include;
} 
view system { 
  oid system;
} 
community public { 
  view all; 
  authorization read-only;
} 
community private { 
  view system; 
  authorization read-write;
} 
traceoptions {
  flag pdu;
}
```

Meaning
The sample output shows a configuration for SNMP that includes traceoptions. The `pdu` flag is configured, which results in the generation of SNMP request and response packets. The output for the tracing operation is placed into various log files in the `/var/log` directory.

Protocol-specific tracing operations override any equivalent operations that you specify in the global `traceoptions` statement. If there are no equivalent operations, they supplement the global tracing options. If you do not specify any protocol-specific tracing, the routing protocol inherits all the global tracing operations.

Query a MIB With SNMPGet

Purpose
Send an SNMP request to check that the SNMP configuration is correct.

Action
To query a MIB with `SNMPGet`, enter the following command:

```
user@nms % snmpget hostname community oid
```

Sample Output

```
user-nms % snmpget tp1 public.1.3.6.1.2.1.1.0
system.sysDescr.0 = m7i internet router, kernel 6.0R1.5

user-nms % snmpget tp1 public sysDescr.0
system.sysDescr.0 = m7i internet router, kernel 6.0R1.5
```

Meaning
The sample output shows a query from a network management station (`nms`) for the description of the system running on the router `tp1`. The OID is entered in numerical form in the command line, and a description (`sysDescr.0`) is obtained in the output. You can also use `sysDescr.0` in the command line to obtain the same output.
Display the Output for SNMP Trace Operations

Purpose
The SNMP log file shows more granular information about the packets sent and received through SNMP. In this step, the contents of the SNMP log file `snmpd` are displayed to verify that both the `GetRequest` and the `GetResponse` packets appear in the output.

Action
To display the output for trace operations, enter the following Junos OS command-line interface operational mode command:

```
user@host> show log snmpd
```

Sample Output

```
user@R1> show log snmpd [...Output truncated...]
Jan 21 16:32:32 snmpd[28b6fdb3] >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Jan 21 16:32:32 snmpd[28b6fdb3] >>>
Jan 21 16:32:32 snmpd[28b6fdb3] >>>  Request_id:  0x28b6fdb3
Jan 21 16:32:32 snmpd[28b6fdb3] >>>  Error:     status=0 / vb_index=0
Jan 21 16:32:33 snmpd[28b6fdb3] >>>   OID  : sysDescr.0
Jan 21 16:32:33 snmpd[28b6fdb3] ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
```

Meaning
The sample output shows the contents of the `snmpd` log file, with all of the packets sent and received through SNMP. The `Get-Request` packet is sent from a network management station and the `Get-Response` packet is sent from `tp1`. The value in the `Get-response` packet is the same as that returned to the network management station in Step 2, `m7i internet router, kernel 6.0R1.5`.

Monitor Memory Usage on a Router

Purpose
From a management station that has access to the router, you can monitor memory usage of components, applications, and associated elements that have run or are currently running on a router.
From a management station that has access to the router and using a tool, such as Snmpwalk, follow these steps:

1. Check Memory Utilization on Chassis Components on page 191
2. Check Memory Utilization per Process on page 193

Check Memory Utilization on Chassis Components

Purpose
The enterprise-specific chassis MIB provides information about the router and its components. Within the chassis MIB, the jnxMIBs branch contains one main subbranch, jnxBoxAnatomy, which in turn contains a section, jnxOperatingTable. Within jnxOperatingTable, you can use the jnxOperatingBuffer object to monitor memory usage on your router. (See Figure 18 on page 191.)

Figure 18: Chassis MIB Tree

```
|-- jnxMIBs (3)
  |-- jnxBoxAnatomy (111)
       |-- jnxContainersTable (6)
       |-- jnxContentsTable (8)
        |-- jnxEquipmentTable (2)
        |    |-- jnxFilledTable (12)
        |      |-- jnxOperatingTable (13)
        |          |-- jnxOperatingEntry (1)
        |              |-- jnxOperatingContentsIndex (1)
        |              |-- jnxOperatingL1Index (2)
        |              |-- jnxOperatingL2Index (3)
        |              |-- jnxOperatingL3Index (4)
        |              |-- jnxOperatingNodeIndex (5)
        |              |-- jnxOperatingTable (6)
        |              |-- jnxOperatingHeap (7)
        |              |-- jnxOperatingCPU (8)
        |              |-- jnxOperatingDisk (9)
        |              |-- jnxOperatingGraph (10)
        |              |-- jnxOperatingSplit (11)
        |              |-- jnxOperatingHeap (12)
        |              |-- jnxOperatingNodeIndex (13)
        |              |-- jnxOperatingNodeQueue (14)
        |              |-- jnxOperatingMemory (15)
        |              |-- jnxOperatingNodeQueue (16)
        |      |    |-- jnxRedundancyTable (17)
        |      |         |-- jnxRedundancyTable (18)
```

After each object description is a value in parenthesis, such as (1). This value can be used to enter an OID for the specific object. For example, to gather information on memory utilization, you can type the object description (jnxOperatingBuffer) or the OID (1.3.6.1.4.1.2636.3.1.13.1.11).

Action
To check memory utilization using the Juniper Networks enterprise chassis MIB, from a management station that has access to the router, and using a tool such as Snmpwalk, enter the following commands:

```
user-bsd# snmpwalk [common arguments] hostname community object-id
```

user@host> show chassis routing-engine
Sample Output

```plaintext
user-nms % snmpwalk -Os -M /volume/~/mibs-m all tp1 public jnxOperatingBuffer
jnxOperatingBuffer.jnxOperatingBuffer.1.1.1.0 = Gauge32: 0
jnxOperatingBuffer.1.1.2.0 = Gauge32: 0
jnxOperatingBuffer.1.1.3.0 = Gauge32: 0
jnxOperatingBuffer.2.1.0.0 = Gauge32: 0
jnxOperatingBuffer.4.1.1.0 = Gauge32: 0
jnxOperatingBuffer.4.1.2.0 = Gauge32: 0
jnxOperatingBuffer.4.1.3.0 = Gauge32: 0
jnxOperatingBuffer.4.1.4.0 = Gauge32: 0
jnxOperatingBuffer.6.1.1.0 = Gauge32: 6
jnxOperatingBuffer.6.1.2.0 = Gauge32: 6
jnxOperatingBuffer.7.1.0.0 = Gauge32: 8
jnxOperatingBuffer.7.2.0.0 = Gauge32: 8
jnxOperatingBuffer.8.1.1.0 = Gauge32: 0
jnxOperatingBuffer.8.2.3.0 = Gauge32: 0
jnxOperatingBuffer.8.2.4.0 = Gauge32: 0
jnxOperatingBuffer.9.1.0.0 = Gauge32: 28
jnxOperatingBuffer.9.1.1.0 = Gauge32: 0

user-nms % snmpwalk -Os -M /volume/~/mibs-m all tp1 public jnxOperatingDescr
jnxOperatingDescr.1.1.1.0 = midplane
jnxOperatingDescr.1.1.2.0 = midplane
jnxOperatingDescr.1.1.3.0 = midplane
jnxOperatingDescr.2.1.0.0 = Power Supply A
jnxOperatingDescr.4.1.1.0 = Left Tray front fan
jnxOperatingDescr.4.1.2.0 = Left Tray second fan
jnxOperatingDescr.4.1.3.0 = Left Tray third fan
jnxOperatingDescr.4.1.4.0 = Left Tray fourth fan
jnxOperatingDescr.6.1.1.0 = CFEB Internet Processor IIv1
jnxOperatingDescr.6.1.2.0 = CFEB Internet Processor IIv1
jnxOperatingDescr.7.1.0.0 = FPC @ 0/*/*
jnxOperatingDescr.7.2.0.0 = FPC @ 1/*/*
jnxOperatingDescr.8.1.1.0 = PIC: 4x OC-3 SONET, MM @ 0/0/*
jnxOperatingDescr.8.2.3.0 = PIC: 1x Tunnel @ 1/2/*
jnxOperatingDescr.8.2.4.0 = PIC: 1x G/E, 1000 BASE-SX @ 1/3/*
jnxOperatingDescr.9.1.0.0 = Routing Engine
jnxOperatingDescr.9.1.1.0 = Routing Engine PCMCIA Card
```

user@R1> show chassis routing-engine
Routing Engine status:

- Temperature: 28 degrees C / 82 degrees F
- DRAM: 256 MB
- Memory utilization: 28 percent
- CPU utilization:
 - User: 0 percent
 - Background: 0 percent
 - Kernel: 6 percent
 - Interrupt: 0 percent
 - Idle: 94 percent
- Model: RE-5.0
- Serial ID: 1000431687
- Start time: 2003-11-20 11:42:04 PST
- Uptime: 63 days, 2 hours, 34 minutes, 4 seconds
- Load averages:
 - 1 minute: 0.01
 - 5 minute: 0.02
 - 15 minute: 0.01

Meaning
The sample output shows the percentage of utilization for the FPC and Routing Engine.
The first object, `jnxOperatingBuffer`, shows that the Routing Engine (9.1.0.0) has 28 percent memory utilization, the two CFEB processors are using 6 percent, and the FPCs have 8 percent memory utilization.

The second object, `jnxOperatingDescr`, provides a human readable description of the separate instances in the `jnxOperatingBuffer` object. For example, 1.1.0.0 represents the midplane, and 71.0.0 represents FPC @ 0/*/*.

The output for the `show chassis routing-engine` command shows similar information to that displayed in the output of the `jnxOperatingBuffer` object, with 28 percent memory utilization for the Routing Engine.

Check Memory Utilization per Process

Purpose The standard System Application MIB (RFC 2287, *Definitions of System-Level Managed Objects for Applications*), describes a set of managed objects that are restricted to information that can be determined from the system itself. The object `sysApplElmtRunMemory` provides information about applications and associated elements that have run or are currently running on the host system. (See Figure 19 on page 193.)

Figure 19: System Application MIB Tree

```
---System Application MIB
  | ---sysApplORM
  |   | ---sysApplInstalled
  |   | ---sysApplRun
  |   | ---sysApplMap
  |   | ---sysApplNotifications
  |   | ---sysApplConformance
  |     | ---sysApplMIBCompliance
  |     | ---sysApplMIBGroups
  |       | ---sysApplRunGroup
  |       |   | ---sysApplRunStarted
  |       |   | ---sysApplRunCurrentStage
  |       |   | ---sysApplPastRunStarted
  |       |   | ---sysApplPastRunExitStage
  |       |   | ---sysApplPastRunTimeEnded
  |       |   | ---sysApplElmtRunInstallID
  |       |   | ---sysApplElmtRunTimeStarted
  |       |   | ---sysApplElmtRunState
  |       |   | ---sysApplElmtRunName
  |       |   | ---sysApplElmtRunProcessors
  |       |   | ---sysApplElmtRunCPU
  |       |   | ---sysApplElmtRunMemory
  |       |   | ---sysApplElmtRunNumFiles
  |       |   | ---sysApplElmtRunUser
  |[...Output Truncated...]]
```

Action To check memory utilization per process, from a management station that has access to the router, and using a tool such as Snmpwalk, enter the following command:

```
user-bsd# snmpwalk [common arguments] hostname community object-id
```
Sample Output

```bash
use-nms % snmpwalk -OsM/volume/~/mibs-malltp1public
sysAppElmtRunMemory
sysAppElmtRunMemory.0.0.0  = Gauge32: 0 Kbytes
sysAppElmtRunMemory.0.0.2  = Gauge32: 0 Kbytes
sysAppElmtRunMemory.0.0.3  = Gauge32: 0 Kbytes
sysAppElmtRunMemory.0.0.4  = Gauge32: 0 Kbytes
sysAppElmtRunMemory.0.0.5  = Gauge32: 0 Kbytes
sysAppElmtRunMemory.0.0.6  = Gauge32: 0 Kbytes
sysAppElmtRunMemory.0.0.7  = Gauge32: 0 Kbytes
sysAppElmtRunMemory.0.0.8  = Gauge32: 0 Kbytes
sysAppElmtRunMemory.0.0.9  = Gauge32: 0 Kbytes
sysAppElmtRunMemory.0.0.10 = Gauge32: 0 Kbytes
sysAppElmtRunMemory.0.0.11 = Gauge32: 0 Kbytes
sysAppElmtRunMemory.0.0.12 = Gauge32: 0 Kbytes
sysAppElmtRunMemory.0.0.116 = Gauge32: 526164 Kbytes
sysAppElmtRunMemory.0.0.2023 = Gauge32: 416 Kbytes
sysAppElmtRunMemory.0.0.2131 = Gauge32: 1100 Kbytes
sysAppElmtRunMemory.0.0.2160 = Gauge32: 984 Kbytes
sysAppElmtRunMemory.0.0.2161 = Gauge32: 1100 Kbytes
sysAppElmtRunMemory.0.0.2174 = Gauge32: 996 Kbytes
sysAppElmtRunMemory.0.0.2324 = Gauge32: 0 Kbytes
sysAppElmtRunMemory.0.0.16781 = Gauge32: 1072 Kbytes
sysAppElmtRunMemory.0.0.18311 = Gauge32: 1284 Kbytes
sysAppElmtRunMemory.0.0.26827 = Gauge32: 1368 Kbytes
sysAppElmtRunMemory.3.1.1  = Gauge32: 4028 Kbytes
sysAppElmtRunMemory.3.2.2163 = Gauge32: 3196 Kbytes
sysAppElmtRunMemory.3.3.2185 = Gauge32: 1624 Kbytes
sysAppElmtRunMemory.3.4.2194 = Gauge32: 9768 Kbytes
sysAppElmtRunMemory.3.7.2168 = Gauge32: 2484 Kbytes
sysAppElmtRunMemory.3.9.2169 = Gauge32: 3004 Kbytes
sysAppElmtRunMemory.3.12.2172 = Gauge32: 2108 Kbytes
sysAppElmtRunMemory.3.13.2173 = Gauge32: 1888 Kbytes
sysAppElmtRunMemory.3.14.2164 = Gauge32: 1672 Kbytes
sysAppElmtRunMemory.3.15.2175 = Gauge32: 1644 Kbytes
sysAppElmtRunMemory.3.16.2165 = Gauge32: 1632 Kbytes
sysAppElmtRunMemory.3.17.2176 = Gauge32: 2716 Kbytes
sysAppElmtRunMemory.3.19.2177 = Gauge32: 1668 Kbytes
sysAppElmtRunMemory.3.20.2178 = Gauge32: 2160 Kbytes
sysAppElmtRunMemory.3.21.2179 = Gauge32: 2164 Kbytes
sysAppElmtRunMemory.3.23.2188 = Gauge32: 1688 Kbytes
sysAppElmtRunMemory.3.25.2186 = Gauge32: 1292 Kbytes
sysAppElmtRunMemory.3.26.2180 = Gauge32: 1676 Kbytes
sysAppElmtRunMemory.3.27.2181 = Gauge32: 2052 Kbytes
sysAppElmtRunMemory.3.30.2187 = Gauge32: 1236 Kbytes
sysAppElmtRunMemory.3.31.2184 = Gauge32: 1032 Kbytes
sysAppElmtRunMemory.3.34.2171 = Gauge32: 1156 Kbytes
sysAppElmtRunMemory.3.35.2047 = Gauge32: 1132 Kbytes
sysAppElmtRunMemory.3.36.2189 = Gauge32: 1836 Kbytes
sysAppElmtRunMemory.3.37.2191 = Gauge32: 1052 Kbytes
sysAppElmtRunMemory.5.5.7495 = Gauge32: 7628 Kbytes
sysAppElmtRunMemory.5.6.2167 = Gauge32: 11824 Kbytes
sysAppElmtRunMemory.5.6.26829 = Gauge32: 11880 Kbytes
sysAppElmtRunMemory.5.8.26828 = Gauge32: 7984 Kbytes
sysAppElmtRunMemory.5.28.2182 = Gauge32: 1468 Kbytes
sysAppElmtRunMemory.5.29.2183 = Gauge32: 1828 Kbytes
```

```bash
user-nms % snmpwalk -OsM/volume/~/mibs-malltp1public
sysAppElmtRunName
sysAppElmtRunName.0.0.0  = (swapper)
sysAppElmtRunName.0.0.2  = (pagedaemon)
```
sysAppElmtRunName.0.0.3 = (vmdaemon)
sysAppElmtRunName.0.0.4 = (bufdaemon)
sysAppElmtRunName.0.0.5 = (syncer)
sysAppElmtRunName.0.0.6 = (netdaemon)
sysAppElmtRunName.0.0.7 = (if_pfe)
sysAppElmtRunName.0.0.8 = (if_pfe_listen)
sysAppElmtRunName.0.0.9 = (cb_poll)
sysAppElmtRunName.0.0.10 = (vmuncachedaemon)
sysAppElmtRunName.0.0.11 = (scs_housekeeping)
sysAppElmtRunName.0.0.12 = (if_pic_listen)
sysAppElmtRunName.0.0.116 = mfs
sysAppElmtRunName.0.0.2023 = pccardd
sysAppElmtRunName.0.0.2131 = cron
sysAppElmtRunName.0.0.2160 = /sbin/watchdog
sysAppElmtRunName.0.0.2161 = /usr/sbin/tnetd
sysAppElmtRunName.0.0.2174 = /usr/sbin/tnp.sntpd
sysAppElmtRunName.0.0.2324 = (peer proxy)
sysAppElmtRunName.0.0.16781 = /usr/libexec/getty
sysAppElmtRunName.0.0.18311 = /usr/sbin/xntpd
sysAppElmtRunName.0.0.26827 = telnetd
sysAppElmtRunName.3.1.1 = /sbin/preinit
sysAppElmtRunName.3.14.2194 = /sbin/dcd
sysAppElmtRunName.3.9.2169 = /usr/sbin/mib2d
sysAppElmtRunName.3.12.2172 = /usr/sbin/apsd
sysAppElmtRunName.3.13.2173 = /usr/sbin/vrrpd
sysAppElmtRunName.3.14.2164 = /usr/sbin/alarmd
sysAppElmtRunName.3.15.2175 = /usr/sbin/pfed
sysAppElmtRunName.3.16.2165 = /usr/sbin/craftd
sysAppElmtRunName.3.17.2176 = /usr/sbin/sampled
sysAppElmtRunName.3.20.2178 = /usr/sbin/rmopd
sysAppElmtRunName.3.21.2179 = /usr/sbin/cosd
sysAppElmtRunName.3.23.2188 = /usr/sbin/fsad
sysAppElmtRunName.3.25.2186 = /usr/sbin/irsd
sysAppElmtRunName.3.26.2180 = /usr/sbin/nasd
sysAppElmtRunName.3.27.2181 = /usr/sbin/fud
sysAppElmtRunName.3.30.2187 = /usr/sbin/rtspd
sysAppElmtRunName.3.31.2184 = /usr/sbin/smartd
sysAppElmtRunName.3.34.2171 = /usr/sbin/inetd
sysAppElmtRunName.3.35.2047 = syslogd
sysAppElmtRunName.3.36.2189 = /usr/sbin/spd
sysAppElmtRunName.5.5.7495 = /usr/sbin/rpd
sysAppElmtRunName.5.6.2167 = /usr/sbin/mgd
sysAppElmtRunName.5.6.26829 = mgd: (mgd) (user)/dev/tty0
sysAppElmtRunName.5.8.26828 = -c1i
sysAppElmtRunName.5.28.2182 = /usr/sbin/ppmd
sysAppElmtRunName.5.29.2183 = /usr/sbin/lmpd

Meaning

The sample output shows the total amount of real system memory, measured in kilobytes, currently allocated to the processes retrieved by the `sysAppElmtRunMemory` object.

The `sysAppElmtRunMemory` object shows granular, per-process information about memory usage. For example, the `sampled` process (3.17.2176) is using 2716 kilobytes of memory.
The *sysApplElmtRunName* object provides a description of the separate instances displayed in the *sysApplElmtRunMemory* object. For example, the *sampled* process is represented by the OID 3.17.2176.

Monitor CPU Utilization

Purpose
You can monitor CPU utilization using the Juniper specific enterprise chassis MIB and the standard system application MIB (RFC 2287, *Definitions of System-Level Managed Objects for Applications*).

From a management station that has access to the router, and using a tool such as Snmpwalk, follow these steps:

1. Check CPU Utilization on page 196
2. Check CPU Utilization per Process on page 198

Check CPU Utilization

Purpose
The enterprise-specific chassis MIB provides information about the router and its components. Within the chassis MIB, the *jnxMIBs* branch contains one main subbranch, *jnxBoxAnatomy*, which in turn contains a section, *jnxOperatingTable*. Within *jnxOperatingTable*, and under the *jnxOperatingEntry*, you can use the *jnxOperatingCPU* object to monitor the CPU on your router. (See Figure 20 on page 196.)

Figure 20: Chassis MIB Tree

```
|--juniper MIB (255) |
 |   |--jnxProducts(1) | | | | | | |
 |   |   |--jnxServices(2) |
 |   |   |--jnxFibs(3) |
 |   |   |   |--jnxBoxAnatomy(4) |
 |   |   |   |   |   |--jnxContainersTable(5) |
 |   |   |   |   |   |--jnxContainersTable(6) |
 |   |   |   |   |   |--jnxLEDTable(10) |
 |   |   |   |   |   |--jnxFilledTable(12) |
 |   |   |   |   |   |--jnxOperatingTable(13) |
 |   |   |   |   |   |   |--jnxOperatingEntry(1) |
 |   |   |   |   |   |   |   |--jnxOperatingContentsIndex(1) |
 |   |   |   |   |   |   |   |--jnxOperatingIndex(2) |
 |   |   |   |   |   |   |   |--jnxOperating2Index(3) |
 |   |   |   |   |   |   |   |--jnxOperating3Index(4) |
 |   |   |   |   |   |   |   |--jnxOperatingACSCR(5) |
 |   |   |   |   |   |   |   |--jnxOperatingState(6) |
 |   |   |   |   |   |   |   |--jnxOperatingTemp(7) |
 |   |   |   |   |   |   |   |--jnxOperatingCPU(8) |
 |   |   |   |   |   |   |   |--jnxOperatingLSR(9) |
 |   |   |   |   |   |   |   |--jnxOperatingDRAMSize(10) |
 |   |   |   |   |   |   |   |--jnxOperatingBuffer(11) |
 |   |   |   |   |   |   |   |--jnxOperatingHeap(12) |
 |   |   |   |   |   |   |   |--jnxOperatingPipeLine(13) |
 |   |   |   |   |   |   |   |--jnxOperatingACSCRStart(14) |
 |   |   |   |   |   |   |   |--jnxOperatingMemory(15) |
 |   |   |   |   |   |   |   |--jnxOperatingStaCeOrder(16) |
 |   |   |   |   |   |   |   |--jnxRedundancyTable(14) |
 |   |   |   |   |   |   |   |--jnxFRUTable(15) |
```
After each object description is a value in parenthesis, such as (1). This value can be used to enter an OID for the specific object. For example, to gather information on the CPU, you can type the object description (\texttt{jnxOperatingCPU}) or the OID (1.3.6.1.4.1.2636.3.1.131.8).

Action

To check CPU utilization using the Juniper Networks enterprise chassis MIB, from a management station that has access to the router, and using a tool such as Snmpwalk, enter the following command:

```
user-bsd# snmpwalk \[common arguments\] hostname community object-id
```

Sample Output

```
user-nms % snmpwalk -Os -M /volume/~/mibs-malltp1public jnxOperatingCPU
jnxOperatingCPU.1.1.1.0 = Gauge32: 0
jnxOperatingCPU.1.1.2.0 = Gauge32: 0
jnxOperatingCPU.1.1.3.0 = Gauge32: 0
jnxOperatingCPU.2.1.0.0 = Gauge32: 0
jnxOperatingCPU.4.1.1.0 = Gauge32: 0
jnxOperatingCPU.4.1.2.0 = Gauge32: 0
jnxOperatingCPU.4.1.3.0 = Gauge32: 0
jnxOperatingCPU.4.1.4.0 = Gauge32: 0
jnxOperatingCPU.6.1.1.0 = Gauge32: 224
jnxOperatingCPU.6.1.2.0 = Gauge32: 224
jnxOperatingCPU.7.1.0.0 = Gauge32: 2
jnxOperatingCPU.7.2.0.0 = Gauge32: 2
jnxOperatingCPU.8.1.1.0 = Gauge32: 0
jnxOperatingCPU.8.2.3.0 = Gauge32: 0
jnxOperatingCPU.8.2.4.0 = Gauge32: 0
jnxOperatingCPU.9.1.0.0 = Gauge32: 6
jnxOperatingCPU.9.1.1.0 = Gauge32: 0

user-nms % snmpwalk -Os -M /volume/~/mibs-malltp1public jnxOperatingDesc
jnxOperatingDescr.1.1.1.0 = midplane
jnxOperatingDescr.1.1.2.0 = midplane
jnxOperatingDescr.1.1.3.0 = midplane
jnxOperatingDescr.2.1.0.0 = Power Supply A
jnxOperatingDescr.4.1.1.0 = Left Tray front fan
jnxOperatingDescr.4.1.2.0 = Left Tray second fan
jnxOperatingDescr.4.1.3.0 = Left Tray third fan
jnxOperatingDescr.4.1.4.0 = Left Tray fourth fan
jnxOperatingDescr.6.1.1.0 = CFEB Internet Processor IIv1
jnxOperatingDescr.6.1.2.0 = CFEB Internet Processor IIv1
jnxOperatingDescr.7.1.0.0 = FPC @ 0/0/*
jnxOperatingDescr.7.2.0.0 = FPC @ 1/0/*
jnxOperatingDescr.8.1.1.0 = PIC: 4x OC-3 SONET, MM @ 0/0/*
jnxOperatingDescr.8.2.3.0 = PIC: 1x Tunnel @ 1/2/*
jnxOperatingDescr.8.2.4.0 = PIC: 1x G/E, 1000 BASE-SX @ 1/3/*
jnxOperatingDescr.9.1.0.0 = Routing Engine
jnxOperatingDescr.9.1.1.0 = Routing Engine PCMCIA Card
```

Meaning

The sample output shows the percentage CPU utilization on router, \texttt{tp1}. The Routing Engine (9.1.0.0) has 6 percent CPU utilization, the two CFEB Internet Processors IIv1 (6.1.0.0 and 6.1.2.0) have 22 percent each, and the FPCs (7.1.0.0 and 7.2.0.0) have 2 percent each. Components with a value of zero indicate that the information is either unavailable or inapplicable.
The output for the `jnxOperatingDesc` object provides a description of the separate instances in the `jnxOperatingCPU` object. For example, 9.1.0.0 represents the Routing Engine.

Check CPU Utilization per Process

Purpose

The standard system application MIB (RFC 2287, *Definitions of System-Level Managed Objects for Applications*), describes a set of managed objects that are restricted to information that can be determined from the system itself. The object `sysApplElmtRunCPU` provides information about applications and associated elements that have run or are currently running on the host system. (See Figure 21 on page 198.)

Figure 21: System Application MIB Tree

```
|-- System Application MIB
|   |-- sysApplIORoot
|   |   |-- sysApplInstalled
|   |   |-- sysApplRun
|   |   |-- sysApplMup
|   |   |-- sysApplNotifications
|   |   |-- sysApplConformance
|   |   |   |-- sysApplMIBCompliances
|   |   |   |-- sysApplMIBGroups
|   |   |   |   |-- sysApplRunGroup
|   |   |   |   |   |-- sysApplRunStarted
|   |   |   |   |   |-- sysApplRunCurrentState
|   |   |   |   |   |-- sysApplPastRunStarted
|   |   |   |   |   |-- sysApplPastRunExitState
|   |   |   |   |   |-- sysApplPastRunTimeEnded
|   |   |   |   |   |-- sysApplPastRunInstallID
|   |   |   |   |   |-- sysApplPastRunTimeStarted
|   |   |   |   |   |-- sysApplPastRunState
|   |   |   |   |   |-- sysApplPastRunName
|   |   |   |   |   |-- sysApplPastRunParameters
|   |   |   |   |   |-- sysApplPastRunCPU
|   |   |   |   |   |-- sysApplPastRunMemory
|   |   |   |   |   |-- sysApplPastRunNumFiles
|   |   |   |   |   |-- sysApplPastRunUser
|   |   |   |   | [.. Output Truncated ..]

**Action**

To check CPU utilization per process, from a management station that has access to the router, and using a tool such as Snmpwalk, enter the following command:

```
user-bsd# snmpwalk [common arguments] hostname community object-id
```
Sample Output

use-nms % snmpwalk -Os /volume/~/mibs-malltp1public sysAppElmtRunCPU
sysAppElmtRunCPU.0.0.0 = Timeticks: (278) 0:00:02.78
sysAppElmtRunCPU.0.0.2 = Timeticks: (487) 0:00:04.87
sysAppElmtRunCPU.0.0.3 = Timeticks: (0) 0:00:00.00
sysAppElmtRunCPU.0.0.4 = Timeticks: (1742) 0:00:17.42
sysAppElmtRunCPU.0.0.5 = Timeticks: (13899) 0:02:18.99
sysAppElmtRunCPU.0.0.6 = Timeticks: (79) 0:00:00.79
sysAppElmtRunCPU.0.0.7 = Timeticks: (0) 0:00:00.00
sysAppElmtRunCPU.0.0.8 = Timeticks: (0) 0:00:00.00
sysAppElmtRunCPU.0.0.9 = Timeticks: (0) 0:00:00.00
sysAppElmtRunCPU.0.0.10 = Timeticks: (2229) 0:00:22.29
sysAppElmtRunCPU.0.0.11 = Timeticks: (0) 0:00:00.00
sysAppElmtRunCPU.0.0.12 = Timeticks: (0) 0:00:00.00
sysAppElmtRunCPU.0.0.116 = Timeticks: (25) 0:00:00.25
sysAppElmtRunCPU.0.0.2023 = Timeticks: (0) 0:00:00.00
sysAppElmtRunCPU.0.0.2131 = Timeticks: (1103) 0:00:11.03
sysAppElmtRunCPU.0.0.2160 = Timeticks: (1599) 0:00:15.99
sysAppElmtRunCPU.0.0.2161 = Timeticks: (4) 0:00:00.04
sysAppElmtRunCPU.0.0.2174 = Timeticks: (1168) 0:00:11.68
sysAppElmtRunCPU.0.0.2324 = Timeticks: (1738) 0:00:17.38
sysAppElmtRunCPU.0.0.16781 = Timeticks: (0) 0:00:00.00
sysAppElmtRunCPU.0.0.18311 = Timeticks: (0) 0:00:00.00
sysAppElmtRunCPU.0.0.2168 = Timeticks: (2) 0:00:00.02
sysAppElmtRunCPU.0.0.1680 = Timeticks: (33548776) 3 days, 21:11:27.76
sysAppElmtRunCPU.3.3.2185 = Timeticks: (1134) 0:00:13.14
sysAppElmtRunCPU.3.4.2194 = Timeticks: (5282) 0:00:52.82
sysAppElmtRunCPU.3.7.2168 = Timeticks: (20380) 0:03:23.80
sysAppElmtRunCPU.3.9.2169 = Timeticks: (6703) 0:01:07.03
sysAppElmtRunCPU.3.12.2172 = Timeticks: (337) 0:00:03.37
sysAppElmtRunCPU.3.13.2173 = Timeticks: (36) 0:00:00.36
sysAppElmtRunCPU.3.14.2164 = Timeticks: (39783) 0:06:37.83
sysAppElmtRunCPU.3.15.2175 = Timeticks: (4206) 0:00:42.06
sysAppElmtRunCPU.3.16.2165 = Timeticks: (18) 0:00:00.18
sysAppElmtRunCPU.3.17.2176 = Timeticks: (61) 0:00:00.61
sysAppElmtRunCPU.3.19.2177 = Timeticks: (25) 0:00:00.25
sysAppElmtRunCPU.3.20.2178 = Timeticks: (200) 0:00:20.00
sysAppElmtRunCPU.3.21.2179 = Timeticks: (38) 0:00:00.38
sysAppElmtRunCPU.3.23.2188 = Timeticks: (3175) 0:00:31.75
sysAppElmtRunCPU.3.25.2186 = Timeticks: (44774) 0:07:27.74
sysAppElmtRunCPU.3.26.2180 = Timeticks: (17) 0:00:00.17
sysAppElmtRunCPU.3.27.2181 = Timeticks: (48950) 0:08:09.50
sysAppElmtRunCPU.3.30.2187 = Timeticks: (11) 0:00:00.11
sysAppElmtRunCPU.3.31.2184 = Timeticks: (93) 0:00:00.93
sysAppElmtRunCPU.3.34.2171 = Timeticks: (80) 0:00:00.80
sysAppElmtRunCPU.3.35.2047 = Timeticks: (1585) 0:00:15.85
sysAppElmtRunCPU.3.36.2189 = Timeticks: (30) 0:00:00.30
sysAppElmtRunCPU.3.37.2191 = Timeticks: (326) 0:00:03.26
sysAppElmtRunCPU.5.5.7495 = Timeticks: (24721) 0:04:07.21
sysAppElmtRunCPU.5.6.2167 = Timeticks: (936) 0:00:09.36
sysAppElmtRunCPU.5.6.26829 = Timeticks: (1) 0:00:00.01
sysAppElmtRunCPU.5.8.26828 = Timeticks: (25) 0:00:00.25
sysAppElmtRunCPU.5.28.2182 = Timeticks: (29234) 0:04:52.34
sysAppElmtRunCPU.5.29.2183 = Timeticks: (21) 0:00:00.21

user-nms % snmpwalk -Os /volume/~/mibs-malltp1public sysAppElmtRunName
sysAppElmtRunName.0.0.0 = (swapper)
sysAppElmtRunName.0.0.2 = (pagedaemon)
sysApplElmtRunName.0.0.3 = (vmdaemon)
sysApplElmtRunName.0.0.4 = (bufdaemon)
sysApplElmtRunName.0.0.5 = (syncer)
sysApplElmtRunName.0.0.6 = (netdaemon)
sysApplElmtRunName.0.0.7 = (if_pfe)
sysApplElmtRunName.0.0.8 = (if_pfe_listen)
sysApplElmtRunName.0.0.9 = (cb_poll)
sysApplElmtRunName.0.0.10 = (vmuncachedaemon)
sysApplElmtRunName.0.0.11 = (scs_housekeeping)
sysApplElmtRunName.0.0.12 = (if_pic_listen)
sysApplElmtRunName.0.0.116 = mfs
sysApplElmtRunName.0.0.2023 = pccardd
sysApplElmtRunName.0.0.2131 = cron
sysApplElmtRunName.0.0.2160 = /sbin/watchdog
sysApplElmtRunName.0.0.2161 = /usr/sbin/tnetd
sysApplElmtRunName.0.0.2174 = /usr/sbin/tpo.snmpd
sysApplElmtRunName.0.0.2324 = (peer proxy)
sysApplElmtRunName.0.0.16781 = /usr/libexec/getty
sysApplElmtRunName.0.0.18311 = /usr/sbin/xntpd
sysApplElmtRunName.0.0.26827 = telnetd
sysApplElmtRunName.3.1.1 = /sbin/preinit
sysApplElmtRunName.3.2.2163 = /usr/sbin/chassisd
sysApplElmtRunName.3.3.2185 = /usr/sbin/dfw
sysApplElmtRunName.3.4.2194 = /sbin/dcd
sysApplElmtRunName.3.7.2168 = /usr/sbin/snmp
sysApplElmtRunName.3.9.2169 = /usr/sbin/mib2d
sysApplElmtRunName.3.12.2172 = /usr/sbin/apsd
sysApplElmtRunName.3.13.2173 = /usr/sbin/vrrpd
sysApplElmtRunName.3.14.2164 = /usr/sbin/alarmd
sysApplElmtRunName.3.15.2175 = /usr/sbin/pfed
sysApplElmtRunName.3.16.2165 = /usr/sbin/craftd
sysApplElmtRunName.3.17.2176 = /usr/sbin/sampled
sysApplElmtRunName.3.19.2177 = /usr/sbin/ilmid
sysApplElmtRunName.3.20.2178 = /usr/sbin/rmopd
sysApplElmtRunName.3.21.2179 = /usr/sbin/cosd
sysApplElmtRunName.3.23.2188 = /usr/sbin/fsad
sysApplElmtRunName.3.25.2186 = /usr/sbin/ird
sysApplElmtRunName.3.26.2180 = /usr/sbin/nasd
sysApplElmtRunName.3.27.2181 = /usr/sbin/fud
sysApplElmtRunName.3.30.2187 = /usr/sbin/rtsp
sysApplElmtRunName.3.31.2184 = /usr/sbin/smartd
sysApplElmtRunName.3.34.2171 = /usr/sbin/inetd
sysApplElmtRunName.3.35.2047 = syslogd
sysApplElmtRunName.3.36.2189 = /usr/sbin/spd
sysApplElmtRunName.3.37.2191 = /usr/sbin/ecd
sysApplElmtRunName.5.5.7495 = /usr/sbin/rpd
sysApplElmtRunName.5.6.2167 = /usr/sbin/mgd
sysApplElmtRunName.5.6.26829 = mgd: (mgd) (user)/dev/tty10
sysApplElmtRunName.5.8.26828 = -clj
sysApplElmtRunName.5.28.2182 = /usr/sbin/ppmd
sysApplElmtRunName.5.29.2183 = /usr/sbin/lmpd

Meaning

The sample output shows the number of centi-seconds of total system CPU resources consumed by a particular process. For example, the chassis process (chassisd, 3.2.2163) has consumed 3 days, or 33,548,776 centi-seconds of total system CPU resources.

The sysApplElmtRunName object retrieves the name of the OID. For example, sysApplElmtRunCPU.3.2.2163 represents the chassis process.
Retrieve Version Information about Router Software Components

Purpose
RFC 2790, Host Resources MIB, describes a set of managed objects that are useful for managing host systems, including routers.

Action
To retrieve version information about software components on the router, from a management station that has access to the router and using a tool, such as Snmpwalk, enter the following command:

```
user-bsd# snmpwalk [common arguments] hostname community object-id
```

Sample Output

```
user-nms % snmpwalk -Os -M /volume/~/mibs-m all tp1 public
1.3.6.1.2.1.25.6.3 hrSWInstalledIndex.2 = 2
hrSWInstalledIndex.3 = 3
hrSWInstalledIndex.4 = 4
hrSWInstalledIndex.5 = 5
hrSWInstalledIndex.6 = 6
hrSWInstalledIndex.9 = 9
hrSWInstalledName.2 = "JUNOS Base OS Software Suite [6.0R1.5]"
hrSWInstalledName.3 = "JUNOS Kernel Software Suite [6.0R1.5]"
hrSWInstalledName.4 = "JUNOS Packet Forwarding Engine Support (M7i/M10i) [6.0R1.5]"
hrSWInstalledName.5 = "JUNOS Routing Software Suite [6.0R1.5]"
hrSWInstalledName.6 = "JUNOS Online Documentation [6.0R1.5]"
hrSWInstalledName.9 = "JUNOS Support Tools Package [6.0-20031122-unocM2]"
hrSWInstalledID.2 = OID: zeroDotZero
hrSWInstalledID.3 = OID: zeroDotZero
hrSWInstalledID.4 = OID: zeroDotZero
hrSWInstalledID.5 = OID: zeroDotZero
hrSWInstalledID.6 = OID: zeroDotZero
hrSWInstalledID.9 = OID: zeroDotZero
hrSWInstalledType.2 = operatingSystem(2)
hrSWInstalledType.3 = operatingSystem(2)
hrSWInstalledType.4 = operatingSystem(2)
hrSWInstalledType.5 = operatingSystem(2)
hrSWInstalledType.6 = application(4)
hrSWInstalledType.9 = operatingSystem(2)
hrSWInstalledDate.2 = 2003-8-10,20:34:45.0,-7:0
hrSWInstalledDate.3 = 2003-8-10,20:35:21.0,-7:0
hrSWInstalledDate.4 = 2003-8-10,20:36:30.0,-7:0
hrSWInstalledDate.5 = 2003-8-10,20:36:47.0,-7:0
hrSWInstalledDate.6 = 2003-8-10,20:36:51.0,-7:0
hrSWInstalledDate.9 = 2003-11-22,4:8:47.0,-8:01
```

Meaning
The sample output shows the version information for various software components on the router.
PART 4

Gather System Management Information

- Display Basic Chassis Information on page 205
- Display and Locate Files and Directories on page 209
- Check Time on a Router on page 217
- Check User Accounts and Permissions on page 225
CHAPTER 18

Display Basic Chassis Information

This chapter describes how to obtain basic system information, including a list of all Flexible PIC Concentrators (FPCs) and Physical Interface Cards (PICs) installed in the router chassis, the hardware version level, and the serial number.

- Checklist for Displaying Basic Chassis Information on page 205
- Display Basic Chassis Information on page 205

Checklist for Displaying Basic Chassis Information

Purpose Table 34 on page 205 provides links and commands for displaying basic chassis information, including a list of all Flexible PIC Concentrators (FPCs) and Physical Interface Cards (PICs) installed in the router chassis, the hardware version level, and the serial number.

Action

Table 34: Checklist for Displaying Basic Chassis Information

<table>
<thead>
<tr>
<th>Task</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Display Basic Chassis Information” on page 205</td>
<td>show chassis hardware &lt;detail&gt;</td>
</tr>
</tbody>
</table>

Display Basic Chassis Information

Purpose Before you return a router component to Juniper Networks, you must contact the Juniper Networks Technical Assistance Center (JTAC) with the serial number of the failed component and failure information. JTAC will then grant a Return Materials Authorization (RMA).

Action To display a list of the serial numbers of components installed in the router chassis, use the following Junos OS command-line interface (CLI) operational mode command:

user@host> show chassis hardware <detail>
### Sample Output

**user@host> show chassis hardware**

Hardware inventory:

<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td>25708</td>
<td>710-002334</td>
<td>BB9738</td>
<td>M20</td>
</tr>
<tr>
<td>Backplane</td>
<td>REV 03</td>
<td>710-00073</td>
<td>AA2125</td>
<td>DC</td>
</tr>
<tr>
<td>Power Supply B</td>
<td>REV A1</td>
<td>710-002335</td>
<td>000289</td>
<td>DC Maxicab</td>
</tr>
<tr>
<td>Maxicab</td>
<td>REV 08</td>
<td>710-001292</td>
<td>AL7435</td>
<td>1x OC-48 SONET, SMIR</td>
</tr>
<tr>
<td>Minicab</td>
<td>REV 07</td>
<td>710-001292</td>
<td>AA7435</td>
<td>1x OC-48 SONET, SMIR</td>
</tr>
<tr>
<td>Display</td>
<td>REV 07</td>
<td>710-000073</td>
<td>AA2125</td>
<td>DC</td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>REV 03</td>
<td>710-000173</td>
<td>CA4610</td>
<td>2x OC-3 ATM, MM</td>
</tr>
<tr>
<td>SCB</td>
<td>REV 03</td>
<td>710-000073</td>
<td>AA2125</td>
<td>DC</td>
</tr>
<tr>
<td>FPC 0</td>
<td>REV 03</td>
<td>710-001292</td>
<td>AA3530</td>
<td>1x OC-48 SONET, SMIR</td>
</tr>
<tr>
<td>PIC 1</td>
<td>REV 07</td>
<td>710-000073</td>
<td>AA3530</td>
<td>1x OC-48 SONET, SMIR</td>
</tr>
<tr>
<td>FPC 3</td>
<td>REV 01</td>
<td>710-001292</td>
<td>AB4775</td>
<td>2x OC-3 ATM, MM</td>
</tr>
<tr>
<td>PIC 1</td>
<td>REV 03</td>
<td>710-000073</td>
<td>AA2125</td>
<td>DC</td>
</tr>
</tbody>
</table>

**user@host> show chassis hardware detail**

Hardware inventory:

<table>
<thead>
<tr>
<th>Item</th>
<th>Version</th>
<th>Part number</th>
<th>Serial number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td>25708</td>
<td>710-002334</td>
<td>BB9738</td>
<td>M20</td>
</tr>
<tr>
<td>Backplane</td>
<td>REV 03</td>
<td>710-00073</td>
<td>AA2125</td>
<td>DC</td>
</tr>
<tr>
<td>Power Supply B</td>
<td>REV 06</td>
<td>710-001465</td>
<td>000234</td>
<td>AC</td>
</tr>
<tr>
<td>Power Supply A</td>
<td>REV 06</td>
<td>710-001465</td>
<td>000234</td>
<td>AC</td>
</tr>
<tr>
<td>Display</td>
<td>REV 04</td>
<td>710-001519</td>
<td>BA4681</td>
<td></td>
</tr>
<tr>
<td>Routing Engine 0</td>
<td>REV 06</td>
<td>710-0003239</td>
<td>1000224893</td>
<td>RE-2.0</td>
</tr>
<tr>
<td>Routing Engine 1</td>
<td>REV 06</td>
<td>710-0003239</td>
<td>900022146</td>
<td>RE-2.0</td>
</tr>
<tr>
<td>SSB slot 0</td>
<td>REV 02</td>
<td>710-001951</td>
<td>AZ8112</td>
<td>Internet Processor II</td>
</tr>
<tr>
<td>SSB slot 1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>backup</td>
</tr>
<tr>
<td>FPC 0</td>
<td>REV 03</td>
<td>710-003308</td>
<td>BB8455</td>
<td>E-FPC</td>
</tr>
<tr>
<td>PIC 0</td>
<td>REV 07</td>
<td>710-001385</td>
<td>242525</td>
<td>2 Mbytes</td>
</tr>
<tr>
<td>PIC 1</td>
<td>REV 07</td>
<td>710-001385</td>
<td>242741</td>
<td>2 Mbytes</td>
</tr>
<tr>
<td>PIC 2</td>
<td>REV 07</td>
<td>710-001385</td>
<td>242866</td>
<td>2 Mbytes</td>
</tr>
<tr>
<td>PIC 3</td>
<td>REV 07</td>
<td>710-001385</td>
<td>242866</td>
<td>2 Mbytes</td>
</tr>
<tr>
<td>PIC 4</td>
<td>REV 07</td>
<td>710-001385</td>
<td>242866</td>
<td>2 Mbytes</td>
</tr>
<tr>
<td>PIC 5</td>
<td>REV 07</td>
<td>710-001385</td>
<td>242866</td>
<td>2 Mbytes</td>
</tr>
<tr>
<td>SSB slot 1</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>backup</td>
</tr>
<tr>
<td>FPC 0</td>
<td>REV 03</td>
<td>710-003308</td>
<td>BB8455</td>
<td>E-FPC</td>
</tr>
</tbody>
</table>
Meaning

The sample output is for an M20 and an M40 router. It shows a list of all FPCs and PICs installed in the router chassis, including the hardware version level and serial number.

The detail option displays detailed information about hardware, including memory, hardware version level, serial number, and additional information about memory.

If the Routing Engine is identified by a 10- and 16-digit serial number, both numbers are displayed in the output for the detail option, and are especially important when processing an RMA for such a Routing Engine. In addition, when you request an RMA for the M40 router, include the maxicab serial number.

Table 35 on page 207 provides a description of all the output fields for the show chassis hardware command.

Table 35: Output fields for the show chassis hardware command

<table>
<thead>
<tr>
<th>Output field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>(For M-series routers) Chassis component. Information is displayed about the backplane; power supplies; Routing Engine; maxicab (the connection between the Routing Engine and the backplane, for the M40 router only); System Control Board (SCB), System and Switch Board (SSB), Switching and Forwarding Module (SFM), or Forwarding Engine Board (FEB); Miscellaneous Control Subsystem (MCS) and PFE clock generator (PCG) (for the M160 router only); and each FPC and PIC.</td>
</tr>
<tr>
<td></td>
<td>(For T-series platforms) Chassis component. Information is displayed about the backplane, power supplies, midplane, Control Board (CB), Connector Interface Panel (CIP), FPC, Front Panel Module (FPM) (craft interface), Power Entry Module (PEM), PIC, SONET Clock Generator (SCG), Small Form-factor Pluggable (SFP) modules, Switch Interface Board (SIB), and Switch Processor Mezzanine Board (SPMB).</td>
</tr>
<tr>
<td>Version</td>
<td>Revision level of the chassis component.</td>
</tr>
<tr>
<td>Part number</td>
<td>Part number of the chassis component.</td>
</tr>
<tr>
<td>Serial number</td>
<td>Serial number of the chassis component. For all RMAs, the chassis serial number must be provided to JTAC. If the RMA is for the chassis itself, you must obtain the backplane or midplane serial number as well.</td>
</tr>
<tr>
<td>Description</td>
<td>Brief description of the hardware item.</td>
</tr>
</tbody>
</table>
NOTE: When you request an RMA, you must also include output from the show chassis environment command, the show version command, and the troubleshooting output used to identify the failure.
CHAPTER 19

Display and Locate Files and Directories

This chapter describes how to display and locate files and directories on a router.

- Checklist for Displaying and Locating Files and Directories on a Router on page 209
- Copy a File on a Routing Engine on page 210
- Maintain a Single Configuration File for Both Routing Engines on page 212
- List Files and Directories on a Router on page 215
- Display File Contents on page 215
- Rename a File on a Router on page 215
- Delete a File on a Router on page 216

Checklist for Displaying and Locating Files and Directories on a Router

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Table 36 on page 209 provides links and commands for displaying and locating files and directories on a router.</th>
</tr>
</thead>
</table>

**Action**

Table 36: Checklist for Displaying and Locating Files and Directories on a Router

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Copy a File on a Routing Engine” on page 210</td>
<td>file copy source destination</td>
</tr>
<tr>
<td>1. Copy a File from One Routing Engine to Another on page 210</td>
<td>file copy filename ftp://hostname/path/filename</td>
</tr>
<tr>
<td>2. Copy Files between the Local Router and a Remote System on page 211</td>
<td>file copy filename ftp://user:password@hostname/filename</td>
</tr>
<tr>
<td></td>
<td>file copy filename ftp://user@hostname/filename</td>
</tr>
<tr>
<td></td>
<td>file copy filename scp://user@hostname/path/filename</td>
</tr>
</tbody>
</table>

“Maintain a Single Configuration File for Both Routing Engines” on page 212
Table 36: Checklist for Displaying and Locating Files and Directories on a Router *(continued)*

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
</table>
| 1. Configure the New Group on page 212 | `[edit groups]` *set* group-name  
   `[edit groups re0]` *set* interfaces interface name unit unit family inet address address  
   `[edit groups re0 system]` *set* host-name hostname  
   *show*  
   *commit* |
| 2. Apply the New Group on page 214 | `[edit]` *set* apply-groups group-name  
   *show*  
   *commit* |

“List Files and Directories on a Router” on page 215  
*file* list filename or directory

“Display File Contents” on page 215  
*file* show filename

“Rename a File on a Router” on page 215  
*file* rename source destination

“Delete a File on a Router” on page 216  
*file* delete filename

Copy a File on a Routing Engine

**Purpose**  
When you configure one Routing Engine and another Routing Engine needs to have a similar configuration, or when you upgrade the Junos OS version on one Routing Engine, you can simplify the process by copying files from one Routing Engine to another.

To copy a file, follow these steps:

1. Copy a File from One Routing Engine to Another on page 210
2. Copy Files between the Local Router and a Remote System on page 211

Copy a File from One Routing Engine to Another

**Purpose**  
When you have a dual Routing Engine configuration, you can copy a configuration file from Routing Engine 0 to Routing Engine 1 or vice versa.

**Action**  
To copy a configuration file from Routing Engine 0 to Routing Engine 1, use the following Junos OS command-line interface (CLI) operational mode command:

`user@host> file copy source destination`
Sample Output  user@host> file copy /config/juniper.conf re1:/var/tmp/copied-juniper.conf

Meaning  In this case, source is the name of the configuration file on Routing Engine 0. Configuration files are stored in the directory /config. The active configuration is /config/juniper.conf, and older configurations are in /config/juniper.conf{1...9}. destination is a file on Routing Engine 1.

NOTE: Refer to “Maintain a Single Configuration File for Both Routing Engines” on page 212 for details about naming the Routing Engines correctly.

Copy Files between the Local Router and a Remote System

Action  You can copy a configuration file from a Routing Engine to a remote system in the network using the File Transfer Protocol (FTP) or secure copy protocol (scp) in any one of the following ways:

- To use anonymous FTP to copy a local file to a remote system, enter the following command:

  root@host> file copy filename ftp://hostname/filename

  In the following example, /config/juniper.conf is the local file and hostname is the FTP server:

  root@host> file copy /config/juniper.conf ftp://hostname/juniper.conf

  Receiving ftp://hostname/juniper.conf (2198 bytes): 100%

  2198 bytes transferred in 0.0 seconds (2.69 MBps)

- To use FTP where a valid username and password are required, enter the following command:

  root@host> file copy filename ftp://user:password@hostname/filename

  In the following example, /config/juniper.conf is the local file, user is the username, testing123 is the password, and hostname is the FTP server:

  root@host> file copy /config/juniper.conf ftp://user:testing123@hostname/juniper.conf

  Receiving ftp://user:testing123@hostname/juniper.conf (2198 bytes): 100%

  2198 bytes transferred in 0.0 seconds (2.69 MBps)

- To use FTP where you require more privacy and are prompted for a password, enter the following command:

  root@host> file copy filename ftp://user@hostname/filename

  In the following example, /config/juniper.conf is the local file, user is the username, and hostname is the FTP server:

  root@host> file copy /config/juniper.conf ftp://user@hostname/juniper.conf

  Password for user@hostname: ******

  Receiving ftp://user@hostname/juniper.conf (2198 bytes): 100%

  2198 bytes transferred in 0.0 seconds (2.69 MBps)

- To use scp to copy a local file to a remote system, enter the following command:

  root@host> file copy filename scp://user@hostname/path/filename
In the following example, `/config/juniper.conf` is the local file, `user` is the username, and `ssh-host` is the scp server:

```
root@host> file copy /config/juniper.conf scp://user@ssh-host/tmp/juniper.conf
user@ssh-host's password: ******
juniper.conf 100%
|***|
2198 00:00
```

NOTE: You cannot use scp or ssh to copy a file in the worldwide version of the Junos OS.

Maintain a Single Configuration File for Both Routing Engines

**Purpose**
For routers that support multiple Routing Engines, you can specify `re0` and `re1` as group names to ensure that the correct IP addresses are used for each Routing Engine and to maintain a single configuration file for both Routing Engines. It is important that the names of the Routing Engines correspond to a slot position because the names `re0` and `re1` are special group names that you must use for the Routing Engines to recognize which configuration statement to use. Routing Engine 0 must be in slot position 0 and must be named `re0`, and Routing Engine 1 must be in slot position 1 and must be named `re1`.

To maintain a single configuration file for both Routing Engines, follow these steps:

1. **Configure the New Group on page 212**
2. **Apply the New Group on page 214**

Configure the New Group

**Purpose**
Each `re0` or `re1` group typically contains, at a minimum, the configuration for the hostname and the management interface (fxp0). If each Routing Engine uses a different management interface, the group must also contain the configuration for the backup router and static routes.

**Action**
To configure the `re0` and `re1` groups, follow these steps:

1. In configuration mode, go to the following hierarchy level:
   ```
 [edit]
 user@host# edit groups
   ```
2. Configure the group:
   ```
 [edit groups]
 user@host# set group-name
   ```
   For example:
   ```
 [edit groups]
 user@host# set re0
   ```
3. To configure the management interface, go to the following hierarchy level:
4. Include the following statement:

```
[edit groups re0]
user@host# set interfaces interface-name unit unit family inet address address
```

For example:

```
[edit groups re0]
user@host# set interfaces fxp0 unit 0 family inet address 1.1.1.1/24
```

5. To configure the hostname, go to the following hierarchy level:

```
[edit groups re0]
user@host# edit groups re0 system
```

6. Include the following statement:

```
[edit groups re0 system]
user@host# set host-name hostname
```

For example:

```
[edit groups re0 system]
user@host# set host-name foo-re0
```

7. Verify the configuration:

```
[edit groups re0]
user@host# show re0 { system { host-name foo-re0; } interfaces { fxp0 { unit 0 { family inet { address 1.1.1.1/24; } } } } }
```

8. Commit the configuration:

```
user@host# commit
```

9. Repeat Step 1 through Step 8 for the re1 group.

**Meaning**  The sample output in Step 7 shows that the re0 group contains the minimum configuration for a group, the hostname, and the management interface (fxp0). If each Routing Engine uses a different management interface, the group must also contain the configuration for the backup router and static routes.
Apply the New Group

**Action**  To apply the re0 group to maintain a single configuration file for both Routing Engines, follow these steps:

1. In configuration mode, go to the top hierarchy level and include the following statement:
   
   ```
 user@host# [edit]
 user@host# set apply-groups group-name
   ```
   
   For example:
   ```
 user@host# [edit]
 user@host# set apply-groups re0
   ```

2. Verify the configuration:

   ```
 user@host# show
   ```

   ```
 groups {
 re0 {
 system {
 host-name foo-re0;
 }
 interfaces {
 fxp0 {
 unit 0 {
 family inet {
 address 1.1.1.1/24;
 }
 }
 }
 }
 }
 re1 {
 system {
 host-name foo-re1;
 }
 interfaces {
 fxp0 {
 unit 0 {
 family inet {
 address 1.1.1.2/24;
 }
 }
 }
 }
 }
 apply-groups [re0 re1];
 }
   ```

3. Commit the configuration:

   ```
 user@host# commit
   ```
List Files and Directories on a Router

Problem If a system board crashes, you must check that certain files are in specific directories.

Solution To display files in the /var/tmp and var/crash directories, use the following CLI operational mode command:

```
user@host> filelist filename or directory
```

Sample Output

```
sampled.pkts
vi.recover/
user@host> file list /var/crash/
bounds
minfree
vmcore.0
```

Meaning The sample output shows the files in the /var/tmp/ and /var/crash/ directories. The Juniper Networks Technical Assistance Center (JTAC) can ask you to verify the existence of similar files.

Display File Contents

Purpose To display the contents of a file on the local router.

Action To display the contents of a file on the local router, use the following CLI operational mode command:

```
user@host> file show filename
```

Sample Output

```
user@host> file show /var/log/messages
Apr 13 21:00:08 romney /kernel: so-1/1/2: loopback suspected; going to standby.
Apr 13 21:00:40 romney /kernel: so-1/1/2: loopback suspected; going to standby.
Apr 13 21:02:48 romney last message repeated 4 times
Apr 13 21:07:04 romney last message repeated 8 times
Apr 13 21:07:13 romney /kernel: so-1/1/0: Clearing SONET alarm(s) RDI-P
Apr 13 21:07:29 romney /kernel: so-1/1/0: Asserting SONET alarm(s) RDI-P
Apr 13 21:07:36 romney /kernel: so-1/1/2: loopback suspected; going to standby.
Apr 13 21:08:08 romney /kernel: so-1/1/2: loopback suspected; going to standby.
...Output truncated...
```

Meaning The sample output shows the contents of the /var/log/messages file.

Rename a File on a Router

Action To rename a file on the local router, use the following CLI operational mode command:

```
user@host> file rename source destination
```
Sample Output

```
user@host> file list /var/tmp
dcd.core
rpd.core
snmpd.core

user@host> file rename /var/tmp/dcd.core /var/tmp/dcd.core.990413
dcd.core.990413

user@host> file list /var/tmp
dcd.core
rpd.core
snmpd.core
```

**Meaning**  The sample output shows that the `dcd.core` file was renamed to `dcd.core.990413`. The original name of the file is the *source* and the new name for the file is the *destination*.

---

**Delete a File on a Router**

**Action**  To delete a file on the local router, use the following CLI operational mode command:

```
user@host> file delete filename
```

Sample Output

```
user@host> file list /var/tmp
dcd.core
rpd.core
snmpd.core

user@host> file delete /var/tmp/snmpd.core
dcd.core
rpd.core

user@host> file list /var/tmp
dcd.core
rpd.core
```

**Meaning**  The sample output shows that the `snmpd.core` file was deleted.
CHAPTER 20

Check Time on a Router

This chapter describes how to display the current time on the router, determine whether router components failed during a problem, and check that the local clock time on the router is synchronized with the time on the Network Time Protocol (NTP) server.

- Checklist for Checking Time on a Router on page 217
- Check the Time on a Router on page 218
- Check How Long Router Components Have Been Up on page 218
- Check the NTP Peers on page 221
- Check the NTP Status on page 221

Checklist for Checking Time on a Router

**Purpose**

Table 37 on page 217 provides links commands for checking time on router the current time on the router, determine whether router components failed during a problem, and check that the local clock time on the router is synchronized with the time on the Network Time Protocol (NTP) server.

**Action**

Table 37: Checklist for Checking Time on a Router

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Check the Time on a Router” on page 218</td>
<td>show system uptime</td>
</tr>
<tr>
<td>“Check How Long Router Components Have Been Up” on page 218</td>
<td>show chassis fpc detail show chassis routing-engine</td>
</tr>
<tr>
<td></td>
<td>show chassis feb</td>
</tr>
<tr>
<td></td>
<td>show chassis scb</td>
</tr>
<tr>
<td></td>
<td>show chassis sfm</td>
</tr>
<tr>
<td></td>
<td>show chassis ssb</td>
</tr>
<tr>
<td>“Check the NTP Peers” on page 221</td>
<td>show ntp associations</td>
</tr>
<tr>
<td>“Check the NTP Status” on page 221</td>
<td>show ntp status</td>
</tr>
</tbody>
</table>

Copyright © 2013, Juniper Networks, Inc.
Check the Time on a Router

**Purpose**
Display the current time on a router and display information about how long the router, router software, and routing protocols have been running.

**Action**
To check time on a router, use the following Junos OS command-line interface (CLI) operational mode command:

```
user@host> show system uptime
```

**Sample Output**

```
user@host> show system uptime
Protocols started: 1998–10–13 19:33:45 UTC (00:12:02 ago)
Last configured: 1998–10–13 19:33:45 UTC (00:12:02 ago) by abc
12:45PM up 22:54, 2 users, load averages: 0.07, 0.02, 0.01
```

**Meaning**
The sample output shows the current system time in UTC, the date and time when the router was last booted and how long it has been running, when the routing protocols were last started and how long they have been running, when a configuration was last committed, and the name of the user who issued the last `commit` command. If a different time zone is configured, the output shows that time zone. For information on configuring the time zone, see the *Junos System Basics Configuration Guide*.

The sample output shows that the current time is 12:45 PM, the router has been operational for 22:54 hours, and two users are logged in to the router. The output also shows that the load average is 0.07 seconds for the last minute, 0.02 seconds for the last 5 minutes, and 0.01 seconds for the last 15 minutes.

Check How Long Router Components Have Been Up

**Purpose**
When a problem occurs and you check the system to see how long it has been up, you may find that the `show system uptime` command displays the current time and information about how long the router, router software, and routing protocols have been running, but does not tell you if a component failed. Determining whether a component failed when a problem occurred with the router is an important step in the diagnosis of a problem.

**Action**
To check how long router components have been up, issue the `show chassis` command for the components on your router:

```
user@host> show chassis fpc detail
user@host> show chassis routing-engine
user@host> show chassis feb
user@host> show chassis scb
user@host> show chassis sfm
user@host> show chassis ssb
```
### Sample Output

The following sample output is for an M20 router:

```plaintext
user@host> show chassis fpc detail
Slot 0 information:
 State Empty
Slot 1 information:
 State Online
 Logical slot 0
 Temperature 32 degrees C / 89 degrees F
 Total CPU DRAM 8 MB
 Total SRAM 1 MB
 Total SDRAM 128 MB
 Total notification SDRAM 24 MB
 I/O Manager ASIC information Version 2.0, Foundry IBM, Part number 0
 Start time: 2003-09-23 17:20:42 UTC
 Uptime: 1 day, 4 hours, 45 minutes, 14 seconds
Slot 2 information:
 State Empty
Slot 3 information:
 State Online
 Logical slot 1
 Temperature 32 degrees C / 89 degrees F
 Total CPU DRAM 8 MB
 Total SRAM 1 MB
 Total SDRAM 128 MB
 Total notification SDRAM 24 MB
 I/O Manager ASIC information Version 1.1, Foundry IBM, Part number 0
 Start time: 2003-09-12 01:28:16 UTC
 Uptime: 12 days, 20 hours, 37 minutes, 40 seconds
```
Sample Output

user@host> show chassis routing-engine
Routing Engine status:
Slot 0:
  Current state                  Master
  Election priority              Master (default)
  Temperature                 30 degrees C / 86 degrees F
  DRAM                       768 MB
  Memory utilization          17 percent
  CPU utilization:            
    User                       0 percent
    Background                 0 percent
    Kernel                     1 percent
    Interrupt                  0 percent
    Idle                      99 percent
  Model                          RE-2.0
  Serial ID                      5800007348d9a01
  Start time                     2003-09-19 07:05:20 PDT
  Uptime           6 hours, 42 minutes, 26 seconds
  Load averages:                 1 minute   5 minute  15 minute
                                0.00       0.00       0.00
Routing Engine status:
Slot 1:
  Current state                  Backup
  Election priority              Backup (default)
  Temperature                 30 degrees C / 86 degrees F
  DRAM                       768 MB
  Memory utilization          0 percent
  CPU utilization:            
    User                       0 percent
    Background                 0 percent
    Kernel                     0 percent
    Interrupt                  0 percent
    Idle                      100 percent
  Model                          RE-2.0
  Serial ID                      d8000073475701
  Start time                     2003-06-17 16:37:33 PDT
  Uptime           93 days, 20 hours, 58 minutes, 14 seconds

Sample Output

user@host> show chassis ssb
SSB status:
Slot 0 information:
  State                          Master
  Temperature                 33 degrees C / 91 degrees F
  CPU utilization              2 percent
  Interrupt utilization        0 percent
  Heap utilization             17 percent
  Buffer utilization           43 percent
  Total CPU DRAM               64 MB
  Internet Processor II        Version 1, Foundry IBM, Part number 9
  Start time:                   2003-09-19 07:06:52 PDT
  Uptime:                       6 hours, 43 minutes, 52 seconds
Slot 1 information:
  State                          Backup
  Uptime:                       93 days, 20 hours, 58 minutes, 14 seconds

Meaning  The sample output shows the time when the component started running and how long
the component has been running. A short uptime can indicate a problem with the component.

Check the NTP Peers

**Purpose** Ensure that the clock time on the router is synchronized with the time on the NTP server.

**Action** To check NTP peers, enter the following Junos OS CLI operational mode command:

```
user@host> show ntp associations
```

**Sample Output 1**

```
user@host> show ntp associations
remote refid st t when poll reach delay offset jitter
==
*coetanian.juniper.GPS. 1 u 22 64 377 6.861 -1.297 0.811
```

Meaning Sample output 1 is synchronized with the NTP server because there is an asterisk (*) at the beginning of the output. Also, the router with the asterisk (*) is the master router and the system is synchronizing with this NTP server.

Sample output 2 shows that the time on the server and router is so far apart that NTP will not attempt to synchronize. The **offset** value of 1830 is too large a difference and the **jitter** value of 917.667 is also too large to provide reliability to the **offset** value.

In ordinary conditions, the NTP server synchronizes the router clock in small steps so that the timescale is effectively continuous. In conditions of extreme network congestion, the NTP server discards sample offsets exceeding 128 ms, unless sample offsets are greater than 128 ms, for longer than 900 seconds. In this case, no matter what the next offset, the NTP server adjusts to the indicated time.

For more detailed information on configuring the NTP server, see the *Junos System Basics Configuration Guide*.

Check the NTP Status

**Purpose** View the configuration of the NTP server and the status of the system.

**Action** To check NTP status, enter the following Junos OS CLI operational mode command:

```
user@host> show ntp status
```
Sample Output

user@host> show ntp status
status=0644 leap_none, sync_ntp, 4 events, event_peer/strat_chg,
processor="i386", system="JUNOS5.7-20030919-IMAyzc", leap=00, stratum=2,
precision=-28, rootdelay=6.861, rootdispersion=10.465, peer=11004,
refid=coetanian.company.net,
reftime=c315b20a.a5c768df Fri, Sep 19 2003 9:49:14.647,poll=6,
clock=c315b22a.1b31a08b Fri, Sep 19 2003 9:49:46.106, state=4,
phase=-1.297, frequency=74.659, jitter=0.725, stability=0.005

Meaning  The sample output shows when the clock was last adjusted (reftime), together with its
status and most recent exception event. Table 38 on page 222 lists and describes the
fields in the output of the show ntp status command.

Table 38: Sample Output Fields for the show ntp status Command

<table>
<thead>
<tr>
<th>Output Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>status=0644</td>
<td>Internal status flags.</td>
</tr>
<tr>
<td>leap_none</td>
<td>The router is not doing a leap second.</td>
</tr>
<tr>
<td>sync_ntp</td>
<td>The server and the router are synchronized.</td>
</tr>
<tr>
<td>4events</td>
<td>The accumulated number of events since NTP was started.</td>
</tr>
<tr>
<td>event_peer/strat_chg</td>
<td>Last event code.</td>
</tr>
<tr>
<td>processor=&quot;i386&quot;, system=&quot;JUNOS5.7-20030919-IMAyzc&quot;</td>
<td>Both fields identify the current system information.</td>
</tr>
<tr>
<td>leap=00</td>
<td>An internal value related to leap seconds.</td>
</tr>
<tr>
<td>stratum=2</td>
<td>The router stratum, which is always one higher than the stratum of the server to which the router is synchronized. If the router is not synchronized, the value is 16 instead of 2.</td>
</tr>
<tr>
<td>precision=-28</td>
<td>Order of magnitude of how small an interval the local system's clock can measure. In this example, -28 means that the system can measure a period of -28 seconds, approximately 1/64 of a microsecond, or 16 nanoseconds.</td>
</tr>
<tr>
<td>rootdelay=6.861</td>
<td>One-way delay between the local system and the stratum 0 clock source. Essentially, this is the sum of the delays between this router and its synchronized source, the source and its source, and so on, all the way up to the atomic clock (which is stratum 0).</td>
</tr>
<tr>
<td>rootdispersion=10.465</td>
<td>The confidence level of the clock, in microseconds, that encompasses delay, jitter, and so on.</td>
</tr>
<tr>
<td>peer=11004</td>
<td>No information is available for this field yet.</td>
</tr>
</tbody>
</table>
Table 38: Sample Output Fields for the show ntp status Command (continued)

<table>
<thead>
<tr>
<th>Output Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>refid=coetanian.company.net, reftime=c315b20a.a5c768df Fri, Sep 19 2003 9:49:14.647</td>
<td>These two fields identify the selected and synchronized source, and the last reference time received from it.</td>
</tr>
<tr>
<td>poll=6</td>
<td>The delay interval at which the synchronized server polls. In this example, 6 indicates that the server polls every (2^6) seconds, or every 64 seconds.</td>
</tr>
<tr>
<td>clock=c315b22a.1b31a08b Fri, Sep 19 2003 9:49:14.647</td>
<td>The current time.</td>
</tr>
<tr>
<td>state=4</td>
<td>No information is available for this field yet.</td>
</tr>
<tr>
<td>phase=-1.297</td>
<td>The calculated offset based on the local time, the server's last reported time, and the sense of the delay between the router and the server. This is measured in milliseconds.</td>
</tr>
<tr>
<td>frequency=74.659</td>
<td>The clock frequency, in MHz. Note that this is the same order of magnitude as precision.</td>
</tr>
<tr>
<td>jitter=0.725</td>
<td>Variation in the time delay between the router and the server.</td>
</tr>
<tr>
<td>stability=0.005</td>
<td>A measure of how often the speed on the router must be changed to keep synchronized with the server. If the local clock is not perfectly stable, it will speed up or slow down, and NTP will have to counteract that tendency.</td>
</tr>
</tbody>
</table>
CHAPTER 21

Check User Accounts and Permissions

This chapter describes how to check user accounts and permissions.

- Checklist for Checking User Accounts and Permissions on page 225
- Understand User Accounts and Permissions on page 226
- Check Users Logged In To a Router on page 226
- Check for Users in Configuration Mode on page 227
- Check the Commands That Users Are Entering on page 228
- Log a User Out of the Router on page 230
- Check When the Last Configuration Change Occurred on page 231
- Force a Message to Logged-In User Terminals on page 232
- Check RADIUS Server Connectivity on page 233

Checklist for Checking User Accounts and Permissions

| Purpose | Table 39 on page 225 provides links and commands for checking user accounts and permissions. |

| Action |

Table 39: Checklist for Checking User Accounts and Permissions

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Understand User Accounts and Permissions” on page 226</td>
<td></td>
</tr>
<tr>
<td>“Check Users Logged In To a Router” on page 226</td>
<td>show system users</td>
</tr>
<tr>
<td>“Check for Users in Configuration Mode” on page 227</td>
<td>[edit] status</td>
</tr>
<tr>
<td>“Check the Commands That Users Are Entering” on page 228</td>
<td>[edit] edit system syslog edit file filename set interactive-commands info show commit</td>
</tr>
<tr>
<td>1. Configure the Log File for Tracking CLI Commands on page 228</td>
<td></td>
</tr>
</tbody>
</table>
Table 39: Checklist for Checking User Accounts and Permissions (continued)

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Display the Configured Log File on page 229</td>
<td>[edit system syslog] run show log filename</td>
</tr>
<tr>
<td>“Log a User Out of the Router” on page 230</td>
<td>request system logout username</td>
</tr>
<tr>
<td>“Check When the Last Configuration Change Occurred” on page 231</td>
<td>[edit] edit system syslog edit file filename set change-log info show commit</td>
</tr>
<tr>
<td>2. Display the Configured Log File on page 231</td>
<td>[edit system syslog] run show log filename</td>
</tr>
<tr>
<td>“Force a Message to Logged-In User Terminals” on page 232</td>
<td>request message all message “text” request message message “text” user username</td>
</tr>
<tr>
<td>“Check RADIUS Server Connectivity” on page 233</td>
<td>[edit system] show run ping IP-address</td>
</tr>
</tbody>
</table>

Understand User Accounts and Permissions

Junos OS can be configured to support any number of user accounts. Each user account has an access level for which you can define the login name and, optionally, information that identifies the user. After you create an account, the software creates a home directory in the file system for the user.

In this topic, it is assumed that user accounts and permissions are configured on the router. For more detailed information about creating a user account and configuring permissions, see the Junos Network Management Configuration Guide.

Check Users Logged In To a Router

<table>
<thead>
<tr>
<th>Purpose</th>
<th>You may need to take note of the users currently logged in to a router.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td>To list all users who are currently logged in to a router, enter the following Junos OS command-line interface (CLI) operational mode command:</td>
</tr>
<tr>
<td></td>
<td>user@host&gt; show system users</td>
</tr>
</tbody>
</table>
Sample Output

user@host> show system users
1:49PM PDT up 6:44, 3 users, load averages: 0.00, 0.00, 0.00

<table>
<thead>
<tr>
<th>USER</th>
<th>TTY</th>
<th>FROM</th>
<th>LOGIN@</th>
<th>IDLE</th>
<th>WHAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>jgchan</td>
<td>p0</td>
<td>big.company.net</td>
<td>1:36PM</td>
<td>12</td>
<td>-csh (csh)</td>
</tr>
<tr>
<td>user</td>
<td>p1</td>
<td>pink.company.net</td>
<td>1:49PM</td>
<td>-</td>
<td>-cli (cli)</td>
</tr>
<tr>
<td>blue</td>
<td>p2</td>
<td>level5.company.net</td>
<td>2:30PM</td>
<td></td>
<td>-cli</td>
</tr>
</tbody>
</table>

Meaning  The sample output lists information about the users who are currently logged in to a router. There are three users, one of whom has not recently accessed the router. Two of the users are running the CLI, and one is working from the UNIX-level shell (csh). Table 39 on page 225 lists and describes the fields in the output of the show system users command.

Table 40: Description of Output Fields for the show system users Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time and up</td>
<td>Current time, in the local time zone, and how long the router has been operational.</td>
</tr>
<tr>
<td>users</td>
<td>Number of users logged in to the router.</td>
</tr>
<tr>
<td>load averages</td>
<td>Load averages for the last 1 minute, 5 minutes, and 15 minutes.</td>
</tr>
<tr>
<td>USER</td>
<td>Username.</td>
</tr>
<tr>
<td>TTY</td>
<td>Terminal through which the user is logged in.</td>
</tr>
<tr>
<td>FROM</td>
<td>System from which the user is logged in. A hyphen indicates that the user is logged in through the console.</td>
</tr>
<tr>
<td>LOGIN@</td>
<td>Time when the user logged in.</td>
</tr>
<tr>
<td>IDLE</td>
<td>How long the user has been idle.</td>
</tr>
<tr>
<td>WHAT</td>
<td>Processes that the user is running.</td>
</tr>
</tbody>
</table>

Check for Users in Configuration Mode

Purpose  Before you change the configuration or commit a candidate configuration, it is a good idea to check for users in configuration mode.

Action  To display users currently editing the configuration, follow these steps:

1. To enter configuration mode, type the following command:
   
   `user@host> edit`

2. Enter the following configuration mode command:

   ```
   ```
For example:

```
user@host> show system users
```

```
USER TTY FROM LOGIN@ IDLE WHAT
mwazna p0 bigpunk.juniper.net 4:58PM - -cli (cli)
jgchan p1 bigpunk.juniper.net 2:25PM 2:32 -csh (csh)
jgchan p2 bigpunk.juniper.net 2:35PM 2:18 cli
taffy p3 bigpunk.juniper.net 3:28PM 5 -cli (cli)
tmauro p4 bigpunk.juniper.net 4:16PM 37 cli
```

### Sample Output

**Meaning**  The sample output lists the users who are currently logged in to the router. Five users are logged in to the router, with one user logged in twice, `jgchan`. Each user is logged in through a different terminal (`TTY`—`p0`, `p1`, `p2`, `p3`, and `p4`) from the system `bigpunk.juniper.net`. A hyphen in the `FROM` field indicates that the user logged in through the console.

Additional information includes the time when the user logged in (`LOGIN`), the amount of time the user is not active on the router (`IDLE`), and the processes that the user is running (`WHAT`). In this example, the users are running the command-line interface (`cli`) and the UNIX-level shell (`csh`).

### Check the Commands That Users Are Entering

**Purpose**  A common set of operations you can check is when users log in to the router and the CLI commands they issue.

To check the commands that users are entering, follow these steps:

1. Configure the Log File for Tracking CLI Commands on page 228
2. Display the Configured Log File on page 229

### Configure the Log File for Tracking CLI Commands

**Action**  To configure the log file for tracking CLI commands, follow these steps:

1. In configuration mode, go to the following hierarchy level:

   ```
 [edit]
 user@host# edit system syslog
   ```

2. Configure the log file:

   ```
 [edit system syslog]
 user@host# edit file filename
   ```

   For example:

   ```
 [edit system syslog]
   ```
3. Configure the interactive-commands facility and severity level:

```
[edit system syslog filename]
user@host# set interactive-commands info
```

4. Verify the configuration:

```
[edit system syslog]
user@host# show file cli-commands {
 interactive-commands info;
}
```

5. Commit the configuration:

```
user@host# commit
```

**Meaning**

The configuration example shows that the log file `cli-commands` is configured with the `interactive-commands` facility at the `info` severity level. Table 41 on page 229 lists and describes the severity levels.

### Table 41: Severity Levels

<table>
<thead>
<tr>
<th>Severity Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>info</td>
<td>Log all top-level CLI commands, including the <code>configure</code> command, and all configuration mode commands.</td>
</tr>
<tr>
<td>notice</td>
<td>Log the configuration mode commands <code>rollback</code> and <code>commit</code>.</td>
</tr>
<tr>
<td>warning</td>
<td>Log when any software process restarts.</td>
</tr>
</tbody>
</table>

---

**Display the Configured Log File**

**Purpose**

To display the log file in configuration mode, enter the following command:

```
[edit system syslog]
user@host# run show log filename
```

For example:

```
[edit system syslog]
user@host# run show log cli-commands
```
Sample Output

[edit system syslog]
user@host# run show log cli-commands
Sep 16 11:24:25  nut mgd[3442]: UI_COMMIT_PROGRESS: commit: signaling 'Syslog
ddaemon', pid 2457, signal 1, status 0
Sep 16 11:24:25  nut mgd[3442]: UI_COMMIT_PROGRESS: commit: signaling 'SNMP
ddaemon', pid 2592, signal 31, status 0
Sep 16 11:28:36  nut mgd[3442]: UI_CMDLINE_READ_LINE: User 'user', command 'run
show log cli-commands'
Sep 16 11:30:39  nut mgd[3442]: UI_CMDLINE_READ_LINE: User 'user', command 'run
show log security'
Sep 16 11:31:26  nut mgd[3442]: UI_CMDLINE_READ_LINE: User 'user', command 'run
show log messages'
Sep 16 11:41:21  nut mgd[3442]: UI_CMDLINE_READ_LINE: User 'user', command 'edit
file cli-commands'
Sep 16 11:41:26  nut mgd[3442]: UI_CMDLINE_READ_LINE: User 'user', command 'show
'
Sep 16 11:44:57  nut mgd[3442]: UI_CMDLINE_READ_LINE: User 'user', command 'set
interactive-commands info'
Sep 16 14:32:15  nut mgd[3442]: UI_CMDLINE_READ_LINE: User 'user', command 'run
show log cli-commands'

Meaning  The sample output shows the CLI commands that were entered since the log file was
configured.

Log a User Out of the Router

Purpose  Disconnect a user session when that session does not terminate after the user logs out.

Action  To log a user out of all terminal sessions on a router, enter the following Junos OS CLI
operational mode command:

user@host> request system logout username

Sample Output

user@host> show system users
10:07PM  up 13 days, 1:25, 2 users, load averages: 0.17, 0.05, 0.02
USER    TTY      FROM                              LOGIN@  IDLE WHAT
harry   p0       hpot-lt.cmpy.net                 10:07PM     - -cli (cl
wizard p1       hpot-lt.cmpy.net                 10:06PM     - -cli (cl

user@host> request system logout user harry
user@host> show system users
10:07PM  up 13 days, 1:25, 1 user, load averages: 0.24, 0.06, 0.02
USER    TTY      FROM                              LOGIN@  IDLE WHAT
wizard p1       hpot-lt.cmpy.net                 10:06PM     - -cli (cl

Meaning  The sample output for the first show system users command shows there were two users
on the router, harry and wizard. The request system logout user command was issued to
log out user harry. Because there is no output to indicate that harry was logged out, the
show system users command was issued again to verify that user harry was actually
logged out of the router.
Check When the Last Configuration Change Occurred

**Purpose**
When a problem occurs on a router, it is a good idea to check when the last configuration change was made because it may have had some influence on the problem.

To check when the last configuration change occurred, follow these steps:

1. Configure Configuration Change Tracking on page 231
2. Display the Configured Log File on page 231

Configure Configuration Change Tracking

**Action**
To configure this type of logging, follow these steps:

1. In configuration mode, go to the following hierarchy level:
   
   ```
 [edit]
 user@host# edit system syslog
   ```

2. Configure the log file:

   ```
 [edit system syslog]
 user@host# edit file filename
   ```
   For example:
   ```
 [edit system syslog]
 user@host# edit file mw-configuration-changes
   ```

3. Configure the change-log facility and severity level:

   ```
 [edit system syslog filename]
 user@host# set change-log info
   ```

4. Verify the configuration:

   ```
 [edit system syslog]
 user@host# show file mw-configuration-changes { change-log info; }
   ```

5. Commit the configuration:

   ```
 user@host# commit
   ```

Display the Configured Log File

**Purpose**
To display the log file in configuration mode.

**Action**
To display the log file in configuration mode, enter the following command:

```
[edit system syslog]
user@host# run show log filename
```  
For example:

```
[edit system syslog]
```
user@host# run show log mw-configuration-changes

**Sample Output**

```
[edit system syslog]
user@host# run show log mw-configuration-changes
Sep 17 07:03:22 nut mgd[7793]: UI_CFG_AUDIT_OTHER: User 'root' override: /config/juniper.conf
Sep 17 07:07:21 nut mgd[2751]: UI_CFG_AUDIT_OTHER: User 'root' set: [interfaces lo0 unit 0 family inet address 127.0.0.1/32]
Sep 17 07:07:21 nut mgd[2751]: UI_CFG_AUDIT_SET: User 'root' set: [system domain-name] "englab.company.net" -> "englab.company.net"
Sep 17 07:07:21 nut mgd[2751]: UI_CFG_AUDIT_OTHER: User 'root' set: [system name-server 172.17.28.101]
Sep 17 07:07:22 nut mgd[2751]: UI_CFG_AUDIT_OTHER: User 'root' set: [system domain-search] "englab.company.net"
Sep 17 07:07:22 nut mgd[2751]: UI_CFG_AUDIT_OTHER: User 'root' set: [system domain-search] "company.net"
Sep 17 07:07:22 nut mgd[2751]: UI_CFG_AUDIT_OTHER: User 'root' set: [system domain-search] "jnpr.net"
```

**Meaning**
The sample output shows the contents of the log file and that the last configuration change was on September 17 at 07:07:22.

---

**Force a Message to Logged-In User Terminals**

**Purpose**
You have a scheduled maintenance window or have other important information to convey to users logged in to the router.

**Action**
To force a message to the terminals of logged-in users, enter the following Junos OS CLI operational mode command:

```
user@host> request message all message "text"
```

**Sample Output**
```
uuser@host> request message all message "This is an experiment, please be patient"

Broadcast Message from user@host (/dev/tty0p0) at 10:50 PDT...

This is an experiment, please be patient
```

**Meaning**
The sample output shows that the message “This is an experiment, please be patient” was sent to the consoles of all logged-in users, and the message “Maintenance window in 10 minutes” was sent to the console of the logged-in user, maria. For more detailed information about this command, see the *Junos Network Management Configuration Guide*.

**Syntax**
```
request message all message "text"
request message message "text" (terminal terminal-name | user user-name)
```
Check RADIUS Server Connectivity

**Purpose**
It is important to check connectivity to the RADIUS server when attempting to diagnose an authentication problem.

**Action**
To ensure that you can ping the RADIUS server, follow these steps:

1. In configuration mode, go to the following hierarchy level:
   ```
 [edit]
 user@host# edit system
   ```
2. Determine the IP address of the RADIUS server:
   ```
 [edit system]
 user@host# show
   ```
   For example:
   ```
 [edit system]
 user@host# show
 host-name nut;
domain-name englab.company.net;
[...Output truncated...]
radius-server {
 10.10.10.5 {
 secret "9h14bhlM-VYJGD7-w2gUD"; # SECRET-DATA
 timeout 5;
 retry 3;
 }
 10.10.10.240 {
 secret "9hMKrMXwYoDik-VwgaJHk"; # SECRET-DATA
 timeout 5;
 retry 3;
 }
}[...Output truncated...]
```  
3. Ping the IP address of the RADIUS server:
   ```
 user@host# run ping IP address
   ```
   For example:
   ```
 user@host# run ping 10.10.10.5
 PING 10.10.10.5 (10.10.10.5): 56 data bytes
 64 bytes from 10.10.10.5: icmp_seq=0 ttl=254 time=0.402 ms
 64 bytes from 10.10.10.5: icmp_seq=1 ttl=254 time=0.279 ms
 64 bytes from 10.10.10.5: icmp_seq=2 ttl=254 time=0.292 ms
 64 bytes from 10.10.10.5: icmp_seq=3 ttl=254 time=0.283 ms
 64 bytes from 10.10.10.5: icmp_seq=4 ttl=254 time=0.283 ms
 ^C
 --- 10.10.10.5 ping statistics ---
 5 packets transmitted, 5 packets received, 0% packet loss
 round-trip min/avg/max/stddev = 0.271/0.295/0.402/0.036 ms
Meaning The sample output shows that the RADIUS server is connected and that the connection is running at a reasonable speed.
PART 5

Search Log Messages

- Track Normal Operations on page 237
- Track Error Conditions on page 249
- Collect Crash Data on page 271
This chapter describes how to configure system logging to monitor system-wide, high-level operations.

- Checklist for Tracking Normal Operations on page 237
- Configure System Logging on page 238

Checklist for Tracking Normal Operations

Purpose

Table 42 on page 237 provides links and commands for tracking normal operations.

Action

Table 42: Checklist for Tracking Normal Operations

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Configure System Logging” on page 238</td>
<td>[edit] [edit system syslog] set file filename facility level show commit</td>
</tr>
<tr>
<td>1. Log Messages to a Local Log File on page 239</td>
<td>[edit] [edit system syslog] set host hostname facility level show commit</td>
</tr>
<tr>
<td>2. Log Information to a Remote Host on page 240</td>
<td>[edit] [edit system syslog] set user username facility level show commit</td>
</tr>
<tr>
<td>3. Log Information to a User Terminal on page 241</td>
<td>[edit] [edit system syslog] set console facility level show commit</td>
</tr>
<tr>
<td>4. Log Information to a Router Console on page 241</td>
<td>[edit] [edit system syslog] set console facility level show commit</td>
</tr>
</tbody>
</table>
Table 42: Checklist for Tracking Normal Operations (continued)

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Configure the Number and Size of Log Files on page 242</td>
<td>[edit]</td>
</tr>
<tr>
<td></td>
<td>[edit system syslog]</td>
</tr>
<tr>
<td></td>
<td>set archive files number size size</td>
</tr>
<tr>
<td></td>
<td>show</td>
</tr>
<tr>
<td></td>
<td>commit</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>[edit]</td>
</tr>
<tr>
<td></td>
<td>[edit system syslog file filename]</td>
</tr>
<tr>
<td></td>
<td>set archive files number size size</td>
</tr>
<tr>
<td></td>
<td>show</td>
</tr>
<tr>
<td></td>
<td>commit</td>
</tr>
<tr>
<td>6. Log BGP State Transition Events on page 243</td>
<td>[edit]</td>
</tr>
<tr>
<td></td>
<td>[edit protocol bgp]</td>
</tr>
<tr>
<td></td>
<td>set log-updown</td>
</tr>
<tr>
<td></td>
<td>show</td>
</tr>
<tr>
<td></td>
<td>commit</td>
</tr>
<tr>
<td>7. Display a Log File on page 245</td>
<td>show log filename</td>
</tr>
<tr>
<td>8. Monitor Messages in Near-Real Time on page 246</td>
<td>monitor start filename</td>
</tr>
<tr>
<td>9. Stop Monitoring Log Files on page 247</td>
<td>monitor stop filename</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>monitor stop</td>
</tr>
</tbody>
</table>

Configure System Logging

Purpose
System logging operations use a system logging mechanism to record system-wide, high-level operations, such as interfaces going up or down and users logging in to or out of a router.

To configure system logging, follow these steps:

1. Log Messages to a Local Log File on page 239
2. Log Information to a Remote Host on page 240
3. Log Information to a User Terminal on page 241
4. Log Information to a Router Console on page 241
5. Configure the Number and Size of Log Files on page 242
6. Log BGP State Transition Events on page 243
7. Display a Log File on page 245
8. Monitor Messages in Near-Real Time on page 246
9. Stop Monitoring Log Files on page 247
Log Messages to a Local Log File

To log messages to a local log file on the router, follow these steps:

1. In configuration mode, go to the following hierarchy level:
   ```
   [edit]
   user@host# edit system syslog
   ```

2. Configure the file, facility, and level:
   ```
   user@host# set file filename facility level
   ```
 For example:
   ```
   [edit system syslog]
   user@host# set file security authorization info
   ```

3. Verify the configuration:
   ```
   user@host# show
   ```
 For example:
   ```
   [edit system syslog]
   user@host# show
   file security
   authorization info
   ```

4. Commit the configuration:
   ```
   user@host# commit
   ```

Table 43 on page 239 lists the Junos system logging facilities. Each message is assigned to a facility, which is a group of messages that are either generated by the same software process or concern a similar condition or activity (such as authentication attempts).

Table 43: Junos System Logging Facilities

<table>
<thead>
<tr>
<th>Facility</th>
<th>Type of Event or Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>Any (includes messages from all facilities).</td>
</tr>
<tr>
<td>authorization</td>
<td>Authentication and authorization attempts.</td>
</tr>
<tr>
<td>change-log</td>
<td>Change to the Junos configuration.</td>
</tr>
<tr>
<td>conflict-log</td>
<td>Configuration that is inconsistent with router hardware.</td>
</tr>
<tr>
<td>cron</td>
<td>Actions performed or errors encountered by the cron process.</td>
</tr>
<tr>
<td>daemon</td>
<td>Actions performed or errors encountered by various system processes.</td>
</tr>
<tr>
<td>firewall</td>
<td>Packet filtering actions performed by a firewall filter.</td>
</tr>
<tr>
<td>interactive-commands</td>
<td>Commands issued at the Junos OS command-line interface (CLI) operational mode prompt.</td>
</tr>
</tbody>
</table>
Table 43: Junos System Logging Facilities

<table>
<thead>
<tr>
<th>Facility</th>
<th>Type of Event or Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>kernel</td>
<td>Actions performed or errors encountered by the Junos kernel.</td>
</tr>
<tr>
<td>pfe</td>
<td>Actions performed or errors encountered by the Packet Forwarding Engine.</td>
</tr>
<tr>
<td>user</td>
<td>Actions performed or errors encountered by various user-space processes.</td>
</tr>
</tbody>
</table>

Table 44 on page 240 lists the system log message severity levels supported by the Junos OS. Each message is assigned a severity level, which indicates how seriously it affects router functioning.

Table 44: System Log Message Severity Levels

<table>
<thead>
<tr>
<th>Severity Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>emergency</td>
<td>System panic or other condition that causes the router to stop functioning.</td>
</tr>
<tr>
<td>alert</td>
<td>Conditions that require immediate correction, such as a corrupted system database.</td>
</tr>
<tr>
<td>critical</td>
<td>Critical conditions, such as hard drive errors.</td>
</tr>
<tr>
<td>error</td>
<td>Error conditions that generally have less serious consequences than errors at the emergency, alert, and critical levels.</td>
</tr>
<tr>
<td>warning</td>
<td>Conditions that warrant monitoring.</td>
</tr>
<tr>
<td>notice</td>
<td>Conditions that are not errors but might warrant special handling.</td>
</tr>
<tr>
<td>info</td>
<td>Events or nonerror conditions of interest.</td>
</tr>
<tr>
<td>debug</td>
<td>Software debugging messages. Specify this level only when directed by a technical support representative.</td>
</tr>
</tbody>
</table>

Log Information to a Remote Host

Action

To log messages to a remote host, follow these steps:

1. In configuration mode, go to the following hierarchy level:

 `[edit]`

 `user@host# edit system syslog`

2. Configure the host, facility, and level:

 `user@host# set host hostname facility level`

 For example:

 `[edit system syslog]`

 `user@host# set host junipero.berry.net daemon info`
3. Verify the configuration:

   ```
   user@host# show
   ```

 For example:

   ```
   [edit system syslog]
   user@host# show
   hostjunipero.berry.net
   daemon info;
   ```

4. Commit the configuration:

   ```
   user@host# commit
   ```

 For information on logging facilities and severity levels supported by the Junos OS, see Junos OS System Logging Facilities and Message Severity Levels.

Log Information to a User Terminal

Action
To log messages to a user terminal, follow these steps:

1. In configuration mode, go to the following hierarchy level:

   ```
   [edit]
   ```

   ```
   user@host# edit system syslog
   ```

2. Configure the user, facility, and level:

   ```
   user@host# set user username facility level
   ```

 For example:

   ```
   [edit system syslog]
   user@host# set user alex any critical
   ```

3. Verify the configuration:

   ```
   user@host# show
   ```

 For example:

   ```
   [edit system syslog]
   user@host# show
   user alex
   any critical
   ```

4. Commit the configuration:

   ```
   user@host# commit
   ```

 For information on logging facilities and security levels supported by the Junos OS, see Junos OS System Logging Facilities and Message Severity Levels.

Log Information to a Router Console

Action
To log messages to a router console, follow these steps:

1. In configuration mode, go to the following hierarchy level:

   ```
   [edit]
   ```
Configure the router console, facility, and level:

user@host# set console facility level

For example:

[edit system syslog]
user@host# set console any error

3. Verify the configuration:

user@host# show

For example:

[edit system syslog]
user@host# show console any error

4. Commit the configuration:

user@host# commit

For information on logging facilities and security levels supported by the Junos OS, see Junos OS System Logging Facilities and Message Severity Levels.

Configure the Number and Size of Log Files

Purpose By default, the Junos logging facility stops writing messages to a log file when the file reaches 128 KB in size. It closes the file and adds a numerical suffix, then opens and directs messages to a new file with the original name. By default, the Junos logging facility creates up to 10 files before it begins overwriting the contents of the oldest file.

Action To configure the number and size of the log files, follow these steps:

1. In configuration mode, go to one of the following hierarchy levels:

 [edit]
 user@host# edit system syslog
 or
 [edit]
 user@host# edit system syslog filename

2. Configure the number and size of the archive files:

 user@host# set archive files number size size

 For example:

 [edit system syslog]
 user@host# set archive files 10 size 65536

3. Verify the configuration:

 user@host# show

 For example:
[edit system syslog]
user@host# show
archive size 64k files 10

4. Commit the configuration:
 user@host# commit

See the Junos System Basics Configuration Guide for more detailed explanations and examples of log file configurations.

Log BGP State Transition Events

Purpose Border Gateway Protocol (BGP) state transitions indicate a network problem and need to be logged and investigated.

Action To log BGP state transition events to the system log, follow these steps:
 1. In configuration mode, go to the following hierarchy level:
 [edit]
 user@host# edit protocol bgp
 2. Configure the system log:
 user@host# set log-updown
 3. Verify the configuration:
 user@host# show
 4. Commit the configuration:
 user@host# commit

Meaning Log messages from BGP state transition events are sufficient to diagnose most BGP session problems. Table 45 on page 243 lists and describes the six states of a BGP session.

Table 45: Six States of a BGP Session

<table>
<thead>
<tr>
<th>BGP State</th>
<th>Description</th>
</tr>
</thead>
</table>
| Idle | This is the first state of a connection. BGP waits for a start event initiated by an administrator. The start event might be the establishment of a BGP session through router configuration or the resetting of an existing session. After the start event, BGP initializes its resources, resets a connect-retry timer, initiates a TCP transport connection, and starts listening for connections initiated by remote peers. BGP then transitions to a Connect state.
If there are errors, BGP falls back to the Idle state. |
Table 45: Six States of a BGP Session (continued)

<table>
<thead>
<tr>
<th>BGP State</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Connect** | BGP waits for the transport protocol connection to complete. If the TCP transport connection is successful, the state transitions to **OpenSent**.
If the transport connection is not successful, the state transitions to **Active**.
If the connect-retry timer has expired, the state remains in the **Connect** state, the timer is reset, and a transport connection is initiated.
With any other event, the state goes back to **Idle**. |
| **Active** | BGP tries to acquire a peer by initiating a transport protocol connection.
If it is successful, the state transitions to **OpenSent**.
If the connect-retry timer expires, BGP restarts the connect timer and falls back to the **Connect** state. BGP continues to listen for a connection that may be initiated from another peer. The state may go back to **Idle** in case of other events, such as a stop event.
In general, a neighbor state flip-flopping between **Connect** and **Active** is an indication that there is a problem with the TCP transport connection. Such a problem might be caused by many TCP retransmissions or the inability of a neighbor to reach the IP address of its peer. |
| **OpenSent** | BGP receives an open message from its peer. In the **OpenSent** state, BGP compares its autonomous system (AS) number with the AS number of its peer and recognizes whether the peer belongs to the same AS (internal BGP) or to a different AS (external BGP).
The open message is checked for correctness. In case of errors, such as a bad version number of an unacceptable AS, BGP sends an error-notification message and goes back to **Idle**.
For any other errors, such as expiration of the hold timer or a stop event, BGP sends a notification message with the corresponding error code and falls back to the **Idle** state.
If there are no errors, BGP sends keepalive messages and resets the keepalive timer. In this state, the hold time is negotiated. If the hold time is 0, the hold and keepalive timers are not restarted.
When a TCP transport disconnect is detected, the state falls back to **Active**. |
Table 45: Six States of a BGP Session (continued)

<table>
<thead>
<tr>
<th>BGP State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenConfirm</td>
<td>BGP waits for a keepalive or notification message. If a keepalive is received, the state becomes Established, and the neighbor negotiation is complete. If the system receives an update or keepalive message, it restarts the hold timer (assuming that the negotiated hold time is not 0). If a notification message is received, the state falls back to Idle. The system sends periodic keepalive messages at the rate set by the keepalive timer. In case of a transport disconnect notification or in response to a stop event, the state falls back to Idle. In response to other events, the system sends a notification message with a finite state machine (FSM) error code and goes back to Idle.</td>
</tr>
<tr>
<td>Established</td>
<td>This is the final state in the neighbor negotiation. In this state, BGP exchanges update ackets with its peers and the hold timer is restarted at the receipt of an update or keepalive message when it is not set to zero. If the system receives a notification message, the state falls back to Idle. Update messages are checked for errors, such as missing attributes, duplicate attributes, and so on. If errors are found, a notification is sent to the peer, and the state falls back to Idle. BGP goes back to Idle when the hold timer expires, a disconnect notification is received from the transport protocol, a stop event is received, or in response to any other event.</td>
</tr>
</tbody>
</table>

For more detailed BGP protocol packet information, configure BGP-specific tracing. See “Checklist for Tracking Error Conditions” on page 249 for more information.

Display a Log File

Purpose
To look at a log or trace file.

Action
To look at a log or trace file, use the following Junos OS CLI operational mode command:

```
user@host> show log filename
```
Sample Output

user@host> **show log messages**
Sep 10 07:00:00 host newsyslog[7249]: logfile turned over
Sep 10 07:01:49 host rpd[6451]: bgp_listen_accept: Connection attempt from unconfigured neighbor: 10.0.8.1+1348
Sep 10 07:04:17 host rpd[6451]: bgp_listen_accept: Connection attempt from unconfigured neighbor: 10.0.8.1+1349
Sep 10 07:06:45 host rpd[6451]: bgp_listen_accept: Connection attempt from unconfigured neighbor: 10.0.8.1+1350
Sep 10 07:07:53 host login: 2 LOGIN FAILURES FROM 172.24.16.21
Sep 10 07:08:25 host inetd[2785]: /usr/libexec/telnetd[7251]: exit status 0x100
Sep 10 07:11:41 host rpd[6451]: bgp_listen_accept: Connection attempt from unconfigured neighbor: 10.0.8.1+1351
Sep 10 07:14:09 host rpd[6451]: bgp_listen_accept: Connection attempt from unconfigured neighbor: 10.0.8.1+1352
Sep 10 07:16:37 host rpd[6451]: bgp_listen_accept: Connection attempt from unconfigured neighbor: 10.0.8.1+1353
Sep 10 07:19:05 host rpd[6451]: bgp_listen_accept: Connection attempt from unconfigured neighbor: 10.0.8.1+1354
Sep 10 07:21:33 host rpd[6451]: bgp_listen_accept: Connection attempt from unconfigured neighbor:

Meaning The sample output shows the **rpd** log messages in the **messages** file for September 10 from 7:00 to 7:21 AM.

NOTE: Local log files are saved in the `/var/log` directory.

Monitor Messages in Near-Real Time

Purpose To monitor messages in near-real time as they are being written to the log file.

Action To monitor messages in near-real time as they are being written to the log file, use the following Junos OS CLI operational mode command:

```
user@host> monitor start filename
```

Sample Output

```
user@host> monitor start messages
*** messages ***
Sep 10 19:46:30 router rpd[6451]: bgp_listen_accept: Connection attempt from unconfigured neighbor: 10.0.8.1+1658
```

Meaning The sample output shows the routing protocol log messages in the **messages** file for September 10.
Stop Monitoring Log Files

Action To stop monitoring log files, use the following Junos OS CLI operational mode command:

- `user@host> monitor stop filename`
- `user@host> monitor stop`

Copyright © 2013, Juniper Networks, Inc.
CHAPTER 23

Track Error Conditions

This chapter describes how to configure routing protocol daemon tracing, Border Gateway Protocol (BGP), Intermediate System-to-Intermediate System (IS-IS) protocol, and Open Shortest Path First (OSPF) protocol tracing to diagnose error conditions.

- Checklist for Tracking Error Conditions on page 249
- Configure Routing Protocol Process Tracing on page 251
- Configure BGP-Specific Options on page 256
- Configure IS-IS-Specific Options on page 259
- Configure OSPF-Specific Options on page 264

Checklist for Tracking Error Conditions

Table 46 on page 249 provides links and commands for configuring routing protocol daemon tracing, Border Gateway Protocol (BGP), Intermediate System-to-Intermediate System (IS-IS) protocol, and Open Shortest Path First (OSPF) protocol tracing to diagnose error conditions.

Table 46: Checklist for Tracking Error Conditions

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 46 on page 249 provides links and commands for configuring routing protocol daemon tracing, Border Gateway Protocol (BGP), Intermediate System-to-Intermediate System (IS-IS) protocol, and Open Shortest Path First (OSPF) protocol tracing to diagnose error conditions.</td>
<td></td>
</tr>
</tbody>
</table>

Table 46: Checklist for Tracking Error Conditions

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Configure Routing Protocol Process Tracing” on page 251</td>
<td>edit routing-options traceoptions set file filename size size files number show commit run show log filename</td>
</tr>
<tr>
<td>Configure Routing Protocol Process Tracing on page 251</td>
<td>[edit] edit routing-options traceoptions set file filename size size files number show commit run show log filename</td>
</tr>
<tr>
<td>Configure Routing Protocol Tracing for a Specific Routing Protocol on page 254</td>
<td>[edit] edit protocol protocol-name traceoptions set file filename size size files number show commit run show log filename</td>
</tr>
<tr>
<td>Monitor Trace File Messages Written in Near-Real Time on page 255</td>
<td>monitor start filename</td>
</tr>
</tbody>
</table>
Table 46: Checklist for Tracking Error Conditions (continued)

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Stop Trace File Monitoring on page 256</td>
<td><code>monitor stop filename</code></td>
</tr>
</tbody>
</table>

“Configure BGP-Specific Options” on page 256

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
</table>
| 1. Display Detailed BGP Protocol Information on page 256 | `[edit]`
 `edit protocol bgp traceoptions`
 `set flag update detail`
 `show`
 `commit`
 `run show log filename` |
| 2. Display Sent or Received BGP Packets | `[edit]`
 `edit protocol bgp traceoptions`
 `set flag update (send | receive)`
 `show`
 `commit`
 `run show log filename` |
| 3. Diagnose BGP Session Establishment Problems on page 258 | `[edit]`
 `edit protocol bgp`
 `set traceoptions flag open detail`
 `show`
 `commit`
 `run show log filename` |

“Configure IS-IS-Specific Options” on page 259

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
</table>
| 1. Displaying Detailed IS-IS Protocol Information on page 259 | `[edit]`
 `edit protocol isis traceoptions`
 `set flag hello detail`
 `show`
 `commit`
 `run show log filename` |
| 2. Displaying Sent or Received IS-IS Protocol Packets on page 261 | `[edit]`
 `edit protocols isis traceoptions`
 `set flag hello (send | receive)`
 `show`
 `commit`
 `run show log filename` |
| 3. Analyzing IS-IS Link-State PDUs in Detail on page 262 | `[edit]`
 `edit protocols isis traceoptions`
 `set flag lsp detail`
 `show`
 `commit`
 `run show log filename` |

“Configure OSPF-Specific Options” on page 264
Configure Routing Protocol Process Tracing

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Routing protocol process (rpd) tracing tracks all general routing operations and records them in a log file.</th>
</tr>
</thead>
</table>

To configure routing protocol process (rpd) tracing and monitor trace file messages, follow these steps:

1. Configure Routing Protocol Process Tracing on page 251
2. Configure Routing Protocol Tracing for a Specific Routing Protocol on page 254
3. Monitor Trace File Messages Written in Near-Real Time on page 255
4. Stop Trace File Monitoring on page 256

Configure Routing Protocol Process Tracing

<table>
<thead>
<tr>
<th>Action</th>
<th>To configure routing protocol process (rpd) tracing, follow these steps:</th>
</tr>
</thead>
</table>

1. In configuration mode, go to the following hierarchy level:

   ```
   [edit]
   user@host# edit routing-options traceoptions
   ```

2. Configure the file, file size, number, and flags:

   ```
   [edit routing-options traceoptions]
   user@host# set file filename size size file number
   [edit routing-options traceoptions]
   user@host# set flag flag
   ```

 For example:

   ```
   [edit routing-options traceoptions]
   user@host# set file daemonlog size 10240 files 10
   [edit routing-options traceoptions]
   user@host# set flag general
   ```

3. Verify the configuration:
user@host# show
For example:

```
[edit routing-options traceoptions]
user@host# show
def daemonlog size 10k files 10;
flag general;
```

4. Commit the configuration:

```
user@host# commit
```

NOTE: Some traceoptions flags generate an extensive amount of information. Tracing can also slow down the operation of routing protocols. Delete the traceoptions configuration if you no longer require it.

1. View the contents of the file containing the detailed messages:

```
user@host# run show log filename
```

For example:

```
[edit routing-options traceoptions]
user@pro4-a# run show log daemonlog
Sep 17 14:17:31 trace_on: Tracing to "/var/log/daemonlog" started
Sep 17 14:17:31 Tracing flags enabled: general
Sep 17 14:17:31 inet_routerid_notify: Router ID: 10.255.254.44
Sep 17 14:17:31 inet_routerid_notify: No Router ID assigned
Sep 17 14:17:31 Initializing LSI globals
Sep 17 14:17:31 Initializing OSPF instances
Sep 17 14:17:31 Initializing OSPFv2 instance master
Sep 17 14:17:31 OSPFv2 instance master running
[...Output truncated...]
```

Meaning
Table 47 on page 252 lists tracing flags and example output for Junos-supported routing protocol daemon tracing.

Table 47: Routing Protocol Daemon Tracing Flags

<table>
<thead>
<tr>
<th>Tracing Flag</th>
<th>Description</th>
<th>Example Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>All operations</td>
<td>Not available.</td>
</tr>
<tr>
<td>general</td>
<td>Normal operations and routing table change</td>
<td>Not available.</td>
</tr>
<tr>
<td>normal</td>
<td>Normal operations</td>
<td>Not available.</td>
</tr>
<tr>
<td>Tracing Flag</td>
<td>Description</td>
<td>Example Output</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| **policy** | Policy operations and actions | Nov 29 22:19:58 export: Dest 10.0.0.0 proto Static
Nov 29 22:19:58 policy_match_qual_or: Qualifier proto Sense: 0
Nov 29 22:19:58 policy_match_qual_or: Qualifier proto Sense: 0
Nov 29 22:19:58 export: Dest 10.10.10.0 proto IS-IS |
| **route** | Routing table changes | Nov 29 22:23:59
Nov 29 22:23:59 rtiist_walker_job: rt.list walk for RIB inet.0 started with 42 entries
Nov 29 22:23:59 rt_flash_update_callback: flash KRT (inet.0) start
Nov 29 22:23:59 rt_flash_update_callback: flash KRT (inet.0) done
Nov 29 22:23:59 rtiist_walker_job: rt.list walk for inet.0 ended with 42 entries
Nov 29 22:23:59 KRT Request: send len 68 v14 seq 0 CHANGE route/useraf2 addr 172.16.0.0 nhop-type unicast nhop 10.10.10.33
Nov 29 22:23:59 KRT Request: send len 68 v14 seq 0 ADD route/user af2 addr 172.17.0.0 nhop-type unicast nhop 10.10.10.33
Nov 29 22:23:59 KRT Request: send len 68 v14 seq 0 ADD route/user af2 addr 172.18.0.0 nhop-type unicast nhop 10.10.10.33
Nov 29 22:24:19 trace_on: Tracing to “/var/log/rpdlog” started
Nov 29 22:24:19 KRT Request: send len 68 v14 seq 0 DELETE route/user af2 addr 10.10.218.0 nhop-type unicast nhop 10.10.10.29
Nov 29 22:24:19 RELEASE 10.10.218.0 255.255.255.0 gw 10.10.218.0 BGP pref 170/-101 metric so-1/1/0.0,so-1/1/1.0 <Release Delete Int Ext> as 65401
Nov 29 22:24:19 KRT Request: send len 68 v14 seq 0 DELETE route/user af2 addr 172.18.0.0 nhop-type unicast nhop 10.10.10.33 |
| **state** | State transitions | Not available. |
| **task** | Interface transactions and processing | Nov 29 22:50:04 foreground dispatch running job task_collect for task Scheduler
Nov 29 22:50:04 task_collect_job: freeing task MGMT_Listen (DELETED)
Nov 29 22:50:04 foreground dispatch completed job task_collect for task Scheduler
Nov 29 22:50:04 background dispatch running job rt_static_update for task RT
Nov 29 22:50:04 task_job_delete: delete background job rt_static_update for task RT
Nov 29 22:50:04 background dispatch completed job rt_static_update for task RT
Nov 29 22:50:04 background dispatch running job Flash update for task RT
Nov 29 22:50:04 background dispatch returned job Flash update for task RT
Nov 29 22:50:04 background dispatch running job Flash update for task RT
Nov 29 22:50:04 task_job_delete: delete background job Flash update for task RT
Nov 29 22:50:04 background dispatch completed job Flash update for task RT
Nov 29 22:50:04 background dispatch running job Flash update for task RT
Nov 29 22:50:04 task_job_delete: delete background job Flash update for task RT |
| **timer** | Timer usage | Nov 29 22:52:07 task_timer_hiprio_dispatch: ran 1 timer
Nov 29 22:52:07 main: running normal priority timer queue
Nov 29 22:52:07 main: ran 1 timer
Nov 29 22:52:07 task_timer_hiprio_dispatch: running high priority timer queue
Nov 29 22:52:07 task_timer_hiprio_dispatch: ran 1 timer
Nov 29 22:52:07 main: running normal priority timer queue
Nov 29 22:52:07 main: ran 1 timer
Nov 29 22:52:07 main: running normal priority timer queue
Nov 29 22:52:07 main: ran 2 timers |
Configure Routing Protocol Tracing for a Specific Routing Protocol

Action

To configure routing protocol tracing for a specific routing protocol, follow these steps:

1. In configuration mode, go to the following hierarchy level:

   ```
   [edit]
   user@host# edit protocol protocol-name traceoptions
   ```

2. Configure the file, file size, number, and flags:

   ```
   [edit protocols protocol-name traceoptions]
   user@host# set file filename size size files number
   [edit protocols protocol-name traceoptions]
   user@host# set flag flag
   ```

 For example:

   ```
   [edit protocols ospf traceoptions]
   user@host# set file ospflog size 10240 files 10
   [edit protocols ospf traceoptions]
   user@host# set flag general
   ```

3. Verify the configuration:

   ```
   user@host# show
   ```

 For example:

   ```
   [edit protocols ospf traceoptions]
   user@host# show
   file ospflog size 10k files 10;
   flag general;
   ```

4. Commit the configuration:

   ```
   user@host# commit
   ```

5. View the contents of the file containing the detailed messages:

   ```
   user@host# run show log filename
   ```

 For example:

   ```
   [edit protocols ospf traceoptions]
   user@pro4-a# run show log ospflog
   Sep 17 14:23:10 trace_on: Tracing to "/var/log/ospflog" started
   Sep 17 14:23:10 rt_flash_update_callback: flash OSPF (inet.0) start
   Sep 17 14:23:10 OSPF: multicast address 224.0.0.5/32, route ignored
   Sep 17 14:23:10 rt_flash_update_callback: flash OSPF (inet.0) done
   Sep 17 14:23:10 CHANGE 10.255.245.46/32 gw 10.10.208.67 OSPF pref 10/0 metric 1/0
   fe-0/0/0/0.0 <Delete Int>
   Sep 17 14:23:10 CHANGE 10.255.245.46/32 gw 10.10.208.67 OSPF pref 10/0 metric 1/0
   fe-0/0/0/0.0 <Active Int>
   Sep 17 14:23:10 ADD 10.255.245.46/32 gw 10.10.208.67 OSPF pref 10/0 metric 1/0
   fe-0/0/0/0.0 <Active Int>
   Sep 17 14:23:10 CHANGE 10.255.245.48/32 gw 10.10.208.69 OSPF pref 10/0 metric 1/0
   fe-0/0/0/0.0 <Delete Int>
   Sep 17 14:23:10 CHANGE 10.255.245.48/32 gw 10.10.208.69 OSPF pref 10/0 metric 1/0
   fe-0/0/0/0.0 <Active Int>
   ```
Sep 17 14:23:10 ADD 10.255.245.48/32 gw 10.10.208.69 OSPF pref 10/0 metric 1/0
fe-0/0/0.0 <Active Int>
Sep 17 14:23:10 rt_close: 4/4 routes proto OSPF
[...Output truncated...]

Meaning
Table 48 on page 255 lists standard tracing options that are available globally or that can be applied to specific protocols. You can also configure tracing for a specific BGP peer or peer group. For more information, see the Junos System Basics Configuration Guide.

Table 48: Standard Trace Options for Routing Protocols

<table>
<thead>
<tr>
<th>Tracing Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>All operations</td>
</tr>
<tr>
<td>general</td>
<td>Normal operations and routing table changes</td>
</tr>
<tr>
<td>normal</td>
<td>Normal operations</td>
</tr>
<tr>
<td>policy</td>
<td>Policy operations and actions</td>
</tr>
<tr>
<td>route</td>
<td>Routing table changes</td>
</tr>
<tr>
<td>state</td>
<td>State transitions</td>
</tr>
<tr>
<td>task</td>
<td>Interface transactions and processing</td>
</tr>
<tr>
<td>timer</td>
<td>Timer usage</td>
</tr>
</tbody>
</table>

Monitor Trace File Messages Written in Near-Real Time

Purpose
To monitor messages in near-real time as they are being written to a trace file.

Action
To monitor messages in near-real time as they are being written to a trace file, use the following Junos OS command-line interface (CLI) operational mode command:

```
user@host> monitor start filename
```
Sample Output

```
user@host> monitor start isis
user@host> *** isis ***
Sep 15 18:32:21 Updating LSP isis5.02-00 in database
Sep 15 18:32:21 Updating L2 LSP isis5.02-00 in TED
Sep 15 18:32:21 Adding a half link from isis5.02 to isis6.00
Sep 15 18:32:21 Adding a half link from isis5.02 to isis5.00
Sep 15 18:32:21 Adding a half link from isis5.02 to isis6.00
Sep 15 18:32:21 Adding a half link from isis5.02 to isis5.00
Sep 15 18:32:21 Scheduling L2 LSP isis5.02-00 sequence 0xd87 on interface fxp2.3
Sep 15 18:32:21 Updating LSP isis5.00-00 in database
Sep 15 18:32:21 Sending L2 LSP isis5.00-00 on interface fxp2.3
 Sep 15 18:32:21 sequence 0xd87, checksum 0xc1c8, lifetime 1200
```

Stop Trace File Monitoring

Action
To stop monitoring a trace file in near-real time, use the following Junos OS CLI operational mode command after you have started monitoring:

```
user@host> monitor stop isis
```

Configure BGP-Specific Options

Purpose
When unexpected events or problems occur, or if you want to diagnose BGP establishment issues, you can view more detailed information by configuring options specific to BGP. You can also configure tracing for a specific BGP peer or peer group. For more information, see the Junos System Basics Configuration Guide.

1. Display Detailed BGP Protocol Information on page 256
2. Diagnose BGP Session Establishment Problems on page 258

Display Detailed BGP Protocol Information

Action
To display BGP protocol information in detail, follow these steps:

1. In configuration mode, go to the following hierarchy level:
2. Configure the flag to display detailed BGP protocol messages:

```
[edit protocols bgp traceoptions]
user@host# set flag update detail
```

3. Verify the configuration:

```
user@host# show
```

For example:

```
[edit protocols bgp traceoptions]
user@host# show
flag update detail;
```

4. Commit the configuration:

```
user@host# commit
```

5. View the contents of the file containing the detailed messages:

```
user@host# run show log filename
```

For example:

```
[edit protocols bgp traceoptions]
user@pro5-a# run show log bgp
```

```
Sep 17 14:47:16 trace_on: Tracing to "/var/log/bgp" started
Sep 17 14:47:17 bgp_read_v4_update: receiving packet(s) from 10.255.245.53 (Internal AS 10458)
Sep 17 14:47:17 BGP RECV 10.255.245.53+179 -> 10.255.245.50+1141
Sep 17 14:47:17 BGP RECV message type 2 (Update) length 128
Sep 17 14:47:17 BGP RECV flags 0x40 code Origin(1): IGP
Sep 17 14:47:17 BGP RECV flags 0x40 code ASPath(2): 2
Sep 17 14:47:17 BGP RECV flags 0x80 code MultiExitDisc(4): 0
Sep 17 14:47:17 BGP RECV flags 0xc0 code ExtendedCommunities(16): 2:10458:1
[...Output truncated...]
```

Meaning

Table 49 on page 257 lists tracing flags specific to BGP and presents example output for some of the flags. You can also configure tracing for a specific BGP peer or peer group. For more information, see the Junos System Basics Configuration Guide.

<table>
<thead>
<tr>
<th>Tracing Flags</th>
<th>Description</th>
<th>Example Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>aspath</td>
<td>AS path regular expression operations</td>
<td>Not available.</td>
</tr>
</tbody>
</table>

| damping | Damping operations | Nov 28 17:01:12 bgp_damp_change: Change event
| | | Nov 28 17:01:12 bgp_dampen: Damping 10.10.1.0 |
| | | Nov 28 17:01:12 bgp_damp_change: Change event
| | | Nov 28 17:01:12 bgp_dampen: Damping 10.10.2.0 |
| | | Nov 28 17:01:12 bgp_damp_change: Change event
| | | Nov 28 17:01:12 bgp_dampen: Damping 10.10.3.0 |
Table 49: BGP Protocol Tracing Flags (continued)

<table>
<thead>
<tr>
<th>Tracing Flags</th>
<th>Description</th>
<th>Example Output</th>
</tr>
</thead>
</table>
| keepalive | BGP keepalive messages | Nov 28 17:09:27 bgp_send: sending 19 bytes to 10.217.5.101 (External AS 65471)
Nov 28 17:09:27
Nov 28 17:09:27 BGP SEND 10.217.5.1+179 -> 10.217.5.101+52162
Nov 28 17:09:27 BGP SEND message type 4 (KeepAlive) length 19
Nov 28 17:09:28
Nov 28 17:09:28 BGP RECV 10.217.5.101+52162 -> 10.217.5.1+179
Nov 28 17:09:28 BGP RECV message type 4 (KeepAlive) length 19 |
| open | BGP open packets | Nov 28 18:37:42 bgp_send: sending 37 bytes to 10.217.5.101 (External AS 65471)
Nov 28 18:37:42
Nov 28 18:37:42 BGP SEND 10.217.5.1+179 -> 10.217.5.101+38135
Nov 28 18:37:42 BGP SEND message type 1 (Open) length 37 |
| packets | All BGP protocol packets | Sep 27 17:45:31 BGP RECV 10.0.100.108+179 -> 10.0.100.105+1033
Sep 27 17:45:31 BGP RECV message type 4 (KeepAlive) length 19
Sep 27 17:45:31 BGP SEND 10.0.100.105+1033 -> 10.0.100.108+179
Sep 27 17:45:31 BGP SEND message type 4 (KeepAlive) length 19
Sep 27 17:45:31 bgp_read_v4_update: receiving packet(s) from 10.0.100.108 (Internal AS 100) |
| update | Update packets | Nov 28 19:05:24 BGP SEND 10.217.5.1+179 -> 10.217.5.101+55813
Nov 28 19:05:24 BGP SEND message type 2 (Update) length 53
Nov 28 19:05:24 bgp_send: sending 65 bytes to 10.217.5.101 (External AS 65471)
Nov 28 19:05:24
Nov 28 19:05:24 BGP SEND 10.217.5.1+179 -> 10.217.5.101+55813
Nov 28 19:05:24 BGP SEND message type 2 (Update) length 65
Nov 28 19:05:24 bgp_send: sending 55 bytes to 10.217.5.101 (External AS 65471) |

Diagnose BGP Session Establishment Problems

Purpose
To trace BGP session establishment problems.

Action
To trace BGP session establishment problems, follow these steps:

1. In configuration mode, go to the following hierarchy level:

   ```
   [edit]
   user@host# edit protocol bgp
   ```

2. Configure BGP open messages:

   ```
   [edit protocols bgp]
   user@host# set traceoptions flag open detail
   ```

3. Verify the configuration:

   ```
   user@host# show
   ```
 For example:

   ```
   [edit protocols bgp]
   user@host# show traceoptions
   ```
Configure IS-IS-Specific Options

Purpose
When unexpected events or problems occur, or if you want to diagnose IS-IS adjacency establishment issues, you can view more detailed information by configuring options specific to IS-IS.

To configure IS-IS options, follow these steps:

1. Displaying Detailed IS-IS Protocol Information on page 259
2. Displaying Sent or Received IS-IS Protocol Packets on page 261
3. Analyzing IS-IS Link-State PDUs in Detail on page 262

Displaying Detailed IS-IS Protocol Information

Action
To trace IS-IS messages in detail, follow these steps:

1. Configure the flag to display detailed IS-IS protocol messages.

 [edit protocols isis traceoptions]
 user@host# set flag hello detail

2. Verify the configuration.

 user@host# show

 For example:

 [edit protocols isis traceoptions]
 user@host# show
 file isislog size 10k files 10;
 flag hello detail;
3. Commit the configuration.

 user@host# commit

4. View the contents of the file containing the detailed messages.

 user@host# run show log filename

 For example:

 user@host# run show log isislog

 Nov 29 23:17:50 trace_on: Tracing to "/var/log/isislog" started
 Nov 29 23:17:50 Sending PTP IIH on so-1/1/1.0
 Nov 29 23:17:53 Sending PTP IIH on so-1/1/0.0
 Nov 29 23:17:54 Received PTP IIH, source id abc-core-01 on so-1/1/0.0
 Nov 29 23:17:54 from interface index 11
 Nov 29 23:17:54 max area 0, circuit type l2, packet length 4469
 Nov 29 23:17:54 hold time 30, circuit id 6
 Nov 29 23:17:54 neighbor state up
 Nov 29 23:17:54 speaks IP
 Nov 29 23:17:54 area address 99.0008 (1)
 Nov 29 23:17:54 IP address 10.10.10.29
 Nov 29 23:17:54 4396 bytes of total padding
 Nov 29 23:17:54 updating neighbor abc-core-01
 Nov 29 23:17:55 Received PTP IIH, source id abc-core-02 on so-1/1/1.0
 Nov 29 23:17:55 from interface index 12
 Nov 29 23:17:55 max area 0, circuit type l2, packet length 4469
 Nov 29 23:17:55 hold time 30, circuit id 6
 Nov 29 23:17:55 neighbor state up
 Nov 29 23:17:55 speaks IP
 Nov 29 23:17:55 area address 99.0000 (1)
 Nov 29 23:17:55 IP address 10.10.10.33
 Nov 29 23:17:55 4396 bytes of total padding
 Nov 29 23:17:55 updating neighbor abc-core-02

 Meaning Table 50 on page 260 lists tracing flags that can be configured specific to IS-IS and presents example output for some of the flags.

 Table 50: IS-IS Protocol Tracing Flags

<table>
<thead>
<tr>
<th>Tracing Flags</th>
<th>Description</th>
<th>Example Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>csn</td>
<td>Complete sequence number PDU (CSNP)</td>
<td>Nov 28 20:02:48 Sending L2 CSN on interface so-1/1/0.0 Nov 28 20:02:48 Sending L2 CSN on interface so-1/1/0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hello</td>
<td>Hello packet</td>
<td>Nov 28 20:13:50 Sending PTP IIH on so-1/1/0.0 Nov 28 20:13:50 Received PTP IIH, source id abc-core-01 on so-1/1/0.0 Nov 28 20:13:53 Received PTP IIH, source id abc-core-02 on so-1/1/0.0 Nov 28 20:13:57 Sending PTP IIH on so-1/1/0.0 Nov 28 20:13:58 Received PTP IIH, source id abc-core-01 on so-1/1/0.0 Nov 28 20:13:59 Sending PTP IIH on so-1/1/0.0</td>
</tr>
</tbody>
</table>

 Copyright © 2013, Juniper Networks, Inc.
<table>
<thead>
<tr>
<th>Tracing Flags</th>
<th>Description</th>
<th>Example Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>lsp</td>
<td>Link-state PDUs (LSPs)</td>
<td>Nov 28 20:15:46 Received L2 LSP abc-edge-01.00-00, interface so-1/1/0.0 Nov 28 20:15:46 from abc-core-01 Nov 28 20:15:46 sequence 0x1617, checksum 0xd92a, lifetime 1197 Nov 28 20:15:46 Updating L2 LSP abc-edge-01.00-00 in TED Nov 28 20:15:47 Received L2 LSP abc-edge-01.00-00, interface so-1/1/0.0 Nov 28 20:15:47 from abc-core-02 Nov 28 20:15:47 sequence 0x1617, checksum 0xd92a, lifetime 1197</td>
</tr>
<tr>
<td>lsp-generation</td>
<td>Link-state PDU generation packets</td>
<td>Nov 28 20:21:24 Regenerating L1 LSP abc-edge-03.00-00, old sequence 0x682 Nov 28 20:21:27 Rebuilding L1, fragment abc-edge-03.00-00 Nov 28 20:21:27 Rebuilt L1 fragment abc-edge-03.00-00, size 59 Nov 28 20:31:52 Regenerating L2 LSP abc-edge-03.00-00, old sequence 0x689 Nov 28 20:31:54 Rebuilding L2, fragment abc-edge-03.00-00-00 Nov 28 20:31:54 Rebuilt L2 fragment abc-edge-03.00-00-00, size 256 Nov 28 20:34:05 Regenerating L1 LSP abc-edge-03.00-00, old sequence 0x683 Nov 28 20:34:08 Rebuilding L1, fragment abc-edge-03.00-00-00 Nov 28 20:34:08 Rebuilt L1 fragment abc-edge-03.00-00, size 59</td>
</tr>
<tr>
<td>packets</td>
<td>All IS-IS protocol packets</td>
<td>Not available.</td>
</tr>
<tr>
<td>psn</td>
<td>Partial sequence number PDU (PSNP) packets</td>
<td>Nov 28 20:40:39 Received L2 PSN, source abc-core-01, interface so-1/1/0.0 Nov 28 20:40:39 Received L2 PSN, source abc-core-02, interface so-1/1/1.0 Nov 28 20:41:36 Sending L2 PSN on interface so-1/1/0.0 Nov 28 20:41:36 Sending L2 PSN on interface so-1/1/1.0 Nov 28 20:42:35 Received L2 PSN, source abc-core-01, interface so-1/1/0.0 Nov 28 20:42:35 LSP abc-edge-03.00-00 lifetime 1196 Nov 28 20:42:35 sequence 0x68c checksum 0x746d Nov 28 20:42:35 Received L2 PSN, source abc-core-01, interface so-1/1/1.0 Nov 28 20:42:35 LSP abc-edge-03.00-00 lifetime 1196 Nov 28 20:42:35 sequence 0x68c checksum 0x746d Nov 28 20:42:35 Sending L2 PSN on interface so-1/1/0.0 Nov 28 20:42:35 Sending L2 PSN on interface so-1/1/1.0 Nov 28 20:42:49 LSP abc-core-01.00-00 lifetime 1197 Nov 28 20:42:49 sequence 0x1c4fb checksum 0x9bec Nov 28 20:42:49 Sending L2 PSN on interface so-1/1/0.0 Nov 28 20:42:49 LSP abc-core-01.00-00 lifetime 1197 Nov 28 20:42:49 sequence 0x1c4fb checksum 0x9bec</td>
</tr>
<tr>
<td>spf</td>
<td>Shortest-path-first (SPF) calculations</td>
<td>Nov 28 20:44:01 Scheduling SPF for L1: ReconfigNov 28 20:44:01 Scheduling multicast SPF for L1: ReconfigNov 28 20:44:01 Scheduling SPF for L2: ReconfigNov 28 20:44:01 Scheduling SPF for L2: ReconfigNov 28 20:44:02 Running L1 SPFNov 28 20:44:02 L1 SPF initialization complete: 0.000000s cumulative timeNov 28 20:44:02 L1 SPF primary processing complete: 0.000303s cumulative timeNov 28 20:44:02 L1 SPF result postprocessing complete: 0.0000497s cumulative timeNov 28 20:44:02 L1 SPF RIB postprocessing complete: 0.0000626s cumulative timeNov 28 20:44:02 L1 SPF routing table postprocessing complete: 0.000736s cumulative time</td>
</tr>
</tbody>
</table>

Displaying Sent or Received IS-IS Protocol Packets

To configure the tracing for only sent or received IS-IS protocol packets, follow these steps:

1. Configure the flag to display sent, received, or both sent and received packets.

   ```
   [edit protocols isis traceoptions]
   user@host# set flag hello send
   ```

 or

   ```
   [edit protocols isis traceoptions]
   user@host# set flag hello receive
   ```
or

 [edit protocols isis traceoptions]
 user@host# set flag hello

2. Verify the configuration.

 user@host# show

For example:

 [edit protocols isis traceoptions]
 user@host# show
 file isislog size 10k files 10;
 flag hello send;

 or

 [edit protocols isis traceoptions]
 user@host# show
 file isislog size 10k files 10;
 flag hello receive;

 or

 [edit protocols isis traceoptions]
 user@host# show
 file isislog size 10k files 10;
 flag hello send receive;

3. Commit the configuration.

 user@host# commit

4. View the contents of the file containing the detailed messages.

 user@host# run show log filename

For example:

 user@host # run show log isislog
 Sep 27 18:17:01 ISIS periodic xmit to 01:80:c2:00:00:15 (IFL 2)
 Sep 27 18:17:01 ISIS periodic xmit to 01:80:c2:00:00:14 (IFL 2)
 Sep 27 18:17:03 ISIS periodic xmit to 01:80:c2:00:00:15 (IFL 2)
 Sep 27 18:17:04 ISIS periodic xmit to 01:80:c2:00:00:14 (IFL 2)
 Sep 27 18:17:06 ISIS L2 hello from 0000.0000.0008 (IFL 2) absorbed
 Sep 27 18:17:06 ISIS periodic xmit to 01:80:c2:00:00:15 (IFL 2)
 Sep 27 18:17:06 ISIS L1 hello from 0000.0000.0008 (IFL 2) absorbed

Analyzing IS-IS Link-State PDUs in Detail

To analyze IS-IS link-state PDUs in detail, follow these steps:

1. Configure IS-IS open messages.

 [edit protocols isis traceoptions]
 user@host# set flag lsp detail

2. Verify the configuration.

 user@host# show

For example:
[edit protocols isis traceoptions]
user@host# show
file isislog size 5m world-readable;
flag error;
flag lsp detail;

3. Commit the configuration.

user@host# commit

4. View the contents of the file containing the detailed messages.

user@host# run show log filename

For example:

user@host# run show log isislog
Nov 28 20:17:24 Received L2 LSP abc-core-01.00-00, interface so-1/1/0.0
Nov 28 20:17:24 from abc-core-01
Nov 28 20:17:24 sequence Ox1c4f9, checksum Ox9fe0, lifetime 1199
Nov 28 20:17:24 max area 0, length 426
Nov 28 20:17:24 no partition repair, no database overload
Nov 28 20:17:24 IS type 3, metric type 0
Nov 28 20:17:24 area address 99.0908 (1)
Nov 28 20:17:24 speaks CLNP
Nov 28 20:17:24 speaks IP
Nov 28 20:17:24 dyn hostname abc-core-01
Nov 28 20:17:24 IP address 10.10.134.11
Nov 28 20:17:24 IP prefix: 10.10.10.0/30 metric 1 up
Nov 28 20:17:24 IP prefix: 10.10.10.4/30 metric 5 up
Nov 28 20:17:24 IP prefix: 10.10.10.56/30 metric 5 up
Nov 28 20:17:24 IP prefix: 10.10.10.52/30 metric 1 up
Nov 28 20:17:24 IP prefix: 10.10.10.64/30 metric 5 up
Nov 28 20:17:24 IP prefix: 10.10.10.20/30 metric 5 up
Nov 28 20:17:24 IP prefix: 10.10.10.28/30 metric 5 up
Nov 28 20:17:24 IP prefix: 10.10.10.44/30 metric 5 up
Nov 28 20:17:24 IP prefix: 10.10.10.0 255.255.255.252 internal, metrics: default 1
Nov 28 20:17:24 IP prefix: 10.10.10.4 255.255.255.252 internal, metrics: default 5
Nov 28 20:17:24 IP prefix: 10.10.10.56 255.255.255.252 internal, metrics: default 5
Nov 28 20:17:24 IS neighbors:
Nov 28 20:17:24 IS neighbor abc-core-02.00
Nov 28 20:17:24 IS neighbor abc-brdr-01.00
Nov 28 20:17:24 IS neighbor abc-core-02.00, metric: 1
Nov 28 20:17:24 IS neighbor abc-esr-02.00, metric: 5
Nov 28 20:17:24 IS neighbor abc-edge-03.00, metric: 5
Nov 28 20:17:24 IS neighbor abc-edge-01.00, metric: 5
Configure OSPF-Specific Options

Purpose

When unexpected events or problems occur, or if you want to diagnose OSPF neighbor establishment issues, you can view more detailed information by configuring options specific to OSPF.

To configure OSPF options, follow these steps:

1. Diagnose OSPF Session Establishment Problems on page 264
2. Analyze OSPF Link-State Advertisement Packets in Detail on page 268

Diagnose OSPF Session Establishment Problems

Action

To trace OSPF messages in detail, follow these steps:

1. In configuration mode, go to the following hierarchy level:

   ```
   [edit]
   user@host# edit protocols ospf traceoptions
   ```

2. Configure OSPF hello messages:

   ```
   [edit protocols ospf traceoptions]
   user@host# set flag hello detail
   ```

3. Verify the configuration:

   ```
   user@host# show
   ```

 For example:

   ```
   [edit protocols ospf traceoptions]
   ```
user@host# show
 file ospf size 5m world-readable;
 flag hello detail;

4. Commit the configuration:

 user@host# commit

5. View the contents of the file containing the detailed messages:

 user@host# run show log filename

For example:

 user@host# run show log ospf

Dec 2 16:14:24 Version 2, length 44, ID 10.0.0.6, area 1.0.0.0
Dec 2 16:14:24 checksum 0xf01a, authtype 0
Dec 2 16:14:24 mask 0.0.0.0, hello_ivl 10, opts 0x2, prio 128
Dec 2 16:14:24 dead_ivl 40, DR 0.0.0.0, BDR 0.0.0.0
Dec 2 16:14:24 OSPF sent Hello (1) -> 224.0.0.5 (so-1/1/2.0)
Dec 2 16:14:24 Version 2, length 44, ID 10.0.0.6, area 1.0.0.0
Dec 2 16:14:24 checksum 0xf01a, authtype 0
Dec 2 16:14:24 mask 0.0.0.0, hello_ivl 10, opts 0x2, prio 128
Dec 2 16:14:24 dead_ivl 40, DR 0.0.0.0, BDR 0.0.0.0
Dec 2 16:14:26 OSPF rcvd Hello 10.10.10.33 -> 224.0.0.5 (so-1/1/1.0)
Dec 2 16:14:26 Version 2, length 48, ID 10.10.134.12, area 0.0.0.0
Dec 2 16:14:26 checksum 0x99b9, authtype 0Dec 2 16:14:26 mask 255.255.255.252, hello_ivl 10, opts 0x2, prio 1
Dec 2 16:14:26 dead_ivl 40, DR 0.0.0.0, BDR 0.0.0.0
Dec 2 16:14:29 OSPF rcvd Hello 10.10.10.29 -> 224.0.0.5 (so-1/1/0.0)
Dec 2 16:14:29 Version 2, length 48, ID 10.10.134.11, area 0.0.0.0
Dec 2 16:14:29 checksum 0x99b8, authtype 0Dec 2 16:14:29 mask 255.255.255.252, hello_ivl 10, opts 0x2, prio 1
Dec 2 16:14:29 dead_ivl 40, DR 0.0.0.0, BDR 0.0.0.0

Meaning Table 51 on page 265 lists OSPF tracing flags and presents example output for some of the flags.

Table 51: OSPF Protocol Tracing Flags

<table>
<thead>
<tr>
<th>Tracing Flags</th>
<th>Description</th>
<th>Example Output</th>
</tr>
</thead>
</table>
| database-description | All database description packets | Dec 2 15:44:55 RPD_OSPF_NBRDOWN: OSPF neighbor 10.10.10.29 (so-1/1/1/0.0) state changed from Full to Down
Dec 2 15:44:55 RPD_OSPF_NBRDOWN: OSPF neighbor 10.10.10.33 (so-1/1/1/0.0) state changed from Full to Down
Dec 2 15:44:55 RPD_OSPF_NBRUP: OSPF neighbor 10.10.10.33 (so-1/1/1/0.0) state changed from Init to ExStart
Dec 2 15:44:55 OSPF sent DbD (2) -> 224.0.0.5 (so-1/1/1/0.0)
Dec 2 15:44:55 Version 2, length 32, ID 10.0.0.6, area 0.0.0.0
Dec 2 15:44:55 checksum 0xf76b, authtype 0
Dec 2 15:44:55 options 0x42, l1, m1, ms1, seq 0xa093ee, mtu 4470
Dec 2 15:44:55 OSPF rcvd DbD 10.10.10.33 -> 224.0.0.5 (so-1/1/1/0.0)
Dec 2 15:44:55 Version 2, length 32, ID 10.10.134.12, area 0.0.0.0
Dec 2 15:44:55 checksum 0x312c, authtype 0
Dec 2 15:44:55 options 0x42, l1, m1, seq 0x2154, mtu 4470 |
Table 51: OSPF Protocol Tracing Flags (continued)

<table>
<thead>
<tr>
<th>Tracing Flags</th>
<th>Description</th>
<th>Example Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>error</td>
<td>OSPF errored packets</td>
<td>Dec 2 15:49:34 OSPF packet ignored: no matching interface from 172.16.120.29
Dec 2 15:49:44 OSPF packet ignored: no matching interface from 172.16.120.29
Dec 2 15:49:54 OSPF packet ignored: no matching interface from 172.16.120.29
Dec 2 15:50:04 OSPF packet ignored: no matching interface from 172.16.120.29
Dec 2 15:50:14 OSPF packet ignored: no matching interface from 172.16.120.29</td>
</tr>
<tr>
<td>event</td>
<td>OSPF state transitions</td>
<td>Dec 2 15:52:35 OSPF interface ge-2/2/0.0 state changed from DR to DR
Dec 2 15:52:35 OSPF interface ge-3/1/0.0 state changed from DR to DR
Dec 2 15:52:35 OSPF interface ge-3/2/0.0 state changed from DR to DR
Dec 2 15:52:35 OSPF interface ge-4/2/0.0 state changed from DR to DR
Dec 2 15:53:21 OSPF neighbor 10.10.10.29 (so-1/1/0.0) state changed from Full to Down
Dec 2 15:53:21 RPD_OSPF_NBRDOWN: OSPF neighbor 10.10.10.29 (so-1/1/0.0) state changed from Full to Down
Dec 2 15:53:21 OSPF neighbor 10.10.10.33 (so-1/1/1.0) state changed from Full to Down
Dec 2 15:53:21 RPD_OSPF_NBRDOWN: OSPF neighbor 10.10.10.33 (so-1/1/1.0) state changed from Full to Down
Dec 2 15:53:25 OSPF neighbor 10.10.10.33 (so-1/1/1.0) state changed from Down to Init
Dec 2 15:53:25 RPD_OSPF_NBRDOWN: OSPF neighbor 10.10.10.33 (so-1/1/1.0) state changed from Down to Init
Dec 2 15:53:25 OSPF neighbor 10.10.10.33 (so-1/1/1.0) state changed from Init to ExStart
Dec 2 15:53:25 RPD_OSPF_NBRUP: OSPF neighbor 10.10.10.33 (so-1/1/1.0) state changed from Init to ExStart
Dec 2 15:53:25 OSPF neighbor 10.10.10.33 (so-1/1/1.0) state changed from ExStart to Exchange
Dec 2 15:53:25 OSPF neighbor 10.10.10.33 (so-1/1/1.0) state changed from Exchange to Full
Dec 2 15:53:25 RPD_OSPF_NBRUP: OSPF neighbor 10.10.10.33 (so-1/1/1.0) state changed from Exchange to Full</td>
</tr>
<tr>
<td>flooding</td>
<td>Link-state flooding packets</td>
<td>Dec 2 15:55:21 OSPF LSA Summary 10.218.0.0 10.0.0.6 flooding on so-1/1/1/0.0
Dec 2 15:55:21 OSPF LSA Summary 10.218.0.0 10.0.0.6 flooding on so-1/1/1.0
Dec 2 15:55:21 OSPF LSA Summary 10.218.0.0 10.0.0.6 on no so-1/1/2.0 rexinmit lists, no flood
Dec 2 15:55:21 OSPF LSA Summary 10.218.0.0 10.0.0.6 on no so-1/1/3.0 rexinmit lists, no flood
Dec 2 15:55:21 OSPF LSA Summary 10.245.0.1 10.0.0.6 on no so-1/1/2.0 rexinmit lists, no flood
Dec 2 15:55:21 OSPF LSA Summary 10.245.0.1 10.0.0.6 on no so-1/1/3.0 rexinmit lists, no flood</td>
</tr>
</tbody>
</table>
Table 51: OSPF Protocol Tracing Flags *(continued)*

<table>
<thead>
<tr>
<th>Tracing Flags</th>
<th>Description</th>
<th>Example Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>hello</td>
<td>Hello packets</td>
<td>Dec 2 15:57:25 OSPF sent Hello (1) -> 224.0.0.5 (ge-3/1/0.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 15:57:25 Version 2, length 44, ID 10.0.0.6, area 2.0.0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 15:57:25 checksum 0x43f, authype 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 15:57:25 mask 255.255.0.0, hello_ivl 10, opts 0x2, prio 128</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 15:57:25 dead_ivl 40, DR 10.218.0.1, BDR 0.0.0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 15:57:25 OSPF rcvd Hello 10.10.10.33 -> 224.0.0.5 (so-1/1/1.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 15:57:25 Version 2, length 48, ID 10.10.134.12, area 0.0.0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 15:57:25 checksum 0x99b8, authype 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 15:57:25 mask 255.255.255.252, hello_ivl 10, opts 0x2, prio 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 15:57:25 dead_ivl 40, DR 0.0.0.0, BDR 0.0.0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 15:57:27 OSPF sent Hello (1) -> 224.0.0.5 (ge-3/2/0.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 15:57:27 Version 2, length 44, ID 10.0.0.6, area 2.0.0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 15:57:27 checksum 0x4a5, authype 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 15:57:27 mask 255.255.0.0, hello_ivl 10, opts 0x2, prio 128</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 15:57:27 dead_ivl 40, DR 10.116.0.1, BDR 0.0.0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 15:57:28 OSPF rcvd Hello 10.10.10.29 -> 224.0.0.5 (so-1/1/0.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 15:57:28 Version 2, length 48, ID 10.10.134.11, area 0.0.0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 15:57:28 checksum 0x99b9, authype 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 15:57:28 mask 255.255.255.252, hello_ivl 10, opts 0x2, prio 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 15:57:28 dead_ivl 40, DR 0.0.0.0, BDR 0.0.0.0</td>
</tr>
<tr>
<td>lsa-ack</td>
<td>Link-state acknowledgment packets</td>
<td>Dec 2 16:00:11 OSPF rcvd LSAck 10.10.10.29 -> 224.0.0.5 (so-1/1/0.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 16:00:11 Version 2, length 44, ID 10.10.134.11, area 0.0.0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 16:00:11 checksum 0xcbdf, authype 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 16:00:11 OSPF rcvd LSAck 10.10.10.33 -> 224.0.0.5 (so-1/1/1.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 16:00:11 Version 2, length 44, ID 10.10.134.12, area 0.0.0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 16:00:11 checksum 0x73bc, authype 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 16:00:16 OSPF rcvd LSAck 10.10.10.33 -> 224.0.0.5 (so-1/1/0.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 16:00:16 Version 2, length 44, ID 10.10.134.12, area 0.0.0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 16:00:16 checksum 0x8180, authype 0</td>
</tr>
<tr>
<td>lsa-request</td>
<td>Link-state request packets</td>
<td>Dec 2 16:01:38 OSPF rcvd LSRq 10.10.10.29 -> 224.0.0.5 (so-1/1/0.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 16:01:38 Version 2, length 108, ID 10.10.134.11, area 0.0.0.0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 16:01:38 checksum 0xe86, authype 0</td>
</tr>
<tr>
<td>lsa-update</td>
<td>Link-state update packets</td>
<td>Dec 2 16:09:12 OSPF built router LSA, area 0.0.0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 16:09:12 OSPF built router LSA, area 1.0.0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 16:09:12 OSPF built router LSA, area 2.0.0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 16:09:13 OSPF sent LSUpdate (4) -> 224.0.0.5 (so-1/1/0.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 16:09:13 Version 2, length 268, ID 10.0.0.6, area 0.0.0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 16:09:13 checksum 0xb047, authype 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 16:09:13 adv count 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 16:09:13 OSPF sent LSUpdate (4) -> 224.0.0.5 (so-1/1/1.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 16:09:13 Version 2, length 268, ID 10.0.0.6, area 0.0.0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 16:09:13 checksum 0xb047, authype 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec 2 16:09:13 adv count 7</td>
</tr>
<tr>
<td>packets</td>
<td>All OSPF packets</td>
<td>Not available.</td>
</tr>
<tr>
<td>packet-dump</td>
<td>Dump the contents of selected packet types</td>
<td>Not available.</td>
</tr>
</tbody>
</table>
Table 51: OSPF Protocol Tracing Flags (continued)

<table>
<thead>
<tr>
<th>Tracing Flags</th>
<th>Description</th>
<th>Example Output</th>
</tr>
</thead>
</table>
| spf | SPF calculations | Dec 2 16:08:03 OSPF full SPF refresh scheduled
Dec 2 16:08:04 OSPF SPF start, area 1.0.0.0
Dec 2 16:08:04 OSPF add LSA Router 10.0.0.6 distance 0 to SPF list
Dec 2 16:08:04 SPF elapsed time 0.000525s
Dec 2 16:08:04 OSPF SPF start, area 2.0.0.0
Dec 2 16:08:04 OSPF add LSA Router 10.0.0.6 distance 0 to SPF list
Dec 2 16:08:04 SPF elapsed time 0.000253s
Dec 2 16:08:04 Stub elapsed time 0.000249s
Dec 2 16:08:04 OSPF SPF start, area 0.0.0.0
Dec 2 16:08:04 OSPF add LSA Router 10.0.0.6 distance 0 to SPF list
Dec 2 16:08:04 OSPF add LSA Router 10.0.134.11 distance 1 to SPF list
Dec 2 16:08:04 IP nexthop so-1/1/0.0 0.0.0.0
Dec 2 16:08:04 OSPF add LSA Router 10.0.134.12 distance 1 to SPF list
Dec 2 16:08:04 IP nexthop so-1/1/1.0 0.0.0.0 |

Analyze OSPF Link-State Advertisement Packets in Detail

Action

To analyze OSPF link-state advertisement packets in detail, follow these steps:

1. In configuration mode, go to the following hierarchy level:

   ```
   [edit]
   user@host# edit protocols ospf traceoptions
   ```

2. Configure OSPF link-state packages:

   ```
   [edit protocols ospf traceoptions]
   user@host# set flag lsa-update detail
   ```

3. Verify the configuration:

   ```
   user@host# show
   ```

 For example:

   ```
   [edit protocols ospf traceoptions]
   user@host# show
   file ospf size 5m world-readable;
   flag hello detail;
   flag lsa-update detail;
   ```

4. Commit the configuration:

   ```
   user@host# commit
   ```

5. View the contents of the file containing the detailed messages:

   ```
   user@host# run show log filename
   ```

 For example:

   ```
   user@host# run show log ospf
   ```

 Dec 2 16:23:47 OSPF sent LSAUpdate (4) -> 224.0.0.5 (so-1/1/0.0) ec 2 16:23:47
 Version 2, length 196, ID 10.0.0.6, area 0.0.0.0
 Dec 2 16:23:47 checksum 0xcc46, authtype 0

Dec 2 16:23:47 adv count 6 Dec 2 16:23:47 OSPF sent LSUpdate (4) -> 224.0.0.5 (so-1/1/1.0)
Dec 2 16:23:47 Version 2, length 196, ID 10.0.0.6, area 0.0.0.0 Dec 2 16:23:47
checksum 0xcc46, authtype 0
Dec 2 16:23:47 adv count 6
CHAPTER 24

Collect Crash Data

This chapter explains the crashes that can occur in different areas of the Junos OS, and provides procedures you use to collect the crash data necessary for troubleshooting by the Juniper Networks Technical Assistance Center (JTAC).

- Checklist for Collecting Crash Data on page 271
- Understand Crash Data Collection on page 273
- Collect Crash Data for a Routing Engine Kernel on page 273
- Collect Crash Data for Routing Engine Daemons on page 277
- Collect Crash Data for the Packet Forwarding Engine Microkernel on page 281

Checklist for Collecting Crash Data

Problem Table 52 on page 271 provides links commands for collection crash data.

<table>
<thead>
<tr>
<th>Task</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>[“Understand Crash Data Collection” on page 273]</td>
<td></td>
</tr>
<tr>
<td>[“Collect Crash Data for a Routing Engine Kernel” on page 273]</td>
<td></td>
</tr>
<tr>
<td>1. Check the Routing Engine Core Files on page 274</td>
<td>file list detail /var/crash</td>
</tr>
<tr>
<td>2. Clear the NVRAM Contents on page 286</td>
<td></td>
</tr>
<tr>
<td>a. List the Core Files on page 274</td>
<td>start shell</td>
</tr>
<tr>
<td></td>
<td>su root password</td>
</tr>
<tr>
<td></td>
<td>cd /var/crash</td>
</tr>
<tr>
<td></td>
<td>ls -l</td>
</tr>
<tr>
<td>b. Compress the vmcore File on page 275</td>
<td>gzip vmcore.number</td>
</tr>
<tr>
<td></td>
<td>To unzip the vmcore file:</td>
</tr>
<tr>
<td></td>
<td>gzip -d vmcore.number.gz</td>
</tr>
<tr>
<td>c. Log Software Version Information</td>
<td>show version</td>
</tr>
</tbody>
</table>

Copyright © 2013, Juniper Networks, Inc.
Table 52: Checklist for Collecting Crash Data (continued)

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
</table>
| d. Open a Case with JTAC on page 276 | `support@juniper.net`
`ftp ftpjuniper.net` |

“Collect Crash Data for Routing Engine Daemons” on page 277

1. Check for Daemon Core Files on page 277
 | `file list detail /var/tmp` |
2. Collect and Send Routing Engine Crash Data to JTAC
 a. List the Daemon Core Files on page 278
 | `start shell`
`su`
`root password`
`cd /var/tmp`
`ls -l` |
 b. Compress the Daemon Core Files on page 279
 | `gzip daemon-executable-name.core.number` |
 c. Log Software Version Information
 | `show version` |
 d. Open a Case with JTAC on page 276
 | `support@juniper.net`
`ftp ftpjuniper.net` |

“Collect Crash Data for the Packet Forwarding Engine Microkernel” on page 281

1. Display the Crash Stack Traceback and Registration Information on page 282
 | `start shell`
`su`
`root password`
`vty component-executable-name`
`show nvram`
`show syslog messages` |
2. Clear the NVRAM Contents on page 286
 | `start shell`
`su`
`root password`
`vty component-executable-name`
`clear nvram` |
3. Check Packet Forwarding Engine Microkernel Core Files on page 287
 | `file list detail /var/crash` |
4. Collect and Send Routing Engine Crash Data to JTAC
 a. List the Core Files Generated by the Crash on page 287
 | `start shell`
`su`
`root password`
`cd /var/crash`
`ls -l` |
 b. Compress the Core Files on page 288
 | `gzip filename` |
 c. Log Software Version Information
 | `show version` |
Table 52: Checklist for Collecting Crash Data (continued)

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
</table>
| d. Open a Case with JTAC on page 276 | support@juniper.net
ftp ftp.juniper.net |

Understand Crash Data Collection

A crash can occur in one of three areas in the Junos OS architecture (see Figure 22 on page 273):

- Routing Engine kernel
- Routing Engine daemons (processes)
- Packet Forwarding Engine microkernel

Figure 22: Three Areas Where a Software Crash Can Occur

Software Architecture

Collect Crash Data for a Routing Engine Kernel

Purpose
When a Routing Engine kernel crashes, the Routing Engine automatically reboots. By default, the Juniper Networks router does not attempt to dump a core if the Routing Engine kernel crashes. As a result, there is no crash data on the router to help investigate the crash. In addition, the system log messages are similar to those generated when the router is powered down and restarted, so you cannot tell if the Routing Engine restart was caused by a kernel crash or a normal power restart.

To collect crash data for a Routing Engine kernel crash, follow these steps:

1. Check the Routing Engine Core Files on page 274
2. List the Core Files on page 274
3. Compress the vmcore File on page 275
Check the Routing Engine Core Files

Purpose If you observe disruption to the Routing Engine kernel, check the `/var/crash` directory for any core files created around the time of the crash.

Action To check the `/var/crash` directory, use the following Junos OS command-line interface (CLI) operational mode command:

```
user@host> file list detail /var/crash
```

Sample Output

```
user@host> file list detail /var/crash
total 1577912
  drwxr-x---   2 root  wheel        512 Sep  9 11:59 ./
  drwxr-xr-x  22 root  wheel        512 Oct 29 2001 ../
  -rw-r--r--   1 root  wheel          2 Jul 20 01:11 bounds
  -rw-r--r--   1 root  wheel    2166913 Jul 20 01:11 kernel.0
  -rw-r--r--   1 root  wheel          5 Feb 15  2002 minfree
  -rw-------   1 root  wheel  805306368 Jul 20 01:11 vmcore.0
```

Meaning The sample output lists the contents of the `/var/crash/` directory. Check the date and timestamp for any kernel core files created around the time of the crash. In the example above, two core files are listed: `kernel.0` and `vmcore.0`.

List the Core Files

Purpose To list the core files, follow these steps:

Action

1. Exit from the CLI environment and create a UNIX-level shell by entering the `start shell` command:

   ```
   user@host> start shell
   ```

2. Type `su` and the root password when prompted. You are now in the shell and the prompt is `%` instead of `>`, for example:

   ```
   % su
   Password: ****
   ```

3. Change the directory to `/var/crash` and type `ls -l`, for example:

   ```
   root@host% cd /var/crash
   root@host% ls -l
   ```

4. Look for any core files created around the time of the crash.
Sample Output

user@host> start shell
% su
Password: ****
root@host% cd /var/crash
root@host% ls -l
root@host% cd /var/crash
root@host% ls -l

Meaning The sample output lists the contents of the /var/crash directory and shows the current core files kernel.0 and vmcore.0.

Compress the vmcore File

Purpose The gzip compression utility is used to compress files. Compress the vmcore file if it is larger than 50 MB. Files created using the gzip command end with the file extension .gz.

NOTE: Use lowercase for the gzip command when you are in the shell.

Action To compress the vmcore file with gzip, use the following command from the shell:

root@host% gzip vmcore.number

To unzip the vmcore file with gzip, use the following command from the shell:

root@host% gzip -d vmcore.number.gz

Meaning The contents of the vmcore file are compressed into a single compressed file named vmcore.number.gz. The gzip command preserves the mode, ownership, and timestamps of files when compressing or decompressing them.

Log Software Version Information

Purpose To log the Junos OS version information.

Action To log the Junos OS version information, use the following Junos OS CLI operational mode command:

user@host> show version
Sample Output

user@host> show version
Hostname: host
Model: m10
JUNOS Base OS boot [5.0R5]
JUNOS Base OS Software Suite [5.0R5]
JUNOS Kernel Software Suite [5.0R5]
JUNOS Routing Software Suite [5.0R5]
JUNOS Packet Forwarding Engine Support [5.0R5]
JUNOS Crypto Software Suite [5.0R5]
JUNOS Online Documentation [5.0R5]
JUNOS Kernel Software Suite [5.0R5]
JUNOS CLI release 5.0R5 built by builder on 2002-03-02 04:45:32 UTC
JUNOS CHASSISD release 5.0R5 built by builder on 2002-03-02 04:43:37 UTC
JUNOS DCD release 5.0R5 built by builder on 2002-03-02 04:42:47 UTC
JUNOS RPD release 5.0R5 built by builder on 2002-03-02 04:46:17 UTC
JUNOS SNMPD release 5.0R5 built by builder on 2002-03-02 04:52:26 UTC
JUNOS MIB2D release 5.0R5 built by builder on 2002-03-02 04:45:37 UTC
JUNOS APSD release 5.0R5 built by builder on 2002-03-02 04:43:31 UTC
JUNOS VRRPD release 5.0R5 built by builder on 2002-03-02 04:52:34 UTC
JUNOS ALARMED release 5.0R5 built by builder on 2002-03-02 04:43:24 UTC
JUNOS PFED release 5.0R5 built by builder on 2002-03-02 04:46:06 UTC
JUNOS CRAFTD release 5.0R5 built by builder on 2002-03-02 04:44:30 UTC
JUNOS SAMPLED release 5.0R5 built by builder on 2002-03-02 04:52:20 UTC
JUNOS ILMID release 5.0R5 built by builder on 2002-03-02 04:45:21 UTC
JUNOS BPRELAYD release 5.0R5 built by builder on 2002-03-02 04:42:41 UTC
JUNOS RMOPD release 5.0R5 built by builder on 2002-03-02 04:46:11 UTC
JUNOS kernel-dd release 5.0R5 built by builder on 2002-03-02 04:41:07 UTC
JUNOS jroute-dd release 5.0R5 built by builder on 2002-03-02 04:41:21 UTC
JUNOS jdocs-dd release 5.0R5 built by builder on 2002-03-02 04:39:11 UTC

Meaning
The sample output shows the hostname, router model, and the different Junos OS packages, processes, and documents.

Open a Case with JTAC

Problem
To open a case with JTAC, follow these steps:

Solution
1. Send an e-mail to support@juniper.net, and include the information from the `show version` command.

2. At the support engineer’s request, ftp the `vmcore.number.gz` file to a case-number directory at ftp.juniper.net. To ftp the core file to a directory, follow these steps:
 a. At the shell prompt, enter `ftp ftp.juniper.net`.
 b. At the name prompt, enter `anonymous`.
 c. At the password prompt, enter your e-mail address as the password.
 d. At the ftp prompt, enter the `cd pub/incoming` string.
 e. Enter the `mkdir case-number` command, where the `case-number` is the value of the case you opened with JTAC, for example, `1999-1231-9999`. If a directory has already been created, continue with the next step.
 f. Enter the `cd case-number` command.
g. Enter the **binary** command so that the file transfer is in binary and not ASCII.

h. Enter the **put vmcore.0.gz** command.

Meaning The following output is an example of copying a core file from the shell to an *ftp* directory at ftp.juniper.net:

Sample Output

```
root@host% ftp ftp.juniper.net
Connected to colo-ftp.juniper.net.
Name (ftp.juniper.net: root): anonymous
331 Guest login ok, send your email address as password.
Password: ****
230 Guest login ok, access restrictions apply.
ftp> cd pub/incoming
250 CWD command successful
ftp> mkdir 1999-1231-9999
257 MKD command successful.
ftp> cd 1999-1231-9999
250 CWD command successful.
ftp> bin
200 Type set to I.
ftp> put vmcore.0.gz
```

Meaning The sample output shows that there is a connection to *ftp.juniper.net*, that the login name and password were entered, and that the core file was successfully copied from the shell to an *ftp* directory at *ftp.juniper.net*.

Collect Crash Data for Routing Engine Daemons

To collect crash data for Routing Engine daemons, follow these steps:

1. **Check for Daemon Core Files** on page 277
2. **List the Daemon Core Files** on page 278
3. **Compress the Daemon Core Files** on page 279
4. **Log Software Version Information** on page 280
5. **Open a Case with JTAC** on page 280

Check for Daemon Core Files

Purpose If you observe disruption to routing protocol operation, system log operation, Simple Network Management Protocol (SNMP) operation, or other operations handled by Routing Engine daemons, check the /var/tmp directory for any daemon core files created around the time of the crash.

Action To check the /var/tmp directory, use the following Junos OS CLI operational mode command:

```
user@host> file list detail /var/tmp
```
Sample Output

user@host> file list detail /var/tmp
total 1292622
-dwrxrwxrwt 3 root field 512 Dec 31 06:48 ./
drwxr-xr-x 21 root field 512 Mar 5 1999 ../
-rw-rw---- 1 root field 119713792 Nov 17 21:58 rpd.core.0
-rw-rw---- 1 root field 120782848 Nov 17 22:12 rpd.core.1

Meaning The sample output lists the contents of the /var/tmp/ directory. Look for any daemon core files created around the time of the crash. In the example above, two core files are listed: rpd.core.0 and rpd.core.1.

Table 53 on page 278 lists the major Routing Engine daemons supported by the Junos OS.

<table>
<thead>
<tr>
<th>Executable Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rpd</td>
<td>Routing protocol daemon</td>
</tr>
<tr>
<td></td>
<td>Provides routing protocol intelligence (Border Gateway Protocol [BGP], Intermediate System-to-Intermediate System [ISIS], Open Shortest Path First [OSPF], and so on).</td>
</tr>
<tr>
<td>dcd</td>
<td>Device control daemon</td>
</tr>
<tr>
<td></td>
<td>Manages all interface devices.</td>
</tr>
<tr>
<td>mgd</td>
<td>Management daemon</td>
</tr>
<tr>
<td></td>
<td>Provides user configuration access to the system. The CLI is a client of mgd.</td>
</tr>
<tr>
<td>snmpd</td>
<td>Simple Network Management Protocol daemon</td>
</tr>
<tr>
<td></td>
<td>Provides remote network management information to the network management system.</td>
</tr>
<tr>
<td>chassisd</td>
<td>Chassis daemon</td>
</tr>
<tr>
<td></td>
<td>Monitors and manages Flexible PIC Concentrator (FPC) slots and other environmental components.</td>
</tr>
<tr>
<td>alarmd</td>
<td>Alarm daemon</td>
</tr>
<tr>
<td></td>
<td>Manages system alarm notifications.</td>
</tr>
<tr>
<td>apsd</td>
<td>Automatic protection switching daemon</td>
</tr>
<tr>
<td></td>
<td>Provides SONET Automatic Protection Switching (APS) functionality.</td>
</tr>
<tr>
<td>sampled</td>
<td>Traffic sampling daemon</td>
</tr>
<tr>
<td></td>
<td>Gathers traffic sampling information.</td>
</tr>
<tr>
<td>vrrpd</td>
<td>Virtual Router Redundancy Protocol daemon</td>
</tr>
<tr>
<td></td>
<td>Provides Virtual Router Redundancy Protocol (VRRP) functionality.</td>
</tr>
<tr>
<td>syslogd</td>
<td>System log daemon</td>
</tr>
<tr>
<td></td>
<td>Manages the router system logging operation.</td>
</tr>
<tr>
<td>mib2d</td>
<td>MIB2 daemon</td>
</tr>
<tr>
<td></td>
<td>Management Information Base (MIB) subagent for MiB2.</td>
</tr>
</tbody>
</table>

List the Daemon Core Files

Purpose To list the daemon core files.
Action To list the daemon core files, follow these steps:

1. Exit from the CLI environment and create a UNIX-level shell by entering the `start shell` command:

   ```
   user@host> start shell
   ```

2. Type `su` and the root password when prompted. You are now in the shell and the prompt is `%` instead of `>`, for example:

   ```
   % su
   Password: ****
   ```

3. Change the directory to `/var/tmp` and type `ls -l`, for example:

   ```
   root@host% cd /var/tmp
   root@host% ls -l
   ```

4. Look for any daemon core files created around the time of the crash.

Sample Output

```
user@host> start shell
% su
Password: ****
root@host% cd /var/tmp
root@host% ls -l
```

Meaning The sample output lists the contents of the `/var/tmp` directory and shows the current core file (`rpd.core.1`) and one previous core file (`rpd.core.0`) for the routing protocol daemon (`rpd`). For each daemon, you can have a total of five core files in the `/var/tmp` directory: the current core file and the four previous core files numbered 0 through 4 (from oldest to newest).

Compress the Daemon Core Files

Purpose The `gzip` compression utility is used to compress the files if they are large. Files created using the `gzip` command end with the file extension `.gz`. Compress the core file if it is over 50 MB.

NOTE: Use lowercase for the `gzip` command when you are in the shell.

You only need to compress the daemon core files when the tarball file is not created.

Action To compress the daemon core file with `gzip`, use the following command from the shell:

```
root@host% gzip daemon-executable-name.core.number
```
Sample Output

```
root@host% gzip rpd.core.0
gzip rpd.core.0
```

Meaning
The contents of the daemon core file are compressed into a single compressed file named `daemon.number.gz`. The `gzip` command preserves the mode, ownership, and timestamps of files when compressing or decompressing them.

Log Software Version Information

Purpose
To log the Junos OS version information.

Action
To log the Junos OS version information, use the following Junos OS CLI operational mode command:

```
user@host> show version
```

Sample Output

```
user@host> show version
Hostname: host
Model: m10
JUNOS Base OS boot [5.0R5]
JUNOS Base OS Software Suite [5.0R5]
JUNOS Kernel Software Suite [5.0R5]
JUNOS Routing Software Suite [5.0R5]
JUNOS Packet Forwarding Engine Support [5.0R5]
JUNOS Crypto Software Suite [5.0R5]
JUNOS Online Documentation [5.0R5]
KERNEL 5.0R5 #0 built by builder on 2002-03-02 05:10:28 UTC
MGD release 5.0R5 built by builder on 2002-03-02 04:45:32 UTC
CLI release 5.0R5 built by builder on 2002-03-02 04:44:22 UTC
CHASSISD release 5.0R5 built by builder on 2002-03-02 04:43:37 UTC
DCD release 5.0R5 built by builder on 2002-03-02 04:42:47 UTC
RPD release 5.0R5 built by builder on 2002-03-02 04:46:17 UTC
SNMPD release 5.0R5 built by builder on 2002-03-02 04:52:26 UTC
MIB2D release 5.0R5 built by builder on 2002-03-02 04:45:37 UTC
APSD release 5.0R5 built by builder on 2002-03-02 04:43:31 UTC
VRRPD release 5.0R5 built by builder on 2002-03-02 04:52:34 UTC
ALARMd release 5.0R5 built by builder on 2002-03-02 04:43:24 UTC
PFED release 5.0R5 built by builder on 2002-03-02 04:46:06 UTC
CRAFTD release 5.0R5 built by builder on 2002-03-02 04:44:30 UTC
SAMPLED release 5.0R5 built by builder on 2002-03-02 04:52:20 UTC
ILMID release 5.0R5 built by builder on 2002-03-02 04:45:21 UTC
BPRELAYD release 5.0R5 built by builder on 2002-03-02 04:42:41 UTC
RMOPD release 5.0R5 built by builder on 2002-03-02 04:46:11 UTC
jkernel-dd release 5.0R5 built by builder on 2002-03-02 04:41:07 UTC
jrout-dd release 5.0R5 built by builder on 2002-03-02 04:41:21 UTC
jdocs-dd release 5.0R5 built by builder on 2002-03-02 04:39:11 UTC
```

Meaning
The sample output shows the hostname, router model, and the different Junos OS packages, processes, and documents.

Open a Case with JTAC

Problem
To open a case with JTAC, follow these steps:
Solution

1. Send an e-mail to support@juniper.net, and include the information from the show version command.

2. At the support engineer's request, ftp the vmcore.number.gz file to a case-number directory at ftp.juniper.net. To ftp the core file to a directory, follow these steps:
 a. At the shell prompt, enter ftp ftp.juniper.net.
 b. At the name prompt, enter anonymous.
 c. At the password prompt, enter your e-mail address as the password.
 d. At the ftp prompt, enter the cd pub/incoming string.
 e. Enter the mkdir case-number command, where the case-number is the value of the case you opened with JTAC, for example, 1999-1231-9999. If a directory has already been created, continue with the next step.
 f. Enter the cd case-number command.
 g. Enter the binary command so that the file transfer is in binary and not ASCII.
 h. Enter the put vmcore.0.gz command.

Meaning

The following output is an example of copying a core file from the shell to an ftp directory at ftp.juniper.net:

```
Sample Output   root@host% ftp ftp.juniper.net
    Connected to colo-ftp.juniper.net.
    Name (ftp.juniper.net: root): anonymous
    331 Guest login ok, send your email address as password.
    Password: ****
    230 Guest login ok, access restrictions apply.
    ftp> cd pub/incoming
    250 CWD command successful
    ftp> mkdir 1999-1231-9999
    257 MKD command successful.
    ftp> cd 1999-1231-9999
    250 CWD command successful.
    ftp> bin
    200 Type set to I.
    ftp> put vmcore.0.gz
```

Meaning

The sample output shows that there is a connection to ftp.juniper.net, that the login name and password were entered, and that the core file was successfully copied from the shell to an ftp directory at ftp.juniper.net.

Collect Crash Data for the Packet Forwarding Engine Microkernel

Purpose

Each of the following Packet Forwarding Engine components of a Juniper Networks router runs a microkernel:

- Flexible PIC Concentrator (FPC) on M-series platforms except for the M5 and M10 Internet routers
- Gibson Flexible PIC Concentrator (GFPC) on T640 and T320 Internet routing nodes
Switched Printed Mezzanine Board (SPMB) on T640 and T320 Internet routing nodes
Forwarding Engine Board (FEB) on M5 and M10 Internet routers
System Switching Board (SSB) on an M20 Internet router
System Control Board (SCB) on an M40 Internet router
Switching and Forwarding Module (SFM) on M160 and M40e Internet routers

When a crash occurs, crash stack traceback and registration information is placed into nonvolatile random access memory (NVRAM) on the different components. Table 54 on page 282 shows where the NVRAM is located for the components for each router.

Table 54: NVRAM Location on the Microkernel of the Packet Forwarding Engine Components

<table>
<thead>
<tr>
<th>Router Type</th>
<th>NVRAM Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>M5 and M10</td>
<td>FEB</td>
</tr>
<tr>
<td>M20</td>
<td>SSB and crash stack traceback and register information for the FPC</td>
</tr>
<tr>
<td>M40</td>
<td>SCB and crash stack traceback and register information for the FPC</td>
</tr>
<tr>
<td>M40e</td>
<td>FPC</td>
</tr>
<tr>
<td></td>
<td>SFM</td>
</tr>
<tr>
<td>M160</td>
<td>FPC</td>
</tr>
<tr>
<td></td>
<td>SFM</td>
</tr>
<tr>
<td>T320</td>
<td>GFPC</td>
</tr>
<tr>
<td></td>
<td>SPMB</td>
</tr>
<tr>
<td>T640</td>
<td>GFPC</td>
</tr>
<tr>
<td></td>
<td>SPMB</td>
</tr>
</tbody>
</table>

To collect crash data for the Packet Forwarding Engine microkernel, follow these steps:

1. Display the Crash Stack Traceback and Registration Information on page 282
2. Clear the NVRAM Contents on page 286
3. Check Packet Forwarding Engine Microkernel Core Files on page 287
4. List the Core Files Generated by the Crash on page 287
5. Compress the Core Files on page 288
6. Log Software Version Information on page 288
7. Open a Case with JTAC on page 289

Display the Crash Stack Traceback and Registration Information

Purpose
To display the crash stack traceback and registration information.

Action
To display the crash stack traceback and registration information, follow these steps:
1. Exit from the CLI environment and create a UNIX-level shell by entering the `start shell` command:

 user@host> start shell

2. Type `su` and the root password when prompted. You are now in the shell and prompt is `%` instead of `>`, for example:

 % su
 Password: ****

3. Establish a vty session to the appropriate component. Use the `vty` command followed by the executable name for the component; for example, `scb`, `ssb0`, `ssb1`, `fpc0`, or `fpc1`:

 root@host% vty sfm0

 NOTE: For the M40e and M160 routers, you can also create a cty session to the components if the components are not online.

4. Type the `show nvram` command to view the NVRAM information.

5. Type the `show syslog messages` command to view the system log messages.
Sample Output 1

```
user@host> startshell
% su
Password: ****
root@host% vty sfm0

SFM platform (266Mhz PPC 603e processor, 64Mb memory, 512Kb flash)
SFM3(host vty)# show nvram
System NVRAM:
4080 available bytes, 4080 used, 0 free
Contents:

mpc106 machine check caused by error on the PCI Bus
mpc106 error detect register 1: 0x08, 2: 0x00
mpc106 error ack count = 0
mpc106 error address: 0x0a000000
mpc106 PCI bus error status register: 0x02
   mpc106 was the PCI master
   C/BE bits: I/O read [0b0010]
mpc106 error detection reg1: PCI cycle
mpc106 PCI status reg: parity error

System Exception: Vector/Code 0x00700, Signal 4
Event occurred at: Oct 26 13:32:40.952

Juniper Embedded Microkernel Version 4.2R1
Built by tlim on 2000-09-23 06:11:28 UTC
Copyright (C) 1998-2000, Juniper Networks, Inc.
All rights reserved.
Reason string: "Program Check"
Context: Thread (PFE Manager)
Registers:
R00: 0x06f5f81c R01: 0x06f5f9cc R02: 0x00003344 R03: 0x00000000
R04: 0x00008000 R05: 0x00000000 R06: 0x0010052c R07: 0x00000000
R08: 0x000000e8 R09: 0x00000001 R10: 0x00000000 R11: 0x00000000
R12: 0x00000000 R13: 0xffffffff R14: 0xffffffff R15: 0xffffffff
R16: 0xffffffff R17: 0xffffffff R18: 0xffffffff R19: 0xffffffff
R20: 0xffffffff R21: 0xffffffff R22: 0xffffffff R23: 0xffffffff
R24: 0xffffffff R25: 0xffffffff R26: 0xffffffff R27: 0xffffffff
R28: 0xffffffff R29: 0xffffffff R30: 0xffffffff R31: 0xffffffff
MSR: 0x00000000 DAR: 0xffffffff K_MSR: 0x00001030

StackTraceback:
Frame 01: sp = 0x06f5f9cc, pc = 0x06f5f81c
Frame 02: sp = 0x06f5fa04, pc = 0x00026620
ROM NVRAM:
0 available bytes, 0 used, 0 free
SFM3(host vty)# show syslog messages
Oct 26 12:02:05 router tnp_sfm_2 PFEMAN: sent Resync request to Master
Oct 26 12:02:07 router tnp_sfm_3 CM(3): Slot 1: On-line
Oct 26 12:02:07 router tnp_sfm_3 CM(3): Slot 2: On-line
Oct 26 12:02:07 router tnp_sfm_3 CM(3): Slot 6: On-line
```

Baseline Operations Guide
Oct 26 12:02:07 router tnp_sfm_3 PFEMAN: sent Resync request to Master
Oct 26 12:05:58 router tnp_sfm_3 mpc106 machine check caused by error on the PCI Bu
s
Oct 26 12:05:58 router tnp_sfm_3 mpc106 error detect register 1: 0x08, 2: 0x00
Oct 26 12:05:58 router tnp_sfm_3 mpc106 error ack count = 0
Oct 26 12:05:58 router tnp_sfm_3 mpc106 error address: 0xa000000
Oct 26 12:05:58 router tnp_sfm_3 mpc106 PCI bus error status register: 0x02
Oct 26 12:05:58 router tnp_sfm_3 mpc106 was the PCI master
Oct 26 12:05:58 router tnp_sfm_3 C/BE bits: I/O read [0b0010]
Oct 26 12:05:58 router tnp_sfm_3 mpc106 error detection reg1: PCI cycle
Oct 26 12:05:58 router tnp_sfm_3 mpc106 PCI status reg: parity error
Oct 26 12:05:58 router tnp_sfm_3 mpc106 AB
Oct 26 12:05:58 router tnp_sfm_3 last message repeated 7 times
Oct 26 12:05:58 router tnp_sfm_3 Registers:
Oct 26 12:05:58 router tnp_sfm_3 R00: 0x06f5f81c R01: 0x06f5f9cc
Oct 26 12:05:58 router tnp_sfm_3 R02: 0x00003344 R03: 0x00000000
Oct 26 12:05:58 router tnp_sfm_3 R04: 0x00008000 R05: 0x00000000
Oct 26 12:05:58 router tnp_sfm_3 R06: 0x0010052c R07: 0x06f637e4
Oct 26 12:05:58 router tnp_sfm_3 R08: 0x06f5f81c R09: 0x00169810
Oct 26 12:05:58 router tnp_sfm_3 R10: 0x000003b4 R11: 0x00000001
Oct 26 12:05:58 router tnp_sfm_3 R12: 0x000017b9 R13: 0xffffffff
Oct 26 12:05:58 router tnp_sfm_3 R14: 0xffffffff R15: 0xffffffff
Oct 26 12:05:58 router tnp_sfm_3 R16: 0xffffffff R17: 0xffffffff
Oct 26 12:05:58 router tnp_sfm_3 R18: 0xffffffff R19: 0xffffffff
Oct 26 12:05:58 router tnp_sfm_3 R20: 0xffffffff R21: 0xffffffff
Oct 26 12:05:58 router tnp_sfm_3 R22: 0xffffffff R23: 0xffffffff
Oct 26 12:05:58 router tnp_sfm_3 R24: 0x00000003 R25: 0x00000000
Oct 26 12:05:58 router tnp_sfm_3 R26: 0x00000001 R27: 0x0000f0fc8
Oct 26 12:05:58 router tnp_sfm_3 R28: 0x00150000 R29: 0x0016c4b0
Oct 26 12:05:58 router tnp_sfm_3 R30: 0x97c9c35e R31: 0x0000103
Oct 26 12:05:58 router tnp_sfm_3 MSR: 0x0008b030 CTR: 0x000ac008
Oct 26 12:05:58 router tnp_sfm_3 Link:0x06f5f81c SP: 0x0000f0fc8
Oct 26 12:05:58 router tnp_sfm_3 CCR: 0x0008b030 XER: 0x00000000
Oct 26 12:05:58 router tnp_sfm_3 PC: 0x0000f0fc8
Oct 26 12:05:58 router tnp_sfm_3 DSISR: 0x00000000 DAR: 0xffffffff
Oct 26 12:05:58 router tnp_sfm_3 K_MSR: 0x0000103

Sample Output

The following sample output is another example of displaying the crash stack traceback and registration information:

root@host% vty fpc1
FPC160 platform (PPC 603e processor, 32Mb memory, 512Kb flash)

FPC1(host vty)# show nvram
System NVRAM :
4080 available bytes, 4080 used, 0 free
Contents:
0000000 R06: 0x0000005c R07: 0x850400d0
R08: 0x00000000 R09: 0x00000020 R10: 0x00000000 R11: 0x00000129
R12: 0x00000000 R13: 0x00000000 R14: 0x4005009a R15: 0x20000260
R16: 0xc8828784 R17: 0x84212800 R18: 0xc0004c61 R19: 0x80005900
R20: 0x80206000 R21: 0x84000304 R22: 0xd0410180 R23: 0x8c2005ac
R24: 0x00000003 R25: 0x00000000 R26: 0x00000001 R27: 0x0000fc48
R28: 0x001d0000 R29: 0x00000001 R30: 0x00136bb8 R31: 0x00000000
MSR: 0x0000b030 CTR: 0x001331e0 Link:0x000308c8 SP: 0x01baba34
CCR: 0x42200020 XER: 0x00000000 PC: 0x000308cc
DSISR: 0x0000b030 DAR: 0xffffffff K_MSR: 0x00001030
Stack Traceback:
Frame 01: sp = 0x01baba34, pc = 0x000308c8
Frame 02: sp = 0x01babac4, pc = 0x0002647c
Frame 03: sp = 0x01babad4, pc = 0x00026590
Frame 04: sp = 0x01babadc, pc = 0x00106ff0
Frame 05: sp = 0x01babaf0, pc = 0x00026620
ROM NVRAM:
0 available bytes, 0 used, 0 free
FPC1(host vty)# show syslog messages
[0+00:00:00.780 LOG: Info] Version 4.0R5 by tlim on 2000-08-10 04:45:54 UTC
[0+00:00:00.780 LOG: Info] On-board NVRAM contains diagnostic information.

Meaning
Sample output 1 and 2 show the stack trace from the microkernel crash. Save the output from the show nvram and show syslog commands so that you can send them to JTAC when you open a case.

Clear the NVRAM Contents

Purpose
Currently the storage area for the logs on the NVRAM is limited to 4 KB. You need to delete old NVRAM logs to make room for new ones.

Action
To clear the content of the NVRAM after you have captured the necessary information, follow these steps:

1. Exit from the CLI environment and create a UNIX-level shell by entering the start shell command:

 user@host> start shell

2. Type su and the root password when prompted. You are now in the shell and the prompt is % instead of >, for example:

 % su

 Password: ****

3. Establish a vty session to the appropriate component. Use the vty command followed by the abbreviation for the component, for example:

 root@host% vty sfm0
 SFM3(host vty) #
 FPC1(host vty) #

4. Type the clear nvram command, for example:
Check Packet Forwarding Engine Microkernel Core Files

Purpose If you observe disruption to the Packet Forwarding Engine microkernel, check the /var/crash directory for any core files created around the time of the crash.

Action To check the /var/crash directory, use the following Junos OS CLI operational mode command:

 user@host> file list detail /var/crash

Sample Output

 user@host> file list detail /var/crash
 var/crash:
 total 456630
 -rw-r--r-- 1 root wheel 6814720 Dec 18 08:03 core-FPC4.100111808032
 -rw-r--r-- 1 root wheel 65613824 Dec 10 04:58 core-SCB.100111004570
 -rw-r--r-- 1 root wheel 65613824 Dec 19 00:23 core-SCB.100111900221
 -rw-r--r-- 1 root wheel 65545216 Feb 9 20:46 core-SCB.101010920452

Meaning The sample output lists the contents of the /var/crash/ directory. Check the date and timestamp for any core files created around the time of the crash. In the example above, four core files are listed.

List the Core Files Generated by the Crash

Purpose To list the core files generated by the crash.

Action To list the core files, follow these steps:

1. Exit from the CLI environment and create a UNIX-level shell by entering the start shell command:

 user@host> start shell

2. Type su and the root password when prompted. You are now in the shell and the prompt is % instead of >, for example:

 % su
 Password: ****

3. Change the directory to /var/crash and type ls -l, for example:

 root@host% cd /var/crash
 root@host% ls -l

4. Look for any core files created around the time of the crash.
Sample Output

user@host> start shell
% su
Password: ****
root@host% cd /var/crash
root@host% ls -l
 total 456630
 -rw-r--r-- 1 root wheel 6814720 Dec 18 08:03 core-FPC4.100111808032
 -rw-r--r-- 1 root wheel 65613824 Dec 10 04:58 core-SCB.100111004570
 -rw-r--r-- 1 root wheel 65613824 Dec 19 00:23 core-SCB.100111900221
 -rw-r--r-- 1 root wheel 65545216 Feb 9 20:46 core-SCB.101010920452

Meaning The sample output shows the current core files for the different components on the router; for example, `core-FPC4.100111808032` and `core-SCB.100111004570`.

Compress the Core Files

Purpose `gzip` is a compression utility used to compress the core files. Files created using the `gzip` command end with the file extension `.gz`. Compress the core files if they are larger than 50 MB.

Action To compress the core files with `gzip`, use the following command from the shell:

```
root@host% gzip filename
```

Sample Output

root@host% gzip core-SCB.101010920452

Meaning The contents of the core file are compressed into a single compressed file named `core-SCB.10101092045.gz`. The `gzip` command preserves the mode, ownership, and timestamps of files when compressing or decompressing them.

Log Software Version Information

Purpose To log the Junos OS version information.

Action To log the Junos OS version information, use the following Junos OS CLI operational mode command:

```
user@host> show version
```
Sample Output

user@host> show version
Hostname: host
Model: m10
JUNOS Base OS boot [5.0R5]
JUNOS Base OS Software Suite [5.0R5]
JUNOS Kernel Software Suite [5.0R5]
JUNOS Routing Software Suite [5.0R5]
JUNOS Packet Forwarding Engine Support [5.0R5]
JUNOS Crypto Software Suite [5.0R5]
JUNOS Online Documentation [5.0R5]
KERNEL 5.0R5 #0 built by builder on 2002-03-02 05:10:28 UTC
MGD release 5.0R5 built by builder on 2002-03-02 04:45:32 UTC
CLI release 5.0R5 built by builder on 2002-03-02 04:44:22 UTC
CHASSISD release 5.0R5 built by builder on 2002-03-02 04:43:37 UTC
DCD release 5.0R5 built by builder on 2002-03-02 04:42:47 UTC
RPD release 5.0R5 built by builder on 2002-03-02 04:46:17 UTC
SNMPD release 5.0R5 built by builder on 2002-03-02 04:52:26 UTC
MIB2D release 5.0R5 built by builder on 2002-03-02 04:45:37 UTC
APSD release 5.0R5 built by builder on 2002-03-02 04:43:31 UTC
VRRPD release 5.0R5 built by builder on 2002-03-02 04:52:34 UTC
ALARMID release 5.0R5 built by builder on 2002-03-02 04:43:24 UTC
PFED release 5.0R5 built by builder on 2002-03-02 04:46:06 UTC
CRAFTD release 5.0R5 built by builder on 2002-03-02 04:44:30 UTC
SAMPLED release 5.0R5 built by builder on 2002-03-02 04:52:20 UTC
ILMID release 5.0R5 built by builder on 2002-03-02 04:45:21 UTC
BPRELAYD release 5.0R5 built by builder on 2002-03-02 04:42:41 UTC
RMOPD release 5.0R5 built by builder on 2002-03-02 04:46:11 UTC
jkernel-dd release 5.0R5 built by builder on 2002-03-02 04:41:07 UTC
jroute-dd release 5.0R5 built by builder on 2002-03-02 04:41:21 UTC
jdocs-dd release 5.0R5 built by builder on 2002-03-02 04:39:11 UTC

Meaning

The sample output shows the hostname, router model, and the different Junos OS packages, processes, and documents.

Open a Case with JTAC

Problem

To open a case with JTAC, follow these steps:

Solution

1. Send an e-mail to support@juniper.net, and include the information from the show version command.

2. At the support engineer's request, ftp the vmcore.number.gz file to a case-number directory at ftp.juniper.net. To ftp the core file to a directory, follow these steps:
 a. At the shell prompt, enter ftp ftp.juniper.net.
 b. At the name prompt, enter anonymous.
 c. At the password prompt, enter your e-mail address as the password.
 d. At the ftp prompt, enter the cd pub/incoming string.
 e. Enter the mkdir case-number command, where the case-number is the value of the case you opened with JTAC, for example, 1999-1231-9999. If a directory has already been created, continue with the next step.
 f. Enter the cd case-number command.
g. Enter the **binary** command so that the file transfer is in binary and not ASCII.

h. Enter the **put vmcore.0.gz** command.

Meaning
The following output is an example of copying a core file from the shell to an **ftp** directory at ftp.juniper.net:

Sample Output

```
root@host% ftp ftp.juniper.net
Connected to colo-ftp.juniper.net.
Name (ftp.juniper.net: root): anonymous
331 Guest login ok, send your email address as password.
Password: ****
230 Guest login ok, access restrictions apply.
ftp> cd pub/incoming
250 CWD command successful
ftp> mkdir1999-1231-9999
257 MKD command successful.
ftp> cd1999-1231-9999
250 CWD command successful.
ftp> bin
200 Type set to I.
ftp> put vmcore.0.gz
```

Meaning
The sample output shows that there is a connection to **ftp.juniper.net**, that the login name and password were entered, and that the core file was successfully copied from the shell to an ftp directory at **ftp.juniper.net**.
PART 7

Index

- Index on page 293
aspath, BGP protocol tracing flag 257
authorization, system logging facility 239
autonomous system
 boundary router (ASBR) ... 117
 OSPF protocol ... 116

B
backbone, OSPF .. 117
backups
 copying to router .. 76
 file systems .. 55, 73
 software ... 61, 77
BGP protocol
 checklist for verifying .. 145
 detail statement .. 258
 displaying messages ... 245
 edit protocol command .. 258
 establishment issues .. 258
 flag statement ... 258
 logging information ... 53, 71
 network
 configuration topology, figure 147
 topology, figure .. 148, 150
 open statement .. 258
 options .. 256
 protocol statement .. 258
 run show log command .. 259
 session
 problems ... 243, 258
 states, table .. 243
 show bgp summary command 54
 show log command .. 245
 show route command
 EBGP over IBGP .. 153
 IGP cost .. 154
 local preference ... 151
 MED ... 152
 show route forwarding-table command 155
 state transitions, logging .. 243
 traceoptions statement .. 257, 258
tracing
 configuring .. 257
 flags, table ... 258
binary command ... 277, 281, 290
boot floppy .. 73
null
G
- general, tracing flag..252
- GFPC...281
- Gibson Flexible PIC Concentrator See GFPC
- global tracing flags....................................255
- groups statement......................................212
- groups, configuring..................................212
- gzip command..275, 279, 288

H
- halting router software.............................30
- hard drives, backup file system55
- hardware
 - components
 - router monitoring, table11
 - logging router chassis version51, 66
- hello
 - IS-IS protocol tracing flag....................260
 - OSPF protocol tracing flag....................267
 - statement
 - IS-IS protocol.................................259, 261
 - OSPF protocol....................................264
- help
 - command, usage guidelines...................13, 16
 - hierarchy level..................................43
 - host, configuring..................................240
 - host-name command................................213
 - hostname, logging...............................51, 66, 276, 280, 289

I
- icons defined, notice..................................xxii
- idle, BGP protocol state............................243
- insert command
 - usage guidelines..................................16
- interactive-commands, system logging
 - facility..239
- interface address
 - ping command.......................................181
 - traceroute command..............................181
- interfaces
 - checking for problems.........................93
 - detailed information, displaying..............95
 - monitor interface command....................99
 - monitor interface traffic command...........170, 171
 - monitor traffic interface command............172
 - output control keys, table....................101
 - router, logging53, 70
 - show interfaces terse command94
 - summary information, displaying..............94
 - system logging....................................101
- internal flash drive...............................101
- IS-IS protocol..55
 - adjacencies
 - status...112
 - checklist for verifying........................103
 - configuration
 - Level 1 router....................................108
 - Level 1/Level 2 router.........................105
 - Level 2 router....................................110
 - detail statement....................................259, 262
 - displaying details...............................259
 - flag statement.....................................259, 261, 262
 - hello statement....................................261
 - link-state PDUs
 - analyzing in detail.............................262
 - logging information...............................53, 70
 - lsp statement..262
 - monitor
 - start command.....................................255
 - stop command......................................256
 - network topology
 - detailed figure....................................105
 - figure..104
 - levels, figure...104
 - run show isis interface command...............105
 - run show log command..............................260, 262
 - receive statement.................................261
 - set flag command....................................259, 261, 262
 - show isis adjacency brief command............54
 - show route forwarding-table destination
 - command..139
 - trace messages.....................................259
 - tracing
 - configuring..261
 - flags, table...260

J
- jinstall package.......................................59
- JTAC, contacting.....................................12
- Junos OS
 - architecture, figure..............................273
 - backing up...61, 77
 - checklist for
 - reinstalling..63
 - upgrading...49
 - downgrading..59

Copyright © 2013, Juniper Networks, Inc. 297
logging to
 local file..239
 remote host...240
 router console..241
 user terminal...241
 severity levels, table..................................240

mgd, Routing Engine daemon............................278
mib2d, Routing Engine daemon............................278

MIBs
 checklist for using.......................................185
 query, snmp command.....................................189
 traceoptions output.......................................190

microkernel
 crash stack trace ...286
 registration information................................286
 show nvram command.......................................283

mkdir command...276, 281, 289
model, logging router....................................51, 66

monitor
 command, usage guidelines..............................14
 interface command output fields, table.............172
 log file messages...247
 start command
 BGP protocol...246
 IS-IS protocol..255
 stop command
 BGP protocol...247
 IS-IS protocol..256
 monitor interface command................................99
 monitor interface traffic command......................170, 171
 monitor traffic interface command........................172
 MPLS protocol, logging information....................53, 71
 mtrace command
 usage guidelines..14

Multiprotocol Label Switching See MPLS

network topology
 BGP protocol, figure....................................148, 149
 IS-IS protocol, detailed figure.......................105
 IS-IS protocol, figure....................................112
 levels IS-IS protocol, figure..........................104
 LSA flooding scopes, figure................................131
 OSPF protocol multi-area, figure.......................116
 OSPF protocol, figure......................................128
 OSPF protocol, figure with details.....................118
 ping command example, figure..........................180
 traceroute command example, figure.....................180

nonvolatile random access memory See NVRAM

normal, tracing flag.......................................252
notice icons defined..xxii
notice, severity level...240
NSSA, description...117

ntp
 associations, showing....................................221
 status, showing...221

NVRAM..282
 clear nvram command......................................286
 clearing..286
 PFE location, table..282
 storage area..286

O

OID, specific
 snmpwalk command...187

open statement, BGP protocol..............................258
open, BGP protocol tracing flag..........................258
openConfirm, BGP session state...........................245
openSent, BGP protocol session state.....................244

operational mode, CLI commands
 clear..13
 configure..13
 file..13
 help..13
 monitor...14
 mtrace...14
 ping..14
 pipe..14
 quit...14
 request...14
 restart...14
 set...14
 show..14
 ssh..14
 start..14

N

name
 configuring domain.......................................75
 configuring machine.....................................74

near-real time..255

network
 connectivity, checking...................................76
 ping command..76
 problems diagnosing, figure............................26
 problems, checklist.......................................25
 topology with a problem, figure........................26
set log-updown command...243
set re0 command..243
set system backup-router command..........................212
set system domain-name command.............................75
set system host-name command..................................75
set system name-server command...............................75
set system root-authentication command....................75
set system root-authentication
 encrypted-password command...................................75
set traceoptions flag open detail command...............258
set traceoptions flag pdu command..........................188
set user command..241
setting root password...75
severity levels, table..229, 240
SFM, Packet Forwarding Engine component...............282
show bgp summary command54, 71, 76
show chassis alarms command..................................11, 87
show chassis command..11, 86, 218
table...86
show chassis craft-interface command.......................11, 83, 84
show chassis environment command...........................11, 67, 76, 85
show chassis firmware command................................11
show chassis hardware
 command..11, 52, 66, 76, 90, 205
show chassis hardware command output fields,
table...207
show chassis routing-engine command.....................191
show command
 usage guidelines...14, 17, 39
show configuration command.................................39, 43
 ABR...122
 ASBR..118
 log active..52, 70, 76
OSPF protocol..118, 122, 127
stub router...127
usage guidelines...39
show configuration snmp command.........................189
show firewall filter command..................................174
show firewall log command......................................173
show interface terse command..............................53, 70, 76
show interfaces extensive command.......................95
show interfaces terse command.............................94
show isis adjacency brief command54, 71, 76
show log chassisisd command................................12, 88
show log command..231, 245
show log messages command..................................12, 88, 101
show log snmpd command
 MIB, querying..190
show ntp associations command..............................221
show ntp status command......................................221
 output fields, table..222
show nvram command...222
show ospf database asbrsummary extensive
 command..141
show ospf database command..................................132, 135
show ospf database extern extensive
 command..142
show ospf database netsummary extensive
 command..141
show ospf database nssa extensive
 command..143
show ospf database router extensive
 command..140
show ospf interface command.................................118, 122, 127
show ospf neighbor brief command54, 71, 76
show ospf neighbor command..................................129
 output fields, table..130
show pfe statistics traffic command.......................175
show route command..76
 BGP protocol
 EBGP over IBGP...153
 IGP cost...154
 local preference..151
 MED..152
OSPF protocol..135
show route forwarding-table command....................155
show route forwarding-table destination
 command..139
show route summary command...............................161
show syslog messages command................................283
show system boot-messages command.....................68, 76
show system processes extensive
 command...31, 34, 158
 output, table..32
show system storage command..............................55, 72, 76
show system uptime command..................................218
show system users command..................................226
 output fields, table......................................227
show task command...164
show task memory command..................................164
show task memory detail command..........................161
show version brief command, Junos OS
 packages...36
show version command..36, 65, 276, 281, 289
 compare information..76
 definition..11
Junos OS..35
reinstalling software...65
Index

T
T-series platforms
 chassis
 overview ... 9
 cooling system, overview .. 10
 data flow
 figure ... 7
 process ... 7
 hardware components
 monitoring ... 10
 overview ... 5
 Packet Forwarding Engine .. 5
 power supplies, overview ... 10
 Routing Engine, overview ... 10
 task, tracing flag .. 253
 technical support
 contacting JTAC .. xxiii
 telnet command
 usage guidelines ... 15
 temperature, environmental information 68
 test command
 usage guidelines ... 15
 time on a router, checklist for 217
 time, checking system uptime 218
 timer, tracing flag ... 253
 top command
 usage guidelines ... 17
 trace files
 start monitoring .. 255
 stop monitoring .. 256
 viewing .. 245
 traceoptions statement
 BGP protocol ... 258
 daemon tracing .. 251
 OSPF protocol .. 264, 268
 routing protocols, table .. 255
 specific protocol .. 254
 traceroute command
 checking ... 179
 interface address .. 181
 loopback address .. 180
 network topology for checking packets 180
 unsuccessful ... 182
 usage guidelines ... 15
 tracing flags
 BGP protocol, table ... 258
 IS-IS protocol, table ... 260
 OSPF protocol, table ... 265
 routing protocol daemon, table 252
 standard for routing protocols, table 255
 traffic and packets, checklist 169

U
up command
 usage guidelines ... 17
update command
 usage guidelines ... 17
update statement, BGP protocol 257
update, BGP protocol tracing flag 258
upgrade Junos OS
 backing up .. 61
 checklist for upgrading .. 49
 comparing software ... 61, 77
 copying, adding and starting 59
 from 4x to 5.0 .. 59
 reinstalling .. 63
 saving log information .. 65
user
 accounts, checklist .. 225
 configuring .. 241
 currently editing the configuration, checking 227
 forcing messages to all .. 232
 system logging facility .. 240
 terminal, logging messages to 241
utility, gzip ... 275, 288

V
version information
 Junos OS ... 275, 280, 288
 snmpwalk command ... 201
 vmcore file, compressing ... 275
 vrrpd, Routing Engine daemon 278
 vty command .. 286
 vty session .. 283, 286

W
warning, severity level ... 240