Abbreviated Table of Contents

About This Guide .. xxvii

Part 1 Ethernet Interfaces Configuration Statements Overview

Chapter 1 Ethernet Interfaces Configuration Statements and Hierarchy 3

Part 2 Configuring Ethernet Interfaces

Chapter 2 Configuring Ethernet Interfaces 35
Chapter 3 Configuring 802.1Q VLANs .. 53
Chapter 4 Configuring Aggregated Ethernet Interfaces 81
Chapter 5 Stacking and Rewriting Gigabit Ethernet VLAN Tags 129
Chapter 6 Configuring Layer 2 Bridging Interfaces 155
Chapter 7 Configuring Link Layer Discovery Protocol 157
Chapter 8 Configuring TCC and Layer 2.5 Switching 163
Chapter 9 Configuring Static ARP Table Entries 167
Chapter 10 Configuring Restricted and Unrestricted Proxy ARP 169
Chapter 11 Configuring MAC Address Validation on Static Ethernet Interfaces 173
Chapter 12 Enabling Passive Monitoring on Ethernet Interfaces 177
Chapter 13 Configuring IEEE 802.1ag OAM Connectivity-Fault Management 181
Chapter 14 Configuring ITU-T Y.1731 Ethernet Service OAM 237
Chapter 15 Configuring IEEE 802.1x Port-Based Network Access Control 287
Chapter 16 Configuring IEEE 802.3ah OAM Link-Fault Management 291
Chapter 17 Configuring VRRP and VRRP for IPv6 311
Chapter 18 Configuring Gigabit Ethernet Accounting and Policing 315
Chapter 19 Configuring Gigabit Ethernet Autonegotiation 329
Chapter 20 Configuring Gigabit Ethernet OTN Options 335
Chapter 21 Configuring the Management Ethernet Interface 337
Chapter 22 Configuring 10-Gigabit Ethernet LAN/WAN PICs 341
Chapter 23 Configuring the 10-Gigabit Ethernet DWDM Interface Wavelength 353
Chapter 24 Configuring 10-Gigabit Ethernet Framing 355
Chapter 25 Configuring 10-Gigabit Ethernet Notification of Link Down Alarm 359
Chapter 26 Configuring 10-Gigabit Ethernet Notification of Link Down for Optics Alarms .. 361
Chapter 27 Configuring 100-Gigabit Ethernet PICs/MICs 363
Chapter 28	Configuring 40-Gigabit Ethernet PICs ... 379
Chapter 29	Configuring Ethernet Interfaces for PTX Series Packet Transport Switches ... 383
Chapter 30	Configuring Point-to-Point Protocol over Ethernet ... 393
Chapter 31	Configuring Ethernet Automatic Protection Switching ... 429
Chapter 32	Configuring Ethernet Ring Protection Switching ... 437
Chapter 33	Example Ethernet Configurations ... 453
Part 3	Ethernet Interface Configuration Statements
Chapter 34	Summary of Ethernet Interfaces Configuration Statements ... 459
Part 4	Troubleshooting
Chapter 35	Investigate Fast Ethernet and Gigabit Ethernet Interfaces ... 599
Part 5	Index
Index	.. 629
Index of Statements and Commands	.. 643
Table of Contents

About This Guide .. xxvii

Junos Documentation and Release Notes xxvii

Objectives .. xxviii

Audience .. xxviii

Supported Routing Platforms .. xxviii

Using the Indexes .. xxix

Using the Examples in This Manual xxix
 - Merging a Full Example ... xxix
 - Merging a Snippet .. xxx

Documentation Conventions ... xxx

Documentation Feedback ... xxxii

Requesting Technical Support .. xxxii

Self-Help Online Tools and Resources xxxiii

Opening a Case with JTAC ... xxxiii

Part 1 Ethernet Interfaces Configuration Statements Overview

Chapter 1 Ethernet Interfaces Configuration Statements and Hierarchy 3

- [edit interfaces] Hierarchy Level 3
- [edit logical-systems] Hierarchy Level 19
- [edit protocols connections] Hierarchy Level 24
- [edit protocols dot1x] Hierarchy Level 25
- [edit protocols iccp] Hierarchy Level 25
- [edit protocols lacp] Hierarchy Level 26
- [edit protocols lldp] Hierarchy Level 26
- [edit protocols oam] Hierarchy Level 26
- [edit protocols ppp] Hierarchy Level 29
- [edit protocols pppoe] Hierarchy Level 29
- [edit protocols protection-group] Hierarchy Level 30
- [edit protocols vrrp] Hierarchy Level 30

Part 2 Configuring Ethernet Interfaces

Chapter 2 Configuring Ethernet Interfaces 35

- Ethernet Interfaces Overview 35
- Configuring Ethernet Physical Interface Properties 36
- Configuring J Series Services Router Switching Interfaces 40
 - Example: Configuring J Series Services Router Switching Interfaces ... 41
- MX Series Router Interface Identifiers 42
- Enabling Ethernet MAC Address Filtering 42
 - Filtering Specific MAC Addresses 43

Copyright © 2012, Juniper Networks, Inc.
Configuring Extended VLAN Encapsulation .. 67
 Example: Configuring Extended VLAN Encapsulation on a Gigabit Ethernet
 Interface ... 67
 Example: Configuring Extended VLAN Encapsulation on an Aggregated
 Ethernet Interface ... 67
Guidelines for Configuring VLAN ID List-Bundled Logical Interfaces That Connect
 CCCs ... 68
Guidelines for Configuring Physical Link-Layer Encapsulation to Support
 CCCs ... 68
Guidelines for Configuring Logical Link-Layer Encapsulation to Support
 CCCs ... 69
Configuring a Layer 2 VPN Routing Instance on a VLAN-Bundled Logical
 Interface .. 70
 Configuring a VLAN-Bundled Logical Interface to Support a Layer 2 VPN
 Routing Instance ... 70
 Specifying the Interface Over Which VPN Traffic Travels to the CE
 Router ... 70
 Specifying the Interface to Handle Traffic for a CCC 70
Configuring a Layer 2 Circuit on a VLAN-Bundled Logical Interface 71
 Configuring a VLAN-Bundled Logical Interface to Support a Layer 2 VPN
 Routing Instance ... 71
 Specifying the Interface to Handle Traffic for a CCC Connected to the Layer
 2 Circuit .. 72
 Example: Configuring a Layer 2 VPN Routing Instance on a VLAN-Bundled Logical
 Interface .. 73
 Example: Configuring a Layer 2 Circuit on a VLAN-Bundled Logical Interface 74
Configuring a Logical Interface for Access Mode 75
 Example: Configuring a Logical Interface for Access Mode 76
Configuring a Logical Interface for Trunk Mode 76
Configuring the VLAN ID List for a Trunk Interface 77
Configuring a Trunk Interface on a Bridge Network 77

Chapter 4 Configuring Aggregated Ethernet Interfaces 81
 Aggregated Ethernet Interfaces Overview 81
 Platform Support for Aggregated Ethernet Interfaces 82
 Configuration Guidelines for Aggregated Ethernet Interfaces 82
 Configuring an Aggregated Ethernet Interface 83
 Configuring Junos OS for Supporting Aggregated Devices 84
 Configuring Virtual Links for Aggregated Devices 85
 Configuring LACP Link Protection at the Chassis Level 85
 Enabling LACP Link Protection .. 86
 Configuring System Priority ... 86
ETH-DM Frame Count Retrieval ... 259
Frame Counts Stored in CFM Databases 259
One-Way ETH-DM Frame Counts ... 259
Two-Way ETH-DM Frame Counts .. 259
Configuring Routers to Support an ETH-DM Session 260
Configuring MEP Interfaces ... 260
Ensuring That Distributed ppm Is Not Disabled 261
Enabling the Hardware-Assisted Timestamping Option 263
Configuring the Server-Side Processing Option 264
Starting an ETH-DM Session ... 264
Using the monitor ethernet delay-measurement Command 264
Starting a One-Way ETH-DM Session 265
Starting a Two-Way ETH-DM Session 265
Managing ETH-DM Statistics and ETH-DM Frame Counts 266
Displaying ETH-DM Statistics Only 266
Displaying ETH-DM Statistics and Frame Counts 267
Displaying ETH-DM Frame Counts for MEPs by Enclosing CFM Entity 267
Displaying ETH-DM Frame Counts for MEPs by Interface or Domain Level ... 268
Clearing ETH-DM Statistics and Frame Counts 268
Managing ETH-LM Statistics .. 269
Displaying ETH-LM Statistics .. 269
Clearing ETH-LM Statistics .. 270
Managing Iterator Statistics .. 270
Displaying Iterator Statistics .. 270
Clearing Iterator Statistics .. 275
Managing Continuity Measurement Statistics 275
Displaying Continuity Measurement Statistics 275
Clearing Continuity Measurement Statistics 276
Example: One-Way Ethernet Frame Delay Measurement 276
Description of the One-Way Frame Delay Measurement Example . 276
Routers Used in This Example .. 276
ETH-DM Frame Counts for this Example 276
ETH-DM Statistics for this Example 277
Steps for the One-Way Frame Delay Measurement Example 278
Example: Configuring an Iterator 283
Example: Configuring an Iterator Profile for Two-way Delay Measurement ... 284
Example: Configuring an Iterator Profile for Loss Measurement .. 284
Example: Configuring a Remote MEP with an Iterator Profile 284
Example: Disabling an Iterator Profile with the disable Statement ... 284
Example: Disabling an Iterator Profile by Deactivating the Profile 285
Configuring the Failure Notification Protocol 285

Chapter 15 Configuring IEEE 802.1x Port-Based Network Access Control 287
IEEE 802.1x Port-Based Network Access Control Overview 287
Understanding the Administrative State of the Authenticator Port 288
Table of Contents

Chapter 20 Configuring Gigabit Ethernet OTN Options ... 335
 Gigabit Ethernet OTN Options Configuration Overview 335
 Gigabit Ethernet OTN Options .. 335

Chapter 21 Configuring the Management Ethernet Interface 337
 Management Ethernet Interface Overview ... 337
 Configuring a Consistent Management IP Address ... 338
 Configuring the MAC Address on the Management Ethernet Interface 339

Chapter 22 Configuring 10-Gigabit Ethernet LAN/WAN PICs 341
 10-port 10-Gigabit Ethernet LAN/WAN PIC Overview 341
 Configuring Line-Rate Mode on 10-Gigabit Ethernet LAN/WAN PIC Supporting Oversubscription ... 345
 Configuring Control Queue Disable on a 10-port 10-Gigabit Ethernet LAN/WAN PIC .. 346
 Example: Handling Oversubscription on a 10-Gigabit Ethernet LAN/WAN PIC . 349
 12-port 10-Gigabit Ethernet LAN/WAN PIC on Type 5 FPC Overview 350
 24-port 10-Gigabit Ethernet LAN/WAN PIC on Type 5 FPC Overview 352

Chapter 23 Configuring the 10-Gigabit Ethernet DWDM Interface Wavelength 353
 10-Gigabit Ethernet DWDM Interface Wavelength Overview 353
 Configuring the 10-Gigabit Ethernet DWDM Interface Wavelength 353

Chapter 24 Configuring 10-Gigabit Ethernet Framing .. 355
 10-Gigabit Ethernet Framing Overview ... 355
 Configuring 10-Gigabit Ethernet Framing ... 356
 Understanding WAN Framing for 10-Gigabit Ethernet Trio Interfaces 357

Chapter 25 Configuring 10-Gigabit Ethernet Notification of Link Down Alarm 359
 10-Gigabit Ethernet Notification of Link Down Alarm Overview 359
 Configuring 10-Gigabit Ethernet Notification of Link Down Alarm 359

Chapter 26 Configuring 10-Gigabit Ethernet Notification of Link Down for Optics Alarms ... 361
 10-Gigabit Ethernet Notification of Link Down for Optics Options Overview 361
 Configuring 10-Gigabit Ethernet Link Down Notification for Optics Options Alarm or Warning ... 361

Chapter 27 Configuring 100-Gigabit Ethernet PICs/MICs .. 363
 100-Gigabit Ethernet PIC Overview ... 363
 MPC3E MIC Overview ... 365
 Configuring 100-Gigabit Ethernet PICs .. 367
 Configuring 100-Gigabit Ethernet PIC VLAN Steering Mode 370
 100-Gigabit Ethernet PIC on Type 5 FPC Overview .. 372
Interoperability Between the 100-Gigabit Ethernet PICs PD-1CE-CFP-FPC4 and PF-1CGE-CFP ... 374
Configuring the Interoperability Between the 100-Gigabit Ethernet PICs PF-1CGE-CFP and PD-1CE-CFP-FPC4 375
Configuring SA Multicast Bit Steering Mode on the 100-Gigabit Ethernet PIC PF-1CGE-CFP ... 376
Configuring Two 50-Gigabit Ethernet Physical Interfaces on the 100-Gigabit Ethernet PIC PD-1CE-CFP-FPC4 as One Aggregated Ethernet Interface .. 376

Chapter 28 Configuring 40-Gigabit Ethernet PICs ... 379
40-Gigabit Ethernet PIC Overview ... 379
Configuring 40-Gigabit Ethernet PICs .. 381

Chapter 29 Configuring Ethernet Interfaces for PTX Series Packet Transport Switches ... 383
Understanding Ethernet Interfaces for PTX Series Packet Transport Switches ... 384
Configuring MAC Filtering on PTX Series Packet Transport Switches .. 385
Configuring Flexible VLAN Tagging on PTX Series Packet Transport Switches .. 386
Configuring Tag Protocol IDs (TPIDs) on PTX Series Packet Transport Switches ... 386
Configuring Interface Encapsulation on PTX Series Packet Transport Switches ... 387
Configuring Ethernet 802.3ah OAM on PTX Series Packet Transport Switches ... 388
Configuring Ethernet 802.1ag OAM on PTX Series Packet Transport Switches ... 389
Configuring Aggregated Ethernet Interfaces on PTX Series Packet Transport Switches ... 391

Chapter 30 Configuring Point-to-Point Protocol over Ethernet ... 393
PPPoE Overview .. 394
PPPoE Interfaces ... 394
Ethernet Interface ... 395
PPPoE Stages ... 395
PPPoE Discovery Stage ... 395
PPPoE Session Stage ... 396
Optional CHAP Authentication ... 396
Understanding PPPoE Service Name Tables .. 398
Interaction Among PPPoE Clients and Routers During the Discovery Stage ... 398
Service Entries and Actions in PPPoE Service Name Tables 399
ACI/ARI Pairs in PPPoE Service Name Tables 400
Dynamic Profiles and Routing Instances in PPPoE Service Name Tables .. 401
Maximum Sessions Limit in PPPoE Service Name Tables 401
Static PPPoE Interfaces in PPPoE Service Name Tables 402
PADO Advertisement of Named Services in PPPoE Service Name Tables .. 402
<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet (Protocols OAM)</td>
<td>471</td>
</tr>
<tr>
<td>ethernet-policer-profile</td>
<td>474</td>
</tr>
<tr>
<td>ethernet-ring</td>
<td>475</td>
</tr>
<tr>
<td>ethernet-switch-profile</td>
<td>476</td>
</tr>
<tr>
<td>fast-aps-switch</td>
<td>477</td>
</tr>
<tr>
<td>fastether-options</td>
<td>478</td>
</tr>
<tr>
<td>fnp</td>
<td>479</td>
</tr>
<tr>
<td>flow-control</td>
<td>480</td>
</tr>
<tr>
<td>flow-control-options</td>
<td>481</td>
</tr>
<tr>
<td>forwarding-mode (100-Gigabit Ethernet)</td>
<td>482</td>
</tr>
<tr>
<td>framing (10-Gigabit Ethernet Interfaces)</td>
<td>483</td>
</tr>
<tr>
<td>gigether-options</td>
<td>484</td>
</tr>
<tr>
<td>gratuitous-arp-reply</td>
<td>485</td>
</tr>
<tr>
<td>hold-multiplier</td>
<td>486</td>
</tr>
<tr>
<td>ieee802.1p</td>
<td>486</td>
</tr>
<tr>
<td>ignore-l3-incompletes</td>
<td>487</td>
</tr>
<tr>
<td>ingress-rate-limit</td>
<td>487</td>
</tr>
<tr>
<td>inner-tag-protocol-id</td>
<td>488</td>
</tr>
<tr>
<td>inner-vlan-id</td>
<td>489</td>
</tr>
<tr>
<td>inner-vlan-id-range</td>
<td>490</td>
</tr>
<tr>
<td>input-priority-map</td>
<td>490</td>
</tr>
<tr>
<td>input-vlan-map</td>
<td>491</td>
</tr>
<tr>
<td>input-vlan-map (Aggregated Ethernet)</td>
<td>491</td>
</tr>
<tr>
<td>input-vlan-map (Gigabit Ethernet IQ and 10-Gigabit Ethernet SFPP)</td>
<td>492</td>
</tr>
<tr>
<td>interface</td>
<td>493</td>
</tr>
<tr>
<td>interfaces</td>
<td>494</td>
</tr>
<tr>
<td>lACP</td>
<td>495</td>
</tr>
<tr>
<td>lACP (802.3ad)</td>
<td>495</td>
</tr>
<tr>
<td>lACP (Aggregated Ethernet)</td>
<td>496</td>
</tr>
<tr>
<td>link-discovery</td>
<td>497</td>
</tr>
<tr>
<td>link-fault-management</td>
<td>498</td>
</tr>
<tr>
<td>link-mode</td>
<td>500</td>
</tr>
<tr>
<td>link-protection</td>
<td>502</td>
</tr>
<tr>
<td>link-speed (Aggregated Ethernet)</td>
<td>503</td>
</tr>
<tr>
<td>IGRP</td>
<td>504</td>
</tr>
<tr>
<td>IGP-configuration-notification-interval</td>
<td>505</td>
</tr>
<tr>
<td>loopback (Aggregated Ethernet, Fast Ethernet, and Gigabit Ethernet)</td>
<td>506</td>
</tr>
<tr>
<td>loss-priority</td>
<td>506</td>
</tr>
<tr>
<td>mac-learn-enable</td>
<td>507</td>
</tr>
<tr>
<td>max-sessions (PPPoE Service Name Tables)</td>
<td>508</td>
</tr>
<tr>
<td>max-sessions-vsa-ignore (Static and Dynamic Subscribers)</td>
<td>509</td>
</tr>
<tr>
<td>maximum-links</td>
<td>510</td>
</tr>
<tr>
<td>MEP</td>
<td>511</td>
</tr>
<tr>
<td>minimum-links</td>
<td>512</td>
</tr>
<tr>
<td>mip-half-function</td>
<td>513</td>
</tr>
<tr>
<td>MPLS (Interfaces)</td>
<td>514</td>
</tr>
<tr>
<td>no-auto-mdix</td>
<td>515</td>
</tr>
</tbody>
</table>
no-gratuitous-arp-request ... 515
no-send-pads-ac-info ... 516
no-send-pads-error ... 516
oam ... 517
optics-options ... 519
output-priority-map .. 520
pado-advertise ... 521
pdu-interval ... 521
pdu-threshold ... 522
periodic ... 523
policer ... 524
 policer (CFM Firewall) ... 524
 policer (CFM Global) ... 525
 policer (CFM Session) ... 526
 policer (CoS) ... 527
 policer (MAC) .. 528
pop ... 529
pop-pop ... 529
pop-swap ... 530
port-id-subtype ... 531
port-status-tlv .. 532
ppp-options .. 533
pppoe-options .. 534
pppoe-underlying-options (Static and Dynamic Subscribers) 535
premium ... 536
 premium (Hierarchical Policer) 536
 premium (Output Priority Map) 537
 premium (Policer) ... 537
protection-group .. 538
protocol-down .. 539
ptopo-configuration-maximum-hold-time 540
ptopo-configuration-trap-interval 540
push ... 541
push-push .. 541
remote-mep .. 542
request .. 542
ring-protection-link-end .. 543
ring-protection-link-owner ... 543
routing-instance (PPPoE Service Name Tables) 544
sa-multicast (100-Gigabit Ethernet) 545
service (PPPoE) ... 546
service-name-table .. 547
service-name-tables .. 548
short-cycle-protection (Static and Dynamic Subscribers) 549
source-address-filter ... 551
source-filtering .. 552
speed ... 553
 speed (Ethernet) ... 553
 speed (MX Series DPC) .. 554
static-interface ... 555
swap ... 556
swap-push .. 556
swap-swap .. 557
switch-options .. 557
switch-port .. 558
system-id .. 559
tag-protocol-id .. 560
tag-protocol-id (TPIDs Expected to Be Sent or Received) 560
tag-protocol-id (TPID to Rewrite) 561
terminate (PPPoE Service Name Tables) 562
traceoptions ... 563
traceoptions (PPPoE) 565
transmit-delay .. 567
unit ... 568
version-3 .. 574
vlan-id ... 575
 vlan-id (Logical Port in Bridge Domain) 575
 vlan-id (Outer VLAN ID) 576
 vlan-id (VLAN ID to Be Bound to a Logical Interface) 576
 vlan-id (VLAN ID to Rewrite) 577
vlan-id-list .. 578
 vlan-id-list (Ethernet VLAN Circuit) 579
 vlan-id-list (Interface in Bridge Domain) 580
vlan-id-range .. 581
vlan-ranges .. 582
vlan-rewrite ... 583
vlan-rule (100-Gigabit Ethernet) 583
vlan-steering (100-Gigabit Ethernet) 584
vlan-tagging .. 585
vlan-tags .. 586
 vlan-tags (Dual-Tagged Logical Interface) 587
 vlan-tags (Stacked VLAN Tags) 589
vlan-tags-outer ... 590
vlan-vci-tagging .. 591
wavelength ... 592
west-interface .. 595
working-circuit .. 596

Part 4 Troubleshooting

Chapter 35 Investigate Fast Ethernet and Gigabit Ethernet Interfaces 599
Investigating Interface Steps and Commands 599
 Investigating Interface Steps and Commands Overview 599
 Monitoring Interfaces 599
 Performing a Loopback Test on an Interface 600
List of Figures

<table>
<thead>
<tr>
<th>Part</th>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>Configuring Aggregated Ethernet Interfaces</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure 1: Single Multichassis Link</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure 2: Dual Multichassis Link</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure 3: Interchassis Data Link Between Active-Active Nodes</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure 4: Active-Active MC-LAG with Single MC-LAG</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure 5: Active-Active MC-LAG with Multiple Nodes on a Single Multichassis Link</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure 6: MC-LAG Device and Single-Homed Client</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure 7: Loop Caused by the ICL Links</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure 8: Multicast Topology with Source Connected via Layer 3</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure 9: Multicast Topology with Source Connected via MC-Link</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure 10: N1 and N2 for the Same Service with Same Service ID</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure 11: Bridge Domain with Logical Interfaces from Two MC-AE Interfaces</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure 12: Typical Network Over Which Active-Active Is Supported</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure 13: Layer 2 Configuration Without Integrated Routing and Bridging</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure 14: Symmetric Load Balancing on an 802.3ad LAG on MX Series</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Configuring TCC and Layer 2.5 Switching</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure 15: Topology of Layer 2.5 Translational Cross-Connect</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Configuring Restricted and Unrestricted Proxy ARP</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure 16: Edge Device Case for Unrestricted Proxy ARP</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure 17: Core Device Case for Unrestricted Proxy ARP</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Configuring IEEE 802.1ag OAM Connectivity-Fault Management</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure 18: Relationship Among MEPS, MIPs, and Maintenance Domain Levels</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure 19: Relationship Among Bridges, Maintenance Domains, Maintenance Associations, and MEPS</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure 20: Scope of the E-LMI Protocol</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure 21: E-LMI Configuration for a Point-to-Point EVC (SVLAN) Monitored by CFM</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure 22: CET inter-op Dual Homed Topology</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure 23: CET inter-op Dual Attached Topology</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure 24: Layer 2 VPN Topology</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Configuring ITU-T Y.1731 Ethernet Service OAM</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure 25: Relationship of MEPS, MIPs, and Maintenance Domain Levels</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>Configuring 10-Gigabit Ethernet LAN/WAN PICs</td>
<td>341</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Figure 26: Control Queue Rate Limiter Scenario</td>
<td>346</td>
</tr>
<tr>
<td>Chapter 29</td>
<td>Configuring Ethernet Interfaces for PTX Series Packet Transport Switches .. 383</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Figure 27: PTX5000 in a Juniper Networks Environment ... 384</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 30</td>
<td>Configuring Point-to-Point Protocol over Ethernet 393</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Figure 28: PPPoE Session on an Ethernet Loop .. 395</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 31</td>
<td>Configuring Ethernet Automatic Protection Switching 429</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Figure 29: Connections Terminating on Single PE .. 430</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Figure 30: Connections Terminating on a Different PE .. 431</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Figure 31: Understanding APS Events ... 432</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Figure 32: Topology of a Network Using VPWS Pseudowires ... 433</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 32</td>
<td>Configuring Ethernet Ring Protection Switching 437</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Figure 33: Protocol Packets from the Network to the Router .. 440</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Figure 34: Protocol Packets from the Router or Switch to the Network .. 440</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Figure 35: Example of a Three-Node Ring Topology .. 444</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part 4</td>
<td>Troubleshooting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter 35</td>
<td>Investigate Fast Ethernet and Gigabit Ethernet Interfaces 599</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Figure 36: RJ-45 Ethernet Loopback Plug ... 614</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
List of Tables

About This Guide .. xxvii
Table 1: Notice Icons ... xxvi
Table 2: Text and Syntax Conventions xxxi

Part 2 Configuring Ethernet Interfaces

Chapter 3 Configuring 802.1Q VLANs 53
Table 3: VLAN ID Range by Interface Type 55
Table 4: Configuration Statements Used to Bind VLAN IDs to Logical Interfaces 60
Table 5: Configuration Statements Used to Associate VLAN IDs to VLAN Demux Interfaces 64
Table 6: Encapsulation Inside Circuits CCC-Connected by VLAN-Bundled Logical Interfaces 69

Chapter 4 Configuring Aggregated Ethernet Interfaces 81
Table 7: Untagged Aggregated Ethernet and LACP Support by PIC and Platform 120

Chapter 5 Stacking and Rewriting Gigabit Ethernet VLAN Tags ... 129
Table 8: Rewrite Operations on Untagged, Single-Tagged, and Dual-Tagged Frames 131
Table 9: Applying Rewrite Operations to VLAN Maps .. 132
Table 10: Rewrite Operations and Statement Usage for Input VLAN Maps 136
Table 11: Rewrite Operations and Statement Usage for Output VLAN Maps 137
Table 12: Input VLAN Map Statements Allowed for ethernet-ccc and ethernet-vpls Encapsulations 144
Table 13: Output VLAN Map Statements Allowed for ethernet-ccc and ethernet-vpls Encapsulations 144
Table 14: Rules for Applying Rewrite Operations to VLAN Maps .. 144

Chapter 13 Configuring IEEE 802.1ag OAM Connectivity-Fault Management 181
Table 15: Lowest Priority Defect Options 193
Table 16: Service Protection Options 194
Table 17: Format of TLVs ... 208
Table 18: Type Field Values for Various TLVs for CFM PDUs .. 208
Table 19: Port Status TLV Format 211
Table 20: Port Status TLV Values 211
Table 21: Interface Status TLV Format 213
Table 22: Interface Status TLV Values 213
Table 23: Loss Threshold TLV Format 230
Chapter 14 Configuring ITU-T Y.1731 Ethernet Service OAM 237
 Table 24: ETH-DM Statistics .. 257
 Table 25: ETH-DM Frame Counts .. 258
 Table 26: Displaying Iterator Statistics for Ethernet Delay Measurement Output Fields .. 271
 Table 27: Displaying Iterator Statistics for Ethernet Loss Measurement Output Fields .. 273
Chapter 18 Configuring Gigabit Ethernet Accounting and Policing 315
 Table 28: Capabilities of Gigabit Ethernet IQ and Gigabit Ethernet with SFPs . . 316
 Table 29: Default Forwarding Classes .. 319
Chapter 19 Configuring Gigabit Ethernet Autonegotiation 329
 Table 30: Mode and Autonegotiation Status (Local) 331
 Table 31: Mode and Autonegotiation Status (Remote) 333
Chapter 22 Configuring 10-Gigabit Ethernet LAN/WAN PICs 341
 Table 32: Capabilities of 10-Gigabit Ethernet LAN/WAN PICs 344
 Table 33: Handling Oversubscription on 10-Gigabit Ethernet LAN/WAN PICs . . 349
Chapter 23 Configuring the 10-Gigabit Ethernet DWDM Interface Wavelength ... 353
 Table 34: Wavelength-to-Frequency Conversion Matrix 354
Chapter 27 Configuring 100-Gigabit Ethernet PICs/MICs 363
 Table 35: Capabilities of 100-Gigabit Ethernet PICs on Type 5 FPC 374
Part 4 Troubleshooting
Chapter 35 Investigate Fast Ethernet and Gigabit Ethernet Interfaces 599
 Table 36: Commands Used to Monitor Interfaces 600
 Table 37: Commands Used to Perform Loopback Testing on Interfaces 601
 Table 38: Checklist for Monitoring Fast Ethernet and Gigabit Ethernet Interfaces .. 603
 Table 39: Status of Fast Ethernet Interfaces .. 604
 Table 40: Status of Gigabit Ethernet Interfaces 605
 Table 41: Errors to Look For ... 608
 Table 42: MAC Statistics Errors ... 608
 Table 43: Autonegotiation Information .. 609
 Table 44: Fiber-Optic Ethernet Interface Specifications 610
 Table 45: Checklist for Using Loopback Testing for Fast Ethernet and Gigabit Ethernet Interfaces .. 612
 Table 46: Problems and Solutions for a Physical Link That Is Down 616
 Table 47: Checklist for Locating Fast Ethernet and Gigabit Ethernet Alarms and Counters .. 621
 Table 48: Major Fast Ethernet and Gigabit Ethernet Counters 623
About This Guide

This preface provides the following guidelines for using the Junos® OS Ethernet Interfaces Configuration Guide:

- Junos Documentation and Release Notes on page xxvii
- Objectives on page xxviii
- Audience on page xxviii
- Supported Routing Platforms on page xxviii
- Using the Indexes on page xxix
- Using the Examples in This Manual on page xxix
- Documentation Conventions on page xxx
- Documentation Feedback on page xxxii
- Requesting Technical Support on page xxxii

Junos Documentation and Release Notes

For a list of related Junos documentation, see http://www.juniper.net/techpubs/software/junos/.

If the information in the latest release notes differs from the information in the documentation, follow the Junos Release Notes.

To obtain the most current version of all Juniper Networks® technical documentation, see the product documentation page on the Juniper Networks website at http://www.juniper.net/techpubs/.

Juniper Networks supports a technical book program to publish books by Juniper Networks engineers and subject matter experts with book publishers around the world. These books go beyond the technical documentation to explore the nuances of network architecture, deployment, and administration using the Junos operating system (Junos OS) and Juniper Networks devices. In addition, the Juniper Networks Technical Library, published in conjunction with O'Reilly Media, explores improving network security, reliability, and availability using Junos OS configuration techniques. All the books are for sale at technical bookstores and book outlets around the world. The current list can be viewed at http://www.juniper.net/books.
Objectives

This guide provides an overview of the network interfaces features of the JUNOS Software and describes how to configure these properties on the routing platform.

NOTE: For additional information about the Junos OS—either corrections to or information that might have been omitted from this guide—see the software release notes at http://www.juniper.net/.

Audience

This guide is designed for network administrators who are configuring and monitoring a Juniper Networks M Series, MX Series, T Series, EX Series, or J Series router or switch.

To use this guide, you need a broad understanding of networks in general, the Internet in particular, networking principles, and network configuration. You must also be familiar with one or more of the following Internet routing protocols:

- Border Gateway Protocol (BGP)
- Distance Vector Multicast Routing Protocol (DVMRP)
- Intermediate System-to-Intermediate System (IS-IS)
- Internet Control Message Protocol (ICMP) router discovery
- Internet Group Management Protocol (IGMP)
- Multiprotocol Label Switching (MPLS)
- Open Shortest Path First (OSPF)
- Protocol-independent Multicast (PIM)
- Resource Reservation Protocol (RSVP)
- Routing Information Protocol (RIP)
- Simple Network Management Protocol (SNMP)

Personnel operating the equipment must be trained and competent; must not conduct themselves in a careless, willfully negligent, or hostile manner; and must abide by the instructions provided by the documentation.

Supported Routing Platforms

For the features described in this manual, the JUNOS Software currently supports the following routing platforms:

- J Series
- M Series
Using the Indexes

This reference contains two indexes: a complete index that includes topic entries, and an index of statements and commands only.

In the index of statements and commands, an entry refers to a statement summary section only. In the complete index, the entry for a configuration statement or command contains at least two parts:

- The primary entry refers to the statement summary section.
- The secondary entry, *usage guidelines*, refers to the section in a configuration guidelines chapter that describes how to use the statement or command.

Using the Examples in This Manual

If you want to use the examples in this manual, you can use the `load merge` or the `load merge relative` command. These commands cause the software to merge the incoming configuration into the current candidate configuration. The example does not become active until you commit the candidate configuration.

If the example configuration contains the top level of the hierarchy (or multiple hierarchies), the example is a *full example*. In this case, use the `load merge` command.

If the example configuration does not start at the top level of the hierarchy, the example is a *snippet*. In this case, use the `load merge relative` command. These procedures are described in the following sections.

Merging a Full Example

To merge a full example, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration example into a text file, save the file with a name, and copy the file to a directory on your routing platform.

 For example, copy the following configuration to a file and name the file `ex-script.conf`.

   ```
   Copy the `ex-script.conf` file to the `/var/tmp` directory on your routing platform.
   
   ```
   ```
   system {
     scripts {
       commit {
         file ex-script.xsl;
       }
     }
   }
   }
   interfaces {
     fxp0 {
       disable;
   ```
unit 0 {
 family inet {
 address 10.0.0.1/24;
 }
}

2. Merge the contents of the file into your routing platform configuration by issuing the load merge configuration mode command:

```
[edit]
user@host# load merge /var/tmp/ex-script.conf
load complete
```

Merging a Snippet

To merge a snippet, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration snippet into a text file, save the file with a name, and copy the file to a directory on your routing platform.

 For example, copy the following snippet to a file and name the file `ex-script-snippet.conf`. Copy the `ex-script-snippet.conf` file to the `/var/tmp` directory on your routing platform.

   ```
   commit {
     file ex-script-snippet.xsl; }
   ```

2. Move to the hierarchy level that is relevant for this snippet by issuing the following configuration mode command:

   ```
   [edit]
   user@host# edit system scripts
   [edit system scripts]
   ```

3. Merge the contents of the file into your routing platform configuration by issuing the load merge relative configuration mode command:

   ```
   [edit system scripts]
   user@host# load merge relative /var/tmp/ex-script-snippet.conf
   load complete
   ```

 For more information about the load command, see the CLI User Guide.

Documentation Conventions

Table 1 on page xxxi defines notice icons used in this guide.
Table 1: Notice Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Meaning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![i]</td>
<td>Informational note</td>
<td>Indicates important features or instructions.</td>
</tr>
<tr>
<td>![!]</td>
<td>Caution</td>
<td>Indicates a situation that might result in loss of data or hardware damage.</td>
</tr>
<tr>
<td>![!]</td>
<td>Warning</td>
<td>Alerts you to the risk of personal injury or death.</td>
</tr>
<tr>
<td>![L]</td>
<td>Laser warning</td>
<td>Alerts you to the risk of personal injury from a laser.</td>
</tr>
</tbody>
</table>

Table 2 on page xxxi defines the text and syntax conventions used in this guide.

Table 2: Text and Syntax Conventions

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold text like this</td>
<td>Represents text that you type.</td>
<td>To enter configuration mode, type the <code>configure</code> command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>user@host> configure</code></td>
</tr>
<tr>
<td>Fixed-width text like this</td>
<td>Represents output that appears on the terminal screen.</td>
<td><code>user@host> show chassis alarms</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No alarms currently active</td>
</tr>
<tr>
<td>Italic text like this</td>
<td>• Introduces or emphasizes important new terms.</td>
<td>• A policy term is a named structure that defines match conditions and actions.</td>
</tr>
<tr>
<td></td>
<td>• Identifies book names.</td>
<td>• Junos OS System Basics Configuration Guide</td>
</tr>
<tr>
<td></td>
<td>• Identifies RFC and Internet draft titles.</td>
<td>• RFC 1997, BGP Communities Attribute</td>
</tr>
<tr>
<td>Italic text like this</td>
<td>Represents variables (options for which you substitute a value) in commands or configuration statements.</td>
<td>Configure the machine’s domain name:</td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>[edit] root@# set system domain-name domain-name</code></td>
</tr>
<tr>
<td>Text like this</td>
<td>Represents names of configuration statements, commands, files, and directories; configuration hierarchy levels; or labels on routing platform components.</td>
<td>• To configure a stub area, include the <code>stub</code> statement at the <code>[edit protocols ospf area area-id]</code> hierarchy level.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The console port is labeled <code>CONSOLE</code>.</td>
</tr>
<tr>
<td><code>< ></code> (angle brackets)</td>
<td>Enclose optional keywords or variables.</td>
<td><code>stub <default-metric metric></code>;</td>
</tr>
</tbody>
</table>
Table 2: Text and Syntax Conventions (continued)

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(pipe symbol)</td>
<td>Indicates a choice between the mutually exclusive keywords or variables on either side of the symbol. The set of choices is often enclosed in parentheses for clarity.</td>
</tr>
</tbody>
</table>
| | (string1 | string2 | string3) | [edit] routing-options {
| # (pound sign) | Indicates a comment specified on the same line as the configuration statement to which it applies. | # Required for dynamic MPLS only |
| [] (square brackets) | Enclose a variable for which you can substitute one or more values. | community name members [community-ids] |
| Indention and braces ({ }) | Identify a level in the configuration hierarchy. | [edit]
| : (semicolon) | Identifies a leaf statement at a configuration hierarchy level. | routing-options {
| | | static {
| | | route default {
| | | nexthop address;
| | | retain;
| | | } |
| | | } |
| J-Web GUI Conventions | | |
| **Bold text like this** | Represents J-Web graphical user interface (GUI) items you click or select. | • In the Logical Interfaces box, select All Interfaces.
• To cancel the configuration, click Cancel. |
| > (bold right angle bracket) | Separates levels in a hierarchy of J-Web selections. | In the configuration editor hierarchy, select Protocols>Ospf. |

Documentation Feedback

We encourage you to provide feedback, comments, and suggestions so that we can improve the documentation. You can send your comments to techpubs-comments@juniper.net, or fill out the documentation feedback form at https://www.juniper.net/cgi-bin/docbugreport/. If you are using e-mail, be sure to include the following information with your comments:

- Document or topic name
- URL or page number
- Software release version (if applicable)

Requesting Technical Support

Technical product support is available through the Juniper Networks Technical Assistance Center (JTAC). If you are a customer with an active J-Care or JNASC support contract,
or are covered under warranty, and need postsales technical support, you can access our tools and resources online or open a case with JTAC.

- **Product warranties**—For product warranty information, visit http://www.juniper.net/support/warranty/.
- **JTAC Hours of Operation**—The JTAC centers have resources available 24 hours a day, 7 days a week, 365 days a year.

Self-Help Online Tools and Resources

For quick and easy problem resolution, Juniper Networks has designed an online self-service portal called the Customer Support Center (CSC) that provides you with the following features:

- **Find CSC offerings**: http://www.juniper.net/customers/support/
- **Find product documentation**: http://www.juniper.net/techpubs/
- **Find solutions and answer questions using our Knowledge Base**: http://kb.juniper.net/
- **Download the latest versions of software and review release notes**: http://www.juniper.net/customers/csc/software/
- **Search technical bulletins for relevant hardware and software notifications**: https://www.juniper.net/alerts/
- **Join and participate in the Juniper Networks Community Forum**: http://www.juniper.net/company/communities/
- **Open a case online in the CSC Case Management tool**: http://www.juniper.net/cm/

To verify service entitlement by product serial number, use our Serial Number Entitlement (SNE) Tool: https://tools.juniper.net/SerialNumberEntitlementSearch/

Opening a Case with JTAC

You can open a case with JTAC on the Web or by telephone.

- **Use the Case Management tool in the CSC** at http://www.juniper.net/cm/.
- **Call 1-888-314-JTAC** (1-888-314-5822 toll-free in the USA, Canada, and Mexico).

For international or direct-dial options in countries without toll-free numbers, visit us at http://www.juniper.net/support/requesting-support.html
PART 1

Ethernet Interfaces Configuration Statements Overview

- Ethernet Interfaces Configuration Statements and Hierarchy on page 3
CHAPTER 1

Ethernet Interfaces Configuration Statements and Hierarchy

The following interfaces hierarchy listings show the complete configuration statement hierarchy for the indicated hierarchy levels, listing all possible configuration statements within the indicated hierarchy levels, and showing their level in the configuration hierarchy. When you are configuring the Junos OS, your current hierarchy level is shown in the banner on the line preceding the user@host# prompt.

This section contains the following topics:

- [edit interfaces] Hierarchy Level on page 3
- [edit logical-systems] Hierarchy Level on page 19
- [edit protocols connections] Hierarchy Level on page 24
- [edit protocols dot1x] Hierarchy Level on page 25
- [edit protocols iccp] Hierarchy Level on page 25
- [edit protocols lacp] Hierarchy Level on page 26
- [edit protocols ldp] Hierarchy Level on page 26
- [edit protocols oam] Hierarchy Level on page 26
- [edit protocols ppp] Hierarchy Level on page 29
- [edit protocols pppoe] Hierarchy Level on page 29
- [edit protocols protection-group] Hierarchy Level on page 30
- [edit protocols vrrp] Hierarchy Level on page 30

[edit interfaces] Hierarchy Level

The statements at the [edit interfaces interface-name unit logical-unit-number] hierarchy level can also be configured at the [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number] hierarchy level.
NOTE: The accounting-profile statement is an exception to this rule. The accounting-profile statement can be configured at the [edit interfaces interface-name unit logical-unit-number] hierarchy level, but it cannot be configured at the [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number] hierarchy level.

```bash
interfaces {
    traceoptions {
        file filename < files number> <match regular-expression> <size size> <world-readable | no-world-readable> ;
        flag flag <disable>;
    }
    interface-name {
        accounting-profile name;
        aggregated-ether-options {
            (flow-control | no-flow-control);
            lacp {
                (active | passive);
                link-protection {
                    disable;
                    (revertive | non-revertive);
                    periodic interval;
                    system-priority priority;
                }
            } link-protection;
            link-speed speed;
            (loopback | no-loopback);
            mc-ae{
                chassis-id chassis-id;
                mc-ae-id mc-ae-id;
                mode (active-active | active-standby);
                redundancy-group group-id;
                status-control (active | standby);
            }
            minimum-links number;
            source-address-filter {
                mac-address;
            }
            (source-filtering | no-source-filtering);
        }
        aggregated-sonet-options {
            link-speed speed | mixed;
            minimum-links number;
        }
        atm-options {
            cell-bundle-size cells;
            ilmi;
            linear-red-profiles profile-name {
                high-plp-max-threshold percent;
                low-plp-max-threshold percent;
                queue-depth cells high-plp-threshold percent low-plp-threshold percent;
            }
            mpls {
        }
```
pop-all-labels {
 required-depth number;
}
}
pic-type (atm1 | atm2);
plp-to-clp;
promiscuous-mode {
 vpi vpi-identifier;
}
scheduler-maps map-name {
 forwarding-class class-name {
 epd-threshold cells plp1 cells;
 linear-red-profile profile-name;
 priority (high | low);
 transmit-weight (cells number | percent number);
 }
 vc-cos-mode (alternate | strict);
}
use-null-cw;
 vpi vpi-identifier {
 maximum-vcs maximum-vcs;
 oam-liveness {
 down-count cells;
 up-count cells;
 }
 oam-period (seconds | disable);
 shaping {
 (cbr rate | rtvbr peak rate sustained rate burst length | vbr peak rate sustained rate
 burst length);
 queue-length number;
 }
 }
}
clocking clock-source;
data-input (system | interface interface-name);
dce;
serial-options {
 clock-rate rate;
 clocking-mode (dce | internal | loop);
 control-polarity (negative | positive);
 cts-polarity (negative | positive);
 dcd-polarity (negative | positive);
 dce-options {
 control-signal (assert | de-assert | normal);
 cts (ignore | normal | require);
 dcd (ignore | normal | require);
 dsr (ignore | normal | require);
 dtr signal-handling-option;
 ignore-all;
 indication (ignore | normal | require);
 rts (assert | de-assert | normal);
 tm (ignore | normal | require);
 }
 dsr-polarity (negative | positive);
 dte-options {
 control-signal (assert | de-assert | normal);
cts (ignore | normal | require);
dcd (ignore | normal | require);
 dsr (ignore | normal | require);
 dtr signal-handling-option;
 ignore-all;
 indication (ignore | normal | require);
 rts (assert | de-assert | normal);
 tm (ignore | normal | require):
}
dtr-circuit (balanced | unbalanced);
dtr-polarity (negative | positive);
 encoding (nrz | nrzi);
 indication-polarity (negative | positive);
 line-protocol protocol;
 loopback mode;
 rts-polarity (negative | positive);
 tm-polarity (negative | positive);
 transmit-clock invert:
}
description text;
dialer-options {
 pool pool-name <priority priority>;
}
disable;
ds0-options {
 bert-algorithm algorithm;
 bert-error-rate rate;
 bert-period seconds;
 byte-encoding (nx56 | nx64);
 fcs (16 | 32);
 idle-cycle-flag (flags | ones);
 invert-data;
 loopback payload;
 start-end-flag (filler | shared);
}
et-options {
 bert-error-rate rate;
 bert-period seconds;
 fcs (16 | 32);
 framing (g704 | g704-no-crc4 | unframed);
 idle-cycle-flag (flags | ones);
 invert-data;
 loopback (local | remote);
 start-end-flag (filler | shared);
 timeslots time-slot-range;
}
et3-options {
 atm-encapsulation (direct | plcp);
 bert-algorithm algorithm;
 bert-error-rate rate;
 bert-period seconds;
 framing feet;
 compatibility-mode (digital-link | kentrox | larscom) <subrate value>;
 fcs (16 | 32);
 framing (g.751 | g.832);
 idle-cycle-flag (filler | shared);
invert-data;
loopback (local | remote);
 (payload-scrambler | no-payload-scrambler);
start-end-flag (filler | shared);
 (unframed | no-unframed);
}
encapsulation type;
es-options {
 backup-interface es-fpc/pic/port;
}
fastether-options {
 802.3ad aex;
 (flow-control | no-flow-control);
 ignore-13-incompletes;
 ingress-rate-limit rate;
 (loopback | no-loopback);
 mpls {
 pop-all-labels {
 required-depth number;
 }
 }
 source-address-filter {
 mac-address;
 }
 (source-filtering | no-source-filtering);
}
flexible-vlan-tagging;
gigether-options {
 802.3ad aex;
 (asynchronous-notification | no-asynchronous-notification);
 (auto-negotiation | no-auto-negotiation) remote-fault <local-interface-online | local-interface-offline>;
 auto-reconnect seconds;
 (flow-control | no-flow-control);
 ignore-13-incompletes;
 (loopback | no-loopback);
 mpls {
 pop-all-labels {
 required-depth number;
 }
 }
 no-auto-mdix;
 source-address-filter {
 mac-address;
 }
 (source-filtering | no-source-filtering);
 ethernet-switch-profile {
 (mac-learn-enable | no-mac-learn-enable);
 tag-protocol-id [tpids];
 ethernet-policer-profile {
 input-priority-map {
 ieee802.1p premium [values];
 }
 output-priority-map {
 classifier {
 premium {
forwarding-class class-name {
 loss-priority (high | low);
}
}
}
policer cos-policer-name {
 aggregate {
 bandwidth-limit bps;
 burst-size-limit bytes;
 }
 premium {
 bandwidth-limit bps;
 burst-size-limit bytes;
 }
}
}
{
(gratuitous-arp-reply | no-gratuitous-arp-reply);
hold-time up milliseconds down milliseconds;
ima-group-options {
 differential-delay number;
 frame-length (32 | 64 | 128 | 256);
 frame-synchronization {
 alpha number;
 beta number;
 gamma number;
 }
 minimum-links number;
 symmetry (symmetrical-config-and-operation | symmetrical-config-asymmetrical-operation);
 test-procedure {
 ima-test-start;
 ima-test-stop;
 interface name;
 pattern number;
 period number;
 }
 transmit-clock (common | independent);
 version (1.0 | 1.1);
}
ima-link-options group-id group-id;
interface-set interface-set-name {
 interface ethernet-interface-name {
 (unit unit-number | vlan-tags-outer vlan-tag);
 }
 interface interface-name {
 (unit unit-number);
 }
}
isdn-options {
 bchannel-allocation (ascending | descending);
 calling-number number;
 pool pool-name <priority priority>;
 spid string;
}
spid2 spid-string;
static-tei-val value;
switch-type (att5e | etsi | nil | ntdms100 | ntt);
t310 seconds;
tei-option (first-call | power-up);
}
keepalives <down-count number> <interval seconds> <up-count number>;
link-mode mode;
lmi {
 lmi-type (ansi | itu | c-lmi);
n391dte number;
n392dce number;
n392dte number;
n393dce number;
n393dte number;
t391dte seconds;
t392dce seconds;
}
lsq-failure-options {
 no-termination-request;
 [trigger-link-failure interface-name];
}
mac mac-address;
mlfr-uni-nni-bundle-options {
 acknowledge-retries number;
 acknowledge-timer milliseconds;
 action-red-differential-delay (disable-tx | remove-link);
 drop-timeout milliseconds;
 fragment-threshold bytes;
 cisco-interoperability send-lip-remove-link-for-link-reject;
 hello-timer milliseconds;
 link-layer-overhead percent;
 lmi-type (ansi | itu | c-lmi);
 minimum-links number;
 mrru bytes;
n391 number;
n392 number;
n393 number;
 red-differential-delay milliseconds;
t391 seconds;
t392 seconds;
 yellow-differential-delay milliseconds;
}
modem-options {
 dialin (console | routable);
 init-command-string initialization-command-string;
}
mtu bytes;
multi-chassis-protection {
 peer a.b.c.d {
 interface interface-name;
 }
}
multiservice-options {
 (core-dump | no-core-dump);
 (syslog | no-syslog);
native-vlan-id number;
no-gratuitous-arp-request;
no-keepalives;
no-partition {
 interface-type type;
}
no-vplvci-swapping;

otn-options {
 fec (efec | gfec | none);
 (laser-enable | no-laser-enable);
 (line-loopback | no-line-loopback);
 pass-thru;
 rate (fixed-stuff-bytes | no-fixed-stuff-bytes | pass-thru);
 transmit-payload-type number;
 trigger (oc-ilo | oc-lom | oc-ios | oc-wavelength-lock | odu-ais | odu-bbe-th | odu-bdi
 | odu-es-th | odu-lck | odu-oci | odu-sd | odu-ses-th | odu-ttim | odu-uas-th |
 opu-ptm | oti-ais | oti-bbe-th | oti-bdi | oti-es-th | oti-fec-deg | oti-fec-exe |
 oti-iae | oti-sd | oti-ses-th | oti-ttim | oti-uas-th);
 tti;
}

optics-options {
 wavelength nm;
 alarm alarm-name {
 (syslog | link-down);
 }
 warning warning-name {
 (syslog | link-down);
 }
}

partition partition-number oc-slice oc-slice-range interface-type type;
timeslots time-slot-range;
passive-monitor-mode;
per-unit-scheduler;
ppp-options {
 chap {
 access-profile name;
 default-chap-secret name;
 local-name name;
 passive;
 }
 compression {
 acfc;
 pfc;
 }
 dynamic-profile profile-name;
 no-termination-request;
 pap {
 access-profile name;
 local-name name;
 local-password password;
 compression;
 }
}

psn-vci psn-vci-identifier;
psn-vplvci psn-vplvci-identifier;
receive-bucket {
 overflow (discard | tag);
 rate percentage;
 threshold bytes;
}
redundancy-options {
 priority sp-fpc/pic/port;
 secondary sp-fpc/pic/port;
 hot-standby;
}
satop-options {
 payload-size n;
}
schedulers number;
serial-options {
 clock-rate rate;
 clocking-mode (dce | internal | loop);
 control-polarity (negative | positive);
 cts-polarity (negative | positive);
 dcd-polarity (negative | positive);
 dce-options {
 control-signal (assert | de-assert | normal);
 cts (ignore | normal | require);
 dcd (ignore | normal | require);
 dsr (ignore | normal | require);
 dtr signal-handling-option;
 ignore-all;
 indication (ignore | normal | require);
 rts (assert | de-assert | normal);
 tm (ignore | normal | require);
 }
 dsr-polarity (negative | positive);
 dte-options {
 control-signal (assert | de-assert | normal);
 cts (ignore | normal | require);
 dcd (ignore | normal | require);
 dsr (ignore | normal | require);
 dtr signal-handling-option;
 ignore-all;
 indication (ignore | normal | require);
 rts (assert | de-assert | normal);
 tm (ignore | normal | require);
 }
 dti-circuit (balanced | unbalanced);
 dti-polarity (negative | positive);
 encoding (nrz | nrzi);
 indication-polarity (negative | positive);
 line-protocol protocol;
 loopback mode;
 rts-polarity (negative | positive);
 tm-polarity (negative | positive);
 transmit-clock invert;
}
services-options {
 inactivity-timeout seconds;
 open-timeout seconds;

session-limit {
 maximum number;
 rate new-sessions-per-second;
}
syslog {
 host hostname {
 facility-override facility-name;
 log-prefix prefix-number;
 services priority-level;
 }
}
shdsl-options {
 annex (annex-a | annex-b);
 line-rate line-rate;
 loopback (local | remote);
 snr-margin {
 current margin;
 snext margin;
 }
}
sonet-options {
 aggregate asx;
 aps {
 advertise-interval milliseconds;
 annex-b;
 authentication-key key;
 fast-aps-switch;
 force;
 hold-time milliseconds;
 lockout;
 neighbor address;
 paired-group group-name;
 preserve-interface;
 protect-circuit group-name;
 request;
 revert-time seconds;
 switching-mode (bidirectional | unidirectional);
 working-circuit group-name;
 }
 bytes {
 c2 value;
 e1-quiet value;
 f1 value;
 f2 value;
 s1 value;
 z3 value;
 z4 value;
 }
 fcs (16 | 32);
 loopback (local | remote);
 mpls {
 pop-all-labels {
 required-depth number;
 }
 }
}
path-trace trace-string:
 (payload-scrambler | no-payload-scrambler);
rfc-2615;
 trigger {
 defect ignore;
 hold-time up milliseconds down milliseconds;
 }
vtmapping (itu-t | klm);
 (z0-increment | no-z0-increment);
speed (10m | 100m | 1g | oc3 | oc12 | oc48);
stacked-vlan-tagging;
switch-options {
 switch-port port-number {
 (auto-negotiation | no-auto-negotiation);
 speed (10m | 100m | 1g);
 link-mode (full-duplex | half-duplex);
 }
}
t1-options {
 bert-algorithm algorithm;
 bert-error-rate rate;
 bert-period seconds;
 buildout value;
 byte-encoding (nx56 | nx64);
 crc-major-alarm-threshold (1e-3 | 5e-4 | 1e-4 | 5e-5 | 1e-5);
 crc-minor-alarm-threshold (1e-3 | 5e-4 | 1e-4 | 5e-5 | 1e-5 | 5e-6 | 1e-6);
 fcs (16 | 32);
 framing (esf | sf);
 idle-cycle-flag (flags | ones);
 invert-data;
 line-encoding (ami | b8zs);
 loopback (local | payload | remote);
 remote-loopback-respond;
 start-end-flag (filler | shared);
 timeslots time-slot-range;
}
t3-options {
 atm-encapsulation (direct | plcp);
 bert-algorithm algorithm;
 bert-error-rate rate;
 bert-period seconds;
 buildout feet;
 (cbit-parity | no-cbit-parity);
 compatibility-mode (adtran | digital-link | kentrox | larscom | verilink) <subrate value>;
 fcs (16 | 32);
 (feac-loop-respond | no-feac-loop-respond);
 idle-cycle-flag value;
 (long-buildout | no-long-buildout);
 (loop-timing | no-loop-timing);
 loopback (local | payload | remote);
 (mac | no-mac);
 (payload-scrambler | no-payload-scrambler);
 start-end-flag (filler | shared);
traceoptions {
 flag flag <flag-modifier> <disable>;
}
transmit-bucket {
 overflow discard;
 rate percentage;
 threshold bytes;
}
(traps | no-traps);
unidirectional;
vlan-tagging;
vlan-vci-tagging;
unit logical-unit-number {
 accept-source-mac {
 mac-address mac-address {
 policer {
 input cos-policer-name;
 output cos-policer-name;
 }
 }
 }
}
accounting-profile name;
advisory-options {
 downstream-rate rate;
 upstream-rate rate;
}
allow-any-vci;
atm-scheduler-map (map-name | default);
backup-options {
 interface interface-name;
}
bandwidth rate;
cell-bundle-size cells;
clear-dont-fragment-bit;
compression {
 rtp {
 f-max-period number;
 maximum-contexts number <force>;
 queues [queue-numbers];
 port {
 minimum port-number;
 maximum port-number;
 }
 }
}
compression-device interface-name;
copy-tos-to-outer-ip-header;
demux-destination family;
demux-source family;
demux-options {
 underlying-interface interface-name;
}
description text;
interface {
 l2tp-interface-id name;
 (dedicated | shared);
dialer-options {
 activation-delay seconds;
callback;
callback-wait-period time;
deactivation-delay seconds;
dial-string [dial-string-numbers];
idle-timeout seconds;
incoming-map {
 caller (caller-id | accept-all);
 initial-route-check seconds;
 load-interval seconds;
 load-threshold percent;
 pool pool-name;
 redial-delay time;
 watch-list {
 [routes];
 }
}
}
disable;
disable-mlppp-inner-ppp-pfc;
dli dlci-identifier;
drop-timeout milliseconds;
dynamic-call-admission-control {
 activation-priority priority;
 bearer-bandwidth-limit kilobits-per-second;
}
encapsulation type;
epd-threshold cells plp1 cells;
fragment-threshold bytes;
inner-vlan-id-range start start-id end end-id;
input-vlan-map {
 (pop | pop-pop | pop-swap | push | push-push | swap | swap-push | swap-swap);
 inner-tag-protocol-id tpid;
 inner-vlan-id number;
 tag-protocol-id tpid;
 vlan-id number;
}
interleave-fragments;
inverse-arp;
layer2-policer {
 input-policer policer-name;
 input-three-color policer-name;
 output-policer policer-name;
 output-three-color policer-name;
}
link-layer-overhead percent;
minimum-links number;
mrru bytes;
multicast-dlci dlci-identifier;
multicast-vci vpi-identifier,vci-identifier;
multilink-max-classes number;
multipoint;
oam-liveness {
 down-count cells;
up-count cells;
}
oam-period (seconds | disable);
output-vlan-map {
 (pop | pop-pop | pop-swap | push | push-push | swap | swap-push | swap-swap);
 inner-tag-protocol-id tpid;
 inner-vlan-id number;
 tag-protocol-id tpid;
 vlan-id number;
}
passive-monitor-mode;
peer-unit unit-number;
plp-to-clp;
point-to-point;
ppp-options {
 chap {
 access-profile name;
 default-chap-secret name;
 local-name name;
 passive;
 }
 compression {
 acfc;
 pfc;
 pap;
 default-pap-password password;
 local-name name;
 local-password password;
 passive;
 }
 dynamic-profile profile-name;
 lcp-max-conf-req number;
 lcp-restart-timer milliseconds;
 loopback-clear-timer seconds;
 ncp-max-conf-req number;
 ncp-restart-timer milliseconds;
}
pppoe-options {
 access-concentrator name;
 auto-reconnect seconds;
 (client | server);
 service-name name;
 underlying-interface interface-name;
}
proxy-arp;
service-domain (inside | outside);
shaping {
 (cbr rate | rtvbr peak rate sustained rate burst length | vbr peak rate sustained rate burst length);
 queue-length number;
}
short-sequence;
transmit-weight number;
(traps | no-traps);
trunk-bandwidth rate;
trunk-id number;
tunnel {
 backup-destination address;
 destination address;
 key number;
 routing-instance {
 destination routing-instance-name;
 }
 source source-address;
 ttl number;
}
vci vpi-identifier.vci-identifier;
vci-range start start-vci end end-vci;
vpi vpi-identifier;
vlan-id number;
vlan-id-list [vlan-id vlan-id–vlan-id];
vlan-id-range number-number;
vlan-tags inner tpid.vlan-id outer tpid.vlan-id;
vlan-tags-outter tpid.vlan-id inner-list [vlan-id vlan-id–vlan-id];
family family {
 accounting {
 destination-class-usage;
 source-class-usage {
 direction;
 }
 }
 access-concentrator name;
 address address {
 destination address;
 }
 bundle ml-fpc/pic/port | ls-fpc/pic/port;
 duplicate-protection;
 dynamic-profile profile-name;
 filter {
 group filter-group-number;
 input filter-name;
 input-list {
 [filter-names];
 output filter-name;
 }
 output-list {
 [filter-names];
 }
 }
 ipsec-sa sa-name;
 keep-address-and-control;
 max-sessions number;
 max-sessions-vsa-ignore;
 mtu bytes;
 multicast-only;
 negotiate-address;
 no-redirects;
 policer {
 arp policer-template-name;
 input policer-template-name;
 output policer-template-name;
 }
}
primary;
proxy inet-address address;
receive-options-packets;
receive-ttl-exceeded;
remote (inet-address address | mac-address address);
rpf-check {
 fail-filter filter-name;
 mode loose;
}
sampling {
 direction;
}
service {
 input {
 service-set service-set-name <service-filter filter-name>:
 post-service-filter filter-name;
 }
 output {
 service-set service-set-names <service-filter filter-name>;
 }
}
service-name-table table-name;
short-cycle-protection <lockout-time-min minimum-seconds lockout-time-max maximum-seconds>;
targeted-broadcast {
 forward-and-send-to-re;
 forward-only;
}
(translate-discard-eligible | no-translate-discard-eligible);
(translate-fecn-and-becn | no-translate-fecn-and-becn);
translate-plp-control-word-de;
unnumbered-address interface-name <destination address destination-profile profile-name | preferred-source-address address>;
address address {
 arp ip-address (mac | multicast-mac) mac-address <publish>;
 broadcast address;
 destination address;
 destination-profile name;
eui-64;
multipoint-destination address (dlci dlci-identifier | vci vci-identifier);
multipoint-destination address {
 epd-threshold cells plp1 cells;
 inverse-arp;
oam-liveness {
 up-count cells;
 down-count cells;
 }
oam-period (seconds | disable);
shaping {
 (cbr rate | rtvbr peak rate sustained rate burst length | vbr peak rate sustained rate burst length);
 queue-length number;
}
 vci vpi-identifier.vci-identifier;
}
preferred;
primary;
(vrrp-group | vrrp-inet6-group) group-number {
 (accept-data | no-accept-data);
 advertise-interval seconds;
 authentication-type authentication;
 authentication-key key;
 fast-interval milliseconds;
 (preempt | no-preempt) {
 hold-time seconds;
 }
 priority-number number;
 track {
 priority-cost seconds;
 priority-hold-time interface-name {
 bandwidth-threshold bits-per-second {
 priority;
 }
 interface priority;
 }
 route ip-address/mask routing-instance instance-name priority-cost cost;
 }
 virtual-address [addresses];
}
}

Related Documentation
• Junos OS Hierarchy and RFC Reference
• Junos® OS Ethernet Interfaces
• Junos® OS Network Interfaces

[edit logical-systems] Hierarchy Level

The following lists the statements that can be configured at the [edit logical-systems] hierarchy level that are also documented in this manual. For more information about logical systems, see the Junos OS Routing Protocols Configuration Guide.

logical-systems logical-system-name {
 interfaces interface-name {
 unit logical-unit-number {
 accept-source-mac {
 mac-address mac-address {
 policer {
 input cos-policer-name;
 output cos-policer-name;
 }
 }
 }
 allow-any-vci;
 atm-scheduler-map (map-name | default);
 bandwidth rate;
backup-options {
 interface interface-name;
}
cell-bundle-size cells;
clear-dont-fragment-bit;
compression {
 rtp {
 f-max-period number;
 port {
 minimum port-number;
 maximum port-number;
 }
 queues [queue-numbers];
 }
}
compression-device interface-name;
description text;
interface {
 l2tp-interface-id name;
 (dedicated | shared);
}
dialer-options {
 activation-delay seconds;
 deactivation-delay seconds;
 dial-string [dial-string-numbers];
 idle-timeout seconds;
 initial-route-check seconds;
 load-threshold number;
 pool pool;
 remote-name remote-callers;
 watch-list {
 [routes];
 }
}
disable;
dlci dlci-identifier;
drop-timeout milliseconds;
dynamic-call-admission-control {
 activation-priority priority;
 bearer-bandwidth-limit kilobits-per-second;
}
encapsulation type;
epd-threshold cells plp| cells;
fragment-threshold bytes;
input-vlan-map {
 inner-tag-protocol-id;
 inner-vlan-id;
 (pop | pop-pop | pop-swap | push | push-push | swap | swap-push | swap-swap);
 tag-protocol-id tpid;
 vlan-id number;
}
interleave-fragments;
inverse-arp;
l2-policer {
 input-policer policer-name;
 input-three-color policer-name;
output-policer policer-name;
output-three-color policer-name;
}
link-layer-overhead percent;
minimum-links number;
mrru bytes;
multicast-dlci dlci-identifier;
multicast-vci vpi-identifier.vci-identifier;
multilink-max-classes number;
multipoint;
oam-liveness {
 up-count cells;
 down-count cells;
}
oam-period (seconds | disable);
output-vlan-map {
 inner-tag-protocol-id;
 inner-vlan-id;
 (pop | pop-pop | pop-swap | push | push-push | swap | swap-swap);
 tag-protocol-id tpid;
 vlan-id number;
}
passive-monitor-mode;
peer-unit unit-number;
plp-to-clp;
point-to-point;
ppp-options {
 chap {
 access-profile name;
 default-chap-secret name;
 local-name name;
 passive;
 }
 compression {
 acfc;
 pfc;
 }
}
dynamic-profile profile-name;
pap {
 default-pap-password password;
 local-name name;
 local-password password;
 passive;
}
proxy-arp;
service-domain (inside | outside);
shaping {
 (cbr rate | rtvbr peak rate sustained rate burst length | vbr peak rate sustained rate burst length);
 queue-length number;
}
short-sequence;
transmit-weight number;
(traps | no-traps);
trunk-bandwidth rate;
trunk-id number;
tunnel {
 backup-destination address;
 destination address;
 key number;
 routing-instance {
 destination routing-instance-name;
 }
 source source-address;
 ttl number;
}
vci vpi-identifier.vci-identifier;
vlan-id number;
vlan-id-list [vlan-id vlan-id–vlan-id]
vlan-tags inner tpid.vlan-id outer tpid.vlan-id;
vlan-tags outer tpid.vlan-id inner-list [vlan-id vlan-id–vlan-id]
vpi vpi-identifier;
family family {
 accounting {
 destination-class-usage;
 source-class-usage {
 direction;
 }
 }
 bundle interface-name;
 filter {
 group filter-group-number;
 input filter-name;
 input-list {
 [filter-names];
 }
 output filter-name;
 output-list {
 [filter-names];
 }
 }
 ipsec-sa sa-name;
 keep-address-and-control;
 mtu bytes;
 multicast-only;
 no-redirects;
 policer {
 arp policer-template-name;
 input policer-template-name;
 output policer-template-name;
 }
 primary;
 proxy inet-address address;
 receive-options-packets;
 receive-ttl-exceeded;
 remote (inet-address address | mac-address address);
 rpf-check <fail-filter filter-name> {
 <mode loose>;
 }
 sampling {

direction;
}
}
}
}
{translate-discard-eligible | no-translate-discard-eligible);
(translate-fecn-and-becn | no-translate-fecn-and-becn);
unnumbered-address interface-name destination address destination-profile
profile-name;
address address {
 arp ip-address (mac | multicast-mac) mac-address <publish>;
 broadcast address;
 destination address;
 destination-profile name;
 eui-64;
 multipoint-destination address (dlci dlci-identifier | vci vci-identifier);
 multipoint-destination address {
 epd-threshold cells plp1 cells;
 inverse-arp;
 oam-liveness {
 up-count cells;
 down-count cells;
 }
 oam-period (seconds | disable);
 shaping {
 (cbr rate | rtvbr peak rate sustained rate burst length | vbr peak rate sustained rate burst length);
 queue-length number;
 }
 vci vpi-identifier.vci-identifier;
 }
 preferred;
 primary;
(vrrp-group | vrrp-inet6-group) group-number {
 (accept-data | no-accept-data);
 advertise-interval seconds;
 authentication-type authentication;
 authentication-key key;
 fast-interval milliseconds;
 (preempt | no-preempt) {
 hold-time seconds;
 }
 priority-number number;
 track {
 priority-cost seconds;
 priority-hold-time interface-name {
 interface priority;
 bandwidth-threshold bits-per-second {
 priority;
 }
 }
 }
 }
The following statements can also be configured at the [edit logical-systems logical-system-name protocols connections] hierarchy level.

```
interface-switch connection-name {
    interface interface-name.unit-number;
    interface interface-name.unit-number;
}
```
Related Documentation

- Junos OS Hierarchy and RFC Reference
- Junos® OS Ethernet Interfaces
- Junos® OS Network Interfaces

[edit protocols dot1x] Hierarchy Level

```conf
dot1x {
    authenticator
    authentication-profile-name access-profile-name;
    interface interface-ids {
        maximum-requests integer;
        retries integer;
        quiet-period seconds;
        transmit-period seconds;
        reauthentication (disable | interval seconds);
        server-timeout seconds;
        supplicant (single);
        supplicant-timeout seconds;
    }
}
```

Related Documentation

- Junos OS Hierarchy and RFC Reference
- Junos® OS Ethernet Interfaces
- Junos® OS Network Interfaces

[edit protocols iccp] Hierarchy Level

```conf
iccp {
    traceoptions;
    local-ip-address ip address;
    session-establishment-hold-time value;
    authentication-establishment-key string;
    peer ip-address {
        local-ip-address ip address;
        session-establishment-hold-time value;
        authentication-establishment-key string;
        redundancy-group-id-list redundancy-group-id-list;
        liveness-detection;
    }
}
```

Related Documentation

- Junos OS Hierarchy and RFC Reference
- Junos® OS Ethernet Interfaces
- Junos® OS Network Interfaces
[edit protocols lACP] Hierarchy Level

traceoptions {
 file filename <files number> <size size> <world-readable | no-world-readable>;
 flag flag <disable>;
}

Related Documentation

• Junos OS Hierarchy and RFC Reference
• Junos® OS Ethernet Interfaces
• Junos® OS Network Interfaces

[edit protocols lldp] Hierarchy Level

protocols {
 lldp {
 disable;
 advertisement-interval seconds;
 hold-multiplier seconds;
 interface (all | interface-name) {
 disable;
 }
 lldp-configuration-notification-interval seconds;
 ptdpo-configuration-maximum-hold-time seconds;
 ptdpo-configuration-trap-interval seconds;
 traceoptions {
 file filename <files number> <size maximum-file-size> <world-readable | no-world-readable>;
 flag flag <disable>;
 }
 transmit-delay seconds;
 }
}

Related Documentation

• Notational Conventions Used in Junos OS Configuration Hierarchies
• [edit protocols] Hierarchy Level

[edit protocols oam] Hierarchy Level

ethernet {
 connectivity-fault-management {
 action-profile profile-name {
 default-actions {
 interface-down;
 }
 }
 event {
 adjacency-loss;
 interface-status-tlv (down | lower-layer-down);
 port-status-tlv blocked;
 rdi;
 }
 }
}
Chapter 1: Ethernet Interfaces Configuration Statements and Hierarchy

linktrace {
 age (30m | 10m | 1m | 30s | 10s);
 path-database-size path-database-size;
}
maintenance-domain domain-name {
 bridge-domain name;
 routing-instance r1 {
 bridge-domain name;
 instance vpls-instance;
 interface (ge | xe) fpc/pic/port.domain;
 level number;
 maintenance-association name{
 mep mep-identifier {
 direction (up | down)
 interface (ge | xe) fpc/pic/port.domain (working | protect);
 auto-discovery;
 lowest-priority-defect (all-defects | err-xcon | mac-rem-err-xcon | no-defect |
 rem-err-xcon | xcon);
 priority number;
 }
 }
 mip-half-function (none | default | explicit);
 name-format (character-string | none | dns | mac+2oct);
 short-name-format (character-string | vlan | 2octet | rfc-2685-vpn-id);
 protect-maintenance-association protect-ma-name;
 remote-maintenance-association remote-ma-name;
 continuity-check {
 hold-interval minutes;
 interval (10m | 10s | 1m | 1s | 100ms);
 loss-threshold number;
 }
 maintenance-association ma-name {
 mip-half-function (none | default | explicit);
 mep mep-identifier {
 auto-discovery;
 direction (up | down);
 interface interface-name (working | protect);
 priority number;
 remote-mep mep-identifier {
 action-profile profile-name;
 sla-iterator-profile profile-name {
 data-tlv-size bytes;
 iteration-count frames;
 priority priority-value;
 }
 }
 }
 }
 }
}

performance-monitoring {
 hardware-assisted-timestamping;
 sla-iterator-profiles {
 profile-name {
 disable;
 calculation-weight {
 }}}}
delay delay-weight;
delay-variation delay-variation-weight;
}
cycle-time milliseconds;
iteration-period connections;
measurement-type (loss | statistical-frame-loss | two-way-delay);
}
}
}
}
}
link-fault-management {
action-profile profile-name {
 action {
 syslog;
 link-down;
 send-critical-event;
 }
 event {
 link-adjacency-loss;
 link-event-rate {
 frame-error count;
 frame-period count;
 frame-period-summary count;
 symbol-period count;
 }
 protocol-down;
 }
}
}
interface interface-name {
 apply-action-profile profile-name;
 event-thresholds {
 frame-error count;
 frame-period count;
 frame-period-summary count;
 symbol-period count;
 }
 link-discovery (active | passive);
 negotiation-options {
 allow-remote-loopback;
 no-allow-link-events;
 }
 pdu-interval interval;
 pdu-threshold threshold-value;
 remote-loopback;
}
}
}

fnp {
 interval <100ms | 1s | 10s | 1m | 10m>:
 loss-threshold number
 interface interface name {
 domain-id domain-id
 }
}
}
Related Documentation

- Junos OS Hierarchy and RFC Reference
- Junos® OS Ethernet Interfaces
- Junos® OS Network Interfaces

[edit protocols ppp] Hierarchy Level

```bash
monitor-session (interface-name | all);
traceoptions {
    file filename <files number> <match regular-expression> <size size> <world-readable | no-world-readable>;
    flag flag <disable>;
}
```

Related Documentation

- Junos OS Hierarchy and RFC Reference
- Junos® OS Ethernet Interfaces
- Junos® OS Network Interfaces

[edit protocols pppoe] Hierarchy Level

```bash
protocols {
    pppoe {
        no-send-pads-error;
        no-send-pads-ac-info
        pado-advertise;
        service-name-tables table-name {
            service service-name {
                agent-specifier {
                    aci circuit-id-string ari remote-id-string {
                        (delay seconds | drop | terminate);
                        dynamic-profile profile-name;
                        routing-instance routing-instance-name;
                        static-interface interface-name;
                    }
                } (delay seconds | drop | terminate);
                dynamic-profile profile-name;
                max-sessions number;
                routing-instance routing-instance-name;
            }
        }
    }
    traceoptions {
        file filename <files number> <match regular-expression> <size maximum-file-size> <world-readable | no-world-readable>;
        filter {
            aci regular-expression;
            ari regular-expression;
            service-name regular-expression;
            underlying-interface interface-name;
        }
    }
    flag flag;
```
level (all | error | info | notice | verbose | warning);
no-remote-trace;
}
}
}

Related Documentation

- Notational Conventions Used in Junos OS Configuration Hierarchies
- [edit protocols] Hierarchy Level
- Junos OS Hierarchy and RFC Reference
- Junos® OS Ethernet Interfaces
- Junos® OS Network Interfaces

[edit protocols protection-group] Hierarchy Level

```
ethernet-ring ring-name {
  east-interface {
    control-channel channel-name {
      vlan number;
    }
  }
  guard-interval number;
  node-id mac-address;
  restore-interval number;
  ring-protection-link-owner;
  west-interface {
    control-channel channel-name {
      vlan number;
    }
  }
}
```

Related Documentation

- Junos OS Hierarchy and RFC Reference
- Junos® OS Ethernet Interfaces
- Junos® OS Network Interfaces

[edit protocols vrrp] Hierarchy Level

The following statement hierarchy can also be included at the [edit logical-systems logical-system-name] hierarchy level.

```
protocols {
  vrrp {
    failover-delay milliseconds;
    global-advertisements-threshold advertisement-value;
    skew-timer-disable;
    startup-silent-period seconds;
    traceoptions {
      file <filename> <files number> <match regular-expression> <microsecond-stamp> <size maximum-file-size> <world-readable | no-world-readable>;
    }
  }
}
```
flag flag;
no-remote-trace;
}
version-3;
}

Related Documentation

- Notational Conventions Used in Junos OS Configuration Hierarchies
- [edit protocols] Hierarchy Level
- Junos OS Hierarchy and RFC Reference
- Junos® OS Ethernet Interfaces
- Junos® OS Network Interfaces
PART 2

Configuring Ethernet Interfaces

- Configuring Ethernet Interfaces on page 35
- Configuring 802.1Q VLANs on page 53
- Configuring Aggregated Ethernet Interfaces on page 81
- Stacking and Rewriting Gigabit Ethernet VLAN Tags on page 129
- Configuring Layer 2 Bridging Interfaces on page 155
- Configuring Link Layer Discovery Protocol on page 157
- Configuring TCC and Layer 2.5 Switching on page 163
- Configuring Static ARP Table Entries on page 167
- Configuring Restricted and Unrestricted Proxy ARP on page 169
- Configuring MAC Address Validation on Static Ethernet Interfaces on page 173
- Enabling Passive Monitoring on Ethernet Interfaces on page 177
- Configuring IEEE 802.1ag OAM Connectivity-Fault Management on page 181
- Configuring ITU-T Y.1731 Ethernet Service OAM on page 237
- Configuring IEEE 802.1x Port-Based Network Access Control on page 287
- Configuring IEEE 802.3ah OAM Link-Fault Management on page 291
- Configuring VRRP and VRRP for IPv6 on page 311
- Configuring Gigabit Ethernet Accounting and Policing on page 315
- Configuring Gigabit Ethernet Autonegotiation on page 329
- Configuring Gigabit Ethernet OTN Options on page 335
- Configuring the Management Ethernet Interface on page 337
- Configuring 10-Gigabit Ethernet LAN/WAN PICs on page 341
- Configuring the 10-Gigabit Ethernet DWDM Interface Wavelength on page 353
- Configuring 10-Gigabit Ethernet Framing on page 355
- Configuring 10-Gigabit Ethernet Notification of Link Down Alarm on page 359
- Configuring 10-Gigabit Ethernet Notification of Link Down for Optics Alarms on page 361
- Configuring 100-Gigabit Ethernet PICs/MICs on page 363
- Configuring 40-Gigabit Ethernet PICs on page 379
- Configuring Ethernet Interfaces for PTX Series Packet Transport Switches on page 383
- Configuring Point-to-Point Protocol over Ethernet on page 393

Copyright © 2012, Juniper Networks, Inc.
- Configuring Ethernet Automatic Protection Switching on page 429
- Configuring Ethernet Ring Protection Switching on page 437
- Example Ethernet Configurations on page 453
CHAPTER 2

Configuring Ethernet Interfaces

You can configure the following properties specific to aggregated Ethernet, Fast Ethernet, Tri-Rate Ethernet copper, Gigabit Ethernet, and 10-Gigabit Ethernet interfaces:

- Ethernet Interfaces Overview on page 35
- Configuring Ethernet Physical Interface Properties on page 36
- Configuring J Series Services Router Switching Interfaces on page 40
- MX Series Router Interface Identifiers on page 42
- Enabling Ethernet MAC Address Filtering on page 42
- Configuring Ethernet Loopback Capability on page 45
- Configuring Flow Control on page 45
- Ignoring Layer 3 Incomplete Errors on page 46
- Configuring the Link Characteristics on Ethernet Interfaces on page 46
- Configuring Gratuitous ARP on page 48
- Adjusting the ARP Aging Timer on page 49
- Configuring the Interface Speed on Ethernet Interfaces on page 49
- Configuring the Ingress Rate Limit on page 50
- Configuring Multicast Statistics Collection on Ethernet Interfaces on page 51
- Configuring Weighted Random Early Detection on page 51

Ethernet Interfaces Overview

Ethernet was developed in the early 1970s at the Xerox Palo Alto Research Center (PARC) as a data-link control layer protocol for interconnecting computers. It was first widely used at 10 megabits per second (Mbps) over coaxial cables and later over unshielded twisted pairs using 10Base-T. More recently, 100Base-TX (Fast Ethernet, 100 Mbps), Gigabit Ethernet (1 gigabit per second [Gbps]), 10-Gigabit Ethernet (10 Gbps), and 100-Gigabit Ethernet (100 Gbps) have become available.

Juniper Networks routers support the following types of Ethernet interfaces:

- Fast Ethernet
- Tri-Rate Ethernet copper
• Gigabit Ethernet
• Gigabit Ethernet intelligent queuing (IQ)
• Gigabit Ethernet IQ2 and IQ2-E
• 10-Gigabit Ethernet IQ2 and IQ2-E
• 10-Gigabit Ethernet
• 10-Gigabit Ethernet dense wavelength-division multiplexing (DWDM)
• 100-Gigabit Ethernet
• Management Ethernet interface, which is an out-of-band management interface within the router
• Internal Ethernet interface, which connects the Routing Engine to the packet forwarding components
• Aggregated Ethernet interface, a logical linkage of Fast Ethernet, Gigabit Ethernet, or 10-Gigabit Ethernet physical connections

Related Documentation
- Configuring Ethernet Physical Interface Properties on page 36
- Configuring J Series Services Router Switching Interfaces on page 40
- MX Series Router Interface Identifiers on page 42
- Enabling Ethernet MAC Address Filtering on page 42
- Configuring Ethernet Loopback Capability on page 45
- Configuring Flow Control on page 45
- Ignoring Layer 3 Incomplete Errors on page 46
- Configuring the Link Characteristics on Ethernet Interfaces on page 46
- Configuring Gratuitous ARP on page 48
- Adjusting the ARP Aging Timer on page 49
- Configuring the Interface Speed on Ethernet Interfaces on page 49
- Configuring the Ingress Rate Limit on page 50
- Configuring Multicast Statistics Collection on Ethernet Interfaces on page 51
- Configuring Weighted Random Early Detection on page 51
- Junos® OS Ethernet Interfaces
- Junos® OS Network Interfaces

Configuring Ethernet Physical Interface Properties

To configure Fast Ethernet-specific physical interface properties, include the `fastether-options` statement at the `[edit interfaces fe-fpc/pic/port]` hierarchy level:

```
[edit interfaces fe-fpc/pic/port]
```
link-mode (full-duplex | half-duplex);
speed (10m | 100m);
vlan-tagging;
fastether-options {
 802.3ad aex (primary | backup);
 (flow-control | no-flow-control);
 ignore-l3-incompletes;
 ingress-rate-limit rate;
 (loopback | no-loopback);
 source-address-filter {
 mac-address;
 } (source-filtering | no-source-filtering);
}

NOTE: The speed statement applies to the management Ethernet interface (fxp0 or em0), the Fast Ethernet 12-port and 48-port Physical Interface Card (PIC) interfaces, the J Series Gigabit Ethernet uPIM interfaces and the MX Series Tri-Rate Ethernet copper interfaces. The Fast Ethernet, fxp0, and em0 interfaces can be configured for 10 Mbps or 100 Mbps (10m | 100m). The J Series Gigabit Ethernet uPIM interfaces and the MX Series Tri-Rate Ethernet copper interfaces can be configured for 10 Mbps, 100 Mbps, or 1 Gbps (10m | 100m | 1g). The 4-port and 8-port Fast Ethernet PICs support a speed of 100 Mbps only.

MX Series routers support Gigabit Ethernet automatic line sensing of MDI (Media Dependent Interface) and MDIX (Media Dependent Interface with Crossover) port connections. MDI is the Ethernet port connection typically used on network interface cards (NIC). MDIX is the standard Ethernet port wiring for hubs and switches. This feature allows MX Series routers to automatically detect MDI and MDIX connections and configure the router port accordingly. You can disable this feature by using the no-auto-mdix statement at the [edit interfaces ge-fpc/pic/port] hierarchy level.

NOTE: Junos OS supports Ethernet host addresses with no subnets. This enables you to configure an Ethernet interface as a host address (that is, with a network mask of /32), without requiring a subnet. Such interfaces can serve as OSPF point-to-point interfaces, and MPLS is also supported.

To configure physical interface properties specific to Gigabit Ethernet and 10-Gigabit Ethernet, include the gigether-options statement at the [edit interfaces ge-fpc/pic/port] or [edit interfaces xe-fpc/pic/port] hierarchy level:

[edit interfaces ge-fpc/pic/port]
gigether-options {
 802.3ad aex (primary | backup);
 auto-negotiation | no-auto-negotiation) remote-fault <local-interface-online | local-interface-offline>
 (flow-control | no-flow-control);
ignore-l3-incompletes;
(loopback | no-loopback);
no-auto-mdix;
source-address-filter {
 mac-address;
}
(source-filtering | no-source-filtering);
}

Additionally, for 10-Gigabit Ethernet DWDM-specific physical interface properties, include the `opts-options` statement at the `[edit interfaces ge-fpc/pic/port]` hierarchy level:

```
[edit interfaces ge-fpc/pic/port]
opts-options {
  wavelength nm;
}
```

To configure Gigabit Ethernet IQ-specific physical interface properties, include the `gigether-options` statement at the `[edit interfaces ge-fpc/pic/port]` hierarchy level. These statements are supported on 10-Gigabit Ethernet IQ2 and IQ2-E PIC. Some of these statements are also supported on Gigabit Ethernet PICs with small form-factor pluggable transceivers (SFPs) (except the 10-port Gigabit Ethernet PIC and the built-in Gigabit Ethernet port on the M7i router). For more information, see “Example: Configuring Gigabit Ethernet Interfaces” on page 453.

```
[edit interfaces ge-fpc/pic/port]
gigether-options {
  802.3ad aex (primary | backup);
  auto-negotiation | no-auto-negotiation) remote-fault <local-interface-online |
  local-interface-offline>;
  (flow-control | no-flow-control);
  ignore-l3-incompletes;
  (loopback | no-loopback);
  (source-filtering | no-source-filtering);
  ethernet-switch-profile {
    (mac-learn-enable | no-mac-learn-enable);
    tag-protocol-id [tpids ];
    ethernet-policer-profile {
      input-priority-map {
        ieee802.1p premium [values ];
      }
      output-priority-map {
        classifier {
          premium {
            forwarding-class class-name {
              loss-priority (high | low);
            }
          }
        }
      }
    }
    policer cos-policer-name {
      aggregate {
        bandwidth-limit bps;
        burst-size-limit bytes;
      }
    }
```
To configure 10-Gigabit Ethernet physical interface properties, include the lan-phy or wan-phy statement at the [edit interfaces xe-fpc/pic/port framing] hierarchy level. For more information, see “10-Gigabit Ethernet Framing Overview” on page 355.

To configure 10-Gigabit Ethernet physical interface properties, include the lan-phy or wan-phy statement at the [edit interfaces xe-fpc/pic/port framing] hierarchy level. For more information, see “10-Gigabit Ethernet Framing Overview” on page 355.

To configure 10-Gigabit Ethernet physical interface properties, include the lan-phy or wan-phy statement at the [edit interfaces xe-fpc/pic/port framing] hierarchy level. For more information, see “10-Gigabit Ethernet Framing Overview” on page 355.

To configure OAM 802.3ah support for Ethernet interfaces, include the oam statement at the [edit protocols] hierarchy level.

To configure Gigabit Ethernet IQ-specific logical interface properties, include the input-vlan-map, output-vlan-map, layer2-policer, and vlan-tags statements:
input-policer policer-name;
input-three-color policer-name;
output-policer policer-name;
output-three-color policer-name;
}

vlan-tags inner tpid.vlan-id outer tpid.vlan-id;

You can include these statements at the following hierarchy levels:

- [edit interfaces interface-name unit logical-unit-number]
- [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

To configure aggregated Ethernet-specific physical interface properties, include the aggregated-ether-options statement at the [edit interfaces aex] hierarchy level:

[edit interfaces aex]
aggregated-ether-options {
 ethernet-switch-profile {
 tag-protocol-id tpid;
 }
 (flow-control | no-flow-control);
 lacp mode {
 periodic interval;
 }
 link-protection;
 link-speed speed;
 (loopback | no-loopback);
 minimum-links number;
 source-address-filter {
 mac-address;
 }
 (source-filtering | no-source-filtering);
}

Related Documentation
- Example: Configuring Gigabit Ethernet Interfaces on page 453
- 10-Gigabit Ethernet Framing Overview on page 355
- Ethernet Interfaces Overview on page 35
- Junos® OS Ethernet Interfaces

Configuring J Series Services Router Switching Interfaces

The J Series routers with multiport Gigabit Ethernet uPIMs supports Ethernet access switching. This functionality provides the ability to switch traffic at Layer 2 in addition to routing traffic at Layer 3.

J Series routers with multiport Gigabit Ethernet uPIMs can be deployed in branch offices as an access or desktop switch with integrated routing capability. The multiport Gigabit Ethernet uPIM provides Ethernet switching, while the Routing Engine provides routing functionality.
Routed traffic is forwarded from any port of the multiport Gigabit Ethernet uPIM to the WAN interface. Switched traffic is forwarded from one port of the multiport Gigabit Ethernet uPIM to another port on the same the multiport Gigabit Ethernet uPIM. Switched traffic is not forwarded from a port on one multiport Gigabit Ethernet uPIM to a port on a different multiport Gigabit Ethernet uPIM. For more information about configuring the multiport Gigabit Ethernet uPIM switching mode, see the Junos OS System Basics Configuration Guide.

In access switching mode, only one physical interface is configured for the entire multiport Gigabit Ethernet uPIM. The single physical interface serves as a Virtual Router Interface (VRI). Configuration of the physical port characteristics is done under the single physical interface.

To configure multiport Gigabit Ethernet uPIM Ethernet port properties, include the `switch-port` statement at the `[edit interfaces ge-pim/0/0]` hierarchy level:

```
[edit interfaces ge-pim/0/0]
switch-options {
  switch-port port-number {
    (auto-negotiation | no-auto-negotiation);
    speed 1g;
    link-mode (full-duplex | half-duplex);
  }
}
```

Access switching mode is supported on the 6-port, 8-port, and 16-port Gigabit Ethernet uPIMs.

The multiport Gigabit Ethernet uPIMs are supported on the J2320, J2350, J4350, and J6350 Services Routers.

The 6-port and 8-port multiport Gigabit Ethernet uPIM occupies a single slot and can be installed in any slot. Because the 16-port Gigabit Ethernet uPIM is two slots high, you cannot install a 16-port uPIM in the top slots (slots 1 and 4). Ports are numbered 0 through 5 on the 6-port Gigabit Ethernet uPIM, 0 through 7 on the 8-port Gigabit Ethernet uPIM, and 0 through 15 on the 16-port Gigabit Ethernet uPIM.

Example: Configuring J Series Services Router Switching Interfaces

Configure a single physical interface for the uPIM and set the port parameters for port 0 and port 1:

```
[edit interfaces]
ge-2/0/0 {
  switch-options {
    switch-port 0 {
      no-auto-negotiation;
      speed 1g;
      link-mode full-duplex;
    }
    switch-port 1 {
      no-auto-negotiation;
      speed 10m;
      link-mode half-duplex;
    }
  }
}
```
MX Series Router Interface Identifiers

Juniper Networks MX Series 3D Universal Edge Routers support several types of line cards, including Dense Port Concentrators (DPCs), Flexible Port Concentrators (FPCs) with associated Physical Interface Cards (PICs), Modular Port Concentrators (MPCs) with associated Modular Interface Cards (MICs), or MICs. FPCs are populated with PICs for various interface types. DPCs and MPCs with associated MICs, and MICs support a variety of port configurations and combine the functions of FPCs and the PICs. The configuration syntax for each type of line card is the same: type-fpc/pic/port.

Ports are numbered from 0 through 9 for Gigabit Ethernet and Tri-Rate Ethernet copper interfaces. Port numbers are always 0 for 10-Gigabit Ethernet interfaces.

NOTE: In certain displays, the MX Series routers identify the Packet Forwarding Engine (PFE) rather than the PIC number. PFE 0 corresponds to PIC 0, PFE 1 corresponds to PIC 2, PFE 2 corresponds to PIC 1, and PFE 3 corresponds to PIC 3.

Enabling Ethernet MAC Address Filtering

By default, source address filtering is disabled. On aggregated Ethernet interfaces, Fast Ethernet, Gigabit Ethernet, Gigabit Ethernet IQ, and Gigabit Ethernet PICs with SFPs (except the 10-port Gigabit Ethernet PIC and the built-in Gigabit Ethernet port on the M7i router), you can enable source address filtering, which blocks all incoming packets to an interface.

NOTE: Source address filtering is not supported on J Series Services Routers.
To enable the filtering, include the `source-filtering` statement:

```
source-filtering;
```

To explicitly disable filtering, include the `no-source-filtering` statement:

```
no-source-filtering;
```

You can include these statements at the following hierarchy levels:

- `[edit interfaces interface-name aggregated-ether-options]`
- `[edit interfaces interface-name fastether-options]`
- `[edit interfaces interface-name gigether-options]`

NOTE: When you integrate a standalone T640 router into a routing matrix, the PIC media access control (MAC) addresses for the integrated T640 router are derived from a pool of MAC addresses maintained by the TX Matrix router. For each MAC address you specify in the configuration of a formerly standalone T640 router, you must specify the same MAC address in the configuration of the TX Matrix router.

Similarly, when you integrate a standalone T1600 router into a routing matrix, the PIC MAC addresses for the integrated T1600 router are derived from a pool of MAC addresses maintained by the TX Matrix Plus router. For each MAC address you specify in the configuration of a formerly standalone T1600 router, you must specify the same MAC address in the configuration of the TX Matrix Plus router.

Filtering Specific MAC Addresses

When source address filtering is enabled, you can configure the interface to receive packets from specific MAC addresses. To do this, specify the MAC addresses in the `source-address-filter` statement:

```
source-address-filter {
  mac-address;
  <additional-mac-address>;
}
```

You can include these statements at the following hierarchy levels:

- `[edit interfaces interface-name aggregated-ether-options]`
- `[edit interfaces interface-name fastether-options]`
- `[edit interfaces interface-name gigether-options]`

You can specify the MAC address as `nnnn:nnnn:nnnn:nnnn` or `nnnn.nnnn.nnnn.nnnn`, where n is a hexadecimal number. You can configure up to 64 source addresses. To specify more than one address, include the `source-address-filter` statement multiple times.
NOTE: The source-address-filter statement is not supported on Gigabit Ethernet IQ and Gigabit Ethernet PICs with SFPs (except the 10-port Gigabit Ethernet PIC and the built-in Gigabit Ethernet port on the M7i router); instead, include the accept-source-mac statement. For more information, see “Configuring MAC Address Filtering” on page 321.

If the remote Ethernet card is changed, the interface cannot receive packets from the new card because it has a different MAC address.

Source address filtering does not work when Link Aggregation Control Protocol (LACP) is enabled. This behavior is not applicable to T series routers and PTX Series Packet Transport Switches. For more information about LACP, see “Configuring Aggregated Ethernet LACP” on page 112.

NOTE: On untagged Gigabit Ethernet interfaces, you should not configure the source-address-filter statement at the [edit interfaces ge-fpc/pic/port gigether-options] hierarchy level and the accept-source-mac statement at the [edit interfaces ge-fpc/pic/port gigether-options unit logical-unit-number] hierarchy level simultaneously. If these statements are configured for the same interfaces at the same time, an error message is displayed.

On tagged Gigabit Ethernet interfaces, you should not configure the source-address-filter statement at the [edit interfaces [edit interfaces ge-fpc/pic/port gigether-options] hierarchy level and the accept-source-mac statement at the [edit interfaces ge-fpc/pic/port gigether-options unit logical-unit-number] hierarchy level with an identical MAC address specified in both filters. If these statements are configured for the same interfaces with an identical MAC address specified, an error message is displayed.

NOTE: Source address filtering is not supported on 200G 40x10G MPC and 200G 4x100G MPC for MX Series.

Related Documentation
- source-address-filter on page 551
- Configuring MAC Address Filtering on page 321
- Configuring Aggregated Ethernet LACP on page 112
- Ethernet Interfaces Overview on page 35
- Junos® OS Ethernet Interfaces
Configuring Ethernet Loopback Capability

By default, local aggregated Ethernet, Fast Ethernet, Tri-Rate Ethernet copper, Gigabit Ethernet, and 10-Gigabit Ethernet interfaces connect to a remote system. To place an interface in loopback mode, include the `loopback` statement:

```
loopback;
```

NOTE: If you configure a local loopback on a 1-port 10-Gigabit IQ2 and IQ2-E PIC using the `loopback` statement at the `[edit interfaces interface-name gigether-options]` hierarchy level, the transmit-path stops working, causing the remote end to detect a link down.

To return to the default—that is, to disable loopback mode—delete the `loopback` statement from the configuration:

```
[edit]
user@host# delete interfaces fe-fpc/pic/port fastether-options loopback
```

To explicitly disable loopback mode, include the `no-loopback` statement:

```
no-loopback;
```

You can include the `loopback` and `no-loopback` statements at the following hierarchy levels:

- `[edit interfaces interface-name aggregated-ether-options]`
- `[edit interfaces interface-name ether-options]`
- `[edit interfaces interface-name fastether-options]`
- `[edit interfaces interface-name gigether-options]`

Related Documentation
- `loopback` on page 506
- Ethernet Interfaces Overview on page 35
- Junos® OS Ethernet Interfaces

Configuring Flow Control

By default, the router or switch imposes flow control to regulate the amount of traffic sent out on a Fast Ethernet, Tri-Rate Ethernet copper, Gigabit Ethernet, and 10-Gigabit Ethernet interface. Flow control is not supported on the 4-port Fast Ethernet PIC. This is useful if the remote side of the connection is a Fast Ethernet or Gigabit Ethernet switch.

You can disable flow control if you want the router or switch to permit unrestricted traffic. To disable flow control, include the `no-flow-control` statement:

```
no-flow-control;
```
To explicitly reinstate flow control, include the `flow-control` statement:

```
flow-control;
```

You can include these statements at the following hierarchy levels:

- `[edit interfaces interface-name aggregated-ether-options]`
- `[edit interfaces interface-name ether-options]`
- `[edit interfaces interface-name fastether-options]`
- `[edit interfaces interface-name gigether-options]`

NOTE: On the Type 5 FPC, to prioritize control packets in case of ingress oversubscription, you must ensure that the neighboring peers support MAC flow control. If the peers do not support MAC flow control, then you must disable flow control.

Ignoring Layer 3 Incomplete Errors

By default, Fast Ethernet, Gigabit Ethernet, and 10-Gigabit Ethernet interfaces count Layer 3 incomplete errors. You can configure the interface to ignore Layer 3 incomplete errors.

To ignore Layer 3 incomplete errors, include the `ignore-l3-incompletes` statement:

```
ignore-l3-incompletes;
```

You can include this statement at the following hierarchy levels:

- `[edit interfaces interface-name fastether-options]`
- `[edit interfaces interface-name gigether-options]`

Configuring the Link Characteristics on Ethernet Interfaces

`Full-duplex` communication means that both ends of the communication can send and receive signals at the same time. `Half-duplex` is also bidirectional communication, but signals can flow in only one direction at a time.
By default, the router’s management Ethernet interface, fxp0 or em0, autonegotiates whether to operate in full-duplex or half-duplex mode. J Series Gigabit Ethernet interfaces and Fast Ethernet interfaces, except the J Series ePIM Fast Ethernet interfaces, can operate in either full-duplex or half-duplex mode, and all other interfaces can operate only in full-duplex mode. For Gigabit Ethernet and 10-Gigabit Ethernet, the link partner must also be set to full duplex.

NOTE: For M Series, MX Series, and most T Series routers, the management Ethernet interface is fxp0. For TX Matrix Plus routers and T1600 routers configured in a routing matrix, the management Ethernet interface is em0.

NOTE: Automated scripts that you have developed for standalone T1600 routers (T1600 routers that are not in a routing matrix) might contain references to the fxp0 management Ethernet interface. Before reusing the scripts on T1600 routers in a routing matrix, edit the command lines that reference the fxp0 management Ethernet interface so that the commands reference the em0 management Ethernet interface instead.

NOTE: When you configure the Tri-Rate Ethernet copper interface to operate at 1 Gbps, autonegotiation must be enabled.

NOTE: On a J Series ePIM Fast Ethernet interface, if you specify half-duplex (or if full-duplex mode is not autonegotiated), the following message is written to the system log: "Half-duplex mode not supported on this PIC, forcing full-duplex mode."

NOTE: When you manually configure Fast Ethernet interfaces on the M Series and T Series routers, link mode and speed must both be configured. If both these values are not configured, the router uses autonegotiation for the link and ignores the user-configured settings.

NOTE: Member links of an aggregated Ethernet bundle must not be explicitly configured with a link mode. You must remove any such link-mode configuration before committing the aggregated Ethernet configuration.

To explicitly configure an Ethernet interface to operate in either full-duplex or half-duplex mode, include the link-mode statement at the [edit interfaces interface-name] hierarchy level:

[edit interfaces interface-name]
Configuring Gratuitous ARP

Gratuitous Address Resolution Protocol (ARP) requests provide duplicate IP address detection. A gratuitous ARP request is a broadcast request for a router’s own IP address. If a router or switch sends an ARP request for its own IP address and no ARP replies are received, the router- or switch-assigned IP address is not being used by other nodes. If a router or switch sends an ARP request for its own IP address and an ARP reply is received, the router- or switch-assigned IP address is already being used by another node.

By default, the router or switch responds to gratuitous ARP requests. On Ethernet interfaces, you can disable responses to gratuitous ARP requests. To disable responses to gratuitous ARP requests, include the `no-gratuitous-arp-request` statement at the `[edit interfaces interface-name]` hierarchy level:

```
[edit interfaces interface-name]
no-gratuitous-arp-request;
```

To return to the default—that is, to respond to gratuitous ARP requests—delete the `no-gratuitous-arp-request` statement from the configuration:

```
[edit]
user@host# delete interfaces interface-name no-gratuitous-arp-request
```

Gratuitous ARP replies are reply packets sent to the broadcast MAC address with the target IP address set to be the same as the sender’s IP address. When the router or switch receives a gratuitous ARP reply, the router or switch can insert an entry for that reply in the ARP cache.

By default, updating the ARP cache on gratuitous ARP replies is disabled on the router or switch. On Ethernet interfaces, you can enable handling of gratuitous ARP replies on a specific interface by including the `gratuitous-arp-reply` statement at the `[edit interfaces interface-name]` hierarchy level:

```
[edit interfaces interface-name]
gratuitous-arp-reply;
```

To restore the default behavior, include the `no-gratuitous-arp-reply` statement at the `[edit interfaces interface-name]` hierarchy level:

```
[edit interfaces interface-name]
no-gratuitous-arp-reply;
```
Adjusting the ARP Aging Timer

By default, the ARP aging timer is set at 20 minutes. In environments with many directly attached hosts, such as metro Ethernet environments, increasing the amount of time between ARP updates by configuring the ARP aging timer can improve performance in an event where having thousands of clients time out at the same time might impact packet forwarding performance. In environments where there are devices connected with lower ARP aging timers (less than 20 minutes), decreasing the ARP aging timer can improve performance by preventing the flooding of traffic toward next hops with expired ARP entries. In most environments, the default ARP aging timer value does not need to be adjusted.

To configure the system-wide ARP aging timer, include the `aging-timer` statement at the `[edit system arp]` hierarchy level:

```
[edit system arp]
ageing-timer minutes;
```

The aging timer range is from 1 through 240 minutes. The timer value you configure takes effect as ARP entries expire. In other words, each subsequent refreshed ARP entry receives the new timer value. The new timer value does not apply to ARP entries that exist at the time you commit the configuration.

For more information about statements you can configure at the `[edit system]` hierarchy level, see the Junos OS System Basics Configuration Guide.

Related Documentation

- `arp (System)`
- Ethernet Interfaces Overview on page 35
- Junos® OS Ethernet Interfaces

Configuring the Interface Speed on Ethernet Interfaces

For M Series and T Series Fast Ethernet 12-port and 48-port PIC interfaces, the management Ethernet interface (`fxp0` or `em0`), the J Series Gigabit Ethernet uPIM interfaces, and the MX Series Tri-Rate Ethernet copper interfaces, you can explicitly set the interface speed. The Fast Ethernet, `fxp0`, and `em0` interfaces can be configured for 10 Mbps or 100 Mbps (10m | 100m). The J Series Gigabit Ethernet uPIM interfaces and the MX Series Tri-Rate Ethernet copper interfaces can be configured for 10 Mbps, 100 Mbps, or 1 Gbps (10m | 100m | 1g). MX Series routers, with MX-DPC and Tri-Rate Copper SFPs, support 20x1 Copper to provide backwards compatibility with 100/10BASE-T and 1000BASE-T operation through an Serial Gigabit Media Independent Interface (SGMII) interface.
NOTE: On MX Series routers with tri-rate copper SFP interfaces, if the port speed is negotiated to the configured value and the negotiated speed and interface speed do not match, the link will not be brought up.

NOTE: When you configure the Tri-Rate Ethernet copper interface to operate at 1 Gbps, autonegotiation must be enabled.

NOTE: Half-duplex mode is not supported on Tri-Rate Ethernet copper interfaces. When you include the speed statement, you must include the link-mode full-duplex statement at the same hierarchy level.

To explicitly configure the speed, include the speed statement at the [edit interfaces interface-name] hierarchy level:

[edit interfaces interface-name]
speed (10m | 100m | 1g);

Related Documentation
- speed on page 553
- Ethernet Interfaces Overview on page 35
- Junos® OS Ethernet Interfaces

Configuring the Ingress Rate Limit

On Fast Ethernet 8-port, 12-port, and 48-port PIC interfaces only, you can apply port-based rate limiting to the ingress traffic that arrives at the PIC.

To configure an ingress rate limit on a Fast Ethernet 8-port, 12-port, or 48-port PIC interface, include the ingress-rate-limit statement at the [edit interfaces interface-name fastether-options] hierarchy level:

[edit interfaces interface-name fastether-options]
ingress-rate-limit rate;

rate can range in value from 1 through 100 Mbps.

Related Documentation
- ingress-rate-limit on page 487
- Ethernet Interfaces Overview on page 35
- Junos® OS Ethernet Interfaces
Configuring Multicast Statistics Collection on Ethernet Interfaces

T Series and TX Matrix routers support multicast statistics collection on Ethernet interfaces in both ingress and egress directions. The multicast statistics functionality can be configured on a physical interface thus enabling multicast accounting for all the logical interfaces below the physical interface.

The multicast statistics information is displayed only when the interface is configured with the `multicast-statistics` statement, which is not enabled by default.

Multicast statistics collection requires at least one logical interface is configured with family inet and/or inet6; otherwise, the commit for `multicast-statistics` will fail.

The multicast in/out statistics can be obtained via interfaces statistics query through CLI and via MIB objects through SNMP query.

To configure multicast statistics:

1. Include the `multicast-statistics` statement at the `[edit interfaces interface-name]` hierarchy level.

An example of a multicast statistics configuration for a Ethernet interface follows:

```
[edit interfaces]
  ge-fpc(pic(port {
    multicast-statistics;
  })
```

To display multicast statistics, use the `show interfaces interface-name statistics detail` command.

Related Documentation

- `multicast-statistics`
- Configuring Multicast Statistics Collection on Aggregated Ethernet Interfaces on page 122
- Ethernet Interfaces Overview on page 35
- Junos® OS Ethernet Interfaces

Configuring Weighted Random Early Detection

On M7i, M10i, M40e, M320, M120, and T Series routers, the Ethernet IQ2 and IQ2-E PIC families extend CoS functionality by supporting network congestion avoidance with weighted random early detection (WRED).

Related Documentation

- For information on configuring WRED, see the Junos OS Class of Service Configuration Guide.
- Ethernet Interfaces Overview on page 35
- Junos® OS Ethernet Interfaces
CHAPTER 3

Configuring 802.1Q VLANs

- 802.1Q VLANs Overview on page 53
- Configuring Dynamic 802.1Q VLANs on page 54
- 802.1Q VLAN IDs and Ethernet Interface Types on page 55
- Enabling VLAN Tagging on page 56
- Binding VLAN IDs to Logical Interfaces on page 59
- Associating VLAN IDs to VLAN Demux Interfaces on page 64
- Configuring VLAN Encapsulation on page 65
- Configuring Extended VLAN Encapsulation on page 67
- Guidelines for Configuring VLAN ID List-Bundled Logical Interfaces That Connect CCCs on page 68
- Configuring a Layer 2 VPN Routing Instance on a VLAN-Bundled Logical Interface on page 70
- Configuring a Layer 2 Circuit on a VLAN-Bundled Logical Interface on page 71
- Example: Configuring a Layer 2 VPN Routing Instance on a VLAN-Bundled Logical Interface on page 73
- Example: Configuring a Layer 2 Circuit on a VLAN-Bundled Logical Interface on page 74
- Configuring a Logical Interface for Access Mode on page 75
- Configuring a Logical Interface for Trunk Mode on page 76
- Configuring the VLAN ID List for a Trunk Interface on page 77
- Configuring a Trunk Interface on a Bridge Network on page 77

802.1Q VLANs Overview

For Ethernet, Fast Ethernet, Tri-Rate Ethernet copper, Gigabit Ethernet, 10-Gigabit Ethernet, and aggregated Ethernet interfaces supporting VPLS, the Junos OS supports a subset of the IEEE 802.1Q standard for channelizing an Ethernet interface into multiple logical interfaces, allowing many hosts to be connected to the same Gigabit Ethernet switch, but preventing them from being in the same routing or bridging domain.

Related Documentation
- Configuring Dynamic 802.1Q VLANs on page 54
- 802.1Q VLAN IDs and Ethernet Interface Types on page 55
You can configure the router to dynamically create VLANs when a client accesses an interface and requests a VLAN ID that does not yet exist. When a client accesses a VLAN interface, the router instantiates a VLAN dynamic profile that you have associated with the interface. Using the settings in the dynamic profile, the router extracts information about the client from the incoming packet (for example, the interface and unit values), saves this information in the routing table, and creates a VLAN or stacked VLAN ID for the client from a range of VLAN IDs that you configure for the interface.
Dynamically configuring VLANs or stacked VLANs requires the following general steps:

1. Configure a dynamic profile for dynamic VLAN or dynamic stacked VLAN creation.
2. Associate the VLAN or stacked VLAN dynamic profile with the interface.
3. Specify the Ethernet packet type that the VLAN dynamic profile accepts.
4. Define VLAN ranges for use by the dynamic profile when creating VLAN IDs.

For procedures on how to configure dynamic VLANs and dynamic stacked VLANs for client access, see the Junos OS Subscriber Management, Release 12.3.

Related Documentation
- 802.1Q VLANs Overview on page 53
- Junos® OS Ethernet Interfaces

802.1Q VLAN IDs and Ethernet Interface Types

You can partition the router into up to 4095 different VLANs—depending on the router model and the physical interface types—by associating logical interfaces with specific VLAN IDs.

VLAN ID 0 is reserved for tagging the priority of frames. VLAN IDs 1 through 511 are reserved for normal VLANs. VLAN IDs 512 and above are reserved for VLAN circuit cross-connect (CCCs).

For Gigabit Ethernet IQ interfaces and Gigabit Ethernet PICs with SFPs (except the 10-port Gigabit Ethernet PIC and the built-in Gigabit Ethernet port on the M7i router), you can configure flexible Ethernet services encapsulation on the physical interface. With flexible Ethernet services encapsulation, VLAN IDs from 1 through 511 are no longer reserved for normal VLANs.

The maximum number of user-configurable VLANs is 15 on each port of the Dense-FE PIC (8-port/12-port/48-port).

Table 3 on page 55 lists VLAN ID range by interface type.

Table 3: VLAN ID Range by Interface Type

<table>
<thead>
<tr>
<th>Interface Type</th>
<th>VLAN ID Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregated Ethernet for Fast Ethernet</td>
<td>1 through 1023</td>
</tr>
<tr>
<td>Aggregate Ethernet for Gigabit Ethernet</td>
<td>1 through 4094</td>
</tr>
<tr>
<td>4-port, 8-port, and 12-port Fast Ethernet</td>
<td>1 through 1023</td>
</tr>
<tr>
<td>48-port Fast Ethernet</td>
<td>1 through 4094</td>
</tr>
<tr>
<td>Tri-Rate Ethernet copper</td>
<td>1 through 4094</td>
</tr>
<tr>
<td>Gigabit Ethernet</td>
<td>1 through 4094</td>
</tr>
</tbody>
</table>
Table 3: VLAN ID Range by Interface Type (continued)

<table>
<thead>
<tr>
<th>Interface Type</th>
<th>VLAN ID Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gigabit Ethernet IQ</td>
<td>1 through 4094</td>
</tr>
<tr>
<td>10-Gigabit Ethernet</td>
<td>1 through 4094</td>
</tr>
<tr>
<td>Management and internal Ethernet interfaces</td>
<td>1 through 1023</td>
</tr>
</tbody>
</table>

NOTE: For Gigabit Ethernet IQ and Gigabit Ethernet PICs with SFPs (except the built-in Gigabit Ethernet port on the M7i router), VLAN IDs on a single interface can differ from each other.

Because IS-IS has an 8-bit limit for broadcast multiaccess media, you cannot set up more than 255 adjacencies over Gigabit Ethernet using VLAN tagging. For more information, see the Junos OS Routing Protocols Configuration Guide.

Related Documentation
- 802.1Q VLANs Overview on page 53
- Junos® OS Ethernet Interfaces

Enabling VLAN Tagging

You can configure the router to receive and forward single-tag frames, dual-tag frames, or a mixture of single-tag and dual-tag frames. For more information, see the following sections:

- Configuring Single-Tag Framing on page 57
- Configuring Dual Tagging on page 57
- Configuring Mixed Tagging on page 57
- Configuring Mixed Tagging Support for Untagged Packets on page 58
- Example: Configuring Mixed Tagging on page 58
- Example: Configuring Mixed Tagging to Support Untagged Packets on page 59

NOTE: If you configure VLAN tagging on Gigabit Ethernet IQ, IQ2 and IQ2-E interfaces on M320, M120, and T Series routers, the Junos OS creates an internal logical interface that reserves 50 Kbps of bandwidth from Gigabit Ethernet IQ interfaces and 2 Mbps of bandwidth from Gigabit Ethernet IQ2 and IQ2-E interfaces. As a result, the effective available bandwidth for these interface types is now 999.5 Mbps and 998 Mbps, respectively.
Configuring Single-Tag Framing

To configure the router to receive and forward single-tag frames with 802.1Q VLAN tags, include the `vlan-tagging` statement at the `[edit interfaces interface-name]` hierarchy level:

```text
[edit interfaces interface-name]
vlan-tagging;
```

Configuring Dual Tagging

To configure the routing platform to receive and forward dual-tag frames with 802.1Q VLAN tags, include the `stacked-vlan-tagging` statement at the `[edit interfaces interface-name]` hierarchy level:

```text
[edit interfaces interface-name]
stacked-vlan-tagging;
```

Configuring Mixed Tagging

Mixed tagging is supported for Gigabit Ethernet interfaces on Gigabit Ethernet IQ2 and IQ2-E, and IQ or IQE PICs on M Series and T Series routers, for all MX Series router Gigabit and 10-Gigabit Ethernet interfaces, and for aggregated Ethernet interfaces with member links in IQ2 and IQ2-E PICs or in MX Series DPCs. Mixed tagging lets you configure two logical interfaces on the same Ethernet port, one with single-tag framing and one with dual-tag framing.

```text
 NOTE: Mixed tagging is not supported on Fast Ethernet interfaces or on J Series Services Routers.
```

To configure mixed tagging, include the `flexible-vlan-tagging` statement at the `[edit interfaces ge-fpc/pic/port]` hierarchy level. You must also include the `vlan-tags` statement with `inner` and `outer` options or the `vlan-id` statement at the `[edit interfaces ge-fpc/pic/port unit logical-unit-number]` hierarchy level:

```text
[edit interfaces ge-fpc/pic/port]
flexible-vlan-tagging;
unit logical-unit-number {
    vlan-id number;
    family family {
        address address;
    }
}
unit logical-unit-number {
    vlan-tags inner tpid.vlan-id outer tpid.vlan-id;
    family family {
        address address;
    }
}"
NOTE: When you configure the physical interface MTU for mixed tagging, you must increase the MTU to 4 bytes more than the MTU value you would configure for a standard VLAN-tagged interface.

For example, if the MTU value is configured to be 1018 on a VLAN-tagged interface, then the MTU value on a flexible VLAN tagged interface must be 1022—4 bytes more. The additional 4 bytes accommodates the future addition of a stacked VLAN tag configuration on the same physical interface.

If the same physical interface MTU value is configured on both the VLAN and flexible VLAN-tag routers, the L2 circuit configuration does not come up and a MTU mismatch is logged. However, normal traffic flow is unaffected.

For encapsulation type `flexible-ethernet-services`, all VLAN IDs are valid. See “Configuring VLAN Encapsulation” on page 65.

Configuring Mixed Tagging Support for Untagged Packets

For 1-, 4-, and 8-port Gigabit Ethernet IQ2 and IQ2-E PICs, for 1-port 10-Gigabit Ethernet IQ2 and IQ2-E PICs, for all MX Series router Gigabit Ethernet, Tri-Rate Ethernet copper, and 10-Gigabit Ethernet interfaces configured for 802.1Q flexible VLAN tagging, and for aggregated Ethernet interfaces on IQ2 and IQ2-E PICs or MX Series DPCs, you can configure mixed tagging support for untagged packets on a port. Untagged packets are accepted on the same mixed VLAN-tagged port. To accept untagged packets, include the `native-vlan-id` statement and the `flexible-vlan-tagging` statement at the `[edit interfaces interface-name]` hierarchy level:

```
[edit interfaces ge-fpc/pic/port]
flexible-vlan-tagging;
native-vlan-id number;
```

The logical interface on which untagged packets are to be received must be configured with the same native VLAN ID as that configured on the physical interface. To configure the logical interface, include the `vlan-id` statement (matching the `native-vlan-id` statement on the physical interface) at the `[edit interfaces interface-name unit logical-unit-number]` hierarchy level.

Example: Configuring Mixed Tagging

The following example configures mixed tagging. Dual-tag and single-tag logical interfaces are under the same physical interface:

```
[edit interfaces ge-3/0/1]
flexible-vlan-tagging;
unit 0 {
 vlan-id 232;
 family inet {
 address 10.66.1.2/30;
 }
}
unit 1 {
 vlan-tags outer 0x8100.222 inner 0x8100.221;
```
family inet {
    address 10.66.1.2/30;
}

For information about binding VLAN IDs to logical interfaces, see “Binding VLAN IDs to Logical Interfaces” on page 59. For information about configuring dual VLAN tags using the vlan-tag statement, see “Stacking a VLAN Tag” on page 138.

Example: Configuring Mixed Tagging to Support Untagged Packets

The following example configures untagged packets to be mapped to logical unit number 0:

[edit interfaces ge-0/2/0]
flexible-vlan-tagging;
native-vlan-id 232;
unit 0 {
    vlan-id 232;
    family inet {
        address 10.66.1.2/30;
    }
}
unit 1 {
    vlan-tags outer 0x8100.222 inner 0x8100.221;
    family inet {
        address 10.66.1.2/30;
    }
}

Related Documentation
- 802.1Q VLANs Overview on page 53
- Junos® OS Ethernet Interfaces

Binding VLAN IDs to Logical Interfaces

The following sections describe how to configure logical interfaces to receive and forward VLAN-tagged frames:

- Binding VLAN IDs to Logical Interfaces Overview on page 59
- Binding a VLAN ID to a Logical Interface on page 60
- Binding a Range of VLAN IDs to a Logical Interface on page 61
- Binding a List of VLAN IDs to a Logical Interface on page 62

Binding VLAN IDs to Logical Interfaces Overview

To configure a logical interface to receive and forward VLAN-tagged frames, you must bind a VLAN ID, a range of VLAN IDs, or a list of VLAN IDs to the logical interface. Table 4 on page 60 lists the configuration statements you use to bind VLAN IDs to logical interfaces, organized by scope of the VLAN IDs used to match incoming packets:
### Table 4: Configuration Statements Used to Bind VLAN IDs to Logical Interfaces

<table>
<thead>
<tr>
<th>Scope of VLAN ID Matching</th>
<th>Type of VLAN Framing Supported on the Logical Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single-Tag Framing</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>vlan-id vlan-id;</td>
</tr>
<tr>
<td>VLAN ID Range</td>
<td>vlan-id-range vlan-id–vlan-id;</td>
</tr>
<tr>
<td>VLAN ID List</td>
<td>vlan-id-list [vlan-id vlan-id–vlan-id];</td>
</tr>
</tbody>
</table>

You can include all of the statements at the following hierarchy levels:

- [edit interfaces interface-name unit logical-unit-number]
- [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

---

**NOTE:** The inner-list option of the vlan-tags statement does not support Tag Protocol ID (TPID) values.

---

### Binding a VLAN ID to a Logical Interface

A logical interface that you have associated (bound) to a particular VLAN ID will receive and forward incoming frames that contain a matching VLAN ID.

#### Binding a VLAN ID to a Single-Tag Logical Interface

To bind a VLAN ID to a single-tag logical interface, include the `vlan-id` statement:

```text
vlan-id vlan-id;
```

You can include the statement at the following hierarchy levels:

- [edit interfaces ethernet-interface-name unit logical-unit-number]
- [edit logical-systems logical-system-name interfaces ethernet-interface-name unit logical-unit-number]

To configure an Ethernet interface to support single-tag logical interfaces, include the `vlan-tagging` statement at the [edit interfaces ethernet-interface-name] hierarchy level. To support mixed tagging, include the `flexible-vlan-tagging` statement instead.

#### Binding a VLAN ID to a Dual-Tag Logical Interface

To bind a VLAN ID to a dual-tag logical interface, include the `vlan-tags` statement:

```text
vlan-tags inner <tpid.>vlan-id outer <tpid.>vlan-id;
```

You can include the statement at the following hierarchy levels:

- [edit interfaces ethernet-interface-name unit logical-unit-number]
To configure an Ethernet interface to support dual-tag logical interfaces, include the `stacked-vlan-tagging` statement at the `[edit interfaces ethernet-interface-name]` hierarchy level. To support mixed tagging, include the `flexible-vlan-tagging` statement instead.

**Binding a Range of VLAN IDs to a Logical Interface**

A VLAN range can be used by service providers to interconnect multiple VLANs belonging to a particular customer over multiple sites. Using a VLAN ID range conserves switch resources and simplifies configuration.

**Binding a Range of VLAN IDs to a Single-Tag Logical Interface**

To bind a range of VLAN IDs to a single-tag logical interface, include the `vlan-id-range` statement:

```
vlan-id-range vlan-id vlan-id;
```

You can include the statement at the following hierarchy levels:

- `[edit interfaces ethernet-interface-name unit logical-unit-number]`
- `[edit logical-systems logical-system-name interfaces ethernet-interface-name unit logical-unit-number]`

To configure an Ethernet interface to support single-tag logical interfaces, include the `vlan-tagging` statement at the `[edit interfaces ethernet-interface-name]` hierarchy level. To support mixed tagging, include the `flexible-vlan-tagging` statement instead.

**Binding a Range of VLAN IDs to a Dual-Tag Logical Interface**

To bind a range of VLAN IDs to a dual-tag logical interface, include the `vlan-tags` statement. Use the `inner-list` option to specify the VLAN IDs as an inclusive range by separating the starting VLAN ID and ending VLAN ID with a hyphen.

```
vlan-tags inner-list [vlan-id vlan-id--vlan-id] outer <tpid> vlan-id;
```

You can include the statement at the following hierarchy levels:

- `[edit interfaces ethernet-interface-name unit logical-unit-number]`
- `[edit logical-systems logical-system-name interfaces ethernet-interface-name unit logical-unit-number]`

To configure an Ethernet interface to support dual-tag logical interfaces, include the `stacked-vlan-tagging` statement at the `[edit interfaces ethernet-interface-name]` hierarchy level. To support mixed tagging, include the `flexible-vlan-tagging` statement instead.

**Example: Binding Ranges VLAN IDs to Logical Interfaces**

The following example configures two different ranges of VLAN IDs on two different logical ports:

```
[edit interfaces]
ge-3/0/0 {
```
Binding a List of VLAN IDs to a Logical Interface

In Junos OS Release 9.5 and later, on MX Series routers you can bind a list of VLAN IDs to a single logical interface, eliminating the need to configure a separate logical interface for every VLAN or VLAN range. A logical interface that accepts packets tagged with any VLAN ID specified in a VLAN ID list is called a *VLAN-bundled* logical interface.

You can use VLAN-bundled logical interfaces to configure circuit cross-connects between Layer 2 VPN routing instances or Layer 2 circuits. Using VLAN-bundled logical interfaces simplifies configuration and reduces use of system resources such as logical interfaces, next hops, and circuits.

As an alternative to configuring multiple logical interfaces (one for each VLAN ID and one for each range of VLAN IDs), you can configure a single VLAN-bundled logical interface based on a list of VLAN IDs.

NOTE: The `vlan-id` option is not supported to achieve VLAN normalization on VPLS instances that are configured with `vlan-id-list`. However, you can use the `vlan-maps` option to achieve VLAN normalization.

Binding a List of VLAN IDs to a Single-Tag Logical Interface

To bind a list of VLAN IDs to a single-tag logical interface, include the `vlan-id-list` statement. Specify the VLAN IDs in the list individually by using a space to separate each ID, as an inclusive list by separating the starting VLAN ID and ending VLAN ID with a hyphen, or as a combination of both.

`vlan-id-list [ vlan-id vlan-id–vlan-id ];`

You can include the statement at the following hierarchy levels:

- `[edit interfaces ethernet-interface-name unit logical-unit-number]`
- `[edit logical-systems logical-system-name interfaces ethernet-interface-name unit logical-unit-number]`
To configure an Ethernet interface to support single-tag logical interfaces, include the `vlan-tagging` statement at the `[edit interfaces ethernet-interface-name]` hierarchy level. To support mixed tagging, include the `flexible-vlan-tagging` statement instead.

### Binding a List of VLAN IDs to a Dual-Tag Logical Interface

To bind a list of VLAN IDs to a dual-tag logical interface, include the `vlan-tags` statement. Use the `inner-list` option to specify the VLAN IDs individually by using a space to separate each ID, as an inclusive list by separating the starting VLAN ID and ending VLAN ID with a hyphen, or as a combination of both:

```
vlan-tags inner-list [vlan-id vlan-id–vlan-id] outer <tpid>vlan-id;
```

**NOTE:** The `inner-list` option of the `vlan-tags` statement does not support Tag Protocol ID (TPID) values.

You can include the statement at the following hierarchy levels:

- `[edit interfaces ethernet-interface-name unit logical-unit-number]`
- `[edit logical-systems logical-system-name interfaces ethernet-interface-name unit logical-unit-number]`

To configure an Ethernet interface to support dual-tag logical interfaces, include the `stacked-vlan-tagging` statement at the `[edit interfaces ethernet-interface-name]` hierarchy level. To support mixed tagging, include the `flexible-vlan-tagging` statement instead.

### Example: Binding Lists of VLAN IDs to Logical Interfaces

The following example configures two different lists of VLAN IDs on two different logical ports:

```
[edit interfaces]
ge-1/1/0 {
 vlan-tagging; # Only for single-tagging
 encapsulation flexible-ethernet-services;
 unit 10 {
 encapsulation vlan-ccc;
 vlan-id-list [20 30–40 45];
 }
}
ge-1/1/1 {
 flexible-vlan-tagging; # Only for mixed tagging
 encapsulation flexible-ethernet-services;
 unit 10 {
 encapsulation vlan-ccc;
 vlan-id-list [110 20 30–40];
 }
 unit 20 {
 encapsulation vlan-ccc;
 vlan-tags outer 200 inner-list [50–60 80 90–100];
 }
}
```
In the example configuration above, **ge-1/1/0** supports single-tag logical interfaces, and **ge-1/1/1** supports mixed tagging. The single-tag logical interfaces **ge-1/1/0.10** and **ge-1/1/1.20** each bundle lists of VLAN IDs. The dual-tag logical interface **ge-1/1/1.20** bundles lists of inner VLAN IDs.

**TIP:** You can group a range of identical interfaces into an interface range and then apply a common configuration to that interface range. For example, in the above example configuration, both interfaces **ge-1/1/0** and **ge-1/1/1** have the same physical encapsulation type of **flexible-ethernet-services**. Thus you can define an interface range with the interfaces **ge-1/1/0** and **ge-1/1/1** as its members and apply the encapsulation type **flexible-ethernet-services** to that defined interface range. For more information about interface ranges, see Configuring Interface Ranges.

**Related Documentation**
- **802.1Q VLANs Overview** on page 53
- Configuring Interface Ranges
- Junos® OS Ethernet Interfaces

### Associating VLAN IDs to VLAN Demux Interfaces

The following sections describe how to configure VLAN demux interfaces to receive and forward VLAN-tagged frames:

- Associating VLAN IDs to VLAN Demux Interfaces Overview on page 64
- Associating a VLAN ID to a VLAN Demux Interface on page 65

### Associating VLAN IDs to VLAN Demux Interfaces Overview

To configure a VLAN demux interface to receive and forward VLAN-tagged frames, you must associate a VLAN ID or dual tagged (stacked) VLAN ID to the interface. Table 5 on page 64 shows the configuration statements you use to associate VLAN IDs to VLAN demux interfaces, depending on the VLAN tag framing you use:

<table>
<thead>
<tr>
<th>Table 5: Configuration Statements Used to Associate VLAN IDs to VLAN Demux Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Statement Format</strong></td>
</tr>
<tr>
<td>vlan-id vlan-id;</td>
</tr>
</tbody>
</table>

You can include all of the statements at the following hierarchy levels:

- [edit interfaces interface-name unit logical-unit-number]
- [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]
- [edit interfaces demux0 unit logical-unit-number]
Associating a VLAN ID to a VLAN Demux Interface

A VLAN demux interface that you have associated to a particular VLAN ID receives and forwards incoming frames that contain a matching VLAN ID. You can associate a VLAN ID to a single-tag logical interface or to a dual-tagged (stacked) logical interface.

1. Associating a VLAN ID to a Single-Tag VLAN Demux Interface on page 65
2. Associating a VLAN ID to a Dual-Tag VLAN Demux Interface on page 65

**Associating a VLAN ID to a Single-Tag VLAN Demux Interface**

To associate a VLAN ID to a single-tag VLAN demux interface, include the `vlan-id` statement at the `[edit interfaces demux0 unit logical-unit-number]` hierarchy level:

```
 vlan-id vlan-id;
```

To configure an interface to support single-tag logical interfaces, you must also include the `vlan-tagging` statement at the `[edit interfaces interface-name]` hierarchy level. To support mixed tagging, include the `flexible-vlan-tagging` statement instead.

**Associating a VLAN ID to a Dual-Tag VLAN Demux Interface**

To associate a VLAN ID to a dual-tag VLAN demux interface, include the `vlan-tags` statement at the `[edit interfaces demux0 unit logical-unit-number]` hierarchy level:

```
 vlan-tags inner <tpid.>vlan-id outer <tpid.>vlan-id;
```

To configure an interface to support dual-tag logical interfaces, include the `stacked-vlan-tagging` statement at the `[edit interfaces interface-name]` hierarchy level. To support mixed tagging, include the `flexible-vlan-tagging` statement instead.

**Configuring VLAN Encapsulation**

Gigabit Ethernet IQ, Gigabit Ethernet PICs with small form-factor pluggable optics (SFPs), and MX Series router Gigabit Ethernet, Tri-Rate Ethernet copper, and 10-Gigabit Ethernet interfaces with VLAN tagging enabled can use flexible Ethernet services, VLAN CCC, or VLAN virtual private LAN service (VPLS) encapsulation.

Aggregated Ethernet interfaces configured for VPLS can use Ethernet VPLS or VLAN VPLS.

To configure the encapsulation on a Gigabit Ethernet IQ or Gigabit Ethernet physical interface, include the `encapsulation` statement at the `[edit interfaces interface-name]` hierarchy level, specifying `flexible-ethernet-services`, `vlan-ccc`, or `vlan-vpls`:

```
 [edit interfaces interface-name]
 encapsulation (flexible-ethernet-services | vlan-ccc | vlan-vpls);
```

To configure the encapsulation on an aggregated Ethernet interface, include the `encapsulation` statement at the `[edit interfaces interface-name]` hierarchy level, specifying `flexible-ethernet-services`, `ethernet-vpls`, or `vlan-vpls`:

```
 [edit interfaces interface-name]
 encapsulation (flexible-ethernet-services | ethernet-vpls | vlan-vpls);
```
Ethernet interfaces in VLAN mode can have multiple logical interfaces. In CCC and VPLS modes, VLAN IDs from 1 through 511 are reserved for normal VLANs, and VLAN IDs 512 through 4094 are reserved for CCC or VPLS VLANs. For 4-port Fast Ethernet interfaces, you can use VLAN IDs 512 through 1024 for CCC or VPLS VLANs.

For encapsulation type **flexible-ethernet-services**, all VLAN IDs are valid.

In general, you configure an interface's encapsulation at the [edit interfaces interface-name] hierarchy level. However, for some encapsulation types, including flexible Ethernet services, Ethernet VLAN CCC and VLAN VPLS, you can also configure the encapsulation type that is used inside the VLAN circuit itself. To do this, include the `encapsulation` statement:

```
encapsulation (vlan-ccc | vlan-tcc | vlan-vpls);
```

You can include this statement at the following hierarchy levels:

- [edit interfaces interface-name unit logical-unit-number]
- [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

You cannot configure a logical interface with VLAN CCC or VLAN VPLS encapsulation unless you also configure the physical device with the same encapsulation or with flexible Ethernet services encapsulation. In general, the logical interface must have a VLAN ID of 512 or higher; if the VLAN ID is 511 or lower, it will be subject to the normal destination filter lookups in addition to source address filtering. However, if you configure flexible Ethernet services encapsulation, this VLAN ID restriction is removed.

**Example: Configuring VLAN Encapsulation on a Gigabit Ethernet Interface**

Configure VLAN CCC encapsulation on a Gigabit Ethernet interface:

```
interfaces ge-2/1/0 {
 vlan-tagging;
 encapsulation vlan-ccc;
 unit 0 {
 encapsulation vlan-ccc;
 vlan-id 600;
 }
}
```

**Example: Configuring VLAN Encapsulation on an Aggregated Ethernet Interface**

Configure VLAN CCC encapsulation on an aggregated Gigabit Ethernet interface:

```
interfaces ae0 {
 vlan-tagging;
 encapsulation vlan-vpls;
 unit 0 {
 vlan-id 100;
 }
}
```
Configuring Extended VLAN Encapsulation

Gigabit Ethernet, 4-port Fast Ethernet, MX Series router Gigabit Ethernet, Tri-Rate Ethernet copper, 10-Gigabit Ethernet, and aggregated Ethernet interfaces with VLAN tagging enabled can use extended VLAN CCC or VLAN VPLS, which allow 802.1Q tagging. To configure the encapsulation on a physical interface, include the `encapsulation` statement at the `[edit interfaces interface-name]` hierarchy level, specifying `extended-vlan-ccc` or `extended-vlan-vpls`:

```
[edit interfaces interface-name]
encapsulation (extended-vlan-ccc | extended-vlan-vpls);
```

For extended VLAN CCC and extended VLAN VPLS encapsulation, all VLAN IDs 1 and higher are valid. VLAN ID 0 is reserved for tagging the priority of frames.

**NOTE:** For extended VLAN CCC, the VLAN IDs on ingress and egress interfaces must be the same. For back-to-back connections, all VLAN IDs must be the same.

Example: Configuring Extended VLAN Encapsulation on a Gigabit Ethernet Interface

Configure extended VLAN CCC encapsulation on Gigabit Ethernet ingress and egress interfaces:

```
interfaces ge-0/0/0 {
 vlan-tagging;
 encapsulation extended-vlan-ccc;
 unit 0 {
 vlan-id 2;
 family ccc;
 }
}
interfaces ge-1/0/0 {
 vlan-tagging;
 encapsulation extended-vlan-ccc;
 unit 0 {
 vlan-id 2;
 family ccc;
 }
}
```

Example: Configuring Extended VLAN Encapsulation on an Aggregated Ethernet Interface

Configure extended VLAN VPLS encapsulation on an aggregated Ethernet interface:

```
interfaces aeO {
 vlan-tagging;
 encapsulation extended-vlan-vpls;
```
Guidelines for Configuring VLAN ID List-Bundled Logical Interfaces That Connect CCCs

For MX Series routers, you can bind a list of VLAN IDs to a logical interface, configure a Layer 2 VPN routing instance or Layer 2 circuit on the logical interface, and then use the logical interface to configure a circuit cross-connect (CCC) to another Layer 2 VPN routing instance or Layer 2 circuit.

A CCC allows you to configure transparent connections between two circuits so that packets from the source circuit are delivered to the destination circuit with, at most, the Layer 2 address being changed. You configure a CCC by connecting circuit interfaces of the same type. For more information, see Circuit and Translational Cross-Connects Overview.

**NOTE:** The Junos OS supports binding of Ethernet logical interfaces to lists of VLAN IDs on MX Series routers only. For all other routers, you can bind an Ethernet logical interface to only a single VLAN ID or to a single range of VLAN IDs.

The following configuration guidelines apply to bundling lists of VLAN IDs to Ethernet logical interfaces used to configure CCCs:

- Guidelines for Configuring Physical Link-Layer Encapsulation to Support CCCs on page 68
- Guidelines for Configuring Logical Link-Layer Encapsulation to Support CCCs on page 69

**Guidelines for Configuring Physical Link-Layer Encapsulation to Support CCCs**

To enable a physical interface to support VLAN-bundled logical interfaces that you will use to configure a CCC, you must specify one of the following physical link-layer encapsulation types as the value of the `encapsulation` statement at the `[edit interfaces interface-name]` hierarchy level:

- `extended-vlan-ccc`—For Ethernet interfaces with standard TPID tagging.
- `flexible-ethernet-services`—For supported Gigabit Ethernet interfaces for which you want to configure multiple per-unit Ethernet encapsulations.

For more information about configuring the encapsulation on a physical interface, see Configuring Interface Encapsulation on Physical Interfaces.
Guidelines for Configuring Logical Link-Layer Encapsulation to Support CCCs

For VLAN-bundled logical interfaces that you use to configure a CCC, specific logical link-layer encapsulation types are used inside the circuits themselves.

Table 6 on page 69 describes the logical link-layer encapsulation types used within circuits connected using VLAN-bundled logical interfaces of the same type.

Table 6: Encapsulation Inside Circuits CCC-Connected by VLAN-Bundled Logical Interfaces

<table>
<thead>
<tr>
<th>Encapsulation Inside the Circuit</th>
<th>Layer 2 Circuit Joined by Configuring an Interface-to-Interface CCC Connection</th>
<th>Layer 2 Circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>encapsulation-type (ethernet</td>
<td>ethernet-vlan);</td>
</tr>
<tr>
<td>Hierarchy Level</td>
<td>[edit routing-instances routing-instance-name protocols l2vpn],</td>
<td>[edit interfaces ethernet-interface-name unit logical-unit-number],</td>
</tr>
<tr>
<td></td>
<td>[edit logical-systems logical-system-name routing-instances routing-instance-name protocols l2vpn]</td>
<td></td>
</tr>
<tr>
<td>Usage Guidelines</td>
<td>See the Junos OS VPNs Configuration Guide.</td>
<td>See Configuring Interface Encapsulation on Logical Interfaces, Circuit and Translational Cross-Connects Overview, and Defining the Encapsulation for Switching Cross-Connects.</td>
</tr>
</tbody>
</table>

For a Single-Tag Logical Interface

The MX Series router automatically uses ethernet as the Layer 2 protocol used to encapsulate incoming traffic. Although the connection spans multiple VLANs, the VLANs are bundled and therefore can be encapsulated as a single VLAN.

**NOTE:** With ethernet encapsulation, the circuit signal processing does not check that the VLAN ID list is the same at both ends of the CCC connection.

Configure the MX Series router to use vlan-ccc as the logical link-layer encapsulation type.

For a Dual-Tag Logical Interface

Configure the MX Series router to use ethernet-vlan as the Layer 2 protocol to encapsulate incoming traffic.

With ethernet-vlan encapsulation, circuit signal processing checks that the VLAN ID list is the same at both ends of the CCC connection. If a VLAN ID list mismatch is detected, you can view the error condition in the show interfaces command output.

The MX Series router automatically uses vlan-ccc as the logical link-layer encapsulation type, regardless of the value configured.

---

Related Documentation

- 802.1Q VLANs Overview on page 53
- Binding VLAN IDs to Logical Interfaces on page 59
- Defining the Encapsulation for Switching Cross-Connects
### Configuring a Layer 2 VPN Routing Instance on a VLAN-Bundled Logical Interface

This topic describes how to configure a Layer 2 VPN routing instance on a logical interface bound to a list of VLAN IDs.

- Configuring a VLAN-Bundled Logical Interface to Support a Layer 2 VPN Routing Instance on page 70
- Specifying the Interface Over Which VPN Traffic Travels to the CE Router on page 70
- Specifying the Interface to Handle Traffic for a CCC on page 71

### Configuring a VLAN-Bundled Logical Interface to Support a Layer 2 VPN Routing Instance

To configure a VLAN-bundled logical interface, specify the list of VLAN IDs by including the `vlan-id-list` statement or the `vlan-tags` statement on a provider edge (PE) router:

```plaintext
interfaces {
 ethernet-interface-name {
 vlan-tagging; # Support single- or dual-tag logical interfaces
 flexible-vlan-tagging; # Support mixed tagging
 encapsulation (extended-vlan-ccc | flexible-ethernet-services);
 unit logical-unit-number {
 vlan-id-list [vlan-id [vlan-id [vlan-id]]]; # For single-tag
 vlan-tags outer <tpid>.vlan-id inner-list [vlan-id [vlan-id [vlan-id]]]; # For dual-tag
 }
 ...
 }
}
```

You can include the statements at the following hierarchy levels:

- [edit]
- [edit logical-systems logical-system-name]

### Specifying the Interface Over Which VPN Traffic Travels to the CE Router

To configure a Layer 2 VPN routing instance on a PE router, include the `instance-type` statement and specify the value `l2vpn`. To specify an interface connected to the router, include the `interface` statement and specify the VLAN-bundled logical interface:

```plaintext
instance-type l2vpn;
interface logical-interface-name;
```

You can include the statements at the following hierarchy levels:

- [edit routing-instances routing-instance-name]
- [edit logical-systems logical-system-name routing-instances routing-instance-name]
Specifying the Interface to Handle Traffic for a CCC

To configure the VLAN-bundled logical interface as the interface to handle traffic for a circuit connected to the Layer 2 VPN routing instance, include the following statements:

```
protocols {
 l2vpn {
 (control-word | no-control-word);
 encapsulation-type (ethernet | ethernet-vlan);
 site site-name {
 site-identifier identifier;
 interface logical-interface-name { # VLAN-bundled logical interface
 . . interface-options . .
 }
 }
 }
}
```

You can include the statements at the same hierarchy level at which you include the instance-type l2vpn and interface logical-interface-name statements:

- [edit routing-instances routing-instance-name]
- [edit logical-systems logical-system-name routing-instances routing-instance-name]

To enable a Layer 2 VPN routing instance on a PE router, include the l2vpn statement. For more information, see the Junos OS VPNs Configuration Guide.

The encapsulation-type statement specifies the Layer 2 protocol used for traffic from the customer edge (CE) router. If the Layer 2 VPN routing instance is being connected to a single-tag Layer 2 circuit, specify ethernet as the encapsulation type. If the Layer 2 VPN routing instance is being connected to a dual-tag Layer 2 circuit, specify ethernet-vlan as the encapsulation type.

To specify the interface to handle traffic for a circuit connected to the Layer 2 VPN routing instance, include the interface statement and specify the VLAN-bundled logical interface.

Configuring a Layer 2 Circuit on a VLAN-Bundled Logical Interface

This topic describes how to configure a Layer 2 circuit on a logical interface bound to a list of VLAN IDs.

- Configuring a VLAN-Bundled Logical Interface to Support a Layer 2 VPN Routing Instance on page 71
- Specifying the Interface to Handle Traffic for a CCC Connected to the Layer 2 Circuit on page 72

Configuring a VLAN-Bundled Logical Interface to Support a Layer 2 VPN Routing Instance

To configure a VLAN-bundled logical interface, specify the list of VLAN IDs by including the vlan-id-list statement or the vlan-tags statement:

```
interfaces {
 ethernet-interface-name {
```
You can include the statements at the following hierarchy levels:

- [edit]
- [edit logical-systems logical-system-name]

For a single-tag logical interface, include the `encapsulation` statement and specify `vlan-ccc` so that CCC circuit encapsulation is used inside the Layer 2 circuit.

**NOTE:** In the case of a dual-tag logical interface, the Junos OS automatically uses the `vlan-ccc` encapsulation type.

### Specifying the Interface to Handle Traffic for a CCC Connected to the Layer 2 Circuit

To configure the VLAN-bundled logical interface as the interface to handle traffic for a circuit connected to the Layer 2 circuit, include the following statements:

```plaintext
l2circuit {
 neighbor address {
 interface logical-interface-name {
 virtual-circuit-id number;
 no-control-word;
 }
 }
}
```

You can include the statements at the following hierarchy levels:

- [edit protocols]
- [edit logical-systems logical-system-name protocols]

To enable a Layer 2 circuit, include the `l2circuit` statement.

To configure the router as a neighbor for a Layer 2 circuit, specify the neighbor address using the `neighbor` statement.

To specify the interface to handle traffic for a circuit connected to the Layer 2 circuit, include the `interface` statement and specify the VLAN-bundled logical interface.
Example: Configuring a Layer 2 VPN Routing Instance on a VLAN-Bundled Logical Interface

The following configuration shows that the single-tag logical interface `ge-1/0/5.0` bundles a list of VLAN IDs, and the logical interface `ge-1/1/1.0` supports IPv4 traffic using IP address 10.30.1.130 and can participate in an MPLS path.

```plaintext
[edit interfaces]
ge-1/0/5 {
 vlan-tagging;
 encapsulation extended-vlan-ccc;
 unit 0 {
 # VLAN-bundled logical interface
 vlan-id-list [513 516 520-525];
 }
}
ge-1/1/1 {
 unit 0 {
 family inet {
 address 10.30.1.1/30;
 }
 family mpls;
 }
}
```

The following configuration shows the type of traffic supported on the Layer 2 VPN routing instance:

```plaintext
[edit protocols]
rsvp {
 interface all;
 interface lo0.0;
}
mls {
 label-switched-path lsp {
 to 10.255.69.128;
 }
 interface all;
}
bgp {
 group g1 {
 type internal;
 local-address 10.255.69.96;
 family l2vpn {
 signaling;
 neighbor 10.255.69.128;
 }
 }
}
ospf {
 traffic-engineering;
 area 0.0.0.0 {
 interface lo0.0;
 interface ge-1/1/1.0;
 }
}
```
The following configuration shows that the VLAN-bundled logical interface is the interface over which VPN traffic travels to the CE router and handles traffic for a CCC to which the VPN connects.

```junos
[edit routing-instances]
red {
 instance-type l2vpn;
 interface ge-1/0/5.0; # VLAN-bundled logical interface
 route-distinguisher 10.255.69.96:100;
 vrf-target target:1:1;
 protocols {
 l2vpn {
 encapsulation-type ethernet; # For single-tag VLAN logical interface
 site CE_ultima {
 site-identifier 1;
 interface ge-1/0/5.0;
 }
 }
 }
}
```

**NOTE:** Because the VLAN-bundled logical interface supports single-tag frames, Ethernet is the Layer 2 protocol used to encapsulate incoming traffic. Although the connection spans multiple VLANs, the VLANs are bundled and therefore can be encapsulated as a single VLAN.

However, with Ethernet encapsulation, the circuit signal processing does not check that the VLAN ID list is the same at both ends of the CCC connection.

---

**Related Documentation**
- 802.1Q VLANs Overview on page 53
- Junos® OS Ethernet Interfaces

---

**Example: Configuring a Layer 2 Circuit on a VLAN-Bundled Logical Interface**

The following configuration shows that the single-tag logical interface `ge-1/0/5.0` bundles a list of VLAN IDs, and the logical interface `ge-1/1/1.0` supports IPv4 traffic using IP address 10.30.11/30 and can participate in an MPLS path.

```junos
[edit interfaces]
ge-1/0/5 {
 vlan-tagging;
 encapsulation extended-vlan-ccc;
 unit 0 { # VLAN-bundled logical interface
 vlan-id-list [513 516 520-525];
 }
}
ge-1/1/1 {
 unit 0 {
 family inet {
 address 10.30.11/30;
 }
 }
```

---

Copyright © 2012, Juniper Networks, Inc.
The following configuration shows the type of traffic supported on the Layer 2 VPN routing instance, and shows that the VLAN-bundled logical interface handles traffic for a CCC to which the Layer 2 circuit connects:

```plaintext
[edit protocols]
rsvp {
 interface all;
 interface lo0.0;
}
mls {
 label-switched-path lsp {
 to 10.255.69.128;
 }
 interface all;
}
ospf {
 traffic-engineering;
 area 0.0.0.0 {
 interface lo0.0;
 interface ge-1/1/1.0;
 }
}
ldp {
 interface ge-1/1/1.0;
 interface ge-1/0/5.0; # VLAN-bundled logical interface
 interface lo0.0;
}
l2circuit {
 neighbor 10.255.69.128 {
 interface ge-1/0/5.0 { # VLAN-bundled logical interface
 virtual-circuit-id 3;
 no-control-word;
 }
 }
}
```

### Related Documentation
- 802.1Q VLANs Overview on page 53
- Junos® OS Ethernet Interfaces

## Configuring a Logical Interface for Access Mode

Enterprise network administrators can configure a single logical interface to accept untagged packets and forward the packets within a specified bridge domain. A logical interface configured to accept untagged packets is called an access interface or access port. Access interface configuration is supported on MX Series routers only.

```plaintext
interface-mode access;
```
You can include this statement at the following hierarchy levels:

- [edit interfaces interface-name unit logical-unit-number family bridge]
- [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family bridge]

When an untagged or tagged packet is received on an access interface, the packet is accepted, the VLAN ID is added to the packet, and the packet is forwarded within the bridge domain that is configured with the matching VLAN ID.

**Example: Configuring a Logical Interface for Access Mode**

The following example configures a logical interface as an access port with a VLAN ID of 20:

```
[edit interfaces ge-1/2/0]
unit 1 {
 family bridge {
 interface-mode access;
 vlan-id 20;
 }
}
```

**Related Documentation**
- 802.1Q VLANs Overview on page 53
- Junos® OS Ethernet Interfaces

**Configuring a Logical Interface for Trunk Mode**

As an alternative to configuring a logical interface for each VLAN, enterprise network administrators can configure a single logical interface to accept untagged packets or packets tagged with any VLAN ID specified in a list of VLAN IDs. Using a VLAN ID list conserves switch resources and simplifies configuration. A logical interface configured to accept packets tagged with any VLAN ID specified in a list is called a **trunk interface** or **trunk port**. Trunk interface configuration is supported on MX Series routers only. Trunk interfaces support integrated routing and bridging (IRB).

To configure a logical interface to accept any packet tagged with a VLAN ID that matches the list of VLAN IDs, include the `interface-mode` statement and specify the `trunk` option:

```
interface-mode trunk;
```

You can include this statement at the following hierarchy levels:

- [edit interfaces interface-name unit logical-unit-number family bridge]
- [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family bridge]

**Related Documentation**
- 802.1Q VLANs Overview on page 53
- Junos® OS Ethernet Interfaces
Configuring the VLAN ID List for a Trunk Interface

To configure the list of VLAN IDs to be accepted by the trunk port, include the `vlan-id-list` statement and specify the list of VLAN IDs. You can specify individual VLAN IDs with a space separating the ID numbers, specify a range of VLAN IDs with a dash separating the ID numbers, or specify a combination of individual VLAN IDs and a range of VLAN IDs.

`vlan-id-list [number number-number];`

You can include this statement at the following hierarchy levels:

- `[edit interfaces interface-name unit logical-unit-number family bridge interface-mode trunk]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family bridge interface-mode trunk]`

When a packet is received that is tagged with a VLAN ID specified in the trunk interface list of VLAN IDs, the packet is accepted and forwarded within the bridge domain that is configured with the matching VLAN ID.

When a packet is received that is tagged with a VLAN ID not specified in the trunk interface list of VLAN IDs, the native VLAN ID is pushed in front of the existing VLAN tag or tags and the packet is forwarded within the bridge domain that is configured with the matching VLAN ID.

When an untagged packet is received on a trunk interface, the native VLAN ID is added to the packet and the packet is forwarded within the bridge domain that is configured with the matching VLAN ID.

A bridge domain configured with a matching VLAN ID must be configured before the trunk interface is configured. To learn more about configuring bridge domains, see the Junos Routing Protocols Configuration Guide.

Related Documentation
- 802.1Q VLANs Overview on page 53
- Junos® OS Ethernet Interfaces

Configuring a Trunk Interface on a Bridge Network

On MX Series routers, you can configure a trunk interface on a bridge network.

The following output sample shows trunk port configuration on a bridge network:

```
user@host# run show interfaces
ge-0/0/0 {
 flexible-vlan-tagging;
 encapsulation flexible-ethernet-services;
 unit 0 {
 encapsulation vlan-bridge;
 vlan-id 1;
 }
```
If you want **igmp-snooping** to be functional for a bridge domain, then you should not configure **interface-mode** and **irb** for that bridge domain. Such a configuration commit succeeds, but IGMP snooping is not functional, and a message informing the same is displayed as shown after the sample configuration below:

```
user@host# run show configuration
interfaces {
 ge-5/1/1 {
 flexible-vlan-tagging;
 native-vlan-id 1;
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 401;
 }
 }
 }
 irb {
 unit 401 {
 family inet {
 address 192.168.2.2/27;
 }
 }
 }
} protocols {
 igmp {
 interface all;
 }
} bridge-domains {
 VLAN-401 {
 vlan-id 401;
 routing-interface irb.401;
 protocols {
 igmp-snooping;
 }
 }
}
```

```
user@host# commit
[edit bridge-domains]
'VLAN-401'
```
IGMP Snooping not supported with IRB and trunk mode interface ge-5/1/1.0
commit complete

To achieve IGMP snooping for a bridge domain, you should use such a configuration as shown in the following example:

user@host# run show configuration
interfaces {
  ge-0/0/1 {
    flexible-vlan-tagging;
    native-vlan-id 1;
    encapsulation flexible-ethernet-services;
    unit 0 {
      encapsulation vlan-bridge;
      vlan-id 401;
    }
  }
  irb {
    unit 401 {
      family inet {
        address 192.168.2.2/27;
      }
    }
  }
}
protocols {
  igmp {
    interface all;
  }
}
bridge-domains {
  VLAN-401 {
    vlan-id 401;
    interface ge-0/0/1.0;
    routing-interface irb.401;
    protocols {
      igmp-snooping;
    }
  }
}

user@host# commit
commit complete

Related Documentation
  • 802.1Q VLANs Overview on page 53
  • interface-mode
  • Junos® OS Ethernet Interfaces
Aggregated Ethernet Interfaces Overview

Link aggregation of Ethernet interfaces is defined in the IEEE 802.3ad standard. The Junos implementation of 802.3ad balances traffic across the member links within an aggregated Ethernet bundle based on the Layer 3 information carried in the packet. This implementation uses the same load-balancing algorithm used for per-flow load balancing.
NOTE: For information about configuring circuit cross-connects over aggregated Ethernet, see Circuit and Translational Cross-Connects Overview.

Platform Support for Aggregated Ethernet Interfaces

You configure an aggregated Ethernet virtual link by specifying the link number as a physical device and then associating a set of ports that have the same speed and are in full-duplex mode. The physical interfaces can be Fast Ethernet, Tri-Rate Ethernet copper, Gigabit Ethernet, Gigabit Ethernet IQ, 10-Gigabit Ethernet IQ, Gigabit Ethernet IQ2 and IQ2-E, or 10-Gigabit Ethernet IQ2 and IQ2-E. Generally, you cannot use a combination of these interfaces within the same aggregated link; however, you can combine Gigabit Ethernet and Gigabit Ethernet IQ interfaces in a single aggregated Ethernet bundle.

The following routers support a maximum of 16 physical interfaces per single aggregated Ethernet bundle:

- M120
- M320
- All MX Series 3D Universal Edge Routers
- All T Series routers

All other routers support a maximum of 8 physical interfaces per aggregated Ethernet bundle.

On M Series and T Series routers, you can create a maximum of 1024 logical interfaces on an aggregated Ethernet interface.

Aggregated Ethernet interfaces can use interfaces from different FPCs, DPCs, PICs, or MPCs.

Configuration Guidelines for Aggregated Ethernet Interfaces

Simple filters are not supported for interfaces in aggregated Ethernet bundles:

- On M Series routers, simple filters are supported in Gigabit Ethernet Enhanced Intelligent Queueing interfaces only, except when the interface is part of an aggregated Ethernet bundle.
- On MX Series routers, simple filters are supported in Enhanced Queueing Dense Port Concentrator (EQ DPC) interfaces only, except when the interface is part of an aggregated Ethernet bundle.

For more information about simple filters, see the Junos OS Class of Service Configuration Guide.

On the aggregated bundle, no IQ-specific capabilities such as MAC accounting, VLAN rewrites, and VLAN queuing are available. For more information about IQ-specific capabilities, see “Gigabit Ethernet Accounting and Policing Overview” on page 315.
Use the `show interfaces aggregate-interface extensive` and `show interfaces aggregate.logical-interface` commands to show the bandwidth of the aggregate. Also, the SNMP object identifier `ifSpeed/ifHighSpeed` shows the corresponding bandwidth on the aggregate logical interface if it is configured properly.

Aggregated Ethernet interfaces can be either tagged or untagged, with LACP enabled or disabled. Aggregated Ethernet interfaces on MX Series routers support the configuration of `flexible-vlan-tagging`, `native-vlan-id`, and on dual-tagged frames, which consist of the following configuration statements:

- `inner-tag-protocol-id`
- `inner-vlan-id`
- `pop-pop`
- `pop-swap`
- `push-push`
- `swap-push`
- `swap-swap`

In all cases, you must set the number of aggregated Ethernet interfaces on the chassis. You can also set the link speed and the minimum links in a bundle.

---

**Related Documentation**

- `inner-tag-protocol-id` on page 488
- `inner-vlan-id` on page 489
- `pop-pop` on page 529
- `pop-swap` on page 530
- `push-push` on page 541
- `swap-push` on page 556
- `swap-swap` on page 557
- Gigabit Ethernet Accounting and Policing Overview on page 315
- Junos® OS Ethernet Interfaces

---

**Configuring an Aggregated Ethernet Interface**

On Fast Ethernet, Tri-Rate Ethernet copper, Gigabit Ethernet, and 10-Gigabit Ethernet interfaces on M Series and T Series routers, you can associate a physical interface with an aggregated Ethernet interface.

To configure an aggregated Ethernet interface:

1. Specify that you want to configure the link aggregation group interface.
   ```
 user@host# edit interfaces interface-name
   ```
2. Configure the aggregated Ethernet interface.
You specify the interface instance number \( x \) to complete the link association; \( x \) can be from 0 through 127, for a total of 128 aggregated interfaces on M Series and T Series routers and can be from 1 through 480, for a total of 480 aggregated interfaces on MX Series routers. You must also include a statement defining \( \text{ae} \) at the \([\text{edit interfaces}]\) hierarchy level. You can optionally specify other physical properties that apply specifically to the aggregated Ethernet interfaces; for details, see “Ethernet Interfaces Overview” on page 35, and for a sample configuration, see “Example: Configuring Aggregated Ethernet Interfaces” on page 454.

**NOTE:** In general, aggregated Ethernet bundles support the features available on all supported interfaces that can become a member link within the bundle. As an exception, Gigabit Ethernet IQ features and some newer Gigabit Ethernet features are not supported in aggregated Ethernet bundles.

Gigabit Ethernet IQ and SFP interfaces can be member links, but IQ- and SFP-specific features are not supported on the aggregated Ethernet bundle even if all the member links individually support those features.

You need to configure the correct link speed for the aggregated Ethernet interface to eliminate any warning message.

**NOTE:** Before you commit an aggregated Ethernet configuration, ensure that link mode is not configured on any member interface of the aggregated Ethernet bundle; otherwise, the configuration commit check fails.

For information about E Series routers, see Understanding Aggregated Ethernet Interfaces and LACP.

### Related Documentation

- Configuring the Number of Aggregated Ethernet Interfaces on the Device on page 112
- Deleting an Aggregated Ethernet Interface on page 87
- Aggregated Ethernet Interfaces Overview on page 81
- Junos® OS Ethernet Interfaces

### Configuring Junos OS for Supporting Aggregated Devices

Junos OS supports the aggregation of physical devices into defined virtual links, such as the link aggregation of Ethernet interfaces defined by the IEEE 802.3ad standard.

Tasks for configuring aggregated devices are:

- Configuring Virtual Links for Aggregated Devices on page 85
- Configuring LACP Link Protection at the Chassis Level on page 85
Configuring Virtual Links for Aggregated Devices

To define virtual links, you need to specify the associations between physical and logical devices within the [edit interfaces] hierarchy, and assign the correct number of logical devices by including the device-count statement at the [edit chassis aggregated-devices ethernet] and [edit chassis aggregated-devices sonet] hierarchy levels:

```
[edit chassis]
aggregated-devices {
 ethernet {
 device-count number;
 }
 sonet {
 device-count number;
 }
}
```

The maximum number of Ethernet logical interfaces that you can configure is 128. On M Series and T Series routers, you can configure a maximum number of 128 aggregated interfaces. On MX Series routers, you can configure a maximum of 480 aggregated interfaces. The aggregated interfaces are numbered from ae0 through ae127 for M Series and T Series routers, and the aggregated interfaces (LAG bundles) are numbered from ae0 through ae479 on MX Series routers. The maximum number of SONET/SDH logical interfaces is 16. The aggregated SONET/SDH interfaces are numbered from as0 through as15.

Configuring LACP Link Protection at the Chassis Level

Link Aggregation Control Protocol (LACP) is one method of bundling several physical interfaces to form one logical interface. You can configure both VLAN-tagged and untagged aggregated Ethernet with or without LACP enabled. LACP exchanges are made between actors and partners. An actor is the local interface in an LACP exchange. A partner is the remote interface in an LACP exchange.

LACP link protection enables you to force active and standby links within an aggregated Ethernet. You configure LACP link protection by using the link-protection and system-priority statements at either the chassis or interface level and by configuring port priority at the interface level using the system-priority statement. Configuring LACP parameters at the chassis level results in all aggregated Ethernet interfaces using the defined values unless overridden by the LACP configuration on a specific interface.

```
[edit chassis]
aggregated-devices {
 ethernet {
 lacp {
 link-protection {
 non-revertive;
 }
 }
 }
}
```
Enabling LACP Link Protection

To enable LACP link protection for aggregated Ethernet interfaces on the chassis, use the `link-protection` statement at the `[edit chassis aggregated-devices ethernet lacp]` hierarchy level:

```
[edit chassis aggregated-devices ethernet lacp]
link-protection {
 non-revertive;
}
```

By default, LACP link protection reverts to a higher-priority (lower-numbered) link when that higher-priority link becomes operational or a link is added to the aggregator that is determined to be higher in priority. However, you can suppress link calculation by adding the `non-revertive` statement to the LACP link protection configuration. In nonrevertive mode, after a link is active and collecting and distributing packets, the subsequent addition of a higher-priority (better) link does not result in a switch, and the current link remains active.

**CAUTION:** If both ends of an aggregator have LACP link protection enabled, make sure to configure both ends of the aggregator to use the same mode. Mismatching LACP link protection modes can result in lost traffic.

Configuring System Priority

To configure LACP system priority for aggregated Ethernet interfaces on the chassis, use the `system-priority` statement at the `[edit chassis aggregated-devices ethernet lacp]` hierarchy level:

```
[edit chassis aggregated-devices ethernet lacp]
system-priority priority;
```

The system priority is a 2-octet binary value that is part of the LACP system ID. The LACP system ID consists of the system priority as the two most-significant octets and the interface MAC address as the six least-significant octets. The system with the numerically lower value for system priority has the higher priority. By default, system priority is 127, with a range of 0 through 65,535.
Configuring the Maximum Links Limit

To configure the maximum links limit, use the `maximum-links` statement in the `edit chassis aggregated-devices` hierarchy level:

```junos
[edit chassis aggregated-devices]
maximum-links maximum-links-limit;
```

Related Documentation
- Configuring an Aggregated Ethernet Interface on page 83
- Junos® OS Ethernet Interfaces

Deleting an Aggregated Ethernet Interface

There are two approaches to deleting an aggregated Ethernet interface:

- You can delete an aggregated Ethernet interface from the interface configuration. The Junos OS removes the configuration statements related to `aex` and sets this interface to down state.
- You can also permanently remove the aggregated Ethernet interface from the device configuration by deleting it from the device-count on the routing device.

To delete an aggregated Ethernet interface:

1. Delete the aggregated Ethernet configuration.
   This step changes the interface state to down and removing the configuration statements related to `aex`.
   ```junos
 [edit]
 user@host# delete interfaces aex
   ```

2. Delete the interface from the device count.
   ```junos
 [edit]
 user@host# delete chassis aggregated-devices ethernet device-count
   ```

Related Documentation
- Configuring an Aggregated Ethernet Interface on page 83
- Configuring the Number of Aggregated Ethernet Interfaces on the Device on page 112
- Aggregated Ethernet Interfaces Overview on page 81
- Junos® OS Ethernet Interfaces

Configuring Multichassis Link Aggregation

On MX Series routers, multichassis link aggregation (MC-LAG) enables a device to form a logical LAG interface with two or more other devices. MC-LAG provides additional benefits over traditional LAG in terms of node level redundancy, multi-homing support, and loop-free Layer 2 network without running Spanning Tree Protocol (STP). MC-LAG
can be configured for VPLS routing instance, CCC application, and Layer 2 circuit encapsulation types.

The MC-LAG devices use Inter-Chassis Communication Protocol (ICCP) to exchange the control information between two MC-LAG network devices.

On one end of MC-LAG is a MC-LAG client device that has one or more physical links in a link aggregation group (LAG). This client device does not need to be aware of MC-LAG. On the other side of MC-LAG are two MC-LAG network devices. Each of these network devices has one or more physical links connected to a single client device. The network devices coordinate with each other to ensure that data traffic is forwarded properly.

MC-LAG includes the following functionality:

- Active standby mode is supported using Link Aggregation Control Protocol (LACP)
- MC-LAG operates only between two chassis.
- Layer 2 circuit functions are supported with ether-ccc encapsulation.
- VPLS functions are supported with ether-vpls and vlan-vpls.

**NOTE:** Ethernet connectivity fault management (CFM) specified in IEEE 802.1ag standard for Operation, Administration, and Management (OAM) is not supported on MC-LAG interfaces.

To enable MC-LAG, include the mc-ae statement at the [edit interfaces aeX aggregated-ether-options] hierarchy level along with either the ethernet-bridge, encapsulation ethernet-ccc, encapsulation ethernet-vpls, or flexible-ether-services statement at the [edit interfaces aeX] hierarchy level. You also need to configure the lacp statement and the admin-key and system-id statements at the [edit interfaces aeX aggregated-ether-options] hierarchy level:

```
[edit interfaces aeX]
encapsulation (ethernet-bridge | ethernet-ccc | ethernet-vpls | flexible-ether-services);
aggregated-ether-options {
 lacp {
 active;
 admin-key number;
 system-id mac-address;
 system-priority number;
 }
 mc-ae {
 chassis-id chassis-id;
 events {
 iccp-peer-down {
 force-icl-down;
 prefer-status-control-active;
 }
 }
 mc-ae-id mc-ae-id;
 mode (active-active | active-standby);
 redundancy-group group-id;
 }
```
status-control (active | standby);
} 

NOTE: When you configure the prefer-status-control-active statement, you must also configure the status-control active statement. If you configure the status-control standby statement with the prefer-status-control-active statement, the system issues a warning.

To delete a MC-LAG interface from the configuration, issue the delete interfaces aeX aggregated-ether-options mc-ae command at the [edit] hierarchy level in configuration mode:

[edit]
user@host# delete interfaces aeX aggregated-ether-options mc-ae

Related Documentation
- Active-Active Bridging and VRRP over IRB Functionality on MX Series Routers Overview on page 89
- Configuring Active-Active Bridging and VRRP over IRB in Multichassis Link Aggregation on MX Series Routers on page 98
- show interfaces mc-ae
- Junos® OS Ethernet Interfaces

Active-Active Bridging and VRRP over IRB Functionality on MX Series Routers Overview

MX Series routers support active-active bridging and virtual router redundancy protocol (VRRP) over Integrated routing and bridging (IRB). This is a common scenario used in data centers. This section provides an overview of the supported functionality.

Active-active bridging and VRRP over IRB support extends multichassis link aggregation group (MC-LAG) by adding the following functionality:

- Interchassis link (ICL) pseudowire interface or Ethernet interface (ICL-PL field) for active-active bridging
- Active-active bridging
- VRRP over IRB for active-active bridging
- A single bridge domain cannot correspond to two redundancy group IDs

The topologies shown in Figure 1 on page 90 and Figure 2 on page 90 are supported. These figures use the following abbreviations:

- Aggregated Ethernet (AE)
- Interchassis link (ICL)
- Multichassis link (MCL)
The following functionality is not supported:

- Virtual private LAN service (VPLS) within the core
- Bridged core
- Topology as described in Rule 4 of “Data Traffic Forwarding Rules” on page 92
- Routed multichassis aggregated Ethernet (RMC-AE), where the VRRP backup master is used in the edge of the network
- Track object, where in the case of an MC-LAG, the status of the uplinks from the provider edge can be monitored and the MC-LAG can act on the status
- Mixed mode (active-active MC-LAG is supported on MX series routers with MPC/MIC interfaces only). All interfaces in the bridge-domain that are mc-ae active-active, must be on MPC/MICs.

The topologies shown in Figure 3 on page 91, Figure 4 on page 91 and Figure 5 on page 91 are not supported:
Figure 3: Interchassis Data Link Between Active-Active Nodes

Figure 4: Active-Active MC-LAG with Single MC-LAG

Figure 5: Active-Active MC-LAG with Multiple Nodes on a Single Multichassis Link

NOTE: A redundancy group cannot span more than two routers.
When configured to be active-active, the client device load balances the traffic to the peering MC-LAG network devices. In a bridging environment, this could potentially cause the following problems:

- Traffic received on the MC-LAG from one MC-LAG network device could be looped back to the same MC-LAG on the other MC-LAG network device.
- Duplicated packets could be received by the MC-LAG client device.
- Traffic could be unnecessarily forwarded on the interchassis link.

To better illustrate the problems listed above, consider Figure 6 on page 92, where an MC-LAG device MCL1 and single-homed clients `ge-0/0/0.0` and `ge-1/0/0.0` are allowed to talk to each other through an ICL:

- Traffic received on network routing instance N1 from MCL1 could be flooded to ICL to reach network routing instance N2. Once it reaches network routing instance N2, it could be flooded back to MCL1.
- Traffic received on interface `ge-0/0/0.0` could be flooded to MCL1 and ICL on network routing instance N1. Once network routing instance N2 receives such traffic from ICL, it could be again flooded to MCL1.
- If interface `ge-1/0/0.0` does not exist on network routing instance N2, traffic received from interface `ge-0/0/0.0` or MCL1 on network routing instance N1 could be flooded to network routing instance N2 through ICL unnecessarily since interface `ge-0/0/0.0` and MCL1 could reach each other through network routing instance N1.

**Figure 6: MC-LAG Device and Single-Homed Client**

**Data Traffic Forwarding Rules**

In active-active bridging and VRRP over IRB topographies, network interfaces are categorized into three different interface types, as follows:

- **S-Links**—Single-homed link (S-Link) terminating on MC-LAG-N device or MC-LAG in active-standby mode. In Figure 6 on page 92, interfaces `ge-0/0/0.0` and `ge-1/0/0.0` are S-Links.

- **MC-Links**—MC-LAG links. In Figure 6 on page 92, interface `ae0.0` is the MC-Link.

- **ICL**—Interchassis data link.
Based on incoming and outgoing interface types, some constraints are added to the Layer 2 forwarding rules for MC-LAG configurations, as described in the data traffic forwarding rules. Note that if only one of the MC-LAG member link is in the UP state, it is considered an S-Link.

The following data traffic forwarding rules apply:

1. When an MC-LAG network receives a packet from a local MC-Link or S-Link, the packet is forwarded to other local interfaces, including S-Links and MC-Links based on the normal Layer 2 forwarding rules and on the configuration of the mesh-group and no-local-switching statements. If MC-Links and S-Links are in the same mesh group and their no-local-switching statements are enabled, the received packets are only forwarded upstream and not sent to MC-Links and S-Links.

2. **NOTE:** The functionality described in rule 2 is not supported.

The following circumstances determine whether or not an ICL receives a packet from a local MC-Link or S-Link:

a. If the peer MC-LAG network device has S-Links or MC-LAGs that do not reside on the local MC-LAG network device.

b. Whether or not interfaces on two peering MC-LAG network devices are allowed to talk to each other.

Only if both a. and b. are true, is traffic always forwarded to the ICL.

3. When an MC-LAG network receives a packet from the ICL, the packet is forwarded to all local S-Links and active MC-LAGs that do not exist in the MC-LAG network that the packet comes from.

4. **NOTE:** The topology shown in Figure 7 on page 94 is not supported.

In certain cases, for example the topology shown in Figure 7 on page 94, there could be a loop caused by the ICL. To break the loops, one of the following mechanisms could be used:

a. Run certain protocols, such as spanning tree protocol (STP). In this case, whether packets received on one ICL are forwarded to other ICLs is determined by using Rule 3.

b. Configure the ICL to be fully meshed among the MC-LAG network devices. In this case, traffic received on the ICL would be not be forwarded to any other ICLs.

In either case, duplicate packets could be forwarded to the MC-LAG clients. Consider the topology shown in Figure 7 on page 94, where if network routing instance N1 receives a packet from ge-0/0/0.0, it could be flooded to ICL1 and ICL3.

When receiving from ICL1 and ICL3, network routing instances N3 and N2 could flood the same packet to MCL2, as shown in Figure 7 on page 94. To prevent this from
happening, the ICL designated forwarder should be elected between MC-LAG peers and traffic received on an ICL could be forwarded to the active-active MC-LAG client by the designated forwarder only.

Figure 7: Loop Caused by the ICL Links

5. When received from an ICL, traffic should not be forwarded to the core-facing client link connection between two provider edge (PE) devices (C-Link) if the peer chassis’s (where the traffic is coming from) C-Link is UP.

MAC Address Management

If an MC-LAG is configured to be active-active, upstream and downstream traffic could go through different MC-LAG network devices. Since the media access control address (MAC address) is learned only on one of the MC-LAG network devices, the reverse direction’s traffic could be going through the other MC-LAG network and flooded unnecessarily. Also, a single-homed client’s MAC address is only learned on the MC-LAG network device it is attached to. If a client attached to the peer MC-LAG network needs to communicate with that single-homed client, then traffic would be flooded on the peer MC-LAG network device. To avoid unnecessary flooding, whenever a MAC address is learned on one of the MC-LAG network devices, it gets replicated to the peer MC-LAG network device. The following conditions should be applied when MAC address replication is performed:

- MAC addresses learned on a MC-LAG of one MC-LAG network device should be replicated as learned on the same MC-LAG of the peer MC-LAG network device.
- MAC addresses learned on single-homed customer edge (CE) clients of one MC-LAG network device should be replicated as learned on ICL-PL interface of the peer MC-LAG network device.
• MAC addresses learned on MC-LAG VE clients of one MC-LAG network device should be replicated as learned on the corresponding VE interface of the peer MC-LAG network device.

• MAC address learning on an ICL is disabled from the data path. It depends on software to install MAC addresses replicated through interchassis control protocol (ICCP).

MAC Aging

MAC aging support in the Junos OS extends aggregated Ethernet logic for a specified MC-LAG. A MAC address in software is deleted until all Packet Forwarding Engines have deleted the MAC address. In the case of an MC-LAG, a remote provider edge is treated as a remote Packet Forwarding Engine and has a bit in the MAC data structure.

Layer 3 Routing

In general, when an MC-LAG is configured to provide Layer 3 routing functions to downstream clients, the MC-LAG network peers should be configured to provide the same gateway address to the downstream clients. To the upstream routers, the MC-LAG network peers could be viewed as either equal-cost multi path (ECMP) or two routes with different preference values.

Junos OS supports active-active MC-LAGs by using VRRP over IRB. Junos OS also supports active-active MC-LAGs by using IRB MAC address synchronization. You must configure IRB using the same IP address across MC-LAG peers. IRB MAC synchronization is supported on 32-bit interfaces and interoperates with earlier MPC/MIC releases.

To ensure that Layer 3 operates properly, instead of dropping the Layer 3 packet, the VRRP slave attempts to perform routing functions if the packet is received on an MC-LAG. A VRRP slave sends and responds to address resolution protocol (ARP) requests.

For ARP, the same issue exists as with Layer 2 MAC addresses. Once ARP is learned, it must be replicated to the MC-LAG through ICCP. The peer must install an ARP route based on the ARP information received through ICCP.

For ARP aging, ARP requests on the MC-LAG peers can be aged out independently.

Address Resolution Protocol Active-Active MC-LAG Support Methodology

Suppose one of the PE routers issues an ARP request and another PE router gets the response and, because of the aggregated Ethernet distribution logic, the ARP resolution is not successful. Junos OS uses ARP response packet snooping to perform active-active multichassis link aggregation group support, providing easy synchronization without the need to maintain any specific state.

IGMP Snooping on Active-Active MC-LAG

For multicast to work in an active-active MC-LAG scenario, the typical topology is as shown in Figure 8 on page 96 and Figure 9 on page 97 with interested receivers over S-links and MC-Links. Starting in Junos OS Release 11.2, support is extended for sources connected over Layer 2 interface.
If an MC-LAG is configured to be active-active, reports from MC-LAG clients could reach any of the MC-LAG network device peers. Therefore the IGMP snooping module needs to replicate the states such that the Layer 2 multicast route state on both peers are the same. Additionally for S-Link clients, snooping needs to replicate these joins to its snooping peer, which in the case of Layer 3 connected source, passes this information to the PIM on IRB to enable the designated router to pull traffic for these groups.

The ICL should be configured as a router facing interface. For the scenario where traffic arrives via a Layer 3 interface, it is a requirement to have PIM and IGMP enabled on the IRB interface configured on the MC-LAG network device peers.

**Figure 8: Multicast Topology with Source Connected via Layer 3**

With reference to Figure 8 on page 96, either N1 or N2 becomes a designated router (for this example, N1 is the designated router). Router N1 would therefore pull the multicast traffic from the core. Once multicast data hits the network device N1, the data is forwarded based on the snooping learned route.

For MC-Link clients, data is forwarded via N1. In the case of failover of the MC-Links, the data reaches the client via N2. For S-Link clients on N1, data would be forwarded via normal snooping routes.

For S-Link clients on N2, data is forwarded via the ICL interface. Layer 2 multicast routes on N1 do not show these groups unless there is interest for the same group over MC-Links or over S-Links on N1. For IRB scenario, the IGMP membership and Layer 3 multicast route on N1 does however show these groups learned over the IRB interface.

Therefore, for a case where a specific group interest is only on the S-Link on N2, data arriving on N1 reaches N2 via the default route and the Layer 2 multicast route on N2 has the S-Link in the outgoing interface list.
In Figure 9 on page 97, MCL1 and MCL2 are on different devices and the multicast source or IGMP querier is connected via MCL2. The data forwarding behavior seen is similar to that explained for multicast topology with source connected via Layer 3.

**NOTE:** IGMP snooping should not be configured in proxy mode. There should be no IGMP hosts or IGMP/PIM routers sitting on the ICL interface.

**Up and Down Event Handling**

The following conditions apply to up and down event handling:

1. If the interchassis control protocol (ICCP) connection is UP but the ICL interface becomes DOWN, the router configured as standby will bring down all the multichassis aggregated Ethernet interfaces shared with the peer which is connected to ICL. This will make sure that there are no loops in the network. Otherwise, both PEs will becomes PIM designated routers and, hence, forward multiple copies of the same packet to the customer edge.

2. If the ICCP connection is UP and the ICL comes UP, the router configured as standby will bring up the multichassis aggregated Ethernet interfaces shared with the peer.

3. If both the ICCP connection and the ICL are DOWN, the router configured as standby will bring up the multichassis aggregated Ethernet interfaces shared with the peer.

4. The layer 2 address learn daemon (l2ald) does not store the information about a MAC address learned from a peer in the kernel. If l2ald restarts, and if the MAC address was not learned from the local multichassis aggregated Ethernet interface, l2ald will clear the MAC addresses and this will cause the router to flood the packets destined to this MAC address. This behavior is similar to that in a Routing Engine switchover. (Please note that currently l2ald runs on a Routing Engine only when it is a master). Also, during the time l2ald is DOWN, ARP packets received from an ICCP peer will be
dropped. ARP retry will take care of this situation. This will be the case with Routing Engine switchover too.

5. If ICCP restarts, l2ald will unremember the fact that a MAC address was learned from a peer and, if the MAC address was learned only from the peer, that MAC address will be deleted and the packets destined to this MAC address will be flooded.

**Interchassis Control Protocol**

Interchassis control protocol (ICCP) is used to sync configurations, states, and data. ICCP supports the following types of state information:

- MC-LAG members and their operational states.
- Single-homed members and their operational states.

ICCP supports the following application database synchronization parameters:

- MAC addresses learned and to be aged.
- ARP info learned over IRB.

**Interchassis Control Protocol Message**

ICCP messages and attribute-value pairs (AVPs) are used for synchronizing MAC address and ARP information.

**Related Documentation**

- Configuring Multichassis Link Aggregation on page 87
- Configuring Active-Active Bridging and VRRP over IRB in Multichassis Link Aggregation on MX Series Routers on page 98
- multi-chassis-protection
- peer
- show interfaces mc-ae
- Junos® OS Ethernet Interfaces

**Configuring Active-Active Bridging and VRRP over IRB in Multichassis Link Aggregation on MX Series Routers**

The following sections describe the configuration of active-active bridging and VRRP over IRB in multichassis link aggregation (MC-LAG) on MX Series routers:

- Configuring MC-LAG on page 99
- Configuring Interchassis Link Label on page 99
- Configuring Multiple Chassis on page 100
- Configuring Service ID on page 100
- Configuring IGMP Snooping for Active-Active MC-LAG on page 102
Configuring MC-LAG

An MC-LAG is composed of logical link aggregation groups (LAGs) and is configured under the [edit interfaces ae\(X\)] hierarchy, as follows:

```ini
[edit]
interfaces {
 ae0 {
 encapsulation ethernet-bridge;
 multi-chassis-protection {
 peer 10.10.10.10 {
 interface ge-0/0/0;
 }
 }
 aggregated-ether-options {
 mc-ae {
 mode active-active; # see note below
 }
 }
 }
}
```

**NOTE:** The `mode active-active` statement is valid only if encapsulation is `ethernet-bridge` or `extended-vlan-bridge`.

Use the `mode` statement to specify if a MC-LAG is `active-standby` or `active-active`. If the ICCP connection is UP and ICL comes UP, the router configured as standby will bring up the multichassis aggregated Ethernet (MC-AE) interfaces shared with the peer.

Using `multi-chassis-protection` at the physical interface level is a way to reduce the configuration at the logical interface level.

If the following assumption exists (follow the above example):

If there are \(n+1\) logical interfaces under `ae0`, from `ae0.0` through `ae0.n`, there will be \(n+1\) logical interfaces under `ge-0/0/0` as well, from `ge-0/0/0.0` through `ge-0/0/0.n`, each `ge-0/0/0` logical interface will be a protection link for the `ae0` logical interface.

**NOTE:** A bridge domain cannot have MC-AE logical interfaces which belong to different redundancy groups.

Configuring Interchassis Link Label

Ethernet as interchassis link label (ICL-PL) (assumes interface `ge-0/0/0.0` is used to protect interface `ae0.0` of MC-LAG-1):

```ini
[edit]
interfaces {
 ae0 {

 unit 0 {
```
multi-chassis-protection {
  peer 10.10.10.10 {
    interface ge-0/0/0.0;
  }
  ... 
  ...
  }
}

The protection interface can be an Ethernet type interface like `ge`, `xe`, or an aggregated Ethernet (ae) interface.

### Configuring Multiple Chassis

A top-level hierarchy is used to specify multichassis-related configuration, as follows:

```
[edit]
multi-chassis {
 multi-chassis-protection {
 peer 10.10.10.10 {
 interface ge-0/0/0/0;
 }
 }
}
```

The above example specifies interface `ge-0/0/0/0` as the multichassis protection interface for all the multichassis aggregated Ethernet (MC-AE) interfaces which are also part of the peer. This can be overridden by specifying protection at the physical interface level and the logical interface level.

### Configuring Service ID

You must configure the same unique network-wide configuration for a service in the set of PE routers providing the service. You can configure the service IDs under the level of the hierarchies shown in the following examples:

**Global Configuration (default logical system)**

```
switch-options {
 service-id 10;
}
bridge-domains {
 bd0 {
 service-id 2;
 }
}
routing-instances {
 n1 {
 switch-options {
 service-id 10;
 }
 bridge-domains {
 bd0 {
 service-id 2;
 }
 }
 }
```
Logical Systems

```yaml
logical-system {
 ls1 {
 switch-options {
 service-id 10;
 }
 }
}
```

```yaml
logical-system {
 ls1 {
 routing-instances {
 r1 {
 switch-options {
 service-id 10;
 }
 }
 }
 }
}
```

**NOTE:** Using a service name per bridge domain is not supported.

The bridge level service ID is required to link related bridge domains across peers, and should be configured with the same value. The `service-id` values share the name space across all bridging and routing instances, and across peers. Thus, duplicate values for service IDs are not permitted across these entities.

The service ID at the bridge domain level is mandatory for type non-single VLAN bridge domains. The service ID is optional for bridge domains with a VID defined. If no service ID is defined in the latter case, it is picked up from the service ID configuration for that routing instance.

**NOTE:** When this default routing instance (or any other routing instance) which contains a bridge domain containing an MC-AE interface is configured, you must configure a global level switch-options service-id `number`, irrespective of whether the contained bridge domains have specific service IDs configured.

In the example shown in Figure 10 on page 102, network routing instances N1 and N2, both for the same service ID, are configured with same service-id in both N1 and N2. Use of a name string instead of a number is not supported.
The following configuration restrictions apply:

- The service ID must be configured when the MC-AE interface is configured and an MC-AE logical interface is part of a bridge domain. This requirement is enforced.
- A single bridge domain cannot correspond to two redundancy group IDs.

In Figure 11 on page 102, it is possible to configure a bridge domain consisting of logical interfaces from two MC-AE interfaces and map them to a separate redundancy group ID, which is not supported. A service should be mapped one-to-one with the redundancy group providing the service. This requirement is enforced.

To display the MC-AE configuration, use the `show interfaces mc-ae` command. For more information, see the Junos OS Operational Mode Commands.

**Configuring IGMP Snooping for Active-Active MC-LAG**

For the multicast solution to work, the following must be configured:

- The multichassis protection link should be configured as a router-facing interface.

```junos
[edit bridge-domain bd-name]
protocols {
 igmp-snooping {
 interface ge-0/0/0.0 {
 multicast-router-interface;
 }
 }
}
```
In this example, ge-0/0/0.0 is an ICL interface.

- The `multichassis-lag-replicate-state` statement options should be configured under the `multicast-snooping-options` statement for that bridge domain.

**NOTE:** Snooping with active-active MC-LAG is only supported in non-proxy mode.

---

**Related Documentation**

- Active-Active Bridging and VRRP over IRB Functionality on MX Series Routers Overview on page 89
- Configuring Multichassis Link Aggregation on page 87
- mc-ae
- multi-chassis-protection
- peer
- show interfaces irb
- show interfaces mc-ae
- Junos® OS Ethernet Interfaces

---

**IGMP Snooping in MC-LAG Active-Active on MX Series Routers Overview**

- IGMP Snooping in MC-LAG Active-Active on MX Series Routers Functionality on page 104
- Typically Supported Network Topology for IGMP Snooping with MC-LAG Active-Active Bridging on page 105
- Control Plane State Updates Triggered by Packets Received on Remote Chassis on page 105
- Data Forwarding on page 106
- Pure Layer 2 Topology Without Integrated Routing and Bridging on page 107
- Qualified Learning on page 107
- Data Forwarding with Qualified Learning on page 108
- Static Groups on Single Homed Interfaces on page 108
- Router Facing Interfaces as Multichassis Links on page 108
IGMP Snooping in MC-LAG Active-Active on MX Series Routers Functionality

MX Series routers support multichassis link aggregation group (MC-LAG) active-active and IGMP snooping in active-standby mode. MC-LAG allows one device to form a logical LAG interface with two or more network devices. MC-LAG provides additional benefits including node level redundancy, multi-homing, and loop-free layer-2 network without running STP. The following features are supported:

- State synchronization between peers for IGMP snooping in a bridge domain with only Layer 2 interfaces
- Qualified learning
- Router facing multichassis links

MX Series routers support the following enhancements to active-active bridging and virtual router redundancy protocol (VRRP) over integrated routing and bridging (IRB):

- MC-LAG support for IGMP snooping in a pure Layer 2 switch
- MC-LAG support for IGMP snooping in bridge domains doing qualified learning
- Support for MC-Links being router facing interfaces

The following functions are not supported:

- MC-LAG for VPLS instances
- MC-Links trunk ports
- Proxy mode for active-active
- Adding interchassis links to outgoing interfaces on an as needed basis. Interchassis links can be added to the outgoing interface list as router facing interfaces.
Typically Supported Network Topology for IGMP Snooping with MC-LAG Active-Active Bridging

Figure 12 on page 105 depicts a typical network topology over which IGMP snooping with MC-LAG active-active is supported.

Figure 12: Typical Network Over Which Active-Active Is Supported

Interfaces I3 and I4 are single-homed interfaces. The multichassis links (MC-Link) ae0.0 and ae0.1 belong to the same bridge domain in both the chassis. Interfaces I3, ae0.0 and ae0.1 are in the same bridge domain in S-A. Interfaces I4, ae0.0 and ae0.1 are in the same bridge domain in the primary active (P-A) router. Interfaces I3, I4, ae0.0 and ae0.1 are in the same learning domain as is the interchassis link (ICL) connecting the two chassis.

The primary active router is the chassis in which the integrated routing and bridging has become PIM-DR. The secondary active router is the chassis in which integrated routing and bridging is not PIM DR. Router P-A is the chassis responsible for pulling traffic from the IP core. Hence, PIM-DR election is used to avoid duplication of data traffic.

Learning domains are described in “Qualified Learning” on page 107.

For the IGMP speakers (hosts and routers) in the learning domain, P-A and S-A together should appear as one device with interfaces I4, I3, ae0.0 and ae0.1.

No duplicate control packets should be sent on multichassis links, meaning the control packet should be sent through only one link.

Control Plane State Updates Triggered by Packets Received on Remote Chassis

The membership state in Layer 3 multicast routing is updated as a result of reports learned on remote legs of multichassis links and s-links attached to the remote chassis.

The membership state and routing entry in snooping is updated when reports are received on the remote legs of a multichassis link.
When reports are received on S-links attached to the remote chassis the membership state or routing entry in snooping is not updated.

The list of <s,g>s for which the state is maintained is the same in both the chassis under snooping as long as the outgoing interface lists involve only multichassis links.

Data Forwarding

This discussion assumes integrated routing and bridging on P-A is the PIM-DR. It pulls the traffic from sources in the core. Traffic might also come on Layer 2 interfaces in the bridge domain. For hosts directly connected to the P-A chassis, there is no change in the way data is delivered.

For delivering traffic to hosts connected to S-A (which is the non-DR) on the single-homed link like I3, we rely on interchassis link. The traffic that hits P-A is sent over ICL to S-A to be delivered to the links that have reported interests in s,g and the links that are router facing.

When ae0 leg in P-A goes down, the hosts connected to the multichassis link will receive traffic via ICL. In S-A, traffic received on ICL is sent to multichassis links in the outgoing interface list for which the ae counterpart in P-A is down.
Pure Layer 2 Topology Without Integrated Routing and Bridging

Figure 13 on page 107 illustrates the chassis connecting to the PIM-DR is the primary active router and the other is the secondary active.

Figure 13: Layer 2 Configuration Without Integrated Routing and Bridging

Qualified Learning

In this application, interfaces I1, I2, I3, I4, I5, I6, I7, I8, I9 and I10 are single-homed interfaces. The multichassis links ae0.0 and ae0.1 belong to the same bridge domain in both the chassis. Interfaces I10, I1, I7, I3, I5, ae0.0 and ae0.1 are in same bridge domain, bd1 in P-A. Interfaces I9, I2, I8, I4, I6, ae0.0 and ae0.1 are in same bridge domain, bd1 in S-A.

This discussion assumes the following configuration:

- In Primary Active and S-A, qualified learning is ON in bd1.
- Interfaces I1, I2, I3, ae0.0 and I4 belong to vlan1, learning domain ld1.
- Interfaces I7, I8, I5, ae0.1 and I6 belong to vlan2, learning domain ld2.
- Interfaces I9 and I10 belong to vlan3, learning domain ld3.

For the IGMP speakers (hosts and routers) in the same learning domain ld1, P-A and S-A linked should appear to be one switch.

For the IGMP speakers (hosts and routers) in the same learning domain ld2, P-A and S-A linked should appear to be one switch.
Since there are no multichassis links in learning domain ld3, for the IGMP speakers (hosts and routers) in learning domain ld3, P-A and S-A will not appear to be one switch.

This discussion assumes interchassis link ICL1 corresponds to learning domain ld1 and interchassis link ICL2 corresponds to learning domain ld2.

Control packet flow is supported, with the exception of passing information to IRB.

**Data Forwarding with Qualified Learning**

This discussion assumes one learning domain (LD), ld1, and further assumes interface I1 on router P-A is connected to the PIM-DR in the learning domain and pulls the traffic from sources in the core.

For delivering traffic to hosts connected to router S-A (which is the non-DR) on the single-homed link like I2, I4 (belonging to ld1), we rely on ICL1. The traffic that hits router P-A on interface I1 is sent over interchassis link ICL1 to router S-A to be delivered to the links that have reported interests in s,g or the links that are router facing in learning domain ld1.

When the interface ae0 leg in router P-A goes down, the hosts connected to the multichassis link receive traffic from interface I1 via the interchassis link ICL1. In router S-A, traffic received on interchassis link ICL1 is sent to multichassis links in the outgoing interface list for which the aggregated Ethernet counterpart in router P-A is down.

It is further assumed that interface I9 in router S-A belongs to the learning domain ld3 with interests in s,g, and that interface I10 in learning domain ld3 in router P-A receives traffic for s,g. Interface I9 does not receive data in this topology because there are no multichassis links (in a-a mode) and hence no interchassis link in learning domain ld3.

**Static Groups on Single Homed Interfaces**

For multichassis links, the static group configuration should exist on both legs and synchronization with the other chassis is not required.

Synchronization of the static groups on single homed interfaces between the chassis is not supported, however the addition of logical interfaces to the default outgoing interface list supports traffic delivery to the interface within a static configuration.

**Router Facing Interfaces as Multichassis Links**

IGMP queries could arrive on either leg of the multichassis links but in both peers, the multichassis link should be considered as router facing.

Reports should exit only once from the multichassis link, that is from only one leg.

The following MC-LAG support for IGMP snooping in IRB is provided:

- Non-proxy snooping
- Logical interfaces must be outgoing interfaces for all routes including the default route
- IGMP snooping in a pure Layer 2 switch
- IGMP snooping in bridge domains doing qualified learning
- Router facing interface MC-Links

The following features are not supported:
- Proxy mode for active-active
- MC-LAG support for VPLS instances
- Trunk ports as multichassis links
- Adding logical interfaces to outgoing interfaces on need basis. However, logical interfaces are always added as a router facing interface to the outgoing interface list.

Related Documentation
- Configuring IGMP Snooping in MC-LAG Active-Active on MX Series Routers on page 109
- Example: Configuring IGMP Snooping in MC-LAG Active-Active on MX Series Routers
- Example: Configuring IGMP Snooping
- igmp-snooping
- multicast-router-interface
- show l2-learning instance
- Junos® OS Ethernet Interfaces

### Configuring IGMP Snooping in MC-LAG Active-Active on MX Series Routers

You can use the bridge-domain statement’s service-id id option to specify the multichassis aggregated Ethernet configuration.

- The `service-id` statement is mandatory for non-single VLAN type bridge domains (none, all or `vlan-id-tags:dual`).
- It is optional for bridge domains with a VID defined.
- If no service-id is defined in the latter case, it will be picked up from the RTT’s `service-id` configuration.
- The bridge level service-id is required to link related bridge domains across peers, and should be configured with the same value.
- The service-id values share the name space across all bridging and routing instances, and across peers. Thus, duplicate values for service-ids are not permitted across these entities.
- A change of bridge `service-id` is considered catastrophic, and the bridge domain is reincarnated.

This procedure allows you to enable or disable the replication feature. This option applies to all instances.
To configure IGMP snooping in active-standby mode:

1. Use the `multichassis-lag-replicate-state` statement at the `multicast-snooping-options` hierarchy level in the master instance.

   ```
 multicast-snooping-options {
 ...
 multichassis-lag-replicate-state; # REQUIRED
 }
   ```

   The interchassis link, `interface icl-intf-name`, of the learning domain should be a router facing interface.

1. Use the `interface icl-intf-name` statement at the `protocols igmp-snooping` hierarchy level, as shown in the following example:

   ```
 protocols {
 igmp-snooping {
 interface icl-intf-name {
 multichassis-lag-replicate-state;
 }
 }
 }
   ```

Related Documentation

- IGMP Snooping in MC-LAG Active-Active on MX Series Routers Overview on page 103
- Example: Configuring IGMP Snooping
  - `igmp-snooping`
  - `multicast-router-interface`
  - `show l2-learning instance`
- Junos® OS Ethernet Interfaces

Configuring Aggregated Ethernet Link Protection

You can configure link protection for aggregated Ethernet interfaces to provide QoS on the links during operation.

On aggregated Ethernet interfaces, you designate a primary and backup link to support link protection. Egress traffic passes only through the designated primary link. This includes transit traffic and locally generated traffic on the router or switch. When the primary link fails, traffic is routed through the backup link. Because some traffic loss is unavoidable, egress traffic is not automatically routed back to the primary link when the primary link is reestablished. Instead, you manually control when traffic should be diverted back to the primary link from the designated backup link.

- Configuring Link Protection for Aggregated Ethernet Interfaces on page 111
- Configuring Primary and Backup Links for Link Aggregated Ethernet Interfaces on page 111
Chapter 4: Configuring Aggregated Ethernet Interfaces

- Reverting Traffic to a Primary Link When Traffic is Passing Through a Backup Link on page 111
- Disabling Link Protection for Aggregated Ethernet Interfaces on page 111

Configuring Link Protection for Aggregated Ethernet Interfaces

Aggregated Ethernet interfaces support link protection to ensure QoS on the interface.

To configure link protection:

1. Specify that you want to configure the options for an aggregated Ethernet interface.
   
   user@host# edit interfaces ae x aggregated-ether-options

2. Configure the link protection mode.
   
   [edit interfaces ae x aggregated-ether-options]
   
   user@host# set link-protection

Configuring Primary and Backup Links for Link Aggregated Ethernet Interfaces

To configure link protection, you must specify a primary and a secondary, or backup, link.

To configure a primary link and a backup link:

1. Configure the primary logical interface.
   
   [edit interfaces interface-name]
   
   user@host# set (fastether-options | gigether-options) 802.3ad ae x primary

2. Configure the backup logical interface.
   
   [edit interfaces interface-name]
   
   user@host# set (fastether-options | gigether-options) 802.3ad ae x backup

Reverting Traffic to a Primary Link When Traffic is Passing Through a Backup Link

On aggregated Ethernet interfaces, you designate a primary and backup link to support link protection. Egress traffic passes only through the designated primary link. This includes transit traffic and locally generated traffic on the router or switch. When the primary link fails, traffic is routed through the backup link. Because some traffic loss is unavoidable, egress traffic is not automatically routed back to the primary link when the primary link is reestablished. Instead, you manually control when traffic should be diverted back to the primary link from the designated backup link.

To manually control when traffic should be diverted back to the primary link from the designated backup link, enter the following operational command:

   user@host> request interface revert ae x

Disabling Link Protection for Aggregated Ethernet Interfaces

To disable link protection, issue the delete interface revert ae x configuration command.

   user@host# delete interfaces ae x aggregated-ether-options link-protection
Configuring the Number of Aggregated Ethernet Interfaces on the Device

By default, no aggregated Ethernet interfaces are created. You must set the number of aggregated Ethernet interfaces on the routing device before you can configure them.

On M Series and T Series routers, you can configure a maximum number of 128 aggregated interfaces, whereas on MX Series routers you can configure a maximum of 480 aggregated interfaces. The aggregated interfaces are numbered from ae0 through ae127 for M Series and T Series routers and the aggregated interfaces (LAG bundles) are numbered from ae0 through ae479 on MX Series routers.

1. Specify that you want to access the aggregated Ethernet configuration on the device.
   ```
 user@host# edit chassis aggregated-devices ethernet
   ```

2. Set the number of aggregated Ethernet interfaces.
   ```
 [edit chassis aggregated-devices ethernet]
 user@host# set device-count number
   ```

   You must also specify the constituent physical links by including the `802.3ad` statement at the [edit interfaces interface-name fastether-options] or [edit interfaces interface-name gigether-options] hierarchy level.

For information about E Series routers, see Understanding Aggregated Ethernet Interfaces and LACP.

### Related Documentation

- For information about physical links, see Configuring an Aggregated Ethernet Interface on page 83
- For a sample configuration, see Example: Configuring Aggregated Ethernet Interfaces on page 454
- Junos® OS Ethernet Interfaces
- For information about configuring aggregated devices, see the Junos OS System Basics Configuration Guide.

Configuring Aggregated Ethernet LACP

For aggregated Ethernet interfaces, you can configure the Link Aggregation Control Protocol (LACP). LACP is one method of bundling several physical interfaces to form one logical interface. You can configure both VLAN-tagged and untagged aggregated Ethernet with or without LACP enabled.

For Multichassis Link Aggregation (MC-LAG), you must specify the `system-id` and `admin key`. MC-LAG peers use the same `system-id` while sending the LACP messages. The `system-id` can be configured on the MC-LAG network device and synchronized between peers for validation.

LACP exchanges are made between actors and partners. An actor is the local interface in an LACP exchange. A partner is the remote interface in an LACP exchange.
LACP is defined in IEEE 802.3ad, *Aggregation of Multiple Link Segments*.

LACP was designed to achieve the following:

- Automatic addition and deletion of individual links to the aggregate bundle without user intervention
- Link monitoring to check whether both ends of the bundle are connected to the correct group

The Junos OS implementation of LACP provides link monitoring but not automatic addition and deletion of links.

The LACP mode can be active or passive. If the actor and partner are both in passive mode, they do not exchange LACP packets, which results in the aggregated Ethernet links not coming up. If either the actor or partner is active, they do exchange LACP packets. By default, LACP is turned off on aggregated Ethernet interfaces. If LACP is configured, it is in passive mode by default. To initiate transmission of LACP packets and response to LACP packets, you must configure LACP in active mode.

To enable LACP active mode, include the `lacp` statement at the `[edit interfaces interface-name aggregated-ether-options]` hierarchy level, and specify the `active` option:

```
[edit interfaces interface-name aggregated-ether-options]
lacp {
 active;
}
```

**NOTE:** The LACP process exists in the system only if you configure the system in either active or passive LACP mode.

To restore the default behavior, include the `lacp` statement at the `[edit interfaces interface-name aggregated-ether-options]` hierarchy level, and specify the `passive` option:

```
[edit interfaces interface-name aggregated-ether-options]
lacp {
 passive;
}
```

Starting with Junos OS release 12.2, you can also configure LACP to override the IEEE 802.3ad standard and to allow the standby link always to receive traffic. Overriding the default behavior facilitates subsecond failover.

To override the IEEE 802.3ad standard and facilitate subsecond failover, include the `fast-failover` statement at the `[edit interfaces interface-name aggregated-ether-options lacp]` hierarchy level.

For more information, see the following sections:

- Configuring the LACP Interval on page 114
- Configuring LACP Link Protection on page 114
- Tracing LACP Operations on page 117
Configuring the LACP Interval

By default, the actor and partner send LACP packets every second. You can configure the interval at which the interfaces send LACP packets by including the `periodic` statement at the `[edit interfaces interface-name aggregated-ether-options lACP]` hierarchy level:

```
[edit interfaces interface-name aggregated-ether-options lACP]
periodic interval;
```

The interval can be fast (every second) or slow (every 30 seconds). You can configure different periodic rates on active and passive interfaces. When you configure the active and passive interfaces at different rates, the transmitter honors the receiver’s rate.

**NOTE:** Source address filtering does not work when LACP is enabled. This behavior is not applicable to T series routers and PTX Series Packet Transport Switches. For more information about source address filtering, see “Enabling Ethernet MAC Address Filtering” on page 42.

Percentage policers are not supported on aggregated Ethernet interfaces with the CCC protocol family configured. For more information about percentage policers, see the Routing Policy Configuration Guide.

Generally, LACP is supported on all untagged aggregated Ethernet interfaces. For more information, see “Configuring Untagged Aggregated Ethernet Interfaces” on page 119.

For M Series Multiservice Edge Routers with enhanced Flexible PIC Concentrators (FPCs) and T Series routers, LACP over VLAN-tagged aggregated Ethernet interfaces is supported. For 8-port, 12-port, and 48-port Fast Ethernet PICs, LACP over VLAN-tagged interfaces is not supported.

LACP Fast Periodic, which is achieved by configuring fast (every second) interval for periodic transmission of LACP packets, is supported with graceful Routing Engine switchover (GRES) on MX Series routers only.

Configuring LACP Link Protection

**NOTE:** When using LACP link protection, you can configure only two member links to an aggregated Ethernet interface: one active and one standby.

To force active and standby links within an aggregated Ethernet, you can configure LACP link protection and system priority at the aggregated Ethernet interface level using the `link-protection` and `system-priority` statements. Configuring values at this level results in only the configured interfaces using the defined configuration. LACP interface configuration also enables you to override global (chassis) LACP settings.
LACP link protection also uses port priority. You can configure port priority at the Ethernet interface `gigether-options` hierarchy level using the `port-priority` statement. If you choose not to configure port priority, LACP link protection uses the default value for port priority (127).

**NOTE:** LACP link protection supports per-unit scheduling configuration on aggregated Ethernet interfaces.

**Enabling LACP Link Protection**

To enable LACP link protection for an aggregated Ethernet interfaces, use the `link-protection` statement at the `edit interfaces aeX aggregated-ether-options lacp` hierarchy level:

```
[edit interfaces aeX aggregated-ether-options lacp]
lacp
link-protection;
disable;
revertive;
non-revertive;
```

By default, LACP link protection reverts to a higher-priority (lower-numbered) link when that higher-priority link becomes operational or a link is added to the aggregator that is determined to be higher in priority. However, you can suppress link calculation by adding the `non-revertive` statement to the LACP link protection configuration. In nonrevertive mode, once a link is active and collecting and distributing packets, the subsequent addition of a higher-priority (better) link does not result in a switch and the current link remains active.

If LACP link protection is configured to be nonrevertive at the global (`edit chassis`) hierarchy level, you can add the `revertive` statement to the LACP link protection configuration to override the nonrevertive setting for the interface. In revertive mode, the addition of a higher-priority link to the aggregator results in LACP performing a priority recalculation and switching from the current active link to the new active link.

**CAUTION:** If both ends of an aggregator have LACP link protection enabled, make sure to configure both ends of the aggregator to use the same mode. Mismatching LACP link protection modes can result in lost traffic.

We strongly recommend you to use LACP on both ends of the aggregator, when you connect an aggregated Ethernet interface with two member interfaces of MX Series routers to any other vendor device. Otherwise, the vendor device (say a Layer 2 switch, or a router), will not be able to manage the traffic coming from the two link aggregated Ethernet bundle. As a result, you might observe the vendor device sending back the traffic to the backup member link of the aggregated Ethernet interface.

Currently, MX-MPC2-3D, MX-MPC2-3D-Q, MX-MPC2-3D-EQ, MX-MPC1-3D, MX-MPC1-3D-Q, and MPC-3D-16XGE-SFP do not drop traffic coming back
Configuring LACP System Priority

To configure LACP system priority for aggregated Ethernet interfaces on the interface, use the `system-priority` statement at the `[edit interfaces aeX aggregated-ether-options lacp]` hierarchy level:

```
[edit interfaces aeX aggregated-ether-options lacp]
 system-priority;
```

The system priority is a 2-octet binary value that is part of the LACP system ID. The LACP system ID consists of the system priority as the two most-significant octets and the interface MAC address as the six least-significant octets. The system with the numerically lower value for system priority has the higher priority. By default, system priority is 127, with a range of 0 to 65,535.

Configuring LACP System Identifier

To configure the LACP system identifier for aggregated Ethernet interfaces, use the `system-id` statement at the `[edit interfaces aeX aggregated-ether-options lacp]` hierarchy level:

```
[edit interfaces aeX aggregated-ether-options lacp]
 system-id system-id;
```

The user-defined system identifier in LACP enables two ports from two separate routers (M Series or MX Series routers) to act as though they were part of the same aggregate group.

The system identifier is a 48-bit (6-byte) globally unique field. It is used in combination with a 16-bit system-priority value, which results in a unique LACP system identifier.

Configuring LACP administrative Key

To configure an administrative key for LACP, include the `admin-key number` statement at the `[edit interfaces aeX aggregated-ether-options lacp]` hierarchy level:

```
[edit interfaces aeX aggregated-ether-options lacp]
 admin-key number;
```

**NOTE:** You must configure MC-LAG to configure the `admin-key` statement. For more information about MC-LAG, see “Configuring Multichassis Link Aggregation” on page 87.
Configuring LACP Port Priority

To configure LACP port priority for aggregated Ethernet interfaces, use the port-priority statement at the [edit interfaces interface-name gigether-options 802.3ad aeX lacp] or [edit interfaces interface-name fastether-options 802.3ad aeX lacp] hierarchy levels:

[edit interfaces interface-name gigether-options 802.3ad aeX lacp]
port-priority priority;

The port priority is a 2-octet field that is part of the LACP port ID. The LACP port ID consists of the port priority as the two most-significant octets and the port number as the two least-significant octets. The system with the numerically lower value for port priority has the higher priority. By default, port priority is 127, with a range of 0 to 65,535.

Port aggregation selection is made by each system based on the highest port priority and are assigned by the system with the highest priority. Ports are selected and assigned starting with the highest priority port of the highest priority system and working down in priority from there.

NOTE: Port aggregation selection (discussed above) is performed for the active link when LACP link protection is enabled. Without LACP link protection, port priority is not used in port aggregation selection.

Tracing LACP Operations

To trace the operations of the LACP process, include the traceoptions statement at the [edit protocols lacp] hierarchy level:

[edit protocols lacp]
traceoptions {
   file <filename> <files number> <size size> <world-readable | no-world-readable>;
   flag <flag>:
   no-remote-trace;
}

You can specify the following flags in the protocols lacp traceoptions statement:
- **all**—All LACP tracing operations
- **configuration**—Configuration code
- **packet**—Packets sent and received
- **process**—LACP process events
- **protocol**—LACP protocol state machine
- **routing-socket**—Routing socket events
- **startup**—Process startup events

For general information about tracing, see the tracing and logging information in the Junos OS System Basics Configuration Guide.

### LACP Limitations

LACP can link together multiple different physical interfaces, but only features that are supported across all of the linked devices will be supported in the resulting link aggregation group (LAG) bundle. For example, different PICs can support a different number of forwarding classes. If you use link aggregation to link together the ports of a PIC that supports up to 16 forwarding classes with a PIC that supports up to 8 forwarding classes, the resulting LAG bundle will only support up to 8 forwarding classes. Similarly, linking together a PIC that supports WRED with a PIC that does not support it will result in a LAG bundle that does not support WRED.

### Example: Configuring Aggregated Ethernet LACP

Configure aggregated Ethernet LACP over a VLAN-tagged interface:

```shell
[edit interfaces]
fe-5/0/1 {
 fastether-options {
 802.3adae0;
 }
}

ae0 {
 aggregated-ether-options {
 lACP {
 active;
 }
 }
 vlan-tagging;
 unit 0 {
 vlan-id 100;
 family inet {
 address 10.1.1.2/24 {
 vrrp-group 0 {
 virtual-address 10.1.1.4;
 priority 200;
 }
 }
 }
 }
}
```
Configure aggregated Ethernet LACP over an untagged interface:

LACP with Untagged Aggregated Ethernet

```plaintext
[edit interfaces]
fe-5/0/1 {
 fastether-options {
 802.3ad ae0;
 }
}

ae0 {
 aggregated-ether-options {
 lacp {
 active;
 }
 }
 unit 0 {
 family inet {
 address 10.1.1.2/24 {
 vrrp-group 0 {
 virtual-address 10.1.1.4;
 priority 200;
 }
 }
 }
 }
}
```

Related Documentation
- lACP on page 496
- link-protection on page 502
- traceoptions
- Junos® OS Ethernet Interfaces

Configuring Untagged Aggregated Ethernet Interfaces

When you configure an untagged Aggregated Ethernet interface, the existing rules for untagged interfaces apply. These rules are as follows:

- You can configure only one logical interface (unit 0) on the port. The logical unit 0 is used to send and receive LACP or marker protocol data units (PDUs) to and from the individual links.
- You cannot include the `vlan-id` statement in the configuration of the logical interface.

Table 7 on page 120 lists untagged aggregated Ethernet and LACP support by PIC and router.
Table 7: Untagged Aggregated Ethernet and LACP Support by PIC and Platform

<table>
<thead>
<tr>
<th>PIC Type</th>
<th>M Series</th>
<th>LACP</th>
<th>T Series</th>
<th>LACP</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-port Fast Ethernet PIC Type 1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1-port Gigabit Ethernet PIC Type 1</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2-port Gigabit Ethernet PIC Type 2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>4-port Gigabit Ethernet PIC Type 2</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1-port 10-Gigabit Ethernet M160</td>
<td>Yes</td>
<td>Yes</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>10-port Gigabit Ethernet PIC Type 3</td>
<td>Yes (M120, M320)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>1-port 10-Gigabit Ethernet PIC Type 3</td>
<td>N/A</td>
<td>NA</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>8-port Gigabit Ethernet PIC Type 3</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The 8–port Fast Ethernet PIC does not support untagged aggregated Ethernet or LACP.

Syslog messages are logged if you try to configure an untagged aggregated Ethernet interface using an unsupported PIC type.

For more information about configuring LACP, see “Configuring Aggregated Ethernet LACP” on page 112.

Example: Configuring Untagged Aggregated Ethernet Interfaces

Configure an untagged aggregated Ethernet interface by omitting the `vlan-tagging` and `vlan-id` statements from the configuration:

```
[edit interfaces]
fe-5/0/1 {
 fastether-options {
 802.3ad ae0;
 }
}
\ae0 {
 # vlan-tagging: OMIT FOR UNTAGGED AE CONFIGURATIONS
 unit 0 {
 # vlan-id 100; OMIT FOR UNTAGGED AE CONFIGURATIONS
 family inet {
 address 13.1.1.2/24 {
 vrrp-group 0 {
 virtual-address 13.1.1.4;
 priority 200;
 }
 }
 }
 }
}
```
On aggregated Ethernet interfaces, you can set the required link speed for all interfaces included in the bundle. All interfaces that make up a bundle must be the same speed. If you include in the aggregated Ethernet interface an individual link that has a speed different from the speed you specify in the link-speed parameter, an error message will be logged.

To set the required link speed:

1. Specify that you want to configure the aggregated Ethernet options.

   ```
 user@host# edit interfaces interface-name aggregated-ether-options
   ```

2. Configure the link speed.

   ```
 [edit interfaces interface-name aggregated-ether-options]
 user@host# set link-speed speed
   ```

   `speed` can be in bits per second either as a complete decimal number or as a decimal number followed by the abbreviation `k` (1000), `m` (1,000,000), or `g` (1,000,000,000).

   Aggregated Ethernet interfaces on the M120 router can have one of the following speed values:
   - `100m`—Links are 100 Mbps.
   - `10g`—Links are 10 Gbps.
   - `1g`—Links are 1 Gbps.
   - `OC192`—Links are OC192 or STM64c.

   Aggregated Ethernet links on EX Series switches can be configured to operate at one of the following speeds:
   - `10m`
   - `100m`
   - `1g`
   - `10g`
   - `50g`
Configuring Aggregated Ethernet Minimum Links

On aggregated Ethernet interfaces, you can configure the minimum number of links that must be up for the bundle as a whole to be labeled up. By default, only one link must be up for the bundle to be labeled up.

To configure the minimum number of links:

1. Specify that you want to configure the aggregated Ethernet options.
   
   ```
 user@host# edit interfaces interface-name aggregated-ether-options
   ```

2. Configure the minimum number of links.
   
   ```
 [edit interfaces interface-name aggregated-ether-options]
 user@host# set minimum-links number
   ```

On M120, M320, MX Series, T Series, and TX Matrix routers with Ethernet interfaces, the valid range for `minimum-links number` is 1 through 16. When the maximum value (16) is specified, all configured links of a bundle must be up for the bundle to be labeled up.

On all other routers and on EX Series switches, other than EX8200 switches, the range of valid values for `minimum-links number` is 1 through 8. When the maximum value (8) is specified, all configured links of a bundle must be up for the bundle to be labeled up.

On EX8200 switches, the range of valid values for `minimum-links number` is 1 through 12. When the maximum value (12) is specified, all configured links of a bundle must be up for the bundle to be labeled up.

If the number of links configured in an aggregated Ethernet interface is less than the minimum link value configured under the `aggregated-ether-options` statement, the configuration commit fails and an error message is displayed.

Related Documentation
- aggregated-ether-options on page 463
- minimum-links on page 512
- Junos® OS Ethernet Interfaces

Configuring Multicast Statistics Collection on Aggregated Ethernet Interfaces

T Series and TX Matrix routers support multicast statistics collection on aggregated Ethernet interfaces in both ingress and egress directions. The multicast statistics functionality can be configured on a physical interface thus enabling multicast accounting for all the logical interfaces below the physical interface.

The multicast statistics information is displayed only when the interface is configured with the `multicast-statistics` statement, which is not enabled by default.

Multicast statistics collection requires at least one logical interface is configured with family inet or inet6; otherwise, the commit for `multicast-statistics` will fail.
The multicast in/out statistics can be obtained via interfaces statistics query through CLI and via MIB objects through SNMP query.

To configure multicast statistics:

1. Include the `multicast-statistics` statement at the `[edit interfaces interface-name]` hierarchy level.

An example of a multicast statistics configuration for an aggregated Ethernet interface follows:

```
[edit interfaces]
ae0 {
 multicast-statistics;
}
```

To display multicast statistics, use the `show interfaces interface-name statistics detail` command.

**Related Documentation**
- `multicast-statistics`
- Configuring Multicast Statistics Collection on Ethernet Interfaces on page 51
- Junos® OS Ethernet Interfaces

---

### Configuring Scheduler on Aggregated Ethernet Interfaces Without Link Protection

On aggregated Ethernet interfaces, you can configure scheduler in non–link-protect mode on the following platforms:

- MX-Series
- M120 and M320 with IQ2 PIC
- T-series platforms (T620 and T320) with IQ2 PIC

The scheduler functions supported are:

- Per unit scheduler
- Hierarchical scheduler
- Shaping at the physical interface

To configure the hierarchical scheduler on aggregated Ethernet interfaces in the non link-protect mode, include the `hierarchical-scheduler` statement at the `[edit interfaces aeX]` hierarchy level:

```
[edit interfaces aeX hierarchical-scheduler]
```

Prior to Junos OS Release 9.6, the hierarchical scheduler mode on these models required the `aggregated-ether-options` statement `link-protection` option. If a `link-protection` option is not specified, the scheduler is configured in non-link-protect mode.

To specify the member link bandwidth derivation based on the equal division model (`scale`) or the replication model (`replicate`) on aggregated Ethernet interfaces, include
the \texttt{member-link-scheduler (scale | replicate)} option at the \texttt{[edit class-of-service interfaces aeX]} hierarchy level. The default setting is \texttt{scale}.

\texttt{[edit class-of-service interfaces aeX member-link-scheduler (scale | replicate)]}

\begin{itemize}
\item \textbf{NOTE:} In link-protect mode, only one link is active at a time and the other link acts as the backup link, whereas in a non link-protect mode, all the links of the aggregate bundle are active at the same time. There is no backup link. If a link goes down or a new link is added to the bundle, traffic redistribution occurs.
\end{itemize}

\section*{Related Documentation}
\begin{itemize}
\item Configuring Hierarchical CoS for a Subscriber Interface of Aggregated Ethernet Links
\item Junos® OS Ethernet Interfaces
\item For more information on the hierarchical scheduler (CoS), see the Junos OS Class of Service Configuration Guide.
\end{itemize}

\section*{Configuring Symmetrical Load Balancing on an 802.3ad Link Aggregation Group on MX Series Routers}

This section describes configuration of symmetrical load balancing on an 802.3ad link aggregation group (LAG) on MX Series routers.

\begin{itemize}
\item Symmetrical Load Balancing on an 802.3ad LAG on MX Series Routers Overview on page 124
\item Configuring Symmetric Load Balancing on an 802.3ad LAG on MX Series Routers on page 125
\item Example Configurations on page 128
\end{itemize}

\section*{Symmetrical Load Balancing on an 802.3ad LAG on MX Series Routers Overview}

MX Series routers with Aggregated Ethernet PICs support symmetrical load balancing on an 802.3ad LAG. This feature is significant when two MX Series routers are connected transparently through deep packet inspection (DPI) devices over an LAG bundle. DPI devices keep track of flows and require information of a given flow in both forward and reverse directions. Without symmetrical load balancing on an 802.3ad LAG, the DPIs could misunderstand the flow, leading to traffic disruptions. By using this feature, a given flow of traffic (duplex) is ensured for the same devices in both directions.

Symmetrical load balancing on an 802.3ad LAG utilizes a mechanism of interchanging the source and destination addresses for a hash computation of fields, such as source address and destination address. The result of a hash computed on these fields is used to choose the link of the LAG. The hash-computation for the forward and reverse flow must be identical. This is achieved by swapping source fields with destination fields for the reverse flow. The swapped operation is referred to as \texttt{complement hash computation} or \texttt{symmetric-hash complement} and the regular (or unswapped) operation as \texttt{symmetric-hash computation} or \texttt{symmetric-hash}. The swappable fields are MAC address, IP address, and port.
Configuring Symmetric Load Balancing on an 802.3ad LAG on MX Series Routers

You can specify whether symmetric hash or complement hash is done for load-balancing traffic. To configure symmetric hash, use the `symmetric-hash` statement at the `[edit forwarding-options hash-key family inet]` hierarchy level. To configure symmetric hash complement, use the `symmetric-hash complement` statement and option at the `[edit forwarding-options hash-key family inet]` hierarchy level.

These operations can also be performed at the PIC level by specifying a hash key. To configure a hash key at the PIC level, use the `symmetric-hash` or `symmetric-hash complement` statement at the `[edit chassis hash-key family inet]` and `[edit chassis hash-key family multiservice]` hierarchy levels.

Consider the example in Figure 14 on page 125.

**Figure 14: Symmetric Load Balancing on an 802.3ad LAG on MX Series Routers**

Router A is configured with symmetric hash and Router B is configured with symmetric hash complement. Thus, for a given flow \( fx \), post hash computation is from Router A to Router B through \( i2 \). The reverse traffic for the same flow \( fx \) is from Router B to Router A through the same \( i2 \) device as its hashing (done after swapping source and destination fields) and returns the same link index; since it is performed on the interchanged source and destination addresses.

However, the link chosen may or may not correspond to what was attached to the DPI. In other words, the hashing result should point to the same links that are connected, so that the traffic flows through the same DPI devices in both directions. To make sure this happens, you need to also configure the counterpart ports (ports that are connected to same DPI-iN) with the identical link index. This is done when configuring a child-link into the LAG bundle. This ensures that the link chosen for a given hash result is always the same on either router.

Note that any two links connected to each other should have the same link index and these link indices must be unique in a given bundle.
NOTE:
The following restrictions apply when configuring symmetric load balancing on an 802.3ad LAG on MX Series routers:

- The Packet Forwarding Engine (PFE) can be configured to hash the traffic in either symmetric or complement mode. A single PFE complex cannot work simultaneously in both operational modes and such a configuration can yield undesirable results.
- The per-PFE setting overrides the chassis-wide setting only for the family configured. For the other families, the PFE complex still inherits the chassis-wide setting (when configured) or the default setting.
- Any change in the hash key configuration requires a reboot of the FPC for the changes to take effect.
- This feature supports VPLS, INET, and bridged traffic only.
- This feature cannot work in tandem with the per-flow-hash-seed load-balancing option. It requires that all the PFE complexes configured in complementary fashion share the same seed. A change in the seed between two counterpart PFE complexes may yield undesired results.

For additional information, see the Junos OS VPNs Configuration Guide and the Junos OS System Basics Configuration Guide.

Example Configuration Statements
To configure 802.3ad LAG parameters at the bundle level:

```
[edit interfaces]
g(x)e-fpc/pic/port {
gigether-options {
 802.3ad {
 bundle;
 link-index number;
 }
}
}
```

where the `link-index number` ranges from 0 through 15.

You can check the link index configured above using the `show interfaces` command:

```
[edit forwarding-options hash-key]
family inet {
 layer-3;
 layer-4;
 symmetric-hash {
 [complement;]
 }
}
family multiservice {
 source-mac;
 destination-mac;
 payload [
For load-balancing Layer 2 traffic based on Layer 3 fields, you can configure 802.3ad LAG parameters at a per PIC level. These configuration options are available under the chassis hierarchy as follows:

```text
[edit chassis]
fpc X {
pic Y {
  
  .
  
  hash-key {
    family inet {
      layer-3;
      layer-4;
      symmetric-hash {
        [complement;]
      }
    }
    family multiservice {
      source-mac;
      destination-mac;
      payload {
        ip {
          layer-3 {
            source-ip-only | destination-ip-only;
          }
          layer-4;
        }
        symmetric-hash {
          [complement;]
        }
      }
    }

```
Example Configurations

Example Configurations of Chassis Wide Settings

<table>
<thead>
<tr>
<th>Router</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router A</td>
<td>user@host> show configuration forwarding-options hash-key family multiservice { payload { ip { layer-3; } } } symmetric hash;</td>
</tr>
<tr>
<td>Router B</td>
<td>user@host> show configuration forwarding-options hash-key family multiservice { payload { ip { layer-3; } } } symmetric-hash { complement; }</td>
</tr>
</tbody>
</table>

Example Configurations of Per-Packet-Forwarding-Engine Settings

<table>
<thead>
<tr>
<th>Router</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router A</td>
<td>user@host> show configuration chassis fpc 2 pic 2 hash-key family multiservice { payload { ip { layer-3; } } } symmetric hash;</td>
</tr>
<tr>
<td>Router B</td>
<td>user@host> show configuration chassis fpc 2 pic 3 hash-key family multiservice { payload { ip { layer-3; } } } symmetric-hash { complement; }</td>
</tr>
</tbody>
</table>

Related Documentation

- Junos® OS Ethernet Interfaces
- For additional information, see the Junos OS VPNs Configuration Guide and the Junos OS System Basics Configuration Guide.
Stacking and Rewriting Gigabit Ethernet VLAN Tags

- Stacking and Rewriting Gigabit Ethernet VLAN Tags Overview on page 129
- Stacking and Rewriting Gigabit Ethernet VLAN Tags on page 130
- Configuring Frames with Particular TPIDs to Be Processed as Tagged Frames on page 133
- Configuring Stacked VLAN Tagging on page 134
- Configuring Dual VLAN Tags on page 134
- Configuring Inner and Outer TPIDs and VLAN IDs on page 135
- Stacking a VLAN Tag on page 138
- Removing a VLAN Tag on page 139
- Removing the Outer and Inner VLAN Tags on page 139
- Removing the Outer VLAN Tag and Rewriting the Inner VLAN Tag on page 140
- Stacking Two VLAN Tags on page 141
- Rewriting the VLAN Tag on Tagged Frames on page 142
- Rewriting a VLAN Tag on Untagged Frames on page 143
- Rewriting a VLAN Tag and Adding a New Tag on page 146
- Rewriting the Inner and Outer VLAN Tags on page 146
- Examples: Stacking and Rewriting Gigabit Ethernet IQ VLAN Tags on page 147

Stacking and Rewriting Gigabit Ethernet VLAN Tags Overview

Stacking and rewriting VLAN tags allows you to use an additional (outer) VLAN tag to differentiate between customer edge (CE) routers that share one VLAN ID. A frame can be received on an interface, or it can be internal to the system (as a result of the input-vlan-map statement).

On IQ2 interfaces, 10-Gigabit Ethernet LAN/WAN PIC, 40-Gigabit Ethernet MIC, 100-Gigabit Ethernet MIC, IQ2-E interfaces, and MX Series interfaces, when a VLAN tag is pushed, the inner VLAN IEEE 802.1p bits are copied to the IEEE bits of the VLAN or VLANs being pushed. If the original packet is untagged, the IEEE bits of the VLAN or VLANs being pushed are set to 0.
NOTE: When swap-by-poppush is configured on the interface, when a VLAN tag is swapped, the inner VLAN IEEE 802.1p bits are copied to the IEEE bits of the VLAN being swapped. If swap-by-poppush is not configured on the interface, the VLAN IEEE 802.1p bits of the of the VLAN being swapped remains same.

You can stack and rewrite VLAN tags on the following interfaces:

- Gigabit Ethernet
- Gigabit Ethernet IQ
- 10-Gigabit Ethernet LAN/WAN PIC
- 40-Gigabit Ethernet MIC
- 100-Gigabit Ethernet MIC
- Gigabit Ethernet IQ2 and IQ2-E
- 10-Gigabit Ethernet IQ2 and IQ2-E interfaces, and MX Series router Gigabit Ethernet Interfaces
- Tri-Rate Ethernet copper, and 10-Gigabit Ethernet interfaces with the VLAN encapsulation type configured to support Layer 2 tunneling protocols such as circuit cross-connect (CCC) or virtual private LAN service (VPLS) (as described in “802.1Q VLANs Overview” on page 53)

Stacking and Rewriting Gigabit Ethernet VLAN Tags

You can configure rewrite operations to stack (push), remove (pop), or rewrite (swap) tags on single-tagged frames and dual-tagged frames. If a port is not tagged, rewrite operations are not supported on any logical interface on that port.

You can configure the following VLAN rewrite operations:

- **pop**—Remove a VLAN tag from the top of the VLAN tag stack. The outer VLAN tag of the frame is removed.
- **pop-pop**—For Ethernet IQ2, 10-Gigabit Ethernet LAN/WAN PIC, and IQ2-E interfaces, remove both the outer and inner VLAN tags of the frame.
- **pop-swap**—For Ethernet IQ2, 10-Gigabit Ethernet LAN/WAN PIC, and IQ2-E interfaces, remove the outer VLAN tag of the frame, and replace the inner VLAN tag of the frame with a user-specified VLAN tag value. The inner tag becomes the outer tag in the final frame.
• **push**—Add a new VLAN tag to the top of the VLAN stack. An outer VLAN tag is pushed in front of the existing VLAN tag.

• **push-push**—For Ethernet IQ2, 10-Gigabit Ethernet LAN/WAN PIC, and IQ2-E interfaces, push two VLAN tags in front of the frame.

• **swap-push**—For Ethernet IQ2, 10-Gigabit Ethernet LAN/WAN PIC, and IQ2-E interfaces, replace the outer VLAN tag of the frame with a user-specified VLAN tag value. A user-specified outer VLAN tag is pushed in front. The outer tag becomes an inner tag in the final frame.

• **swap-swap**—For Ethernet IQ2, 10-Gigabit Ethernet LAN/WAN PIC, and IQ2-E interfaces, replace both the inner and the outer VLAN tags of the incoming frame with a user-specified VLAN tag value.

You configure VLAN rewrite operations for logical interfaces in the input VLAN map for incoming frames and in the output VLAN map for outgoing frames. To configure the input VLAN map, include the `input-vlan-map` statement:

```
input-vlan-map {
  ...interface-specific configuration...
}
```

To configure the output VLAN map, include the `output-vlan-map` statement:

```
output-vlan-map {
  ...interface-specific configuration...
}
```

You can include both statements at the following hierarchy levels:

• `[edit interfaces interface-name unit logical-unit-number]`

• `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]`

The type of VLAN rewrite operation permitted depends upon whether the frame is single-tagged or dual-tagged. Table 8 on page 131 shows supported rewrite operations and whether they can be applied to single-tagged frames or dual-tagged frames. The table also indicates the number of tags being added or removed during the operation.

Table 8: Rewrite Operations on Untagged, Single-Tagged, and Dual-Tagged Frames

<table>
<thead>
<tr>
<th>Rewrite Operation</th>
<th>Untagged</th>
<th>Single-Tagged</th>
<th>Dual-Tagged</th>
<th>Number of Tags</th>
</tr>
</thead>
<tbody>
<tr>
<td>pop</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>−1</td>
</tr>
<tr>
<td>push</td>
<td>Sometimes</td>
<td>Yes</td>
<td>Yes</td>
<td>+1</td>
</tr>
<tr>
<td>swap</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>push-push</td>
<td>Sometimes</td>
<td>Yes</td>
<td>Yes</td>
<td>+2</td>
</tr>
<tr>
<td>swap-push</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>+1</td>
</tr>
</tbody>
</table>
Table 8: Rewrite Operations on Untagged, Single-Tagged, and Dual-Tagged Frames (continued)

<table>
<thead>
<tr>
<th>Rewrite Operation</th>
<th>Untagged</th>
<th>Single-Tagged</th>
<th>Dual-Tagged</th>
<th>Number of Tags</th>
</tr>
</thead>
<tbody>
<tr>
<td>swap-swap</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>pop-pop</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>– 2</td>
</tr>
<tr>
<td>pop-swap</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>– 1</td>
</tr>
</tbody>
</table>

The rewrite operations push and push-push can be valid in certain circumstances on frames that are not tagged. For example, a single-tagged logical interface (interface 1) and a dual-tagged logical interface (interface 2) have the following configurations:

Interface 1

```
[edit interfaces interface-name unit logical-unit-number]
input-vlan-map {
  pop;
}
output-vlan-map {
  push;
}
```

Interface 2

```
[edit interfaces interface-name unit logical-unit-number]
input-vlan-map {
  pop-pop;
}
output-vlan-map {
  push-push;
}
```

When a frame is received on the interface as a result of the input-vlan-map operation, the frame is not tagged. As it goes out of the second interface, the output-vlan-map operation push-push is applied to it. The resulting frame will be dual-tagged at the logical interface output.

Depending on the VLAN rewrite operation, you configure the rewrite operation for the interface in the input VLAN map, the output VLAN map, or in both the input VLAN map and the output VLAN map. Table 9 on page 132 shows what rewrite operation combinations you can configure. “None” means that no rewrite operation is specified for the VLAN map.

Table 9: Applying Rewrite Operations to VLAN Maps

<table>
<thead>
<tr>
<th>Input VLAN Map</th>
<th>Output VLAN Map</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>none</td>
</tr>
<tr>
<td>none</td>
<td>Yes</td>
</tr>
<tr>
<td>push</td>
<td>No</td>
</tr>
<tr>
<td>pop</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 9: Applying Rewrite Operations to VLAN Maps (continued)

<table>
<thead>
<tr>
<th>Input VLAN Map</th>
<th>none</th>
<th>push</th>
<th>pop</th>
<th>swap</th>
<th>push-push</th>
<th>swap-push</th>
<th>swap-swap</th>
<th>pop-pop</th>
<th>swap-pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>swap</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>push-push</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>swap-push</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>swap-swap</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>pop-pop</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>pop-swap</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

You must know whether the VLAN rewrite operation is valid and is applied to the input VLAN map or the output VLAN map. You must also know whether the rewrite operation requires you to include statements to configure the inner and outer TPIDs and inner and outer VLAN IDs in the input VLAN map or output VLAN map. For information about configuring inner and outer TPIDs and inner and outer VLAN IDs, see “Configuring Inner and Outer TPIDs and VLAN IDs” on page 135.

Related Documentation
- Stacking and Rewriting Gigabit Ethernet VLAN Tags Overview on page 129
- Understanding swap-by-poppush
- swap-by-poppush
- Junos® OS Ethernet Interfaces

Configuring Frames with Particular TPIDs to Be Processed as Tagged Frames

For Gigabit Ethernet IQ interfaces, aggregated Ethernet with Gigabit Ethernet IQ interfaces, Gigabit Ethernet PICs with SFPs (except the 10-port Gigabit Ethernet PIC and the built-in Gigabit Ethernet port on the M7i router), and MX Series router Gigabit Ethernet, Tri-Rate Ethernet copper, and 10-Gigabit Ethernet interfaces, you can configure frames with particular TPIDs to be processed as tagged frames. To do this, you specify up to eight IEEE 802.1Q TPID values per port; a frame with any of the specified TPIDs is processed as a tagged frame; however, with IQ2 and IQ2-E interfaces, only the first four IEEE 802.1Q TPID values per port are supported. To configure the TPID values, include the `tag-protocol-id` statement:

```
tag-protocol-id [ tpids ];
```

You can include this statement at the following hierarchy levels:

- `[edit interfaces interface-name gigether-options ethernet-switch-profile]`
- `[edit interfaces interface-name aggregated-ether-options ethernet-switch-profile]`
All TPIDs you include in input and output VLAN maps must be among those you specify at the [edit interfaces interface-name gigether-options ethernet-switch-profile tag-protocol-id [tpids]] or [edit interfaces interface-name aggregated-ether-options ethernet-switch-profile tag-protocol-id [tpids]] hierarchy level.

Related Documentation
- Stacking and Rewriting Gigabit Ethernet VLAN Tags Overview on page 129
- aggregated-ether-options on page 463
- ethernet-switch-profile on page 476
- gigether-options on page 484
- tag-protocol-id on page 560
- Junos® OS Ethernet Interfaces

Configuring Stacked VLAN Tagging

To configure stacked VLAN tagging for all logical interfaces on a physical interface, include the stacked-vlan-tagging statement at the [edit interfaces interface-name] hierarchy level:

```
[edit interfaces interface-name]
stacked-vlan-tagging;
```

If you include the stacked-vlan-tagging statement in the configuration, you must configure dual VLAN tags for all logical interfaces on the physical interface. For more information, see “Stacking a VLAN Tag” on page 138.

Related Documentation
- stacked-vlan-tagging
- Stacking a VLAN Tag on page 138
- Junos® OS Ethernet Interfaces

Configuring Dual VLAN Tags

To configure dual VLAN tags on a logical interface, include the vlan-tags statement:

```
vlan-tags inner <tpid.>vlan-id outer <tpid.>vlan-id;
```

You can include this statement at the following hierarchy levels:

- [edit interfaces interface-name unit logical-unit-number]
- [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

The outer tag VLAN ID range is from 1 through 511 for normal interfaces, and from 512 through 4094 for VLAN CCC or VLAN VPLS interfaces. The inner tag is not restricted.

You must also include the stacked-vlan-tagging statement in the configuration. See “Examples: Stacking and Rewriting Gigabit Ethernet IQ VLAN Tags” on page 147.
Configuring Inner and Outer TPIDs and VLAN IDs

For some rewrite operations, you must configure the inner or outer TPID values and inner or outer VLAN ID values. These values can be applied to either the input VLAN map or the output VLAN map.

On Ethernet IQ, IQ2, and IQ2-E interfaces; on MX Series router Gigabit Ethernet, Tri-Rate Ethernet copper, and 10-Gigabit Ethernet interfaces; and on aggregated Ethernet interfaces using Gigabit Ethernet IQ2 and IQ2-E or 10-Gigabit Ethernet PICs on MX Series routers, to configure the inner TPID, include the `inner-tag-protocol-id` statement:

```snip
inner-tag-protocol-id tpid;
```

You can include this statement at the following hierarchy levels:

- `[edit interfaces interface-name unit logical-unit-number input-vlan-map]`
- `[edit interfaces interface-name unit logical-unit-number output-vlan-map]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number input-vlan-map]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number output-vlan-map]`

For the inner VLAN ID, include the `inner-vlan-id` statement. For the outer TPID, include the `tag-protocol-id` statement. For the outer VLAN ID, include the `vlan-id` statement:

```snip
input-vlan-map {
  (pop | pop-pop | pop-swap | push | push-push | swap | swap-push | swap-swap);
  inner-tag-protocol-id tpid;
  inner-vlan-id number;
  tag-protocol-id tpid;
  vlan-id number;
}
output-vlan-map {
  (pop | pop-pop | pop-swap | push | push-push | swap | swap-push | swap-swap);
  inner-tag-protocol-id tpid;
  inner-vlan-id number;
  tag-protocol-id tpid;
  vlan-id number;
}
```

For aggregated Ethernet interfaces using Gigabit Ethernet IQ interfaces, include the `tag-protocol-id` statement for the outer TPID. For the outer VLAN ID, include the `vlan-id` statement:

```snip
input-vlan-map {
  (pop | push | swap);
  tag-protocol-id tpid;
}
```
You can include these statements at the following hierarchy levels:

- [edit interfaces interface-name unit logical-unit-number]
- [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

The VLAN IDs you define in the input VLAN maps are stacked on top of the VLAN ID bound to the logical interface. For more information about binding a VLAN ID to the logical interface, see “802.1Q VLANs Overview” on page 53.

All TPIDs you include in input and output VLAN maps must be among those you specify at the [edit interfaces interface-name gigether-options ethernet-switch-profile tag-protocol-id [tpids]] hierarchy level or [edit interfaces interface-name aggregated-ether-options ethernet-switch-profile tag-protocol-id [tpids]] hierarchy level. For more information, see “Configuring Frames with Particular TPIDs to Be Processed as Tagged Frames” on page 133.

Table 10 on page 136 and Table 11 on page 137 specify when these statements are required. Table 10 on page 136 indicates valid statement combinations for rewrite operations for the input VLAN map. “No” means the statement must not be included in the input VLAN map for the rewrite operation. “Optional” means the statement may be optionally specified for the rewrite operation in the input VLAN map. “Any” means that you must include the vlan-id statement, tag-protocol-id statement, inner-vlan-id statement, or inner-tag-protocol-id statement.

Table 10: Rewrite Operations and Statement Usage for Input VLAN Maps

<table>
<thead>
<tr>
<th>Rewrite Operation</th>
<th>Input VLAN Map Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Input VLAN Map Statements</td>
</tr>
<tr>
<td></td>
<td>vlan-id</td>
</tr>
<tr>
<td>push</td>
<td>Optional</td>
</tr>
<tr>
<td>pop</td>
<td>No</td>
</tr>
<tr>
<td>swap</td>
<td>Any</td>
</tr>
<tr>
<td>push-push</td>
<td>Optional</td>
</tr>
<tr>
<td>swap-push</td>
<td>Optional</td>
</tr>
<tr>
<td>swap-swap</td>
<td>Optional</td>
</tr>
<tr>
<td>pop-swap</td>
<td>No</td>
</tr>
</tbody>
</table>
Table 10: Rewrite Operations and Statement Usage for Input VLAN Maps (continued)

<table>
<thead>
<tr>
<th>Input VLAN Map Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
</tr>
</tbody>
</table>

Table 11 on page 137 indicates valid statement combinations for rewrite operations for the output VLAN map. “No” means the statement must not be included in the output VLAN map for the rewrite operation. “Optional” means the statement may be optionally specified for the rewrite operation in the output VLAN map.

Table 11: Rewrite Operations and Statement Usage for Output VLAN Maps

<table>
<thead>
<tr>
<th>Rewrite Operation</th>
<th>vlan-id</th>
<th>tag-protocol-id</th>
<th>inner-vlan-id</th>
<th>inner-tag-protocol-id</th>
</tr>
</thead>
<tbody>
<tr>
<td>push</td>
<td>No</td>
<td>Optional</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>pop</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>swap</td>
<td>No</td>
<td>Optional</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>push-push</td>
<td>No</td>
<td>Optional</td>
<td>No</td>
<td>Optional</td>
</tr>
<tr>
<td>swap-push</td>
<td>No</td>
<td>Optional</td>
<td>No</td>
<td>Optional</td>
</tr>
<tr>
<td>swap-swap</td>
<td>No</td>
<td>Optional</td>
<td>No</td>
<td>Optional</td>
</tr>
<tr>
<td>pop-swap</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Optional</td>
</tr>
<tr>
<td>pop-pop</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

The following examples use Table 10 on page 136 and Table 11 on page 137 and show how the pop-swap operation can be configured in an input VLAN map and an output VLAN map:

Input VLAN Map with inner-vlan-id Statement, Output VLAN Map with Optional inner-tag-protocol-id Statement

```
[edit interfaces interface-name unit logical-unit-number]
input-vlan-map {
  pop-swap;
  inner-vlan-id number;
}
output-vlan-map {
  pop-swap;
  inner-tag-protocol-id tpid;
}
```

Input VLAN Map with inner-tag-protocol-id Statement, Output VLAN Map with inner-vlan-id Statement

```python
[edit interfaces interface-name unit logical-unit-number]
input-vlan-map {
  pop-swap;
  inner-tag-protocol-id tpid;
}
```

Copyright © 2012, Juniper Networks, Inc.
Optional inner-tag-protocol-id Statement

```text
output-vlan-map {
  pop-swap;
  inner-tag-protocol-id tpid;
}
```

Input VLAN Map with inner-tag-protocol-id and inner-vlan-id Statements

```text
[edit interfaces interface-name unit logical-unit-number]
input-vlan-map {
  pop-swap;
  inner-vlan-id number;
  inner-tag-protocol-id tpid;
}
```

Related Documentation
- inner-tag-protocol-id on page 488
- input-vlan-map on page 492
- output-vlan-map
- pop-swap on page 530
- unit on page 568
- Junos® OS Ethernet Interfaces

Stacking a VLAN Tag

To stack a VLAN tag on all tagged frames entering or exiting the interface, include the `push`, `vlan-id`, and `tag-protocol-id` statements in the input VLAN map or the output VLAN map:

```text
input-vlan-map {
  push;
  vlan-id number;
  tag-protocol-id tpid;
}
output-vlan-map {
  push;
  tag-protocol-id tpid;
}
```

You can include these statements at the following hierarchy levels:

- `[edit interfaces interface-name unit logical-unit-number]`
- `[edit interfaces interface-name unit logical-unit-number]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]`

If you include the `push` statement in an interface’s input VLAN map, see Table 9 on page 132 for information about permissible rewrite operations,
The VLAN IDs you define in the input VLAN maps are stacked on top of the VLAN ID bound to the logical interface. For more information about binding a VLAN ID to the logical interface, see “802.1Q VLANs Overview” on page 53.

All TPIDs you include in input and output VLAN maps must be among those you specify at the `[edit interfaces interface-name gigether-options ethernet-switch-profile tag-protocol-id [tpids]]` hierarchy level. For more information, see “Configuring Inner and Outer TPIDs and VLAN IDs” on page 135.

Related Documentation
- `tag-protocol-id` on page 561
- `unit` on page 568
- Table 9 on page 132
- 802.1Q VLANs Overview on page 53
- Configuring Inner and Outer TPIDs and VLAN IDs on page 135
- Junos® OS Ethernet Interfaces

Removing a VLAN Tag

To remove a VLAN tag from all tagged frames entering or exiting the interface, include the `pop` statement in the input VLAN map or output VLAN map:

```
pop;
```

You can include this statement at the following hierarchy levels:

- `[edit interfaces interface-name unit logical-unit-number input-vlan-map]`
- `[edit interfaces interface-name unit logical-unit-number output-vlan-map]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number input-vlan-map]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number output-vlan-map]`

Related Documentation
- `input-vlan-map` on page 492
- `output-vlan-map`
- `pop` on page 529
- `unit` on page 568
- Junos® OS Ethernet Interfaces

Removing the Outer and Inner VLAN Tags

On Ethernet IQ, IQ2 and IQ2-E interfaces, on MX Series router Gigabit Ethernet, Tri-Rate Ethernet copper, and 10-Gigabit Ethernet interfaces, and on aggregated Ethernet interfaces using Gigabit Ethernet IQ2 and IQ2-E or 10-Gigabit Ethernet PICs on MX Series
routers, to remove both the outer and inner VLAN tags of the frame, include the `pop-pop` statement in the input VLAN map or output VLAN map:

```plaintext
pop-pop;
```

You can include this statement at the following hierarchy levels:

- `[edit interfaces interface-name unit logical-unit-number input-vlan-map]`
- `[edit interfaces interface-name unit logical-unit-number output-vlan-map]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number input-vlan-map]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number output-vlan-map]`

See Table 10 on page 136 and Table 11 on page 137 for information about configuring inner and outer VLAN ID values and inner and outer TPID values required for VLAN maps.

Related Documentation
- `input-vlan-map` on page 492
- `output-vlan-map`
- `pop-pop` on page 529
- `unit` on page 568
- See Table 10 on page 136 and Table 11 on page 137 for information about configuring inner and outer VLAN ID values and inner and outer TPID values required for VLAN maps.
- Junos® OS Ethernet Interfaces

Removing the Outer VLAN Tag and Rewriting the Inner VLAN Tag

On Ethernet IQ, IQ2 and IQ2-E interfaces, on MX Series router Gigabit Ethernet, Tri-Rate Ethernet copper, and 10-Gigabit Ethernet interfaces, and on aggregated Ethernet interfaces using Gigabit Ethernet IQ2 and IQ2-E or 10-Gigabit Ethernet PICs on MX Series routers, to remove the outer VLAN tag of the frame and replace the inner VLAN tag with a user-specified VLAN tag value, include the `pop-swap` statement in the input VLAN map or output VLAN map:

```plaintext
pop-swap;
```

The inner tag becomes the outer tag in the final frame.

You can include this statement at the following hierarchy levels:

- `[edit interfaces interface-name unit logical-unit-number input-vlan-map]`
- `[edit interfaces interface-name unit logical-unit-number output-vlan-map]`
• [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number input-vlan-map]
• [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number output-vlan-map]

See Table 10 on page 136 and Table 11 on page 137 for information about configuring inner and outer VLAN ID values and inner and outer TPID values required for VLAN maps.

Related Documentation
• input-vlan-map on page 492
• output-vlan-map
• pop-swap on page 530
• unit on page 568

See Table 10 on page 136 and Table 11 on page 137 for information about configuring inner and outer VLAN ID values and inner and outer TPID values required for VLAN maps.

Junos® OS Ethernet Interfaces

Stacking Two VLAN Tags

On Ethernet IQ, IQ2 and IQ2-E interfaces, on MX Series router Gigabit Ethernet, Tri-Rate Ethernet copper, and 10-Gigabit Ethernet interfaces, and on aggregated Ethernet interfaces using Gigabit Ethernet IQ2 and IQ2-E or 10-Gigabit Ethernet PICs on MX Series routers, to push two VLAN tags in front of tagged frames entering or exiting the interface, include the push-push statement in the input VLAN map or the output VLAN map:

push-push;

You can include this statement at the following hierarchy levels:

• [edit interfaces interface-name unit logical-unit-number input-vlan-map]
• [edit interfaces interface-name unit logical-unit-number output-vlan-map]
• [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number input-vlan-map]
• [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number output-vlan-map]

See Table 10 on page 136 and Table 11 on page 137 for information about configuring inner and outer VLAN ID values and inner and outer TPID values required for VLAN maps.

Related Documentation
• input-vlan-map on page 492
• output-vlan-map
• pop-swap on page 530
• unit on page 568
See Table 10 on page 136 and Table 11 on page 137 for information about configuring inner and outer VLAN ID values and inner and outer TPID values required for VLAN maps.

Junos® OS Ethernet Interfaces

Rewriting the VLAN Tag on Tagged Frames

To rewrite the VLAN tag on all tagged frames entering the interface to a specified VLAN ID and TPID, include the `swap`, `tag-protocol-id`, and `vlan-id` statements in the input VLAN map:

```
input-vlan-map {
    swap;
    vlan-id number;
    tag-protocol-id tpid;
}
```

To rewrite the VLAN tag on all tagged frames exiting the interface to a specified VLAN ID and TPID, include the `swap` and `tag-protocol-id` statements in the output VLAN map:

```
output-vlan-map {
    swap;
    vlan-id number;
    tag-protocol-id tpid;
}
```

You can include these statements at the following hierarchy levels:

- `[edit interfaces interface-name unit logical-unit-number input-vlan-map]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number input-vlan-map]`

You cannot include both the `swap` statement and the `vlan-id` statement in the output VLAN map configuration. If you include the `swap` statement in the configuration, the VLAN ID in outgoing frames is rewritten to the VLAN ID bound to the logical interface. For more information about binding a VLAN ID to the logical interface, see “802.1Q VLANs Overview” on page 53.

The swap operation works on the outer tag only, whether or not you include the `stacked-vlan-tagging` statement in the configuration. For more information, see “Examples: Stacking and Rewriting Gigabit Ethernet IQ VLAN Tags” on page 147.

Related Documentation
- `input-vlan-map` on page 492
- `output-vlan-map`
- `swap` on page 556
- `vlan-id` on page 577
- `tag-protocol-id` on page 561
- `unit` on page 568
For more information about binding a VLAN ID to the logical interface, see 802.1Q VLANs Overview on page 53.

For more information about the swap operation, see Examples: Stacking and Rewriting Gigabit Ethernet IQ VLAN Tags on page 147.

Junos® OS Ethernet Interfaces

Rewriting a VLAN Tag on Untagged Frames

On M320, M120, and MX Series routers with Gigabit Ethernet IQ, IQ2, and IQ2E PICs, 10-Gigabit Ethernet IQ, IQ2, and IQ2E PICs, and on MX Series 40-port Gigabit Ethernet R, 40-port Gigabit Ethernet R EQ, 4-port 10-Gigabit Ethernet R, and 4-port 10-Gigabit Ethernet R EQ DPCs, you can rewrite VLAN tags on untagged incoming and outgoing frames under ethernet-ccc and ethernet-vpls encapsulations. On MX Series routers with IQ2 and IQ2-E PICs, you can perform all rewrite VLAN tag operations. These features provide added flexibility.

Consider a network where two provider edges (PE) are connected by a Layer 2 circuit. PE1 is receiving traffic on an untagged port while the corresponding port on PE2 is tagged. In the normal case, packets coming from PE1 will be dropped at PE2 because it is expecting tagged packets. However, if PE1 can push a VLAN tag on the incoming packet before sending it across to PE2, you can ensure that packets are not dropped. To make it work in both directions, PE1 must strip the VLAN tag from outgoing packets. Therefore, a push on the ingress side is always paired with a pop on the egress side.

The rewrite operations represented by the following statement options are supported under ethernet-ccc and ethernet-vpls encapsulations:

- **push**—A VLAN tag is added to the incoming untagged frame.
- **pop**—VLAN tag is removed from the outgoing frame.
- **push-push**—An outer and inner VLAN tag are added to the incoming untagged frame.
- **pop-pop**—Both the outer and inner VLAN tags of the outgoing frame are removed.

IQ2 and 10-Gigabit Ethernet PICs support all rewrite operations described above. Details on the possible combinations of usage are explained later in this section.

NOTE: The push-push and pop-pop operations are not supported on the Gigabit Ethernet IQ PIC.

For the input-vlan-map statement, only the push and push-push options are supported because it does not make sense to remove a VLAN tag from an incoming untagged frame. Similarly, only the pop and pop-pop options are supported for the output-vlan-map statement. Also, with the push and push-push options, the tag parameters have to be explicitly specified. Apart from this, the other rules for configuring the input-vlan-map and output-vlan-map statements are the same as for tagged frames. Table 12 on page 144 through Table 14 on page 144 explain the rules in more detail.
For the `input-vlan-map` statement, only the `push` and `push-push` options are supported because it does not make sense to remove a VLAN tag from an incoming untagged frame. Similarly, only the `pop` and `pop-pop` options are supported for the `output-vlan-map` statement. Also, with the `push` and `push-push` options, the `vlan-id` parameters (for `push` and `vlan-id` or `inner-vlan-id` for `push-push`) have to be explicitly specified. TPID however, is optional and the default value of `0x8100` is set if not configured. Apart from this, the other rules for configuring the `input-vlan-map` and `output-vlan-map` statements are the same as for tagged frames.

Table 12: Input VLAN Map Statements Allowed for ethernet-ccc and ethernet-vpls Encapsulations

<table>
<thead>
<tr>
<th>Operation</th>
<th>vlan-id</th>
<th>tag-protocol-id</th>
<th>inner-vlan-id</th>
<th>inner-tag-protocol-id</th>
</tr>
</thead>
<tbody>
<tr>
<td>push</td>
<td>Yes</td>
<td>Optional</td>
<td>No</td>
<td>Optional</td>
</tr>
<tr>
<td>push-push</td>
<td>Yes</td>
<td>Optional</td>
<td>Yes</td>
<td>Optional</td>
</tr>
</tbody>
</table>

Table 13: Output VLAN Map Statements Allowed for ethernet-ccc and ethernet-vpls Encapsulations

<table>
<thead>
<tr>
<th>Operation</th>
<th>vlan-id</th>
<th>tag-protocol-id</th>
<th>inner-vlan-id</th>
<th>inner-tag-protocol-id</th>
</tr>
</thead>
<tbody>
<tr>
<td>pop</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>pop-pop</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 14: Rules for Applying Rewrite Operations to VLAN Maps

<table>
<thead>
<tr>
<th>Output VLAN Map</th>
<th>Input VLAN Map</th>
<th>None</th>
<th>pop</th>
<th>pop-pop</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>push</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>push-push</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Example: push and pop with Ethernet CCC Encapsulation

```bash
ge-3/1/0 {
  encapsulation ethernet-ccc;
  unit 0 {
    encapsulation ethernet-ccc;
    input-vlan-map {
      push;
      tag-protocol-id 0x8100;
      vlan-id 600;
    }
    output-vlan-map pop;
    family ccc;
  }
}
```
Example: push-push and pop-pop with Ethernet CCC Encapsulation
```
ge-3/1/0 {
enapsulation ethernet-ccc;
unit 0 {
enapsulation ethernet-ccc;
input-vlan-map {
push-push;
tag-protocol-id 0x8100;
inner-tag-protocol-id 0x8100;
vlan-id 600;
inner-vlan-id 575;
}
output-vlan-map pop-pop;
family ccc;
}
}
```

Example: push and pop with Ethernet VPLS Encapsulation
```
ge-3/1/0 {
enapsulation ethernet-vpls;
unit 0 {
enapsulation ethernet-vpls;
input-vlan-map {
push;
tag-protocol-id 0x8100;
vlan-id 700;
}
output-vlan-map pop;
family vpls;
}
}
```

Example: push-push and pop-pop with Ethernet VPLS Encapsulation
```
ge-3/1/0 {
enapsulation ethernet-vpls;
unit 0 {
enapsulation ethernet-vpls;
input-vlan-map {
push-push;
tag-protocol-id 0x8100;
inner-tag-protocol-id 0x8100;
vlan-id 600;
inner-vlan-id 575;
}
output-vlan-map pop-pop;
family vpls;
}
}
```

You can use the `show interface interface-name` command to display the status of a modified VLAN map for the specified interface.

Related Documentation
- `input-vlan-map` on page 492
- `output-vlan-map`
- `pop` on page 529
- `pop-pop` on page 529
Rewriting a VLAN Tag and Adding a New Tag

On Ethernet IQ, IQ2 and IQ2-E interfaces, on MX Series router Gigabit Ethernet, Tri-Rate Ethernet copper, and 10-Gigabit Ethernet interfaces, and on aggregated Ethernet interfaces using Gigabit Ethernet IQ2 and IQ2-E or 10-Gigabit Ethernet PICs on MX Series routers, to replace the outer VLAN tag of the incoming frame with a user-specified VLAN tag value, include the swap-push statement in the input VLAN map or output VLAN map:

```
swap-push
```

A user-specified outer VLAN tag is pushed in front. The outer tag becomes an inner tag in the final frame.

You can include this statement at the following hierarchy levels:

- `[edit interfaces interface-name unit logical-unit-number input-vlan-map]`
- `[edit interfaces interface-name unit logical-unit-number output-vlan-map]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number input-vlan-map]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number output-vlan-map]`

See Table 10 on page 136 and Table 11 on page 137 for information about configuring inner and outer VLAN ID values and inner and outer TPID values required for VLAN maps.

Rewriting the Inner and Outer VLAN Tags

On Ethernet IQ, IQ2 and IQ2-E interfaces, on MX Series router Gigabit Ethernet, Tri-Rate Ethernet copper, and 10-Gigabit Ethernet interfaces, and on aggregated Ethernet interfaces using Gigabit Ethernet IQ2 and IQ2-E or 10-Gigabit Ethernet PICs on MX Series routers, to replace both the inner and the outer VLAN tags of the incoming frame with a user-specified VLAN tag value, include the swap-swap statement in the input VLAN map or output VLAN map:
swap-swap;

You can include this statement at the following hierarchy levels:

- [edit interfaces interface-name unit logical-unit-number input-vlan-map]
- [edit interfaces interface-name unit logical-unit-number output-vlan-map]
- [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number input-vlan-map]
- [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number output-vlan-map]

See Table 10 on page 136 and Table 11 on page 137 for information about configuring inner and outer VLAN ID values and inner and outer TPID values required for VLAN maps.

Related Documentation

- input-vlan-map on page 492
- output-vlan-map
- swap-swap on page 557
- unit on page 568
- Junos® OS Ethernet Interfaces

Examples: Stacking and Rewriting Gigabit Ethernet IQ VLAN Tags

Configure a VLAN CCC tunnel in which Ethernet frames enter the tunnel at interface `ge-4/0/0` and exit the tunnel at interface `ge-4/2/0`.

The following examples show how to perform the following tasks:

- Push a TPID and VLAN ID Pair on Ingress on page 148
- Stack Inner and Outer VLAN Tags on page 148
- Swap a VLAN ID on Ingress on page 149
- Swap a VLAN ID on Egress on page 149
- Swap a VLAN ID on Both Ingress and Egress on page 150
- Swap the Outer VLAN Tag and Push a New VLAN Tag on Ingress; Pop the Outer VLAN Tag and Swap the Inner VLAN Tag on Egress on page 151
- Swap a TPID and VLAN ID Pair for Both VLAN Tags on Ingress and on Egress on page 151
- Pop the Outer VLAN Tag and Swap the Inner VLAN Tag on Ingress; Swap the Outer VLAN Tag and Push a New VLAN Tag on Egress on page 152
- Pop a TPID and VLAN ID Pair on Ingress; Push a VLAN ID and TPID Pair on Egress on page 152
- Pop an Outer VLAN Tag to Connect an Untagged VPLS Interface to Tagged VPLS Interfaces on page 153
Push a TPID and VLAN ID Pair on Ingress

```
[edit interfaces]
ge-4/0/0 {
  vlan-tagging;
  encapsulation vlan-ccc;
  gigether-options {
    ethernet-switch-profile {
      tag-protocol-id 0x9909;
    }
  }
  unit 0 {
    encapsulation vlan-ccc;
    vlan-id 512;
    input-vlan-map {
      push;
      tag-protocol-id 0x9909;
      vlan-id 520;
    }
    output-vlan-map pop;
  }
}
ge-4/2/0 {
  vlan-tagging;
  encapsulation vlan-ccc;
  unit 0 {
    encapsulation vlan-ccc;
    vlan-id 515;
    input-vlan-map {
      swap-push;
      vlan-id 520;
      inner-vlan-id 512;
    }
    output-vlan-map {
      pop-swap;
    }
  }
  [edit protocols]
  mpls {
    interface ge-4/0/0.0;
    interface ge-4/2/0.0;
  }
  connections {
    interface-switch vlan-tag-push {
      interface ge-4/0/0.0;
      interface ge-4/2/0.0;
    }
  }
}
```

Stack Inner and Outer VLAN Tags

```
[edit interfaces]
ge-0/2/0 {
  stacked-vlan-tagging;
  mac 00.01.02.03.04.05;
  gigether-options {
    loopback;
  }
```
Swap a VLAN ID on Ingress

[edit interfaces]
ge-4/0/0 {
 vlan-tagging;
 encapsulation vlan-ccc;
 gigether-options {
 ethernet-switch-profile {
 tag-protocol-id 0x9100;
 }
 }
 ...
 unit 1 {
 encapsulation vlan-ccc;
 vlan-id 1000;
 input-vlan-map {
 swap;
 tag-protocol-id 0x9100;
 vlan-id 2000;
 }
 }
 ...
 unit 0 {
 vlan-tags outer 0x8100.200 inner 0x8100.200;
 }
}

ge-4/2/0 {
 vlan-tagging;
 encapsulation vlan-ccc;
 ...
 unit 1 {
 encapsulation vlan-ccc;
 vlan-id 2000;
 input-vlan-map {
 swap;
 tag-protocol-id 0x9100;
 vlan-id 1000;
 }
 }
 ...
[edit protocols]
mls {
 ...
 interface ge-4/0/0.1;
 interface ge-4/2/0.1;
}
connections {
 ...
 interface-switch vlan-tag-swap {
 interface ge-4/2/0.1;
 interface ge-4/0/0.1;
 }
}

Swap a VLAN ID on Egress

[edit interfaces]
ge-4/0/0 {
 ...
 unit 0 {
 vlan-tags outer 0x8100.200 inner 0x8100.200;
 }
 ...
 unit 1 {
 encapsulation vlan-ccc;
 vlan-id 1000;
 input-vlan-map {
 swap;
 tag-protocol-id 0x9100;
 vlan-id 2000;
 }
 }
 ...
 unit 2 {
 encapsulation vlan-ccc;
 vlan-id 2000;
 input-vlan-map {
 swap;
 tag-protocol-id 0x9100;
 vlan-id 1000;
 }
 }
 ...
[edit protocols]
mls {
 ...
 interface ge-4/0/0.1;
 interface ge-4/2/0.1;
}
connections {
 ...
 interface-switch vlan-tag-swap {
 interface ge-4/2/0.1;
 interface ge-4/0/0.1;
 }
}

Chapter 5: Stacking and Rewriting Gigabit Ethernet VLAN Tags
vlan-tagging;
encapsulation vlan-ccc;
...
unit 1 [
 encapsulation vlan-ccc;
 vlan-id 1000;
]
}
ge-4/2/0 {
 vlan-tagging;
 encapsulation vlan-ccc;
 gigether-options {
 ethernet-switch-profile {
 tag-protocol-id 0x8800;
 }
 }
}
...
unit 1 [
 encapsulation vlan-ccc;
 vlan-id 2000;
 output-vlan-map {
 swap;
 tag-protocol-id 0x8800;
 }
]
}
[edit protocols]
mpls {
...
interface ge-4/0/0.1;
interface ge-4/2/0.1;
}
connections {
...
interface-switch vlan-tag-swap {
 interface ge-4/2/0.1;
 interface ge-4/0/0.1;
}
}

Swap a VLAN ID on Both Ingress and Egress

[edit interfaces]
ge-4/0/0 {
 vlan-tagging;
 encapsulation vlan-ccc;
 gigether-options {
 ethernet-switch-profile {
 tag-protocol-id [0x8800 0x9100];
 }
 }
}
...
unit 1 [
 encapsulation vlan-ccc;
 vlan-id 1000;
 input-vlan-map {
 swap;
 tag-protocol-id 0x9100;
 }
]
Swap the Outer VLAN Tag and Push a New VLAN Tag on Ingress; Pop the Outer VLAN Tag and Swap the Inner VLAN Tag on Egress

```
[edit interfaces]
ge-1/1/0 {
  unit 1 {
    vlan-id 200;
    input-vlan-map {
      swap-push;
      tag-protocol-id 0x9100;
      vlan-id 400;
      inner-tag-protocol-id 0x9100;
      inner-vlan-id 500;
    }
    output-vlan-map {
      pop-swap;
      inner-tag-protocol-id 0x9100;
    }
  }
}
```

Swap a TPID and VLAN ID Pair for Both VLAN

```
[edit interfaces]
ge-1/1/0 {
```
Tags on Ingress and on Egress

```plaintext
unit 0 {
  vlan-tags {
    inner 0x9100.425;
    outer 0x9200.525;
  }
  input-vlan-map {
    swap-swap;
    tag-protocol-id 0x9100;
    vlan-id 400;
    inner-tag-protocol-id 0x9100;
    inner-vlan-id 500;
  }
  output-vlan-map {
    swap-swap;
    tag-protocol-id 0x9200;
    inner-tag-protocol-id 0x9100;
  }
}
```

Pop the Outer VLAN Tag and Swap the Inner VLAN Tag on Ingress; Swap the Outer VLAN Tag and Push a New VLAN Tag on Egress

```plaintext
[edit interfaces]
ge-1/1/0 {
  unit 0 {
    vlan-tags {
      inner 0x9100.425;
      outer 0x9200.525;
    }
    input-vlan-map {
      pop-swap;
      tag-protocol-id 0x9100;
      vlan-id 400;
    }
    output-vlan-map {
      swap-push;
      tag-protocol-id 0x9200;
      inner-tag-protocol-id 0x9100;
    }
  }
}
```

Pop a TPID and VLAN ID Pair on Ingress; Push a VLAN ID and TPID Pair on Egress

```plaintext
[edit interfaces]
ge-1/1/0 {
  unit 0 {
    vlan-tags {
      inner 0x9100.425;
      outer 0x9200.525;
    }
    input-vlan-map {
      pop-pop;
    }
    output-vlan-map {
      push-push;
      tag-protocol-id 0x9200;
      inner-tag-protocol-id 0x9100;
    }
  }
}
```
Pop an Outer VLAN Tag to Connect an Untagged VPLS Interface to Tagged VPLS Interfaces

```conf
[edit interfaces]
ge-1/1/0 {
  vlan-tagging;
  encapsulation extended-vlan-vpls;
  unit 0 {
    vlan-id 0;
    input-vlan-map {
      push;
      vlan-id 0;
    }
    output-vlan-map pop;
    family vpls;
  }
}
```

Related Documentation
- `input-vlan-map` on page 492
- `output-vlan-map`
- `inner-tag-protocol-id` on page 488
- `inner-vlan-id` on page 489
- `pop` on page 529
- `pop-pop` on page 529
- `pop-swap` on page 530
- `push` on page 541
- `push-push` on page 541
- `swap` on page 556
- `swap-push` on page 556
- `swap-swap` on page 557
- `unit` on page 568
- Junos® OS Ethernet Interfaces
CHAPTER 6

Configuring Layer 2 Bridging Interfaces

- Layer 2 Bridging Interfaces Overview on page 155
- Configuring Layer 2 Bridging Interfaces on page 155

Layer 2 Bridging Interfaces Overview

Bridging operates at Layer 2 of the OSI reference model while routing operates at Layer 3. A set of logical ports configured for bridging can be said to constitute a bridging domain.

A bridging domain can be created by configuring a routing instance and specifying the instance-type as bridge.

Integrated routing and bridging (IRB) is the ability to:
- Route a packet if the destination MAC address is the MAC address of the router and the packet ethertype is IPv4, IPv6, or MPLS.
- Switch all multicast and broadcast packets within a bridging domain at layer 2.
- Route a copy of the packet if the destination MAC address is a multicast address and the ethertype is IPv4 or IPv6.
- Switch all other unicast packets at Layer 2.
- Handle supported Layer 2 control packets such as STP and LACP.
- Handle supported Layer 3 control packets such as OSPF and RIP.

Related Documentation
- Configuring Layer 2 Bridging Interfaces on page 155
- Junos® OS Ethernet Interfaces

Configuring Layer 2 Bridging Interfaces

You can configure an IRB logical interface at the [edit interfaces ge-fpc /pic/port unit logical-unit-number] hierarchy level:

[edit interfaces ge-fpc/pic/port]
unit logical-unit-number {
}
You can configure Layer 3 information on the IRB logical interface by including the `irb` statement at the `[edit interfaces]` hierarchy level:

```
[edit interfaces]
irb {
  unit logical-unit-number {
    family inet {
      address address {
      }
    }
  }
}
```

For examples of Layer 2 bridging configuration, see the Junos OS Routing Protocols Configuration Guide.

Example: Configuring Layer 2 Bridging Interfaces

The following example configures an IRB logical interface and Layer 3 information on the interface.

```
[edit interfaces]
ge-1/0/0 {
  unit 0 {
  }
}
irb {
  unit 0 {
    family inet {
      address 192.168.12.1/28;
    }
  }
}
```

Related Documentation

- `family` on page 568
- Layer 2 Bridging Interfaces Overview on page 155
- Junos® OS Ethernet Interfaces
The Link Layer Discovery Protocol (LLDP) is an industry-standard, vendor-neutral method to allow networked devices to advertise capabilities, identity, and other information onto a LAN. The Layer 2 protocol, detailed in IEEE 802.1AB-2005, replaces several proprietary protocols implemented by individual vendors for their equipment.

LLDP allows network devices that operate at the lower layers of a protocol stack (such as Layer 2 bridges and switches) to learn some of the capabilities and characteristics of LAN devices available to higher layer protocols, such as IP addresses. The information gathered through LLDP operation is stored in a network device and is queried with SNMP. Topology information can also be gathered from this database.

Some of the information that can be gathered by LLDP (only minimal information is mandatory) is:

- System name and description
- Port name and description
- VLAN name and identifier
- IP network management address
- Capabilities of the device (for example, switch, router, or server)
- MAC address and physical layer information
- Power information
- Link aggregation information

NOTE: LLDP media endpoint discovery (LLDP-MED) is not supported on T Series routers.
LLDP frames are sent at fixed intervals on each port that runs LLDP. LLDP protocol data units (LLDP PDUs) are sent inside Ethernet frames and identified by their destination Media Access Control (MAC) address (01:80:C2:00:00:0E) and Ethertype (0x88CC). Mandatory information supplied by LLDP is chassis ID, port ID, and a time-to-live value for this information.

LLDP is a powerful way to allow Layer 2 devices to gather details about other network-attached devices.

Related Documentation
- Configuring LLDP on page 158
- Tracing LLDP Operations on page 160
- Example: Configuring LLDP on page 161
- LLDP Operational Mode Commands

Configuring LLDP

You configure LLDP by including the `lldp` statement and associated parameters at the `[edit protocols]` hierarchy level. The complete set of LLDP statements follows:

```plaintext
lldp {
    advertisement-interval seconds;
    disable;
    hold-multiplier number;
    interface (all | interface-name) {
        disable;
    }
    lldp-configuration-notification-interval seconds;
    port-id-subtype {
        interface-name;
        locally-assigned;
    }
    ptopo-configuration-maximum-hold-time seconds;
    ptopo-configuration-trap-interval seconds;
    traceoptions {
        file filename <files number> <size size> <world-readable | no-world-readable>;
        flag flag <flag-modifier> <disable>;
    }
    transmit-delay seconds
}
```

The following statements have default values:

- `advertisement-interval`—The default value is 30 seconds. The allowable range is from 5 through 32768 seconds.
- `hold-multiplier`—The default values is 4. The allowable range is from 2 through 10.
- `ptopo-configuration-maximum-hold-time`—The default value is 300 seconds. The allowable range is from 1 through 2147483647 seconds.
- `transmit-delay`—The default values is 2 seconds. The allowable range is from 1 through 8192 seconds.
The following statements must be explicitly configured:

- **lldp-configuration-notification-interval**—The allowable range is from 0 through 3600 seconds. There is no default value.

- **ptopo-configuration-trap-interval**—The allowable range is from 1 through 2147483647 seconds. There is no default value.

To disable LLDP on all or a particular interface, include the `interfaces` statement at the `[edit protocols lldp]` hierarchy level:

```
interface (all | interface-name) {
    disable;
}
```

To disable LLDP on all interfaces, use the `all` option. To disable LLDP on a particular interface, include the `disable` statement with the interface name.

To configure LLDP on a T Series router within a TX Matrix, you must specify the interface name in the LLDP configuration for the TX Matrix. For information about interface names for TX Matrix routers, see TX Matrix Router Chassis and Interface Names. For information about FPC numbering, see Routing Matrix with a TX Matrix Router FPC Numbering

NOTE: The interface-name must be the physical interface (for example, ge-1/0/0) and not a logical interface (unit).

The advertisement interval determines the frequency that an LLDP interface sends LLDP advertisement frames. The default value is 30 seconds. The allowable range is from 5 through 32768 seconds. You adjust this parameter by including the `advertisement-interval` statement at the `[edit protocols lldp]` hierarchy level.

The hold multiplier determines the multiplier to apply to the advertisement interval. The resulting value in seconds is used to cache learned LLDP information before discard. The default value is 4. When used with the default advertisement interval value of 30 seconds, this makes the default cache lifetime 120 seconds. The allowable range of the hold multiplier is from 2 through 10. You adjust this parameter by including the `hold-multiplier` statement at the `[edit protocols lldp]` hierarchy level.

The transmit delay determines the delay between any two consecutive LLDP advertisement frames. The default value is 2 seconds. The allowable range is from 1 through 8192 seconds. You adjust this parameter by including the `transmit-delay` statement at the `[edit protocols lldp]` hierarchy level.

The physical topology configuration maximum hold time determines the time interval for which an agent device maintains physical topology database entries. The default value is 300 seconds. The allowable range is from 1 through 2147483647 seconds. You adjust this parameter by including the `ptopo-configuration-maximum-hold-time` statement at the `[edit protocols lldp]` hierarchy level.

The LLDP configuration notification interval determines the period for which trap notifications are sent to the SNMP Master Agent when changes occur in the database.
of LLDP information. This capability is disabled by default. The allowable range is from 0 (disabled) through 3600 seconds. You adjust this parameter by including the `lldp-configuration-notification-interval` statement at the `[edit protocols lldp]` hierarchy level.

The physical topology configuration trap interval determines the period for which trap notifications are sent to the SNMP Master Agent when changes occur in the global physical topology statistics. This capability is disabled by default. The allowable range is from 0 (disabled) through 3600 seconds. The LLDP agent sends traps to the SNMP Master Agent if this interval has a value greater than 0 and there is any change during the `lldp-configuration-notification-interval` trap interval. You adjust this parameter by including the `ptopo-configuration-trap-interval` statement at the `[edit protocols lldp]` hierarchy level.

By default, LLDP generates the SNMP index of the interface for the port ID Type, Length, and Value (TLV). Starting with Junos OS Release 12.3R1, you can generate the interface name as the port ID TLV by including the `interface-name` statement at the `[edit protocols lldp port-id-subtype]` hierarchy level. When configure the `interface-name`, statement on the remote LLDP neighbor, the `show lldp neighbors` command displays the interface name in the Port ID field rather than the SNMP index of the interface, which is displayed by default. If you change the default behavior of generating the SNMP index of the interface as the Port ID TLV, you can reenable the default behavior by including the `locally-assigned` statement at the `[edit protocols lldp port-id-subtype]` hierarchy level.

Related Documentation
- LLDP Overview on page 157
- Tracing LLDP Operations on page 160
- Example: Configuring LLDP on page 161
- LLDP Operational Mode Commands
- TX Matrix Router Chassis and Interface Names
- Miscellaneous Commands for a Routing Matrix with a TX Matrix Router

Tracing LLDP Operations

To trace LLDP operational traffic, you can specify options in the global `traceoptions` statement included at the `[edit routing-options]` hierarchy level, and you can specify LLDP-specific options by including the `traceoptions` statement:

```plaintext
traceoptions {
  file filename <files number> <size size> <world-readable | no-world-readable>;
  flag flag <flag-modifier> <disable>;
}
```

You can include this statement at the following hierarchy levels:

- `[edit protocols lldp]`
- `[edit routing-instances routing-instance-name protocols lldp]`
You can specify the following LLDP-specific options in the LLDP traceoptions statement:

- **all**—Trace all operations.
- **config**—Log configuration events.
- **interface**—Trace interface update events.
- **protocol**—Trace protocol information.
- **rtsock**—Trace real-time socket events.
- **vlan**—Trace VLAN update events.

NOTE: Use the trace flag all with caution. This flag may cause the CPU to become very busy.

For general information about tracing and global tracing options, see the statement summary for the global traceoptions statement in the Junos OS Routing Protocols Configuration Guide.

Example: Configuring LLDP

The following example configures LLDP on interface ge-1/1/1 but disables LLDP on all other interfaces, explicitly configures the default values for all automatically enabled features, and configures a value of 30 seconds for the LLDP configuration notification interval and a value of 30 seconds for the physical topology trap interval.

```
[edit]
protocols {
  lldp {
    advertisement-interval 30;
    hold-multiplier 4;
    interface all {
      disable;
    }
    interface ge-1/1/1;
    lldp-configuration-notification-interval 30;
    ptopo-configuration-maximum-hold-time 300;
    ptopo-configuration-trap-interval 30;
    transmit-delay 2;
  }
}
```
You verify operation of LLDP with several show commands:

- `show lldp <detail>`
- `show lldp neighbors interface-name`
- `show lldp statistics interface-name`
- `show lldp local-information`
- `show lldp remote-global-statistics`

You can clear LLDP neighbor information or statistics globally or on an interface:

- `clear lldp neighbors interface-name`
- `clear lldp statistics interface-name`

You can display basic information about LLDP with the `show lldp detail` command:

```
user@host> show lldp detail
LLDP : Enabled
Advertisement interval : 30 Second(s)
Transmit delay : 2 Second(s)
Hold timer : 4 Second(s)
Notification interval : 30 Second(s)
Config Trap Interval : 300 Second(s)
Connection Hold timer : 60 Second(s)

Interface      LLDP       Neighbor count
ge-1/1/1       Enabled    0

LLDP basic TLVs supported:
Chassis identifier, Port identifier, Port description, System name, System
description, System capabilities, Management address.

LLDP 802 TLVs supported:
Link aggregation, Maximum frame size, MAC/PHY Configuration/Status, Port VLAN ID,
Port VLAN name.

For more details about the output of these commands, see the Junos OS Operational Mode Commands.

Related Documentation
- LLDP Overview on page 157
- Configuring LLDP on page 158
- Tracing LLDP Operations on page 160
- LLDP Operational Mode Commands
CHAPTER 8

Configuring TCC and Layer 2.5 Switching

- TCC and Layer 2.5 Switching Overview on page 163
- Configuring VLAN TCC Encapsulation on page 163
- Configuring Ethernet TCC on page 165

TCC and Layer 2.5 Switching Overview

Translational cross-connect (TCC) is a switching concept that allows you to forward traffic between a variety of Layer 2 protocols or circuits. It is similar to its predecessor, CCC. However, while CCC requires the same Layer 2 encapsulations on both sides of a router (such as Point-to-Point Protocol [PPP] or Frame Relay-to-Frame Relay), TCC lets you connect different types of Layer 2 protocols interchangeably. With TCC, combinations such as PPP-to-ATM and Ethernet-to-Frame Relay cross-connections are possible.

Related Documentation
- Configuring VLAN TCC Encapsulation on page 163
- Configuring Ethernet TCC on page 165
- Junos® OS Ethernet Interfaces

Configuring VLAN TCC Encapsulation

VLAN TCC encapsulation allows circuits to have different media on either side of the forwarding path. VLAN TCC encapsulation supports TPID 0x8100 only. You must include configuration statements at the logical and physical interface hierarchy levels.

To configure VLAN TCC encapsulation, include the encapsulation statement and specify the vlan-tcc option:

```
[edit interfaces interface-name unit logical-unit-number]
encapsulation vlan-tcc;
```

You can include this statement at the following hierarchy levels:

- [edit interfaces interface-name unit logical-unit-number ]
- [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]
Additionally, configure the logical interface by including the `proxy` and `remote` statements:

```junos
proxy {
 inet-address;
}
remote {
 (inet-address | mac-address);
}
```

You can include these statements at the following hierarchy levels:

- `[edit interfaces interface-name unit logical-unit-number family tcc]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family tcc]`

The proxy address is the IP address of the non-Ethernet TCC neighbor for which the TCC router is acting as a proxy.

The remote address is the IP or MAC address of the remote router. The `remote` statement provides ARP capability from the TCC switching router to the Ethernet neighbor. The MAC address is the physical Layer 2 address of the Ethernet neighbor.

When VLAN TCC encapsulation is configured on the logical interface, you also must specify flexible Ethernet services on the physical interface. To specify flexible Ethernet services, include the `encapsulation` statement at the `[edit interfaces interface-name]` hierarchy level and specify the `flexible-ethernet-services` option:

```junos
[edit interfaces interface-name]
encapsulation flexible-ethernet-services;
```

Extended VLAN TCC encapsulation supports TPIDs 0x8100 and 0x9901. Extended VLAN TCC is specified at the physical interface level. When configured, all units on that interface must use VLAN TCC encapsulation, and no explicit configuration is needed on logical interfaces.

One-port Gigabit Ethernet, 2-port Gigabit Ethernet, and 4-port Fast Ethernet PICs with VLAN tagging enabled can use VLAN TCC encapsulation. To configure the encapsulation on a physical interface, include the `encapsulation` statement at the `[edit interfaces interface-name]` hierarchy level and specify the `extended-vlan-tcc` option:

```junos
[edit interfaces interface-name]
encapsulation extended-vlan-tcc;
```

For VLAN TCC encapsulation, all VLAN IDs from 1 through 1024 are valid. VLAN ID 0 is reserved for tagging the priority of frames.

Extended VLAN TCC is not supported on 4-port Gigabit Ethernet PICs.
Configuring Ethernet TCC

For Layer 2.5 virtual private networks (VPNs) using an Ethernet interface as the TCC router, you can configure an Ethernet TCC.

To configure an Ethernet TCC, include the `encapsulation` statement and specify the `ethernet-tcc` option at the `[edit interfaces interface-name]` hierarchy level:

```
[edit interfaces interface-name]
encapsulation ethernet-tcc;
```

For Ethernet TCC encapsulation, you must also configure the logical interface by including the `proxy` and `remote` statements:

```
proxy {
 inet-address;
}
remote {
 (inet-address | mac-address);
}
```

You can include these statements at the following hierarchy levels:

- `[edit interfaces interface-name unit logical-unit-number family tcc]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family tcc]`

The proxy address is the IP address of the non-Ethernet TCC neighbor for which the TCC router is acting as a proxy.

The remote address is the IP or MAC address of the remote router. The `remote` statement provides ARP capability from the TCC switching router to the Ethernet neighbor. The MAC address is the physical Layer 2 address of the Ethernet neighbor.

Ethernet TCC is supported on interfaces that carry IPv4 traffic only. For 8-port, 12-port, and 48-port Fast Ethernet PICs, TCC and extended VLAN CCC are not supported. For 4-port Gigabit Ethernet PICs, extended VLAN CCC and extended VLAN TCC are not supported.

**Example: Configuring an Ethernet TCC or Extended VLAN TCC**

Configure a full-duplex Layer 2.5 translational cross-connect between Router A and Router C, using a Juniper Networks router, Router B, as the TCC interface. Ethernet TCC encapsulation provides an Ethernet wide area circuit for interconnecting IP traffic. (See the topology in Figure 15 on page 166.)

The Router A-to-Router B circuit is PPP, and the Router B-to-Router C circuit accepts packets carrying standard TPID values.
If traffic flows from Router A to Router C, the Junos OS strips all PPP encapsulation data from incoming packets and adds Ethernet encapsulation data before forwarding the packets. If traffic flows from Router C to Router A, the Junos OS strips all Ethernet encapsulation data from incoming packets and adds PPP encapsulation data before forwarding the packets.

**Figure 15: Topology of Layer 2.5 Translational Cross-Connect**

![Topology of Layer 2.5 Translational Cross-Connect](image)

**On Router B**

Configure a full-duplex Layer 2.5 translational cross-connect between Router A and Router C, using a Juniper Networks router, Router B, as the TCC interface. Extended VLAN TCC encapsulation provides an Ethernet wide area circuit for interconnecting IP traffic. (See the topology in Figure 15 on page 166.)

**Configuring an Extended VLAN TCC**

The Router A-to-Router B circuit is PPP, and the Router B-to-Router C circuit is Ethernet with VLAN tagging enabled.

**On Router B**

```
interfaces ge-0/0/0 {
 vlan-tagging;
 encapsulation extended-vlan-tcc;
 unit 0 {
 vlan-id 1;
 family tcc {
 proxy {
 inet-address 10.10.10.3;
 }
 remote {
 inet-address 10.10.10.2;
 }
 }
 }
}
```

**Related Documentation**

- encapsulation
- remote
- proxy
- TCC and Layer 2.5 Switching Overview on page 163
- Configuring VLAN TCC Encapsulation on page 163
- Junos® OS Ethernet Interfaces
 CHAPTER 9

Configuring Static ARP Table Entries

- Static ARP Table Entries Overview on page 167
- Configuring Static ARP Table Entries on page 167

Static ARP Table Entries Overview

For Fast Ethernet, Gigabit Ethernet, Tri-Rate Ethernet copper, and 10-Gigabit Ethernet interfaces, you can configure static ARP table entries, defining mappings between IP and MAC addresses.

Related Documentation
- Configuring Static ARP Table Entries on page 167
- Junos® OS Ethernet Interfaces

Configuring Static ARP Table Entries

To configure static ARP table entries, include the `arp` statement:

```
arp ip-address (mac | multicast-mac) mac-address <publish>;
```

You can include this statement at the following hierarchy levels:

- `[edit interfaces interface-name unit logical-unit-number family inet address address]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family inet address address]`

The IP address that you specify must be part of the subnet defined in the enclosing `address` statement.

To associate a multicast MAC address with a unicast IP address, include the `multicast-mac` statement.

Specify the MAC address as six hexadecimal bytes in one of the following formats: `nnnn.nnnn.nnnn` or `nnnn:nnnn:nnnn`; for example, `0011.2233.4455` or `00:11:22:33:44:55`.

For unicast MAC addresses only, if you include the `publish` option, the router or switch replies to proxy ARP requests.
NOTE: By default, an ARP policer is installed that is shared among all the Ethernet interfaces on which you have configured the family inet statement. By including the arp statement at the [edit interfaces interface-name unit logical-unit-number family inet policer] hierarchy level, you can apply a specific ARP-packet policer to an interface. This feature is not available on EX Series switches.

When you need to conserve IP addresses, you can configure an Ethernet interface to be unnumbered by including the unnumbered-address statement at the [edit interfaces interface-name unit logical-unit-number family inet] hierarchy level.

NOTE: The Junos OS supports the IPv6 static neighbor discovery cache entries, similar to the static ARP entries in IPv4.

Example: Configuring Static ARP Table Entries

Configure two static ARP table entries on the router or switch's management interface:

```
[edit interfaces]
fxp0 {
 unit 0 {
 family inet {
 address 10.10.0.11/24 {
 arp 10.10.0.99 mac 0001.0002.0003;
 arp 10.10.0.101 mac 00:11:22:33:44:55 publish;
 }
 }
 }
}
```

Related Documentation

- Management Ethernet Interface Overview on page 337
- Applying Policers
- Configuring an Unnumbered Interface
- Junos® OS Ethernet Interfaces
Restricted and Unrestricted Proxy ARP Overview

By default, the Junos OS responds to an Address Resolution Protocol (ARP) request only if the destination address of the ARP request is local to the incoming interface.

For Ethernet Interfaces, you can configure the router or switches to proxy-reply to the ARP requests using the restricted or unrestricted proxy ARP configuration.

You might want to configure restricted or unrestricted proxy ARP for routers that act as provider edge (PE) devices in Ethernet Layer 2 LAN switching domains.

NOTE: From Junos OS Release 10.0 onward, Junos OS does not respond to proxy ARP requests with the default route 0.0.0.0. This behavior is in compliance with RFC 1027.

Restricted Proxy ARP

Restricted proxy ARP enables the router or switch to respond to the ARP requests in which the physical networks of the source and target are not the same and the router or switch has an active route to the target address in the ARP request. The router does not reply if the target address is on the same subnet and the same interface as the ARP requestor.

Unrestricted Proxy ARP

Unrestricted proxy ARP enables the router or switch to respond to any ARP request, on condition that the router has an active route to the destination address of the ARP request. The route is not limited to the incoming interface of the request, nor is it required to be a direct route.
WARNING: If you configure unrestricted proxy ARP, the proxy router replies to ARP requests for the target IP address on the same interface as the incoming ARP request. This behavior is appropriate for cable modem termination system (CMTS) environments, but might cause Layer 2 reachability problems if you enable unrestricted proxy ARP in other environments.

When an IP client broadcasts the ARP request across the Ethernet wire, the end node with the correct IP address responds to the ARP request and provides the correct MAC address. If the unrestricted proxy ARP feature is enabled, the router response is redundant and might fool the IP client into determining that the destination MAC address within its own subnet is the same as the address of the router.

NOTE: While the destination address can be remote, the source address of the ARP request must be on the same subnet as the interface upon which the ARP request is received. For security reasons, this rule applies to both unrestricted and restricted proxy ARP.

Topology Considerations for Unrestricted Proxy ARP

In most situations, you should not configure the router to perform unrestricted proxy ARP. Do so only for special situations, such as when cable modems are used. Figure 16 on page 170 and Figure 17 on page 171 show examples of situations in which you might want to configure unrestricted proxy ARP.

In Figure 16 on page 170, the edge device is not running any IP protocols. In this case, you configure the core router to perform unrestricted proxy ARP. The edge device is the client of the proxy.

In Figure 17 on page 171, the Broadband Remote Access Server (B-RAS) routers are not running any IP protocols. In this case, you configure unrestricted proxy ARP on the B-RAS interfaces. This allows the core device to behave as though it is directly connected to the end users.

Figure 16: Edge Device Case for Unrestricted Proxy ARP
Figure 17: Core Device Case for Unrestricted Proxy ARP

To configure restricted or unrestricted proxy ARP, include the `proxy-arp` statement:

```
proxy-arp (restricted | unrestricted);
```

You can include this statement at the following hierarchy levels:

- `[edit interfaces interface-name unit logical-unit-number ]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number ]`

To return to the default—that is, to disable restricted or unrestricted proxy ARP—delete the `proxy-arp` statement from the configuration:

```
[edit]
user@host# delete interfaces interface-name unit logical-unit-number proxy-arp
```

You can track the number of restricted or unrestricted proxy ARP requests processed by the router or switch by issuing the `show system statistics arp` operational mode command.

Related Documentation
- Configuring Restricted and Unrestricted Proxy ARP on page 171
- Junos® OS Ethernet Interfaces
NOTE: When proxy ARP is enabled as default or unrestricted, the router responds to any ARP request as long as the router has an active route to the target address of the ARP request. This gratuitous ARP behavior can result in an error when the receiving interface and target response interface are the same and the end device (for example, a client) performs a duplicate address check. To prevent this error, configure the router interface with the no-gratuitous-arp-reply statement. See “Configuring Gratuitous ARP” on page 48 for information about how to disable responses to gratuitous ARP requests.

Related Documentation
- proxy-arp
- Restricted and Unrestricted Proxy ARP Overview on page 169
- Configuring Gratuitous ARP on page 48
- Junos® OS Ethernet Interfaces
CHAPTER 11

Configuring MAC Address Validation on Static Ethernet Interfaces

MAC address validation enables the router to validate that received packets contain a trusted IP source and an Ethernet MAC source address.

MAC address validation is supported on AE, Fast Ethernet, Gigabit Ethernet, and 10–Gigabit Ethernet interfaces (with or without VLAN tagging) on MX Series routers only.

There are two types of MAC address validation that you can configure:

- **Loose**—Forwards packets when both the IP source address and the MAC source address match one of the trusted address tuples.
  - Drops packets when the IP source address matches one of the trusted tuples, but the MAC address does not support the MAC address of the tuple
  - Continues to forward packets when the source address of the incoming packet does not match any of the trusted IP addresses.

- **Strict**—Forwards packets when both the IP source address and the MAC source address match one of the trusted address tuples.
  - Drops packets when the MAC address does not match the tuple’s MAC source address, or when IP source address of the incoming packet does not match any of the trusted IP addresses.

**Related Documentation**

- Configuring MAC Address Validation on Static Ethernet Interfaces on page 174
- Disabling MAC Address Learning of Neighbors Through ARP or Neighbor Discovery for IPv4 and IPv6 Neighbors on page 174
- Junos® OS Ethernet Interfaces
Configuring MAC Address Validation on Static Ethernet Interfaces

To configure MAC address validation on static Ethernet interfaces, include the `mac-validate (loose | strict)` statement in the `[edit interfaces interface-name unit logical-unit-number family family]` hierarchy:

```conf
[edit interfaces interface-name unit logical-unit-number family family]
mac-validate (loose | strict);
```

Example of Strict MAC Validation on a Static Ethernet Interface

This example shows strict MAC address validation on a static Ethernet interface without VLAN tagging.

```conf
[edit]
ge-2/1/9 {
 unit 0 {
 proxy-arp;
 family inet {
 mac-validate strict;
 address 88.22.100.1/24 {
 arp 88.22.100.3 mac 00:00:58:16:64:03;
 }
 }
 }
}
```

Related Documentation

- family
- mac-validate
- Junos® OS Ethernet Interfaces

Disabling MAC Address Learning of Neighbors Through ARP or Neighbor Discovery for IPv4 and IPv6 Neighbors

The Junos OS provides the `no-neighbor-learn` configuration statement at the `[edit interfaces interface-name unit interface-unit-number family inet]` and `[edit interfaces interface-name unit interface-unit-number family inet6]` hierarchy levels.

To disable ARP address learning by not sending arp-requests and not learning from ARP replies for IPv4 neighbors, include the `no-neighbor-learn` statement at the `[edit interfaces interface-name unit interface-unit-number family inet]` hierarchy level:

```conf
[edit interfaces interface-name unit interface-unit-number family inet]
no-neighbor-learn;
```

To disable neighbor discovery for IPv6 neighbors, include the `no-neighbor-learn` statement at the `[edit interfaces interface-name unit logical-unit-number family inet6]` hierarchy level:

```conf
[edit interfaces interface-name unit interface-unit-number family inet6]
no-neighbor-learn;
```
Related Documentation

- Configuring the Junos OS ARP Learning and Aging Options for Mapping IPv4 Network Addresses to MAC Addresses
- Junos® OS Ethernet Interfaces
CHAPTER 12

Enabling Passive Monitoring on Ethernet Interfaces

- Passive Monitoring on Ethernet Interfaces Overview on page 177
- Enabling Passive Monitoring on Ethernet Interfaces on page 179

Passive Monitoring on Ethernet Interfaces Overview

The Monitoring Services I and Monitoring Services II PICs are designed to enable IP services. You can monitor IPv4 traffic if you have a Monitoring Services PIC installed in the router with the following PICs:

- 10-port Gigabit Ethernet PIC with SFPs
- 4-port Gigabit Ethernet PIC with SFPs
- 2-port Gigabit Ethernet PIC with SFPs
- 1-port 10-Gigabit Ethernet PIC

**NOTE:** The PICs in the preceding list support only IPv4.

**NOTE:** 12.0 based M120 routers and I3.0 based M320 routers with the PICs in the preceding list support passive monitoring starting with Junos OS Release 9.5. Other M Series and T Series routers with the PICs listed above started supporting passive monitoring before Junos OS Release 7.3. Support for 1-port 10-Gigabit Ethernet PIC with XENPAK on 2.0-based M120 routers and I3.0-based M320 routers was added in Junos OS Release 9.5.

- 4-port 10-Gigabit Ethernet LAN/WAN PIC with XFP (T640, T1600, and T4000 Core Routers) (supported on both WAN-PHY and LAN-PHY modes for both IPv4 and IPv6 addresses)

The following interfaces support passive monitoring on the I3.0-based MX 240, MX 480, and MX 960 routers, starting with Junos OS Release 8.5:
- Type 2 MX FPCs
- Type 3 MX FPCs
- Gigabit Ethernet Enhanced DPC with SFP (DPCE-R-40GE-SFP)
- 4-port 10-Gigabit Ethernet Enhanced DPCs with XFP (DPCE-R-4XGE-XFP)

The following interfaces support passive monitoring on the Trio-based MX 240, MX 480, and MX 960 routers:

- 10-Gigabit Ethernet MPC with SFP+
- 30-Gigabit Ethernet MPC
- 60-Gigabit Ethernet MPC

Passive monitoring is also supported on MX 80 routers with 10-Gigabit Ethernet MPC with SFP+ and 30-Gigabit Ethernet MPC interfaces.

Interfaces configured on the following FPCs and PIC support IPv6 passive monitoring on the T640, T1600, and T4000 routers:

- Enhanced Scaling FPC2
- Enhanced Scaling FPC3
- Enhanced Scaling FPC4
- Enhanced Scaling FPC4.1
- Enhanced II FPC1 (T640 and T1600 routers)
- Enhanced II FPC2 (T640 and T1600 routers)
- Enhanced II FPC3 (T640 and T1600 routers)
- 4-port 10-Gigabit Ethernet LAN/WAN PIC with XFP (supported on both WAN-PHY and LAN-PHY modes for both IPv4 and IPv6 addresses)
- Gigabit Ethernet PIC with SFP
- 10-Gigabit Ethernet PIC with XENPAK (T1600 router)
- SONET/SDH OC192/STM64 PIC (T1600 and T4000 routers)
- SONET/SDH OC192/STM64 PICs with XFP (T1600 and T4000 routers)
- SONET/SDH OC48c/STM16 PIC with SFP (T1600 router)
- SONET/SDH OC48/STM16 (Multi–Rate)
- SONET/SDH OC12/STM4 (Multi–Rate) PIC with SFP
- Type 1 SONET/SDH OC3/STM1 (Multi–Rate) PIC with SFP

**NOTE:** Unlike IPv4 passive monitoring, IPv6 passive monitoring is not supported on Monitoring Services PICs. You must configure port mirroring to forward the packets from the passive monitored ports to other interfaces.
Enabling Passive Monitoring on Ethernet Interfaces

On Ethernet interfaces, enable packet flow monitoring by including the `passive-monitor-mode` statement at the [edit interfaces `interface-name`] hierarchy level:

```
[edit interfaces `interface-name`]
passive-monitor-mode;
```

When you configure an interface in passive monitoring mode, the Packet Forwarding Engine silently drops packets coming from that interface and destined to the router itself. Passive monitoring mode also stops the Routing Engine from transmitting any packet from that interface. Packets received from the monitored interface can be forwarded to monitoring interfaces. If you include the `passive-monitor-mode` statement in the configuration:

- Gigabit and Fast Ethernet interfaces can support both per-port passive monitoring and per-VLAN passive monitoring. The destination MAC filter on the receive port of the Ethernet interfaces is disabled.
- Ethernet encapsulation options are not allowed.
- Ethernet interfaces do not support the `stacked-vlan-tagging` statement for both IPv4 and IPv6 packets in passive monitor mode.

For IPv4 monitoring services interfaces, enable packet flow monitoring by including the `family` statement at the [edit interfaces `mo-fpc/pic/port unit logical-unit-number`] hierarchy level, specifying the `inet` option:

```
[edit interfaces `mo-fpc/pic/port unit logical-unit-number`]
family inet;
```

For conformity with the cflowd record structure, you must include the `receive-options-packets` and `receive-ttl-exceeded` statements at the [edit interfaces `mo-fpc/pic/port unit logical-unit-number family inet`]

```
[edit interfaces `mo-fpc/pic/port unit logical-unit-number family inet`]
receive-options-packets;
receive-ttl-exceeded;
```

IPv6 passive monitoring is not supported on monitoring services PICs. A user must configure port mirroring to forward the packets from the passive monitored ports to other interfaces. Interfaces configured on the following FPCs and PIC support IPv6 passive monitoring on the T640, T1600, and T4000 routers:

- Enhanced Scaling FPC2
- Enhanced Scaling FPC3
- Enhanced II FPC1 (T640 and T1600 routers)
- Enhanced II FPC2 (T640 and T1600 routers)
- Enhanced II FPC3 (T640 and T1600 routers)
• Enhanced Scaling FPC4
• Enhanced Scaling FPC4.1
• 4-port 10-Gigabit Ethernet LAN/WAN PIC with XFP (Supported on both WAN-PHY and LAN-PHY modes for both IPv4 and IPv6 addresses)
• Gigabit Ethernet PIC with SFP
• 10-Gigabit Ethernet PIC with XENPAK (T1600 router)
• SONET/SDH OC192/STM64 PIC (T1600 and T4000 routers)
• SONET/SDH OC192/STM64 PICs with XFP (T1600 and T4000 routers)
• SONET/SDH OC48c/STM16 PIC with SFP (T1600 router)
• SONET/SDH OC48/STM16 (Multi-Rate)
• SONET/SDH OC12/STM4 (Multi-Rate) PIC with SFP
• Type 1 SONET/SDH OC3/STM1 (Multi-Rate) PIC with SFP

To configure port mirroring, include the `port-mirroring` statement at the `[edit forwarding-options]` hierarchy level.

For the monitoring services interface, you can configure multiservice physical interface properties. For more information, see Configuring Multiservice Physical Interface Properties and the Junos Services Interfaces Configuration Release 11.2.

- Passive Monitoring on Ethernet Interfaces Overview on page 177
- Configuring Multiservice Physical Interface Properties
- Junos Services Interfaces Configuration Release 11.2
- Junos® OS Ethernet Interfaces
IEEE 802.1ag OAM Connectivity Fault Management Overview

Ethernet interfaces on M7i and M10i routers with the Enhanced CFEB (CFEB-E) and on M120, M320, MX Series, T Series, and PTX Series routers support the IEEE 802.1ag standard for Operation, Administration, and Management (OAM). The IEEE 802.1ag specification provides for Ethernet connectivity fault management (CFM). The goal of CFM is to monitor an Ethernet network that may comprise one or more service instances. Junos OS supports IEEE 802.1ag connectivity fault management.

In Junos OS Release 9.3 and later, CFM also supports aggregated Ethernet interfaces. On interfaces configured on Modular Port Concentrators (MPCs) and Modular Interface Cards (MICs) on MX Series routers, CFM is not supported on untagged aggregated Ethernet
member links. MPCs and MICs do support CFM on untagged and tagged aggregated Ethernet logical interfaces.

CFM does not support Multichassis Link Aggregation (MC-LAG). Do not configure the `mc-ae` statement when you configure CFM.

On T Series routers, CFM is not supported on interfaces configured with CCC encapsulation. If you configure CFM, the system displays the following message: "MEPs cannot be configured on ccc interface on this platform".

Network entities such as operators, providers, and customers may be part of different administrative domains. Each administrative domain is mapped into one maintenance domain. Maintenance domains are configured with different level values to keep them separate. Each domain provides enough information for the entities to perform their own management, perform end-to-end monitoring, and still avoid security breaches.

NOTE: As a requirement for Ethernet OAM 802.1ag to work, distributed periodic packet management (PPM) runs on the Routing Engine and Packet Forwarding Engine by default. You can only disable PPM on the Packet Forwarding Engine. To disable PPM on the PFE, include the `ppm no-delegate-processing` statement at the `[edit routing-options ppm]` hierarchy level.

IEEE 802.1ag OAM supports graceful Routing Engine switchover (GRES). IEEE 802.1ag OAM is supported on untagged, single tagged, and stacked VLAN interfaces.

Connectivity Fault Management Key Elements

Figure 18 on page 182 shows the relationships among the customer, provider, and operator Ethernet bridges, maintenance domains, maintenance association end points (MEPs), and maintenance intermediate points (MIPs).

Figure 18: Relationship Among MEPs, MIPs, and Maintenance Domain Levels

<table>
<thead>
<tr>
<th>Customer bridge</th>
<th>Operator 1 bridges</th>
<th>Operator 2 bridges</th>
<th>Customer bridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Down MEP</td>
<td>MEP</td>
<td>MEP</td>
<td>Down MEP</td>
</tr>
<tr>
<td>MEP</td>
<td>MEP</td>
<td>MEP</td>
<td>MEP</td>
</tr>
<tr>
<td>MEP</td>
<td>MEP</td>
<td>MEP</td>
<td>MEP</td>
</tr>
</tbody>
</table>

MEP: Maintenance End Point
MIP: Maintenance Intermediate Point, also known as a Loopback Point
NOTE: Maintenance intermediate points (MIP) are not supported on the ACX Series routers.

A maintenance association is a set of MEPs configured with the same maintenance association identifier and maintenance domain level. Figure 19 on page 183 shows the hierarchical relationships between the Ethernet bridge, maintenance domains, maintenance associations, and MEPs.

Figure 19: Relationship Among Bridges, Maintenance Domains, Maintenance Associations, and MEPs

Related Documentation

- connectivity-fault-management
- Creating the Maintenance Domain on page 184
- Configuring Maintenance Intermediate Points on page 185
- Creating a Maintenance Association on page 187
- Continuity Check Protocol on page 188
- Configuring a Maintenance Endpoint on page 191
- Configuring a Connectivity Fault Management Action Profile on page 196
- Configuring Linktrace Protocol in CFM on page 199
- Configuring Ethernet Local Management Interface on page 200
- Configuring Port Status TLV and Interface Status TLV on page 208
- Configuring MAC Flush Message Processing in CET Mode on page 220
- Configuring M120 and MX Series Routers for CCC Encapsulated Packets on page 223
- Configuring Rate Limiting of Ethernet OAM Messages on page 225
- Configuring 802.1ag Ethernet OAM for VPLS on page 228
- Junos® OS Ethernet Interfaces
Creating the Maintenance Domain

To enable CFM on an Ethernet interface, maintenance domains, maintenance associations, and MEPs must be created and configured.

To create a maintenance domain, include the `maintenance-domain domain-name` statement at the `[edit protocols oam ethernet connectivity-fault-management]` hierarchy level.

Give the maintenance domain a name. Names can be in one of several formats:

- Configuring the Maintenance Domain Name Format on page 184
- Configuring the Maintenance Domain Level on page 184

Configuring the Maintenance Domain Name Format

You can specify the maintenance domain name format as one of the following:

- A plain ASCII character string.
- A domain name service (DNS) format, a MAC address plus a two-octet identifier in the range from 0 through 65,535, or none.
- A MAC address plus a two-octet identifier in the range from 0 through 65,535.
- Or none.

If none is specified, the maintenance domain name is not used.

The default name format is an ASCII character string.

To configure the maintenance domain name format, include the `name-format (character-string | none | dns | mac+2octet)` statement at the `[edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name]` hierarchy level.

NOTE: If you configure the maintenance domain name length greater than 45 octet, then the following error message is displayed:

```
error: configuration check-out failed
```

Configuring the Maintenance Domain Level

The maintenance domain level is a mandatory parameter that indicates the nesting relationship between various maintenance domains. The level is embedded in each of the CFM frames. CFM messages within a given level are processed by MEPs at that same level. For example, the operator domain can be level 0, the provider domain can be level 3, and the customer domain can be level 7.

To configure the maintenance domain level, include the `level number` statement at the `[edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name]` hierarchy level.
Configuring Maintenance Intermediate Points

MX Series routers support maintenance intermediate points (MIPs) for the Ethernet OAM 802.1ag CFM protocol at a bridge-domain level. This enables you to define a maintenance domain for each default level. The MIPs names are created as default-level-number at the [edit protocols oam ethernet connectivity-fault-management maintenance-domain] hierarchy level. Use the bridge-domain, instance, virtual-switch, and mip-half-function MIP options to specify the MIP configuration.

NOTE: Whenever a MIP is configured and a bridge domain is mapped to multiple maintenance domains or maintenance associations, it is essential that the mip-half-function value for all maintenance domains and maintenance associations be the same.

To display MIP configurations, use the show oam ethernet connectivity-fault-management mip (bridge-domain | instance-name | interface-name) command.

The following sections describe MIP configuration:

- Configuring MIP for Bridge Domains of a Virtual Switch on page 186
- Configuring the Maintenance Domain Bridge Domain on page 186
Configuring MIP for Bridge Domains of a Virtual Switch

The default maintenance domain configuration allows MIP configuration for bridge domains for a default virtual switch or a user-defined virtual switch. You can use the `virtual-switch` and `bridge-domain` statements to specify which MIPs to enable for a user-defined virtual switch.

A bridge domain must be specified by name only if it is configured by including the `vlan-id id` statement under the `virtual-switch` statement.

If a bridge domain is configured with a range of VLAN IDs, then the VLAN IDs must be explicitly listed after the bridge domain name.

To configure a bridge domain under a user-defined virtual switch, include the `virtual-switch name` statement at the `[edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name default-x]` hierarchy level.

```flex"
[edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name default-x]
virtual-switch name {
 bridge-domain {
 name-1;
 name-2 {
 vlan-id [vlan-ids];
 }
 }
}
```

Configuring the Maintenance Domain Bridge Domain

The VLAN corresponds to the bridge domain.

To configure the bridge domain for the default virtual switch, include the `bridge-domain` statement at the `[edit protocols oam ethernet connectivity-fault-management maintenance-domain maintenance-domain-name]` hierarchy level.

Configuring the Maintenance Domain Instance

To configure the maintenance domain instance for a VPLS routing instance, include the `instance` statement at the `[edit protocols oam ethernet connectivity-fault-management maintenance-domain]` hierarchy level.

Configuring the Maintenance Domain MIP Half Function

MIP Half Function (MHF) divides MIP functionality into two unidirectional segments, improves visibility with minimal configuration, and improves network coverage by increasing the number of points that can be monitored. MHF extends monitoring capability by responding to loopback and linktrace messages to help isolate faults.

Whenever a MIP is configured and a bridge domain is mapped to multiple maintenance domains or maintenance associations, it is essential that the `MIP half function` value for
all maintenance domains and maintenance associations be the same. To configure the MIP half function, include the `mip-half-function` statement at the `edit protocols oam ethernet connectivity-fault-management maintenance-domain` hierarchy level.

### Related Documentation

- bridge-domain
- connectivity-fault-management
- instance
- `mip-half-function` on page 513
- virtual-switch
- IEEE 802.1ag OAM Connectivity Fault Management Overview on page 181
- Creating the Maintenance Domain on page 184
- Creating a Maintenance Association on page 187
- Continuity Check Protocol on page 188
- Configuring a Maintenance Endpoint on page 191
- Configuring a Connectivity Fault Management Action Profile on page 196
- Configuring Linktrace Protocol in CFM on page 199
- Configuring Ethernet Local Management Interface on page 200
- Configuring Port Status TLV and Interface Status TLV on page 208
- Configuring MAC Flush Message Processing in CET Mode on page 220
- Configuring M120 and MX Series Routers for CCC Encapsulated Packets on page 223
- Configuring Rate Limiting of Ethernet OAM Messages on page 225
- Configuring 802.1ag Ethernet OAM for VPLS on page 228
- Junos® OS Ethernet Interfaces

### Creating a Maintenance Association

To create a maintenance association, include the `maintenance-association ma-name` statement at the `edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name` hierarchy level.

Maintenance association names can be in one of the following formats:

- As a plain ASCII character string
- As the VLAN identifier of the VLAN you primarily associate with the maintenance association
- As a two-octet identifier in the range from 0 through 65,535
- As a name in the format specified by RFC 2685

The default short name format is an ASCII character string.
To configure the maintenance association short name format, include the short-name-format (character-string | vlan | 2octet | rfc-2685-vpn-id) statement at the [edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name maintenance-association ma-name] hierarchy level.

Related Documentation
- connectivity-fault-management
- IEEE 802.1ag OAM Connectivity Fault Management Overview on page 181
- Creating the Maintenance Domain on page 184
- Configuring Maintenance Intermediate Points on page 185
- Continuity Check Protocol on page 188
- Configuring a Maintenance Endpoint on page 191
- Configuring a Connectivity Fault Management Action Profile on page 196
- Configuring Linktrace Protocol in CFM on page 199
- Configuring Ethernet Local Management Interface on page 200
- Configuring Port Status TLV and Interface Status TLV on page 208
- Configuring MAC Flush Message Processing in CET Mode on page 220
- Configuring M120 and MX Series Routers for CCC Encapsulated Packets on page 223
- Configuring Rate Limiting of Ethernet OAM Messages on page 225
- Configuring 802.1ag Ethernet OAM for VPLS on page 228
- Junos® OS Ethernet Interfaces

Continuity Check Protocol

The continuity check protocol is used for fault detection by a MEP within a maintenance association. The MEP periodically sends continuity check multicast messages. The receiving MEPs use the continuity check messages to build a MEP database of all MEPs in the maintenance association.

The continuity check protocol packets use the ethertype value 0x8902 and the multicast destination MAC address 01:80:c2:00:00:32.

- Configuring the Continuity Check on page 188
- Configuring the Continuity Check Hold Interval on page 189
- Configuring the Continuity Check Interval on page 189
- Configuring the Continuity Check Loss Threshold on page 190
- Continuity Measurement on page 190

Configuring the Continuity Check

You can configure the following continuity check protocol parameters:

- hold-interval minutes
To enable the continuity check protocol, include the **continuity-check** statement at the [edit protocols oam ethernet connectivity-fault-management maintenance-domain **domain-name** maintenance-association **ma-name**] hierarchy level.

### Configuring the Continuity Check Hold Interval

You can specify the continuity check hold interval. The hold interval is the number of minutes to wait before flushing the MEP database if no updates occur. The default value is 10 minutes.

The hold interval logic runs a polling timer per CFM session level (not per remote MEP level) where the polling timer duration is equal to the configured hold time. When the polling timer expires, it deletes all the auto discovered remote MEP entries which have been in the failed state for a time period equal to or greater than the configured hold time. If the remote MEP completes the hold time duration in the failed state, then flushing will not occur until the next polling timer expires. Hence remote MEP flushing may not happen exactly at the configured hold time.

To configure the hold interval, include the **hold-interval** statement at the [edit protocols oam ethernet connectivity-fault-management maintenance-domain **domain-name** maintenance-association **ma-name** continuity-check] hierarchy level.

**NOTE:** Hold timer based flushing is applicable only for auto discovered remote MEPs and not for statically configured remote MEPs.

### Configuring the Continuity Check Interval

You can specify the continuity check message (CCM) interval. The interval is the time between the transmission of CCMs. You can specify 10 minutes (**10m**), 1 minute (**1m**), 10 seconds (**10s**), 1 second (**1s**), 100 milliseconds (**100ms**), or 10 milliseconds (**10ms**). The default value is 1 minute.

**NOTE:** For the continuity check message interval to be configured for 10 milliseconds, periodic packet management (PPM) runs on the Routing Engine and Packet Forwarding Engine (PFE) by default. You can only disable PPM on the PFE. To disable PPM on the PFE, use the **no-delegate-processing** statement at the [edit routing-options ppm] hierarchy level.

Continuity check interval of 10 milliseconds is not supported for CFM sessions over a Label-Switched interface (LSI).

To configure the interval, include the **interval** statement at the [edit protocols oam ethernet connectivity-fault-management maintenance-domain **domain-name** maintenance-association **ma-name** continuity-check] hierarchy level.
Configuring the Continuity Check Loss Threshold

You can specify the number of continuity check messages that can be lost before marking the MEP as down. The default value is three (PDUs).

To configure the loss threshold, include the `loss-threshold` statement at the `[edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name maintenance-association ma-name continuity-check]` hierarchy level.

Continuity Measurement

Continuity measurement is provided by an existing continuity check protocol. The continuity for every remote MEP is measured as the percentage of time that remote MEP was operationally up over the total administratively enabled time. Here, the operational uptime is the total time during which the CCM adjacency is active for a particular remote MEP and the administrative enabled time is the total time during which the local MEP is active. You can also restart the continuity measurement by clearing the currently measured operational uptime and the administrative enabled time.

Related Documentation

- Displaying Continuity Measurement Statistics on page 275
- Clearing Continuity Measurement Statistics on page 276
- IEEE 802.1ag OAM Connectivity Fault Management Overview on page 181
- Creating the Maintenance Domain on page 184
- Configuring Maintenance Intermediate Points on page 185
- Creating a Maintenance Association on page 187
- Configuring a Maintenance Endpoint on page 191
- Configuring a Connectivity Fault Management Action Profile on page 196
- Configuring Linktrace Protocol in CFM on page 199
- Configuring Ethernet Local Management Interface on page 200
- Configuring Port Status TLV and Interface Status TLV on page 208
- Configuring MAC Flush Message Processing in CET Mode on page 220
- Configuring M120 and MX Series Routers for CCC Encapsulated Packets on page 223
- Configuring Rate Limiting of Ethernet OAM Messages on page 225
- Configuring 802.1ag Ethernet OAM for VPLS on page 228
- Junos® OS Ethernet Interfaces
Configuring a Maintenance Endpoint

To configure the maintenance endpoint, include the `mep mep-id` statement at the `[edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name maintenance-association ma-name]` hierarchy level.

- Enabling Maintenance Endpoint Automatic Discovery on page 191
- Configuring the Maintenance Endpoint Direction on page 191
- Configuring the Maintenance Endpoint Interface on page 192
- Configuring the Maintenance Endpoint Priority on page 192
- Configuring the Maintenance Endpoint Lowest Priority Defect on page 192
- Configuring a Remote Maintenance Endpoint on page 193
- Configuring a Remote Maintenance Endpoint Action Profile on page 194
- Configuring Maintenance Endpoint Service Protection on page 194

Enabling Maintenance Endpoint Automatic Discovery

You can enable the MEP to accept continuity check messages from all remote MEPs of the same maintenance association.

To configure automatic discovery, include the `auto-discovery` statement at the `[edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name maintenance-association ma-name mep mep-id]` hierarchy level.

Configuring the Maintenance Endpoint Direction

You can specify the direction in which CFM packets are transmitted for the MEP.

Direction up continuity check messages (CCMs) are transmitted out of every logical interface that is part of the same bridging or VPLS instance except for the interface configured on this MEP.

Direction down CCMs are transmitted only out of the interface configured on this MEP.

NOTE: Ports in the Spanning Tree Protocol (STP) blocking state do not block CFM packets destined to a down MEP. Ports in an STP blocking state without the continuity check protocol configured do block CFM packets.

To configure the MEP direction, include the `direction` statement at the `[edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name maintenance-association ma-name mep mep-id]` hierarchy level.
NOTE: Starting with Junos OS Release 12.3, for all interfaces configured on Modular Port Concentrators (MPCs) on MX Series 3D Universal Edge Routers, you no longer need to configure the no-control-word statement for all Layer 2 VPNs and Layer 2 circuits over which you are running CFM MEPs. For all other interfaces on MX Series routers and on all our routers and switches, you must continue to configure the no-control-word statement at the [edit routing-instances routing-instance-name protocols l2vpn] or [edit protocols l2circuit neighbor neighbor-id interface interface-name] hierarchy level when you configure CFM MEPs. Otherwise, the CFM packets are not transmitted, and the show oam ethernet connectivity-fault-management mep-database command does not display any remote MEPS.

Configuring the Maintenance Endpoint Interface

You must specify the interface to which the MEP is attached. It can be a physical interface, logical interface, or trunk interface.

On MX Series routers, you can enable the MEP on a specific VLAN of a trunk interface.

To configure the interface, include the interface interface-name statement at the [edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name maintenance-association ma-name mep mep-id] hierarchy level.

MEP Interface Configuration

This example shows the MEP interface configuration statements:

```
[edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name maintenance-association ma-name mep mep-id]
 {direction (up | down);
 interface (ge | xe)-(fpc/pic/port | fpc/pic/port.domain | fpc/pic/port.domain vlan vlan-id);
 auto-discovery;
 priority number;
 }
```

Configuring the Maintenance Endpoint Priority

You can specify the IEEE 802.1 priority bits that are used by continuity check and link trace messages.

To configure the priority, include the priority statement at the [edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name maintenance-association ma-name mep mep-id] hierarchy level.

Configuring the Maintenance Endpoint Lowest Priority Defect

You can specify the lowest priority defect that is allowed to generate a fault alarm. This configuration determines whether to generate a fault alarm whenever it detects a defect. This configuration is done at the MEP level.
To configure the lowest priority defect, include the `lowest-priority-defect options` statement at the `[edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name maintenance-association ma-name mep mep-id]` hierarchy level.

Table 15 on page 193 describes the available lowest priority defect options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all-defects</td>
<td>Allows all defects.</td>
</tr>
<tr>
<td>err-xcon</td>
<td>Allows only erroneous CCM and cross-connect CCM defects.</td>
</tr>
<tr>
<td>mac-rem-err-xcon</td>
<td>Allows only MAC, not receiving CCM, erroneous CCM, and cross-connect defects.</td>
</tr>
<tr>
<td>no-defect</td>
<td>Allows no defect.</td>
</tr>
<tr>
<td>rem-err-xcon</td>
<td>Allows only not receiving CCM, erroneous CCM, and cross-connect CCM defects.</td>
</tr>
<tr>
<td>xcon</td>
<td>Allows only cross-connect CCM defects.</td>
</tr>
</tbody>
</table>

The following configuration example shows `mac-rem-err-xcon` as the lowest priority defect:

```
[edit protocols]
oam {
 ethernet {
 connectivity-fault-management {
 maintenance-domain md6 {
 level 6;
 maintenance-association ma6 {
 mep 200 {
 interface ge-5/0/0.0;
 direction down;
 lowest-priority-defect mac-rem-err-xcon;
 }
 }
 }
 }
 }
}
```

**Configuring a Remote Maintenance Endpoint**

You can configure a remote MEP from which CCM messages are expected. If autodiscovery is not enabled, the remote MEP must be configured under the `mep` statement. If the remote MEP is not configured under the `mep` statement, the CCMs from the remote MEP are treated as errors.

To configure the remote MEP, include the `remote-mep` statement at the `[edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name maintenance-association ma-name mep mep-id]` hierarchy level.
Configuring a Remote Maintenance Endpoint Action Profile

You can specify the name of the action profile to use for the remote MEP.

To configure the action profile, include the `action-profile profile-name` statement at the `[edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name maintenance-association ma-name mep mep-id remote-mep mep-id]` hierarchy level. The profile must already be defined at the `[edit protocols oam ethernet connectivity-fault-management]` hierarchy level.

Configuring Maintenance Endpoint Service Protection

You can enable service protection for a VPWS (Virtual Private Wire Service) over MPLS by specifying a working path or protect path on the MEP. Service protection provides end-to-end connection protection of the working path in the event of a failure.

To configure service protection, you must create two separate transport paths a working path and a protect path. You can specify the working path and protect path by creating two maintenance associations. To associate the maintenance association with a path, you must configure the MEP `interface` statement within the maintenance association and specify the path as working or protect.

To configure the MEP interface, include the `interface` statement at the `[edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name maintenance-association ma-name mep mep-id]` hierarchy level. On the `interface` statement, specify the path as `(working | protect)`. The direction must also be configured as direction down for both sessions.

NOTE: If the path is not specified, the session monitors the active path.

Table 16 on page 194 describes the available service protection options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>working</td>
<td>Specifies the working path.</td>
</tr>
<tr>
<td>protect</td>
<td>Specifies the protect path.</td>
</tr>
</tbody>
</table>

The following configuration example shows service protection is enabled for the VPWS service. The CCM session is configured for the working path and references the CCM session configured for the protect path in the `protect-maintenance-association` statement. The APS profile is configured and associated with the maintenance-association for the working path:

```
[edit protocols]
oam {
 ethernet {
 connectivity-fault-management {
```

[72x672]ConfiguringaRemoteMaintenanceEndpointActionProfile
You can specify the name of the action profile to use for the remote MEP.

To configure the action profile, include the `action-profile profile-name` statement at the `[edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name maintenance-association ma-name mep mep-id remote-mep mep-id]` hierarchy level. The profile must already be defined at the `[edit protocols oam ethernet connectivity-fault-management]` hierarchy level.

Configuring Maintenance Endpoint Service Protection

You can enable service protection for a VPWS (Virtual Private Wire Service) over MPLS by specifying a working path or protect path on the MEP. Service protection provides end-to-end connection protection of the working path in the event of a failure.

To configure service protection, you must create two separate transport paths a working path and a protect path. You can specify the working path and protect path by creating two maintenance associations. To associate the maintenance association with a path, you must configure the MEP `interface` statement within the maintenance association and specify the path as working or protect.

To configure the MEP interface, include the `interface` statement at the `[edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name maintenance-association ma-name mep mep-id]` hierarchy level. On the `interface` statement, specify the path as `(working | protect)`. The direction must also be configured as direction down for both sessions.

NOTE: If the path is not specified, the session monitors the active path.

Table 16 on page 194 describes the available service protection options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>working</td>
<td>Specifies the working path.</td>
</tr>
<tr>
<td>protect</td>
<td>Specifies the protect path.</td>
</tr>
</tbody>
</table>

The following configuration example shows service protection is enabled for the VPWS service. The CCM session is configured for the working path and references the CCM session configured for the protect path in the `protect-maintenance-association` statement. The APS profile is configured and associated with the maintenance-association for the working path:

```
[edit protocols]
oam {
 ethernet {
 connectivity-fault-management {
```
maintenance-domain vpws-service-1 {
  name-format none;
  level 5;
  maintenance-association W {
    short-name-format character-string;
    protect-maintenance-association P {
      aps-profile aps-profile-1;
    }
    continuity-check {
      interval 1s;
    }
    mep 1 {
      interface ge-1/3/5.0 working;
      direction down;
      auto-discovery;
    }
  }
  maintenance-association P {
    short-name-format character-string;
    continuity-check {
      interval 1s;
    }
    mep 1 {
      interface ge-1/3/5.0 protect;
      direction down;
      auto-discovery;
    }
  }
}

Related Documentation

- connectivity-fault-management
- IEEE 802.1ag OAM Connectivity Fault Management Overview on page 181
- Creating the Maintenance Domain on page 184
- Configuring Maintenance Intermediate Points on page 185
- Creating a Maintenance Association on page 187
- Continuity Check Protocol on page 188
- Configuring a Connectivity Fault Management Action Profile on page 196
- Configuring Linktrace Protocol in CFM on page 199
- Configuring Ethernet Local Management Interface on page 200
- Configuring Port Status TLV and Interface Status TLV on page 208
- Configuring MAC Flush Message Processing in CET Mode on page 220
- Configuring M120 and MX Series Routers for CCC Encapsulated Packets on page 223
- Configuring Rate Limiting of Ethernet OAM Messages on page 225
- Configuring 802.1ag Ethernet OAM for VPLS on page 228
• Junos® OS Ethernet Interfaces

Configuring a Connectivity Fault Management Action Profile

You can configure an action profile and specify the action to be taken when any of the configured events occur. Alternatively, you can configure an action profile and specify default actions when connectivity to a remote maintenance association endpoint (MEP) fails.

To configure the action profile name, include the `action-profile` statement at the `[edit protocols oam ethernet connectivity-fault-management]` hierarchy level.

• Configuring the Action of a CFM Action Profile on page 196
• Configuring the Default Actions of a CFM Action Profile on page 196
• Configuring a CFM Action Profile Event on page 197

Configuring the Action of a CFM Action Profile

You can configure the action to be taken when any of the configured events occur.

To configure the action profile’s action, include the `action` statement at the `[edit protocols oam ethernet connectivity-fault-management action-profile profile-name]` hierarchy level.

```junos
[edit protocols oam]
ethernet {
 connectivity-fault-management {
 action-profile bring-down {
 event {
 interface-status-tlv down;
 }
 action {
 interface-down;
 }
 }
 }
}
```

Configuring the Default Actions of a CFM Action Profile

You can configure the default actions to be taken when connectivity to a remote MEP fails.

To enable the `interface-down` as the default action for an action profile, include the `interface-down` statement at the `[edit protocols oam ethernet connectivity-fault-management action-profile profile-name default-actions]` hierarchy level.

```junos
[edit]
protocols {
 oam {
 ethernet {
 connectivity-fault-management {
```
action-profile bring-down {
    default-actions {
        interface-down;
    }
}

maintenance-domain md1 {
    level 0;
    maintenance-association ma1 {
        continuity-check {
            interval 100 ms;
        }
        mep 4001 {
            interface ge-4/1/0;
            direction down;
            remote-mep 1 {
                action-profile bring-down;
            }
        }
    }
}

NOTE: Associating an action-profile with the action of interface-down on an up MEP CFM session running over a circuit cross-connect (CCC) interface (l2circuit/l2vpn) is not advisable and can result in a deadlock situation.

Configuring a CFM Action Profile Event

You can configure one or more events under the action profile, the occurrence of which triggers the corresponding action to be taken.

To configure the interface-status-tlv lower-layer-down event, include the interface-status-tlv lower-layer-down statement at the [edit protocols oam ethernet connectivity-fault-management action-profile profile-name event] hierarchy level.

To configure the interface-status-tlv down event, include the interface-status-tlv down statement at the [edit protocols oam ethernet connectivity-fault-management action-profile profile-name event] hierarchy level.

To configure the port-status-tlv blocked event, include the port-status-tlv blocked statement at the [edit protocols oam ethernet connectivity-fault-management action-profile profile-name event] hierarchy level.

To configure the adjacency-loss event, include the adjacency-loss statement at the [edit protocols oam ethernet connectivity-fault-management action-profile profile-name event] hierarchy level.
To configure an RDI event to bring an interface down on reception of an RDI bit from a MEP, include the rdi statement at the [edit protocols oam ethernet connectivity-fault-management action-profile profile-name event] hierarchy level.

```plaintext
[edit protocols oam]
eternet {
 connectivity-fault-management {
 action-profile bring-down {
 event {
 adjacency-loss;
 interface-status-tlv (down | lower-layer-down);
 port-status-tlv blocked;
 rdi;
 }
 action {
 interface-down;
 }
 clear-action {
 interface-down peer-interface;
 }
 }
 }
}
```

**NOTE:** You cannot configure multiple actions at this time. Only one action can be configured. This limitation affects both the action and clear-action statements.

**Related Documentation**
- event (CFM)
- connectivity-fault-management
- IEEE 802.1ag OAM Connectivity Fault Management Overview on page 181
- Creating the Maintenance Domain on page 184
- Creating a Maintenance Association on page 187
- Configuring a Maintenance Endpoint on page 191
- Configuring 802.1ag Ethernet OAM for VPLS on page 228
- Junos® OS Ethernet Interfaces
Configuring Linktrace Protocol in CFM

The linktrace protocol is used for path discovery between a pair of maintenance points. Linktrace messages are triggered by an administrator using the `traceroute` command to verify the path between a pair of MEPs under the same maintenance association. Linktrace messages can also be used to verify the path between an MEP and an MIP under the same maintenance domain. The operation of IEEE 802.1ag linktrace request and response messages is similar to the operation of Layer 3 `traceroute` commands. For more information about the `traceroute` command, see the Junos OS System Basics Configuration Guide.

Configuring the Linktrace Path Age Timer

If no response to a `linktrace` request is received, the request and response entries are deleted after the age timer expires. To configure the linktrace age timer, use the `linktrace` statement with the `age time` option at the `[edit protocols oam ethernet connectivity-fault-management]` hierarchy level. The age is configured in minutes or seconds.

Configuring the Linktrace Database Size

Configure the number of linktrace reply entries to be stored per linktrace request. To configure the linktrace database size, use the `linktrace` statement with the `path-database-size path-database-size` option at the `[edit protocols oam ethernet connectivity-fault-management]` hierarchy level.

Display the linktrace database using the `show oam ethernet connectivity-fault-management path-database` command.

Related Documentation
- connectivity-fault-management
- IEEE 802.1ag OAM Connectivity Fault Management Overview on page 181
- Creating the Maintenance Domain on page 184
- Configuring Maintenance Intermediate Points on page 185
- Creating a Maintenance Association on page 187
- Continuity Check Protocol on page 188
- Configuring a Maintenance Endpoint on page 191
- Configuring a Connectivity Fault Management Action Profile on page 196
- Configuring Ethernet Local Management Interface on page 200
- Configuring Port Status TLV and Interface Status TLV on page 208
- Configuring MAC Flush Message Processing in CET Mode on page 220
- Configuring M120 and MX Series Routers for CCC Encapsulated Packets on page 223
- Configuring Rate Limiting of Ethernet OAM Messages on page 225
- Configuring 802.1ag Ethernet OAM for VPLS on page 228
Configuring Ethernet Local Management Interface

- Ethernet Local Management Interface Overview on page 200
- Configuring the Ethernet Local Management Interface on page 202
- Example E-LMI Configuration on page 203

Ethernet Local Management Interface Overview

MX Series routers with Gigabit Ethernet (ge), 10-Gigabit Ethernet (xe), or Aggregated Ethernet (ae) interfaces support the Ethernet Local Management Interface (E-LMI). The E-LMI specification is available at the Metro Ethernet Forum. E-LMI procedures and protocols are used for enabling automatic configuration of the customer edge (CE) to support Metro Ethernet services. The E-LMI protocol also provides user-to-network interface (UNI) and Ethernet virtual connection (EVC) status information to the CE. The UNI and EVC information enables automatic configuration of CE operation based on the Metro Ethernet configuration.

The E-LMI protocol operates between the CE device and the provider edge (PE) device. It runs only on the PE-CE link and notifies the CE of connectivity status and configuration parameters of Ethernet services available on the CE port. The scope of the E-LMI protocol is shown in Figure 20 on page 200.

Figure 20: Scope of the E-LMI Protocol

The E-LMI implementation on MX Series routers includes only the PE side of the E-LMI protocol.

E-LMI interoperates with an OAM protocol, such as Connectivity Fault Management (CFM), that runs within the provider network to collect OAM status. CFM runs at the provider maintenance level (UNI-N to UNI-N with up MEPs at the UNI). E-LMI relies on the CFM for end-to-end status of EVCs across CFM domains (SVLAN domain or VPLS).

The E-LMI protocol relays the following information:

- Notification to the CE of the addition/deletion of an EVC (active, not active, or partially active)
- Notification to the CE of the availability state of a configured EVC
- Communication of UNI and EVC attributes to the CE:
- UNI attributes:
  - UNI identifier (a user-configured name for UNI)
  - CE-VLANID/EVC map type (all-to-one bundling, service multiplexing with bundling, or no bundling)
- Bandwidth profile is not supported (including the following features):
  - CM (coupling mode)
  - CF (color flag)
  - CIR (committed information rate)
  - CBR (committed burst size)
  - EIR (excess information rate)
  - EBS (excess burst size)

- EVC attributes:
  - EVC reference ID
  - EVC status type (active, not active, or partially active)
  - EVC type (point-to-point or multipoint-to-multipoint)
  - EVC ID (a user-configured name for EVC)
  - Bandwidth profile (not supported)
- CE-VLAN ID/EVC map

E-LMI on MX Series routers supports the following EVC types:

- Q-in-Q SVLAN (point-to-point or multipoint-to-multipoint)—Requires an end-to-end CFM session between UNI-Ns to monitor the EVS status.
- VPLS (BGP or LDP) (point-to-point or multipoint-to-multipoint)—Either VPLS pseudowire status or end-to-end CFM sessions between UNI-Ns can be used to monitor EVC status.
- L2 circuit/L2VPN (point-to-point)—Either VPLS pseudowire status or end-to-end CFM sessions between UNI-Ns can be used to monitor EVC status.

NOTE: l2-circuit and l2vpn are not supported.
Configuring the Ethernet Local Management Interface

To configure E-LMI, perform the following steps:

- Configuring an OAM Protocol (CFM) on page 202
- Assigning the OAM Protocol to an EVC on page 202
- Enabling E-LMI on an Interface and Mapping CE VLAN IDs to an EVC on page 202

Configuring an OAM Protocol (CFM)

For information on configuring the OAM protocol (CFM), see “IEEE 802.1ag OAM Connectivity Fault Management Overview” on page 181.

Assigning the OAM Protocol to an EVC

To configure an EVC, you must specify a name for the EVC using the evcs evc-id statement at the [edit protocols oam ethernet] hierarchy level. You can set the EVC protocol for monitoring EVC statistics to cfm or vpls using the evc-protocol statement and its options at the [edit protocols oam ethernet evcs] hierarchy level.

You can set the number of remote UNIs in the EVC using the remote-uni-count number statement at the [edit protocols oam ethernet evcs evcs-protocol] hierarchy level. The remote-uni-count defaults to 1. Configuring a value greater than 1 makes the EVC multipoint-to-multipoint. If you enter a value greater than the actual number of endpoints, the EVC status will display as partially active even if all endpoints are up. If you enter a remote-uni-count less than the actual number of endpoints, the status will display as active, even if all endpoints are not up.

You can configure an EVC by including the evcs statement at the [edit protocols oam ethernet] hierarchy level:

```
[edit protocols oam ethernet]
evcs evc-id {
 evc-protocol (cfm (management-domain name management-association name) | vpls (routing-instance name)) {
 remote-uni-count <number>; # Optional, defaults to 1
 multipoint-to-multipoint;
 # Optional, defaults to point-to-point if remote-uni-count is 1
 }
}
```

Enabling E-LMI on an Interface and Mapping CE VLAN IDs to an EVC

To configure E-LMI, include the lmi statement at the [edit protocols oam ethernet] hierarchy level:

```
[edit protocols oam ethernet]
lmi {
 polling-verification-timer value;
 # Polling verification timer (T392), defaults to 15 seconds
 status-counter count; # Status counter (N393), defaults to 4
 interface name {
 evc evc-id {
 default-evc;
 }
 }
}
You can set the status counter to count consecutive errors using the `status-counter count` statement at the `[edit protocols oam ethernet lmi]` hierarchy level. The status counter is used to determine if E-LMI is operational or not. The default value is 4.

You can set the `polling-verification-timer value` statement at the `[edit protocols oam ethernet lmi]` hierarchy level. The default value is 15 seconds.

You can enable an interface and set its options for use with E-LMI using the `interface name` statement at the `[edit protocols oam ethernet lmi]` hierarchy level. Only ge, xe, and ae interfaces are supported. You can use the interface `uni-id` option to specify a name for the UNI. If `uni-id` is not configured, it defaults to the name variable of `interface name`.

You can specify the CE-VLAN ID/EVC map type using the `evc-map-type type` interface option. The options are `all-to-one-bundling`, `bundling`, or `service-multiplexing`. Service multiplexing is with no bundling. The default type is `all-to-one-bundling`.

To specify the EVC that an interface uses, use the `evc evc-id` statement at the `[edit protocols oam ethernet lmi interface name]` hierarchy level. You can specify an interface as the default EVC interface using the `default-evc` statement at the `[edit protocols oam ethernet lmi interface name evc evc-id]` hierarchy level. All VIDs that are not mapped to any other EVCs are mapped to this EVC. Only one EVC can be configured as the default.

You can map a list of VLANs to an EVC using the `vlan-list vlan-ids` statement at the `[edit protocols oam ethernet lmi interface name evc evc-id]` hierarchy level.

Example E-LMI Configuration

Figure 21 on page 203 illustrates the E-LMI configuration for a point-to-point EVC (SVLAN) monitored by CFM. In this example, VLANs 1 through 2048 are mapped to `evc1` (SVLAN 100) and 2049 through 4096 are mapped to `evc2` (SVLAN 200). Two CFM sessions are created to monitor these EVCs.

Figure 21: E-LMI Configuration for a Point-to-Point EVC (SVLAN) Monitored by CFM
Configuring PE1

[edit]
interfaces {
 ge-1/1/1 {
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 1-2048;
 }
 }
 unit 1 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 2049-4096;
 }
 }
 }
 ge-1/1/2 {
 unit 0 {
 vlan-id 100;
 family bridge {
 interface-mode trunk;
 inner-vlan-id-list 1-2048;
 }
 }
 unit 1 {
 vlan-id 200;
 family bridge {
 interface-mode trunk;
 inner-vlan-id-list 2049-4096;
 }
 }
 }
}
protocols {
 oam {
 ethernet {
 connectivity-fault-management {
 maintenance-domain md {
 level 0;
 maintenance-association 1 {
 name-format vlan;
 mep 1 {
 direction up;
 interface ge-1/1/1.0 vlan 1;
 }
 }
 maintenance-association 2049 {
 name-format vlan;
 mep 1 {
 direction up;
 interface ge-1/1/1.1 vlan 2049;
 }
 }
 }
 }
 }
 }
}
Chapter 13: Configuring IEEE 802.1ag OAM Connectivity-Fault Management

```

```

Configuring PE2

[edit]
interfaces {
 ge-2/2/1 {
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 1-2048;
 }
 }
 unit 1 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 2049-4096;
 }
 }
 }
 ge-2/2/2 {
 unit 0 {
 vlan-id 100;
 family bridge {
 interface-mode trunk;
 inner-vlan-id-list 1-2048;
 }
 }
 unit 1 {
 vlan-id 200;
 }
 }
```

```
family bridge {
 interface-mode trunk;
 inner-vlan-id-list 2049-4095;
}
}
}
}
}
]
}
]
protocols {
 oam {
 ethernet {
 connectivity-fault-management {
 maintenance-domain md {
 level 0;
 maintenance-association 1 {
 name-format vlan;
 mep 1 {
 direction up;
 interface ge-2/2/1.0 vlan 1;
 }
 }
 maintenance-association 2049 {
 name-format vlan;
 mep 1 {
 direction up;
 interface ge-2/2/1.1 vlan 2049;
 }
 }
 }
 }
 }
 evcs {
 evc1 {
 evc-protocol cfm management-domain md management-association 1;
 remote-uni-count 1;
 }
 evc2 {
 evc-protocol cfm management-domain md management-association 2049;
 uni-count 2;
 }
 }
 lmi {
 interface ge-2/2/1 {
 evc evc1 {
 vlan-list 1-2048;
 }
 evc evc2 {
 vlan-list 2049-4095;
 }
 evc-map-type bundling;
 uni-id uni-ce2;
 }
 }
 }
}
}
Configuring Two UNIs Sharing the Same EVC

```
[edit protocols]
oam {
    ethernet {
        connectivity-fault-management {...}
        evcs {
            evc1 {
                evc-protocol cfm management-domain md management-association 1;
                remote-uni-count 1;
            }
        }
        lmi {
            interface ge-2/2/1 {
                evc evc1 {
                    vlan-list 0-4095;
                }
                evc-map-type all-to-one-bundling;
                uni-id uni-ce1;
            }
            interface ge-2/3/1 {
                evc evc1 {
                    vlan-list 0-4095;
                }
                evc-map-type all-to-one-bundling;
                uni-id uni-ce2;
            }
        }
    }
}
```

Related Documentation
- connectivity-fault-management
- IEEE 802.1ag OAM Connectivity Fault Management Overview on page 181
- Creating the Maintenance Domain on page 184
- Configuring Maintenance Intermediate Points on page 185
- Creating a Maintenance Association on page 187
- Continuity Check Protocol on page 188
- Configuring a Maintenance Endpoint on page 191
- Configuring a Connectivity Fault Management Action Profile on page 196
- Configuring Linktrace Protocol in CFM on page 199
- Configuring Port Status TLV and Interface Status TLV on page 208
- Configuring MAC Flush Message Processing in CET Mode on page 220
- Configuring M120 and MX Series Routers for CCC Encapsulated Packets on page 223
- Configuring Rate Limiting of Ethernet OAM Messages on page 225
- Configuring 802.1ag Ethernet OAM for VPLS on page 228
Configuring Port Status TLV and Interface Status TLV

TLVs Overview

Type, Length, and Value (TLVs) are described in the IEEE 802.1ag standard for CFM as a method of encoding variable-length and/or optional information in a PDU. TLVs are not aligned to any particular word or octet boundary. TLVs follow each other with no padding between them.

Table 17 on page 208 shows the TLV format and indicates if it is required or optional.

Table 17: Format of TLVs

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Octet (sequence)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>1</td>
<td>Required. If 0, no Length or Value fields follow. If not 0, at least the Length field follows the Type field.</td>
</tr>
<tr>
<td>Length</td>
<td>2–3</td>
<td>Required if the Type field is not 0. Not present if the Type field is 0. The 16 bits of the Length field indicate the size, in octets, of the Value field. 0 in the Length field indicates that there is no Value field.</td>
</tr>
<tr>
<td>Value</td>
<td>4</td>
<td>Length specified by the Length field. Optional. Not present if the Type field is 0 or if the Length field is 0.</td>
</tr>
</tbody>
</table>

Various TLVs for CFM PDUs

Table 18 on page 208 shows a set of TLVs defined by IEEE 802.1ag for various CFM PDU types. Each TLV can be identified by the unique value assigned to its type field. Some type field values are reserved.

Table 18: Type Field Values for Various TLVs for CFM PDUs

<table>
<thead>
<tr>
<th>TLV or Organization</th>
<th>Type Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>End TLV</td>
<td>0</td>
</tr>
<tr>
<td>Sender ID TLV</td>
<td>1</td>
</tr>
<tr>
<td>Port Status TLV</td>
<td>2</td>
</tr>
<tr>
<td>Data TLV</td>
<td>3</td>
</tr>
</tbody>
</table>
Table 18: Type Field Values for Various TLVs for CFM PDUs (continued)

<table>
<thead>
<tr>
<th>TLV or Organization</th>
<th>Type Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Status TLV</td>
<td>4</td>
</tr>
<tr>
<td>Reply Ingress TLV</td>
<td>5</td>
</tr>
<tr>
<td>Reply Egress TLV</td>
<td>6</td>
</tr>
<tr>
<td>LTM Egress Identifier TLV</td>
<td>7</td>
</tr>
<tr>
<td>LTR Egress Identifier TLV</td>
<td>8</td>
</tr>
<tr>
<td>Reserved for IEEE 802.1</td>
<td>9 to 30</td>
</tr>
<tr>
<td>Organization-Specific TLV</td>
<td>31</td>
</tr>
<tr>
<td>Defined by ITU-T Y.1731</td>
<td>32 to 63</td>
</tr>
<tr>
<td>Reserved for IEEE 802.1</td>
<td>64 to 255</td>
</tr>
</tbody>
</table>

Not every TLV is applicable for all types of CFM PDUs.

- TLVs applicable for continuity check message (CCM):
 - End TLV
 - Sender ID TLV
 - Port Status TLV
 - Interface Status TLV
 - Organization-Specific TLV

- TLVs applicable for loopback message (LBM):
 - End TLV
 - Sender ID TLV
 - Data TLV
 - Organization-Specific TLV

- TLVs applicable for loopback reply (LBR):
 - End TLV
 - Sender ID TLV
 - Data TLV
 - Organization-Specific TLV
• TLVs applicable for linktrace message (LTM):
 • End TLV
 • LTM Egress Identifier TLV
 • Sender ID TLV
 • Organization-Specific TLV

• TLVs applicable for linktrace reply (LTR):
 • End TLV
 • LTR Egress Identifier TLV
 • Reply Ingress TLV
 • Reply Egress TLV
 • Sender ID TLV
 • Organization-Specific TLV

The following TLVs are currently supported in the applicable CFM PDUs:

• End TLV
• Reply Ingress TLV
• Reply Egress TLV
• LTR Egress Identifier TLV
• LTM Egress Identifier TLV
• Data TLV

Support for Additional Optional TLVs

The following additional optional TLVs are supported:

• Port Status TLV
• Interface Status TLV

MX Series routers support configuration of port status TLV and interface status TLV. Configuring the Port Status TLV allows the operator to control the transmission of the Port Status TLV in CFM PDUs.

NOTE: Although Port Status TLV configuration statements are visible in the CLI on M120 and M320 routers, Port Status TLV cannot be configured on these systems. Port Status TLV can be enabled on a MEP interface only if it is a bridge logical interface, which is not possible on these systems.
For configuration information, see the following sections:

- Port Status TLV on page 211
- Interface Status TLV on page 213

Port Status TLV

The Port Status TLV indicates the ability of the bridge port on which the transmitting MEP resides to pass ordinary data, regardless of the status of the MAC. The value of this TLV is driven by the MEP variable `enableRmepDefect`, as shown in Table 20 on page 211. The format of this TLV is shown in Table 19 on page 211.

Any change in the Port Status TLVs value triggers one extra transmission of that bridge ports MEP CCMs.

Table 19: Port Status TLV Format

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Octet (Sequence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type = 2</td>
<td>1</td>
</tr>
<tr>
<td>Length</td>
<td>2–3</td>
</tr>
<tr>
<td>Value (See Table 20 on page 211)</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 20: Port Status TLV Values

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Ordinary Data Passing Freely Through the Port</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>psBlocked</td>
<td>No: <code>enableRmepDefect</code> = false</td>
<td>1</td>
</tr>
<tr>
<td>psUp</td>
<td>Yes: <code>enableRmepDefect</code> = true</td>
<td>2</td>
</tr>
</tbody>
</table>

The MEP variable `enableRmepDefect` is a boolean variable indicating whether frames on the service instance monitored by the maintenance associations if this MEP are enabled to pass through this bridge port by the Spanning Tree Protocol and VLAN topology management. It is set to TRUE if:

- The bridge port is set in a state where the traffic can pass through it.
- The bridge port is running multiple instances of the spanning tree.
- The MEP Interface is not associated with a bridging domain.

Configuring Port Status TLV

Junos OS provides configuration support for the Port Status TLV, allowing you to control the transmission of this TLV in CCM PDUs. The Junos OS provides this configuration at the continuity-check level. By default, the CCM does not include the Port Status TLV. To configure the Port Status TLV, use the `port-status-tlv` statement at the `[edit protocols oam ethernet connectivity-fault-management maintenance-domain identifier maintenance-association identifier continuity-check]` hierarchy level.
NOTE: Port Status TLV configuration is not mandated by IEEE 802.1ag. The Junos OS provides it in order to give more flexibility to the operator; however it receives and processes CCMs with a Port Status TLV, regardless of this configuration.

An example of the configuration statements follows:

```plaintext
protocols {
  oam {
    ethernet {
      connectivity-fault-management {
        maintenance-domain identifier {
          level number;
          maintenance-association identifier {
            continuity-check {
              interval number,
              loss-threshold number;
              hold-interval number;
              port-status-tlv; # Sets Port Status TLV
            }
          }
        }
      }
    }
  }
}
```

You cannot enable Port Status TLV transmission in the following two cases:

- If the MEP interface under the maintenance-association is not of type bridge.
- If the MEP is configured on a physical interface.

Displaying the Received Port Status TLV

The Junos OS saves the last received Port Status TLV from a remote MEP. If the received Port Status value does not correspond to one of the standard values listed in Table 20 on page 211, then the `show` command displays it as "unknown." You can display the last saved received Port Status TLV using the `show oam ethernet connectivity-fault-management mep-database maintenance-domain identifier maintenance-association identifier local-mep identifier remote-mep identifier` command, as in the following example:

```plaintext
user@host> show oam ethernet connectivity-fault-management mep-database maintenance-domain md5 maintenance-association ma5 local-mep 2001 remote-mep 1001
Maintenance domain name: md5, Format: string, Level: 5
Maintenance association name: ma5, Format: string
Continuity-check status: enabled, Interval: 100ms, Loss-threshold: 3 frames
MEP identifier: 2001, Direction: down, MAC address: 00:19:e2:b2:81:4a
Auto-discovery: enabled, Priority: 0
Interface status TLV: up, Port status TLV: up
Interface name: ge-2/0/0.0, Interface status: Active, Link status: Up

Remote MEP identifier: 1001, State: ok
MAC address: 00:19:e2:b0:74:00, Type: Learned
```
Interface: ge-2/0/0.0
Last flapped: Never
Remote defect indication: false
Port status TLV: none # RX PORT STATUS
Interface status TLV: none

Displaying the Transmitted Port Status TLV

The Junos OS saves the last transmitted Port Status TLV from a local MEP. If the transmission of the Port Status TLV has not been enabled, then the show command displays "none." You can display the last saved transmitted Port Status TLV using the show oam ethernet connectivity-fault-management mep-database maintenance-domain identifier maintenance-association identifier local-mep identifier remote-mep identifier command, as in the following example:

```
user@host> show oam ethernet connectivity-fault-management mep-database maintenance-domain md5 maintenance-association ma5 local-mep 2001 remote-mep 1001
Maintenance domain name: md5, Format: string, Level: 5
Maintenance association name: ma5, Format: string
Continuity-check status: enabled, Interval: 100ms, Loss-threshold: 3 frames
MEP identifier: 2001, Direction: down, MAC address: 00:19:e2:b2:81:4a
Auto-discovery: enabled, Priority: 0
Interface status TLV: up, Port status TLV: up # TX PORT STATUS
Interface name: ge-2/0/0.0, Interface status: Active, Link status: Up
Remote MEP identifier: 1001, State: ok
MAC address: 00:19:e2:b0:74:00, Type: Learned
Interface: ge-2/0/0.0
Last flapped: Never
Remote defect indication: false
Port status TLV: none
Interface status TLV: none
```

Interface Status TLV

The Interface Status TLV indicates the status of the interface on which the MEP transmitting the CCM is configured, or the next-lower interface in the IETF RFC 2863 IF-MIB. The format of this TLV is shown in Table 21 on page 213. The enumerated values are shown in Table 22 on page 213.

Table 21: Interface Status TLV Format

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Octet (Sequence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type = 4</td>
<td>1</td>
</tr>
<tr>
<td>Length</td>
<td>2–3</td>
</tr>
<tr>
<td>Value (See Table 22 on page 213)</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 22: Interface Status TLV Values

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Interface Status</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>isUp</td>
<td>up</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 22: Interface Status TLV Values (continued)

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Interface Status</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>isDown</td>
<td>down</td>
<td>2</td>
</tr>
<tr>
<td>isTesting</td>
<td>testing</td>
<td>3</td>
</tr>
<tr>
<td>isUnknown</td>
<td>unknown</td>
<td>4</td>
</tr>
<tr>
<td>isDormant</td>
<td>dormant</td>
<td>5</td>
</tr>
<tr>
<td>isNotPresent</td>
<td>notPresent</td>
<td>6</td>
</tr>
<tr>
<td>isLowerLayerDown</td>
<td>lowerLayerDown</td>
<td>7</td>
</tr>
</tbody>
</table>

Configuring Interface Status TLV

The Junos OS provides configuration support for the Interface Status TLV, thereby allowing operators to control the transmission of this TLV in CCM PDUs through configuration at the continuity-check level.

NOTE: This configuration is not mandated by IEEE 802.1ag; rather it is provided to give more flexibility to the operator. The Junos OS receives and processes CCMs with the Interface Status TLV, regardless of this configuration.

The interface status TLV configuration is shown below:

```yaml
protocols {
  oam {
    ethernet {
      connectivity-fault-management {
        maintenance-domain identifier {
          level number;
          maintenance-association identifier {
            continuity-check {
              interval number;
              loss-threshold number;
              hold-interval number;
              interface-status-tlv; # Sets the interface status TLV
            }
          }
        }
      }
    }
  }
}
```
NOTE: The Junos OS supports transmission of only three out of seven possible values for the Interface Status TLV. The supported values are 1, 2, and 7. However, the Junos OS is capable of receiving any value for the Interface Status TLV.

Displaying the Received Interface Status TLV

The Junos OS saves the last received Interface Status TLV from the remote MEP. If the received Interface Status value does not correspond to one of the standard values listed in Table 21 on page 213, then the `show` command displays "unknown."

You can display this last saved Interface Status TLV using the `show oam ethernet connectivity-fault-management mep-database maintenance-domain identifier maintenance-association identifier local-mep identifier remote-mep identifier` command, as in the following example:

```
user@host> show oam ethernet connectivity-fault-management mep-database maintenance-domain md5 maintenance-association ma5 local-mep 2001 remote-mep 1001
```

Maintenance domain name: md5, Format: string, Level: 5
Maintenance association name: ma5, Format: string
Continuity-check status: enabled, Interval: 100ms, Loss-threshold: 3 frames
MEP identifier: 2001, Direction: down, MAC address: 00:19:e2:b2:81:4a
Auto-discovery: enabled, Priority: 0
Interface status TLV: up, Port status TLV: up
Interface name: ge-2/0/0.0, Interface status: Active, Link status: Up

Remote MEP identifier: 1001, State: ok
MAC address: 00:19:e2:b0:74:00, Type: Learned
Interface: ge-2/0/0.0
Last flapped: Never
Remote defect indication: false
Port status TLV: none
Interface status TLV: none # displays the Interface Status TLV state

Displaying the Transmitted Interface Status TLV

The Junos OS saves the last transmitted Interface Status TLV from a local MEP. If the transmission of Interface Status TLV has not been enabled, then the `show` command displays "none."

You can display the last transmitted Interface Status TLV using the `show oam ethernet connectivity-fault-management mep-database maintenance-domain identifier maintenance-association identifier local-mep identifier remote-mep identifier` command, as in the following example:

```
user@host> show oam ethernet connectivity-fault-management mep-database maintenance-domain md5 maintenance-association ma5 local-mep 2001 remote-mep 1001
```

Maintenance domain name: md5, Format: string, Level: 5
Maintenance association name: ma5, Format: string
Continuity-check status: enabled, Interval: 100ms, Loss-threshold: 3 frames
MEP identifier: 2001, Direction: down, MAC address: 00:19:e2:b2:81:4a
Auto-discovery: enabled, Priority: 0
Interface status TLV: up, Port status TLV: up
Interface name: ge-2/0/0.0, Interface status: Active, Link status: Up
Remote MEP identifier: 1001, State: ok
MAC address: 00:19:e2:b0:74:00, Type: Learned
Interface: ge-2/0/0.0
Last flapped: Never
Remote defect indication: false
Port status TLV: none
Interface status TLV: none

MAC Status Defects

The Junos OS provides MAC status defect information, indicating that one or more of the remote MEPs is reporting a failure in its Port Status TLV or Interface Status TLV. It indicates "yes" if either some remote MEP is reporting that its interface is not isUp (for example, at least one remote MEPs interface is unavailable), or if all remote MEPs are reporting a Port Status TLV that contains some value other than psUp (for example, all remote MEPs Bridge Ports are not forwarding data). There are two `show` commands you can use to view the MAC Status Defects indication.

Use the `mep-database` command to display MAC status defects:

```
user@host> show oam ethernet connectivity-fault-management mep-database
maintenance-domain md6 maintenance-association ma6
Maintenance domain name: md6, Format: string, Level: 6
Maintenance association name: ma6, Format: string
Continuity-check status: enabled, Interval: 1s, Loss-threshold: 3 frames
MEP identifier: 500, Direction: down, MAC address: 00:05:85:73:7b:39
Auto-discovery: enabled, Priority: 0
Interface status TLV: up, Port status TLV: up
Interface name: xe-5/0/0.0, Interface status: Active, Link status: Up
Defects:
   Remote MEP not receiving CCM : no
   Erroneous CCM received : no
   Cross-connect CCM received : no
   RDI sent by some MEP : no
   Some remote MEP's MAC in error state : yes # MAC Status Defects yes/no
Statistics:
   CCMs sent : 1658
   CCMs received : 0
   LBM sent : 0
   Valid in-order LBRs received : 0
   Valid out-of-order LBRs received : 0
   LBRs received with corrupted data : 0
   LBRs sent : 0
   LTM sent : 0
   LTM received : 0
   LTRs sent : 0
   LTRs received : 0
   Sequence number of next LTM request : 0
   1DMs sent : 0
   Valid 1DMs received : 0
   Invalid 1DMs received : 0
   DMMs sent : 0
   DMIs sent : 0
   Valid DMIs received : 0
   Invalid DMIs received : 0
Remote MEP count: 1
```
Use the `interfaces` command to display MAC status defects:

```
user@host> show oam ethernet connectivity-fault-management interfaces detail
Interface name: xe-5/0/0.0, Interface status: Active, Link status: Up
  Maintenance domain name: md6, Format: string, Level: 6
  Maintenance association name: ma6, Format: string
  Continuity-check status: enabled, Interval: 1s, Loss-threshold: 3 frames
  Interface status TLV: up, Port status TLV: up
  MEP identifier: 500, Direction: down, MAC address: 00:05:85:73:39:4a
  MEP status: running
  Defects:
    Remote MEP not receiving CCM                  : no
    Erroneous CCM received                        : no
    Cross-connect CCM received                    : no
    RDI sent by some MEP                          : no
    Some remote MEP's MAC in error state          : yes

yes/no
```

```
Statistics:
  CCMs sent                                     : 1328
  CCMs received out of sequence                 : 0
  LBMs sent                                     : 0
  Valid in-order LBRs received                  : 0
  Valid out-of-order LBRs received               : 0
  LBRs received with corrupted data             : 0
  LBRs sent                                     : 0
  LTM sent                                      : 0
  LTM received                                  : 0
  LTRs sent                                     : 0
  LTRs received                                 : 0
  Sequence number of next LTM request           : 0
  1DMs sent                                     : 0
  Valid 1DMs received                           : 0
  Invalid 1DMs received                         : 0
  DMMs sent                                     : 0
  DMRs sent                                     : 0
  Valid DMRs received                           : 0
  Invalid DMRs received                         : 0
  Remote MEP count: 1
```

```
Identifer  MAC address        State    Interface
200     00:05:85:73:39:4a       ok    xe-5/0/0.0
```

Configuring Remote MEP Action Profile Support

Based on values of `interface-status-tlv` and `port-status-tlv` in the received CCM packets, a specific action, such as `interface-down`, can be taken using the `action-profile` options. Multiple action profiles can be configured on the router, but only one action profile can be assigned to a remote MEP.

The action profile can be configured with at least one event to trigger the action; but the action will be triggered if any one of these events occurs. It is not necessary for all of the configured events to occur to trigger action.

An action-profile can be applied only at the remote MEP level.
The following example shows an action profile configuration with explanatory comments added:

```
[edit protocols oam ethernet connectivity-fault-management]
action-profile tlv-action {
    event {
        # If interface status tlv with value specified in the config is received
        interface-status-tlv down|lower-layer-down;
        # If port status tlv with value specified in the config is received
        port-status-tlv blocked;
        # If connectivity is lost to the peer */
        adjacency-loss;
    }
    action {
        # Bring the interface down */
        interface-down;
    }
    default-actions interface-down;
}
# domains
maintenance-domain identifier {
    # maintenance domain level (0-7)
    level number;
    # association
    maintenance-association identifier {
        mep identifier {
            interface ge-x/y/z/w;
            remote-mep identifier {
                # Apply the action-profile for the remote MEP
                action-profile tlv-action;
            }
        }
    }
}
```

Monitoring a Remote MEP Action Profile

You can use the `show oam ethernet connectivity-fault-management mep-database` command to view the action profile status of a remote MEP, as in the following example:

```
user@host> show oam ethernet connectivity-fault-management mep-database
maintenance-domain md5 maintenance-association ma5 remote-mep 200
Maintenance domain name: md5, Format: string, Level: 5
Maintenance association name: ma5, Format: string
Continuity-check status: enabled, Interval: 1s, Loss-threshold: 3 frames
MEP identifier: 100, Direction: down, MAC address: 00:05:85:73:e8:ad
Auto-discovery: enabled, Priority: 0
Interface status TLV: none, Port status TLV: none # last status TLVs transmitted by the router
Interface name: ge-1/0/8.0, Interface status: Active, Link status: Up
Remote MEP identifier: 200, State: ok # displays the remote MEP name and state
MAC address: 00:05:85:73:96:1f, Type: Configured
Interface: ge-1/0/8.0
Last flapped: Never
Remote defect indication: false
Port status TLV: none
```
Interface status TLV: lower-layer-down
Action profile: juniper # displays remote MEP's action profile identifier
Last event: Interface-status-tlv lower-layer-down # last remote MEP event

to trigger action
Action: Interface-down, Time: 2009-03-27 14:25:10 PDT (00:00:02 ago)

action occurrence time

Related Documentation
- connectivity-fault-management
 - IEEE 802.1ag OAM Connectivity Fault Management Overview on page 181
 - Creating the Maintenance Domain on page 184
 - Configuring Maintenance Intermediate Points on page 185
 - Creating a Maintenance Association on page 187
 - Continuity Check Protocol on page 188
 - Configuring a Maintenance Endpoint on page 191
 - Configuring a Connectivity Fault Management Action Profile on page 196
 - Configuring Linktrace Protocol in CFM on page 199
 - Configuring Ethernet Local Management Interface on page 200
 - Configuring MAC Flush Message Processing in CET Mode on page 220
 - Configuring M120 and MX Series Routers for CCC Encapsulated Packets on page 223
 - Configuring Rate Limiting of Ethernet OAM Messages on page 225
 - Configuring 802.1ag Ethernet OAM for VPLS on page 228
- Junos® OS Ethernet Interfaces
Configuring MAC Flush Message Processing in CET Mode

In carrier Ethernet transport (CET) mode, MX Series routers are used as provider edge (PE) routers, and Nokia Siemens Networks A2200 Carrier Ethernet Switches (referred to as E-domain devices) that run standard-based protocols are used in the access side. On the MX Series routers, VPLS pseudowires are configured dynamically through label distribution protocol (LDP). On the E-domain devices, topology changes are detected through connectivity fault management (CFM) sessions running between the E-domain devices and the MX Series PE routers. The MX Series PE routers can bring the carrier Ethernet interface down if there is CFM connectivity loss. This triggers a local MAC flush as well as a targeted label distribution protocol (T-LDP) MAC flush notification that gets sent towards the remote MX Series PEs to trigger MAC flush on them.

In CET inter-op mode, MX Series routers need to interoperate with the Nokia Siemens Networks Ax100 Carrier Ethernet access devices (referred to as A-domain devices) that run legacy protocols. Nokia Siemens Networks A4100 and A8100 devices act as an intermediate between the MX Series PE routers and A-domain devices. These intermediate devices perform interworking function (IWF) procedures so that operations administration management (OAM) sessions can be run between MX Series routers and A-domain devices. There are no VPLS pseudowires between the MX Series PE routers and the Nokia Siemens Networks A4100 and A8100 intermediate devices, so there is no LDP protocol running between the PE routers to send topology change notifications. In order to communicate topology changes, MX Series routers can trigger a MAC flush and propagate it in the core. MX Series routers can use action profiles based upon the connection protection type length value (TLV) event. The action profile brings down the carrier edge logical interface in MX Series PE routers, which will trigger a local MAC flush and also propagate the topology change to the core using LDP notification.

For VPLS there is no end-to-end connectivity monitored. The access rings are independently monitored by running CFM down multiple end points (MEPs) on the working and protection paths for each of the services between the E-domain devices and the MX Series PE routers, and between the A-domain devices and the MX Series PE routers the IWF hosted by the Nokia Siemens Networks A-4100 devices. When there is a connectivity failure on the working path, the Nokia Siemens Networks Ax200 devices perform a switchover to the protection path, triggering a topology change notification (in the form of TLVs carried in CCM) to be sent on the active path.
Figure 22 on page 221 describes the dual homed topology on MX Series PE routers connected to the A-domain. When an A-domain device triggers a switchover, it starts switching the service traffic to the new active path. This change is communicated in the HELLO protocol data units (PDUs) sent by that A-domain device on the working and protection paths. When the IWF in A4100 receives these HELLO PDUs, it converts them to standard CCM messages and also inserts a connection protection TLV. The “Protection-in-use” field of the connection protection TLV is encoded with the currently active path, and is included in the CCM message. CCM messages are received by the MX Series PE routers through the VLAN spoke in A4100. In the above dual homed scenario, one MX Series PE router monitors the working path, and the other MX Series PE router monitors the protection path.

A MAC flush occurs when the CFM session that is monitoring the working path detects that the service traffic has moved to the protection path or when the CFM session that is monitoring the protection path detects that the service traffic has moved to the working path.
Figure 23 on page 222 describes the dual attached topology on MX Series PE routers connected to the A-domain. The MAC flush mechanism used in this case is also the same as the one used for the A-domain in the dual homed scenario (Figure 1). However in this case both the CFM sessions are hosted by only one MX Series PE router. When Ax100 in the A-domain detects topology changes, the MX Series PE router receives the connection protection TLV in the CCM message for the working and protection paths with the value of “Protection-in-use” indicating which path is the active one. Based upon the event that is generated for the CFM session, the MX Series PE router will bring down the appropriate interface which will trigger a local MAC flush.

Configuring a Connection Protection TLV Action Profile

An action profile can be configured to perform the interface-down action based on the values of connection-protection-tlv in the received CCM packets.

The following example shows an action profile configuration with explanatory comments added:

```
[edit protocols oam ethernet connectivity-fault-management]
action-profile <tlv-action> {
  event {
    # If a connection protection TLV with a “Protection-in-use” value of SET is received */
    connection-protection-tlv <using-protection-path>;
    # If a connection protection TLV with a “Protection-in-use” value of RESET is received */
    connection-protection-tlv <using-working-path>;
  }
  action {
    # Bring the interface down */
    interface-down;
  }
}
```

Related Documentation
- connection-protection-tlv
IEEE 802.1ag OAM Connectivity Fault Management Overview on page 181
Creating the Maintenance Domain on page 184
Configuring Maintenance Intermediate Points on page 185
Creating a Maintenance Association on page 187
Continuity Check Protocol on page 188
Configuring a Maintenance Endpoint on page 191
Configuring a Connectivity Fault Management Action Profile on page 196
Configuring Linktrace Protocol in CFM on page 199
Configuring Ethernet Local Management Interface on page 200
Configuring Port Status TLV and Interface Status TLV on page 208
Configuring M120 and MX Series Routers for CCC Encapsulated Packets on page 223
Configuring Rate Limiting of Ethernet OAM Messages on page 225
Configuring 802.1ag Ethernet OAM for VPLS on page 228
Configuring Ethernet Local Management Interface on page 200
Configuring Port Status TLV and Interface Status TLV on page 208
Configuring M120 and MX Series Routers for CCC Encapsulated Packets on page 223
Configuring Rate Limiting of Ethernet OAM Messages on page 225
Configuring 802.1ag Ethernet OAM for VPLS on page 228

Junos® OS Ethernet Interfaces

Layer 2 virtual private network (L2VPN) is a type of virtual private network service used to transport customer's private Layer 2 traffic (for example, Ethernet, ATM or Frame Relay) over the service provider's shared IP/MPLS infrastructure. The service provider edge (PE) router must have an interface with circuit cross-connect (CCC) encapsulation to switch the customer edge (CE) traffic to the public network.

The IEEE 802.1ag Ethernet Connectivity Fault Management (CFM) is an OAM standard used to perform fault detection, isolation, and verification on virtual bridge LANs. M120 and MX Series routers provide CFM support for bridge/VPLS/routed interfaces and support 802.1ag Ethernet OAM for CCC encapsulated packets.

CFM Features Supported on Layer 2 VPN Circuits

CFM features supported on L2VPN circuits are as follows:
- Creation of up/down MEPs at any level on the CE-facing logical interfaces.
- Creation of MIPs at any level on the CE-facing logical interfaces.
- Support for continuity check, loopback, and linktrace protocol.
• Support for the Y1731 Ethernet Delay measurement protocol.
• Support for action profiles to bring the CE-facing logical interfaces down when loss of connectivity is detected.

Figure 24: Layer 2 VPN Topology

To monitor the L2VPN circuit, a CFM up MEP (Level 6 in Figure 24 on page 224) can be configured on the CE-facing logical interfaces of provider edge routers PE1 and PE2. To monitor the CE-PE attachment circuit, a CFM down MEP can be configured on the customer logical interfaces of CE1-PE1 and CE2-PE2 (Level 0 in Figure 24 on page 224).

Configuring CFM for CCC Encapsulated Packets

The only change from the existing CLI configuration is the introduction of a new command to create a MIP on the CE-facing interface of the PE router.

protocols {
 oam {
 ethernet {
 connectivity-fault-management {
 # Define a maintenance domains for each default level.
 #; These names are specified as DEFAULT_level_number
 maintenance-domain DEFAULT_x {
 # L2VPN CE interface
 interface (ge | xe)-fpc/pic/port.domain;
 }
 [level number;
 maintenance-association identifier {
 mep mep-id {
 direction (up | down);
 # L2 VPN CE interface on which encapsulation family CCC is configured.
 interface (ge | xe)-fpc/pic/port.domain;
 auto-discovery;
 priority number;
 }
 }
 }
 }
 }
}

Related Documentation
• connectivity-fault-management
• IEEE 802.1ag OAM Connectivity Fault Management Overview on page 181
• Creating the Maintenance Domain on page 184
Junos® OS Ethernet Interfaces

Configuring Rate Limiting of Ethernet OAM Messages

M Series, M320 with Enhanced III FPC, M120, M7i and M10 with CFEB, and MX Series routers support rate limiting of Ethernet OAM messages. Depending on the connectivity fault management (CFM) configuration, CFM packets are discarded, sent to the CPU for processing, or flooded to other bridge interfaces. This feature allows the router to intercept incoming CFM packets for prevention of DoS attacks.

You can apply rate limiting of Ethernet OAM messages at either of two CFM policing levels, as follows:

- Global-level CFM policing—uses a policer at the global level to police the CFM traffic belonging to all the sessions.
- Session-level CFM policing—uses a policer created to police the CFM traffic belonging to one session.

To configure global-level CFM policing, include the `policer` statement and its options at the `[edit protocols oam ethernet connectivity-fault-management]` hierarchy level.

To configure session-level CFM policing, include the `policer` statement at the `[edit protocols oam ethernet connectivity-fault-management maintenance-domain name level number maintenance-association name]` hierarchy level.

The following example shows a CFM policer used for rate-limiting CFM:

```plaintext
[edit]
firewall {
    policer cfm-policer {
        if-exceeding {
            bandwidth-limit 8k;
            burst-size-limit 2k;
        }
    }
}
```
Case 1: Global-Level CFM Policing

This example shows a global level policer, at the CFM level, for rate-limiting CFM. The `continuity-check cfm-policer` statement at the global connectivity-fault-management policer hierarchy level specifies the policer to use for policing all continuity check packets of the CFM traffic belonging to all sessions. The `other cfm-policer1` statement at the connectivity-fault-management policer hierarchy level specifies the policer to use for policing all non-continuity check packets of the CFM traffic belonging to all sessions. The `all cfm-policer2` statement specifies to police all CFM packets with the specified policer `cfm-policer2`. If the `all policer-name` option is used, then the user cannot specify the previous `continuity-check` and `other` options.

```plaintext
[edit protocols oam ethernet]
connectivity-fault-management {
    policer {
        continuity-check cfm-policer;
        other cfm-policer1;
        # all cfm-policer2;
    }
}
```

Case 2: Session-Level CFM Policing

This example shows a session-level CFM policer used for rate-limiting CFM. The `policer` statement at the session connectivity-fault-management maintenance-domain `md maintenance-association ma` hierarchy level specifies the policer to use for policing only continuity check packets of the CFM traffic belonging to the specified session. The `other cfm-policer1` statement at the connectivity-fault-management maintenance-domain `md maintenance-association ma` hierarchy level specifies the policer to use for policing all non-continuity check packets of the CFM traffic belonging to this session only. The `all cfm-policer2` statement specifies to police all CFM packets with the specified policer `cfm-policer2`. If the `all policer-name` option is used, then the user cannot specify the previous `continuity-check` and `other` options.

```plaintext
[edit protocols oam ethernet]
connectivity-fault-management {
    maintenance-domain md {
        level number;
        maintenance-association ma {
            continuity-check {
                interval 1s;
            }
            policer {
                continuity-check cfm-policer;
                other cfm-policer1;
                # all cfm-policer2;
            }
            mep1 {
                interface ge-3/3/0.0;
                direction up;
                auto-discovery;
            }
        }
    }
}
```
In the case of global CFM policing, the same policer is shared across multiple CFM sessions. In per-session CFM policing, a separate policer must be created to rate-limit packets specific to that session.

NOTE:
Service-level policer configuration for any two CFM sessions on the same interface at different levels must satisfy the following constraints if the direction of the sessions is the same:

- If one session is configured with policer all, then the other session cannot have a policer all or policer other configuration.
- If one session is configured with policer other, then the other session cannot have a policer all or policer other configuration.

A commit error will occur if such a configuration is committed.

NOTE: Policers with PBB and MIPs are not supported.

Related Documentation
- connectivity-fault-management
- IEEE 802.1ag OAM Connectivity Fault Management Overview on page 181
- Creating the Maintenance Domain on page 184
- Configuring Maintenance Intermediate Points on page 185
- Creating a Maintenance Association on page 187
- Continuity Check Protocol on page 188
- Configuring a Maintenance Endpoint on page 191
- Configuring a Connectivity Fault Management Action Profile on page 196
- Configuring Linktrace Protocol in CFM on page 199
- Configuring Ethernet Local Management Interface on page 200
- Configuring Port Status TLV and Interface Status TLV on page 208
- Configuring MAC Flush Message Processing in CET Mode on page 220
- Configuring M120 and MX Series Routers for CCC Encapsulated Packets on page 223
- Configuring 802.1ag Ethernet OAM for VPLS on page 228
- Junos® OS Ethernet Interfaces
Configuring 802.1ag Ethernet OAM for VPLS

BEST PRACTICE: The logical interfaces in a VPLS routing instance may have the same or different VLAN configurations. VLAN normalization is required to switch packets correctly among these interfaces. VLAN normalization is effectively VLAN translation wherein the VLAN tags of the received packet need to be translated if they are different than the normalized VLAN tags. Configuration is described starting in "IEEE 802.1ag OAM Connectivity Fault Management Overview" on page 181 and you should further observe the additional requirements described in this section.

For MX Series routers, the normalized VLAN is specified using one of the following configuration statements in the VPLS routing instance:

- `vlan-id vlan-number`
- `vlan-id none`
- `vlan-tags outer outer-vlan-number inner inner-vlan-number`

You must configure `vlan-maps` explicitly on all interfaces belonging to the routing instance.

The following forwarding path considerations must be observed:

- **Packet receive path:**
 - This is the forwarding path for packets received on the interfaces.
 - 802.1ag Ethernet OAM for VPLS uses implicit interface filters and forwarding table filters to flood, accept, and drop the CFM packets.

- **Packet transmit path:**
 - The JUNOS Software uses the router's hardware-based forwarding for CPU-generated packets.
 - For Down MEPs, the packets are transmitted on the interface on which the MEP is configured.
 - For Up MEPs, the packet must be flooded to other interfaces in the VPLS routing instance. The router creates a flood route tied to a flood next hop (with all interfaces to flood) and then sources the packet to be forwarded with this flood route.
 - The router also uses implicit-based forwarding for CPU generated packets. The result is for the flood next hop tied to the flood route to be tied to the filter term. The filter term uses match criteria to correctly identify the host-generated packets.
Configuring Unified ISSU for 802.1ag CFM

A unified in-service software upgrade (ISSU) enables you to upgrade between two different Junos OS releases with no disruption on the control plane and with minimal disruption of traffic. Unified ISSU is automatically enabled for the Connectivity Fault Management (CFM) protocols and interoperates between local and remote maintenance endpoints (MEPs).

The Junos OS provides support for unified ISSU using the loss threshold type length value (TLV), which is automatically enabled for CFM. TLVs are described in the IEEE 802.1ag standard for CFM as a method of encoding variable-length and optional information in a protocol data unit (PDU). The loss threshold TLV indicates the loss threshold value of a remote MEP. The loss threshold TLV is transmitted as part of the CFM continuity check messages.

During a unified ISSU, the control plane may go down for several seconds and cause CFM continuity check packets to get dropped. This may cause the remote MEP to detect a connectivity loss and mark the MEP as down. To keep the MEP active during a unified ISSU, the loss threshold TLV communicates the minimum threshold value the receiving MEP requires to keep the MEP active. The receiving MEP parses the TLV and updates the loss threshold value, but only if the new threshold value is greater than the locally configured threshold value.
An overview of CFM is described starting in “IEEE 802.1ag OAM Connectivity Fault Management Overview” on page 181, and you should further observe the additional requirements described in this topic.

Table 23 on page 230 shows the Loss Threshold TLV format.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Octet (sequence)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type=31</td>
<td>1</td>
<td>Required. Required. If 0, no Length or Value fields follow. If not 0, at least the Length field follows the Type field.</td>
</tr>
<tr>
<td>Length=12</td>
<td>2</td>
<td>Required if the Type field is not 0. Not present if the Type field is 0. The 16 bits of the Length field indicate the size, in octets, of the Value field. 0 in the Length field indicates that there is no Value field.</td>
</tr>
<tr>
<td>OUI</td>
<td>3</td>
<td>Optional. Organization unique identifier (OUI), which is controlled by the IEEE and is typically the first three bytes of a MAC address (Juniper OUI 0x009069).</td>
</tr>
<tr>
<td>Subtype</td>
<td>1</td>
<td>Optional. Organizationally defined subtype.</td>
</tr>
<tr>
<td>Value</td>
<td>4</td>
<td>Optional. Loss threshold value.</td>
</tr>
<tr>
<td>Flag</td>
<td>4</td>
<td>Optional. Bit0 (identifies an ISSU is in progress)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit1-31 (reserved)</td>
</tr>
</tbody>
</table>

Junos OS provides configuration support for the `convey-loss-threshold` statement, allowing you to control the transmission of the loss threshold TLV in continuity check messages PDUs. The `convey-loss-threshold` statement specifies that the loss threshold TLV must be transmitted as part of the continuity check messages. If the `convey-loss-threshold` statement is not specified, continuity check messages transmit this TLV only when a unified ISSU is in progress. The Junos OS provides this configuration at the continuity-check level. By default, continuity check messages do not include the loss threshold TLV.

To configure the convey loss threshold, use the `convey-loss-threshold` statement at the `[edit protocols oam ethernet connectivity-fault-management maintenance-domain identifier maintenance-association identifier continuity-check]` hierarchy level.

For the remote MEP, the loss threshold TLV is transmitted only during the unified ISSU if the `convey-loss-threshold` statement is not configured. The remote MEP switches back to the default loss threshold if no loss threshold TLV is received or the TLV has a default threshold value of 3.

An example of the configuration statements follows:

```
protocols {
    oam {
        ethernet {
            connectivity-fault-management {
```
The Junos OS saves the last received loss threshold TLV from the remote MEP. You can display the last saved loss threshold TLV that is received by the remote MEP, using the `show oam ethernet connectivity-fault-management mep-database maintenance-domain identifier maintenance-association identifier local-mep identifier remote-mep identifier` command, as in the following example:

```
user@host> show oam ethernet connectivity-fault-management mep-database maintenance-domain md3 maintenance-association ma5 local-mep 2 remote-mep 1
Maintenance domain name: md3, Format: string, Level: 3
Maintenance association name: ma5, Format: string
Continuity-check status: enabled, Interval: 1s, Loss-threshold: 3 frames
MEP Identifier: 2, Direction: up, MAC address: 00:19:e2:b0:76:be
Auto-discovery: enabled, Priority: 0
Interface status TLV: none, Port status TLV: none
Connection Protection TLV: yes
  Prefer me: no, Protection in use: no, FRR Flag: no
Interface name: xe-4/1/1.0, Interface status: Active, Link status: Up
Loss Threshold TLV:
  Loss Threshold: 3, Flag: 0x0
Remote MEP identifier: 1, State: ok
  MAC address: 00:1f:12:b7:ce:79, Type: Learned
  Interface: xe-4/1/1.0
  Last flapped: Never
  Continuity: 100%, Admin-enable duration: 45sec, Oper-down duration: 0sec
  Effective loss threshold: 3 frames
  Remote defect indication: false
  Port status TLV: none
  Interface status TLV: none
  Connection Protection TLV:
    Prefer me: no, Protection in use: no, FRR Flag: no
Loss Threshold TLV: #Displays last received value
  Loss Threshold: 3, Flag: 0x0
```

The Junos OS saves the last transmitted loss threshold TLV from a local MEP. You can display the last transmitted loss threshold TLV and the effective loss (operational) threshold for the remote MEP, using the `show oam ethernet connectivity-fault-management mep-database maintenance-domain identifier maintenance-association identifier local-mep identifier remote-mep identifier` command, as in the following example:

```
user@host> show oam ethernet connectivity-fault-management mep-database maintenance-domain md3 maintenance-association ma5 local-mep 2 remote-mep 1
```
Maintenance domain name: md3, Format: string, Level: 3
Maintenance association name: ma3, Format: string
Continuity-check status: enabled, Interval: 1s, Loss-threshold: 3 frames
MEP identifier: 2, Direction: up, MAC address: 00:19:e2:b0:76:be
Auto-discovery: enabled, Priority: 0
Interface status TLV: none, Port status TLV: none
Connection Protection TLV: yes
 Prefer me: no, Protection in use: no, FRR Flag: no
Interface name: xe-4/1/1.0, Interface status: Active, Link status: Up
 Loss Threshold TLV: #Displays last transmitted value
 Loss Threshold: 3 , Flag: 0x0
Remote MEP identifier: 1, State: ok
 MAC address: 00:1f:12:b7:ce:79, Type: Learned
 Interface: xe-4/1/1.0
 Last flapped: Never
 Continuity: 100%, Admin-enable duration: 45sec, Oper-down duration: 0sec
 Effective loss threshold: 3 frames #Displays operational threshold
Remote defect indication: false
Port status TLV: none
Interface status TLV: none
Connection Protection TLV:
 Prefer me: no, Protection in use: no, FRR Flag: no
Loss Threshold TLV:
 Loss Threshold: 3 , Flag: 0x0

Related Documentation

- Example: Configuring Ethernet CFM over VPLS
- IEEE 802.1ag OAM Connectivity Fault Management Overview on page 181

Configuring CCM for Better Scalability

This topic describes how to configure CCM for better scalability. Junos OS provides enhancements to trigger faster protection-switching and convergence in the event of failures in Ethernet domains for Carrier Ethernet services. These enhancements can be used when CE devices in the Ethernet domain detect faster service failures and propagates the information in the interface-status TLV of the continuity-check messages (CCMs). When CCMs are received, PE devices can perform certain actions which facilitates faster protection-switching and convergence.

- Configuring Faster Protection Switching on page 232
- Configuring Faster Convergence on page 234
- Configuring a Primary VLAN ID on page 235
- Configuring a Remote Maintenance Association on page 235

Configuring Faster Protection Switching

You can apply an action profile to provide faster protection switching for point-to-point network topologies with local switching configured. In a normal state, CCM sessions are configured on the working and protect interfaces. The CCM packets transmitted contain an interface-status TLV with the value up on the working interface and value down on the protect interface. When a link fails on the working interface, the protect interface starts receiving the interface-status TLV as up. With the profile configuration, if the
interface-status TLV received on the protect interface is up, the working interface is automatically marked as interface-down.

To configure the interface-status-tlv down event, include the interface-status-tlv down statement at the [edit protocols oam ethernet connectivity-fault-management action-profile profile-name event] hierarchy level.

To configure interface-down as the action profile's action, include the interface-down statement at the [edit protocols oam ethernet connectivity-fault-management action-profile profile-name action] hierarchy level.

To configure interface-down peer-interface as the clear-action, include interface-down peer-interface at the [edit protocols oam ethernet connectivity-fault-management action-profile profile-name clear-action] hierarchy level.

[edit protocols oam]
ethernet {
 connectivity-fault-management {
 action-profile p1 {
 event {
 interface-status-tlv down;
 }
 action {
 interface-down;
 }
 clear-action {
 interface-down peer-interface;
 }
 }
 }
}

In this action profile configuration, when the interface-status TLV is received as up, the peer-interface is marked as down.

The peer-interface is configured in the protect-maintenance-association statement. Consider the following example using the protect-maintenance-association statement in the configuration:

[edit protocols oam]
ethernet {
 connectivity-fault-management {
 action-profile p1 {
 event {
 adjacency-loss;
 }
 action {
 interface-down;
 }
 clear-action {
 interface-down peer-interface;
 }
 }
 }
 maintenance-domain nsn {
 level 5;
 }
}
You can apply an action profile to provide faster convergence for dual-homed multipoint-to-multipoint network topologies. If a multipoint-to-multipoint Ethernet service uses MAC-based forwarding and stale MAC addresses exist in the learning tables, this can result in traffic black holes in the network where incoming traffic is silently discarded, without informing the source that the data did not reach its intended recipient. With the profile configuration, if the interface-status TLV received on the protect interface is up, then the interface-status TLV on the working interface is marked as down and the PE device for the protect interface propagates a remote MAC-flush message to the PE devices in the virtual private LAN service (VPLS) by using TLDP-MAC-FLUSH. The MAC flush avoids traffic blackholing due to stale mac-db entries.

To configure the interface-status-tlv down event, include the interface-status-tlv down statement at the [edit protocols oam ethernet connectivity-fault-management action-profile profile-name event] hierarchy level.

To configure propagate-remote-flush as the action profile's action, include the propagate-remote-flush statement at the [edit protocols oam ethernet connectivity-fault-management action-profile profile-name action] hierarchy level.

To configure propagate-remote-flush as the clear-action, include the propagate-remote-flush statement at the [edit protocols oam ethernet connectivity-fault-management action-profile profile-name clear-action] hierarchy level.
In this action profile configuration, when the incoming CCM packet contains the interface-status TLV with value down, the `propagate-remote-mac-flush` action is triggered for the action-profile.

Configuring a Primary VLAN ID

You can assign a primary virtual LAN (VLAN) ID in the maintenance association for increased flexibility in the number of tags. When a `vlan-range` or `vlan-id-list` is configured on an interface, the service OAM must run on one of the VLANs. The VLAN assigned for service monitoring is considered the primary VLAN. If a `primary-vid` is not configured, Junos OS assigns the first VLAN from the `vlan-range` or `vlan-id-list`. In earlier releases, Junos OS assigned VLAN 4095.

To configure a primary VLAN ID, you can specify the `primary-vid` statement at the `[edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name maintenance-association ma-name]` hierarchy level:

```plaintext
[edit protocols oam ethernet connectivity-fault-management]
maintenance domain md3 {
    level 3;
    maintenance-association ma3 {
        primary-vid 2000;
        continuity-check {
            interval 10ms;
            connection-protection-tlv;
        }
        mep 2 {
            interface ge-2/2/0.0;
            direction up;
            auto-discovery;
        }
    }
}
```

Configuring a Remote Maintenance Association

You can configure a maintenance association to accept a different maintenance association identifier (ID) from a neighbor by including a `remote-maintenance-association`
statement. The 802.1ag CCM sessions expect the same maintenance association identifier from its neighbors. If there is a maintenance association identifier mismatch, the PDUs are marked as error PDUs. If a remote-maintenance-association statement is configured, a different maintenance association identifier is accepted and the 802.1ag CCM sessions do not mark the CCM PDUs as error PDUs when the maintenance-association name is the same as the name specified in the remote-maintenance-association statement.

To configure a remote maintenance association, include the remote-maintenance-association statement at the [edit protocols oam ethernet connectivity-fault-management maintenance-domain domain-name maintenance-association ma-name] hierarchy level:

 [edit protocols oam ethernet connectivity-fault-management]
maintenance domain md3 {
 level 1;
 maintenance-association ma3 {
 remote-maintenance-association fix-ma;
 continuity-check {
 interval 10ms;
 connection-protection-tlv;
 }
 mep 2 {
 interface ge-2/2/0.0;
 direction up;
 auto-discovery;
 }
 }
}

Using this configuration, interoperability is improved for CCMs with low-end CE devices supporting fixed maintenance association identifier configurations.
CHAPTER 14

Configuring ITU-T Y.1731 Ethernet Service OAM

- Service-Level Agreement Measurement on page 238
- Ethernet Frame Delay Measurements Overview on page 238
- Ethernet Frame Loss Measurement Overview on page 244
- On-Demand Mode on page 245
- Proactive Mode on page 246
- Ethernet Failure Notification Protocol Overview on page 248
- Configuring an Iterator Profile on page 249
- Configuring a Remote MEP with an Iterator Profile on page 250
- Configuring Statistical Frame Loss Measurement for VPLS Connections on page 252
- Guidelines for Configuring Routers to Support an ETH-DM Session on page 253
- Guidelines for Starting an ETH-DM Session on page 254
- Guidelines for Managing ETH-DM Statistics and ETH-DM Frame Counts on page 256
- Configuring Routers to Support an ETH-DM Session on page 260
- Starting an ETH-DM Session on page 264
- Managing ETH-DM Statistics and ETH-DM Frame Counts on page 266
- Managing ETH-LM Statistics on page 269
- Managing Iterator Statistics on page 270
- Managing Continuity Measurement Statistics on page 275
- Example: One-Way Ethernet Frame Delay Measurement on page 276
- Example: Configuring an Iterator on page 283
- Configuring the Failure Notification Protocol on page 285
Service-Level Agreement Measurement

Service-level agreement (SLA) measurement is the process of monitoring the bandwidth, delay, delay variation (jitter), continuity, and availability of a service (E-Line or E-LAN). It enables you to identify network problems before customers are impacted by network defects.

NOTE:

The Ethernet VPN services can be classified into:

- Peer-to-peer-services (E-Line services)—The E-Line services are offered using MPLS-based Layer 2 VPN virtual private wire service (VPWS).
- Multipoint-to-multipoint services (E-LAN services)—The E-LAN services are offered using MPLS-based virtual private LAN service (VPLS).

For more information, see the Junos VPNs Configuration Guide.

In Junos OS, SLA measurements are classified into:

- On-demand mode—In on-demand mode, the measurements are triggered through the CLI. For more information, see “On-Demand Mode” on page 245.
- Proactive mode—In proactive mode, the measurements are triggered by an iterator application. For more information, see “Proactive Mode” on page 246.

For more information about frame delay measurement, see “Ethernet Frame Delay Measurements Overview” on page 238. For more information about frame loss measurement, see “Ethernet Frame Loss Measurement Overview” on page 244. Note that Ethernet frame delay measurement and Ethernet frame loss measurement are not supported on the ae interface.

Related Documentation

- Proactive Mode on page 246.
- On-Demand Mode on page 245.
- Junos® OS Ethernet Interfaces

Ethernet Frame Delay Measurements Overview

- ITU-T Y.1731 Frame Delay Measurement Feature on page 239
- One-Way Ethernet Frame Delay Measurement on page 240
- Two-Way Ethernet Frame Delay Measurement on page 242
- Choosing Between One-Way and Two-Way ETH-DM on page 243
- Restrictions for Ethernet Frame Delay Measurement on page 243
ITU-T Y.1731 Frame Delay Measurement Feature

The IEEE 802.3-2005 standard for Ethernet Operations, Administration, and Maintenance (OAM) defines a set of link fault management mechanisms to detect and report link faults on a single point-to-point Ethernet LAN.

Junos OS supports key OAM standards that provide for automated end-to-end management and monitoring of Ethernet service by service providers:

- **IEEE Standard 802.1ag**, also known as “Connectivity Fault Management (CFM).”
- **ITU-T Recommendation Y.1731**, which uses different terminology than IEEE 802.1ag and defines Ethernet service OAM features for fault monitoring, diagnostics, and performance monitoring.

These capabilities allow operators to offer binding service-level agreements (SLAs) and generate new revenues from rate- and performance-guaranteed service packages that are tailored to the specific needs of their customers.

Ethernet CFM

The IEEE 802.1ag standard for connectivity fault management (CFM) defines mechanisms to provide for end-to-end Ethernet service assurance over any path, whether a single link or multiple links spanning networks composed of multiple LANs.

For Ethernet interfaces on M320, MX Series, and T Series routers, Junos OS supports the following key elements of the Ethernet CFM standard:

- Fault monitoring using the IEEE 802.1ag Ethernet OAM Continuity Check protocol
- Path discovery and fault verification using the IEEE 802.1ag Ethernet OAM Linktrace protocol
- Fault isolation using the IEEE 802.1ag Ethernet OAM Loopback protocol

In a CFM environment, network entities such as network operators, service providers, and customers may be part of different administrative domains. Each administrative domain is mapped into one maintenance domain. Maintenance domains are configured with different level values to keep them separate. Each domain provides enough information for the entities to perform their own management and end-to-end monitoring, and still avoid security breaches.

Figure 25 on page 240 shows the relationships among the customer, provider, and operator Ethernet bridges, maintenance domains, maintenance association end points (MEPs), and maintenance intermediate points (MIPs).
NOTE: Maintenance intermediate points (MIP) are not supported on the ACX Series routers.

Ethernet Frame Delay Measurement

Two key objectives of OAM functionality are to measure quality-of-service attributes such as frame delay and frame delay variation (also known as “frame jitter”). Such measurements can enable you to identify network problems before customers are impacted by network defects.

Junos OS supports Ethernet frame delay measurement between MEPs configured on Ethernet physical or logical interfaces on MX Series routers. Ethernet frame delay measurement provides fine control to operators for triggering delay measurement on a given service and can be used to monitor SLAs. Ethernet frame delay measurement also collects other useful information, such as worst and best case delays, average delay, and average delay variation. The Junos OS implementation of Ethernet frame delay measurement (ETH-DM) is fully compliant with the ITU-T Recommendation Y.1731, OAM Functions and Mechanisms for Ethernet-based Networks. The recommendation defines OAM mechanisms for operating and maintaining the network at the Ethernet service layer, which is called the “ETH layer” in ITU-T terminology.

MX Series routers with modular port concentrators (MPCs) and 10-Gigabit Ethernet MPCs with SFP+ support ITU-T Y.1731 functionality on VPLS for frame-delay and delay-variation.

One-Way Ethernet Frame Delay Measurement

In one-way ETH-DM mode, a series of frame delay and frame delay variation values are calculated based on the time elapsed between the time a measurement frame is sent from the initiator MEP at one router and the time when the frame is received at the receiver MEP at the other router.
1DM Transmission

When you start a one-way frame delay measurement, the router sends 1DM frames—frames that carry the protocol data unit (PDU) for a one-way delay measurement—from the initiator MEP to the receiver MEP at the rate and for the number of frames you specify. The router marks each 1DM frame as drop-ineligible and inserts a timestamp of the transmission time into the frame.

1DM Reception

When an MEP receives a 1DM frame, the router that contains the receiver MEP measures the one-way delay for that frame (the difference between the time the frame was received and the timestamp contained in the frame itself) and the delay variation (the difference between the current and previous delay values).

One-Way ETH-DM Statistics

The router that contains the receiver MEP stores each set of one-way delay statistics in the ETH-DM database. The ETH-DM database collects up to 100 sets of statistics for any given CFM session (pair of peer MEPs). You can access these statistics at any time by displaying the ETH-DM database contents.

One-Way ETH-DM Frame Counts

Each router counts the number of one-way ETH-DM frames sent and received:

- For an initiator MEP, the router counts the number of 1DM frames sent.
- For a receiver MEP, the router counts the number of valid 1DM frames received and the number of invalid 1DM frames received.

Each router stores ETH-DM frame counts in the CFM database. The CFM database stores CFM session statistics and, for interfaces that support ETH-DM, any ETH-DM frame counts. You can access the frame counts at any time by displaying CFM database information for Ethernet interfaces assigned to MEPs or for MEPs in CFM sessions.

Synchronization of System Clocks

The accuracy of one-way delay calculations depends on close synchronization of the system clocks at the initiator MEP and receiver MEP.

The accuracy of one-way delay variation is not dependent on system clock synchronization. Because delay variation is simply the difference between consecutive one-way delay values, the out-of-phase period is eliminated from the frame jitter values.

NOTE: For a given one-way Ethernet frame delay measurement, frame delay and frame delay variation values are available only on the router that contains the receiver MEP.
Two-Way Ethernet Frame Delay Measurement

In two-way ETH-DM mode, frame delay and frame delay variation values are based on the time difference between when the initiator MEP transmits a request frame and receives a reply frame from the responder MEP, subtracting the time elapsed at the responder MEP.

DMM Transmission

When you start a two-way frame delay measurement, the router sends delay measurement message (DMM) frames—frames that carry the PDU for a two-way ETH-DM request—from the initiator MEP to the responder MEP at the rate and for the number of frames you specify. The router marks each DMM frame as drop-ineligible and inserts a timestamp of the transmission time into the frame.

DMR Transmission

When an MEP receives a DMM frame, the responder MEP responds with a delay measurement reply (DMR) frame, which carries ETH-DM reply information and a copy of the timestamp contained in the DMM frame.

DMR Reception

When an MEP receives a valid DMR, the router that contains the MEP measures the two-way delay for that frame based on the following sequence of timestamps:

1. $T_{I_{TxDMM}}$
2. $T_{R_{RxDMM}}$
3. $T_{R_{TxDMR}}$
4. $T_{I_{RxDMR}}$

A two-way frame delay is calculated as follows:

$$\left[T_{I_{RxDMR}} - T_{I_{TxDMM}} \right] - \left[T_{R_{TxDMR}} - T_{R_{RxDMM}} \right]$$

The calculation shows that frame delay is the difference between the time at which the initiator MEP sends a DMM frame and the time at which the initiator MEP receives the associated DMR frame from the responder MEP, minus the time elapsed at the responder MEP.

The delay variation is the difference between the current and previous delay values.

Two-Way ETH-DM Statistics

The router that contains the initiator MEP stores each set of two-way delay statistics in the ETH-DM database. The ETH-DM database collects up to 100 sets of statistics for any given CFM session (pair of peer MEPs). You can access these statistics at any time by displaying the ETH-DM database contents.
Two-Way ETH-DM Frame Counts

Each router counts the number of two-way ETH-DM frames sent and received:

- For an initiator MEP, the router counts the number DMM frames transmitted, the number of valid DMR frames received, and the number of invalid DMR frames received.
- For a responder MEP, the router counts the number of DMR frames sent.

Each router stores ETH-DM frame counts in the CFM database. The CFM database stores CFM session statistics and, for interfaces that support ETH-DM, any ETH-DM frame counts. You can access the frame counts at any time by displaying CFM database information for Ethernet interfaces assigned to MEPs or for MEPs in CFM sessions.

NOTE: For a given two-way Ethernet frame delay measurement, frame delay and frame delay variation values are available only at the router that contains the initiator MEP.

Choosing Between One-Way and Two-Way ETH-DM

One-way frame delay measurement requires that the system clocks at the initiator MEP and receiver MEP are closely synchronized. Two-way frame delay measurement does not require synchronization of the two systems. If it is not practical for the clocks to be synchronized, two-way frame delay measurements are more accurate.

When two systems are physically close to each other, their one-way delay values are very high compared to their two-way delay values. One-way delay measurement requires that the timing for the two systems be synchronized at a very granular level, and MX Series routers currently do not support this granular synchronization.

Restrictions for Ethernet Frame Delay Measurement

The following restrictions apply to the Ethernet frame delay measurement feature:

- The ETH-DM feature is not supported on aggregated Ethernet interfaces or label-switched interface (LSI) pseudowires.
- Hardware-assisted timestamping for ETH-DM frames in the reception path is only supported for MEP interfaces on Enhanced DPCs and Enhanced Queuing DPCs in MX Series routers. For information about hardware-assisted timestamping, see “Guidelines for Configuring Routers to Support an ETH-DM Session” on page 253 and “Enabling the Hardware-Assisted Timestamping Option” on page 263.
- Ethernet frame delay measurements can be triggered only when the distributed periodic packet management daemon (ppm) is enabled. For more information about this limitation, see “Guidelines for Configuring Routers to Support an ETH-DM Session” on page 253 and “Ensuring That Distributed ppm Is Not Disabled” on page 261.
- You can monitor only one session at a time to the same remote MEP or MAC address. For more information about starting an ETH-DM session, see “Starting an ETH-DM Session” on page 264.
• ETH-DM statistics are collected at only one of the two peer routers in the ETH-DM session. For a one-way ETH-DM session, you can display frame ETH-DM statistics at the receiver MEP only, using ETH-DM-specific show commands. For a two-way ETH-DM session, you can display frame delay statistics at the initiator MEP only, using the same ETH-DM-specific show commands. For more information, see “Managing ETH-DM Statistics and ETH-DM Frame Counts” on page 266.

• ETH-DM frame counts are collected at both MEPs and are stored in the respective CFM databases.

• If graceful Routing Engine switchover (GRES) occurs, any collected ETH-DM statistics are lost, and ETH-DM frame counts are reset to zeroes. Therefore, the collection of ETH-DM statistics and ETH-DM frame counters has to be restarted, after the switchover is complete. GRES enables a router with dual Routing Engines to switch from a master Routing Engine to a backup Routing Engine without interruption to packet forwarding. For more information, see the Junos OS High Availability Configuration Guide.

• Accuracy of frame delay statistics is compromised when the system is changing (such as from reconfiguration). We recommend performing Ethernet frame delay measurements on a stable system.

Related Documentation
• Ethernet Frame Loss Measurement Overview on page 244
• Example: One-Way Ethernet Frame Delay Measurement on page 276
• Guidelines for Configuring Routers to Support an ETH-DM Session on page 253
• Guidelines for Starting an ETH-DM Session on page 254
• Guidelines for Managing ETH-DM Statistics and ETH-DM Frame Counts on page 256
• On-Demand Mode on page 245
• Proactive Mode on page 246
• Junos® OS Ethernet Interfaces

Ethernet Frame Loss Measurement Overview

The key objectives of the OAM functionality are to measure quality-of-service attributes such as frame delay, frame delay variation (also known as “frame jitter”), and frame loss. Such measurements enable you to identify network problems before customers are impacted by network defects. For more information about Ethernet frame delay measurement, see “Ethernet Frame Delay Measurements Overview” on page 238.

Junos OS supports Ethernet frame loss measurement (ETH-LM) between maintenance association end points (MEPs) configured on Ethernet physical or logical interfaces on MX Series routers and is presently supported only for VPWS service. ETH-LM is used by operators to collect counter values applicable for ingress and egress service frames. These counters maintain a count of transmitted and received data frames between a pair of MEPs. Ethernet frame loss measurement is performed by sending frames with ETH-LM information to a peer MEP and similarly receiving frames with ETH-LM information.
from the peer MEP. This type of frame loss measurement is also known as single-ended Ethernet loss measurement.

ETH-LM supports the following frame loss measurements:

- Near-end frame loss measurement—Measurement of frame loss associated with ingress data frames.
- Far-end frame loss measurement—Measurement of frame loss associated with egress data frames.

NOTE: The proactive and dual-ended loss measurement functionality of ITU-T Y.1731 is not supported on the ACX Series routers.

The Junos OS implementation of Ethernet frame delay measurement (ETH-DM) is fully compliant with the ITU-T Recommendation Y.1731, as described in *OAM Functions and Mechanisms for Ethernet-Based Networks*. The recommendation defines OAM mechanisms for operating and maintaining the network at the Ethernet service layer, which is called the “ETH layer” in ITU-T terminology.

Related Documentation

- Managing Continuity Measurement Statistics on page 275
- On-Demand Mode on page 245
- Proactive Mode on page 246
- Junos® OS Ethernet Interfaces

On-Demand Mode

In on-demand mode, the measurements are triggered by the user through the CLI.

When the user triggers the delay measurement through the CLI, the delay measurement request that is generated is as per the frame formats specified by the ITU-T Y.1731 standard. For two-way delay measurement, the server-side processing can be delegated to the Packet Forwarding Engine to prevent overloading on the Routing Engine. For more information, see "Configuring Routers to Support an ETH-DM Session" on page 260. When the server-side processing is delegated to the Packet Forwarding Engine, the delay measurement message (DMM) frame receive counters and delay measurement reply (DMR) frame transmit counters are not displayed by the show command.

When the user triggers the loss measurement through the CLI, the router sends the packets in standard format along with the loss measurement TLV. By default, the session-id-tlv argument is included in the packet to allow concurrent loss measurement sessions from same local MEP. You can also disable the session ID TLV by using the no-session-id-tlv argument.

Single-ended ETH-LM is used for on-demand operation, administration, and maintenance purposes. An MEP sends frames with ETH-LM request information to its peer MEP and receives frames with ETH-LM reply information from its peer MEP to carry out loss
measurements. The protocol data unit (PDU) used for a single-ended ETH-LM request is referred to as a loss measurement message (LMM) and the PDU used for a single-ended ETH-LM reply is referred to as a loss measurement reply (LMR).

Related Documentation
- Ethernet Frame Delay Measurements Overview on page 238
- Ethernet Frame Loss Measurement Overview on page 244
- Proactive Mode on page 246
- Configuring Routers to Support an ETH-DM Session on page 260.
- Junos® OS Ethernet Interfaces

Proactive Mode

In proactive mode, SLA measurements are triggered by an iterator application. An iterator is designed to periodically transmit SLA measurement packets in form of ITU-Y.1731-compliant frames for two-way delay measurement or loss measurement on MX Series routers. This mode differs from on-demand SLA measurement, which is user initiated. The iterator sends periodic delay or loss measurement request packets for each of the connections registered to it. Iterators make sure that measurement cycles do not occur at the same time for the same connection to avoid CPU overload. Junos OS supports proactive mode for VPWS. For an iterator to form a remote adjacency and to become functionally operational, the continuity check message (CCM) must be active between the local and remote MEP configurations of the connectivity fault management (CFM). Any change in the iterator adjacency parameters resets the existing iterator statistics and restarts the iterator. Here, the term adjacency refers to a pairing of two endpoints (either connected directly or virtually) with relevant information for mutual understanding, which is used for subsequent processing. For example, the iterator adjacency refers to the iterator association between the two endpoints of the MEPs.

For every DPC or MPC, only 30 iterator instances for a cycle time value of 10 milliseconds (ms) are supported. In Junos OS, 255 iterator profile configurations and 2000 remote MEP associations are supported.

Iterators with cycle time value less than 100 ms are supported only for infinite iterators, whereas the iterators with cycle time value greater than 100 ms are supported for both finite and infinite iterators. Infinite iterators are iterators that run infinitely until the iterator is disabled or deactivated manually.

A VPWS service configured on a router is monitored for SLA measurements by registering the connection (here, the connection is a pair of remote and local MEPs) on an iterator and then initiating periodic SLA measurement frame transmission on those connections. The end-to-end service is identified through a maintenance association end point (MEP) configured at both ends.

For two-way delay measurement and loss measurement, an iterator sends a request message for the connection in the list (if any) and then sends a request message for the connection that was polled in the former iteration cycle. The back-to-back request messages for the SLA measurement frames and their responses help in computing delay variation and loss measurement.
The Y.1731 frame transmission for a service attached to an iterator continues endlessly unless intervened and stopped by an operator or until the iteration-count condition is met. To stop the iterator from sending out any more proactive SLA measurement frames, the operator must perform one of the following tasks:

- Enable the `deactivate sla-iterator-profile` statement at the `[edit protocols oam ethernet connectivity-fault-management maintenance-domain md-name maintenance association ma-name mep mep-id remote-mep mep-id]` hierarchy level. For more information, see “Example: Configuring an Iterator” on page 283.

- Provision a `disable` statement under the corresponding iterator profile at the `[edit protocols oam ethernet connectivity-fault-management performance-monitoring sla-iterator-profiles profile-name]` hierarchy level. For more information, see “Configuring an Iterator Profile” on page 249.

Ethernet Delay Measurements and Loss Measurement by Proactive Mode

In two-way delay measurement, the delay measurement message (DMM) frame is triggered through an iterator application. The DMM frame carries an iterator type, length, and value (TLV) in addition to the fields described in standard frame format and the server copies the iterator TLV from the DMM frame to the delay measurement reply (DMR) frame.

In one-way delay variation computation using the two-way delay measurement method, the delay variation computation is based on the timestamps that are present in the DMR frame (and not the 1DM frame). Therefore, there is no need for client-side and server-side clocks to be in sync. Assuming that the difference in their clocks remains constant, the one-way delay variation results are expected to be fairly accurate. This method also eliminates the need to send separate 1DM frames just for the one-way delay variation measurement purpose.

In proactive mode for loss measurement, the router sends packets in standard format along with loss measurement TLV and iterator TLV.

Related Documentation

- Clearing Iterator Statistics on page 275
- Configuring an Iterator Profile on page 249
- Configuring a Remote MEP with an Iterator Profile on page 250
- Displaying Iterator Statistics on page 270
- Ethernet Frame Delay Measurements Overview on page 238
- Ethernet Frame Loss Measurement Overview on page 244
- Example: Configuring an Iterator on page 283
- Managing Iterator Statistics on page 270
- On-Demand Mode on page 245
- Junos® OS Ethernet Interfaces
The Failure Notification Protocol (FNP) is a failure notification mechanism that detects failures in Point-to-Point Ethernet transport networks on MX Series routers. If a node link fails, FNP detects the failure and sends out FNP messages to the adjacent nodes that a circuit is down. Upon receiving the FNP message, nodes can redirect traffic to the protection circuit.

NOTE: FNP is supported on E-Line services only.

An E-Line service provides a secure Point-to-Point Ethernet connectivity between two user network interfaces (UNIs). E-Line services are a protected service and each service has a working circuit and protection circuit. CFM is used to monitor the working and protect paths. CCM intervals result in failover time in hundreds of milliseconds or a few seconds. FNP provides service circuit failure detection and propagation in less than 50ms and provide 50ms failover for E-Line services.

The MX router acts as a PE node and handles the FNP messages received on the management VLAN and the FNP messages received on both the Ethernet interfaces and PWs created for the management VPLS. MX-series routers do not initiate FNP messages and responds only to FNP messages generated by devices in the Ethernet Access network. FNP can be enabled only on logical interfaces that are part of a VPLS routing instance, and no physical interfaces in that VPLS routing instance should have CCM configured. FNP can be enabled only on one logical interface per physical interface.

All E-Line services are configured as layer 2 circuits with edge protection. A VLAN associated with the working circuit or protection circuit must map to a logical interface. No trunk port or access port is supported in the ring link for VLANs used by E-LINE services. FNP does not control the logical interface associated with protection circuit. Only E-Line service whose termination point is not in an MX node is controlled by FNP.

FNP supports graceful restart and the Graceful Routing Engine switchover (GRES) features.

Related Documentation

- Configuring the Failure Notification Protocol on page 285
- show oam ethernet fnp interface
- show oam ethernet fnp status
- show oam ethernet fnp messages
- connectivity-fault-management
- IEEE 802.1ag OAM Connectivity Fault Management Overview on page 181
- Junos® OS Ethernet Interfaces
Configuring an Iterator Profile

You can create an iterator profile with its parameters to periodically transmit SLA measurement packets in the form of ITU-Y.1731-compliant frames for delay measurement or loss measurement.

To create an iterator profile:

1. In configuration mode, go to the following hierarchy level:
   ```
   [edit]
   user@host# edit protocols oam ethernet connectivity-fault-management performance-monitoring
   ```

2. Configure the SLA measurement monitoring iterator:
   ```
   [edit protocols oam ethernet connectivity-fault-management performance-monitoring]
   user@host# edit sla-iterator-profiles
   ```

3. Configure an iterator profile—for example, i1:
   ```
   [edit protocols oam ethernet connectivity-fault-management performance-monitoring sla-iterator-profiles]
   user@host# set i1
   ```

4. (Optional) Configure the cycle time, which is the amount of time (in milliseconds) between back-to-back transmission of SLA frames for one connection, with values from 10 through 3,600,000. The default value is 1000 ms.
   ```
   [edit protocols oam ethernet connectivity-fault-management performance-monitoring sla-iterator-profiles i1]
   user@host# set cycle-time cycle-time-value
   ```

5. (Optional) Configure the iteration period, which indicates the maximum number of cycles per iteration (the number of connections registered to an iterator cannot exceed this value), with values from 1 through 2000. The default value is 2000.
   ```
   [edit protocols oam ethernet connectivity-fault-management performance-monitoring sla-iterator-profiles i1]
   user@host# set iteration-period iteration-period-value
   ```

6. Configure the measurement type as loss measurement, statistical frame-loss measurement, or two-way delay measurement.
   ```
   [edit protocols oam ethernet connectivity-fault-management performance-monitoring sla-iterator-profiles i1]
   user@host# set measurement-type (loss | statistical-frame-loss | two-way-delay)
   ```

7. (Optional) Configure the calculation weight for delay with values from 1 through 65,535. The default value is 1 (applicable only for two-way delay measurement).
   ```
   [edit protocols oam ethernet connectivity-fault-management performance-monitoring sla-iterator-profiles i1]
   user@host# set calculation-weight delay delay-value
   ```

8. (Optional) Configure the calculation weight for delay variation with values from 1 through 65,535. The default value is 1 (applicable only for two-way delay measurement).
[edit protocols oam ethernet connectivity-fault-management performance-monitoring
sla-iterator-profiles]
user@host# set calculation-weight delay-variation delay-variation-value

9. Configure the disable statement to stop the iterator (that is, disable the iterator profile).

[edit protocols oam ethernet connectivity-fault-management performance-monitoring
sla-iterator-profiles]
user@host# set disable

10. Verify the configuration.

[edit protocols oam ethernet connectivity-fault-management performance-monitoring
sla-iterator-profiles]
user@host# show

Related Documentation
- Proactive Mode on page 246
- Clearing Iterator Statistics on page 275
- Configuring a Remote MEP with an Iterator Profile on page 250
- Example: Configuring an Iterator on page 283
- Displaying Iterator Statistics on page 270
- Managing Iterator Statistics on page 270
- Junos® OS Ethernet Interfaces

Configuring a Remote MEP with an Iterator Profile

You can associate a remote maintenance association end point (MEP) with more than one iterator profile.

To configure a remote MEP with an iterator profile:

1. In configuration mode, go to the following hierarchy level:

 user@host# edit protocols oam ethernet connectivity-fault-management
 maintenance-domain md-name maintenance-association ma-name mep mep-id

2. Configure the remote MEP with values from 1 through 8191.

 [edit protocols oam ethernet connectivity-fault-management maintenance-domain
 md-name maintenance-association ma-name mep mep-id]
 user@host# set remote-mep remote-mep-id

3. Set the iterator profile.
4. (Optional) Set the size of the data TLV portion of the Y.1731 data frame with values from 1 through 1400 bytes. The default value is 1.

```plaintext
[edit protocols oam ethernet connectivity-fault-management maintenance-domain
   md-name maintenance-association ma-name mep mep-id remote-mep
   remote-mep-id]
user@host# set sla-iterator-profile profile-name
```

```plaintext
set data-tlv-size size
```

5. (Optional) Set the iteration count, which indicates the number of iterations for which this connection should partake in the iterator for acquiring SLA measurements, with values from 1 through 65,535. The default value is 0 (that is, infinite iterations).

```plaintext
[edit protocols oam ethernet connectivity-fault-management maintenance-domain
   md-name maintenance-association ma-name mep mep-id remote-mep remote-mep-id
   sla-iterator-profile profile-name]
user@host# set iteration-count count-value
```

6. (Optional) Set the priority, which is the `vlan-pcp` value that is sent in the Y.1731 data frames, with values from 0 through 7. The default value is 0.

```plaintext
[edit protocols oam ethernet connectivity-fault-management maintenance-domain
   md-name maintenance-association ma-name mep mep-id remote-mep remote-mep-id
   sla-iterator-profile profile-name]
user@host# set priority priority-value
```

7. Verify the configuration.

```plaintext
[edit protocols oam ethernet connectivity-fault-management maintenance-domain
   md-name maintenance-association ma-name mep mep-id remote-mep
   remote-mep-id]
user@host# show
sla-iterator-profile profile-name { data-tlv-size size;
iteration-count count-value;
priority priority-value;
}
```

Related Documentation

- Proactive Mode on page 246
- Clearing Iterator Statistics on page 275
- Configuring an Iterator Profile on page 249
- Example: Configuring an Iterator on page 283
- Displaying Iterator Statistics on page 270
- Managing Iterator Statistics on page 270
- Junos® OS Ethernet Interfaces
Using proactive statistical frame loss measurement, you can monitor VPLS connections on MX Series routers. Statistical frame loss measurement allows you to monitor the quality of Ethernet connections for service level agreements (SLAs). Point-to-point and multipoint-to-multipoint connections configured on MX Series routers can be monitored by registering the connection on an iterator and initiating periodic SLA measurement of frame transmissions on the connections.

Iterators periodically transmit SLA measurement packets using ITU-Y.1731 compliant frames. The iterator sends periodic measurement packets for each of the connections registered to it. These measurement cycles are transmitted in such a way as to not overlap, reducing the processing demands placed on the CPU. The measurement packets are exchanged between the source user network interface (UNI) port and the destination UNI port, providing a sequence of timed performance measurements for each UNI pair. The Frame Loss Ratio (FLR) and connection availability can be computed from these measurements using statistics.

The following steps outline how to configure statistical frame loss measurement for VPLS connections:

1. To configure proactive ETH-DM measurement for a VPLS connection, see “Guidelines for Configuring Routers to Support an ETH-DM Session” on page 253.

2. To enable statistical loss measurement for a VPLS connection, configure an iterator for the VPLS connection using the sla-iterator-profiles statement at the [edit protocols oam ethernet connectivity-fault-management performance-monitoring] hierarchy level. For detailed instructions, see “Configuring an Iterator Profile” on page 249.

3. As part of the iterator configuration, include the statistical-frame-loss option for the measurement-type statement at the [edit protocols oam ethernet connectivity-fault-management performance-monitoring sla-iterator-profiles profile-name] hierarchy level.

4. Once you have enabled the iterator, you can display the statistical frame loss for a VPLS connection by issuing the show oam ethernet connectivity-fault-management sla-iterator-statistics sla-iterator identifier maintenance-domain name maintenance-association name local-mep identifier remote-mep identifier command.

Related Documentation:
- Guidelines for Configuring Routers to Support an ETH-DM Session on page 253
- Configuring an Iterator Profile on page 249
- Example: Configuring an Iterator on page 283
- Junos® OS Ethernet Interfaces
Guidelines for Configuring Routers to Support an ETH-DM Session

Keep the following guidelines in mind when configuring routers to support an Ethernet frame delay measurement (ETH-DM) session:

- Configuration Requirements for ETH-DM on page 253
- Configuration Options for ETH-DM on page 253

Configuration Requirements for ETH-DM

You can obtain ETH-DM information for a link that meets the following requirements:

- The measurements can be performed between peer maintenance association endpoints (MEPs) on two routers.
- The two MEPs must be configured on two Ethernet physical interfaces or on two Ethernet logical interfaces. For more information, see “Configuring a Maintenance Endpoint” on page 191.
- The two MEPs must be configured—on their respective routers—under the same maintenance association (MA) identifier. For more information, see “Creating a Maintenance Association” on page 187.
- On both routers, the MA must be associated with the same maintenance domain (MD) name. For more information, see “Creating the Maintenance Domain” on page 184.
- On both routers, periodic packet management (PPM) must be running on the Routing Engine and Packet Forwarding Engine, which is the default configuration. You can disable PPM on the Packet Forwarding Engine only. However, the Ethernet frame delay measurement feature requires that distributed PPM remain enabled on the Packet Forwarding Engine of both routers. For more information about ppm, see the Junos OS Routing Protocols Configuration Guide.
- If the PPM process (ppm) is disabled on the Packet Forwarding Engine, you must re-enable it. Re-enabling distributed ppm entails restarting the ethernet-connectivity-fault-management process, which causes all connectivity fault management (CFM) sessions to re-establish. For more information about CFM sessions, see “Configuring Ethernet Local Management Interface” on page 200.

NOTE: The Ethernet frame delay measurement feature is supported only for MEPs configured on Ethernet physical or logical interfaces on DPCs in MX Series routers. The ETH-DM feature is not supported on aggregated Ethernet interfaces or LSI pseudowires.

Configuration Options for ETH-DM

By default, the ETH-DM feature calculates frame delays using software-based timestamping of the ETH-DM PDU frames sent and received by the MEPs in the session. As an option that can increase the accuracy of ETH-DM calculations when the DPC is
You can initiate a one-way or two-way ETH-DM session by entering the `monitor ethernet delay-measurement` operational command at a router that contains one end of the service for which you want to measure frame delay. The command options specify the ETH-DM session in terms of the CFM elements:

- The type of ETH-DM measurement (one-way or two-way) to be performed.
- The Ethernet service for which the ETH-DM measurement is to be performed:
 - CFM maintenance domain—Name of the existing maintenance domain (MD) for which you want to measure Ethernet frame delays. For more information, see “Creating the Maintenance Domain” on page 184.
- CFM maintenance association—Name of an existing maintenance association (MA) within the maintenance domain. For more information, see “Creating a Maintenance Association” on page 187.

- Remote CFM maintenance association end point—The unicast MAC address or the numeric identifier of the remote maintenance association end point (MEP)—the physical or logical interface on the remote router that resides in the specified MD and is named in the specified MA—with which to perform the ETH-DM session. For more information, see “Configuring a Maintenance Endpoint” on page 191.

- Optional specifications:
 - Count—You can specify the number of ETH-DM requests to send for this frame delay measurement session. The range is from 1 through 65,535 frames. The default value is 10 frames.

 NOTE: Although you can trigger frame delay collection for up to 65,535 ETH-DM requests at a time, a router stores only the last 100 frame delay statistics per CFM session (pair of peer MEPs).

 - Frame interval—You can specify the number of seconds to elapse between ETH-DM frame transmittals. The default value is 1 second.

For more detailed information about the parameters you can specify to start an ETH-DM session, see the monitor ethernet delay-measurement operational command description in the Junos OS Operational Mode Commands.

Restrictions for an ETH-DM Session

The following restrictions apply to an ETH-DM session:

- You cannot run multiple simultaneous ETH-DM sessions with the same remote MEP or MAC address.

- For a given ETH-DM session, you can collect frame delay information for a maximum of 65,535 frames.

- For a given CFM session (pair of peer MEPs), the ETH-DM database stores a maximum of 100 statistics, with the older statistics being “aged out” as newer statistics are collected for that pair of MEPs.

 - For one-way delay measurements collected within the same CFM session, the 100 most recent ETH-DM statistics can be retrieved at any point of time at the router on which the receiver MEP is defined.

 - For two-way delay measurements collected within the same CFM session, the 100 most recent ETH-DM statistics can be retrieved at any point of time at the router on which the initiator MEP is defined.

Depending on the number of frames exchanged in the individual ETH-DM sessions, the ETH-DM database can contain statistics collected through multiple ETH-DM sessions.
- If graceful Routing Engine switchover (GRES) occurs, any collected ETH-DM statistics are lost, and ETH-DM frame counts are reset to zeroes. GRES enables a router with dual Routing Engines to switch from a master Routing Engine to a backup Routing Engine without interruption to packet forwarding. For more information, see the Junos OS High Availability Configuration Guide.

- Accuracy of frame delay data is compromised when the system is changing (such as from reconfiguration). We recommend performing Ethernet frame delay measurements on a stable system.

Related Documentation

- Ethernet Frame Delay Measurements Overview on page 238
- Starting an ETH-DM Session on page 264
- Guidelines for Managing ETH-DM Statistics and ETH-DM Frame Counts on page 256
- `monitor ethernet delay-measurement` operational command
- Junos® OS Ethernet Interfaces

Guidelines for Managing ETH-DM Statistics and ETH-DM Frame Counts

- ETH-DM Statistics on page 256
- ETH-DM Statistics Retrieval on page 258
- ETH-DM Frame Counts on page 258
- ETH-DM Frame Count Retrieval on page 259

ETH-DM Statistics

Ethernet frame delay statistics are the frame delay and frame delay variation values determined by the exchange of frames containing ETH-DM protocol data units (PDUs).

- For a one-way ETH-DM session, statistics are collected in an ETH-DM database at the router that contains the receiver MEP. For a detailed description of one-way Ethernet frame delay measurement, including the exchange of one-way delay PDU frames, see “Ethernet Frame Delay Measurements Overview” on page 238.

- For a two-way ETH-DM session, statistics are collected in an ETH-DM database at the router that contains the initiator MEP. For a detailed description of two-way Ethernet frame delay measurement, including the exchange of two-way delay PDU frames, see “Ethernet Frame Delay Measurements Overview” on page 238.

A CFM database stores CFM-related statistics and—for Ethernet interfaces that support ETH-DM—the 100 most recently collected ETH-DM statistics for that pair of MEPs. You can view ETH-DM statistics by using the `delay-statistics` or `mep-statistics` form of the `show oam ethernet connectivity-fault-management` command to display the CFM statistics for the MEP that collects the ETH-DM statistics you want to view.

Table 24 on page 257 describes the ETH-DM statistics calculated in an ETH-DM session.
Table 24: ETH-DM Statistics

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-way delay (μsec)</td>
<td>For a one-way ETH-DM session, the frame delay, in microseconds, collected at the receiver MEP. To display frame delay statistics for a given one-way ETH-DM session, use the delay-statistics or mep-statistics form of the show oam ethernet connectivity-fault-management command at the receiver MEP for that session.</td>
</tr>
<tr>
<td>Two-way delay (μsec)</td>
<td>For a two-way ETH-DM session, the frame delay, in microseconds, collected at the initiator MEP. When you start a two-way frame delay measurement, the CLI output displays each DMR frame receipt timestamp and corresponding DMM frame delay and delay variation collected as the session progresses. To display frame delay statistics for a given two-way ETH-DM session, use the delay-statistics or mep-statistics form of the show oam ethernet connectivity-fault-management command at the initiator MEP for that session.</td>
</tr>
<tr>
<td>Average delay†</td>
<td>When you start a two-way frame delay measurement, the CLI output includes a runtime display of the average two-way frame delay among the statistics collected for the ETH-DM session only. When you display ETH-DM statistics using a show command, the Average delay field displays the average one-way and two-frame delays among all ETH-DM statistics collected at the CFM session level. For example, suppose you start two one-way ETH-DM sessions for 50 counts each, one after the other. If, after both measurement sessions complete, you use a show command to display 100 ETH-DM statistics for that CFM session, the Average delay field displays the average frame delay among all 100 statistics.</td>
</tr>
<tr>
<td>Average delay variation†</td>
<td>When you start a two-way frame delay measurement, the CLI output includes a runtime display of the average two-way frame delay variation among the statistics collected for the ETH-DM session only. When you display ETH-DM statistics using a show command, the Average delay variation field displays the average one-way and two-frame delay variations among all ETH-DM statistics collected at the CFM session level.</td>
</tr>
<tr>
<td>Best-case delay†</td>
<td>When you start a two-way frame delay measurement, the CLI output includes a runtime display of the lowest two-way frame delay value among the statistics collected for the ETH-DM session only. When you display ETH-DM statistics using a show command, the Best case delay field displays the lowest one-way and two-frame delays among all ETH-DM statistics collected at the CFM session level.</td>
</tr>
<tr>
<td>Worst-case delay†</td>
<td>When you start a two-way frame delay measurement, the CLI output includes a runtime display of the highest two-way frame delay value among the statistics collected for the ETH-DM session only. When you display ETH-DM statistics using a show command, the Worst case delay field displays the highest one-way and two-frame delays among all statistics collected at the CFM session level.</td>
</tr>
</tbody>
</table>
Table 24: ETH-DM Statistics (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>†</td>
<td>When you start a one-way frame delay measurement, the CLI output displays NA (“not available”) for this field. One-way ETH-DM statistics are collected at the remote (receiver) MEP. Statistics for a given one-way ETH-DM session are available only by displaying CFM statistics for the receiver MEP.</td>
</tr>
</tbody>
</table>

ETH-DM Statistics Retrieval

At the receiver MEP for a one-way session, or at the initiator MEP for a two-way session, you can display all ETH-DM statistics collected at a CFM session level by using the following operational commands:

- `show oam ethernet connectivity-fault-management delay-statistics maintenance-domain md-name maintenance-association ma-name <local-mep mep-id> <remote-mep mep-id> <count count>`
- `show oam ethernet connectivity-fault-management mep-statistics maintenance-domain md-name maintenance-association ma-name <local-mep mep-id> <remote-mep mep-id> <count count>`

ETH-DM Frame Counts

The number of ETH-DM PDU frames exchanged in a ETH-DM session are stored in the CFM database on each router.

Table 25 on page 258 describes the ETH-DM frame counts collected in an ETH-DM session.

Table 25: ETH-DM Frame Counts

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1DMs sent</td>
<td>Number of one-way delay measurement (1DM) PDU frames sent to the peer MEP in this session. Stored in the CFM database of the MEP initiating a one-way frame delay measurement.</td>
</tr>
<tr>
<td>Valid 1DMs received</td>
<td>Number of valid 1DM frames received. Stored in the CFM database of the MEP receiving a one-way frame delay measurement.</td>
</tr>
<tr>
<td>Invalid 1DMs received</td>
<td>Number of invalid 1DM frames received. Stored in the CFM database of the MEP receiving a one-way frame delay measurement.</td>
</tr>
<tr>
<td>DMMs sent</td>
<td>Number of delay measurement message (DMM) PDU frames sent to the peer MEP in this session. Stored in the CFM database of the MEP initiating a two-way frame delay measurement.</td>
</tr>
<tr>
<td>DMRs sent</td>
<td>Number of delay measurement reply (DMR) frames sent (in response to a received DMM). Stored in the CFM database of the MEP responding to a two-way frame delay measurement.</td>
</tr>
</tbody>
</table>
Table 25: ETH-DM Frame Counts (continued)

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid DMRs received</td>
<td>Number of valid DMR frames received.</td>
</tr>
<tr>
<td></td>
<td>Stored in the CFM database of the MEP initiating a two-way frame delay measurement.</td>
</tr>
<tr>
<td>Invalid DMRs received</td>
<td>Number of invalid DMR frames received.</td>
</tr>
<tr>
<td></td>
<td>Stored in the CFM database of the MEP initiating a two-way frame delay measurement.</td>
</tr>
</tbody>
</table>

ETH-DM Frame Count Retrieval

Each router counts the number of ETH-DM frames sent or received and stores the counts in a CFM database.

Frame Counts Stored in CFM Databases

You can display ETH-DM frame counts for MEPs assigned to specified Ethernet interfaces or for specified MEPs in CFM sessions by using the following operational commands:

- `show oam ethernet connectivity-fault-management interfaces (detail | extensive)`
- `show oam ethernet connectivity-fault-management mep-database maintenance-domain md-name maintenance-association ma-name <local-mep mep-id> <remote-mep mep-id>`

One-Way ETH-DM Frame Counts

For a one-way ETH-DM session, delay statistics are collected at the receiver MEP only, but frame counts are collected at both MEPs. As indicated in Table 25 on page 258, one-way ETH-DM frame counts are tallied from the perspective of each router in the session:

- At the initiator MEP, the router counts the number of 1DM frames sent.
- At the receiver MEP, the router counts the number of valid 1DM frames received and the number of invalid 1DM frames received.

You can also view one-way ETH-DM frame counts—for a receiver MEP—by using the `show oam ethernet connectivity-fault-management mep-statistics` command to display one-way statistics and frame counts together.

Two-Way ETH-DM Frame Counts

For a two-way ETH-DM session, delay statistics are collected at the initiator MEP only, but frame counts are collected at both MEPs. As indicated in Table 25 on page 258, two-way ETH-DM frame counts are tallied from the perspective of each router in the session:

- At the initiator MEP, the router counts the number of DMM frames sent, valid DMR frames received, and invalid DMR frames received.
- At the responder MEP, the router counts the number of DMR frames sent.
You can also view two-way ETH-DM frame counts—for an initiator MEP—by using the `show oam ethernet connectivity-fault-management mep-statistics` command to display two-way statistics and frame counts together.

Related Documentation
- Ethernet Frame Delay Measurements Overview on page 238
- Managing ETH-DM Statistics and ETH-DM Frame Counts on page 266
- Example: One-Way Ethernet Frame Delay Measurement on page 276
- `clear oam ethernet connectivity-fault-management statistics` command
- `show oam ethernet connectivity-fault-management mep-statistics` command
- `show oam ethernet connectivity-fault-management delay-statistics` command
- `show oam ethernet connectivity-fault-management interfaces (detail | extensive)` command
- `show oam ethernet connectivity-fault-management mep-database` command
- Junos® OS Ethernet Interfaces

Configuring Routers to Support an ETH-DM Session

- Configuring MEP Interfaces on page 260
- Ensuring That Distributed ppm Is Not Disabled on page 261
- Enabling the Hardware-Assisted Timestamping Option on page 263
- Configuring the Server-Side Processing Option on page 264

Configuring MEP Interfaces

Before you can start an Ethernet frame delay measurement session across an Ethernet service, you must configure two MX Series routers to support ETH-DM.

To configure an Ethernet interface on a MX Series router to support ETH-DM:

1. On each router, configure two physical or logical Ethernet interfaces connected by a VLAN. The following configuration is typical for single-tagged logical interfaces:

   ```
   [edit interfaces]
   interface [ethernet-interface-name]
     vlan-tagging;
     unit logical-unit-number {
       vlan-id vlan-id; # Both interfaces on this VLAN
     }
   }
   }
   Both interfaces will use the same VLAN ID.

2. On each router, attach peer MEPs to the two interfaces. The following configuration is typical:

   ```
 [edit protocols]
Ensuring That Distributed ppm Is Not Disabled

By default, the router’s period packet management process (ppm) runs sessions distributed to the Packet Forwarding Engine in addition to the Routing Engine. This process is responsible for periodic transmission of packets on behalf of its various client processes, such as Bidirectional Forwarding Detection (BFD), and it also receives packets on behalf of client processes.

In addition, ppm handles time-sensitive periodic processing and performs such processes as sending process-specific packets and gathering statistics. With ppm processes running distributed on both the Routing Engine and the Packet Forwarding Engine, you can run such processes as BFD on the Packet Forwarding Engine.

Distributed ppm Required for ETH-DM

Ethernet frame delay measurement requires that ppm remains distributed to the Packet Forwarding Engine. If ppm is not distributed to the Packet Forwarding Engines of both routers, ETH-DM PDU frame timestamps and ETH-DM statistics are not valid.

Before you start ETH-DM, you must verify that the following configuration statement is NOT present:

```conf
[edit]
routing-options {
  ppm {
    no-delegate-processing;
  }
}
```

If distributed ppm processing is disabled (as shown in the stanza above) on either router, you must re-enable it in order to use the ETH-DM feature.
To ensure that distributed `ppm` is not disabled on a router:

1. Display the packet processing management (PPM) configuration to determine whether distributed `ppm` is disabled.

 - In the following example, distributed `ppm` is enabled on the router. In this case, you do not need to modify the router configuration:

      ```
      [edit]
      user@host# show routing-options ppm;
      ```

 - In the following example, distributed `ppm` is disabled on the router. In this case, you must proceed to Step 2 to modify the router configuration:

      ```
      [edit]
      user@host# show routing-options ppm {
      no-delegate-processing;
      }
      ```
2. Modify the router configuration to re-enable distributed ppm and restart the Ethernet OAM Connectivity Fault Management process ONLY IF distributed ppm is disabled (as determined in the previous step).

 a. Before continuing, make any necessary preparations for the possible loss of connectivity on the router.

 Restarting the ethernet-connectivity-fault-management process has the following effect on your network:

 • All connectivity fault management (CFM) sessions re-establish.
 • All ETH-DM requests on the router terminate.
 • All ETH-DM statistics and frame counts reset to 0.

 b. Modify the router configuration to re-enable distributed ppm. For example:

 [edit]
 user@host# delete routing-options ppm no-delegate-processing

 c. Commit the updated router configuration. For example:

 [edit]
 user@host# commit and-quit
 commit complete
 exiting configuration mode

 d. To restart the Ethernet OAM Connectivity-Fault-Management process, enter the restart ethernet-connectivity-fault-management <gracefully | immediately | soft> operational mode command. For example:

 user@host> restart ethernet-connectivity-fault-management
 Connectivity fault management process started, pid 9893

Enabling the Hardware-Assisted Timestamping Option

By default, Ethernet frame delay measurement uses software for timestamping transmitted and received ETH-DM frames. For Ethernet interfaces, you can optionally use hardware timing to assist in the timestamping of received ETH-DM frames to increase the accuracy of delay measurements.

Enabling hardware-assisted timestamping of received frames can increase the accuracy of ETH-DM calculations when the DPC is loaded with heavy traffic in the receive direction.

To enable Ethernet frame delay measurement hardware assistance on the reception path, include the hardware-assisted-timestamping statement at the [edit protocols oam ethernet connectivity-fault-management performance-monitoring] hierarchy level:

[edit protocols]
oam {
 ethernet {
 connectivity-fault-management {
 performance-monitoring {
 hardware-assisted-timestamping;
 }
 }
 }
}
Configuring the Server-Side Processing Option

You can delegate the server-side processing (for both two-way delay measurement and loss measurement) to the Packet Forwarding Engine to prevent overloading on the Routing Engine. By default, the server-side processing is done by the Routing Engine.

To configure the server-side processing option:

1. In configuration mode, go to the following hierarchy level:
   ```
   user@host# edit protocols oam ethernet connectivity-fault-management performance-monitoring
   ```

2. Configure the server-side processing option.
   ```
   [edit protocols oam ethernet connectivity-fault-management performance-monitoring]
   user@host# set delegate-server-processing
   ```

3. Verify the configuration.
   ```
   [edit protocols oam ethernet connectivity-fault-management]
   user@host# show performance-monitoring {
     delegate-server-processing;
   }
   ```

Starting an ETH-DM Session

- Using the monitor ethernet delay-measurement Command on page 264
- Starting a One-Way ETH-DM Session on page 265
- Starting a Two-Way ETH-DM Session on page 265

Using the monitor ethernet delay-measurement Command

After you have configured two MX Series routers to support ITU-T Y.1731 Ethernet frame delay measurement (ETH-DM), you can initiate a one-way or two-way Ethernet frame delay measurement session from the CFM maintenance association end point (MEP) on one of the routers to the peer MEP on the other router.

To start an ETH-DM session between the specified local MEP and the specified remote MEP, enter the `monitor ethernet delay-measurement` command at operational mode. The syntax of the command is as follows:

```
monitor ethernet delay-measurement
  (one-way | two-way)
  maintenance-domain md-name
  maintenance-association ma-name
  (remote-mac-address | mep remote-mep-id)
  <count frame-count>
  <wait interval-seconds>
  <priority 802.1p value>
  <size>
```
For a one-way frame delay measurement, the command displays a runtime display of the number of 1DM frames sent from the initiator MEP during that ETH-DM session. One-way frame delay and frame delay variation measurements from an ETH-DM session are collected in a CFM database at the router that contains the receiver MEP. You can retrieve ETH-DM statistics from a CFM database at a later time.

For a two-way frame delay measurement, the command displays two-way frame delay and frame delay variation values for each round-trip frame exchange during that ETH-DM session, as well as a runtime display of useful summary information about the session: average delay, average delay variation, best-case delay, and worst-case delay. Two-way frame delay and frame delay variation values measurements from an ETH-DM session are collected in a CFM database at the router that contains the initiator MEP. You can retrieve ETH-DM statistics from a CFM database at a later time.

NOTE: Although you can trigger frame delay collection for up to 65,535 ETH-DM requests at a time, a router stores only the last 100 frame delay statistics per CFM session (pair of peer MEPs).

For a complete description of the `monitor ethernet delay-measurement` operational command, see the Junos OS Operational Mode Commands.

Starting a One-Way ETH-DM Session

To start a one-way Ethernet frame delay measurement session, enter the `monitor ethernet delay-measurement one-way` command from operational mode, and specify the peer MEP by its MAC address or by its MEP identifier.

For example:

```
user@host> monitor ethernet delay-measurement one-way 00:05:85:73:39:4a maintenance-domain md6 maintenance-association ma6 count 10
One-way ETH-DM request to 00:05:85:73:39:4a, Interface xe-5/0/0.0 1DM Frames sent : 10
--- Delay measurement statistics ---
Packets transmitted: 10
Average delay: NA, Average delay variation: NA
Best case delay: NA, Worst case delay: NA
```

NOTE: If you attempt to monitor delays to a nonexistent MAC address, you must type Ctrl + C to explicitly quit the `monitor ethernet delay-measurement` command and return to the CLI command prompt.

Starting a Two-Way ETH-DM Session

To start a two-way Ethernet frame delay measurement session, enter the `monitor ethernet delay-measurement two-way` command from operational mode, and specify the peer MEP by its MAC address or by its MEP identifier.
For example:

```
user@host> monitor ethernet delay-measurement two-way 00:05:85:73:39:4a maintenance-domain md6 maintenance-association ma6 count 10
```

Two-way ETH-DM request to 00:05:85:73:39:4a, Interface xe-5/0/0.0

DMR received from 00:05:85:73:39:4a Delay: 100 usec Delay variation: 0 usec
DMR received from 00:05:85:73:39:4a Delay: 92 usec Delay variation: 8 usec
DMR received from 00:05:85:73:39:4a Delay: 92 usec Delay variation: 0 usec
DMR received from 00:05:85:73:39:4a Delay: 111 usec Delay variation: 19 usec
DMR received from 00:05:85:73:39:4a Delay: 110 usec Delay variation: 1 usec
DMR received from 00:05:85:73:39:4a Delay: 119 usec Delay variation: 9 usec
DMR received from 00:05:85:73:39:4a Delay: 122 usec Delay variation: 3 usec
DMR received from 00:05:85:73:39:4a Delay: 92 usec Delay variation: 30 usec
DMR received from 00:05:85:73:39:4a Delay: 92 usec Delay variation: 0 usec
DMR received from 00:05:85:73:39:4a Delay: 108 usec Delay variation: 16 usec

--- Delay measurement statistics ---
Packets transmitted: 10, Valid packets received: 10
Average delay: 103 usec, Average delay variation: 8 usec
Best case delay: 92 usec, Worst case delay: 122 usec

NOTE: If you attempt to monitor delays to a nonexistent MAC address, you must type Ctrl + C to explicitly quit the `monitor ethernet delay-measurement` command and return to the CLI command prompt.

Related Documentation

- Ethernet Frame Delay Measurements Overview on page 238
- Guidelines for Starting an ETH-DM Session on page 254
- `monitor ethernet delay-measurement` command
- Guidelines for Managing ETH-DM Statistics and ETH-DM Frame Counts on page 256
- Managing ETH-DM Statistics and ETH-DM Frame Counts on page 266
- Junos® OS Ethernet Interfaces

Managing ETH-DM Statistics and ETH-DM Frame Counts

- Displaying ETH-DM Statistics Only on page 266
- Displaying ETH-DM Statistics and Frame Counts on page 267
- Displaying ETH-DM Frame Counts for MEPs by Enclosing CFM Entity on page 267
- Displaying ETH-DM Frame Counts for MEPs by Interface or Domain Level on page 268
- Clearing ETH-DM Statistics and Frame Counts on page 268

Displaying ETH-DM Statistics Only

Purpose

Display ETH-DM statistics.

By default, the `show oam ethernet connectivity-fault-management delay-statistics` command displays ETH-DM statistics for MEPs in the specified CFM maintenance association (MA) within the specified CFM maintenance domain (MD).
Action

- To display the ETH-DM statistics collected for MEPs belonging to MA `ma1` and within MD `md1`:

```
user@host> show oam ethernet connectivity-fault-management delay-statistics maintenance-domain ma1 maintenance-association ma1
```

- To display the ETH-DM statistics collected for ETH-DM sessions for the local MEP 201 belonging to MA `ma2` and within MD `md2`:

```
user@host> show oam ethernet connectivity-fault-management delay-statistics maintenance-domain md2 maintenance-association ma2 local-mep 201
```

- To display the ETH-DM statistics collected for ETH-DM sessions from local MEPs belonging to MA `ma3` and within MD `md3` to remote MEP 302:

```
user@host> show oam ethernet connectivity-fault-management delay-statistics maintenance-domain md3 maintenance-association ma3 remote-mep 302
```

Displaying ETH-DM Statistics and Frame Counts

Purpose

Display ETH-DM statistics and ETH-DM frame counts.

By default, the `show oam ethernet connectivity-fault-management mep-statistics` command displays ETH-DM statistics and frame counts for MEPs in the specified CFM maintenance association (MA) within the specified CFM maintenance domain (MD).

Action

- To display the ETH-DM statistics and ETH-DM frame counts for MEPs in MA `ma1` and within MD `md1`:

```
user@host> show oam ethernet connectivity-fault-management mep-statistics maintenance-domain md1 maintenance-association ma1
```

- To display the ETH-DM statistics and ETH-DM frame counts for the local MEP 201 in MA `ma2` and within MD `md2`:

```
user@host> show oam ethernet connectivity-fault-management mep-statistics maintenance-domain md2 maintenance-association ma2 local-mep 201
```

- To display the ETH-DM statistics and ETH-DM frame counts for the local MEP in MD `md3` and within MA `ma3` that participates in an ETH-DM session with the remote MEP 302:

```
user@host> show oam ethernet connectivity-fault-management mep-statistics maintenance-domain ma3 maintenance-association ma3 remote-mep 302
```

Displaying ETH-DM Frame Counts for MEPs by Enclosing CFM Entity

Purpose

Display ETH-DM frame counts for CFM maintenance association end points (MEPs).

By default, the `show oam ethernet connectivity-fault-management mep-database` command displays CFM database information for MEPs in the specified CFM maintenance association (MA) within the specified CFM maintenance domain (MD).

NOTE: At the router attached to the initiator MEP for a one-way session, or at the router attached to the receiver MEP for a two-way session, you can only display ETH-DM frame counts.
Action

- To display CFM database information (including ETH-DM frame counts) for all MEPs in MA ma1 within MD md1:

 `user@host> show oam ethernet connectivity-fault-management mep-database maintenance-domain ma1 maintenance-association ma1`

- To display CFM database information (including ETH-DM frame counts) only for local MEP 201 in MA ma1 within MD md1:

 `user@host> show oam ethernet connectivity-fault-management mep-database maintenance-domain md2 maintenance-association ma2 local-mep 201`

- To display CFM database information (including ETH-DM frame counts) only for remote MEP 302 in MD md3 within MA ma3:

 `user@host> show oam ethernet connectivity-fault-management mep-database maintenance-domain ma3 maintenance-association ma3 remote-mep 302`

Displaying ETH-DM Frame Counts for MEPs by Interface or Domain Level

Purpose

Display ETH-DM frame counts for CFM maintenance association end points (MEPs).

By default, the `show oam ethernet connectivity-fault-management interfaces` command displays CFM database information for MEPs attached to CFM-enabled Ethernet interfaces on the router or at a maintenance domain level. For Ethernet interfaces that support ETH-DM, any frame counts are also displayed when you specify the `detail` or `extensive` command option.

NOTE: At the router attached to the initiator MEP for a one-way session, or at the router attached to the receiver MEP for a two-way session, you can only display ETH-DM frame counts.

Action

- To display CFM database information (including ETH-DM frame counts) for all MEPs attached to CFM-enabled Ethernet interfaces on the router:

 `user@host> show oam ethernet connectivity-fault-management interfaces detail`

- To display CFM database information (including ETH-DM frame counts) only for the MEPs attached to CFM-enabled router interface `ge-5/2/9.0`:

 `user@host> show oam ethernet connectivity-fault-management interfaces ge-5/2/9.0 detail`

- To display CFM database information (including ETH-DM frame counts) only for MEPs enclosed within CFM maintenance domains (MDs) at level 6:

 `user@host> show oam ethernet connectivity-fault-management interfaces level 6 detail`

Clearing ETH-DM Statistics and Frame Counts

Purpose

Clear the ETH-DM statistics and ETH-DM frame counts.

By default, statistics and frame counts are deleted for all MEPs attached to CFM-enabled interfaces on the router. However, you can filter the scope of the command by specifying an interface name.
Action

- To clear the ETH-DM statistics and ETH-DM frame counts for all MEPs attached to CFM-enabled interfaces on the router:

 user@host> clear oam ethernet connectivity-fault-management statistics

- To clear the ETH-DM statistics and ETH-DM frame counts only for MEPs attached to the logical interface ge-0/5.9.0:

 user@host> clear oam ethernet connectivity-fault-management statistics ge-0/5/9.0

Related Documentation

- clear oam ethernet connectivity-fault-management statistic command
- show oam ethernet connectivity-fault-management delay-statistics command
- show oam ethernet connectivity-fault-management interfaces (detail | extensive) command
- show oam ethernet connectivity-fault-management mep-statistics command
- show oam ethernet connectivity-fault-management mep-database command
- Junos® OS Ethernet Interfaces

Managing ETH-LM Statistics

- Displaying ETH-LM Statistics on page 269
- Clearing ETH-LM Statistics on page 270

Displaying ETH-LM Statistics

Purpose

Display the ETH-LM statistics.

By default, the show oam ethernet connectivity-fault-management loss-statistics maintenance-domain md-name maintenance-association ma-name command displays ETH-LM statistics for MEPs in the specified CFM maintenance association (MA) within the specified CFM maintenance domain (MD).

The following list consists of the CFM-related operational mode commands that have been enhanced to display ETH-LM statistics:

- The show oam ethernet connectivity-fault-management interfaces detail command is enhanced to display ETH-DM and ETH-LM statistics for MEPs in the specified CFM maintenance association (MA) within the specified CFM maintenance domain (MD).

- The show oam ethernet connectivity-fault-management mep-statistics command is enhanced to display ETH-DM and ETH-LM statistics and frame counts for MEPs in the specified CFM maintenance association (MA) within the specified CFM maintenance domain (MD).

- The show oam ethernet connectivity-fault-management mep-database command is enhanced to display ETH-DM and ETH-LM frame counters for MEPs in the specified CFM maintenance association (MA) within the specified CFM maintenance domain (MD).
Action

- To display the ETH-LM statistics for all MEPs attached to CFM-enabled interfaces on the router:
  ```
  user@host> show oam ethernet connectivity-fault-management loss-statistics
  ```

- To display the ETH-DM statistics collected for MEPs belonging to MA `ma1` and within MD `md1`:
  ```
  user@host> show oam ethernet connectivity-fault-management delay-statistics
  maintenance-domain md1 maintenance-association ma1
  ```

- To display the ETH-DM statistics and ETH-DM frame counts for MEPs in MA `ma1` and within MD `md1`:
  ```
  user@host> show oam ethernet connectivity-fault-management mep-statistics
  maintenance-domain md1 maintenance-association ma1
  ```

- To display CFM database information (including ETH-DM frame counts) for all MEPs in MA `ma1` within MD `md1`:
  ```
  user@host> show oam ethernet connectivity-fault-management mep-database
  maintenance-domain md1 maintenance-association ma1
  ```

Clearing ETH-LM Statistics

Purpose

Clear the ETH-LM statistics.

By default, statistics are deleted for all MEPs attached to CFM-enabled interfaces on the router. However, you can filter the scope of the command by specifying an interface name.

Action

- To clear the ETH-LM statistics for all MEPs attached to CFM-enabled interfaces on the router:
  ```
  user@host> clear oam ethernet connectivity-fault-management loss-statistics
  ```

Managing Iterator Statistics

Related Documentation

- Managing ETH-DM Statistics and ETH-DM Frame Counts on page 266

Displaying Iterator Statistics

Purpose

Retrieve and display iterator statistics.

Multiple iterators can be associated with a remote MEP. However, by default, only one result pertaining to one iterator profile is displayed.

Action

- To display the iterator statistics for remote MEP 1 and iterator profile `i1` with MEPs belonging to the maintenance association `ma1` and within the maintenance domain `default-1` (here, the iterator profile `i1` is configured for two-way delay measurement):
  ```
  user@host> show oam ethernet connectivity-fault-management iterator-statistics
  maintenance-domain default-1 maintenance-association ma1
  ```
user@host> show oam ethernet connectivity-fault-management sla-iterator-statistics sla-iterator i1 maintenance-domain default-1 maintenance-association ma1 local-mep 1 remote-mep 1

Iterator statistics:
Maintenance domain: md6, Level: 6
Maintenance association: ma6, Local MEP id: 1000
Remote MEP id: 103, Remote MAC address: 00:90:69:0a:43:92
Iterator name: i1, Iterator Id: 1
Iterator cycle time: 10ms, Iteration period: 1 cycles
Iterator status: running, Infinite iterations: true
Counter reset time: 2010-03-19 20:42:39 PDT (2d 18:24 ago)
Reset reason: Adjacency flap

Iterator delay measurement statistics:
Delay weight: 1, Delay variation weight: 1
DMM sent : 23898520
DMM skipped for threshold hit : 11000
DMM skipped for threshold hit window : 0
DMR received : 23851165
DMR out of sequence : 1142
DMR received with invalid time stamps : 36540
Average two-way delay : 129 usec
Average two-way delay variation : 15 usec
Average one-way forward delay variation : 22 usec
Average one-way backward delay variation : 22 usec
Weighted average two-way delay : 134 usec
Weighted average two-way delay variation : 8 usec
Weighted average one-way forward delay variation : 6 usec
Weighted average one-way backward delay variation : 2 usec

Output fields are listed in the approximate order in which they appear.

Table 26: Displaying Iterator Statistics for Ethernet Delay Measurement Output Fields

<table>
<thead>
<tr>
<th>Output Field Name</th>
<th>Output Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance domain</td>
<td>Maintenance domain name.</td>
</tr>
<tr>
<td>Level</td>
<td>Maintenance domain level configured.</td>
</tr>
<tr>
<td>Maintenance association</td>
<td>Maintenance association name.</td>
</tr>
<tr>
<td>Local MEP id</td>
<td>Numeric identifier of the local MEP.</td>
</tr>
<tr>
<td>Remote MEP id</td>
<td>Numeric identifier of the remote MEP.</td>
</tr>
<tr>
<td>Remote MAC address</td>
<td>Unicast MAC address of the remote MEP.</td>
</tr>
<tr>
<td>Iterator name</td>
<td>Name of iterator.</td>
</tr>
<tr>
<td>Iterator Id</td>
<td>Numeric identifier of the iterator.</td>
</tr>
<tr>
<td>Iterator cycle time</td>
<td>Number of cycles (in milliseconds) taken between back-to-back transmission of SLA frames for this connection</td>
</tr>
<tr>
<td>Iteration period</td>
<td>Maximum number of cycles per iteration</td>
</tr>
<tr>
<td>Output Field Name</td>
<td>Output Field Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Iterator status</td>
<td>Current status of iterator whether running or stopped.</td>
</tr>
<tr>
<td>Infinite iterations</td>
<td>Status of iteration as infinite or finite.</td>
</tr>
<tr>
<td>Counter reset time</td>
<td>Date and time when the counter was reset.</td>
</tr>
<tr>
<td>Reset reason</td>
<td>Reason to reset counter.</td>
</tr>
<tr>
<td>Delay weight</td>
<td>Calculation weight of delay.</td>
</tr>
<tr>
<td>Delay variation weight</td>
<td>Calculation weight of delay variation.</td>
</tr>
<tr>
<td>DMM sent</td>
<td>Delay measurement message (DMM) PDU frames sent to the peer MEP in this session.</td>
</tr>
<tr>
<td>DMM skipped for threshold hit</td>
<td>Number of DMM frames sent to the peer MEP in this session skipped during threshold hit.</td>
</tr>
<tr>
<td>DMM skipped for threshold hit window</td>
<td>Number of DMM frames sent to the peer MEP in this session skipped during the last threshold hit window.</td>
</tr>
<tr>
<td>DMR received</td>
<td>Number of delay measurement reply (DMR) frames received.</td>
</tr>
<tr>
<td>DMR out of sequence</td>
<td>Total number of DMR out of sequence packets received.</td>
</tr>
<tr>
<td>DMR received with invalid time stamps</td>
<td>Total number of DMR frames received with invalid timestamps.</td>
</tr>
<tr>
<td>Average two-way delay</td>
<td>Average two-way frame delay for the statistics displayed.</td>
</tr>
<tr>
<td>Average two-way delay variation</td>
<td>Average two-way “frame jitter” for the statistics displayed.</td>
</tr>
<tr>
<td>Average one-way forward delay variation</td>
<td>Average one-way forward delay variation for the statistics displayed in microseconds.</td>
</tr>
<tr>
<td>Average one-way backward delay variation</td>
<td>Average one-way backward delay variation for the statistics displayed in microseconds.</td>
</tr>
<tr>
<td>Weighted average two-way delay</td>
<td>Weighted average two-way delay for the statistics displayed in microseconds.</td>
</tr>
<tr>
<td>Weighted average two-way delay variation</td>
<td>Weighted average two-way delay variation for the statistics displayed in microseconds.</td>
</tr>
<tr>
<td>Weighted average one-way forward delay variation</td>
<td>Weighted average one-way forward delay variation for the statistics displayed in microseconds.</td>
</tr>
</tbody>
</table>
Table 26: Displaying Iterator Statistics for Ethernet Delay Measurement Output Fields (continued)

<table>
<thead>
<tr>
<th>Output Field Name</th>
<th>Output Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weighted average one-way backward delay</td>
<td>Weighted average one-way backward delay variation for the statistics displayed in microseconds.</td>
</tr>
<tr>
<td>variation for the statistics displayed</td>
<td></td>
</tr>
<tr>
<td>in microseconds.</td>
<td></td>
</tr>
</tbody>
</table>

- To display the iterator statistics for remote MEP 1 and iterator profile i2 with MEPS belonging to the maintenance association ma1 and within the maintenance domain default-1 (here, the iterator profile i1 is configured for loss measurement):

```bash
user@host> show oam ethernet connectivity-fault-management sla-iterator-statistics sla-iterator i2 maintenance-domain default-1 maintenance-association ma1 local-mep 1 remote-mep 1
```

Iterator statistics:
- Maintenance domain: md6, Level: 6
- Maintenance association: ma6, Local MEP id: 1000
- Remote MEP id: 103, Remote MAC address: 00:90:69:0a:43:92
- Iterator name: i2, Iterator Id: 2
- Iterator cycle time: 1000ms, Iteration period: 2000 cycles
- Iterator status: running, Infinite iterations: true
- Reset reason: Adjacency flap

Iterator loss measurement statistics:
- LMM sent: 238970
- LMM skipped for threshold hit: 60
- LMM skipped for threshold hit window: 0
- LMR received: 238766
- LMR out of sequence: 43

Accumulated transmit statistics:
- Near-end (CIR): 0
- Far-end (CIR): 0
- Near-end (EIR): 0
- Far-end (EIR): 0

Accumulated loss statistics:
- Near-end (CIR): 0 (0.00%)
- Far-end (CIR): 0 (0.00%)
- Near-end (EIR): 0 (0.00%)
- Far-end (EIR): 0 (0.00%)

Last loss measurement statistics:
- Near-end (CIR): 0
- Far-end (CIR): 0
- Near-end (EIR): 0
- Far-end (EIR): 0

Output fields are listed in the approximate order in which they appear.

Table 27: Displaying Iterator Statistics for Ethernet Loss Measurement Output Fields

<table>
<thead>
<tr>
<th>Output Field Name</th>
<th>Output Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance domain</td>
<td>Maintenance domain name.</td>
</tr>
<tr>
<td>Level</td>
<td>Maintenance domain level configured.</td>
</tr>
</tbody>
</table>
Table 27: Displaying Iterator Statistics for Ethernet Loss Measurement Output Fields (continued)

<table>
<thead>
<tr>
<th>Output Field Name</th>
<th>Output Field Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance association</td>
<td>Maintenance association name.</td>
</tr>
<tr>
<td>Local MEP id</td>
<td>Numeric identifier of the local MEP.</td>
</tr>
<tr>
<td>Remote MEP identifier</td>
<td>Numeric identifier of the remote MEP.</td>
</tr>
<tr>
<td>Remote MAC address</td>
<td>Unicast MAC address of the remote MEP.</td>
</tr>
<tr>
<td>Iterator name</td>
<td>Name of iterator.</td>
</tr>
<tr>
<td>Iterator Id</td>
<td>Numeric identifier of the iterator.</td>
</tr>
<tr>
<td>Iterator cycle time</td>
<td>Number of cycles (in milliseconds) taken between back-to-back transmission of SLA frames for this connection</td>
</tr>
<tr>
<td>Iteration period</td>
<td>Maximum number of cycles per iteration</td>
</tr>
<tr>
<td>Iterator status</td>
<td>Current status of iterator whether running or stopped.</td>
</tr>
<tr>
<td>Infinite iterations</td>
<td>Status of iteration as infinite or finite.</td>
</tr>
<tr>
<td>Counter reset time</td>
<td>Date and time when the counter was reset.</td>
</tr>
<tr>
<td>Reset reason</td>
<td>Reason to reset counter.</td>
</tr>
<tr>
<td>LMM sent</td>
<td>Number of loss measurement message (LMM) PDU frames sent to the peer MEP in this session.</td>
</tr>
<tr>
<td>LMM skipped for threshold hit</td>
<td>Number of LMM frames sent to the peer MEP in this session skipped during threshold hit.</td>
</tr>
<tr>
<td>LMR received</td>
<td>Number of LMR out of sequence packets received.</td>
</tr>
<tr>
<td>LMR out of sequence</td>
<td>Total number of LMR out of sequence packets received.</td>
</tr>
<tr>
<td>Near-end (CIR)</td>
<td>Frame loss associated with ingress data frames for the statistics displayed.</td>
</tr>
<tr>
<td>Far-end (CIR)</td>
<td>Frame loss associated with egress data frames for the statistics displayed.</td>
</tr>
<tr>
<td>Near-end (EIR)</td>
<td>Frame loss associated with ingress data frames for the statistics displayed.</td>
</tr>
<tr>
<td>Far-end (EIR)</td>
<td>Frame loss associated with egress data frames for the statistics displayed.</td>
</tr>
</tbody>
</table>
Clearing Iterator Statistics

Purpose
Clear iterator statistics.

Multiple iterators can be associated with remote MEP. However, by default, only one result pertaining to one iterator profile can be cleared.

Action
- To clear the iterator statistics for remote MEP 1 and iterator profile i1 with MEPs belonging to the maintenance association ma1 and within the maintenance domain default-1:

  ```
  user@host> clear oam ethernet connectivity-fault-management sla-iterator-statistics sla-iterator i1 maintenance-domain default-1 maintenance-association ma1 local-mep 1 remote-mep 1
  ```

- To clear the iterator statistics for remote MEP 1 and iterator profile i2 with MEPs belonging to the maintenance association ma1 and within the maintenance domain default-1:

  ```
  user@host> clear oam ethernet connectivity-fault-management sla-iterator-statistics sla-iterator i2 maintenance-domain default-1 maintenance-association ma1 local-mep 1 remote-mep 1
  ```

Related Documentation
- Configuring an Iterator Profile on page 249
- Configuring a Remote MEP with an Iterator Profile on page 250
- Example: Configuring an Iterator on page 283
- Proactive Mode on page 246

Managing Continuity Measurement Statistics

Displaying Continuity Measurement Statistics

- Displaying Continuity Measurement Statistics on page 275
- Clearing Continuity Measurement Statistics on page 276

Displaying Continuity Measurement Statistics

Purpose
Display continuity measurement.

The show oam ethernet connectivity-fault-management delay-statistics maintenance-domain md1 maintenance-association ma1 command is enhanced to display continuity measurement statistics for MEPs in the specified CFM maintenance association (MA) within the specified CFM maintenance domain (MD).

Action
- To display the ETH-DM statistics collected for MEPs belonging to MA ma1 and within MD md1:

  ```
  user@host> show oam ethernet connectivity-fault-management delay-statistics maintenance-domain md1 maintenance-association ma1
  ```
Clearing Continuity Measurement Statistics

Purpose
Clear the continuity measurement statistics

By default, statistics are deleted for all MEPs attached to CFM-enabled interfaces on the router. However, you can filter the scope of the command by specifying an interface name.

Action
- To clear the continuity measurement statistics for all MEPs attached to CFM-enabled interfaces on the router:

```plaintext
user@host> clear oam ethernet connectivity-fault-management continuity-measurement maintenance-domain md-name maintenance-association ma-name local-mep local-mep-id remote-mep remote-mep-id
```

Example: One-Way Ethernet Frame Delay Measurement

- Description of the One-Way Frame Delay Measurement Example on page 276
- Steps for the One-Way Frame Delay Measurement Example on page 278

Description of the One-Way Frame Delay Measurement Example

This example shows how you can configure two MX Series routers (MX-PE1 and MX-PE2) to support an ETH-DM session between two peer MEPs (MEP 201 and MEP 101), initiate a one-way ETH-DM session (from MEP 101 to MEP 201), and then display the ETH-DM statistics and frame counts collected. To increase the accuracy of the ETH-DM statistics, enable optional hardware-assisted timestamping of received ETH-DM frames on the router that contains the receiver MEP.

Routers Used in This Example

To support one-way ETH-DM with optional hardware timestamping of frames on the reception path, the routers used in this example are configured as follows:

- Routers MX-PE1 and MX-PE2 are MX Series routers.
- The system clocks of routers MX-PE1 and MX-PE2 are closely synchronized.
- On router MX-PE1, interface ge-5/2/9 is an Ethernet port. The traffic load received is heavy.
- On router MX-PE2, interface ge-0/2/5 is an Ethernet port.

ETH-DM Frame Counts for this Example

Both routers count the number of ETH-DM frames sent and received by the peer MEPs in the session and store the frame counts in the CFM databases as follows:

- At router MX-PE2, which contains the initiator MEP 101, the CFM database stores the ETH-DM frame counts for a one-way ETH-DM initiator (the count of 1DM frames sent).
At router **MX-PE1**, which contains the receiver MEP **201**, the CFM database stores the ETH-DM frame counts for a one-way ETH-DM receiver (the count of valid 1DM frames received and the count of invalid 1DM frames received).

ETH-DM Statistics for this Example

For a one-way frame delay measurement, only the router that contains the receiver MEP measures and stores frame delay statistics. In this example, ETH-DM statistics collected for the session are available only at router **MX-PE1**.
Steps for the One-Way Frame Delay Measurement Example

The following steps describe an example one-way Ethernet frame delay measurement:

1. At router MX-PE1, configure MEP 201 as a CFM maintenance association endpoint in CFM maintenance domain md6 as follows:
 a. Define the maintenance domain md6 by associating it with maintenance domain level 6 and maintenance association identifier ma6.
 b. Configure the maintenance association by specifying continuity protocol options and specifying MEP identifier 201.
 c. Configure MEP 201 by attaching it to logical interface ge-5/2/9.0, which is a single-tag interface on VLAN 512.

The following configuration is only a partial example of a complete and functional router configuration:

```junos
[edit]
interfaces {# Configure a single-tag logical interface on VLAN 512
  ge-5/2/9 {
    vlan-tagging;
    unit 0 {
      vlan-id 512;
    }
  }
}
protocols {
oam {
  ethernet {
    connectivity-fault-management {
      traceoptions {
        file eoam_cfm.log size 1g files 2 world-readable;
        flag all;
      }
    }
  }
}
```

Copyright © 2012, Juniper Networks, Inc.
2. At router **MX-PE2**, configure MEP 101 as a CFM maintenance association endpoint in CFM maintenance domain **md6** as follows:

 a. Define the maintenance domain **md6** by associating it with maintenance domain level **6** and maintenance association identifier **ma6**.

 b. Configure the maintenance association by specifying continuity protocol options and specifying MEP identifier **101**.

 c. Configure MEP 101 by attaching it to logical interface **ge-0/2/5.0**, which is a single-tag interface on VLAN **512**.

The following configuration is only a partial example of a complete and functional configuration for router **MX-PE2**:

```
[edit]
interfaces { # Configure a single-tag logical interface on VLAN 512
    ge-0/2/5 {
        vlan-tagging;
        unit 0 {
            vlan-id 512;
        }
    }
}
protocols {
    oam {
        ethernet {
            connectivity-fault-management {
                traceoptions {
                    file eoam_cfm.log size 1g files 2 world-readable;
                    flag all;
                }
                maintenance-domain md6 { # Define MD 'md6' on router MX-PE2
                    level 6;
                }
                maintenance-association ma6 { # Configure MA 'ma6' on router MX-PE2
                    continuity-check {
                        interval 100ms;
                        hold-interval 1;
                    }
                    mep 101 { # Configure MEP 101 on router MX-PE2
                        interface ge-0/2/5.0; # Attach to logical interface on VLAN 512
                        direction down;
                        auto-discovery;
                    }
                }
            }
        }
    }
}
```

3. (Optional) To increase the accuracy of the ETH-DM statistics, modify the configuration of router **MX-PE1**, which contains the receiver MEP, by enabling hardware-assisted timestamping of **1DM** frames received on the router.

```
[edit protocols]
    oam {
```
4. At router **MX-PE2**, start a one-way frame delay measurement session from local MEP 101 to remote MEP 201 on router **MX-PE1**:

   ```
   user@MX-PE2> monitor ethernet delay-measurement one-way mep 201 maintenance-domain md6 maintenance-association ma6 count 10
   One-way ETH-DM request to 00:90:69:0a:43:94, Interface ge-0/2/5.0
   1DM Frames sent : 10
   --- Delay measurement statistics ---
   Packets transmitted: 10
   Average delay: NA, Average delay variation: NA
   Best case delay: NA, Worst case delay: NA
   ```

5. At router **MX-PE2**, which contains the initiator MEP, only the ETH-DM frame counts are available. Furthermore, the only frame count tallied for the initiator of a one-way frame delay measurement is the count of 1DM frames transmitted.

 ETH-DM frame counts (the number of 1DM, DMM, and DMR frames exchanged during an ETH-DM session) are stored in the CFM database of both the initiator and receiver MEPs. When you display CFM database information, you can also display the ETH-DM frame counts. You can display CFM database information for all interfaces on the router, or you can limit the output to MEPs associated with certain CFM MDs and MAs.

 - To display CFM database information for MEPs specified by enclosing CFM entities, use the `mep-database` form of the `show oam ethernet connectivity-fault-management` command. A CFM database also stores any ETH-DM frame counts.

 In the example configuration for router **MX-PE2**, MEP 101 is the only MEP defined in MA `ma6` within MD `md6`. Therefore, the `show oam ethernet connectivity-fault management mep-database` command output displays CFM database information for MEP 101 only, even though you do not filter the command output by including the `local-mep` or `remote-mep` command options.

   ```
   user@MX-PE2> show oam ethernet connectivity-fault-management mep-database maintenance-domain md6 maintenance-association ma6
   Maintenance domain name: md6, Format: string, Level: 6
   Maintenance association name: ma6, Format: string
   Continuity-check status: enabled, Interval: 100ms, Loss-threshold: 3 frames
   MEP identifier: 101, Direction: down, MAC address: 00:90:69:0a:48:57
   Auto-discovery: enabled, Priority: 0
   Interface name: ge-0/2/5.0, Interface status: Active, Link status: Up
   Defects:
   Remote MEP not receiving CCM                  : no
   Erroneous CCM received                        : no
   Cross-connect CCM received                    : no
   RDI sent by some MEP                          : no
   Statistics:
   CCMs sent                                     : 1590
   CCMs received out of sequence                 : 0
   ```
To display CFM database information for MEPs specified by interface name, use the `interfaces detail` form of the `show oam ethernet connectivity-fault-management` command. A CFM database also stores any ETH-DM frame counts.

In the example configuration for router MX-PE2, MEP 101 is the only MEP assigned to an interface on the router. Therefore, the `show oam ethernet connectivity-fault-management interfaces (detail | extensive)` command output displays CFM database information for MEP 101 only, even though you do not filter the command output by including the `ethernet-interface-name` or `level md-level` command options.

```
user@MX-PE2> show oam ethernet connectivity-fault-management interfaces detail
Interface name: ge-0/2/5.0, Interface status: Active, Link status: Up
 Maintenance domain name: md6, Format: string, Level: 6
 Maintenance association name: ma6, Format: string
 Continuity-check status: enabled, Interval: 100ms, Loss-threshold: 3 frames
 MEP identifier: 101, Direction: down, MAC address: 00:90:69:0a:48:57
 MEP status: running
 Defects:
   Remote MEP not receiving CCM : no
   Erroaneous CCM received : no
   Cross-connect CCM received : no
   RDI sent by some MEP : no
 Statistics:
   CCMs sent : 1590
   CCMs received out of sequence : 0
   LBMs sent : 0
   Valid in-order LBRs received : 0
   Valid out-of-order LBRs received : 0
   LBRs received with corrupted data : 0
   LBRs sent : 0
   LTMs sent : 0
   LTMs received : 0
   LTRs sent : 0
   LTRs received : 0
   Sequence number of next LTM request : 0
   1DMs sent : 10
   Valid 1DMs received : 0
   Invalid 1DMs received : 0
   DMMs sent : 0
   DMRs sent : 0
   Valid DMRs received : 0
   Invalid DMRs received : 0
```
Invalid 1DMs received : 0
DMMs sent : 0
DMRs sent : 0
Valid DMRs received : 0
Invalid DMRs received : 0
Remote MEP count: 1

<table>
<thead>
<tr>
<th>Identifier</th>
<th>MAC address</th>
<th>State</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>00:90:69:0a:43:94</td>
<td>ok</td>
<td>ge-0/2/5.0</td>
</tr>
</tbody>
</table>

NOTE: You can use these same commands—show oam ethernet connectivity-fault-management mep-database and show oam ethernet connectivity-fault-management interfaces (detail | extensive)—at router MX-PE1 to display the CFM database information (which includes any ETH-DM frame counts) for receiver MEP 201.

6. At router MX-PE1, which contains the receiver MEP, you can use two different `show oam ethernet connectivity-fault-management` commands to display ETH-DM statistics and ETH-DM frame counts.

- To display only the delay statistics, use the `delay-statistics` form of the `show oam ethernet connectivity-fault-management` command:

```
user@MX-PE1> show oam ethernet connectivity-fault-management delay-statistics maintenance-domain md6
MEP identifier: 201, MAC address: 00:90:69:0a:43:94
Remote MEP count: 1

Remote MAC address: 00:90:69:0a:48:57
Delay measurement statistics:
     Index One-way delay Two-way delay
           (usec)     (usec)
     1      370
     2      357
     3      344
     4      332
     5      319
     6      306
     7      294
     8      281
     9      269
    10      255
Average one-way delay : 312 usec
Average one-way delay variation: 11 usec
Best case one-way delay : 255 usec
Worst case one-way delay : 370 usec
```

- To display both the ETH-DM statistics and the CFM database information (which includes any ETH-DM frame counts), use the `mep-statistics` form of the `show oam ethernet connectivity-fault-management` command:

```
user@MX-PE1> show oam ethernet connectivity-fault-management mep-statistics maintenance-domain md6
MEP identifier: 201, MAC address: 00:90:69:0a:43:94
Remote MEP count: 1

CCMs sent : 3240
CCMs received out of sequence : 0
LBMs sent : 0
```
Valid in-order LBRs received : 0
Valid out-of-order LBRs received : 0
LBRs received with corrupted data : 0
LBRs sent : 0
LTMs sent : 0
LTMs received : 0
LTRs sent : 0
LTRs received : 0
Sequence number of next LTM request : 0
IDMs sent : 0
Valid IDMs received : 10
Invalid IDMs received : 0
DMMs sent : 0
DMRs sent : 0
Valid DMRs received : 0
Invalid DMRs received : 0
Remote MEP identifier: 101
Remote MAC address: 00:90:69:0a:48:57
Delay measurement statistics:
<table>
<thead>
<tr>
<th>Index</th>
<th>One-way delay (usec)</th>
<th>Two-way delay (usec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>370</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>357</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>344</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>332</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>319</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>306</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>294</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>281</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>269</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>255</td>
<td></td>
</tr>
</tbody>
</table>
Average one-way delay : 312 usec
Average one-way delay variation: 11 usec
Best case one-way delay : 255 usec
Worst case one-way delay : 370 usec

Related Documentation

- Guidelines for Configuring Routers to Support an ETH-DM Session on page 253
- Guidelines for Starting an ETH-DM Session on page 254
- Guidelines for Managing ETH-DM Statistics and ETH-DM Frame Counts on page 256
- On-Demand Mode on page 245
- Junos® OS Ethernet Interfaces

Example: Configuring an Iterator

The following examples illustrate the configuration of an iterator for two-way delay measurement and loss measurement and the configuration of a remote MEP with an iterator profile. The examples also illustrate disabling an iterator profile with the `disable` statement and deactivating an iterator profile with the `deactivate` command.

- Example: Configuring an Iterator Profile for Two-way Delay Measurement on page 284
- Example: Configuring an Iterator Profile for Loss Measurement on page 284
- Example: Configuring a Remote MEP with an Iterator Profile on page 284
Example: Configuring an Iterator Profile for Two-way Delay Measurement

Configuring an iterator profile \texttt{i1} for two-way delay measurement, where the cycle time value is 1000 ms, iteration period is 2000 cycles per second, delay value is 1, and delay variation value is 1:

\begin{verbatim}
[edit protocols oam ethernet connectivity-fault-management performance-monitoring
 sla-iterator-profiles]
i1 {
 cycle-time 1000;
 iteration-period 2000;
 measurement-type two-way-delay;
 calculation-weight {
 delay 1;
 delay-variation 1;
 }
}
\end{verbatim}

Example: Configuring an Iterator Profile for Loss Measurement

Configuring an iterator profile \texttt{i2} for loss measurement, where the cycle time value is 1000 ms and iteration period is 2000 cycles per second:

\begin{verbatim}
[edit protocols oam ethernet connectivity-fault-management performance-monitoring
 sla-iterator-profiles]
i2 {
 cycle-time 1000;
 iteration-period 2000;
 measurement-type loss;
}
\end{verbatim}

Example: Configuring a Remote MEP with an Iterator Profile

Configuring a remote MEP with an iterator profile \texttt{i3} for two-way delay measurement, where the data TLV size is 1, iteration count is 1, and the priority value is 1 for the remote MEP whose value is 1:

\begin{verbatim}
[edit protocols oam ethernet connectivity-fault-management maintenance-domain
default-1 maintenance-association ma1 mep 1 remote-mep 1]
user@host# show
sla-iterator-profile i3 {
 data-tlv-size 1;
 iteration-count 1;
 priority 1;
}
\end{verbatim}

Example: Disabling an Iterator Profile with the disable Statement

Disabling an iterator profile \texttt{i1} for two-way delay measurement with the \texttt{disable} statement, where the cycle time value is 1000 ms, iteration period is 2000 cycles per second, delay value is 1, delay variation value is 1:
Example: Disabling an Iterator Profile by Deactivating the Profile

Disabling an iterator profile i2 with the `deactivate` command for a remote MEP whose value is 1:

```
[edit protocols oam ethernet connectivity-fault-management maintenance-domain default-1 maintenance association ma1 mep1]
remote-mep1 {
    deactivate sla-iterator-profile i2;
}
```

Related Documentation
- Proactive Mode on page 246
- Clearing Iterator Statistics on page 275
- Configuring an Iterator Profile on page 249
- Configuring a Remote MEP with an Iterator Profile on page 250
- Displaying Iterator Statistics on page 270
- Managing Iterator Statistics on page 270
- Junos® OS Ethernet Interfaces

Configuring the Failure Notification Protocol

This topic describes how to configure the Ethernet Operations, Administration, and Maintenance (OAM) Failure Notification Protocol (FNP) on MX Series routers. The FNP detects link failures in a Carrier Ethernet network and broadcasts FNP messages when a failure occurs to all nodes affected by the link failure. To configure FNP functionality, include the `fnp` statement at the `[edit protocols oam ethernet]` hierarchy level:

```
[edit protocols oam]
ethernet {
    fnp {
        interval <100ms | 1s | 10s | 1m | 10m>;
        loss-threshold number
        interface interface name {
            domain-id domain-id
        }
    }
}
```
The interval statement specifies the time between the transmission of FNP messages. You can specify 10 minutes (10m), 1 minute (1m), 10 seconds (10s), 1 second (1s), and 100 milliseconds (100ms). The loss-threshold statement specifies how many FNP messages can be lost before the FNP message is considered aged out and flushed. You must include the interface interface-name statement with the domain-id domain-id statement. The domain-id statement specifies a domain ID for the route. FNP messages can be received and processed on MX Series routers, but generating FNP messages is not supported.

The show oam ethernet fnp interface, show oam ethernet fnp status, and show oam ethernet fnp messages operational commands display the configured information.

FNP can be enabled only on logical interfaces that are part of a VPLS routing instance, and none of the logical interfaces in the VPLS routing instance should have CCM configured. FNP can be enabled on only one logical interface per physical interface.

Related Documentation
- connectivity-fault-management
- IEEE 802.1ag OAM Connectivity Fault Management Overview on page 181
CHAPTER 15

Configuring IEEE 802.1x Port-Based Network Access Control

• IEEE 802.1x Port-Based Network Access Control Overview on page 287
• Understanding the Administrative State of the Authenticator Port on page 288
• Understanding the Administrative Mode of the Authenticator Port on page 288
• Configuring the Authenticator on page 289
• Viewing the dot1x Configuration on page 289

IEEE 802.1x Port-Based Network Access Control Overview

MX Series routers support the IEEE 802.1x Port-Based Network Access Control (dot1x) protocol on Ethernet interfaces for validation of client and user credentials to prevent unauthorized access to a specified router port. Before authentication is complete, only 802.1x control packets are allowed and forwarded to the router control plane for processing. All other packets are dropped.

Authentication methods used must be 802.1x compliant. Authentication using RADIUS and Microsoft Active Directory servers is supported. The following user/client authentication methods are allowed:

• EAP-MD5 (RFC 3748)
• EAP-TTLS requires a server certificate (RFC 2716)
• EAP-TLS requires a client and server certificate
• PEAP requires only a server certificate

You can use both client and server certificates in all types of authentication except EAP-MD5.

NOTE: On the MX Series router, 802.1x can be enabled on bridged ports only and not on routed ports.
Dynamic changes to a user session are supported to allow the router administrator to terminate an already authenticated session by using the “RADIUS disconnect” message defined in RFC 3576.

Related Documentation
- Understanding the Administrative State of the Authenticator Port on page 288
- Understanding the Administrative Mode of the Authenticator Port on page 288
- Configuring the Authenticator on page 289
- Viewing the dot1x Configuration on page 289
- Junos® OS Ethernet Interfaces

Understanding the Administrative State of the Authenticator Port

The administrative state of an authenticator port can take any of the following three states:

- **Force authorized**—Allows network access to all users of the port without requiring them to be authenticated. This is equivalent to not having any authentication enabled on the port.
- **Force unauthorized**—Denies network access to all users of the port. This is equivalent to disabling the port.
- **Automatic**—This is the default mode where the authentication server response determines if the port is opened for traffic or not. Only the successfully authenticated clients are allowed access, all others are denied.

In Junos OS, the default mode is “automatic.” The “force authorized” and “force unauthorized” admin modes are not supported. You can achieve the functionality of “force authorized” mode by disabling dot1x on the required port. You can achieve the functionality of “force unauthorized” mode by disabling the port itself.

Related Documentation
- IEEE 802.1x Port-Based Network Access Control Overview on page 287
- Understanding the Administrative Mode of the Authenticator Port on page 288
- Configuring the Authenticator on page 289
- Viewing the dot1x Configuration on page 289
- Junos® OS Ethernet Interfaces

Understanding the Administrative Mode of the Authenticator Port

Junos OS supports the supplicant mode “single” and not the “single secure” nor “multiple” modes. The “Single” mode option authenticates only the first client that connects to a port. All other clients that connect later (802.1x compliant or noncompliant) are allowed free access on that port without any further authentication. If the first authenticated client logs out, all other users are locked out until a client authenticates again.
Configuring the Authenticator

To configure the IEEE 802.1x Port-Based Network Access Control protocol on Ethernet interfaces you must configure the authenticator statement at the [edit protocols dot1x] hierarchy level. Use the authentication-profile-name access-profile-name statement to specify the authenticating RADIUS server, and use the interface statement to specify and configure the Gigabit Ethernet or Fast Ethernet interface on the router specifically for IEEE 802.1x protocol use; both at the [edit protocols dot1x authenticator] hierarchy level.

[edit protocols dot1x]
authenticator {
 authentication-profile-name access-profile-name;
 interface (xe-fpc/pic/port | ge-fpc/pic/port | fe-fpc/pic/port) {
 maximum-requests seconds;
 quiet-period seconds;
 reauthentication (disable | interval seconds);
 retries integer;
 server-timeout seconds;
 supplicant (single);
 supplicant-timeout seconds;
 transmit-period seconds;
 }
}

Viewing the dot1x Configuration

Purpose
To review and verify the dot1x configuration.

Action
To view all dot1x configurations, use the `show dot1x interface` operational mode command. To view a dot1x configuration for a specific interface, use the `show dot1x interface (xe-fpc/pic/port | ge-fpc/pic/port | fe-fpc/pic/port) detail` operational mode command. See the Network Interfaces Command Reference for more information about this command.
Related Documentation

- IEEE 802.1x Port-Based Network Access Control Overview on page 287
- Understanding the Administrative State of the Authenticator Port on page 288
- Understanding the Administrative Mode of the Authenticator Port on page 288
- Configuring the Authenticator on page 289
- Junos® OS Ethernet Interfaces
IEEE 802.3ah OAM Link-Fault Management Overview

Ethernet interfaces capable of running at 100 Mbps or faster on MX Series, M Series (except M5 and M10 routers), and T Series routers support the IEEE 802.3ah standard for Operation, Administration, and Management (OAM). You can configure IEEE 802.3ah OAM on Ethernet point-to-point direct links or links across Ethernet repeaters. The IEEE 802.3ah standard meets the requirement for OAM capabilities as Ethernet moves from being solely an enterprise technology to being a WAN and access technology, as well as being backward-compatible with existing Ethernet technology. Junos OS supports IEEE 802.3ah link-fault management.
The features of link-fault management are:

- Discovery
- Link monitoring
- Remote fault detection
- Remote loopback

The following features are not supported:

- Ethernet running on top of a Layer 2 protocol, such as Ethernet over ATM, is not supported in OAM configurations.
- Remote loopback is not supported on the 10-Gigabit Ethernet LAN/WAN PIC with SFP+.
- The remote loopback feature mentioned in section 57.2.11 of IEEE 802.3ah is not supported on T4000 routers.

NOTE: Aggregated Ethernet member links will now use the physical MAC address as the source MAC address in 802.3ah OAM packets.

Related Documentation

- Configuring IEEE 802.3ah OAM Link-Fault Management on page 293
- Enabling IEEE 802.3ah OAM Support on page 294
- Configuring Link Discovery on page 294
- Configuring the OAM PDU Interval on page 295
- Configuring the OAM PDU Threshold on page 296
- Configuring Threshold Values for Local Fault Events on an Interface on page 297
- Disabling the Sending of Link Event TLVs on page 298
- Detecting Remote Faults on page 299
- Configuring an OAM Action Profile on page 300
- Specifying the Actions to Be Taken for Link-Fault Management Events on page 301
- Monitoring the Loss of Link Adjacency on page 303
- Monitoring Protocol Status on page 303
- Configuring Threshold Values for Fault Events in an Action Profile on page 305
- Applying an Action Profile on page 305
- Setting a Remote Interface into Loopback Mode on page 306
- Enabling Remote Loopback Support on the Local Interface on page 307
- Example: Configuring IEEE 802.3ah OAM Support on an Interface on page 308
- Junos® OS Ethernet Interfaces
Configuring IEEE 802.3ah OAM Link-Fault Management

You can configure threshold values for fault events that trigger the sending of link event TLVs when the values exceed the threshold. To set threshold values for fault events on an interface, include the event-thresholds statement at the [edit protocols oam ethernet link-fault-management interface] hierarchy level.

You can also configure OAM threshold values within an action profile and apply the action profile to multiple interfaces. To create an action profile, include the action-profile statement at the [edit protocols oam ethernet link-fault-management] hierarchy level.

You can configure Ethernet OAM either on an aggregate interface or on each of its member links. However, we recommend that you configure Ethernet OAM on the aggregate interface, and this will internally enable Ethernet OAM on the member links.

To view OAM statistics, use the show oam ethernet link-fault-management operational mode command. To clear OAM statistics, use the clear oam ethernet link-fault-management statistics operational mode command. To clear link-fault management state information and restart the link discovery process on Ethernet interfaces, use the clear oam ethernet link-fault-management state operational mode command. For more information about these commands, see the Junos OS Operational Mode Commands.

Related Documentation

- event-thresholds
- action-profile
- IEEE 802.3ah OAM Link-Fault Management Overview on page 291
- Enabling IEEE 802.3ah OAM Support on page 294
- Configuring Link Discovery on page 294
- Configuring the OAM PDU Interval on page 295
- Configuring the OAM PDU Threshold on page 296
- Configuring Threshold Values for Local Fault Events on an Interface on page 297
- Disabling the Sending of Link Event TLVs on page 298
- Detecting Remote Faults on page 299
- Configuring an OAM Action Profile on page 300
- Specifying the Actions to Be Taken for Link-Fault Management Events on page 301
- Monitoring the Loss of Link Adjacency on page 303
- Monitoring Protocol Status on page 303
- Configuring Threshold Values for Fault Events in an Action Profile on page 305
- Applying an Action Profile on page 305
- Setting a Remote Interface into Loopback Mode on page 306
- Enabling Remote Loopback Support on the Local Interface on page 307
Enabling IEEE 802.3ah OAM Support

To enable IEEE 802.3ah OAM support, include the `interface` statement at the `[edit protocols oam ethernet link-fault-management]` hierarchy level:

```plaintext
[edit protocols oam ethernet link-fault-management interface interface-name]
```

When you enable IEEE 802.3ah OAM on a physical interface, the discovery process is automatically triggered.

Related Documentation

- IEEE 802.3ah OAM Link-Fault Management Overview on page 291
- Configuring IEEE 802.3ah OAM Link-Fault Management on page 293
- Configuring Link Discovery on page 294
- Configuring the OAM PDU Interval on page 295
- Configuring the OAM PDU Threshold on page 296
- Configuring Threshold Values for Local Fault Events on an Interface on page 297
- Disabling the Sending of Link Event TLVs on page 298
- Detecting Remote Faults on page 299
- Configuring an OAM Action Profile on page 300
- Specifying the Actions to Be Taken for Link-Fault Management Events on page 301
- Monitoring the Loss of Link Adjacency on page 303
- Monitoring Protocol Status on page 303
- Configuring Threshold Values for Fault Events in an Action Profile on page 305
- Applying an Action Profile on page 305
- Setting a Remote Interface into Loopback Mode on page 306
- Enabling Remote Loopback Support on the Local Interface on page 307
- Example: Configuring IEEE 802.3ah OAM Support on an Interface on page 308
- Junos® OS Ethernet Interfaces

Configuring Link Discovery

When the IEEE 802.3ah OAM protocol is enabled on a physical interface, the discovery process is automatically triggered. The discovery process permits Ethernet interfaces to discover and monitor the peer on the link if it also supports the IEEE 802.3ah standard.
You can specify the discovery mode used for IEEE 802.3ah OAM support. The discovery process is triggered automatically when OAM IEEE 802.3ah functionality is enabled on a port. Link monitoring is done when the interface sends periodic OAM PDUs.

To configure the discovery mode, include the `link-discovery` statement at the `[edit protocol oam ethernet link-fault-management interface interface-name]` hierarchy level:

```conf
[edit protocol oam ethernet link-fault-management interface interface-name]
link-discovery (active | passive);
```

In active mode, the interface discovers and monitors the peer on the link if the peer also supports IEEE 802.3ah OAM functionality. In passive mode, the peer initiates the discovery process. After the discovery process has been initiated, both sides participate in discovery.

Related Documentation

- `link-discovery` on page 497
- IEEE 802.3ah OAM Link-Fault Management Overview on page 291
- Configuring IEEE 802.3ah OAM Link-Fault Management on page 293
- Enabling IEEE 802.3ah OAM Support on page 294
- Configuring the OAM PDU Interval on page 295
- Configuring the OAM PDU Threshold on page 296
- Configuring Threshold Values for Local Fault Events on an Interface on page 297
- Disabling the Sending of Link Event TLVs on page 298
- Detecting Remote Faults on page 299
- Configuring an OAM Action Profile on page 300
- Specifying the Actions to Be Taken for Link-Fault Management Events on page 301
- Monitoring the Loss of Link Adjacency on page 303
- Monitoring Protocol Status on page 303
- Configuring Threshold Values for Fault Events in an Action Profile on page 305
- Applying an Action Profile on page 305
- Setting a Remote Interface into Loopback Mode on page 306
- Enabling Remote Loopback Support on the Local Interface on page 307
- Example: Configuring IEEE 802.3ah OAM Support on an Interface on page 308
- Junos® OS Ethernet Interfaces

Configuring the OAM PDU Interval

Periodic OAM PDUs are sent to perform link monitoring.

You can specify the periodic OAM PDU sending interval for fault detection.

To configure the sending interval, include the `pdu-interval` statement at the `[edit protocol oam ethernet link-fault-management interface interface-name]` hierarchy level:
The periodic OAM PDU interval range is from 100 through 1000 milliseconds. The default sending interval is 1000 milliseconds.

Related Documentation

- PDU interval on page 521
- IEEE 802.3ah OAM Link-Fault Management Overview on page 291
- Configuring IEEE 802.3ah OAM Link-Fault Management on page 293
- Enabling IEEE 802.3ah OAM Support on page 294
- Configuring Link Discovery on page 294
- Configuring the OAM PDU Threshold on page 296
- Configuring Threshold Values for Local Fault Events on an Interface on page 297
- Disabling the Sending of Link Event TLVs on page 298
- Detecting Remote Faults on page 299
- Configuring an OAM Action Profile on page 300
- Specifying the Actions to Be Taken for Link-Fault Management Events on page 301
- Monitoring the Loss of Link Adjacency on page 303
- Monitoring Protocol Status on page 303
- Configuring Threshold Values for Fault Events in an Action Profile on page 305
- Applying an Action Profile on page 305
- Setting a Remote Interface into Loopback Mode on page 306
- Enabling Remote Loopback Support on the Local Interface on page 307
- Example: Configuring IEEE 802.3ah OAM Support on an Interface on page 308
- Junos® OS Ethernet Interfaces

Configuring the OAM PDU Threshold

You can specify the number of OAM PDUs that an interface can miss before the link between peers is considered down.

To configure the number of PDUs that can be missed from the peer, include the `pdu-threshold` statement at the `[edit protocol oam ethernet link-fault-management interface interface-name]` hierarchy level:

```
[edit protocol oam ethernet link-fault-management interface interface-name]
pdu-threshold threshold-value;
```

The threshold value range is from 3 through 10. The default is three PDUs.

Related Documentation

- PDU threshold on page 522
You can configure threshold values on an interface for the local errors that trigger the sending of link event TLVs.

To set the error threshold values for sending event TLVs, include the `frame-error`, `frame-period`, `frame-period-summary`, and `symbol-period` statements at the `[edit protocols oam ethernet link-fault-management interface interface-name event-thresholds]` hierarchy level:

```
[edit protocol oam ethernet link-fault-management interface interface-name]
  event-thresholds {
    frame-error count;
    frame-period count;
    frame-period-summary count;
    symbol-period count;
  }
```

Related Documentation

- `event-thresholds`
- `frame-error`
- `frame-period`
Disabling the Sending of Link Event TLVs

You can disable the sending of link event TLVs.

To disable the monitoring and sending of PDUs containing link event TLVs in periodic PDUs, include the `no-allow-link-events` statement at the `[edit protocols oam ethernet link-fault-management interface interface-name negotiation-options]` hierarchy level:

```
[edit protocols oam ethernet link-fault-management interface interface-name negotiation-options]
no-allow-link-events;
```

Related Documentation

- [IEEE 802.3ah OAM Link-Fault Management Overview on page 291](#)
- [Configuring IEEE 802.3ah OAM Link-Fault Management on page 293](#)
- [Enabling IEEE 802.3ah OAM Support on page 294](#)
- [Configuring Link Discovery on page 294](#)
- [Configuring the OAM PDU Interval on page 295](#)
- [Configuring the OAM PDU Threshold on page 296](#)
- [Disabling the Sending of Link Event TLVs on page 298](#)
- [Detecting Remote Faults on page 299](#)
- [Configuring an OAM Action Profile on page 300](#)
- [Specifying the Actions to Be Taken for Link-Fault Management Events on page 301](#)
- [Monitoring the Loss of Link Adjacency on page 303](#)
- [Monitoring Protocol Status on page 303](#)
- [Configuring Threshold Values for Fault Events in an Action Profile on page 305](#)
- [Applying an Action Profile on page 305](#)
- [Setting a Remote Interface into Loopback Mode on page 306](#)
- [Enabling Remote Loopback Support on the Local Interface on page 307](#)
- [Example: Configuring IEEE 802.3ah OAM Support on an Interface on page 308](#)
- [Junos® OS Ethernet Interfaces](#)
Detecting Remote Faults

Fault detection is either based on flags or fault event type, length, and values (TLVs) received in OAM protocol data units (PDUs). Flags that trigger a link fault are:

- Critical Event
- Dying Gasp
- Link Fault

The link event TLVs are sent by the remote DTE by means of event notification PDUs. Link event TLVs are:

- Errored Symbol Period Event
- Errored Frame Event
- Errored Frame Period Event
- Errored Frame Seconds Summary Event
Configuring an OAM Action Profile

You can create an action profile to define event fault flags and thresholds and the action to be taken. You can then apply the action profile to one or more interfaces.

To configure an action profile, include the `action-profile` statement at the `[edit protocols oam ethernet link-fault-management]` hierarchy level:

```
action-profile profile-name {
  action {
    syslog;
    link-down;
    send-critical-event;
  }
  event {
    link-adjacency-loss;
    link-event-rate {
      frame-error count;
      frame-period count;
      frame-period-summary count;
      symbol-period count;
    }
    protocol-down;
  }
}
```

Related Documentation

- action-profile
- IEEE 802.3ah OAM Link-Fault Management Overview on page 291
- Configuring IEEE 802.3ah OAM Link-Fault Management on page 293
Specifying the Actions to Be Taken for Link-Fault Management Events

You can specify the action to be taken by the system when the configured link-fault event occurs. Multiple action profiles can be applied to a single interface. For each action-profile, at least one event and one action must be specified. The actions are taken only when all of the events in the action profile are true. If more than one action is specified, all the actions are executed.

You might want to set a lower threshold for a specific action such as logging the error and set a higher threshold for another action such as sending a critical event TLV.

To specify the action, include the `action` statement at the `[edit protocols oam ethernet link-fault-management action-profile profile-name]` hierarchy level:

```junos
[edit protocol oam ethernet link-fault-management action-profile profile-name] event {
    link-adjacency-loss;
    protocol-down;
} action {
    syslog;
    link-down;
    send-critical-event;
}
```
To create a system log entry when the link-fault event occurs, include the `syslog` statement.

To administratively disable the link when the link-fault event occurs, include the `link-down` statement.

To send IEEE 802.3ah link event TLVs in the OAM PDU when a link-fault event occurs, include the `send-critical-event` statement.

NOTE: If multiple actions are specified in the action profile, all of the actions are executed in no particular order.

Related Documentation

- action
- syslog
- link-down
- send-critical-event
- IEEE 802.3ah OAM Link-Fault Management Overview on page 291
- Configuring IEEE 802.3ah OAM Link-Fault Management on page 293
- Enabling IEEE 802.3ah OAM Support on page 294
- Configuring Link Discovery on page 294
- Configuring the OAM PDU Interval on page 295
- Configuring the OAM PDU Threshold on page 296
- Configuring Threshold Values for Local Fault Events on an Interface on page 297
- Disabling the Sending of Link Event TLVs on page 298
- Detecting Remote Faults on page 299
- Configuring an OAM Action Profile on page 300
- Monitoring the Loss of Link Adjacency on page 303
- Monitoring Protocol Status on page 303
- Configuring Threshold Values for Fault Events in an Action Profile on page 305
- Applying an Action Profile on page 305
- Setting a Remote Interface into Loopback Mode on page 306
- Enabling Remote Loopback Support on the Local Interface on page 307
- Example: Configuring IEEE 802.3ah OAM Support on an Interface on page 308
- Junos® OS Ethernet Interfaces
Monitoring the Loss of Link Adjacency

You can specify actions be taken when link adjacency is lost. When link adjacency is lost, the system takes the action defined in the action statement of the action profile.

To configure the system to take action when link adjacency is lost, include the link-adjacency-loss statement at the [edit protocols oam ethernet link-fault-management action-profile profile-name event] hierarchy level:

[edit protocol oam ethernet link-fault-management action-profile profile-name]
link-adjacency-loss;

Related Documentation
- IEEE 802.3ah OAM Link-Fault Management Overview on page 291
- Configuring IEEE 802.3ah OAM Link-Fault Management on page 293
- Enabling IEEE 802.3ah OAM Support on page 294
- Configuring Link Discovery on page 294
- Configuring the OAM PDU Interval on page 295
- Configuring the OAM PDU Threshold on page 296
- Configuring Threshold Values for Local Fault Events on an Interface on page 297
- Disabling the Sending of Link Event TLVs on page 298
- Detecting Remote Faults on page 299
- Configuring an OAM Action Profile on page 300
- Specifying the Actions to Be Taken for Link-Fault Management Events on page 301
- Monitoring Protocol Status on page 303
- Configuring Threshold Values for Fault Events in an Action Profile on page 305
- Applying an Action Profile on page 305
- Setting a Remote Interface into Loopback Mode on page 306
- Enabling Remote Loopback Support on the Local Interface on page 307
- Example: Configuring IEEE 802.3ah OAM Support on an Interface on page 308
- Junos® OS Ethernet Interfaces

Monitoring Protocol Status

The CCC-DOWN flag is associated with a circuit cross-connect (CCC) connection, Layer 2 circuit, and Layer 2 VPN, which send the CCC-DOWN status to the kernel. The CCC-DOWN flag indicates that the CCC is down. The CCC-DOWN status is sent to the kernel when the CCC connection, Layer 2 circuit, or Layer 2 VPN is down. This in turn, brings down the CE-facing PE router interface associated with the CCC connection, Layer 2 circuit, or Layer 2 VPN.
When the CCC-DOWN flag is signaled to the IEEE 802.3ah protocol, the system takes the action defined in the action statement of the action profile. For additional information about Layer 2 circuits, see the Junos OS Layer 2 Circuits Feature Guide, Junos OS VPNs Configuration Guide.

To monitor the IEEE 802.3ah protocol, on the CE-facing PE router, include the protocol-down statement at the [edit protocols oam ethernet link-fault-management action-profile profile-name event] hierarchy level:

```
[edit protocol oam ethernet link-fault-management action-profile profile-name]
protocol-down;
```

NOTE: If multiple events are specified in the action profile, all the events must occur before the specified action is taken.

Related Documentation
- protocol-down on page 539
- IEEE 802.3ah OAM Link-Fault Management Overview on page 291
- Configuring IEEE 802.3ah OAM Link-Fault Management on page 293
- Enabling IEEE 802.3ah OAM Support on page 294
- Configuring Link Discovery on page 294
- Configuring the OAM PDU Interval on page 295
- Configuring the OAM PDU Threshold on page 296
- Configuring Threshold Values for Local Fault Events on an Interface on page 297
- Disabling the Sending of Link Event TLVs on page 298
- Detecting Remote Faults on page 299
- Configuring an OAM Action Profile on page 300
- Specifying the Actions to Be Taken for Link-Fault Management Events on page 301
- Monitoring the Loss of Link Adjacency on page 303
- Configuring Threshold Values for Fault Events in an Action Profile on page 305
- Applying an Action Profile on page 305
- Setting a Remote Interface into Loopback Mode on page 306
- Enabling Remote Loopback Support on the Local Interface on page 307
- Example: Configuring IEEE 802.3ah OAM Support on an Interface on page 308
- Junos® OS Ethernet Interfaces
Configuring Threshold Values for Fault Events in an Action Profile

You can configure link event thresholds for received error events that trigger the action specified in the `action` statement. You can then apply the action profile to one or more interfaces.

To configure link event thresholds, include the `link-event-rate` statement at the `[edit protocols oam ethernet link-fault-management action-profile profile-name event]` hierarchy level:

```
link-event-rate {
    frame-error count;
    frame-period count;
    frame-period-summary count;
    symbol-period count;
}
```

Related Documentation
- `link-event-rate`
- IEEE 802.3ah OAM Link-Fault Management Overview on page 291
- Configuring IEEE 802.3ah OAM Link-Fault Management on page 293
- Enabling IEEE 802.3ah OAM Support on page 294
- Configuring Link Discovery on page 294
- Configuring the OAM PDU Interval on page 295
- Configuring the OAM PDU Threshold on page 296
- Configuring Threshold Values for Local Fault Events on an Interface on page 297
- Disabling the Sending of Link Event TLVs on page 298
- Detecting Remote Faults on page 299
- Configuring an OAM Action Profile on page 300
- Specifying the Actions to Be Taken for Link-Fault Management Events on page 301
- Monitoring the Loss of Link Adjacency on page 303
- Monitoring Protocol Status on page 303
- Applying an Action Profile on page 305
- Setting a Remote Interface into Loopback Mode on page 306
- Enabling Remote Loopback Support on the Local Interface on page 307
- Example: Configuring IEEE 802.3ah OAM Support on an Interface on page 308
- Junos® OS Ethernet Interfaces

Applying an Action Profile

You can apply an action profile to one or more interfaces.
To apply an action profile to an interface, include the **apply-action-profile** statement at the `[edit protocols oam ethernet link-fault-management action-profile interface interface-name]` hierarchy level:

```
[edit protocol oam ethernet link-fault-management interface interface-name]
apply-action-profile profile-name;
```

Related Documentation
- apply-action-profile
- IEEE 802.3ah OAM Link-Fault Management Overview on page 291
- Configuring IEEE 802.3ah OAM Link-Fault Management on page 293
- Enabling IEEE 802.3ah OAM Support on page 294
- Configuring Link Discovery on page 294
- Configuring the OAM PDU Interval on page 295
- Configuring the OAM PDU Threshold on page 296
- Configuring Threshold Values for Local Fault Events on an Interface on page 297
- Disabling the Sending of Link Event TLVs on page 298
- Detecting Remote Faults on page 299
- Configuring an OAM Action Profile on page 300
- Specifying the Actions to Be Taken for Link-Fault Management Events on page 301
- Monitoring the Loss of Link Adjacency on page 303
- Monitoring Protocol Status on page 303
- Configuring Threshold Values for Fault Events in an Action Profile on page 305
- Setting a Remote Interface into Loopback Mode on page 306
- Enabling Remote Loopback Support on the Local Interface on page 307
- Example: Configuring IEEE 802.3ah OAM Support on an Interface on page 308
- Junos® OS Ethernet Interfaces

Setting a Remote Interface into Loopback Mode

You can configure the software to set the remote DTE into loopback mode on the following interfaces:

- IQ2 and IQ2-E Gigabit Ethernet interfaces
- Ethernet interfaces on the MX Series routers

Junos OS can place a remote DTE into loopback mode (if remote-loopback mode is supported by the remote DTE). When you place a remote DTE into loopback mode, the interface receives the remote-loopback request and puts the interface into remote-loopback mode. When the interface is in remote-loopback mode, all frames...
except OAM PDUs are looped back without any changes made to the frames. OAM PDUs continue to be sent to the management plane and processed.

To configure remote loopback, include the `remote-loopback` statement at the `[edit protocol oam ethernet link-fault-management interface interface-name]` hierarchy level:

```
[edit protocol oam ethernet link-fault-management interface interface-name]
remote-loopback;
```

To take the remote DTE out of loopback mode, remove the `remote-loopback` statement from the configuration.

Related Documentation
- IEEE 802.3ah OAM Link-Fault Management Overview on page 291
- Configuring IEEE 802.3ah OAM Link-Fault Management on page 293
- Enabling IEEE 802.3ah OAM Support on page 294
- Configuring Link Discovery on page 294
- Configuring the OAM PDU Interval on page 295
- Configuring the OAM PDU Threshold on page 296
- Configuring Threshold Values for Local Fault Events on an Interface on page 297
- Disabling the Sending of Link Event TLVs on page 298
- Detecting Remote Faults on page 299
- Configuring an OAM Action Profile on page 300
- Specifying the Actions to Be Taken for Link-Fault Management Events on page 301
- Monitoring the Loss of Link Adjacency on page 303
- Monitoring Protocol Status on page 303
- Configuring Threshold Values for Fault Events in an Action Profile on page 305
- Applying an Action Profile on page 305
- Enabling Remote Loopback Support on the Local Interface on page 307
- Example: Configuring IEEE 802.3ah OAM Support on an Interface on page 308
- Junos® OS Ethernet Interfaces

Enabling Remote Loopback Support on the Local Interface

You can allow a remote DTE to set a local interface into remote loopback mode on IQ2 and IQ2-E Gigabit Ethernet interfaces and all Ethernet interfaces on the MX Series routers. When a remote-loopback request is sent by a remote DTE, the Junos OS places the local interface into loopback mode. When an interface is in loopback mode, all frames except OAM PDUs are looped back without any changes to the frames. OAM PDUs continue to be sent to the management plane and processed. By default, the remote loopback feature is not enabled.
To enable remote loopback, include the `allow-remote-loopback` statement at the `[edit protocol oam ethernet link-fault-management interface interface-name negotiation-options]` hierarchy level:

```plaintext
[edit protocol oam ethernet link-fault-management interface interface-name negotiation-options]
allow-remote-loopback;
```

NOTE: Activation of OAM remote loopback may result in data frame loss.

Related Documentation
- allow-remote-loopback
- IEEE 802.3ah OAM Link-Fault Management Overview on page 291
- Configuring IEEE 802.3ah OAM Link-Fault Management on page 293
- Enabling IEEE 802.3ah OAM Support on page 294
- Configuring Link Discovery on page 294
- Configuring the OAM PDU Interval on page 295
- Configuring the OAM PDU Threshold on page 296
- Configuring Threshold Values for Local Fault Events on an Interface on page 297
- Disabling the Sending of Link Event TLVs on page 298
- Detecting Remote Faults on page 299
- Configuring an OAM Action Profile on page 300
- Specifying the Actions to Be Taken for Link-Fault Management Events on page 301
- Monitoring the Loss of Link Adjacency on page 303
- Monitoring Protocol Status on page 303
- Configuring Threshold Values for Fault Events in an Action Profile on page 305
- Applying an Action Profile on page 305
- Setting a Remote Interface into Loopback Mode on page 306
- Example: Configuring IEEE 802.3ah OAM Support on an Interface on page 308
- Junos® OS Ethernet Interfaces

Example: Configuring IEEE 802.3ah OAM Support on an Interface

Configure 802.3ah OAM support on an MX Series 10-Gigabit Ethernet interface:

```plaintext
[edit]
protocols {
oam {
ethernet {
link-fault-management {
interface xe-0/0/0 {
```
link-discovery active;
pdu-interval 800;
pdu-threshold 4;
remote-loopback;
negotiation-options {
 allow-remote-loopback;
}
event-thresholds {
 frame-error 30;
 frame-period 50;
 frame-period summary 40;
 symbol-period 20;
}

Related Documentation

- link-fault-management on page 498
- IEEE 802.3ah OAM Link-Fault Management Overview on page 291
- Configuring IEEE 802.3ah OAM Link-Fault Management on page 293
- Enabling IEEE 802.3ah OAM Support on page 294
- Configuring Link Discovery on page 294
- Configuring the OAM PDU Interval on page 295
- Configuring the OAM PDU Threshold on page 296
- Configuring Threshold Values for Local Fault Events on an Interface on page 297
- Disabling the Sending of Link Event TLVs on page 298
- Detecting Remote Faults on page 299
- Configuring an OAM Action Profile on page 300
- Specifying the Actions to Be Taken for Link-Fault Management Events on page 301
- Monitoring the Loss of Link Adjacency on page 303
- Monitoring Protocol Status on page 303
- Configuring Threshold Values for Fault Events in an Action Profile on page 305
- Applying an Action Profile on page 305
- Setting a Remote Interface into Loopback Mode on page 306
- Enabling Remote Loopback Support on the Local Interface on page 307
- Junos® OS Ethernet Interfaces
You can configure the Virtual Router Redundancy Protocol (VRRP) and VRRP for IPv6 for the following interfaces:

- Ethernet
- Fast Ethernet
- Tri-Rate Ethernet copper
- Gigabit Ethernet
- 10-Gigabit Ethernet LAN/WAN PIC
- Ethernet logical interfaces

VRRP and VRRP for IPv6 allow hosts on a LAN to make use of redundant routers on that LAN without requiring more than the static configuration of a single default route on the hosts. The VRRP routers share the IP address corresponding to the default route configured on the hosts. At any time, one of the VRRP routers is the master (active) and the others are backups. If the master fails, one of the backup routers becomes the new master router, thus always providing a virtual default router and allowing traffic on the LAN to be routed without relying on a single router.

VRRP is defined in RFC 3768, *Virtual Router Redundancy Protocol*.

For VRRP and VRRP for IPv6 overview information, configuration guidelines, and statement summaries, see the Junos OS High Availability Configuration Guide.
Configuring VRRP and VRRP for IPv6

To configure VRRP or VRRP for IPv6, include the `vrrp-group` or `vrrp-inet6-group` statement, respectively. These statements are available at the following hierarchy levels:

- `[edit interfaces interface-name unit logical-unit-number family inet address address]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family inet address address]`

The VRRP and VRRP IPv6 configuration statements are as follows:

```
(vrrp-group | vrrp-inet-group) group-number {
    (accept-data | no-accept-data);
    advertise-interval seconds;
    authentication-key key;
    authentication-type authentication;
    fast-interval milliseconds;
    (preempt | no-preempt) {
        hold-time seconds;
    }
    priority-number number;
    track {
        priority-hold-time;
        interface interface-name {
            priority-cost priority;
            bandwidth-threshold bits-per-second {
                priority-cost;
            }
        }
    }
    virtual-address [ addresses ];
}
```

You can configure VRRP IPv6 with a global unicast address.

To trace VRRP and VRRP for IPv6 operations, include the `traceoptions` statement at the `[edit protocols vrrp]` hierarchy level:

```
[edit protocols vrrp]
traceoptions {
    file <filename> <files number <match regular-expression <microsecond-stamp>
        <size size > <world-readable | no-world-readable>;
    flag flag;
    no-remote-trace;
}
```

When there are multiple VRRP groups, there is a few seconds delay between the time the first gratuitous ARP is sent out and the rest of the gratuitous ARP are sent. Configuring failover-delay compensates for this delay. To configure the failover delay from 500 to 2000 milliseconds for VRRP and VRRP for IPv6 operations, include the `failover-delay milliseconds` statement at the `[edit protocols vrrp]` hierarchy level:

```
[edit protocols vrrp]
failover-delay milliseconds;
```
To configure the startup period for VRRP and VRRP for IPv6 operations, include the **startup-silent-period** statement at the **[edit protocols vrrp]** hierarchy level:

```
[edit protocols vrrp]
startup-silent-period seconds;
```

To enable VRRPv3, set the **version-3** statement at the **[edit protocols vrrp]** hierarchy level:

```
[edit protocols vrrp]
version-3;
```

Related Documentation

- VRRP and VRRP for IPv6
- failover-delay
- traceoptions
- failover-delay
- vrrp-group
- VRRP and VRRP for IPv6 Overview on page 311
- Junos® OS Ethernet Interfaces
CHAPTER 18

Configuring Gigabit Ethernet Accounting and Policing

- Gigabit Ethernet Accounting and Policing Overview on page 315
- Configuring Gigabit Ethernet Policers on page 317
- Configuring Gigabit Ethernet Two-Color and Tricolor Policers on page 323
- Configuring MAC Address Accounting on page 326

Gigabit Ethernet Accounting and Policing Overview

For Gigabit Ethernet IQ PICs and Gigabit Ethernet PICs with SFPs (except the 10-port Gigabit Ethernet PIC and the built-in Gigabit Ethernet port on the M7i router), you can configure granular per-VLAN class-of-service (CoS) capabilities and extensive instrumentation and diagnostics on a per-VLAN and per-MAC address basis.

VLAN rewrite, tagging, and deleting enables you to use VLAN address space to support more customers and services.

VPLS allows you to provide a point-to-multipoint LAN between a set of sites in a VPN. Ethernet IQ PICs and Gigabit Ethernet PICs with SFPs (except the 10-port Gigabit Ethernet PIC and the built-in Gigabit Ethernet port on the M7i router) are combined with VPLS to deliver metro Ethernet service.

For Gigabit Ethernet IQ2 and IQ2-E and 10-Gigabit Ethernet IQ2 and IQ2-E interfaces, you can apply Layer 2 policing to logical interfaces in the egress or ingress direction. Layer 2 policers are configured at the [edit firewall] hierarchy level. You can also control the rate of traffic sent or received on an interface by configuring a policer overhead at the [edit chassis fpc slot-number pic slot-number] hierarchy level.

Table 28 on page 316 lists the capabilities of Gigabit Ethernet IQ PICs and Gigabit Ethernet PICs with SFPs (except the 10-port Gigabit Ethernet PIC and the built-in Gigabit Ethernet port on the M7i router).
Table 28: Capabilities of Gigabit Ethernet IQ and Gigabit Ethernet with SFPs

<table>
<thead>
<tr>
<th>Capability</th>
<th>Gigabit Ethernet IQ (SFP)</th>
<th>Gigabit Ethernet (SFP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>802.3ad link aggregation</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Maximum VLANs per port</td>
<td>384</td>
<td>1023</td>
</tr>
<tr>
<td>Maximum transmission unit (MTU) size</td>
<td>9192</td>
<td>9192</td>
</tr>
<tr>
<td>MAC learning</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MAC accounting</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MAC filtering</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Destinations per port</td>
<td>960</td>
<td>960</td>
</tr>
<tr>
<td>Sources per port</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Hierarchical MAC policers</td>
<td>Yes, premium and aggregate</td>
<td>No, aggregate only</td>
</tr>
<tr>
<td>Multiple TPID support and IP service for nonstandard TPIDs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multiple Ethernet encapsulations</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Dual VLAN tags</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>VLAN rewrite</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Layer 2 VPNs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLAN CCC</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Port-based CCC</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Extended VLAN CCC Virtual Metropolitan Area Network (VMAN) Tag Protocol</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>CoS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIC-based egress queues</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Queued VLANs</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>VPLS</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
For more information about configuring VPLS, see the Junos OS VPNs Configuration Guide and the Junos OS Feature Guides.

You can also configure CoS on logical IQ interfaces. For more information, see the Junos OS Class of Service Configuration Guide.

Related Documentation
- Configuring Gigabit Ethernet Policers on page 317
- Configuring Gigabit Ethernet Two-Color and Tricolor Policers on page 323
- Configuring MAC Address Accounting on page 326
- Configuring a Policer Overhead
- Junos® OS Ethernet Interfaces

Configuring Gigabit Ethernet Policers

On Gigabit Ethernet IQ and Gigabit Ethernet PICs with SFPs (except the 10-port Gigabit Ethernet PIC and the built-in Gigabit Ethernet port on the M7i router), you can define rate limits for premium and aggregate traffic received on the interface. These policers allow you to perform simple traffic policing without configuring a firewall filter. First you configure the Ethernet policer profile, next you classify ingress and egress traffic, then you can apply the policer to a logical interface.

For Gigabit Ethernet PICs with SFPs (except the 10-port Gigabit Ethernet PIC and the built-in Gigabit Ethernet port on the M7i router), the policer rates you configure can be different than the rates on the Packet Forward Engine. The difference results from Layer 2 overhead. The PIC accounts for this difference.

NOTE:

On MX Series routers with Gigabit Ethernet or Fast Ethernet PICs, the following considerations apply:

- Interface counters do not count the 7-byte preamble and 1-byte frame delimiter in Ethernet frames.
- In MAC statistics, the frame size includes MAC header and CRC before any VLAN rewrite/imposition rules are applied.
- In traffic statistics, the frame size encompasses the L2 header without CRC after any VLAN rewrite/imposition rule.

For information on understanding Ethernet frame statistics, see the *MX Series Layer 2 Configuration Guide*.

This section contains the following topics:

- Configuring a Policer on page 318
- Specifying an Input Priority Map on page 318
- Specifying an Output Priority Map on page 319
Configuring a Policier

To configure an Ethernet policer profile, include the `ethernet-policer-profile` statement at the `[edit interfaces interface-name gigether-options ethernet-switch-profile]` hierarchy level:

```
[edit interfaces interface-name gigether-options ethernet-switch-profile]
ethernet-policer-profile {
    policer cos-policer-name {
        aggregate {
            bandwidth-limit bps;
            burst-size-limit bytes;
        }
        premium {
            bandwidth-limit bps;
            burst-size-limit bytes;
        }
    }
}
```

In the Ethernet policer profile, the aggregate-priority policer is mandatory; the premium-priority policer is optional.

For aggregate and premium policers, you specify the bandwidth limit in bits per second. You can specify the value as a complete decimal number or as a decimal number followed by the abbreviation `k` (1000), `m` (1,000,000), or `g` (1,000,000,000). There is no absolute minimum value for bandwidth limit, but any value below 61,040 bps will result in an effective rate of 30,520 bps. The maximum bandwidth limit is 4.29 Gbps.

The maximum burst size controls the amount of traffic bursting allowed. To determine the burst-size limit, you can multiply the bandwidth of the interface on which you are applying the filter by the amount of time you allow a burst of traffic at that bandwidth to occur:

\[\text{burst size} = \text{bandwidth} \times \text{allowable time for burst traffic} \]

If you do not know the interface bandwidth, you can multiply the maximum MTU of the traffic on the interface by 10 to obtain a value. For example, the burst size for an MTU of 4700 would be 47,000 bytes. The burst size should be at least 10 interface MTUs. The maximum value for the burst-size limit is 100 MB.

Specifying an Input Priority Map

An input priority map identifies ingress traffic with specified IEEE 802.1p priority values, and classifies that traffic as premium.

If you include a premium-priority policer, you can specify an input priority map by including the `ieee802.1 premium` statement at the `[edit interfaces interface-name gigether-options ethernet-policer-profile input-priority-map]` hierarchy level:
The priority values can be from 0 through 7. The remaining traffic is classified as nonpremium (or aggregate). For a configuration example, see “Example: Configuring Gigabit Ethernet Policers” on page 322.

NOTE: On IQ2 and IQ2-E interfaces and MX Series interfaces, when a VLAN tag is pushed, the inner VLAN IEEE 802.1p bits are copied to the IEEE bits of the VLAN or VLANs being pushed. If the original packet is untagged, the IEEE bits of the VLAN or VLANs being pushed are set to 0.

Specifying an Output Priority Map

An output priority map identifies egress traffic with specified queue classification and packet loss priority (PLP), and classifies that traffic as premium.

If you include a premium-priority policer, you can specify an output priority map by including the classifier statement at the [edit interfaces interface-name gigether-options ethernet-policer-profile output-priority-map] hierarchy level:

```
[edit interfaces interface-name gigether-options ethernet-policer-profile output-priority-map]
classifier {
  premium {
    forwarding-class class-name {
      loss-priority (high | low);
    }
  }
}
```

You can define a forwarding class, or you can use a predefined forwarding class. Table 29 on page 319 shows the predefined forwarding classes and their associated queue assignments.

Table 29: Default Forwarding Classes

<table>
<thead>
<tr>
<th>Forwarding Class Name</th>
<th>Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>best-effort</td>
<td>Queue 0</td>
</tr>
<tr>
<td>expedited-forwarding</td>
<td>Queue 1</td>
</tr>
<tr>
<td>assured-forwarding</td>
<td>Queue 2</td>
</tr>
<tr>
<td>network-control</td>
<td>Queue 3</td>
</tr>
</tbody>
</table>

For more information about CoS forwarding classes, see the Junos OS Class of Service Configuration Guide. For a configuration example, see “Example: Configuring Gigabit Ethernet Policers” on page 322.
Applying a Policer

On all MX Series Router interfaces, Gigabit Ethernet IQ, IQ2, and IQ2-E PICs, and Gigabit Ethernet PICs with SFPs (except the 10-port Gigabit Ethernet PIC and the built-in Gigabit Ethernet port on the M7i router), you can apply input and output policers that define rate limits for premium and aggregate traffic received on the logical interface. Aggregate policers are supported on Gigabit Ethernet PICs with SFPs (except the 10-port Gigabit Ethernet PIC and the built-in Gigabit Ethernet port on the M7i router).

These policers allow you to perform simple traffic policing without configuring a firewall filter. For information about defining these policers, see "Configuring Gigabit Ethernet Policers" on page 317.

To apply policers to specific source MAC addresses, include the `accept-source-mac` statement:

```
accept-source-mac {
    mac-address mac-address {
        policer {
            input cos-policer-name;
            output cos-policer-name;
        }
    }
}
```

You can include these statements at the following hierarchy levels:

- `[edit interfaces interface-name unit logical-unit-number]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]`

You can specify the MAC address as `nn:nn:nn:nn:nn:nn` or `nnnn:nnnn:nnnn`, where `n` is a hexadecimal number. You can configure up to 64 source addresses. To specify more than one address, include multiple `mac-address` statements in the logical interface configuration.

NOTE: On untagged Gigabit Ethernet interfaces you should not configure the `source-address-filter` statement at the `[edit interfaces ge-fpc/pic/port gigether-options]` hierarchy level and the `accept-source-mac` statement at the `[edit interfaces ge-fpc/pic/port gigether-options unit logical-unit-number]` hierarchy level simultaneously. If these statements are configured for the same interfaces at the same time, an error message is displayed.

On tagged Gigabit Ethernet interfaces you should not configure the `source-address-filter` statement at the `[edit interfaces ge-fpc/pic/port gigether-options]` hierarchy level and the `accept-source-mac` statement at the `[edit interfaces ge-fpc/pic/port gigether-options unit logical-unit-number]` hierarchy level with an identical MAC address specified in both filters. If these statements are configured for the same interfaces with an identical MAC address specified, an error message is displayed.
NOTE: If the remote Ethernet card is changed, the interface does not accept traffic from the new card because the new card has a different MAC address.

The MAC addresses you include in the configuration are entered into the router’s MAC database. To view the router’s MAC database, enter the `show interfaces mac-database interface-name` command:

```
user@host> show interfaces mac-database interface-name
```

In the input statement, list the name of one policer template to be evaluated when packets are received on the interface.

In the output statement, list the name of one policer template to be evaluated when packets are transmitted on the interface.

NOTE: On IQ2 and IQ2-E PIC interfaces, the default value for maximum retention of entries in the MAC address table has changed, for cases in which the table is not full. The new holding time is 12 hours. The previous retention time of 3 minutes is still in effect when the table is full.

You can use the same policer one or more times.

If you apply both policers and firewall filters to an interface, input policers are evaluated before input firewall filters, and output policers are evaluated after output firewall filters.

Configuring MAC Address Filtering

You cannot explicitly define traffic with specific source MAC addresses to be rejected; however, for Gigabit Ethernet IQ and Gigabit Ethernet PICs with SFPs (except the 10-port Gigabit Ethernet PIC and the built-in Gigabit Ethernet port on the M7i router), and for Gigabit Ethernet DPCs on MX Series routers, you can block all incoming packets that do not have a source address specified in the `accept-source-mac` statement. For more information about the `accept-source-mac` statement, see “Applying a Policier” on page 320.

To enable this blocking, include the `source-filtering` statement at the `[edit interfaces interface-name gigether-options]` hierarchy level:

```
[edit interfaces interface-name gigether-options]
source-filtering;
```

For more information about the `source-filtering` statement, see “Enabling Ethernet MAC Address Filtering” on page 42.

To accept traffic even though it does not have a source address specified in the `accept-source-mac` statement, include the `no-source-filtering` statement at the `[edit interfaces interface-name gigether-options]` hierarchy level:

```
[edit interfaces interface-name gigether-options]
no-source-filtering;
```
For more information about the `accept-source-mac` statement, see “Applying a Policer” on page 320.

Example: Configuring Gigabit Ethernet Policers

Configure interface `ge-6/0/0` to treat priority values 2 and 3 as premium. On ingress, this means that IEEE 802.1p priority values 2 and 3 are treated as premium. On egress, it means traffic that is classified into queue 0 or 1 with PLP of low and queue 2 or 3 with PLP of high, is treated as premium.

Define a policer that limits the premium bandwidth to 100 Mbps and burst size to 3 k, and the aggregate bandwidth to 200 Mbps and burst size to 3 k.

Specify that frames received from the MAC address `00:01:02:03:04:05` and the VLAN ID 600 are subject to the policer on input and output. On input, this means frames received with the source MAC address `00:01:02:03:04:05` and the VLAN ID 600 are subject to the policer. On output, this means frames transmitted from the router with the destination MAC address `00:01:02:03:04:05` and the VLAN ID 600 are subject to the policer.

```plaintext
[edit interfaces]
ge-6/0/0 {
  gigether-options {
    ether-switch-profile {
      ether-policer-profile {
        input-priority-map {
          ieee-802.1p {
            premium [2 3];
          }
        }
        output-priority-map {
          classifier {
            premium {
              forwarding-class best-effort {
                loss-priority low;
              }
              forwarding-class expedited-forwarding {
                loss-priority low;
              }
              forwarding-class assured-forwarding {
                loss-priority high;
              }
              forwarding-class network-control {
                loss-priority high;
              }
            }
          }
        }
        policer policer-1 {
          premium {
            bandwidth-limit 100m;
            burst-size-limit 3k;
          }
          aggregate {
        }
      }
    }
  }
}
```
For Gigabit Ethernet and 10-Gigabit Ethernet IQ2 and IQ2-E interfaces on M Series and T Series routers, you can configure two-color and tricolor marking policers and apply them to logical interfaces to prevent traffic on the interface from consuming bandwidth inappropriately.

Networks police traffic by limiting the input or output transmission rate of a class of traffic on the basis of user-defined criteria. Policing traffic allows you to control the maximum rate of traffic sent or received on an interface and to partition a network into multiple priority levels or classes of service.

Policers require you to apply a burst size and bandwidth limit to the traffic flow, and set a consequence for packets that exceed these limits—usually a higher loss priority, so that packets exceeding the policer limits are discarded first.

Juniper Networks router architectures support three types of policer:

- Two-color policer—A two-color policer (or "policer" when used without qualification) meters the traffic stream and classifies packets into two categories of packet loss priority (PLP) according to a configured bandwidth and burst-size limit. You can mark packets that exceed the bandwidth and burst-size limit in some way, or simply discard them. A policer is most useful for metering traffic at the port (physical interface) level.
• **Single-rate tricolor marking (srTCM)**—A single-rate tricolor marking policer is defined in RFC 2697, *A Single Rate Three Color Marker*, as part of an assured forwarding (AF) per-hop-behavior (PHB) classification system for a Differentiated Services (DiffServ) environment. This type of policer meters traffic based on the configured committed information rate (CIR), committed burst size (CBS), and excess burst size (EBS). Traffic is marked as belonging to one of three categories (green, yellow, or red) based on whether the packets arriving are below the CBS (green), exceed the CBS (yellow) but not the EBS, or exceed the EBS (red). Single-rate TCM is most useful when a service is structured according to packet length and not peak arrival rate.

• **Two-rate Tricolor Marking (trTCM)**—This type of policer is defined in RFC 2698, *A Two Rate Three Color Marker*, as part of an assured forwarding (AF) per-hop-behavior (PHB) classification system for a Differentiated Services (DiffServ) environment. This type of policer meters traffic based on the configured CIR and peak information rate (PIR), along with their associated burst sizes, the CBS and EBS. Traffic is marked as belonging to one of three categories (green, yellow, or red) based on whether the packets arriving are below the CIR (green), exceed the CIR (yellow) but not the PIR, or exceed the PIR (red). Two-rate TCM is most useful when a service is structured according to arrival rates and not necessarily packet length.

Unlike policing (described in “Configuring Gigabit Ethernet Policers” on page 317), configuring two-color policers and tricolor marking policers requires that you configure a firewall filter.

This section contains the following topics:

• **Configuring a Policer** on page 324
• **Applying a Policer** on page 325
• **Example: Configuring and Applying a Policer** on page 325

Configuring a Policer

Two-color and tricolor marking policers are configured at the [edit firewall] hierarchy level.

A tricolor marking policer polices traffic on the basis of metering rates, including the CIR, the PIR, their associated burst sizes, and any policing actions configured for the traffic.

To configure tricolor policer marking, include the **three-color-policer** statement with options at the [edit firewall] hierarchy level:

```
[edit firewall]
three-color-policer name {
    action {
        loss-priority high {
            then discard;
        }
    }
    single-rate {
        (color-aware | color-blind);
        committed-information-rate bps;
        committed-burst-size bytes;
    }
}
```
excess-burst-size bytes;
} two-rate {
 (color-aware | color-blind);
 committed-information-rate bps;
 committed-burst-size bytes;
 peak-information-rate bps;
 peak-burst-size bytes;
}

For more information about configuring tricolor policer markings, see the Routing Policy Configuration Guide and the Junos OS Class of Service Configuration Guide.

Applying a Policer

Apply a two-color policer or tricolor policer to a logical interface to prevent traffic on the interface from consuming bandwidth inappropriately. To apply two-color or tricolor policers, include the `layer2-policer` statement:

```
layer2-policer {
  input-policer policer-name;
  input-three-color policer-name;
  output-policer policer-name;
  policer-name;
}
```

You can include these statements at the following hierarchy levels:

- `[edit interfaces interface-name unit logical-unit-number]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]`

Use the `input-policer` statement to apply a two-color policer to received packets on a logical interface and the `input-three-color` statement to apply a tricolor policer. Use the `output-policer` statement to apply a two-color policer to transmitted packets on a logical interface and the `output-three-color` statement to apply a tricolor policer. The specified policers must be configured at the `[edit firewall]` hierarchy level. For each interface, you can configure a three-color policer or two-color input policer or output policers—you cannot configure both a three-color policer and a two-color policer.

Example: Configuring and Applying a Policer

Configure tricolor policers and apply them to an interface:

```
[edit firewall]
three-color-policer three-color-policer-color-blind {
  logical-interface-policer;
  two-rate {
    color-blind;
    committed-information-rate 1500000;
    committed-burst-size 150;
    peak-information-rate 3;
    peak-burst-size 300;
  }
}
```
three-color-policer three-color-policer-color-aware {
 logical-interface-policer;
 two-rate {
 color-aware;
 committed-information-rate 1500000;
 committed-burst-size 150;
 peak-information-rate 3;
 peak-burst-size 300;
 }
}

[edit interfaces ge-1/1/0]
unit 1 {
 layer2-policer {
 input-three-color three-color-policer-color-blind;
 output-three-color three-color-policer-color-aware;
 }
}

Configure a two-color policer and apply it to an interface:

[edit firewall]
policer two-color-policer {
 logical-interface-policer;
 if-exceeding {
 bandwidth-percent 90;
 burst-size-limit 300;
 }
 then loss-priority-high;
}

Related Documentation
- Gigabit Ethernet Accounting and Policing Overview on page 315
- Configuring Gigabit Ethernet Policers on page 317
- Configuring MAC Address Accounting on page 326
- Configuring a Policer Overhead
- Junos® OS Ethernet Interfaces

Configuring MAC Address Accounting

For Gigabit Ethernet IQ and Gigabit Ethernet PICs with SFPs (except the 10-port Gigabit Ethernet PIC and the built-in Gigabit Ethernet port on the M7i router), and for Gigabit Ethernet DPCs on MX Series routers, you can configure whether source and destination MAC addresses are dynamically learned. To configure MAC address accounting, include
the `mac-learn-enable` statement at the `[edit interfaces interface-name gigether-options ethernet-switch-profile]` hierarchy level:

```
[edit interfaces interface-name gigether-options ethernet-switch-profile]
mac-learn-enable;
```

To prohibit the interface from dynamically learning source and destination MAC addresses, include the `no-mac-learn-enable` statement at the `[edit interfaces interface-name gigether-options ethernet-switch-profile]` hierarchy level:

```
[edit interfaces interface-name gigether-options ethernet-switch-profile]
no-mac-learn-enable;
```

MAC address learning is based on source addresses. You can start accounting for traffic after it has been sent from the MAC address. Once the MAC address is learned, the frames and bytes transmitted to or received from the MAC address can be tracked.

NOTE: DPCs and MPCs support MAC address accounting. DPCs support both source and destination MAC address accounting. MPCs support only source MAC address accounting.

Related Documentation

- Gigabit Ethernet Accounting and Policing Overview on page 315
- Configuring Gigabit Ethernet Policers on page 317
- Configuring Gigabit Ethernet Two-Color and Tricolor Policers on page 323
- Configuring a Policer Overhead
- Junos® OS Ethernet Interfaces
Configuring Gigabit Ethernet Autonegotiation

- Gigabit Ethernet Autonegotiation Overview on page 329
- Configuring Gigabit Ethernet Autonegotiation on page 330

Gigabit Ethernet Autonegotiation Overview

Autonegotiation is enabled by default on all Gigabit Ethernet and Tri-Rate Ethernet copper interfaces. However, you can explicitly enable autonegotiation to configure remote fault options manually.

NOTE:

- For Gigabit Ethernet interfaces installed in J4350 and J6350 Services Routers, when you manually configure either the link mode or speed settings, the system ignores the configuration and generates a system log message. When autonegotiation is enabled and you specify the link mode and speed, the link autonegotiates with the manually configured settings. When autonegotiation is disabled and you configure both the link mode and speed, the link operates with the manually configured settings. If you disable autonegotiation and do not manually configure the link mode and speed, the link operates at 1000 Mbps full duplex.

- When you configure the Tri-Rate Ethernet copper interface to operate at 1 Gbps, autonegotiation must be enabled.

- On ACX Series Universal Access Routers, when the autonegotiation is disabled, the speed has to be explicitly configured to 10–100 Mbps.

- On T4000 routers, the auto-negotiation command is ignored for interfaces other than Gigabit Ethernet.

Related Documentation

- Configuring Gigabit Ethernet Autonegotiation on page 330
- Junos® OS Ethernet Interfaces
Configuring Gigabit Ethernet Autonegotiation

- Configuring Gigabit Ethernet Autonegotiation with Remote Fault on page 330
- Configuring Flow Control on page 330
- Configuring Autonegotiation Speed on MX Series Routers on page 330
- Displaying Autonegotiation Status on page 331

Configuring Gigabit Ethernet Autonegotiation with Remote Fault

To configure explicit autonegotiation and remote fault, include the auto-negotiation statement and the remote-fault option at the [edit interfaces ge-fpc/pic/port gigether-options] hierarchy level.

```juniper
[edit interfaces ge-fpc/pic/port gigether-options]
(auto-negotiation | no-auto-negotiation) remote-fault <local-interface-online | local-interface-offline>
```

Configuring Flow Control

To enable flow control, include the flow-control statement at the [edit interfaces ge-fpc/pic/port gigether-options] hierarchy level. For more information, see "Configuring Flow Control" on page 45.

Configuring Autonegotiation Speed on MX Series Routers

MX Series routers with Combo Line Rate DPCs and Tri-Rate Copper SFPs support autonegotiation of speed. The autonegotiation specified interface speed is propagated to CoS, routing protocols, and other system components. Half-duplex mode is not supported.

MX Series routers with IQ2 PICs connected to other devices require matching auto-negotiation configurations for both the PIC and for the device in order to achieve link up.

To specify the autonegotiation speed, use the speed (auto | 1Gbps | 100Mbps | 10Mbps) statement at the [edit interfaces ge-fpc/pic/port] hierarchy level.

To set port speed negotiation to a specific rate, set the port speed to 1Gbps, 100Mbps, or 10Mbps. If the negotiated speed and the interface speed do not match, the link will not be brought up.

If you set the autonegotiation speed auto option, then the port speed is negotiated.

You can disable auto MDI/MDIX using the no-auto-mdix statement at the [edit interfaces ge-fpc/pic/port gigether-options] hierarchy level.

Use the show interfaces ge-fpc/pic/port brief command to display the auto negotiation of speed and auto MDI/MDIX states.
Displaying Autonegotiation Status

To display Gigabit Ethernet interface details, including the autonegotiation status, use the operational mode command `show interfaces ge- fpc/pic/port extensive`.

Table 30 on page 331 and Table 31 on page 333 provide information about the autonegotiation status on local and remote routers with fiber interfaces. The status of the link and LED can vary depending on the level of autonegotiation set and the transmit and receive fiber status.

Table 30: Mode and Autonegotiation Status (Local)

<table>
<thead>
<tr>
<th>Transmit</th>
<th>Receive</th>
<th>Mode</th>
<th>LED</th>
<th>Link</th>
<th>Autonegotiation Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>ON</td>
<td>Default</td>
<td>Green</td>
<td>UP</td>
<td>Complete</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>Default</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>Default</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>Default</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>Default</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>Default</td>
<td>Green</td>
<td>UP</td>
<td>No-autonegotiation</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>Default</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>Default</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>Default</td>
<td>Green</td>
<td>UP</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>Default</td>
<td>Red</td>
<td>DOWN</td>
<td>Incomplete</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>No-autonegotiation</td>
<td>Green</td>
<td>UP</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>No-autonegotiation</td>
<td>Green</td>
<td>UP</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>No-autonegotiation</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>No-autonegotiation</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>Explicit</td>
<td>Green</td>
<td>UP</td>
<td>Complete</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
</tbody>
</table>
Table 30: Mode and Autonegotiation Status (Local) (continued)

<table>
<thead>
<tr>
<th>Transmit</th>
<th>Receive</th>
<th>Mode</th>
<th>LED</th>
<th>Link</th>
<th>Autonegotiation Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>ON</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>Explicit</td>
<td>Green</td>
<td>UP</td>
<td>No-autonegotiation</td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>Explicit</td>
<td>Green</td>
<td>UP</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
</tbody>
</table>
Table 30: Mode and Autonegotiation Status (Local) (continued)

<table>
<thead>
<tr>
<th>Transmit</th>
<th>Receive</th>
<th>Mode</th>
<th>LED</th>
<th>Link</th>
<th>Autonegotiation Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>ON</td>
<td>Explicit+RFI-Online</td>
<td>Green</td>
<td>UP</td>
<td>Complete</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>Explicit+RFI-Online</td>
<td>Red</td>
<td>DOWN</td>
<td>Complete</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>Explicit+RFI-Online</td>
<td>Red</td>
<td>DOWN</td>
<td>Complete</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>Explicit+RFI-Online</td>
<td>Red</td>
<td>DOWN</td>
<td>Complete</td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>Explicit+RFI-Online</td>
<td>Red</td>
<td>DOWN</td>
<td>Complete</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>Explicit+RFI-Online</td>
<td>Red</td>
<td>DOWN</td>
<td>Complete</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>Explicit+RFI-Online</td>
<td>Green</td>
<td>UP</td>
<td>Complete</td>
</tr>
</tbody>
</table>

Table 31: Mode and Autonegotiation Status (Remote)

<table>
<thead>
<tr>
<th>Transmit</th>
<th>Receive</th>
<th>Mode</th>
<th>LED</th>
<th>Link</th>
<th>Autonegotiation Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>ON</td>
<td>Default</td>
<td>Green</td>
<td>UP</td>
<td>Complete</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>Default</td>
<td>Red</td>
<td>DOWN</td>
<td>Complete</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>Default</td>
<td>Red</td>
<td>DOWN</td>
<td>Complete</td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>Default</td>
<td>Red</td>
<td>DOWN</td>
<td>Complete</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>Default</td>
<td>Red</td>
<td>DOWN</td>
<td>Complete</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>No-autonegotiation</td>
<td>Green</td>
<td>UP</td>
<td>Incomplete</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>No-autonegotiation</td>
<td>Red</td>
<td>DOWN</td>
<td>Complete</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>No-autonegotiation</td>
<td>Red</td>
<td>DOWN</td>
<td>Complete</td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>No-autonegotiation</td>
<td>Green</td>
<td>UP</td>
<td>Complete</td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>No-autonegotiation</td>
<td>Red</td>
<td>DOWN</td>
<td>Complete</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>Explicit</td>
<td>Green</td>
<td>UP</td>
<td>Complete</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td>Complete</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td>Complete</td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td>Complete</td>
</tr>
</tbody>
</table>
Table 31: Mode and Autonegotiation Status (Remote) (continued)

<table>
<thead>
<tr>
<th>Transmit</th>
<th>Receive</th>
<th>Mode</th>
<th>LED</th>
<th>Link</th>
<th>Autonegotiation Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td>Complete</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>Explicit</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>Explicit+RFI-Offline</td>
<td>Red</td>
<td>DOWN</td>
<td>Complete</td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>Explicit+RFI-Offline</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>Explicit+RFI-Offline</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>Explicit+RFI-Offline</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>Explicit+RFI-Online</td>
<td>Green</td>
<td>UP</td>
<td>Complete</td>
</tr>
<tr>
<td>ON</td>
<td>ON</td>
<td>Explicit+RFI-Online</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td>OFF</td>
<td>Explicit+RFI-Online</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>ON</td>
<td>Explicit+RFI-Online</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td>OFF</td>
<td>Explicit+RFI-Online</td>
<td>Red</td>
<td>DOWN</td>
<td></td>
</tr>
</tbody>
</table>

Related Documentation
- Gigabit Ethernet Autonegotiation Overview on page 329
- Junos® OS Ethernet Interfaces
CHAPTER 20

Configuring Gigabit Ethernet OTN Options

- Gigabit Ethernet OTN Options Configuration Overview on page 335
- Gigabit Ethernet OTN Options on page 335

Gigabit Ethernet OTN Options Configuration Overview

M120, T320, T640, and T1600 routers support Optical Transport Network (OTN) interfaces, including the 10-Gigabit Ethernet DWDM OTN PIC, and provide ITU-G.709 support. Use the `set otn-options` statement at the `/edit/interfaces/if-fpc/pic/port` hierarchy level to configure the OTN options.

Related Documentation
- Gigabit Ethernet OTN Options on page 335
- Junos® OS Ethernet Interfaces

Gigabit Ethernet OTN Options

The following example shows the configuration settings for Gigabit Ethernet OTN options:

```
[edit interfaces ge-fpc/pic/port]
otn-options {
  fec (efec | gfec | none);
  (laser-enable | no-laser-enable);
  (line-loopback | no-line-loopback);
  pass-thru;
  rate (fixed-stuff-bytes | no-fixed-stuff-bytes | pass-thru);
  transmit-payload-type number;
  tti;
}
```

NOTE: The Gigabit Ethernet interface and the XENPAK interface support the read/write overhead bytes only for the APS/PPC (bytes 0 through 3).
You can use the following show commands to view the OTN configuration:

- **show interfaces extensive**—See the Junos OS Operational Mode Commands for command details.

- **show chassis hardware**—See the Junos OS Operational Mode Commands for command details.

- **show chassis pic**—See the Junos OS Operational Mode Commands for command details.

Related Documentation

- Gigabit Ethernet OTN Options Configuration Overview on page 335
- Junos® OS Ethernet Interfaces
Management Ethernet Interface Overview

The router's management Ethernet interface, fxp0 or em0, is an out-of-band management interface that needs to be configured only if you want to connect to the router through the management port on the front of the router. You can configure an IP address and prefix length for this interface, which you commonly do when you first install the Junos OS:

```
[edit]
user@host# set interfaces (fxp0 | em0) unit 0 family inet address/prefix-length
[edit]
user@host# show
interfaces {
    (fxp0 | em0) {
        unit 0 {
            family inet {
                address/prefix-length;
            }
        }
    }
}
```

To determine which management interface type is supported on a router, locate the router and Routing Engine combination in Supported Routing Engines by Chassis and note its management Ethernet interface type, either em0 or fxp0.

Related Documentation
- Configuring a Consistent Management IP Address on page 338
- Configuring the MAC Address on the Management Ethernet Interface on page 339
- Configuring MAC Filtering on PTX Series Packet Transport Switches on page 385
- Junos® OS Ethernet Interfaces
Configuring a Consistent Management IP Address

On routers with multiple Routing Engines, each Routing Engine is configured with a separate IP address for the management Ethernet interface. To access the master Routing Engine, you must know which Routing Engine is active and use the appropriate IP address.

Optionally, for consistent access to the master Routing Engine, you can configure an additional IP address and use this address for the management interface regardless of which Routing Engine is active. This additional IP address is active only on the management Ethernet interface for the master Routing Engine. During switchover, the address moves to the new master Routing Engine.

NOTE: For M Series, MX Series, and most T Series routers, the management Ethernet interface is fxp0. For TX Matrix Plus routers and T1600 routers configured in a routing matrix, the management Ethernet interface is em0.

NOTE: Automated scripts that you have developed for standalone T1600 routers (T1600 routers that are not in a routing matrix) might contain references to the fxp0 management Ethernet interface. Before reusing the scripts on T1600 routers in a routing matrix, edit the command lines that reference the fxp0 management Ethernet interface so that the commands reference the em0 management Ethernet interface instead.

To configure an additional IP address for the management Ethernet interface, include the `master-only` statement at the `[edit groups] hierarchy level.

In the following example, IP address 10.17.40.131 is configured for both Routing Engines and includes a `master-only` statement. With this configuration, the 10.17.40.131 address is active only on the master Routing Engine. The address remains consistent regardless of which Routing Engine is active. IP address 10.17.40.132 is assigned to `fxp0` on `re0`, and address 10.17.40.133 is assigned to `fxp0` on `re1`.

```
[edit groups re0 interfaces fxp0]
unit 0 {
    family inet {
        address 10.17.40.131/25 {
            master-only;
        }
        address 10.17.40.132/25;
    }
}
[edit groups re1 interfaces fxp0]
unit 0 {
    family inet {
        address 10.17.40.131/25 {
            master-only;
        }
        address 10.17.40.133/25;
    }
```
This feature is available on all routers that include dual Routing Engines. On the TX Matrix router, this feature is applicable to the switch-card chassis (SCC) only.

Related Documentation

- Management Ethernet Interface Overview on page 337
- Configuring the MAC Address on the Management Ethernet Interface on page 339
- Junos® OS Ethernet Interfaces

Configuring the MAC Address on the Management Ethernet Interface

By default, the router’s management Ethernet interface uses as its MAC address the MAC address that is burned into the Ethernet card.

NOTE: For M Series, MX Series, and most T Series routers, the management Ethernet interface is fxp0. For TX Matrix Plus routers and T1600 routers configured in a routing matrix, the management Ethernet interface is em0.

NOTE: Automated scripts that you have developed for standalone T1600 routers (T1600 routers that are not in a routing matrix) might contain references to the fxp0 management Ethernet interface. Before reusing the scripts on T1600 routers in a routing matrix, edit the command lines that reference the fxp0 management Ethernet interface so that the commands reference the em0 management Ethernet interface instead.

To display the MAC address used by the router’s management Ethernet interface, enter the `show interface fxp0` or `show interface em0` operational mode command.

To change the management Ethernet interface’s MAC address, include the `mac` statement at the `[edit interfaces fxp0]` or `[edit interfaces em0]` hierarchy level:

```
[edit interfaces (fxp0 | em0)]
mac mac-address;
```

Specify the MAC address as six hexadecimal bytes in one of the following formats: `nnnn.nnnn.nnnn` (for example, `0011.2233.4455`) or `nnnn:nnnn:nnnn:nnnn:nnnn` (for example, `00:11:22:33:44:55`).
NOTE: If you integrate a standalone T640 router into a routing matrix, the PIC MAC addresses for the integrated T640 router are derived from a pool of MAC addresses maintained by the TX Matrix router. For each MAC address you specify in the configuration of a formerly standalone T640 router, you must specify the same MAC address in the configuration of the TX Matrix router.

Similarly, if you integrate a standalone T1600 router into a routing matrix, the PIC MAC addresses for the integrated T1600 router are derived from a pool of MAC addresses maintained by the TX Matrix Plus router. For each MAC address you specify in the configuration of a formerly standalone T1600 router, you must specify the same MAC address in the configuration of the TX Matrix Plus router.

Related Documentation

- Management Ethernet Interface Overview on page 337
- Configuring a Consistent Management IP Address on page 338
- Configuring MAC Filtering on PTX Series Packet Transport Switches on page 385
- Junos® OS Ethernet Interfaces
This section describes the main features and caveats of the 10-port 10-Gigabit Ethernet LAN/WAN PIC with SFP+ (model number PD-5-10XGE-SFPP) and specifies which routers support this PIC.

The 10–port 10-Gigabit Ethernet LAN/WAN PIC (PD-5-10XGE-SFPP) is supported on line card chassis (LCC) in the TX Matrix and TX Matrix Plus Core Routers and on Juniper Networks T640 and T1600 Core Routers. It has the following features:

- Access to all 10-Gigabit Ethernet port counters through SNMP
- Intelligent handling of oversubscribed traffic in applications such as data centers and dense-core uplinks
- Line-rate operation for five 10-Gigabit Ethernet ports from each port group, or a total WAN bandwidth of 100 Gbps with Packet Forwarding Engine bandwidth of 50 Gbps
- Flexible encapsulation, source address and destination address media access control (MAC) filtering, source address MAC learning, MAC accounting, and MAC policing
- Interface encapsulations, such as the following:
 - \texttt{ethernet-ccc}—Ethernet cross-connect
 - \texttt{vlan-ccc}—802.1Q tagging for a cross-connect
• **ethernet-tcc**—Ethernet translational cross-connect

• **vlan-tcc**—Virtual LAN (VLAN) translational cross-connect

• **extended-vlan-ccc**—Standard Tag Protocol Identifier (TPID) tagging for a cross-connect

• **ethernet-vpls**—Ethernet virtual private LAN service

• **vlan-vpls**—VLAN virtual private LAN service

• **flexible-ethernet-services**—Allows per-unit Ethernet encapsulation configuration

- Single, stacked, and flexible VLAN tagging modes
- Native VLAN configuration to allow untagged frames to be received on the tagged interfaces
- Maximum transmission unit (MTU) size of up to 9192 bytes for Ethernet frames
- Link aggregation group (LAG) on single chassis
- Interoperability with other 10-Gigabit Ethernet PICs in M Series and T Series routers in the LAN PHY and WAN PHY modes
- Interrupt-driven link-down detection mechanism
- Two-to-one oversubscription of traffic across a port group
 Traffic from 10 ingress ports to the Packet Forwarding Engine traffic is statically mapped to one of the 5 egress ports. 10 Gbps of bandwidth toward the Packet Forwarding Engine is shared by two ingress ports (called a port group), thereby achieving two-to-one oversubscription. This scheme provides two-to-one oversubscription across a port group and not across the entire PIC.
- Four queues per physical interface on ingress and eight queues per physical interface on egress
- A separate control queue per physical interface to ensure that the control packets are not dropped during oversubscribed traffic. The control queue can be disabled in the CLI.

- Optical diagnostics
- Behavior aggregate (BA) classification (IPv4 DSCP, IPv6 DSCP, Inet precedence, IEEE 802.1P, IEEE 802.1AD, MPLS EXP) and fixed classification
- Weighted round-robin scheduling with two queue priorities (low and strict-high)
- Committed information rate and peak information rate shaping on a per-queue basis
- Excess information rate configuration for allocation of excess bandwidth
- IEEE 802.3ah Operation, Administration, and Maintenance (OAM)-related operations, such as the following:
 - Link fault management
 - Link discovery
• Graceful Routing Engine Switchover

• IEEE 802.3ag Operation, Administration, and Maintenance (OAM)-related operations, such as the following:
 • Connectivity fault management (CFM)
 • Linktrace
 • Loopback
 • Graceful Routing Engine switchover (GRES)

The 10-port 10-Gigabit Ethernet LAN/WAN PIC has the following caveats:

• Source address and destination address MAC filtering takes place after oversubscription is handled.

• Oversubscription on the PIC operates across a port group of two ports and not at the PIC level.

• Queuing is not supported at the logical interface level.

• Committed information rate and peak information rate configurations are not supported at the physical interface level.

• There is limited packet buffering of 2 MB.

• Delay-bandwidth buffering configuration is not supported.

• Multifield classifiers are not supported at the PIC level.

 The multifield classification can be done at the Packet Forwarding Engine using the firewall filters, which overrides the classification done at the PIC level. The multifield classification at the Packet Forwarding Engine occurs after the PIC handles the oversubscribed traffic.

• Egress MAC policer statistics not supported.

• Byte counters are not supported at the queue level.

• Only TPID (0x8100) is supported.

• Line-timing mode is not supported.

• MAC-level Rx VLAN tagged frames counter is not supported.

• OAM unified in-service software upgrade (unified ISSU) is not supported.

• OAM remote loopback is not supported.

The 10-port 10-Gigabit Ethernet LAN/WAN PIC (PD-5-10XGE-SFPP) supports link aggregation with the following type 3 10G PICs: 1x10GE IQ2, 1x10GE IQ2E, and 10GE-XENPAK. For bandwidth aggregation, load sharing, and link protection, LAG can be enabled. Once aggregated Ethernet is enabled, Link Aggregation Control Protocol (LACP) forms an aggregated bundle of member links.
Only features that are supported across all of the linked devices will be supported in the resulting LAG bundle. The following caveats apply to LAG bundles that involve 10-port 10-Gigabit Ethernet LAN/WAN PIC (PD-5-10XGE-SFPP) ports:

- Non-standard TPID for VLAN tagging is not supported, except for 0x8100.
- The number of user created IFLs is limited to 4065/PIC and 1022/port.
- Classifier tables are limited to 8 for each BA classifier type.
- Forwarding classes are limited to 8.
- The `guaranteed-rate` and `shaping-rate` statements are not supported at the IFD level.
- The `per-unit-scheduler` and `hierarchical-scheduler` statements are not supported.
- Only the `strict-high` and `low` levels of scheduling priorities are supported.
- The `excess-priority` configuration is not supported.
- The `buffer-size` configuration under `schedulers` is not supported.
- WRED is not supported.
- srTCM and trTCM are not supported.
- Shared scheduler mode is not supported.

Table 32 on page 344 10-port 10-Gigabit Ethernet LAN/WAN PIC with SFP+ (PD-5-10XGE-SFPP).

Table 32: Capabilities of 10-Gigabit Ethernet LAN/WAN PICs

<table>
<thead>
<tr>
<th>Capability</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum VLANs per PIC</td>
<td>4065</td>
</tr>
<tr>
<td>Maximum VLANs per port</td>
<td>1022</td>
</tr>
<tr>
<td>MAC learning per port</td>
<td>960</td>
</tr>
<tr>
<td>MAC accounting per port</td>
<td>960</td>
</tr>
<tr>
<td>MAC filtering per port</td>
<td>960 (64 filters per physical or logical interface)</td>
</tr>
<tr>
<td></td>
<td>960 filters across multiple logical interfaces</td>
</tr>
<tr>
<td>MAC policers</td>
<td>128 ingress Mac policers</td>
</tr>
<tr>
<td></td>
<td>128 egress Mac policers</td>
</tr>
<tr>
<td>Classifiers</td>
<td>Eight classifiers per PIC for each BA classifier type</td>
</tr>
</tbody>
</table>

Related Documentation
- Configuring Line-Rate Mode on 10-Gigabit Ethernet LAN/WAN PIC Supporting Oversubscription on page 345
Configuring Line-Rate Mode on 10-Gigabit Ethernet LAN/WAN PIC Supporting Oversubscription

For 10-Gigabit Ethernet LAN/WAN PICs supporting oversubscription, oversubscribed Ethernet mode is set by default. To configure these PICs in line-rate mode, include the `linerate-mode` statement at the `[edit chassis set fpc fpc-number pic pic-number]` hierarchy level:

```
[edit chassis]
set fpc fpc-number pic pic-number linerate-mode;
```

To return to the default oversubscribed Ethernet mode, delete the `linerate-mode` statement at the `[edit chassis fpc fpc-number pic pic-number]` hierarchy level.

NOTE: When the mode of operation of a PIC is changed, the PIC is taken offline and then brought back online immediately.

The following 10-Gigabit Ethernet LAN/WAN PICs support line-rate mode:

- 10-port 10-Gigabit Ethernet LAN/WAN PIC with SFP+ (model number PD-5-10XGE-SFPP)
- 24-port 10-Gigabit Ethernet LAN/WAN PIC with SFP+ (model number PF-24XGE-SFPP)

Related Documentation

- 10-port 10-Gigabit Ethernet LAN/WAN PIC Overview on page 341
- 24-port 10-Gigabit Ethernet LAN/WAN PIC on Type 5 FPC Overview on page 352
- Configuring Control Queue Disable on a 10-port 10-Gigabit Ethernet LAN/WAN PIC on page 346
- Handling Oversubscription on a 10-Port 10-Gigabit Ethernet LAN/WAN PIC
- Junos® OS Ethernet Interfaces
Configuring Control Queue Disable on a 10-port 10-Gigabit Ethernet LAN/WAN PIC

On a 10-port 10-Gigabit Ethernet LAN/WAN PIC with SFP+ (model number PD-5-10XGE-SFPP), a control queue is used to queue all control packets received on an ingress port. This ensures that control protocol packets do not get dropped randomly when there is congestion due to oversubscription. The following control protocols are supported:

- OSPF
- OSPF3
- VRRP
- IGMP
- RSVP
- PIM
- BGP
- BFD
- LDP
- IS-IS
- RIP
- RIPV6
- LACP
- ARP
- IPv6 NDP
- Connectivity fault management (CFM)
- Link fault management (LFM)

These control packets can either terminate locally or transit through the router. The control queue has a rate limiter to limit the control traffic to 2 Mbps (fixed, not user-configurable) per port. Hence, if transit control traffic is taking too much bandwidth, then it can cause drops on locally terminating control traffic, as shown in Figure 26 on page 346.

Figure 26: Control Queue Rate Limiter Scenario

If the end users generate a mass of malicious traffic for which the port number is 179 (BGP), the router dispatches that traffic to the ingress control queue. Further, if congestion
occurs in this ingress control queue due to this malicious traffic, the provider’s network control packets may be affected.

In some applications, this can be perceived as a new vulnerability. To address this concern, you can disable the control queue feature. With the control queue feature disabled, you must take precautions to protect control traffic through other means, such as mapping control packets (using BA classification) to a queue that is marked strict-high or is configured with a high CIR.

You can disable the control queue for all ports on the PIC. To disable the control queue, use the `set chassis fpc n pic n no-pre-classifier` command. By default, the `no-pre-classifier` statement is not configured and the control queue is operational.

Deleting the `no-pre-classifier` statement re-enables the control queue feature on all ports of the 10-Gigabit Ethernet LAN/WAN PIC.

NOTE:
- This functionality is applicable both in OSE and line-rate modes.
- The control queue feature is enabled by default in both OSE and line-rate modes, which can be overridden by the user configuration.
- When the control queue is disabled, various show queue commands will show control queue in the output. However, all control queue counters are reported as zeros.
- Changing this configuration (enabling or disabling the control queue feature) results in the PIC being taken offline and brought back online.

Once the control queue is disabled, the Layer 2/Layer 3 control packets are subject to queue selection based on BA classification. However, some control protocol packets will not be classified using BA classification, because they might not have a VLAN, MPLS, or IP header. These are:

- Untagged ARP packets
- Untagged Layer 2 control packets such as LACP or Ethernet OAM
- Untagged IS-IS packets

When the control queue feature is disabled, untagged ARP, IS-IS, and other untagged Layer 2 control packets will go to the restricted queue corresponding to the forwarding class associated with queue 0, as shown in the following two examples.

Forwarding Untagged Layer 2 Control Packets to Queue 3

With this configuration, the forwarding class (FC) associated with queue 0 is "be" (based on the `forwarding-class` statement configuration). "be" maps to restricted-queue number 3 (based on the "restricted-queue" configuration). Hence, with this particular configuration, untagged ARP, IS-IS, and other untagged Layer 2 control packets will go to ingress queue 3 (not to ingress queue 0).

```plaintext
[edit chassis]
forwarding-classes {
  queue 0 be;
```
queue 1 af-low8;
queue 2 af-high;
queue 3 ef;
queue 4 ops_control;
queue 5 net_control;
queue 6 af-low10_12;
}

restricted-queues {
 forwarding-class ef queue-num 0;
 forwarding-class af-low8 queue-num 1;
 forwarding-class af-low10_12 queue-num 1;
 forwarding-class af-high queue-num 2;
 forwarding-class be queue-num 3;
}

Forwarding Untagged Layer2 Control Packets to Queue 3

With this configuration, the FC associated with queue 0 is "ef" (based on the forwarding-class statement configuration). "ef" maps to restricted-queue number 0 (based on the restricted-queue statement configuration). Hence, with this particular configuration, untagged ARP, IS-IS, and other untagged Layer 2 control packets would go to ingress queue 0.

For tagged ARP, IS-IS, or Layer2 control packets, users should configure an explicit dot1p/dot1ad classifier to make sure these packets are directed to the correct queue. Without an explicit dot1p/dot1ad classifier, tagged ARP, IS-IS, or Layer 2 control packets will go to the restricted-queue corresponding to the forwarding class associated with queue 0.

[edit chassis]
forwarding-classes {
 queue 0 ef; <<< ef and be are interchanged
 queue 1 af-low8;
 queue 2 af-high;
 queue 3 be; <<< ef and be are interchanged
 queue 4 ops_control;
 queue 5 net_control;
 queue 6 af-low10_12;
}

restricted-queues {
 forwarding-class ef queue-num 0;
 forwarding-class af-low8 queue-num 1;
 forwarding-class af-low10_12 queue-num 1;
 forwarding-class af-high queue-num 2;
 forwarding-class be queue-num 3;
}

Related Documentation

- 10-port 10-Gigabit Ethernet LAN/WAN PIC Overview on page 341
- Configuring Line-Rate Mode on 10-Gigabit Ethernet LAN/WAN PIC Supporting Oversubscription on page 345
- no-pre-classifier
- Handling Oversubscription on a 10-Port 10-Gigabit Ethernet LAN/WAN PIC
- Junos® OS Ethernet Interfaces
Example: Handling Oversubscription on a 10-Gigabit Ethernet LAN/WAN PIC

Table 33 on page 349 lists the scenarios of handling oversubscription on the 10-port 10-Gigabit Ethernet LAN/WAN PIC for different combinations of port groups and active ports on the PIC.

Table 33: Handling Oversubscription on 10-Gigabit Ethernet LAN/WAN PICs

<table>
<thead>
<tr>
<th>Number of Port Groups with Two Active Ports (A)</th>
<th>Number of Port Groups with One Active Port (B)</th>
<th>Total Number of Ports Used on PIC (C = A*2 + B)</th>
<th>Status of Oversubscription and Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Oversubscription is not active. Each port will receive 10 Gbps throughput.</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>2</td>
<td>Oversubscription is not active. Each port will receive 10 Gbps throughput.</td>
</tr>
<tr>
<td>0</td>
<td>5</td>
<td>5</td>
<td>Oversubscription is not active. Each port will receive 10 Gbps throughput.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>Oversubscription is active. Each port will receive 5 Gbps throughput (with default shaper configuration).</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>6</td>
<td>Oversubscription is active for the port group that has two active ports. Each port in this port group will receive 5 Gbps throughput (with default shaper configuration). For the remaining four ports, oversubscription is not active. Each port will receive 10 Gbps throughput.</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>6</td>
<td>Oversubscription is active. Each port will receive 5 Gbps throughput (with default shaper configuration).</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>10</td>
<td>Oversubscription is active on all 10 ports (5 port groups). Each port will receive 5 Gbps throughput (with default shaper configuration).</td>
</tr>
</tbody>
</table>

Related Documentation

- 10-port 10-Gigabit Ethernet LAN/WAN PIC Overview on page 341
- Configuring Line-Rate Mode on 10-Gigabit Ethernet LAN/WAN PIC Supporting Oversubscription on page 345
- Configuring Control Queue Disable on a 10-port 10-Gigabit Ethernet LAN/WAN PIC on page 346
- Junos® OS Ethernet Interfaces
12-port 10-Gigabit Ethernet LAN/WAN PIC on Type 5 FPC Overview

The 10-Gigabit Ethernet LAN/WAN PIC on Type 5 FPC is a 12-port 10-Gigabit Ethernet LAN/WAN PIC with SFP+ (model number, PF-12XGE-SFPP) on T4000 Core Routers.

The following features are supported on the 10-Gigabit Ethernet LAN/WAN PIC on Type 5 FPC:

- Access to all 10-Gigabit Ethernet port counters through SNMP.
- Logical interface—level MAC filtering, accounting, policing, and learning for source media access control (MAC).
- Flexible encapsulation.
- Single, stacked, and flexible VLAN tagging modes.
- Native VLAN configuration to allow untagged frames to be received on the tagged interfaces.
- Maximum transmission unit (MTU) size of up to 9192 bytes for Ethernet frames.
- Link aggregation group (LAG) on single chassis.
- Interoperability with other 10-Gigabit Ethernet PICs on M Series and T Series routers in LAN PHY mode.
- Eight queues per physical interface on egress.
- Behavior aggregate (BA) classification (IPv4 DSCP, IPv6 DSCP, Inet precedence, IEEE 802.1P, IEEE 802.1AD, MPLS EXP) and fixed classification.
- Defining the VLAN rewrite operation to be applied to the incoming and outgoing frames on logical interfaces on this PIC.

NOTE: Only the Tag Protocol Identifier (TPID) 0x8100 is supported.

- Interface encapsulations, such as the following:
 - **untagged**—Default encapsulation, when other encapsulation is not configured.
 - You can configure only one logical interface (unit 0) on the port.
 - You cannot include the `vlan-id` statement in the configuration of the logical interface.
 - **vlan-tagging**—Enable VLAN tagging for all logical interfaces on the physical interface.
 - **stacked-vlan-tagging**—Enable stacked VLAN tagging for all logical interfaces on the physical interface.
 - **ethernet-ccc**—Ethernet cross-connect.
 - **ethernet-tcc**—Ethernet translational cross-connect.
• **vlan-ccc**—802.1Q tagging for a cross-connect.

• **vlan-tcc**—Virtual LAN (VLAN) translational cross-connect.

• **extended-vlan-ccc**—Standard Tag Protocol Identifier (TPID) tagging for a cross-connect.

• **extended-vlan-tcc**—Standard Tag Protocol Identifier (TPID) tagging for an Ethernet translational cross-connect.

• **ethernet-vpls**—Ethernet virtual private LAN service.

• **vlan-vpls**—VLAN virtual private LAN service.

• **flexible-ethernet-services**—Allows per-unit Ethernet encapsulation configuration.

• The following Layer 3 protocols are also supported:
 - IPv4
 - IPv6
 - MPLS

The 10-Gigabit Ethernet LAN/WAN PIC on Type 5 FPC does not support:

• MAC filtering, accounting, and policing for destination MAC at the logical interface level.

 NOTE: Because destination MAC filtering is not supported, the hardware is configured to accept all the multicast packets. This enables the OSPF protocol to work.

• Premium MAC policers at the logical interface level.

• MAC filtering, accounting, and policing at the physical interface level.

• Multiple TPIDs

<table>
<thead>
<tr>
<th>Capability</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum logical interfaces per PIC</td>
<td>32,000</td>
</tr>
<tr>
<td>Maximum logical interfaces per port</td>
<td>For IPv4 the limit is 4093.</td>
</tr>
<tr>
<td></td>
<td>For IPv6 the limit is 1022.</td>
</tr>
<tr>
<td>Classifiers</td>
<td>Eight classifiers per PIC for each BA classifier type</td>
</tr>
</tbody>
</table>

Related Documentation

• Junos® OS Ethernet Interfaces

• 10-port 10-Gigabit Ethernet LAN/WAN PIC Overview on page 341
24-port 10-Gigabit Ethernet LAN/WAN PIC on Type 5 FPC Overview

This section describes the main features and caveats of the 24-port 10-Gigabit Ethernet LAN/WAN PIC with SFP+ (model number PF-24XGE-SFPP).

The following major software features are supported on the 24-port 10-Gigabit Ethernet LAN/WAN PIC with SFP+ (model number PF-24XGE-SFPP):

• Twenty-four 10-Gigabit Ethernet interfaces in two-to-one oversubscription of traffic in oversubscribed mode or 12 ports in line-rate mode. For more information about oversubscribed mode and line-rate mode, see the “Configuring Line-Rate Mode on 10-Gigabit Ethernet LAN/WAN PIC Supporting Oversubscription” on page 345.

• Traffic is classified as control traffic or best-effort traffic with non-class-of-service-aware tail drops of best-effort traffic in oversubscribed mode.

 The aggregate bandwidth of all the ports together is 120 Gbps. No hard partitioning of bandwidth is done—that is, if one port group is active, it can support 120 Gbps traffic. The bandwidth for best-effort traffic is shared among all the 24 ports.

 Note that the preclassification is restricted to two traffic classes, and is not user-configurable.

• All Junos OS configuration commands supported on the existing 10-Gigabit Ethernet LAN/WAN PIC with SFP+.

• The output of the `show interfaces extensive` operational mode command now displays preclassification queue counters.

• Line-rate mode operation of the first 12 ports can be achieved by using the `[set chassis fpc fpc-number pic pic-number linerate-mode]` command. By default, the 24-port 10-Gigabit Ethernet LAN/WAN PIC with SFP+ works in oversubscribed mode.

• LAN PHY mode and WAN PHY mode on a per-port basis. WAN PHY mode can be achieved by using the `[set interfaces interface-name framing wan-phy]` command.

• Aggregated Ethernet is supported only in line-rate mode.

• Link aggregation group (LAG) is supported only in line-rate mode.

• 4000 logical interfaces per physical interface and 32,000 logical interfaces per chassis.

• Access to all 10-Gigabit Ethernet port counters through SNMP.

NOTE: Graceful Routing Engine switchover (GRES) and nonstop active routing (NSR) are now supported on T4000 routers.

Related Documentation

• Junos® OS Ethernet Interfaces
• 12-port 10-Gigabit Ethernet LAN/WAN PIC on Type 5 FPC Overview on page 350
• Configuring Line-Rate Mode on 10-Gigabit Ethernet LAN/WAN PIC Supporting Oversubscription on page 345
CHAPTER 23

Configuring the 10-Gigabit Ethernet DWDM Interface Wavelength

- 10-Gigabit Ethernet DWDM Interface Wavelength Overview on page 353
- Configuring the 10-Gigabit Ethernet DWDM Interface Wavelength on page 353

10-Gigabit Ethernet DWDM Interface Wavelength Overview

For MX960, M320, M120, T320, and T640 routers, the 10-Gigabit Ethernet DWDM PIC enables you to configure 10-Gigabit Ethernet DWDM interfaces with full C-band International Telecommunication Union (ITU)-Grid tunable optics, as defined in the following specifications:

By default, the wavelength is 1550.12 nanometers (nm), which corresponds to 193.40 terahertz (THz).

Related Documentation
- Configuring the 10-Gigabit Ethernet DWDM Interface Wavelength on page 353
- Junos® OS Ethernet Interfaces

Configuring the 10-Gigabit Ethernet DWDM Interface Wavelength

To configure the wavelength on a 10-Gigabit Ethernet DWDM interface, include the `wavelength` statement at the `[edit interfaces ge-fpc/pic/port optics-options]` hierarchy level:

```
[edit interfaces ge-0/0/0 optics-options]
wavelength nm;
```

For interface diagnostics, you can issue the `show interfaces diagnostics optics ge-fpc/pic/port` operational mode command.

Table 34 on page 354 shows configurable wavelengths and the corresponding frequency for each configurable wavelength.
Table 34: Wavelength-to-Frequency Conversion Matrix

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Frequency (THz)</th>
<th>Wavelength (nm)</th>
<th>Frequency (THz)</th>
<th>Wavelength (nm)</th>
<th>Frequency (THz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1528.77</td>
<td>196.10</td>
<td>1540.56</td>
<td>194.60</td>
<td>1552.52</td>
<td>193.10</td>
</tr>
<tr>
<td>1529.55</td>
<td>196.00</td>
<td>1541.35</td>
<td>194.50</td>
<td>1553.33</td>
<td>193.00</td>
</tr>
<tr>
<td>1530.33</td>
<td>195.90</td>
<td>1542.14</td>
<td>194.40</td>
<td>1554.13</td>
<td>192.90</td>
</tr>
<tr>
<td>1531.12</td>
<td>195.80</td>
<td>1542.94</td>
<td>194.30</td>
<td>1554.94</td>
<td>192.80</td>
</tr>
<tr>
<td>1531.90</td>
<td>195.70</td>
<td>1543.73</td>
<td>194.20</td>
<td>1555.75</td>
<td>192.70</td>
</tr>
<tr>
<td>1532.68</td>
<td>195.60</td>
<td>1544.53</td>
<td>194.10</td>
<td>1556.56</td>
<td>192.60</td>
</tr>
<tr>
<td>1533.47</td>
<td>195.50</td>
<td>1545.32</td>
<td>194.00</td>
<td>1557.36</td>
<td>192.50</td>
</tr>
<tr>
<td>1534.25</td>
<td>195.40</td>
<td>1546.12</td>
<td>193.90</td>
<td>1558.17</td>
<td>192.40</td>
</tr>
<tr>
<td>1535.04</td>
<td>195.30</td>
<td>1546.92</td>
<td>193.80</td>
<td>1558.98</td>
<td>192.30</td>
</tr>
<tr>
<td>1535.82</td>
<td>195.20</td>
<td>1547.72</td>
<td>193.70</td>
<td>1559.79</td>
<td>192.20</td>
</tr>
<tr>
<td>1536.61</td>
<td>195.10</td>
<td>1548.52</td>
<td>193.60</td>
<td>1560.61</td>
<td>192.10</td>
</tr>
<tr>
<td>1537.40</td>
<td>195.00</td>
<td>1549.32</td>
<td>193.50</td>
<td>1561.42</td>
<td>192.00</td>
</tr>
<tr>
<td>1538.19</td>
<td>194.90</td>
<td>1550.12</td>
<td>193.40</td>
<td>1562.23</td>
<td>191.90</td>
</tr>
<tr>
<td>1538.98</td>
<td>194.80</td>
<td>1550.92</td>
<td>193.30</td>
<td>1563.05</td>
<td>191.80</td>
</tr>
<tr>
<td>1539.77</td>
<td>194.70</td>
<td>1551.72</td>
<td>193.20</td>
<td>1563.86</td>
<td>191.70</td>
</tr>
</tbody>
</table>

Related Documentation

- 10-Gigabit Ethernet DWDM Interface Wavelength Overview on page 353
- Junos® OS Ethernet Interfaces
CHAPTER 24

Configuring 10-Gigabit Ethernet Framing

- 10-Gigabit Ethernet Framing Overview on page 355
- Configuring 10-Gigabit Ethernet Framing on page 356
- Understanding WAN Framing for 10-Gigabit Ethernet Trio Interfaces on page 357

10-Gigabit Ethernet Framing Overview

The 10-Gigabit Ethernet interfaces support operation in two modes:

- 10GBASE-R, LAN Physical Layer Device (LAN PHY)
- 10GBASE-W, WAN Physical Layer Device (WAN PHY)

When the external interface is running in LAN PHY mode, it bypasses the WIS sublayer to directly stream block-encoded Ethernet frames on a 10-Gigabit Ethernet serial interface. When the external interface is running in WAN PHY mode, it uses the WIS sublayer to transport 10-Gigabit Ethernet frames in an OC192c SONET payload.

WAN PHY mode is supported on MX240, MX480, MX960, T640, T1600, and T4000 routers only.

Although the external interface provides a lower throughput when running in WAN PHY mode because of the extra SONET overhead, it can interoperate with SONET section or line level repeaters. This creates an advantage when the interface is used for long-distance, point-to-point 10-Gigabit Ethernet links. When the external interface is running in WAN PHY mode, some SONET options are supported. For information about SONET options supported on this interface, see Configuring SONET Options for 10-Gigabit Ethernet Interfaces.

NOTE: SONET or SDH framing mode configuration framing (sdh | sonet) is not applicable on the 10-Gigabit Ethernet ports. Configuring the wan-phy framing mode on the 10-Gigabit Ethernet ports allows the interface to accept SONET or SDH frames without further configuration.

Related Documentation
- Configuring SONET/SDH Framing Mode
- Configuring 10-Gigabit Ethernet Framing on page 356
Configuring 10-Gigabit Ethernet Framing

The 10-Gigabit Ethernet interfaces uses the interface type `xe-fpc/pic/port`. On single port devices, the port number is always zero.

The `xe-fpc/pic/port` interface inherits all the configuration commands that are used for gigabit Ethernet (`ge-fpc/pic/port`) interfaces.

To configure LAN PHY or WAN PHY operating mode, include the `framing` statement with the `lan-phy` or `wan-phy` option at the `[edit interfaces xe-fpc/pic/0]` hierarchy level.

```
[edit interfaces xe-fpc/pic/0 framing]
framing (lan-phy | wan-phy);
```

To display interface information, use the operational mode command `show interfaces xe-fpc/pic/port extensive`.

NOTE:

- SONET or SDH framing mode configuration `framing (sdh | sonet)` is not applicable on the 10-Gigabit Ethernet ports. Configuring the `wan-phy` framing mode on the 10-Gigabit Ethernet ports allows the interface to accept SONET or SDH frames without further configuration.

- If you configure the WAN PHY mode on an aggregated Ethernet interface, you must set the aggregated Ethernet link speed to OC192.

Related Documentation

- framing on page 483
- 10-Gigabit Ethernet Framing Overview on page 355
- Understanding WAN Framing for 10-Gigabit Ethernet Trio Interfaces on page 357
- Junos® OS Ethernet Interfaces
Understanding WAN Framing for 10-Gigabit Ethernet Trio Interfaces

If you use the `wan-phy` statement option at the `[edit interfaces xe-fpc/pic/0 framing]` hierarchy level to configure Trio WAN mode framing for 10-Gigabit Ethernet interfaces, then the alarm behavior of the link, although in full compliance with the IEEE 802.3ae 10-Gigabit Ethernet standard, might not be as expected.

In particular:

- The interface does not distinguish between loss of light (LOL), loss of phase lock loop (PLL), or loss of signal (LOS). If a loss of PLL or LOS alarm occurs, then both PLL and LOS alarms are raised. LOL is also raised because there is no separate LOL indication from the hardware.

- The interface does not raise LOS, PLL, or LOL alarms when the fiber is disconnected from the interface port. You must remove the hardware to raise this alarm.

- The interface line-level alarm indicator signal (AIS-L) is not always raised in response to a loss of framing (LOF) defect alarm.

- If the AIS-L or path-level AIS (AIS-P) occurs, the interface path-level loss of code delineation (LCD-P) is not detected. LCD-P is seen during the path-level remote defect indicator (RDI-P) alarm.

- If an AIS-L alarm occurs, the AIS-P is not detected, but the LOP alarm is detected.

None of the alarm issues are misleading, but they make troubleshooting the root cause of problems more complex.

Related Documentation

- Framing on page 483
- Configuring 10-Gigabit Ethernet Framing on page 356
- 10-Gigabit Ethernet Framing Overview on page 355
- Junos® OS Ethernet Interfaces
CHAPTER 25

Configuring 10-Gigabit Ethernet Notification of Link Down Alarm

- 10-Gigabit Ethernet Notification of Link Down Alarm Overview on page 359
- Configuring 10-Gigabit Ethernet Notification of Link Down Alarm on page 359

10-Gigabit Ethernet Notification of Link Down Alarm Overview

Notification of link down alarm generation and transfer is supported for all 10-Gigabit Ethernet PIC interfaces in M120, M320, and T Series routers.

Related Documentation
- Configuring 10-Gigabit Ethernet Notification of Link Down Alarm on page 359
- Junos® OS Ethernet Interfaces

Configuring 10-Gigabit Ethernet Notification of Link Down Alarm

To configure this option, include the asynchronous-notification statement at the [edit interfaces ge-fpc/pic/port gigether-options] hierarchy level:

```
[edit interfaces]
ge-fpc/pic/port {
gigether-options {
   asynchronous-notification;
}
}
```

Related Documentation
- 10-Gigabit Ethernet Notification of Link Down Alarm Overview on page 359
- Junos® OS Ethernet Interfaces
CHAPTER 26

Configuring 10-Gigabit Ethernet Notification of Link Down for Optics Alarms

- 10-Gigabit Ethernet Notification of Link Down for Optics Options Overview on page 361
- Configuring 10-Gigabit Ethernet Link Down Notification for Optics Options Alarm or Warning on page 361

10-Gigabit Ethernet Notification of Link Down for Optics Options Overview

Notification of link down is supported for IQ2 10-Gigabit Ethernet interfaces and MX Series DPCs. You can use link down notification to help identify optical link connectivity problems.

For information on configuring link down notification, see "Configuring 10-Gigabit Ethernet Link Down Notification for Optics Options Alarm or Warning" on page 361.

Related Documentation
- Configuring 10-Gigabit Ethernet Link Down Notification for Optics Options Alarm or Warning on page 361
- Junos® OS Ethernet Interfaces

Configuring 10-Gigabit Ethernet Link Down Notification for Optics Options Alarm or Warning

To configure this option, include the `alarm` or `warning` statement at the [edit interfaces ge-fpc/pic/port optics-options] hierarchy level:

```
[edit interfaces]
ge-fpc/pic/port /
  optics-options {
    alarm alarm-name {
      (syslog | link-down);
    }
    warning warning-name {
      (syslog | link-down);
    }
  }
```

Copyright © 2012, Juniper Networks, Inc.
Related Documentation

- alarm
- warning
- 10-Gigabit Ethernet Notification of Link Down for Optics Options Overview on page 361
- Junos® OS Ethernet Interfaces
CHAPTER 27

Configuring 100-Gigabit Ethernet PICs/MICs

This section contains the following topics:

- 100-Gigabit Ethernet PIC Overview on page 363
- MPC3E MIC Overview on page 365
- Configuring 100-Gigabit Ethernet PICs on page 367
- Configuring 100-Gigabit Ethernet PIC VLAN Steering Mode on page 370
- 100-Gigabit Ethernet PIC on Type 5 FPC Overview on page 372
- Interoperability Between the 100-Gigabit Ethernet PICs PD-1CE-CFP-FPC4 and PF-1CGE-CFP on page 374
- Configuring the Interoperability Between the 100-Gigabit Ethernet PICs PF-1CGE-CFP and PD-ICE-CFP-FPC4 on page 375

100-Gigabit Ethernet PIC Overview

The 100-Gigabit Ethernet PIC is a 1-port 100-Gigabit Ethernet Type 4 PIC with 100-gigabit small form-factor pluggable transceiver (CFP). The 100-Gigabit Ethernet PIC occupies FPC slots 0 and 1 in the T1600-FPC4-ES FPC. This PIC is available only as packaged in an assembly with the T1600-FPC4-ES FPC. For information on supported transceivers and hardware, see 100-Gigabit Ethernet PIC with CFP (T1600 Router).

The 100-Gigabit Ethernet PIC supports flexible encapsulation and MAC accounting.

MAC learning, MAC policing, and Layer 2 rewrite functionality are not supported.

The ingress flow can be filtered based on the VLAN source and destination addresses. Ingress frames can also be classified according to VLAN, stacked VLAN, source address, VLAN source address, and stacked VLAN source address. VLAN manipulation on egress frames are supported on both outer and inner VLAN tags.

The following features are supported:

- The following encapsulation protocols are supported:
 - Layer 2 protocols
- Ethernet CCC, Ethernet TCC, Ethernet VPLS
- VLAN CCC
- Extended VLAN TCC
- VLAN VPLS
- Flexible Ethernet service

- Layer 3 protocols
 - IPv4
 - Ipv6
 - MPLS

- CFP MSA compliant MDIO control features (transceiver dependent).
- Graceful Routing Engine switchover (GRES) is supported in all PIC and chassis configurations.

- Interface creation:
 - When the PIC is brought online, the router creates two 50 gigabit capable interfaces, et-x/0/0:0 and et-x/0/0:1, where x represents the FPC slot number. Each physical interface represents two internal 50 gigabit Ethernet Packet Forwarding Engines. Two logical interfaces are configured under each physical interface.
 - Packet Forwarding Engine 0 is physical interface 0, Packet Forwarding Engine 1 is physical interface 1

- 802.3 link aggregation:
 - Two logical interfaces are created for each 100-Gigabit Ethernet PIC. To utilize bandwidth beyond 50 gigabits per second, an aggregate interface must be explicitly configured on the 100-Gigabit Ethernet PIC that includes the two 50 gigabit interfaces.
 - Each 100 gigabit Ethernet aggregate consumes one of the router-wide aggregated Ethernet device pools. The number of 100-Gigabit Ethernet PICs cannot exceed the router-wide limit, which is 128 for Ethernet.
 - In each aggregate bundle, each 100-Gigabit Ethernet PIC consumes two members. Hence, an aggregate bundle that consists purely of 100-Gigabit Ethernet PICs supports a maximum of half of the software limit for the number of members. Therefore, with a maximum of 16 links, up to 8 100-Gigabit Ethernet links are supported.
 - Combining 100-Gigabit Ethernet PICs into aggregate interfaces with other Ethernet PICs is not permitted. However, other Ethernet PICs can also be configured within the same T1600 with 100-Gigabit Ethernet PICs, and used in separate aggregate interfaces.
 - Multiple (Juniper Networks) Type 4 100-Gigabit Ethernet PICs on a T1600 router can be combined into a static aggregated Ethernet bundle to connect to a different
type of 100 gigabit Ethernet PIC on a remote router (Juniper Networks or other vendors). LACP is not supported in this configuration.

- **Software Packet Forwarding Engine**—Supports all Gigabit Ethernet PIC classification, firewall filter, queuing model, and rewrite functionality.

- **Egress traffic performance**—Maximum egress throughput is 100 gigabits per second on the physical interface, with 50 gigabits per second on the two assigned logical interfaces.

- **Ingress traffic performance**—Maximum ingress throughput is 100 gigabits per second on the physical interface, with 50 gigabits per second on the two assigned logical interfaces. To achieve 100 gigabits per second ingress traffic performance, use one of the interoperability modes described below. For example, if VLAN steering mode is not used when connecting to a remote 100 gigabits per second interface (that is on a different 100 gigabits per second PIC on a Juniper Networks router or a different vendor’s equipment), then all ingress traffic will try to use one of the 50 gigabits per second Packet Forwarding Engines, rather than be distributed among the two 50 gigabits per second Packet Forwarding Engines, resulting in a total of 50 gigabits per second ingress performance.

- **Interoperability modes**—The 100-Gigabit Ethernet PIC supports interoperability with through configuration in one of the following two forwarding option modes:
 - **SA multicast mode**—In this mode, the 100-Gigabit Ethernet PIC supports interconnection with other Juniper Networks 100-Gigabit Ethernet PICs (Model: PD-1CE-CFP) interfaces only.
 - **VLAN steering mode**—In this mode, the 100-Gigabit Ethernet PIC supports interoperability with 100 gigabit Ethernet interfaces from other vendors only.

Related Documentation
- Configuring 100-Gigabit Ethernet PICs on page 367
- T1600 Core Router
- TX Matrix Plus Router

MPC3E MIC Overview

The MPC3E supports two separate slots for MICs. MICs provide the physical interface and are installed into the MPCs.

The MPC3E supports these MICs as field replaceable units (FRUs):

- 100-Gigabit Ethernet MIC with CFP (model number MIC3-3D-1X100GE-CFP)
- 100-Gigabit Ethernet MIC with CXP (model number MIC3-3D-1X100GE-CXP)
- 10-port 10-Gigabit Ethernet MIC with SFPP (model number MIC3-3D-10XGE-SFPP)
- 2-port 40-Gigabit Ethernet MIC with QSFP+ (model number MIC3-3D-2X40GE-QSFP+)

The MPC3E has two separate configurable MIC slots. Each MIC corresponds to a single PIC and the mapping between the MIC and PIC is 1 to 1 (one MIC is treated as one PIC).
The MIC plugged into slot 0 corresponds to PIC 0 and the MIC plugged into slot 1 corresponds to PIC 2.

The MPC3E also supports these legacy MICs:

- 20-port Gigabit Ethernet MIC with SFP (model number MIC-3D-20GE-SFP)
- 2-port 10-Gigabit Ethernet MICs with XFP (model number MIC-3D-2XGE-XFP)

The 100-Gigabit Ethernet CFP MIC supports the IEEE standards—compliant 100BASE-LR4 interface, using the 100G CFP optical transceiver modules for connectivity. The 100-Gigabit Ethernet CXP MIC supports the 100BASE-SR10 interface, using 100-Gigabit CXP optical transceiver modules for connectivity. The 2-port 40-Gigabit Ethernet QSFP+ MIC supports the 40BASE-SR4 interface and uses quad small form-factor pluggable (QSFP+) optical transceivers for connectivity. The 10-port 10-Gigabit Ethernet SFPP MIC uses SFP+ optical transceiver modules for connectivity.

For detailed information about each MIC, see 100-Gigabit Ethernet MIC with CFP, 100-Gigabit Ethernet MIC with CXP, 40-Gigabit Ethernet MIC with QSFP+. For information about supported hardware and transceivers, see MPC3E.

The MPC3E supports these features:

- Optical diagnostics and related alarms
- Virtual Router Redundancy Protocol (VRRP) support
- IEEE 802.1Q virtual LANs (VLANs) support
- Remote monitoring (RMON) and Ethernet statistics (EtherStats)
- Source MAC learning
- MAC accounting and policing—Dynamic local address learning of source MAC addresses
- Flexible Ethernet encapsulation
- Multiple Tag Protocol Identifiers (TPIDs)

NOTE: The MPC3E supports Ethernet interfaces only. SONET interfaces are not supported.

For information about the supported and unsupported Junos OS features for this MPC, see “Protocols and Applications Supported by the MPC3E (MX-MPC3E)” in the *MX Series 3D Universal Edge Routers Line Card Guide*.

Related Documentation

- MPC3E on MX Series Routers Overview
- Protocols and Applications Supported by the MX240, MX480, MX960 MPC3E
- 100-Gigabit Ethernet MIC with CFP
- 100-Gigabit Ethernet MIC with CXP
- 2-port 40-Gigabit Ethernet MIC with QSFP+
Configuring 100-Gigabit Ethernet PICs

You can configure the following features on the 100-Gigabit Ethernet PIC:

- Flexible Ethernet services encapsulation
- Source address MAC filtering
- Destination address MAC filtering
- MAC accounting in RX
- Channels defined by two stacked VLAN tags
- Channels defined by flex-vlan-tagging
- IP service for stacked VLAN tags
- Layer 2 rewrite

The following features are not supported on the 100-Gigabit Ethernet PIC:

- Multiple TPID
- IP service for non-standard TPID
- MAC learning
- MAC policing

NOTE: For the 100-Gigabit Ethernet PIC, only the PIC0 online and offline CLI commands are supported. The PIC1 online and offline CLI commands are not supported.
NOTE: Each 100-Gigabit Ethernet PIC creates two et- physical interfaces, defined as 50-gigabit physical interfaces in the Routing Engine and Packet Forwarding Engine. By default, these are independent physical interfaces and are not configured as an aggregated Ethernet interface.

The 100-Gigabit Ethernet PIC supports aggregated Ethernet configuration to achieve higher throughput capability, whereby configuration is similar to the 1G/10G aggregated Ethernet interface configuration.

The 100-Gigabit Ethernet PIC has the following restrictions for aggregated Ethernet configuration:

- Both physical interfaces belonging to the same 100-Gigabit Ethernet PIC must be included in the same aggregated Ethernet physical interfaces. The aggregation of the 100-Gigabit Ethernet PIC interface is always an even number of physical interfaces.

- The 100-Gigabit Ethernet PIC physical interface cannot be configured in the aggregated interface with any other type of physical interface.

- The maximum supported number of aggregated 100-Gigabit Ethernet PIC interfaces is half of the number that the Junos OS supports for 1G/10G aggregated Ethernet. For example, if Junos OS supports 16 ports of 1G-gigabit Ethernet aggregation, it supports 8 ports of 100-Gigabit Ethernet PIC aggregation. This is because each port of the 100-Gigabit Ethernet PIC port using 2 physical interfaces (et-x/0/0:0 and et-x/0/0:1), where each physical interface represents 50 gigabits of traffic capacity.
To configure a 100-Gigabit Ethernet PIC:

1. Perform the media configuration:

 The 100-Gigabit Ethernet PIC features a 100 gigabit per second pipe. The media-related configuration commands for `et-x/0/0:0` and `et-x/0/0:1` must both be configured at the same time and configured with the same value, otherwise the commit operation fails.

 When configuring to activate or deactivate the interface, if the interface contains the described media-related configuration, it must activate and deactivate both units 0 and 1 at the same time, otherwise the commit operation fails.

 The following media configuration commands have the above described restriction:

 - `# set interfaces et-x/0/0:1 disable`
 - `# set interfaces et-x/0/0:1 gigether-options loopback`
 - `# set interfaces et-x/0/0:1 mtu yyy`

 Due to an MTU restriction, the vlan-tagging and flexible-vlan-tagging configuration on `et-x/0/0:0` and `et-x/0/0:1` must be same, otherwise the commit operation fails.

2. Specify the logical interfaces:

 a. Two physical interfaces are created when the 100-Gigabit Ethernet PIC is brought online (`et-x/0/0:0` and `et-x/0/0:1`, where `x` represents the FPC slot number). Each physical interface represents two internal 50-gigabit Ethernet Packet Forwarding Engines.

 b. Two logical interfaces are configured under each physical interface: Packet Forwarding Engine 0 is physical interface 0 and Packet Forwarding Engine 1 is physical interface 1.

3. Configure the 802.3 link aggregation:

 a. Two physical interfaces are created for each 100-Gigabit Ethernet PIC. To utilize bandwidth beyond 50 gigabits, an aggregated interface must be explicitly configured on the 100-Gigabit Ethernet PIC that includes these two 50-gigabit interfaces.

 b. Each 100-Gigabit Ethernet PIC aggregate consumes one of the router-wide aggregated Ethernet device pools. In Junos OS with 100-Gigabit Ethernet PICs, you cannot exceed the router limit of 128 Ethernet PICs.

 c. In each aggregated bundle, each 100-Gigabit Ethernet PIC consumes two aggregate members. Hence, an aggregated bundle consisting of only one 100-Gigabit Ethernet PIC supports only up to half of the Junos OS limit for the number of members. The Junos OS supports a maximum of 16 links for up to 8 100-Gigabit Ethernet PIC links.

4. Configure the Packet Forwarding Engine features:
a. The 100-Gigabit Ethernet PIC supports all classification, firewall filters, queuing model, and rewrite functionality features of the Gigabit Ethernet PICs. To configure these parameters, see “Configuring Gigabit Ethernet Policers” on page 317, “Configuring MAC Address Filtering” on page 321, and “Stacking and Rewriting Gigabit Ethernet VLAN Tags Overview” on page 129.

NOTE: When using the show interfaces extensive command with a 100-Gigabit Ethernet PIC, the “Filter statistics” section will not be displayed because the hardware does not include those counters.

Related Documentation
- 100-Gigabit Ethernet PIC Overview on page 363
- Configuring Gigabit Ethernet Policers on page 317
- Configuring MAC Address Filtering on page 321
- Stacking and Rewriting Gigabit Ethernet VLAN Tags Overview on page 129

Configuring 100-Gigabit Ethernet PIC VLAN Steering Mode

In Junos OS Release 10.4 and later, you can configure the 100-Gigabit Ethernet PIC to interoperate with routers using 100 gigabit Ethernet interfaces from other vendors by using the forwarding-mode statement with the vlan-steering option at the [edit chassis fpc slot pic slot] hierarchy level. On ingress, the router compares the outer VLAN ID against the user-defined VLAN ID and VLAN mask combination and steers the packet accordingly. You can program a custom VLAN ID and corresponding mask for PFE0.

General information on the VLAN steering mode:

- In VLAN steering mode, the SA multicast parameters are not used for packet steering.
- In SA multicast bit steering mode, the VLAN ID and VLAN masks are not used for packet steering.
- Configuration to set the packet distribution mode and VLAN steering rule is done through CLI commands. Both CLI commands result in a PIC reboot.
- There are three possible tag types of ingress packet:
 - Untagged ingress packet—The packet is sent to PFE1.
 - Ingress packet with one VLAN—The packet is forwarded to the corresponding PFE based on the VLAN ID.
 - Ingress packet with two VLANs—The packet is forwarded to the corresponding PFE based on the outer VLAN ID.
- If no VLAN rule is configured, all tagged packets are distributed to PFE0.
VLAN rules describe how the router distributes packets. Two VLAN rules are provided by the CLI:

- **Odd-Even rule**—Odd number VLAN IDs go to PFE1; even number of VLAN IDs go to PFE0.
- **Hi-Low rule**—VLAN IDs 1 through 2047 go to PFE0; VLAN IDs 2048 through 4096 go to PFE1.

When the 100-Gigabit Ethernet PIC is configured in VLAN steering mode, it can be configured in a two physical interfaces mode or in aggregate Ethernet (AE) mode:

- **Two physical interfaces mode**—When the PIC is in the two physical interfaces mode, it creates the physical interfaces `et-x/0/0:0` and `et-x/0/0:1`. Each physical interface can configure its own logical interface and VLAN. The CLI enforces the following restrictions at the commit time:
 - The VLAN ID configuration must comply with the selected VLAN rule.
 - The previous restriction implies that the same VLAN ID cannot be configured on both physical interfaces.

- **AE mode**—When the PIC is in aggregated Ethernet mode, the two physical interfaces on the same PIC are aggregated into one AE physical interface. The PIC egress traffic is based on an AE internal hash algorithm. The PIC ingress traffic steering is based on the customized VLAN ID rule. The CLI enforces the following restrictions at the commit time:
 - The PICs AE working in VLAN steering mode includes both links of that PIC, and only the links of that PIC.
 - The PIC AE working in SA multicast steering mode can include more than one 100-Gigabit Ethernet PIC to achieve more than 100 gigabit Ethernet capacity.

To configure SA multicast mode, use the `set chassis fpc slot pic slot forwarding-mode sa-multicast` command.

SA Multicast Mode

To configure SA multicast mode on a Juniper Networks 100-Gigabit Ethernet PIC in FPC 0, PIC 0 for interconnection with another Juniper Networks 100-Gigabit Ethernet PIC, use the `set chassis fpc slot pic slot forwarding-mode sa-multicast` command. You can use the `show forwarding-mode` command to view the resulting configuration, as follows:

```
[edit chassis fpc slot pic slot]
user@host# show forwarding-mode
forwarding-mode {
    sa-multicast;
}
```
VLAN Steering Mode

To configure the Juniper Networks 100-Gigabit Ethernet PIC for VLAN steering mode for interoperation between a Juniper Networks 100-Gigabit Ethernet PIC in FPC 0, PIC 0 and a 100-gigabit Ethernet interface from another vendor’s router, use the `set chassis fpc slot pic slot forwarding-mode vlan-steering` command with the `vlan-rule (high-low | odd-even)` statement. You can use the `show forwarding-mode` command to view the resulting configuration, as follows:

```
[edit chassis fpc slot pic slot]
user@host# show forwarding-mode
forwarding-mode {
  vlan-steering {
    vlan-rule odd-even;
  }
}
```

Related Documentation
- forwarding-mode (100-Gigabit Ethernet) on page 482
- sa-multicast (100-Gigabit Ethernet) on page 545
- vlan-rule (100-Gigabit Ethernet) on page 583
- vlan-steering (100-Gigabit Ethernet) on page 584

100-Gigabit Ethernet PIC on Type 5 FPC Overview

The 100-Gigabit Ethernet PIC is a 1-port 100-Gigabit Ethernet Type 5 PIC with 100-Gigabit C form-factor pluggable transceiver (CFP) with model number PF-1CGE-CFP.

The following features are supported on 100-Gigabit Ethernet Type 5 PIC:

- Access to all 100-Gigabit Ethernet port counters through SNMP.
- Logical interface-level MAC filtering, accounting, policing, and learning for source media access control (MAC).
- Channels defined by two stacked VLAN tags.
- Channels defined by `flex-vlan-tagging`.
- IP service for stacked VLAN tags.
- Defining the rewrite operation to be applied to the incoming and outgoing frames on logical interfaces on this PIC.

```
NOTE: Only the Tag Protocol Identifier (TPID) 0x8100 is supported.
```

- Interface encapsulations, such as the following:
 - `untagged`—Default encapsulation, when other encapsulation is not configured.
 - You can configure only one logical interface (unit 0) on the port.
• You cannot include the `vlan-id` statement in the configuration of the logical interface.

• **vlan-tagging**—Enable VLAN tagging for all logical interfaces on the physical interface.

• **stacked-vlan-tagging**—Enable stacked VLAN tagging for all logical interfaces on the physical interface.

• **ethernet-ccc**—Ethernet cross-connect.

• **ethernet-tcc**—Ethernet translational cross-connect.

• **vlan-ccc**—802.1Q tagging for a cross-connect.

• **vlan-tcc**—Virtual LAN (VLAN) translational cross-connect.

• **extended-vlan-ccc**—Standard TPID tagging for an Ethernet cross-connect.

• **extended-vlan-tcc**—Standard TPID tagging for an Ethernet translational cross-connect.

• **flexible-ethernet-services**— Allows per-unit Ethernet encapsulation configuration.

• **ethernet-vpls**—Ethernet virtual private LAN service.

• **vlan-vpls**—VLAN virtual private LAN service.

• The following Layer 3 protocols are also supported:
 • IPv4
 • IPv6
 • MPLS

• CFP Multi-Source Agreement (MSA) compliant Management Data Input/Output (MDIO) control features (transceiver dependent).

• 802.3 link aggregation:
 • The configuration of the 100-Gigabit Ethernet PIC on Type 5 FPC complies with that of the existing 1-Gigabit or 10-Gigabit Ethernet PIC and aggregated Ethernet interfaces.

• Interoperability mode—Interoperability with the 100-Gigabit Ethernet PIC on Type 4 FPC through configuration in **sa-multicast** forwarding mode.

• Juniper Networks enterprise-specific Ethernet Media Access Control (MAC) MIB

• The 100-Gigabit Ethernet Type 5 PIC supports all Gigabit Ethernet PIC classification, firewall filters, queuing model, and Layer 2 rewrite functionality features of the Gigabit Ethernet PICs. To configure these parameters, see “Configuring Gigabit Ethernet Policers” on page 317, “Configuring MAC Address Filtering” on page 321, and “Stacking and Rewriting Gigabit Ethernet VLAN Tags Overview” on page 129.

• A Type 5 FPC can support up to two 100-Gigabit Ethernet PICs. Both the PICs (that is, PIC 0 and PIC 1) can be offline or online independently.
The following features are not supported on the 100-Gigabit Ethernet Type 5 PIC:

- MAC filtering, accounting, and policing for destination MAC at the logical interface level.

NOTE: Because destination MAC filtering is not supported, the hardware is configured to accept all the multicast packets. This configuration enables the OSPF protocol to work.

- Premium MAC policers at the logical interface level.
- MAC filtering, accounting, and policing at the physical interface level.
- Multiple TPIDs.
- IP service for nonstandard TPID.

Table 35 on page 374 lists the capabilities of 100-Gigabit Ethernet PICs on Type 5 FPC.

Table 35: Capabilities of 100-Gigabit Ethernet PICs on Type 5 FPC

<table>
<thead>
<tr>
<th>Capability</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum logical interfaces per PIC</td>
<td>4093</td>
</tr>
<tr>
<td>Maximum logical interfaces per port</td>
<td>For IPv4 the limit is 4093.</td>
</tr>
<tr>
<td></td>
<td>For IPv6 the limit is 1022.</td>
</tr>
</tbody>
</table>

Related Documentation

- Configuring 100-Gigabit Ethernet PICs on page 367
- Configuring Gigabit Ethernet Policers on page 317
- Configuring MAC Address Filtering on page 321
- Stacking and Rewriting Gigabit Ethernet VLAN Tags Overview on page 129

Interoperability Between the 100-Gigabit Ethernet PICs PD-1CE-CFP-FPC4 and PF-1CGE-CFP

You can enable interoperability between the 100-Gigabit Ethernet PICs PD-1CE-CFP-FPC4 and PF-1CGE-CFP by:

- Enabling source address (SA) multicast bit steering mode on the 100-Gigabit Ethernet PIC PF-1CGE-CFP.
- Configuring the two 50-Gigabit Ethernet physical interfaces on the 100-Gigabit Ethernet PIC PD-ICE-CFP-FPC4 as one aggregated Ethernet physical interface.

SA multicast mode uses the multicast bit in the source MAC address for packet steering. By default, the SA multicast bit is set to 0 for all packets sent by the 100-Gigabit Ethernet PIC PF-1CGE-CFP. The 100-Gigabit Ethernet PIC PD-ICE-CFP-FPC4 looks at the bit and
forwards the packets to either Packet Forwarding Engine 0 or Packet Forwarding Engine 1. When the PIC sends out a packet, the multicast bit is set based on the egress Packet Forwarding Engine number (0 or 1).

The default packet steering mode for PD-1CE-CFP-FPC4 is SA multicast bit mode. No SA multicast configuration is required to enable this mode.

PD-1CE-CFP-FPC4 uses two 50 Gbps Packet Forwarding Engines to achieve 100 Gbps throughput. The 50-Gigabit Ethernet physical interfaces are created when the 100-Gigabit Ethernet PIC is plugged in. The two physical interfaces are visible and configuration is allowed on both the physical interfaces. You must configure the physical interfaces on PD-1CE-CFP-FPC4 in static link aggregation group (LAG) mode without enabling Link Aggregation Control Protocol (LACP). This ensures that a single 100-Gigabit aggregated interface is visible on the link connecting to the 100-Gigabit Ethernet PIC PF-1CGE-CFP instead of two independent 50-Gigabit Ethernet interfaces.

NOTE: If you try to enable the interoperability between the 100-Gigabit Ethernet PICs PD-1CE-CFP-FPC4 and PF-1CGE-CFP without configuring PD-1CE-CFP-FPC4 (with two 50-Gigabit Ethernet interfaces) in static LAG mode, then there are issues in forwarding or routing protocols. For example, if you create two untagged logical interfaces—one each on the two 50-Gigabit Ethernet interfaces—on PD-1CE-CFP-FPC4 and one untagged logical interface on PF-1CGE-CFP, then PF-1CGE-CFP does not learn about one of the 50-Gigabit Ethernet interfaces on PD-1CE-CFP-FPC4.

Related Documentation
- [forwarding-mode](#) on page 482
- [sa-multicast](#) on page 545
- [Configuring the Interoperability Between the 100-Gigabit Ethernet PICs PF-1CGE-CFP and PD-1CE-CFP-FPC4](#) on page 375
- 100-Gigabit Ethernet PIC with CFP (T1600 Router)
- 100-Gigabit Ethernet PIC with CFP (T4000 Router)

Configuring the Interoperability Between the 100-Gigabit Ethernet PICs PF-1CGE-CFP and PD-1CE-CFP-FPC4

You can enable interoperability between the 100-Gigabit Ethernet PICs PD-1CE-CFP-FPC4 and PF-1CGE-CFP by performing the following tasks:

- [Configuring SA Multicast Bit Steering Mode on the 100-Gigabit Ethernet PIC PF-1CGE-CFP](#) on page 376
- [Configuring Two 50-Gigabit Ethernet Physical Interfaces on the 100-Gigabit Ethernet PIC PD-1CE-CFP-FPC4 as One Aggregated Ethernet Interface](#) on page 376
Configuring SA Multicast Bit Steering Mode on the 100-Gigabit Ethernet PIC PF-1CGE-CFP

To enable the interoperability between the 100-Gigabit Ethernet PICs PD-1CE-CFP-FPC4 and PF-1CGE-CFP, you need to enable source address (SA) multicast bit steering mode on PF-1CGE-CFP.

To configure SA multicast mode on PF-1CGE-CFP:

1. Specify the FPC and PIC information on the chassis.

   ```
   [edit]
   user@host# edit chassis fpc slot slot
   ```

 For example:

   ```
   [edit]
   user@host# edit chassis fpc 1 pic 0
   ```

2. Configure the interoperation mode (SA multicast bit steering mode).

   ```
   [edit chassis fpc slot pic slot]
   user@host# set forwarding-mode sa-multicast
   ```

 For example:

   ```
   [edit fpc 1 pic 0]
   user@host# set forwarding-mode sa-multicast
   ```

3. Verify the configuration.

   ```
   [edit]
   user@host# show chassis
   fpc 1 { pic 0 { forwarding-mode { sa-multicast; } } }
   ```

NOTE: The default packet steering mode for the 100-Gigabit Ethernet PIC PD-1CE-CFP-FPC4 is SA multicast bit mode. No SA multicast configuration is required to enable this mode.

Configuring Two 50-Gigabit Ethernet Physical Interfaces on the 100-Gigabit Ethernet PIC PD-1CE-CFP-FPC4 as One Aggregated Ethernet Interface

To enable the interoperability between the 100-Gigabit Ethernet PICs PD-1CE-CFP-FPC4 and PF-1CGE-CFP or P1-PTX-2-100GE-CFP, you need to configure the two 50-Gigabit Ethernet physical interfaces on PD-1CE-CFP-FPC4 as one aggregated Ethernet physical interface. This ensures that a single 100-Gigabit aggregated interface is visible on the link connecting to PF-1CGE-CFP or P1-PTX-2-100GE-CFP instead of two independent 50-Gigabit Ethernet interfaces.
When the PIC is in aggregated Ethernet mode, the two physical interfaces on the same PIC are aggregated into one aggregated Ethernet physical interface. When the PIC is configured with two physical interfaces, it creates the physical interfaces et-x/y/0:0 and et-x/y/0:1, where x is the FPC slot number and y is the PIC slot number. For example, to configure two physical interfaces for PIC slot 0 in FPC slot 5:

1. Specify the number of aggregated Ethernet interfaces to be created.

```
[edit chassis]
user@host# set aggregated devices ethernet device-count count
```

For example:

```
[edit chassis]
user@host# set aggregated devices ethernet device-count 1
```

2. Specify the members to be included within the aggregated Ethernet bundle.

```
[edit interfaces]
user@host# set interface-name gigether-options 802.3ad bundle
```

The following example shows how to configure two physical interfaces for PIC 0 on a T1600 router.

```
[edit interfaces]
user@host# set et-5/0/0:0 gigether-options 802.3ad ae0
user@host# set et-5/0/0:1 gigether-options 802.3ad ae0
```

3. Verify the configuration at the chassis.

```
[edit]
user@host# show chassis
aggregated-devices {
  ethernet {
    device-count 1;
  }
}
```

4. Verify the configuration at the interface.

```
[edit]
user@host# show interfaces
et-5/0/0:0 {
  gigether-options {
    802.3ad ae0;
  }
}
et-5/0/0:1 {
  gigether-options {
    802.3ad ae0;
  }
}
```

Related Documentation

- Interoperability Between the 100-Gigabit Ethernet PICs PD-1CE-CFP-FPC4 and PF-1CGE-CFP on page 374
- 100-Gigabit Ethernet PIC with CFP (T1600 Router)
- 100-Gigabit Ethernet PIC with CFP (T4000 Router)
CHAPTER 28

Configuring 40-Gigabit Ethernet PICs

This section contains the following topics:

- 40-Gigabit Ethernet PIC Overview on page 379
- Configuring 40-Gigabit Ethernet PICs on page 381

40-Gigabit Ethernet PIC Overview

The 40-Gigabit Ethernet PIC with CFP (PD-1XLE-CFP) is a 1-port 40-Gigabit Ethernet Type 4 PIC with C form-factor pluggable transceiver (CFP) optics supported on T1600 and T640 routers. The 40-Gigabit Ethernet PIC occupies FPC slot 0 or 1 in the Type 4 FPC and it is similar to any regular PIC such as the 4-port 10-Gigabit Ethernet LAN/WAN PIC with XFP (PD-4XGE-XFP) PIC. The CFP information appears under the PIC information in the display output.

The 40-Gigabit Ethernet PIC supports flexible Ethernet services encapsulation and MAC accounting.

MAC learning, MAC policing, and Layer 2 rewrite features are not supported.

The 40-Gigabit Ethernet PIC with CFP supports the following features:

- Encapsulation protocols such as:
 - Layer 2 protocols
 - Ethernet CCC, Ethernet TCC, Ethernet VPLS
 - VLAN CCC
 - Extended VLAN TCC
 - VLAN VPLS
 - Flexible Ethernet service
 - Layer 3 protocols
 - IPv4
 - IPv6
- MPLS

- CFP Multi-Source Agreement (MSA)-compliant Management Data Input/Output (MDIO) control features (transceiver dependent).

- Graceful Routing Engine switchover (GRES) (in all PIC and chassis configurations).

- Interface creation:
 - When the PIC is brought online, the router creates one interface, \texttt{et-x/y/0}, where \(x\) represents the FPC slot number and \(y\) represents PIC slot number. The physical interface represents internal Ethernet Packet Forwarding Engines.
 - The FPC slot number ranges from 0 through 7 in T1600 and T640 routers. The PIC slot numbers are 0 and 1.
 - Packet Forwarding Engine 0 is the physical interface 0, and Packet Forwarding Engine 1 is the physical interface 1.

- 802.3 link aggregation:
 - The configuration of the 40-Gigabit Ethernet PIC with CFP complies with that of the existing 1-Gigabit or 10-Gigabit Ethernet PIC and aggregated Ethernet interfaces.
 - An aggregate bundle that consists purely of 40-Gigabit Ethernet PICs supports a maximum of 40-Gigabit Ethernet links depending on the system implementation.

For Junos OS configuration information about this PIC, see “Configuring 40-Gigabit Ethernet PICs” on page 381. For hardware compatibility information, see the T1600 PICs Supported topic in the T1600 Core Router hardware guide and the T640 PICs Supported topic in the T640 Core Router hardware guide.
Configuring 40-Gigabit Ethernet PICs

You can configure the following features on the 40-Gigabit Ethernet PIC with CFP (PD-1XLE-CFP):

- Flexible Ethernet services encapsulation
- Source address MAC filtering
- Destination address MAC filtering
- MAC accounting in RX and TX
- Multiple tag protocol ID (TPID) support
- Channels defined by two stacked VLAN tags
- Channels defined by flex-vlan-tagging
- IP service for stacked VLAN tags
- IP service for nonstandard TPID

The following features are not supported on the 40-Gigabit Ethernet PIC with CFP:

- MAC learning
- MAC policing
- Layer 2 rewrite

The 40-Gigabit Ethernet PIC with CFP supports aggregated Ethernet configuration to achieve higher throughput capability, whereby the configuration is similar to the 1-Gigabit or 10-Gigabit aggregated Ethernet interface configuration. A maximum of 40-Gigabit Ethernet PIC links can be bundled into a single aggregated Ethernet configuration depending on the system implementation.

To configure the 40-Gigabit Ethernet PIC with CFP:

1. Perform the media configuration.

The command used to configure the media for the 40-Gigabit Ethernet PIC with CFP is the same as that for other Ethernet PICs, such as the 4-port 10-Gigabit Ethernet PIC.

2. Specify the logical interfaces.
A single physical interface is created when the 40-Gigabit Ethernet PIC with CFP is brought online (et-x/y/0, where x represents the FPC slot number and y represents the PIC slot number). For more information, see “Configuring a Logical Interface for Access Mode” on page 75 and “Configuring a Logical Interface for Trunk Mode” on page 76.

3. Configure the 802.3 link aggregation.

 • You must explicitly configure an aggregated interface on the 40-Gigabit Ethernet PIC with CFP that includes the 40-Gigabit Ethernet interfaces. For more information, see “Configuring an Aggregated Ethernet Interface” on page 83.

 • The configuration of the 40-Gigabit Ethernet PIC with CFP complies with the configuration of the 1-Gigabit Ethernet PIC, 10-Gigabit Ethernet PIC, and the aggregated Ethernet interfaces. In each aggregated bundle, Junos OS supports a maximum of 40-Gigabit Ethernet links. For more information, see “Configuring an Aggregated Ethernet Interface” on page 83 and “10-port 10-Gigabit Ethernet LAN/WAN PIC Overview” on page 341.

4. Configure the Packet Forwarding Engine features.

 The 40-Gigabit Ethernet PIC with CFP supports all classification, firewall filters, queuing model, and rewrite functionality features of the Gigabit Ethernet PICs. To configure these parameters, see “Configuring Gigabit Ethernet Policers” on page 317, “Configuring MAC Address Filtering” on page 321, and “Stacking and Rewriting Gigabit Ethernet VLAN Tags Overview” on page 129.

Related Documentation

• 40-Gigabit Ethernet PIC Overview on page 379
• Configuring Gigabit Ethernet Policers on page 317
• Configuring MAC Address Filtering on page 321
• Stacking and Rewriting Gigabit Ethernet VLAN Tags Overview on page 129
CHAPTER 29

Configuring Ethernet Interfaces for PTX Series Packet Transport Switches

• Understanding Ethernet Interfaces for PTX Series Packet Transport Switches on page 384
• Configuring MAC Filtering on PTX Series Packet Transport Switches on page 385
• Configuring Flexible VLAN Tagging on PTX Series Packet Transport Switches on page 386
• Configuring Tag Protocol IDs (TPIDs) on PTX Series Packet Transport Switches on page 386
• Configuring Interface Encapsulation on PTX Series Packet Transport Switches on page 387
• Configuring Ethernet 802.3ah OAM on PTX Series Packet Transport Switches on page 388
• Configuring Ethernet 802.1ag OAM on PTX Series Packet Transport Switches on page 389
• Configuring Aggregated Ethernet Interfaces on PTX Series Packet Transport Switches on page 391
Understanding Ethernet Interfaces for PTX Series Packet Transport Switches

PTX Series Packet Transport Switches are a portfolio of high-performance platforms designed for the service provider supercore. A PTX Series Packet Transport Switch working in conjunction with a T Series core router allows a service provider to build a core network that is flexible enough to accommodate cloud-delivered services, mobility for devices and users, and bandwidth-intensive applications such as HD video. Forwarding architecture for PTX Series Packet Transport Switches is focused on MPLS and Ethernet.

Figure 27: PTX5000 in a Juniper Networks Environment

All physical interfaces on a PTX Series Packet Transport Switch use et for the FPC type. For information about how to specify interfaces, see these topics:

- Physical Part of an Interface Name
- Logical Part of an Interface Name

NOTE: Physical interfaces on PTX Series Packet Transport Switches do not support:

- VLAN rewrite for CCC encapsulation
- Source MAC learning for accounting
- MAC policing
- Wide Area Network Physical Layer Device (WAN PHY) mode on the 24-port 10-Gigabit Ethernet PIC

Related Documentation

- PTX Series Packet Transport Switch PIC Guide.
- PTX Series Packet Transport Switches Management Ethernet Interfaces
- Configuring MAC Filtering on PTX Series Packet Transport Switches on page 385
Configuring MAC Filtering on PTX Series Packet Transport Switches

This topic describes how to configure MAC filtering on PTX Series Packet Transport Switches. MAC filtering enables you to specify the MAC addresses from which the Ethernet interface can receive packets.

MAC filtering support on PTX Series Packet Transport Switches includes:

- MAC source and destination address filtering for each port.
- MAC source address filtering for each physical interface.
- MAC source address filtering for each logical interface.

When you filter logical and physical interfaces, you can specify up to 1000 MAC source addresses per port.

To configure MAC source address filtering for a physical interface, include the `source-filtering` and `source-address-filter` statements at the `[edit interfaces et-fpc/pic/port gigether-options]` hierarchy level:

```
[edit interfaces]
et-x/y/z {
  gigether-options {
    source-filtering; 
    source-address-filter {
      mac-address; 
    }
  }
}
```

The `source-address-filter` statement configures which MAC source addresses are filtered. The specified physical interface drops all packets from the MAC source addresses you specify. You can specify the MAC address as `nn:nn:nn:nn:nn:nn` where `n` is a decimal digit. To specify more than one address, include multiple `mac-address` options in the `source-address-filter` statement.

To configure MAC source address filtering for a logical interface, include the `accept-source-mac` statement at the `[edit interfaces et-fpc/pic/port unit logical-unit-number]` hierarchy level:

```
[edit interfaces]
et-x/y/z {
  gigether-options {
    source-filtering; 
  }
  unit logical-unit-number {
    accept-source-mac {
      mac-address mac-address; 
    }
  }
}
```
The `accept-source-mac` statement configures which MAC source addresses are accepted on the logical interface. You can specify the MAC address as `nn:nn:nn:nn:nn:nn` where `n` is a decimal digit. To specify more than one address, include multiple `mac-address` options in the `accept-source-mac` statement.

After an interface filter is configured, there is an accounting entry that is associated with the MAC address filter. Counters accumulate if there are packets with matching MAC source addresses. You can use the `show interfaces mac-database` Junos OS CLI command to view the address count.

Related Documentation
- Understanding Ethernet Interfaces for PTX Series Packet Transport Switches on page 384
- `show interfaces mac-database` (Gigabit Ethernet)

Configuring Flexible VLAN Tagging on PTX Series Packet Transport Switches

This topic describes how to configure flexible VLAN tagging on PTX Series Packet Transport Switches. In addition to VLAN tagging and stacked VLAN tagging, you can configure a port for flexible tagging. With flexible VLAN tagging, you can configure two logical interfaces on the same Ethernet port, one with single-tag framing and one with dual-tag framing.

To configure mixed tagging, include the `flexible-vlan-tagging` statement at the `[edit interfaces et-/fpc/pic/port]` hierarchy level. You must also include the `vlan-tags` statement with `inner` and `outer` options or the `vlan-id` statement at the `[edit interfaces et-/fpc/pic/port unit logical-unit-number]` hierarchy level:

```
[edit interfaces et-/fpc/pic/port]
flexible-vlan-tagging;
unit logical-unit-number {
  vlan-id number;
}
unit logical-unit-number {
  vlan-tags inner tpid.vlan-id outer tpid.vlan-id;
}
```

Related Documentation
- Understanding Ethernet Interfaces for PTX Series Packet Transport Switches on page 384

Configuring Tag Protocol IDs (TPIDs) on PTX Series Packet Transport Switches

This topic describes how to configure the TPIDs expected to be sent or received on a particular VLAN for PTX Series Packet Transport Switches.

For other types of Juniper Networks Ethernet PICs, you could configure 8 TPIDs per port. However, the PTX Series Packet Transport Switches use MTIP and TL to classify a specific TPID and Ethernet type. For MTIP, you can configure a maximum of 8 TPIDs for each MAC chip.
As a consequence, you can specify the `tag-protocol-id` configuration statement only for the first port (0) of a PTX Series Ethernet PIC. If you configure `tag-protocol-id` statements on the other port, the configuration is ignored and a system error is recorded.

For example, the following is a supported configuration:

```plaintext
[edit interfaces et-2/0/0]
gigether-options [ 
eternet-switch-profile [ 
	tag-protocol-id [0x8100 0x9100]; 
} 
}
```

The `tag-protocol-id` configuration statement supports up to eight TPIDs on port 0 of a given Ethernet PIC. All eight TPIDs are populated to the two MTIPs and TLs associated with the Ethernet PIC.

Related Documentation
- Understanding Ethernet Interfaces for PTX Series Packet Transport Switches on page 384
- Configuring Flexible VLAN Tagging on PTX Series Packet Transport Switches on page 386

Configuring Interface Encapsulation on PTX Series Packet Transport Switches

This topic describes how to configure interface encapsulation on PTX Series Packet Transport Switches. Use the `flexible-ethernet-services` configuration statement to configure different encapsulation for different logical interfaces under a physical interface. With flexible Ethernet services encapsulation, you can configure each logical interface encapsulation without range restrictions for VLAN IDs.

Supported encapsulations for physical interfaces include:

- `flexible-ethernet-services`
- `ethernet-ccc`
- `ethernet-tcc`

Supported encapsulations for logical interfaces include:

- `ENET2`
- `vlan-ccc`
- `vlan-tcc`

NOTE: PTX Series Packet Transport Switches do not support `extended-vlan-cc` and `extended-vlan-tcc` encapsulation on logical interfaces. Instead, you can configure a `tag protocol ID` (TPID) value of 0x9100 to achieve the same results.
To configure flexible Ethernet services encapsulation, include the `encapsulation flexible-ethernet-services` statement at the `[edit interfaces et-fpc/pic/port]` hierarchy level. For example:

```
interfaces {
  et-fpc/pic/port {
    vlan-tagging;
    encapsulation flexible-ethernet-services;
    unit 0 {
      vlan-id1000;
      family inet {
        address 11.0.0.20/24;
      }
    }
    unit 1 {
      encapsulation vlan-ccc;
      vlan-id 1010;
    }
    unit 2 {
      encapsulation vlan-tcc;
      vlan-id 1020;
      family tcc {
        proxy {
          inet-address 11.0.2.160;
        }
        remote {
          inet-address 11.0.2.10;
        }
      }
    }
  }
}
```

Related Documentation

- Understanding Ethernet Interfaces for PTX Series Packet Transport Switches on page 384

Configuring Ethernet 802.3ah OAM on PTX Series Packet Transport Switches

The IEEE 802.3ah standard for Operation, Administration, and Management (OAM) provides a specification for *Ethernet in the first mile (EFM)* connectivity. EFM defines how Ethernet can be transmitted over new media types using new Ethernet physical layer (PHY) interfaces. You can configure IEEE 802.3ah OAM on Ethernet point-to-point direct links or links across Ethernet repeaters. The IEEE 802.3ah OAM standard meets the requirement for OAM capabilities as Ethernet moves from being solely an enterprise technology to being a WAN and access technology, as well as being backward-compatible with existing Ethernet technology.

For Ethernet interfaces capable of running at 100 Mbps or faster, the IEEE 802.3ah OAM standard is supported on numerous Juniper Networks routers and switches. This topic describes configuration support for IEEE 802.3ah OAM features on PTX Series Packet Transport Switches.
On PTX Series Packet Transport Switches, Junos OS Release 12.1 supports the following IEEE 802.3ah OAM features at the physical interface level:

- Discovery and link monitoring
- Fault signaling and detection
- Periodic packet management (PPM) processing
- Action profile support
- graceful Routing Engine switchover (GRES)

To configure 802.3ah OAM support for Ethernet interfaces, include the `oam` statement at the `[edit protocols]` hierarchy level:

```conf
oam {
  ethernet {
    link-fault-management {
      interfaces {
        interface-name {
          pdu-interval interval;
          link-discovery (active | passive);
          pdu-threshold count;
        }
      }
    }
  }
}
```

Related Documentation
- Understanding Ethernet Interfaces for PTX Series Packet Transport Switches on page 384
- Configuring IEEE 802.3ah OAM Link-Fault Management on page 293
- Configuring Link Discovery on page 294
- Detecting Remote Faults on page 299
- Configuring an OAM Action Profile on page 300

Configuring Ethernet 802.1ag OAM on PTX Series Packet Transport Switches

The IEEE 802.1ag provides a specification for Ethernet connectivity fault management (CFM). The Ethernet network may be comprised of one or more service instances. A service instance could be a VLAN, or a concatenation of VLANs. The goal of CFM is to provide a mechanism to monitor, locate, and isolate faulty links. Ethernet 802.1ag is supported on numerous Juniper Networks routers and switches. This topic describes configuration support for Ethernet OAM 802.1ag features on the PTX Series Packet Transport Switches.
Supported features include:

- Maintenance domain (maintenance-domain domain-name) and maintenance levels (level number).
- Maintenance association (maintenance-association ma-name), including name formats (name-format and short-name-format for vlan and 2octet), loss threshold (loss-threshold number), and hold interval (hold-interval minutes).
- Maintenance association endpoint (MEP) functions, including Maintenance Endpoint ID (mep mep-id), direction down (direction down), and autodiscovery (auto-discovery).
- Link trace for down MEPs (link-down).
- Action profile (action-profile profile-name)
- Loopback message generation and reply for down MEPs.

Features that are not supported include:

- Up MEP configuration.
- Maintenance association intermediate point (MIP) configuration.

To configure flexible Ethernet services encapsulation on PTX Series Packet Transport Switches, include the oam statement at the [edit protocols] hierarchy level. For example:

```
[edit protocols]
oam {
  ethernet {
    connectivity-fault-management {
      maintenance-domain md1 {
        level 0;
        maintenance-association ma1 {
          continuity-check {
            interval 100ms;
          }
          mep 1 {
            interface et-0/1/1;
            direction down;
            auto-discovery;
          }
        }
      }
    }
  }
}
```

Related Documentation

- Understanding Ethernet Interfaces for PTX Series Packet Transport Switches on page 384
- IEEE 802.1ag OAM Connectivity Fault Management Overview on page 181
IEEE 802.3ad link aggregation enables you to group Ethernet interfaces to form a single link layer interface, also known as a link aggregation group (LAG) or bundle. Link aggregation can be used for point-to-point connections. It balances traffic across the member links within an aggregated Ethernet bundle and effectively increases the uplink bandwidth. Another advantage of link aggregation is increased availability because the LAG is composed of multiple member links. If one member link fails, the LAG continues to carry traffic over the remaining links.

This topic describes how to configure aggregated Ethernet interfaces on PTX Series Packet Transport Switches.

On PTX Series Packet Transport Switches, the physical interfaces can be:

- 24-port 10-Gigabit Ethernet PIC
- 2-port 40-Gigabit Ethernet PIC
- 2-port 100-Gigabit Ethernet PIC

On PTX Series Packet Transport Switches, aggregated Ethernet support includes the following features:

- A consistent interface type (`et fpc/pic/port`) across all Ethernet interfaces.
- Ability to bundle multiple Ethernet interfaces
- Fault tolerance
- Load balancing between child links
- Advanced features including flexible VLAN tagging and Ethernet services encapsulation

Aggregated Ethernet interfaces can use interfaces from different FPCs or PICs. The following configuration is sufficient to get an aggregated Gigabit Ethernet interface up and running.

```
[edit chassis]
  aggregated-devices {
    ethernet {
      device-count 2;
    }
  }

[edit interfaces]
  et-0/0/0 {
    gigether-options {
      802.3ad ae0;
    }
  }
  et-0/0/1 {
    gigether-options {
      802.3ad ae0;
    }
  }
```
ae0 {
 vlan-tagging;
 unit 0 {
 vlan-id 100;
 family inet {
 address 200.200.1.2/24;
 }
 }
 unit 1 {
 vlan-id 101;
 family inet {
 address 200.200.2.2/24;
 }
 }
}

Related Documentation
- Understanding Ethernet Interfaces for PTX Series Packet Transport Switches on page 384
- Configuring an Aggregated Ethernet Interface on page 83
CHAPTER 30

Configuring Point-to-Point Protocol over Ethernet

- PPPoE Overview on page 394
- Understanding PPPoE Service Name Tables on page 398
- Evaluation Order for Matching Client Information in PPPoE Service Name Tables on page 403
- Benefits of Configuring PPPoE Service Name Tables on page 403
- Configuring PPPoE on page 404
- Disabling the Sending of PPPoE Keepalive Messages on page 412
- Configuring PPPoE Service Name Tables on page 412
- Creating a Service Name Table on page 413
- Configuring the Action Taken When the Client Request Includes an Empty Service Name Tag on page 414
- Configuring the Action Taken for the Any Service on page 415
- Assigning a Service to a Service Name Table and Configuring the Action Taken When the Client Request Includes a Non-zero Service Name Tag on page 416
- Assigning an ACI/ARI Pair to a Service Name and Configuring the Action Taken When the Client Request Includes ACI/ARI Information on page 417
- Limiting the Number of Active PPPoE Sessions Established with a Specified Service Name on page 418
- Reserving a Static PPPoE Interface for Exclusive Use by a PPPoE Client on page 419
- Enabling Advertisement of Named Services in PADO Control Packets on page 420
- Assigning a Service Name Table to a PPPoE Underlying Interface on page 420
- Disabling the Sending of PPPoE Access Concentrator Tags in PADS Packets on page 421
- Discarding PADR Messages to Accommodate Abnormal CPE Behavior on page 421
- Example: Configuring a PPPoE Service Name Table on page 422
- Tracing PPPoE Operations on page 424
- Troubleshooting PPPoE Service Name Tables on page 426
- Verifying a PPPoE Configuration on page 428
PPPoE Overview

The Point-to-Point Protocol over Ethernet (PPPoE) connects multiple hosts on an Ethernet LAN to a remote site through a single customer premises equipment (CPE) device. Hosts share a common digital subscriber line (DSL), a cable modem, or a wireless connection to the Internet.

A J Series router can be configured as the CPE device for PPPoE connections. To use PPPoE, you must configure the router as a PPPoE client, encapsulate PPP packets over Ethernet, and initiate a PPPoE session.

NOTE: J4300 and J6300 routers with asymmetrical DSL (ADSL) Physical Interface Modules (PIMs) and symmetrical high-speed DSL (SHDSL) PIMs can use PPPoE over Asynchronous Transfer Mode (ATM) to connect through DSL lines only, not for direct ATM connections. For information about configuring ADSL and SHDSL interfaces, see ATM-over-ADSL Overview and ATM-over-SHDSL Overview.

M120, M320, and MX Series routers can be configured as a PPPoE access concentrator server. To configure a PPPoE server on an M120, M320, or MX Series Ethernet logical interface, specify PPPoE encapsulation, include the `pp0` statement for the pseudo PPPoE physical interface, and include the `server` statement in the PPPoE options under the logical interface.

NOTE: PPPoE encapsulation is not supported on M120, M320, or MX Series routers on an ATM2IQ interface.

On the J Series router, PPPoE establishes a point-to-point connection between the client (the Services Router) and the server, also called an access concentrator. Multiple hosts can be connected to the Services Router, and their data can be authenticated, encrypted, and compressed before the traffic is sent to the PPPoE session on the Services Router's Fast Ethernet or ATM-over-ADSL interface. PPPoE is easy to configure and enables services to be managed on a per-user basis rather than on a per-site basis.

This overview contains the following topics:

- PPPoE Interfaces on page 394
- PPPoE Stages on page 395
- Optional CHAP Authentication on page 396

PPPoE Interfaces

The PPPoE interface to the access concentrator can be a Fast Ethernet interface on any Services Router, a Gigabit Ethernet interface on J4350 and J6350 Services Routers, an ATM-over-ADSL or ATM-over-SHDSL interface on all J Series Services Routers except the J2300, or an ATM-over-SHDSL interface on a J2300 Services Router. The PPPoE
configuration is the same for both interfaces. The only difference is the encapsulation for the underlying interface to the access concentrator:

- If the interface is Fast Ethernet, use a PPPoE encapsulation.
- If the interface is ATM over ADSL, use a PPPoE over ATM encapsulation.

The PPPoE interface on M120 or M320 routers acting as a access concentrator can be a Gigabit Ethernet or 10-Gigabit Ethernet interface.

Ethernet Interface

The Services Router encapsulates each PPP frame in an Ethernet frame and transports the frames over an Ethernet loop. Figure 28 on page 395 shows a typical PPPoE session between a Services Router and an access concentrator on the Ethernet loop.

Figure 28: PPPoE Session on an Ethernet Loop

PPPoE Stages

PPPoE has two stages, the discovery stage and the PPPoE session stage. In the discovery stage, the client discovers the access concentrator by identifying the Ethernet media access control (MAC) address of the access concentrator and establishing a PPPoE session ID. In the PPPoE session stage, the client and the access concentrator build a point-to-point connection over Ethernet, based on the information collected in the discovery stage.

NOTE: If you configure a specific access concentrator name on the client and the same access concentrator name server is available, then a PPPoE session is established. If there is a mismatch between the access concentrator names of the client and the server, the PPPoE session gets closed.

If you do not configure the access concentrator name, the PPPoE session starts using any available server in the network.

PPPoE Discovery Stage

A Services Router initiates the PPPoE discovery stage by broadcasting a PPPoE active discovery initiation (PADI) packet. To provide a point-to-point connection over Ethernet, each PPPoE session must learn the Ethernet MAC address of the access concentrator and establish a session with a unique session ID. Because the network might have more than one access concentrator, the discovery stage allows the client to communicate with all of them and select one.
NOTE: A Services Router cannot receive PPPoE packets from two different access concentrators on the same physical interface.

The PPPoE discovery stage consists of the following steps:

1. PPPoE active discovery initiation (PADI)—The client initiates a session by broadcasting a PADI packet on the LAN to request a service.

2. PPPoE active discovery offer (PADO)—Any access concentrator that can provide the service requested by the client in the PADI packet replies with a PADO packet that contains its own name, the unicast address of the client, and the service requested. An access concentrator can also use the PADO packet to offer other services to the client.

3. PPPoE active discovery request (PADR)—From the PADOs it receives, the client selects one access concentrator based on its name or the services offered and sends it a PADR packet to indicate the service or services needed.

4. PPPoE active discovery session-Confirmation (PADS)—When the selected access concentrator receives the PADR packet, it accepts or rejects the PPPoE session.
 - To accept the session, the access concentrator sends the client a PADS packet with a unique session ID for a PPPoE session and a service name that identifies the service under which it accepts the session.
 - To reject the session, the access concentrator sends the client a PADS packet with a service name error and resets the session ID to zero.

PPPoE Session Stage

The PPPoE session stage starts after the PPPoE discovery stage is over. The access concentrator can start the PPPoE session after it sends the PADS packet to the client, or the client can start the PPPoE session after it receives a PADS packet from the access concentrator. A Services Router supports multiple PPPoE sessions on each interface, but no more than 256 PPPoE sessions on all interfaces on the Services Router.

Each PPPoE session is uniquely identified by the Ethernet address of the peer and the session ID. After the PPPoE session is established, data is sent as in any other PPP encapsulation. The PPPoE information is encapsulated within an Ethernet frame and is sent to a unicast address. In this stage, both the client and the server must allocate resources for the PPPoE logical interface.

After a session is established, the client or the access concentrator can send a PPPoE active discovery termination (PADT) packet anytime to terminate the session. The PADT packet contains the destination address of the peer and the session ID of the session to be terminated. After this packet is sent, the session is closed to PPPoE traffic.

Optional CHAP Authentication

For interfaces with PPPoE encapsulation, you can configure interfaces to support the PPP Challenge Handshake Authentication Protocol (CHAP). When you enable CHAP on an interface, the interface can authenticate its peer and be authenticated by its peer.
If you configure an interface to handle incoming CHAP packets only (by including the `passive` statement at the `[edit interfaces interface-name ppp-options chap]` hierarchy level), the interface does not challenge its peer. However, if the interface is challenged, it responds to the challenge. If you do not include the `passive` statement, the interface always challenges its peer.

For more information about CHAP, see Configuring the PPP Challenge Handshake Authentication Protocol.

Related Documentation

- Configuring the PPP Challenge Handshake Authentication Protocol
- Developing a Log Storage Strategy
- Evaluation Order for Matching Client Information in PPPoE Service Name Tables on page 403
- Benefits of Configuring PPPoE Service Name Tables on page 403
- Configuring PPPoE on page 404
- Disabling the Sending of PPPoE Keepalive Messages on page 412
- Configuring PPPoE Service Name Tables on page 412
- Creating a Service Name Table on page 413
- Configuring the Action Taken When the Client Request Includes an Empty Service Name Tag on page 414
- Configuring the Action Taken for the Any Service on page 415
- Assigning a Service to a Service Name Table and Configuring the Action Taken When the Client Request Includes a Non-zero Service Name Tag on page 416
- Assigning an ACI/ARI Pair to a Service Name and Configuring the Action Taken When the Client Request Includes ACI/ARI Information on page 417
- Limiting the Number of Active PPPoE Sessions Established with a Specified Service Name on page 418
- Reserving a Static PPPoE Interface for Exclusive Use by a PPPoE Client on page 419
- Enabling Advertisement of Named Services in PADO Control Packets on page 420
- Assigning a Service Name Table to a PPPoE Underlying Interface on page 420
- Example: Configuring a PPPoE Service Name Table on page 422
- Tracing PPPoE Operations on page 424
- Troubleshooting PPPoE Service Name Tables on page 426
- Verifying a PPPoE Configuration on page 428
- Junos® OS Ethernet Interfaces
Understanding PPPoE Service Name Tables

On an M120 router, M320 router, or MX Series router acting as a remote access concentrator (AC), also referred to as a PPPoE server, you can configure up to 32 PPPoE service name tables and assign the service name tables to PPPoE underlying interfaces. A PPPoE service name table defines the set of services that the router can provide to a PPPoE client. Service entries configured in a PPPoE service name table represent the service name tags transmitted between the client and the router in a PPPoE control packet.

This overview covers the following topics to help you understand and configure PPPoE service name tables:

- Interaction Among PPPoE Clients and Routers During the Discovery Stage on page 398
- Service Entries and Actions in PPPoE Service Name Tables on page 399
- ACI/ARI Pairs in PPPoE Service Name Tables on page 400
- Dynamic Profiles and Routing Instances in PPPoE Service Name Tables on page 401
- Maximum Sessions Limit in PPPoE Service Name Tables on page 401
- Static PPPoE Interfaces in PPPoE Service Name Tables on page 402
- PADO Advertisement of Named Services in PPPoE Service Name Tables on page 402

Interaction Among PPPoE Clients and Routers During the Discovery Stage

In networks with mesh topologies, PPPoE clients are often connected to multiple PPPoE servers (remote ACs). During the PPPoE discovery stage, a PPPoE client identifies the Ethernet MAC address of the remote AC that can service its request, and establishes a unique PPPoE session identifier for a connection to that AC.

The following steps describe, at a high level, how the PPPoE client and the remote AC (router) use the PPPoE service name table to interact during the PPPoE discovery stage:

1. The PPPoE client broadcasts a PPPoE Active Discovery Initiation (PADI) control packet to all remote ACs in the network to request that an AC support certain services.
 - The PADI packet must contain either, but not both, of the following:
 - One and only one nonzero-length service name tag that represents a specific client service
 - One and only one empty (zero-length) service name tag that represents an unspecified service

2. One or more remote ACs respond to the PADI packet by sending a PPPoE Active Discovery Offer (PADO) packet to the client, indicating that the AC can service the client request.
 - To determine whether it can service a particular client request, the router matches the service name tag received in the PADI packet against the service name tags configured in its service name table. If a matching service name tag is found in the PPPoE service name table, the router sends the client a PADO packet that includes
the name of the AC from which it was sent. If no matching service name tag is found in the PPPoE service name table, the router drops the PADI request and does not send a PADO response to the client.

3. The PPPoE client sends a unicast PPPoE Active Discovery Request (PADR) packet to the AC to which it wants to connect, based on the responses received in the PADO packets.

4. The selected AC sends a PPPoE Active Discovery Session (PADS) packet to establish the PPPoE connection with the client.

Service Entries and Actions in PPPoE Service Name Tables

A PPPoE service name table can include three types of service entries: named services, an empty service, and an any service. For each service entry, you specify the action to be taken by the underlying interface when the router receives a PADI packet containing the specified service name tag.

You can configure the following services and actions in a PPPoE service name table:

- Named service—Specifies a PPPoE client service that an AC can support. For example, you might configure named services associated with different subscribers who log in to the PPPoE server, such as user1-service or user2-service, or that correspond to different ISP service level agreements, such as premium and standard. Each PPPoE service name table can include a maximum of 512 named service entries, excluding empty and any service entries. A named service is associated with the terminate action by default.

- empty service—A service tag of zero length that represents an unspecified service. Each PPPoE service name table includes one empty service. The empty service is associated with the terminate action by default.

- any service—Acts as a default service for non-empty service entries that do not match the named service entries or empty service entry configured in the PPPoE service name table. Each PPPoE service name table includes one any service. The any service is useful when you want to match the agent circuit identifier and agent remote identifier information for a PPPoE client, but do not care about the contents of the service name tag transmitted in the control packet. The any service is associated with the drop action by default.

- Action—Specifies the action taken by the underlying PPPoE interface assigned to the PPPoE service name table on receipt of a PADI packet from the client containing a particular service request. You can configure one of the following actions for the associated named service, empty service, any service, or agent circuit identifier/agent remote identifier (ACI/ARI) pair in the PPPoE service name table on the router:

 - terminate—(Default) Directs the router to immediately respond to the PADI packet by sending the client a PADO packet containing the name of the AC that can service the request. Named services, empty services, and ACI/ARI pairs are associated with the terminate action by default. Configuring the terminate action for a service enables you to more tightly control which PPPoE clients can access and receive services from a particular PPPoE server.
delay — Number of seconds that the PPPoE underlying interface waits after receiving a PADI packet from the client before sending a PADO packet in response. In networks with mesh topologies, you might want to designate a primary PPPoE server and a backup PPPoE server for handling a particular service request. In such a scenario, you can configure a delay for the associated service entry on the backup PPPoE server to allow sufficient time for the primary PPPoE server to respond to the client with a PADO packet. If the primary server does not send the PADO packet within the delay period configured on the backup server, then the backup server sends the PADO packet after the delay period expires.

drop — Directs the router to drop (ignore) a PADI packet containing the specified service name tag when received from a PPPoE client, which effectively denies the client’s request to provide the associated service. The any service is associated with the drop action by default. To prohibit the router from responding to PADI packets that contain empty or any service name tags, you can configure the drop action for the empty or any service. You can also use the drop action in combination with ACI/ARI pairs to accept specific service name tags only from specific subscribers, as described in the following information about ACI/ARI pairs.

ACI/ARI Pairs in PPPoE Service Name Tables

To specify agent circuit identifier (ACI) and agent remote identifier (ARI) information for a named service, empty service, or any service in a PPPoE service name table, you can configure an ACI/ARI pair. An ACI/ARI pair contains an agent circuit ID string that identifies the DSLAM interface that initiated the service request, and an agent remote ID string that identifies the subscriber on the DSLAM interface that initiated the service request. You can think of an ACI/ARI pair as the representation of one or more PPPoE clients accessing the router by means of the PPPoE service name table.

ACI/ARI specifications support the use of wildcard characters in certain formats. You can configure a combined maximum of 8000 ACI/ARI pairs, both with and without wildcards, per PPPoE service name table. You can distribute the ACI/ARI pairs in any combination among the service entries in the service name table.

You must specify the action—terminate, delay, or drop—taken by the underlying PPPoE interface when it receives a client request containing vendor-specific ACI/ARI information that matches the ACI/ARI information configured in the PPPoE service name table on the router. An ACI/ARI pair is associated with the terminate action by default.

For example, assume that for the user1-service named service, you configure the drop action for the service and the terminate action for the associated ACI/ARI pairs. In this case, the ACI/ARI pairs identify the DSLAM interfaces and associated subscribers authorized to access the PPPoE server. Using this configuration causes the router to drop PADI packets containing the user1-service tag unless the PADI packet also contains vendor-specific ACI/ARI information that matches the subscribers identified in one or more of the ACI/ARI pairs. For PADI packets containing matching ACI/ARI information, the router sends an immediate PADO response to the client indicating that it can provide the requested service for the specified subscribers.
You can also associate a PPPoE dynamic profile, routing instance, and static PPPoE interface with an ACI/ARI pair.

Dynamic Profiles and Routing Instances in PPPoE Service Name Tables

You can associate a previously configured PPPoE dynamic profile with a named service, empty service, or any service in the PPPoE service name table, or with an ACI/ARI pair defined for these services. The router uses the attributes defined in the profile to instantiate a dynamic PPPoE subscriber interface based on the service name, ACI, and ARI information provided by the PPPoE client during PPPoE negotiation. The dynamic profile configured for a service entry or ACI/ARI pair in a PPPoE service name table overrides the dynamic profile assigned to the PPPoE underlying interface on which the dynamic PPPoE interface is created.

To specify the routing instance in which to instantiate the dynamic PPPoE interface, you can associate a previously configured routing instance with a named service, empty service, or any service in the PPPoE service name table, or with an ACI/ARI pair defined for these services. Like dynamic profiles configured for service entries or ACI/ARI pairs, the routing instance configured for the PPPoE service name table overrides the routing instance assigned to the PPPoE underlying interface.

For information about configuring the PPPoE service name table to create a dynamic PPPoE subscriber interface, see Assigning a Dynamic Profile and Routing Instance to a Service Name or ACI/ARI Pair for Dynamic PPPoE Interface Creation in the Junos OS Subscriber Management, Release 12.3.

Maximum Sessions Limit in PPPoE Service Name Tables

To limit the number of PPPoE client sessions that can use a particular service entry in the PPPoE service name table, you can configure the maximum number of active PPPoE sessions using either dynamically-created or statically-created PPPoE interfaces that the router can establish with a particular named service, empty service, or any service. (You cannot configure the maximum sessions limit for an ACI/ARI pair.) The maximum sessions limit must be in the range 1 through the platform-specific maximum PPPoE sessions supported on your routing platform. The router maintains a count of active PPPoE sessions for each service entry to determine when the maximum sessions limit has been reached.

The router uses the maximum sessions value for a service entry in the PPPoE service name table in conjunction with both of the following:

- The maximum sessions (max-sessions) value configured for the PPPoE underlying interface
- The maximum number of PPPoE sessions supported on your routing platform

If your configuration exceeds either of these maximum session limits, the router cannot establish the PPPoE session.
Static PPPoE Interfaces in PPPoE Service Name Tables

To reserve a previously configured static PPPoE interface for use only by the PPPoE client with matching ACI/ARI information, you can specify a single static PPPoE interface for each ACI/ARI pair defined for a named service entry, empty service entry, or any service entry in a PPPoE service name table. (You cannot configure a static interface for a service entry that does not have an ACI/ARI pair defined.) The static PPPoE interface associated with an ACI/ARI pair takes precedence over the general pool of static PPPoE interfaces associated with the PPPoE underlying interface configured on the router.

When you configure a static interface in the PPPoE service name table, make sure there is a one-to-one correspondence between the PPPoE client and the static interface. For example, if two clients have identical ACI/ARI information that matches the information in the PPPoE service name table, the router reserves the static interface for exclusive use by the first client that logs in to the router. As a result, the router prevents the second client from logging in.

NOTE: You cannot configure a static interface for an ACI/ARI pair already configured with a dynamic profile and routing instance. Conversely, you cannot configure a dynamic profile and routing instance for an ACI/ARI pair already configured with a static interface.

PADO Advertisement of Named Services in PPPoE Service Name Tables

By default, the advertisement of named services in PADO control packets sent by the router to the PPPoE client is disabled. You can enable advertisement of named services in the PADO packet as a global option when you configure the PPPoE protocol on the router. Configuring PADO advertisement notifies PPPoE clients of the services that the router (AC) can offer.

If you enable advertisement of named services in PADO packets, make sure the number and length of all advertised service entries does not exceed the maximum transmission unit (MTU) size supported by the PPPoE underlying interface.

Related Documentation
- Evaluation Order for Matching Client Information in PPPoE Service Name Tables on page 403
- Benefits of Configuring PPPoE Service Name Tables on page 403
- Configuring PPPoE Service Name Tables on page 412
- Example: Configuring a PPPoE Service Name Table on page 422
- For information about creating dynamic PPPoE subscriber interfaces, see Configuring Dynamic PPPoE Subscriber Interfaces Using Dynamic Profiles in the Junos OS Subscriber Management, Release 12.3
- PPPoE Overview on page 394
- Junos® OS Ethernet Interfaces
When the router receives a service request from a PPPoE client, it evaluates the entries configured in the PPPoE service name table to find a match for the client’s ACI/ARI information so it can take the appropriate action.

The order of evaluation is as follows:

1. The router evaluates the ACI/ARI information configured for the any service entry, and ignores the contents of the service name tag transmitted by the client.

2. If no match is found for the client information, the router evaluates the ACI/ARI information for the empty service entry and the named service entries. If an ACI/ARI pair is not configured for these service entries, the router evaluates the other attributes configured for the empty service and named services.

3. If there is still no match for the client information, the router evaluates the other attributes configured for the any service entry, and ignores both the ACI/ARI information for the any service and the contents of the service name tag transmitted by the client. If the any service is configured for the default action, drop, the router drops the PADR packet. If the any service is configured for a nondefault action (terminate or delay), the router evaluates the other attributes configured for the any service.

Related Documentation

- Understanding PPPoE Service Name Tables on page 398
- Benefits of Configuring PPPoE Service Name Tables on page 403
- Configuring PPPoE Service Name Tables on page 412
- Example: Configuring a PPPoE Service Name Table for Dynamic Subscriber Interface Creation
- PPPoE Overview on page 394
- Junos® OS Ethernet Interfaces

Benefits of Configuring PPPoE Service Name Tables

This topic describes the benefits of configuring PPPoE service name tables.

Configuring PPPoE service name tables provides the following benefits:

- Enables support for multiple services requested by PPPoE clients, and configuration of an action for the underlying PPPoE interface to take (delay, drop, or terminate) upon receipt of a PPPoE Active Discovery Initiation (PADI) packet requesting that service.

- Provides tighter control over which PPPoE clients can log in to and receive services from a particular PPPoE server.

- Provides load balancing across a set of remote access concentrators (ACs) in a mesh topology by enabling you to configure agent circuit identifier/agent remote identifier (ACI/ARI) pairs for named, empty, and any service entries to specify the appropriate AC to receive and service a particular PPPoE client request.
Offers a more targeted approach to configuration of PPPoE sessions based on the service name and ACI/ARI information provided by the PPPoE client during PPPoE negotiation.

Supports creation of dynamic PPPoE subscriber interfaces in a specified routing instance based on configuration of a service entry or ACI/ARI pair in the PPPoE service name table.

Enables you to reserve a specified static PPPoE interface for use only by the PPPoE client with matching ACI/ARI information.

Enables you to specify the maximum number of PPPoE client sessions that can use a particular service entry in the PPPoE service name table.

Provides redundancy across a set of remote ACs in a mesh topology by enabling you to configure a primary AC and a backup AC for handling a specific service request from a PPPoE client.

For example, on the primary AC for handling a client service, you might configure the `terminate` action for the associated service to direct the primary AC to immediately send a PPPoE Active Discovery Offer (PADO) packet in response to a PADI packet containing that service name tag. On the backup AC for the client service, you might configure the `delay` action for the associated service to specify the number of seconds the backup AC waits after receiving a PADI packet from the client before sending a PADO packet in response. If the primary AC does not send a PADO packet to the client within the delay period configured on the backup AC, then the backup AC sends the PADO packet after the delay period expires.

Related Documentation

- Understanding PPPoE Service Name Tables on page 398
- Configuring PPPoE Service Name Tables on page 412
- Example: Configuring a PPPoE Service Name Table on page 422
- PPPoE Overview on page 394
- Junos® OS Ethernet Interfaces

Configuring PPPoE

To configure PPPoE on a J Series Services Router, perform the following tasks:

1. Configure PPPoE encapsulation for an Ethernet interface or Ethernet over ATM encapsulation for an ATM-over-ADSL interface.
2. If you are configuring ATM over ADSL, configure LLC encapsulation on the logical interface.
3. Specify the logical Ethernet interface or the logical ATM interface as the underlying interface for the PPPoE session.
4. Configure the operational mode as client.
5. Identify the access concentrator by a unique name.
6. Optionally, specify how many seconds to wait before attempting to reconnect.
7. Provide a name for the type of service provided by the access concentrator.
8. Optionally, configure the maximum transmission unit (MTU) of the interface.
9. Configure the PPPoE interface address.
10. Configure the destination PPPoE interface address.
11. Optionally, configure the MTU size for the protocol family.
12. Optionally, disable the sending of keepalive messages on the logical interface.

To configure PPPoE on an M120 or M320 Multiservice Edge Router or MX Series Universal Edge Router operating as an access concentrator, perform the following tasks:

1. Configure PPPoE encapsulation for an Ethernet interface.
2. Specify the logical Ethernet interface as the underlying interface for the PPPoE session.
3. Optionally, configure the maximum transmission unit (MTU) of the interface.
4. Configure the operational mode as server.
5. Configure the PPPoE interface address.
6. Configure the destination PPPoE interface address.
7. Optionally, configure the MTU size for the protocol family.
8. Optionally, configure one or more PPPoE service name tables and the action taken for each service in the tables.
9. Optionally, disable the sending of PADS messages that contain certain error tags.

Setting the Appropriate Encapsulation on the PPPoE Interface

For PPPoE on an Ethernet interface, you must configure encapsulation on the logical interface and use PPP over Ethernet encapsulation.

For PPPoE on an ATM-over-ADSL interface, you must configure encapsulation on both the physical and logical interfaces. To configure encapsulation on an ATM-over-ADSL physical interface, use Ethernet over ATM encapsulation. To configure encapsulation on an ATM-over-ADSL logical interface, use PPPoE over AAL5 LLC encapsulation. LLC encapsulation allows a single ATM virtual connection to transport multiple protocols.

NOTE: PPPoE encapsulation is not supported on an M120 or M320 router on an ATM2 IQ interface.

When you configure a point-to-point encapsulation such as PPP on a physical interface, the physical interface can have only one logical interface (only one `unit` statement) associated with it.

To configure physical interface properties, include the `encapsulation` statement at the `[edit interfaces interface-name]` hierarchy level:
To configure logical interface encapsulation properties, include the `encapsulation` statement:

```
encapsulation ppp-over-ether;
```

You can include this statement at the following hierarchy levels:

- `[edit interfaces interface-name]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]`

Perform the task appropriate for the interface on which you are using PPPoE:

- Configuring PPPoE Encapsulation on an Ethernet Interface on page 406
- Configuring PPPoE Encapsulation on an ATM-over-ADSL Interface on page 406

Configuring PPPoE Encapsulation on an Ethernet Interface

Both the client and the server must be configured to support PPPoE. To configure PPPoE encapsulation on an Ethernet interface, include the `encapsulation` statement:

```
encapsulation ppp-over-ether;
```

You can include this statement at the following hierarchy levels:

- `[edit interfaces pp0 unit logical-unit-number]`
- `[edit logical-systems logical-system-name interfaces pp0 unit logical-unit-number]`

Configuring PPPoE Encapsulation on an ATM-over-ADSL Interface

To configure the PPPoE encapsulation on a ATM-over-ADSL interface, perform the following steps:

1. Include the `encapsulation` statement at the `[edit interfaces interface-name]` hierarchy level, and specify `ethernet-over-atm`:

   ```
   [edit interfaces pp0]
   encapsulation ethernet-over-atm;
   ```

2. Configure LLC encapsulation on the logical interface by including the `encapsulation` statement and specifying `ppp-over-ether-over-atm-llc`:

   ```
   encapsulation ppp-over-ether-over-atm-llc;
   ```

You can include this statement at the following hierarchy levels:
Configuring a PPPoE Interface

- Configuring the PPPoE Underlying Interface on page 407
- Identifying the Access Concentrator on page 408
- Configuring the PPPoE Automatic Reconnect Wait Timer on page 408
- Configuring the PPPoE Service Name on page 408
- Configuring the PPPoE Server Mode on page 408
- Configuring the PPPoE Client Mode on page 409
- Configuring the PPPoE Source and Destination Addresses on page 409
- Deriving the PPPoE Source Address from a Specified Interface on page 409
- Configuring the PPPoE IP Address by Negotiation on page 409
- Configuring the Protocol MTU PPPoE on page 410
- Example: Configuring a PPPoE Client Interface on a J Series Services Router on page 410
- Example: Configuring a PPPoE Server Interface on an M120 or M320 Router on page 411

NOTE: When you configure a static PPPoE logical interface, you must include the pppoe-options subhierarchy at the [edit interfaces pp0 unit logical-unit-number] hierarchy level or at the [edit logical-systems logical-system-name interfaces pp0 unit logical-unit-number] hierarchy level. If you omit the pppoe-options subhierarchy from the configuration, the commit operation fails.

Configuring the PPPoE Underlying Interface

To configure the underlying Fast Ethernet, Gigabit Ethernet, 10-Gigabit Ethernet, or ATM interface, include the underlying-interface statement:

 underlying-interface interface-name;

You can include this statement at the following hierarchy levels:

- [edit interfaces pp0 unit logical-unit-number pppoe-options]
- [edit logical-systems logical-system-name interfaces pp0 unit logical-unit-number pppoe-options]

Specify the logical Ethernet, Fast Ethernet, Gigabit Ethernet, 10-Gigabit Ethernet, or ATM interface as the underlying interface—for example, at-0/0/1.0 (ATM VC), fe-1/0/1.0 (Fast Ethernet interface), or ge-2/0/0 (Gigabit Ethernet interface).
Identifying the Access Concentrator

When configuring a PPPoE client, identify the access concentrator by a unique name by including the `access-concentrator` statement:

```
access-concentrator name:
```

You can include this statement at the following hierarchy levels:

- [edit interfaces pp0 unit logical-unit-number pppoe-options]
- [edit logical-systems logical-system-name interfaces pp0 unit logical-unit-number pppoe-options]

Configuring the PPPoE Automatic Reconnect Wait Timer

By default, after a PPPoE session is terminated, the session attempts to reconnect immediately. When configuring a PPPoE client, you can specify how many seconds to wait before attempting to reconnect, by including the `auto-reconnect` statement:

```
auto-reconnect seconds:
```

You can include this statement at the following hierarchy levels:

- [edit interfaces pp0 unit logical-unit-number pppoe-options]
- [edit logical-systems logical-system-name interfaces pp0 unit logical-unit-number pppoe-options]

You can configure the reconnection attempt to occur in 0 through 4,294,967,295 seconds after the session terminates.

Configuring the PPPoE Service Name

When configuring a PPPoE client, identify the type of service provided by the access concentrator—such as the name of the Internet service provider (ISP), class, or quality of service—by including the `service-name` statement:

```
service-name name:
```

You can include this statement at the following hierarchy levels:

- [edit interfaces pp0 unit logical-unit-number pppoe-options]
- [edit logical-systems logical-system-name interfaces pp0 unit logical-unit-number pppoe-options]

Configuring the PPPoE Server Mode

When configuring a PPPoE server, identify the mode by including the `server` statement:

```
server:
```

You can include this statement at the following hierarchy levels:

- [edit interfaces pp0 unit logical-unit-number pppoe-options]
• [edit logical-systems logical-system-name interfaces pp0 unit logical-unit-number pppoe-options]

Configuring the PPPoE Client Mode

When configuring a PPPoE client, identify the mode by including the client statement:

client;

You can include this statement at the following hierarchy levels:

• [edit interfaces pp0 unit logical-unit-number pppoe-options]

• [edit logical-systems logical-system-name interfaces pp0 unit logical-unit-number pppoe-options]

Configuring the PPPoE Source and Destination Addresses

When configuring a PPPoE client or server, assign source and destination addresses—for example, 192.168.1.1/32 and 192.168.1.2. To assign the source and destination address, include the address and destination statements:

address address {
 destination address;
}

You can include these statements at the following hierarchy levels:

• [edit interfaces pp0.0 family inet]

• [edit logical-systems logical-system-name interfaces pp0.0 family inet]

Deriving the PPPoE Source Address from a Specified Interface

For a router supporting PPPoE, you can derive the source address from a specified interface—for example, the loopback interface, lo0.0—and assign a destination address—for example, 192.168.1.2. The specified interface must include a logical unit number and have a configured IP address. To derive the source address and assign the destination address, include the unnumbered-address and destination statements:

unnumbered-address interface-name destination address;

You can include these statements at the following hierarchy levels:

• [edit interfaces pp0.0 family inet]

• [edit logical-systems logical-system-name interfaces pp0.0 family inet]

Configuring the PPPoE IP Address by Negotiation

You can have the PPPoE client router obtain an IP address by negotiation with the remote end. This method might require the access concentrator to use a RADIUS authentication server. To obtain an IP address from the remote end by negotiation, include the negotiate-address statement:

negotiate-address;
You can include this statement at the following hierarchy levels:

- [edit interfaces pp0.0 family (inet | inet6 | mpls)]
- [edit logical-systems logical-system-name interfaces pp0.0 family (inet | inet6 | mpls)]

Configuring the Protocol MTU PPPoE

You can configure the maximum transmission unit (MTU) size for the protocol family. Specify a range from 0 through 5012 bytes. Ensure that the size of the media MTU is equal to or greater than the sum of the protocol MTU and the encapsulation overhead. To set the MTU, include the `mtu` statement:

```
mtu bytes;
```

You can include this statement at the following hierarchy levels:

- [edit interfaces pp0.0 family (inet | inet6 | mpls)]
- [edit logical-systems logical-system-name interfaces pp0.0 family (inet | inet6 | mpls)]

You can modify the MTU size of the interface by including the `mtu bytes` statement at the [edit interfaces pp0] hierarchy level:

```
[edit interfaces pp0]
mtu bytes;
```

The default media MTU size used and the range of available sizes on a physical interface depends on the encapsulation used on that interface.

Example: Configuring a PPPoE Client Interface on a J Series Services Router

Configure a PPPoE over ATM-over-ADSL interface:

```
[edit interfaces]
at-2/0/0 {
  encapsulation ethernet-over-atm;
atm-options {
    vpi 0;
  }
dsl-options {
    operating-mode auto;
  }
unit 0 {
  encapsulation ppp-over-ether-over-atm-llc;
  vci 0.120;
}
}
pp0 {
  mtu 1492;
  unit 0 {
    ppp-options {
      chap {
        access-profile A-ppp-client;
        local-name A-at-2/0/0.0;
      }
    }
  }
}
```
Example: Configuring a PPPoE Server Interface on an M120 or M320 Router

Configure a PPPoE server over a Gigabit Ethernet interface:

```
[edit interfaces]
ge-1/0/0 {
  vlan-tagging;
  unit 1 {
    encapsulation ppp-over-ether;
    vlan-id 10;
  }
}
pp0 {
  unit 0 {
    pppoe-options {
      underlying-interface ge-1/0/0.0;
      server;
    }
    ppp-options {
    }
    family inet {
      address 22.2.2.1/32 {
        destination 22.2.2.2;
      }
    }
  }
}
```

Related Documentation

- **PPPoE Overview** on page 394
- **Junos® OS Ethernet Interfaces**
Disabling the Sending of PPPoE Keepalive Messages

When configuring the client, you can disable the sending of keepalive messages on a logical interface by including the `no-keepalives` statement:

```plaintext
no-keepalives;
```

You can include this statement at the following hierarchy levels:

- `[edit interfaces pp0 unit logical-unit-number]`
- `[edit logical-systems logical-system-name interfaces pp0 unit logical-unit-number]`

Related Documentation
- PPPoE Overview on page 394
- Junos® OS Ethernet Interfaces

Configuring PPPoE Service Name Tables

To configure PPPoE service name tables:

1. Create a PPPoE service name table.
 - See “Creating a Service Name Table” on page 413.

2. (Optional) Configure the action taken for the `empty` service.
 - See “Configuring the Action Taken When the Client Request Includes an Empty Service Name Tag” on page 414.

3. (Optional) Configure the action taken for the `any` service.
 - See “Configuring the Action Taken for the Any Service” on page 415.

4. Assign a named service to the service name table and optionally configure the action taken for the specified service name.
 - See “Assigning a Service to a Service Name Table and Configuring the Action Taken When the Client Request Includes a Non-zero Service Name Tag” on page 416.

5. (Optional) Configure the action taken for an ACI/ARI pair associated with a service.
 - See “Assigning an ACI/ARI Pair to a Service Name and Configuring the Action Taken When the Client Request Includes ACI/ARI Information” on page 417.

6. (Optional) Assign a dynamic profile and routing instance to a service name or ACI/ARI pair to instantiate a dynamic PPPoE subscriber interface.
 - See Assigning a Dynamic Profile and Routing Instance to a Service Name or ACI/ARI Pair for Dynamic PPPoE Interface Creation.

7. (Optional) Limit the number of active PPPoE sessions that the router can establish with the specified service.
 - See “Limiting the Number of Active PPPoE Sessions Established with a Specified Service Name” on page 418.
8. (Optional) Assign a static PPPoE interface to an ACI/ARI pair to reserve the interface for exclusive use by the PPPoE client with matching ACI/ARI information.
 See “Reserving a Static PPPoE Interface for Exclusive Use by a PPPoE Client” on page 419.

9. (Optional) Enable advertisement of named services in the PADO control packet sent by the router to the client.
 See “Enabling Advertisement of Named Services in PADO Control Packets” on page 420.

10. Assign a service name table to a PPPoE underlying interface.
 See “Assigning a Service Name Table to a PPPoE Underlying Interface” on page 420.

11. (Optional) Configure trace options for troubleshooting the configuration.
 See “Tracing PPPoE Operations” on page 424.

Related Documentation

- Understanding PPPoE Service Name Tables on page 398
- Benefits of Configuring PPPoE Service Name Tables on page 403
- Example: Configuring a PPPoE Service Name Table on page 422
- PPPoE Overview on page 394
- Junos® OS Ethernet Interfaces

Creating a Service Name Table

You can create up to 32 PPPoE service name tables on the router. You can optionally create named services and add them to a service name table. By default, the empty service and the any service are present in each service name table.

A named service specifies a PPPoE client service that the router, functioning as an access concentrator or PPPoE server, can support. The empty service is a service tag of zero length that represents an unspecified service. The any service acts as a default service for non-empty service entries that do not match the named or empty service entries configured in the PPPoE service name table. Named services and the empty service are associated with the terminate action by default, and the any service is associated with the drop action by default.

To create a PPPoE service name table:

- Specify the table name.

```
[edit protocols pppoe]
user@host# set service-name-tables table1
```

Related Documentation

- Configuring PPPoE Service Name Tables on page 412
- Understanding PPPoE Service Name Tables on page 398
- PPPoE Overview on page 394
Configuring the Action Taken When the Client Request Includes an Empty Service Name Tag

You can configure the action taken by the PPPoE underlying interface when it receives a PADI packet that includes a zero-length (empty) service name tag. The empty service is present by default in every PPPoE service name table.

To indicate that it can service the client request, the interface returns a PADO packet in response to the PADI packet. By default, the interface immediately responds to the request; this is the terminate action. Alternatively, you can configure the drop action to ignore (drop) the PADI packet, or the delay action to set a delay between receipt of the PADI packet and transmission of the PADO packet.

(Optional) To configure the action taken for the empty service in response to a PADI packet from a PPPoE client:

- Specify the action.

```
[edit protocols pppoe service-name-tables table1]
user@host# set service empty drop
```

You can also accomplish the following optional tasks when you configure the empty service:

- Specify the agent circuit identifier (ACI) and agent remote identifier (ARI) information to determine the action taken by the PPPoE underlying interface when it receives a PADI packet with matching ACI/ARI information.

- Specify a dynamic profile and routing instance with which the router instantiates a dynamic PPPoE subscriber interface.

- Limit the number of active PPPoE sessions that the router can establish with the empty service.

Related Documentation
- Understanding PPPoE Service Name Tables on page 398
- Configuring PPPoE Service Name Tables on page 412
- Assigning an ACI/ARI Pair to a Service Name and Configuring the Action Taken When the Client Request Includes ACI/ARI Information on page 417
- Assigning a Dynamic Profile and Routing Instance to a Service Name or ACI/ARI Pair for Dynamic PPPoE Interface Creation
- Limiting the Number of Active PPPoE Sessions Established with a Specified Service Name on page 418
- PPPoE Overview on page 394
- Junos® OS Ethernet Interfaces
Configuring the Action Taken for the Any Service

The any service acts as a default service for service name tags transmitted by the client that do not match any of the service entries configured in the PPPoE service name table on the router. By configuring an action for the any service, you specify the action taken by the PPPoE underlying interface when it receives a PADI control packet from a client that includes a non-empty service name tag that does not match any of the named service entries or empty service entry in the PPPoE service name table.

Each PPPoE service name table includes one any service entry associated by default with the drop action. The drop action ignores a PADI packet containing a nonmatching service name tag. Alternatively, you can configure the terminate action to immediately respond to the PADI packet with a PADO packet, or the delay action to specify a delay between receipt of the PADI packet and transmission of the PADO packet.

To configure the action taken for the any service in response to a PADI packet from a PPPoE client:

- Specify the action.

  ```
  [edit protocols pppoe service-name-tables table1]
  user@host# set service any terminate
  ```

You can also accomplish the following optional tasks when you configure the any service:

- Specify the agent circuit identifier (ACI) and agent remote identifier (ARI) information to determine the action taken by the PPPoE underlying interface when it receives a PADI packet with matching ACI/ARI information.
- Specify a dynamic profile and routing instance with which the router instantiates a dynamic PPPoE subscriber interface.
- Limit the number of active PPPoE sessions that the router can establish with the any service.

Related Documentation

- Understanding PPPoE Service Name Tables on page 398
- Configuring PPPoE Service Name Tables on page 412
- Assigning an ACI/ARI Pair to a Service Name and Configuring the Action Taken When the Client Request Includes ACI/ARI Information on page 417
- Assigning a Dynamic Profile and Routing Instance to a Service Name or ACI/ARI Pair for Dynamic PPPoE Interface Creation
- Limiting the Number of Active PPPoE Sessions Established with a Specified Service Name on page 418
- PPPoE Overview on page 394
- Junos® OS Ethernet Interfaces
Assigning a Service to a Service Name Table and Configuring the Action Taken When the Client Request Includes a Non-zero Service Name Tag

You can configure a maximum of 512 named service entries, excluding empty and any service entries, across all PPPoE service name tables on the router. A named service specifies a PPPoE client service that the router, functioning as an access concentrator or PPPoE server, can support. You can optionally configure the action taken by the PPPoE underlying interface when it receives a PADI packet that includes a matching named service (service name tag).

To indicate that it can service the client request, the interface returns a PADO packet in response to the PADI packet. By default, the interface immediately responds to the request; this is the **terminate** action. Alternatively, you can configure the **drop** action to ignore (drop) the PADI packet, or the **delay** action to set a delay between receipt of the PADI packet and transmission of the PADO packet.

(Optional) To configure a named service for a PPPoE service name table, do one of the following:

- Assign a service name to the table. The **terminate** action is applied to the service by default.
  ```
  [edit protocols pppoe service-name-tables table1]
  user@host# set service gold-service
  ```

- Specify the action taken for a service in response to a PADI packet from a PPPoE client.
  ```
  [edit protocols pppoe service-name-tables table1]
  user@host# set service gold-service delay 25
  ```

You can also accomplish the following optional tasks when you configure a named service:

- Specify the agent circuit identifier (ACI) and agent remote identifier (ARI) information to determines the action taken by the PPPoE underlying interface when it receives a PADI packet with matching ACI/ARI information.

- Specify a dynamic profile and routing instance with which the router instantiates a dynamic PPPoE subscriber interface.

- Limit the number of active PPPoE sessions that the router can establish with the specified named service.

Related Documentation

- Understanding PPPoE Service Name Tables on page 398
- Configuring PPPoE Service Name Tables on page 412
- Assigning an ACI/ARI Pair to a Service Name and Configuring the Action Taken When the Client Request Includes ACI/ARI Information on page 417
- Assigning a Dynamic Profile and Routing Instance to a Service Name or ACI/ARI Pair for Dynamic PPPoE Interface Creation
Assigning an ACI/ARI Pair to a Service Name and Configuring the Action Taken When the Client Request Includes ACI/ARI Information

You can configure up to 8000 agent circuit identifier/agent remote identifier (ACI/ARI) pairs per PPPoE service name table, distributed in any combination among the named, empty, and any service entries in the service name table. You can optionally configure the action taken by the PPPoE underlying interface when it receives a PADI packet that includes a service name tag and the vendor-specific tag with ACI/ARI information that matches the ACI/ARI pair that you specify.

You can use an asterisk (*) as a wildcard character to match ACI/ARI pairs, the ACI alone, or the ARI alone. The asterisk can be placed only at the beginning, the end, or both the beginning and end of the identifier string. You can also specify an asterisk alone for either the ACI or the ARI. You cannot specify only an asterisk for both the ACI and the ARI. When you specify a single asterisk as the identifier, that identifier is ignored in the PADI packet.

For example, suppose you care about matching only the ACI and do not care what value the ARI has in the PADI packet, or even whether the packet contains an ARI value. In this case you can set the \texttt{remote-id-string} to a single asterisk. Then the interface ignores the ARI received in the packet and the interface takes action based only on matching the specified ACI.

To indicate that it can service the client request, the interface returns a PADO packet in response to the PADI packet. By default, the interface immediately responds to the request; this is the \texttt{terminate} action. Alternatively, you can configure the \texttt{drop} action to ignore (drop) the PADI packet, or the \texttt{delay} action to set a delay between receipt of the PADI packet and transmission of the PADO packet.

To configure an ACI/ARI pair for a named, empty, or any service, do one of the following:

- Assign an ACI/ARI pair to the service name. The \texttt{terminate} action is applied to the pair by default.

 \begin{verbatim}
 [edit protocols pppoe service-name-tables table1]
 user@host# set service gold-service agent-specifier aci DSLAM:3/0/1/101 ari *user*
 \end{verbatim}

- Specify the action taken for the ACI/ARI pair in response to a PADI packet from a PPPoE client.

 \begin{verbatim}
 [edit protocols pppoe service-name-tables table1]
 user@host# set service any agent-specifier aci velorum-ge-2/0/3 ari westford delay 90
 \end{verbatim}

In this example, an ACI/ARI pair and the \texttt{delay} action are configured for the \texttt{any} service. Configuring an ACI/ARI pair for the \texttt{any} service is useful when you want to match the agent circuit identifier and agent remote identifier information for a specific PPPoE service.
client, but do not care about the contents of the service name tag transmitted by the client in the PADI packet.

You can also accomplish the following optional tasks when you configure an ACI/ARI pair:

- Specify a dynamic profile and routing instance with which the router instantiates a dynamic PPPoE subscriber interface.
- Reserve a specified static PPPoE interface for exclusive use by the PPPoE client with match ACI/ARI information.

Limiting the Number of Active PPPoE Sessions Established with a Specified Service Name

To limit the number of PPPoE client sessions that can use a particular service entry in the PPPoE service name table, you can configure the maximum number of PPPoE sessions using static or dynamic PPPoE interfaces that the router can establish with the specified named service, empty service, or any service. You cannot configure a maximum sessions limit for an ACI/ARI pair in the service name table.

The maximum sessions limit must be in the range 1 through the platform-specific maximum PPPoE sessions supported for your routing platform. The router maintains a count of active PPPoE sessions for each service entry to determine when the maximum sessions limit has been reached.

To limit the number of PPPoE client sessions for a particular named, empty, or any service:

- Configure the maximum sessions limit for the specified service:

  ```
  [edit protocols pppoe service-name-tables tableEast]
  user@host# set service premium-service max-sessions 100
  ```
Reserving a Static PPPoE Interface for Exclusive Use by a PPPoE Client

To reserve a static PPPoE interface for exclusive use by the PPPoE client with matching agent circuit identifier/agent remote identifier (ACI/ARI) information, you can assign a previously configured static PPPoE interface to an ACI/ARI pair defined for a named service entry, empty service entry, or any service entry in a PPPoE service name table. You cannot assign a static PPPoE interface directly to a service entry that does not have an ACI/ARI pair defined.

Observe the following guidelines when you configure a static PPPoE interface for an ACI/ARI pair:

- You can specify only one static PPPoE interface per ACI/ARI pair.
- If the ACI/ARI pair represents an individual PPPoE client, make sure there is a one-to-one correspondence between the client and the static PPPoE interface.
- The static interface associated with the ACI/ARI pair takes precedence over the general pool of static interfaces associated with the PPPoE underlying interface.
- You cannot configure a static interface for an ACI/ARI pair already configured with a dynamic profile and routing instance. Conversely, you cannot configure a dynamic profile and routing instance for an ACI/ARI pair already configured with a static interface.

Before you begin:

- Configure the static PPPoE interface on a M120, M320, or MX Series router.

 See “Configuring PPPoE” on page 404.

To reserve a static PPPoE interface for exclusive use by the PPPoE client with matching ACI/ARI information:

- Assign a previously configured static PPPoE interface to the ACI/ARI pair defined for a named, empty, or any service entry:

```
[edit protocols pppoe service-name-tables tableEast]
user@host# set service any agent-specifier aci velorum-ge-2/0/3 ari westford static-interface pp0.100
```

Related Documentation

- Understanding PPPoE Service Name Tables on page 398
- Configuring PPPoE Service Name Tables on page 412
- PPPoE Overview on page 394
- Junos® OS Ethernet Interfaces
Enabling Advertisement of Named Services in PADO Control Packets

You can enable advertisement of named services in PADO control packets sent by the router to the PPPoE client to indicate the services that the router can offer. By default, advertisement of named services in PADO packets is disabled. You can enable PADO advertisement as a global option on the router when you configure the PPPoE protocol.

NOTE: Make sure the combined number and length of all named services advertised in the PADO packet does not exceed the MTU size of the PPPoE underlying interface.

To enable advertisement of named services in PADO packets:

- Configure the PPPoE protocol to enable PADO advertisement:

```
[edit protocols pppoe]
user@host# set pado-advertise
```

Assigning a Service Name Table to a PPPoE Underlying Interface

You must assign the PPPoE service name table to a PPPoE underlying interface.

Before you begin:

- Specify PPPoE as the encapsulation method on the underlying interface.

 See Setting the Appropriate Encapsulation on the PPPoE Interface in "Configuring PPPoE" on page 404.

To assign a service name table to a PPPoE underlying interface:

- Specify the table name:

  ```
  [edit interfaces interface-name unit logical-unit-number]
  user@host# set pppoe-underlying-options service-name-table table1
  ```

Related Documentation

- Understanding PPPoE Service Name Tables on page 398
- Configuring PPPoE Service Name Tables on page 412
- PPPoE Overview on page 394
- Junos® OS Ethernet Interfaces
Disabling the Sending of PPPoE Access Concentrator Tags in PADS Packets

By default, a router that functions as an access concentrator (AC) sends the AC-Name and AC-Cookie tags, along with the Service-Name, Host-Uniq, Relay-Session-Id, and PPP-Max-Payload tags, in the PPPoE Active Discovery Session (PADS) packet when it confirms a session with a PPPoE client. The AC-Name and AC-Cookie tags are defined as follows:

- **AC-Name**—String that uniquely identifies the particular AC
- **AC-Cookie**—Tag used by the AC to help protect against denial-of-service (DoS) attacks

If it is necessary for compatibility with your network equipment, you can prevent the router from sending the AC-Name and AC-Cookie tags in the PADS packet.

To prevent the router from transmitting the AC-Name and AC-Cookie tags in the PADS messages:

- Specify that PADS messages with AC-Name and AC-Cookie tags are not sent.

```plaintext
[edit protocols pppoe]
user@host# set no-send-pads-ac-info
```

The `no-send-pads-ac-info` statement affects PADS packets sent only on PPPoE interfaces configured on the router after you configure this statement. It has no effect on PADS packets sent on previously created PPPoE interfaces.

Related Documentation

- [PPPoE Overview](#) on page 394

Discarding PADR Messages to Accommodate Abnormal CPE Behavior

This topic describes how to avoid a situation where certain CPEs respond inappropriately to normal router behavior.

During PPPoE session negotiation, the router returns PADS messages in response to PADR messages when it accepts or rejects the PPPoE session. The router adds an error tag to the PADS message when it detects a problem.

AC-System-Error is one such tag. This tag is inserted when the router imposes automatic throttling in response to excessive CPU consumption, excessive subscriber connections, or physical interfaces cycling up and down.

When the CPE receives a PADS message with this tag, the typical behavior is to retry sending PADR messages to the router or to restart session negotiation by sending PADI messages. However, some CPEs may respond inappropriately with the result that their subscribers are never connected until the CPE is rebooted.

To avoid this situation when such CPEs have access to your network, you can include the `no-send-pads-error` statement at the [edit protocols pppoe] hierarchy level. This statement causes the router to silently discard PADR messages in situations where the PADS would include the AC-System-Error tag. The consequence is that the CPE resends
PADR messages. When the conditions that result in the AC-System-Error tag are no longer present, the router once again evaluates PADR packets to determine whether to accept or reject the session.

To silently discard PADR packets:

- Specify that PADS messages with AC-System-Error tags are not sent.

```
[edit protocols pppoe]
user@host# set no-send-pads-error
```

Related Documentation

- PPPoE Overview on page 394

Example: Configuring a PPPoE Service Name Table

This example shows how you can configure a PPPoE service name table on an M120 router, M320 router, or MX Series router with service entries that correspond to different client services. By configuring the appropriate actions (delay, terminate, or drop) and agent circuit identifier/agent remote identifier (ACI/ARI) pairs for the service entries, you can provide load balancing and redundancy across a set of remote access concentrators (ACs) in a mesh topology, and determine how best to allocate service requests from PPPoE clients to the servers in your network.

In this example, the PPPoE service name table, Table1, contains the following service entries:

- **user1-service**—Named service representing the subscriber service for user1.
- **user2-service**—Named service representing the subscriber service for user2.
- **empty** service—Represents an unspecified service.

To configure a PPPoE service name table with service entries that correspond to different subscriber services:

1. Create the PPPoE service name table and define the services and associated actions.

```
[edit protocols pppoe]
service-name-tables Table1 { 
  service empty { 
    drop; 
  } 
  service user1-service { 
    terminate; 
    agent-specifier { 
      aci "east*" ari "wfd*" delay 10; 
      aci "west*" ari "svl*" delay 10; 
    } 
  } 
  service user2-service { 
    delay 20; 
  } 
}
```
This example creates a PPPoE service name table named Table1 with three service entries, as follows:

- The **empty** service is configured with the **drop** action. This action prohibits the router (AC) from responding to PADI packets from the client that contain empty service name tags.

- The **user1-service** named service is configured with both the **terminate** action, and two ACI/ARI (agent-specifier) pairs:
 - The **terminate** action directs the router to immediately respond to PADI packets from the client that contain the **user1-service** tag, and is the default action for named services.
 - The 10-second delay configured for each ACI/ARI pair applies only to PADI packets from the client that contains a vendor-specific tag with matching ACI and ARI information. In this example, configuring the **delay** action indicates that the **east** or **west** server is considered the backup AC for handling these client requests, and that you expect an AC other than **east** or **west** to handle the request as the primary server. If the primary AC does not respond to the client with a PADO packet within 10 seconds, then the **east** or **west** backup AC sends the PADO packet after the 10-second delay expires.

- The **user2-service** named service is configured with a 20-second delay, indicating that you expect an AC other than the one on which this PPPoE service name table is configured to be the primary AC for handling this client request. If the primary AC does not respond to the client with a PADO packet within 20 seconds, then the backup AC (that is, the router on which you are configuring the service name table) sends the PADO packet after the 20-second delay expires.

2. Assign the PPPoE service name table to a PPPoE underlying interface configured with PPPoE encapsulation.

```plaintext
[edit interfaces]
ge-2/0/3 {
    vlan-tagging;
    unit 0 {
        vlan-id 100;
        encapsulation ppp-over-ethernet;
        pppoe-underlying-options {
            service-name-table Table1;
        }
    }
}
```

3. (Optional) Verify the PPPoE service name table configuration.

```plaintext
user@host> show pppoe service-name-tables Table1
Service Name Table: Table1
Service Name: <empty>
Service Action: Drop

Service Name: user1-service
Service Action: Terminate
    ACI: east*
    ARI: wfd*
```
ACI/ARI Action: Delay 10 seconds
ACI: west*
ARI: svl*
ACI/ARI Action: Delay 10 seconds

Service Name: user2-service
Service Action: Delay 20 seconds

4. (Optional) Verify whether the PPPoE service name table has been properly assigned to the underlying PPPoE interface, and whether packet transfer between the router (AC) and PPPoE client is working correctly.

```
user@host> show pppoe underlying-interfaces ge-2/0/3.0 extensive
ge-2/0/3.0 Index 72
State: Static, Dynamic Profile: None,
Max Sessions: 4000, Active Sessions: 2,
Service Name Table: Table1, Duplicate Protection: Off,
AC Name: east

PacketType                        Sent     Received
PADI                              0        2
PADO                              2        0
PADR                              0        2
PADS                              2        0
PADT                              0        1
Service name error                0        0
AC system error                   0        0
Generic error                     0        0
Malformed packets                 0        0
Unknown packets                   0        0
```

Examine the command output to ensure the following:

- The **Service Name Table** field displays the name of the correct PPPoE service name table. This field displays **none** if no service name table has been associated with the specified interface.
- The **Sent** and **Received** values for the **Service name error** field are 0 (zero). For example, a nonzero value in the **Received** field for **Service name error** indicates that there are errors in the control packets received from PPPoE clients, such as a PADI packet that does not contain a service name tag.

Related Documentation

- Understanding PPPoE Service Name Tables on page 398
- Configuring PPPoE Service Name Tables on page 412
- Troubleshooting PPPoE Service Name Tables on page 426
- PPPoE Overview on page 394
- Junos® OS Ethernet Interfaces

Tracing PPPoE Operations

The Junos OS trace feature tracks PPPoE operations and records events in a log file. The error descriptions captured in the log file provide detailed information to help you solve problems.
By default, nothing is traced. When you enable the tracing operation, the default tracing behavior is as follows:

1. Important events are logged in a file called `pppoed` located in the `/var/log` directory. You cannot change the directory (`/var/log`) in which trace files are located.

2. When the file `pppoed` reaches 128 kilobytes (KB), it is renamed `pppoed.0`, then `pppoed.1`, and finally `pppoed.2`, until there are three trace files. Then the oldest trace file (`pppoed.2`) is overwritten.

You can optionally specify the number of trace files to be from 2 through 1000. You can also configure the maximum file size to be from 10 KB through 1 gigabyte (GB).

(For more information about how log files are created, see the Junos OS System Log Messages Reference.)

By default, only the user who configures the tracing operation can access log files. You can optionally configure read-only access for all users.

To configure PPPoE tracing operations:

1. Specify that you want to configure tracing options.

   ```
   [edit protocols pppoe]
   user@host# edit traceoptions
   ```

2. (Optional) Configure the name for the file used for the trace output.

3. (Optional) Configure the number and size of the log files.

4. (Optional) Configure access to the log file.

5. (Optional) Configure a regular expression to filter logging events.

6. (Optional) Configure flags to filter the operations to be logged.

Optional PPPoE traceoptions operations are described in the following sections:

- Configuring the PPPoE Trace Log Filename on page 425
- Configuring the Number and Size of PPPoE Log Files on page 425
- Configuring Access to the PPPoE Log File on page 426
- Configuring a Regular Expression for PPPoE Lines to Be Logged on page 426
- Configuring the PPPoE Tracing Flags on page 426

Configuring the PPPoE Trace Log Filename

By default, the name of the file that records trace output for PPPoE is `pppoed`. You can specify a different name with the `file` option.

Configuring the Number and Size of PPPoE Log Files

You can optionally specify the number of compressed, archived trace log files to be from 2 through 1000. You can also configure the maximum file size to be from 10 KB through 1 gigabyte (GB); the default size is 128 kilobytes (KB).
The archived files are differentiated by a suffix in the format .number.gz. The newest archived file is .0.gz and the oldest archived file is .(maximum number)-1.gz. When the current trace log file reaches the maximum size, it is compressed and renamed, and any existing archived files are renamed. This process repeats until the maximum number of archived files is reached, at which point the oldest file is overwritten.

For example, you can set the maximum file size to 2 MB, and the maximum number of files to 20. When the file that receives the output of the tracing operation, filename, reaches 2 MB, filename is compressed and renamed filename.0.gz, and a new file called filename is created. When the new filename reaches 2 MB, filename.0.gz is renamed filename.1.gz and filename is compressed and renamed filename.0.gz. This process repeats until there are 20 trace files. Then the oldest file, filename.19.gz, is simply overwritten when the next oldest file, filename.18.gz, is created. This process repeats until there are 20 trace files. Then the oldest file, filename.19.gz, is simply overwritten when the next oldest file, filename.18.gz, is created.

Configuring Access to the PPPoE Log File

By default, only the user who configures the tracing operation can access the log files. You can enable all users to read the log file and you can explicitly set the default behavior of the log file.

Configuring a Regular Expression for PPPoE Lines to Be Logged

By default, the trace operation output includes all lines relevant to the logged events. You can refine the output by including regular expressions to be matched.

Configuring the PPPoE Tracing Flags

By default, no events are logged. You can specify which events and operations are logged by specifying one or more tracing flags.

To configure the flags for the events to be logged, configure the flags:

```
[edit protocols pppoe traceoptions]
user@host# set flag authentication
```

Troubleshooting PPPoE Service Name Tables

Problem

A misconfiguration of a PPPoE service name table can prevent PPPoE services from being properly activated. Configuration options for PPPoE service name tables are simple, which should simplify discovering where a misconfiguration exists. PPPoE clients cannot connect if the service name table contains no match for the service name tag carried in the PADI packet.

The symptom of a service name table misconfiguration is that the client connection process stops at the negotiation stage and the PADI packets are ignored. You can use the `show pppoe statistics` command to examine the PPPoE packet counts for a problem.
When the service name table is properly configured, packets sent and received increment symmetrically. The following sample output shows a PADO sent count equal to the PADI received count, and PADS sent count equal to the PADR received count. This output indicates that the PPPoE negotiation is proceeding successfully and that the service name table is not misconfigured.

```
user@host> show pppoe statistics ge-2/0/3.1

Active PPPoE sessions: 2
PacketType       Sent  Received
PADI             0     16
PADO             16    0
PADR             0     16
PADS             16    0
PADT             0     0
Service name error 0     0
AC system error   0     0
Generic error     0     0
Malformed packets 0     0
Unknown packets   0     0
```

When the service name table is misconfigured, the output of the `show pppoe statistics` command indicates that the number of PADI packets received on the underlying interface is increasing, but the number of PADO packets sent remains at zero. The following sample output shows a PADI count of 100 and a PADO count of 0.

```
user@host> show pppoe statistics ge-2/0/3.1

Active PPPoE sessions: 0
PacketType       Sent  Received
PADI             0    100
PADO             0     0
PADR             0     0
PADS             0     0
PADT             0     0
Service name error 0     0
AC system error   0     0
Generic error     0     0
Malformed packets 0     0
Unknown packets   0     0
```

When you believe a misconfiguration exists, use the `monitor traffic interface` command on the underlying interface to determine which service name is being requested by the PPPoE client. The following sample output shows that the client is requesting Service1 in the service name tag.

```
user@host> monitor traffic interface ge-2/0/3.1 print-hex print-ascii

Listening on ge-2/0/3.1, capture size 96 bytes

11:49:41.436682 In PPPoE PADI [Service-Name "Service1"] [Host-Uniq UTF8] [TAG-0x120 UTF8] [Vendor-Specific UTF8] 0x0000 ffff ffff ffff 0090 1a42 0ac1 8100 029a .........B......
0x0010  8863 1109 0000 00c9 0101 0008 5365 7276 .c..........Serv
0x0020   6963 6531 0103 0004 1200 9c43 0120 0002 ice1.......C....
0x0030   044a 0105 00ab 0000 0de9 0124 783a 3132 .J.........$x:12
0x0040   3030 3963                                   009c
```

You can then use the `show pppoe service-name-tables` command to determine whether you have misspelled the name of the service or perhaps not configured the service at all.
Cause Typical misconfigurations appear in the service name table configurations.

Solution Use the appropriate statements to correct the misconfiguration.

Related Documentation
- Configuring PPPoE Service Name Tables on page 412
- show pppoe service-name-tables
- show pppoe statistics
- show pppoe underlying-interfaces
- PPPoE Overview on page 394
- Junos® OS Ethernet Interfaces

Verifying a PPPoE Configuration

Purpose You can use show commands to display and verify the PPPoE configuration.

Action To verify a PPPoE configuration, you can issue the following operational mode commands:
- show interfaces at-fpc/pic/port extensive
- show interfaces pp0
- show pppoe interfaces
- show pppoe version
- show pppoe service-name-tables
- show pppoe sessions
- show pppoe statistics
- show pppoe underlying-interfaces

For more information about these operational mode commands, see Junos OS Operational Mode Commands.

Related Documentation
- PPPoE Overview on page 394
- Junos® OS Ethernet Interfaces
Ethernet automatic protection switching (APS) is a linear protection scheme designed to protect VLAN based Ethernet networks.

With Ethernet APS, a protected domain is configured with two paths, a working path and a protection path. Both working and protection paths can be monitored using an Operations Administration Management (OAM) protocol like Connectivity Fault Management (CFM). Normally, traffic is carried on the working path (that is, the working path is the active path), and the protection path is disabled. If the working path fails, APS switches the traffic to the protection path, and the protection path becomes the active path.

APS uses two modes of operation, linear 1+1 protection switching architecture and linear 1:1 protection switching architecture. The linear 1+1 protection switching architecture operates with either unidirectional or bidirectional switching. The linear 1:1 protection switching architecture operates with bidirectional switching.

In the linear 1+1 protection switching architecture, the normal traffic is copied and fed to both working and protection paths with a permanent bridge at the source of the protected domain. The traffic on the working and protection transport entities is transmitted simultaneously to the sink of the protected domain, where a selection between the working and protection transport entities is made.

In the linear 1:1 protection switching architecture, the normal traffic is transported on either the working path or on the protection path using a selector bridge at the source of the protection domain. The selector at the sink of the protected domain selects the entity that carries the normal traffic.
Unidirectional and Bidirectional Switching

Unidirectional switching utilizes fully independent selectors at each end of the protected domain. Bidirectional switching attempts to configure the two end points with the same bridge and selector settings, even for a unidirectional failure. Unidirectional switching can protect two unidirectional failures in opposite directions on different entities.

Selective and Merging Selectors

In the linear 1:1 protection switching architecture, where traffic is sent only on the active path, there are two different ways in which the egress direction (the direction out of the protected segment) data forwarding can act: selective selectors and merging selectors. A selective selector forwards only traffic that is received from both the paths regardless of which one is currently active. In other words, with a merging selector the selection of the currently active path only affects the ingress direction. Merging selectors minimize the traffic loss during a protection switch, but they do not guarantee the delivery of the data packets in order.

Revertive and Nonrevertive Switching

For revertive switching, traffic is restored to the working path after the conditions causing the switch have cleared.

For nonrevertive switching, traffic is allowed to remain on the protection path even after the conditions causing the switch have cleared.

NOTE: The configuration on both the provider edge (PE) routers have to be either in revertive mode or non-revertive mode.

Protection Switching Between VPWS Pseudowires

In the scenario diagramed in Figure 29 on page 430, a Virtual Private Wire Service (VPWS) is provisioned between customer sites A and B using a single pseudowire (layer 2 circuit) in the core network, and two Multiprotocol Label Switching (MPLS) Label Switched Paths (LSPs) are provisioned, one for the working path and the other one for the protection path.
path. CFM CCM will be used to monitor the status of each LSP. Provider edge routers PE1 and PE2 run G.8031 Ethernet APS to select one of the LSPs as the active path. Once the active path is elected at the source end of the protection group, PE1 forwards traffic from site A to the elected active path. At the sink end of the protection group, PE2 implements a merging selector, meaning it forwards the traffic coming from both the LSPs to the customer site B.

Figure 30: Connections Terminating on a Different PE

In the scenario represented in Figure 30 on page 431, a VPWS is provisioned between customer sites A and B using two pseudowires (layer 2 circuit) in the core network, one for the working path and the other for the protection path. CFM CCM will be used to monitor the status of each pseudowire.

Provider edge router PE1 and MTU run G.8031 Ethernet APS to select one of the pseudowires as the active path. Once the active path is elected at the source end of the protection group, PE1 forwards the traffic from site A to the elected active path. At the sink end of the protection group, MTU implements a merging selector, meaning it forwards the traffic coming from both the pseudowires to customer site B.

CLI Configuration Statements

```plaintext
[edit protocols protection-group]
ethernet-aps profile1{
    protocol g8031;
    revert-time seconds;
    hold-time 0-10000ms;
    local-request lockout;
}
```

revert-time - By default, protection logic restores the use of the working path once it recovers. The revert-time statement specifies how much time should elapse before the path for data should be switched from Protection to Working once recovery for Working has occurred. A revert-time of zero indicates no reversion. It will default to 300 sec (5 minutes) if not configured.

hold-time - Once a failure is detected, APS waits until this timer expires before initiating the protection switch. The range of the hold-time timer is 0 to 10,000 milliseconds. It will default to zero if not configured.
local-request—Configuring this value to lockout or force-switch will trigger lockout or force-switch operation on the protection groups using this profile.

Related Documentation
- Mapping of CCM Defects to APS Events on page 432
- Example: Configuring Protection Switching Between Pseudowires on page 433

Mapping of CCM Defects to APS Events

The continuity check message (CCM) engine marks the status of working and protected transport entities as either Down, Degraded, or Up.

Down—The monitored path is declared down if any of the following Multiple End Point (MEP) defects occur:
- Interface down
- CCM expiry
- RDI indicating signal failure

Degraded—The monitored path is declared degraded if any of the following MEP defects occur:
- FRR on
- FRR-ACK on

Up—The monitored path is declared up in the absence of any of the above events.

Figure 31: Understanding APS Events

As shown in Figure 31 on page 432, the APS event generator generates the following APS events based on the status of the working and protection paths:

- **SF**—Signal failure on working path
- **RSF**—Working path recovers from signal failure
- **SF-P**—Signal failure on protection path
- **RSF-P**—Protection path recovers from signal failure
Related Documentation
- Ethernet Automatic Protection Switching Overview on page 429
- Example: Configuring Protection Switching Between Psuedowires on page 433

Example: Configuring Protection Switching Between Psuedowires

- Requirements on page 433
- Overview and Topology on page 433
- Configuration on page 433

Requirements

This example uses the following hardware and software components:

- Junos OS Release 11.2 or later
- 2 MX Series PE routers

Overview and Topology

The physical topology of the protection switching between psuedowires example is shown in Figure 32 on page 433.

Figure 32: Topology of a Network Using VPWS Psuedowires

The following definitions describe the meaning of the device abbreviations used in Figure 32 on page 433.

- Customer edge (CE) device—A device at the customer site that provides access to the service provider’s VPN over a data link to one or more provider edge (PE) routers.
- Provider edge (PE) device—A device, or set of devices, at the edge of the provider network that presents the provider’s view of the customer site.

Configuration

Step-by-Step Procedure

To configure protection switching between psuedowires, perform these tasks:

1. Configure automatic protection switching.
protocols {
 protection-group {
 ethernet-aps {
 profile-1 {
 protocol g8031;
 hold-time 1000s;
 revert-time 5m;
 }
 }
 }
}

2. Configure the connectivity fault management.

ethernet {
 oam {
 connectivity-fault-management {
 maintenance-domain md1 {
 level 5;
 }
 }
 }
}

3. Configure the continuity check message for the working path.

maintenance-association W {
 protect maintenance-association P {
 aps-profile profile-1;
 }
 continuity-check {
 interval 1s;
 }
 mep 100 {
 interface ge-1/0/0.0 working;
 direction down;
 auto-discovery;
 }
}

4. Configure the continuity check message for the protection path.

maintenance-association P {
 continuity-check {
 interval 1s;
 }
 mep 100 {
 interface ge-1/0/0.0 protect;
 direction down;
 auto-discovery;
 }
}

Results Check the results of the configuration:

protocols {
 protection-group {
 ethernet-aps {
 profile-1 {
 protocol g8031;
 hold-time 1000s;
 revert-time 5m;
 }
 }
 }
}
ethernet {
 oam {
 connectivity-fault-management {
 maintenance-domain md1 {
 level 5;
 maintenance-association W {
 protect maintenance-association P {
 aps-profile profile-1;
 }
 continuity-check {
 interval 1s;
 }
 mep 100 {
 interface ge-1/0/0.0 working;
 direction down;
 auto-discovery;
 }
 }
 maintenance-association P {
 continuity-check {
 interval 1s;
 }
 mep 100 {
 interface ge-1/0/0.0 protect;
 direction down;
 auto-discovery;
 }
 }
 }
 }
 }
}

Related Documentation
• Ethernet Automatic Protection Switching Overview on page 429
• Mapping of CCM Defects to APS Events on page 432
CHAPTER 32

Configuring Ethernet Ring Protection Switching

- Ethernet Ring Protection Switching Overview on page 437
- Understanding Ethernet Ring Protection Switching Functionality on page 438
- Configuring Ethernet Ring Protection Switching on page 442
- Example: Ethernet Ring Protection Switching Configuration on MX Routers on page 443

Ethernet Ring Protection Switching Overview

Ethernet ring protection switching (ERPS) helps achieve high reliability and network stability. Links in the ring will never form loops that fatally affect the network operation and services availability. The basic idea of an Ethernet ring is to use one specific link to protect the whole ring. This special link is called a *ring protection link (RPL)*. If no failure happens in other links of the ring, the RPL blocks the traffic and is not used. The RPL is controlled by a special node called an *RPL owner*. There is only one RPL owner in a ring. The RPL owner is responsible for blocking traffic over the RPL. Under ring failure conditions, the RPL owner is responsible for unblocking traffic over the RPL. A ring failure results in protection switching of the RPL traffic. An automation protocol suite (APS) protocol is used to coordinate the protection actions over the ring. Protection switching blocks traffic on the failed link and unblocks the traffic on the RPL. When the failure clears, revertive protection switching blocks traffic over the RPL and unblocks traffic on the link on which the failure is cleared.

The following standards provide detailed information on Ethernet ring protection switching:

- IEEE 802.1Q - 1998
- IEEE 802.1D - 2004
- IEEE 802.1Q - 2003
- Draft ITU-T Recommendation G.8032/Y.1344, *Ethernet Ring protection switching*
- ITU-T Y.1731, *OAM functions and mechanisms for Ethernet-based networks*

For additional information on configuring Ethernet ring protection switching on EX Series switches, see Example: Configuring Ethernet Ring Protection Switching on EX Series Switches.
For additional information on configuring Ethernet ring protection switching on MX Series routers, see the *Layer 2 Configuration Guide* for a complete example of Ethernet rings and information about STP loop avoidance and prevention.

Related Documentation

- Understanding Ethernet Ring Protection Switching Functionality on page 438
- Configuring Ethernet Ring Protection Switching on page 442
- Example: Ethernet Ring Protection Switching Configuration on MX Routers on page 443
- Example: Configuring Ethernet Ring Protection Switching on EX Series Switches
- Junos® OS Ethernet Interfaces

Understanding Ethernet Ring Protection Switching Functionality

- Acronyms on page 438
- Ring Nodes on page 439
- Ring Node States on page 439
- Failure Detection on page 439
- Logical Ring on page 439
- FDB Flush on page 439
- Traffic Blocking and Forwarding on page 440
- RAPS Message Blocking and Forwarding on page 440
- Dedicated Signaling Control Channel on page 441
- RAPS Message Termination on page 441
- Multiple Rings on page 442
- Node ID on page 442
- Bridge Domains with the Ring Port (MX Series Routers Only) on page 442

Acronyms

The following acronyms are used in the discussion about Ethernet ring protection switching:

- MA—Maintenance association
- MEP—Maintenance association end point
- OAM—Connectivity fault management daemon
- FDB—MAC forwarding database
- STP—Spanning Tree Protocol
- RAPS—Ring automatic protection switching
- WTR—Wait to restore
- RPL—Ring protection link
Ring Nodes

Multiple nodes are used to form a ring. For each ring node, there are two different node types:

- Normal node—The node has no special role on the ring.
- RPL owner node—The node owns the RPL and blocks or unblocks traffic over the RPL. This node also initiates the RAPS message.

Ring Node States

There are three different states for each node of a specific ring:

- init—Not a participant of a specific ring.
- idle—No failure on the ring; the node is performing normally. For a normal node, traffic is unblocked on both ring ports. For the RPL owner, traffic is blocked on the ring port that connects to the RPL and unblocked on the other ring port.
- protection—A failure occurred on the ring. For normal node, traffic is blocked on the ring port that connects to the failing link and unblocked on working ring ports. For the RPL owner, traffic is unblocked on both ring ports if they connect to non-failure links.

There can be only one RPL owner for each ring. The user configuration must guarantee this, because the APS protocol cannot check this.

Failure Detection

Ethernet ring operation depends on quick and accurate failure detection. The failure condition signal failure (SF) is supported. For SF detection, an Ethernet continuity check MEP must be configured for each ring link. For fast protection switching, a 10-ms transmission period for this MEP group is supported. OAM monitors the MEP group’s MA and reports SF or SF clear events to the Ethernet ring control module. For this MEP group, the action profile must be configured to update the interface device IFF_LINKDOWN flag. OAM updates the IFF_LINKDOWN flag to notify the Ethernet ring control module.

Logical Ring

This feature currently supports only the physical ring, which means that two adjacent nodes of a ring must be physically connected and the ring must operate on the physical interface, not the VLAN.

FDB Flush

When ring protection switching occurs, normally an FDB flush should be executed. The Ethernet ring control module (or, on the switch, the ERPS configuration) should use the same mechanism as the STP to trigger the FDB flush. The Ethernet ring control module controls the ring port physical interface’s default STP index to execute the FDB flush.
Traffic Blocking and Forwarding

Ethernet ring control uses the same mechanism as the STP to control forwarding or discarding of user traffic. The Ethernet ring control module sets the ring port physical interface default STP index state to forwarding or discarding in order to control user traffic.

RAPS Message Blocking and Forwarding

The router or switch treats the ring automatic protection switching (RAPS) message the same as it treats user traffic for forwarding RAPS messages between two ring ports. The ring port physical interface default STP index state also controls forwarding RAPS messages between the two ring ports. Other than forwarding RAPS messages between the two ring ports, as shown in Figure 33 on page 440, the system also needs to forward the RAPS message between the CPU (Ethernet ring control module) and the ring port. This type of forwarding does not depend on the ring port physical interfaces' STP index state. The RAPS message is always sent by the router or switch through the ring ports, as shown in Figure 34 on page 440. A RAPS message received from a discarding ring port is sent to the Ethernet ring control module, but is not sent to the other ring port.

Figure 33: Protocol Packets from the Network to the Router

Incoming ring port, R_APS multicast MAC address
(01-19-a7-00-00-01)
other ring port
(CPU Ethernet ring module)

Figure 34: Protocol Packets from the Router or Switch to the Network

CPU, R_APS multicast MAC address
(01-19-a7-00-00-01)
east ring port
(CPU Ethernet ring module)
west ring port

Juniper Networks EX Series switches and Juniper Networks MX Series routers use different methods to achieve these routes.

The switches use forwarding database entries to direct the RAPS messages. The forwarding database entry (keyed by the RAPS multicast address and VLAN) has a composite next hop associated with it—the composite next hop associates the two ring interfaces with the forwarding database entry and uses the split horizon feature to prevent sending the packet out on the interface that it is received on. This is an example of the forwarding database entry relating to the RAPS multicast MAC (a result of the show ethernet-switching table detail command):

```
VLAN: v1, Tag: 101, MAC: 01:19:a7:00:00:01, Interface: ERP
  Interfaces: ge-0/0/9.0, ge-0/0/3.0
  Type: Static
  Action: Mirror
  Nexthop index: 1333
```
The routers use an implicit filter to achieve ERP routes. Each implicit filter binds to a bridge domain. Therefore, the east ring port control channel and the west ring port control channel of a particular ring instance must be configured to the same bridge domain. For each ring port control channel, a filter term is generated to control RAPS message forwarding. The filter number is the same as the number of bridge domains that contain the ring control channels. If a bridge domain contains control channels from multiple rings, the filter related to this bridge domain will have multiple terms and each term will relate to a control channel. The filter has command parts and control-channel related parts, as follows:

- **Common terms:**
 - term 1: if [Ethernet type is not OAM Ethernet type (0x8902)]
 { accept packet }
 - term 2: if [source MAC address belongs to this bridge]
 { drop packet, our packet loop through the ring and come back to home }
 - term 3: if [destination is the RAPS PDU multicast address (0x01,0x19,0xa7,0x00,0x00,0x01) AND [ring port STP status is DISCARDING]]
 { send to CPU }

- **Control channel related terms:**
 - if [destination is the RAPS PDU multicast address (0x01,0x19,0xa7,0x00,0x00,0x01) AND [ring port STP status is FORWARDING] AND [Incoming interface IFL equal to control channel IFL]]
 { send packet to CPU and send to the other ring port }
 default term: accept packet.

Dedicated Signaling Control Channel

For each ring port, a dedicated signaling control channel with a dedicated VLAN ID must be configured. In Ethernet ring configuration, only this control logical interface is configured and the underlying physical interface is the physical ring port. Each ring requires that two control physical interfaces be configured. These two logical interfaces must be configured in a bridge domain for routers (or the same VLAN for switches) in order to forward RAPS protocol data units (PDUs) between the two ring control physical interfaces. If the router control channel logical interface is not a trunk port, only control logical interfaces will be configured in ring port configuration. If this router control channel logical interface is a trunk port, in addition to the control channel logical interfaces, a dedicated VLAN ID must be configured for routers. For EX Series switches, always specify either a VLAN name or VLAN ID for all links.

RAPS Message Termination

The RAPS message starts from the originating node, travels through the entire ring, and terminates in the originating node unless a failure is present in the ring. The originating node must drop the RAPS message if the source MAC address in the RAPS message belongs to itself. The source MAC address is the node’s node ID.
Multiple Rings

The Ethernet ring control module supports multiple rings in each node (two logical interfaces are part of each ring). However, interconnection of multiple rings is not supported in this release. The interconnection of two rings means that two rings may share the same link or share the same node.

Node ID

For each node in the ring, a unique node ID identifies each node. The node ID is the node’s MAC address.

For routers only, you can configure this node ID when configuring the ring on the node or automatically select an ID such as STP. In most cases, you will not configure this and the router will select a node ID, like STP does. It should be the manufacturing MAC address. The ring node ID should not be changed, even if you change the manufacturing MAC address. Any MAC address can be used if you make sure each node in the ring has a different node ID. The node ID on EX Series switches is selected automatically and is not configurable.

Bridge Domains with the Ring Port (MX Series Routers Only)

On the routers, the protection group is seen as an abstract logical port that can be configured to any bridge domain. Therefore, if you configure one ring port or its logical interface in a bridge domain, you must configure the other related ring port or its logical interface to the same bridge domain. The bridge domain that includes the ring port acts as any other bridge domain and supports the IRB Layer 3 interface.

Related Documentation

- Ethernet Ring Protection Switching Overview on page 437
- Configuring Ethernet Ring Protection Switching on page 442
- Example: Ethernet Ring Protection Switching Configuration on MX Routers on page 443
- Junos® OS Ethernet Interfaces
- Example: Configuring Ethernet Ring Protection Switching on EX Series Switches
- Configuring Ethernet Ring Protection Switching (CLI Procedure)

Configuring Ethernet Ring Protection Switching

The inheritance model follows:

```
protection-group {
  ethernet-ring ring-name {
    node-id mac-address;
    ring-protection-link-owner;
    east-interface {
      control-channel channel-name {
        ring-protection-link-end;
      }
      west-interface {
        node-id mac-address;
      }
    }
  }
```

Copyright © 2012, Juniper Networks, Inc.
control-channel channel-name {
 ring-protection-link-end;
}
data-channel {
 vlan number;
 guard-interval number;
 restore-interval number;
}

For each ring, a protection group must be configured. There may be several rings in each node, so there should be multiple protection groups corresponding to the related Ethernet rings.

Three interval parameters (restore-interval, guard-interval, and hold-interval) can be configured at the protection group level. These configurations are global configurations and apply to all Ethernet rings if the Ethernet ring doesn’t have a more specific configuration for these values. If no parameter is configured at the protection group level, the global configuration of this parameter uses the default value.

Related Documentation
- Ethernet Ring Protection Switching Overview on page 437
- Understanding Ethernet Ring Protection Switching Functionality on page 438
- Example: Ethernet Ring Protection Switching Configuration on MX Routers on page 443
- Example: Configuring Ethernet Ring Protection Switching on EX Series Switches
- Junos® OS Ethernet Interfaces

Example: Ethernet Ring Protection Switching Configuration on MX Routers

This example describes how to configure Ethernet ring protection switching on an MX Series router:

Requirements on page 443
- Ethernet Ring Overview and Topology on page 443
- Configuring a Three-Node Ring on page 444

Requirements

This example uses the following hardware and software components:

- Router node 1 running Junos OS with two Gigabit Ethernet interfaces.
- Router node 2 running Junos OS with two Gigabit Ethernet interfaces.
- Router node 3 running Junos OS with two Gigabit Ethernet interfaces.

Ethernet Ring Overview and Topology

This section describes a configuration example for a three-node ring. The ring topology is shown in Figure 35 on page 444.
Configuring a Three-Node Ring

To configure Ethernet Ring Protection Switching on a three-node ring, perform these tasks:

- Configuring Ethernet Ring Protection Switching on a Three-Node Ring on page 444

Step-by-Step Procedure

1. Configuring Node 1

   ```
   interfaces {
     ge-1/0/1 {
       vlan-tagging;
       encapsulation flexible-ethernet-services;
       unit 1 {
         encapsulation vlan-bridge;
         vlan-id 100;
       }
     }
     ge-1/2/4 {
       vlan-tagging;
       encapsulation flexible-ethernet-services;
       unit 1 {
         encapsulation vlan-bridge;
         vlan-id 100;
       }
     }
   }
   bridge-domains {
     bd1 {
       domain-type bridge;
       interface ge-1/2/4.1;
       interface ge-1/0/1.1;
     }
   }
   protocols {
     protection-group {
       ethernet-ring pg101 {
         node-id 00:01:01:00:00:01;
     }
   ```

The configuration in this section is only for the RAPS channel. The bridge domain for user traffic is the same as the normal bridge domain. The only exception is if a bridge domain includes a ring port, then it must also include the other ring port of the same ring.
ring-protection-link-owner;
 east-interface {
 control-channel ge-1/0/1.1;
 ring-protection-link-end;
 }
 west-interface {
 control-channel ge-1/2/4.1;
 }
}
}
}
}
}
}
}
}
protocols {
 oam {
 ethernet {
 connectivity-fault-management {
 action-profile rme-profile " defaults {
 default-action {
 interface-down;
 }
 }
 maintenance-domain d1 {
 level 0;
 maintenance-association 100 {
 mep 1 {
 interface ge-1/0/1;
 remote-mep 2 {
 action-profile rme-profile " defaults;
 }
 }
 }
 }
 maintenance-domain d2 {
 level 0;
 maintenance-association 100 {
 mep 1 {
 interface ge-1/2/4;
 remote-mep 2 {
 action-profile rme-profile " defaults;
 }
 }
 }
 }
 }
 }
 }
}
}
}
}
2. **Configuring Node 2**

 interfaces {
 ge-1/0/2 {
 vlan-tagging;
 encapsulation flexible-ethernet-services;
 unit 1 {
 encapsulation vlan-bridge;
 vlan-id 100;
 }
 }
 }

ge-1/2/1 {
 vlan-tagging;
 encapsulation flexible-ethernet-services;
 unit 1 {
 encapsulation vlan-bridge;
 vlan-id 100;
 }
}

bridge-domains {
 bd1 {
 domain-type bridge;
 interface ge-1/2/1.1;
 interface ge-1/0/2.1;
 }
}

protocols {
 protection-group {
 ethernet-ring pg102 {
 east-interface {
 control-channel ge-1/0/2.1;
 }
 west-interface {
 control-channel ge-1/2/1.1;
 }
 }
 }
}

protocols {
 oam {
 ethernet {
 connectivity-fault-management {
 action-profile rme-p-defaults {
 default-action {
 interface-down;
 }
 }
 }
 maintenance-domain d1 {
 level 0;
 maintenance-association 100 {
 mep 2 {
 interface ge-1/2/1;
 remote-mep 1 {
 action-profile rme-p-defaults;
 }
 }
 }
 }
 }
 }
}
maintenance-domain d3 {
 level 0;
 maintenance-association 100 {
 mep 1 {
 interface ge-1/0/2;
 remote-mep 2 {
 action-profile rme-defaults;
 }
 }
 }
}

3. Configuring Node 3

interfaces {
 ge-1/0/4 {
 vlan-tagging;
 encapsulation flexible-ethernet-services;
 unit 1 {
 encapsulation vlan-bridge;
 vlan-id 100;
 }
 }
 ge-1/0/3 {
 vlan-tagging;
 encapsulation flexible-ethernet-services;
 unit 1 {
 encapsulation vlan-bridge;
 vlan-id 100;
 }
 }
}

bridge-domains {
 bd1 {
 domain-type bridge;
 interface ge-1/0/4.1;
 interface ge-1/0/3.1;
 }
}

protocols {
 protection-group {
 ethernet-ring pg103 {
 east-interface {
 control-channel ge-1/0/3.1;
 }
 west-interface {
 control-channel ge-1/0/4.1;
 }
 }
 }
}
Examples: Ethernet RPS Output

This section provides output examples based on the configuration shown in “Example: Ethernet Ring Protection Switching Configuration on MX Routers” on page 443. The show commands used in these examples can help verify configuration and correct operation.

Normal Situation—RPL Owner Node

If the ring has no failure, the show command will have the following output for Node 1:

```
user@node1> show protection-group ethernet-ring aps

Ethernet Ring Name  Request/state  No Flush  Ring Protection Link Blocked
pg101               NR             No        Yes

Originator  Remote Node ID
Yes

user@node1> show protection-group ethernet-ring interface

Ethernet ring port parameters for protection group pg101
```
<table>
<thead>
<tr>
<th>Interface</th>
<th>Control Channel</th>
<th>Forward State</th>
<th>Ring Protection Link</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-1/0/1</td>
<td>ge-1/0/1.1</td>
<td>discarding</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>ge-1/2/4</td>
<td>ge-1/2/4.1</td>
<td>forwarding</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Signal Failure Admin State
Clear IFF ready
Clear IFF ready

```
user@node1> show protection-group ethernet-ring node-state
Ethernet ring    APS State    Event         Ring Protection Link Owner
pg101            idle         NR-RB         Yes

Restore Timer  Quard Timer  Operation state
disabled       disabled    operational
```

```
user@node1> show protection-group ethernet-ring statistics group-name pg101
Ethernet Ring statistics for PG pg101
RAPS sent                        : 1
RAPS received                    : 0
Local SF happened:               : 0
Remote SF happened:              : 0
NR event happened:               : 0
NR-RB event happened:            : 1
```

Normal Situation—Other Nodes
For Node 2 and Node 3, the outputs should be the same:

```
user@node2> show protection-group ethernet-ring aps
Ethernet Ring Name  Request/state  No Flush  Ring Protection Link Blocked
pg102               NR             No        Yes

Originator  Remote Node ID
No          00:01:01:00:00:01
```

```
user@node2> show protection-group ethernet-ring interface
Ethernet ring port parameters for protection group pg102

<table>
<thead>
<tr>
<th>Interface</th>
<th>Control Channel</th>
<th>Forward State</th>
<th>Ring Protection Link</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-1/2/1</td>
<td>ge-1/2/1.1</td>
<td>forwarding</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>ge-1/0/2</td>
<td>ge-1/0/2.1</td>
<td>forwarding</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Signal Failure  Admin State
Clear          IFF ready
Clear          IFF ready

```
user@node2> show protection-group ethernet-ring node-state
Ethernet ring APS State Event Ring Protection Link Owner
pg102 idle NR-RB No

Restore Timer Quard Timer Operation state
disabled disabled operational
```

```
user@node2> show protection-group ethernet-ring statistics group-name pg102
Ethernet Ring statistics for PG pg102
RAPS sent : 0
RAPS received : 1
Local SF happened: : 0
Remote SF happened: : 0
NR event happened: : 0
NR-RB event happened: : 1
```

Failure Situation—RPL Owner Node
If the ring has a link failure between Node 2 and Node 3, the show command will have the following outputs for Node 1:
user@node1> show protection-group ethernet-ring aps
Ethernet Ring Name  Request/state  No Flush  Ring Protection Link Blocked
pg101               SF             NO        No

Originator  Remote Node ID
No          00:01:02:00:00:01

user@node1> show protection-group ethernet-ring interface
Ethernet ring port parameters for protection group pg101

<table>
<thead>
<tr>
<th>Interface</th>
<th>Control Channel</th>
<th>Forward State</th>
<th>Ring Protection Link End</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-1/0/1</td>
<td>ge-1/0/1.1</td>
<td>forwarding</td>
<td>Yes</td>
</tr>
<tr>
<td>ge-1/2/4</td>
<td>ge-1/2/4.1</td>
<td>forwarding</td>
<td>No</td>
</tr>
</tbody>
</table>

Signal Failure  Admin State
Clear           IFF ready
Clear           IFF ready

user@node1> show protection-group ethernet-ring node-state
Ethernet ring    APS State    Event         Ring Protection Link Owner
pg101            protected    SF            Yes

Restore Timer  Guard Timer  Operation state
disabled       disabled     operational

user@node1> show protection-group ethernet-ring statistics group-name pg101
Ethernet Ring statistics for PG pg101
RAPS sent                        : 1
RAPS received                    : 1
Local SF happened:               : 0
Remote SF happened:              : 1
NR event happened:               : 0
NR-RB event happened:            : 1

Failure Situation—Other Nodes

user@node2> show protection-group ethernet-ring aps
Ethernet Ring Name  Request/state  No Flush  Ring Protection Link Blocked
pg102               SF             No        No

Originator  Remote Node ID
Yes         00:00:00:00:00:00

user@node2> show protection-group ethernet-ring interface
Ethernet ring port parameters for protection group pg102

<table>
<thead>
<tr>
<th>Interface</th>
<th>Control Channel</th>
<th>Forward State</th>
<th>Ring Protection Link End</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-1/2/1</td>
<td>ge-1/2/1.1</td>
<td>forwarding</td>
<td>No</td>
</tr>
<tr>
<td>ge-1/0/2</td>
<td>ge-1/0/2.1</td>
<td>discarding</td>
<td>No</td>
</tr>
</tbody>
</table>

Signal Failure  Admin State
Clear           IFF ready
set             IFF ready

user@node2> show protection-group ethernet-ring node-state
Ethernet ring    APS State    Event         Ring Protection Link Owner
pg102            idle         NR-RB         No

Restore Timer  Guard Timer  Operation state
disabled       disabled     operational

user@node2> show protection-group ethernet-ring statistics group-name pg102
Ethernet Ring statistics for PG pg101
RAPS sent : 1
RAPS received : 1
Local SF happened: : 1
Remote SF happened: : 0
NR event happened: : 0
NR-RB event happened: : 1

Related Documentation
• Ethernet Ring Protection Switching Overview on page 437
• Understanding Ethernet Ring Protection Switching Functionality on page 438
• Configuring Ethernet Ring Protection Switching on page 442
• Junos® OS Ethernet Interfaces
CHAPTER 33

Example Ethernet Configurations

- Example: Configuring Fast Ethernet Interfaces on page 453
- Example: Configuring Gigabit Ethernet Interfaces on page 453
- Example: Configuring Aggregated Ethernet Interfaces on page 454
- Example: Configuring Aggregated Ethernet Link Protection on page 455

Example: Configuring Fast Ethernet Interfaces

The following configuration is sufficient to get a Fast Ethernet interface up and running. By default, IPv4 Fast Ethernet interfaces use Ethernet version 2 encapsulation.

```
[edit]
user@host# set interfaces fe-5/2/1 unit 0 family inet address local-address
user@host# show
interfaces {
 fe-5/2/1 {
 unit 0 {
 family inet {
 address local-address;
 }
 }
 }
}
```

Related Documentation
- Junos® OS Ethernet Interfaces

Example: Configuring Gigabit Ethernet Interfaces

The following configuration is sufficient to get a Gigabit Ethernet, Tri-Rate Ethernet copper, or 10-Gigabit Ethernet interface up and running. By default, IPv4 Gigabit Ethernet interfaces on MX Series, M Series, and T Series routers use 802.3 encapsulation. J Series Gigabit Ethernet interfaces do not support 802.3 encapsulation.

```
[edit]
user@host# set interfaces ge-2/0/1 unit 0 family inet address local-address
user@host# show
interfaces {
 ge-2/0/1 {
 unit 0 {
```
The M160, M320, M120, T320, and T640 2-port Gigabit Ethernet PIC supports two independent Gigabit Ethernet links.

Each of the two interfaces on the PIC is named:

`ge-fpc/pic/[0.1]`

Each of these interfaces has functionality identical to the Gigabit Ethernet interface supported on the single-port PIC.

Related Documentation

- Junos® OS Ethernet Interfaces

**Example: Configuring Aggregated Ethernet Interfaces**

Aggregated Ethernet interfaces can use interfaces from different FPCs, DPCs, or PICs. The following configuration is sufficient to get an aggregated Gigabit Ethernet interface up and running.

```
[edit chassis]
aggregated-devices {
 ethernet {
 device-count 15;
 }
}

[edit interfaces]
ge-1/3/0 {
 gigether-options {
 802.3adae0;
 }
}
ge-2/0/1 {
 gigether-options {
 802.3adae0;
 }
}

ae0 {
 aggregated-ether-options {
 link-speed 1g;
 minimum-links 1;
 }
}

vlan-tagging;
unit 0 {
 vlan-id 1;
 family inet {
 address 14.0.100.50/24;
 }
```

```
Example: Configuring Aggregated Ethernet Link Protection

The following configuration enables link protection on the ae0 interface, and specifies the ge-1/0/0 interface as the primary link and ge-1/0/1 as the secondary link.

```
[edit interfaces]
ae0 {
    aggregated-ether-options {
        link protection;
    }
}
[edit interfaces]
ge-1/0/0 {
    gigether-options {
        802.3ad ae0 primary;
    }
}
[edit interfaces]
ge-1/0/1 {
    gigether-options {
        802.3ad ae0 backup;
    }
}
```
PART 3

Ethernet Interface Configuration Statements

- Summary of Ethernet Interfaces Configuration Statements on page 459
CHAPTER 34

Summary of Ethernet Interfaces Configuration Statements

The following descriptions explain each of the interface configuration statements. The statements are organized alphabetically.

802.3ad

Syntax

802.3ad {
 ae (primary | backup);
 lacp {
 port-priority;
 }
}

Hierarchy Level
[edit interfaces interface-name fastether-options],
[edit interfaces interface-name gigether-options]

Release Information
Statement introduced before Junos OS Release 7.4.
primary and backup options added in Junos OS Release 8.3.

Description
Specify aggregated Ethernet logical interface number.

Options

ae—Aggregated Ethernet logical interface number.
Range: 0 through 15

primary—For link protection configurations, specify the primary link for egress traffic.
backup—For link protection configurations, specify the backup link for egress traffic.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Configuring an Aggregated Ethernet Interface on page 83
• Configuring Aggregated Ethernet Link Protection on page 110
advertisement-interval

Syntax advertisement-interval seconds;

Hierarchy Level [edit protocols lldp],
 [edit routing-instances routing-instance-name protocols lldp]

 Statement introduced in Junos OS Release 9.0 for EX Series switches.
 Statement introduced in Junos OS Release 11.1 for the QFX Series.

Description For MX Series and T Series routers, configure an interval for LLDP advertisement.
For switches configured for Link Layer Discovery Protocol, configure the frequency at
which LLDP advertisements are sent.

The advertisement-interval value must be greater than or equal to four times the
transmit-delay value, or an error will be returned when you attempt to commit the
configuration.

NOTE: The default value of transmit-delay is 2 seconds. If you configure the
advertisement-interval as less than 8 seconds and you do not configure a
value for transmit-delay, the default value of transmit-delay is automatically
changed to 1 second in order to satisfy the requirement that the
advertisement-interval value must be greater than or equal to four times the
transmit-delay value.

Default Disabled.

Options seconds—Interval between LLDP advertisement.
 Default: 30
 Range: 5 through 32768

Required Privilege Level routing—To view this statement in the configuration.
 routing-control—To add this statement to the configuration.

Related Documentation • Configuring LLDP on page 158
 • show lldp
 • Configuring LLDP (CLI Procedure)
 • Understanding 802.1X and LLDP and LLDP-MED on EX Series Switches
 • transmit-delay
 • Understanding LLDP
agent-specifier

Syntax
agent-specifier {
 aci circuit-id-string ari remote-id-string {
 drop;
 delay seconds;
 terminate;
 dynamic-profile profile-name;
 routing-instance routing-instance-name;
 static-interface interface-name;
 }
}

Hierarchy Level
[edit protocols pppoe service-name-tables table-name service service-name]

Release Information
Statement introduced in Junos OS Release 10.0.
drop, delay, terminate, dynamic-profile, routing-instance, and static-interface options introduced in Junos OS Release 10.2.

Description
Specify the action taken by the interface for the specified agent circuit identifier/agent remote identifier (ACI/ARI) pair when the interface receives a PPPoE Active Discovery Initiation (PADI) control packet that includes the vendor-specific tag with ACI/ARI pair information. You can configure an ACI/ARI pair for a named service, empty service, or any service in a PPPoE service name table. A maximum of 8000 ACI/ARI pairs are supported per PPPoE service name table. You can distribute the ACI/ARI pairs in any combination among the named, empty, and any service entries in the service name table.

You can use an asterisk (*) as a wildcard character to match ACI/ARI pairs, the ACI alone, or the ARI alone. The asterisk can be placed only at the beginning, the end, or both the beginning and end of the identifier string. You can also specify an asterisk alone for either the ACI or the ARI. You cannot specify only an asterisk for both the ACI and the ARI. When you specify a single asterisk as the identifier, that identifier is ignored in the PADI packet.

For example, suppose you care about matching only the ACI and do not care what value the ARI has in the PADI packet, or even whether the packet contains an ARI value. In this case you can set the remote-id-string to a single asterisk. Then the interface ignores the ARI received in the packet and the interface takes action based only on matching the specified ACI.

Default
The default action is terminate.

Options
aci circuit-id-string—Identifier for the agent circuit ID that corresponds to the DSLAM interface that initiated the service request. This is a string of up to 63 characters.

ari remote-id-string—Identifier for the subscriber associated with the DSLAM interface that initiated the service request. This is a string of up to 63 characters.

The remaining statements are explained separately.
aggregate (Gigabit Ethernet CoS Policer)

Syntax
```
aggregate {
  bandwidth-limit bps;
  burst-size-limit bytes;
}
```

Hierarchy Level
```
[edit interfaces interface-name gigether-options ethernet-switch-profile ethernet-policer-profile policer cos-policer-name]
```

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Define a policer to apply to nonpremium traffic.

The statements are explained separately.

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation
- Configuring Gigabit Ethernet Policers on page 317
- premium (Hierarchical Policer) on page 536
- ieee802.1p on page 486
aggregated-ether-options

Syntax

aggregated-ether-options {
 ethernet-switch-profile {
 ethernet-policer-profile {
 input-priority-map {
 ieee802.1p premium [values];
 }
 output-priority-map {
 classifier {
 premium {
 forwarding-class class-name {
 loss-priority (high | low);
 }
 }
 }
 }
 }
 }
 policer cos-policer-name {
 aggregate {
 bandwidth-limit bps;
 burst-size-limit bytes;
 }
 premium {
 bandwidth-limit bps;
 burst-size-limit bytes;
 }
 }
 (mac-learn-enable | no-mac-learn-enable);
}
(flow-control | no-flow-control);
lacp {
 (active | passive);
 link-protection {
 disable;
 (revertive | non-revertive);
 periodic interval;
 system-priority priority;
 system-id system-id;
 }
 link-protection;
 link-speed speed;
 logical-interface-fpc-redundancy;
 (loopback | no-loopback);
 minimum-links number;
 rebalance-periodic time hour:minute <interval hours>;
 source-address-filter {
 mac-address;
 (source-filtering | no-source-filtering);
 }
}
}

Hierarchy Level
[edit interfaces ae]
<table>
<thead>
<tr>
<th>Release Information</th>
<th>Statement introduced before Junos OS Release 7.4.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Configure aggregated Ethernet-specific interface properties.</td>
</tr>
<tr>
<td></td>
<td>The statements are explained separately.</td>
</tr>
<tr>
<td>Required Privilege</td>
<td>interface—To view this statement in the configuration.</td>
</tr>
<tr>
<td>Level</td>
<td>interface-control—To add this statement to the configuration.</td>
</tr>
<tr>
<td>Related Documentation</td>
<td>• Ethernet Interfaces Overview on page 35</td>
</tr>
</tbody>
</table>
auto-negotiation

Syntax
(auto-negotiation | no-auto-negotiation) <remote-fault (local-interface-online | local-interface-offline)>;

Hierarchy Level
[edit interfaces interface-name ether-options],
[edit interfaces interface-name gigether-options],
[edit interfaces ge-pim/0/0 switch-options switch-port port-number]

Release Information
Statement introduced in Junos OS Release 7.6.
Statement introduced in Junos OS Release 8.4 for J Series Services Routers.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 12.2 for ACX Series Universal Access Routers.

Description
For Gigabit Ethernet interfaces on M Series, MX Series, T Series, TX Matrix routers, and ACX Series routers explicitly enable autonegotiation and remote fault. For EX Series switches and J Series Services Routers, explicitly enable autonegotiation only.

• **auto-negotiation**—Enables autonegotiation. This is the default.
• **no-auto-negotiation**—Disable autonegotiation. When autonegotiation is disabled, you must explicitly configure the link mode and speed.

When you configure Tri-Rate Ethernet copper interfaces to operate at 1 Gbps, autonegotiation must be enabled.

NOTE: On EX Series switches, an interface configuration that disables autonegotiation and manually sets the link speed to 1 Gbps is accepted when you commit the configuration; however, if the interface you are configuring is a Tri-Rate Ethernet copper interface, the configuration is ignored as invalid and autonegotiation is enabled by default.

To correct the invalid configuration and disable autonegotiation:

1. Delete the no-auto-negotiation statement and commit the configuration.
2. Set the link speed to 10 or 100 Mbps, set no-auto-negotiation, and commit the configuration.

On J Series Services Routers with universal Physical Interface Modules (uPIMs) and on EX Series switches, if the link speed and duplex mode are also configured, the interfaces use the values configured as the desired values in the negotiation. If autonegotiation is disabled, the link speed and link mode must be configured.

NOTE: On T4000 routers, the auto-negotiation command is ignored for interfaces other than Gigabit Ethernet.
Default

Autonegotiation is automatically enabled. No explicit action is taken after the autonegotiation is complete or if the negotiation fails.

Options

remote-fault (local-interface-online | local-interface-offline)—(Optional) For M Series, MX Series, T Series, TX Matrix routers, and ACX Series routers only, manually configure remote fault on an interface.

Default: local-interface-online

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation

- Gigabit Ethernet Autonegotiation Overview on page 329
- Configuring J Series Services Router Switching Interfaces on page 40
- Configuring Gigabit Ethernet Interfaces (CLI Procedure)
- Configuring Gigabit Ethernet Interfaces (CLI Procedure)

bandwidth-limit (Policer for Gigabit Ethernet Interfaces)

Syntax

bandwidth-limit bps;

Hierarchy Level

[edit interfaces interface-name gigether-options ethernet-switch-profile ethernet-policer-profile policer cos-policer-name aggregate],

[edit interfaces interface-name gigether-options ethernet-switch-profile ethernet-policer-profile policer cos-policer-name premium]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Define a policer to apply to nonpremium traffic.

Options

bps—Bandwidth limit, in bits per second. Specify either as a complete decimal number or as a decimal number followed by the abbreviation k (1000), m (1,000,000), or g (1,000,000,000).

Range: 32 Kbps through 32 gigabits per second (Gbps). For IQ2 and IQ2-E interfaces 65,536 bps through 1 Gbps. For 10-Gigabit IQ2 and IQ2-E interfaces 65,536 bps through 10 Gbps.

Required Privilege Level

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation

- Configuring Gigabit Ethernet Policers on page 317
- burst-size-limit (Policer for Gigabit Ethernet Interfaces) on page 467
burst-size-limit (Policer for Gigabit Ethernet Interfaces)

Syntax
burst-size-limit bytes;

Hierarchy Level
[edit interfaces interface-name gigether-options ethernet-switch-profile ethernet-policer-profile policer cos-policer-name aggregate],
[edit interfaces interface-name gigether-options ethernet-switch-profile ethernet-policer-profile policer cos-policer-name premium]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Define a policer to apply to nonpremium traffic.

Options
- bytes—Burst length.
 Range: 1500 through 100,000,000 bytes

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation
- Configuring Gigabit Ethernet Policers on page 317
- bandwidth-limit (Policer for Gigabit Ethernet Interfaces) on page 466

classifier

Syntax
classifier {
 per-unit-scheduler {
 forwarding-class class-name {
 loss-priority (high | low);
 }
 }
}

Hierarchy Level
[edit interfaces interface-name gigether-options ethernet-switch-profile ethernet-policer-profile output-priority-map]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
For Gigabit Ethernet IQ and 10-Gigabit Ethernet interfaces only, define the classifier for the output priority map to be applied to outgoing frames on this interface.

The statements are explained separately.

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation
- Specifying an Output Priority Map on page 319
- input-priority-map on page 490
delay (PPPoE Service Name Tables)

Syntax
```plaintext
delay seconds;
```

Hierarchy Level
- `[edit protocols pppoe service-name-tables table-name service service-name]`
- `[edit protocols pppoe service-name-tables table-name service service-name agent-specifier aci circuit-id-string ari remote-id-string]`

Release Information
- Statement introduced in Junos OS Release 10.0.
- Support at `[edit protocols pppoe service-name-tables table-name service service-name agent-specifier aci circuit-id-string ari remote-id-string]` hierarchy level introduced in Junos OS Release 10.2.

Description
Configure the PPPoE underlying interface on the router to wait a specified number of seconds after receiving a PPPoE Active Discovery Initiation (PADI) control packet from a PPPoE client before sending a PPPoE Active Discovery Offer (PADO) packet to indicate that it can service the client request.

The router (PPPoE server) does not check whether another server has already sent a PADO packet during the delay period in response to the PPPoE client’s PADI packet. It is up to the PPPoE client to determine whether another PPPoE server has responded to its PADI request, or if it must respond to the delayed PADO packet to establish a PPPoE session.

Options
- `seconds`—Number of seconds that the PPPoE underlying interface waits after receiving a PADI packet from a PPPoE client before sending a PADO packet in response.
 - **Range**: 1 through 120 seconds

Required Privilege Level
- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

Related Documentation
- Configuring PPPoE Service Name Tables on page 412
disable

Syntax disable;

Hierarchy Level
[edit protocols lldp],
[edit protocols lldp interface (all | interface-name)],
[edit routing-instances routing-instance-name protocols lldp],
[edit routing-instances routing-instance-name protocols lldp interface (all | interface-name)]

Description (MX Series and T Series routers only) Disable LLDP globally or on an interface.

For information about interface names, see Interface Naming Overview. For information about interface names for TX Matrix routers, see TX Matrix Router Chassis and Interface Names. For information about FPC numbering on TX Matrix routers, see Routing Matrix with a TX Matrix Router FPC Numbering.

Required Privilege Level routing—To view this statement in the configuration.
 routing-control—To add this statement to the configuration.

Related Documentation
• Configuring LLDP on page 158

drop (PPPoE Service Name Tables)

Syntax drop;

Hierarchy Level
[edit protocols pppoe service-name-tables table-name service service-name],
[edit protocols pppoe service-name-tables table-name service service-name agent-specifier
aci circuit-id-string ari remote-id-string]

Release Information Statement introduced in Junos OS Release 10.0.

Support at [edit protocols pppoe service-name-tables table-name service service-name
agent-specifier aci circuit-id-string ari remote-id-string] hierarchy level introduced in Junos
OS Release 10.2.

Description Direct the router to drop (ignore) a PPPoE Active Discovery Initiation (PADI) control
packet received from a PPPoE client that contains the specified service name tag or
agent circuit identifier/agent remote identifier (ACI/ARI) information. This action
effectively denies the client's request to provide the specified service, or to accept requests
from the subscriber or subscribers represented by the ACI/ARI information.

Required Privilege Level interface—To view this statement in the configuration.
 interface-control—To add this statement to the configuration.

Related Documentation
• Configuring PPPoE Service Name Tables on page 412
dynamic-profile (PPPoE Service Name Tables)

Syntax

dynamic-profile profile-name;

Hierarchy Level

[edit protocols pppoe service-name-tables table-name service service-name],
[edit protocols pppoe service-name-tables table-name service service-name agent-specifier aci circuit-id-string ari remote-id-string]

Release Information

Statement introduced in Junos OS Release 10.2.

Description

Specify a dynamic profile to instantiate a dynamic PPPoE interface. You can associate a dynamic profile with a named service entry, empty service entry, or any service entry configured in a PPPoE service name table, or with an agent circuit identifier/agent remote identifier (ACI/ARI) pair defined for these services.

The dynamic profile associated with a service entry in a PPPoE service name table overrides the dynamic profile associated with the PPPoE underlying interface on which the dynamic PPPoE interface is created.

If you include the `dynamic-profile` statement at the [edit protocols pppoe service-name-tables table-name service service-name agent-specifier aci circuit-id-string ari remote-id-string] hierarchy level, you cannot also include the `static-interface` statement at this level. The `dynamic-profile` and `static-interface` statements are mutually exclusive for ACI/ARI pair configurations.

Options

`profile-name`—Name of the dynamic profile that the router uses to instantiate a dynamic PPPoE interface.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation

- Configuring PPPoE Service Name Tables on page 412
- Assigning a Dynamic Profile and Routing Instance to a Service Name or ACI/ARI Pair for Dynamic PPPoE Interface Creation
ethernet (Protocols OAM)

Syntax ethernet {
 connectivity-fault-management {
 action-profile profile-name {
 default-actions {
 interface-down;
 }
 }
 }
 performance-monitoring {
 delegate-server-processing;
 hardware-assisted-timestamping;
 sla-iterator-profiles {
 profile-name {
 disable;
 calculation-weight {
 delay delay-weight;
 delay-variation delay-variation-weight;
 }
 cycle-time milliseconds;
 iteration-period connections;
 measurement-type (loss | statistical-frame-loss | two-way-delay);
 }
 }
 }
 linktrace {
 age (30m | 10m | 1m | 30s | 10s);
 path-database-size path-database-size;
 }
 maintenance-domain domain-name {
 level number;
 name-format (character-string | none | dns | mac+2octet);
 maintenance-association ma-name {
 short-name-format (character-string | vlan | 2octet | rfc-2685-vpn-id);
 protect-maintenance-association protect-ma-name;
 remote-maintenance-association remote-ma-name;
 continuity-check {
 convey-loss-threshold;
 hold-interval minutes;
 interface-status-tlv;
 interval (10m | 10s | 1m | 1s | 100ms);
 loss-threshold number;
 port-status-tlv;
 }
 mep mep-id {
 auto-discovery;
 direction (up | down);
 interface interface-name (protect | working);
 lowest-priority-defect (all-defects | err-xcon | mac-rem-err-xcon | no-defect | rem-err-xcon | xcon);
 priority number;
 remote-mep mep-id {
 action-profile profile-name;
 sla-iterator-profile profile-name [

Copyright © 2012, Juniper Networks, Inc.
data-tlv-size size;
iteration-count count-value;
priority priority-value;
}
}
}
}
}
}
}
evcs evc-id {
 evc-protocol cfm management-domain domain-id (management-association
 association-id | vpls (routing-instance instance-id);
 remote-uni-count count;
 multipoint-to-multipoint;
}
link-fault-management {
 action-profile profile-name {
 action {
 link-down;
 send-critical-event;
 syslog;
 }
 event {
 link-adjacency-loss;
 link-event-rate {
 frame-error count;
 frame-period count;
 frame-period-summary count;
 symbol-period count;
 }
 protocol-down;
 }
 }
 interface interface-name {
 apply-action-profile;
 link-discovery (active | passive);
 pdu-interval interval;
 pdu-threshold threshold-value;
 remote-loopback;
 event-thresholds {
 frame-error count;
 frame-period count;
 frame-period-summary count;
 symbol-period count;
 }
 negotiation-options {
 allow-remote-loopback;
 no-allow-link-events;
 }
 }
}
lmi {
 status-counter count;
 polling-verification-timer value;
 interface name {
 uni-id uni-name;
Hierarchy Level
[edit protocols oam]

Release Information
Statement introduced in Junos OS Release 8.2.

Description
For Ethernet interfaces on M320, MX Series, and T Series routers, provide fault signaling and detection for 802.3ah Operation, Administration, and Management (OAM) support. The remaining statements are explained separately.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- Enabling IEEE 802.3ah OAM Support on page 294
- Example: Configuring Connectivity Fault Management for a PBB Network on MX Series Routers
ethernet-policer-profile

Syntax

ethernet-policer-profile {
 input-priority-map {
 ieee802.1p premium [values];
 }
 output-priority-map {
 classifier {
 premium {
 forwarding-class class-name {
 loss-priority (high | low);
 }
 }
 }
 }
 policer cos-policer-name {
 aggregate {
 bandwidth-limit bps;
 burst-size-limit bytes;
 }
 premium {
 bandwidth-limit bps;
 burst-size-limit bytes;
 }
 }
}

Hierarchy Level
[edit interfaces interface-name gigether-options ethernet-switch-profile],
[edit interfaces interface-name aggregated-ether-options ethernet-switch-profile]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
For Gigabit Ethernet IQ, 10-Gigabit Ethernet, and Gigabit Ethernet PICs with SFPs (except the 10-port Gigabit Ethernet PIC and the built-in Gigabit Ethernet port on the M7i router), configure a class of service (CoS)-based policer. Policing applies to the inner VLAN identifiers, not to the outer tag. For Gigabit Ethernet interfaces with SFPs (except the 10-port Gigabit Ethernet PIC and the built-in Gigabit Ethernet port on the M7i router), the premium policer is not supported.

The statements are explained separately.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Configuring Gigabit Ethernet Policers on page 317
ethernet-ring

Syntax

```
ethernet-ring ring-name {
  control-vlan (vlan-id | vlan-name);
  data-channel {
    vlan number
  }
  east-interface {
    control-channel channel-name {
      vlan number;
    }
  }
  guard-interval number;
  node-id mac-address;
  restore-interval number;
  ring-protection-link-owner;
  west-interface {
    control-channel channel-name {
      vlan number;
    }
  }
}
```

Hierarchy Level

[edit protocols protection-group]

Release Information

Statement introduced in Junos OS Release 9.4.
Statement introduced in Junos OS Release 12.1 for EX Series switches.

Description

For Ethernet PICs on MX Series routers or for EX Series switches, specify the Ethernet ring in an Ethernet ring protection switching configuration.

Options

ring-name—Name of the Ethernet protection ring.

The remaining statements are explained separately.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation

- Ethernet Ring Protection Switching Overview on page 437
- Example: Configuring Ethernet Ring Protection Switching on EX Series Switches
- Configuring Ethernet Ring Protection Switching (CLI Procedure)
ethernet-switch-profile

Syntax

```
ethernet-switch-profile {
  ethernet-policer-profile {
    input-priority-map {
      ieee802.1p premium [ values ];
    }
    output-priority-map {
      classifier {
        premium {
          forwarding-class class-name {
            loss-priority (high | low);
          }
        }
      }
    }
  }
  policer cos-policer-name {
    aggregate {
      bandwidth-limit bps;
      burst-size-limit bytes;
    }
    premium {
      bandwidth-limit bps;
      burst-size-limit bytes;
    }
    tag-protocol-id tpid;
  }
  (mac-learn-enable | no-mac-learn-enable);
}
```

Hierarchy Level

- [edit interfaces interface-name gigether-options],
- [edit interfaces interface-name aggregated-ether-options]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For Gigabit Ethernet IQ, 10-Gigabit Ethernet IQ2 and IQ2-E, and Gigabit Ethernet PICs with SFPs (except the 10-port Gigabit Ethernet PIC, aggregated Ethernet with Gigabit Ethernet IQ interfaces, and the built-in Gigabit Ethernet port on the M7i router), configure VLAN tag and MAC address accounting and filtering properties.

The statements are explained separately.

NOTE: When you gather interfaces into a bridge domain, the no-mac-learn-enable statement at the [edit interfaces interface-name gigether-options ethernet-switch-profile] hierarchy level is not supported. You must use the no-mac-learning statement at the [edit bridge-domains bridge-domain-name bridge-options interface interface-name] hierarchy level to disable MAC learning on an interface in a bridge domain. For information on disabling MAC learning for a bridge domain, see the *MX Series Layer 2 Configuration Guide*.

Default

If the `ethernet-switch-profile` statement is not configured, Gigabit Ethernet IQ and Gigabit Ethernet PICs with SFPs (except the 10-port Gigabit Ethernet PIC and the built-in Gigabit Ethernet port on the M7i router) behave like Gigabit Ethernet interfaces.

Required Privilege

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

Related Documentation

- Configuring Gigabit Ethernet Policers on page 317
- Configuring MAC Address Filtering on page 321
- Stacking and Rewriting Gigabit Ethernet VLAN Tags Overview on page 129

fast-aps-switch

Syntax

`fast-aps-switch;`

Hierarchy Level

`[edit interfaces interface-name sonet-options aps]`

Release Information

Statement introduced in Junos OS Release 12.1.

Description

(M320 routers with Channelized OC3/STM1 Circuit Emulation PIC with SFP only) Reduce the Automatic Protection Switching (APS) switchover time in Layer 2 circuits.

NOTE:

- Configuring this statement reduces the APS switchover time only when the Layer 2 circuit encapsulation type for the interface receiving traffic from a Layer 2 circuit neighbor is SAToP.
- When the `fast-aps-switch` statement is configured in revertive APS mode, you must configure an appropriate value for revert time to achieve reduction in APS switchover time.
- To prevent the logical interfaces in the data path from being shut down, configure appropriate hold-time values on all the interfaces in the data path that support TDM.
- The `fast-aps-switch` statement cannot be configured when the APS annex-b option is configured.
- The interfaces that have the `fast-aps-switch` statement configured cannot be used in virtual private LAN service (VPLS) environments.

Required Privilege

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

Related Documentation

- Reducing APS Switchover Time in Layer 2 Circuits
fastether-options

Syntax

```plaintext
code
fastether-options {
  802.3ad {
    ae { x (primary | backup);
    lacp {
      port-priority;
    }
  }
  (flow-control | no-flow-control);
  ignore-l3-incompletes;
  ingress-rate-limit rate;
  (loopback | no-loopback);
  mpls {
    pop-all-labels {
      required-depth number;
    }
  }
  source-address-filter {
    mac-address;
  }
  (source-filtering | no-source-filtering);
}
```

Hierarchy Level

[edit interfaces interface-name]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure Fast Ethernet-specific interface properties.

The statements are explained separately.

Required Privilege Level

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Ethernet Interfaces Overview on page 35
fnp

Syntax

fnp {
 interval <100ms | 1s | 10s | 1m | 10m>;;
 loss-threshold number
 interface interface-name {
 domain-id domain-id
 }
}

Hierarchy Level
[edit protocols oam ethernet]

Release Information
Command introduced in Junos OS Release 11.4.

Description
On routers with ge, xe, or ae interfaces, configure an OAM Ethernet failure notification protocol.

Options
interval number—Specifies the time between the transmission of FNP messages.

 loss-threshold number—FNP messages that can be lost before the FNP message is considered aged out and flushed.

 interface interface-name—Name of the Ethernet interface.

 domain-id number—Domain ID of the access network.

Required Privilege
interface—To view this statement in the configuration.

 interface-control—To add this statement to the configuration.

Related Documentation
 • Ethernet Failure Notification Protocol Overview on page 248
 • Configuring the Failure Notification Protocol on page 285
flow-control

Syntax
(flow-control | no-flow-control);

Hierarchy Level
[edit interfaces interface-name aggregated-ether-options],
[edit interfaces interface-name ether-options],
[edit interfaces interface-name fastether-options],
[edit interfaces interface-name gigether-options],
[edit interfaces interface-name multiservice-options],
[edit interfaces interface-range name aggregated-ether-options],
[edit interfaces interface-range name ether-options]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 in EX Series switches.

Description
For aggregated Ethernet, Fast Ethernet, and Gigabit Ethernet interfaces only, explicitly enable flow control, which regulates the flow of packets from the router or switch to the remote side of the connection. Enabling flow control is useful when the remote device is a Gigabit Ethernet switch. Flow control is not supported on the 4-port Fast Ethernet PIC.

NOTE: On the Type 5 FPC, to prioritize control packets in case of ingress oversubscription, you must ensure that the neighboring peers support MAC flow control. If the peers do not support MAC flow control, then you must disable flow control.

Default
Flow control is enabled.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- Configuring Flow Control on page 45
- Configuring Gigabit Ethernet Interfaces (CLI Procedure)
flow-control-options

Syntax
flow-control-options {
 down-on-flow-control;
 dump-on-flow-control;
 reset-on-flow-control;
}

Hierarchy Level [edit interfaces mo-fpc/pic/port multiservice-options]

Release Information Statement introduced before Junos OS Release 8.4.

Description Configure the flow control options for application recovery in case of a prolonged flow control failure.

- down-on-flow-control—Bring interface down during prolonged flow control.
- dump-on-flow-control—Cause core dump during prolonged flow control.
- reset-on-flow-control—Reset interface during prolonged flow control.

Usage Guidelines See Configuring Flow Monitoring.

Required Privilege Level interface—To view this statement in the configuration.
interfaccontrol—To add this statement to the configuration.

forwarding-class (Gigabit Ethernet IQ Classifier)

Syntax forwarding-class class-name {
 loss-priority (high | low);
}

Hierarchy Level [edit interfaces interface-name gigether-options ethernet-switch-profile ethernet-policer-profile output-priority-map classifier premium]

Release Information Statement introduced before Junos OS Release 7.4.

Description For Gigabit Ethernet IQ interfaces only, define forwarding class name and option values.

Options class-name—Name of forwarding class.

The statements are explained separately.

Required Privilege Level interface—To view this statement in the configuration.
interfaccontrol—To add this statement to the configuration.

Related Documentation • Specifying an Output Priority Map on page 319
 • input-priority-map on page 490
 • forwarding-class statement in the Junos OS Class of Service Configuration Guide
forwarding-mode (100-Gigabit Ethernet)

Syntax

```plaintext
forwarding-mode {
  (sa-multicast | ...the following vlan-steering statement...);
  vlan-steering {
    vlan-rule (high-low | odd-even);
  }
}
```

Hierarchy Level
[edit chassis fpc slot pic slot]

Release Information
Statement introduced in Junos OS Release 10.4.

Description
Configure the interoperation mode for 100-Gigabit Ethernet PIC or the 100-Gigabit Ethernet MIC.

The remaining statements are explained separately.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- Configuring 100-Gigabit Ethernet PIC VLAN Steering Mode on page 370
- Configuring 100-Gigabit Ethernet MIC (MIC3-3D-1X100GE-CFP) to Interoperate with 100-Gigabit Ethernet PICs (Type 4 1X100GE PIC for STFPC4 FPC) Using SA Multicast Mode
- Interoperability Between the 100-Gigabit Ethernet PICs PD-1CE-CFP-FPC4 and PF-1CGE-CFP on page 374
- Configuring the Interoperability Between the 100-Gigabit Ethernet PICs PF-1CGE-CFP and PD-1CE-CFP-FPC4 on page 375
- sa-multicast (100-Gigabit Ethernet) on page 545
- vlan-rule (100-Gigabit Ethernet) on page 583
- vlan-steering (100-Gigabit Ethernet) on page 584
framing (10-Gigabit Ethernet Interfaces)

Syntax
framing (lan-phy | wan-phy);

Hierarchy Level
[edit interfaces xe-fpc/pic/port]

Release Information
Statement introduced in Junos OS Release 8.0.

Description
For routers supporting the 10-Gigabit Ethernet interface, configure the framing format. WAN PHY mode is supported on MX240, MX480, MX960, T640, T1600, and T4000 routers only.

Default
Operates in LAN PHY mode.

Options
lan-phy—10GBASE-R interface framing format that bypasses the WIS sublayer to directly stream block-encoded Ethernet frames on a 10-Gigabit Ethernet serial interface.

wan-phy—10GBASE-W interface framing format that allows 10-Gigabit Ethernet wide area links to use fiber-optic cables and SONET devices.

Required Privilege Level
interface—to view this statement in the configuration.
interface-control—to add this statement to the configuration.

Related Documentation
• 10-Gigabit Ethernet Framing Overview on page 355
• Configuring SONET Options for 10-Gigabit Ethernet Interfaces
Syntax gigether-options {
 802.3ad {
 aex (primary | backup);
 lacp {
 port-priority;
 }
 }
 (asynchronous-notification | no-asynchronous-notification);
 (auto-negotiation | no-auto-negotiation) remote-fault <local-interface-online |
 local-interface-offline>;
 (flow-control | no-flow-control);
 ignore-l3-incompletes;
 (loopback | no-loopback);
 mpls {
 pop-all-labels {
 required-depth number;
 }
 }
 no-auto-mdix
 source-address-filter {
 mac-address;
 }
 (source-filtering | no-source-filtering);
 speed
 ethernet-switch-profile {
 (mac-learn-enable | no-mac-learn-enable);
 tag-protocol-id [tpids];
 ethernet-policer-profile {
 input-priority-map {
 ieee802.1p premium [values];
 }
 output-priority-map {
 classifier {
 premium {
 forwarding-class class-name {
 loss-priority (high | low);
 }
 }
 }
 }
 }
 policer cos-policer-name {
 aggregate {
 bandwidth-limit bps;
 burst-size-limit bytes;
 }
 premium {
 bandwidth-limit bps;
 burst-size-limit bytes;
 }
 }
 }
}
Hierarchy Level
[edit interfaces interface-name]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Configure Gigabit Ethernet specific interface properties.
The statements are explained separately.

Required Privilege
 interface—to view this statement in the configuration.
 interface-control—to add this statement to the configuration.

Related Documentation
- Ethernet Interfaces Overview on page 35

gratuitous-arp-reply

Syntax
(gratuitous-arp-reply | no-gratuitous-arp-reply);

Hierarchy Level
[edit interfaces interface-name]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 in EX Series switches.
Statement introduced in Junos OS Release 12.2 for ACX Series Universal Access Routers.

Description
For Ethernet interfaces, enable updating of the ARP cache for replies received in response to gratuitous ARP requests.

Default
Updating of the ARP cache is disabled on all Ethernet interfaces.

Required Privilege
 interface—to view this statement in the configuration.
 interface-control—to add this statement to the configuration.

Related Documentation
- Configuring Gratuitous ARP on page 48
- no-gratuitous-arp-request on page 515
hold-multiplier

Syntax

```
hold-multiplier number;
```

Hierarchy Level

```
[edit protocols lldp],
[edit routing-instances routing-instance-name protocols lldp]
```

Release Information

Description

(MX Series and T Series routers only) Configure a value for the LLDP hold multiplier. Hold timer interval in seconds to cache learned LLDP information before discarding.

Options

- **number**—Advertisement interval multiplier for LLDP cache discard.
 - **Default:** 4 (giving 120 second LLDP cache lifetime with other defaults)
 - **Range:** 2 through 10

Required Privilege Level

- routing—to view this statement in the configuration.
- routing-control—to add this statement to the configuration.

Related Documentation

- Configuring LLDP on page 158

ieee802.1p

Syntax

```
ieee802.1p premium [ values ];
```

Hierarchy Level

```
[edit interfaces interface-name gigether-options ethernet-switch-profile ethernet-policer-profile input-priority-map]
```

Release Information

Statement introduced before Junos Release 7.4.

Description

For Gigabit Ethernet IQ and 10-Gigabit Ethernet interfaces only, configure premium priority values for IEEE 802.1p input traffic.

Options

- **values**—Define IEEE 802.1p priority values to be treated as premium.
 - **Range:** 0 through 7

Required Privilege Level

- interface—to view this statement in the configuration.
- interface-control—to add this statement to the configuration.

Related Documentation

- Specifying an Input Priority Map on page 318
ignore-l3-incompletes

Syntax
ignore-l3-incompletes;

Hierarchy Level
[edit interfaces interface-name fastether-options],
[edit interfaces interface-name gigether-options]

Release Information
Statement introduced in Junos OS Release 9.0.
Statement introduced in Junos OS Release 12.2 for ACX Series Universal Access Routers.

Description
Ignore the counting of Layer 3 incomplete errors on Fast Ethernet, Gigabit Ethernet, and 10-Gigabit Ethernet interfaces.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- Ignoring Layer 3 Incomplete Errors on page 46

ingress-rate-limit

Syntax
 ingress-rate-limit rate;

Hierarchy Level
[edit interfaces interface-name fastether-options]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Perform port-based rate limiting on ingress traffic arriving on Fast Ethernet 8-port, 12-port, and 48-port PICs.

Options
- **rate**—Traffic rate, in megabits per second (Mbps).
 Range: 1 through 100 Mbps

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- Configuring the Ingress Rate Limit on page 50
inner-tag-protocol-id

Syntax
inner-tag-protocol-id tpid;

Hierarchy Level
[edit interfaces interface-name unit logical-unit-number input-vlan-map],
[edit interfaces interface-name unit logical-unit-number output-vlan-map],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number input-vlan-map],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number output-vlan-map]

Release Information
Statement introduced in Junos OS Release 8.1.

Description
For Gigabit Ethernet IQ, IQ2 and IQ2-E interfaces, and for aggregated Ethernet interfaces using Gigabit Ethernet IQ2 and IQ2-E or 10-Gigabit Ethernet PICs on MX Series routers, configure the IEEE 802.1Q TPID value to rewrite for the inner tag. All TPIDs you include in input and output VLAN maps must be among those you specify at the [edit interfaces interface-name gigether-options ethernet-switch-profile tag-protocol-id [tpids]] hierarchy level.

Default
If the inner-tag-protocol-id statement is not configured, the TPID value is 0x8100.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Configuring Inner and Outer TPIDs and VLAN IDs on page 135
inner-vlan-id

Syntax
.inner-vlan-id number;

Hierarchy Level
[edit interfaces interface-name unit logical-unit-number input-vlan-map],
[edit interfaces interface-name unit logical-unit-number output-vlan-map],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number input-vlan-map],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number output-vlan-map]

Release Information
Statement introduced in Junos OS Release 8.1.

Description
For Gigabit Ethernet IQ, IQ2 and IQ2-E interfaces, and for aggregated Ethernet interfaces using Gigabit Ethernet IQ2 and IQ2-E or 10-Gigabit Ethernet PICs on MX Series routers, specify the VLAN ID to rewrite for the inner tag of the final packet.

You cannot include the inner-vlan-id statement with the swap statement, swap-push statement, push-push statement, or push-swap statement and the inner-vlan-id statement at the [edit interfaces interface-name unit logical-unit-number output-vlan-map] hierarchy level. If you include any of those statements in the output VLAN map, the VLAN ID in the outgoing frame is rewritten to the inner-vlan-id statement you include at the [edit interfaces interface-name unit logical-unit-number] hierarchy level.

Options
number—VLAN ID number.

Range: 0 through 4094

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Configuring Inner and Outer TPIDs and VLAN IDs on page 135
inner-vlan-id-range

Syntax

inner-vlan-id-range start start-id end end-id;

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number],

Release Information

Statement introduced in Junos OS Release 9.0.

Description

The range of VLAN IDs to be used in the ATM-to-Ethernet interworking cross-connect. Specify the starting VLAN ID and ending VLAN ID.

Options

start-id—The lowest VLAN ID to be used.

end-id—The highest VLAN ID to be used.

Range: 32 through 4094

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation

• Configuring ATM-to-Ethernet Interworking

input-priority-map

Syntax

input-priority-map {
 ieee802.1p premium [values];
}

Hierarchy Level

[edit interfaces interface-name gigether-options ethernet-switch-profile ethernet-policer-profile]

Release Information

Statement introduced before Junos OS Release 7.4.

Description

For Gigabit Ethernet IQ and 10-Gigabit Ethernet interfaces only, define the input policer priority map to be applied to incoming frames on this interface.

The statements are explained separately.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation

• Specifying an Input Priority Map on page 318
• output-priority-map on page 520
input-vlan-map

See the following sections:

- input-vlan-map (Aggregated Ethernet) on page 491
- input-vlan-map (Gigabit Ethernet IQ and 10-Gigabit Ethernet SFPP) on page 492

input-vlan-map (Aggregated Ethernet)

Syntax

```plaintext
input-vlan-map {
  (pop | push | swap);
  tag-protocol-id tpid;
  vlan-id number;
}
```

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

Release Information

Statement introduced in Junos OS Release 8.2.

Description

For aggregated Ethernet interfaces using Gigabit Ethernet IQ and 10-Gigabit Ethernet IQ2 and IQ2-E interfaces only, define the rewrite profile to be applied to incoming frames on this logical interface.

The statements are explained separately.

Required Privilege

- **Level**
 - interface—To view this statement in the configuration.
 - interface-control—To add this statement to the configuration.

Related Documentation

- Stacking a VLAN Tag on page 138
- output-vlan-map (Aggregated Ethernet)
input-vlan-map (Gigabit Ethernet IQ and 10-Gigabit Ethernet SFPP)

Syntax

```plaintext
input-vlan-map {
  (pop | pop-pop | pop-swap | push | push-push | swap | swap-push | swap-swap);
  inner-tag-protocol-id tpid;
  inner-vlan-id number;
  tag-protocol-id tpid;
  vlan-id number;
}
```

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

Release Information

Statement introduced before Junos OS Release 7.4.
pop-pop, pop-swap, push-push, swap-push, and swap-swap statements introduced in Junos OS Release 8.1.

Description

For Gigabit Ethernet IQ and 10-Gigabit Ethernet SFPP interfaces only, define the rewrite profile to be applied to incoming frames on this logical interface.

The statements are explained separately.

Required Privilege

- **Level**
 - interface—To view this statement in the configuration.
 - interface-control—To add this statement to the configuration.

Related Documentation

- Stacking a VLAN Tag on page 138
- output-vlan-map (Gigabit Ethernet IQ and 10-Gigabit Ethernet with SFPP)
interface

Syntax

interface (all | interface-name) {
 disable;
}

Hierarchy Level
[edit protocols lldp],
[edit routing-instances routing-instance-name protocols lldp]

Release Information

Description
(MX Series and T Series routers only) Specify an LLDP interface.

Options

interface-name—A valid physical interface name.

NOTE: On MX Series and T Series routers, you run LLDP on a physical interface, such as ge-1/0/0, and not at the logical interface (unit) level.

For information about interface names, see Interface Naming Overview. For information about interface names for TX Matrix routers, see TX Matrix Router Chassis and Interface Names. For information about FPC numbering on TX Matrix routers, see Routing Matrix with a TX Matrix Router FPC Numbering.

all—Run LLDP on all interfaces.

disable—Disable LLDP on the specified interface

Required Privilege Level
routing—To view this statement in the configuration.
routing-control—To add this statement to the configuration.

Related Documentation
• Configuring LLDP on page 158
interfaces

Syntax

```
interfaces [ ... ]
```

Hierarchy Level

```
[edit]
```

Release Information

Statement introduced before Junos OS Release 7.4.

Description

Configure interfaces on the router.

Default

The management and internal Ethernet interfaces are automatically configured. You must configure all other interfaces.

Required Privilege

- **Level**
 - `interface`—To view this statement in the configuration.
 - `interface-control`—To add this statement to the configuration.

Related Documentation

- Physical Interface Configuration Statements Overview
- Configuring Aggregated Ethernet Link Protection on page 110
lacz

See the following sections:

- lacp (802.3ad) on page 495
- lacp (Aggregated Ethernet) on page 496

lacz (802.3ad)

Syntax

```plaintext
lacp {
    traceoptions {
        file lacpd;
        flag all;
    }
    ppm (centralized | distributed);
}
```

Hierarchy Level

[edit interfaces interface-name fastether-options 802.3ad],
[edit interfaces interface-name gigether-options 802.3ad]

Release Information

Statement introduced in Junos OS Release 9.3.
The `ppm (centralized | distributed)` option introduced in Junos OS Release 9.4.

Description

For aggregated Ethernet interfaces only, configure the Link Aggregation Control Protocol (LACP).

On MX and T Series routers you can specify distributed or centralized periodic packet management (PPM).

Default

If you do not specify `lacp` as either `active` or `passive`, LACP remains passive.

If you do not specify `ppm` as either `centralized` or `distributed`, PPM is distributed.

Options

- `active`—Initiate transmission of LACP packets.
- `passive`—Respond to LACP packets.
- `ppm`—Set PPM to centralized or distributed.

The remaining statements are explained separately.

Required Privilege

Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation

- Configuring Aggregated Ethernet LACP on page 112
lacp (Aggregated Ethernet)

Syntax

```
lacp {
    (active | passive);
    admin-key key;
    fast-failover;
    link-protection {
        disable;
        (revertive | non-revertive);
    }
    periodic interval;
    system-id mac-address;
    system-priority priority;
}
```

Hierarchy Level

```
[edit interfaces ae
    aggregated-ether-options]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
fast-failover option introduced in Junos OS Release 12.2.

Description

For aggregated Ethernet interfaces only, configure Link Aggregation Control Protocol (LACP).

Default

If you do not specify LACP as either active or passive, LACP remains passive.

Options

active—Initiate transmission of LACP packets.

admin-key number—Specify an administrative key for the router or switch.

```
NOTE: You must also configure Multichassis Link Aggregation (MC-LAG) when you configure the admin-key.
```

passive—Respond to LACP packets.

fast-failover—Specify to override the IEEE 802.3ad standard and allow the standby link to receive traffic. Overriding the default behavior facilitates subsecond failover.

The remaining statements are explained separately.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation

- Configuring Aggregated Ethernet LACP on page 112
- Configuring Aggregated Ethernet LACP (CLI Procedure)
- Example: Configuring Aggregated Ethernet High-Speed Uplinks with LACP Between an EX4200 Virtual Chassis Access Switch and an EX4200 Virtual Chassis Distribution Switch
link-discovery

Syntax
link-discovery (active | passive);

Hierarchy Level
[edit protocols oam ethernet link-fault-management interface interface-name]

Release Information
Statement introduced in Junos OS Release 8.2.

Description
For Ethernet interfaces on M320, M120, MX Series, and T Series routers, specify the discovery mode used for IEEE 802.3ah Operation, Administration, and Management (OAM) support. The discovery process is triggered automatically when OAM 802.3ah functionality is enabled on a port. Link monitoring is done when the interface sends periodic OAM PDUs.

Options
(active | passive)—Passive or active mode. In active mode, the interface discovers and monitors the peer on the link if the peer also supports IEEE 802.3ah OAM functionality. In passive mode, the peer initiates the discovery process. Once the discovery process is initiated, both sides participate in discovery.

Required Privilege
interface—to view this statement in the configuration.
interface-control—to add this statement to the configuration.

Related Documentation
- Configuring Link Discovery on page 294
link-fault-management

Syntax

```plaintext
link-fault-management {
    action-profile profile-name {
        action {
            link-down;
            send-critical-event;
            syslog;
        }
        event {
            link-adjacency-loss;
            link-event-rate {
                frame-error count;
                frame-period count;
                frame-period-summary count;
                symbol-period count;
            }
            protocol-down;
        }
    }
    interface interface-name {
        apply-action-profile profile-name;
        link-discovery (active | passive);
        pdu-interval interval;
        pdu-threshold threshold-value;
        remote-loopback;
        event-thresholds {
            frame-error count;
            frame-period count;
            frame-period-summary count;
            symbol-period count;
        }
        negotiation-options {
            allow-remote-loopback;
            no-allow-link-events;
        }
    }
}
```

Hierarchy Level [edit protocols oam ethernet]

Release Information

Statement introduced in Junos OS Release 8.2.

Description

For Ethernet interfaces on M320, M120, MX Series, and T Series routers, specify fault signaling and detection for IEEE 802.3ah Operation, Administration, and Management (OAM) support.

The remaining statements are explained separately.

Required Privilege

- interface—to view this statement in the configuration.
- interface-control—to add this statement to the configuration.
Related Documentation

- Enabling IEEE 802.3ah OAM Support on page 294
link-mode

Syntax
link-mode *mode* (automatic | full-duplex | half-duplex);

Hierarchy Level
[edit interfaces interface-name],
[edit interfaces interface-name ether-options],
[edit interfaces ge-pim/0/0 switch-options switch-port port-number]

Release Information
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 12.2 for ACX Series Universal Access Routers.

Description
Set the device’s link connection characteristic.

Options
mode—Link characteristics:

- **automatic**—Link mode is negotiated. This is the default for EX Series switches.
- **full-duplex**—Connection is full duplex.
- **half-duplex**—Connection is half duplex.

Default: Fast Ethernet interfaces, except the J Series ePIM Fast Ethernet interfaces, can operate in either full-duplex or half-duplex mode. The router’s management Ethernet interface, **fxp0** or **em0**, the built-in Fast Ethernet interfaces on the FIC (M7i router), and the Gigabit Ethernet ports on J Series Services Routers with uPIMs installed and configured for access switching mode autonegotiate whether to operate in full-duplex or half-duplex mode. Unless otherwise noted here, all other interfaces operate only in full-duplex mode.

NOTE: On J Series ePIM Fast Ethernet interfaces, if you specify half-duplex (or if full-duplex mode is not autonegotiated), the following message is written to the system log: "Half-duplex mode not supported on this PIC, forcing full-duplex mode."

NOTE: On EX Series switches, if no-auto-negotiation is specified in [edit interfaces interface-name ether-options], you can select only full-duplex or half-duplex. If auto-negotiation is specified, you can select any mode.

NOTE: Member links of an aggregated Ethernet bundle must not be explicitly configured with a link mode. You must remove any such link-mode configuration before committing the aggregated Ethernet configuration.
Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation

• Configuring the Link Characteristics on Ethernet Interfaces on page 46
• Understanding Management Ethernet Interfaces
• Configuring Gigabit Ethernet Interfaces (CLI Procedure)
link-protection

Syntax

```
link-protection {
  disable;
  (revertive | non-revertive);
}
```

Hierarchy Level

```
[edit interfaces aex aggregated-ether-options]
[edit interfaces aex aggregated-ether-options lacp]
```

Release Information

Statement introduced in Junos OS Release 8.3.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Support for `disable`, `revertive`, and `non-revertive` statements added in Junos OS Release 9.3.

Description

On the router, for aggregated Ethernet interfaces only, configure link protection. In addition to enabling link protection, a primary and a secondary (backup) link must be configured to specify what links egress traffic should traverse. To configure primary and secondary links on the router, include the `primary` and `backup` statements at the `[edit interfaces ge-fpc/pic/port gigether-options 802.3ad aex]` hierarchy level or the `[edit interfaces xe-fpc/pic/port fastether-options 802.3ad aex]` hierarchy level.

On the switch, you can configure either Junos OS link protection for aggregated Ethernet interfaces or the LACP standards link protection for aggregated Ethernet interfaces.

For Junos OS link protection, specify `link-protection` at the following hierarchy levels:

- `[edit interfaces ge-fpc/pic/port ether-options 802.3ad aex]`
- `[edit interfaces xe-fpc/pic/port ether-options 802.3ad aex]`

For LACP standards link protection, specify `link-protection` at the following hierarchy levels:

- For global LACP link protection, specify at `[edit chassis aggregated-devices ethernet lacp]`
- For a specific aggregated Ethernet interface, specify at `[edit interfaces aeX aggregated-ether-options lacp]`

Options

The statements are explained separately.

Required Privilege Level

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

Related Documentation

- Configuring Aggregated Ethernet Link Protection on page 110
- Configuring LACP Link Protection of Aggregated Ethernet Interfaces (CLI Procedure)
link-speed (Aggregated Ethernet)

Syntax

```
link-speed speed;
```

Hierarchy Level

- [edit interfaces aex aggregated-ether-options],
- [edit interfaces interface-range name aggregated-ether-options],
- [edit interfaces interface-range name aggregated-sonet-options]

Release Information

- Statement introduced before Junos OS Release 7.4.
- Statement introduced in Junos OS Release 9.0 for EX Series switches.

Description

For aggregated Ethernet interfaces only, set the required link speed.

Options

- `speed`—For aggregated Ethernet links, you can specify `speed` in bits per second either as a complete decimal number or as a decimal number followed by the abbreviation `k` (1000), `m` (1,000,000), or `g` (1,000,000,000).

Aggregated Ethernet links on the M120 router can have one of the following speed values:

- `100m`—Links are 100 Mbps.
- `10g`—Links are 10 Gbps.
- `1g`—Links are 1 Gbps.
- `oc192`—Links are OC192 or STM64c.

Aggregated Ethernet links on EX Series switches can be configured to operate at one of the following speed values:

- `10m`
- `100m`
- `1g`
- `10g`

Required Privilege Level

- Interface—to view this statement in the configuration.
- Interface-control—to add this statement to the configuration.

Related Documentation

- Configuring Aggregated Ethernet Link Speed on page 121
- Configuring Aggregated Ethernet Links (CLI Procedure)
- Example: Configuring Aggregated Ethernet High-Speed Uplinks Between an EX4200 Virtual Chassis Access Switch and an EX4200 Virtual Chassis Distribution Switch
lldp

Syntax

```
lldp {
    advertisement-interval seconds;
    disable;
    hold-multiplier number;
    interface (all | interface-name) {
        disable;
    }
    lldp-configuration-notification-interval seconds;
    port-id_subtype {
        interface-name;
        locally-assigned;
    }
    portopo-configuration-maximum-hold-time seconds;
    portopo-configuration-trap-interval seconds;
    traceoptions {
        file filename <files number> <size maximum-file-size> <world-readable |
        no-world-readable>;
        flag flag <disable>;
    }
}
```

Hierarchy Level

[edit protocols],
[edit routing-instances routing-instance-name protocols]

Release Information

Description

(MX Series and T Series routers only) Specify LLDP configuration parameters.

Options

The statements are explained separately.

Required Privilege Level

routing—To view this statement in the configuration.
routeing-control—To add this statement to the configuration.

Related Documentation

• Configuring LLDP on page 158
lldp-configuration-notification-interval

Syntax
```lldp-configuration-notification-interval seconds;```

**Hierarchy Level**
- [edit protocols lldp],
- [edit routing-instances routing-instance-name protocols lldp]

**Release Information**

**Description**
(MX Series and T Series routers only) Configure a time for the period of SNMP trap notifications to the Master Agent to wait regarding changes in database information.

**Options**
- `seconds`—Time for the period of SNMP trap notifications about the LLDP database. This feature is disabled by default.
  - **Range:** 0 through 3600

**Required Privilege Level**
- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

**Related Documentation**
- Configuring LLDP on page 158
### loopback (Aggregated Ethernet, Fast Ethernet, and Gigabit Ethernet)

**Syntax**

```
(loopback | no-loopback);
```

**Hierarchy Level**

- `[edit interfaces interface-name aggregated-ether-options]`
- `[edit interfaces interface-name ether-options]`
- `[edit interfaces interface-name fastether-options]`
- `[edit interfaces interface-name gigether-options]`
- `[edit interfaces interface-range name ether-options]`

**Release Information**

- Statement introduced before Junos OS Release 7.4.
- Statement introduced in Junos OS Release 9.0 for EX Series switches.
- Statement introduced in Junos OS Release 12.2 for ACX Series Universal Access Routers.

**Description**

For aggregated Ethernet, Fast Ethernet, Gigabit Ethernet, and 10-Gigabit Ethernet interfaces, enable or disable loopback mode.

**NOTE:**

By default, local aggregated Ethernet, Fast Ethernet, Tri-Rate Ethernet copper, Gigabit Ethernet, and 10-Gigabit Ethernet interfaces connect to a remote system.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- [Configuring Ethernet Loopback Capability on page 45](#)

---

### loss-priority

**Syntax**

```
loss-priority (high | low);
```

**Hierarchy Level**

- `[edit interfaces interface-name gigether-options ethernet-switch-profile ethernet-policer-profile output-priority-map classifier premium forwarding-class class-name]`

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

Specify the packet loss priority value.

**Options**

- `high`—Packet has high loss priority.
- `low`—Packet has low loss priority.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- [Specifying an Output Priority Map on page 319](#)
mac-learn-enable

Syntax (mac-learn-enable | no-mac-learn-enable);

Hierarchy Level [edit interfaces interface-name gigether-options ethernet-switch-profile]

Release Information Statement introduced before Junos OS Release 7.4.

Description For Gigabit Ethernet IQ and Gigabit Ethernet PICs with SFPs (except the 10-port Gigabit Ethernet PIC and the built-in Gigabit Ethernet port on the M7i router), and for Gigabit Ethernet DPCs on MX Series routers, configure whether source and destination MAC addresses are dynamically learned:

- **mac-learn-enable**—Allow the interface to dynamically learn source and destination MAC addresses.
- **no-mac-learn-enable**—Prohibit the interface from dynamically learning source and destination MAC addresses.

MAC address learning is based on source addresses. You can start accounting for traffic after there has been traffic sent from the MAC address. Once the MAC address is learned, the frames and bytes transmitted to or received from the MAC address can be tracked.

**NOTE:** When you gather interfaces into a bridge domain, the no-mac-learn-enable statement at the [edit interfaces interface-name gigether-options ethernet-switch-profile] hierarchy level is not supported. You must use the no-mac-learning statement at the [edit bridge-domains bridge-domain-name bridge-options interface interface-name] hierarchy level to disable MAC learning on an interface in a bridge domain. For information on disabling MAC learning for a bridge domain, see MX Series Layer 2 Configuration Guide.

Required Privilege Level

- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.

Related Documentation

- Configuring MAC Address Filtering on page 321
max-sessions (PPPoE Service Name Tables)

**Syntax**

```
max-sessions number;
```

**Hierarchy Level**

```
[edit protocols pppoe service-name-tables table-name service service-name],
```

**Release Information**

Statement introduced in Junos OS Release 10.2.

**Description**

Configure the maximum number of active PPPoE sessions using either static or dynamic PPPoE interfaces that the router can establish with the specified named service, empty service, or any service entry in a PPPoE service name table. The router maintains a count of active PPPoE sessions for each service entry to determine when the maximum sessions limit has been reached.

The router uses the max-sessions value for a PPPoE service name table entry in conjunction with the max-sessions value configured for the PPPoE underlying interface, and with the maximum number of PPPoE sessions supported on your router. If your configuration exceeds any of these maximum session limits, the router is unable to establish the PPPoE session.

**Options**

`number`—Maximum number of active PPPoE sessions that the router can establish with the specified PPPoE service name table entry, in the range 1 to the platform-specific maximum PPPoE sessions supported for your router. The default value is equal to the maximum number of PPPoE sessions supported on your routing platform.

For information about scaling values for PPPoE interfaces, access the Subscriber Management Scaling Values (XLS) spreadsheet from the Downloads box on the Junos OS Subscriber Management pathway page for the current release.

**Required Privilege Level**

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

**Related Documentation**

- Limiting the Number of Active PPPoE Sessions Established with a Specified Service Name on page 418
- Configuring PPPoE Service Name Tables on page 412
- PPPoE Maximum Session Limit Overview
- For information about configuring dynamic PPPoE subscriber interfaces, see the Junos OS Subscriber Management, Release 12.3
- For information about configuring static PPPoE interfaces, see the Junos® OS Ethernet Interfaces
max-sessions-vsa-ignore (Static and Dynamic Subscribers)

**Syntax**
max-sessions-vsa-ignore;

**Hierarchy Level**
[edit dynamic-profiles profile-name interfaces demux0 unit logical-unit-number family pppoe],
[edit dynamic-profiles profile-name interfaces interface-name unit logical-unit-number family pppoe],
[edit dynamic-profiles profile-name interfaces interface-name unit logical-unit-number pppoe-underlying-options],
[edit interfaces interface-name unit logical-unit-number family pppoe],
[edit interfaces interface-name unit logical-unit-number pppoe-underlying-options],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family pppoe],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number pppoe-underlying-options]

**Release Information**
Statement introduced in Junos OS Release 11.4.

**Description**
Configure the router to ignore (clear) the value returned by RADIUS in the Max-Clients-Per-Interface Juniper Networks vendor-specific attribute (VSA) [26-143], and restore the PPPoE maximum session value on the underlying interface to the value configured in the CLI with the `max-sessions` statement. The PPPoE maximum session value specifies the maximum number of concurrent static or dynamic PPPoE logical interfaces (sessions) that the router can activate on the PPPoE underlying interface, or the maximum number of active static or dynamic PPPoE sessions that the router can establish with a particular service entry in a PPPoE service name table.

**Default**
If you do not include the `max-sessions-vsa-ignore` statement, the maximum session value returned by RADIUS in the Max-Clients-Per-Interface VSA takes precedence over the PPPoE maximum session value configured with the `max-sessions` statement.

**Required Privilege Level**
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

**Related Documentation**
- Limiting the Maximum Number of PPPoE Sessions on the Underlying Interface
- PPPoE Maximum Session Limit Overview
  - Guidelines for Using PPPoE Maximum Session Limit from RADIUS
  - Juniper Networks VSAs Supported by the AAA Service Framework
  - For information about configuring dynamic PPPoE subscriber interfaces, see the Junos OS Subscriber Management, Release 12.3
  - For information about configuring static PPPoE interfaces, see the Junos® OS Ethernet Interfaces
maximun-links

Syntax  maximum-links maximum-links-limit;

Hierarchy Level [edit chassis aggregated-devices]

Release Information  Statement introduced in Junos OS Release 11.1 for T Series routers.
Statement introduced in Junos OS Release 12.2 for the M Series and MX Series routers.

Description  Configure the maximum links limit for aggregated devices.

Options  maximum-links-limit—Maximum links limit for aggregated devices.
Range: 16, 32; (PTX Series systems only in Junos OS Release 12.3) 64

Required Privilege Level  interface—to view this statement in the configuration.
interface-control—to add this statement to the configuration.

Related Documentation  • Configuring Junos OS for Supporting Aggregated Devices on page 84
• Configuring an Aggregated Ethernet Interface on page 83
mep

Syntax

mep mep-id {
    auto-discovery;
    direction (up | down);
    interface interface-name (protect | working);
    priority number;
    remote-mep mep-id {
        action-profile profile-name;
        sla-iterator-profile profile-name {
            data-tlv-size size;
            iteration-count count-value;
            priority priority-value;
        }
    }
}

Hierarchy Level
[edit protocols oam ethernet connectivity-fault-management maintenance-domain md-name
  maintenance-association ma-name]

Release Information
Statement introduced in Junos OS Release 8.4.

Description
The numeric identifier of the maintenance association end point (MEP) within the maintenance association.

Options
mep-id—Specify the numeric identifier of the MEP.

Range: 1 through 8191

The remaining statements are explained separately.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Configuring a Maintenance Endpoint on page 191
• Example: Configuring Connectivity Fault Management for a PBB Network on MX Series Routers
**minimum-links**

**Syntax**
minimum-links number;

**Hierarchy Level**
- [edit interfaces ae] aggregated-ether-options]
- [edit interfaces ae aggregated-sonet-options]
- [edit interfaces interface-name mlfr-uni-nni-bundle-options]
- [edit interfaces interface-name unit logical-unit-number]
- [edit interfaces interface-range range aggregated-ether-options]
- [edit interfaces interface-range range aggregated-sonet-options]
- [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

**Release Information**
Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**
For aggregated Ethernet, SONET/SDH, multilink, link services, and voice services interfaces only, set the minimum number of links that must be up for the bundle to be labeled up.

**Options**

*number*—Number of links.

**Range:**
- On M120, M320, MX Series, T Series, and TX Matrix routers with Ethernet interfaces, the valid range for minimum-links number is 1 through 16. When the maximum value (16) is specified, all configured links of a bundle must be up for the bundle to be labeled up.
- On all other routers and on EX Series switches, other than EX8200 switches, the range of valid values for minimum-links number is 1 through 8. When the maximum value (8) is specified, all configured links of a bundle must be up for the bundle to be labeled up.
- On EX8200 switches, the range of valid values for minimum-links number is 1 through 12. When the maximum value (12) is specified, all configured links of a bundle must be up for the bundle to be labeled up.

**Default:**
1

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**
- Configuring Aggregated Ethernet Minimum Links on page 122
- Configuring Aggregated SONET/SDH Minimum Links
- Configuring Aggregated Ethernet Links (CLI Procedure)
- Example: Configuring Aggregated Ethernet High-Speed Uplinks Between an EX4200 Virtual Chassis Access Switch and an EX4200 Virtual Chassis Distribution Switch
- Junos Services Interfaces Configuration Release 11.2
mip-half-function

Syntax:  
mip-half-function (none | default | explicit);

Hierarchy Level:  
[edit protocols oam ethernet connectivity-fault-management maintenance-domain md-name],  
[edit protocols oam ethernet connectivity-fault-management maintenance-association ma-name]

Release Information:  

Description:  
Specify the OAM Ethernet CFM maintenance domain MIP half functions.

NOTE: Whenever a MIP is configured and a bridge domain is mapped to multiple maintenance domains or maintenance associations, it is essential that the mip-half-function value for all maintenance domains and maintenance associations are the same.

Options:  
none—Specify to not use the mip-half-function.

default—Specify to use the default mip-half-function.

explicit—Specify an explicit mip-half-function.

Required Privilege Level:  
interface—to view this statement in the configuration.  
interface-control—to add this statement to the configuration.

Related Documentation:  
• Creating the Maintenance Domain on page 184  
• Example: Configuring Connectivity Fault Management for a PBB Network on MX Series Routers  
• maintenance-domain
### mpls (Interfaces)

**Syntax**

```plaintext
mpls {
 pop-all-labels {
 required-depth number;
 }
}
```

**Hierarchy Level**

- [edit interfaces interface-name atm-options],
- [edit interfaces interface-name sonet-options],
- [edit interfaces interface-name fastether-options],
- [edit interfaces interface-name gigether-options]

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

For passive monitoring on ATM and SONET/SDH interfaces and 10-Gigabit Ethernet interfaces in WAN PHY mode, process incoming IP packets that have MPLS labels.

The remaining statements are explained separately.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- Removing MPLS Labels from Incoming Packets
- Removing MPLS Labels from Incoming Packet
- Junos Services Interfaces Configuration Release 11.2
### no-auto-mdix

**Syntax**  
```  
no-auto-mdix;
```

**Hierarchy Level**  
```  
[edit interface ge-fpc/port/pic gigether-options]
```

**Release Information**  
- Statement introduced in Junos OS Release 9.5.
- Statement introduced in Junos OS Release 12.2 for ACX Series Universal Access Routers.

**Description**  
Disable the Auto MDI/MDIX feature.

MX Series routers with Gigabit Ethernet interfaces automatically detect MDI and MDIX port connections. Use this statement to override the default setting. Remove this statement to return to the default setting.

**Default**  
Auto MDI/MDIX is enabled by default.

**Options**  
There are no options for this statement.

**Required Privilege Level**  
- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**  
- Ethernet Interfaces Overview on page 35
- `gigether-options` on page 484.

### no-gratuitous-arp-request

**Syntax**  
```  
no-gratuitous-arp-request;
```

**Hierarchy Level**  
```  
[edit interfaces interface-name]
```

**Release Information**  
- Statement introduced in Junos OS Release 9.6 for EX Series switches.
- Statement introduced in Junos OS Release 12.2 for ACX Series Universal Access Routers.

**Description**  
For Ethernet interfaces, do not respond to gratuitous ARP requests.

**Default**  
Gratuitous ARP responses are enabled on all Ethernet interfaces.

**Required Privilege Level**  
- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**  
- Configuring Gratuitous ARP on page 48
- `gratuitous-arp-reply` on page 485
no-send-pads-ac-info

**Syntax**

no-send-pads-ac-info;

**Hierarchy Level**

[edit protocols pppoe]

**Release Information**

Statement introduced in Junos OS Release 12.2.

**Description**

Prevent the router from sending the AC-Name and AC-Cookie tags in the PPPoE Active Discovery Session (PADS) packet. When you configure this statement, it affects PADS packets sent on all PPPoE interfaces configured on the router after the command is issued; it has no effect on previously created PPPoE interfaces. By default, the AC-Name and AC-Cookie tags are transmitted in the PADS packet, along with the Service-Name, Host-Uniq, Relay-Session-Id, and PPP-Max-Payload tags.

**NOTE:** In Junos OS Release 12.1 and earlier, only the Service-Name, Host-Uniq, Relay-Session-Id, and PPP-Max-Payload tags are contained in the PADS packet by default. The AC-Name and AC-Cookie tags are not transmitted in the PADS packet by default.

**Required Privilege Level**

interface—to view this statement in the configuration.
interface-control—to add this statement to the configuration.

**Related Documentation**

• Disabling the Sending of PPPoE Access Concentrator Tags in PADS Packets on page 421

no-send-pads-error

**Syntax**

no-send-pads-error;

**Hierarchy Level**

[edit protocols pppoe]

**Release Information**

Statement introduced in Junos OS Release 12.3.

**Description**

Discard PADR messages to prevent transmission of PADS control packets with AC-System-Error tags.

**Required Privilege Level**

interface—to view this statement in the configuration.
interface-control—to add this statement to the configuration.

**Related Documentation**

• Discarding PADR Messages to Accommodate Abnormal CPE Behavior on page 421
Syntax  

oam  

ethernet  
  connectivity-fault-management {  
    action-profile profile-name {  
      default-actions {  
        interface-down;  
      }  
    }  
  }  
  performance-monitoring {  
    delegate-server-processing;  
    hardware-assisted-timestamping;  
    sla-iterator-profiles {  
      profile-name {  
        disable;  
        calculation-weight {  
          delay delay-weight;  
          delay-variation delay-variation-weight;  
        }  
        cycle-time milliseconds;  
        iteration-period connections;  
        measurement-type (loss | statistical-frame-loss | two-way-delay);  
      }  
    }  
  }  
  linktrace {  
    age (30m | 10m | 1m | 30s | 10s);  
    path-database-size path-database-size;  
  }  
  maintenance-domain domain-name {  
    level number;  
    name-format (character-string | none | dns | mac+2octet);  
    maintenance-association ma-name {  
      short-name-format (character-string | vlan | 2octet | rfc-2685-vpn-id);  
      protect-maintenance-association protect-ma-name;  
      remote-maintenance-association remote-ma-name;  
      continuity-check {  
        convey-loss-threshold;  
        hold-interval minutes;  
        interface-status-tlv;  
        interval (10m | 10s | 1m | 1s | 100ms);  
        loss-threshold number;  
        port-status-tlv;  
      }  
      mep mep-id {  
        auto-discovery;  
        direction (up | down);  
        interface interface-name (protect | working);  
        lowest-priority-defect (all-defects | err-xcon | mac-rem-err-xcon | no-defect |  
          rem-err-xcon | xcon );  
        priority number;  
        remote-mep mep-id {  
          action-profile profile-name;  
        }  
      }  
    }  
  }
sla-iterator-profile profile-name {
  data-tlv-size size;
  iteration-count count-value;
  priority priority-value;
}
}
}
}
}
}
}
}
link-fault-management {
  action-profile profile-name {
    action {
      link-down;
      send-critical-event;
      syslog;
    }
    event {
      link-adjacency-loss;
      link-event-rate {
        frame-error count;
        frame-period count;
        frame-period-summary count;
        symbol-period count;
      }
      protocol-down;
    }
  }
  interface interface-name {
    apply-action-profile
    link-discovery (active | passive);
    pdu-interval interval;
    pdu-threshold threshold-value;
    remote-loopback;
    event-thresholds {
      frame-error count;
      frame-period count;
      frame-period-summary count;
      symbol-period count;
    }
    negotiation-options {
      allow-remote-loopback;
      no-allow-link-events;
    }
  }
}
}

Hierarchy Level [edit protocols]

Release Information
Statement introduced in Junos OS Release 8.2.
Statement introduced in Junos OS Release 12.1 for PTX Series Packet Transport Switches.
For Ethernet interfaces on M320, M120, MX Series, and T Series routers and PTX Series Packet Transport Switches, provide IEEE 802.3ah Operation, Administration, and Maitenance (OAM) support.

The remaining statements are explained separately.

### Required Privilege Level
- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.

### Related Documentation
- IEEE 802.3ah OAM Link-Fault Management Overview on page 291
- Configuring Ethernet 802.1ag OAM on PTX Series Packet Transport Switches on page 389

### optics-options

#### Syntax
```
optics-options {
 alarm low-light-alarm {
 (link-down | syslog);
 }
 warning low-light-warning {
 (link-down | syslog);
 }
 wavelength nm;
}
```

#### Hierarchy Level
```
[edit interfaces interface-name]
```

#### Release Information
Statement introduced before Junos OS Release 7.4. 
Alarm option and warning options introduced in Junos OS Release 10.0.
Statement introduced in Junos OS Release 12.1 for EX Series switches.

#### Description
For 10-Gigabit Ethernet dense wavelength-division multiplexing (DWDM) interfaces only, configure full C-band International Telecommunication Union (ITU)-Grid tunable optics.

#### Options
The remaining statements are explained separately.

#### Required Privilege Level
- **interface**—To view this statement in the configuration.
- **interface-control**—To add this statement to the configuration.

#### Related Documentation
- 10-Gigabit Ethernet DWDM Interface Wavelength Overview on page 353
output-priority-map

Syntax  
output-priority-map {
  classifier {
    premium {
      forwarding-class class-name {
        loss-priority (high | low);
      }
    }
  }
}

Hierarchy Level  [edit interfaces interface-name gigether-options ethernet-switch-profile ethernet-policer-profile]

Release Information  Statement introduced before Junos OS Release 7.4.

Description  For Gigabit Ethernet IQ and 10-Gigabit Ethernet interfaces only, define the output policer priority map to be applied to outgoing frames on this interface.

The statements are explained separately.

Required Privilege Level  interface—to view this statement in the configuration.
interface-control—to add this statement to the configuration.

Related Documentation  
  • Specifying an Output Priority Map on page 319
  • input-priority-map on page 490
pado-advertise

Syntax  
pado-advertise;

Hierarchy Level  
[edit protocols pppoe]

Release Information  
Statement introduced in Junos OS Release 10.2.

Description  
Enable named services configured in PPPoE service name tables to be advertised in PPPoE Active Discovery Offer (PADO) control packets. By default, advertisement of named services in PADO packets is disabled.

NOTE: If you enable advertisement of named services in PADO packets, make sure the number and length of of all advertised service entries does not exceed the maximum transmission unit (MTU) size of the PPPoE underlying interface.

Required Privilege
Level  
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation  
• Configuring PPPoE Service Name Tables on page 412
• Enabling Advertisement of Named Services in PADO Control Packets on page 420

pdu-interval

Syntax  
pdu-interval interval;

Hierarchy Level  
[edit protocols oam ethernet link-fault-management interface interface-name]

Release Information  
Statement introduced in Junos OS Release 8.2.

Description  
For Ethernet interfaces on M320, M120, MX Series, and T Series routers, specify the periodic OAM PDU sending interval for fault detection. Used for IEEE 802.3ah Operation, Administration, and Management (OAM) support.

Options  
interval—Periodic OAM PDU sending interval.
  Range: 100 through 1000 milliseconds
  Default: 1000 milliseconds

Required Privilege
Level  
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation  
• Configuring the OAM PDU Interval on page 295
### pdu-threshold

**Syntax**

```
pdu-threshold threshold-value;
```

**Hierarchy Level**

```
[edit protocols oam ethernet link-fault-management interface interface-name]
```

**Release Information**

Statement introduced in Junos OS Release 8.2.

**Description**

For Ethernet interfaces on M320, M120, MX Series, and T Series routers, specify the number of OAM PDUs to miss before an error is logged. Used for IEEE 802.3ah Operation, Administration, and Management (OAM) support.

**Options**

- `threshold-value` — The number of PDUs missed before declaring the peer lost.
  - **Range:** 3 through 10 PDUs
  - **Default:** 3 PDUs

**Required Privilege Level**

- `interface` — To view this statement in the configuration.
- `interface-control` — To add this statement to the configuration.

**Related Documentation**

- [Configuring the OAM PDU Threshold on page 296](#)
**periodic**

**Syntax**

```
periodic interval;
```

**Hierarchy Level**

- [edit interfaces aex aggregated-ether-options lacp],
- [edit interfaces interface-range name aggregated-ether-options lacp]

**Release Information**

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.

**Description**

For aggregated Ethernet interfaces only, configure the interval for periodic transmission of LACP packets.

**Options**

- `interval`—Interval for periodic transmission of LACP packets.
  - `fast`—Transmit packets every second.
  - `slow`—Transmit packets every 30 seconds.

**Default:** `fast`

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- Configuring Aggregated Ethernet LACP on page 112
- Configuring Aggregated Ethernet LACP (CLI Procedure)
- Example: Configuring Aggregated Ethernet High-Speed Uplinks Between an EX4200 Virtual Chassis Access Switch and an EX4200 Virtual Chassis Distribution Switch
policer

See the following sections:

- policer (CFM Firewall) on page 524
- policer (CFM Global) on page 525
- policer (CFM Session) on page 526
- policer (CoS) on page 527
- policer (MAC) on page 528

policer (CFM Firewall)

Syntax

```
policer cfm-policer {
 if-exceeding {
 bandwidth-limit 8k;
 burst-size-limit 2k;
 }
 then discard;
}
```

Hierarchy Level

[edit firewall]

Release Information

Statement introduced in Junos OS Release 10.0.

Description

Attach an explicit policer to CFM sessions.

Required Privilege Level

interface—to view this statement in the configuration.
interface-control—to add this statement to the configuration.

Related Documentation

- Configuring Rate Limiting of Ethernet OAM Messages on page 225
- policer (CFM Global) on page 525
- policer (CFM Session) on page 526
policer (CFM Global)

Syntax

```plaintext
policer {
 all cfm-policer-name;
 continuity-check cfm-policer-name;
 other cfm-policer-name;
}
```

Hierarchy Level
[edit protocols oam ethernet connectivity-fault-management]

Release Information
Statement introduced in Junos OS Release 10.0.

Description
Specify a policer at the global level to police the CFM traffic belonging to all sessions.

Options
- `continuity-check cfm-policer-name`—Police all continuity check packets with the policer specified.
- `other cfm-policer-name`—Police all non-continuity check packets with the policer specified.
- `all cfm-policer-name`—Police all CFM packets with policer specified. If the `all` option is used, then you cannot specify above two options.

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation
- Configuring Rate Limiting of Ethernet OAM Messages on page 225
- policer (CFM Session) on page 526
policer (CFM Session)

Syntax

```plaintext
policer {
 all cfm-policer-name;
 continuity-check cfm-policer-name;
 other cfm-policer-name;
}
```

Hierarchy Level

```plaintext
[edit protocols oam ethernet connectivity-fault-management maintenance-domain name
 level number maintenance-association name]
```

Release Information

Statement introduced in Junos OS Release 10.0.

Description

Specify a separate policer to rate-limit packets specific to that session.

Options

- `continuity-check cfm-policer-name`—Police continuity check packets belonging to this session.
- `other cfm-policer-name`—Police all non-continuity check packets belonging to this session.
- `all cfm-policer-name`—Police all CFM packets belonging to this session. If the `all` option is used, then you cannot specify the above two options.

Required Privilege

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

Related Documentation

- Configuring Rate Limiting of Ethernet OAM Messages on page 225
- `policer (CFM Global)` on page 525
policer (CoS)

Syntax  
```
policer cos-policer-name {
 aggregate {
 bandwidth-limit bps;
 burst-size-limit bytes;
 }
 premium {
 bandwidth-limit bps;
 burst-size-limit bytes;
 }
}
```

Hierarchy Level  
```
[edit interfaces interface-name gigether-options ethernet-switch-profile ethernet-policer-profile]
```

Release Information  
Statement introduced before Junos OS Release 7.4.

Description  
For Gigabit Ethernet IQ and Gigabit Ethernet PICs with SFPs (except the 10-port Gigabit Ethernet PIC and the built-in Gigabit Ethernet port on the M7i router), define a CoS policer template to specify the premium bandwidth and burst-size limits, and the aggregate bandwidth and burst-size limits. The premium policer is not supported on MX Series routers or for Gigabit Ethernet interfaces with SFPs (except the 10-port Gigabit Ethernet PIC and the built-in Gigabit Ethernet port on the M7i router).

Options  
```
cos-policer-name—Name of one policer to specify the premium bandwidth and burst-size limits, and the aggregate bandwidth and burst-size limits.

The remaining statements are explained separately.
```

Required Privilege  
```
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
```

Related Documentation  
- Configuring Gigabit Ethernet Policers on page 317
policer (MAC)

**Syntax**

```
policer {
 input cos-policer-name;
 output cos-policer-name;
}
```

**Hierarchy Level**

```
[edit interfaces interface-name unit logical-unit-number accept-source-mac mac-address mac-address]
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number accept-source-mac mac-address mac-address]
```

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

For Gigabit Ethernet IQ and Gigabit Ethernet PICs with SFPs (except the 10-port Gigabit Ethernet PIC and the built-in Gigabit Ethernet port on the M7i router), configure MAC policing.

**NOTE:**

On MX Series routers with Gigabit Ethernet or Fast Ethernet PICs, the following considerations apply:

- Interface counters do not count the 7-byte preamble and 1-byte frame delimiter in Ethernet frames.
- In MAC statistics, the frame size includes MAC header and CRC before any VLAN rewrite/imposition rules are applied.
- In traffic statistics, the frame size encompasses the L2 header without CRC after any VLAN rewrite/imposition rule.

**Options**

- `input cos-policer-name`—Name of one policer to specify the premium bandwidth and aggregate bandwidth.
- `output cos-policer-name`—Name of one policer to specify the premium bandwidth and aggregate bandwidth.

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**

- Configuring MAC Address Filtering on page 321
**pop**

**Syntax**

```plaintext
pop;
```

**Hierarchy Level**

- `[edit interfaces interface-name unit logical-unit-number input-vlan-map]`
- `[edit interfaces interface-name unit logical-unit-number output-vlan-map]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number input-vlan-map]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number output-vlan-map]`

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

For Gigabit Ethernet IQ and 10-Gigabit Ethernet IQ2 and IQ2-E interfaces, 10-Gigabit Ethernet LAN/WAN PIC, and aggregated Ethernet interfaces using Gigabit Ethernet IQ interfaces, specify the VLAN rewrite operation to remove a VLAN tag from the top of the VLAN tag stack. The outer VLAN tag of the frame is removed.

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**

- Removing a VLAN Tag on page 139

**pop-pop**

**Syntax**

```plaintext
pop-pop;
```

**Hierarchy Level**

- `[edit interfaces interface-name unit logical-unit-number input-vlan-map]`
- `[edit interfaces interface-name unit logical-unit-number output-vlan-map]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number input-vlan-map]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number output-vlan-map]`

**Release Information**

Statement introduced in Junos OS Release 8.1.

**Description**

For Gigabit Ethernet IQ, IQ2 and IQ2-E interfaces, 10-Gigabit Ethernet LAN/WAN PIC, and for aggregated Ethernet interfaces using Gigabit Ethernet IQ2 and IQ2-E or 10-Gigabit Ethernet PICs on MX Series routers, specify the VLAN rewrite operation to remove both the outer and inner VLAN tags of the frame.

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**

- Removing the Outer and Inner VLAN Tags on page 139
### pop-swap

**Syntax**  
`pop-swap;`

**Hierarchy Level**  
- `[edit interfaces interface-name unit logical-unit-number input-vlan-map]`
- `[edit interfaces interface-name unit logical-unit-number output-vlan-map]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number input-vlan-map]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number output-vlan-map]`

**Release Information**  
Statement introduced in Junos OS Release 8.1.

**Description**  
For Gigabit Ethernet IQ, IQ2, and IQ2-E interfaces, 10-Gigabit Ethernet LAN/WAN PIC, and for aggregated Ethernet interfaces using Gigabit Ethernet IQ2 and IQ2-E or 10-Gigabit Ethernet PICs on MX Series routers, specify the VLAN rewrite operation to remove the outer VLAN tag of the frame, and replace the inner VLAN tag of the frame with a user-specified VLAN tag value. The inner tag becomes the outer tag in the final frame.

**Required Privilege**  
- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**  
- [Removing the Outer VLAN Tag and Rewriting the Inner VLAN Tag on page 140](#)
### port-id-subtype

**Syntax**

```plaintext
port-id-subtype {
 interface-name;
 locally-assigned;
}
```

**Hierarchy Level**

```
[edit protocols lldp]
[edit routing-instances routing-instance-name protocols lldp]
```

**Release Information**

Statement introduced in Junos OS Release 12.3R1

**Description**

(MX Series, T Series, and PTX routers only) For Link Layer Discovery Protocol, configure the port ID Type, Length, and Value (TLV).

**Options**

- **interface-name**—Generate the interface name as the port ID TLV. When you configure this statement on the remote LLDP neighbor, the interface name is displayed in the Port ID field of the `show lldp neighbors` command

  **Default:** `locally-assigned`—Generate the SNMP Index of the interface as the port ID TLV. By default, the SNMPif Index of the remote neighbor is displayed in the Port ID field of the `show lldp neighbors` command.

**Required Privilege Level**

- **routing**—To view this statement in the configuration.
- **routing-control**—To add this statement to the configuration.

**Related Documentation**

- [lldp on page 504](#)
- [Configuring LLDP on page 158](#)
- [show lldp neighbors](#)
port-status-tlv

Syntax

port-status-tlv blocked;

Hierarchy Level

[edit protocols oam ethernet connectivity-fault-management action-profile tlv-action event]

Release Information


Description

Define an action-profile consisting of various events and the action. Based on values of port-status-tlv in the received CCM packets, specific action such as interface-down can be taken using action-profile options.

Options

blocked—When the incoming CCM packet contains port status TLV with value blocked, the action will be triggered for this action-profile.

Required Privilege

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation

• Configuring a Connectivity Fault Management Action Profile on page 196
• Configuring Remote MEP Action Profile Support on page 217
**ppp-options**

**Syntax**

```plaintext
ppp-options {
 authentication [authentication-protocols];
 chap {
 access-profile name;
 challenge-length minimum minimum-length maximum maximum-length;
 default-chap-secret name;
 local-name name;
 passive;
 }
 compression {
 acfc;
 pfc;
 }
 dynamic-profile profile-name;
 lcp-max-conf-req number
 lcp-restart-timer milliseconds;
 loopback-clear-timer seconds;
 ncp-max-conf-req number
 ncp-restart-timer milliseconds;
 pap {
 access-profile name;
 default-pap-password password;
 local-name name;
 local-password password;
 passive;
 }
}
```

**Hierarchy Level**

- [edit interfaces interface-name],
- [edit interfaces interface-name unit logical-unit-number],
- [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

**Release Information**

- Statement introduced before Junos OS Release 7.4.
- Loopback-clear-timer statement introduced in Junos OS Release 8.5.
- Dynamic-profile statement introduced in Junos OS Release 9.5.

**Description**

On interfaces with PPP encapsulation, configure PPP-specific interface properties.

For ATM2 IQ interfaces only, you can configure CHAP on the logical interface unit if the logical interface is configured with one of the following PPP over ATM encapsulation types:

- **atm-ppp-llc**—PPP over AAL5 LLC encapsulation.
- **atm-ppp-vc-mux**—PPP over AAL5 multiplex encapsulation.

**BEST PRACTICE:** On inline service (si) interfaces for L2TP, only the chap and pap statements are typically used for subscriber management. We
recommend that you leave the other statements subordinate to ppp-options—including those subordinate to chap and pap—at their default values.

The remaining statements are explained separately.

**Required Privilege**
- **Level**: interface—To view this statement in the configuration.
  - interface-control—To add this statement to the configuration.

**Related Documentation**
- Configuring the PPP Challenge Handshake Authentication Protocol
- Applying PPP Attributes to L2TP LNS Subscribers Per Inline Service Interface

**pppoe-options**

**Syntax**
```
pppoe-options {
 access-concentrator name;
 auto-reconnect seconds;
 (client | server);
 service-name name;
 underlying-interface interface-name;
}
```

**Hierarchy Level**
- [edit interfaces pp0 unit logical-unit-number],
- [edit logical-systems logical-system-name interfaces pp0 unit logical-unit-number]

**Release Information**
- Statement introduced before Junos OS Release 7.4.
  - **client** Statement introduced in Junos OS Release 8.5.
  - **server** Statement introduced in Junos OS Release 8.5.

**Description**
For J Series Services Routers, M120 Multiservice Edge Routers, M320 Multiservice Edge Service Routers, and MX Series Universal Edge Routers with PPP over Ethernet interfaces, configure PPP over Ethernet-specific interface properties.

The remaining statements are explained separately.

**Required Privilege**
- **Level**: interface—To view this statement in the configuration.
  - interface-control—To add this statement to the configuration.

**Related Documentation**
- Configuring a PPPoE Interface on page 407
pppoe-underlying-options (Static and Dynamic Subscribers)

Syntax

pppoe-underlying-options {
  access-concentrator name;
  dynamic-profile profile-name;
  duplicate-protection;
  max-sessions number;
  max-sessions-vsa-ignore;
  service-name-table table-name;
  short-cycle-protection <lockout-time-min minimum-seconds lockout-time-max maximum-seconds>;
}

Hierarchy Level

[edit interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

Release Information

Statement introduced in Junos OS Release 10.0.

Description

Configure PPPoE-specific interface properties for the underlying interface on which the router creates a static or dynamic PPPoE logical interface. The underlying interface must be configured with PPPoE (ppp-over-ether) encapsulation.

The remaining statements are explained separately.

Required Privilege

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation

• Configuring PPPoE on page 404 (for static interfaces)
• Configuring an Underlying Interface for Dynamic PPPoE Subscriber Interfaces
• Assigning a Service Name Table to a PPPoE Underlying Interface on page 420
**premium**

See the following sections:

- premium (Hierarchical Policer) on page 536
- premium (Output Priority Map) on page 537
- premium (Policer) on page 537

**premium (Hierarchical Policer)**

**Syntax**

```plaintext
premium {
 if-exceeding {
 bandwidth-limit bandwidth;
 burst-size-limit burst;
 }
 then {
 discard;
 }
}
```

**Hierarchy Level**

[edit dynamic-profiles profile-name firewall hierarchical-policer],
[edit firewall hierarchical-policer]

**Release Information**

Statement introduced in Junos OS Release 9.5.
Support at the [edit dynamic-profiles ... hierarchical-policer name] hierarchy level introduced in Junos OS Release 11.4.

**Description**

On M40e, M120, and M320 edge routers with FPC input as FFPC and FPC output as SFPC, and on MX Series, T320, T640, and T1600 edge routers with Enhanced Intelligent Queuing (IQE) PICs, T4000 routers with Type 5 FPC and Enhanced Scaling Type 4 FPC, specify a premium level for a hierarchical policer.

**Options**

Options are described separately.

**Required Privilege**

- firewall—To view this statement in the configuration.
- firewall-control—To add this statement to the configuration.

**Related Documentation**

- Applying Policers
- Junos OS Class of Service Configuration Guide
  - Hierarchical Policer Configuration Overview
  - Hierarchical Policers
  - aggregate (Hierarchical Policer)
  - bandwidth-limit (Hierarchical Policer)
  - burst-size-limit (Hierarchical Policer)
  - hierarchical-policer
  - if-exceeding (Hierarchical Policer)
premium (Output Priority Map)

Syntax:  
```plaintext
tenum {
 output-priority-map {
 class-name {
 loss-priority (high | low);
 }
 }
}
```

Hierarchy Level: [edit interfaces interface-name gigether-options ethernet-switch-profile ethernet-policer-profile output-priority-map classifier]

Release Information: Statement introduced before Junos OS Release 7.4.

Description: For Gigabit Ethernet IQ interfaces only, define the classifier for egress premium traffic. The statements are explained separately.

Required Privilege Level: 
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation:  
- Specifying an Output Priority Map on page 319
- input-priority-map on page 490

premium (Policer)

Syntax:  
```plaintext
tenum {
 bandwidth-limit bps;
 burst-size-limit bytes;
}
```

Hierarchy Level: [edit interfaces interface-name gigether-options ethernet-switch-profile ethernet-policer-profile policer cos-policer-name]

Release Information: Statement introduced before Junos OS Release 7.4.

Description: Define a policer to apply to nonpremium traffic. The statements are explained separately.

Required Privilege Level: 
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation:  
- Configuring Gigabit Ethernet Policers on page 317
- aggregate (Gigabit Ethernet CoS Policer) on page 462
- ieee802.1p on page 486
**protection-group**

**Syntax**

```c
protection-group {
 ethernet-ring ring-name {
 control-vlan (vlan-id | vlan-name);
 data-channel {
 vlan number
 }
 east-interface {
 control-channel channel-name {
 vlan number;
 }
 }
 guard-interval number;
 node-id mac-address;
 restore-interval number;
 ring-protection-link-owner;
 west-interface {
 control-channel channel-name {
 vlan number;
 }
 }
 }
 control-vlan (vlan-id | vlan-name);
 east-interface {
 node-id mac-address;
 control-channel channel-name {
 interface-none
 ring-protection-link-end;
 }
 }
 control-channel channel-name {
 vlan number;
 }
 data-channel {
 vlan number
 }
 guard-interval number;
 node-id mac-address;
 restore-interval number;
 ring-protection-link-owner;
 west-interface {
 node-id mac-address;
 control-channel channel-name {
 interface-none
 ring-protection-link-end;
 }
 }
 control-channel channel-name {
 vlan number;
 }
}
```

Copyright © 2012, Juniper Networks, Inc.
restore-interval number;
traceoptions {
  file filename <no-stamp> <world-readable | no-world-readable> <replace> <size size>;
  flag flag;
}

Hierarchy Level [edit protocols]

Statement introduced in Junos OS Release 12.1 for EX Series switches.

Description Configure Ethernet ring protection switching.

The statements are explained separately. All statements apply to MX Series routers. EX Series switches do not assign node-id and use control-vlan instead of control-channel.

Required Privilege
Level interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Ethernet Ring Protection Switching Overview on page 437
• Ethernet Ring Protection Using Ring Instances for Load Balancing
• Example: Configuring Load Balancing Within Ethernet Ring Protection for MX Series Routers
• Example: Configuring Ethernet Ring Protection Switching on EX Series Switches
• Configuring Ethernet Ring Protection Switching (CLI Procedure)

protocol-down

Syntax protocol-down;

Hierarchy Level [edit protocols oam ethernet link-fault-management action-profile event]

Release Information Statement introduced in Junos OS Release 8.5.

Description Upper layer indication of protocol down event. When the protocol-down statement is included, the protocol down event triggers the action specified under the action statement.

Required Privilege
Level interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Configuring an OAM Action Profile on page 300
ptopo-configuration-maximum-hold-time

Syntax
ptopo-configuration-maximum-hold-time seconds;

Hierarchy Level
[edit protocols lldp],
[edit routing-instances routing-instance-name protocols lldp]

Release Information

Description
(MX Series and T Series routers only) Configure a time to maintain dynamic topology entries.

Options
seconds—Time to maintain interval dynamic topology entries.
Default: 300
Range: 1 through 2147483647

Required Privilege
Level
routing—to view this statement in the configuration.
routing-control—to add this statement to the configuration.

Related Documentation
• Configuring LLDP on page 158

ptopo-configuration-trap-interval

Syntax
ptopo-configuration-trap-interval seconds;

Hierarchy Level
[edit protocols lldp],
[edit routing-instances routing-instance-name protocols lldp]

Release Information

Description
(MX Series and T Series routers only) Configure a time for the period of SNMP trap
notifications to the Master Agent to wait regarding changes in topology global statistics.

Options
seconds—Time for the period of SNMP trap notifications about global statistics. This
feature is disabled by default.
Range: 0 through 3600

Required Privilege
Level
routing—to view this statement in the configuration.
routing-control—to add this statement to the configuration.

Related Documentation
• Configuring LLDP on page 158
**push**

**Syntax**
```
push;
```

**Hierarchy Level**
```
[edit interfaces interface-name unit logical-unit-number input-vlan-map],
[edit interfaces interface-name unit logical-unit-number output-vlan-map],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number input-vlan-map],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number output-vlan-map]
```

**Release Information**
Statement introduced before Junos OS Release 7.4.

**Description**
For Gigabit Ethernet IQ and 10-Gigabit Ethernet IQ2 and IQ2-E interfaces, 10-Gigabit Ethernet LAN/WAN PIC, and aggregated Ethernet interfaces using Gigabit Ethernet IQ interfaces, specify the VLAN rewrite operation to add a new VLAN tag to the top of the VLAN stack. An outer VLAN tag is pushed in front of the existing VLAN tag. If you include the `push` statement in the configuration, you must also include the `pop` statement at the `[edit interfaces interface-name unit logical-unit-number output-vlan-map]` hierarchy level.

**Required Privilege Level**
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**
- Stacking a VLAN Tag on page 138

---

**push-push**

**Syntax**
```
push-push;
```

**Hierarchy Level**
```
[edit interfaces interface-name unit logical-unit-number input-vlan-map],
[edit interfaces interface-name unit logical-unit-number output-vlan-map],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number input-vlan-map],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number output-vlan-map]
```

**Release Information**
Statement introduced in Junos OS Release 8.1.

**Description**
For Gigabit Ethernet IQ, IQ2 and IQ2-E interfaces, 10-Gigabit Ethernet LAN/WAN PIC, and for aggregated Ethernet interfaces using Gigabit Ethernet IQ interfaces, specify the VLAN rewrite operation to add two new VLAN tags to the top of the VLAN stack. An outer VLAN tag is pushed in front of the existing VLAN tags. If you include the `push-push` statement in the configuration, you must also include the `pop` statement at the `[edit interfaces interface-name unit logical-unit-number output-vlan-map]` hierarchy level.

**Required Privilege Level**
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**
- Stacking Two VLAN Tags on page 141
remote-mep

Syntax

remote-mep mep-id { action-profile profile-name; sla-iterator-profile profile-name { data-tlv-size size; iteration-count count-value; priority priority-value; } }

Hierarchy Level
[edit protocols oam ethernet connectivity-fault-management maintenance-domain md-name maintenance-association ma-name mep mep-id]

Release Information
Statement introduced in Junos OS Release 8.4.

Description
Configure the numeric identifier of the remote maintenance association end point (MEP) within the maintenance association.

Options

mep-id—Numeric identifier of the MEP.

Range: 1 through 8191

The remaining statements are explained separately.

Required Privilege
Configure—To enter configuration mode.
Control—To modify any configuration.

Related Documentation
• Configuring a Maintenance Endpoint on page 191

request

Syntax

request (protect | working);

Hierarchy Level
[edit interfaces interface-name sonet-options aps]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Perform a manual switch between the protect and working circuits. This statement is honored only if there are no higher-priority reasons to switch.

Options

protect—Request that the circuit become the protect circuit.

working—Request that the circuit become the working circuit.

Required Privilege
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Configuring Switching Between the Working and Protect Circuits
• force
ring-protection-link-end

Syntax
ring-protection-link-end;

Hierarchy Level
[edit protocols protection-group ethernet-ring ring-name (east-interface | west-interface)]

Release Information
Statement introduced in Junos OS Release 9.4.
Statement introduced in Junos OS Release 12.1 for EX Series switches.

Description
Specify that the port is one side of a ring protection link (RPL) by setting the RPL end flag.

Required Privilege
- interface—to view this statement in the configuration.
- interface-control—to add this statement to the configuration.

Related Documentation
- Ethernet Ring Protection Switching Overview on page 437
- Example: Configuring Ethernet Ring Protection Switching on EX Series Switches
- Configuring Ethernet Ring Protection Switching (CLI Procedure)

ring-protection-link-owner

Syntax
ring-protection-link-owner;

Hierarchy Level
[edit protocols protection-group ethernet-ring ring-name]

Release Information
Statement introduced in Junos OS Release 9.4.
Statement introduced in Junos OS Release 12.1 for EX Series switches.

Description
Specify the ring protection link (RPL) owner flag in the Ethernet protection ring. Include this statement only once for each ring (only one node can function as the RPL owner).

Required Privilege
- interface—to view this statement in the configuration.
- interface-control—to add this statement to the configuration.

Related Documentation
- Ethernet Ring Protection Switching Overview on page 437
**routing-instance (PPPoE Service Name Tables)**

**Syntax**
```
routing-instance routing-instance-name;
```

**Hierarchy Level**
```
[edit protocols pppoe service-name-tables table-name service service-name],
[edit protocols pppoe service-name-tables table-name service service-name agent-specifier
aci circuit-id-string ari remote-id-string]
```

**Release Information**
Statement introduced in Junos OS Release 10.2.

**Description**
Use in conjunction with the **dynamic-profile** statement at the same hierarchy levels to specify the routing instance in which to instantiate a dynamic PPPoE interface. You can associate a routing instance with a named service entry, **empty** service entry, or **any** service entry configured in a PPPoE service name table, or with an agent circuit identifier/agent remote identifier (ACI/ARI) pair defined for these services.

The routing instance associated with a service entry in a PPPoE service name table overrides the routing instance associated with the PPPoE underlying interface on which the dynamic PPPoE interface is created.

If you include the **routing-instance** statement at the `[edit protocols pppoe service-name-tables table-name service service-name agent-specifier aci circuit-id-string ari remote-id-string]` hierarchy level, you cannot also include the **static-interface** statement at this level. The **routing-instance** and **static-interface** statements are mutually exclusive for ACI/ARI pair configurations.

**Options**
- **routing-instance-name**—Name of the routing instance in which the router instantiates the dynamic PPPoE interface.

**Required Privilege Level**
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**
- Configuring PPPoE Service Name Tables on page 412
- Assigning a Dynamic Profile and Routing Instance to a Service Name or ACI/ARI Pair for Dynamic PPPoE Interface Creation
sa-multicast (100-Gigabit Ethernet)

Syntax

```
sa-multicast;
```

Hierarchy Level

```
[edit chassis fpc slot pic slot forwarding-mode]
```

Release Information

Statement introduced in Junos OS Release 10.4.

Description

Configure the 100-Gigabit Ethernet PIC to interoperate with other Juniper Networks 100-Gigabit Ethernet PICs or configure the 100-Gigabit Ethernet MIC to interoperate with other Juniper Networks 100-Gigabit Ethernet PICs (Type 4 1X100GE PIC for STFPC4 FPC only).

See `vlan-steering` for information on interoperability with 100 gigabit Ethernet interfaces from other vendors.

Required Privilege

- **Level**
  - interface—To view this statement in the configuration.
  - interface-control—To add this statement to the configuration.

Related Documentation

- Configuring 100-Gigabit Ethernet PIC VLAN Steering Mode on page 370
- Configuring 100-Gigabit Ethernet MIC (MIC3-3D-1X100GE-CFP) to Interoperate with 100-Gigabit Ethernet PICs (Type 4 1X100GE PIC for STFPC4 FPC) Using SA Multicast Mode
  - Interoperability Between the 100-Gigabit Ethernet PICs PD-1CE-CFP-FPC4 and PF-1CGE-CFP on page 374
  - Configuring the Interoperability Between the 100-Gigabit Ethernet PICs PF-1CGE-CFP and PD-1CE-CFP-FPC4 on page 375
- `forwarding-mode (100-Gigabit Ethernet)` on page 482
- `vlan-steering (100-Gigabit Ethernet)` on page 584
service (PPPoE)

Syntax

```plaintext
service service-name {
 drop;
 delay seconds;
 terminate;
 dynamic-profile profile-name;
 routing-instance routing-instance-name;
 max-sessions number;
 agent-specifier {
 aci circuit-id-string ari remote-id-string {
 drop;
 delay seconds;
 terminate;
 dynamic-profile profile-name;
 routing-instance routing-instance-name;
 static-interface interface-name;
 }
 }
}
```

Hierarchy Level

```
[edit protocols pppoe service-name-tables table-name]
```

Release Information

Statement introduced in Junos OS Release 10.0. 

Any, dynamic-profile, routing-instance, max-sessions, and static-interface options introduced in Junos OS Release 10.2.

Description

Specify the action taken by the interface on receipt of a PPPoE Active Discovery Initiation (PADI) control packet for the specified named service, empty service, or any service in a PPPoE service name table. You can also specify the dynamic profile and routing instance that the router uses to instantiate a dynamic PPPoE interface, and the maximum number of active PPPoE sessions that the router can establish with the specified service.

Default

The default action is terminate.

Options

`service-name`—Service entry in the PPPoE service name table:

- `service-name`—Named service entry of up to 32 characters; for example, `premiumService`. You can configure a maximum of 512 named service entries across all PPPoE service name tables on the router.

- `empty`—Service entry of zero length that represents an unspecified service. Each PPPoE service name table includes one empty service entry by default.

- `any`—Default service for non-empty service entries that do not match the named or empty service entries configured in the PPPoE service name table. Each PPPoE service name table includes one any service entry by default.

The remaining statements are explained separately.

Required Privilege

```plaintext
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
```
Related Documentation

- Configuring PPPoE Service Name Tables on page 412
- Assigning a Service to a Service Name Table and Configuring the Action Taken When the Client Request Includes a Non-zero Service Name Tag on page 416
- Configuring the Action Taken When the Client Request Includes an Empty Service Name Tag on page 414
- Configuring the Action Taken for the Any Service on page 415

**service-name-table**

**Syntax**

```
service-name-table table-name;
```

**Hierarchy Level**

[edit dynamic-profiles profile-name interfaces demux0 unit logical-unit-number family pppoe],
[edit dynamic-profiles profile-name interfaces interface-name unit logical-unit-number family pppoe],
[edit interfaces interface-name unit logical-unit-number family pppoe],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family pppoe],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family pppoe-underlying-options],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family pppoe-underlying-options]

**Release Information**

Statement introduced in Junos OS Release 10.0.
Support at the [edit ... family pppoe] hierarchies introduced in Junos OS Release 11.2.

**Description**

Specify the PPPoE service name table assigned to a PPPoE underlying interface. This underlying interface is configured with either the encapsulation ppp-over-ether statement or the family pppoe statement; the two statements are mutually exclusive.

**NOTE:** The [edit ... family pppoe] hierarchies are supported only on MX Series routers with MPCs.

**Options**

- `table-name`—Name of the PPPoE service name table, a string of up to 32 alphanumeric characters.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- Configuring PPPoE Service Name Tables on page 412
- Assigning a Service Name Table to a PPPoE Underlying Interface on page 420
- Configuring the PPPoE Family for an Underlying Interface
### service-name-tables

**Syntax**
```
service-name-tables table-name {
 service service-name {
 drop;
 delay seconds;
 terminate;
 dynamic-profile profile-name;
 routing-instance routing-instance-name;
 max-sessions number;
 agent-specifier {
 aci circuit-id-string ari remote-id-string {
 drop;
 delay seconds;
 terminate;
 dynamic-profile profile-name;
 routing-instance routing-instance-name;
 static-interface interface-name;
 }
 }
 }
}
```

**Hierarchy Level**
```
[edit protocols pppoe]
```

**Release Information**
Statement introduced in Junos OS Release 10.0. 
`dynamic-profile`, `routing-instance`, `max-sessions`, and `static-interface` options introduced in Junos OS Release 10.2.

**Description**
Create and configure a PPPoE service name table. Specify the action taken for each service and remote access concentrator on receipt of a PPPoE Active Discovery Initiation (PADI) packet. You can also specify the dynamic profile and routing instance that the router uses to instantiate a dynamic PPPoE interface, and the maximum number of active PPPoE sessions that the router can establish with the specified service. A maximum of 32 PPPoE service name tables is supported per router.

**Options**
- `table-name`—Name of the PPPoE service name table, a string of up to 32 alphanumeric characters.

The remaining statements are explained separately.

**Required Privilege Level**
- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**
- Configuring PPPoE Service Name Tables on page 412
- Creating a Service Name Table on page 413
## short-cycle-protection (Static and Dynamic Subscribers)

**Syntax**
```
short-cycle-protection <lockout-time-min minimum-seconds lockout-time-max maximum-seconds>
```

**Hierarchy Level**
- `[edit dynamic-profiles profile-name interfaces demux0 unit logical-unit-number family pppoe]`
- `[edit dynamic-profiles profile-name interfaces interface-name unit logical-unit-number family pppoe]`
- `[edit dynamic-profiles profile-name interfaces interface-name unit logical-unit-number family pppoe-underlying-options]`
- `[edit interfaces demux0 unit logical-unit-number family pppoe]`
- `[edit interfaces interface-name unit logical-unit-number family pppoe]`
- `[edit interfaces interface-name unit logical-unit-number pppoe-underlying-options]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family pppoe]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number pppoe-underlying-options]`

**Release Information**
Statement introduced in Junos OS Release 11.4.

**Description**
Configure the router to temporarily prevent (lock out) a failed or short-lived (also known as short-cycle) PPPoE subscriber session from reconnecting for a default or configurable period of time. You can optionally override the default lockout time, 1 through 300 seconds (5 minutes), by specifying the minimum lockout time and maximum lockout time as part of the `short-cycle-protection` statement.

**Options**
- **lockout-time-min minimum-seconds**—(Optional) Minimum lockout time for failed or short-lived PPPoE subscriber sessions. The `minimum-seconds` value must be less than or equal to the `maximum-seconds` value. Setting `minimum-seconds` and `maximum-seconds` to the same value causes the lockout time to become fixed at that value.
  
  **Range:** 1 through 86400 (24 hours)
  
  **Default:** 1

- **lockout-time-max maximum-seconds**—(Optional) Maximum lockout time for failed or short-lived PPPoE subscriber sessions. The `maximum-seconds` value must be equal to or greater than the `minimum-seconds` value. Setting `maximum-seconds` and `minimum-seconds` to the same value causes the lockout time to become fixed at that value.
  
  **Range:** 1 through 86400 (24 hours)
  
  **Default:** 300 (5 minutes)

**Required Privilege Level**
- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**
- Configuring Lockout of PPPoE Subscriber Sessions
- PPPoE Subscriber Session Lockout Overview
- Understanding the Lockout Period for PPPoE Subscriber Session Lockout
• For information about configuring dynamic PPPoE subscriber interfaces, see the Junos OS Subscriber Management, Release 12.3

• For information about configuring static PPPoE interfaces, see the Junos® OS Ethernet Interfaces
**source-address-filter**

**Syntax**

```
source-address-filter {
 mac-address;
}
```

**Hierarchy Level**

- [edit interfaces interface-name aggregated-ether-options],
- [edit interfaces interface-name fastether-options],
- [edit interfaces interface-name gigether-options]

**Release Information**

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.1 for PTX Packet Transport Switches.

**Description**

For aggregated Ethernet, Fast Ethernet, Gigabit Ethernet, Gigabit Ethernet IQ interfaces, and Gigabit Ethernet PICs with SFPs (except the 10-port Gigabit Ethernet PIC and the built-in Gigabit Ethernet port on the M7i router), specify the MAC addresses from which the interface can receive packets. For this statement to have any effect, you must include the `source-filtering` statement in the configuration to enable source address filtering. This statement is not supported on the J Series Services Routers.

**Options**

- `mac-address`—MAC address filter. You can specify the MAC address as `nn:nn:nn:nn:nn:nn` or `nnnn:nnnn:nnnn`, where `n` is a decimal digit. To specify more than one address, include multiple `mac-address` options in the `source-address-filter` statement.

If you enable the VRRP on a Fast Ethernet or Gigabit Ethernet interface, as described in “VRRP and VRRP for IPv6 Overview” on page 311, and if you enable MAC source address filtering on the interface, you must include the virtual MAC address in the list of source MAC addresses that you specify in the `source-address-filter` statement. MAC addresses ranging from `00:00:5e:00:01:00` through `00:00:5e:00:01:ff` are reserved for VRRP, as defined in RFC 3768, *Virtual Router Redundancy Protocol*. When you configure the VRRP group, the group number must be the decimal equivalent of the last hexadecimal byte of the virtual MAC address.

On untagged Gigabit Ethernet interfaces, you should not configure the `source-address-filter` statement and the `accept-source-mac` statement simultaneously. On tagged Gigabit Ethernet interfaces, you should not configure the `source-address-filter` statement and the `accept-source-mac` statement with an identical MAC address specified in both filters.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- Enabling Ethernet MAC Address Filtering on page 42
- Configuring MAC Filtering on PTX Series Packet Transport Switches on page 385
- source-filtering on page 552
source-filtering

Syntax  (source-filtering | no-source-filtering);

Hierarchy Level  [edit interfaces interface-name aggregated-ether-options],
                 [edit interfaces interface-name fastether-options],
                 [edit interfaces interface-name gigether-options]

Release Information  Statement introduced before Junos OS Release 7.4.
                      Statement introduced in Junos OS Release 12.1 for PTX Packet Transport Switches.

Description  For aggregated Ethernet, Fast Ethernet, Gigabit Ethernet, and Gigabit Ethernet IQ
              interfaces only, enable the filtering of MAC source addresses, which blocks all incoming
              packets to that interface. To allow the interface to receive packets from specific MAC
              addresses, include the source-address-filter statement.

              If the remote Ethernet card is changed, the interface is no longer able to receive packets
              from the new card because it has a different MAC address.

Default  Source address filtering is disabled.

Required Privilege
           Level  interface—To view this statement in the configuration.
           interface-control—To add this statement to the configuration.

Related Documentation

  • Enabling Ethernet MAC Address Filtering on page 42
  • Configuring MAC Filtering on PTX Series Packet Transport Switches on page 385
  • accept-source-mac
  • source-address-filter on page 551
speed

See the following sections:

- speed (Ethernet) on page 553
- speed (MX Series DPC) on page 554

speed (Ethernet)

Syntax

speed (10m | 100m | 1g | auto);

Hierarchy Level

[edit interfaces interface-name],
[edit interfaces ge-pim/0/0 switch-options switch-port port-number]

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.2 for ACX Series Universal Access Routers.

Description

Configure the interface speed. This statement applies to the management Ethernet interface (fxp0 or em0), Fast Ethernet 12-port and 48-port PICs, the built-in Fast Ethernet port on the FIC (M7i router), the built-in Ethernet interfaces on J Series Services Routers, Combo Line Rate DPCs and Tri-Rate Ethernet Copper interfaces on MX Series routers, and on the Gigabit Ethernet ports on J Series Services Routers with uPIMs installed and configured for access switching mode. When you configure the Tri-Rate Ethernet copper interface to operate at 1 Gbps, autonegotiation must be enabled. When you configure 100BASE-FX SFP, you must set the port speed at 100 Mbps.

Options

You can specify the speed as either 10m (10 Mbps), 100m (100 Mbps), or on J Series routers with uPIMs installed and on MX Series routers, 1g (1 Gbps). You can specify the auto option only on MX Series routers.

Required Privilege Level

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation

- Configuring the Interface Speed
- Configuring the Interface Speed on Ethernet Interfaces on page 49
- Configuring Gigabit Ethernet Autonegotiation on page 330
- Configuring J Series Services Router Switching Interfaces on page 40
speed (MX Series DPC)

Syntax
speed (auto | 1Gbps | 100Mbps | 10Mbps);

Hierarchy Level
[edit interfaces ge-fpc/pic/port]

Release Information
Statement introduced in Junos OS Release 9.5.

Description
On MX Series routers with Combo Line Rate DPCs and Tri-Rate Copper SFPs you can set auto negotiation of speed. To specify the auto negotiation speed, use the speed (auto | 1Gbps | 100Mbps | 10Mbps) statement under the [edit interface ge-/fpc/pic/port] hierarchy level. The auto option will attempt to automatically match the rate of the connected interface. To set port speed negotiation to a specific rate, set the port speed to 1Gbps, 100Mbps, or 10Mbps.

NOTE: If the negotiated speed and the interface speed do not match, the link will not be brought up. Half duplex mode is not supported.

Options
You can specify the speed as either auto (autonegotiate), 10Mbps (10 Mbps), 100Mbps (100 Mbps), or 1Gbps (1 Gbps).

Required Privilege
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Configuring Gigabit Ethernet Autonegotiation on page 330
• no-auto-mdix on page 515
**static-interface**

**Syntax**
```
static-interface interface-name;
```

**Hierarchy Level**
```
[edit protocols pppoe service-name-tables table-name service service-name agent-specifier
acr circuit-id-string ari remote-id-string]
```

**Release Information**
Statement introduced in Junos OS Release 10.2.

**Description**
Reserve the specified static PPPoE interface for use only by the PPPoE client with matching agent circuit identifier (ACI) and agent remote identifier (ARI) information. You can specify only one static interface per ACI/ARI pair configured for a named service entry, empty service entry, or any service entry in the PPPoE service name table.

The static interface associated with an ACI/ARI pair takes precedence over the general pool of static interfaces associated with the PPPoE underlying interface.

If you include the `static-interface` statement in the configuration, you cannot also include either the `dynamic-profile` statement or the `routing-instance` statement. The `dynamic-profile`, `routing-instance`, and `static-interface` statements are mutually exclusive for ACI/ARI pair configurations.

**Options**
- `interface-name`—Name of the static PPPoE interface reserved for use by the PPPoE client with matching ACI/ARI information. Specify the interface in the format `pp0.logical`, where `logical` is a logical unit number from 0 through 16385 for static interfaces.

**Required Privilege Level**
- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**
- Configuring PPPoE Service Name Tables on page 412
- Reserving a Static PPPoE Interface for Exclusive Use by a PPPoE Client on page 419
swap

Syntax  swap;

Hierarchy Level  [edit interfaces interface-name unit logical-unit-number input-vlan-map],
[edit interfaces interface-name unit logical-unit-number output-vlan-map],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number input-vlan-map],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number output-vlan-map]

Release Information  Statement introduced before Junos OS Release 7.4.

Description  For Gigabit Ethernet IQ and 10-Gigabit Ethernet IQ2 and IQ2-E interfaces, 10-Gigabit Ethernet LAN/WAN PIC, and aggregated Ethernet using Gigabit Ethernet IQ interfaces, specify the VLAN rewrite operation to replace a VLAN tag. The outer VLAN tag of the frame is overwritten with the user-specified VLAN tag information.

Required Privilege Level  interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation  • Rewriting the VLAN Tag on Tagged Frames on page 142

swap-push

Syntax  swap-push;

Hierarchy Level  [edit interfaces interface-name unit logical-unit-number input-vlan-map],
[edit interfaces interface-name unit logical-unit-number output-vlan-map],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number input-vlan-map],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number output-vlan-map]


Description  For Gigabit Ethernet IQ, IQ2 and IQ2-E interfaces, 10-Gigabit Ethernet LAN/WAN PIC, and for aggregated Ethernet interfaces using Gigabit Ethernet IQ2 and IQ2-E or 10-Gigabit Ethernet PICs on MX Series routers, specify the VLAN rewrite operation to replace the outer VLAN tag of the frame with a user-specified VLAN tag value. A user-specified outer VLAN tag is pushed in front. The outer tag becomes an inner tag in the final frame.

Required Privilege Level  interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation  • Rewriting a VLAN Tag and Adding a New Tag on page 146
**swap-swap**

**Syntax**

```plaintext
swap-swap;
```

**Hierarchy Level**

```plaintext
[edit interfaces interface-name unit logical-unit-number input-vlan-map],
[edit interfaces interface-name unit logical-unit-number output-vlan-map],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number input-vlan-map],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number output-vlan-map]
```

**Release Information**

Statement introduced in Junos OS Release 8.1.

**Description**

For Gigabit Ethernet IQ, IQ2 and IQ2-E interfaces, 10-Gigabit Ethernet LAN/WAN PIC, and for aggregated Ethernet interfaces using Gigabit Ethernet IQ2 and IQ2-E or 10-Gigabit Ethernet PICs on MX Series routers, specify the VLAN rewrite operation to replace both the inner and the outer VLAN tags of the frame with a user-specified VLAN tag value.

**Required Privilege Level**

`interface`—To view this statement in the configuration.

`interface-control`—To add this statement to the configuration.

**Related Documentation**

- Rewriting the Inner and Outer VLAN Tags on page 146

---

**switch-options**

**Syntax**

```plaintext
switch-options {
 switch-port port-number {
 (auto-negotiation | no-auto-negotiation);
 speed (10m | 100m | 1g);
 link-mode (full-duplex | half-duplex);
 }
}
```

**Hierarchy Level**

```plaintext
[edit interfaces ge-pim/0/0]
```

**Release Information**

Statement introduced in Junos OS Release 8.4.

**Description**

On a J Series Services Router with multiport Gigabit Ethernet uPIMs installed and operating in access switching mode, only one physical interface is configured for the entire multiport Gigabit Ethernet uPIM. Configuration of the physical port characteristics is done under the single physical interface.

**Required Privilege Level**

`interface`—To view this statement in the configuration.

`interface-control`—To add this statement to the configuration.

**Related Documentation**

- Configuring J Series Services Router Switching Interfaces on page 40
switch-port

Syntax

switch-port port-number {
  (auto-negotiation | no-auto-negotiation);
  speed (10m | 100m | 1g);
  link-mode (full-duplex | half-duplex);
}

Hierarchy Level

[edit interfaces ge-pim/0/0 switch-options]

Release Information

Statement introduced in Junos OS Release 8.4.

Description

On a J Series Services Router with Ethernet uPIMs installed and operating in access switching mode, configuration of the physical port characteristics, done under the single physical interface.

Default

Autonegotiation is enabled by default. If the link speed and duplex are also configured, the interfaces use the values configured as the desired values in the negotiation.

Options

port-number—Ports are numbered 0 through 5 on the 6-port Gigabit Ethernet uPIM, 0 through 7 on the 8-port Gigabit Ethernet uPIM, and 0 through 15 on the 16-port Gigabit Ethernet uPIM.

The remaining statements are explained separately.

Required Privilege

interface—To view this statement in the configuration.

interface-control—To add this statement to the configuration.

Related Documentation

• Configuring J Series Services Router Switching Interfaces on page 40
**system-id**

**Syntax**  
```
system-id system-id;
```

**Hierarchy Level**  
[edit interfaces aeX aggregated-ether-options lacp]

**Release Information**  
Statement introduced in Junos OS Release 12.2R1

**Description**  
Define the LACP system identifier at the aggregated Ethernet interface level.

The user-defined system identifier in LACP enables two ports from two separate routers (M Series or MX Series routers) to act as though they were part of the same aggregate group.

The system identifier is a 48-bit (6-byte) globally unique field. It is used in combination with a 16-bit system-priority value, which results in a unique LACP system identifier.

**Required Privilege Level**  
- interface—to view this statement in the configuration.
- interface-control—to add this statement to the configuration.

**Related Documentation**  
- Configuring Aggregated Ethernet LACP on page 112
tag-protocol-id

See the following sections:

- tag-protocol-id (TPIDs Expected to Be Sent or Received) on page 560
- tag-protocol-id (TPID to Rewrite) on page 561

**tag-protocol-id (TPIDs Expected to Be Sent or Received)**

**Syntax**

```
tag-protocol-id [tpids];
```

**Hierarchy Level**

[edit interfaces interface-name gigether-options ethernet-switch-profile],
[edit interfaces interface-name aggregated-ether-options ethernet-switch-profile]

**Release Information**

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.2 for ACX Series Universal Access Routers.

**Description**

For Gigabit Ethernet IQ and 10-Gigabit Ethernet IQ2 and IQ2-E interfaces, aggregated Ethernet with Gigabit Ethernet IQ interfaces, and Gigabit Ethernet PICs with SFPs (except the 10-port Gigabit Ethernet PIC, and the built-in Gigabit Ethernet port on the M7i router), define the TPIDs expected to be sent or received on a particular VLAN. For each Gigabit Ethernet port, you can configure up to eight TPIDs using the `tag-protocol-id` statement; but only the first four TPIDs are supported on IQ2 and IQ2-E interfaces.

For 10-Gigabit Ethernet LAN/WAN PIC interfaces on T Series routers, only the default TPID value (0x8100) is supported.

**Options**

- **tpids**—TPIDs to be accepted on the VLAN. Specify TPIDs in hexadecimal.

**Required Privilege Level**

- interface—to view this statement in the configuration.
- interface-control—to add this statement to the configuration.

**Related Documentation**

- Configuring Frames with Particular TPIDs to Be Processed as Tagged Frames on page 133
### tag-protocol-id (TPID to Rewrite)

**Syntax**

```
tag-protocol-id tpid;
```

**Hierarchy Level**

- `[edit interfaces interface-name unit logical-unit-number input-vlan-map]`
- `[edit interfaces interface-name unit logical-unit-number output-vlan-map]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number input-vlan-map]`
- `[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number output-vlan-map]`

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

For Gigabit Ethernet IQ and 10-Gigabit Ethernet IQ2 and IQ2-E interfaces only, configure the outer TPID value. All TPIDs you include in input and output VLAN maps must be among those you specify at the `[edit interfaces interface-name gigether-options ethernet-switch-profile tag-protocol-id [ tpid ] ]` hierarchy level.

For 10-Gigabit Ethernet LAN/WAN PIC interfaces on T Series routers, value the default TPID value (0x8100) is supported.

**Default**

If the `tag-protocol-id` statement is not configured, the TPID value is 0x8100.

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**

- Configuring Inner and Outer TPIDs and VLAN IDs on page 135
**terminate (PPPoE Service Name Tables)**

**Syntax**
```
terminate;
```

**Hierarchy Level**
```
[edit protocols pppoe service-name-tables table-name service service-name],
[edit protocols pppoe service-name-tables table-name service service-name agent-specifier aci circuit-id-string ari remote-id-string]
```

**Release Information**
Statement introduced in Junos OS Release 10.0.
Support at [edit protocols pppoe service-name-tables table-name service service-name agent-specifier aci circuit-id-string ari remote-id-string] hierarchy level introduced in Junos OS Release 10.2.

**Description**
Direct the router to immediately respond to a PPPoE Active Discovery Initiation (PADI) control packet received from a PPPoE client by sending the client a PPPoE Active Discovery Offer (PADO) packet. The PADO packet contains the name of the access concentrator (router) that can service the client request. The `terminate` action is the default action for a named service entry, `empty` service entry, `any` service entry, or agent circuit identifier/agent remote identifier (ACI/ARI) pair in a PPPoE service name table.

**Required Privilege Level**
```
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
```

**Related Documentation**
- Configuring PPPoE Service Name Tables on page 412
traceoptions

Syntax

traceoptions {
  file filename <files number> <size maximum-file-size> <world-readable | no-world-readable>;
  flag flag <disable>;
}

Hierarchy Level

[edit protocols lldp],
[edit routing-instances routing-instance-name protocols lldp]

Release Information


Description

Set LLDP protocol-level tracing options.

Default

The default LLDP protocol-level trace options are inherited from the global traceoptions statement.

Options

disable—(Optional) Disable the tracing operation. One use of this option is to disable a single operation when you have defined a broad group of tracing operations, such as all.

file filename—Name of the file to receive the output of the tracing operation. Enclose the name in quotation marks. We recommend that you place spanning-tree protocol tracing output in the file /var/log/stp-log.

files number—(Optional) Maximum number of trace files. When a trace file named trace-file reaches its maximum size, it is renamed trace-file.0, then trace-file.1, and so on, until the maximum number of trace files is reached. Then, the oldest trace file is overwritten.

If you specify a maximum number of files, you must also specify a maximum file size with the size option.

Range: 2 through 1000 files
Default: 1 trace file only

flag—Tracing operation to perform. To specify more than one tracing operation, include multiple flag statements. The following are the LLDP-specific tracing options:

- all—Trace all operations.
- config—Log configuration events.
- interface—Trace interface update events.
- protocol—Trace protocol information.
- rtsock—Trace socket events.
- vlan—Trace vlan update events.
The following are the global tracing options:

- **all**—All tracing operations.
- **config-internal**—Trace configuration internals.
- **general**—Trace general events.
- **normal**—All normal events. This is the default. If you do not specify this option, only unusual or abnormal operations are traced.
- **parse**—Trace configuration parsing.
- **policy**—Trace policy operations and actions.
- **regex-parse**—Trace regular-expression parsing.
- **route**—Trace routing table changes.
- **state**—Trace state transitions.
- **task**—Trace protocol task processing.
- **timer**—Trace protocol task timer processing.
- **no-world-readable**—(Optional) Prevent any user from reading the log file. This is the default. If you do not include this option, tracing output is appended to an existing trace file.

- **size maximum-file-size**—(Optional) Maximum size of each trace file, in kilobytes (KB) or megabytes (MB). When a trace file named `trace-file` reaches this size, it is renamed `trace-file.0`. When the `trace-file` again reaches its maximum size, `trace-file.0` is renamed `trace-file.1` and `trace-file` is renamed `trace-file.0`. This renaming scheme continues until the maximum number of trace files is reached. Then the oldest trace file is overwritten.

If you specify a maximum file size, you must also specify a maximum number of trace files with the files option.

**Syntax:** `xk` to specify KB, `xm` to specify MB, or `xg` to specify GB

**Range:** 10 KB through the maximum file size supported on your system

**Default:** 1 MB

- **world-readable**—(Optional) Allow any user to read the log file.

**Required Privilege Level**

- routing—To view this statement in the configuration.
- routing-control—To add this statement to the configuration.

**Related Documentation**

- Tracing LLDP Operations on page 160
traceoptions (PPPoE)

Syntax
```
traceoptions {
 file <filename> <files number> <match regular-expression> <size maximum-file-size> <world-readable | no-world-readable>;
 filter {
 aci regular-expression;
 ari regular-expression;
 service-name regular-expression;
 underlying-interface interface-name;
 }
 flag flag;
 level (all | error | info | notice | verbose | warning);
 no-remote-trace;
}
```

Hierarchy Level [edit protocols pppoe]

Option filter introduced in Junos OS Release 12.3

Description Define tracing operations for PPPoE processes.

Options
- **file filename**—Name of the file to receive the output of the tracing operation. Enclose the name within quotation marks. All files are placed in the directory `/var/log`.
- **files number**—(Optional) Maximum number of trace files to create before overwriting the oldest one. If you specify a maximum number of files, you also must specify a maximum file size with the `size` option.

Range: 2 through 1000

Default: 3 files

- **disable**—Disable this trace flag.

- **filter**—Additional filter to refine the output to display particular subscribers. Filtering based on the following subscriber identifiers simplifies troubleshooting in a scaled environment.

  BEST PRACTICE: Due to the complexity of agent circuit identifiers and agent remote identifiers, we recommend that you do not try an exact match when filtering on these options. For service names, searching on the exact name is appropriate, but you can also use a regular expression with that option.

- **aci regular-expression**—Regular expression to match the agent circuit identifier provided by PPPoE client.
- **ari regular-expression**—Regular expression to match the agent remote identifier provided by PPPoE client.
- **service regular-expression**—Regular expression to match the name of PPPoE service.
- **underlying-interface interface-name**—Name of a PPPoE underlying interface. You cannot use a regular expression for this filter option.

**flag flag**—Tracing operation to perform. To specify more than one tracing operation, include multiple **flag** statements. You can include the following flags:

- **all**—Trace all operations.
- **config**—Trace configuration events.
- **events**—Trace events.
- **gres**—Trace GRES events.
- **init**—Trace initialization events.
- **interface-db**—Trace interface database operations.
- **memory**—Trace memory processing events.
- **protocol**—Trace protocol events.
- **rtsock**—Trace routing socket events.
- **session-db**—Trace connection events and flow.
- **signal**—Trace signal operations.
- **state**—Trace state handling events.
- **timer**—Trace timer processing.
- **ui**—Trace user interface processing.

**level**—Level of tracing to perform. You can specify any of the following levels:

- **all**—Match all levels.
- **error**—Match error conditions.
- **info**—Match informational messages.
- **notice**—Match notice messages about conditions requiring special handling.
- **verbose**—Match verbose messages.
- **warning**—Match warning messages.

**match regular-expression**—(Optional) Refine the output to include lines that contain the regular expression.

**no-remote-trace**—Disable remote tracing.

**no-world-readable**—(Optional) Disable unrestricted file access.
size.maximal-file-size—(Optional) Maximum size of each trace file. By default, the number entered is treated as bytes. Alternatively, you can include a suffix to the number to indicate kilobytes (KB), megabytes (MB), or gigabytes (GB). If you specify a maximum file size, you also must specify a maximum number of trace files with the files option.

Syntax: sizek to specify KB, sizem to specify MB, or sizeg to specify GB

Range: 10240 through 1073741824

Default: 128 KB

world-readable—(Optional) Enable unrestricted file access.

transmit-delay

Syntax

transmit-delay seconds;

Hierarchy Level

[edit protocols lldp],
[edit routing-instances routing-instance-name protocols lldp]

Release Information


Description

(MX Series and T Series routers only) Configure a delay between two successive LLDP advertisements.

Options

seconds—Delay between two successive LLDP advertisements.

Default: 2

Range: 1 through 8192

Required Privilege Level

routing—To view this statement in the configuration.

routing-control—To add this statement to the configuration.

Related Documentation

• Configuring LLDP on page 158
### unit

**Syntax**
```
unit logical-unit-number {
 accept-source-mac {
 mac-address mac-address {
 policer {
 input cos-policer-name;
 output cos-policer-name;
 }
 }
 }
 accounting-profile name;
 advisory-options {
 downstream-rate rate;
 upstream-rate rate;
 }
 allow-any-vci;
 atm-scheduler-map (map-name | default);
 backup-options {
 interface interface-name;
 }
 bandwidth rate;
 cell-bundle-size cells;
 clear-dont-fragment-bit;
 compression {
 rtp {
 maximum-contexts number <force>;
 f-max-period number;
 queues [queue-numbers];
 port {
 minimum port-number;
 maximum port-number;
 }
 }
 }
 compression-device interface-name;
 copy-tos-to-outer-ip-header;
 demux-destination family;
 demux-source family;
 demux-options {
 underlying-interface interface-name;
 }
 description text;
 interface {
 l2tp-interface-id name;
 (dedicated | shared);
 }
 dialer-options {
 activation-delay seconds;
 callback;
 callback-wait-period time;
 deactivation-delay seconds;
 dial-string [dial-string-numbers];
 idle-timeout seconds;
 }
    ```
incoming-map {
    caller caller-id) | accept-all;
    initial-route-check seconds;
    load-interval seconds;
    load-threshold percent;
    pool pool-name;
    redial-delay time;
    watch-list {
        [ routes ];
    }
}
}
disable;
disable-mlppp-inner-ppp-pfc;
dlci dlci-identifier;
drop-timeout milliseconds;
dynamic-call-admission-control {
    activation-priority priority;
    bearer-bandwidth-limit kilobits-per-second;
}
encapsulation type;
epd-threshold cells pip1 cells;
family family-name {
    ... the family subhierarchy appears after the main [edit interfaces interface-name unit
        logical-unit-number] hierarchy ...
}
fragment-threshold bytes;
intra-vlan-id-range start start-id end end-id;
input-vlan-map {
    (pop | pop-pip | pip-swap | push | push-pip | swap |
        swap-pip | swap-swap);
    inner-tag-protocol-id tpid;
    inner-vlan-id number;
    tag-protocol-id tpid;
    vlan-id number;
}
interleave-fragments;
inverse-arp;
layer2-policer {
    input-policer policer-name;
    input-three-color policer-name;
    output-policer policer-name;
    output-three-color policer-name;
}
link-layer-overhead percent;
minimum-links number;
mrru bytes;
multicast-dlci dlci-identifier;
multicast-vci vpi-identifier.vci-identifier;
multilink-max-classes number;
multipoint;
oam-liveness {
    up-count cells;
    down-count cells;
}
oam-period (disable | seconds);
output-vlan-map {
    (pop | pop-pop | pop-swap | push | push-push | swap | 
    swap-push | swap-swap);
    inner-tag-protocol-id tpid;
    inner-vlan-id number;
    tag-protocol-id tpid;
    vlan-id number;
}
passive-monitor-mode;
peer-unit unit-number;
pip-to-clp;
point-to-point;
ppp-options {
    chap {
        access-profile name;
        default-chap-secret name;
        local-name name;
        passive;
    }
    compression {
        acfc;
        pfc;
    }
    dynamic-profile profile-name;
    lcp-restart-timer milliseconds;
    loopback-clear-timer seconds;
    ncp-restart-timer milliseconds;
    pap {
        access-profile name;
        default-pap-password password;
        local-name name;
        local-password password;
        passive;
    }
}
pppoe-options {
    access-concentrator name;
    auto-reconnect seconds;
    (client | server):
    service-name name;
    underlying-interface interface-name;
}
pppoe-underlying-options {
    access-concentrator name;
    dynamic-profile profile-name;
    max-sessions number;
}
proxy-arp;
service-domain (inside | outside);
shaping {
    (cbr rate | rtvbr peak rate sustained rate burst length | vbr peak rate sustained rate burst 
    length);
    queue-length number;
}
short-sequence;
targeted-distribution;
transmit-weight number;
(traps | no-traps);
trunk-bandwidth rate;
trunk-id number;
tunnel {
    backup-destination address;
    destination address;
    key number;
    routing-instance {
        destination routing-instance-name;
    }
    source source-address;
    ttl number;
}
vci vpi-identifier.vci-identifier;
vci-range start start-vci end end-vci;
vpi vpi-identifier;
vlan-id number;
vlan-id-range number-number;
vlan-tags inner tpid.vlan-id outer tpid.vlan-id;
family family {
    accounting {
        destination-class-usage;
        source-class-usage {
            (input | output | input output);
        }
    }
    access-concentrator name;
    address address {
        ... the address subhierarchy appears after the main [edit interfaces interface-name unit logical-unit-number family family-name] hierarchy ...
    }
    bridge-domain-type (bvlan | svlan);
    bundle interface-name;
    core-facing;
    demux-destination {
        destination-prefix;
    }
    demux-source {
        source-prefix;
    }
    duplicate-protection;
    dynamic-profile profile-name;
    filter {
        group filter-group-number;
        input filter-name;
        input-list [ filter-names ];
        output filter-name;
        output-list [ filter-names ];
    }
    interface-mode (access | trunk);
ipsec-sa sa-name;
isid-list all-service-groups;
keep-address-and-control;
mac-validate (loose | strict);
max-sessions number;
mtu bytes;
multicast-only;
no-redirects;
policer {
    arp policer-template-name;
    input policer-template-name;
    output policer-template-name;
}
primary;
protocols [inet isompls];
proxy inet-address address;
receive-options-packets;
receive-ttl-exceeded;
remote (inet-address address | mac-address address);
rpf-check {
    fail-filter filter-name
    mode loose;
}
sampling {
    input;
    output;
}
service {
    input {
        post-service-filter filter-name;
        service-set service-set-name <service-filter filter-name>;
    }
    output {
        service-set service-set-name <service-filter filter-name>;
    }
}
service-name-table table-name
(translate-discard-eligible | no-translate-discard-eligible);
(translate-fecn-and-becn | no-translate-fecn-and-becn);
translate-plp-control-word-de;
unnumbered-address interface-name destination address destination-profile profile-name;
vlan-id number;
vlan-id-list [number number-number];
address address {
    arp ip-address (mac | multicast-mac) mac-address <publish>;
    broadcast address;
    destination address;
    destination-profile name;
    eui-64;
    master-only;
multipoint-destination address {
    dci dci-identifier;
    epd-threshold cells <plp cells>;
    inverse-arp;
oam-liveness {
    up-count cells;
    down-count cells;
    }
oam-period (disable | seconds);
    shaping {
    }
(cbr rate | rtvbr burst length peak rate sustained rate) vbr burst length peak rate sustained rate); queue-length number;
} vci vpi-identifier.vci-identifier;
} preferred;
primary;
(vrrp-group | vrrp-inet6-group) group-number {
(accept-data | no-accept-data);
advertise-interval seconds;
authentication-type authentication;
authentication-key key;
fast-interval milliseconds;
(preempt | no-preempt) {
hold-time seconds;
} priority number;
track {
interface interface-name {
bandwidth-threshold bits-per-second priority-cost number;
}
priority-hold-time seconds;
route ip-address/prefix-length routing-instance instance-name priority-cost cost;
}
virtual-address [ addresses ];
virtual-link-local-address ipv6-address;
vrrp-inherit-from {
active-interface interface-name;
active-group group-number;
}
}
}
}

Hierarchy Level
[edit interfaces interface-name],
[edit logical-systems logical-system-name interfaces interface-name],
[edit interfaces interface-set interface-set-name interface interface-name]

Release Information
Statement introduced before Junos OS Release 7.4.

Description
Configure a logical interface on the physical device. You must configure a logical interface to be able to use the physical device.

Options
logical-unit-number—Number of the logical unit.
Range: 0 through 1,073,741,823 for demux and PPPoE static interfaces only. 0 through 16,385 for all other static interface types.

The remaining statements are explained separately.

Required Privilege
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.
version-3

Syntax  version-3;

Hierarchy Level  [edit protocols vrrp]

Release Information  Statement introduced in Junos OS Release 12.2.

Description  Enable Virtual Router Redundancy Protocol version 3 (VRRPv3).

NOTE:

- Even though the version-3 statement can be configured only at the [edit protocols vrrp] hierarchy level, VRRPv3 is enabled on all the configured logical systems as well.
- When enabling VRRPv3, you must ensure that VRRPv3 is enabled on all the VRRP routers in the network. This is because VRRPv3 does not interoperate with the previous versions of VRRP.

Required Privilege Level  interface—To view this statement in the configuration.  
interface-control—To add this statement to the configuration.

Related Documentation  • Junos OS Support for VRRPv3  
• VRRP Configuration Hierarchy  
• VRRP for IPv6 Configuration Hierarchy
vlan-id

See the following sections:
- `vlan-id (Logical Port in Bridge Domain)` on page 575
- `vlan-id (Outer VLAN ID)` on page 576
- `vlan-id (VLAN ID to Be Bound to a Logical Interface)` on page 576
- `vlan-id (VLAN ID to Rewrite)` on page 577

**vlan-id (Logical Port in Bridge Domain)**

**Syntax**
```
vlan-id number;
```

**Hierarchy Level**
```
[edit interfaces interface-name unit logical-unit-number family bridge],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family bridge]
```

**Release Information**
Statement introduced in Junos OS Release 9.2.

**Description**
The VLAN ID configured on the logical port. Received packets with no VLAN tags are forwarded within the bridge domain with the matching VLAN ID.

**Options**
- `number`—The VLAN ID.
  - **Range**: 1 through 4095

**Required Privilege Level**
- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**
- Configuring a Logical Interface for Access Mode on page 75
### vlan-id (Outer VLAN ID)

**Syntax**

```
vlan-id outer-vlan-id;
```

**Hierarchy Level**

[edit interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

**Release Information**

Statement introduced in Junos OS Release 9.0.

**Description**

The outer VLAN ID to be used in ATM-to-Ethernet interworking cross-connects. Outer VLAN IDs are converted to the ATM VPI. The outer VLAN ID must match the VPI value configured. The allowable VPI range is 0 to 255. Do not configure the outer VLAN ID to be greater than 255.

**Options**

- `outer-vlan-id`—Outer VLAN ID number.

  **Range:** 0 through 4094

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**

- Configuring ATM-to-Ethernet Interworking

### vlan-id (VLAN ID to Be Bound to a Logical Interface)

**Syntax**

```
vlan-id number;
```

**Hierarchy Level**

[edit interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

For Fast Ethernet, Gigabit Ethernet, and Aggregated Ethernet interfaces only, bind a 802.1Q VLAN tag ID to a logical interface.

**Options**

- `number`—A valid VLAN identifier.

  **Range:** For aggregated Ethernet, 4-port, 8-port, and 12-port Fast Ethernet PICs, and for management and internal Ethernet interfaces, 1 through 1023.

  For 48-port Fast Ethernet and Gigabit Ethernet PICs, 1 through 4094.

  VLAN ID 0 is reserved for tagging the priority of frames.

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**

- Configuring Mixed Tagging on page 57
**vlan-id (VLAN ID to Rewrite)**

**Syntax**

```
vlan-id number;
```

**Hierarchy Level**

[edit interfaces interface-name unit logical-unit-number input-vlan-map],
[edit interfaces interface-name unit logical-unit-number output-vlan-map],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number input-vlan-map],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number output-vlan-map]

**Release Information**

Statement introduced before Junos OS Release 7.4.

**Description**

For Gigabit Ethernet IQ and 10-Gigabit Ethernet IQ2, 10-Gigabit Ethernet LAN/WAN PIC, and IQ2-E interfaces and aggregated Ethernet using Gigabit Ethernet IQ interfaces, specify the line VLAN identifiers to be rewritten at the input or output interface.

You cannot include the `vlan-id` statement with the `swap` statement, `swap-push` statement, `push-push` statement, or `push-swap` statement at the 
[edit interfaces interface-name unit logical-unit-number output-vlan-map] hierarchy level. If you include any of those statements in the output VLAN map, the VLAN ID in the outgoing frame is rewritten to the `vlan-id` statement that you include at the 
[edit interfaces interface-name unit logical-unit-number] hierarchy level.

**Required Privilege Level**

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**

- Rewriting the VLAN Tag on Tagged Frames on page 142
- Binding VLAN IDs to Logical Interfaces on page 59
vlan-id-list

See the following sections:

- vlan-id-list (Ethernet VLAN Circuit) on page 579
- vlan-id-list (Interface in Bridge Domain) on page 580
**vlan-id-list (Ethernet VLAN Circuit)**

**Syntax**

\[ vlan-id-list \[ vlan-id vlan-id--vlan-id \]; \]

**Hierarchy Level**

[edit interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

**Release Information**

Statement introduced in Junos OS Release 9.5.

**Description**

(MX Series routers only) Binds a single-tag logical interface to a list of VLAN IDs. Configures a logical interface to receive and forward any tag frame whose VLAN ID tag matches the list of VLAN IDs you specify.

**Options**

\[vlan-id vlan-id--vlan-id\]—A list of valid VLAN ID numbers. Specify the VLAN IDs individually by using a space to separate each ID, as an inclusive list by separating the starting VLAN ID and ending VLAN ID with a hyphen, or as a combination of both.

**Range:** 1 through 4094. VLAN ID 0 is reserved for tagging the priority of frames.

**NOTE:**

When you create a circuit cross-connect (CCC) using VLAN-bundled single-tag logical interfaces on Layer 2 VPN routing instances, the circuit automatically uses ethernet encapsulation. For Layer 2 VPN, you need to include the encapsulation-type statement and specify the value ethernet at either of the following hierarchy levels:

- [edit routing-instances routing-instance-name protocols l2vpn]
- [edit logical-systems logical-system-name routing-instances routing-instance-name protocols l2vpn]

For more information about the encapsulation-type configuration statement and the Layer 2 encapsulation types ethernet and ethernet-vlan, see the Junos OS VPNs Configuration Guide.

**NOTE:** Configuring vlan-id-list with the entire vlan-id range is an unnecessary waste of system resources and is not best practice. It should be used only when a subset of VLAN IDs (not the entire range) needs to be associated with a logical interface. If you specify the entire range (1-4094), it has the same result as not specifying a range; however, it consumes PFE resources such as VLAN lookup tables entries, and so on.

The following examples illustrate this further:

```
[edit interfaces interface-name]
vlan-tagging;
unit number {
 vlan-id-range 1-4094;
}
```
[edit interfaces interface-name]
unit 0;

**Required Privilege Level**
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**
- Binding VLAN IDs to Logical Interfaces on page 59
- encapsulation (Logical Interface)
- encapsulation (Physical Interface)
- encapsulation-type (Layer 2 VPN routing instance), see the Junos OS VPNs Configuration Guide
- flexible-vlan-tagging
- vlan-tagging on page 585
- vlan-tags (Dual-Tagged Logical Interface) on page 587

**vlan-id-list (Interface in Bridge Domain)**

**Syntax**
```
vlan-id-list [number number-number];
```

**Hierarchy Level**

[edit interfaces interface-name unit logical-unit-number family bridge],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number family bridge]

**Release Information**
Statement introduced in Junos OS Release 9.2.

**Description**
Configure a logical interface to forward packets and learn MAC addresses within each bridge domain configured with a VLAN ID that matches a VLAN ID specified in the list. VLAN IDs can be entered individually using a space to separate each ID, entered as an inclusive list separating the starting VLAN ID and ending VLAN ID with a hyphen, or a combination of both.

**Options**
- `number number`—Individual VLAN IDs separated by a space.
- `number-number`—Starting VLAN ID and ending VLAN ID in an inclusive range.

**Range:** 1 through 4095

**Required Privilege Level**
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

**Related Documentation**
- Configuring a Logical Interface for Trunk Mode on page 76
- Configuring the VLAN ID List for a Trunk Interface on page 77
### vlan-id-range

**Syntax**

```
vlan-id-range vlan-id–vlan-id
```

**Hierarchy Level**

- [edit interfaces interface-name unit logical-unit-number]
- [edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]

**Release Information**

Statement introduced in Junos OS Release 8.4.

**Description**

Bind a range of VLAN IDs to a logical interface.

**Options**

- `number`—The first number is the lowest VLAN ID in the range the second number is the highest VLAN ID in the range.

  **Range:** 1 through 4094

**NOTE:** Configuring `vlan-id-range` with the entire `vlan-id range` is an unnecessary waste of system resources and is not best practice. It should be used only when a subset of VLAN IDs (not the entire range) needs to be associated with a logical interface. If you specify the entire range (1-4094), it has the same result as not specifying a range; however, it consumes PFE resources such as VLAN lookup tables entries, and so on.

The following examples illustrate this further:

```
[edit interfaces interface-name]
vlan-tagging;
unit number {
 vlan-id-range 1-4094;
}
[edit interfaces interface-name]
unit 0;
```

VLAN ID 0 is reserved for tagging the priority of frames.

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**

- [Binding a Range of VLAN IDs to a Logical Interface on page 61](#)
vlan-ranges

Syntax

```plaintext
vlan-ranges {
 access-profile profile-name;
 authentication {
 password password-string;
 username-include {
 circuit-type;
 delimiter delimiter-character;
 domain-name domain-name-string;
 interface-name;
 mac-address;
 option-82 <circuit-id> <remote-id>;
 radius-realm radius-realm-string;
 user-prefix user-prefix-string;
 }
 }
 dynamic-profile profile-name {
 accept (any | dhcp-v4 | inet);
 ranges (any | low-tag)–(any | high-tag);
 }
 override;
}
```

Hierarchy Level
[edit interfaces interface-name auto-configure]

Release Information
Statement introduced in Junos OS Release 9.5.

Description
Configure multiple VLANs. Each VLAN is assigned a VLAN ID number from the range.

The remaining statements are explained separately.

Required Privilege
- **Level**
  - routing—to view this statement in the configuration.
  - routing—control—to add this statement to the configuration.

Related Documentation
- Configuring Single-Level VLAN Ranges for Use with VLAN Dynamic Profiles
- Configuring Dynamic Mixed VLAN Ranges
vlan-rewrite

Syntax

```
vlan-rewrite translate (200 500 | 201 501)
```

Hierarchy Level

[edit interfaces interface-name unit number family bridge interface-mode trunk]

Release Information

Statement introduced in Junos OS Release 9.4.

Description

Translates an incoming VLAN to a bridge-domain VLAN, corresponding counter translation at egress. Supports translation of VLAN 200 to VLAN 500 and VLAN 201 to VLAN 501. Other valid VLANs pass through without translation.

Options

- translate 200 500—Translates incoming packets with VLAN 200 to 500.
- translate 201 501—Translates incoming packets with VLAN 201 to 501.

Required Privilege

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Rewriting a VLAN Tag and Adding a New Tag on page 146

vlan-rule (100-Gigabit Ethernet)

Syntax

```
vlan-rule (high-low | odd-even);
```

Hierarchy Level

[edit chassis fpc slot pic forwarding-mode vlan-steering]

Release Information

Statement introduced in Junos OS Release 10.4.

Description

Configure the interoperation mode of the 100-Gigabit Ethernet PIC when interoperation with 100 gigabit Ethernet interfaces from other vendors.

If no VLAN rule is configured, all tagged packets are distributed to PFE0.

Options

- high-low—VLAN IDs 1 through 2047 are distributed to PFE0 and VLAN IDs 2048 through 4096 are distributed to PFE1.
- odd-even—Odd number VLAN IDs are distributed to PFE1 and even number VLAN IDs are distributed to PFE0.

Required Privilege

- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation

- Configuring 100-Gigabit Ethernet PIC VLAN Steering Mode on page 370
- forwarding-mode (100-Gigabit Ethernet) on page 482
- vlan-steering (100-Gigabit Ethernet) on page 584
vlan-steering (100-Gigabit Ethernet)

**Syntax**

```
vlan-steering {
 vlan-rule (high-low | odd-even);
}
```

**Hierarchy Level**

[edit chassis fpc slot pic slot forwarding-mode]

**Release Information**

Statement introduced in Junos OS Release 9.4.

**Description**

Configure the 100-Gigabit Ethernet PIC to interoperate with 100 gigabit Ethernet interfaces from other vendors.

See [sa-multicast](#) regarding interoperability with 100-Gigabit Ethernet PICs from Juniper Networks.

The other statement is explained separately.

**Required Privilege Level**

- `interface`—To view this statement in the configuration.
- `interface-control`—To add this statement to the configuration.

**Related Documentation**

- Configuring 100-Gigabit Ethernet PIC VLAN Steering Mode on page 370
- `forwarding-mode (100-Gigabit Ethernet)` on page 482
- [sa-multicast (100-Gigabit Ethernet)](#) on page 545
- `vlan-rule (100-Gigabit Ethernet)` on page 583
**vlan-tagging**

**Syntax**

`vlan-tagging;`

**Hierarchy Level**

[edit interfaces interface-name],
[edit logical-systems logical-system-name interfaces interface-name]

**Release Information**

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 9.0 for EX Series switches.
Statement introduced in Junos OS Release 12.2 for ACX Series Universal Access Routers.

**Description**

For Fast Ethernet and Gigabit Ethernet interfaces and aggregated Ethernet interfaces configured for VPLS, enable the reception and transmission of 802.1Q VLAN-tagged frames on the interface.

**Required Privilege**

**Level**

interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

**Related Documentation**

- Example: Configuring Layer 3 Subinterfaces for a Distribution Switch and an Access Switch
- Example: Configuring BGP Autodiscovery for LDP VPLS
- Configuring a Layer 3 Subinterface (CLI Procedure)
- Configuring Tagged Aggregated Ethernet Interfaces
- Configuring Interfaces for VPLS Routing
- Enabling VLAN Tagging
- 802.1Q VLANs Overview on page 53
- `vlan-id`
vlan-tags

See the following sections:

- [vlan-tags (Dual-Tagged Logical Interface)] on page 587
- [vlan-tags (Stacked VLAN Tags)] on page 589
**vlan-tags (Dual-Tagged Logical Interface)**

**Syntax**
```yaml
vlan-tags inner-list [vlan-id vlan-id–vlan-id] outer <tpid:><vlan-id>
```

**Hierarchy Level**
```yaml
[edit interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]
```

**Release Information**
Statement introduced in Junos OS Release 9.5.

**Description**
(MX Series routers only) Binds a dual-tag logical interface to a list of VLAN IDs. Configures the logical interface to receive and forward any dual-tag frame whose inner VLAN ID tag matches the list of VLAN IDs you specify.

**Options**
- **inner-list [vlan-id vlan-id–vlan-id ]**— A list of valid VLAN ID numbers. Specify the VLAN IDs individually by using a space to separate each ID, as an inclusive list by separating the starting VLAN ID and ending VLAN ID with a hyphen, or as a combination of both.
  - **Range:** 1 through 4094. VLAN ID 0 is reserved for tagging the priority of frames.

- **outer <tpid:><vlan-id>**— An optional Tag Protocol ID (TPID) and a valid VLAN ID.
  - **Range:** For TPID, specify a hexadecimal value in the format `0xnnnn`.
  - **Range:** For VLAN ID, 1 through 4094. VLAN ID 0 is reserved for tagging the priority of frames.

**NOTE:** Configuring `inner-list` with the entire `vlan-id` range is an unnecessary waste of system resources and is not best practice. It should be used only when a subset of VLAN IDs of inner tag (not the entire range) needs to be associated with a logical interface. If you specify the entire range (1 through 4094), it has the same result as not specifying a range; however, it consumes PFE resources such as VLAN lookup tables entries, and so on.

The following examples illustrate this further:
[edit interfaces interface-name]
  vlan-tagging;
  unit number {
    vlan-tags outer vid inner-list 1-4094;
  }
[edit interfaces interface-name]
  vlan-tagging;
  unit number {
    vlan-id vid;
  }

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
- Binding VLAN IDs to Logical Interfaces on page 59
- encapsulation (Logical Interface)
- encapsulation (Physical Interface)
- encapsulation-type (Layer 2 VPN routing instance), see the Junos OS VPNs Configuration Guide.
- flexible-vlan-tagging
- vlan-id-list (Ethernet VLAN Circuit) on page 579
- vlan-tagging on page 585
vlan-tags (Stacked VLAN Tags)

Syntax

```
vlan-tags inner tpid vlan-id inner-range vid1—vid2 outer tpid vlan-id;
```

Hierarchy Level

```
[edit interfaces interface-name unit logical-unit-number],
[edit logical-systems logical-system-name interfaces interface-name unit logical-unit-number]
```

Release Information

Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.1 for PTX Series Packet Transport Switches.

Description

For Gigabit Ethernet IQ and IQE interfaces only, bind TPIDs and 802.1Q VLAN tag IDs to a logical interface.

NOTE: The inner-range vid1–vid2 option is supported on MX Series with IQE PICs only.

Options

inner **tpid vlan-id**—A TPID and a valid VLAN identifier.

**Range:** (most routers) For VLAN ID, 1 through 4094. VLAN ID 0 is reserved for tagging the priority of frames.

**Range:** (PTX Series) For VLAN ID, 0 through 4094.

inner-range **vid1–vid2**—For MX Series routers with Enhanced IQ (IQE) PICs only; specify a range of VLAN IDs where vid1 is the start of the range and vid2 is the end of the range.

**Range:** For VLAN ID, 1 through 4094. VLAN ID 0 is reserved for tagging the priority of frames.

outer **tpid vlan-id**—A TPID and a valid VLAN identifier.

**Range:** (most routers) For VLAN ID, 1 through 511 for normal interfaces, and 512 through 4094 for VLAN CCC interfaces. VLAN ID 0 is reserved for tagging the priority of frames.

**Range:** (PTX Series) For VLAN ID, 0 through 511 for normal interfaces, and 512 through 4094 for VLAN CCC interfaces.

NOTE: Configuring inner-range with the entire vlan-id range consumes system resources and is not a best practice. It should be used only when a subset of VLAN IDs of inner tag (not the entire range) needs to be associated with a logical interface. If you specify the entire range (1–4094), it has the same result as not specifying a range; however, it consumes Packet Forwarding Engine resources such as VLAN lookup table entries, and so on.

The following examples illustrate this further:

```
[edit interfaces interface-name]

stacked-vlan-tagging;
```
unit number {
    vlan-tags outer vid inner-range 1-4094;
}

[edit interfaces interface-name]
vlan-tagging;
unit number {
    vlan-id vid;
}

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Configuring Dual VLAN Tags on page 134
• Configuring Flexible VLAN Tagging on PTX Series Packet Transport Switches on page 386
• stacked-vlan-tagging

**vlan-tags-outer**

Syntax
vlan-tags-outer vlan-tag;

Hierarchy Level
[edit interfaces interface-set interface-set-name interface interface-name]

Release Information
Statement introduced in Junos OS Release 8.5.

Description
The S-VLAN outer tag that belongs to a set of interfaces used to configure hierarchical CoS schedulers.

Required Privilege Level
interface—To view this statement in the configuration.
interface-control—To add this statement to the configuration.

Related Documentation
• Junos OS Class of Service Configuration Guide
### vlan-vci-tagging

<table>
<thead>
<tr>
<th>Syntax</th>
<th>vlan-vci-tagging;</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hierarchy Level</td>
<td>[edit interfaces interface-name], [edit logical-systems logical-system-name interfaces interface-name]</td>
</tr>
<tr>
<td>Release Information</td>
<td>Statement introduced in Junos OS Release 9.0.</td>
</tr>
<tr>
<td>Description</td>
<td>Enable the ATM-to-Ethernet interworking cross-connect function on a Gigabit Ethernet, 10-Gigabit Ethernet, or aggregated Ethernet interface.</td>
</tr>
<tr>
<td>Required Privilege Level</td>
<td>interface—To view this statement in the configuration. interface-control—To add this statement to the configuration.</td>
</tr>
<tr>
<td>Related Documentation</td>
<td>• Configuring ATM-to-Ethernet Interworking</td>
</tr>
</tbody>
</table>
Syntax  wavelength nm;

Hierarchy Level  [edit interfaces interface-name optics-options]

Release Information  Statement introduced before Junos OS Release 7.4.
Statement introduced in Junos OS Release 12.1 for EX Series switches.

Description  For 10-Gigabit Ethernet DWDM interfaces only, configure full C-band ITU-Grid tunable optics.

Options  nm—Wavelength value. It can be one of the following:

- 1528.77—1528.77 nanometers (nm), corresponds to 50 GHz through 100 GHz
- 1529.16—1529.16 nm, corresponds to 50 GHz
- 1529.55—1529.55 nm, corresponds to 50 GHz through 100 GHz
- 1529.94—1529.94 nm, corresponds to 50 GHz
- 1530.33—1530.33 nm, corresponds to 50 GHz through 100 GHz
- 1530.72—1530.72 nm, corresponds to 50 GHz
- 1531.12—1531.12 nm, corresponds to 50 GHz through 100 GHz
- 1531.51—1531.51 nm, corresponds to 50 GHz
- 1531.90—1531.90 nm, corresponds to 50 GHz through 100 GHz
- 1532.29—1532.29 nm, corresponds to 50 GHz
- 1532.68—1532.68 nm, corresponds to 50 GHz through 100 GHz
- 1533.07—1533.07 nm, corresponds to 50 GHz
- 1533.47—1533.47 nm, corresponds to 50 GHz through 100 GHz
- 1533.86—1533.86 nm, corresponds to 50 GHz
- 1534.25—1534.25 nm, corresponds to 50 GHz through 100 GHz
- 1534.64—1534.64 nm, corresponds to 50 GHz
- 1535.04—1535.04 nm, corresponds to 50 GHz through 100 GHz
- 1535.43—1535.43 nm, corresponds to 50 GHz
- 1535.82—1535.82 nm, corresponds to 50 GHz through 100 GHz
- 1536.22—1536.22 nm, corresponds to 50 GHz
- 1536.61—1536.61 nm, corresponds to 50 GHz through 100 GHz
- 1537.00—1537.00 nm, corresponds to 50 GHz
- 1537.40—1537.40 nm, corresponds to 50 GHz through 100 GHz
• 1537.79—1537.79 nm, corresponds to 50 GHz
• 1538.19—1538.19 nm, corresponds to 50 GHz through 100 GHz
• 1538.58—1538.58 nm, corresponds to 50 GHz
• 1538.98—1538.98 nm, corresponds to 50 GHz through 100 GHz
• 1539.37—1539.37 nm, corresponds to 50 GHz
• 1539.77—1539.77 nm, corresponds to 50 GHz through 100 GHz
• 1540.16—1540.16 nm, corresponds to 50 GHz
• 1540.56—1540.56 nm, corresponds to 50 GHz through 100 GHz
• 1540.95—1540.95 nm, corresponds to 50 GHz
• 1541.35—1541.35 nm, corresponds to 50 GHz through 100 GHz
• 1541.75—1541.75 nm, corresponds to 50 GHz
• 1542.14—1542.14 nm, corresponds to 50 GHz through 100 GHz
• 1542.54—1542.54 nm, corresponds to 50 GHz
• 1542.94—1542.94 nm, corresponds to 50 GHz through 100 GHz
• 1543.33—1543.33 nm, corresponds to 50 GHz
• 1543.73—1543.73 nm, corresponds to 50 to 100 GHz
• 1544.13—1544.13 nm, corresponds to 50 GHz
• 1544.53—1544.53 nm, corresponds to 50 GHz through 100 GHz
• 1544.92—1544.92 nm, corresponds to 50 GHz
• 1545.32—1545.32 nm, corresponds to 50 GHz through 100 GHz
• 1545.72—1545.72 nm, corresponds to 50 GHz
• 1546.12—1546.12 nm, corresponds to 50 GHz through 100 GHz
• 1546.52—1546.52 nm, corresponds to 50 GHz
• 1546.92—1546.92 nm, corresponds to 50 GHz through 100 GHz
• 1547.32—1547.32 nm, corresponds to 50 GHz
• 1547.72—1547.72 nm, corresponds to 50 GHz through 100 GHz
• 1548.11—1548.11 nm, corresponds to 50 GHz
• 1548.51—1548.51 nm, corresponds to 50 GHz through 100 GHz
• 1548.91—1548.91 nm, corresponds to 50 GHz
• 1549.32—1549.32 nm, corresponds to 50 GHz through 100 GHz
• 1549.72—1549.72 nm, corresponds to 50 GHz
• 1550.12—1550.12 nm, corresponds to 50 GHz through 100 GHz
• 1550.52—1550.52 nm, corresponds to 50 GHz
- 1550.92—1550.92 nm, corresponds to 50 GHz through 100 GHz
- 1551.32—1551.32 nm, corresponds to 50 GHz
- 1551.72—1551.72 nm, corresponds to 50 GHz through 100 GHz
- 1552.12—1552.12 nm, corresponds to 50 GHz
- 1552.52—1552.52 nm, corresponds to 50 GHz through 100 GHz
- 1552.93—1552.93 nm, corresponds to 50 GHz
- 1553.33—1554.33 nm, corresponds to 50 GHz through 100 GHz
- 1553.73—1554.73 nm, corresponds to 50 GHz
- 1554.13—1554.13 nm, corresponds to 50 GHz through 100 GHz
- 1554.54—1554.54 nm, corresponds to 50 GHz
- 1554.94—1554.94 nm, corresponds to 50 GHz through 100 GHz
- 1555.34—1555.34 nm, corresponds to 50 GHz
- 1555.75—1555.75 nm, corresponds to 50 GHz through 100 GHz
- 1556.15—1556.15 nm, corresponds to 50 GHz
- 1556.55—1556.55 nm, corresponds to 50 GHz through 100 GHz
- 1556.96—1556.96 nm, corresponds to 50 GHz
- 1557.36—1557.36 nm, corresponds to 50 GHz through 100 GHz
- 1557.77—1557.77 nm, corresponds to 50 GHz
- 1558.17—1558.17 nm, corresponds to 50 GHz through 100 GHz
- 1558.58—1558.58 nm, corresponds to 50 GHz
- 1558.98—1558.98 nm, corresponds to 50 GHz through 100 GHz
- 1559.39—1559.39 nm, corresponds to 50 GHz
- 1559.79—1559.79 nm, corresponds to 50 GHz through 100 GHz
- 1560.20—1560.20 nm, corresponds to 50 GHz
- 1560.61—1560.61 nm, corresponds to 50 to 100 GHz
- 1561.01—1561.01 nm, corresponds to 50 GHz
- 1561.42—1561.42 nm, corresponds to 50 GHz through 100 GHz
- 1561.83—1561.83 nm, corresponds to 50 GHz
- 1562.23—1562.23 nm, corresponds to 50 GHz through 100 GHz
- 1562.64—1562.64 nm, corresponds to 50 GHz
- 1563.05—1563.05 nm, corresponds to 50 GHz through 100 GHz
- 1563.45—1563.45 nm, corresponds to 50 GHz
1563.86—1563.86 nm, corresponds to 50 GHz through 100 GHz

Default: 1550.12—1550.12 nm, corresponds to 50 GHz through 100 GHz

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation
- 10-Gigabit Ethernet DWDM Interface Wavelength Overview on page 353

west-interface

Syntax
west-interface {
  node-id mac-address;
  control-channel channel-name {
    interface-none
    ring-protection-link-end;
  }
}

Hierarchy Level
[edit protocols protection-group ethernet-ring ring-name]

Release Information
Statement introduced in Junos OS Release 9.5.
Statement introduced in Junos OS Release 12.1 for EX Series switches.

Description
Define one of the two interface ports for Ethernet ring protection, the other being defined by the east-interface statement at the same hierarchy level. The interface must use the control channel's logical interface name. The control channel is a dedicated VLAN channel for the ring port.

NOTE: Always configure this port second, after configuring the east-interface statement.

The statements are explained separately.

Required Privilege Level
- interface—To view this statement in the configuration.
- interface-control—To add this statement to the configuration.

Related Documentation
- Ethernet Ring Protection Switching Overview on page 437
- Ethernet Ring Protection Using Ring Instances for Load Balancing
- east-interface
- ethernet-ring on page 475
- Example: Configuring Ethernet Ring Protection Switching on EX Series Switches
- Configuring Ethernet Ring Protection Switching (CLI Procedure)
working-circuit

Syntax  working-circuit group-name;

Hierarchy Level  [edit interfaces interface-name sonet-options aps]

Release Information  Statement introduced before Junos OS Release 7.4.

Description  Configure the working router in an APS circuit pair.

Options  group-name—Circuit’s group name.

Required Privilege

Required Level

Related Documentation

• Configuring Basic Automatic Protect Switching
• protect-circuit
PART 4

Troubleshooting

- Investigate Fast Ethernet and Gigabit Ethernet Interfaces on page 599
Investigate Fast Ethernet and Gigabit Ethernet Interfaces

- Investigating Interface Steps and Commands on page 599
- Monitor Fast Ethernet and Gigabit Ethernet Interfaces on page 602
- Use Loopback Testing for Fast Ethernet and Gigabit Ethernet Interfaces on page 611
- Locate the Fast Ethernet and Gigabit Ethernet LINK Alarm and Counters on page 621

Investigating Interface Steps and Commands

This section includes the following information to assist you when troubleshooting ATM interfaces:

- Investigating Interface Steps and Commands Overview on page 599
- Monitoring Interfaces on page 599
- Performing a Loopback Test on an Interface on page 600
- Locating Interface Alarms on page 602

Investigating Interface Steps and Commands Overview

The "Monitoring Interfaces" on page 599 section helps you determine the nature of the interface problem. The "Performing a Loopback Test on an Interface" on page 600 section provides information to help you isolate the source of the problem. The "Locating Interface Alarms" on page 602 section explains some of the alarms and errors for the media.

Monitoring Interfaces

Problem	The following steps are a general outline of how you monitor interfaces to determine the nature of interface problems. For more detailed information on a specific interface, see the corresponding monitor interfaces section.
Solution	To monitor interfaces, follow these steps:
	1. Display the status of an interface.
	2. Display the status of a specific interface.
3. Display extensive status information for a specific interface.


The Table 36 on page 600 lists and describes the operational mode commands you use to monitor interfaces.

Table 36: Commands Used to Monitor Interfaces

<table>
<thead>
<tr>
<th>CLI Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show interfaces terse interface-name</code></td>
<td>Displays summary information about the named interfaces.</td>
</tr>
<tr>
<td>For example: <code>show interfaces terse t1*</code></td>
<td></td>
</tr>
<tr>
<td><code>show interfaces interface-name</code></td>
<td>Displays static status information about a specific interface.</td>
</tr>
<tr>
<td>For example: <code>show interfaces t1-x/x/x</code></td>
<td></td>
</tr>
<tr>
<td><code>show interfaces interface-name extensive</code></td>
<td>Displays very detailed interface information about a specific interface.</td>
</tr>
<tr>
<td>For example: <code>show interfaces t1-x/x/x extensive</code></td>
<td></td>
</tr>
<tr>
<td><code>monitor interface interface-name</code></td>
<td>Displays real-time statistics about a physical interface, updated every second.</td>
</tr>
<tr>
<td>For example: <code>monitor interface t1-x/x/x</code></td>
<td></td>
</tr>
</tbody>
</table>

Performing a Loopback Test on an Interface

**Problem**  The following steps are a general outline of how you use loopback testing to isolate the source of the interface problem. For more detailed information on a specific interface, see the corresponding loopback section.

**Solution**  To use loopback testing for interfaces, follow these steps:

1. Diagnose a suspected hardware problem.
   a. Create a loopback.
   b. Set clocking to internal. (Not for Fast Ethernet/Gigabit Ethernet or Multichannel DS3 interfaces.)
   c. Verify that the status of the interface is up.
   d. Configure a static address resolution protocol table entry. (Fast Ethernet/Gigabit Ethernet interfaces only)
   e. Clear the interface statistics.
   f. Force the link layer to stay up.
   g. Verify the status of the logical interface.
2. Diagnose a suspected connection problem.
   a. Create a loop from the router to the network.
   b. Create a loop to the router from various points in the network.

The Table 37 on page 601 lists and describes the operational and configuration mode commands you use to perform loopback testing on interfaces (the commands are shown in the order in which you perform them).

<table>
<thead>
<tr>
<th>CLI Statement or Command</th>
<th>Interface Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[edit interfaces interface-name interface-options] set loopback (local</td>
<td>remote)</td>
<td>All interfaces</td>
</tr>
<tr>
<td>show</td>
<td>All interfaces</td>
<td>Verify the configuration before you commit it.</td>
</tr>
<tr>
<td>commit</td>
<td>All interfaces</td>
<td>Save the set of changes to the database and cause the changes to take operational effect. Use after you have verified a configuration in all configuration steps.</td>
</tr>
<tr>
<td>[edit interfaces interface-name] set clocking internal</td>
<td>T1, T3, ATM, and SONET interfaces</td>
<td>The clocking statement at this hierarchy level configures the clock source of the interface to internal.</td>
</tr>
<tr>
<td>show interfaces interface-name</td>
<td>Used for all interfaces</td>
<td>Display static status information about a specific interface.</td>
</tr>
<tr>
<td>[edit interfaces interface-name unit logical-unit-number family inet address address] arp ip-address mac mac-address</td>
<td>Fast Ethernet and Gigabit Ethernet interfaces</td>
<td>The arp statement at this hierarchy level defines mappings between IP and Media Access Control (MAC) addresses.</td>
</tr>
<tr>
<td>show arp no-resolve</td>
<td>Fast Ethernet and Gigabit Ethernet interfaces</td>
<td>Display the entries in the ARP table without attempting to determine the hostname that corresponds to the IP address (the no-resolve option).</td>
</tr>
<tr>
<td>clear interfaces statistics interface-name</td>
<td>All interfaces</td>
<td>Reset the statistics for an interface to zero.</td>
</tr>
<tr>
<td>[edit interfaces interface-name ] set encapsulation cisco-hdlc</td>
<td>T1, T3, SONET, and Multichannel DS3 interfaces</td>
<td>The encapsulation statement at this hierarchy level sets the encapsulation to the Cisco High-level Data-Link Control (HDL) transport protocol on the physical interface.</td>
</tr>
</tbody>
</table>
Table 37: Commands Used to Perform Loopback Testing on Interfaces (continued)

<table>
<thead>
<tr>
<th>CLI Statement or Command</th>
<th>Interface Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[edit interfaces interface-name] set no-keepalives</td>
<td>T1, T3, SONET, and Multichannel DS3 interfaces</td>
<td>The no-keepalives statement at this level disables the sending of keepalives on the physical interface.</td>
</tr>
<tr>
<td>show interfaces interface-name terse</td>
<td>T1, T3, and SONET interfaces</td>
<td>Display summary information about interfaces. (Use to display the status of the logical interfaces for these interfaces.)</td>
</tr>
<tr>
<td>ping interface t1- x/x/x local-IP-address bypass-routing count 1000 rapid</td>
<td>All interfaces</td>
<td>Check the reachability of network hosts by sending ICMP ECHO_REQUEST messages to elicit ICMP ECHO_RESPONSE messages from the specified host. Use the bypass-routing option to ping a local system through an interface that has no route through it. The count option sends 1000 ping requests through the system. Type Ctrl+C to interrupt a ping command.</td>
</tr>
<tr>
<td>show interfaces interface-name extensive</td>
<td>All interfaces</td>
<td>Display very detailed interface information about a specific interface.</td>
</tr>
</tbody>
</table>

Locating Interface Alarms

Problem    Locating alarms and errors for the media can be a simple process.

Solution   To locate interface alarms and errors, use the show interfaces interface-name extensive command and examine the output for active alarms and defects.

Monitor Fast Ethernet and Gigabit Ethernet Interfaces

- Checklist for Monitoring Fast Ethernet and Gigabit Ethernet Interfaces on page 602
- Monitor Fast Ethernet and Gigabit Ethernet Interfaces on page 603
- Fiber-Optic Ethernet Interface Specifications on page 610

Checklist for Monitoring Fast Ethernet and Gigabit Ethernet Interfaces

Purpose    To monitor Fast Ethernet and Gigabit Ethernet interfaces and begin the process of isolating interface problems when they occur.

Action    Table 38 on page 603 provides links and commands for monitoring Fast Ethernet and Gigabit Ethernet interfaces.
Table 38: Checklist for Monitoring Fast Ethernet and Gigabit Ethernet Interfaces

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Monitor Fast Ethernet and Gigabit Ethernet Interfaces” on page 603</td>
<td>show interfaces terse (fe*</td>
</tr>
<tr>
<td>1. Display the Status of Fast Ethernet Interfaces on page 603</td>
<td>show interfaces (fe-fpc/pic/port</td>
</tr>
<tr>
<td>2. Display the Status of a Specific Fast Ethernet or Gigabit Ethernet Interface on page 605</td>
<td>show interfaces (fe-fpc/pic/port</td>
</tr>
<tr>
<td>3. Display Extensive Status Information for a Specific Fast Ethernet or Gigabit Ethernet Interface on page 606</td>
<td>show interfaces (fe-fpc/pic/port</td>
</tr>
<tr>
<td>4. Monitor Statistics for a Fast Ethernet or Gigabit Ethernet Interface on page 609</td>
<td>monitor interface (fe-fpc/pic/port</td>
</tr>
<tr>
<td>5. Fiber-Optic Ethernet Interface Specifications on page 610</td>
<td></td>
</tr>
</tbody>
</table>

**Meaning** You can use the above described commands to monitor and to display the configurations for Fast Ethernet and Gigabit Ethernet interfaces.

**Monitor Fast Ethernet and Gigabit Ethernet Interfaces**

By monitoring Fast Ethernet and Gigabit Ethernet interfaces, you begin to isolate Fast Ethernet and Gigabit Ethernet interface problems when they occur.

To monitor your Fast Ethernet and Gigabit Ethernet interfaces, follow these steps:

1. Display the Status of Fast Ethernet Interfaces on page 603
2. Display the Status of Gigabit Ethernet Interfaces on page 604
3. Display the Status of a Specific Fast Ethernet or Gigabit Ethernet Interface on page 605
4. Display Extensive Status Information for a Specific Fast Ethernet or Gigabit Ethernet Interface on page 606
5. Monitor Statistics for a Fast Ethernet or Gigabit Ethernet Interface on page 609

**Display the Status of Fast Ethernet Interfaces**

**Purpose** To display the status of Fast Ethernet interfaces, use the following Junos OS command-line interface (CLI) operational mode command:

**Action** user@host> show interfaces terse (fe* | ge*)

**Sample Output**

```
user@host> show interfaces terse fe*
 Interface Admin Link Proto Local Remote
 fe-2/1/0 up up
 fe-2/1/0.0 up up inet 10.116.115.217/29
 fe-3/0/2 up down
 fe-3/0/2.0 up down
 fe-3/0/3 up up
```
fe-3/0/3.0      up    up   inet  192.168.223.65/30
fe-4/1/0        down up
fe-4/1/0.0      up    down   inet  10.150.59.133/30
fe-4/1/1        up    up   inet  10.150.59.129/30
fe-4/1/2        up    down
fe-4/1/2.0      up    down

Meaning
The sample output lists only the Fast Ethernet interfaces. It shows the status of both the physical and logical interfaces. For a description of what the output means, see Table 39 on page 604.

Table 39: Status of Fast Ethernet Interfaces

<table>
<thead>
<tr>
<th>Physical Interface</th>
<th>Logical Interface</th>
<th>Status Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fe-2/1/0</td>
<td>fe-2/1/0.0</td>
<td>This interface has both the physical and logical links up and running.</td>
</tr>
<tr>
<td>Admin Up</td>
<td>Admin Up</td>
<td></td>
</tr>
<tr>
<td>Link Up</td>
<td>Link Up</td>
<td></td>
</tr>
<tr>
<td>fe-3/0/2</td>
<td>fe-3/0/2.0</td>
<td>This interface has the physical link down, the link layer down, or both down (Link Down). The logical link is also down as a result.</td>
</tr>
<tr>
<td>Admin Up</td>
<td>Admin Up</td>
<td></td>
</tr>
<tr>
<td>Link Down</td>
<td>Link Down</td>
<td></td>
</tr>
<tr>
<td>fe-4/1/0</td>
<td>fe-4/1/0.0</td>
<td>This interface is administratively disabled and the physical link is healthy (Link Up), but the logical interface is not established. The logical interface is down because the physical link is disabled.</td>
</tr>
<tr>
<td>Admin Down</td>
<td>Admin Up</td>
<td></td>
</tr>
<tr>
<td>Link Up</td>
<td>Link Down</td>
<td></td>
</tr>
<tr>
<td>fe-4/1/2</td>
<td>fe-4/1/2.0</td>
<td>This interface has both the physical and logical links down.</td>
</tr>
<tr>
<td>Admin Up</td>
<td>Admin Up</td>
<td></td>
</tr>
<tr>
<td>Link Down</td>
<td>Link Down</td>
<td></td>
</tr>
</tbody>
</table>

Display the Status of Gigabit Ethernet Interfaces

Purpose
To display the status of Gigabit Ethernet interfaces, use the following Junos OS command-line interface (CLI) operational mode command:

```
user@host> show interfaces terse ge*
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Link</th>
<th>Proto</th>
<th>Local</th>
<th>Remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-2/2/0</td>
<td>down</td>
<td>down</td>
<td>inet</td>
<td>65.113.23.105/30</td>
<td></td>
</tr>
<tr>
<td>ge-2/2/0.0</td>
<td>up</td>
<td>down</td>
<td>inet</td>
<td>65.113.23.105/30</td>
<td></td>
</tr>
<tr>
<td>ge-2/3/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-2/3/0.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>65.115.56.57/30</td>
<td></td>
</tr>
<tr>
<td>ge-3/1/0</td>
<td>up</td>
<td>up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ge-3/1/0.0</td>
<td>up</td>
<td>up</td>
<td>inet</td>
<td>65.115.56.193/30</td>
<td></td>
</tr>
<tr>
<td>ge-3/2/0</td>
<td>up</td>
<td>down</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Meaning
This sample output lists only the Gigabit Ethernet interfaces. It shows the status of both the physical and logical interfaces. See Table 40 on page 605 for a description of what the output means.

Table 40: Status of Gigabit Ethernet Interfaces

<table>
<thead>
<tr>
<th>Physical Interface</th>
<th>Logical Interface</th>
<th>Status Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ge-2/2/0</td>
<td>ge-2/2/0.0</td>
<td>This interface is administratively disabled (Admin Down). Both the physical and logical links are down (Link Down).</td>
</tr>
<tr>
<td>Admin Down</td>
<td>Admin Up</td>
<td></td>
</tr>
<tr>
<td>Link Down</td>
<td>Link Down</td>
<td></td>
</tr>
<tr>
<td>ge-2/3/0</td>
<td>ge-2/3/0.0</td>
<td>This interface has both the physical and logical links up and running.</td>
</tr>
<tr>
<td>Admin Up</td>
<td>Admin Up</td>
<td></td>
</tr>
<tr>
<td>Link Up</td>
<td>Link Up</td>
<td></td>
</tr>
<tr>
<td>ge-3/2/0</td>
<td>ge-3/2/0.0</td>
<td>This interface has both the physical link and the logical interface down.</td>
</tr>
<tr>
<td>Admin Up</td>
<td>Admin Up</td>
<td></td>
</tr>
<tr>
<td>Link Down</td>
<td>Link Down</td>
<td></td>
</tr>
</tbody>
</table>

Display the Status of a Specific Fast Ethernet or Gigabit Ethernet Interface

Purpose
To display the status of a specific Fast Ethernet or Gigabit Ethernet interface when you need to investigate its status further, use the following Junos OS CLI operational mode command:

Action
user@host> show interfaces (fe-fpc/pic/port | ge-fpc/pic/port)

Sample Output 1
The following sample output is for a Fast Ethernet interface with the physical link up:

user@host> show interfaces fe-2/1/0
Physical interface: fe-2/1/0, Enabled, Physical link is Up
Interface index: 31, SNMP ifIndex: 35
Description: customer connection
Link-level type: Ethernet, MTU: 1514, Source filtering: Disabled
Speed: 100mbps, Loopback: Disabled, Flow control: Enabled
Device flags : Present Running
Interface flags: SNMP-Traps
Link flags : None
Current address: 00:90:69:86:71:1b, Hardware address: 00:90:69:86:71:1b
Input rate : 25768 bps (11 pps), Output rate: 1576 bps (3 pps)
Active alarms : None
Active defects : None
Logical interface fe-2/1/0.0 (Index 2) (SNMP ifIndex 43)
  Flags: SNMP-Traps, Encapsulation: ENET2
  Protocol inet, MTU: 1500, Flags: Is-Primary
  Addresses, Flags: Is-Preferred Is-Primary
Sample Output 2  The following output is for a Gigabit Ethernet interface with the physical link up:

```
user@host> show interfaces ge-3/1/0
Physical interface: ge-3/1/0, Enabled, Physical link is Up
 Interface index: 41, SNMP ifIndex: 55
 Description: customer connection
 Link-level type: Ethernet, MTU: 1514, Source filtering: Disabled
 Speed: 1000mbps, Loopback: Disabled, Flow control: Enabled
 Device flags : Present Running
 Interface flags: SNMP-Traps
 Link flags : None
 Input rate : 7412216 bps (1614 pps), Output rate: 2431184 bps (1776 pps)
 Active alarms : None
 Active defects : None
 Logical interface ge-3/1/0.0 (Index 11) (SNMP ifIndex 57)
 Flags: SNMP-Traps, Encapsulation: ENET2
 Protocol inet, MTU: 1500
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 10.117.65.192/30, Local: 10.115.65.193
 Broadcast: 10.115.65.195
```

Meaning  The first line of sample output 1 and 2 shows that the physical link is up. This means that the physical link is healthy and can pass packets. Further down the sample output, look for active alarms and defects. If you see active alarms or defects, to further diagnose the problem, see Step 3, "Display Extensive Status Information for a Specific Fast Ethernet or Gigabit Ethernet Interface" on page 606, to display more extensive information about the Fast Ethernet interface and the physical interface that is down.

Display Extensive Status Information for a Specific Fast Ethernet or Gigabit Ethernet Interface

Purpose  To display extensive status information about a specific Fast Ethernet or Gigabit Ethernet interface, use the following Junos OS CLI operational mode command:

```
Action user@host> show interfaces (fe-fpc/pic/port | ge-fpc/pic/port) extensive
```

Sample Output  The following sample output is for a Fast Ethernet interface:

```
user@router> show interfaces fe-1/3/3 extensive
Physical interface: fe-1/3/3, Enabled, Physical link is Up
 Interface index: 47, SNMP ifIndex: 38
 Description: Test
 Link-level type: Ethernet, MTU: 1514, Source filtering: Disabled
 Speed: 100mbps, Loopback: Disabled, Flow control: Enabled
 Device flags : Present Running
 Interface flags: SNMP-Traps
 Link flags : None
 Current address: 00:90:69:8d:2c:de, Hardware address: 00:90:69:8d:2c:de
 Statistics last cleared: 2002-01-11 23:03:09 UTC (1w2d 23:54 ago)
 Traffic statistics:
 Input bytes : 373012658 0 bps
 Output bytes : 153026154 1392 bps
 Input packets: 1362858 0 pps
```
Output packets:              1642918                    3 pps
Input errors:
   Errors: 0 , Drops: 0, Framing errors: 0, Runts: 0, Policed discards: 503660
L3 incompletes: 1 , L2 channel errors: 0 , L2 mismatch timeouts: 0
FIFO errors: 0
Output errors:
   Carrier transitions: 0, Errors: 0, Collisions: 0, Drops: 0, Aged packets: 0
   HS link CRC errors: 0, FIFO errors: 0
Active alarms : None
Active defects : None

MAC statistics:                      Receive         Transmit
Total octets                     439703575        177452093
Total packets                      1866532          1642916
Unicast packets                     972137          1602563
Broadcast packets                   30             2980
Multicast packets                   894365            37373
CRC/Align errors                         0                0
FIFO errors                              0                0
MAC control frames                       0                0
MAC pause frames                         0                0
Oversized frames                        0                0
Jabber frames                           0                0
Fragment frames                         0                0
VLAN tagged frames                       0                0
Code violations                         0                0

Filter statistics:
   Input packet count                 1866532
   Input packet rejects                     0
   Input DA rejects 503674
   Input SA rejects 0
   Output packet count                                 1642916
   Output packet pad count                                   0
   Output packet error count                                 0
   CAM destination filters: 5, CAM source filters: 0

Autonegotiation information:
   Negotiation status: Complete, Link partner status: OK
   Link partner: Full-duplex, Flow control: None

PFE configuration:
   Destination slot: 1, Stream number: 15
   CoS transmit queue bandwidth:
     Queue0: 95, Queue1: 0, Queue2: 0, Queue3: 5
   CoS weighted round-robin:
     Queue0: 95, Queue1: 0, Queue2: 0, Queue3: 5

Logical interface fe-1/3/3.0 (Index 8) (SNMP ifIndex 69)
   Description: Test
   Flags: SNMP-Traps, Encapsulation: ENET2
   Protocol inet, MTU: 1500, Flags: None
   Addresses, Flags: Is-Preferred Is-Primary
     Broadcast: 10.115.107.199

Meaning  The sample output shows where the errors might be occurring and includes
           autonegotiation information. See Table 41 on page 608 for a description of errors to look for.
Table 41: Errors to Look For

<table>
<thead>
<tr>
<th>Error</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policed discards</td>
<td>Discarded frames that were not recognized or were not of interest.</td>
</tr>
<tr>
<td>L2 channel errors</td>
<td>Packets for which the router could not find a valid logical interface. For example, the packet is for a virtual LAN (VLAN) that is not configured on the interface.</td>
</tr>
<tr>
<td>MTU</td>
<td>The maximum transmission unit (MTU) must match the interface of either the router at the remote end of the Fast Ethernet or Gigabit Ethernet link, or that of the switch.</td>
</tr>
<tr>
<td>Input DA rejects</td>
<td>Number of packets with a destination Media Access Control (MAC) address that is not on the accept list. It is normal to see this number increment.</td>
</tr>
<tr>
<td>Input SA rejects</td>
<td>Number of packets with a source MAC address that is not on the accept list. This number only increments when source MAC address filtering is configured.</td>
</tr>
</tbody>
</table>

If the physical link is down, look at the active alarms and defects for the Fast Ethernet or Gigabit Ethernet interface and diagnose the Fast Ethernet or Gigabit Ethernet media accordingly. See “Checklist for Locating Fast Ethernet and Gigabit Ethernet Alarms and Counters” on page 621 for an explanation of Fast Ethernet and Gigabit Ethernet alarms.

Table 42 on page 608 lists and describes some MAC statistics errors to look for.

Table 42: MAC Statistics Errors

<table>
<thead>
<tr>
<th>Error</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRC/Align errors</td>
<td>The total number of packets received that had a length (excluding framing bits, but including FCS octets) of between 64 and 1518 octets, inclusive, but had either a bad FCS with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error).</td>
</tr>
<tr>
<td>MAC control frames</td>
<td>The number of MAC control frames.</td>
</tr>
<tr>
<td>MAC pause frames</td>
<td>The number of MAC control frames with pause operational code.</td>
</tr>
<tr>
<td>Jabber frames</td>
<td>The total number of packets received that were longer than 1518 octets (excluding framing bits, but including FCS octets), and had either an FCS error or an alignment error. Note that this definition of jabber is different from the definition in IEEE-802.3 section 8.2.1.5 (10BASE5) and section 10.3.1.4 (10BASE2). These documents define jabber as the condition where any packet exceeds 20 ms. The allowed range to detect jabber is between 20 ms and 150 ms.</td>
</tr>
<tr>
<td>Fragment frames</td>
<td>The total number of packets received that were less than 64 octets in length (excluding framing bits, but including FCS octets), and had either an FCS error an alignment error. Note that it is entirely normal for fragment frames to increment because both runts (which are normal occurrences due to collisions) and noise hits are counted.</td>
</tr>
</tbody>
</table>

Autonegotiation is the process that connected Ethernet interfaces use to communicate the information necessary to interoperate. Table 43 on page 609 explains the
autonegotiation information of the show interface interface-name extensive command output.

Table 43: Autonegotiation Information

<table>
<thead>
<tr>
<th>Autonegotiation Field Information</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negotiation status: Incomplete</td>
<td>The Negotiation status field shows Incomplete when the Ethernet interface has the speed or link mode configured.</td>
</tr>
<tr>
<td>Negotiation status: No autonegotiation</td>
<td>The Negotiation status field shows No autonegotiation when the remote Ethernet interface has the speed or link mode configured, or does not perform autonegotiation.</td>
</tr>
<tr>
<td>Negotiation status: Complete Link partner status: OK</td>
<td>The Negotiation status field shows Complete and the Link partner field shows OK when the Ethernet interface is connected to a device that performs autonegotiation and the autonegotiation process completes successfully.</td>
</tr>
<tr>
<td>Link partner: Half-duplex</td>
<td>The Link partner field can be Full-duplex or Half-duplex depending on the capability of the attached Ethernet device.</td>
</tr>
<tr>
<td>Flow control: Symmetric/asymmetric</td>
<td>The Flow control field displays the types of flow control supported by the remote Ethernet device.</td>
</tr>
</tbody>
</table>

Monitor Statistics for a Fast Ethernet or Gigabit Ethernet Interface

Purpose
To monitor statistics for a Fast Ethernet or Gigabit Ethernet interface, use the following Junos OS CLI operational mode command:

Action
user@host> monitor interface (fe-fpc/pic/port | ge-fpc/pic/port)

CAUTION: We recommend that you use the monitor interface fe-fpc/pic/port or monitor interface ge-fpc/pic/port command only for diagnostic purposes. Do not leave these commands on during normal router operations because real-time monitoring of traffic consumes additional CPU and memory resources.

Sample Output
The following sample output is for a Fast Ethernet interface:

user@host> monitor interface fe-2/1/0
Interface: fe-2/1/0, Enabled, Link is Up
Encapsulation: Ethernet, Speed: 100mbps
Traffic statistics:
- Input bytes: 282556864218 (14208 bps)
- Output bytes: 42320313078 (384 bps)
- Input packets: 739373897 (11 pps)
- Output packets: 124798688 (1 pps)
Error statistics:
- Input errors: 0
- Input drops: 0
- Input framing errors: 0
- Policed discards: 6625892
L3 incompletes:                  75                               [0]
L2 channel errors:             0                               [0]
L2 mismatch timeouts:         0                               [0]
Carrier transitions:         1                               [0]
Output errors:               0                               [0]
Output drops:                0                               [0]
Aged packets:                0                               [0]

Active alarms : None
Active defects: None
Input MAC/Filter statistics:
Unicast packets               464751787                             [154]
Packet error count                    0                               [0]

Meaning  Use the information from this command to help narrow down possible causes of an interface problem.

NOTE: If you are accessing the router from the console connection, make sure you set the CLI terminal type using the set cli terminal command.

The statistics in the second column are the cumulative statistics since the last time they were cleared using the clear interfaces statistics interface-name command. The statistics in the third column are the cumulative statistics since the monitor interface interface-name command was executed.

If the input errors are increasing, verify the following:

1. Check the cabling to the router and have the carrier verify the integrity of the line. To verify the integrity of the cabling, make sure that you have the correct cables for the interface port. Make sure you have single-mode fiber cable for a single-mode interface and multimode fiber cable for a multimode interface.

2. For a fiber-optic connection, measure the received light level at the receiver end and make sure that it is within the receiver specification of the Ethernet interface. See “Fiber-Optic Ethernet Interface Specifications” on page 610 for the fiber-optic Ethernet interface specifications.

3. Measure the transmit light level on the Tx port to verify that it is within specification. See “Fiber-Optic Ethernet Interface Specifications” on page 610 for the optical specifications.

Fiber-Optic Ethernet Interface Specifications

Table 44 on page 610 shows the specifications for fiber-optic interfaces for Juniper Networks routers.

Table 44: Fiber-Optic Ethernet Interface Specifications

<table>
<thead>
<tr>
<th>Fiber-Optic Ethernet Interface</th>
<th>Length</th>
<th>Wavelength</th>
<th>Average Launch Power</th>
<th>Receiver Saturation</th>
<th>Receiver Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gigabit Ethernet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Table 44: Fiber-Optic Ethernet Interface Specifications (continued)

<table>
<thead>
<tr>
<th>Fiber-Optic Ethernet Interface</th>
<th>Length</th>
<th>Wavelength</th>
<th>Average Launch Power</th>
<th>Receiver Saturation</th>
<th>Receiver Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duplex SC connector</td>
<td>49.5-mile 70-km reach on 8.2-micrometer SMF</td>
<td>1480 to 1580 nm</td>
<td>-3 to +2 dBm</td>
<td>-3 dBm</td>
<td>-23 dBm (BER 10^-12) for SMF</td>
</tr>
<tr>
<td>LH optical interface</td>
<td>6.2-mile 10-km reach on 9/125-micrometer SMF</td>
<td>1270 to 1355 nm</td>
<td>-11 to -3 dBm</td>
<td>-3 dBm</td>
<td>-19 dBm</td>
</tr>
<tr>
<td></td>
<td>1804.5-ft 550-m reach on 62.5/125- and 50/125-micrometer MMF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SX optical interface</td>
<td>656-ft 200-m reach on 62.5/125-micrometer MMF</td>
<td>830 to 860 nm</td>
<td>-9.5 to -4 dBm</td>
<td>-3 dBm</td>
<td>-17 dBm</td>
</tr>
<tr>
<td></td>
<td>1640-ft 500-m reach on 50/125-micrometer MMF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast Ethernet 8-Port</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FX optical interface with MT-RJ connector</td>
<td>1.24-mile 2-km reach on 62.5/125-micrometer MMF</td>
<td>1270 to 1380 nm</td>
<td>-20 to -14 dBm</td>
<td>-14 dBm</td>
<td>-34 dBm</td>
</tr>
</tbody>
</table>

### Use Loopback Testing for Fast Ethernet and Gigabit Ethernet Interfaces

- Checklist for Using Loopback Testing for Fast Ethernet and Gigabit Ethernet Interfaces on page 611
- Diagnose a Suspected Hardware Problem with a Fast Ethernet or Gigabit Ethernet Interface on page 612
- Create a Loopback on page 613
- Verify That the Fast Ethernet or Gigabit Ethernet Interface Is Up on page 615
- Configure a Static Address Resolution Protocol Table Entry on page 616
- Clear Fast Ethernet or Gigabit Ethernet Interface Statistics on page 618
- Ping the Fast Ethernet or Gigabit Ethernet Interface on page 618
- Check for Fast Ethernet or Gigabit Ethernet Interface Error Statistics on page 619
- Diagnose a Suspected Circuit Problem on page 621

### Checklist for Using Loopback Testing for Fast Ethernet and Gigabit Ethernet Interfaces

**Purpose** To use loopback testing to isolate Fast Ethernet and Gigabit Ethernet interface problems.

**Action** Table 45 on page 612 provides links and commands for using loopback testing for Fast Ethernet and Gigabit Ethernet interfaces.
# Table 45: Checklist for Using Loopback Testing for Fast Ethernet and Gigabit Ethernet Interfaces

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Diagnose a Suspected Hardware Problem with a Fast Ethernet or Gigabit Ethernet Interface” on page 612</td>
<td></td>
</tr>
<tr>
<td>1. Create a Loopback on page 613</td>
<td>Connect the transmit port to the receive port.</td>
</tr>
<tr>
<td>a. Create a Physical Loopback for a Fiber-Optic Interface on page 613</td>
<td>Cross pin 1 (TX+) and pin 3 (RX+) together, and pin 2 (TX-) and pin 6 (RX-) together.</td>
</tr>
<tr>
<td>b. Create a Loopback Plug for an RJ-45 Ethernet Interface on page 613</td>
<td>[edit interfaces interface-name (fastether-options</td>
</tr>
<tr>
<td>c. Configure a Local Loopback on page 614</td>
<td></td>
</tr>
<tr>
<td>2. Verify That the Fast Ethernet or Gigabit Ethernet Interface Is Up on page 615</td>
<td>show interfaces (fe-fpc/pic/port</td>
</tr>
<tr>
<td>3. Configure a Static Address Resolution Protocol Table Entry on page 616</td>
<td>show interfaces ge-fpc/pic/port [edit interfaces interface-name unit logical-unit-number family inet address address] set arp ip-address mac mac-address show commit run show arp no-resolve</td>
</tr>
<tr>
<td>4. Clear Fast Ethernet or Gigabit Ethernet Interface Statistics on page 618</td>
<td>clear interfaces statistics fe-fpc/pic/port</td>
</tr>
<tr>
<td>5. Ping the Fast Ethernet or Gigabit Ethernet Interface on page 618</td>
<td>ping remote-ip-address bypass-routing interface (fe-fpc/pic/port</td>
</tr>
<tr>
<td>6. Check for Fast Ethernet or Gigabit Ethernet Interface Error Statistics on page 619</td>
<td>show interfaces (fe-fpc/pic/port</td>
</tr>
<tr>
<td>“Diagnose a Suspected Circuit Problem” on page 621</td>
<td>Perform Steps 2 through 8 from “Diagnose a Suspected Hardware Problem with a Fast Ethernet or Gigabit Ethernet Interface” on page 612.</td>
</tr>
</tbody>
</table>

## Diagnose a Suspected Hardware Problem with a Fast Ethernet or Gigabit Ethernet Interface

**Problem**
When you suspect a hardware problem, take the following steps to help verify if there is a problem.

**Solution**
To diagnose a suspected hardware problem with the Ethernet interface, follow these steps:

- Create a Loopback on page 613
- Verify That the Fast Ethernet or Gigabit Ethernet Interface Is Up on page 615
Create a Loopback

You can create a physical loopback or configure a local loopback to help diagnose a suspected hardware problem. Creating a physical loopback is recommended because it allows you to test and verify the transmit and receive ports. If a field engineer is not available to create the physical loopback, you can configure a local loopback for the interface. The local loopback creates a loopback internally in the Physical Interface Card (PIC).

1. **Create a Physical Loopback for a Fiber-Optic Interface on page 613**
2. **Create a Loopback Plug for an RJ-45 Ethernet Interface on page 613**
3. **Configure a Local Loopback on page 614**

### Create a Physical Loopback for a Fiber-Optic Interface

**Action**

To create a physical loopback at the port, connect the transmit port to the receive port using a known good fiber cable.

---

**NOTE:** Make sure you use single-mode fiber for a single-mode port and multimode fiber for a multimode port.

**Meaning**

When you create and then test a physical loopback, you are testing the transmit and receive ports of the PIC. This action is recommended if a field engineer is available to create the physical loop as it provides a more complete test of the PIC.

### Create a Loopback Plug for an RJ-45 Ethernet Interface

**Action**

To create a loopback plug, cross pin 1 (TX+) and pin 3 (RX+) together, and cross pin 2 (TX-) and pin 6 (RX-) together. You need the following equipment to create the loopback:

- A 6-inch long CAT5 cable
- An RJ-45 connector
- A crimping tool

*Figure 36 on page 614 illustrates how to create a loopback plug for an RJ-45 Ethernet interface.*
Meaning When you create and then test a physical loopback, you are testing the RJ-45 interface of the PIC. This action is recommended if a field engineer is available to create the physical loop as it provides a more complete test of the PIC.

Configure a Local Loopback

Action To configure a local loopback without physically connecting the transmit port to the receive port, follow these steps:

1. In configuration mode, go to the following hierarchy level:
   
   ```
 [edit]
 user@host# edit interfaces interface-name (fastether-options | gigether-options)
   ```

2. Configure the local loopback:

   ```
 [edit interfaces interface-name (fastether-options | gigether-options)]
 user@host# set loopback
   ```

3. Verify the configuration:

   ```
 user@host# show
   ```

   For example:

   ```
 [edit interfaces fe-1/0/0 fastether-options]
 user@host# show
   ```

4. Commit the change:

   ```
 user@host# commit
   ```

   For example:

   ```
 [edit interfaces fe-1/0/0 fastether-options]
 user@host# commit
   ```

   ```
 commit complete
   ```

When you create a local loopback, you create an internal loop on the interface being tested. A local loopback loops the traffic internally on that PIC. A local loopback tests the interconnection of the PIC but does not test the transmit and receive ports. On an Ethernet interface, you cannot create a remote loopback, therefore there is no option to
use a local or remote statement. Simply including the loopback statement at the [edit interfaces interface-name (fastether-options | gigether-options)] hierarchy level, places the interface into local loopback mode.

**NOTE:** Remember to delete the loopback statement after completing the test.

### Verify That the Fast Ethernet or Gigabit Ethernet Interface Is Up

**Purpose** Display the status of the Fast Ethernet or Gigabit Ethernet interface to provide the information you need to determine whether the physical link is up or down.

**Action** To verify that the status of the Fast Ethernet or Gigabit Ethernet interface is up, use the following Junos OS command-line interface (CLI) operational mode command:

```
user@host> show interfaces (fe-fpc/port | ge-fpc/pic/port)
```

**Sample Output**

```
user@host# show interfaces fe-1/3/0
Physical interface: fe-1/3/0, Enabled, Physical link is Up
Interface index: 44, SNMP ifIndex: 35
Link-level type: Ethernet, MTU: 1514, Source filtering: Disabled
Speed: 100mbps, Loopback: Disabled, Flow control: Enabled
Device flags : Present Running
Interface flags: SNMP-Traps
Link flags : None
Current address: 00:90:69:8d:2c:db, Hardware address: 00:90:69:8d:2c:db
Input rate : 0 bps (0 pps), Output rate: 0 bps (0 pps)
Active alarms : None
Active defects : None
MAC statistics:
 Input octets: 0, Input packets: 0, Output octets: 0, Output packets: 0
Filter statistics:
 Filtered packets: 0, Padded packets: 0, Output packet errors: 0
Autonegotiation information:
 Negotiation status: Incomplete, Link partner status: OK
 Link partner: Full-duplex, Flow control: None
```

**Meaning** The sample output shows that the link is up and there are no alarms in this loopback configuration. When an internal loopback is configured, the physical loopback should come up without an alarm.

**Sample Output** When you see that the physical link is down, there may be a problem with the port. The following output is an example of the show interfaces fe-fpc/pic/port command when the physical link is down:

```
user@router> show interfaces fe-1/3/0
Physical interface: fe-1/3/0, Enabled, Physical link is Down
Interface index: 44, SNMP ifIndex: 35
Link-level type: Ethernet, MTU: 1514, Source filtering: Disabled
Speed: 100mbps, Loopback: Disabled, Flow control: Enabled
Device flags : Present Running Down
Interface flags: Hardware-Down SNMP-Traps
Link flags : None
Current address: 00:90:69:8d:2c:db, Hardware address: 00:90:69:8d:2c:db
```
Input rate : 0 bps (0 pps), Output rate: 0 bps (0 pps)
Active alarms : LINK
Active defects: LINK
MAC statistics:
  Input octets: 0, Input packets: 0, Output octets: 0, Output packets: 0
Filter statistics:
  Filtered packets: 0, Padded packets: 0, Output packet errors: 0
Autonegotiation information:
  Negotiation status: Incomplete, Link partner status: Down
  Reason: Link partner autonegotiation failure
  Link partner: Half-duplex, Flow control: None

Meaning  The sample output shows that the physical link is down and there are active alarms and
defects.

Table 46 on page 616 presents problem situations and actions for a physical link that is
down.

Table 46: Problems and Solutions for a Physical Link That Is Down

<table>
<thead>
<tr>
<th>Problem</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable mismatch</td>
<td>Verify that the fiber connection is correct.</td>
</tr>
<tr>
<td>Damaged and/or dirty cable</td>
<td>Verify that the fiber can successfully loop a known good port of the same type.</td>
</tr>
<tr>
<td>Too much or too little optical attenuation</td>
<td>Verify that the attenuation is correct per the PIC optical specifications.</td>
</tr>
<tr>
<td>The transmit port is not transmitting within the dBm optical range per the specifications</td>
<td>Verify that the Tx power of the optics is within range of the PIC optical specification.</td>
</tr>
<tr>
<td>Mismatch between the cable type and the port</td>
<td>Verify that a single-mode fiber cable is connected to a single-mode interface and that a multimode fiber cable is connected to a multimode interface. (This problem does not always cause the physical link to go down; errors and dropped packets are sometimes the result.)</td>
</tr>
</tbody>
</table>

Configure a Static Address Resolution Protocol Table Entry

Purpose  Configure a static Address Resolution Protocol (ARP) entry to allow a packet to be sent out of a looped Ethernet interface.

NOTE: Remove the static ARP entry at the end of the loop test after you have completed the ping test, checked interface statistics, and monitored interface traffic.

Action  To configure a static ARP table entry for a Gigabit Ethernet interface, follow these steps. You can follow the same procedure to configure a static ARP entry for a Fast Ethernet interface.
1. Find the Media Access Control (MAC) address for the Gigabit Ethernet interface:

   user@host> show interfaces ge-fpc/pic/port

2. In configuration mode, go to the following hierarchy level:

   [edit]
   user@host# edit interfaces interface-name unit logical-unit-number family inet address
   address

3. Configure the static ARP entry:

   user@host# set arp ip-address mac mac-address

   NOTE: The MAC address used should be the same as the physical address
   of the port being tested because this allows the port to receive the frames
   when you run the ping test.

4. Verify the configuration:

   user@host# show

5. Commit the configuration:

   user@host# commit

6. Verify that the static ARP entry is installed:

   user@host# run show arp no-resolve

Sample Output

   user@host> show interfaces ge-7/2/1
   Physical interface: ge-7/2/1, Enabled, Physical link is Down
   Interface index: 44, SNMP ifIndex: 35
   Link-level type: Ethernet, MTU: 1514, Source filtering: Disabled
   Speed: 100mbps, Loopback: Disabled, Flow control: Enabled
   Device flags   : Present Running Down
   Interface flags: Hardware-Down SNMP-Traps
   Link flags     : None
   Current address:00:90:69:8d:2c:db, Hardwareaddress: 00:90:69:8d:2c:db
   Input rate     : 0 bps (0 pps), Output rate: 0 bps (0 pps)
   [edit interfaces ge-7/2/1 unit 0 family inet address 10.108.120.1/30]
   user@host# set arp 10.108.120.2 mac 00:90:69:8d:2c:db
   [edit interfaces ge-7/2/1 unit 0 family inet address 10.108.120.1/30]

   user@host# show
   arp 10.108.120.2 mac 00:90:69:8d:2c:db;
   [edit interfaces ge-7/2/1 unit 0 family inet address 10.108.120.1/30]

   user@host# commit
   commit complete
   [edit interfaces ge-7/2/1 unit 0 family inet address 10.108.120.1/30]

   user@host# run show arp no-resolve
   MAC Address     Address          Interface     Flags
   00:90:69:8d:2c:db 10.108.120.2  ge-7/2/1.0       permanent
   00:e0:34:bb:8c:40 209.211.135.1  fxp0.0          none
   00:a0:a5:28:0c:70 209.211.135.8  fxp0.0          none
   00:a0:a5:12:12:c7 209.211.135.10 fxp0.0           none
Meaning The sample output is for Step 1 through Step 6 and shows that a static ARP entry was configured on Gigabit Ethernet interface ge-7/2/1. The MAC address used is the same as the physical address of the port being tested because this allows the port to receive the frames when you run the ping test. The port is working as expected if you see that the time to live (TTL) expired; if you do not receive a response to your ping test, it indicates a hardware problem.

Clear Fast Ethernet or Gigabit Ethernet Interface Statistics

Purpose You must reset the Fast Ethernet and Gigabit Ethernet interface statistics before initiating the ping test. Resetting the statistics provides a clean start so that previous input/output errors and packet statistics do not interfere with the current diagnostics.

Action To clear all statistics for the interface, use the following Junos OS CLI operational mode command:

```
user@host> clear interfaces statistics (fe-fpc/pic/port | ge-fpc/pic/port)
```

Sample Output

```
user@host> clear interfaces statistics ge-7/2/0
```

Meaning This command clears the interface statistics counters for the Gigabit Ethernet interface only.

Ping the Fast Ethernet or Gigabit Ethernet Interface

Purpose Use the ping command to verify the loopback connection.

Action To send ping packets from the Ethernet interface, use the following Junos OS CLI operational mode command:

```
user@host> ping remote-ip-address bypass-routing interface (fe-fpc/pic/port | ge-fpc/pic/port) count 100 rapid
```

Sample Output

```
user@router> ping 10.108.120.2 bypass-routing interface ge-7/2/1 count 100 rapid
PING 10.108.120.2 (10.108.120.2): 56 data bytes
36 bytes from 10.108.120.1: Time to live exceeded
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
 4 5 00 0054 e871 0 0000 01 01 cc5c 10.108.120.1 10.108.120.2
36 bytes from 10.108.120.1: Time to live exceeded
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
 4 5 00 0054 e874 0 0000 01 01 cc59 10.108.120.1 10.108.120.2
36 bytes from 10.108.120.1: Time to live exceeded
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
 4 5 00 0054 e878 0 0000 01 01 cc55 10.108.120.1 10.108.120.2
36 bytes from 10.108.120.1: Time to live exceeded
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
 4 5 00 0054 e87c 0 0000 01 01 cc51 10.108.120.1 10.108.120.2
```

Copyright © 2012, Juniper Networks, Inc.
Meaning

The sample output shows that the time to live (TTL) expired, indicating that the link is receiving the frames from the ping test. The MAC address used is the same as the physical address of the port being tested because this allows the port to accept the frames from the ping test. As the packet is looped over the link, you expect to receive a TTL exceeded message for each ping sent. These messages are generated because the ping packets are repeatedly looped between the router and the physical loopback. When the packet is sent to the other end of the link, which does not exist, the loopback returns the packet back to the same interface, where it is again subjected to the Packet Forwarding Engine fabric for routing. After the route lookup, the TTL is decremented, and the packet is again sent out of the looped interface. This process repeats until the packed is either lost, or the TTL expires with subsequent TTL expired message displayed. Should any errors occur, the packet is discarded and a time-out error is displayed, rather than the expected TTL expired message. Note that the default TTL for ICMP echo packets in Junos OS is 64. This means a given test packet must be successfully sent and received 63 times before a TTL expired message can be generated. You can alter the TTL value to adjust the tolerance for loss, for example, a value of 255 is the most demanding test because now the packet must be sent and received error free 254 times.

Check for Fast Ethernet or Gigabit Ethernet Interface Error Statistics

Purpose

Persistent interface error statistics indicate that you need to open a case with the Juniper Networks Technical Assistance Center (JTAC).

Action

To check the local interface for error statistics, use the following Junos OS CLI operational mode command:

```
user@host> show interfaces (fe-fpc/pic/port | ge-fpc/pic/port) extensive
```

Sample Output

```
user@router> show interfaces ge-7/2/1 extensive
Physical interface: ge-7/2/1, Enabled, Physical link is Up
Interface index: 25, SNMP ifIndex: 32, Generation: 41
Description: Test
Link-level type: Ethernet, MTU: 4470, Speed: 1000mbps, Loopback: Disabled,
Source filtering: Disabled, Flow control: Disabled
Device flags : Present Running
Interface flags: SNMP-Traps
Link flags : None
Hold-times: Up 0 ms, Down 0 ms
Current address: 00:90:69:4c:17:b1, Hardware address: 00:90:69:4c:17:b1
Statistics last cleared: 2002-01-07 17:53:19 UTC (2w2d 03:20 ago)
Traffic statistics:
 Input bytes : 3799515503823 0 bps
 Output bytes: 7325566425 0 bps
 Input packets: 4628009535 0 pps
 Output packets: 30678225 0 pps
 Input errors:
 Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Policed discards: 0, L3 incompletes: 0,
```
L2 channel errors: 0, L2 mismatch timeouts: 0, FIFO errors: 0
Output errors:
Carrier transitions: 14, Errors: 0, Drops: 0, Collisions: 0, Aged packets: 0,
FIFO errors: 0, HS link CRC errors: 0
Active alarms: None
Active defects: None
MAC statistics:
<table>
<thead>
<tr>
<th></th>
<th>Receive</th>
<th>Transmit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total octets</td>
<td>3883579444813</td>
<td>780356346</td>
</tr>
<tr>
<td>Total packets</td>
<td>4628009534</td>
<td>30678237</td>
</tr>
<tr>
<td>Unicast packets</td>
<td>4627879788</td>
<td>29893563</td>
</tr>
<tr>
<td>Broadcast packets</td>
<td>30</td>
<td>464</td>
</tr>
<tr>
<td>Multicast packets</td>
<td>129716</td>
<td>784210</td>
</tr>
<tr>
<td>CRC/Align errors</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FIFO errors</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC control frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MAC pause frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oversized frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jabber frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fragment frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VLAN tagged frames</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Code violations</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Filter statistics:
Input packet count: 4628009244
Input packet rejects: 0
Input DA rejects: 0
Input SArejects: 0
Output packet count: 30678237
Output packet pad count: 856248
Output packet error count: 0
CAM destination filters: 9, CAM source filters: 0
Autonegotiation information:
Negotiation status: Complete, Link partner status: Ok, Link partner:
Full-duplex,
Flow control: None
PFE configuration:
Destination slot: 7
<table>
<thead>
<tr>
<th>CoS transmit queue</th>
<th>Bandwidth</th>
<th>Buffer</th>
<th>Priority</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>bps</td>
<td>%</td>
<td>bytes</td>
</tr>
<tr>
<td>0 best-effort</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1 expedited-forwarding</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2 assured-forwarding</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 network-control</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Logical interface ge-7/2/1.0 (Index 23) (SNMP ifIndex 48) (Generation 38)
Description: To Cosine Left 23/1
Flags: SNMP-Traps Encapsulation: ENET2
Protocol inet, MTU: 4456, Flags: None, Generation: 85 Route table: 0
Addresses, Flags: Is-Preferred Is-Primary
Destination: 10.108.120.0/30, Local: 10.108.120.1, Broadcast: 10.108.120.3,
Generation: 81
Protocol iso, MTU: 4453, Flags: None, Generation: 86 Route table: 0

**Meaning**
Check for any error statistics. There should not be any input or output errors. If there are any persistent input or output errors, open a case with the Juniper Networks Technical Assistance Center (JTAC) at support@juniper.net, or at 1-888-314-JTAC (within the United States) or 1-408-745-9500 (from outside the United States).
Diagnose a Suspected Circuit Problem

**Purpose**  When you suspect a circuit problem, it is important to work with the transport-layer engineer to resolve the problem. The transport-layer engineer may create a loop to the router from various points in the network. You can then perform tests to verify the connection from the router to that loopback in the network.

**Action**  After the transport-layer engineer has created the loop to the router from the network, you must verify the connection from the router to the loopback in the network. Follow Step 2 through Step 8 in “Diagnose a Suspected Hardware Problem with a Fast Ethernet or Gigabit Ethernet Interface” on page 612. Keep in mind that any problems encountered in the test indicate a problem with the connection from the router to the loopback in the network.

By performing tests to loopbacks at various points in the network, you can isolate the source of the problem.

Locate the Fast Ethernet and Gigabit Ethernet LINK Alarm and Counters

- Checklist for Locating Fast Ethernet and Gigabit Ethernet Alarms and Counters on page 621
- Display the Fast Ethernet or Gigabit Ethernet Interface LINK Alarm on page 621
- Fast Ethernet and Gigabit Ethernet Counters on page 623

Checklist for Locating Fast Ethernet and Gigabit Ethernet Alarms and Counters

**Purpose**  To locate LINK alarm and major counters associated with Fast Ethernet and Gigabit Ethernet interfaces.

**Action**  Table 47 on page 621 provides links and commands for locating LINK alarm and major counters for Fast Ethernet and Gigabit Ethernet interfaces.

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Display the Fast Ethernet or Gigabit Ethernet Interface LINK Alarm” on page 621</td>
<td>show interfaces (fe-fpc/pic/port</td>
</tr>
<tr>
<td>“Fast Ethernet and Gigabit Ethernet Counters” on page 623</td>
<td></td>
</tr>
</tbody>
</table>

Display the Fast Ethernet or Gigabit Ethernet Interface LINK Alarm

**Problem**  To display the Fast Ethernet or Gigabit Ethernet LINK alarm, use the following Junos OS command-line interface (CLI) operational mode command:

**Solution**  user@host> show interfaces (fe-fpc/pic/port | ge-fpc/pic/port) extensive
Sample Output

The following sample output is for a Fast Ethernet interface:

```
user@host> show interfaces fe-1/3/3 extensive
Physical interface: fe-1/3/3, Enabled, Physical link is Down
 Interface index: 47, SNMP ifIndex: 38
 Description: Test
 Link-level type: Ethernet, MTU: 1514, Source filtering: Disabled
 Speed: 100mbps, Loopback: Disabled, Flow control: Enabled
 Device flags : Present Running
 Interface flags: SNMP-Traps
 Link flags : None
 Current address: 00:90:69:8d:2c:de, Hardware address: 00:90:69:8d:2c:de
 Statistics last cleared: 2002-01-11 23:03:09 UTC (1w2d 23:54 ago)
Traffic statistics:
 Input bytes : 373012658 0 bps
 Output bytes : 153026154 1392 bps
 Input packets: 1362858 0 pps
 Output packets: 1642918 3 pps
 Input errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Policed discards: 503660
 L3 incompletes: 1, L2 channel errors: 0, L2 mismatch timeouts: 0
 FIFO errors: 0
 Output errors:
 Carrier transitions: 0, Errors: 0, Collisions: 0, Drops: 0, Aged packets: 0
 HS link CRC errors: 0, FIFO errors: 0
Active alarms : LINK
Active defects : LINK
MAC statistics: Receive Transmit
 Total octets 439703575 177452093
 Total packets 1866532 1642916
 Unicast packets 972137 1602563
 Broadcast packets 30 2980
 Multicast packets 894365 37373
 CRC/Align errors 0 0
 FIFO errors 0 0
 MAC control frames 0 0
 MAC pause frames 0 0
 Oversized frames 0 0
 Jabber frames 0 0
 Fragment frames 0 0
 VLAN tagged frames 0 0
 Code violations 0 0
Filter statistics:
 Input packet count 1866532
 Input packet rejects 0
 Input DA rejects 503674
 Input SA rejects 0
 Output packet count 1642916
 Output packet pad count 0
 Output packet error count 0
 CAM destination filters: 5, CAM source filters: 0
Autonegotiation information:
 Negotiation status: Complete, Link partner status: OK
 Link partner: Full-duplex, Flow control: None
PFE configuration:
 Destination slot: 1, Stream number: 15
 CoS transmit queue bandwidth:
 Queue0: 95, Queue1: 0, Queue2: 0, Queue3: 5
 CoS weighted round-robin:
 Queue0: 95, Queue1: 0, Queue2: 0, Queue3: 5
Logical interface fe-1/3/3.0 (Index 8) (SNMP ifIndex 69)
```
Description: Test
Flags: SNMP-Traps, Encapsulation: ENET2
Protocol inet, MTU: 1500, Flags: None
Addresses, Flags: Is-Preferred Is-Primary
Broadcast: 10.115.107.199

Meaning
The sample output shows where the alarm and other errors might be occurring and any
counters that are incrementing. The only alarm associated with Fast Ethernet or Gigabit
Ethernet interfaces is the LINK alarm. A LINK alarm indicates a physical problem. To
isolate where the physical problem might be occurring, conduct loopback testing. See
“Checklist for Using Loopback Testing for Fast Ethernet and Gigabit Ethernet Interfaces”
on page 611 for information on conducting a loopback test.

NOTE: Since link status is polled once every second, some items that require
fast link down detection, such as Multiprotocol Label Switching (MPLS) fast
reroute, take longer to execute.

Fast Ethernet and Gigabit Ethernet Counters

Problem Table 48 on page 623 shows the major counters that appear in the output for the show
interfaces fe-fpc/pic/port extensive and the show interfaces ge-fpc/pic/port extensive
commands. These counters generally increment when there is a problem with a Fast
Ethernet or Gigabit Ethernet interface. In the Counters column, the counters are listed in
the order in which they are displayed in the output.

Table 48: Major Fast Ethernet and Gigabit Ethernet Counters

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
<th>Reason for Increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Errors:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Errors</td>
<td>The sum of the incoming frame aborts and frame check sequence (FCS) errors.</td>
<td></td>
</tr>
<tr>
<td>Policed discards</td>
<td>The frames discarded by the incoming packet match code.</td>
<td>The frames were discarded because they were not recognized or of interest. Usually, this field reports protocols that the Junos OS does not handle.</td>
</tr>
<tr>
<td>Drops</td>
<td>The number of packets dropped by the output queue of the I/O Manager application-specific integrated circuit (ASIC).</td>
<td>If the interface is saturated, this number increments once for every packet that is dropped by the ASIC’s random early detection (RED) mechanism.</td>
</tr>
<tr>
<td>L3 incompletes</td>
<td>The number of packets discarded due to the packets failing Layer 3 header checks.</td>
<td>This counter increments when the incoming packet fails Layer 3 (usually IPv4) checks of the header. For example, a frame with less than 20 bytes of available IP header would be discarded and this counter would increment.</td>
</tr>
</tbody>
</table>
Table 48: Major Fast Ethernet and Gigabit Ethernet Counters (continued)

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
<th>Reason for Increment</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>L2 channel errors</strong></td>
<td>The errors that occur when the software could not find a valid logical interface (such as fe-1/2/3.0) for an incoming frame.</td>
<td>This error increments when, for example, a lookup for a virtual LAN (VLAN) fails.</td>
</tr>
<tr>
<td><strong>L2 mismatch timeouts</strong></td>
<td>The count of malformed or short packets.</td>
<td>The malformed or short packets cause the incoming packet handler to discard the frame and be unreadable.</td>
</tr>
<tr>
<td><strong>FIFO errors</strong></td>
<td>The number of first in, first out (FIFO) errors in the receive direction as reported by the ASIC on the Physical Interface Card (PIC).</td>
<td>The value in this field should always be 0. If this value is not zero, cabling could be badly organized or the PIC could be broken.</td>
</tr>
<tr>
<td><strong>Output Errors</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Errors</strong></td>
<td>The sum of outgoing frame aborts and FCS errors.</td>
<td></td>
</tr>
<tr>
<td><strong>Collisions</strong></td>
<td>The number of Ethernet collisions.</td>
<td>The Fast Ethernet PIC supports only full-duplex operation, so this number should always remain 0. If it is incrementing, there is a software bug.</td>
</tr>
<tr>
<td><strong>Drops</strong></td>
<td>The number of packets dropped by the output queue of the I/O Manager ASIC.</td>
<td>If the interface is saturated, this number increments once for every packet that is dropped by the ASIC’s RED mechanism.</td>
</tr>
<tr>
<td><strong>Aged packets</strong></td>
<td>The number of packets that remained in shared packet SDRAM for so long that the system automatically purged them.</td>
<td>The value in this field should never increment. If it increments, it is probably a software bug or broken hardware.</td>
</tr>
<tr>
<td><strong>HS link FCS errors, FIFO errors</strong></td>
<td>The number of errors on the high-speed links between the ASICs responsible for handling the router interfaces.</td>
<td>The value in this field should always be 0. If it increments, either the FPC or the PIC is broken.</td>
</tr>
<tr>
<td><strong>Miscellaneous Counters</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Input DA rejects</strong></td>
<td>The number of packets that the filter rejected because the destination Media Access Control (MAC) address of the packet is not on the accept list.</td>
<td>It is normal for this value to increment. When it increments very quickly and no traffic is entering the router from the far-end system, either there is a bad Address Resolution Protocol (ARP) entry on the far-end system, or multicast routing is not on and the far-end system is sending many multicast packets to the local router (which the router is rejecting).</td>
</tr>
<tr>
<td><strong>Output packet pad count</strong></td>
<td>The number of packets that the filter padded to the minimum Ethernet size (60 bytes) before giving the packet to the MAC hardware.</td>
<td>Usually, padding is done only on small ARP packets, but some very small Internet Protocol (IP) packets can also require padding. If this value increments rapidly, either the system is trying to find an ARP entry for a far-end system that does not exist, or it is misconfigured.</td>
</tr>
</tbody>
</table>
Table 48: Major Fast Ethernet and Gigabit Ethernet Counters (continued)

<table>
<thead>
<tr>
<th>Counter</th>
<th>Description</th>
<th>Reason for Increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output packet error count</td>
<td>Number of packets with an indicated error that the filter was given to transmit.</td>
<td>These packets are usually aged packets or are the result of a bandwidth problem on the FPC hardware. On a normal system, the value of this field should not increment.</td>
</tr>
<tr>
<td>CAM destination filters, CAM source filters</td>
<td>The number of entries in the content-addressable memory (CAM) dedicated to destination and source MAC address filters.</td>
<td>There can be up to 64 source entries. If source filtering is disabled, which is the default, the value for these fields should be 0.</td>
</tr>
</tbody>
</table>
PART 5

Index

- Index on page 629
- Index of Statements and Commands on page 643
Index

Symbols
#, comments in configuration statements..................xxxii
( ), in syntax descriptions.................................xxxii
10-Gigabit Ethernet interfaces..........................42
  802.3ah OAM..................................................308
  DWDM.........................................................353
  framing.......................................................355
10-Gigabit Ethernet IQ PIC...............................355
10-Gigabit Ethernet LAN/WAN PIC
  caveats.......................................................341
  control queue disable..................................346
  features.....................................................341
  handling oversubscription..............................349
  line rate mode............................................345
  oversubscribed Ethernet mode
    control queue disable...............................346
  oversubscribed mode...................................345
  overview..................................................341
10-port 10-Gigabit Ethernet OSE PIC
  caveats......................................................341
  features....................................................341
  overview..................................................341
100-Gigabit Ethernet
  configuration
    forwarding-mode.......................................482
    interoperability modes..............................370
    sa-multicast...........................................370, 545
    vlan-rule................................................583
    vlan-steering.........................................370, 584
  forwarding-options
    sa-multicast...........................................545
    vlan-steering.........................................584
  vlan-steering
    vlan-rule................................................583
100-Gigabit Ethernet MIC
  overview..................................................363
100-Gigabit Ethernet PIC
  caveats.....................................................363
  configuration.............................................367
  features....................................................363
  overview..................................................363

100-Gigabit Ethernet PIC on Type 5 FPC
  configuration
    interoperability modes..............................375
    sa-multicast...........................................375
  overview..................................................372

40-Gigabit Ethernet PIC
  configuration.............................................381
  features....................................................379
  overview..................................................379

802.1ag Ethernet OAM for VPLS.........................228
802.1ag OAM
  configuring Ethernet interfaces.....................181
802.1Q VLANs
  mixed VLAN tagging.....................................58
  VLAN IDs..................................................576, 581
  values, listed by Ethernet interface
    type..............................................................55
  VLAN tagging.............................................53, 163, 585
802.3ad statement.........................................459
  usage guidelines........................................83
802.3ah OAM
  configuring Ethernet interfaces.....................291
  example configuration..................................308
< >, in syntax descriptions.............................xxxii
[ ], in configuration statements.......................xxxii
| (pipe), in syntax descriptions........................xxxii

A
accept-source-mac statement
  usage guidelines........................................320
access interface
  interface-mode statement.............................75
access-concentrator statement
  usage guidelines.......................................407
active statement
  usage guidelines.......................................112
active-active bridging.....................................89, 98
Address Resolution Protocol See ARP
ADSL
  example configuration..................................410, 411
advertisement-interval statement.....................460
agent-specifier statement
  PPPoE.....................................................461
aggregate statement
  usage guidelines.......................................317, 318
checklist for monitoring
   Fast Ethernet interfaces.................................602
   Gigabit Ethernet interfaces..............................602
circuit cross-connect (CCC)
   encapsulation
      VLAN-bundled dual-tag logical
         interfaces................................................587
      VLAN-bundled single-tag logical
         interfaces................................................579
circuit problems
   Fast Ethernet interfaces ..................................621
   Gigabit Ethernet interfaces..............................621
classifier statement..........................................467
   usage guidelines.............................................319
clear interfaces statistics command
   Fast Ethernet interfaces.................................610
   Fast Ethernet statistics.................................618
commands for router management,
   interfaces...................................................600, 601
comments, in configuration statements...................xxxii
configuration
   aggregated devices........................................84
   configuring
      LLDP.........................................................158
   Configuring a Layer 2 Circuit on a VLAN-Bundled
      Logical Interface.........................................71
   Configuring a VLAN-Bundled Logical
      Interface.....................................................70, 71
   Configuring CCM for Better Scalability................232
   Configuring Faster Convergence........................234
   Configuring Faster Protection Switching..............232
   Configuring FNP.............................................285
   Configuring Logical Link-Layer Encapsulation to
      Support CCCs..............................................69
   Configuring Primary VLAN ID..........................235
   Configuring Remote Maintenance Association..........235
   Configuring Unified ISSU for 801.1ag CFM .............229
   Configuring VLAN ID List-Bundled Logical Interfaces
      That Connect CCCs.........................................68
connections
   configuration statements................................24, 29
   continuity measurement
      displaying statistics and frame counts..............275
conventions
   text and syntax.............................................xxxii
   counters......................................................618
   cumulative statistics
      Ethernet interfaces......................................610
   curly braces, in configuration statements.............xxxii
customer support.............................................xxxii
   contacting JTAC.............................................xxxii
D
database (tracing flag).......................................49
delay statement
   PPPoE service name tables................................468
device-count statement
   usage guidelines..........................................84
disable statement
   LLDP...........................................................469
discovery stage
   PPPoE........................................................398
documentation
   comments on.................................................xxxii
dot1x
   configuration statements...............................25
drop statement
   PPPoE service name tables................................469
dual-tag framing
   VLAN ID list................................................587
dynamic PPPoE statements
   max-sessions-vsa-ignore.................................509
   pppoe-underlying-options...............................535
   short-cycle-protection...................................549
dynamic subscribers
   max-sessions-vsa-ignore statement....................509
   pppoe-underlying-options statement....................535
   short-cycle-protection statement.........................549
dynamic-profile statement
   PPPoE service name tables..............................470
E
E-LMI............................................................200
e1-options statement
   usage guidelines..........................................393
edit interfaces command...................................393
   Fast Ethernet interfaces.................................617
   Gigabit Ethernet interfaces..............................617
edit interfaces fastether-options command..............614
edit interfaces gigether-options command..............614
em0
   configuring..................................................337
   management Ethernet interface........................337
encapsulation
   extended VLAN CCC.......................................67, 163
error statistics
   Fast Ethernet interfaces.................................619
   Gigabit Ethernet interfaces.............................619
errors
  Ethernet interfaces.................................................610
  Fast Ethernet interfaces, table..........................608
  Gigabit Ethernet interfaces, table..................608
ETH-DM
  configuring routers to support......................253, 260, 276
  displaying statistics and frame counts...........256, 266, 276
  overview.............................................................238
  starting an ETH-DM session.........................254, 264, 276
ETH-LM
  displaying statistics and frame counts..............269
  overview.............................................................244
Ethernet 802.1ag OAM on PTX Series Packet
  Transport Switches
    configuring.........................................................389
Ethernet 802.3ah OAM on PTX Series Packet
  Transport Switches
    configuring..........................................................388
Ethernet Automatic Protection Switching,
  Configuring..........................................................429
Ethernet bridging.................................................155, 156
Ethernet configurations, example........................453
Ethernet continuity measurement
  displaying statistics and frame counts...............275
Ethernet failure notification protocol
  configuring.............................................................285
  overview.............................................................248
Ethernet frame delay measurement
  configuring routers to support......................253, 260, 276
  displaying statistics and frame counts...........256, 266, 276
  overview.............................................................238
  starting an ETH-DM session.........................254, 264, 276
Ethernet frame loss measurement
  displaying statistics and frame counts..............269
  overview.............................................................244
Ethernet interfaces...................................................155
  802.1ag OAM...............................................................181
  802.3ah OAM...............................................................291
  autonegotiation, table..............................................609
  configuration statements....................................33
  example configuration...........................................453
Fast Ethernet interfaces.............................................33
Gigabit Ethernet interfaces.................................33
  gratuitous ARP..........................................................48
  management Ethernet interface.........................337
  mixed VLAN tagging.....................................................58
  multicast statistics.....................................................51
  on PTX Series Packet Transport
    Switches..................................................................383
    passive monitoring..................................................177
    proxy ARP, unrestricted...........................................169
    RJ-45......................................................................613
  specifications, table..............................................610
  static ARP table entries.......................................167
  VLAN IDs...................................................................576
  VLAN tagging.........................................................53, 163, 585
VRP.................................................................................311
Ethernet link aggregation.................................................83
Ethernet Local Management Interface See E-LMI
Ethernet Ring Protection
  configuration statements........................................30
Ethernet Ring Protection Switching,
  Configuring.............................................................437
Ethernet Service OAM...............................................237
  ethernet statement...................................................471
    usage guidelines.....................................................84
  Ethernet switching.................................................155, 156
  Ethernet switching interfaces...............................40
Ethernet TCC
  applying.......................................................................165
  encapsulation.......................................................163
  example configuration.............................................165
Ethernet VLAN circuit
  VLAN ID list.............................................................579
  ethernet-policer-profile statement.....................474
    usage guidelines.....................................................317, 318
  ethernet-ring statement.........................................475
  ethernet-switch-profile statement.......................322, 476
    usage guidelines.....................................................133, 317
  event statement
    port-status-tlv statement.......................................532
    example
      LLDP.................................................................161
extended VLAN
  CCC
    applying...............................................................67
    example configuration.............................................67
  TCC
    applying...............................................................163
    encapsulation.....................................................163
F
  failover-delay statement
    usage guidelines.....................................................312
  failure notification, Ethernet See Ethernet failure
  notification
<table>
<thead>
<tr>
<th>Family Bridge</th>
<th>VLAN ID list</th>
<th>VLAN IDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast Ethernet Interfaces</td>
<td>alarms, LINK</td>
<td>autonegotiation, table</td>
</tr>
<tr>
<td></td>
<td>circuit problems</td>
<td>clear interfaces statistics command</td>
</tr>
<tr>
<td></td>
<td>configuration statements</td>
<td>counters</td>
</tr>
<tr>
<td></td>
<td>edit interfaces command</td>
<td>Ethernet link aggregation</td>
</tr>
<tr>
<td></td>
<td>example configuration</td>
<td>ignoring Layer 3 incomplete errors</td>
</tr>
<tr>
<td></td>
<td>ingress rate-limit</td>
<td>LINK alarms, checklist</td>
</tr>
<tr>
<td></td>
<td>link modes</td>
<td>link protection</td>
</tr>
<tr>
<td></td>
<td>local loopback, configuring</td>
<td>loopback mode</td>
</tr>
<tr>
<td></td>
<td>MAC address filtering</td>
<td>monitor checklist</td>
</tr>
<tr>
<td></td>
<td>monitor interface command</td>
<td>monitoring</td>
</tr>
<tr>
<td></td>
<td>physical interface properties</td>
<td>physical loopback</td>
</tr>
<tr>
<td></td>
<td>ping interface command</td>
<td>proxy ARP, unrestricted</td>
</tr>
<tr>
<td></td>
<td>set arp command</td>
<td>set cli terminal command</td>
</tr>
<tr>
<td></td>
<td>set loopback local command</td>
<td>show interfaces command</td>
</tr>
<tr>
<td></td>
<td>show interfaces extensive command</td>
<td>show interfaces terse command</td>
</tr>
<tr>
<td></td>
<td>speed</td>
<td>static ARP entry, configuring</td>
</tr>
<tr>
<td></td>
<td>static ARP table entries</td>
<td>status</td>
</tr>
<tr>
<td></td>
<td>statistics</td>
<td>description, table</td>
</tr>
<tr>
<td></td>
<td>checking error</td>
<td>displaying</td>
</tr>
<tr>
<td></td>
<td>monitoring</td>
<td>errors, table</td>
</tr>
<tr>
<td></td>
<td>resetting</td>
<td>verifying</td>
</tr>
<tr>
<td></td>
<td>usage guidelines</td>
<td>VLAN tagging</td>
</tr>
<tr>
<td></td>
<td>VLAN IDs</td>
<td>VRRP</td>
</tr>
<tr>
<td></td>
<td>fast-aps-switch statement</td>
<td>fastether-options statement</td>
</tr>
<tr>
<td></td>
<td>usage guidelines</td>
<td>fiber-optic</td>
</tr>
<tr>
<td></td>
<td>flow control</td>
<td>flow-control statement</td>
</tr>
<tr>
<td></td>
<td>frame delay, Ethernet</td>
<td>frame loss, Ethernet</td>
</tr>
<tr>
<td></td>
<td>forward-mode statement</td>
<td>framing statement</td>
</tr>
<tr>
<td></td>
<td>forwarding-class statement</td>
<td>10-Gigabit Ethernet interfaces</td>
</tr>
<tr>
<td></td>
<td>forwarding-mode statement</td>
<td>Gigabit Ethernet Interfaces</td>
</tr>
<tr>
<td></td>
<td>FNP</td>
<td>configruing otan-options</td>
</tr>
<tr>
<td></td>
<td>configuration</td>
<td>general (tracing flag)</td>
</tr>
<tr>
<td></td>
<td>overview</td>
<td>Gigabit Ethernet Interfaces</td>
</tr>
<tr>
<td></td>
<td>setting</td>
<td>802.1lag</td>
</tr>
<tr>
<td></td>
<td>alarms, LINK</td>
<td>802.3ah</td>
</tr>
<tr>
<td></td>
<td>autonegotiation</td>
<td>configuration statements</td>
</tr>
<tr>
<td></td>
<td>circuit problems</td>
<td>counters</td>
</tr>
<tr>
<td></td>
<td>configuration statements</td>
<td>edit interfaces command</td>
</tr>
<tr>
<td></td>
<td>Ethernet interface specifications, table</td>
<td>Ethernet link aggregation</td>
</tr>
<tr>
<td></td>
<td>interface, physical loopback</td>
<td>example configuration</td>
</tr>
</tbody>
</table>
Gigabit Ethernet, IQ, IQ2 and IQ2-E interfaces
Gigabit Ethernet uPIM interfaces
Gigabit Ethernet OTN

Junos
VLAN tag stacking and rewriting
speed
rate limiting
policer
MAC address filtering
MAC address accounting
configuring
VRRP
VLAN IDs
usage guidelines
status
statistics
checking error
monitoring
resetting
status
description, table
displaying specific
ersors, table
extensive
verifying
usage guidelines
VLAN IDs
VLAN tagging
VRRP

Gigabit Ethernet IQ interfaces
configuring
MAC address accounting
MAC address filtering
policer
eexample configuration
rate limiting
Gigabit Ethernet OTN
Gigabit Ethernet uPIM interfaces
speed
Gigabit Ethernet, IQ, IQ2 and IQ2-E interfaces
VLAN tag stacking and rewriting
Port-Based Network Access Control Protocol
IEEE 802.1x
dot1x...............................................................287
port-id-subtype statement
LLDP...............................................................531
port-status-tlv statement....................................532
ppp-options statement......................................533
PPPoE
discovery stage................................................398
example configuration........................................410, 411
flags for tracing operations..............................426
log file access for tracing operations.................426
log file size and number.................................425
log filenames for tracing operations..................425
regular expressions for tracing operations...........426
service name tables
about..................................................................398
ACI/ARI pair configuration..............................417
ACI/ARI pairs..................................................400
any service configuration...............................415
assigning to underlying interface.....................420
benefits................................................................403
configuration example......................................422
configuration overview.....................................412
configuration troubleshooting........................426
creating............................................................413
dynamic PPPoE interfaces.................................401
empty service configuration............................414
enabling PADO advertisement...........................420
evaluation order for matching client
information.......................................................403
maximum sessions limit....................................401, 418
named service configuration............................416
PADO advertisement........................................402
service entries and actions..............................399
static interfaces, reserving..............................419
static PPPoE interfaces....................................402
verifying the configuration...............................428
tracing operations...........................................424
PPPoE client
example configuration......................................410
reserving static interfaces for..........................419
PPPoE server
example configuration......................................411
pppoe-options statement..................................534
usage guidelines............................................407
pppoe-underlying-options statement
static and dynamic PPPoE................................535
premium
policer................................................................537
premium statement
hierarchical policer..........................................536
output priority map.........................................537
usage guidelines............................................317, 318, 319
Proactive mode
overview.......................................................246
protection-group
configuration statements...............................30
protection-group statement..............................538
protocol-down statement.................................539
protocols connections
configuration statements...............................24, 29
protocols dot1x
configuration statements...............................25
protocols Ethernet Ring Protection
configuration statements...............................30
protocols iccp
configuration statements...............................25
protocols OAM
configuration statements..............................26
protocols VRPP
configuration statements..............................26
proxy statement
usage guidelines............................................165
proxy-arp statement
usage guidelines............................................169
ptopo-configuration-maximum-hold-time
statement.......................................................540
ptopo-configuration-trap-interval statement.......540
PTX Series Packet Transport Switch interfaces
overview........................................................384
push statement
Gigabit Ethernet IQ interfaces........................541
Gigabit Ethernet, IQ, IQ2 and IQ2-E interfaces
usage guidelines............................................129
usage guidelines............................................138
push-push statement
Gigabit Ethernet IQ interfaces........................541
usage guidelines............................................141
R
remote MEP with iterator profile
configuration................................................250
remote statement
usage guidelines............................................67, 163, 165
remote-mep statement......................................542
request statement...........................................542
rewrite VLAN tag on untagged frame
  usage guidelines..............................................143
rewrite-on-egress statement
  usage guidelines..............................................129
rewrite-on-ingress statement
  usage guidelines..............................................129
ring-protection-link-end statement........................543
ring-protection-link-owner statement........................543
RJ-45 Ethernet interface..............................................613
routing-instance statement
  PPPoE service name tables.....................................544

S
sa-multicast statement..............................................545
service ID configuration..........................................100
service name tables
  PPPoE
    about..........................................................398
    ACI/ARI pair configuration..................................417
    ACI/ARI pairs................................................400
    any service configuration..................................415
    assigning to underlying interface........................420
    benefits..........................................................403
    configuration example.......................................422
    configuration overview.......................................412
    configuration troubleshooting................................426
    creating..........................................................413
    dynamic PPPoE interfaces....................................401
    empty service configuration..................................414
    enabling PADO advertisement................................402
    evaluation order for matching client
      information......................................................403
    maximum sessions limit......................................401, 418
    named service configuration.................................416
    PADO advertisement..........................................402
    service entries and actions..................................399
    static interfaces, reserving..................................419
    static PPPoE interfaces........................................402
    verifying the configuration...................................428
  service statement
    PPPoE..........................................................546
  service-level agreement measurement
    overview..........................................................238
  service-name statement
    usage guidelines..............................................407
  service-name-table statement
    PPPoE underlying interface.....................................547
  service-name-tables statement
    PPPoE..........................................................548
  set arp command
    Fast Ethernet interfaces.....................................617
    Gigabit Ethernet interfaces..................................617
  set cli terminal command
    Fast Ethernet interfaces.....................................610
    Gigabit Ethernet interfaces..................................610
  set loopback local command
    Fast Ethernet interfaces.....................................614
    Gigabit Ethernet interfaces..................................614
  short-cycle-protection statement
    static and dynamic PPPoE.....................................549
  show interfaces command........................................617
    Fast Ethernet interfaces......................................605, 615, 619
    Gigabit Ethernet interfaces..................................605, 615
  show interfaces extensive command
    Fast Ethernet interfaces......................................606, 621
    Gigabit Ethernet interfaces..................................606
  show interfaces terse command
    Fast Ethernet interfaces......................................603
    Gigabit Ethernet interfaces..................................604
  show interfaces terse command
    Fast Ethernet interfaces......................................603
    Gigabit Ethernet interfaces..................................604
  single-mode fiber cable........................................610
  sla-iterator-profile statement
    usage guidelines..............................................250
  sonet statement
    usage guidelines..............................................84
  sonet-options statement
    usage guidelines..............................................393
  source address filtering
    Fast Ethernet interfaces......................................42, 43
    Gigabit Ethernet interfaces..................................42, 43
  source-address-filter statement
    usage guidelines..............................................43
  source-filtering statement
    usage guidelines..............................................552
    usage guidelines..............................................42, 321
  specifications for fiber-optic, table.............................610
  Specifying the Interface Over Which VPN Traffic
    Travels to the CE Router.....................................70
  Specifying the Interface to Handle Traffic for a CCC
    Connected to the Layer 2 Circuit.............................72
  speed statement
    Ethernet..........................................................553
    MX Series DPC..................................................554
    usage guidelines..............................................49
  stacked VLAN-tag framing
    VLAN ID list....................................................589
  stacked-vlan-tagging statement
    usage guidelines..............................................129
startup-silent-period statement
usage guidelines.................................312
state (tracing flag)..................................49
static address resolution protocol..............616
static ARP table entries
  Ethernet interfaces..............................167, 169
  example configuration..........................168
static PPPoE statements
  max-sessions-vsa-ignore......................509
  pppoe-underlying-options......................535
  short-cycle-protection.......................549
static subscribers
  max-sessions-vsa-ignore statement...........509
  pppoe-underlying-options statement.........535
  short-cycle-protection statement..........549
static-interface statement
  PPPoE................................................555
statistic error
Fast Ethernet interfaces..........................619
statistics
Fast Ethernet interfaces ..........................609
resetting...........................................618
  Gigabit Ethernet interfaces.................609
  reseting..........................................618
status
Fast Ethernet interfaces..........................603, 615
  Gigabit Ethernet interfaces...............615
status description, table
Fast Ethernet interfaces..........................604
  Gigabit Ethernet interfaces...............604
status extensive
Fast Ethernet interfaces..........................606
  Gigabit Ethernet interfaces...............606
status for specific interface
Fast Ethernet........................................605
  Gigabit Ethernet..................................605
STM1 interfaces
  example configuration..........................393
subscriber interface statements
  max-sessions-vsa-ignore......................509
  pppoe-underlying-options......................535
  short-cycle-protection.......................549
support, technical See technical support
swap statement
  Gigabit Ethernet IQ interfaces............556
  Gigabit Ethernet, IQ, IQ2 and IQ2-E interfaces
    usage guidelines..............................129
  Gigabit Ethernet IQ interfaces
    usage guidelines..............................556
  Gigabit Ethernet IQ interfaces
    usage guidelines..............................146
swap-swap statement
  Gigabit Ethernet IQ interfaces............557
  usage guidelines..............................146
swap-push statement
  Gigabit Ethernet IQ interfaces............556
  usage guidelines..............................146
switch-options statement........................557
switch-port statement
  access switchng................................558
Symmetrical Load Balancing
  on 802.3ad Link Aggregation on MX
  Series............................................124
syntax conventions........................................xxx

T
tag protocol IDs on PTX Series Packet Transport
Switches
  configuring........................................386
  tag-protocol-id statement.....................560
  TPID to rewrite..................................561
  TPIDs expected to be sent or received........560
  usage guidelines..............................129, 135
technical support
  contacting JTAC..................................xxxii
terminate statement
  PPPoE service name tables....................562
timer (tracing flag)
  Ethernet interface speed.....................49
trace operations
  VRRP................................................49
traceoptions (LACP) statement
  usage guidelines..............................117
traceoptions statement
  LLDP................................................563
  usage guidelines..............................160
  PPPoE.............................................565
  VRRP
    usage guidelines..............................49
tracing operations
  LACP..............................................117
  LLDP.............................................160, 563
  PPPoE.............................................424
transmit light level......................................610
transmit-delay statement
  LLDP................................................567
Tri-Rate Ethernet copper interfaces
  speed..............................................49
VRRP over integrated routing and bridging........89, 98

W

WAN PHY
  configuring...............................................................355
  wavelength statement..............................................592
  usage guidelines.....................................................353
weighted random early detection.................................51
west-interface statement............................................595
working-circuit statement..........................................596
WRED.................................................................51
Index of Statements and Commands

Symbols
802.3ad statement.............................................................459

A
advertisement-interval statement........................................460
agent-specifier statement
  PPPoE...............................................................................461
aggregated-ether-options statement..................................463
auto-negotiation statement
  Gigabit Ethernet............................................................465

B
bandwidth-limit statement
  policer for Gigabit Ethernet interface..........................466
burst-size-limit statement
  policer for Gigabit Ethernet interface..........................467

C
classifier statement............................................................467

D
delay statement
  PPPoE service name tables............................................468
disable statement
  LLDP..............................................................................469
drop statement
  PPPoE service name tables............................................469
dynamic PPPoE statements
  max-sessions-vsa-ignore..............................................509
  pppoe-underlying-options..........................................535
  short-cycle-protection.................................................549
dynamic-profile statement
  PPPoE service name tables............................................470

E
everett statement...............................................................471
ethernet-policer-profile statement..................................474

F
fast-aps-switch statement.................................................477
fastether-options statement.............................................478
flow-control statement...................................................480
flow-control-options statement......................................481
fnp statement
  Ethernet OAM................................................................479
 forwarding-mode statement.........................................482
framing statement
  10-Gigabit Ethernet interfaces....................................483

G
gigether-options statement.................................................484
gratuitous-arp-reply statement.........................................485

H
hold-multiplier statement..................................................486

I
ieee802.1p statement........................................................486
ignore-l3-incompletes statement....................................487
ingress-rate-limit statement............................................487
inner-tag-protocol-id statement.....................................488
inner-vlan-id statement..................................................489
inner-vlan-id-range statement......................................490
input-priority-map statement...........................................490
input-vlan-map statement................................................491
interface statement
  LLDP..............................................................................493
interfaces statement........................................................494

L
lacp statement
  802.3ad.................................................................495
  Aggregated Ethernet..................................................496
link-discovery statement...............................................497
link-fault-management statement..................................498
link-mode statement......................................................500
link-protection statement...............................................502
lldp statement
  LLDP..............................................................................504
lldp-configuration-notification-interval statement..............505

Copyright © 2012, Juniper Networks, Inc.
static PPPoE statements
  max-sessions-vsa-ignore ........................................509
  pppoe-underlying-options ......................................535
  short-cycle-protection .........................................549
static-interface statement
  PPPoE ........................................................................555
subscriber interface statements
  max-sessions-vsa-ignore ........................................509
  pppoe-underlying-options ......................................535
  short-cycle-protection .........................................549
swap statement
  Gigabit Ethernet IQ interfaces ................................556
swap-push statement
  Gigabit Ethernet IQ interfaces ................................556
swap-swap statement
  Gigabit Ethernet IQ interfaces ................................557
switch-options statement ...........................................557
switch-port statement
  access switching ..................................................558

T
tag-protocol-id statement .........................................560
  TPID to rewrite .....................................................561
  TPIDs expected to be sent or received .......................560
terminate statement
  PPPoE service name tables .......................................562
traceoptions statement
  LLDP ........................................................................563
  PPPoE ........................................................................565
transmit-delay statement
  LLDP ........................................................................567

U
unit statement ................................................................568

V
version-3 statement ....................................................574
vlan-id statement .........................................................575
  802.1Q VLANs ........................................................576
  ATM-to-Ethernet cross-connect ....................................576
  Ethernet interfaces ..................................................576
  interface in bridge domain .......................................575
  rewriting at ingress or egress .................................577
vlan-id-list ..................................................................578
vlan-id-list statement
  bridge domain ........................................................580
  Ethernet VLAN circuit ............................................579
vlan-id-range statement ..............................................581
vlan-ranges statement ...............................................582

vlan-rewrite statement ...............................................583
vlan-rule statement ....................................................583
vlan-steering statement .............................................584
vlan-tagging statement ..............................................585
vlan-tags statement
  dual-tag framing ....................................................587
  stacked VLAN tags ..................................................589
vlan-tags-outer statement ...........................................590
vlan-vci-tagging statement ..........................................591

W
wavelength statement ..................................................592
west-interface statement ............................................595
working-circuit statement ..........................................596