Network Configuration Example

Configuring Stateful NAT64 for Handling IPv4 Address Depletion
END USER LICENSE AGREEMENT

READ THIS END USER LICENSE AGREEMENT (“AGREEMENT”) BEFORE DOWNLOADING, INSTALLING, OR USING THE SOFTWARE. BY DOWNLOADING, INSTALLING, OR USING THE SOFTWARE OR OTHERWISE EXPRESSING YOUR AGREEMENT TO THE TERMS CONTAINED HEREIN, YOU (AS CUSTOMER OR IF YOU ARE NOT THE CUSTOMER, AS A REPRESENTATIVE/AGENT AUTHORIZED TO BIND THE CUSTOMER) CONSENT TO BE BOUND BY THIS AGREEMENT. IF YOU DO NOT OR CANNOT AGREE TO THE TERMS CONTAINED HEREIN, THEN (A) DO NOT DOWNLOAD, INSTALL, OR USE THE SOFTWARE, AND (B) YOU MAY CONTACT JUNIPER NETWORKS REGARDING LICENSE TERMS.

1. The Parties. The parties to this Agreement are (i) Juniper Networks, Inc. (if the Customer's principal office is located in the Americas) or Juniper Networks (Cayman) Limited (if the Customer's principal office is located outside the Americas) (such applicable entity being referred to herein as "Juniper"), and (ii) the person or organization that originally purchased from Juniper or an authorized Juniper reseller the applicable license(s) for use of the Software ("Customer") (collectively, the "Parties").

2. The Software. In this Agreement, "Software" means the program modules and features of the Juniper or Juniper-supplied software, for which Customer has paid the applicable license or support fees to Juniper or an authorized Juniper reseller, or which was embedded by Juniper in equipment which Customer purchased from Juniper or an authorized Juniper reseller. "Software" also includes updates, upgrades and new releases of such software. "Embedded Software" means Software which Juniper has embedded in or loaded onto the Juniper equipment and any updates, upgrades, additions or replacements which are subsequently embedded in or loaded onto the equipment.

3. License Grant. Subject to payment of the applicable fees and the limitations and restrictions set forth herein, Juniper grants to Customer a non-exclusive and non-transferable license, without right to sublicense, to use the Software, in executable form only, subject to the following use restrictions:

 a. Customer shall use Embedded Software solely as embedded in, and for execution on, Juniper equipment originally purchased by Customer from Juniper or an authorized Juniper reseller.

 b. Customer shall use the Software on a single hardware chassis having a single processing unit, or as many chassis or processing units for which Customer has paid the applicable license fees; provided, however, with respect to the Steel-Belted Radius or Odyssey Access Client software only, Customer shall use such Software on a single computer containing a single physical random access memory space and containing any number of processors. Use of the Steel-Belted Radius or IMS AAA software on multiple computers or virtual machines (e.g., Solaris zones) requires multiple licenses, regardless of whether such computers or virtualizations are physically contained on a single chassis.

 c. Product purchase documents, paper or electronic user documentation, and/or the particular licenses purchased by Customer may specify limits to Customer's use of the Software. Such limits may restrict use to a maximum number of seats, registered endpoints, concurrent users, sessions, calls, connections, subscribers, clusters, nodes, realms, devices, links, ports or transactions, or require the purchase of separate licenses to use particular features, functionalities, services, applications, operations, or capabilities, or provide throughput, performance, configuration, bandwidth, interface, processing, temporal, or geographical limits. In addition, such limits may restrict the use of the Software to managing certain kinds of networks or require the Software to be used only in conjunction with other specific Software. Customer's use of the Software shall be subject to all such limitations and purchase of all applicable licenses.

 d. For any trial copy of the Software, Customer's right to use the Software expires 30 days after download, installation or use of the Software. Customer may operate the Software after the 30-day trial period only if Customer pays for a license to do so. Customer may not extend or create an additional trial period by re-installing the Software after the 30-day trial period.

 e. The Global Enterprise Edition of the Steel-Belted Radius software may be used by Customer only to manage access to Customer's enterprise network. Specifically, service provider customers are expressly prohibited from using the Global Enterprise Edition of the Steel-Belted Radius software to support any commercial network access services.

The foregoing license is not transferable or assignable by Customer. No license is granted herein to any user who did not originally purchase the applicable license(s) for the Software from Juniper or an authorized Juniper reseller.

4. Use Prohibitions. Notwithstanding the foregoing, the license provided herein does not permit the Customer to, and Customer agrees not to and shall not: (a) modify, unbundle, reverse engineer, or create derivative works based on the Software; (b) make unauthorized copies of the Software (except as necessary for backup purposes); (c) rent, sell, transfer, or grant any rights in and to any copy of the Software, in any form, to any third party; (d) remove any proprietary notices, labels, or marks on or in any copy of the Software or any product in which the Software is embedded; (e) distribute any copy of the Software to any third party, including as may be embedded in Juniper equipment sold in the secondhand market; (f) use any 'locked' or key-restricted feature, function, service, application, operation, or capability without first purchasing the applicable license(s) and obtaining a valid key from Juniper, even if such feature, function, service, application, operation, or capability is enabled without a key; (g) distribute any key for the Software provided by Juniper to any third party; (h) use the
Software in any manner that extends or is broader than the uses purchased by Customer from Juniper or an authorized Juniper reseller; (i) use Embedded Software on non-Juniper equipment; (j) use Embedded Software (or make it available for use) on Juniper equipment that the Customer did not originally purchase from Juniper or an authorized Juniper reseller; (k) disclose the results of testing or benchmarking of the Software to any third party without the prior written consent of Juniper; or (l) use the Software in any manner other than as expressly provided herein.

5. **Audit.** Customer shall maintain accurate records as necessary to verify compliance with this Agreement. Upon request by Juniper, Customer shall furnish such records to Juniper and certify its compliance with this Agreement.

6. **Confidentiality.** The Parties agree that aspects of the Software and associated documentation are the confidential property of Juniper. As such, Customer shall exercise all reasonable commercial efforts to maintain the Software and associated documentation in confidence, which at a minimum includes restricting access to the Software to Customer employees and contractors having a need to use the Software for Customer’s internal business purposes.

7. **Ownership.** Juniper and Juniper’s licensors, respectively, retain ownership of all right, title, and interest (including copyright) in and to the Software, associated documentation, and all copies of the Software. Nothing in this Agreement constitutes a transfer or conveyance of any right, title, or interest in the Software or associated documentation, or a sale of the Software, associated documentation, or copies of the Software.

8. **Warranty, Limitation of Liability, Disclaimer of Warranty.** The warranty applicable to the Software shall be as set forth in the warranty statement that accompanies the Software (the “Warranty Statement”). Nothing in this Agreement shall give rise to any obligation to support the Software. Support services may be purchased separately. Any such support shall be governed by a separate, written support services agreement. TO THE MAXIMUM EXTENT PERMITTED BY LAW, JUNIPER SHALL NOT BE LIABLE FOR ANY LOST PROFITS, LOSS OF DATA, OR COSTS OR PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, THE SOFTWARE, OR ANY JUNIPER OR JUNIPER-SUPPLIED SOFTWARE. IN NO EVENT SHALL JUNIPER BE LIABLE FOR DAMAGES ARISING FROM UNAUTHORIZED OR IMPROPER USE OF ANY JUNIPER OR JUNIPER-SUPPLIED SOFTWARE. EXCEPT AS EXPRESSLY PROVIDED IN THE WARRANTY STATEMENT TO THE EXTENT PERMITTED BY LAW, JUNIPER DISCLAIMS ANY AND ALL WARRANTIES IN AND TO THE SOFTWARE (WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE), INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT DOES JUNIPER WARRANT THAT THE SOFTWARE, OR ANY EQUIPMENT OR NETWORK RUNNING THE SOFTWARE, WILL OPERATE WITHOUT ERROR OR INTERRUPTION, OR WILL BE FREE OF VULNERABILITY TO INTRUSION OR ATTACK. IN no event shall Juniper’s or its suppliers' or licensors' liability to Customer, whether in contract, tort (including negligence), breach of warranty, or otherwise, exceed the price paid by Customer for the Software that gave rise to the claim, or if the Software is embedded in another Juniper product, the price paid by Customer for such other product. Customer acknowledges and agrees that Juniper has set its prices and entered into this Agreement in reliance upon the disclaimers of warranty and the limitations of liability set forth herein, that the same reflect an allocation of risk between the Parties (including the risk that a contract remedy may fail of its essential purpose and cause consequential loss), and that the same form an essential basis of the bargain between the Parties.

9. **Termination.** Any breach of this Agreement or failure by Customer to pay any applicable fees due shall result in automatic termination of the license granted herein. Upon such termination, Customer shall destroy or return to Juniper all copies of the Software and related documentation in Customer’s possession or control.

10. **Taxes.** All license fees payable under this agreement are exclusive of tax. Customer shall be responsible for paying Taxes arising from the purchase of the license, or importation or use of the Software. If applicable, valid exemption documentation for each taxing jurisdiction shall be provided to Juniper prior to invoicing, and Customer shall promptly notify Juniper if their exemption is revoked or modified. All payments made by Customer shall be net of any applicable withholding tax. Customer will provide reasonable assistance to Juniper in connection with such withholding taxes by promptly providing Juniper with valid tax receipts and other required documentation showing Customer’s payment of any withholding taxes; completing appropriate applications that would reduce the amount of withholding tax to be paid; and notifying and assisting Juniper in any audit or tax proceeding related to transactions hereunder. Customer shall comply with all applicable tax laws and regulations, and Customer will promptly pay or reimburse Juniper for all costs and damages related to any liability incurred by Juniper as a result of Customer’s non-compliance or delay with its responsibilities herein. Customer’s obligations under this Section shall survive termination or expiration of this Agreement.

11. **Export.** Customer agrees to comply with all applicable export laws and restrictions and regulations of any United States and any applicable foreign agency or authority, and not to export or re-export the Software or any direct product thereof in violation of any such restrictions, laws or regulations, or without all necessary approvals. Customer shall be liable for any such violations. The version of the Software supplied to Customer may contain encryption or other capabilities restricting Customer’s ability to export the Software without an export license.
12. **Commercial Computer Software.** The Software is "commercial computer software" and is provided with restricted rights. Use, duplication, or disclosure by the United States government is subject to restrictions set forth in this Agreement and as provided in DFARS 227.7201 through 227.7202-4, FAR 12.212, FAR 27.405(b)(2), FAR 52.227-19, or FAR 52.227-14(ALT III) as applicable.

13. **Interface Information.** To the extent required by applicable law, and at Customer’s written request, Juniper shall provide Customer with the interface information needed to achieve interoperability between the Software and another independently created program, on payment of applicable fee, if any. Customer shall observe strict obligations of confidentiality with respect to such information and shall use such information in compliance with any applicable terms and conditions upon which Juniper makes such information available.

14. **Third Party Software.** Any licensor of Juniper whose software is embedded in the Software and any supplier of Juniper whose products or technology are embedded in (or services are accessed by) the Software shall be a third party beneficiary with respect to this Agreement, and such licensor or vendor shall have the right to enforce this Agreement in its own name as if it were Juniper. In addition, certain third party software may be provided with the Software and is subject to the accompanying license(s), if any, of its respective owner(s). To the extent portions of the Software are distributed under and subject to open source licenses obligating Juniper to make the source code for such portions publicly available (such as the GNU General Public License ("GPL") or the GNU Library General Public License ("LGPL")), Juniper will make such source code portions (including Juniper modifications, as appropriate) available upon request for a period of up to three years from the date of distribution. Such request can be made in writing to Juniper Networks, Inc., 1194 N. Mathilda Ave., Sunnyvale, CA 94089, ATTN: General Counsel. You may obtain a copy of the GPL at http://www.gnu.org/licenses/gpl.html, and a copy of the LGPL at http://www.gnu.org/licenses/lgpl.html.

15. **Miscellaneous.** This Agreement shall be governed by the laws of the State of California without reference to its conflicts of laws principles. The provisions of the U.N. Convention for the International Sale of Goods shall not apply to this Agreement. For any disputes arising under this Agreement, the Parties hereby consent to the personal and exclusive jurisdiction of, and venue in, the state and federal courts within Santa Clara County, California. This Agreement constitutes the entire and sole agreement between Juniper and the Customer with respect to the Software, and supersedes all prior and contemporaneous agreements relating to the Software, whether oral or written (including any inconsistent terms contained in a purchase order), except that the terms of a separate written agreement executed by an authorized Juniper representative and Customer shall govern to the extent such terms are inconsistent or conflict with terms contained herein. No modification to this Agreement nor any waiver of any rights hereunder shall be effective unless expressly assented to in writing by the party to be charged. If any portion of this Agreement is held invalid, the Parties agree that such invalidity shall not affect the validity of the remainder of this Agreement. This Agreement and associated documentation has been written in the English language, and the Parties agree that the English version will govern. (For Canada: Les parties aux présentes confirment leur volonté que cette convention de même que tous les documents y compris tout avis qui s’y rattaché, soient redigés en langue anglaise. (Translation: The parties confirm that this Agreement and all related documentation is and will be in the English language)).
Table of Contents

Stateful NAT64 Overview .. 1
Problems Resolved by NAT64 .. 1
Configuring Address Translation 1
Example: Configuring Stateful NAT64 for Handling IPv4 Address Depletion 3
Stateful NAT64 Overview

Network Address Translation (NAT) is a mechanism for concealing a set of host addresses on a private network behind a pool of public addresses. NAT64 is a related technology that allows IPv6-only clients to contact IPv4 servers using Unicast UDP, TCP, or ICMP.

A public IPv4 address is shared among several IPv6-only clients. To accomplish this, NAT64 translates incoming IPv6 packets into IPv4 and vice versa. This solution allows ISPs to move to an IPv6 network while simultaneously handling IPv4 address depletion.

When stateful NAT64 is used in conjunction with DNS64, changes are not usually required in the IPv6 client or the IPv4 server. (DNS64 is not covered in this document. For details, see Internet draft-ietf-behave-dns64-11, DNS64: DNS extensions for Network Address Translation from IPv6 Clients to IPv4 Servers, October 2010.)

Problems Resolved by NAT64

NAT64 solves the problem of IPv6 clients initiating connections to IPv4 servers. A cornerstone of the architecture is that NAT64 is easily deployable because it does not require changes to either the IPv6 client or the IPv4 server.

NAT64 today works much like a symmetric Network Address Port Translation (NAPT44). In NAPT, both the original source address and the source port are translated. The translated address and port are picked up from the corresponding NAT pool.

IPv6 packets originated by IPv6 clients are transparently translated to IPv4 by a NAT64 device. The device performs the packet header translation according to the IP/ICMP translation algorithm, translating the IPv4 addresses of IPv4 hosts to and from IPv6 addresses and assigning a prefix to the stateful NAT64 function for the translation. For basic functionality, you deploy the stateful NAT64 function in the NAT64 device, in addition to a few DNS64-enabled name servers accessible to the IPv6-only hosts. (For an analysis of the application scenarios, see draft-ietf-behave-v6v4-framework-108, Framework for IPv4/IPv6 Translation, August 2010.)

Configuring Address Translation

To perform IPv6-to-IPv4 translation, the NAT64 function binds an IPv6 address and port (called an IPv6 transport address) to an IPv4 address and port (called an IPv4 transport address). The translation maps the IPv6 transport addresses to IPv4 transport addresses and vice-versa. To create these mappings, the router running NAT64 has two pools of addresses: an IPv6 address pool (to represent IPv4 addresses in the IPv6 network) and an IPv4 address pool (to represent IPv6 addresses in the IPv4 network).

The IPv6 address pool is an IPv6 prefix assigned to the translator itself. This release supports only IPv6 /96 prefixes, both the well-known prefix (64:FF9B::/96) and arbitrary /96 prefixes. Due to the abundance of IPv6 address space, the prefix can be equal to or even bigger than the whole IPv4 address space. This allows each IPv4 address to be mapped into a different IPv6 address by simply concatenating the prefix with the IPv4 address being mapped and a suffix (that is, an IPv4 address X is mapped into the IPv6 address Prefix:X:Suffix).
The IPv4 address pool is a set of IPv4 addresses, normally a small prefix assigned by the local administrator. Because IPv4 address space is a scarce resource, the IPv4 address pool is small and typically not sufficient to establish permanent one-to-one mappings with IPv6 addresses. Thus, except for manually created mappings, mappings using the IPv4 address pool are created and released dynamically. Moreover, because of the IPv4 address scarcity, the mapping takes place between transport addresses rather than actual addresses.

For additional details about the translation algorithms, see the following documents:

Related Documentation

- Example: Configuring Stateful NAT64 for Handling IPv4 Address Depletion on page 3
- Overview of Dual-Stack Lite
Example: Configuring Stateful NAT64 for Handling IPv4 Address Depletion

This example configures Stateful NAT64 on an MX Series 3D Universal Edge router with a Services DPC. The configuration replicates the example flow found in Internet draft-ietf-behave-v6v4-xlate-stateful-12, Stateful NAT64: Network Address and Protocol Translation from IPv6 Clients to IPv4 Servers, July 2010.

This example contains the following sections:

- Requirements on page 3
- Implementation on page 3
- Configuration on page 4
- Verifying NAT64 Operation on page 7

Requirements

This functionality requires the following hardware:

- An MX Series 3D Universal Edge router with a Services DPC or an M Series Multiservice Edge router with a Services PIC
- A name server with DNS64

Implementation

In Junos OS Release 10.2, Juniper Networks implemented stateful NAT64 in its Services Physical Interface Card (PIC) and Services Dense Port Concentrator (DPC). The system steers IPv6 packets coming from IPv6-only hosts to a Services DPC where the packets are translated to IPv4 according to the configuration. In the reverse path, the system sends IPv4 packets to the Services DPC where additional system processes reverse the translation and send the corresponding IPv6 packet back to the client.

Configuration Overview and Topology

Figure 1 on page 4 shows an MX Series router, R2, implementing NAT64 with two Gigabit Ethernet interfaces and a Services DPC. The interface connected to the IPv4 network is ge-1/3/6, and the interface connected to the IPv6 network is ge-1/3/5.

Also shown is a local name server with DNS64 functionality, which the system uses as part of the translation process. The local name server is configured with the /96 prefix assigned to the local NAT64 router.
To configure stateful NAT64 involves the following tasks:

- Configuring the PIC and the Interfaces on page 4
- Configuring the NAT64 Pool on page 6
- Configuring the Service Set on page 7

Configuring the PIC and the Interfaces

Step-by-Step Procedure

To configure the PIC and interfaces on Router R2:

1. Edit the *chassis* configuration to enable a Layer 3 service package. The service package with its associated service package (*sp-*) interface is used to manipulate traffic before it is delivered to its destination. For details about configuring packages, see the *Junos OS Services Interfaces Configuration Guide*.

   ```
   [edit chassis]
   fpc 5 {
     pic 0 {
       adaptive-services {
         service-package layer-3;
       }
     }
   }
   ```

2. Configure the service package at the `[edit chassis fpc pic adaptive-services]` hierarchy level. This example assumes that the PIC is in FPC 5, slot 0.

   ```
   [edit chassis]
   fpc 5 {
     pic 0 {
       adaptive-services {
         service-package layer-3;
       }
     }
   }
   ```

3. Configure the `ge-1/3/5` interface connected to the IPv6 network.

 a. Include the *family inet* (IPv4) and *family inet6* (IPv6) statements at the `[edit interfaces interface-name unit unit-number]` hierarchy level.

   ```
   [edit interfaces]
   ```

 b. Include the IPv6 address at the `[edit interfaces unit unit-number family inet6 address]` hierarchy level.

 c. Configure a service set at the `[edit interfaces interface-name unit unit-number family service input service-set]` and the `[edit interfaces interface-name unit unit-number family service output service-set]` hierarchy levels.

   ```
   [edit interfaces]
   ```
ge-1/3/5 {
 description "IPv6-only domain";
 unit 0 {
 family inet;
 family inet6 {
 service {
 input {
 service-set set_0;
 }
 output {
 service-set set_0;
 }
 }
 address 2001:DB8::1/64;
 }
 }
}

4. Configure the ge-1/3/6 interface connected to the IPv4 network.
 a. Include the family inet statement at the [edit interfaces unit unit-number] hierarchy level.
 b. Include the IPv4 address at the [edit interfaces unit unit-number family inet] hierarchy level.

5. Configure the services interface, in this example, sp-5/0/0. This example configures a system log for any services on the local host.

 The service package associated with this interface was configured in Step 2. Specify both the IPv4 and IPv6 address families at the [edit interfaces interface-name unit unit-number] hierarchy level. The service set you configure in "Configuring the Service Set" on page 7 is associated with this interface.
Configuring the NAT64 Pool

Step-by-Step Procedure

Use this procedure to configure the NAT64 router, Router R2, with the /96 prefix to represent IPv4 addresses in the IPv6 address space. IPv6 packets addressed to a destination address containing the /96 prefix are then routed to the IPv6 interface of the NAT router. You also configure a single IPv4 transport address for the NAT pool.

This example shows how to configure the network address translation for the IPv4 address 203.0.113.0/24. It also shows how to configure the IPv6 prefix 64:FF9B::/96.

1. Configure an IPv4 transport address for the pool at the [edit services nat pool pool-name] hierarchy level.

 [edit services nat]
 pool src-pool-nat64 {
 address 203.0.113.0/24;
 port automatic;
 }

2. Configure a NAT rule to translate the packets from the IPv6 network. NAT rules specify the traffic to be matched and the action to be taken when traffic matches the rule.

 In this example, only one rule is required to accomplish the address translation. The rule selects all traffic coming from the source address on the IPv6 network, 2001:DB8::/128. The transport address configured in Step 1 is then specified for the translation using the /96 prefix.

 Configure the rule at the [edit services nat rule rule-name] hierarchy level as follows:

 [edit services nat rule]
 rule nat64 {
 match-direction input;
 term t1 {
 from {
 source-address {
 2001:DB8::/96;
 }
 destination-address {
 64:FF9B::/96;
 }
 }
 then {
 translated {
 source-pool src-pool-nat64;
 destination-prefix 64:FF9B::/96;
 translation-type {
 source dynamic;
 destination static;
 }
 }
 }
 }
 }

family inet6;

}
}
Configuring the Service Set

Step-by-Step Procedure

To configure the service set for the NAT service on Router R2, you need to associate the previously configured rule (nat64) and service interface (sp-5/0/0) with the service set. You also include a system log configuration.

To configure these settings at the [edit services service-set service-set-name] hierarchy level:

1. Configure the system log.

 [edit services service-set set_0]
 syslog {
 host local {
 services any;
 log-prefix XXXSVC-SETYYY;
 }
 }

2. Associate the NAT rule and the service interface with the service set at the [edit services service-set service-set-name] hierarchy level.

 [edit services]
 service-set {
 nat-rules nat64;
 interface-service {
 service-interface sp-5/0/0;
 }
 }

3. On Router R2, commit the configuration.

 user@R2> commit check
 configuration check succeeds
 user@R2> commit

Verifying NAT64 Operation

You can use the following features to verify your NAT64 configuration:

- CLI commands on the router
- Logging

You can also use a test tool that can generate IPv6 flows directed to the MX Series router, using the well-known prefix (64:FF9B::/96) as the destination.

NAT64-related commands leverage the existing commands for NAPT44.
Among others, you can use the following CLI commands to verify your NAT64 configuration:

- show services stateful-firewall flows
- show services stateful-firewall conversations
- show services nat pool detail
- show services nat mapping detail
- show services stateful-firewall statistics extensive

In this example:

- In the Output (O) direction, the address of the IPv4 network is translated to the IPv6 address of the translation device (NAT source line).
- In the Output direction, the IPv4 transport address is translated to the address of the IPv6 network (NAT dest line).
- In the Input (I) direction, the address of the IPv6 network is translated to the IPv4 transport address (NAT source).
- In the Input direction, the IPv6 address of the translation device is translated to the address of the IPv4 network (NAT dest).

To confirm the NAT64 configuration, perform these tasks:

- Display NAT64 Flows on page 8
- Display NAT64 Conversations on page 9
- Display Global NAT Pool-Related Statistics on page 11
- Check System Logs on page 11
- Verify That NAT64 Conversations Take Place on page 12

Display NAT64 Flows

Purpose
Display and verify that the NAT64 flows are created and contain correct network address translation.

Action
To display the NAT64 flows on Router R2, use the `show services stateful-firewall flows` command.

```
user@R2> show services stateful-firewall flows

Interface: sp-5/0/0, Service set: set_0

Flow                  State  Dir  Frm count
TCP                   2001:db8::4:1160   -->64:ff9b::c000:201:80  Forward I 5
                  NAT source  2001:db8::4:1160   -->  203.0.113.1:
                  NAT dest   64:ff9b::c000:201:80   -->  192.0.2.1:80
TCP                   2001:db8::2:1166  -->64:ff9b::c000:201:80  Forward I 5
                  NAT source  2001:db8::2:1166   -->  203.0.113.1:1420
                  NAT dest   64:ff9b::c000:201:80   -->  192.0.2.1:80
TCP                   192.0.2.1:80   --> 203.0.113.1:1413  Forward O 4
                  NAT source  192.0.2.1:80   -->  64:ff9b::c000:201:21286
                  NAT dest   203.0.113.1:1413   -->  2001:db8::4:1167
TCP                   2001:db8::3:1123   -->64:ff9b::c000:201:80  Forward I 5
```
Meaning In the sample output, the NAT source and NAT destination addresses of the Input (I) and Output (O) directions are displayed. The NAT64 flows listed in this output are in no specific order.

Display NAT64 Conversations

Purpose Display and verify that the NAT64 conversations (collections of related flows) are correct.

Action To display NAT64 conversations on Router R2, use the `show services stateful-firewall conversations` command. In contrast to the `flows` command that reports all flows in no specific order, the output of the `conversations` command groups the flows that belong to a conversation for easy troubleshooting of communication between a specific pair of hosts.

```
user@R2> show services stateful-firewall conversations
```

Interface: sp-5/0/0, **Service set:** set_0

Conversation: ALG protocol: tcp
- Number of initiators: 1, Number of responders: 1

<table>
<thead>
<tr>
<th>Flow</th>
<th>State</th>
<th>Dir</th>
<th>Frm</th>
<th>count</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP 2001:db8::3:1123 -> 203.0.113.1:1385</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT source 2001:db8::3:1123 -> 203.0.113.1:1385</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT dest 64::ff9b::c000:201:80 -> 192.0.2.1:80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP 192.0.2.1:80 -> 203.0.113.1:1376</td>
<td>Forward</td>
<td>O</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>NAT source 192.0.2.1:80 -> 203.0.113.1:1376</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT dest 2001:db8::3:1136 -> 203.0.113.1:1363</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP 2001:db8::3:1136 -> 64::ff9b::c000:201:80</td>
<td>Forward</td>
<td>I</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>NAT source 2001:db8::3:1136 -> 64::ff9b::c000:201:80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT dest 2003.0.113.1:1376 -> 2001:db8::3:1120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP 2001:db8::4:1146 -> 64::ff9b::c000:201:80</td>
<td>Forward</td>
<td>I</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>NAT source 2001:db8::4:1146 -> 64::ff9b::c000:201:80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT dest 203.0.113.1:1350 -> 2001:db8::3:1188</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP 192.0.2.1:80 -> 203.0.113.1:1363</td>
<td>Forward</td>
<td>I</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>NAT source 192.0.2.1:80 -> 203.0.113.1:1363</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT dest 2001:db8::3:1118 -> 203.0.113.1:1336</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP 2001:db8::3:1118 -> 64::ff9b::c000:201:80</td>
<td>Forward</td>
<td>O</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>NAT source 2001:db8::3:1118 -> 64::ff9b::c000:201:80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT dest 203.0.113.1:1346 -> 2001:db8::3:1110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP 192.0.2.1:80 -> 203.0.113.1:1346</td>
<td>Forward</td>
<td>O</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>NAT source 192.0.2.1:80 -> 203.0.113.1:1346</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT dest 2001:db8::3:1110 -> 203.0.113.1:1366</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP 2001:db8::3:1110 -> 64::ff9b::c000:201:80</td>
<td>Forward</td>
<td>I</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>NAT source 2001:db8::3:1110 -> 64::ff9b::c000:201:80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT dest 203.0.113.1:1393 -> 2001:db8::3:1118</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP 192.0.2.1:80 -> 203.0.113.1:1393</td>
<td>Forward</td>
<td>I</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>NAT source 192.0.2.1:80 -> 203.0.113.1:1393</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT dest 2001:db8::3:1118 -> 203.0.113.1:1366</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TCP 2001:db8::3:1118 -> 64::ff9b::c000:201:80</td>
<td>Forward</td>
<td>O</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>NAT source 2001:db8::3:1118 -> 64::ff9b::c000:201:80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAT dest 203.0.113.1:1346 -> 2001:db8::3:1110</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Configuring Stateful NAT64 for Handling IPv4 Address Depletion

<table>
<thead>
<tr>
<th>Flow</th>
<th>State</th>
<th>Dir</th>
<th>Frm count</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP 2001:db8::4:1213 ->64:ff9b::c000:201:80</td>
<td>Forward</td>
<td>I</td>
<td>5</td>
</tr>
<tr>
<td>NAT source 2001:db8::4:1213</td>
<td>-></td>
<td>203.0.113.1:1551</td>
<td></td>
</tr>
<tr>
<td>NAT dest 64:ff9b::c000:201:80</td>
<td>-></td>
<td>192.0.2.1:80</td>
<td></td>
</tr>
<tr>
<td>TCP 192.0.2.1:80 -> 203.0.113.1:1551</td>
<td>Forward</td>
<td>O</td>
<td>4</td>
</tr>
<tr>
<td>NAT source 192.0.2.1:80</td>
<td>-></td>
<td>64:ff9b::c000:201:21367</td>
<td></td>
</tr>
<tr>
<td>NAT dest 203.0.113.1:1551</td>
<td>-></td>
<td>2001:db8::4:1213</td>
<td></td>
</tr>
</tbody>
</table>

Conversation: ALG protocol: tcp

Number of initiators: 1, Number of responders: 1

<table>
<thead>
<tr>
<th>Flow</th>
<th>State</th>
<th>Dir</th>
<th>Frm count</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP 2001:db8::3:1169 ->64:ff9b::c000:201:80</td>
<td>Forward</td>
<td>I</td>
<td>5</td>
</tr>
<tr>
<td>NAT source 2001:db8::3:1169</td>
<td>-></td>
<td>203.0.113.1:1523</td>
<td></td>
</tr>
<tr>
<td>NAT dest 64:ff9b::c000:201:80</td>
<td>-></td>
<td>192.0.2.1:80</td>
<td></td>
</tr>
<tr>
<td>TCP 192.0.2.1:80 -> 203.0.113.1:1523</td>
<td>Forward</td>
<td>O</td>
<td>4</td>
</tr>
<tr>
<td>NAT source 192.0.2.1:80</td>
<td>-></td>
<td>64:ff9b::c000:201:80</td>
<td></td>
</tr>
<tr>
<td>NAT dest 203.0.113.1:1523</td>
<td>-></td>
<td>2001:db8::3:1169</td>
<td></td>
</tr>
</tbody>
</table>

Conversation: ALG protocol: tcp

Number of initiators: 1, Number of responders: 1

<table>
<thead>
<tr>
<th>Flow</th>
<th>State</th>
<th>Dir</th>
<th>Frm count</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP 2001:db8::2:1233 ->64:ff9b::c000:201:80</td>
<td>Forward</td>
<td>I</td>
<td>5</td>
</tr>
<tr>
<td>NAT source 2001:db8::2:1233</td>
<td>-></td>
<td>203.0.113.1:1621</td>
<td></td>
</tr>
<tr>
<td>NAT dest 64:ff9b::c000:201:80</td>
<td>-></td>
<td>192.0.2.1:80</td>
<td></td>
</tr>
<tr>
<td>TCP 192.0.2.1:80 -> 203.0.113.1:1621</td>
<td>Forward</td>
<td>O</td>
<td>4</td>
</tr>
<tr>
<td>NAT source 192.0.2.1:80</td>
<td>-></td>
<td>64:ff9b::c000:201:21367</td>
<td></td>
</tr>
<tr>
<td>NAT dest 203.0.113.1:1621</td>
<td>-></td>
<td>2001:db8::2:1233</td>
<td></td>
</tr>
</tbody>
</table>

Conversation: ALG protocol: tcp

Number of initiators: 1, Number of responders: 1

<table>
<thead>
<tr>
<th>Flow</th>
<th>State</th>
<th>Dir</th>
<th>Frm count</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP 2001:db8::4:1220 ->64:ff9b::c000:201:80</td>
<td>Forward</td>
<td>I</td>
<td>5</td>
</tr>
<tr>
<td>NAT source 2001:db8::4:1220</td>
<td>-></td>
<td>203.0.113.1:1572</td>
<td></td>
</tr>
<tr>
<td>NAT dest 64:ff9b::c000:201:80</td>
<td>-></td>
<td>192.0.2.1:80</td>
<td></td>
</tr>
<tr>
<td>TCP 192.0.2.1:80 -> 203.0.113.1:1572</td>
<td>Forward</td>
<td>O</td>
<td>4</td>
</tr>
<tr>
<td>NAT source 192.0.2.1:80</td>
<td>-></td>
<td>64:ff9b::c000:201:21367</td>
<td></td>
</tr>
<tr>
<td>NAT dest 203.0.113.1:1572</td>
<td>-></td>
<td>2001:db8::4:1220</td>
<td></td>
</tr>
</tbody>
</table>

Conversation: ALG protocol: tcp

Number of initiators: 1, Number of responders: 1

<table>
<thead>
<tr>
<th>Flow</th>
<th>State</th>
<th>Dir</th>
<th>Frm count</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP 2001:db8::2:1218 ->64:ff9b::c000:201:80</td>
<td>Forward</td>
<td>I</td>
<td>5</td>
</tr>
<tr>
<td>NAT source 2001:db8::2:1218</td>
<td>-></td>
<td>203.0.113.1:1575</td>
<td></td>
</tr>
<tr>
<td>NAT dest 64:ff9b::c000:201:80</td>
<td>-></td>
<td>192.0.2.1:80</td>
<td></td>
</tr>
<tr>
<td>TCP 192.0.2.1:80 -> 203.0.113.1:1575</td>
<td>Forward</td>
<td>O</td>
<td>4</td>
</tr>
<tr>
<td>NAT source 192.0.2.1:80</td>
<td>-></td>
<td>64:ff9b::c000:201:21367</td>
<td></td>
</tr>
<tr>
<td>NAT dest 203.0.113.1:1575</td>
<td>-></td>
<td>2001:db8::2:1218</td>
<td></td>
</tr>
</tbody>
</table>

Conversation: ALG protocol: tcp

Number of initiators: 1, Number of responders: 1

<table>
<thead>
<tr>
<th>Flow</th>
<th>State</th>
<th>Dir</th>
<th>Frm count</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP 2001:db8::4:1220 ->64:ff9b::c000:201:80</td>
<td>Forward</td>
<td>I</td>
<td>5</td>
</tr>
<tr>
<td>NAT source 2001:db8::4:1220</td>
<td>-></td>
<td>203.0.113.1:1572</td>
<td></td>
</tr>
<tr>
<td>NAT dest 64:ff9b::c000:201:80</td>
<td>-></td>
<td>192.0.2.1:80</td>
<td></td>
</tr>
<tr>
<td>TCP 192.0.2.1:80 -> 203.0.113.1:1572</td>
<td>Forward</td>
<td>O</td>
<td>4</td>
</tr>
<tr>
<td>NAT source 192.0.2.1:80</td>
<td>-></td>
<td>64:ff9b::c000:201:21367</td>
<td></td>
</tr>
<tr>
<td>NAT dest 203.0.113.1:1572</td>
<td>-></td>
<td>2001:db8::4:1220</td>
<td></td>
</tr>
</tbody>
</table>
The sample output displays the NAT64 conversations between specific pairs of hosts.

Display Global NAT Pool-Related Statistics

Display and verify global NAT statistics related to pool usage.

To display global NAT pool-related statistics on Router R2, use the `show services nat pool detail` command. You normally use this command in conjunction with the `show services stateful-firewall flows` command used in “Display NAT64 Flows” on page 8, which displays the source and output of the translation.

Meaning

Check System Logs

Check the system logs because the system creates detailed logs as sessions are created and deleted.

When a session is created based on the example setup, two logs are provided. The first log indicates the rule and term that the packet matched. The second log indicates the flow creation.

When the sessions end, the system creates a log indicating the NAT pool address and port release in addition to the delete flow log, as follows:

Meaning

The sample output displays the log messages that can be seen when a session is created and when a session ends.
Verify That NAT64 Conversations Take Place

Purpose
Verify that the NAT64 conversations are taking place. Current support for application-layer gateway (ALG) is limited to ICMP and traceroute.

Action
To verify that the NAT64 conversations are occurring on Router R2, use the `show services stateful-firewall conversations` command. The following is sample output for an ICMP echo test (ping).

```
user@R2> show services stateful-firewall conversations

Interface: sp-5/0/0, Service set: set_0

Conversation: ALG protocol: icmpv6
  Number of initiators: 1, Number of responders: 1

  Flow                  State     Dir            Frm count
  ICMPv6  2001:db8::2       ->64:ff9b::c000:201 Watch    I    21
       NAT source  2001:db8::2         ->     203.0.113.1
       NAT dest   64:ff9b::c000:201       ->       192.0.2.1
  ICMP         192.0.2.1       ->    203.0.113.1       Watch    O    21
       NAT source       192.0.2.1         -> 64:ff9b::c000:201
       NAT dest       203.0.113.1         ->     2001:db8::2
```

Meaning
The sample output displays the results of the ICMP echo test.

Related Documentation
- Stateful NAT64 Overview on page 1
- Example: Configuring Dual-Stack Lite for IPv6 Access