Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc. in the United States and other countries. All other trademarks, service marks, registered marks, or registered service marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right to change, modify, transfer, or otherwise revise this publication without notice.

Junos® OS Getting Started Guide for Junos OS
Copyright © 2020 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License Agreement (“EULA”) posted at https://support.juniper.net/support/eula/. By downloading, installing or using such software, you agree to the terms and conditions of that EULA.
Table of Contents

About the Documentation | vi
Documentation and Release Notes | vi
Using the Examples in This Manual | vi
 Merging a Full Example | vii
 Merging a Snippet | vii
Documentation Conventions | viii
Documentation Feedback | xi
Requesting Technical Support | xi
 Self-Help Online Tools and Resources | xii
 Creating a Service Request with JTAC | xii

1

Understanding Junos OS

About the Getting Started Guide and Junos OS Documentation | 14

Understanding Junos OS Infrastructure and Processes | 14
 Routing Engine and Packet Forwarding Engine | 15
 Junos OS Processes | 15

2

Accessing a Junos OS Device

Initial Configuration Overview for Junos OS Devices | 20

Console Port Overview | 21

Accessing a Junos OS Device the First Time | 22

3

Changing the Device Default Root Password

Understanding the Root Password | 25

Protecting Network Security by Configuring the Root Password | 25

4

Setting the Device Hostname

Understanding Hostnames | 29

Configuring the Hostname of a Router or Switch by Using a Configuration Group | 30
Configuring DNS, Server Caching, and Device Identity

Understanding and Configuring DNS | 33

DNS Overview | 33
 DNS Components | 33
 DNS Server Caching | 34
Configuring a DNS Name Server for Resolving Hostnames into Addresses | 34

Configuring the TTL Value for DNS Server Caching | 37

Configuring a Device’s Unique Identity for the Network | 39

Understanding and Configuring Management Ethernet and Loopback Interfaces

Understanding Management Ethernet Interfaces | 45

Management Interface in a Nondefault Instance | 45
 Why Use a Nondefault Management Interface? | 45
 Applications and Processes That Are VRF Aware | 46
Configuring the mgmt_junos Routing Instance | 47
 Determining Static Routes | 48
 Enabling the mgmt_junos Routing Instance | 49
 Removing the mgmt_junos Routing Instance | 50

Understanding the Loopback Interface | 51

Loopback Interface Configuration | 52
 Configuring the Loopback Interface | 52
Example: Configuring Two Addresses on the Loopback Interface with Host Routes | 54
Example: Configuring Two Addresses on the Loopback Interface with Subnetwork Routes | 54
Example: Configuring an IPv4 and an IPv6 Address on the Loopback Interface with Subnetwork Routes | 55

Setting Up Initial User Accounts

Junos OS User Accounts Overview | 58

Configuring Junos OS User Accounts by Using a Configuration Group | 60

Enabling Remote Access and File Access Services | 63
Configuring Backup Routers

Understanding Backup Routers | 66

Configuring a Backup Router | 67

- Configuring a Backup Router Running IPv4 for Routers | 68
- Configuring a Backup Router Running IPv6 for Routers | 70
- Configuring a Backup Router for SRX Series Devices | 71
Use this guide to configure common system management features on devices using Junos OS.

Documentation and Release Notes

To obtain the most current version of all Juniper Networks® technical documentation, see the product documentation page on the Juniper Networks website at https://www.juniper.net/documentation/.

If the information in the latest release notes differs from the information in the documentation, follow the product Release Notes.

Juniper Networks Books publishes books by Juniper Networks engineers and subject matter experts. These books go beyond the technical documentation to explore the nuances of network architecture, deployment, and administration. The current list can be viewed at https://www.juniper.net/books.

Using the Examples in This Manual

If you want to use the examples in this manual, you can use the `load merge` or the `load merge relative` command. These commands cause the software to merge the incoming configuration into the current candidate configuration. The example does not become active until you commit the candidate configuration.

If the example configuration contains the top level of the hierarchy (or multiple hierarchies), the example is a full example. In this case, use the `load merge` command.

If the example configuration does not start at the top level of the hierarchy, the example is a snippet. In this case, use the `load merge relative` command. These procedures are described in the following sections.
Merging a Full Example

To merge a full example, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration example into a text file, save the file with a name, and copy the file to a directory on your routing platform.

For example, copy the following configuration to a file and name the file `ex-script.conf`. Copy the `ex-script.conf` file to the `/var/tmp` directory on your routing platform.

```ini
system {
    scripts {
        commit {
            file ex-script.xsl;
        }
    }
}

interfaces {
    fxp0 {
        disable;
        unit 0 {
            family inet {
                address 10.0.0.1/24;
            }
        }
    }
}
```

2. Merge the contents of the file into your routing platform configuration by issuing the `load merge` configuration mode command:

```
[edit]
user@host# load merge /var/tmp/ex-script.conf
load complete
```

Merging a Snippet

To merge a snippet, follow these steps:

1. From the HTML or PDF version of the manual, copy a configuration snippet into a text file, save the file with a name, and copy the file to a directory on your routing platform.

For example, copy the following snippet to a file and name the file `ex-script-snippet.conf`. Copy the `ex-script-snippet.conf` file to the `/var/tmp` directory on your routing platform.
2. Move to the hierarchy level that is relevant for this snippet by issuing the following configuration mode command:

```
[edit]
user@host# edit system scripts
[edit system scripts]
```

3. Merge the contents of the file into your routing platform configuration by issuing the `load merge relative` configuration mode command:

```
[edit system scripts]
user@host# load merge relative /var/tmp/ex-script-snippet.conf
load complete
```

For more information about the `load` command, see CLI Explorer.

Documentation Conventions

Table 1 on page ix defines notice icons used in this guide.
Table 1: Notice Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Meaning</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🔄</td>
<td>Informational note</td>
<td>Indicates important features or instructions.</td>
</tr>
<tr>
<td>⚠️</td>
<td>Caution</td>
<td>Indicates a situation that might result in loss of data or hardware damage.</td>
</tr>
<tr>
<td>⚠️</td>
<td>Warning</td>
<td>Alerts you to the risk of personal injury or death.</td>
</tr>
<tr>
<td>⚠️</td>
<td>Laser warning</td>
<td>Alerts you to the risk of personal injury from a laser.</td>
</tr>
<tr>
<td>💡</td>
<td>Tip</td>
<td>Indicates helpful information.</td>
</tr>
<tr>
<td>💡</td>
<td>Best practice</td>
<td>Alerts you to a recommended use or implementation.</td>
</tr>
</tbody>
</table>

Table 2 on page ix defines the text and syntax conventions used in this guide.

Table 2: Text and Syntax Conventions

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold text like this</td>
<td>Represents text that you type.</td>
<td>To enter configuration mode, type the <code>configure</code> command:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>user@host> configure</td>
</tr>
<tr>
<td>Fixed-width text like this</td>
<td>Represents output that appears on the terminal screen.</td>
<td>user@host> show chassis alarms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No alarms currently active</td>
</tr>
<tr>
<td>Italic text like this</td>
<td>• Introduces or emphasizes important new terms.</td>
<td>• A policy term is a named structure that defines match conditions and actions.</td>
</tr>
<tr>
<td></td>
<td>• Identifies guide names.</td>
<td>• Junos OS CLI User Guide</td>
</tr>
<tr>
<td></td>
<td>• Identifies RFC and Internet draft titles.</td>
<td>• RFC 1997, BGP Communities Attribute</td>
</tr>
<tr>
<td>Convention</td>
<td>Description</td>
<td>Examples</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| **Italic text like this** | Represents variables (options for which you substitute a value) in commands or configuration statements. | Configure the machine’s domain name:
[edit]
root@# set system domain-name domain-name |
| **Text like this** | Represents names of configuration statements, commands, files, and directories; configuration hierarchy levels; or labels on routing platform components. |
• To configure a stub area, include the stub statement at the [edit protocols ospf area area-id] hierarchy level.
• The console port is labeled CONSOLE. |
| < > (angle brackets) | Encloses optional keywords or variables. | stub <default-metric metric>; |
| | (pipe symbol) | Indicates a choice between the mutually exclusive keywords or variables on either side of the symbol. The set of choices is often enclosed in parentheses for clarity. | broadcast | multicast
(string1 | string2 | string3) |
| # (pound sign) | Indicates a comment specified on the same line as the configuration statement to which it applies. | rsvp [# Required for dynamic MPLS only] |
| [] (square brackets) | Encloses a variable for which you can substitute one or more values. | community name members [community-ids] |
| Indention and braces ({ }) | Identifies a level in the configuration hierarchy. | [edit]
routing-options {
 static {
 route default {
 nexthop address;
 retain;
 }
 }
} |
| ; (semicolon) | Identifies a leaf statement at a configuration hierarchy level. | |

GUI Conventions
Table 2: Text and Syntax Conventions (continued)

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bold text like this</td>
<td>Represents graphical user interface (GUI) items you click or select.</td>
<td>• In the Logical Interfaces box, select All Interfaces.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• To cancel the configuration, click Cancel.</td>
</tr>
<tr>
<td>> (bold right angle bracket)</td>
<td>Separates levels in a hierarchy of menu selections.</td>
<td>In the configuration editor hierarchy, select Protocols>Ospf.</td>
</tr>
</tbody>
</table>

Documentation Feedback

We encourage you to provide feedback so that we can improve our documentation. You can use either of the following methods:

- Online feedback system—Click TechLibrary Feedback, on the lower right of any page on the Juniper Networks TechLibrary site, and do one of the following:

 - Click the thumbs-up icon if the information on the page was helpful to you.
 - Click the thumbs-down icon if the information on the page was not helpful to you or if you have suggestions for improvement, and use the pop-up form to provide feedback.

- E-mail—Send your comments to techpubs-comments@juniper.net. Include the document or topic name, URL or page number, and software version (if applicable).

Requesting Technical Support

Technical product support is available through the Juniper Networks Technical Assistance Center (JTAC). If you are a customer with an active Juniper Care or Partner Support Services support contract, or are
covered under warranty, and need post-sales technical support, you can access our tools and resources online or open a case with JTAC.

- Product warranties—For product warranty information, visit https://www.juniper.net/support/warranty/.
- JTAC hours of operation—The JTAC centers have resources available 24 hours a day, 7 days a week, 365 days a year.

Self-Help Online Tools and Resources

For quick and easy problem resolution, Juniper Networks has designed an online self-service portal called the Customer Support Center (CSC) that provides you with the following features:

- Find CSC offerings: https://www.juniper.net/customers/support/
- Search for known bugs: https://prsearch.juniper.net/
- Find product documentation: https://www.juniper.net/documentation/
- Find solutions and answer questions using our Knowledge Base: https://kb.juniper.net/
- Download the latest versions of software and review release notes: https://www.juniper.net/customers/csc/software/
- Search technical bulletins for relevant hardware and software notifications: https://kb.juniper.net/InfoCenter/
- Join and participate in the Juniper Networks Community Forum: https://www.juniper.net/company/communities/
- Create a service request online: https://myjuniper.juniper.net

To verify service entitlement by product serial number, use our Serial Number Entitlement (SNE) Tool: https://entitlementsearch.juniper.net/entitlementsearch/

Creating a Service Request with JTAC

You can create a service request with JTAC on the Web or by telephone.

- Visit https://myjuniper.juniper.net.
- Call 1-888-314-JTAC (1-888-314-5822 toll-free in the USA, Canada, and Mexico).

For international or direct-dial options in countries without toll-free numbers, see https://support.juniper.net/support/requesting-support/.
1

CHAPTER

Understanding Junos OS

About the Getting Started Guide and Junos OS Documentation | 14
Understanding Junos OS Infrastructure and Processes | 14
About the Getting Started Guide and Junos OS Documentation

The Getting Started Guide for Junos OS is intended to provide a high-level introduction to Junos OS, and explain basic concepts and operational principles.

In this guide, we explain the basics of Junos OS, including:

- Understanding Junos OS itself
- How to access Junos OS network devices
- How to perform initial device configuration, including the root password, hostname, DNS, management and loopback interfaces, user accounts, and backup routers

For a more technical and detailed exploration of Junos OS, see the Overview for Junos OS. It further explains Junos OS features, including security, configuration, monitoring, and managing network devices.

To learn how to use the Junos OS command-line interface (CLI) and understand even more advanced Junos OS topics, see the CLI User Guide. This guide explains using the CLI, configuration statements, managing configurations, and operational commands for monitoring Junos OS network devices.

RELATED DOCUMENTATION

- CLI User Guide
- Overview for Junos OS

Understanding Junos OS Infrastructure and Processes

IN THIS SECTION

- Routing Engine and Packet Forwarding Engine | 15
- Junos OS Processes | 15
Junos OS includes the processes that run the device, including IP routing, Ethernet switching, managing interfaces, and a variety of other functions.

Junos OS runs on the Routing Engine. The Routing Engine kernel coordinates communication among the Junos OS processes and provides a link to the Packet Forwarding Engine.

Using the Junos OS command-line interface (CLI), you configure device features and set the properties of network interfaces. After activating a software configuration, use either the Junos Space or CLI user interface to monitor, manage operations, and diagnose protocol and network connectivity problems.

Routing Engine and Packet Forwarding Engine

A switch has two primary software processing components:

- **Packet Forwarding Engine**—Processes packets; applies filters, routing policies, and other features; and forwards packets to the next hop along the route to their final destination.

- **Routing Engine**—Provides three main functions:
 - Maintains the routing tables used by the network device and controls the routing protocols that run on the device.
 - Packet forwarding, which provides route lookup, filtering, and switching on incoming data packets, and then directs outbound packets to the appropriate interface for transmission to the network.
 - Provides control and monitoring functions for the device.

Junos OS Processes

Junos OS running on the device consists of multiple processes that are responsible for individual functions.

The separation of functions provides operational stability, because each process accesses its own protected memory space.

Table 3 on page 16 describes the primary Junos OS processes.
<table>
<thead>
<tr>
<th>Process</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis process</td>
<td>chassisd</td>
<td>Detects hardware on the system that is used to configure network interfaces. Monitors the physical status of hardware components and field-replaceable units (FRUs), detecting when environment sensors such as temperature sensors are triggered. Relays signals and interrupts—for example, when devices are taken offline, so that the system can close sessions and shut down gracefully.</td>
</tr>
<tr>
<td>DNS server process</td>
<td>named-service</td>
<td>Resolves hostnames into addresses.</td>
</tr>
<tr>
<td>Dynamic Host Configuration Protocol (DHCP) process</td>
<td>dhcp-service</td>
<td>Enables a DHCP server to allocate network IP addresses and deliver configuration settings to client hosts without user intervention.</td>
</tr>
<tr>
<td>Ethernet switching process</td>
<td>eswd</td>
<td>Handles Layer 2 switching functionality such as MAC address learning, Spanning Tree Protocol, and access port security. Manages Ethernet switching interfaces, VLANs, and VLAN interfaces. NOTE: This process is not applicable for EX2300 and EX3400 switches.</td>
</tr>
<tr>
<td>Firewall management process</td>
<td>firewall</td>
<td>Manages the firewall configuration and helps accept or reject packets that are transiting an interface on a switch.</td>
</tr>
<tr>
<td>Forwarding process</td>
<td>pfem</td>
<td>Defines how routing protocols operate on the partition. The overall performance of the partition is largely determined by the effectiveness of the forwarding process.</td>
</tr>
<tr>
<td>Interface process</td>
<td>dcd</td>
<td>Configures and monitors network interfaces by defining physical characteristics such as link encapsulation, hold times, and keepalive timers.</td>
</tr>
<tr>
<td>Integrated Local Management Interface (ILMI) process</td>
<td>ilmi</td>
<td>Provides bidirectional exchange of management information between two ATM interfaces across a physical connection.</td>
</tr>
<tr>
<td>Process Description</td>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>Establishes and maintains LMP control channels.</td>
<td>link-management</td>
<td>Link Management Protocol (LMP) process</td>
</tr>
<tr>
<td>Provides communication between the other processes and an interface to the configuration database. Populates the configuration database with configuration information and retrieves the information when queried by other processes to ensure that the system operates as configured. Interacts with the other processes when commands are issued through one of the user interfaces on the partition. If a process terminates or fails to start when called, the management process attempts to restart it a limited number of times to prevent thrashing and logs any failure information for further investigation.</td>
<td>mgd</td>
<td>Management process</td>
</tr>
<tr>
<td>Makes Layer 2 devices, such as VLAN switches, aware of Layer 3 information, such as the media access control (MAC) addresses of members of a multicast group.</td>
<td>multicast-snooping</td>
<td>Multicast snooping process</td>
</tr>
<tr>
<td>Protects Neighbor Discovery Protocol (NDP) messages.</td>
<td>send</td>
<td>Secure Neighbor Discovery (SEND) protocol process</td>
</tr>
<tr>
<td>Enables the monitoring of network devices from a central location and provides the switch’s SNMP master agent.</td>
<td>snmp</td>
<td>Simple Network Management Protocol (SNMP) process</td>
</tr>
<tr>
<td>Enables the Operation, Administration, and Maintenance of Layer 2 tunneled networks. Layer 2 protocol tunneling (L2PT) allows service providers to send Layer 2 protocol data units (PDUs) across the provider’s cloud and deliver them to devices that are not part of the local broadcast domain.</td>
<td>tunnel-oamd</td>
<td>Tunnel OAM process</td>
</tr>
</tbody>
</table>
Table 3: Junos OS Processes (continued)

<table>
<thead>
<tr>
<th>Process</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Router Redundancy Protocol (VRRP) process</td>
<td>vrrp</td>
<td>Enables hosts on a LAN to make use of redundant routing platforms on that LAN without requiring more than the static configuration of a single default route on the hosts.</td>
</tr>
</tbody>
</table>

RELATED DOCUMENTATION

- Junos OS Baseline Network Operations Guide
- Junos OS Administration Library
Initial Configuration Overview for Junos OS Devices

After you install and power on the Junos OS device, you are ready to begin initial configuration. A version of Junos OS is preinstalled on all devices. The procedures in this guide show you how to connect the device to the network but do not enable it to forward traffic. For complete information about enabling the router to forward traffic, including examples, see the Junos OS configuration guides. For information about how to upgrade or reinstall software, see the Junos OS Installation and Upgrade Guide.

NOTE: For an overview of Junos and for details regarding Configuration Statements and command-line interfaces (CLIs), see the Overview for Junos OS and the CLI User Guide.

Only console access to the device is enabled by default. Use a console port to connect to the device initially.

Gather the following information before configuring the device:

- Name the device will use on the network.
- Domain name the device will use.
- IP address and prefix length information for the Ethernet interface.
- IP address of a default device.
- IP address of a DNS server
- Password for the root user

The most common method of configuring the device is through the use of Junos OS CLI commands.

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Console Port Overview</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessing a Junos OS Device the First Time</td>
<td>22</td>
</tr>
<tr>
<td>Overview for Junos OS</td>
<td></td>
</tr>
<tr>
<td>CLI User Guide</td>
<td></td>
</tr>
</tbody>
</table>
Console Port Overview

Console ports allow access to Junos OS devices, regardless of the state of the Junos OS device, unless it is completely powered off. By connecting to the console port, you can access the root level of the Junos OS device without using the network to which the device might or might not be connected.

A console connection provides persistent direct access to a device that can often be accessed even when the primary network has failed.

We recommend that you perform all Junos OS and software package upgrades using the console because this connection will always remain up for the duration of the upgrade, enabling you to monitor status and progress. Other network-based connections such as SSH or telnet are often interrupted during software upgrades, which can cause status or error messages to be missed.

NOTE: See the hardware guide for your particular Junos OS device for instructions on how to connect to the console port.

RELATED DOCUMENTATION

- Initial Configuration Overview for Junos OS Devices | 20
- Accessing a Junos OS Device the First Time | 22
Accessing a Junos OS Device the First Time

NOTE: Before proceeding with any new Junos OS device, be sure to follow the quick start and initial set-up instructions which came with the device.

When you power on a Junos OS device, Junos OS automatically boots and starts.

To configure the device initially, you must connect a terminal or laptop computer through the console port, which can vary in position and type, depending on the specific device model. Only console access to the device is enabled by default. Remote management access to the router and all management access protocols, including Telnet, FTP, and SSH, are disabled by default.

To access a Junos OS device for the first time:

1. Connect a terminal or laptop computer to the Junos OS device through the console port.

2. Power on the device and wait for it to boot.

 Junos OS boots automatically. The boot process is complete when you see the login: prompt on the console user interface.

3. Log in as the user root.

 Initially, the root user account requires no password. You can see that you are the root user, because the prompt on the device shows the username root@%.

4. Start the Junos OS command-line interface (CLI).

 root@% cli

 root@>

5. Enter Junos OS configuration mode.

 cli> configure
 [edit]

 root@#
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Configuration Overview for Junos OS Devices</td>
<td>20</td>
</tr>
<tr>
<td>Understanding the Root Password</td>
<td>25</td>
</tr>
<tr>
<td>Protecting Network Security by Configuring the Root Password</td>
<td>25</td>
</tr>
</tbody>
</table>

Root Password
Changing the Device Default Root Password

Understanding the Root Password | 25

Protecting Network Security by Configuring the Root Password | 25
Understanding the Root Password

The root user has complete privileges to operate and configure the Junos OS device, perform upgrades, and manage files in the file system. Initially, the root password is not defined on the Junos OS device. To ensure basic security, you must define the root password during initial configuration. If a root password is not defined, you cannot commit configuration settings on the device.

The root password must meet the following conditions:

- Be at least six characters long. Most character classes can be included in a password (alphabetic, numeric, and special characters), except control characters.
- Contain at least one change of case or character class.

Protecting Network Security by Configuring the Root Password

Configuring the root password on your Junos OS-enabled router helps prevent unauthorized users from making changes to your network. The root user (also referred to as superuser) has unrestricted access and full permissions within the system, so it is crucial to protect this account by setting a strong password when setting up a new router.

After a new router is initially powered on, you log in as the user root with no password. Junos OS requires configuration of the root password before it accepts a commit operation.

To set the root password, you have a few options as shown in the following procedure.

- Enter a plain-text password that Junos OS encrypts.
- Enter a password that is already encrypted.
- Enter a secure shell (ssh) public key string.

The most secure options of these three are using an already encrypted password or an ssh public key string. Pre-encrypting your password or using an ssh public key string means the plain-text version of your
password will never be transferred over the internet, protecting it from being intercepted by a man-in-the-middle attack.

BEST PRACTICE: Optionally, instead of configuring the root password at the [edit system] hierarchy level, you can use a configuration group to strengthen security.

To set the root password:

1. Use one of these methods to configure the root password:
 - To enter a plain-text password that the system encrypts for you:
     ```
     [edit groups global system]
     root@# set root-authentication plain-text-password
     New Password: type password here
     Retype new password: retype password here
     ```
 As you enter a plain-text password into the CLI, Junos OS hides it from view and encrypts it immediately. You do not have to configure Junos OS to encrypt the password as in some other systems. In the resulting configuration, the encrypted password is marked as **## SECRET-DATA** so that it cannot be seen.
 - To enter a password that is already encrypted:
     ```
     [edit groups global system]
     root@# set root-authentication encrypted-password password
     ```
 CAUTION: Do not use the encrypted-password option unless the password is already encrypted, and you are entering the encrypted version of the password.
 If you accidentally configure the encrypted-password option with a plain-text password or with blank quotation marks (""), you will not be able to log in to the device as root, and you will need to complete the root password recovery process.
 - To enter an ssh public key string:
     ```
     [edit groups global system]
     root@# set root-authentication (ssh-dsa | ssh-ecdsa | ssh-rsa key)
     ```

2. If you used a configuration group, apply it with the command `set apply-groups`, replacing `<group name>` with the configuration group name.
For example:

```bash
[edit]
user@host# set apply-groups <group name>
```

3. Commit the changes.

```bash
root@# commit
```

RELATED DOCUMENTATION

- Accessing a Junos OS Device the First Time | 22
Setting the Device Hostname

Understanding Hostnames | 29

Configuring the Hostname of a Router or Switch by Using a Configuration Group | 30
Understanding Hostnames

Almost all devices in your network have a hostname.

The hostname is the name that identifies the device on the network and is easier to remember than an IP address. When you first power on a Juniper Networks router, switch, or security device, the default hostname is **Amnesiac**. The **Amnesiac** prompt is indicative of a device that is booting from a factory-fresh Junos OS software load, which, by definition, does not have a hostname configured.

Administrators often follow conventions for naming devices. One such convention is to name the device based on its location, for example: germany-berlin-R1. The hostname should be unique within your network infrastructure, but there is no need for the local hostname to be globally unique.

A device's hostname usually has a corresponding entry in the domain name system (DNS) so that administrators can connect to the device using the hostname. The fully qualified domain name (FQDN), which is used in DNS, includes the hostname and the entire domain name. The hostname and the domain name labels are separated by periods or dots, as follows: hostname.domain. For example, if the hostname is **germany-berlin-R1** and the domain name is **example**, the FQDN is **germany-berlin-R1.example**. If the **example.net** domain is registered and can be reached as **example.net** on the Internet, the FQDN for the device is **germany-berlin-R1.example.net**. The FQDN is globally unique.

In Junos OS, the hostname can contain any combination of alphabetic characters, numbers, dashes, and underscores. No other special characters are allowed.

Although Junos OS allows hostnames to contain up to 255 characters, keep in mind that the total length of the hostname as an FQDN cannot exceed 255 characters (including the delimiting dots), with each domain name label having a maximum length of 63 characters. In any case, an overly long hostname is difficult to type and to remember, so short and meaningful hostnames are a best practice.

RELATED DOCUMENTATION

Getting Started Guide for Junos OS
Configuring the Hostname of a Router or Switch by Using a Configuration Group

The hostname of a device is its identification. A network device must have its identity established to be accessible on the network. That is perhaps the most important reason to have a hostname, but a hostname has other purposes.

Junos OS uses the configured hostname as part of the command prompt and to prepend log files and other accounting information. The hostname is also used anywhere else when knowing the device identity is important. For these reasons, we recommend hostnames be descriptive and memorable.

You can configure the hostname at the [edit system] hierarchy level, a procedure shown in “Configuring a Device’s Unique Identity for the Network” on page 39. Optionally, instead of configuring the hostname at the [edit system] hierarchy level, you can use a configuration group, as shown in this procedure. This is a recommended best practice for configuring the hostname, especially if the device has dual Routing Engines. This procedure uses groups called re0 and re1 as an example.

NOTE: Starting with Junos OS Release 13.2R3, if you configure hostnames that are longer than the CLI screen width, regardless of the terminal screen width setting, the commit operation occurs successfully. Even if the terminal screen width is less than the hostname length, commit is successful.

In Junos OS releases earlier than Release 13.2R3, if you configured such hostnames by using the host-name hostname statement at the [edit system] hierarchy level and the the terminal screen width was less than the length of the hostname by using the set cli screen-width statement, a foreign file propagation (ffp) failure error message is displayed when you attempt to commit the configuration. In such a case, because of the ffp failure, the commit operation does not complete and you cannot recover the router unless you make the modification in the backend in the juniper.conf.gz file and commit the change from the shell prompt.

To set the hostname using a configuration group:

1. Include the host-name statement in the configuration at the [edit groups group-name system] hierarchy level.

 The name value must be less than 256 characters.

 [edit groups group-name system]
 host-name hostname;

 For example:
2. If you used one or more configuration groups, apply the configuration groups, substituting the appropriate group names.

For example:

```
[edit]
user@host# set apply-groups [re0 re1]
```

3. Commit the changes.

```
[edit]
root@# commit
```

The hostname subsequently appears in the device CLI prompt.

```
san-jose-router0#
```
CHAPTER 5

Configuring DNS, Server Caching, and Device Identity

Understanding and Configuring DNS | 33
Configuring the TTL Value for DNS Server Caching | 37
Configuring a Device’s Unique Identity for the Network | 39
A Domain Name System (DNS) is a distributed hierarchical system that converts hostnames to IP addresses. The DNS is divided into sections called zones. Each zone has name servers that respond to the queries belonging to their zones.

This topic includes the following sections:

DNS Components

DNS includes three main components:

- **DNS resolver**: Resides on the client side of the DNS. When a user sends a hostname request, the resolver sends a DNS query request to the name servers to request the hostname's IP address.
- **Name servers**: Processes the DNS query requests received from the DNS resolver and returns the IP address to the resolver.
- **Resource records**: Data elements that define the basic structure and content of the DNS.
DNS Server Caching

DNS name servers are responsible for providing the hostname IP address to users. The TTL field in the resource record defines the period for which DNS query results are cached. When the TTL value expires, the name server sends a fresh DNS query and updates the cache.

SEE ALSO
- Configuring the TTL Value for DNS Server Caching

Configuring a DNS Name Server for Resolving Hostnames into Addresses

Domain Name System (DNS) name servers are used for resolving hostnames to IP addresses.

For redundancy, it is a best practice to configure access to multiple name servers. You can configure a maximum of three name servers. The approach is similar to the way Web browsers resolve the names of a Web site to its network address. Additionally, Junos OS enables you to configure one or more domain names, which it uses to resolve hostnames that are not fully qualified (in other words, the domain name is missing). This is convenient because you can use a hostname in configuring and operating Junos OS without the need to reference the full domain name. After adding name server addresses and domain names to your Junos OS configuration, you can use DNS resolvable hostnames in your configurations and commands instead of IP addresses.

 Optionally, instead of configuring the name server at the [edit system] hierarchy level, you can use a configuration group, as shown in this procedure. This is a recommended best practice for configuring the name server.

Starting in Junos OS Release 19.2R1, you can route traffic between a management routing instance and DNS name server. Configure a routing instance at the [edit system name-server server-ip-address] hierarchy level and the name server becomes reachable through this routing instance.

To enable a management routing instance for DNS, configure the following:

```
user@host# set system management-instance
user@host# set routing-instances mgmt_junos description description
user@host# set system name-server server-ip-address routing-instance mgmt_junos
```

If you have configured the name server using a configuration group, use the [edit groups group-name system name-server] hierarchy level, which is a recommended best practice for configuring the name server.
Before you begin, configure your name servers with the hostname and an IP address for your Junos OS device. It does not matter which IP address you assign as the address of your Junos OS device in the name server, as long it is an address that reaches your device. Normally, you would use the management interface IP address, but you can choose the loopback interface IP address, or a network interface IP address, or even configure multiple addresses on the name server.

To configure the router or switch to resolve hostnames into addresses:

1. **Reference the IP addresses of your name servers.**

   ```
   [edit groups group-name system]
   name-server {
     address;
   }
   ```

 The following example shows how to reference two name servers:

   ```
   [edit groups global system]
   user@host# set name-server 192.168.1.253
   user@host# set name-server 192.168.1.254
   user@host# show name-server {
     192.168.1.253/32;
     192.168.1.254/32;
   }
   ```

2. **(Optional) Configure the routing instance for DNS.**

 The following example shows how to configure the routing-instance for one of the name servers:

   ```
   [edit groups global system]
   user@host# set name-server 192.168.1.253 routing-instance mgmt_junos
   ```

 Remember to also configure the following:

 - **management-instance** statement at the [edit system] hierarchy level
 - **routing-instance** statement at the [edit routing-instances] hierarchy level.

3. **(Optional) Configure the name of the domain in which the device itself is located.**

 This is a good practice. Junos OS then uses this configured domain name as the default domain name to append to hostnames that are not fully qualified.

   ```
   [edit system]
   ```
The following example shows how to configure the domain name:

```plaintext
[edit groups global system]
user@host# set domain-name company.net
user@host# show
domain-name company.net;
```

4. (Optional) Configure a list of domains to be searched.

If your device can reach several different domains, you can configure these as a list of domains to be searched. Junos OS then uses this list to set an order in which it appends domain names when searching for the IP address of a host.

```plaintext
[edit groups global system]
domain-search [ domain-list ];
```

The domain list can contain up to six domain names, with a total of up to 256 characters.

The following example shows how to configure two domains to be searched. This example configures Junos OS to search the company.net domain and then the domainone.net domain and then the domainonealternate.com domain when attempting to resolve unqualified hosts.

```plaintext
[edit groups global system]
domain-search [ company.net domainone.net domainonealternate.com ]
```

5. If you used a configuration group, apply the configuration group, substituting `global` with the appropriate group name.

```plaintext
[edit]
user@host# set apply-groups global
```

6. Commit the configuration.

```plaintext
user@host# commit
```

7. Verify the configuration.

If you have configured your name server with the hostname and an IP address for your Junos OS device, you can issue the following commands to confirm that DNS is working and reachable. You can either
use the configured hostname to confirm resolution to the IP address or use the IP address of your device to confirm resolution to the configured hostname.

user@host> show host host-name
user@host> show host host-ip-address

For example:

user@host> show host device.example.net
device.example.net
device.example.net has address 192.168.187.1

user@host> show host 192.168.187.1
10.187.168.192.in-addr.arpa domain name pointer device.example.net.

SEE ALSO

name-server (System Services)
domain-search

RELATED DOCUMENTATION

Understanding Hostnames | 29
DNSSEC Overview
Getting Started Guide for Junos OS

Configuring the TTL Value for DNS Server Caching

IN THIS SECTION

- Requirements | 38
- Overview | 38
This section describes how to configure the TTL value for a DNS server cache to define the period for which DNS query results are cached.

Requirements

No special configuration beyond device initialization is required before performing this task.

Overview

The DNS name server stores DNS query responses in its cache for the TTL period specified in the TTL field of the resource record. When the TTL value expires, the name server sends a fresh DNS query and updates the cache. You can configure the TTL value from 0 to 604,800 seconds. You can also configure the TTL value for cached negative responses. Negative caching is the storing of the record that a value does not exist. In this example, you set the maximum TTL value for cached (and negative cached) responses to 86,400 seconds.

Configuration

Step-by-Step Procedure

To configure the TTL value for a DNS server cache:

1. Specify the maximum TTL value for cached responses, in seconds. (In this example, 86400 seconds equals 24 hours.)

   ```
   [edit]
   user@host# set system services dns max-cache-ttl 86400
   ```

2. Specify the maximum TTL value for negative cached responses, in seconds.
3. If you are done configuring the device, commit the configuration.

```
[edit]
user@host# set system services dns max-ncache-ttl 86400
```

Verification

To verify the configuration is working properly, enter the `show system services` command.

RELATED DOCUMENTATION

| DNS Overview | 33 |

Configuring a Device’s Unique Identity for the Network

To use a device in a network, you must configure the device's identity. Doing this makes the device accessible on the network and so that other users can log in to it. You can refer to any Internet-connected machine in either of two ways:
• By its IP address
• By its hostname

Once you have a hostname, you can:

• Find the IP address
• Use the Domain Name System (DNS) to resolve an IP address from a hostname
• Manually map the hostname to a static IP address

Although using DNS is an easier and more scalable way to resolve IP addresses from hostnames, you might not have a DNS entry for the router, or you might not want the computer to contact the DNS server to resolve a particular IP address. In this latter instance, perhaps you use this particular IP address frequently, or you might be using it only for testing or development purposes and do not want to give it a DNS entry.

To configure a router’s unique identity, you might need to include some or all of the following details: The hostname of the router, its IP address, the domain name, and IP addresses for two or three domain name servers.

Requirements

No special configuration beyond device initialization is required.

Overview

In this context, the hostname is the device’s name. It is easier for most people to remember a hostname than an IP address. Junos OS uses the configured hostname as part of the command prompt, to prepend log files and other accounting information, as well as in other places where knowing the device identity is useful. You can also use the hostname to telnet to a device.

The domain name is the string appended to hostnames that are not fully qualified. The domain name is the name of a network associated with an organization. For sites in the United States, domain names typically take the form of org-name.org-type—for example, "Juniper.net."

In case your hostname and IP address do not have a DNS entry in a name server, configure a static mapping. The values given in the following table are used to configure each of these variables. You need to substitute data specific to your device and network for these values.
Table 4: Values to Use in Example

<table>
<thead>
<tr>
<th>Name of Variable</th>
<th>Value Used in Example</th>
<th>Value You Substitute</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain-name domain-name</td>
<td>domain-name device.example.net</td>
<td></td>
</tr>
<tr>
<td>host-name host-name</td>
<td>host-name example-re0</td>
<td></td>
</tr>
<tr>
<td>inet ip-address</td>
<td>inet 172.22.147.39</td>
<td></td>
</tr>
<tr>
<td>name-server ip-address</td>
<td>name-server 172.24.16.115</td>
<td>name-server 192.0.2.0</td>
</tr>
</tbody>
</table>

Configuration

CLI Quick Configuration
To quickly configure a device using this example

- Copy the following commands and paste them in a text file
- Remove any line breaks
- Change the values listed here to match your network configuration
- Copy and paste the commands into the CLI at the [edit] hierarchy level
- Finally, enter commit from configuration mode

```plaintext
set system domain-name device.example.net
set system host-name example-re0
set system name-server 172.24.16.115
set system name-server 192.0.2.0
set system static-host-mapping example-re0 inet 172.22.147.39
```

Configuring the Router's Identity

Step-by-Step Procedure
To configure the identity settings of a device:

1. Configure the domain name of your network.
2. Configure the hostname, using the `set system host-name` command.

```
[edit]
user@host# set system host-name example-re0
```

3. Configure from one to three name servers.

```
[edit]
user@host# set system name-server 172.24.16.115
user@host# set system name-server 192.0.2.0
```

4. Map from the hostname to the IP address, using the `set system static-host-mapping` command.

```
[edit]
user@host# set system static-host-mapping example-re0 inet 172.22.147.39
```

Results

To check the configuration, use the configuration mode `show system` command.

```
[edit]
user@host# show system
domain-name device.example.net;
host-name example-re0;
nname-server {
  172.24.16.115;
  192.0.2.0;
}
static-host-mapping {
  example-re0 {
    inet 172.22.147.39;
  }
}
```

When you have the correct configuration, enter `commit`.
Verification

Confirm the Device Hostname and IP Address

Purpose
Confirm the hostname and IP address of a device are as expected.

Action
Issue the `show host host-name` operational command.

```
user@example-re0> show host newton
newton.device.example.net is an alias for example-re0.device.example.net.
example-re0.device.example.net has address 172.22.147.39
```

RELATED DOCUMENTATION

- Understanding Hostnames | 29
- Configuring a DNS Name Server for Resolving Hostnames into Addresses | 34
Understanding and Configuring Management Ethernet and Loopback Interfaces

- Understanding Management Ethernet Interfaces | 45
- Management Interface in a Nondefault Instance | 45
- Understanding the Loopback Interface | 51
- Loopback Interface Configuration | 52
Understanding Management Ethernet Interfaces

Management interfaces are the primary interfaces for accessing the device remotely. Typically, a management interface is not connected to the in-band network, but is connected instead to the device's internal network. Through a management interface you can access the device over the network using utilities such as ssh and telnet and configure the device from anywhere, regardless of its physical location. SNMP can use the management interface to gather statistics from the device.

A management interface lets authorized users and management systems connect to the device over the network. Some Juniper Networks devices have a dedicated management port on the front panel. For other types of platforms, you can configure a management interface on one of the network interfaces. This interface can be dedicated to management or shared with other traffic. Before users can access the management interface, you must configure it. Information required to set up the management interface includes its IP address and prefix. In many types of Junos OS devices (or recommended configurations), it is not possible to route traffic between the management interface and the other ports. Therefore, you should select an IP address in a separate (logical) network, with a separate prefix (netmask).

For Junos OS Evolved, use re0:mgmt-* for Routing Engine 0 and re1:mgmt-* for Routing Engine 1 management interfaces.

Management Interface in a Nondefault Instance

IN THIS SECTION
- Why Use a Nondefault Management Interface? | 45
- Applications and Processes That Are VRF Aware | 46
- Configuring the mgmt_junos Routing Instance | 47

Why Use a Nondefault Management Interface?

By default, in Junos OS, the management Ethernet interface (usually named fxp0 or em0) provides the out-of-band management network for the device. There is no clear separation between either out-of-band management traffic and in-band protocol control traffic, that is, user traffic at the routing-instance or routing-table level. Instead, all traffic is handled through the default routing instance, giving rise to concerns over security, performance, and how to troubleshoot.
Starting with Junos OS Release 17.3R1, you can confine the em0 and fxp0 management interfaces in a nondefault virtual routing and forwarding (VRF) instance, the mgmt_junos routing instance. After you configure this management routing instance, management traffic no longer has to share a routing table (that is, the default inet.0 table) with other control or protocol traffic in the system. This improves security and makes it easier to use the management interface to troubleshoot.

NOTE: Only the em0 and fxp0 interfaces are supported in the non-default management VRF. Other management interfaces such as em1 are not supported in the non-default management VRF.

Applications and Processes That Are VRF Aware

Many processes communicate through the management interface. In order for the nondefault management instance to support these processes, they must support a management VRF. To make many of these processes work with the nondefault VRF instance, you must configure the name of the new management routing instance (mgmt_junos) for these processes. Starting in Junos OS Release 17.4R1, these processes have been enhanced to be able to use the management routing instance.

For the processes that require this additional configuration and where to find more information for those processes, see Table 5 on page 46.

Table 5: Junos Processes You Can Configure to Use the Management VRF

<table>
<thead>
<tr>
<th>Process</th>
<th>First Release to Support Management VRF</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automation scripts</td>
<td>Junos OS Release 18.1R1</td>
<td>Using an Alternate Source Location for a Script</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configuring and Using a Master Source Location for a Script</td>
</tr>
<tr>
<td>BGP Monitoring Protocol (BMP)</td>
<td>Junos OS Release 18.3R1</td>
<td>Configuring BGP Monitoring Protocol to Run Over a Different Routing Instance</td>
</tr>
<tr>
<td>Domain Name System (DNS))</td>
<td>Junos OS Release 19.2R1</td>
<td>“Configuring a DNS Name Server for Resolving Hostnames into Addresses” on page 34</td>
</tr>
<tr>
<td>NTP</td>
<td>Junos OS Release 18.1R1</td>
<td>ntp</td>
</tr>
</tbody>
</table>
Table 5: Junos Processes You Can Configure to Use the Management VRF (continued)

<table>
<thead>
<tr>
<th>Process</th>
<th>First Release to Support Management VRF</th>
<th>For More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADIUS</td>
<td>Junos OS Release 18.1R1</td>
<td>Configuring RADIUS Server Authentication</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Configuring RADIUS System Accounting</td>
</tr>
<tr>
<td>syslog</td>
<td>Junos OS Release 18.1R1</td>
<td>syslog (System)</td>
</tr>
<tr>
<td></td>
<td>Junos OS Release 18.4R1</td>
<td>routing-instance (Syslog)</td>
</tr>
<tr>
<td>TACACS+</td>
<td>Junos OS Release 17.4R1</td>
<td>Configuring TACACS+ Authentication</td>
</tr>
<tr>
<td></td>
<td>Junos OS Release 18.2R1</td>
<td>Configuring TACACS+ System Accounting</td>
</tr>
</tbody>
</table>

Configuring the mgmt_junos Routing Instance

IN THIS SECTION
- Determining Static Routes | 48
- Enabling the mgmt_junos Routing Instance | 49
- Removing the mgmt_junos Routing Instance | 50

Starting in Junos OS 17.3R1, you can confine the management interface in a dedicated management instance by configuring the `management-instance` configuration statement at the `[edit system]` hierarchy level. The name of the dedicated management instance is reserved and hardcoded as `mgmt_junos`; you are prevented from configuring any other routing instance by the name `mgmt_junos`. Once the `mgmt_junos` routing instance is deployed, management traffic no longer shares a routing table (that is, the default inet.0 table) with other control or protocol traffic in the system, nor is configuring dynamic protocols on the management interface supported.

Because there are FreeBSD and Junos OS applications that assume that the management interface is always present in the default inet.0 routing table, the `mgmt_junos` routing instance is not instantiated by default.

As part of configuring the `mgmt_junos` routing instance, you must also move static routes that have a next hop over the default management interface to the `mgmt_junos` routing instance. If needed, you must also
configure the appropriate daemons or applications to use the mgmt_junos routing instance. All of these changes must be done in a single commit. Otherwise, the transition to mgmt_junos will not be smooth and you will have to repair the system later by logging in from the console.

After you commit the configuration, expect to lose, and then have to reestablish, the Telnet session.

For an example of using this feature, see the following sections:

Determining Static Routes

As part of configuring the mgmt_junos routing instance, you must move all the static routes that have a next hop through the default management interface from the default routing instance to mgmt_junos. Each setup is different. In these examples, you need to identify the static routes that have a next hop through the fxp0 interface. The next hop for any static route that is affected will have an IP address that falls under the subnet of the IP address configured for fxp0.

You can use the following commands to determine static routes that need to be changed.

- Use the `show interfaces` command to find the IP address of the default management interface:

  ```
  user@host> show interfaces fxp0 terse
  
  Interface          Admin Link Proto    Local                  Remote
  fxp0                up    up
  fxp0.0              up    up   inet     10.102.183.152/20
  
  In this case the default management interface is fxp0, but it could be em0 or re0:mgmt-*.
  ```

- Use the `show route forwarding-table` command to look at the forwarding table for next-hop information for static routes (static routes show up as type `user`):

  ```
  user@host> show route forwarding-table
  
  Routing table: default.inet
  Internet:
  Enabled protocols: Bridging,
  Destination        Type RtRef Next hop           Type Index    NhRef Netif
  default            perm     0                    rjct       36     1
  0.0.0.0/32         perm     0                    dscd       34     1
  10.0.0.0/8         user     0 0:0:5e:0:1:d0      ucst      341     6 fxp0.0
  10.0.1.0/24        intf     0                    rslv      584     1 ge-0/0/0.0
  10.0.1.0/32        dest     0 10.0.1.0           recv      582     1 ge-0/0/0.0
  10.0.1.1/32        intf     0 10.0.1.1           locl      583     2
  10.0.1.1/32        dest     0 10.0.1.1           locl      583     2
  ```
Another way to find your static routes is to use the `show route protocol static` command.

```
user@host> show route protocol static

inet.0: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.0.0.0/8       *[Static/5] 2d 21:48:36
    > to 10.102.191.254 via fxp0.0
172.16.0.0/12    *[Static/5] 2d 21:48:36
    > to 10.102.191.254 via fxp0.0
192.168.0.0/16   *[Static/5] 2d 21:48:36
    > to 10.102.191.254 via fxp0.0
```

Enabling the mgmt_junos Routing Instance

NOTE: We recommend using the device console port for these operations, because at the point where you commit the configuration, if you are using SSH or telnet, the connection to the device will be dropped and you will have to reestablish it. If using SSH or telnet anyway, use `commit confirm`.

To enable the mgmt_junos routing instance:

1. Configure the mgmt_junos routing instance at the `edit routing-instances` hierarchy level:
2. Configure the `management-instance` statement.

3. Move the appropriate static routes to the `mgmt_junos` routing instance.

 For how to determine static routes to change, see "Determining Static Routes" on page 48.

   ```
   [edit routing-instances mgmt_junos routing-option static route]
   user@host# set 10.0.0.0/8 next-hop 10.102.191.254
   user@host# set 172.16.0.0/12 next-hop 10.102.191.254
   user@host# set 192.168.0.0/16 next-hop 10.102.191.254
   ```

 If you are using configuration groups, you might want to set these changes as part of a group:

   ```
   [edit groups global routing-instances mgmt_junos routing-options static route ]
   user@host# set 10.0.0.0/8 next-hop 10.102.191.254
   user@host# set 172.16.0.0/12 next-hop 10.102.191.254
   user@host# set 192.168.0.0/16 next-hop 10.102.191.254
   ```

4. Commit the configuration.

5. At this point you have configured the `management-instance` statement. Tables for the `mgmt_junos` table are set up for inet and inet6 and marked as private tables. The management interface is moved to the `mgmt_junos` routing table. Static routes with a next hop to the management interface are moved from the default routing table and added to the `mgmt_junos` routing instance.

 However, if you have not configured the `management routing-instance` option in the `tacplus server` statement, the TACACS+ packets continue to be sent using the default routing instance only.

Removing the mgmt_junos Routing Instance

When you remove the `mgmt_junos` routing instance, you must also move the static routes back to the default routing instance and delete the TACACS+ settings for `mgmt_junos`.

To remove the dedicated management interface:

1. Delete or deactivate the management routing-instance statement.
2. (Optional) Delete the TACACS+ settings for mgmt_junos.

3. Move the static routes back to the default routing instance.

```
[edit]
user@host# delete system management-instance

[edit routing-instances mgmt_junos routing-option static route]
user@host# delete 10.0.0.0/8 next-hop 10.102.191.254
user@host# delete 172.16.0.0/12 next-hop 10.102.191.254
user@host# delete 192.168.0.0/16 next-hop 10.102.191.254
```

RELATED DOCUMENTATION

- management-instance

Understanding the Loopback Interface

The Internet Protocol (IP) specifies a loopback network with the (IPv4) address 127.0.0.0/8. Most IP implementations support a loopback interface (lo0) to represent the loopback facility. Any traffic that a computer program sends on the loopback network is addressed to the same computer. The most commonly used IP address on the loopback network is 127.0.0.1 for IPv4 and ::1 for IPv6. The standard domain name for the address is localhost.

A network device also includes an internal loopback address (lo0.16384). The internal loopback address is a particular instance of the loopback address with the logical unit number 16384.

The loopback interface is used to identify the device. While any interface address can be used to determine if the device is online, the loopback address is the preferred method. Whereas interfaces might be removed or addresses changed based on network topology changes, the loopback address never changes.

When you ping an individual interface address, the results do not always indicate the health of the device. For example, a subnet mismatch in the configuration of two endpoints on a point-to-point link makes the link appear to be inoperable. Pinging the interface to determine whether the device is online provides a misleading result. An interface might be unavailable because of a problem unrelated to the device's configuration or operation. You can use the loopback interface to address these issues.
Benefits of Loopback Interface

- As the loopback address never changes, it is the best way to identify a device in the network.
- The loopback interface is always up and it is reachable as long as the route to that IP address is available in the IP routing table. Hence you can use the loopback interface for diagnostics and troubleshooting purposes.
- Protocols such as OSPF use the loopback address to determine protocol-specific properties for the device or network. Further, some commands such as `ping mpls` require a loopback address to function correctly.
- You can apply stateless firewall filters to the loopback address to filter packets originating from, or destined for, the Routing Engine.
- Junos OS creates the loopback interface for the internal routing instance, which prevents any filter on lo0.0 from disrupting internal traffic.

RELATED DOCUMENTATION

- Understanding Interfaces

Loopback Interface Configuration

IN THIS SECTION

- Configuring the Loopback Interface | 52
- Example: Configuring Two Addresses on the Loopback Interface with Host Routes | 54
- Example: Configuring Two Addresses on the Loopback Interface with Subnetwork Routes | 54
- Example: Configuring an IPv4 and an IPv6 Address on the Loopback Interface with Subnetwork Routes | 55

Configuring the Loopback Interface

When specifying the loopback address, do not include a destination prefix. Also, in most cases, do not specify a loopback address on any unit other than unit 0.
NOTE: For Layer 3 virtual private networks (VPNs), you can configure multiple logical units for the loopback interface. This allows you to configure a logical loopback interface for each virtual routing and forwarding (VRF) routing instance. For more information, see the Junos OS VPNs Library for Routing Devices.

For some applications, such as SSL for Junos XML protocol, the address for the interface lo0.0 must be 127.0.0.1.

You can configure loopback interfaces using a subnetwork address for both inet and inet6 address families. Many protocols require a subnetwork address as their source address. Configuring a subnetwork loopback address as a donor interface enables these protocols to run on unnumbered interfaces.

If you configure the loopback interface, it is automatically used for unnumbered interfaces. If you do not configure the loopback interface, the router chooses the first interface to come online as the default. If you configure more than one address on the loopback interface, we recommend that you configure one to be the primary address to ensure that it is selected for use with unnumbered interfaces. By default, the primary address is used as the source address when packets originate from the interface.

On the router, you can configure the physical loopback interface, lo0, and one or more addresses on the interface. You can configure more than just unit 0 for lo0, but each additional unit needs to be applied somewhere other than the main instance.

1. To configure the physical loopback interface, include the following statements at the [edit interfaces] hierarchy level:

 [edit interfaces]
 lo0 {
 unit 0 {
 family inet {
 address loopback-address;
 address <loopback-address2>;
 ...
 }
 family inet6 {
 address loopback-address;
 }
 }
 }
Example: Configuring Two Addresses on the Loopback Interface with Host Routes

To configure two addresses on the loopback interface with host routes:

```
[edit]
user@host# edit interfaces lo0 unit 0 family inet
[edit interfaces lo0 unit 0 family inet]
user@host# set address 172.16.0.1
[edit interfaces lo0 unit 0 family inet]
user@host# set address 10.0.0.1
[edit interfaces lo0 unit 0 family inet]
user@host# top
[edit]
user@host# show
interfaces {
    lo0 {
        unit 0 {
            family inet {
                10.0.0.1/32;
                127.0.0.1/32;
                172.16.0.1/32;
            }
        }
    }
}
```

Example: Configuring Two Addresses on the Loopback Interface with Subnetwork Routes

To configure two addresses on the loopback interface with subnetwork routes:

```
[edit]
user@host# edit interfaces lo0 unit 0 family inet
[edit interfaces lo0 unit 0 family inet]
user@host# set address 192.16.0.1/24
[edit interfaces lo0 unit 0 family inet]
user@host# set address 10.2.0.1/16
[edit interfaces lo0 unit 0 family inet]
```
Example: Configuring an IPv4 and an IPv6 Address on the Loopback Interface with Subnetwork Routes

To configure an IPv4 and an IPv6 address on the loopback interface with subnetwork routes:

```
user@host# top
[edit]
user@host# show
interfaces {
  lo0 {
    unit 0 {
      family inet {
        10.2.0.1/16;
        127.0.0.1/32;
        192.16.0.1/24;
      }
    }
  }
}

[edit]
user@host# edit interfaces lo0 unit 0 family inet
[edit interfaces lo0 unit 0 family inet]
user@host# set address 192.16.0.1/24
[edit interfaces lo0 unit 0 family inet]
user@host# up
[edit interfaces lo0 unit 0 family]
user@host# edit interfaces lo0 unit 0 family inet6
[edit interfaces lo0 unit 0 family inet6]
user@host# set address 3ffe::1:200:f8ff:fe75:50df/64
[edit interfaces lo0 unit 0 family inet6]
user@host# top
[edit]
user@host# show
interfaces {
  lo0 {
    unit 0 {
      family inet {
        127.0.0.1/32;
        192.16.0.1/24;
      }
    }
  }
}
```
family inet6 {
 3ffe:::1:200::ff:fe75:50df/64;
}
}
}
}

RELATED DOCUMENTATION

Junos OS VPNs Library for Routing Devices
Setting Up Initial User Accounts

Junos OS User Accounts Overview | 58
Configuring Junos OS User Accounts by Using a Configuration Group | 60
Enabling Remote Access and File Access Services | 63
Junos OS User Accounts Overview

User accounts provide one way for users to access the device. (Users can access the device without accounts if you configured RADIUS or TACACS+ servers, as described in Junos OS User Authentication Methods.) For each account, you define the login name and password for the user and, optionally, additional parameters and metadata for the user. After you have created an account, the software creates a home directory for the user.

An account for the user root is always present in the configuration. You configure the password for root using the root-authentication statement, as described in Configuring the Root Password.

It is a common practice to use remote authentication servers to centrally store information about users. Even so, it is also a good practice to configure at least one non-root user directly on each device, in case access to the remote authentication server is disrupted. This one non-root user commonly has a generic name, such as admin.

For each user account, you can define the following:

- Username: Name that identifies the user. It must be unique within the device. Do not include spaces, colons, or commas in the username. The username can be up to 64 characters long.
- User’s full name: (Optional) If the full name contains spaces, enclose it in quotation marks. Do not include colons or commas.
- User identifier (UID): (Optional) Numeric identifier that is associated with the user account name. Typically there is no need to set the UID because the software automatically assigns it when you commit the configuration. However, if you manually configure the UID, it must be in the range from 100 through 64,000 and must be unique within the device.

 You must ensure that the UID is unique. However, it is possible to assign the same UID to different users. If you do this, the CLI displays a warning when you commit the configuration and then assigns the duplicate UID.

 - User’s access privilege: (Required) One of the login classes you defined in the class statement at the [edit system login] hierarchy level, or one of the default classes listed in Junos OS User Access Privileges.

 - Authentication method or methods and passwords that the user can use to access the device—You can use SSH or a Message Digest 5 (MD5) password, or you can enter a plain-text password that the Junos OS encrypts using MD5-style encryption before entering it in the password database. For each method, you can specify the user’s password. If you configure the plain-text-password option, you are prompted to enter and confirm the password:

```
[edit system login user username]
user@host# set authentication plain-text-password
New password: type password here
```
The default requirements for plain-text passwords are:

- The password must be between 6 and 128 characters long.
- You can include most character classes in a password (uppercase letters, lowercase letters, numbers, punctuation marks, and other special characters). Control characters are not recommended.
- Valid passwords must contain at least one change of case or character class.

Junos-FIPS and Common Criteria have special password requirements. FIPS and Common Criteria passwords must be between 10 and 20 characters in length. Passwords must use at least three of the five defined character sets (uppercase letters, lowercase letters, digits, punctuation marks, and other special characters). If Junos-FIPS is installed on the device, you cannot configure passwords unless they meet this standard.

For SSH authentication, you can copy the contents of an SSH key file into the configuration or directly configure SSH key information. Use the `load-key-file` URL filename command to load an SSH key file that was previously generated, e.g. by using `ssh-keygen`. The URL filename is the path to the file's location and name. This command loads RSA (SSH version 1 and SSH version 2) and DSA (SSH version 2) public keys. The contents of the SSH key file are copied into the configuration immediately after you enter the `load-key-file` statement. Optionally, you can use the `ssh-dsa public key <from hostname>` and the `ssh-rsa public key <from hostname>` statements to directly configure SSH keys.

The following TLS version and cipher suite combinations will fail when you use the specified type of host key.

With RSA host keys:

- TLS_1.0@DHE-RSA-AES128-SHA
- TLS_1.0@DHE-RSA-AES256-SHA

With DSA host keys:

- TLS 1.0 (default ciphers)
- TLS 1.1 (default ciphers)
- TLS_1.0@DHE-DSS-AES128-SHA
- TLS_1.0@DHE-DSS-AES256-SHA

For each user account and for root logins, you can configure more than one public RSA or DSA key for user authentication. When a user logs in using a user account or as root, the configured public keys are referenced to determine whether the private key matches any of them.

To view the SSH keys entries, use the configuration mode `show` command. For example:
Configuring Junos OS User Accounts by Using a Configuration Group

Because user accounts are configured on multiple devices, they are commonly configured inside of a configuration group. As such, the examples shown here are in a configuration group called `global`. Using a configuration group for your user accounts is optional.

To create a user account:

1. Add a new user, using the user’s assigned account login name.

   ```
   [edit groups global]
   user@host# edit system login user username
   ```

2. (Optional) Configure a full descriptive name for the account.

 If the full name includes spaces, enclose the entire name in quotation marks.

   ```
   [edit groups global system login user user-name]
   user@host# set full-name complete-name
   ```

 For example:

   ```
   user@host# show groups
   global {
   system {
   login {
   user admin {
   full-name "general administrator";
   ```
3. (Optional) Set the user identifier (UID) for the account.

As with UNIX systems, the UID enforces user permissions and file access. If you do not set the UID, Junos OS assigns one for you. The format of the UID is a number in the range of 100 to 64000.

```
[edit groups global system login user user-name]
user@host# set uid uid-value
```

For example:

```
user@host# show groups
global {
    system {
        login {
            user admin {
                uid 9999;
            }
        }
    }
}
```

4. Assign the user to a login class.

You can define your own login classes or assign one of the predefined Junos OS login classes.

The predefined login classes are as follows:

- **super-user**—all permissions
- **operator**—clear, network, reset, trace, and view permissions
- **read-only**—view permissions
- **unauthorized**—no permissions

```
[edit groups global system login user user-name]
user@host# set class class-name
```
For example:

```
user@host# show groups
  global {
    system {
      login {
        user admin {
          class super-user;
        }
      }
    }
  }
```

5. Use one of the following methods to configure the user password.

- To enter a clear-text password that the system encrypts for you, use the following command to set the user password:

  ```
  [edit groupsglobalsystemloginuser user-name]
  user@host# set authentication plain-text-password password
  
  New Password: type password here
  Retype new password: retype password here
  ```

 As you enter the password in plain text, Junos OS encrypts it immediately. You do not have to configure Junos OS to encrypt the password as in some other systems. Plain-text passwords are therefore hidden and marked as ## SECRET-DATA in the configuration.

- To enter a password that is already encrypted, use the following command to set the user password:

  ```
  CAUTION: Do not use the encrypted-password option unless the password is already encrypted, and you are entering the encrypted version of the password.
  
  If you accidentally configure the encrypted-password option with a plain-text password or with blank quotation marks (""), you will not be able to log in to the device as this user.
  ```

  ```
  [edit groupsglobalsystemloginuser user-name]
  user@host# set authentication encrypted-password "password"
  ```

- To load previously generated public keys from a named file at a specified URL location, use the following command to set the user password:
Enabling Remote Access and File Access Services

SSH, telnet, and FTP are widely used standards for remotely logging into network devices and exchanging files between systems. Before authorized users can access your device, or your device can exchange data with other systems, you must configure one or more of these enabling services. They are all disabled by default in Junos OS.

SSH is a protocol that uses strong authentication and encryption for remote access across a nonsecure network. SSH provides remote login, remote program execution, file copy, and other functions. SSH is telnet’s successor and is the recommended method for remote access. SSH encrypts all traffic, including passwords, to effectively eliminate eavesdropping, connection hijacking, and other attacks. The SSH utility includes SCP (secure copy), a file transfer program that uses SSH and is the recommended method for secure file exchange.

Because both telnet and FTP are legacy applications that use clear text passwords (therefore creating a potential security vulnerability), we recommend that you use SSH (and SCP). If you do not intend to use FTP or telnet, you do not need to configure them on your device. However, do not forget to consider that

6. At the top level of the configuration, apply the configuration group.

 If you use a configuration group, you must apply it for it to take effect.

   ```
   [edit]
   user@host# set apply-groups global
   ```

7. Commit the configuration.

   ```
   user@host# commit
   ```

8. To verify the configuration, log out and log back in as the new user.
some users might use FTP to store configuration templates, retrieve software, or perform other administrative tasks.

To set up remote access and file transfer services:

1. Enable SSH access.

 [edit groups global]
 user@host# set system services ssh

2. Enable telnet access.

 [edit groups global]
 user@host# set system services telnet

3. Enable FTP.

 [edit groups global]
 user@host# set system services ftp

4. At the top level of the configuration, apply the configuration group.
 If you use a configuration group, you must apply it for it to take effect.

 [edit]
 user@host# set apply-groups global

5. Commit the configuration.

 user@host# commit

RELATED DOCUMENTATION

- Configuring SSH Service for Remote Access to the Router or Switch
- Configuring Telnet Service for Remote Access to a Router or Switch
- Configuring FTP Service for Remote Access to the Router or Switch
Configuring Backup Routers

Understanding Backup Routers | 66
Configuring a Backup Router | 67
The purpose of the backup router is not to forward transit traffic. It is for local management of the routing device, by way of the out-of-band management interface (fxp0 or me0, for example).

The Junos OS process responsible for establishing routes is known as the routing protocol process (rpd). The backup router feature allows the routing device to install a route to a management network, before the routing protocol process is up and running. A backup router can be used during the initial boot process of Junos OS, before any routing protocols have converged. It allows the device to establish a Layer 3 connection quickly, thus keeping management unavailability to a minimum. In selecting a backup router, it is common practice to choose the default gateway of the management network that is directly connected to your routing device.

When a routing device is booting, the routing protocol process is not running. Therefore, the router or switch has no routes. To ensure that the router or switch is reachable for management purposes while it boots or if the routing protocol process fails to start properly, configure a backup router, which is a router that is directly connected to the local router or switch (that is, on the same subnet) through its private management interface (for example, fxp0 or me0).

It is important to make sure that the specified backup router address is reachable and directly connected. The backup router address should be an address that is directly connected to the management interface.

NOTE: Router A can be the backup router for Router B, and Router B can be the backup router for Router A if the management interface of each router is connected to an interface on the other router, thus providing the necessary reachability.

When the routing protocol process starts, the backup route (the route created by the backup router) is removed, and any default, static, or protocol-learned routes are installed.

Backup-router configurations can alter the backup routing engine kernel forwarding table even with nonstop active (NSR) enabled.

RELATED DOCUMENTATION

| Configuring a Backup Router | 67 |
Configuring a Backup Router

To achieve network reachability while loading, configuring, and recovering the router or switch, but without installing a default route in the forwarding table, include the destination option, specifying an address that is reachable through the backup router. Specify the address in the format network/mask-length. Both IPv4 and IPv6 addresses are supported.

If you have a backup router configuration in which multiple static routes point to a gateway from the management Ethernet interface, you must configure prefixes that are more specific than the static routes or include the retain option at the [edit routing-options static route] hierarchy level.

For example, if you configure the static route 172.16.0.0/12 from the management Ethernet interface for management purposes, you must specify the backup router configuration as follows:

```
backup-router 172.29.201.62 destination [172.16.0.0/13 172.16.128.0/13]
```

Any destinations defined by the backup router are not visible in the routing table. They are only visible in the local forwarding table when the routing protocol process is not running. Therefore, a recommended best practice is to include the destinations of the backup router configured as static routes with the retain option. The retain option is necessary to allow the static route to remain in the forwarding table when the routing protocol process stops running, because the routing table does not exist if the routing protocol process is not running.

Also, the destination prefix under backup-router configuration cannot overlap with the destination prefix learned from routing protocol process (rpd).

On systems with dual redundant Routing Engines, the backup Routing Engine’s reachability through the private management interface is based only on the functionality of the backup-router configuration. It is not based on whether the routing protocol process is running. On both Routing Engines, the backup-router statement adds the destination prefix upon bootup. On the master Routing Engine, a static route requires the routing protocol process to be running first before installing the destination prefix to the routing and forwarding tables.
Due to a system limitation, do not configure the destination address specified in the backup-router as 0.0.0.0/0 or ::/0. The mask has to be a nonzero value.

Active routes and more specific routes take precedence over destination prefixes defined with the `backup-router` statement.

Configuring a Backup Router Running IPv4 for Routers

In the example shown in Figure 1 on page 68, the backup router is the default gateway of the management network.

As required, the backup router address is reachable and directly connected to the management interfaces on the two routing devices (fxp0 and me0).

![Figure 1: Backup Router Sample Topology](image)

Optionally, instead of configuring the backup router at the `edit system` hierarchy level, you can use a configuration group, as shown in this procedure. This is a recommended best practice for configuring the backup router, especially if the device has dual Routing Engines. This procedure uses groups called `re0` and `re1` as an example.

To configure a backup router running IPv4:

1. Include the `backup-router` statement at the `edit system` hierarchy level.

   ```
   [edit groups group-name system]
   backup-router address <destination destination-address>;
   ```

 For example:
2. (Optional) Configure a static route to the management network.

Junos OS only uses the backup router during the boot sequence. If you want to configure a backup router for use after startup, you can set up a static route. The static route goes into effect when the routing protocol process is running.

```conf
routing-options {
    static {
        route 172.16.1.0/24 {
            next-hop 192.168.1.254;
            retain;
        }
    }
}
```

3. If you used one or more configuration groups, apply the configuration groups, substituting the appropriate group names.

For example:

```conf
[edit]
user@host# set apply-groups [re0 re1]
```

4. Commit the changes:

```conf
[edit]
root@# commit
```
Configuring a Backup Router Running IPv6 for Routers

To configure a backup router running IPv6:

1. Include the `inet6-backup-router` statement at the `[edit system]` hierarchy level.

   ```
   [edit groups group-name system]
   inet6-backup-router address <destination destination-address>;
   ```

 For example:

   ```
   [edit groups re0 system]
   inet6-backup-router 8:3::1 destination abcd::/48;
   ```

   ```
   [edit groups re1 system]
   inet6-backup-router 8:3::1 destination abcd::/48;
   ```

2. (Optional) Configure a static route to the management network.

 Junos OS only uses the backup router during the boot sequence. If you want to configure a backup router for use after startup, you can set up a static route. The static route goes into effect when the routing protocol process is running.

   ```
   routing-options {
     rib inet6.0 {
       static {
         route abcd::/48 {
           next-hop 8:3::1;
           retain;
         }
       }
     }
   }
   ```

3. If you used one or more configuration groups, apply the configuration groups, substituting the appropriate group names.

 For example:

   ```
   [edit]
   user@host# set apply-groups [re0 re1]
4. Commit the changes:

   [edit]
   root@# commit

---

**Configuring a Backup Router for SRX Series Devices**

This procedure describes how to manage two SRX Series devices in a chassis cluster mode using a backup router configuration, via fxp0.

The backup router address is reachable and directly connected to the management interfaces on the SRX chassis cluster (fxp0).

When you configure the backup router for SRX Series devices in chassis cluster mode, the backup router configuration is intended to facilitate the management access on the backup node only. The access to the primary node is enabled via the routing on the primary node. When the backup router configuration is done, a route is injected into the forwarding table on the secondary node. It is not possible to see the routing table on the secondary, as the routing subsystem does not run on the secondary. This example uses groups node 0 and node 1.

1. Include the `backup-router` statement at the `[edit system]` hierarchy level.

   [edit groups group-name system]
   backup-router address <destination destination-address>;

   To configure this section of the example, copy the following commands, paste them into a text file, remove any line breaks, change any details necessary to match your network configuration, copy and paste the commands into the CLI at the `[edit]` hierarchy level, and then enter `commit` from configuration mode.

   ```
 set groups node0 system host-name Corp-FW0
 set groups node0 system backup-router 192.168.1.254
 set groups node0 system backup-router destination 172.16.1.1/24
 set groups node0 interfaces fxp0 unit 0 family inet address 192.0.2.0/24
 set groups node1 system host-name Corp-FW1
 set groups node1 system backup-router 192.168.1.254
 set groups node1 system backup-router destination 172.16.1.1/24
 set groups node1 interfaces fxp0 unit 0 family inet address 192.0.2.1/24
 set apply-groups "${node}"
   ```

2. Commit the changes:
[edit]

root@# commit

RELATED DOCUMENTATION

<table>
<thead>
<tr>
<th>Understanding Backup Routers</th>
<th>66</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Junos OS for the First Time on a Device with a Single Routing Engine</td>
<td></td>
</tr>
<tr>
<td>Configuring Junos OS for the First Time on a Device with Dual Routing Engines</td>
<td></td>
</tr>
<tr>
<td>Requirements for Routers with a Backup Router Configuration.</td>
<td></td>
</tr>
</tbody>
</table>